1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 #include <linux/mutex.h> 42 43 #include <linux/usb.h> 44 45 #include "usb.h" 46 #include "hcd.h" 47 #include "hub.h" 48 49 50 /*-------------------------------------------------------------------------*/ 51 52 /* 53 * USB Host Controller Driver framework 54 * 55 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 56 * HCD-specific behaviors/bugs. 57 * 58 * This does error checks, tracks devices and urbs, and delegates to a 59 * "hc_driver" only for code (and data) that really needs to know about 60 * hardware differences. That includes root hub registers, i/o queues, 61 * and so on ... but as little else as possible. 62 * 63 * Shared code includes most of the "root hub" code (these are emulated, 64 * though each HC's hardware works differently) and PCI glue, plus request 65 * tracking overhead. The HCD code should only block on spinlocks or on 66 * hardware handshaking; blocking on software events (such as other kernel 67 * threads releasing resources, or completing actions) is all generic. 68 * 69 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 70 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 71 * only by the hub driver ... and that neither should be seen or used by 72 * usb client device drivers. 73 * 74 * Contributors of ideas or unattributed patches include: David Brownell, 75 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 76 * 77 * HISTORY: 78 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 79 * associated cleanup. "usb_hcd" still != "usb_bus". 80 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 81 */ 82 83 /*-------------------------------------------------------------------------*/ 84 85 /* Keep track of which host controller drivers are loaded */ 86 unsigned long usb_hcds_loaded; 87 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 88 89 /* host controllers we manage */ 90 LIST_HEAD (usb_bus_list); 91 EXPORT_SYMBOL_GPL (usb_bus_list); 92 93 /* used when allocating bus numbers */ 94 #define USB_MAXBUS 64 95 struct usb_busmap { 96 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 97 }; 98 static struct usb_busmap busmap; 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 129 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 130 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 131 132 /* usb 3.0 root hub device descriptor */ 133 static const u8 usb3_rh_dev_descriptor[18] = { 134 0x12, /* __u8 bLength; */ 135 0x01, /* __u8 bDescriptorType; Device */ 136 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 137 138 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 139 0x00, /* __u8 bDeviceSubClass; */ 140 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 141 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 142 143 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 144 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 145 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 146 147 0x03, /* __u8 iManufacturer; */ 148 0x02, /* __u8 iProduct; */ 149 0x01, /* __u8 iSerialNumber; */ 150 0x01 /* __u8 bNumConfigurations; */ 151 }; 152 153 /* usb 2.0 root hub device descriptor */ 154 static const u8 usb2_rh_dev_descriptor [18] = { 155 0x12, /* __u8 bLength; */ 156 0x01, /* __u8 bDescriptorType; Device */ 157 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 158 159 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 160 0x00, /* __u8 bDeviceSubClass; */ 161 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 162 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 163 164 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 165 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 166 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 167 168 0x03, /* __u8 iManufacturer; */ 169 0x02, /* __u8 iProduct; */ 170 0x01, /* __u8 iSerialNumber; */ 171 0x01 /* __u8 bNumConfigurations; */ 172 }; 173 174 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 175 176 /* usb 1.1 root hub device descriptor */ 177 static const u8 usb11_rh_dev_descriptor [18] = { 178 0x12, /* __u8 bLength; */ 179 0x01, /* __u8 bDescriptorType; Device */ 180 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 181 182 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 183 0x00, /* __u8 bDeviceSubClass; */ 184 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 185 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 186 187 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 188 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 189 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 190 191 0x03, /* __u8 iManufacturer; */ 192 0x02, /* __u8 iProduct; */ 193 0x01, /* __u8 iSerialNumber; */ 194 0x01 /* __u8 bNumConfigurations; */ 195 }; 196 197 198 /*-------------------------------------------------------------------------*/ 199 200 /* Configuration descriptors for our root hubs */ 201 202 static const u8 fs_rh_config_descriptor [] = { 203 204 /* one configuration */ 205 0x09, /* __u8 bLength; */ 206 0x02, /* __u8 bDescriptorType; Configuration */ 207 0x19, 0x00, /* __le16 wTotalLength; */ 208 0x01, /* __u8 bNumInterfaces; (1) */ 209 0x01, /* __u8 bConfigurationValue; */ 210 0x00, /* __u8 iConfiguration; */ 211 0xc0, /* __u8 bmAttributes; 212 Bit 7: must be set, 213 6: Self-powered, 214 5: Remote wakeup, 215 4..0: resvd */ 216 0x00, /* __u8 MaxPower; */ 217 218 /* USB 1.1: 219 * USB 2.0, single TT organization (mandatory): 220 * one interface, protocol 0 221 * 222 * USB 2.0, multiple TT organization (optional): 223 * two interfaces, protocols 1 (like single TT) 224 * and 2 (multiple TT mode) ... config is 225 * sometimes settable 226 * NOT IMPLEMENTED 227 */ 228 229 /* one interface */ 230 0x09, /* __u8 if_bLength; */ 231 0x04, /* __u8 if_bDescriptorType; Interface */ 232 0x00, /* __u8 if_bInterfaceNumber; */ 233 0x00, /* __u8 if_bAlternateSetting; */ 234 0x01, /* __u8 if_bNumEndpoints; */ 235 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 236 0x00, /* __u8 if_bInterfaceSubClass; */ 237 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 238 0x00, /* __u8 if_iInterface; */ 239 240 /* one endpoint (status change endpoint) */ 241 0x07, /* __u8 ep_bLength; */ 242 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 243 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 244 0x03, /* __u8 ep_bmAttributes; Interrupt */ 245 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 246 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 247 }; 248 249 static const u8 hs_rh_config_descriptor [] = { 250 251 /* one configuration */ 252 0x09, /* __u8 bLength; */ 253 0x02, /* __u8 bDescriptorType; Configuration */ 254 0x19, 0x00, /* __le16 wTotalLength; */ 255 0x01, /* __u8 bNumInterfaces; (1) */ 256 0x01, /* __u8 bConfigurationValue; */ 257 0x00, /* __u8 iConfiguration; */ 258 0xc0, /* __u8 bmAttributes; 259 Bit 7: must be set, 260 6: Self-powered, 261 5: Remote wakeup, 262 4..0: resvd */ 263 0x00, /* __u8 MaxPower; */ 264 265 /* USB 1.1: 266 * USB 2.0, single TT organization (mandatory): 267 * one interface, protocol 0 268 * 269 * USB 2.0, multiple TT organization (optional): 270 * two interfaces, protocols 1 (like single TT) 271 * and 2 (multiple TT mode) ... config is 272 * sometimes settable 273 * NOT IMPLEMENTED 274 */ 275 276 /* one interface */ 277 0x09, /* __u8 if_bLength; */ 278 0x04, /* __u8 if_bDescriptorType; Interface */ 279 0x00, /* __u8 if_bInterfaceNumber; */ 280 0x00, /* __u8 if_bAlternateSetting; */ 281 0x01, /* __u8 if_bNumEndpoints; */ 282 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 283 0x00, /* __u8 if_bInterfaceSubClass; */ 284 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 285 0x00, /* __u8 if_iInterface; */ 286 287 /* one endpoint (status change endpoint) */ 288 0x07, /* __u8 ep_bLength; */ 289 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 290 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 291 0x03, /* __u8 ep_bmAttributes; Interrupt */ 292 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 293 * see hub.c:hub_configure() for details. */ 294 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 295 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 296 }; 297 298 static const u8 ss_rh_config_descriptor[] = { 299 /* one configuration */ 300 0x09, /* __u8 bLength; */ 301 0x02, /* __u8 bDescriptorType; Configuration */ 302 0x19, 0x00, /* __le16 wTotalLength; FIXME */ 303 0x01, /* __u8 bNumInterfaces; (1) */ 304 0x01, /* __u8 bConfigurationValue; */ 305 0x00, /* __u8 iConfiguration; */ 306 0xc0, /* __u8 bmAttributes; 307 Bit 7: must be set, 308 6: Self-powered, 309 5: Remote wakeup, 310 4..0: resvd */ 311 0x00, /* __u8 MaxPower; */ 312 313 /* one interface */ 314 0x09, /* __u8 if_bLength; */ 315 0x04, /* __u8 if_bDescriptorType; Interface */ 316 0x00, /* __u8 if_bInterfaceNumber; */ 317 0x00, /* __u8 if_bAlternateSetting; */ 318 0x01, /* __u8 if_bNumEndpoints; */ 319 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 320 0x00, /* __u8 if_bInterfaceSubClass; */ 321 0x00, /* __u8 if_bInterfaceProtocol; */ 322 0x00, /* __u8 if_iInterface; */ 323 324 /* one endpoint (status change endpoint) */ 325 0x07, /* __u8 ep_bLength; */ 326 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 327 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 328 0x03, /* __u8 ep_bmAttributes; Interrupt */ 329 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 330 * see hub.c:hub_configure() for details. */ 331 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 332 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 333 /* 334 * All 3.0 hubs should have an endpoint companion descriptor, 335 * but we're ignoring that for now. FIXME? 336 */ 337 }; 338 339 /*-------------------------------------------------------------------------*/ 340 341 /** 342 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 343 * @s: Null-terminated ASCII (actually ISO-8859-1) string 344 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 345 * @len: Length (in bytes; may be odd) of descriptor buffer. 346 * 347 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 348 * buflen, whichever is less. 349 * 350 * USB String descriptors can contain at most 126 characters; input 351 * strings longer than that are truncated. 352 */ 353 static unsigned 354 ascii2desc(char const *s, u8 *buf, unsigned len) 355 { 356 unsigned n, t = 2 + 2*strlen(s); 357 358 if (t > 254) 359 t = 254; /* Longest possible UTF string descriptor */ 360 if (len > t) 361 len = t; 362 363 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 364 365 n = len; 366 while (n--) { 367 *buf++ = t; 368 if (!n--) 369 break; 370 *buf++ = t >> 8; 371 t = (unsigned char)*s++; 372 } 373 return len; 374 } 375 376 /** 377 * rh_string() - provides string descriptors for root hub 378 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 379 * @hcd: the host controller for this root hub 380 * @data: buffer for output packet 381 * @len: length of the provided buffer 382 * 383 * Produces either a manufacturer, product or serial number string for the 384 * virtual root hub device. 385 * Returns the number of bytes filled in: the length of the descriptor or 386 * of the provided buffer, whichever is less. 387 */ 388 static unsigned 389 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 390 { 391 char buf[100]; 392 char const *s; 393 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 394 395 // language ids 396 switch (id) { 397 case 0: 398 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 399 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 400 if (len > 4) 401 len = 4; 402 memcpy(data, langids, len); 403 return len; 404 case 1: 405 /* Serial number */ 406 s = hcd->self.bus_name; 407 break; 408 case 2: 409 /* Product name */ 410 s = hcd->product_desc; 411 break; 412 case 3: 413 /* Manufacturer */ 414 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 415 init_utsname()->release, hcd->driver->description); 416 s = buf; 417 break; 418 default: 419 /* Can't happen; caller guarantees it */ 420 return 0; 421 } 422 423 return ascii2desc(s, data, len); 424 } 425 426 427 /* Root hub control transfers execute synchronously */ 428 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 429 { 430 struct usb_ctrlrequest *cmd; 431 u16 typeReq, wValue, wIndex, wLength; 432 u8 *ubuf = urb->transfer_buffer; 433 u8 tbuf [sizeof (struct usb_hub_descriptor)] 434 __attribute__((aligned(4))); 435 const u8 *bufp = tbuf; 436 unsigned len = 0; 437 int status; 438 u8 patch_wakeup = 0; 439 u8 patch_protocol = 0; 440 441 might_sleep(); 442 443 spin_lock_irq(&hcd_root_hub_lock); 444 status = usb_hcd_link_urb_to_ep(hcd, urb); 445 spin_unlock_irq(&hcd_root_hub_lock); 446 if (status) 447 return status; 448 urb->hcpriv = hcd; /* Indicate it's queued */ 449 450 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 451 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 452 wValue = le16_to_cpu (cmd->wValue); 453 wIndex = le16_to_cpu (cmd->wIndex); 454 wLength = le16_to_cpu (cmd->wLength); 455 456 if (wLength > urb->transfer_buffer_length) 457 goto error; 458 459 urb->actual_length = 0; 460 switch (typeReq) { 461 462 /* DEVICE REQUESTS */ 463 464 /* The root hub's remote wakeup enable bit is implemented using 465 * driver model wakeup flags. If this system supports wakeup 466 * through USB, userspace may change the default "allow wakeup" 467 * policy through sysfs or these calls. 468 * 469 * Most root hubs support wakeup from downstream devices, for 470 * runtime power management (disabling USB clocks and reducing 471 * VBUS power usage). However, not all of them do so; silicon, 472 * board, and BIOS bugs here are not uncommon, so these can't 473 * be treated quite like external hubs. 474 * 475 * Likewise, not all root hubs will pass wakeup events upstream, 476 * to wake up the whole system. So don't assume root hub and 477 * controller capabilities are identical. 478 */ 479 480 case DeviceRequest | USB_REQ_GET_STATUS: 481 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 482 << USB_DEVICE_REMOTE_WAKEUP) 483 | (1 << USB_DEVICE_SELF_POWERED); 484 tbuf [1] = 0; 485 len = 2; 486 break; 487 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 488 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 489 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 490 else 491 goto error; 492 break; 493 case DeviceOutRequest | USB_REQ_SET_FEATURE: 494 if (device_can_wakeup(&hcd->self.root_hub->dev) 495 && wValue == USB_DEVICE_REMOTE_WAKEUP) 496 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 497 else 498 goto error; 499 break; 500 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 501 tbuf [0] = 1; 502 len = 1; 503 /* FALLTHROUGH */ 504 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 505 break; 506 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 507 switch (wValue & 0xff00) { 508 case USB_DT_DEVICE << 8: 509 switch (hcd->driver->flags & HCD_MASK) { 510 case HCD_USB3: 511 bufp = usb3_rh_dev_descriptor; 512 break; 513 case HCD_USB2: 514 bufp = usb2_rh_dev_descriptor; 515 break; 516 case HCD_USB11: 517 bufp = usb11_rh_dev_descriptor; 518 break; 519 default: 520 goto error; 521 } 522 len = 18; 523 if (hcd->has_tt) 524 patch_protocol = 1; 525 break; 526 case USB_DT_CONFIG << 8: 527 switch (hcd->driver->flags & HCD_MASK) { 528 case HCD_USB3: 529 bufp = ss_rh_config_descriptor; 530 len = sizeof ss_rh_config_descriptor; 531 break; 532 case HCD_USB2: 533 bufp = hs_rh_config_descriptor; 534 len = sizeof hs_rh_config_descriptor; 535 break; 536 case HCD_USB11: 537 bufp = fs_rh_config_descriptor; 538 len = sizeof fs_rh_config_descriptor; 539 break; 540 default: 541 goto error; 542 } 543 if (device_can_wakeup(&hcd->self.root_hub->dev)) 544 patch_wakeup = 1; 545 break; 546 case USB_DT_STRING << 8: 547 if ((wValue & 0xff) < 4) 548 urb->actual_length = rh_string(wValue & 0xff, 549 hcd, ubuf, wLength); 550 else /* unsupported IDs --> "protocol stall" */ 551 goto error; 552 break; 553 default: 554 goto error; 555 } 556 break; 557 case DeviceRequest | USB_REQ_GET_INTERFACE: 558 tbuf [0] = 0; 559 len = 1; 560 /* FALLTHROUGH */ 561 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 562 break; 563 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 564 // wValue == urb->dev->devaddr 565 dev_dbg (hcd->self.controller, "root hub device address %d\n", 566 wValue); 567 break; 568 569 /* INTERFACE REQUESTS (no defined feature/status flags) */ 570 571 /* ENDPOINT REQUESTS */ 572 573 case EndpointRequest | USB_REQ_GET_STATUS: 574 // ENDPOINT_HALT flag 575 tbuf [0] = 0; 576 tbuf [1] = 0; 577 len = 2; 578 /* FALLTHROUGH */ 579 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 580 case EndpointOutRequest | USB_REQ_SET_FEATURE: 581 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 582 break; 583 584 /* CLASS REQUESTS (and errors) */ 585 586 default: 587 /* non-generic request */ 588 switch (typeReq) { 589 case GetHubStatus: 590 case GetPortStatus: 591 len = 4; 592 break; 593 case GetHubDescriptor: 594 len = sizeof (struct usb_hub_descriptor); 595 break; 596 } 597 status = hcd->driver->hub_control (hcd, 598 typeReq, wValue, wIndex, 599 tbuf, wLength); 600 break; 601 error: 602 /* "protocol stall" on error */ 603 status = -EPIPE; 604 } 605 606 if (status) { 607 len = 0; 608 if (status != -EPIPE) { 609 dev_dbg (hcd->self.controller, 610 "CTRL: TypeReq=0x%x val=0x%x " 611 "idx=0x%x len=%d ==> %d\n", 612 typeReq, wValue, wIndex, 613 wLength, status); 614 } 615 } 616 if (len) { 617 if (urb->transfer_buffer_length < len) 618 len = urb->transfer_buffer_length; 619 urb->actual_length = len; 620 // always USB_DIR_IN, toward host 621 memcpy (ubuf, bufp, len); 622 623 /* report whether RH hardware supports remote wakeup */ 624 if (patch_wakeup && 625 len > offsetof (struct usb_config_descriptor, 626 bmAttributes)) 627 ((struct usb_config_descriptor *)ubuf)->bmAttributes 628 |= USB_CONFIG_ATT_WAKEUP; 629 630 /* report whether RH hardware has an integrated TT */ 631 if (patch_protocol && 632 len > offsetof(struct usb_device_descriptor, 633 bDeviceProtocol)) 634 ((struct usb_device_descriptor *) ubuf)-> 635 bDeviceProtocol = 1; 636 } 637 638 /* any errors get returned through the urb completion */ 639 spin_lock_irq(&hcd_root_hub_lock); 640 usb_hcd_unlink_urb_from_ep(hcd, urb); 641 642 /* This peculiar use of spinlocks echoes what real HC drivers do. 643 * Avoiding calls to local_irq_disable/enable makes the code 644 * RT-friendly. 645 */ 646 spin_unlock(&hcd_root_hub_lock); 647 usb_hcd_giveback_urb(hcd, urb, status); 648 spin_lock(&hcd_root_hub_lock); 649 650 spin_unlock_irq(&hcd_root_hub_lock); 651 return 0; 652 } 653 654 /*-------------------------------------------------------------------------*/ 655 656 /* 657 * Root Hub interrupt transfers are polled using a timer if the 658 * driver requests it; otherwise the driver is responsible for 659 * calling usb_hcd_poll_rh_status() when an event occurs. 660 * 661 * Completions are called in_interrupt(), but they may or may not 662 * be in_irq(). 663 */ 664 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 665 { 666 struct urb *urb; 667 int length; 668 unsigned long flags; 669 char buffer[6]; /* Any root hubs with > 31 ports? */ 670 671 if (unlikely(!hcd->rh_registered)) 672 return; 673 if (!hcd->uses_new_polling && !hcd->status_urb) 674 return; 675 676 length = hcd->driver->hub_status_data(hcd, buffer); 677 if (length > 0) { 678 679 /* try to complete the status urb */ 680 spin_lock_irqsave(&hcd_root_hub_lock, flags); 681 urb = hcd->status_urb; 682 if (urb) { 683 hcd->poll_pending = 0; 684 hcd->status_urb = NULL; 685 urb->actual_length = length; 686 memcpy(urb->transfer_buffer, buffer, length); 687 688 usb_hcd_unlink_urb_from_ep(hcd, urb); 689 spin_unlock(&hcd_root_hub_lock); 690 usb_hcd_giveback_urb(hcd, urb, 0); 691 spin_lock(&hcd_root_hub_lock); 692 } else { 693 length = 0; 694 hcd->poll_pending = 1; 695 } 696 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 697 } 698 699 /* The USB 2.0 spec says 256 ms. This is close enough and won't 700 * exceed that limit if HZ is 100. The math is more clunky than 701 * maybe expected, this is to make sure that all timers for USB devices 702 * fire at the same time to give the CPU a break inbetween */ 703 if (hcd->uses_new_polling ? hcd->poll_rh : 704 (length == 0 && hcd->status_urb != NULL)) 705 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 706 } 707 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 708 709 /* timer callback */ 710 static void rh_timer_func (unsigned long _hcd) 711 { 712 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 713 } 714 715 /*-------------------------------------------------------------------------*/ 716 717 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 718 { 719 int retval; 720 unsigned long flags; 721 unsigned len = 1 + (urb->dev->maxchild / 8); 722 723 spin_lock_irqsave (&hcd_root_hub_lock, flags); 724 if (hcd->status_urb || urb->transfer_buffer_length < len) { 725 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 726 retval = -EINVAL; 727 goto done; 728 } 729 730 retval = usb_hcd_link_urb_to_ep(hcd, urb); 731 if (retval) 732 goto done; 733 734 hcd->status_urb = urb; 735 urb->hcpriv = hcd; /* indicate it's queued */ 736 if (!hcd->uses_new_polling) 737 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 738 739 /* If a status change has already occurred, report it ASAP */ 740 else if (hcd->poll_pending) 741 mod_timer(&hcd->rh_timer, jiffies); 742 retval = 0; 743 done: 744 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 745 return retval; 746 } 747 748 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 749 { 750 if (usb_endpoint_xfer_int(&urb->ep->desc)) 751 return rh_queue_status (hcd, urb); 752 if (usb_endpoint_xfer_control(&urb->ep->desc)) 753 return rh_call_control (hcd, urb); 754 return -EINVAL; 755 } 756 757 /*-------------------------------------------------------------------------*/ 758 759 /* Unlinks of root-hub control URBs are legal, but they don't do anything 760 * since these URBs always execute synchronously. 761 */ 762 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 763 { 764 unsigned long flags; 765 int rc; 766 767 spin_lock_irqsave(&hcd_root_hub_lock, flags); 768 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 769 if (rc) 770 goto done; 771 772 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 773 ; /* Do nothing */ 774 775 } else { /* Status URB */ 776 if (!hcd->uses_new_polling) 777 del_timer (&hcd->rh_timer); 778 if (urb == hcd->status_urb) { 779 hcd->status_urb = NULL; 780 usb_hcd_unlink_urb_from_ep(hcd, urb); 781 782 spin_unlock(&hcd_root_hub_lock); 783 usb_hcd_giveback_urb(hcd, urb, status); 784 spin_lock(&hcd_root_hub_lock); 785 } 786 } 787 done: 788 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 789 return rc; 790 } 791 792 793 794 /* 795 * Show & store the current value of authorized_default 796 */ 797 static ssize_t usb_host_authorized_default_show(struct device *dev, 798 struct device_attribute *attr, 799 char *buf) 800 { 801 struct usb_device *rh_usb_dev = to_usb_device(dev); 802 struct usb_bus *usb_bus = rh_usb_dev->bus; 803 struct usb_hcd *usb_hcd; 804 805 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 806 return -ENODEV; 807 usb_hcd = bus_to_hcd(usb_bus); 808 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 809 } 810 811 static ssize_t usb_host_authorized_default_store(struct device *dev, 812 struct device_attribute *attr, 813 const char *buf, size_t size) 814 { 815 ssize_t result; 816 unsigned val; 817 struct usb_device *rh_usb_dev = to_usb_device(dev); 818 struct usb_bus *usb_bus = rh_usb_dev->bus; 819 struct usb_hcd *usb_hcd; 820 821 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 822 return -ENODEV; 823 usb_hcd = bus_to_hcd(usb_bus); 824 result = sscanf(buf, "%u\n", &val); 825 if (result == 1) { 826 usb_hcd->authorized_default = val? 1 : 0; 827 result = size; 828 } 829 else 830 result = -EINVAL; 831 return result; 832 } 833 834 static DEVICE_ATTR(authorized_default, 0644, 835 usb_host_authorized_default_show, 836 usb_host_authorized_default_store); 837 838 839 /* Group all the USB bus attributes */ 840 static struct attribute *usb_bus_attrs[] = { 841 &dev_attr_authorized_default.attr, 842 NULL, 843 }; 844 845 static struct attribute_group usb_bus_attr_group = { 846 .name = NULL, /* we want them in the same directory */ 847 .attrs = usb_bus_attrs, 848 }; 849 850 851 852 /*-------------------------------------------------------------------------*/ 853 854 /** 855 * usb_bus_init - shared initialization code 856 * @bus: the bus structure being initialized 857 * 858 * This code is used to initialize a usb_bus structure, memory for which is 859 * separately managed. 860 */ 861 static void usb_bus_init (struct usb_bus *bus) 862 { 863 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 864 865 bus->devnum_next = 1; 866 867 bus->root_hub = NULL; 868 bus->busnum = -1; 869 bus->bandwidth_allocated = 0; 870 bus->bandwidth_int_reqs = 0; 871 bus->bandwidth_isoc_reqs = 0; 872 873 INIT_LIST_HEAD (&bus->bus_list); 874 } 875 876 /*-------------------------------------------------------------------------*/ 877 878 /** 879 * usb_register_bus - registers the USB host controller with the usb core 880 * @bus: pointer to the bus to register 881 * Context: !in_interrupt() 882 * 883 * Assigns a bus number, and links the controller into usbcore data 884 * structures so that it can be seen by scanning the bus list. 885 */ 886 static int usb_register_bus(struct usb_bus *bus) 887 { 888 int result = -E2BIG; 889 int busnum; 890 891 mutex_lock(&usb_bus_list_lock); 892 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 893 if (busnum >= USB_MAXBUS) { 894 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 895 goto error_find_busnum; 896 } 897 set_bit (busnum, busmap.busmap); 898 bus->busnum = busnum; 899 900 /* Add it to the local list of buses */ 901 list_add (&bus->bus_list, &usb_bus_list); 902 mutex_unlock(&usb_bus_list_lock); 903 904 usb_notify_add_bus(bus); 905 906 dev_info (bus->controller, "new USB bus registered, assigned bus " 907 "number %d\n", bus->busnum); 908 return 0; 909 910 error_find_busnum: 911 mutex_unlock(&usb_bus_list_lock); 912 return result; 913 } 914 915 /** 916 * usb_deregister_bus - deregisters the USB host controller 917 * @bus: pointer to the bus to deregister 918 * Context: !in_interrupt() 919 * 920 * Recycles the bus number, and unlinks the controller from usbcore data 921 * structures so that it won't be seen by scanning the bus list. 922 */ 923 static void usb_deregister_bus (struct usb_bus *bus) 924 { 925 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 926 927 /* 928 * NOTE: make sure that all the devices are removed by the 929 * controller code, as well as having it call this when cleaning 930 * itself up 931 */ 932 mutex_lock(&usb_bus_list_lock); 933 list_del (&bus->bus_list); 934 mutex_unlock(&usb_bus_list_lock); 935 936 usb_notify_remove_bus(bus); 937 938 clear_bit (bus->busnum, busmap.busmap); 939 } 940 941 /** 942 * register_root_hub - called by usb_add_hcd() to register a root hub 943 * @hcd: host controller for this root hub 944 * 945 * This function registers the root hub with the USB subsystem. It sets up 946 * the device properly in the device tree and then calls usb_new_device() 947 * to register the usb device. It also assigns the root hub's USB address 948 * (always 1). 949 */ 950 static int register_root_hub(struct usb_hcd *hcd) 951 { 952 struct device *parent_dev = hcd->self.controller; 953 struct usb_device *usb_dev = hcd->self.root_hub; 954 const int devnum = 1; 955 int retval; 956 957 usb_dev->devnum = devnum; 958 usb_dev->bus->devnum_next = devnum + 1; 959 memset (&usb_dev->bus->devmap.devicemap, 0, 960 sizeof usb_dev->bus->devmap.devicemap); 961 set_bit (devnum, usb_dev->bus->devmap.devicemap); 962 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 963 964 mutex_lock(&usb_bus_list_lock); 965 966 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 967 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 968 if (retval != sizeof usb_dev->descriptor) { 969 mutex_unlock(&usb_bus_list_lock); 970 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 971 dev_name(&usb_dev->dev), retval); 972 return (retval < 0) ? retval : -EMSGSIZE; 973 } 974 975 retval = usb_new_device (usb_dev); 976 if (retval) { 977 dev_err (parent_dev, "can't register root hub for %s, %d\n", 978 dev_name(&usb_dev->dev), retval); 979 } 980 mutex_unlock(&usb_bus_list_lock); 981 982 if (retval == 0) { 983 spin_lock_irq (&hcd_root_hub_lock); 984 hcd->rh_registered = 1; 985 spin_unlock_irq (&hcd_root_hub_lock); 986 987 /* Did the HC die before the root hub was registered? */ 988 if (hcd->state == HC_STATE_HALT) 989 usb_hc_died (hcd); /* This time clean up */ 990 } 991 992 return retval; 993 } 994 995 996 /*-------------------------------------------------------------------------*/ 997 998 /** 999 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1000 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1001 * @is_input: true iff the transaction sends data to the host 1002 * @isoc: true for isochronous transactions, false for interrupt ones 1003 * @bytecount: how many bytes in the transaction. 1004 * 1005 * Returns approximate bus time in nanoseconds for a periodic transaction. 1006 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1007 * scheduled in software, this function is only used for such scheduling. 1008 */ 1009 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1010 { 1011 unsigned long tmp; 1012 1013 switch (speed) { 1014 case USB_SPEED_LOW: /* INTR only */ 1015 if (is_input) { 1016 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1017 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1018 } else { 1019 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1020 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1021 } 1022 case USB_SPEED_FULL: /* ISOC or INTR */ 1023 if (isoc) { 1024 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1025 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1026 } else { 1027 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1028 return (9107L + BW_HOST_DELAY + tmp); 1029 } 1030 case USB_SPEED_HIGH: /* ISOC or INTR */ 1031 // FIXME adjust for input vs output 1032 if (isoc) 1033 tmp = HS_NSECS_ISO (bytecount); 1034 else 1035 tmp = HS_NSECS (bytecount); 1036 return tmp; 1037 default: 1038 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1039 return -1; 1040 } 1041 } 1042 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1043 1044 1045 /*-------------------------------------------------------------------------*/ 1046 1047 /* 1048 * Generic HC operations. 1049 */ 1050 1051 /*-------------------------------------------------------------------------*/ 1052 1053 /** 1054 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1055 * @hcd: host controller to which @urb was submitted 1056 * @urb: URB being submitted 1057 * 1058 * Host controller drivers should call this routine in their enqueue() 1059 * method. The HCD's private spinlock must be held and interrupts must 1060 * be disabled. The actions carried out here are required for URB 1061 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1062 * 1063 * Returns 0 for no error, otherwise a negative error code (in which case 1064 * the enqueue() method must fail). If no error occurs but enqueue() fails 1065 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1066 * the private spinlock and returning. 1067 */ 1068 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1069 { 1070 int rc = 0; 1071 1072 spin_lock(&hcd_urb_list_lock); 1073 1074 /* Check that the URB isn't being killed */ 1075 if (unlikely(atomic_read(&urb->reject))) { 1076 rc = -EPERM; 1077 goto done; 1078 } 1079 1080 if (unlikely(!urb->ep->enabled)) { 1081 rc = -ENOENT; 1082 goto done; 1083 } 1084 1085 if (unlikely(!urb->dev->can_submit)) { 1086 rc = -EHOSTUNREACH; 1087 goto done; 1088 } 1089 1090 /* 1091 * Check the host controller's state and add the URB to the 1092 * endpoint's queue. 1093 */ 1094 switch (hcd->state) { 1095 case HC_STATE_RUNNING: 1096 case HC_STATE_RESUMING: 1097 urb->unlinked = 0; 1098 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1099 break; 1100 default: 1101 rc = -ESHUTDOWN; 1102 goto done; 1103 } 1104 done: 1105 spin_unlock(&hcd_urb_list_lock); 1106 return rc; 1107 } 1108 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1109 1110 /** 1111 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1112 * @hcd: host controller to which @urb was submitted 1113 * @urb: URB being checked for unlinkability 1114 * @status: error code to store in @urb if the unlink succeeds 1115 * 1116 * Host controller drivers should call this routine in their dequeue() 1117 * method. The HCD's private spinlock must be held and interrupts must 1118 * be disabled. The actions carried out here are required for making 1119 * sure than an unlink is valid. 1120 * 1121 * Returns 0 for no error, otherwise a negative error code (in which case 1122 * the dequeue() method must fail). The possible error codes are: 1123 * 1124 * -EIDRM: @urb was not submitted or has already completed. 1125 * The completion function may not have been called yet. 1126 * 1127 * -EBUSY: @urb has already been unlinked. 1128 */ 1129 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1130 int status) 1131 { 1132 struct list_head *tmp; 1133 1134 /* insist the urb is still queued */ 1135 list_for_each(tmp, &urb->ep->urb_list) { 1136 if (tmp == &urb->urb_list) 1137 break; 1138 } 1139 if (tmp != &urb->urb_list) 1140 return -EIDRM; 1141 1142 /* Any status except -EINPROGRESS means something already started to 1143 * unlink this URB from the hardware. So there's no more work to do. 1144 */ 1145 if (urb->unlinked) 1146 return -EBUSY; 1147 urb->unlinked = status; 1148 1149 /* IRQ setup can easily be broken so that USB controllers 1150 * never get completion IRQs ... maybe even the ones we need to 1151 * finish unlinking the initial failed usb_set_address() 1152 * or device descriptor fetch. 1153 */ 1154 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && 1155 !is_root_hub(urb->dev)) { 1156 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1157 "Controller is probably using the wrong IRQ.\n"); 1158 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1159 } 1160 1161 return 0; 1162 } 1163 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1164 1165 /** 1166 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1167 * @hcd: host controller to which @urb was submitted 1168 * @urb: URB being unlinked 1169 * 1170 * Host controller drivers should call this routine before calling 1171 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1172 * interrupts must be disabled. The actions carried out here are required 1173 * for URB completion. 1174 */ 1175 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1176 { 1177 /* clear all state linking urb to this dev (and hcd) */ 1178 spin_lock(&hcd_urb_list_lock); 1179 list_del_init(&urb->urb_list); 1180 spin_unlock(&hcd_urb_list_lock); 1181 } 1182 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1183 1184 /* 1185 * Some usb host controllers can only perform dma using a small SRAM area. 1186 * The usb core itself is however optimized for host controllers that can dma 1187 * using regular system memory - like pci devices doing bus mastering. 1188 * 1189 * To support host controllers with limited dma capabilites we provide dma 1190 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1191 * For this to work properly the host controller code must first use the 1192 * function dma_declare_coherent_memory() to point out which memory area 1193 * that should be used for dma allocations. 1194 * 1195 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1196 * dma using dma_alloc_coherent() which in turn allocates from the memory 1197 * area pointed out with dma_declare_coherent_memory(). 1198 * 1199 * So, to summarize... 1200 * 1201 * - We need "local" memory, canonical example being 1202 * a small SRAM on a discrete controller being the 1203 * only memory that the controller can read ... 1204 * (a) "normal" kernel memory is no good, and 1205 * (b) there's not enough to share 1206 * 1207 * - The only *portable* hook for such stuff in the 1208 * DMA framework is dma_declare_coherent_memory() 1209 * 1210 * - So we use that, even though the primary requirement 1211 * is that the memory be "local" (hence addressible 1212 * by that device), not "coherent". 1213 * 1214 */ 1215 1216 static int hcd_alloc_coherent(struct usb_bus *bus, 1217 gfp_t mem_flags, dma_addr_t *dma_handle, 1218 void **vaddr_handle, size_t size, 1219 enum dma_data_direction dir) 1220 { 1221 unsigned char *vaddr; 1222 1223 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1224 mem_flags, dma_handle); 1225 if (!vaddr) 1226 return -ENOMEM; 1227 1228 /* 1229 * Store the virtual address of the buffer at the end 1230 * of the allocated dma buffer. The size of the buffer 1231 * may be uneven so use unaligned functions instead 1232 * of just rounding up. It makes sense to optimize for 1233 * memory footprint over access speed since the amount 1234 * of memory available for dma may be limited. 1235 */ 1236 put_unaligned((unsigned long)*vaddr_handle, 1237 (unsigned long *)(vaddr + size)); 1238 1239 if (dir == DMA_TO_DEVICE) 1240 memcpy(vaddr, *vaddr_handle, size); 1241 1242 *vaddr_handle = vaddr; 1243 return 0; 1244 } 1245 1246 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1247 void **vaddr_handle, size_t size, 1248 enum dma_data_direction dir) 1249 { 1250 unsigned char *vaddr = *vaddr_handle; 1251 1252 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1253 1254 if (dir == DMA_FROM_DEVICE) 1255 memcpy(vaddr, *vaddr_handle, size); 1256 1257 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1258 1259 *vaddr_handle = vaddr; 1260 *dma_handle = 0; 1261 } 1262 1263 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1264 gfp_t mem_flags) 1265 { 1266 enum dma_data_direction dir; 1267 int ret = 0; 1268 1269 /* Map the URB's buffers for DMA access. 1270 * Lower level HCD code should use *_dma exclusively, 1271 * unless it uses pio or talks to another transport, 1272 * or uses the provided scatter gather list for bulk. 1273 */ 1274 if (is_root_hub(urb->dev)) 1275 return 0; 1276 1277 if (usb_endpoint_xfer_control(&urb->ep->desc) 1278 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1279 if (hcd->self.uses_dma) { 1280 urb->setup_dma = dma_map_single( 1281 hcd->self.controller, 1282 urb->setup_packet, 1283 sizeof(struct usb_ctrlrequest), 1284 DMA_TO_DEVICE); 1285 if (dma_mapping_error(hcd->self.controller, 1286 urb->setup_dma)) 1287 return -EAGAIN; 1288 } else if (hcd->driver->flags & HCD_LOCAL_MEM) 1289 ret = hcd_alloc_coherent( 1290 urb->dev->bus, mem_flags, 1291 &urb->setup_dma, 1292 (void **)&urb->setup_packet, 1293 sizeof(struct usb_ctrlrequest), 1294 DMA_TO_DEVICE); 1295 } 1296 1297 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1298 if (ret == 0 && urb->transfer_buffer_length != 0 1299 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1300 if (hcd->self.uses_dma) { 1301 urb->transfer_dma = dma_map_single ( 1302 hcd->self.controller, 1303 urb->transfer_buffer, 1304 urb->transfer_buffer_length, 1305 dir); 1306 if (dma_mapping_error(hcd->self.controller, 1307 urb->transfer_dma)) 1308 return -EAGAIN; 1309 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1310 ret = hcd_alloc_coherent( 1311 urb->dev->bus, mem_flags, 1312 &urb->transfer_dma, 1313 &urb->transfer_buffer, 1314 urb->transfer_buffer_length, 1315 dir); 1316 1317 if (ret && usb_endpoint_xfer_control(&urb->ep->desc) 1318 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1319 hcd_free_coherent(urb->dev->bus, 1320 &urb->setup_dma, 1321 (void **)&urb->setup_packet, 1322 sizeof(struct usb_ctrlrequest), 1323 DMA_TO_DEVICE); 1324 } 1325 } 1326 return ret; 1327 } 1328 1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1330 { 1331 enum dma_data_direction dir; 1332 1333 if (is_root_hub(urb->dev)) 1334 return; 1335 1336 if (usb_endpoint_xfer_control(&urb->ep->desc) 1337 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1338 if (hcd->self.uses_dma) 1339 dma_unmap_single(hcd->self.controller, urb->setup_dma, 1340 sizeof(struct usb_ctrlrequest), 1341 DMA_TO_DEVICE); 1342 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1343 hcd_free_coherent(urb->dev->bus, &urb->setup_dma, 1344 (void **)&urb->setup_packet, 1345 sizeof(struct usb_ctrlrequest), 1346 DMA_TO_DEVICE); 1347 } 1348 1349 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1350 if (urb->transfer_buffer_length != 0 1351 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1352 if (hcd->self.uses_dma) 1353 dma_unmap_single(hcd->self.controller, 1354 urb->transfer_dma, 1355 urb->transfer_buffer_length, 1356 dir); 1357 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1358 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, 1359 &urb->transfer_buffer, 1360 urb->transfer_buffer_length, 1361 dir); 1362 } 1363 } 1364 1365 /*-------------------------------------------------------------------------*/ 1366 1367 /* may be called in any context with a valid urb->dev usecount 1368 * caller surrenders "ownership" of urb 1369 * expects usb_submit_urb() to have sanity checked and conditioned all 1370 * inputs in the urb 1371 */ 1372 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1373 { 1374 int status; 1375 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1376 1377 /* increment urb's reference count as part of giving it to the HCD 1378 * (which will control it). HCD guarantees that it either returns 1379 * an error or calls giveback(), but not both. 1380 */ 1381 usb_get_urb(urb); 1382 atomic_inc(&urb->use_count); 1383 atomic_inc(&urb->dev->urbnum); 1384 usbmon_urb_submit(&hcd->self, urb); 1385 1386 /* NOTE requirements on root-hub callers (usbfs and the hub 1387 * driver, for now): URBs' urb->transfer_buffer must be 1388 * valid and usb_buffer_{sync,unmap}() not be needed, since 1389 * they could clobber root hub response data. Also, control 1390 * URBs must be submitted in process context with interrupts 1391 * enabled. 1392 */ 1393 status = map_urb_for_dma(hcd, urb, mem_flags); 1394 if (unlikely(status)) { 1395 usbmon_urb_submit_error(&hcd->self, urb, status); 1396 goto error; 1397 } 1398 1399 if (is_root_hub(urb->dev)) 1400 status = rh_urb_enqueue(hcd, urb); 1401 else 1402 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1403 1404 if (unlikely(status)) { 1405 usbmon_urb_submit_error(&hcd->self, urb, status); 1406 unmap_urb_for_dma(hcd, urb); 1407 error: 1408 urb->hcpriv = NULL; 1409 INIT_LIST_HEAD(&urb->urb_list); 1410 atomic_dec(&urb->use_count); 1411 atomic_dec(&urb->dev->urbnum); 1412 if (atomic_read(&urb->reject)) 1413 wake_up(&usb_kill_urb_queue); 1414 usb_put_urb(urb); 1415 } 1416 return status; 1417 } 1418 1419 /*-------------------------------------------------------------------------*/ 1420 1421 /* this makes the hcd giveback() the urb more quickly, by kicking it 1422 * off hardware queues (which may take a while) and returning it as 1423 * soon as practical. we've already set up the urb's return status, 1424 * but we can't know if the callback completed already. 1425 */ 1426 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1427 { 1428 int value; 1429 1430 if (is_root_hub(urb->dev)) 1431 value = usb_rh_urb_dequeue(hcd, urb, status); 1432 else { 1433 1434 /* The only reason an HCD might fail this call is if 1435 * it has not yet fully queued the urb to begin with. 1436 * Such failures should be harmless. */ 1437 value = hcd->driver->urb_dequeue(hcd, urb, status); 1438 } 1439 return value; 1440 } 1441 1442 /* 1443 * called in any context 1444 * 1445 * caller guarantees urb won't be recycled till both unlink() 1446 * and the urb's completion function return 1447 */ 1448 int usb_hcd_unlink_urb (struct urb *urb, int status) 1449 { 1450 struct usb_hcd *hcd; 1451 int retval = -EIDRM; 1452 unsigned long flags; 1453 1454 /* Prevent the device and bus from going away while 1455 * the unlink is carried out. If they are already gone 1456 * then urb->use_count must be 0, since disconnected 1457 * devices can't have any active URBs. 1458 */ 1459 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1460 if (atomic_read(&urb->use_count) > 0) { 1461 retval = 0; 1462 usb_get_dev(urb->dev); 1463 } 1464 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1465 if (retval == 0) { 1466 hcd = bus_to_hcd(urb->dev->bus); 1467 retval = unlink1(hcd, urb, status); 1468 usb_put_dev(urb->dev); 1469 } 1470 1471 if (retval == 0) 1472 retval = -EINPROGRESS; 1473 else if (retval != -EIDRM && retval != -EBUSY) 1474 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1475 urb, retval); 1476 return retval; 1477 } 1478 1479 /*-------------------------------------------------------------------------*/ 1480 1481 /** 1482 * usb_hcd_giveback_urb - return URB from HCD to device driver 1483 * @hcd: host controller returning the URB 1484 * @urb: urb being returned to the USB device driver. 1485 * @status: completion status code for the URB. 1486 * Context: in_interrupt() 1487 * 1488 * This hands the URB from HCD to its USB device driver, using its 1489 * completion function. The HCD has freed all per-urb resources 1490 * (and is done using urb->hcpriv). It also released all HCD locks; 1491 * the device driver won't cause problems if it frees, modifies, 1492 * or resubmits this URB. 1493 * 1494 * If @urb was unlinked, the value of @status will be overridden by 1495 * @urb->unlinked. Erroneous short transfers are detected in case 1496 * the HCD hasn't checked for them. 1497 */ 1498 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1499 { 1500 urb->hcpriv = NULL; 1501 if (unlikely(urb->unlinked)) 1502 status = urb->unlinked; 1503 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1504 urb->actual_length < urb->transfer_buffer_length && 1505 !status)) 1506 status = -EREMOTEIO; 1507 1508 unmap_urb_for_dma(hcd, urb); 1509 usbmon_urb_complete(&hcd->self, urb, status); 1510 usb_unanchor_urb(urb); 1511 1512 /* pass ownership to the completion handler */ 1513 urb->status = status; 1514 urb->complete (urb); 1515 atomic_dec (&urb->use_count); 1516 if (unlikely(atomic_read(&urb->reject))) 1517 wake_up (&usb_kill_urb_queue); 1518 usb_put_urb (urb); 1519 } 1520 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1521 1522 /*-------------------------------------------------------------------------*/ 1523 1524 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1525 * queue to drain completely. The caller must first insure that no more 1526 * URBs can be submitted for this endpoint. 1527 */ 1528 void usb_hcd_flush_endpoint(struct usb_device *udev, 1529 struct usb_host_endpoint *ep) 1530 { 1531 struct usb_hcd *hcd; 1532 struct urb *urb; 1533 1534 if (!ep) 1535 return; 1536 might_sleep(); 1537 hcd = bus_to_hcd(udev->bus); 1538 1539 /* No more submits can occur */ 1540 spin_lock_irq(&hcd_urb_list_lock); 1541 rescan: 1542 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1543 int is_in; 1544 1545 if (urb->unlinked) 1546 continue; 1547 usb_get_urb (urb); 1548 is_in = usb_urb_dir_in(urb); 1549 spin_unlock(&hcd_urb_list_lock); 1550 1551 /* kick hcd */ 1552 unlink1(hcd, urb, -ESHUTDOWN); 1553 dev_dbg (hcd->self.controller, 1554 "shutdown urb %p ep%d%s%s\n", 1555 urb, usb_endpoint_num(&ep->desc), 1556 is_in ? "in" : "out", 1557 ({ char *s; 1558 1559 switch (usb_endpoint_type(&ep->desc)) { 1560 case USB_ENDPOINT_XFER_CONTROL: 1561 s = ""; break; 1562 case USB_ENDPOINT_XFER_BULK: 1563 s = "-bulk"; break; 1564 case USB_ENDPOINT_XFER_INT: 1565 s = "-intr"; break; 1566 default: 1567 s = "-iso"; break; 1568 }; 1569 s; 1570 })); 1571 usb_put_urb (urb); 1572 1573 /* list contents may have changed */ 1574 spin_lock(&hcd_urb_list_lock); 1575 goto rescan; 1576 } 1577 spin_unlock_irq(&hcd_urb_list_lock); 1578 1579 /* Wait until the endpoint queue is completely empty */ 1580 while (!list_empty (&ep->urb_list)) { 1581 spin_lock_irq(&hcd_urb_list_lock); 1582 1583 /* The list may have changed while we acquired the spinlock */ 1584 urb = NULL; 1585 if (!list_empty (&ep->urb_list)) { 1586 urb = list_entry (ep->urb_list.prev, struct urb, 1587 urb_list); 1588 usb_get_urb (urb); 1589 } 1590 spin_unlock_irq(&hcd_urb_list_lock); 1591 1592 if (urb) { 1593 usb_kill_urb (urb); 1594 usb_put_urb (urb); 1595 } 1596 } 1597 } 1598 1599 /** 1600 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1601 * the bus bandwidth 1602 * @udev: target &usb_device 1603 * @new_config: new configuration to install 1604 * @cur_alt: the current alternate interface setting 1605 * @new_alt: alternate interface setting that is being installed 1606 * 1607 * To change configurations, pass in the new configuration in new_config, 1608 * and pass NULL for cur_alt and new_alt. 1609 * 1610 * To reset a device's configuration (put the device in the ADDRESSED state), 1611 * pass in NULL for new_config, cur_alt, and new_alt. 1612 * 1613 * To change alternate interface settings, pass in NULL for new_config, 1614 * pass in the current alternate interface setting in cur_alt, 1615 * and pass in the new alternate interface setting in new_alt. 1616 * 1617 * Returns an error if the requested bandwidth change exceeds the 1618 * bus bandwidth or host controller internal resources. 1619 */ 1620 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1621 struct usb_host_config *new_config, 1622 struct usb_host_interface *cur_alt, 1623 struct usb_host_interface *new_alt) 1624 { 1625 int num_intfs, i, j; 1626 struct usb_host_interface *alt = NULL; 1627 int ret = 0; 1628 struct usb_hcd *hcd; 1629 struct usb_host_endpoint *ep; 1630 1631 hcd = bus_to_hcd(udev->bus); 1632 if (!hcd->driver->check_bandwidth) 1633 return 0; 1634 1635 /* Configuration is being removed - set configuration 0 */ 1636 if (!new_config && !cur_alt) { 1637 for (i = 1; i < 16; ++i) { 1638 ep = udev->ep_out[i]; 1639 if (ep) 1640 hcd->driver->drop_endpoint(hcd, udev, ep); 1641 ep = udev->ep_in[i]; 1642 if (ep) 1643 hcd->driver->drop_endpoint(hcd, udev, ep); 1644 } 1645 hcd->driver->check_bandwidth(hcd, udev); 1646 return 0; 1647 } 1648 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1649 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1650 * of the bus. There will always be bandwidth for endpoint 0, so it's 1651 * ok to exclude it. 1652 */ 1653 if (new_config) { 1654 num_intfs = new_config->desc.bNumInterfaces; 1655 /* Remove endpoints (except endpoint 0, which is always on the 1656 * schedule) from the old config from the schedule 1657 */ 1658 for (i = 1; i < 16; ++i) { 1659 ep = udev->ep_out[i]; 1660 if (ep) { 1661 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1662 if (ret < 0) 1663 goto reset; 1664 } 1665 ep = udev->ep_in[i]; 1666 if (ep) { 1667 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1668 if (ret < 0) 1669 goto reset; 1670 } 1671 } 1672 for (i = 0; i < num_intfs; ++i) { 1673 /* Set up endpoints for alternate interface setting 0 */ 1674 alt = usb_find_alt_setting(new_config, i, 0); 1675 if (!alt) 1676 /* No alt setting 0? Pick the first setting. */ 1677 alt = &new_config->intf_cache[i]->altsetting[0]; 1678 1679 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1680 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1681 if (ret < 0) 1682 goto reset; 1683 } 1684 } 1685 } 1686 if (cur_alt && new_alt) { 1687 /* Drop all the endpoints in the current alt setting */ 1688 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1689 ret = hcd->driver->drop_endpoint(hcd, udev, 1690 &cur_alt->endpoint[i]); 1691 if (ret < 0) 1692 goto reset; 1693 } 1694 /* Add all the endpoints in the new alt setting */ 1695 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1696 ret = hcd->driver->add_endpoint(hcd, udev, 1697 &new_alt->endpoint[i]); 1698 if (ret < 0) 1699 goto reset; 1700 } 1701 } 1702 ret = hcd->driver->check_bandwidth(hcd, udev); 1703 reset: 1704 if (ret < 0) 1705 hcd->driver->reset_bandwidth(hcd, udev); 1706 return ret; 1707 } 1708 1709 /* Disables the endpoint: synchronizes with the hcd to make sure all 1710 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1711 * have been called previously. Use for set_configuration, set_interface, 1712 * driver removal, physical disconnect. 1713 * 1714 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1715 * type, maxpacket size, toggle, halt status, and scheduling. 1716 */ 1717 void usb_hcd_disable_endpoint(struct usb_device *udev, 1718 struct usb_host_endpoint *ep) 1719 { 1720 struct usb_hcd *hcd; 1721 1722 might_sleep(); 1723 hcd = bus_to_hcd(udev->bus); 1724 if (hcd->driver->endpoint_disable) 1725 hcd->driver->endpoint_disable(hcd, ep); 1726 } 1727 1728 /** 1729 * usb_hcd_reset_endpoint - reset host endpoint state 1730 * @udev: USB device. 1731 * @ep: the endpoint to reset. 1732 * 1733 * Resets any host endpoint state such as the toggle bit, sequence 1734 * number and current window. 1735 */ 1736 void usb_hcd_reset_endpoint(struct usb_device *udev, 1737 struct usb_host_endpoint *ep) 1738 { 1739 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1740 1741 if (hcd->driver->endpoint_reset) 1742 hcd->driver->endpoint_reset(hcd, ep); 1743 else { 1744 int epnum = usb_endpoint_num(&ep->desc); 1745 int is_out = usb_endpoint_dir_out(&ep->desc); 1746 int is_control = usb_endpoint_xfer_control(&ep->desc); 1747 1748 usb_settoggle(udev, epnum, is_out, 0); 1749 if (is_control) 1750 usb_settoggle(udev, epnum, !is_out, 0); 1751 } 1752 } 1753 1754 /* Protect against drivers that try to unlink URBs after the device 1755 * is gone, by waiting until all unlinks for @udev are finished. 1756 * Since we don't currently track URBs by device, simply wait until 1757 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1758 */ 1759 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1760 { 1761 spin_lock_irq(&hcd_urb_unlink_lock); 1762 spin_unlock_irq(&hcd_urb_unlink_lock); 1763 } 1764 1765 /*-------------------------------------------------------------------------*/ 1766 1767 /* called in any context */ 1768 int usb_hcd_get_frame_number (struct usb_device *udev) 1769 { 1770 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1771 1772 if (!HC_IS_RUNNING (hcd->state)) 1773 return -ESHUTDOWN; 1774 return hcd->driver->get_frame_number (hcd); 1775 } 1776 1777 /*-------------------------------------------------------------------------*/ 1778 1779 #ifdef CONFIG_PM 1780 1781 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1782 { 1783 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1784 int status; 1785 int old_state = hcd->state; 1786 1787 dev_dbg(&rhdev->dev, "bus %s%s\n", 1788 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); 1789 if (!hcd->driver->bus_suspend) { 1790 status = -ENOENT; 1791 } else { 1792 hcd->state = HC_STATE_QUIESCING; 1793 status = hcd->driver->bus_suspend(hcd); 1794 } 1795 if (status == 0) { 1796 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1797 hcd->state = HC_STATE_SUSPENDED; 1798 } else { 1799 hcd->state = old_state; 1800 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1801 "suspend", status); 1802 } 1803 return status; 1804 } 1805 1806 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1807 { 1808 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1809 int status; 1810 int old_state = hcd->state; 1811 1812 dev_dbg(&rhdev->dev, "usb %s%s\n", 1813 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); 1814 if (!hcd->driver->bus_resume) 1815 return -ENOENT; 1816 if (hcd->state == HC_STATE_RUNNING) 1817 return 0; 1818 1819 hcd->state = HC_STATE_RESUMING; 1820 status = hcd->driver->bus_resume(hcd); 1821 if (status == 0) { 1822 /* TRSMRCY = 10 msec */ 1823 msleep(10); 1824 usb_set_device_state(rhdev, rhdev->actconfig 1825 ? USB_STATE_CONFIGURED 1826 : USB_STATE_ADDRESS); 1827 hcd->state = HC_STATE_RUNNING; 1828 } else { 1829 hcd->state = old_state; 1830 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1831 "resume", status); 1832 if (status != -ESHUTDOWN) 1833 usb_hc_died(hcd); 1834 } 1835 return status; 1836 } 1837 1838 /* Workqueue routine for root-hub remote wakeup */ 1839 static void hcd_resume_work(struct work_struct *work) 1840 { 1841 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1842 struct usb_device *udev = hcd->self.root_hub; 1843 1844 usb_lock_device(udev); 1845 usb_mark_last_busy(udev); 1846 usb_external_resume_device(udev, PMSG_REMOTE_RESUME); 1847 usb_unlock_device(udev); 1848 } 1849 1850 /** 1851 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1852 * @hcd: host controller for this root hub 1853 * 1854 * The USB host controller calls this function when its root hub is 1855 * suspended (with the remote wakeup feature enabled) and a remote 1856 * wakeup request is received. The routine submits a workqueue request 1857 * to resume the root hub (that is, manage its downstream ports again). 1858 */ 1859 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1860 { 1861 unsigned long flags; 1862 1863 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1864 if (hcd->rh_registered) 1865 queue_work(ksuspend_usb_wq, &hcd->wakeup_work); 1866 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1867 } 1868 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1869 1870 #endif 1871 1872 /*-------------------------------------------------------------------------*/ 1873 1874 #ifdef CONFIG_USB_OTG 1875 1876 /** 1877 * usb_bus_start_enum - start immediate enumeration (for OTG) 1878 * @bus: the bus (must use hcd framework) 1879 * @port_num: 1-based number of port; usually bus->otg_port 1880 * Context: in_interrupt() 1881 * 1882 * Starts enumeration, with an immediate reset followed later by 1883 * khubd identifying and possibly configuring the device. 1884 * This is needed by OTG controller drivers, where it helps meet 1885 * HNP protocol timing requirements for starting a port reset. 1886 */ 1887 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1888 { 1889 struct usb_hcd *hcd; 1890 int status = -EOPNOTSUPP; 1891 1892 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1893 * boards with root hubs hooked up to internal devices (instead of 1894 * just the OTG port) may need more attention to resetting... 1895 */ 1896 hcd = container_of (bus, struct usb_hcd, self); 1897 if (port_num && hcd->driver->start_port_reset) 1898 status = hcd->driver->start_port_reset(hcd, port_num); 1899 1900 /* run khubd shortly after (first) root port reset finishes; 1901 * it may issue others, until at least 50 msecs have passed. 1902 */ 1903 if (status == 0) 1904 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1905 return status; 1906 } 1907 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 1908 1909 #endif 1910 1911 /*-------------------------------------------------------------------------*/ 1912 1913 /** 1914 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1915 * @irq: the IRQ being raised 1916 * @__hcd: pointer to the HCD whose IRQ is being signaled 1917 * 1918 * If the controller isn't HALTed, calls the driver's irq handler. 1919 * Checks whether the controller is now dead. 1920 */ 1921 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1922 { 1923 struct usb_hcd *hcd = __hcd; 1924 unsigned long flags; 1925 irqreturn_t rc; 1926 1927 /* IRQF_DISABLED doesn't work correctly with shared IRQs 1928 * when the first handler doesn't use it. So let's just 1929 * assume it's never used. 1930 */ 1931 local_irq_save(flags); 1932 1933 if (unlikely(hcd->state == HC_STATE_HALT || 1934 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { 1935 rc = IRQ_NONE; 1936 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 1937 rc = IRQ_NONE; 1938 } else { 1939 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1940 1941 if (unlikely(hcd->state == HC_STATE_HALT)) 1942 usb_hc_died(hcd); 1943 rc = IRQ_HANDLED; 1944 } 1945 1946 local_irq_restore(flags); 1947 return rc; 1948 } 1949 1950 /*-------------------------------------------------------------------------*/ 1951 1952 /** 1953 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1954 * @hcd: pointer to the HCD representing the controller 1955 * 1956 * This is called by bus glue to report a USB host controller that died 1957 * while operations may still have been pending. It's called automatically 1958 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1959 */ 1960 void usb_hc_died (struct usb_hcd *hcd) 1961 { 1962 unsigned long flags; 1963 1964 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1965 1966 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1967 if (hcd->rh_registered) { 1968 hcd->poll_rh = 0; 1969 1970 /* make khubd clean up old urbs and devices */ 1971 usb_set_device_state (hcd->self.root_hub, 1972 USB_STATE_NOTATTACHED); 1973 usb_kick_khubd (hcd->self.root_hub); 1974 } 1975 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1976 } 1977 EXPORT_SYMBOL_GPL (usb_hc_died); 1978 1979 /*-------------------------------------------------------------------------*/ 1980 1981 /** 1982 * usb_create_hcd - create and initialize an HCD structure 1983 * @driver: HC driver that will use this hcd 1984 * @dev: device for this HC, stored in hcd->self.controller 1985 * @bus_name: value to store in hcd->self.bus_name 1986 * Context: !in_interrupt() 1987 * 1988 * Allocate a struct usb_hcd, with extra space at the end for the 1989 * HC driver's private data. Initialize the generic members of the 1990 * hcd structure. 1991 * 1992 * If memory is unavailable, returns NULL. 1993 */ 1994 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 1995 struct device *dev, const char *bus_name) 1996 { 1997 struct usb_hcd *hcd; 1998 1999 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2000 if (!hcd) { 2001 dev_dbg (dev, "hcd alloc failed\n"); 2002 return NULL; 2003 } 2004 dev_set_drvdata(dev, hcd); 2005 kref_init(&hcd->kref); 2006 2007 usb_bus_init(&hcd->self); 2008 hcd->self.controller = dev; 2009 hcd->self.bus_name = bus_name; 2010 hcd->self.uses_dma = (dev->dma_mask != NULL); 2011 2012 init_timer(&hcd->rh_timer); 2013 hcd->rh_timer.function = rh_timer_func; 2014 hcd->rh_timer.data = (unsigned long) hcd; 2015 #ifdef CONFIG_PM 2016 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2017 #endif 2018 mutex_init(&hcd->bandwidth_mutex); 2019 2020 hcd->driver = driver; 2021 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2022 "USB Host Controller"; 2023 return hcd; 2024 } 2025 EXPORT_SYMBOL_GPL(usb_create_hcd); 2026 2027 static void hcd_release (struct kref *kref) 2028 { 2029 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2030 2031 kfree(hcd); 2032 } 2033 2034 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2035 { 2036 if (hcd) 2037 kref_get (&hcd->kref); 2038 return hcd; 2039 } 2040 EXPORT_SYMBOL_GPL(usb_get_hcd); 2041 2042 void usb_put_hcd (struct usb_hcd *hcd) 2043 { 2044 if (hcd) 2045 kref_put (&hcd->kref, hcd_release); 2046 } 2047 EXPORT_SYMBOL_GPL(usb_put_hcd); 2048 2049 /** 2050 * usb_add_hcd - finish generic HCD structure initialization and register 2051 * @hcd: the usb_hcd structure to initialize 2052 * @irqnum: Interrupt line to allocate 2053 * @irqflags: Interrupt type flags 2054 * 2055 * Finish the remaining parts of generic HCD initialization: allocate the 2056 * buffers of consistent memory, register the bus, request the IRQ line, 2057 * and call the driver's reset() and start() routines. 2058 */ 2059 int usb_add_hcd(struct usb_hcd *hcd, 2060 unsigned int irqnum, unsigned long irqflags) 2061 { 2062 int retval; 2063 struct usb_device *rhdev; 2064 2065 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2066 2067 hcd->authorized_default = hcd->wireless? 0 : 1; 2068 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2069 2070 /* HC is in reset state, but accessible. Now do the one-time init, 2071 * bottom up so that hcds can customize the root hubs before khubd 2072 * starts talking to them. (Note, bus id is assigned early too.) 2073 */ 2074 if ((retval = hcd_buffer_create(hcd)) != 0) { 2075 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2076 return retval; 2077 } 2078 2079 if ((retval = usb_register_bus(&hcd->self)) < 0) 2080 goto err_register_bus; 2081 2082 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2083 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2084 retval = -ENOMEM; 2085 goto err_allocate_root_hub; 2086 } 2087 2088 switch (hcd->driver->flags & HCD_MASK) { 2089 case HCD_USB11: 2090 rhdev->speed = USB_SPEED_FULL; 2091 break; 2092 case HCD_USB2: 2093 rhdev->speed = USB_SPEED_HIGH; 2094 break; 2095 case HCD_USB3: 2096 rhdev->speed = USB_SPEED_SUPER; 2097 break; 2098 default: 2099 goto err_allocate_root_hub; 2100 } 2101 hcd->self.root_hub = rhdev; 2102 2103 /* wakeup flag init defaults to "everything works" for root hubs, 2104 * but drivers can override it in reset() if needed, along with 2105 * recording the overall controller's system wakeup capability. 2106 */ 2107 device_init_wakeup(&rhdev->dev, 1); 2108 2109 /* "reset" is misnamed; its role is now one-time init. the controller 2110 * should already have been reset (and boot firmware kicked off etc). 2111 */ 2112 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2113 dev_err(hcd->self.controller, "can't setup\n"); 2114 goto err_hcd_driver_setup; 2115 } 2116 2117 /* NOTE: root hub and controller capabilities may not be the same */ 2118 if (device_can_wakeup(hcd->self.controller) 2119 && device_can_wakeup(&hcd->self.root_hub->dev)) 2120 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2121 2122 /* enable irqs just before we start the controller */ 2123 if (hcd->driver->irq) { 2124 2125 /* IRQF_DISABLED doesn't work as advertised when used together 2126 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2127 * interrupts we can remove it here. 2128 */ 2129 if (irqflags & IRQF_SHARED) 2130 irqflags &= ~IRQF_DISABLED; 2131 2132 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2133 hcd->driver->description, hcd->self.busnum); 2134 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2135 hcd->irq_descr, hcd)) != 0) { 2136 dev_err(hcd->self.controller, 2137 "request interrupt %d failed\n", irqnum); 2138 goto err_request_irq; 2139 } 2140 hcd->irq = irqnum; 2141 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2142 (hcd->driver->flags & HCD_MEMORY) ? 2143 "io mem" : "io base", 2144 (unsigned long long)hcd->rsrc_start); 2145 } else { 2146 hcd->irq = -1; 2147 if (hcd->rsrc_start) 2148 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2149 (hcd->driver->flags & HCD_MEMORY) ? 2150 "io mem" : "io base", 2151 (unsigned long long)hcd->rsrc_start); 2152 } 2153 2154 if ((retval = hcd->driver->start(hcd)) < 0) { 2155 dev_err(hcd->self.controller, "startup error %d\n", retval); 2156 goto err_hcd_driver_start; 2157 } 2158 2159 /* starting here, usbcore will pay attention to this root hub */ 2160 rhdev->bus_mA = min(500u, hcd->power_budget); 2161 if ((retval = register_root_hub(hcd)) != 0) 2162 goto err_register_root_hub; 2163 2164 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2165 if (retval < 0) { 2166 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2167 retval); 2168 goto error_create_attr_group; 2169 } 2170 if (hcd->uses_new_polling && hcd->poll_rh) 2171 usb_hcd_poll_rh_status(hcd); 2172 return retval; 2173 2174 error_create_attr_group: 2175 mutex_lock(&usb_bus_list_lock); 2176 usb_disconnect(&hcd->self.root_hub); 2177 mutex_unlock(&usb_bus_list_lock); 2178 err_register_root_hub: 2179 hcd->driver->stop(hcd); 2180 err_hcd_driver_start: 2181 if (hcd->irq >= 0) 2182 free_irq(irqnum, hcd); 2183 err_request_irq: 2184 err_hcd_driver_setup: 2185 hcd->self.root_hub = NULL; 2186 usb_put_dev(rhdev); 2187 err_allocate_root_hub: 2188 usb_deregister_bus(&hcd->self); 2189 err_register_bus: 2190 hcd_buffer_destroy(hcd); 2191 return retval; 2192 } 2193 EXPORT_SYMBOL_GPL(usb_add_hcd); 2194 2195 /** 2196 * usb_remove_hcd - shutdown processing for generic HCDs 2197 * @hcd: the usb_hcd structure to remove 2198 * Context: !in_interrupt() 2199 * 2200 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2201 * invoking the HCD's stop() method. 2202 */ 2203 void usb_remove_hcd(struct usb_hcd *hcd) 2204 { 2205 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2206 2207 if (HC_IS_RUNNING (hcd->state)) 2208 hcd->state = HC_STATE_QUIESCING; 2209 2210 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2211 spin_lock_irq (&hcd_root_hub_lock); 2212 hcd->rh_registered = 0; 2213 spin_unlock_irq (&hcd_root_hub_lock); 2214 2215 #ifdef CONFIG_PM 2216 cancel_work_sync(&hcd->wakeup_work); 2217 #endif 2218 2219 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); 2220 mutex_lock(&usb_bus_list_lock); 2221 usb_disconnect(&hcd->self.root_hub); 2222 mutex_unlock(&usb_bus_list_lock); 2223 2224 hcd->driver->stop(hcd); 2225 hcd->state = HC_STATE_HALT; 2226 2227 hcd->poll_rh = 0; 2228 del_timer_sync(&hcd->rh_timer); 2229 2230 if (hcd->irq >= 0) 2231 free_irq(hcd->irq, hcd); 2232 usb_deregister_bus(&hcd->self); 2233 hcd_buffer_destroy(hcd); 2234 } 2235 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2236 2237 void 2238 usb_hcd_platform_shutdown(struct platform_device* dev) 2239 { 2240 struct usb_hcd *hcd = platform_get_drvdata(dev); 2241 2242 if (hcd->driver->shutdown) 2243 hcd->driver->shutdown(hcd); 2244 } 2245 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2246 2247 /*-------------------------------------------------------------------------*/ 2248 2249 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2250 2251 struct usb_mon_operations *mon_ops; 2252 2253 /* 2254 * The registration is unlocked. 2255 * We do it this way because we do not want to lock in hot paths. 2256 * 2257 * Notice that the code is minimally error-proof. Because usbmon needs 2258 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2259 */ 2260 2261 int usb_mon_register (struct usb_mon_operations *ops) 2262 { 2263 2264 if (mon_ops) 2265 return -EBUSY; 2266 2267 mon_ops = ops; 2268 mb(); 2269 return 0; 2270 } 2271 EXPORT_SYMBOL_GPL (usb_mon_register); 2272 2273 void usb_mon_deregister (void) 2274 { 2275 2276 if (mon_ops == NULL) { 2277 printk(KERN_ERR "USB: monitor was not registered\n"); 2278 return; 2279 } 2280 mon_ops = NULL; 2281 mb(); 2282 } 2283 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2284 2285 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2286