1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/types.h> 44 45 #include <linux/usb.h> 46 #include <linux/usb/hcd.h> 47 #include <linux/usb/phy.h> 48 49 #include "usb.h" 50 51 52 /*-------------------------------------------------------------------------*/ 53 54 /* 55 * USB Host Controller Driver framework 56 * 57 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 58 * HCD-specific behaviors/bugs. 59 * 60 * This does error checks, tracks devices and urbs, and delegates to a 61 * "hc_driver" only for code (and data) that really needs to know about 62 * hardware differences. That includes root hub registers, i/o queues, 63 * and so on ... but as little else as possible. 64 * 65 * Shared code includes most of the "root hub" code (these are emulated, 66 * though each HC's hardware works differently) and PCI glue, plus request 67 * tracking overhead. The HCD code should only block on spinlocks or on 68 * hardware handshaking; blocking on software events (such as other kernel 69 * threads releasing resources, or completing actions) is all generic. 70 * 71 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 72 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 73 * only by the hub driver ... and that neither should be seen or used by 74 * usb client device drivers. 75 * 76 * Contributors of ideas or unattributed patches include: David Brownell, 77 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 78 * 79 * HISTORY: 80 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 81 * associated cleanup. "usb_hcd" still != "usb_bus". 82 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 83 */ 84 85 /*-------------------------------------------------------------------------*/ 86 87 /* Keep track of which host controller drivers are loaded */ 88 unsigned long usb_hcds_loaded; 89 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 90 91 /* host controllers we manage */ 92 LIST_HEAD (usb_bus_list); 93 EXPORT_SYMBOL_GPL (usb_bus_list); 94 95 /* used when allocating bus numbers */ 96 #define USB_MAXBUS 64 97 static DECLARE_BITMAP(busmap, USB_MAXBUS); 98 99 /* used when updating list of hcds */ 100 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 101 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 102 103 /* used for controlling access to virtual root hubs */ 104 static DEFINE_SPINLOCK(hcd_root_hub_lock); 105 106 /* used when updating an endpoint's URB list */ 107 static DEFINE_SPINLOCK(hcd_urb_list_lock); 108 109 /* used to protect against unlinking URBs after the device is gone */ 110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 111 112 /* wait queue for synchronous unlinks */ 113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 114 115 static inline int is_root_hub(struct usb_device *udev) 116 { 117 return (udev->parent == NULL); 118 } 119 120 /*-------------------------------------------------------------------------*/ 121 122 /* 123 * Sharable chunks of root hub code. 124 */ 125 126 /*-------------------------------------------------------------------------*/ 127 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 128 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 129 130 /* usb 3.0 root hub device descriptor */ 131 static const u8 usb3_rh_dev_descriptor[18] = { 132 0x12, /* __u8 bLength; */ 133 0x01, /* __u8 bDescriptorType; Device */ 134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 135 136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 137 0x00, /* __u8 bDeviceSubClass; */ 138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 140 141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 144 145 0x03, /* __u8 iManufacturer; */ 146 0x02, /* __u8 iProduct; */ 147 0x01, /* __u8 iSerialNumber; */ 148 0x01 /* __u8 bNumConfigurations; */ 149 }; 150 151 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 152 static const u8 usb25_rh_dev_descriptor[18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 160 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 /* usb 2.0 root hub device descriptor */ 173 static const u8 usb2_rh_dev_descriptor[18] = { 174 0x12, /* __u8 bLength; */ 175 0x01, /* __u8 bDescriptorType; Device */ 176 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 177 178 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 179 0x00, /* __u8 bDeviceSubClass; */ 180 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 181 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 182 183 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 184 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 185 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 186 187 0x03, /* __u8 iManufacturer; */ 188 0x02, /* __u8 iProduct; */ 189 0x01, /* __u8 iSerialNumber; */ 190 0x01 /* __u8 bNumConfigurations; */ 191 }; 192 193 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 194 195 /* usb 1.1 root hub device descriptor */ 196 static const u8 usb11_rh_dev_descriptor[18] = { 197 0x12, /* __u8 bLength; */ 198 0x01, /* __u8 bDescriptorType; Device */ 199 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 200 201 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 202 0x00, /* __u8 bDeviceSubClass; */ 203 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 204 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 205 206 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 207 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 208 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 209 210 0x03, /* __u8 iManufacturer; */ 211 0x02, /* __u8 iProduct; */ 212 0x01, /* __u8 iSerialNumber; */ 213 0x01 /* __u8 bNumConfigurations; */ 214 }; 215 216 217 /*-------------------------------------------------------------------------*/ 218 219 /* Configuration descriptors for our root hubs */ 220 221 static const u8 fs_rh_config_descriptor[] = { 222 223 /* one configuration */ 224 0x09, /* __u8 bLength; */ 225 0x02, /* __u8 bDescriptorType; Configuration */ 226 0x19, 0x00, /* __le16 wTotalLength; */ 227 0x01, /* __u8 bNumInterfaces; (1) */ 228 0x01, /* __u8 bConfigurationValue; */ 229 0x00, /* __u8 iConfiguration; */ 230 0xc0, /* __u8 bmAttributes; 231 Bit 7: must be set, 232 6: Self-powered, 233 5: Remote wakeup, 234 4..0: resvd */ 235 0x00, /* __u8 MaxPower; */ 236 237 /* USB 1.1: 238 * USB 2.0, single TT organization (mandatory): 239 * one interface, protocol 0 240 * 241 * USB 2.0, multiple TT organization (optional): 242 * two interfaces, protocols 1 (like single TT) 243 * and 2 (multiple TT mode) ... config is 244 * sometimes settable 245 * NOT IMPLEMENTED 246 */ 247 248 /* one interface */ 249 0x09, /* __u8 if_bLength; */ 250 0x04, /* __u8 if_bDescriptorType; Interface */ 251 0x00, /* __u8 if_bInterfaceNumber; */ 252 0x00, /* __u8 if_bAlternateSetting; */ 253 0x01, /* __u8 if_bNumEndpoints; */ 254 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 255 0x00, /* __u8 if_bInterfaceSubClass; */ 256 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 257 0x00, /* __u8 if_iInterface; */ 258 259 /* one endpoint (status change endpoint) */ 260 0x07, /* __u8 ep_bLength; */ 261 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 262 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 263 0x03, /* __u8 ep_bmAttributes; Interrupt */ 264 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 265 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 266 }; 267 268 static const u8 hs_rh_config_descriptor[] = { 269 270 /* one configuration */ 271 0x09, /* __u8 bLength; */ 272 0x02, /* __u8 bDescriptorType; Configuration */ 273 0x19, 0x00, /* __le16 wTotalLength; */ 274 0x01, /* __u8 bNumInterfaces; (1) */ 275 0x01, /* __u8 bConfigurationValue; */ 276 0x00, /* __u8 iConfiguration; */ 277 0xc0, /* __u8 bmAttributes; 278 Bit 7: must be set, 279 6: Self-powered, 280 5: Remote wakeup, 281 4..0: resvd */ 282 0x00, /* __u8 MaxPower; */ 283 284 /* USB 1.1: 285 * USB 2.0, single TT organization (mandatory): 286 * one interface, protocol 0 287 * 288 * USB 2.0, multiple TT organization (optional): 289 * two interfaces, protocols 1 (like single TT) 290 * and 2 (multiple TT mode) ... config is 291 * sometimes settable 292 * NOT IMPLEMENTED 293 */ 294 295 /* one interface */ 296 0x09, /* __u8 if_bLength; */ 297 0x04, /* __u8 if_bDescriptorType; Interface */ 298 0x00, /* __u8 if_bInterfaceNumber; */ 299 0x00, /* __u8 if_bAlternateSetting; */ 300 0x01, /* __u8 if_bNumEndpoints; */ 301 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 302 0x00, /* __u8 if_bInterfaceSubClass; */ 303 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 304 0x00, /* __u8 if_iInterface; */ 305 306 /* one endpoint (status change endpoint) */ 307 0x07, /* __u8 ep_bLength; */ 308 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 309 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 310 0x03, /* __u8 ep_bmAttributes; Interrupt */ 311 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 312 * see hub.c:hub_configure() for details. */ 313 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 314 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 315 }; 316 317 static const u8 ss_rh_config_descriptor[] = { 318 /* one configuration */ 319 0x09, /* __u8 bLength; */ 320 0x02, /* __u8 bDescriptorType; Configuration */ 321 0x1f, 0x00, /* __le16 wTotalLength; */ 322 0x01, /* __u8 bNumInterfaces; (1) */ 323 0x01, /* __u8 bConfigurationValue; */ 324 0x00, /* __u8 iConfiguration; */ 325 0xc0, /* __u8 bmAttributes; 326 Bit 7: must be set, 327 6: Self-powered, 328 5: Remote wakeup, 329 4..0: resvd */ 330 0x00, /* __u8 MaxPower; */ 331 332 /* one interface */ 333 0x09, /* __u8 if_bLength; */ 334 0x04, /* __u8 if_bDescriptorType; Interface */ 335 0x00, /* __u8 if_bInterfaceNumber; */ 336 0x00, /* __u8 if_bAlternateSetting; */ 337 0x01, /* __u8 if_bNumEndpoints; */ 338 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 339 0x00, /* __u8 if_bInterfaceSubClass; */ 340 0x00, /* __u8 if_bInterfaceProtocol; */ 341 0x00, /* __u8 if_iInterface; */ 342 343 /* one endpoint (status change endpoint) */ 344 0x07, /* __u8 ep_bLength; */ 345 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 346 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 347 0x03, /* __u8 ep_bmAttributes; Interrupt */ 348 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 349 * see hub.c:hub_configure() for details. */ 350 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 351 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 352 353 /* one SuperSpeed endpoint companion descriptor */ 354 0x06, /* __u8 ss_bLength */ 355 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 356 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 357 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 358 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 359 }; 360 361 /* authorized_default behaviour: 362 * -1 is authorized for all devices except wireless (old behaviour) 363 * 0 is unauthorized for all devices 364 * 1 is authorized for all devices 365 */ 366 static int authorized_default = -1; 367 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 368 MODULE_PARM_DESC(authorized_default, 369 "Default USB device authorization: 0 is not authorized, 1 is " 370 "authorized, -1 is authorized except for wireless USB (default, " 371 "old behaviour"); 372 /*-------------------------------------------------------------------------*/ 373 374 /** 375 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 376 * @s: Null-terminated ASCII (actually ISO-8859-1) string 377 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 378 * @len: Length (in bytes; may be odd) of descriptor buffer. 379 * 380 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 381 * whichever is less. 382 * 383 * Note: 384 * USB String descriptors can contain at most 126 characters; input 385 * strings longer than that are truncated. 386 */ 387 static unsigned 388 ascii2desc(char const *s, u8 *buf, unsigned len) 389 { 390 unsigned n, t = 2 + 2*strlen(s); 391 392 if (t > 254) 393 t = 254; /* Longest possible UTF string descriptor */ 394 if (len > t) 395 len = t; 396 397 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 398 399 n = len; 400 while (n--) { 401 *buf++ = t; 402 if (!n--) 403 break; 404 *buf++ = t >> 8; 405 t = (unsigned char)*s++; 406 } 407 return len; 408 } 409 410 /** 411 * rh_string() - provides string descriptors for root hub 412 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 413 * @hcd: the host controller for this root hub 414 * @data: buffer for output packet 415 * @len: length of the provided buffer 416 * 417 * Produces either a manufacturer, product or serial number string for the 418 * virtual root hub device. 419 * 420 * Return: The number of bytes filled in: the length of the descriptor or 421 * of the provided buffer, whichever is less. 422 */ 423 static unsigned 424 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 425 { 426 char buf[100]; 427 char const *s; 428 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 429 430 /* language ids */ 431 switch (id) { 432 case 0: 433 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 434 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 435 if (len > 4) 436 len = 4; 437 memcpy(data, langids, len); 438 return len; 439 case 1: 440 /* Serial number */ 441 s = hcd->self.bus_name; 442 break; 443 case 2: 444 /* Product name */ 445 s = hcd->product_desc; 446 break; 447 case 3: 448 /* Manufacturer */ 449 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 450 init_utsname()->release, hcd->driver->description); 451 s = buf; 452 break; 453 default: 454 /* Can't happen; caller guarantees it */ 455 return 0; 456 } 457 458 return ascii2desc(s, data, len); 459 } 460 461 462 /* Root hub control transfers execute synchronously */ 463 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 464 { 465 struct usb_ctrlrequest *cmd; 466 u16 typeReq, wValue, wIndex, wLength; 467 u8 *ubuf = urb->transfer_buffer; 468 unsigned len = 0; 469 int status; 470 u8 patch_wakeup = 0; 471 u8 patch_protocol = 0; 472 u16 tbuf_size; 473 u8 *tbuf = NULL; 474 const u8 *bufp; 475 476 might_sleep(); 477 478 spin_lock_irq(&hcd_root_hub_lock); 479 status = usb_hcd_link_urb_to_ep(hcd, urb); 480 spin_unlock_irq(&hcd_root_hub_lock); 481 if (status) 482 return status; 483 urb->hcpriv = hcd; /* Indicate it's queued */ 484 485 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 486 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 487 wValue = le16_to_cpu (cmd->wValue); 488 wIndex = le16_to_cpu (cmd->wIndex); 489 wLength = le16_to_cpu (cmd->wLength); 490 491 if (wLength > urb->transfer_buffer_length) 492 goto error; 493 494 /* 495 * tbuf should be at least as big as the 496 * USB hub descriptor. 497 */ 498 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 499 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 500 if (!tbuf) 501 return -ENOMEM; 502 503 bufp = tbuf; 504 505 506 urb->actual_length = 0; 507 switch (typeReq) { 508 509 /* DEVICE REQUESTS */ 510 511 /* The root hub's remote wakeup enable bit is implemented using 512 * driver model wakeup flags. If this system supports wakeup 513 * through USB, userspace may change the default "allow wakeup" 514 * policy through sysfs or these calls. 515 * 516 * Most root hubs support wakeup from downstream devices, for 517 * runtime power management (disabling USB clocks and reducing 518 * VBUS power usage). However, not all of them do so; silicon, 519 * board, and BIOS bugs here are not uncommon, so these can't 520 * be treated quite like external hubs. 521 * 522 * Likewise, not all root hubs will pass wakeup events upstream, 523 * to wake up the whole system. So don't assume root hub and 524 * controller capabilities are identical. 525 */ 526 527 case DeviceRequest | USB_REQ_GET_STATUS: 528 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 529 << USB_DEVICE_REMOTE_WAKEUP) 530 | (1 << USB_DEVICE_SELF_POWERED); 531 tbuf[1] = 0; 532 len = 2; 533 break; 534 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 535 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 536 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 537 else 538 goto error; 539 break; 540 case DeviceOutRequest | USB_REQ_SET_FEATURE: 541 if (device_can_wakeup(&hcd->self.root_hub->dev) 542 && wValue == USB_DEVICE_REMOTE_WAKEUP) 543 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 544 else 545 goto error; 546 break; 547 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 548 tbuf[0] = 1; 549 len = 1; 550 /* FALLTHROUGH */ 551 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 552 break; 553 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 554 switch (wValue & 0xff00) { 555 case USB_DT_DEVICE << 8: 556 switch (hcd->speed) { 557 case HCD_USB3: 558 bufp = usb3_rh_dev_descriptor; 559 break; 560 case HCD_USB25: 561 bufp = usb25_rh_dev_descriptor; 562 break; 563 case HCD_USB2: 564 bufp = usb2_rh_dev_descriptor; 565 break; 566 case HCD_USB11: 567 bufp = usb11_rh_dev_descriptor; 568 break; 569 default: 570 goto error; 571 } 572 len = 18; 573 if (hcd->has_tt) 574 patch_protocol = 1; 575 break; 576 case USB_DT_CONFIG << 8: 577 switch (hcd->speed) { 578 case HCD_USB3: 579 bufp = ss_rh_config_descriptor; 580 len = sizeof ss_rh_config_descriptor; 581 break; 582 case HCD_USB25: 583 case HCD_USB2: 584 bufp = hs_rh_config_descriptor; 585 len = sizeof hs_rh_config_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = fs_rh_config_descriptor; 589 len = sizeof fs_rh_config_descriptor; 590 break; 591 default: 592 goto error; 593 } 594 if (device_can_wakeup(&hcd->self.root_hub->dev)) 595 patch_wakeup = 1; 596 break; 597 case USB_DT_STRING << 8: 598 if ((wValue & 0xff) < 4) 599 urb->actual_length = rh_string(wValue & 0xff, 600 hcd, ubuf, wLength); 601 else /* unsupported IDs --> "protocol stall" */ 602 goto error; 603 break; 604 case USB_DT_BOS << 8: 605 goto nongeneric; 606 default: 607 goto error; 608 } 609 break; 610 case DeviceRequest | USB_REQ_GET_INTERFACE: 611 tbuf[0] = 0; 612 len = 1; 613 /* FALLTHROUGH */ 614 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 615 break; 616 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 617 /* wValue == urb->dev->devaddr */ 618 dev_dbg (hcd->self.controller, "root hub device address %d\n", 619 wValue); 620 break; 621 622 /* INTERFACE REQUESTS (no defined feature/status flags) */ 623 624 /* ENDPOINT REQUESTS */ 625 626 case EndpointRequest | USB_REQ_GET_STATUS: 627 /* ENDPOINT_HALT flag */ 628 tbuf[0] = 0; 629 tbuf[1] = 0; 630 len = 2; 631 /* FALLTHROUGH */ 632 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 633 case EndpointOutRequest | USB_REQ_SET_FEATURE: 634 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 635 break; 636 637 /* CLASS REQUESTS (and errors) */ 638 639 default: 640 nongeneric: 641 /* non-generic request */ 642 switch (typeReq) { 643 case GetHubStatus: 644 case GetPortStatus: 645 len = 4; 646 break; 647 case GetHubDescriptor: 648 len = sizeof (struct usb_hub_descriptor); 649 break; 650 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 651 /* len is returned by hub_control */ 652 break; 653 } 654 status = hcd->driver->hub_control (hcd, 655 typeReq, wValue, wIndex, 656 tbuf, wLength); 657 658 if (typeReq == GetHubDescriptor) 659 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 660 (struct usb_hub_descriptor *)tbuf); 661 break; 662 error: 663 /* "protocol stall" on error */ 664 status = -EPIPE; 665 } 666 667 if (status < 0) { 668 len = 0; 669 if (status != -EPIPE) { 670 dev_dbg (hcd->self.controller, 671 "CTRL: TypeReq=0x%x val=0x%x " 672 "idx=0x%x len=%d ==> %d\n", 673 typeReq, wValue, wIndex, 674 wLength, status); 675 } 676 } else if (status > 0) { 677 /* hub_control may return the length of data copied. */ 678 len = status; 679 status = 0; 680 } 681 if (len) { 682 if (urb->transfer_buffer_length < len) 683 len = urb->transfer_buffer_length; 684 urb->actual_length = len; 685 /* always USB_DIR_IN, toward host */ 686 memcpy (ubuf, bufp, len); 687 688 /* report whether RH hardware supports remote wakeup */ 689 if (patch_wakeup && 690 len > offsetof (struct usb_config_descriptor, 691 bmAttributes)) 692 ((struct usb_config_descriptor *)ubuf)->bmAttributes 693 |= USB_CONFIG_ATT_WAKEUP; 694 695 /* report whether RH hardware has an integrated TT */ 696 if (patch_protocol && 697 len > offsetof(struct usb_device_descriptor, 698 bDeviceProtocol)) 699 ((struct usb_device_descriptor *) ubuf)-> 700 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 701 } 702 703 kfree(tbuf); 704 705 /* any errors get returned through the urb completion */ 706 spin_lock_irq(&hcd_root_hub_lock); 707 usb_hcd_unlink_urb_from_ep(hcd, urb); 708 usb_hcd_giveback_urb(hcd, urb, status); 709 spin_unlock_irq(&hcd_root_hub_lock); 710 return 0; 711 } 712 713 /*-------------------------------------------------------------------------*/ 714 715 /* 716 * Root Hub interrupt transfers are polled using a timer if the 717 * driver requests it; otherwise the driver is responsible for 718 * calling usb_hcd_poll_rh_status() when an event occurs. 719 * 720 * Completions are called in_interrupt(), but they may or may not 721 * be in_irq(). 722 */ 723 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 724 { 725 struct urb *urb; 726 int length; 727 unsigned long flags; 728 char buffer[6]; /* Any root hubs with > 31 ports? */ 729 730 if (unlikely(!hcd->rh_pollable)) 731 return; 732 if (!hcd->uses_new_polling && !hcd->status_urb) 733 return; 734 735 length = hcd->driver->hub_status_data(hcd, buffer); 736 if (length > 0) { 737 738 /* try to complete the status urb */ 739 spin_lock_irqsave(&hcd_root_hub_lock, flags); 740 urb = hcd->status_urb; 741 if (urb) { 742 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 743 hcd->status_urb = NULL; 744 urb->actual_length = length; 745 memcpy(urb->transfer_buffer, buffer, length); 746 747 usb_hcd_unlink_urb_from_ep(hcd, urb); 748 usb_hcd_giveback_urb(hcd, urb, 0); 749 } else { 750 length = 0; 751 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 752 } 753 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 754 } 755 756 /* The USB 2.0 spec says 256 ms. This is close enough and won't 757 * exceed that limit if HZ is 100. The math is more clunky than 758 * maybe expected, this is to make sure that all timers for USB devices 759 * fire at the same time to give the CPU a break in between */ 760 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 761 (length == 0 && hcd->status_urb != NULL)) 762 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 763 } 764 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 765 766 /* timer callback */ 767 static void rh_timer_func (unsigned long _hcd) 768 { 769 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 770 } 771 772 /*-------------------------------------------------------------------------*/ 773 774 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 775 { 776 int retval; 777 unsigned long flags; 778 unsigned len = 1 + (urb->dev->maxchild / 8); 779 780 spin_lock_irqsave (&hcd_root_hub_lock, flags); 781 if (hcd->status_urb || urb->transfer_buffer_length < len) { 782 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 783 retval = -EINVAL; 784 goto done; 785 } 786 787 retval = usb_hcd_link_urb_to_ep(hcd, urb); 788 if (retval) 789 goto done; 790 791 hcd->status_urb = urb; 792 urb->hcpriv = hcd; /* indicate it's queued */ 793 if (!hcd->uses_new_polling) 794 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 795 796 /* If a status change has already occurred, report it ASAP */ 797 else if (HCD_POLL_PENDING(hcd)) 798 mod_timer(&hcd->rh_timer, jiffies); 799 retval = 0; 800 done: 801 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 802 return retval; 803 } 804 805 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 806 { 807 if (usb_endpoint_xfer_int(&urb->ep->desc)) 808 return rh_queue_status (hcd, urb); 809 if (usb_endpoint_xfer_control(&urb->ep->desc)) 810 return rh_call_control (hcd, urb); 811 return -EINVAL; 812 } 813 814 /*-------------------------------------------------------------------------*/ 815 816 /* Unlinks of root-hub control URBs are legal, but they don't do anything 817 * since these URBs always execute synchronously. 818 */ 819 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 820 { 821 unsigned long flags; 822 int rc; 823 824 spin_lock_irqsave(&hcd_root_hub_lock, flags); 825 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 826 if (rc) 827 goto done; 828 829 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 830 ; /* Do nothing */ 831 832 } else { /* Status URB */ 833 if (!hcd->uses_new_polling) 834 del_timer (&hcd->rh_timer); 835 if (urb == hcd->status_urb) { 836 hcd->status_urb = NULL; 837 usb_hcd_unlink_urb_from_ep(hcd, urb); 838 usb_hcd_giveback_urb(hcd, urb, status); 839 } 840 } 841 done: 842 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 843 return rc; 844 } 845 846 847 848 /* 849 * Show & store the current value of authorized_default 850 */ 851 static ssize_t authorized_default_show(struct device *dev, 852 struct device_attribute *attr, char *buf) 853 { 854 struct usb_device *rh_usb_dev = to_usb_device(dev); 855 struct usb_bus *usb_bus = rh_usb_dev->bus; 856 struct usb_hcd *usb_hcd; 857 858 usb_hcd = bus_to_hcd(usb_bus); 859 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 860 } 861 862 static ssize_t authorized_default_store(struct device *dev, 863 struct device_attribute *attr, 864 const char *buf, size_t size) 865 { 866 ssize_t result; 867 unsigned val; 868 struct usb_device *rh_usb_dev = to_usb_device(dev); 869 struct usb_bus *usb_bus = rh_usb_dev->bus; 870 struct usb_hcd *usb_hcd; 871 872 usb_hcd = bus_to_hcd(usb_bus); 873 result = sscanf(buf, "%u\n", &val); 874 if (result == 1) { 875 usb_hcd->authorized_default = val ? 1 : 0; 876 result = size; 877 } else { 878 result = -EINVAL; 879 } 880 return result; 881 } 882 static DEVICE_ATTR_RW(authorized_default); 883 884 /* Group all the USB bus attributes */ 885 static struct attribute *usb_bus_attrs[] = { 886 &dev_attr_authorized_default.attr, 887 NULL, 888 }; 889 890 static struct attribute_group usb_bus_attr_group = { 891 .name = NULL, /* we want them in the same directory */ 892 .attrs = usb_bus_attrs, 893 }; 894 895 896 897 /*-------------------------------------------------------------------------*/ 898 899 /** 900 * usb_bus_init - shared initialization code 901 * @bus: the bus structure being initialized 902 * 903 * This code is used to initialize a usb_bus structure, memory for which is 904 * separately managed. 905 */ 906 static void usb_bus_init (struct usb_bus *bus) 907 { 908 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 909 910 bus->devnum_next = 1; 911 912 bus->root_hub = NULL; 913 bus->busnum = -1; 914 bus->bandwidth_allocated = 0; 915 bus->bandwidth_int_reqs = 0; 916 bus->bandwidth_isoc_reqs = 0; 917 mutex_init(&bus->usb_address0_mutex); 918 919 INIT_LIST_HEAD (&bus->bus_list); 920 } 921 922 /*-------------------------------------------------------------------------*/ 923 924 /** 925 * usb_register_bus - registers the USB host controller with the usb core 926 * @bus: pointer to the bus to register 927 * Context: !in_interrupt() 928 * 929 * Assigns a bus number, and links the controller into usbcore data 930 * structures so that it can be seen by scanning the bus list. 931 * 932 * Return: 0 if successful. A negative error code otherwise. 933 */ 934 static int usb_register_bus(struct usb_bus *bus) 935 { 936 int result = -E2BIG; 937 int busnum; 938 939 mutex_lock(&usb_bus_list_lock); 940 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1); 941 if (busnum >= USB_MAXBUS) { 942 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 943 goto error_find_busnum; 944 } 945 set_bit(busnum, busmap); 946 bus->busnum = busnum; 947 948 /* Add it to the local list of buses */ 949 list_add (&bus->bus_list, &usb_bus_list); 950 mutex_unlock(&usb_bus_list_lock); 951 952 usb_notify_add_bus(bus); 953 954 dev_info (bus->controller, "new USB bus registered, assigned bus " 955 "number %d\n", bus->busnum); 956 return 0; 957 958 error_find_busnum: 959 mutex_unlock(&usb_bus_list_lock); 960 return result; 961 } 962 963 /** 964 * usb_deregister_bus - deregisters the USB host controller 965 * @bus: pointer to the bus to deregister 966 * Context: !in_interrupt() 967 * 968 * Recycles the bus number, and unlinks the controller from usbcore data 969 * structures so that it won't be seen by scanning the bus list. 970 */ 971 static void usb_deregister_bus (struct usb_bus *bus) 972 { 973 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 974 975 /* 976 * NOTE: make sure that all the devices are removed by the 977 * controller code, as well as having it call this when cleaning 978 * itself up 979 */ 980 mutex_lock(&usb_bus_list_lock); 981 list_del (&bus->bus_list); 982 mutex_unlock(&usb_bus_list_lock); 983 984 usb_notify_remove_bus(bus); 985 986 clear_bit(bus->busnum, busmap); 987 } 988 989 /** 990 * register_root_hub - called by usb_add_hcd() to register a root hub 991 * @hcd: host controller for this root hub 992 * 993 * This function registers the root hub with the USB subsystem. It sets up 994 * the device properly in the device tree and then calls usb_new_device() 995 * to register the usb device. It also assigns the root hub's USB address 996 * (always 1). 997 * 998 * Return: 0 if successful. A negative error code otherwise. 999 */ 1000 static int register_root_hub(struct usb_hcd *hcd) 1001 { 1002 struct device *parent_dev = hcd->self.controller; 1003 struct usb_device *usb_dev = hcd->self.root_hub; 1004 const int devnum = 1; 1005 int retval; 1006 1007 usb_dev->devnum = devnum; 1008 usb_dev->bus->devnum_next = devnum + 1; 1009 memset (&usb_dev->bus->devmap.devicemap, 0, 1010 sizeof usb_dev->bus->devmap.devicemap); 1011 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1012 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1013 1014 mutex_lock(&usb_bus_list_lock); 1015 1016 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1017 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1018 if (retval != sizeof usb_dev->descriptor) { 1019 mutex_unlock(&usb_bus_list_lock); 1020 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1021 dev_name(&usb_dev->dev), retval); 1022 return (retval < 0) ? retval : -EMSGSIZE; 1023 } 1024 if (usb_dev->speed == USB_SPEED_SUPER) { 1025 retval = usb_get_bos_descriptor(usb_dev); 1026 if (retval < 0) { 1027 mutex_unlock(&usb_bus_list_lock); 1028 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1029 dev_name(&usb_dev->dev), retval); 1030 return retval; 1031 } 1032 } 1033 1034 retval = usb_new_device (usb_dev); 1035 if (retval) { 1036 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1037 dev_name(&usb_dev->dev), retval); 1038 } else { 1039 spin_lock_irq (&hcd_root_hub_lock); 1040 hcd->rh_registered = 1; 1041 spin_unlock_irq (&hcd_root_hub_lock); 1042 1043 /* Did the HC die before the root hub was registered? */ 1044 if (HCD_DEAD(hcd)) 1045 usb_hc_died (hcd); /* This time clean up */ 1046 } 1047 mutex_unlock(&usb_bus_list_lock); 1048 1049 return retval; 1050 } 1051 1052 /* 1053 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1054 * @bus: the bus which the root hub belongs to 1055 * @portnum: the port which is being resumed 1056 * 1057 * HCDs should call this function when they know that a resume signal is 1058 * being sent to a root-hub port. The root hub will be prevented from 1059 * going into autosuspend until usb_hcd_end_port_resume() is called. 1060 * 1061 * The bus's private lock must be held by the caller. 1062 */ 1063 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1064 { 1065 unsigned bit = 1 << portnum; 1066 1067 if (!(bus->resuming_ports & bit)) { 1068 bus->resuming_ports |= bit; 1069 pm_runtime_get_noresume(&bus->root_hub->dev); 1070 } 1071 } 1072 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1073 1074 /* 1075 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1076 * @bus: the bus which the root hub belongs to 1077 * @portnum: the port which is being resumed 1078 * 1079 * HCDs should call this function when they know that a resume signal has 1080 * stopped being sent to a root-hub port. The root hub will be allowed to 1081 * autosuspend again. 1082 * 1083 * The bus's private lock must be held by the caller. 1084 */ 1085 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1086 { 1087 unsigned bit = 1 << portnum; 1088 1089 if (bus->resuming_ports & bit) { 1090 bus->resuming_ports &= ~bit; 1091 pm_runtime_put_noidle(&bus->root_hub->dev); 1092 } 1093 } 1094 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1095 1096 /*-------------------------------------------------------------------------*/ 1097 1098 /** 1099 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1100 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1101 * @is_input: true iff the transaction sends data to the host 1102 * @isoc: true for isochronous transactions, false for interrupt ones 1103 * @bytecount: how many bytes in the transaction. 1104 * 1105 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1106 * 1107 * Note: 1108 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1109 * scheduled in software, this function is only used for such scheduling. 1110 */ 1111 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1112 { 1113 unsigned long tmp; 1114 1115 switch (speed) { 1116 case USB_SPEED_LOW: /* INTR only */ 1117 if (is_input) { 1118 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1119 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1120 } else { 1121 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1122 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1123 } 1124 case USB_SPEED_FULL: /* ISOC or INTR */ 1125 if (isoc) { 1126 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1127 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1128 } else { 1129 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1130 return 9107L + BW_HOST_DELAY + tmp; 1131 } 1132 case USB_SPEED_HIGH: /* ISOC or INTR */ 1133 /* FIXME adjust for input vs output */ 1134 if (isoc) 1135 tmp = HS_NSECS_ISO (bytecount); 1136 else 1137 tmp = HS_NSECS (bytecount); 1138 return tmp; 1139 default: 1140 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1141 return -1; 1142 } 1143 } 1144 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1145 1146 1147 /*-------------------------------------------------------------------------*/ 1148 1149 /* 1150 * Generic HC operations. 1151 */ 1152 1153 /*-------------------------------------------------------------------------*/ 1154 1155 /** 1156 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1157 * @hcd: host controller to which @urb was submitted 1158 * @urb: URB being submitted 1159 * 1160 * Host controller drivers should call this routine in their enqueue() 1161 * method. The HCD's private spinlock must be held and interrupts must 1162 * be disabled. The actions carried out here are required for URB 1163 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1164 * 1165 * Return: 0 for no error, otherwise a negative error code (in which case 1166 * the enqueue() method must fail). If no error occurs but enqueue() fails 1167 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1168 * the private spinlock and returning. 1169 */ 1170 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1171 { 1172 int rc = 0; 1173 1174 spin_lock(&hcd_urb_list_lock); 1175 1176 /* Check that the URB isn't being killed */ 1177 if (unlikely(atomic_read(&urb->reject))) { 1178 rc = -EPERM; 1179 goto done; 1180 } 1181 1182 if (unlikely(!urb->ep->enabled)) { 1183 rc = -ENOENT; 1184 goto done; 1185 } 1186 1187 if (unlikely(!urb->dev->can_submit)) { 1188 rc = -EHOSTUNREACH; 1189 goto done; 1190 } 1191 1192 /* 1193 * Check the host controller's state and add the URB to the 1194 * endpoint's queue. 1195 */ 1196 if (HCD_RH_RUNNING(hcd)) { 1197 urb->unlinked = 0; 1198 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1199 } else { 1200 rc = -ESHUTDOWN; 1201 goto done; 1202 } 1203 done: 1204 spin_unlock(&hcd_urb_list_lock); 1205 return rc; 1206 } 1207 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1208 1209 /** 1210 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1211 * @hcd: host controller to which @urb was submitted 1212 * @urb: URB being checked for unlinkability 1213 * @status: error code to store in @urb if the unlink succeeds 1214 * 1215 * Host controller drivers should call this routine in their dequeue() 1216 * method. The HCD's private spinlock must be held and interrupts must 1217 * be disabled. The actions carried out here are required for making 1218 * sure than an unlink is valid. 1219 * 1220 * Return: 0 for no error, otherwise a negative error code (in which case 1221 * the dequeue() method must fail). The possible error codes are: 1222 * 1223 * -EIDRM: @urb was not submitted or has already completed. 1224 * The completion function may not have been called yet. 1225 * 1226 * -EBUSY: @urb has already been unlinked. 1227 */ 1228 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1229 int status) 1230 { 1231 struct list_head *tmp; 1232 1233 /* insist the urb is still queued */ 1234 list_for_each(tmp, &urb->ep->urb_list) { 1235 if (tmp == &urb->urb_list) 1236 break; 1237 } 1238 if (tmp != &urb->urb_list) 1239 return -EIDRM; 1240 1241 /* Any status except -EINPROGRESS means something already started to 1242 * unlink this URB from the hardware. So there's no more work to do. 1243 */ 1244 if (urb->unlinked) 1245 return -EBUSY; 1246 urb->unlinked = status; 1247 return 0; 1248 } 1249 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1250 1251 /** 1252 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1253 * @hcd: host controller to which @urb was submitted 1254 * @urb: URB being unlinked 1255 * 1256 * Host controller drivers should call this routine before calling 1257 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1258 * interrupts must be disabled. The actions carried out here are required 1259 * for URB completion. 1260 */ 1261 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1262 { 1263 /* clear all state linking urb to this dev (and hcd) */ 1264 spin_lock(&hcd_urb_list_lock); 1265 list_del_init(&urb->urb_list); 1266 spin_unlock(&hcd_urb_list_lock); 1267 } 1268 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1269 1270 /* 1271 * Some usb host controllers can only perform dma using a small SRAM area. 1272 * The usb core itself is however optimized for host controllers that can dma 1273 * using regular system memory - like pci devices doing bus mastering. 1274 * 1275 * To support host controllers with limited dma capabilites we provide dma 1276 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1277 * For this to work properly the host controller code must first use the 1278 * function dma_declare_coherent_memory() to point out which memory area 1279 * that should be used for dma allocations. 1280 * 1281 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1282 * dma using dma_alloc_coherent() which in turn allocates from the memory 1283 * area pointed out with dma_declare_coherent_memory(). 1284 * 1285 * So, to summarize... 1286 * 1287 * - We need "local" memory, canonical example being 1288 * a small SRAM on a discrete controller being the 1289 * only memory that the controller can read ... 1290 * (a) "normal" kernel memory is no good, and 1291 * (b) there's not enough to share 1292 * 1293 * - The only *portable* hook for such stuff in the 1294 * DMA framework is dma_declare_coherent_memory() 1295 * 1296 * - So we use that, even though the primary requirement 1297 * is that the memory be "local" (hence addressable 1298 * by that device), not "coherent". 1299 * 1300 */ 1301 1302 static int hcd_alloc_coherent(struct usb_bus *bus, 1303 gfp_t mem_flags, dma_addr_t *dma_handle, 1304 void **vaddr_handle, size_t size, 1305 enum dma_data_direction dir) 1306 { 1307 unsigned char *vaddr; 1308 1309 if (*vaddr_handle == NULL) { 1310 WARN_ON_ONCE(1); 1311 return -EFAULT; 1312 } 1313 1314 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1315 mem_flags, dma_handle); 1316 if (!vaddr) 1317 return -ENOMEM; 1318 1319 /* 1320 * Store the virtual address of the buffer at the end 1321 * of the allocated dma buffer. The size of the buffer 1322 * may be uneven so use unaligned functions instead 1323 * of just rounding up. It makes sense to optimize for 1324 * memory footprint over access speed since the amount 1325 * of memory available for dma may be limited. 1326 */ 1327 put_unaligned((unsigned long)*vaddr_handle, 1328 (unsigned long *)(vaddr + size)); 1329 1330 if (dir == DMA_TO_DEVICE) 1331 memcpy(vaddr, *vaddr_handle, size); 1332 1333 *vaddr_handle = vaddr; 1334 return 0; 1335 } 1336 1337 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1338 void **vaddr_handle, size_t size, 1339 enum dma_data_direction dir) 1340 { 1341 unsigned char *vaddr = *vaddr_handle; 1342 1343 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1344 1345 if (dir == DMA_FROM_DEVICE) 1346 memcpy(vaddr, *vaddr_handle, size); 1347 1348 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1349 1350 *vaddr_handle = vaddr; 1351 *dma_handle = 0; 1352 } 1353 1354 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1355 { 1356 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1357 dma_unmap_single(hcd->self.controller, 1358 urb->setup_dma, 1359 sizeof(struct usb_ctrlrequest), 1360 DMA_TO_DEVICE); 1361 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1362 hcd_free_coherent(urb->dev->bus, 1363 &urb->setup_dma, 1364 (void **) &urb->setup_packet, 1365 sizeof(struct usb_ctrlrequest), 1366 DMA_TO_DEVICE); 1367 1368 /* Make it safe to call this routine more than once */ 1369 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1370 } 1371 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1372 1373 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1374 { 1375 if (hcd->driver->unmap_urb_for_dma) 1376 hcd->driver->unmap_urb_for_dma(hcd, urb); 1377 else 1378 usb_hcd_unmap_urb_for_dma(hcd, urb); 1379 } 1380 1381 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1382 { 1383 enum dma_data_direction dir; 1384 1385 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1386 1387 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1388 if (urb->transfer_flags & URB_DMA_MAP_SG) 1389 dma_unmap_sg(hcd->self.controller, 1390 urb->sg, 1391 urb->num_sgs, 1392 dir); 1393 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1394 dma_unmap_page(hcd->self.controller, 1395 urb->transfer_dma, 1396 urb->transfer_buffer_length, 1397 dir); 1398 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1399 dma_unmap_single(hcd->self.controller, 1400 urb->transfer_dma, 1401 urb->transfer_buffer_length, 1402 dir); 1403 else if (urb->transfer_flags & URB_MAP_LOCAL) 1404 hcd_free_coherent(urb->dev->bus, 1405 &urb->transfer_dma, 1406 &urb->transfer_buffer, 1407 urb->transfer_buffer_length, 1408 dir); 1409 1410 /* Make it safe to call this routine more than once */ 1411 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1412 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1413 } 1414 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1415 1416 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1417 gfp_t mem_flags) 1418 { 1419 if (hcd->driver->map_urb_for_dma) 1420 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1421 else 1422 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1423 } 1424 1425 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1426 gfp_t mem_flags) 1427 { 1428 enum dma_data_direction dir; 1429 int ret = 0; 1430 1431 /* Map the URB's buffers for DMA access. 1432 * Lower level HCD code should use *_dma exclusively, 1433 * unless it uses pio or talks to another transport, 1434 * or uses the provided scatter gather list for bulk. 1435 */ 1436 1437 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1438 if (hcd->self.uses_pio_for_control) 1439 return ret; 1440 if (hcd->self.uses_dma) { 1441 urb->setup_dma = dma_map_single( 1442 hcd->self.controller, 1443 urb->setup_packet, 1444 sizeof(struct usb_ctrlrequest), 1445 DMA_TO_DEVICE); 1446 if (dma_mapping_error(hcd->self.controller, 1447 urb->setup_dma)) 1448 return -EAGAIN; 1449 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1450 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1451 ret = hcd_alloc_coherent( 1452 urb->dev->bus, mem_flags, 1453 &urb->setup_dma, 1454 (void **)&urb->setup_packet, 1455 sizeof(struct usb_ctrlrequest), 1456 DMA_TO_DEVICE); 1457 if (ret) 1458 return ret; 1459 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1460 } 1461 } 1462 1463 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1464 if (urb->transfer_buffer_length != 0 1465 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1466 if (hcd->self.uses_dma) { 1467 if (urb->num_sgs) { 1468 int n; 1469 1470 /* We don't support sg for isoc transfers ! */ 1471 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1472 WARN_ON(1); 1473 return -EINVAL; 1474 } 1475 1476 n = dma_map_sg( 1477 hcd->self.controller, 1478 urb->sg, 1479 urb->num_sgs, 1480 dir); 1481 if (n <= 0) 1482 ret = -EAGAIN; 1483 else 1484 urb->transfer_flags |= URB_DMA_MAP_SG; 1485 urb->num_mapped_sgs = n; 1486 if (n != urb->num_sgs) 1487 urb->transfer_flags |= 1488 URB_DMA_SG_COMBINED; 1489 } else if (urb->sg) { 1490 struct scatterlist *sg = urb->sg; 1491 urb->transfer_dma = dma_map_page( 1492 hcd->self.controller, 1493 sg_page(sg), 1494 sg->offset, 1495 urb->transfer_buffer_length, 1496 dir); 1497 if (dma_mapping_error(hcd->self.controller, 1498 urb->transfer_dma)) 1499 ret = -EAGAIN; 1500 else 1501 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1502 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1503 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1504 ret = -EAGAIN; 1505 } else { 1506 urb->transfer_dma = dma_map_single( 1507 hcd->self.controller, 1508 urb->transfer_buffer, 1509 urb->transfer_buffer_length, 1510 dir); 1511 if (dma_mapping_error(hcd->self.controller, 1512 urb->transfer_dma)) 1513 ret = -EAGAIN; 1514 else 1515 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1516 } 1517 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1518 ret = hcd_alloc_coherent( 1519 urb->dev->bus, mem_flags, 1520 &urb->transfer_dma, 1521 &urb->transfer_buffer, 1522 urb->transfer_buffer_length, 1523 dir); 1524 if (ret == 0) 1525 urb->transfer_flags |= URB_MAP_LOCAL; 1526 } 1527 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1528 URB_SETUP_MAP_LOCAL))) 1529 usb_hcd_unmap_urb_for_dma(hcd, urb); 1530 } 1531 return ret; 1532 } 1533 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1534 1535 /*-------------------------------------------------------------------------*/ 1536 1537 /* may be called in any context with a valid urb->dev usecount 1538 * caller surrenders "ownership" of urb 1539 * expects usb_submit_urb() to have sanity checked and conditioned all 1540 * inputs in the urb 1541 */ 1542 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1543 { 1544 int status; 1545 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1546 1547 /* increment urb's reference count as part of giving it to the HCD 1548 * (which will control it). HCD guarantees that it either returns 1549 * an error or calls giveback(), but not both. 1550 */ 1551 usb_get_urb(urb); 1552 atomic_inc(&urb->use_count); 1553 atomic_inc(&urb->dev->urbnum); 1554 usbmon_urb_submit(&hcd->self, urb); 1555 1556 /* NOTE requirements on root-hub callers (usbfs and the hub 1557 * driver, for now): URBs' urb->transfer_buffer must be 1558 * valid and usb_buffer_{sync,unmap}() not be needed, since 1559 * they could clobber root hub response data. Also, control 1560 * URBs must be submitted in process context with interrupts 1561 * enabled. 1562 */ 1563 1564 if (is_root_hub(urb->dev)) { 1565 status = rh_urb_enqueue(hcd, urb); 1566 } else { 1567 status = map_urb_for_dma(hcd, urb, mem_flags); 1568 if (likely(status == 0)) { 1569 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1570 if (unlikely(status)) 1571 unmap_urb_for_dma(hcd, urb); 1572 } 1573 } 1574 1575 if (unlikely(status)) { 1576 usbmon_urb_submit_error(&hcd->self, urb, status); 1577 urb->hcpriv = NULL; 1578 INIT_LIST_HEAD(&urb->urb_list); 1579 atomic_dec(&urb->use_count); 1580 atomic_dec(&urb->dev->urbnum); 1581 if (atomic_read(&urb->reject)) 1582 wake_up(&usb_kill_urb_queue); 1583 usb_put_urb(urb); 1584 } 1585 return status; 1586 } 1587 1588 /*-------------------------------------------------------------------------*/ 1589 1590 /* this makes the hcd giveback() the urb more quickly, by kicking it 1591 * off hardware queues (which may take a while) and returning it as 1592 * soon as practical. we've already set up the urb's return status, 1593 * but we can't know if the callback completed already. 1594 */ 1595 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1596 { 1597 int value; 1598 1599 if (is_root_hub(urb->dev)) 1600 value = usb_rh_urb_dequeue(hcd, urb, status); 1601 else { 1602 1603 /* The only reason an HCD might fail this call is if 1604 * it has not yet fully queued the urb to begin with. 1605 * Such failures should be harmless. */ 1606 value = hcd->driver->urb_dequeue(hcd, urb, status); 1607 } 1608 return value; 1609 } 1610 1611 /* 1612 * called in any context 1613 * 1614 * caller guarantees urb won't be recycled till both unlink() 1615 * and the urb's completion function return 1616 */ 1617 int usb_hcd_unlink_urb (struct urb *urb, int status) 1618 { 1619 struct usb_hcd *hcd; 1620 int retval = -EIDRM; 1621 unsigned long flags; 1622 1623 /* Prevent the device and bus from going away while 1624 * the unlink is carried out. If they are already gone 1625 * then urb->use_count must be 0, since disconnected 1626 * devices can't have any active URBs. 1627 */ 1628 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1629 if (atomic_read(&urb->use_count) > 0) { 1630 retval = 0; 1631 usb_get_dev(urb->dev); 1632 } 1633 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1634 if (retval == 0) { 1635 hcd = bus_to_hcd(urb->dev->bus); 1636 retval = unlink1(hcd, urb, status); 1637 usb_put_dev(urb->dev); 1638 } 1639 1640 if (retval == 0) 1641 retval = -EINPROGRESS; 1642 else if (retval != -EIDRM && retval != -EBUSY) 1643 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1644 urb, retval); 1645 return retval; 1646 } 1647 1648 /*-------------------------------------------------------------------------*/ 1649 1650 static void __usb_hcd_giveback_urb(struct urb *urb) 1651 { 1652 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1653 struct usb_anchor *anchor = urb->anchor; 1654 int status = urb->unlinked; 1655 unsigned long flags; 1656 1657 urb->hcpriv = NULL; 1658 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1659 urb->actual_length < urb->transfer_buffer_length && 1660 !status)) 1661 status = -EREMOTEIO; 1662 1663 unmap_urb_for_dma(hcd, urb); 1664 usbmon_urb_complete(&hcd->self, urb, status); 1665 usb_anchor_suspend_wakeups(anchor); 1666 usb_unanchor_urb(urb); 1667 1668 /* pass ownership to the completion handler */ 1669 urb->status = status; 1670 1671 /* 1672 * We disable local IRQs here avoid possible deadlock because 1673 * drivers may call spin_lock() to hold lock which might be 1674 * acquired in one hard interrupt handler. 1675 * 1676 * The local_irq_save()/local_irq_restore() around complete() 1677 * will be removed if current USB drivers have been cleaned up 1678 * and no one may trigger the above deadlock situation when 1679 * running complete() in tasklet. 1680 */ 1681 local_irq_save(flags); 1682 urb->complete(urb); 1683 local_irq_restore(flags); 1684 1685 usb_anchor_resume_wakeups(anchor); 1686 atomic_dec(&urb->use_count); 1687 if (unlikely(atomic_read(&urb->reject))) 1688 wake_up(&usb_kill_urb_queue); 1689 usb_put_urb(urb); 1690 } 1691 1692 static void usb_giveback_urb_bh(unsigned long param) 1693 { 1694 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1695 struct list_head local_list; 1696 1697 spin_lock_irq(&bh->lock); 1698 bh->running = true; 1699 restart: 1700 list_replace_init(&bh->head, &local_list); 1701 spin_unlock_irq(&bh->lock); 1702 1703 while (!list_empty(&local_list)) { 1704 struct urb *urb; 1705 1706 urb = list_entry(local_list.next, struct urb, urb_list); 1707 list_del_init(&urb->urb_list); 1708 bh->completing_ep = urb->ep; 1709 __usb_hcd_giveback_urb(urb); 1710 bh->completing_ep = NULL; 1711 } 1712 1713 /* check if there are new URBs to giveback */ 1714 spin_lock_irq(&bh->lock); 1715 if (!list_empty(&bh->head)) 1716 goto restart; 1717 bh->running = false; 1718 spin_unlock_irq(&bh->lock); 1719 } 1720 1721 /** 1722 * usb_hcd_giveback_urb - return URB from HCD to device driver 1723 * @hcd: host controller returning the URB 1724 * @urb: urb being returned to the USB device driver. 1725 * @status: completion status code for the URB. 1726 * Context: in_interrupt() 1727 * 1728 * This hands the URB from HCD to its USB device driver, using its 1729 * completion function. The HCD has freed all per-urb resources 1730 * (and is done using urb->hcpriv). It also released all HCD locks; 1731 * the device driver won't cause problems if it frees, modifies, 1732 * or resubmits this URB. 1733 * 1734 * If @urb was unlinked, the value of @status will be overridden by 1735 * @urb->unlinked. Erroneous short transfers are detected in case 1736 * the HCD hasn't checked for them. 1737 */ 1738 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1739 { 1740 struct giveback_urb_bh *bh; 1741 bool running, high_prio_bh; 1742 1743 /* pass status to tasklet via unlinked */ 1744 if (likely(!urb->unlinked)) 1745 urb->unlinked = status; 1746 1747 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1748 __usb_hcd_giveback_urb(urb); 1749 return; 1750 } 1751 1752 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1753 bh = &hcd->high_prio_bh; 1754 high_prio_bh = true; 1755 } else { 1756 bh = &hcd->low_prio_bh; 1757 high_prio_bh = false; 1758 } 1759 1760 spin_lock(&bh->lock); 1761 list_add_tail(&urb->urb_list, &bh->head); 1762 running = bh->running; 1763 spin_unlock(&bh->lock); 1764 1765 if (running) 1766 ; 1767 else if (high_prio_bh) 1768 tasklet_hi_schedule(&bh->bh); 1769 else 1770 tasklet_schedule(&bh->bh); 1771 } 1772 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1773 1774 /*-------------------------------------------------------------------------*/ 1775 1776 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1777 * queue to drain completely. The caller must first insure that no more 1778 * URBs can be submitted for this endpoint. 1779 */ 1780 void usb_hcd_flush_endpoint(struct usb_device *udev, 1781 struct usb_host_endpoint *ep) 1782 { 1783 struct usb_hcd *hcd; 1784 struct urb *urb; 1785 1786 if (!ep) 1787 return; 1788 might_sleep(); 1789 hcd = bus_to_hcd(udev->bus); 1790 1791 /* No more submits can occur */ 1792 spin_lock_irq(&hcd_urb_list_lock); 1793 rescan: 1794 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1795 int is_in; 1796 1797 if (urb->unlinked) 1798 continue; 1799 usb_get_urb (urb); 1800 is_in = usb_urb_dir_in(urb); 1801 spin_unlock(&hcd_urb_list_lock); 1802 1803 /* kick hcd */ 1804 unlink1(hcd, urb, -ESHUTDOWN); 1805 dev_dbg (hcd->self.controller, 1806 "shutdown urb %p ep%d%s%s\n", 1807 urb, usb_endpoint_num(&ep->desc), 1808 is_in ? "in" : "out", 1809 ({ char *s; 1810 1811 switch (usb_endpoint_type(&ep->desc)) { 1812 case USB_ENDPOINT_XFER_CONTROL: 1813 s = ""; break; 1814 case USB_ENDPOINT_XFER_BULK: 1815 s = "-bulk"; break; 1816 case USB_ENDPOINT_XFER_INT: 1817 s = "-intr"; break; 1818 default: 1819 s = "-iso"; break; 1820 }; 1821 s; 1822 })); 1823 usb_put_urb (urb); 1824 1825 /* list contents may have changed */ 1826 spin_lock(&hcd_urb_list_lock); 1827 goto rescan; 1828 } 1829 spin_unlock_irq(&hcd_urb_list_lock); 1830 1831 /* Wait until the endpoint queue is completely empty */ 1832 while (!list_empty (&ep->urb_list)) { 1833 spin_lock_irq(&hcd_urb_list_lock); 1834 1835 /* The list may have changed while we acquired the spinlock */ 1836 urb = NULL; 1837 if (!list_empty (&ep->urb_list)) { 1838 urb = list_entry (ep->urb_list.prev, struct urb, 1839 urb_list); 1840 usb_get_urb (urb); 1841 } 1842 spin_unlock_irq(&hcd_urb_list_lock); 1843 1844 if (urb) { 1845 usb_kill_urb (urb); 1846 usb_put_urb (urb); 1847 } 1848 } 1849 } 1850 1851 /** 1852 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1853 * the bus bandwidth 1854 * @udev: target &usb_device 1855 * @new_config: new configuration to install 1856 * @cur_alt: the current alternate interface setting 1857 * @new_alt: alternate interface setting that is being installed 1858 * 1859 * To change configurations, pass in the new configuration in new_config, 1860 * and pass NULL for cur_alt and new_alt. 1861 * 1862 * To reset a device's configuration (put the device in the ADDRESSED state), 1863 * pass in NULL for new_config, cur_alt, and new_alt. 1864 * 1865 * To change alternate interface settings, pass in NULL for new_config, 1866 * pass in the current alternate interface setting in cur_alt, 1867 * and pass in the new alternate interface setting in new_alt. 1868 * 1869 * Return: An error if the requested bandwidth change exceeds the 1870 * bus bandwidth or host controller internal resources. 1871 */ 1872 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1873 struct usb_host_config *new_config, 1874 struct usb_host_interface *cur_alt, 1875 struct usb_host_interface *new_alt) 1876 { 1877 int num_intfs, i, j; 1878 struct usb_host_interface *alt = NULL; 1879 int ret = 0; 1880 struct usb_hcd *hcd; 1881 struct usb_host_endpoint *ep; 1882 1883 hcd = bus_to_hcd(udev->bus); 1884 if (!hcd->driver->check_bandwidth) 1885 return 0; 1886 1887 /* Configuration is being removed - set configuration 0 */ 1888 if (!new_config && !cur_alt) { 1889 for (i = 1; i < 16; ++i) { 1890 ep = udev->ep_out[i]; 1891 if (ep) 1892 hcd->driver->drop_endpoint(hcd, udev, ep); 1893 ep = udev->ep_in[i]; 1894 if (ep) 1895 hcd->driver->drop_endpoint(hcd, udev, ep); 1896 } 1897 hcd->driver->check_bandwidth(hcd, udev); 1898 return 0; 1899 } 1900 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1901 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1902 * of the bus. There will always be bandwidth for endpoint 0, so it's 1903 * ok to exclude it. 1904 */ 1905 if (new_config) { 1906 num_intfs = new_config->desc.bNumInterfaces; 1907 /* Remove endpoints (except endpoint 0, which is always on the 1908 * schedule) from the old config from the schedule 1909 */ 1910 for (i = 1; i < 16; ++i) { 1911 ep = udev->ep_out[i]; 1912 if (ep) { 1913 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1914 if (ret < 0) 1915 goto reset; 1916 } 1917 ep = udev->ep_in[i]; 1918 if (ep) { 1919 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1920 if (ret < 0) 1921 goto reset; 1922 } 1923 } 1924 for (i = 0; i < num_intfs; ++i) { 1925 struct usb_host_interface *first_alt; 1926 int iface_num; 1927 1928 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1929 iface_num = first_alt->desc.bInterfaceNumber; 1930 /* Set up endpoints for alternate interface setting 0 */ 1931 alt = usb_find_alt_setting(new_config, iface_num, 0); 1932 if (!alt) 1933 /* No alt setting 0? Pick the first setting. */ 1934 alt = first_alt; 1935 1936 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1937 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1938 if (ret < 0) 1939 goto reset; 1940 } 1941 } 1942 } 1943 if (cur_alt && new_alt) { 1944 struct usb_interface *iface = usb_ifnum_to_if(udev, 1945 cur_alt->desc.bInterfaceNumber); 1946 1947 if (!iface) 1948 return -EINVAL; 1949 if (iface->resetting_device) { 1950 /* 1951 * The USB core just reset the device, so the xHCI host 1952 * and the device will think alt setting 0 is installed. 1953 * However, the USB core will pass in the alternate 1954 * setting installed before the reset as cur_alt. Dig 1955 * out the alternate setting 0 structure, or the first 1956 * alternate setting if a broken device doesn't have alt 1957 * setting 0. 1958 */ 1959 cur_alt = usb_altnum_to_altsetting(iface, 0); 1960 if (!cur_alt) 1961 cur_alt = &iface->altsetting[0]; 1962 } 1963 1964 /* Drop all the endpoints in the current alt setting */ 1965 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1966 ret = hcd->driver->drop_endpoint(hcd, udev, 1967 &cur_alt->endpoint[i]); 1968 if (ret < 0) 1969 goto reset; 1970 } 1971 /* Add all the endpoints in the new alt setting */ 1972 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1973 ret = hcd->driver->add_endpoint(hcd, udev, 1974 &new_alt->endpoint[i]); 1975 if (ret < 0) 1976 goto reset; 1977 } 1978 } 1979 ret = hcd->driver->check_bandwidth(hcd, udev); 1980 reset: 1981 if (ret < 0) 1982 hcd->driver->reset_bandwidth(hcd, udev); 1983 return ret; 1984 } 1985 1986 /* Disables the endpoint: synchronizes with the hcd to make sure all 1987 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1988 * have been called previously. Use for set_configuration, set_interface, 1989 * driver removal, physical disconnect. 1990 * 1991 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1992 * type, maxpacket size, toggle, halt status, and scheduling. 1993 */ 1994 void usb_hcd_disable_endpoint(struct usb_device *udev, 1995 struct usb_host_endpoint *ep) 1996 { 1997 struct usb_hcd *hcd; 1998 1999 might_sleep(); 2000 hcd = bus_to_hcd(udev->bus); 2001 if (hcd->driver->endpoint_disable) 2002 hcd->driver->endpoint_disable(hcd, ep); 2003 } 2004 2005 /** 2006 * usb_hcd_reset_endpoint - reset host endpoint state 2007 * @udev: USB device. 2008 * @ep: the endpoint to reset. 2009 * 2010 * Resets any host endpoint state such as the toggle bit, sequence 2011 * number and current window. 2012 */ 2013 void usb_hcd_reset_endpoint(struct usb_device *udev, 2014 struct usb_host_endpoint *ep) 2015 { 2016 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2017 2018 if (hcd->driver->endpoint_reset) 2019 hcd->driver->endpoint_reset(hcd, ep); 2020 else { 2021 int epnum = usb_endpoint_num(&ep->desc); 2022 int is_out = usb_endpoint_dir_out(&ep->desc); 2023 int is_control = usb_endpoint_xfer_control(&ep->desc); 2024 2025 usb_settoggle(udev, epnum, is_out, 0); 2026 if (is_control) 2027 usb_settoggle(udev, epnum, !is_out, 0); 2028 } 2029 } 2030 2031 /** 2032 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2033 * @interface: alternate setting that includes all endpoints. 2034 * @eps: array of endpoints that need streams. 2035 * @num_eps: number of endpoints in the array. 2036 * @num_streams: number of streams to allocate. 2037 * @mem_flags: flags hcd should use to allocate memory. 2038 * 2039 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2040 * Drivers may queue multiple transfers to different stream IDs, which may 2041 * complete in a different order than they were queued. 2042 * 2043 * Return: On success, the number of allocated streams. On failure, a negative 2044 * error code. 2045 */ 2046 int usb_alloc_streams(struct usb_interface *interface, 2047 struct usb_host_endpoint **eps, unsigned int num_eps, 2048 unsigned int num_streams, gfp_t mem_flags) 2049 { 2050 struct usb_hcd *hcd; 2051 struct usb_device *dev; 2052 int i, ret; 2053 2054 dev = interface_to_usbdev(interface); 2055 hcd = bus_to_hcd(dev->bus); 2056 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2057 return -EINVAL; 2058 if (dev->speed != USB_SPEED_SUPER) 2059 return -EINVAL; 2060 2061 for (i = 0; i < num_eps; i++) { 2062 /* Streams only apply to bulk endpoints. */ 2063 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2064 return -EINVAL; 2065 /* Re-alloc is not allowed */ 2066 if (eps[i]->streams) 2067 return -EINVAL; 2068 } 2069 2070 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2071 num_streams, mem_flags); 2072 if (ret < 0) 2073 return ret; 2074 2075 for (i = 0; i < num_eps; i++) 2076 eps[i]->streams = ret; 2077 2078 return ret; 2079 } 2080 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2081 2082 /** 2083 * usb_free_streams - free bulk endpoint stream IDs. 2084 * @interface: alternate setting that includes all endpoints. 2085 * @eps: array of endpoints to remove streams from. 2086 * @num_eps: number of endpoints in the array. 2087 * @mem_flags: flags hcd should use to allocate memory. 2088 * 2089 * Reverts a group of bulk endpoints back to not using stream IDs. 2090 * Can fail if we are given bad arguments, or HCD is broken. 2091 * 2092 * Return: 0 on success. On failure, a negative error code. 2093 */ 2094 int usb_free_streams(struct usb_interface *interface, 2095 struct usb_host_endpoint **eps, unsigned int num_eps, 2096 gfp_t mem_flags) 2097 { 2098 struct usb_hcd *hcd; 2099 struct usb_device *dev; 2100 int i, ret; 2101 2102 dev = interface_to_usbdev(interface); 2103 hcd = bus_to_hcd(dev->bus); 2104 if (dev->speed != USB_SPEED_SUPER) 2105 return -EINVAL; 2106 2107 /* Double-free is not allowed */ 2108 for (i = 0; i < num_eps; i++) 2109 if (!eps[i] || !eps[i]->streams) 2110 return -EINVAL; 2111 2112 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2113 if (ret < 0) 2114 return ret; 2115 2116 for (i = 0; i < num_eps; i++) 2117 eps[i]->streams = 0; 2118 2119 return ret; 2120 } 2121 EXPORT_SYMBOL_GPL(usb_free_streams); 2122 2123 /* Protect against drivers that try to unlink URBs after the device 2124 * is gone, by waiting until all unlinks for @udev are finished. 2125 * Since we don't currently track URBs by device, simply wait until 2126 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2127 */ 2128 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2129 { 2130 spin_lock_irq(&hcd_urb_unlink_lock); 2131 spin_unlock_irq(&hcd_urb_unlink_lock); 2132 } 2133 2134 /*-------------------------------------------------------------------------*/ 2135 2136 /* called in any context */ 2137 int usb_hcd_get_frame_number (struct usb_device *udev) 2138 { 2139 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2140 2141 if (!HCD_RH_RUNNING(hcd)) 2142 return -ESHUTDOWN; 2143 return hcd->driver->get_frame_number (hcd); 2144 } 2145 2146 /*-------------------------------------------------------------------------*/ 2147 2148 #ifdef CONFIG_PM 2149 2150 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2151 { 2152 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2153 int status; 2154 int old_state = hcd->state; 2155 2156 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2157 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2158 rhdev->do_remote_wakeup); 2159 if (HCD_DEAD(hcd)) { 2160 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2161 return 0; 2162 } 2163 2164 if (!hcd->driver->bus_suspend) { 2165 status = -ENOENT; 2166 } else { 2167 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2168 hcd->state = HC_STATE_QUIESCING; 2169 status = hcd->driver->bus_suspend(hcd); 2170 } 2171 if (status == 0) { 2172 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2173 hcd->state = HC_STATE_SUSPENDED; 2174 2175 /* Did we race with a root-hub wakeup event? */ 2176 if (rhdev->do_remote_wakeup) { 2177 char buffer[6]; 2178 2179 status = hcd->driver->hub_status_data(hcd, buffer); 2180 if (status != 0) { 2181 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2182 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2183 status = -EBUSY; 2184 } 2185 } 2186 } else { 2187 spin_lock_irq(&hcd_root_hub_lock); 2188 if (!HCD_DEAD(hcd)) { 2189 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2190 hcd->state = old_state; 2191 } 2192 spin_unlock_irq(&hcd_root_hub_lock); 2193 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2194 "suspend", status); 2195 } 2196 return status; 2197 } 2198 2199 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2200 { 2201 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2202 int status; 2203 int old_state = hcd->state; 2204 2205 dev_dbg(&rhdev->dev, "usb %sresume\n", 2206 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2207 if (HCD_DEAD(hcd)) { 2208 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2209 return 0; 2210 } 2211 if (!hcd->driver->bus_resume) 2212 return -ENOENT; 2213 if (HCD_RH_RUNNING(hcd)) 2214 return 0; 2215 2216 hcd->state = HC_STATE_RESUMING; 2217 status = hcd->driver->bus_resume(hcd); 2218 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2219 if (status == 0) { 2220 struct usb_device *udev; 2221 int port1; 2222 2223 spin_lock_irq(&hcd_root_hub_lock); 2224 if (!HCD_DEAD(hcd)) { 2225 usb_set_device_state(rhdev, rhdev->actconfig 2226 ? USB_STATE_CONFIGURED 2227 : USB_STATE_ADDRESS); 2228 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2229 hcd->state = HC_STATE_RUNNING; 2230 } 2231 spin_unlock_irq(&hcd_root_hub_lock); 2232 2233 /* 2234 * Check whether any of the enabled ports on the root hub are 2235 * unsuspended. If they are then a TRSMRCY delay is needed 2236 * (this is what the USB-2 spec calls a "global resume"). 2237 * Otherwise we can skip the delay. 2238 */ 2239 usb_hub_for_each_child(rhdev, port1, udev) { 2240 if (udev->state != USB_STATE_NOTATTACHED && 2241 !udev->port_is_suspended) { 2242 usleep_range(10000, 11000); /* TRSMRCY */ 2243 break; 2244 } 2245 } 2246 } else { 2247 hcd->state = old_state; 2248 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2249 "resume", status); 2250 if (status != -ESHUTDOWN) 2251 usb_hc_died(hcd); 2252 } 2253 return status; 2254 } 2255 2256 #endif /* CONFIG_PM */ 2257 2258 #ifdef CONFIG_PM_RUNTIME 2259 2260 /* Workqueue routine for root-hub remote wakeup */ 2261 static void hcd_resume_work(struct work_struct *work) 2262 { 2263 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2264 struct usb_device *udev = hcd->self.root_hub; 2265 2266 usb_remote_wakeup(udev); 2267 } 2268 2269 /** 2270 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2271 * @hcd: host controller for this root hub 2272 * 2273 * The USB host controller calls this function when its root hub is 2274 * suspended (with the remote wakeup feature enabled) and a remote 2275 * wakeup request is received. The routine submits a workqueue request 2276 * to resume the root hub (that is, manage its downstream ports again). 2277 */ 2278 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2279 { 2280 unsigned long flags; 2281 2282 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2283 if (hcd->rh_registered) { 2284 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2285 queue_work(pm_wq, &hcd->wakeup_work); 2286 } 2287 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2288 } 2289 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2290 2291 #endif /* CONFIG_PM_RUNTIME */ 2292 2293 /*-------------------------------------------------------------------------*/ 2294 2295 #ifdef CONFIG_USB_OTG 2296 2297 /** 2298 * usb_bus_start_enum - start immediate enumeration (for OTG) 2299 * @bus: the bus (must use hcd framework) 2300 * @port_num: 1-based number of port; usually bus->otg_port 2301 * Context: in_interrupt() 2302 * 2303 * Starts enumeration, with an immediate reset followed later by 2304 * khubd identifying and possibly configuring the device. 2305 * This is needed by OTG controller drivers, where it helps meet 2306 * HNP protocol timing requirements for starting a port reset. 2307 * 2308 * Return: 0 if successful. 2309 */ 2310 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2311 { 2312 struct usb_hcd *hcd; 2313 int status = -EOPNOTSUPP; 2314 2315 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2316 * boards with root hubs hooked up to internal devices (instead of 2317 * just the OTG port) may need more attention to resetting... 2318 */ 2319 hcd = container_of (bus, struct usb_hcd, self); 2320 if (port_num && hcd->driver->start_port_reset) 2321 status = hcd->driver->start_port_reset(hcd, port_num); 2322 2323 /* run khubd shortly after (first) root port reset finishes; 2324 * it may issue others, until at least 50 msecs have passed. 2325 */ 2326 if (status == 0) 2327 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2328 return status; 2329 } 2330 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2331 2332 #endif 2333 2334 /*-------------------------------------------------------------------------*/ 2335 2336 /** 2337 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2338 * @irq: the IRQ being raised 2339 * @__hcd: pointer to the HCD whose IRQ is being signaled 2340 * 2341 * If the controller isn't HALTed, calls the driver's irq handler. 2342 * Checks whether the controller is now dead. 2343 * 2344 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2345 */ 2346 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2347 { 2348 struct usb_hcd *hcd = __hcd; 2349 irqreturn_t rc; 2350 2351 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2352 rc = IRQ_NONE; 2353 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2354 rc = IRQ_NONE; 2355 else 2356 rc = IRQ_HANDLED; 2357 2358 return rc; 2359 } 2360 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2361 2362 /*-------------------------------------------------------------------------*/ 2363 2364 /** 2365 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2366 * @hcd: pointer to the HCD representing the controller 2367 * 2368 * This is called by bus glue to report a USB host controller that died 2369 * while operations may still have been pending. It's called automatically 2370 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2371 * 2372 * Only call this function with the primary HCD. 2373 */ 2374 void usb_hc_died (struct usb_hcd *hcd) 2375 { 2376 unsigned long flags; 2377 2378 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2379 2380 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2381 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2382 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2383 if (hcd->rh_registered) { 2384 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2385 2386 /* make khubd clean up old urbs and devices */ 2387 usb_set_device_state (hcd->self.root_hub, 2388 USB_STATE_NOTATTACHED); 2389 usb_kick_khubd (hcd->self.root_hub); 2390 } 2391 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2392 hcd = hcd->shared_hcd; 2393 if (hcd->rh_registered) { 2394 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2395 2396 /* make khubd clean up old urbs and devices */ 2397 usb_set_device_state(hcd->self.root_hub, 2398 USB_STATE_NOTATTACHED); 2399 usb_kick_khubd(hcd->self.root_hub); 2400 } 2401 } 2402 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2403 /* Make sure that the other roothub is also deallocated. */ 2404 } 2405 EXPORT_SYMBOL_GPL (usb_hc_died); 2406 2407 /*-------------------------------------------------------------------------*/ 2408 2409 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2410 { 2411 2412 spin_lock_init(&bh->lock); 2413 INIT_LIST_HEAD(&bh->head); 2414 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2415 } 2416 2417 /** 2418 * usb_create_shared_hcd - create and initialize an HCD structure 2419 * @driver: HC driver that will use this hcd 2420 * @dev: device for this HC, stored in hcd->self.controller 2421 * @bus_name: value to store in hcd->self.bus_name 2422 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2423 * PCI device. Only allocate certain resources for the primary HCD 2424 * Context: !in_interrupt() 2425 * 2426 * Allocate a struct usb_hcd, with extra space at the end for the 2427 * HC driver's private data. Initialize the generic members of the 2428 * hcd structure. 2429 * 2430 * Return: On success, a pointer to the created and initialized HCD structure. 2431 * On failure (e.g. if memory is unavailable), %NULL. 2432 */ 2433 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2434 struct device *dev, const char *bus_name, 2435 struct usb_hcd *primary_hcd) 2436 { 2437 struct usb_hcd *hcd; 2438 2439 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2440 if (!hcd) { 2441 dev_dbg (dev, "hcd alloc failed\n"); 2442 return NULL; 2443 } 2444 if (primary_hcd == NULL) { 2445 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2446 GFP_KERNEL); 2447 if (!hcd->bandwidth_mutex) { 2448 kfree(hcd); 2449 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2450 return NULL; 2451 } 2452 mutex_init(hcd->bandwidth_mutex); 2453 dev_set_drvdata(dev, hcd); 2454 } else { 2455 mutex_lock(&usb_port_peer_mutex); 2456 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2457 hcd->primary_hcd = primary_hcd; 2458 primary_hcd->primary_hcd = primary_hcd; 2459 hcd->shared_hcd = primary_hcd; 2460 primary_hcd->shared_hcd = hcd; 2461 mutex_unlock(&usb_port_peer_mutex); 2462 } 2463 2464 kref_init(&hcd->kref); 2465 2466 usb_bus_init(&hcd->self); 2467 hcd->self.controller = dev; 2468 hcd->self.bus_name = bus_name; 2469 hcd->self.uses_dma = (dev->dma_mask != NULL); 2470 2471 init_timer(&hcd->rh_timer); 2472 hcd->rh_timer.function = rh_timer_func; 2473 hcd->rh_timer.data = (unsigned long) hcd; 2474 #ifdef CONFIG_PM_RUNTIME 2475 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2476 #endif 2477 2478 hcd->driver = driver; 2479 hcd->speed = driver->flags & HCD_MASK; 2480 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2481 "USB Host Controller"; 2482 return hcd; 2483 } 2484 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2485 2486 /** 2487 * usb_create_hcd - create and initialize an HCD structure 2488 * @driver: HC driver that will use this hcd 2489 * @dev: device for this HC, stored in hcd->self.controller 2490 * @bus_name: value to store in hcd->self.bus_name 2491 * Context: !in_interrupt() 2492 * 2493 * Allocate a struct usb_hcd, with extra space at the end for the 2494 * HC driver's private data. Initialize the generic members of the 2495 * hcd structure. 2496 * 2497 * Return: On success, a pointer to the created and initialized HCD 2498 * structure. On failure (e.g. if memory is unavailable), %NULL. 2499 */ 2500 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2501 struct device *dev, const char *bus_name) 2502 { 2503 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2504 } 2505 EXPORT_SYMBOL_GPL(usb_create_hcd); 2506 2507 /* 2508 * Roothubs that share one PCI device must also share the bandwidth mutex. 2509 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2510 * deallocated. 2511 * 2512 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2513 * freed. When hcd_release() is called for either hcd in a peer set 2514 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to 2515 * block new peering attempts 2516 */ 2517 static void hcd_release(struct kref *kref) 2518 { 2519 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2520 2521 mutex_lock(&usb_port_peer_mutex); 2522 if (usb_hcd_is_primary_hcd(hcd)) 2523 kfree(hcd->bandwidth_mutex); 2524 if (hcd->shared_hcd) { 2525 struct usb_hcd *peer = hcd->shared_hcd; 2526 2527 peer->shared_hcd = NULL; 2528 if (peer->primary_hcd == hcd) 2529 peer->primary_hcd = NULL; 2530 } 2531 mutex_unlock(&usb_port_peer_mutex); 2532 kfree(hcd); 2533 } 2534 2535 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2536 { 2537 if (hcd) 2538 kref_get (&hcd->kref); 2539 return hcd; 2540 } 2541 EXPORT_SYMBOL_GPL(usb_get_hcd); 2542 2543 void usb_put_hcd (struct usb_hcd *hcd) 2544 { 2545 if (hcd) 2546 kref_put (&hcd->kref, hcd_release); 2547 } 2548 EXPORT_SYMBOL_GPL(usb_put_hcd); 2549 2550 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2551 { 2552 if (!hcd->primary_hcd) 2553 return 1; 2554 return hcd == hcd->primary_hcd; 2555 } 2556 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2557 2558 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2559 { 2560 if (!hcd->driver->find_raw_port_number) 2561 return port1; 2562 2563 return hcd->driver->find_raw_port_number(hcd, port1); 2564 } 2565 2566 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2567 unsigned int irqnum, unsigned long irqflags) 2568 { 2569 int retval; 2570 2571 if (hcd->driver->irq) { 2572 2573 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2574 hcd->driver->description, hcd->self.busnum); 2575 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2576 hcd->irq_descr, hcd); 2577 if (retval != 0) { 2578 dev_err(hcd->self.controller, 2579 "request interrupt %d failed\n", 2580 irqnum); 2581 return retval; 2582 } 2583 hcd->irq = irqnum; 2584 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2585 (hcd->driver->flags & HCD_MEMORY) ? 2586 "io mem" : "io base", 2587 (unsigned long long)hcd->rsrc_start); 2588 } else { 2589 hcd->irq = 0; 2590 if (hcd->rsrc_start) 2591 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2592 (hcd->driver->flags & HCD_MEMORY) ? 2593 "io mem" : "io base", 2594 (unsigned long long)hcd->rsrc_start); 2595 } 2596 return 0; 2597 } 2598 2599 /* 2600 * Before we free this root hub, flush in-flight peering attempts 2601 * and disable peer lookups 2602 */ 2603 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2604 { 2605 struct usb_device *rhdev; 2606 2607 mutex_lock(&usb_port_peer_mutex); 2608 rhdev = hcd->self.root_hub; 2609 hcd->self.root_hub = NULL; 2610 mutex_unlock(&usb_port_peer_mutex); 2611 usb_put_dev(rhdev); 2612 } 2613 2614 /** 2615 * usb_add_hcd - finish generic HCD structure initialization and register 2616 * @hcd: the usb_hcd structure to initialize 2617 * @irqnum: Interrupt line to allocate 2618 * @irqflags: Interrupt type flags 2619 * 2620 * Finish the remaining parts of generic HCD initialization: allocate the 2621 * buffers of consistent memory, register the bus, request the IRQ line, 2622 * and call the driver's reset() and start() routines. 2623 */ 2624 int usb_add_hcd(struct usb_hcd *hcd, 2625 unsigned int irqnum, unsigned long irqflags) 2626 { 2627 int retval; 2628 struct usb_device *rhdev; 2629 2630 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->phy) { 2631 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0); 2632 2633 if (IS_ERR(phy)) { 2634 retval = PTR_ERR(phy); 2635 if (retval == -EPROBE_DEFER) 2636 return retval; 2637 } else { 2638 retval = usb_phy_init(phy); 2639 if (retval) { 2640 usb_put_phy(phy); 2641 return retval; 2642 } 2643 hcd->phy = phy; 2644 hcd->remove_phy = 1; 2645 } 2646 } 2647 2648 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2649 2650 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2651 if (authorized_default < 0 || authorized_default > 1) 2652 hcd->authorized_default = hcd->wireless ? 0 : 1; 2653 else 2654 hcd->authorized_default = authorized_default; 2655 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2656 2657 /* HC is in reset state, but accessible. Now do the one-time init, 2658 * bottom up so that hcds can customize the root hubs before khubd 2659 * starts talking to them. (Note, bus id is assigned early too.) 2660 */ 2661 if ((retval = hcd_buffer_create(hcd)) != 0) { 2662 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2663 goto err_remove_phy; 2664 } 2665 2666 if ((retval = usb_register_bus(&hcd->self)) < 0) 2667 goto err_register_bus; 2668 2669 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2670 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2671 retval = -ENOMEM; 2672 goto err_allocate_root_hub; 2673 } 2674 mutex_lock(&usb_port_peer_mutex); 2675 hcd->self.root_hub = rhdev; 2676 mutex_unlock(&usb_port_peer_mutex); 2677 2678 switch (hcd->speed) { 2679 case HCD_USB11: 2680 rhdev->speed = USB_SPEED_FULL; 2681 break; 2682 case HCD_USB2: 2683 rhdev->speed = USB_SPEED_HIGH; 2684 break; 2685 case HCD_USB25: 2686 rhdev->speed = USB_SPEED_WIRELESS; 2687 break; 2688 case HCD_USB3: 2689 rhdev->speed = USB_SPEED_SUPER; 2690 break; 2691 default: 2692 retval = -EINVAL; 2693 goto err_set_rh_speed; 2694 } 2695 2696 /* wakeup flag init defaults to "everything works" for root hubs, 2697 * but drivers can override it in reset() if needed, along with 2698 * recording the overall controller's system wakeup capability. 2699 */ 2700 device_set_wakeup_capable(&rhdev->dev, 1); 2701 2702 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2703 * registered. But since the controller can die at any time, 2704 * let's initialize the flag before touching the hardware. 2705 */ 2706 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2707 2708 /* "reset" is misnamed; its role is now one-time init. the controller 2709 * should already have been reset (and boot firmware kicked off etc). 2710 */ 2711 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2712 dev_err(hcd->self.controller, "can't setup: %d\n", retval); 2713 goto err_hcd_driver_setup; 2714 } 2715 hcd->rh_pollable = 1; 2716 2717 /* NOTE: root hub and controller capabilities may not be the same */ 2718 if (device_can_wakeup(hcd->self.controller) 2719 && device_can_wakeup(&hcd->self.root_hub->dev)) 2720 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2721 2722 /* initialize tasklets */ 2723 init_giveback_urb_bh(&hcd->high_prio_bh); 2724 init_giveback_urb_bh(&hcd->low_prio_bh); 2725 2726 /* enable irqs just before we start the controller, 2727 * if the BIOS provides legacy PCI irqs. 2728 */ 2729 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2730 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2731 if (retval) 2732 goto err_request_irq; 2733 } 2734 2735 hcd->state = HC_STATE_RUNNING; 2736 retval = hcd->driver->start(hcd); 2737 if (retval < 0) { 2738 dev_err(hcd->self.controller, "startup error %d\n", retval); 2739 goto err_hcd_driver_start; 2740 } 2741 2742 /* starting here, usbcore will pay attention to this root hub */ 2743 if ((retval = register_root_hub(hcd)) != 0) 2744 goto err_register_root_hub; 2745 2746 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2747 if (retval < 0) { 2748 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2749 retval); 2750 goto error_create_attr_group; 2751 } 2752 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2753 usb_hcd_poll_rh_status(hcd); 2754 2755 return retval; 2756 2757 error_create_attr_group: 2758 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2759 if (HC_IS_RUNNING(hcd->state)) 2760 hcd->state = HC_STATE_QUIESCING; 2761 spin_lock_irq(&hcd_root_hub_lock); 2762 hcd->rh_registered = 0; 2763 spin_unlock_irq(&hcd_root_hub_lock); 2764 2765 #ifdef CONFIG_PM_RUNTIME 2766 cancel_work_sync(&hcd->wakeup_work); 2767 #endif 2768 mutex_lock(&usb_bus_list_lock); 2769 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2770 mutex_unlock(&usb_bus_list_lock); 2771 err_register_root_hub: 2772 hcd->rh_pollable = 0; 2773 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2774 del_timer_sync(&hcd->rh_timer); 2775 hcd->driver->stop(hcd); 2776 hcd->state = HC_STATE_HALT; 2777 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2778 del_timer_sync(&hcd->rh_timer); 2779 err_hcd_driver_start: 2780 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2781 free_irq(irqnum, hcd); 2782 err_request_irq: 2783 err_hcd_driver_setup: 2784 err_set_rh_speed: 2785 usb_put_invalidate_rhdev(hcd); 2786 err_allocate_root_hub: 2787 usb_deregister_bus(&hcd->self); 2788 err_register_bus: 2789 hcd_buffer_destroy(hcd); 2790 err_remove_phy: 2791 if (hcd->remove_phy && hcd->phy) { 2792 usb_phy_shutdown(hcd->phy); 2793 usb_put_phy(hcd->phy); 2794 hcd->phy = NULL; 2795 } 2796 return retval; 2797 } 2798 EXPORT_SYMBOL_GPL(usb_add_hcd); 2799 2800 /** 2801 * usb_remove_hcd - shutdown processing for generic HCDs 2802 * @hcd: the usb_hcd structure to remove 2803 * Context: !in_interrupt() 2804 * 2805 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2806 * invoking the HCD's stop() method. 2807 */ 2808 void usb_remove_hcd(struct usb_hcd *hcd) 2809 { 2810 struct usb_device *rhdev = hcd->self.root_hub; 2811 2812 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2813 2814 usb_get_dev(rhdev); 2815 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2816 2817 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2818 if (HC_IS_RUNNING (hcd->state)) 2819 hcd->state = HC_STATE_QUIESCING; 2820 2821 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2822 spin_lock_irq (&hcd_root_hub_lock); 2823 hcd->rh_registered = 0; 2824 spin_unlock_irq (&hcd_root_hub_lock); 2825 2826 #ifdef CONFIG_PM_RUNTIME 2827 cancel_work_sync(&hcd->wakeup_work); 2828 #endif 2829 2830 mutex_lock(&usb_bus_list_lock); 2831 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2832 mutex_unlock(&usb_bus_list_lock); 2833 2834 /* 2835 * tasklet_kill() isn't needed here because: 2836 * - driver's disconnect() called from usb_disconnect() should 2837 * make sure its URBs are completed during the disconnect() 2838 * callback 2839 * 2840 * - it is too late to run complete() here since driver may have 2841 * been removed already now 2842 */ 2843 2844 /* Prevent any more root-hub status calls from the timer. 2845 * The HCD might still restart the timer (if a port status change 2846 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2847 * the hub_status_data() callback. 2848 */ 2849 hcd->rh_pollable = 0; 2850 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2851 del_timer_sync(&hcd->rh_timer); 2852 2853 hcd->driver->stop(hcd); 2854 hcd->state = HC_STATE_HALT; 2855 2856 /* In case the HCD restarted the timer, stop it again. */ 2857 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2858 del_timer_sync(&hcd->rh_timer); 2859 2860 if (usb_hcd_is_primary_hcd(hcd)) { 2861 if (hcd->irq > 0) 2862 free_irq(hcd->irq, hcd); 2863 } 2864 2865 usb_deregister_bus(&hcd->self); 2866 hcd_buffer_destroy(hcd); 2867 if (hcd->remove_phy && hcd->phy) { 2868 usb_phy_shutdown(hcd->phy); 2869 usb_put_phy(hcd->phy); 2870 hcd->phy = NULL; 2871 } 2872 2873 usb_put_invalidate_rhdev(hcd); 2874 } 2875 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2876 2877 void 2878 usb_hcd_platform_shutdown(struct platform_device *dev) 2879 { 2880 struct usb_hcd *hcd = platform_get_drvdata(dev); 2881 2882 if (hcd->driver->shutdown) 2883 hcd->driver->shutdown(hcd); 2884 } 2885 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2886 2887 /*-------------------------------------------------------------------------*/ 2888 2889 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2890 2891 struct usb_mon_operations *mon_ops; 2892 2893 /* 2894 * The registration is unlocked. 2895 * We do it this way because we do not want to lock in hot paths. 2896 * 2897 * Notice that the code is minimally error-proof. Because usbmon needs 2898 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2899 */ 2900 2901 int usb_mon_register (struct usb_mon_operations *ops) 2902 { 2903 2904 if (mon_ops) 2905 return -EBUSY; 2906 2907 mon_ops = ops; 2908 mb(); 2909 return 0; 2910 } 2911 EXPORT_SYMBOL_GPL (usb_mon_register); 2912 2913 void usb_mon_deregister (void) 2914 { 2915 2916 if (mon_ops == NULL) { 2917 printk(KERN_ERR "USB: monitor was not registered\n"); 2918 return; 2919 } 2920 mon_ops = NULL; 2921 mb(); 2922 } 2923 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2924 2925 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2926