xref: /openbmc/linux/drivers/usb/core/hcd.c (revision a09d2831)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 #include <linux/mutex.h>
42 
43 #include <linux/usb.h>
44 
45 #include "usb.h"
46 #include "hcd.h"
47 #include "hub.h"
48 
49 
50 /*-------------------------------------------------------------------------*/
51 
52 /*
53  * USB Host Controller Driver framework
54  *
55  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
56  * HCD-specific behaviors/bugs.
57  *
58  * This does error checks, tracks devices and urbs, and delegates to a
59  * "hc_driver" only for code (and data) that really needs to know about
60  * hardware differences.  That includes root hub registers, i/o queues,
61  * and so on ... but as little else as possible.
62  *
63  * Shared code includes most of the "root hub" code (these are emulated,
64  * though each HC's hardware works differently) and PCI glue, plus request
65  * tracking overhead.  The HCD code should only block on spinlocks or on
66  * hardware handshaking; blocking on software events (such as other kernel
67  * threads releasing resources, or completing actions) is all generic.
68  *
69  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
70  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
71  * only by the hub driver ... and that neither should be seen or used by
72  * usb client device drivers.
73  *
74  * Contributors of ideas or unattributed patches include: David Brownell,
75  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76  *
77  * HISTORY:
78  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
79  *		associated cleanup.  "usb_hcd" still != "usb_bus".
80  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
81  */
82 
83 /*-------------------------------------------------------------------------*/
84 
85 /* Keep track of which host controller drivers are loaded */
86 unsigned long usb_hcds_loaded;
87 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
88 
89 /* host controllers we manage */
90 LIST_HEAD (usb_bus_list);
91 EXPORT_SYMBOL_GPL (usb_bus_list);
92 
93 /* used when allocating bus numbers */
94 #define USB_MAXBUS		64
95 struct usb_busmap {
96 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
97 };
98 static struct usb_busmap busmap;
99 
100 /* used when updating list of hcds */
101 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
102 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103 
104 /* used for controlling access to virtual root hubs */
105 static DEFINE_SPINLOCK(hcd_root_hub_lock);
106 
107 /* used when updating an endpoint's URB list */
108 static DEFINE_SPINLOCK(hcd_urb_list_lock);
109 
110 /* used to protect against unlinking URBs after the device is gone */
111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112 
113 /* wait queue for synchronous unlinks */
114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115 
116 static inline int is_root_hub(struct usb_device *udev)
117 {
118 	return (udev->parent == NULL);
119 }
120 
121 /*-------------------------------------------------------------------------*/
122 
123 /*
124  * Sharable chunks of root hub code.
125  */
126 
127 /*-------------------------------------------------------------------------*/
128 
129 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
130 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
131 
132 /* usb 3.0 root hub device descriptor */
133 static const u8 usb3_rh_dev_descriptor[18] = {
134 	0x12,       /*  __u8  bLength; */
135 	0x01,       /*  __u8  bDescriptorType; Device */
136 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
137 
138 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
139 	0x00,	    /*  __u8  bDeviceSubClass; */
140 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
141 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
142 
143 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
144 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
145 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
146 
147 	0x03,       /*  __u8  iManufacturer; */
148 	0x02,       /*  __u8  iProduct; */
149 	0x01,       /*  __u8  iSerialNumber; */
150 	0x01        /*  __u8  bNumConfigurations; */
151 };
152 
153 /* usb 2.0 root hub device descriptor */
154 static const u8 usb2_rh_dev_descriptor [18] = {
155 	0x12,       /*  __u8  bLength; */
156 	0x01,       /*  __u8  bDescriptorType; Device */
157 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
158 
159 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
160 	0x00,	    /*  __u8  bDeviceSubClass; */
161 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
162 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
163 
164 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
165 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
166 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
167 
168 	0x03,       /*  __u8  iManufacturer; */
169 	0x02,       /*  __u8  iProduct; */
170 	0x01,       /*  __u8  iSerialNumber; */
171 	0x01        /*  __u8  bNumConfigurations; */
172 };
173 
174 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
175 
176 /* usb 1.1 root hub device descriptor */
177 static const u8 usb11_rh_dev_descriptor [18] = {
178 	0x12,       /*  __u8  bLength; */
179 	0x01,       /*  __u8  bDescriptorType; Device */
180 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
181 
182 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
183 	0x00,	    /*  __u8  bDeviceSubClass; */
184 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
185 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
186 
187 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
188 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
189 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
190 
191 	0x03,       /*  __u8  iManufacturer; */
192 	0x02,       /*  __u8  iProduct; */
193 	0x01,       /*  __u8  iSerialNumber; */
194 	0x01        /*  __u8  bNumConfigurations; */
195 };
196 
197 
198 /*-------------------------------------------------------------------------*/
199 
200 /* Configuration descriptors for our root hubs */
201 
202 static const u8 fs_rh_config_descriptor [] = {
203 
204 	/* one configuration */
205 	0x09,       /*  __u8  bLength; */
206 	0x02,       /*  __u8  bDescriptorType; Configuration */
207 	0x19, 0x00, /*  __le16 wTotalLength; */
208 	0x01,       /*  __u8  bNumInterfaces; (1) */
209 	0x01,       /*  __u8  bConfigurationValue; */
210 	0x00,       /*  __u8  iConfiguration; */
211 	0xc0,       /*  __u8  bmAttributes;
212 				 Bit 7: must be set,
213 				     6: Self-powered,
214 				     5: Remote wakeup,
215 				     4..0: resvd */
216 	0x00,       /*  __u8  MaxPower; */
217 
218 	/* USB 1.1:
219 	 * USB 2.0, single TT organization (mandatory):
220 	 *	one interface, protocol 0
221 	 *
222 	 * USB 2.0, multiple TT organization (optional):
223 	 *	two interfaces, protocols 1 (like single TT)
224 	 *	and 2 (multiple TT mode) ... config is
225 	 *	sometimes settable
226 	 *	NOT IMPLEMENTED
227 	 */
228 
229 	/* one interface */
230 	0x09,       /*  __u8  if_bLength; */
231 	0x04,       /*  __u8  if_bDescriptorType; Interface */
232 	0x00,       /*  __u8  if_bInterfaceNumber; */
233 	0x00,       /*  __u8  if_bAlternateSetting; */
234 	0x01,       /*  __u8  if_bNumEndpoints; */
235 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
236 	0x00,       /*  __u8  if_bInterfaceSubClass; */
237 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
238 	0x00,       /*  __u8  if_iInterface; */
239 
240 	/* one endpoint (status change endpoint) */
241 	0x07,       /*  __u8  ep_bLength; */
242 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
243 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
244  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
245  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
246 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
247 };
248 
249 static const u8 hs_rh_config_descriptor [] = {
250 
251 	/* one configuration */
252 	0x09,       /*  __u8  bLength; */
253 	0x02,       /*  __u8  bDescriptorType; Configuration */
254 	0x19, 0x00, /*  __le16 wTotalLength; */
255 	0x01,       /*  __u8  bNumInterfaces; (1) */
256 	0x01,       /*  __u8  bConfigurationValue; */
257 	0x00,       /*  __u8  iConfiguration; */
258 	0xc0,       /*  __u8  bmAttributes;
259 				 Bit 7: must be set,
260 				     6: Self-powered,
261 				     5: Remote wakeup,
262 				     4..0: resvd */
263 	0x00,       /*  __u8  MaxPower; */
264 
265 	/* USB 1.1:
266 	 * USB 2.0, single TT organization (mandatory):
267 	 *	one interface, protocol 0
268 	 *
269 	 * USB 2.0, multiple TT organization (optional):
270 	 *	two interfaces, protocols 1 (like single TT)
271 	 *	and 2 (multiple TT mode) ... config is
272 	 *	sometimes settable
273 	 *	NOT IMPLEMENTED
274 	 */
275 
276 	/* one interface */
277 	0x09,       /*  __u8  if_bLength; */
278 	0x04,       /*  __u8  if_bDescriptorType; Interface */
279 	0x00,       /*  __u8  if_bInterfaceNumber; */
280 	0x00,       /*  __u8  if_bAlternateSetting; */
281 	0x01,       /*  __u8  if_bNumEndpoints; */
282 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
283 	0x00,       /*  __u8  if_bInterfaceSubClass; */
284 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
285 	0x00,       /*  __u8  if_iInterface; */
286 
287 	/* one endpoint (status change endpoint) */
288 	0x07,       /*  __u8  ep_bLength; */
289 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
290 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
291  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
292 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
293 		     * see hub.c:hub_configure() for details. */
294 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
295 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
296 };
297 
298 static const u8 ss_rh_config_descriptor[] = {
299 	/* one configuration */
300 	0x09,       /*  __u8  bLength; */
301 	0x02,       /*  __u8  bDescriptorType; Configuration */
302 	0x19, 0x00, /*  __le16 wTotalLength; FIXME */
303 	0x01,       /*  __u8  bNumInterfaces; (1) */
304 	0x01,       /*  __u8  bConfigurationValue; */
305 	0x00,       /*  __u8  iConfiguration; */
306 	0xc0,       /*  __u8  bmAttributes;
307 				 Bit 7: must be set,
308 				     6: Self-powered,
309 				     5: Remote wakeup,
310 				     4..0: resvd */
311 	0x00,       /*  __u8  MaxPower; */
312 
313 	/* one interface */
314 	0x09,       /*  __u8  if_bLength; */
315 	0x04,       /*  __u8  if_bDescriptorType; Interface */
316 	0x00,       /*  __u8  if_bInterfaceNumber; */
317 	0x00,       /*  __u8  if_bAlternateSetting; */
318 	0x01,       /*  __u8  if_bNumEndpoints; */
319 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
320 	0x00,       /*  __u8  if_bInterfaceSubClass; */
321 	0x00,       /*  __u8  if_bInterfaceProtocol; */
322 	0x00,       /*  __u8  if_iInterface; */
323 
324 	/* one endpoint (status change endpoint) */
325 	0x07,       /*  __u8  ep_bLength; */
326 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
327 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
328 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
329 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
330 		     * see hub.c:hub_configure() for details. */
331 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
332 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
333 	/*
334 	 * All 3.0 hubs should have an endpoint companion descriptor,
335 	 * but we're ignoring that for now.  FIXME?
336 	 */
337 };
338 
339 /*-------------------------------------------------------------------------*/
340 
341 /**
342  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
343  * @s: Null-terminated ASCII (actually ISO-8859-1) string
344  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
345  * @len: Length (in bytes; may be odd) of descriptor buffer.
346  *
347  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
348  * buflen, whichever is less.
349  *
350  * USB String descriptors can contain at most 126 characters; input
351  * strings longer than that are truncated.
352  */
353 static unsigned
354 ascii2desc(char const *s, u8 *buf, unsigned len)
355 {
356 	unsigned n, t = 2 + 2*strlen(s);
357 
358 	if (t > 254)
359 		t = 254;	/* Longest possible UTF string descriptor */
360 	if (len > t)
361 		len = t;
362 
363 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
364 
365 	n = len;
366 	while (n--) {
367 		*buf++ = t;
368 		if (!n--)
369 			break;
370 		*buf++ = t >> 8;
371 		t = (unsigned char)*s++;
372 	}
373 	return len;
374 }
375 
376 /**
377  * rh_string() - provides string descriptors for root hub
378  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
379  * @hcd: the host controller for this root hub
380  * @data: buffer for output packet
381  * @len: length of the provided buffer
382  *
383  * Produces either a manufacturer, product or serial number string for the
384  * virtual root hub device.
385  * Returns the number of bytes filled in: the length of the descriptor or
386  * of the provided buffer, whichever is less.
387  */
388 static unsigned
389 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
390 {
391 	char buf[100];
392 	char const *s;
393 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
394 
395 	// language ids
396 	switch (id) {
397 	case 0:
398 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
399 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
400 		if (len > 4)
401 			len = 4;
402 		memcpy(data, langids, len);
403 		return len;
404 	case 1:
405 		/* Serial number */
406 		s = hcd->self.bus_name;
407 		break;
408 	case 2:
409 		/* Product name */
410 		s = hcd->product_desc;
411 		break;
412 	case 3:
413 		/* Manufacturer */
414 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
415 			init_utsname()->release, hcd->driver->description);
416 		s = buf;
417 		break;
418 	default:
419 		/* Can't happen; caller guarantees it */
420 		return 0;
421 	}
422 
423 	return ascii2desc(s, data, len);
424 }
425 
426 
427 /* Root hub control transfers execute synchronously */
428 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
429 {
430 	struct usb_ctrlrequest *cmd;
431  	u16		typeReq, wValue, wIndex, wLength;
432 	u8		*ubuf = urb->transfer_buffer;
433 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
434 		__attribute__((aligned(4)));
435 	const u8	*bufp = tbuf;
436 	unsigned	len = 0;
437 	int		status;
438 	u8		patch_wakeup = 0;
439 	u8		patch_protocol = 0;
440 
441 	might_sleep();
442 
443 	spin_lock_irq(&hcd_root_hub_lock);
444 	status = usb_hcd_link_urb_to_ep(hcd, urb);
445 	spin_unlock_irq(&hcd_root_hub_lock);
446 	if (status)
447 		return status;
448 	urb->hcpriv = hcd;	/* Indicate it's queued */
449 
450 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
451 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
452 	wValue   = le16_to_cpu (cmd->wValue);
453 	wIndex   = le16_to_cpu (cmd->wIndex);
454 	wLength  = le16_to_cpu (cmd->wLength);
455 
456 	if (wLength > urb->transfer_buffer_length)
457 		goto error;
458 
459 	urb->actual_length = 0;
460 	switch (typeReq) {
461 
462 	/* DEVICE REQUESTS */
463 
464 	/* The root hub's remote wakeup enable bit is implemented using
465 	 * driver model wakeup flags.  If this system supports wakeup
466 	 * through USB, userspace may change the default "allow wakeup"
467 	 * policy through sysfs or these calls.
468 	 *
469 	 * Most root hubs support wakeup from downstream devices, for
470 	 * runtime power management (disabling USB clocks and reducing
471 	 * VBUS power usage).  However, not all of them do so; silicon,
472 	 * board, and BIOS bugs here are not uncommon, so these can't
473 	 * be treated quite like external hubs.
474 	 *
475 	 * Likewise, not all root hubs will pass wakeup events upstream,
476 	 * to wake up the whole system.  So don't assume root hub and
477 	 * controller capabilities are identical.
478 	 */
479 
480 	case DeviceRequest | USB_REQ_GET_STATUS:
481 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
482 					<< USB_DEVICE_REMOTE_WAKEUP)
483 				| (1 << USB_DEVICE_SELF_POWERED);
484 		tbuf [1] = 0;
485 		len = 2;
486 		break;
487 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
488 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
489 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
490 		else
491 			goto error;
492 		break;
493 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
494 		if (device_can_wakeup(&hcd->self.root_hub->dev)
495 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
496 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
497 		else
498 			goto error;
499 		break;
500 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
501 		tbuf [0] = 1;
502 		len = 1;
503 			/* FALLTHROUGH */
504 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
505 		break;
506 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
507 		switch (wValue & 0xff00) {
508 		case USB_DT_DEVICE << 8:
509 			switch (hcd->driver->flags & HCD_MASK) {
510 			case HCD_USB3:
511 				bufp = usb3_rh_dev_descriptor;
512 				break;
513 			case HCD_USB2:
514 				bufp = usb2_rh_dev_descriptor;
515 				break;
516 			case HCD_USB11:
517 				bufp = usb11_rh_dev_descriptor;
518 				break;
519 			default:
520 				goto error;
521 			}
522 			len = 18;
523 			if (hcd->has_tt)
524 				patch_protocol = 1;
525 			break;
526 		case USB_DT_CONFIG << 8:
527 			switch (hcd->driver->flags & HCD_MASK) {
528 			case HCD_USB3:
529 				bufp = ss_rh_config_descriptor;
530 				len = sizeof ss_rh_config_descriptor;
531 				break;
532 			case HCD_USB2:
533 				bufp = hs_rh_config_descriptor;
534 				len = sizeof hs_rh_config_descriptor;
535 				break;
536 			case HCD_USB11:
537 				bufp = fs_rh_config_descriptor;
538 				len = sizeof fs_rh_config_descriptor;
539 				break;
540 			default:
541 				goto error;
542 			}
543 			if (device_can_wakeup(&hcd->self.root_hub->dev))
544 				patch_wakeup = 1;
545 			break;
546 		case USB_DT_STRING << 8:
547 			if ((wValue & 0xff) < 4)
548 				urb->actual_length = rh_string(wValue & 0xff,
549 						hcd, ubuf, wLength);
550 			else /* unsupported IDs --> "protocol stall" */
551 				goto error;
552 			break;
553 		default:
554 			goto error;
555 		}
556 		break;
557 	case DeviceRequest | USB_REQ_GET_INTERFACE:
558 		tbuf [0] = 0;
559 		len = 1;
560 			/* FALLTHROUGH */
561 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
562 		break;
563 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
564 		// wValue == urb->dev->devaddr
565 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
566 			wValue);
567 		break;
568 
569 	/* INTERFACE REQUESTS (no defined feature/status flags) */
570 
571 	/* ENDPOINT REQUESTS */
572 
573 	case EndpointRequest | USB_REQ_GET_STATUS:
574 		// ENDPOINT_HALT flag
575 		tbuf [0] = 0;
576 		tbuf [1] = 0;
577 		len = 2;
578 			/* FALLTHROUGH */
579 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
580 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
581 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
582 		break;
583 
584 	/* CLASS REQUESTS (and errors) */
585 
586 	default:
587 		/* non-generic request */
588 		switch (typeReq) {
589 		case GetHubStatus:
590 		case GetPortStatus:
591 			len = 4;
592 			break;
593 		case GetHubDescriptor:
594 			len = sizeof (struct usb_hub_descriptor);
595 			break;
596 		}
597 		status = hcd->driver->hub_control (hcd,
598 			typeReq, wValue, wIndex,
599 			tbuf, wLength);
600 		break;
601 error:
602 		/* "protocol stall" on error */
603 		status = -EPIPE;
604 	}
605 
606 	if (status) {
607 		len = 0;
608 		if (status != -EPIPE) {
609 			dev_dbg (hcd->self.controller,
610 				"CTRL: TypeReq=0x%x val=0x%x "
611 				"idx=0x%x len=%d ==> %d\n",
612 				typeReq, wValue, wIndex,
613 				wLength, status);
614 		}
615 	}
616 	if (len) {
617 		if (urb->transfer_buffer_length < len)
618 			len = urb->transfer_buffer_length;
619 		urb->actual_length = len;
620 		// always USB_DIR_IN, toward host
621 		memcpy (ubuf, bufp, len);
622 
623 		/* report whether RH hardware supports remote wakeup */
624 		if (patch_wakeup &&
625 				len > offsetof (struct usb_config_descriptor,
626 						bmAttributes))
627 			((struct usb_config_descriptor *)ubuf)->bmAttributes
628 				|= USB_CONFIG_ATT_WAKEUP;
629 
630 		/* report whether RH hardware has an integrated TT */
631 		if (patch_protocol &&
632 				len > offsetof(struct usb_device_descriptor,
633 						bDeviceProtocol))
634 			((struct usb_device_descriptor *) ubuf)->
635 					bDeviceProtocol = 1;
636 	}
637 
638 	/* any errors get returned through the urb completion */
639 	spin_lock_irq(&hcd_root_hub_lock);
640 	usb_hcd_unlink_urb_from_ep(hcd, urb);
641 
642 	/* This peculiar use of spinlocks echoes what real HC drivers do.
643 	 * Avoiding calls to local_irq_disable/enable makes the code
644 	 * RT-friendly.
645 	 */
646 	spin_unlock(&hcd_root_hub_lock);
647 	usb_hcd_giveback_urb(hcd, urb, status);
648 	spin_lock(&hcd_root_hub_lock);
649 
650 	spin_unlock_irq(&hcd_root_hub_lock);
651 	return 0;
652 }
653 
654 /*-------------------------------------------------------------------------*/
655 
656 /*
657  * Root Hub interrupt transfers are polled using a timer if the
658  * driver requests it; otherwise the driver is responsible for
659  * calling usb_hcd_poll_rh_status() when an event occurs.
660  *
661  * Completions are called in_interrupt(), but they may or may not
662  * be in_irq().
663  */
664 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
665 {
666 	struct urb	*urb;
667 	int		length;
668 	unsigned long	flags;
669 	char		buffer[6];	/* Any root hubs with > 31 ports? */
670 
671 	if (unlikely(!hcd->rh_registered))
672 		return;
673 	if (!hcd->uses_new_polling && !hcd->status_urb)
674 		return;
675 
676 	length = hcd->driver->hub_status_data(hcd, buffer);
677 	if (length > 0) {
678 
679 		/* try to complete the status urb */
680 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
681 		urb = hcd->status_urb;
682 		if (urb) {
683 			hcd->poll_pending = 0;
684 			hcd->status_urb = NULL;
685 			urb->actual_length = length;
686 			memcpy(urb->transfer_buffer, buffer, length);
687 
688 			usb_hcd_unlink_urb_from_ep(hcd, urb);
689 			spin_unlock(&hcd_root_hub_lock);
690 			usb_hcd_giveback_urb(hcd, urb, 0);
691 			spin_lock(&hcd_root_hub_lock);
692 		} else {
693 			length = 0;
694 			hcd->poll_pending = 1;
695 		}
696 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
697 	}
698 
699 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
700 	 * exceed that limit if HZ is 100. The math is more clunky than
701 	 * maybe expected, this is to make sure that all timers for USB devices
702 	 * fire at the same time to give the CPU a break inbetween */
703 	if (hcd->uses_new_polling ? hcd->poll_rh :
704 			(length == 0 && hcd->status_urb != NULL))
705 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
706 }
707 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
708 
709 /* timer callback */
710 static void rh_timer_func (unsigned long _hcd)
711 {
712 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
713 }
714 
715 /*-------------------------------------------------------------------------*/
716 
717 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
718 {
719 	int		retval;
720 	unsigned long	flags;
721 	unsigned	len = 1 + (urb->dev->maxchild / 8);
722 
723 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
724 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
725 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
726 		retval = -EINVAL;
727 		goto done;
728 	}
729 
730 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
731 	if (retval)
732 		goto done;
733 
734 	hcd->status_urb = urb;
735 	urb->hcpriv = hcd;	/* indicate it's queued */
736 	if (!hcd->uses_new_polling)
737 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
738 
739 	/* If a status change has already occurred, report it ASAP */
740 	else if (hcd->poll_pending)
741 		mod_timer(&hcd->rh_timer, jiffies);
742 	retval = 0;
743  done:
744 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
745 	return retval;
746 }
747 
748 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
749 {
750 	if (usb_endpoint_xfer_int(&urb->ep->desc))
751 		return rh_queue_status (hcd, urb);
752 	if (usb_endpoint_xfer_control(&urb->ep->desc))
753 		return rh_call_control (hcd, urb);
754 	return -EINVAL;
755 }
756 
757 /*-------------------------------------------------------------------------*/
758 
759 /* Unlinks of root-hub control URBs are legal, but they don't do anything
760  * since these URBs always execute synchronously.
761  */
762 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
763 {
764 	unsigned long	flags;
765 	int		rc;
766 
767 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
768 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
769 	if (rc)
770 		goto done;
771 
772 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
773 		;	/* Do nothing */
774 
775 	} else {				/* Status URB */
776 		if (!hcd->uses_new_polling)
777 			del_timer (&hcd->rh_timer);
778 		if (urb == hcd->status_urb) {
779 			hcd->status_urb = NULL;
780 			usb_hcd_unlink_urb_from_ep(hcd, urb);
781 
782 			spin_unlock(&hcd_root_hub_lock);
783 			usb_hcd_giveback_urb(hcd, urb, status);
784 			spin_lock(&hcd_root_hub_lock);
785 		}
786 	}
787  done:
788 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
789 	return rc;
790 }
791 
792 
793 
794 /*
795  * Show & store the current value of authorized_default
796  */
797 static ssize_t usb_host_authorized_default_show(struct device *dev,
798 						struct device_attribute *attr,
799 						char *buf)
800 {
801 	struct usb_device *rh_usb_dev = to_usb_device(dev);
802 	struct usb_bus *usb_bus = rh_usb_dev->bus;
803 	struct usb_hcd *usb_hcd;
804 
805 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
806 		return -ENODEV;
807 	usb_hcd = bus_to_hcd(usb_bus);
808 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
809 }
810 
811 static ssize_t usb_host_authorized_default_store(struct device *dev,
812 						 struct device_attribute *attr,
813 						 const char *buf, size_t size)
814 {
815 	ssize_t result;
816 	unsigned val;
817 	struct usb_device *rh_usb_dev = to_usb_device(dev);
818 	struct usb_bus *usb_bus = rh_usb_dev->bus;
819 	struct usb_hcd *usb_hcd;
820 
821 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
822 		return -ENODEV;
823 	usb_hcd = bus_to_hcd(usb_bus);
824 	result = sscanf(buf, "%u\n", &val);
825 	if (result == 1) {
826 		usb_hcd->authorized_default = val? 1 : 0;
827 		result = size;
828 	}
829 	else
830 		result = -EINVAL;
831 	return result;
832 }
833 
834 static DEVICE_ATTR(authorized_default, 0644,
835 	    usb_host_authorized_default_show,
836 	    usb_host_authorized_default_store);
837 
838 
839 /* Group all the USB bus attributes */
840 static struct attribute *usb_bus_attrs[] = {
841 		&dev_attr_authorized_default.attr,
842 		NULL,
843 };
844 
845 static struct attribute_group usb_bus_attr_group = {
846 	.name = NULL,	/* we want them in the same directory */
847 	.attrs = usb_bus_attrs,
848 };
849 
850 
851 
852 /*-------------------------------------------------------------------------*/
853 
854 /**
855  * usb_bus_init - shared initialization code
856  * @bus: the bus structure being initialized
857  *
858  * This code is used to initialize a usb_bus structure, memory for which is
859  * separately managed.
860  */
861 static void usb_bus_init (struct usb_bus *bus)
862 {
863 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
864 
865 	bus->devnum_next = 1;
866 
867 	bus->root_hub = NULL;
868 	bus->busnum = -1;
869 	bus->bandwidth_allocated = 0;
870 	bus->bandwidth_int_reqs  = 0;
871 	bus->bandwidth_isoc_reqs = 0;
872 
873 	INIT_LIST_HEAD (&bus->bus_list);
874 }
875 
876 /*-------------------------------------------------------------------------*/
877 
878 /**
879  * usb_register_bus - registers the USB host controller with the usb core
880  * @bus: pointer to the bus to register
881  * Context: !in_interrupt()
882  *
883  * Assigns a bus number, and links the controller into usbcore data
884  * structures so that it can be seen by scanning the bus list.
885  */
886 static int usb_register_bus(struct usb_bus *bus)
887 {
888 	int result = -E2BIG;
889 	int busnum;
890 
891 	mutex_lock(&usb_bus_list_lock);
892 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
893 	if (busnum >= USB_MAXBUS) {
894 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
895 		goto error_find_busnum;
896 	}
897 	set_bit (busnum, busmap.busmap);
898 	bus->busnum = busnum;
899 
900 	/* Add it to the local list of buses */
901 	list_add (&bus->bus_list, &usb_bus_list);
902 	mutex_unlock(&usb_bus_list_lock);
903 
904 	usb_notify_add_bus(bus);
905 
906 	dev_info (bus->controller, "new USB bus registered, assigned bus "
907 		  "number %d\n", bus->busnum);
908 	return 0;
909 
910 error_find_busnum:
911 	mutex_unlock(&usb_bus_list_lock);
912 	return result;
913 }
914 
915 /**
916  * usb_deregister_bus - deregisters the USB host controller
917  * @bus: pointer to the bus to deregister
918  * Context: !in_interrupt()
919  *
920  * Recycles the bus number, and unlinks the controller from usbcore data
921  * structures so that it won't be seen by scanning the bus list.
922  */
923 static void usb_deregister_bus (struct usb_bus *bus)
924 {
925 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
926 
927 	/*
928 	 * NOTE: make sure that all the devices are removed by the
929 	 * controller code, as well as having it call this when cleaning
930 	 * itself up
931 	 */
932 	mutex_lock(&usb_bus_list_lock);
933 	list_del (&bus->bus_list);
934 	mutex_unlock(&usb_bus_list_lock);
935 
936 	usb_notify_remove_bus(bus);
937 
938 	clear_bit (bus->busnum, busmap.busmap);
939 }
940 
941 /**
942  * register_root_hub - called by usb_add_hcd() to register a root hub
943  * @hcd: host controller for this root hub
944  *
945  * This function registers the root hub with the USB subsystem.  It sets up
946  * the device properly in the device tree and then calls usb_new_device()
947  * to register the usb device.  It also assigns the root hub's USB address
948  * (always 1).
949  */
950 static int register_root_hub(struct usb_hcd *hcd)
951 {
952 	struct device *parent_dev = hcd->self.controller;
953 	struct usb_device *usb_dev = hcd->self.root_hub;
954 	const int devnum = 1;
955 	int retval;
956 
957 	usb_dev->devnum = devnum;
958 	usb_dev->bus->devnum_next = devnum + 1;
959 	memset (&usb_dev->bus->devmap.devicemap, 0,
960 			sizeof usb_dev->bus->devmap.devicemap);
961 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
962 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
963 
964 	mutex_lock(&usb_bus_list_lock);
965 
966 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
967 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
968 	if (retval != sizeof usb_dev->descriptor) {
969 		mutex_unlock(&usb_bus_list_lock);
970 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
971 				dev_name(&usb_dev->dev), retval);
972 		return (retval < 0) ? retval : -EMSGSIZE;
973 	}
974 
975 	retval = usb_new_device (usb_dev);
976 	if (retval) {
977 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
978 				dev_name(&usb_dev->dev), retval);
979 	}
980 	mutex_unlock(&usb_bus_list_lock);
981 
982 	if (retval == 0) {
983 		spin_lock_irq (&hcd_root_hub_lock);
984 		hcd->rh_registered = 1;
985 		spin_unlock_irq (&hcd_root_hub_lock);
986 
987 		/* Did the HC die before the root hub was registered? */
988 		if (hcd->state == HC_STATE_HALT)
989 			usb_hc_died (hcd);	/* This time clean up */
990 	}
991 
992 	return retval;
993 }
994 
995 
996 /*-------------------------------------------------------------------------*/
997 
998 /**
999  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1000  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1001  * @is_input: true iff the transaction sends data to the host
1002  * @isoc: true for isochronous transactions, false for interrupt ones
1003  * @bytecount: how many bytes in the transaction.
1004  *
1005  * Returns approximate bus time in nanoseconds for a periodic transaction.
1006  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1007  * scheduled in software, this function is only used for such scheduling.
1008  */
1009 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1010 {
1011 	unsigned long	tmp;
1012 
1013 	switch (speed) {
1014 	case USB_SPEED_LOW: 	/* INTR only */
1015 		if (is_input) {
1016 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1017 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1018 		} else {
1019 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1020 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1021 		}
1022 	case USB_SPEED_FULL:	/* ISOC or INTR */
1023 		if (isoc) {
1024 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1025 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1026 		} else {
1027 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1028 			return (9107L + BW_HOST_DELAY + tmp);
1029 		}
1030 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1031 		// FIXME adjust for input vs output
1032 		if (isoc)
1033 			tmp = HS_NSECS_ISO (bytecount);
1034 		else
1035 			tmp = HS_NSECS (bytecount);
1036 		return tmp;
1037 	default:
1038 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1039 		return -1;
1040 	}
1041 }
1042 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1043 
1044 
1045 /*-------------------------------------------------------------------------*/
1046 
1047 /*
1048  * Generic HC operations.
1049  */
1050 
1051 /*-------------------------------------------------------------------------*/
1052 
1053 /**
1054  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1055  * @hcd: host controller to which @urb was submitted
1056  * @urb: URB being submitted
1057  *
1058  * Host controller drivers should call this routine in their enqueue()
1059  * method.  The HCD's private spinlock must be held and interrupts must
1060  * be disabled.  The actions carried out here are required for URB
1061  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1062  *
1063  * Returns 0 for no error, otherwise a negative error code (in which case
1064  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1065  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1066  * the private spinlock and returning.
1067  */
1068 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1069 {
1070 	int		rc = 0;
1071 
1072 	spin_lock(&hcd_urb_list_lock);
1073 
1074 	/* Check that the URB isn't being killed */
1075 	if (unlikely(atomic_read(&urb->reject))) {
1076 		rc = -EPERM;
1077 		goto done;
1078 	}
1079 
1080 	if (unlikely(!urb->ep->enabled)) {
1081 		rc = -ENOENT;
1082 		goto done;
1083 	}
1084 
1085 	if (unlikely(!urb->dev->can_submit)) {
1086 		rc = -EHOSTUNREACH;
1087 		goto done;
1088 	}
1089 
1090 	/*
1091 	 * Check the host controller's state and add the URB to the
1092 	 * endpoint's queue.
1093 	 */
1094 	switch (hcd->state) {
1095 	case HC_STATE_RUNNING:
1096 	case HC_STATE_RESUMING:
1097 		urb->unlinked = 0;
1098 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1099 		break;
1100 	default:
1101 		rc = -ESHUTDOWN;
1102 		goto done;
1103 	}
1104  done:
1105 	spin_unlock(&hcd_urb_list_lock);
1106 	return rc;
1107 }
1108 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1109 
1110 /**
1111  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1112  * @hcd: host controller to which @urb was submitted
1113  * @urb: URB being checked for unlinkability
1114  * @status: error code to store in @urb if the unlink succeeds
1115  *
1116  * Host controller drivers should call this routine in their dequeue()
1117  * method.  The HCD's private spinlock must be held and interrupts must
1118  * be disabled.  The actions carried out here are required for making
1119  * sure than an unlink is valid.
1120  *
1121  * Returns 0 for no error, otherwise a negative error code (in which case
1122  * the dequeue() method must fail).  The possible error codes are:
1123  *
1124  *	-EIDRM: @urb was not submitted or has already completed.
1125  *		The completion function may not have been called yet.
1126  *
1127  *	-EBUSY: @urb has already been unlinked.
1128  */
1129 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1130 		int status)
1131 {
1132 	struct list_head	*tmp;
1133 
1134 	/* insist the urb is still queued */
1135 	list_for_each(tmp, &urb->ep->urb_list) {
1136 		if (tmp == &urb->urb_list)
1137 			break;
1138 	}
1139 	if (tmp != &urb->urb_list)
1140 		return -EIDRM;
1141 
1142 	/* Any status except -EINPROGRESS means something already started to
1143 	 * unlink this URB from the hardware.  So there's no more work to do.
1144 	 */
1145 	if (urb->unlinked)
1146 		return -EBUSY;
1147 	urb->unlinked = status;
1148 
1149 	/* IRQ setup can easily be broken so that USB controllers
1150 	 * never get completion IRQs ... maybe even the ones we need to
1151 	 * finish unlinking the initial failed usb_set_address()
1152 	 * or device descriptor fetch.
1153 	 */
1154 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1155 			!is_root_hub(urb->dev)) {
1156 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1157 			"Controller is probably using the wrong IRQ.\n");
1158 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1159 	}
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1164 
1165 /**
1166  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1167  * @hcd: host controller to which @urb was submitted
1168  * @urb: URB being unlinked
1169  *
1170  * Host controller drivers should call this routine before calling
1171  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1172  * interrupts must be disabled.  The actions carried out here are required
1173  * for URB completion.
1174  */
1175 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1176 {
1177 	/* clear all state linking urb to this dev (and hcd) */
1178 	spin_lock(&hcd_urb_list_lock);
1179 	list_del_init(&urb->urb_list);
1180 	spin_unlock(&hcd_urb_list_lock);
1181 }
1182 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1183 
1184 /*
1185  * Some usb host controllers can only perform dma using a small SRAM area.
1186  * The usb core itself is however optimized for host controllers that can dma
1187  * using regular system memory - like pci devices doing bus mastering.
1188  *
1189  * To support host controllers with limited dma capabilites we provide dma
1190  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1191  * For this to work properly the host controller code must first use the
1192  * function dma_declare_coherent_memory() to point out which memory area
1193  * that should be used for dma allocations.
1194  *
1195  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1196  * dma using dma_alloc_coherent() which in turn allocates from the memory
1197  * area pointed out with dma_declare_coherent_memory().
1198  *
1199  * So, to summarize...
1200  *
1201  * - We need "local" memory, canonical example being
1202  *   a small SRAM on a discrete controller being the
1203  *   only memory that the controller can read ...
1204  *   (a) "normal" kernel memory is no good, and
1205  *   (b) there's not enough to share
1206  *
1207  * - The only *portable* hook for such stuff in the
1208  *   DMA framework is dma_declare_coherent_memory()
1209  *
1210  * - So we use that, even though the primary requirement
1211  *   is that the memory be "local" (hence addressible
1212  *   by that device), not "coherent".
1213  *
1214  */
1215 
1216 static int hcd_alloc_coherent(struct usb_bus *bus,
1217 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1218 			      void **vaddr_handle, size_t size,
1219 			      enum dma_data_direction dir)
1220 {
1221 	unsigned char *vaddr;
1222 
1223 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1224 				 mem_flags, dma_handle);
1225 	if (!vaddr)
1226 		return -ENOMEM;
1227 
1228 	/*
1229 	 * Store the virtual address of the buffer at the end
1230 	 * of the allocated dma buffer. The size of the buffer
1231 	 * may be uneven so use unaligned functions instead
1232 	 * of just rounding up. It makes sense to optimize for
1233 	 * memory footprint over access speed since the amount
1234 	 * of memory available for dma may be limited.
1235 	 */
1236 	put_unaligned((unsigned long)*vaddr_handle,
1237 		      (unsigned long *)(vaddr + size));
1238 
1239 	if (dir == DMA_TO_DEVICE)
1240 		memcpy(vaddr, *vaddr_handle, size);
1241 
1242 	*vaddr_handle = vaddr;
1243 	return 0;
1244 }
1245 
1246 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1247 			      void **vaddr_handle, size_t size,
1248 			      enum dma_data_direction dir)
1249 {
1250 	unsigned char *vaddr = *vaddr_handle;
1251 
1252 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1253 
1254 	if (dir == DMA_FROM_DEVICE)
1255 		memcpy(vaddr, *vaddr_handle, size);
1256 
1257 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1258 
1259 	*vaddr_handle = vaddr;
1260 	*dma_handle = 0;
1261 }
1262 
1263 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1264 			   gfp_t mem_flags)
1265 {
1266 	enum dma_data_direction dir;
1267 	int ret = 0;
1268 
1269 	/* Map the URB's buffers for DMA access.
1270 	 * Lower level HCD code should use *_dma exclusively,
1271 	 * unless it uses pio or talks to another transport,
1272 	 * or uses the provided scatter gather list for bulk.
1273 	 */
1274 	if (is_root_hub(urb->dev))
1275 		return 0;
1276 
1277 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1278 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1279 		if (hcd->self.uses_dma) {
1280 			urb->setup_dma = dma_map_single(
1281 					hcd->self.controller,
1282 					urb->setup_packet,
1283 					sizeof(struct usb_ctrlrequest),
1284 					DMA_TO_DEVICE);
1285 			if (dma_mapping_error(hcd->self.controller,
1286 						urb->setup_dma))
1287 				return -EAGAIN;
1288 		} else if (hcd->driver->flags & HCD_LOCAL_MEM)
1289 			ret = hcd_alloc_coherent(
1290 					urb->dev->bus, mem_flags,
1291 					&urb->setup_dma,
1292 					(void **)&urb->setup_packet,
1293 					sizeof(struct usb_ctrlrequest),
1294 					DMA_TO_DEVICE);
1295 	}
1296 
1297 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1298 	if (ret == 0 && urb->transfer_buffer_length != 0
1299 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1300 		if (hcd->self.uses_dma) {
1301 			urb->transfer_dma = dma_map_single (
1302 					hcd->self.controller,
1303 					urb->transfer_buffer,
1304 					urb->transfer_buffer_length,
1305 					dir);
1306 			if (dma_mapping_error(hcd->self.controller,
1307 						urb->transfer_dma))
1308 				return -EAGAIN;
1309 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1310 			ret = hcd_alloc_coherent(
1311 					urb->dev->bus, mem_flags,
1312 					&urb->transfer_dma,
1313 					&urb->transfer_buffer,
1314 					urb->transfer_buffer_length,
1315 					dir);
1316 
1317 			if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1318 			    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1319 				hcd_free_coherent(urb->dev->bus,
1320 					&urb->setup_dma,
1321 					(void **)&urb->setup_packet,
1322 					sizeof(struct usb_ctrlrequest),
1323 					DMA_TO_DEVICE);
1324 		}
1325 	}
1326 	return ret;
1327 }
1328 
1329 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1330 {
1331 	enum dma_data_direction dir;
1332 
1333 	if (is_root_hub(urb->dev))
1334 		return;
1335 
1336 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1337 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1338 		if (hcd->self.uses_dma)
1339 			dma_unmap_single(hcd->self.controller, urb->setup_dma,
1340 					sizeof(struct usb_ctrlrequest),
1341 					DMA_TO_DEVICE);
1342 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1343 			hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1344 					(void **)&urb->setup_packet,
1345 					sizeof(struct usb_ctrlrequest),
1346 					DMA_TO_DEVICE);
1347 	}
1348 
1349 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1350 	if (urb->transfer_buffer_length != 0
1351 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1352 		if (hcd->self.uses_dma)
1353 			dma_unmap_single(hcd->self.controller,
1354 					urb->transfer_dma,
1355 					urb->transfer_buffer_length,
1356 					dir);
1357 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1358 			hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1359 					&urb->transfer_buffer,
1360 					urb->transfer_buffer_length,
1361 					dir);
1362 	}
1363 }
1364 
1365 /*-------------------------------------------------------------------------*/
1366 
1367 /* may be called in any context with a valid urb->dev usecount
1368  * caller surrenders "ownership" of urb
1369  * expects usb_submit_urb() to have sanity checked and conditioned all
1370  * inputs in the urb
1371  */
1372 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1373 {
1374 	int			status;
1375 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1376 
1377 	/* increment urb's reference count as part of giving it to the HCD
1378 	 * (which will control it).  HCD guarantees that it either returns
1379 	 * an error or calls giveback(), but not both.
1380 	 */
1381 	usb_get_urb(urb);
1382 	atomic_inc(&urb->use_count);
1383 	atomic_inc(&urb->dev->urbnum);
1384 	usbmon_urb_submit(&hcd->self, urb);
1385 
1386 	/* NOTE requirements on root-hub callers (usbfs and the hub
1387 	 * driver, for now):  URBs' urb->transfer_buffer must be
1388 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1389 	 * they could clobber root hub response data.  Also, control
1390 	 * URBs must be submitted in process context with interrupts
1391 	 * enabled.
1392 	 */
1393 	status = map_urb_for_dma(hcd, urb, mem_flags);
1394 	if (unlikely(status)) {
1395 		usbmon_urb_submit_error(&hcd->self, urb, status);
1396 		goto error;
1397 	}
1398 
1399 	if (is_root_hub(urb->dev))
1400 		status = rh_urb_enqueue(hcd, urb);
1401 	else
1402 		status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1403 
1404 	if (unlikely(status)) {
1405 		usbmon_urb_submit_error(&hcd->self, urb, status);
1406 		unmap_urb_for_dma(hcd, urb);
1407  error:
1408 		urb->hcpriv = NULL;
1409 		INIT_LIST_HEAD(&urb->urb_list);
1410 		atomic_dec(&urb->use_count);
1411 		atomic_dec(&urb->dev->urbnum);
1412 		if (atomic_read(&urb->reject))
1413 			wake_up(&usb_kill_urb_queue);
1414 		usb_put_urb(urb);
1415 	}
1416 	return status;
1417 }
1418 
1419 /*-------------------------------------------------------------------------*/
1420 
1421 /* this makes the hcd giveback() the urb more quickly, by kicking it
1422  * off hardware queues (which may take a while) and returning it as
1423  * soon as practical.  we've already set up the urb's return status,
1424  * but we can't know if the callback completed already.
1425  */
1426 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1427 {
1428 	int		value;
1429 
1430 	if (is_root_hub(urb->dev))
1431 		value = usb_rh_urb_dequeue(hcd, urb, status);
1432 	else {
1433 
1434 		/* The only reason an HCD might fail this call is if
1435 		 * it has not yet fully queued the urb to begin with.
1436 		 * Such failures should be harmless. */
1437 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1438 	}
1439 	return value;
1440 }
1441 
1442 /*
1443  * called in any context
1444  *
1445  * caller guarantees urb won't be recycled till both unlink()
1446  * and the urb's completion function return
1447  */
1448 int usb_hcd_unlink_urb (struct urb *urb, int status)
1449 {
1450 	struct usb_hcd		*hcd;
1451 	int			retval = -EIDRM;
1452 	unsigned long		flags;
1453 
1454 	/* Prevent the device and bus from going away while
1455 	 * the unlink is carried out.  If they are already gone
1456 	 * then urb->use_count must be 0, since disconnected
1457 	 * devices can't have any active URBs.
1458 	 */
1459 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1460 	if (atomic_read(&urb->use_count) > 0) {
1461 		retval = 0;
1462 		usb_get_dev(urb->dev);
1463 	}
1464 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1465 	if (retval == 0) {
1466 		hcd = bus_to_hcd(urb->dev->bus);
1467 		retval = unlink1(hcd, urb, status);
1468 		usb_put_dev(urb->dev);
1469 	}
1470 
1471 	if (retval == 0)
1472 		retval = -EINPROGRESS;
1473 	else if (retval != -EIDRM && retval != -EBUSY)
1474 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1475 				urb, retval);
1476 	return retval;
1477 }
1478 
1479 /*-------------------------------------------------------------------------*/
1480 
1481 /**
1482  * usb_hcd_giveback_urb - return URB from HCD to device driver
1483  * @hcd: host controller returning the URB
1484  * @urb: urb being returned to the USB device driver.
1485  * @status: completion status code for the URB.
1486  * Context: in_interrupt()
1487  *
1488  * This hands the URB from HCD to its USB device driver, using its
1489  * completion function.  The HCD has freed all per-urb resources
1490  * (and is done using urb->hcpriv).  It also released all HCD locks;
1491  * the device driver won't cause problems if it frees, modifies,
1492  * or resubmits this URB.
1493  *
1494  * If @urb was unlinked, the value of @status will be overridden by
1495  * @urb->unlinked.  Erroneous short transfers are detected in case
1496  * the HCD hasn't checked for them.
1497  */
1498 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1499 {
1500 	urb->hcpriv = NULL;
1501 	if (unlikely(urb->unlinked))
1502 		status = urb->unlinked;
1503 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1504 			urb->actual_length < urb->transfer_buffer_length &&
1505 			!status))
1506 		status = -EREMOTEIO;
1507 
1508 	unmap_urb_for_dma(hcd, urb);
1509 	usbmon_urb_complete(&hcd->self, urb, status);
1510 	usb_unanchor_urb(urb);
1511 
1512 	/* pass ownership to the completion handler */
1513 	urb->status = status;
1514 	urb->complete (urb);
1515 	atomic_dec (&urb->use_count);
1516 	if (unlikely(atomic_read(&urb->reject)))
1517 		wake_up (&usb_kill_urb_queue);
1518 	usb_put_urb (urb);
1519 }
1520 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1521 
1522 /*-------------------------------------------------------------------------*/
1523 
1524 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1525  * queue to drain completely.  The caller must first insure that no more
1526  * URBs can be submitted for this endpoint.
1527  */
1528 void usb_hcd_flush_endpoint(struct usb_device *udev,
1529 		struct usb_host_endpoint *ep)
1530 {
1531 	struct usb_hcd		*hcd;
1532 	struct urb		*urb;
1533 
1534 	if (!ep)
1535 		return;
1536 	might_sleep();
1537 	hcd = bus_to_hcd(udev->bus);
1538 
1539 	/* No more submits can occur */
1540 	spin_lock_irq(&hcd_urb_list_lock);
1541 rescan:
1542 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1543 		int	is_in;
1544 
1545 		if (urb->unlinked)
1546 			continue;
1547 		usb_get_urb (urb);
1548 		is_in = usb_urb_dir_in(urb);
1549 		spin_unlock(&hcd_urb_list_lock);
1550 
1551 		/* kick hcd */
1552 		unlink1(hcd, urb, -ESHUTDOWN);
1553 		dev_dbg (hcd->self.controller,
1554 			"shutdown urb %p ep%d%s%s\n",
1555 			urb, usb_endpoint_num(&ep->desc),
1556 			is_in ? "in" : "out",
1557 			({	char *s;
1558 
1559 				 switch (usb_endpoint_type(&ep->desc)) {
1560 				 case USB_ENDPOINT_XFER_CONTROL:
1561 					s = ""; break;
1562 				 case USB_ENDPOINT_XFER_BULK:
1563 					s = "-bulk"; break;
1564 				 case USB_ENDPOINT_XFER_INT:
1565 					s = "-intr"; break;
1566 				 default:
1567 			 		s = "-iso"; break;
1568 				};
1569 				s;
1570 			}));
1571 		usb_put_urb (urb);
1572 
1573 		/* list contents may have changed */
1574 		spin_lock(&hcd_urb_list_lock);
1575 		goto rescan;
1576 	}
1577 	spin_unlock_irq(&hcd_urb_list_lock);
1578 
1579 	/* Wait until the endpoint queue is completely empty */
1580 	while (!list_empty (&ep->urb_list)) {
1581 		spin_lock_irq(&hcd_urb_list_lock);
1582 
1583 		/* The list may have changed while we acquired the spinlock */
1584 		urb = NULL;
1585 		if (!list_empty (&ep->urb_list)) {
1586 			urb = list_entry (ep->urb_list.prev, struct urb,
1587 					urb_list);
1588 			usb_get_urb (urb);
1589 		}
1590 		spin_unlock_irq(&hcd_urb_list_lock);
1591 
1592 		if (urb) {
1593 			usb_kill_urb (urb);
1594 			usb_put_urb (urb);
1595 		}
1596 	}
1597 }
1598 
1599 /**
1600  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1601  *				the bus bandwidth
1602  * @udev: target &usb_device
1603  * @new_config: new configuration to install
1604  * @cur_alt: the current alternate interface setting
1605  * @new_alt: alternate interface setting that is being installed
1606  *
1607  * To change configurations, pass in the new configuration in new_config,
1608  * and pass NULL for cur_alt and new_alt.
1609  *
1610  * To reset a device's configuration (put the device in the ADDRESSED state),
1611  * pass in NULL for new_config, cur_alt, and new_alt.
1612  *
1613  * To change alternate interface settings, pass in NULL for new_config,
1614  * pass in the current alternate interface setting in cur_alt,
1615  * and pass in the new alternate interface setting in new_alt.
1616  *
1617  * Returns an error if the requested bandwidth change exceeds the
1618  * bus bandwidth or host controller internal resources.
1619  */
1620 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1621 		struct usb_host_config *new_config,
1622 		struct usb_host_interface *cur_alt,
1623 		struct usb_host_interface *new_alt)
1624 {
1625 	int num_intfs, i, j;
1626 	struct usb_host_interface *alt = NULL;
1627 	int ret = 0;
1628 	struct usb_hcd *hcd;
1629 	struct usb_host_endpoint *ep;
1630 
1631 	hcd = bus_to_hcd(udev->bus);
1632 	if (!hcd->driver->check_bandwidth)
1633 		return 0;
1634 
1635 	/* Configuration is being removed - set configuration 0 */
1636 	if (!new_config && !cur_alt) {
1637 		for (i = 1; i < 16; ++i) {
1638 			ep = udev->ep_out[i];
1639 			if (ep)
1640 				hcd->driver->drop_endpoint(hcd, udev, ep);
1641 			ep = udev->ep_in[i];
1642 			if (ep)
1643 				hcd->driver->drop_endpoint(hcd, udev, ep);
1644 		}
1645 		hcd->driver->check_bandwidth(hcd, udev);
1646 		return 0;
1647 	}
1648 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1649 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1650 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1651 	 * ok to exclude it.
1652 	 */
1653 	if (new_config) {
1654 		num_intfs = new_config->desc.bNumInterfaces;
1655 		/* Remove endpoints (except endpoint 0, which is always on the
1656 		 * schedule) from the old config from the schedule
1657 		 */
1658 		for (i = 1; i < 16; ++i) {
1659 			ep = udev->ep_out[i];
1660 			if (ep) {
1661 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1662 				if (ret < 0)
1663 					goto reset;
1664 			}
1665 			ep = udev->ep_in[i];
1666 			if (ep) {
1667 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1668 				if (ret < 0)
1669 					goto reset;
1670 			}
1671 		}
1672 		for (i = 0; i < num_intfs; ++i) {
1673 			/* Set up endpoints for alternate interface setting 0 */
1674 			alt = usb_find_alt_setting(new_config, i, 0);
1675 			if (!alt)
1676 				/* No alt setting 0? Pick the first setting. */
1677 				alt = &new_config->intf_cache[i]->altsetting[0];
1678 
1679 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1680 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1681 				if (ret < 0)
1682 					goto reset;
1683 			}
1684 		}
1685 	}
1686 	if (cur_alt && new_alt) {
1687 		/* Drop all the endpoints in the current alt setting */
1688 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1689 			ret = hcd->driver->drop_endpoint(hcd, udev,
1690 					&cur_alt->endpoint[i]);
1691 			if (ret < 0)
1692 				goto reset;
1693 		}
1694 		/* Add all the endpoints in the new alt setting */
1695 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1696 			ret = hcd->driver->add_endpoint(hcd, udev,
1697 					&new_alt->endpoint[i]);
1698 			if (ret < 0)
1699 				goto reset;
1700 		}
1701 	}
1702 	ret = hcd->driver->check_bandwidth(hcd, udev);
1703 reset:
1704 	if (ret < 0)
1705 		hcd->driver->reset_bandwidth(hcd, udev);
1706 	return ret;
1707 }
1708 
1709 /* Disables the endpoint: synchronizes with the hcd to make sure all
1710  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1711  * have been called previously.  Use for set_configuration, set_interface,
1712  * driver removal, physical disconnect.
1713  *
1714  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1715  * type, maxpacket size, toggle, halt status, and scheduling.
1716  */
1717 void usb_hcd_disable_endpoint(struct usb_device *udev,
1718 		struct usb_host_endpoint *ep)
1719 {
1720 	struct usb_hcd		*hcd;
1721 
1722 	might_sleep();
1723 	hcd = bus_to_hcd(udev->bus);
1724 	if (hcd->driver->endpoint_disable)
1725 		hcd->driver->endpoint_disable(hcd, ep);
1726 }
1727 
1728 /**
1729  * usb_hcd_reset_endpoint - reset host endpoint state
1730  * @udev: USB device.
1731  * @ep:   the endpoint to reset.
1732  *
1733  * Resets any host endpoint state such as the toggle bit, sequence
1734  * number and current window.
1735  */
1736 void usb_hcd_reset_endpoint(struct usb_device *udev,
1737 			    struct usb_host_endpoint *ep)
1738 {
1739 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1740 
1741 	if (hcd->driver->endpoint_reset)
1742 		hcd->driver->endpoint_reset(hcd, ep);
1743 	else {
1744 		int epnum = usb_endpoint_num(&ep->desc);
1745 		int is_out = usb_endpoint_dir_out(&ep->desc);
1746 		int is_control = usb_endpoint_xfer_control(&ep->desc);
1747 
1748 		usb_settoggle(udev, epnum, is_out, 0);
1749 		if (is_control)
1750 			usb_settoggle(udev, epnum, !is_out, 0);
1751 	}
1752 }
1753 
1754 /* Protect against drivers that try to unlink URBs after the device
1755  * is gone, by waiting until all unlinks for @udev are finished.
1756  * Since we don't currently track URBs by device, simply wait until
1757  * nothing is running in the locked region of usb_hcd_unlink_urb().
1758  */
1759 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1760 {
1761 	spin_lock_irq(&hcd_urb_unlink_lock);
1762 	spin_unlock_irq(&hcd_urb_unlink_lock);
1763 }
1764 
1765 /*-------------------------------------------------------------------------*/
1766 
1767 /* called in any context */
1768 int usb_hcd_get_frame_number (struct usb_device *udev)
1769 {
1770 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1771 
1772 	if (!HC_IS_RUNNING (hcd->state))
1773 		return -ESHUTDOWN;
1774 	return hcd->driver->get_frame_number (hcd);
1775 }
1776 
1777 /*-------------------------------------------------------------------------*/
1778 
1779 #ifdef	CONFIG_PM
1780 
1781 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1782 {
1783 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1784 	int		status;
1785 	int		old_state = hcd->state;
1786 
1787 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1788 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1789 	if (!hcd->driver->bus_suspend) {
1790 		status = -ENOENT;
1791 	} else {
1792 		hcd->state = HC_STATE_QUIESCING;
1793 		status = hcd->driver->bus_suspend(hcd);
1794 	}
1795 	if (status == 0) {
1796 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1797 		hcd->state = HC_STATE_SUSPENDED;
1798 	} else {
1799 		hcd->state = old_state;
1800 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1801 				"suspend", status);
1802 	}
1803 	return status;
1804 }
1805 
1806 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1807 {
1808 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1809 	int		status;
1810 	int		old_state = hcd->state;
1811 
1812 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1813 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1814 	if (!hcd->driver->bus_resume)
1815 		return -ENOENT;
1816 	if (hcd->state == HC_STATE_RUNNING)
1817 		return 0;
1818 
1819 	hcd->state = HC_STATE_RESUMING;
1820 	status = hcd->driver->bus_resume(hcd);
1821 	if (status == 0) {
1822 		/* TRSMRCY = 10 msec */
1823 		msleep(10);
1824 		usb_set_device_state(rhdev, rhdev->actconfig
1825 				? USB_STATE_CONFIGURED
1826 				: USB_STATE_ADDRESS);
1827 		hcd->state = HC_STATE_RUNNING;
1828 	} else {
1829 		hcd->state = old_state;
1830 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1831 				"resume", status);
1832 		if (status != -ESHUTDOWN)
1833 			usb_hc_died(hcd);
1834 	}
1835 	return status;
1836 }
1837 
1838 /* Workqueue routine for root-hub remote wakeup */
1839 static void hcd_resume_work(struct work_struct *work)
1840 {
1841 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1842 	struct usb_device *udev = hcd->self.root_hub;
1843 
1844 	usb_lock_device(udev);
1845 	usb_mark_last_busy(udev);
1846 	usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1847 	usb_unlock_device(udev);
1848 }
1849 
1850 /**
1851  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1852  * @hcd: host controller for this root hub
1853  *
1854  * The USB host controller calls this function when its root hub is
1855  * suspended (with the remote wakeup feature enabled) and a remote
1856  * wakeup request is received.  The routine submits a workqueue request
1857  * to resume the root hub (that is, manage its downstream ports again).
1858  */
1859 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1860 {
1861 	unsigned long flags;
1862 
1863 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1864 	if (hcd->rh_registered)
1865 		queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1866 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1867 }
1868 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1869 
1870 #endif
1871 
1872 /*-------------------------------------------------------------------------*/
1873 
1874 #ifdef	CONFIG_USB_OTG
1875 
1876 /**
1877  * usb_bus_start_enum - start immediate enumeration (for OTG)
1878  * @bus: the bus (must use hcd framework)
1879  * @port_num: 1-based number of port; usually bus->otg_port
1880  * Context: in_interrupt()
1881  *
1882  * Starts enumeration, with an immediate reset followed later by
1883  * khubd identifying and possibly configuring the device.
1884  * This is needed by OTG controller drivers, where it helps meet
1885  * HNP protocol timing requirements for starting a port reset.
1886  */
1887 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1888 {
1889 	struct usb_hcd		*hcd;
1890 	int			status = -EOPNOTSUPP;
1891 
1892 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1893 	 * boards with root hubs hooked up to internal devices (instead of
1894 	 * just the OTG port) may need more attention to resetting...
1895 	 */
1896 	hcd = container_of (bus, struct usb_hcd, self);
1897 	if (port_num && hcd->driver->start_port_reset)
1898 		status = hcd->driver->start_port_reset(hcd, port_num);
1899 
1900 	/* run khubd shortly after (first) root port reset finishes;
1901 	 * it may issue others, until at least 50 msecs have passed.
1902 	 */
1903 	if (status == 0)
1904 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1905 	return status;
1906 }
1907 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1908 
1909 #endif
1910 
1911 /*-------------------------------------------------------------------------*/
1912 
1913 /**
1914  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1915  * @irq: the IRQ being raised
1916  * @__hcd: pointer to the HCD whose IRQ is being signaled
1917  *
1918  * If the controller isn't HALTed, calls the driver's irq handler.
1919  * Checks whether the controller is now dead.
1920  */
1921 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1922 {
1923 	struct usb_hcd		*hcd = __hcd;
1924 	unsigned long		flags;
1925 	irqreturn_t		rc;
1926 
1927 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
1928 	 * when the first handler doesn't use it.  So let's just
1929 	 * assume it's never used.
1930 	 */
1931 	local_irq_save(flags);
1932 
1933 	if (unlikely(hcd->state == HC_STATE_HALT ||
1934 		     !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1935 		rc = IRQ_NONE;
1936 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1937 		rc = IRQ_NONE;
1938 	} else {
1939 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1940 
1941 		if (unlikely(hcd->state == HC_STATE_HALT))
1942 			usb_hc_died(hcd);
1943 		rc = IRQ_HANDLED;
1944 	}
1945 
1946 	local_irq_restore(flags);
1947 	return rc;
1948 }
1949 
1950 /*-------------------------------------------------------------------------*/
1951 
1952 /**
1953  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1954  * @hcd: pointer to the HCD representing the controller
1955  *
1956  * This is called by bus glue to report a USB host controller that died
1957  * while operations may still have been pending.  It's called automatically
1958  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1959  */
1960 void usb_hc_died (struct usb_hcd *hcd)
1961 {
1962 	unsigned long flags;
1963 
1964 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1965 
1966 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1967 	if (hcd->rh_registered) {
1968 		hcd->poll_rh = 0;
1969 
1970 		/* make khubd clean up old urbs and devices */
1971 		usb_set_device_state (hcd->self.root_hub,
1972 				USB_STATE_NOTATTACHED);
1973 		usb_kick_khubd (hcd->self.root_hub);
1974 	}
1975 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1976 }
1977 EXPORT_SYMBOL_GPL (usb_hc_died);
1978 
1979 /*-------------------------------------------------------------------------*/
1980 
1981 /**
1982  * usb_create_hcd - create and initialize an HCD structure
1983  * @driver: HC driver that will use this hcd
1984  * @dev: device for this HC, stored in hcd->self.controller
1985  * @bus_name: value to store in hcd->self.bus_name
1986  * Context: !in_interrupt()
1987  *
1988  * Allocate a struct usb_hcd, with extra space at the end for the
1989  * HC driver's private data.  Initialize the generic members of the
1990  * hcd structure.
1991  *
1992  * If memory is unavailable, returns NULL.
1993  */
1994 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1995 		struct device *dev, const char *bus_name)
1996 {
1997 	struct usb_hcd *hcd;
1998 
1999 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2000 	if (!hcd) {
2001 		dev_dbg (dev, "hcd alloc failed\n");
2002 		return NULL;
2003 	}
2004 	dev_set_drvdata(dev, hcd);
2005 	kref_init(&hcd->kref);
2006 
2007 	usb_bus_init(&hcd->self);
2008 	hcd->self.controller = dev;
2009 	hcd->self.bus_name = bus_name;
2010 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2011 
2012 	init_timer(&hcd->rh_timer);
2013 	hcd->rh_timer.function = rh_timer_func;
2014 	hcd->rh_timer.data = (unsigned long) hcd;
2015 #ifdef CONFIG_PM
2016 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2017 #endif
2018 	mutex_init(&hcd->bandwidth_mutex);
2019 
2020 	hcd->driver = driver;
2021 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2022 			"USB Host Controller";
2023 	return hcd;
2024 }
2025 EXPORT_SYMBOL_GPL(usb_create_hcd);
2026 
2027 static void hcd_release (struct kref *kref)
2028 {
2029 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2030 
2031 	kfree(hcd);
2032 }
2033 
2034 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2035 {
2036 	if (hcd)
2037 		kref_get (&hcd->kref);
2038 	return hcd;
2039 }
2040 EXPORT_SYMBOL_GPL(usb_get_hcd);
2041 
2042 void usb_put_hcd (struct usb_hcd *hcd)
2043 {
2044 	if (hcd)
2045 		kref_put (&hcd->kref, hcd_release);
2046 }
2047 EXPORT_SYMBOL_GPL(usb_put_hcd);
2048 
2049 /**
2050  * usb_add_hcd - finish generic HCD structure initialization and register
2051  * @hcd: the usb_hcd structure to initialize
2052  * @irqnum: Interrupt line to allocate
2053  * @irqflags: Interrupt type flags
2054  *
2055  * Finish the remaining parts of generic HCD initialization: allocate the
2056  * buffers of consistent memory, register the bus, request the IRQ line,
2057  * and call the driver's reset() and start() routines.
2058  */
2059 int usb_add_hcd(struct usb_hcd *hcd,
2060 		unsigned int irqnum, unsigned long irqflags)
2061 {
2062 	int retval;
2063 	struct usb_device *rhdev;
2064 
2065 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2066 
2067 	hcd->authorized_default = hcd->wireless? 0 : 1;
2068 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2069 
2070 	/* HC is in reset state, but accessible.  Now do the one-time init,
2071 	 * bottom up so that hcds can customize the root hubs before khubd
2072 	 * starts talking to them.  (Note, bus id is assigned early too.)
2073 	 */
2074 	if ((retval = hcd_buffer_create(hcd)) != 0) {
2075 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2076 		return retval;
2077 	}
2078 
2079 	if ((retval = usb_register_bus(&hcd->self)) < 0)
2080 		goto err_register_bus;
2081 
2082 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2083 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2084 		retval = -ENOMEM;
2085 		goto err_allocate_root_hub;
2086 	}
2087 
2088 	switch (hcd->driver->flags & HCD_MASK) {
2089 	case HCD_USB11:
2090 		rhdev->speed = USB_SPEED_FULL;
2091 		break;
2092 	case HCD_USB2:
2093 		rhdev->speed = USB_SPEED_HIGH;
2094 		break;
2095 	case HCD_USB3:
2096 		rhdev->speed = USB_SPEED_SUPER;
2097 		break;
2098 	default:
2099 		goto err_allocate_root_hub;
2100 	}
2101 	hcd->self.root_hub = rhdev;
2102 
2103 	/* wakeup flag init defaults to "everything works" for root hubs,
2104 	 * but drivers can override it in reset() if needed, along with
2105 	 * recording the overall controller's system wakeup capability.
2106 	 */
2107 	device_init_wakeup(&rhdev->dev, 1);
2108 
2109 	/* "reset" is misnamed; its role is now one-time init. the controller
2110 	 * should already have been reset (and boot firmware kicked off etc).
2111 	 */
2112 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2113 		dev_err(hcd->self.controller, "can't setup\n");
2114 		goto err_hcd_driver_setup;
2115 	}
2116 
2117 	/* NOTE: root hub and controller capabilities may not be the same */
2118 	if (device_can_wakeup(hcd->self.controller)
2119 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2120 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2121 
2122 	/* enable irqs just before we start the controller */
2123 	if (hcd->driver->irq) {
2124 
2125 		/* IRQF_DISABLED doesn't work as advertised when used together
2126 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2127 		 * interrupts we can remove it here.
2128 		 */
2129 		if (irqflags & IRQF_SHARED)
2130 			irqflags &= ~IRQF_DISABLED;
2131 
2132 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2133 				hcd->driver->description, hcd->self.busnum);
2134 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2135 				hcd->irq_descr, hcd)) != 0) {
2136 			dev_err(hcd->self.controller,
2137 					"request interrupt %d failed\n", irqnum);
2138 			goto err_request_irq;
2139 		}
2140 		hcd->irq = irqnum;
2141 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2142 				(hcd->driver->flags & HCD_MEMORY) ?
2143 					"io mem" : "io base",
2144 					(unsigned long long)hcd->rsrc_start);
2145 	} else {
2146 		hcd->irq = -1;
2147 		if (hcd->rsrc_start)
2148 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2149 					(hcd->driver->flags & HCD_MEMORY) ?
2150 					"io mem" : "io base",
2151 					(unsigned long long)hcd->rsrc_start);
2152 	}
2153 
2154 	if ((retval = hcd->driver->start(hcd)) < 0) {
2155 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2156 		goto err_hcd_driver_start;
2157 	}
2158 
2159 	/* starting here, usbcore will pay attention to this root hub */
2160 	rhdev->bus_mA = min(500u, hcd->power_budget);
2161 	if ((retval = register_root_hub(hcd)) != 0)
2162 		goto err_register_root_hub;
2163 
2164 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2165 	if (retval < 0) {
2166 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2167 		       retval);
2168 		goto error_create_attr_group;
2169 	}
2170 	if (hcd->uses_new_polling && hcd->poll_rh)
2171 		usb_hcd_poll_rh_status(hcd);
2172 	return retval;
2173 
2174 error_create_attr_group:
2175 	mutex_lock(&usb_bus_list_lock);
2176 	usb_disconnect(&hcd->self.root_hub);
2177 	mutex_unlock(&usb_bus_list_lock);
2178 err_register_root_hub:
2179 	hcd->driver->stop(hcd);
2180 err_hcd_driver_start:
2181 	if (hcd->irq >= 0)
2182 		free_irq(irqnum, hcd);
2183 err_request_irq:
2184 err_hcd_driver_setup:
2185 	hcd->self.root_hub = NULL;
2186 	usb_put_dev(rhdev);
2187 err_allocate_root_hub:
2188 	usb_deregister_bus(&hcd->self);
2189 err_register_bus:
2190 	hcd_buffer_destroy(hcd);
2191 	return retval;
2192 }
2193 EXPORT_SYMBOL_GPL(usb_add_hcd);
2194 
2195 /**
2196  * usb_remove_hcd - shutdown processing for generic HCDs
2197  * @hcd: the usb_hcd structure to remove
2198  * Context: !in_interrupt()
2199  *
2200  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2201  * invoking the HCD's stop() method.
2202  */
2203 void usb_remove_hcd(struct usb_hcd *hcd)
2204 {
2205 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2206 
2207 	if (HC_IS_RUNNING (hcd->state))
2208 		hcd->state = HC_STATE_QUIESCING;
2209 
2210 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2211 	spin_lock_irq (&hcd_root_hub_lock);
2212 	hcd->rh_registered = 0;
2213 	spin_unlock_irq (&hcd_root_hub_lock);
2214 
2215 #ifdef CONFIG_PM
2216 	cancel_work_sync(&hcd->wakeup_work);
2217 #endif
2218 
2219 	sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2220 	mutex_lock(&usb_bus_list_lock);
2221 	usb_disconnect(&hcd->self.root_hub);
2222 	mutex_unlock(&usb_bus_list_lock);
2223 
2224 	hcd->driver->stop(hcd);
2225 	hcd->state = HC_STATE_HALT;
2226 
2227 	hcd->poll_rh = 0;
2228 	del_timer_sync(&hcd->rh_timer);
2229 
2230 	if (hcd->irq >= 0)
2231 		free_irq(hcd->irq, hcd);
2232 	usb_deregister_bus(&hcd->self);
2233 	hcd_buffer_destroy(hcd);
2234 }
2235 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2236 
2237 void
2238 usb_hcd_platform_shutdown(struct platform_device* dev)
2239 {
2240 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2241 
2242 	if (hcd->driver->shutdown)
2243 		hcd->driver->shutdown(hcd);
2244 }
2245 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2246 
2247 /*-------------------------------------------------------------------------*/
2248 
2249 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2250 
2251 struct usb_mon_operations *mon_ops;
2252 
2253 /*
2254  * The registration is unlocked.
2255  * We do it this way because we do not want to lock in hot paths.
2256  *
2257  * Notice that the code is minimally error-proof. Because usbmon needs
2258  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2259  */
2260 
2261 int usb_mon_register (struct usb_mon_operations *ops)
2262 {
2263 
2264 	if (mon_ops)
2265 		return -EBUSY;
2266 
2267 	mon_ops = ops;
2268 	mb();
2269 	return 0;
2270 }
2271 EXPORT_SYMBOL_GPL (usb_mon_register);
2272 
2273 void usb_mon_deregister (void)
2274 {
2275 
2276 	if (mon_ops == NULL) {
2277 		printk(KERN_ERR "USB: monitor was not registered\n");
2278 		return;
2279 	}
2280 	mon_ops = NULL;
2281 	mb();
2282 }
2283 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2284 
2285 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2286