1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 #include <linux/usb/hcd.h> 44 45 #include "usb.h" 46 47 48 /*-------------------------------------------------------------------------*/ 49 50 /* 51 * USB Host Controller Driver framework 52 * 53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 54 * HCD-specific behaviors/bugs. 55 * 56 * This does error checks, tracks devices and urbs, and delegates to a 57 * "hc_driver" only for code (and data) that really needs to know about 58 * hardware differences. That includes root hub registers, i/o queues, 59 * and so on ... but as little else as possible. 60 * 61 * Shared code includes most of the "root hub" code (these are emulated, 62 * though each HC's hardware works differently) and PCI glue, plus request 63 * tracking overhead. The HCD code should only block on spinlocks or on 64 * hardware handshaking; blocking on software events (such as other kernel 65 * threads releasing resources, or completing actions) is all generic. 66 * 67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 69 * only by the hub driver ... and that neither should be seen or used by 70 * usb client device drivers. 71 * 72 * Contributors of ideas or unattributed patches include: David Brownell, 73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 74 * 75 * HISTORY: 76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 77 * associated cleanup. "usb_hcd" still != "usb_bus". 78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 79 */ 80 81 /*-------------------------------------------------------------------------*/ 82 83 /* Keep track of which host controller drivers are loaded */ 84 unsigned long usb_hcds_loaded; 85 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 86 87 /* host controllers we manage */ 88 LIST_HEAD (usb_bus_list); 89 EXPORT_SYMBOL_GPL (usb_bus_list); 90 91 /* used when allocating bus numbers */ 92 #define USB_MAXBUS 64 93 struct usb_busmap { 94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 95 }; 96 static struct usb_busmap busmap; 97 98 /* used when updating list of hcds */ 99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 100 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 101 102 /* used for controlling access to virtual root hubs */ 103 static DEFINE_SPINLOCK(hcd_root_hub_lock); 104 105 /* used when updating an endpoint's URB list */ 106 static DEFINE_SPINLOCK(hcd_urb_list_lock); 107 108 /* used to protect against unlinking URBs after the device is gone */ 109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 110 111 /* wait queue for synchronous unlinks */ 112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 113 114 static inline int is_root_hub(struct usb_device *udev) 115 { 116 return (udev->parent == NULL); 117 } 118 119 /*-------------------------------------------------------------------------*/ 120 121 /* 122 * Sharable chunks of root hub code. 123 */ 124 125 /*-------------------------------------------------------------------------*/ 126 127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 129 130 /* usb 3.0 root hub device descriptor */ 131 static const u8 usb3_rh_dev_descriptor[18] = { 132 0x12, /* __u8 bLength; */ 133 0x01, /* __u8 bDescriptorType; Device */ 134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 135 136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 137 0x00, /* __u8 bDeviceSubClass; */ 138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 140 141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 144 145 0x03, /* __u8 iManufacturer; */ 146 0x02, /* __u8 iProduct; */ 147 0x01, /* __u8 iSerialNumber; */ 148 0x01 /* __u8 bNumConfigurations; */ 149 }; 150 151 /* usb 2.0 root hub device descriptor */ 152 static const u8 usb2_rh_dev_descriptor [18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 173 174 /* usb 1.1 root hub device descriptor */ 175 static const u8 usb11_rh_dev_descriptor [18] = { 176 0x12, /* __u8 bLength; */ 177 0x01, /* __u8 bDescriptorType; Device */ 178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 179 180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 181 0x00, /* __u8 bDeviceSubClass; */ 182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 184 185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 188 189 0x03, /* __u8 iManufacturer; */ 190 0x02, /* __u8 iProduct; */ 191 0x01, /* __u8 iSerialNumber; */ 192 0x01 /* __u8 bNumConfigurations; */ 193 }; 194 195 196 /*-------------------------------------------------------------------------*/ 197 198 /* Configuration descriptors for our root hubs */ 199 200 static const u8 fs_rh_config_descriptor [] = { 201 202 /* one configuration */ 203 0x09, /* __u8 bLength; */ 204 0x02, /* __u8 bDescriptorType; Configuration */ 205 0x19, 0x00, /* __le16 wTotalLength; */ 206 0x01, /* __u8 bNumInterfaces; (1) */ 207 0x01, /* __u8 bConfigurationValue; */ 208 0x00, /* __u8 iConfiguration; */ 209 0xc0, /* __u8 bmAttributes; 210 Bit 7: must be set, 211 6: Self-powered, 212 5: Remote wakeup, 213 4..0: resvd */ 214 0x00, /* __u8 MaxPower; */ 215 216 /* USB 1.1: 217 * USB 2.0, single TT organization (mandatory): 218 * one interface, protocol 0 219 * 220 * USB 2.0, multiple TT organization (optional): 221 * two interfaces, protocols 1 (like single TT) 222 * and 2 (multiple TT mode) ... config is 223 * sometimes settable 224 * NOT IMPLEMENTED 225 */ 226 227 /* one interface */ 228 0x09, /* __u8 if_bLength; */ 229 0x04, /* __u8 if_bDescriptorType; Interface */ 230 0x00, /* __u8 if_bInterfaceNumber; */ 231 0x00, /* __u8 if_bAlternateSetting; */ 232 0x01, /* __u8 if_bNumEndpoints; */ 233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 234 0x00, /* __u8 if_bInterfaceSubClass; */ 235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 236 0x00, /* __u8 if_iInterface; */ 237 238 /* one endpoint (status change endpoint) */ 239 0x07, /* __u8 ep_bLength; */ 240 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 242 0x03, /* __u8 ep_bmAttributes; Interrupt */ 243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 245 }; 246 247 static const u8 hs_rh_config_descriptor [] = { 248 249 /* one configuration */ 250 0x09, /* __u8 bLength; */ 251 0x02, /* __u8 bDescriptorType; Configuration */ 252 0x19, 0x00, /* __le16 wTotalLength; */ 253 0x01, /* __u8 bNumInterfaces; (1) */ 254 0x01, /* __u8 bConfigurationValue; */ 255 0x00, /* __u8 iConfiguration; */ 256 0xc0, /* __u8 bmAttributes; 257 Bit 7: must be set, 258 6: Self-powered, 259 5: Remote wakeup, 260 4..0: resvd */ 261 0x00, /* __u8 MaxPower; */ 262 263 /* USB 1.1: 264 * USB 2.0, single TT organization (mandatory): 265 * one interface, protocol 0 266 * 267 * USB 2.0, multiple TT organization (optional): 268 * two interfaces, protocols 1 (like single TT) 269 * and 2 (multiple TT mode) ... config is 270 * sometimes settable 271 * NOT IMPLEMENTED 272 */ 273 274 /* one interface */ 275 0x09, /* __u8 if_bLength; */ 276 0x04, /* __u8 if_bDescriptorType; Interface */ 277 0x00, /* __u8 if_bInterfaceNumber; */ 278 0x00, /* __u8 if_bAlternateSetting; */ 279 0x01, /* __u8 if_bNumEndpoints; */ 280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 281 0x00, /* __u8 if_bInterfaceSubClass; */ 282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 283 0x00, /* __u8 if_iInterface; */ 284 285 /* one endpoint (status change endpoint) */ 286 0x07, /* __u8 ep_bLength; */ 287 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 289 0x03, /* __u8 ep_bmAttributes; Interrupt */ 290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 291 * see hub.c:hub_configure() for details. */ 292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 294 }; 295 296 static const u8 ss_rh_config_descriptor[] = { 297 /* one configuration */ 298 0x09, /* __u8 bLength; */ 299 0x02, /* __u8 bDescriptorType; Configuration */ 300 0x1f, 0x00, /* __le16 wTotalLength; */ 301 0x01, /* __u8 bNumInterfaces; (1) */ 302 0x01, /* __u8 bConfigurationValue; */ 303 0x00, /* __u8 iConfiguration; */ 304 0xc0, /* __u8 bmAttributes; 305 Bit 7: must be set, 306 6: Self-powered, 307 5: Remote wakeup, 308 4..0: resvd */ 309 0x00, /* __u8 MaxPower; */ 310 311 /* one interface */ 312 0x09, /* __u8 if_bLength; */ 313 0x04, /* __u8 if_bDescriptorType; Interface */ 314 0x00, /* __u8 if_bInterfaceNumber; */ 315 0x00, /* __u8 if_bAlternateSetting; */ 316 0x01, /* __u8 if_bNumEndpoints; */ 317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 318 0x00, /* __u8 if_bInterfaceSubClass; */ 319 0x00, /* __u8 if_bInterfaceProtocol; */ 320 0x00, /* __u8 if_iInterface; */ 321 322 /* one endpoint (status change endpoint) */ 323 0x07, /* __u8 ep_bLength; */ 324 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 326 0x03, /* __u8 ep_bmAttributes; Interrupt */ 327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 328 * see hub.c:hub_configure() for details. */ 329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 331 332 /* one SuperSpeed endpoint companion descriptor */ 333 0x06, /* __u8 ss_bLength */ 334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 338 }; 339 340 /* authorized_default behaviour: 341 * -1 is authorized for all devices except wireless (old behaviour) 342 * 0 is unauthorized for all devices 343 * 1 is authorized for all devices 344 */ 345 static int authorized_default = -1; 346 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 347 MODULE_PARM_DESC(authorized_default, 348 "Default USB device authorization: 0 is not authorized, 1 is " 349 "authorized, -1 is authorized except for wireless USB (default, " 350 "old behaviour"); 351 /*-------------------------------------------------------------------------*/ 352 353 /** 354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 355 * @s: Null-terminated ASCII (actually ISO-8859-1) string 356 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 357 * @len: Length (in bytes; may be odd) of descriptor buffer. 358 * 359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 360 * buflen, whichever is less. 361 * 362 * USB String descriptors can contain at most 126 characters; input 363 * strings longer than that are truncated. 364 */ 365 static unsigned 366 ascii2desc(char const *s, u8 *buf, unsigned len) 367 { 368 unsigned n, t = 2 + 2*strlen(s); 369 370 if (t > 254) 371 t = 254; /* Longest possible UTF string descriptor */ 372 if (len > t) 373 len = t; 374 375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 376 377 n = len; 378 while (n--) { 379 *buf++ = t; 380 if (!n--) 381 break; 382 *buf++ = t >> 8; 383 t = (unsigned char)*s++; 384 } 385 return len; 386 } 387 388 /** 389 * rh_string() - provides string descriptors for root hub 390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 391 * @hcd: the host controller for this root hub 392 * @data: buffer for output packet 393 * @len: length of the provided buffer 394 * 395 * Produces either a manufacturer, product or serial number string for the 396 * virtual root hub device. 397 * Returns the number of bytes filled in: the length of the descriptor or 398 * of the provided buffer, whichever is less. 399 */ 400 static unsigned 401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 402 { 403 char buf[100]; 404 char const *s; 405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 406 407 // language ids 408 switch (id) { 409 case 0: 410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 412 if (len > 4) 413 len = 4; 414 memcpy(data, langids, len); 415 return len; 416 case 1: 417 /* Serial number */ 418 s = hcd->self.bus_name; 419 break; 420 case 2: 421 /* Product name */ 422 s = hcd->product_desc; 423 break; 424 case 3: 425 /* Manufacturer */ 426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 427 init_utsname()->release, hcd->driver->description); 428 s = buf; 429 break; 430 default: 431 /* Can't happen; caller guarantees it */ 432 return 0; 433 } 434 435 return ascii2desc(s, data, len); 436 } 437 438 439 /* Root hub control transfers execute synchronously */ 440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 441 { 442 struct usb_ctrlrequest *cmd; 443 u16 typeReq, wValue, wIndex, wLength; 444 u8 *ubuf = urb->transfer_buffer; 445 /* 446 * tbuf should be as big as the BOS descriptor and 447 * the USB hub descriptor. 448 */ 449 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE] 450 __attribute__((aligned(4))); 451 const u8 *bufp = tbuf; 452 unsigned len = 0; 453 int status; 454 u8 patch_wakeup = 0; 455 u8 patch_protocol = 0; 456 457 might_sleep(); 458 459 spin_lock_irq(&hcd_root_hub_lock); 460 status = usb_hcd_link_urb_to_ep(hcd, urb); 461 spin_unlock_irq(&hcd_root_hub_lock); 462 if (status) 463 return status; 464 urb->hcpriv = hcd; /* Indicate it's queued */ 465 466 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 467 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 468 wValue = le16_to_cpu (cmd->wValue); 469 wIndex = le16_to_cpu (cmd->wIndex); 470 wLength = le16_to_cpu (cmd->wLength); 471 472 if (wLength > urb->transfer_buffer_length) 473 goto error; 474 475 urb->actual_length = 0; 476 switch (typeReq) { 477 478 /* DEVICE REQUESTS */ 479 480 /* The root hub's remote wakeup enable bit is implemented using 481 * driver model wakeup flags. If this system supports wakeup 482 * through USB, userspace may change the default "allow wakeup" 483 * policy through sysfs or these calls. 484 * 485 * Most root hubs support wakeup from downstream devices, for 486 * runtime power management (disabling USB clocks and reducing 487 * VBUS power usage). However, not all of them do so; silicon, 488 * board, and BIOS bugs here are not uncommon, so these can't 489 * be treated quite like external hubs. 490 * 491 * Likewise, not all root hubs will pass wakeup events upstream, 492 * to wake up the whole system. So don't assume root hub and 493 * controller capabilities are identical. 494 */ 495 496 case DeviceRequest | USB_REQ_GET_STATUS: 497 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 498 << USB_DEVICE_REMOTE_WAKEUP) 499 | (1 << USB_DEVICE_SELF_POWERED); 500 tbuf [1] = 0; 501 len = 2; 502 break; 503 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 504 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 505 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 506 else 507 goto error; 508 break; 509 case DeviceOutRequest | USB_REQ_SET_FEATURE: 510 if (device_can_wakeup(&hcd->self.root_hub->dev) 511 && wValue == USB_DEVICE_REMOTE_WAKEUP) 512 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 513 else 514 goto error; 515 break; 516 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 517 tbuf [0] = 1; 518 len = 1; 519 /* FALLTHROUGH */ 520 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 521 break; 522 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 523 switch (wValue & 0xff00) { 524 case USB_DT_DEVICE << 8: 525 switch (hcd->speed) { 526 case HCD_USB3: 527 bufp = usb3_rh_dev_descriptor; 528 break; 529 case HCD_USB2: 530 bufp = usb2_rh_dev_descriptor; 531 break; 532 case HCD_USB11: 533 bufp = usb11_rh_dev_descriptor; 534 break; 535 default: 536 goto error; 537 } 538 len = 18; 539 if (hcd->has_tt) 540 patch_protocol = 1; 541 break; 542 case USB_DT_CONFIG << 8: 543 switch (hcd->speed) { 544 case HCD_USB3: 545 bufp = ss_rh_config_descriptor; 546 len = sizeof ss_rh_config_descriptor; 547 break; 548 case HCD_USB2: 549 bufp = hs_rh_config_descriptor; 550 len = sizeof hs_rh_config_descriptor; 551 break; 552 case HCD_USB11: 553 bufp = fs_rh_config_descriptor; 554 len = sizeof fs_rh_config_descriptor; 555 break; 556 default: 557 goto error; 558 } 559 if (device_can_wakeup(&hcd->self.root_hub->dev)) 560 patch_wakeup = 1; 561 break; 562 case USB_DT_STRING << 8: 563 if ((wValue & 0xff) < 4) 564 urb->actual_length = rh_string(wValue & 0xff, 565 hcd, ubuf, wLength); 566 else /* unsupported IDs --> "protocol stall" */ 567 goto error; 568 break; 569 case USB_DT_BOS << 8: 570 goto nongeneric; 571 default: 572 goto error; 573 } 574 break; 575 case DeviceRequest | USB_REQ_GET_INTERFACE: 576 tbuf [0] = 0; 577 len = 1; 578 /* FALLTHROUGH */ 579 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 580 break; 581 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 582 // wValue == urb->dev->devaddr 583 dev_dbg (hcd->self.controller, "root hub device address %d\n", 584 wValue); 585 break; 586 587 /* INTERFACE REQUESTS (no defined feature/status flags) */ 588 589 /* ENDPOINT REQUESTS */ 590 591 case EndpointRequest | USB_REQ_GET_STATUS: 592 // ENDPOINT_HALT flag 593 tbuf [0] = 0; 594 tbuf [1] = 0; 595 len = 2; 596 /* FALLTHROUGH */ 597 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 598 case EndpointOutRequest | USB_REQ_SET_FEATURE: 599 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 600 break; 601 602 /* CLASS REQUESTS (and errors) */ 603 604 default: 605 nongeneric: 606 /* non-generic request */ 607 switch (typeReq) { 608 case GetHubStatus: 609 case GetPortStatus: 610 len = 4; 611 break; 612 case GetHubDescriptor: 613 len = sizeof (struct usb_hub_descriptor); 614 break; 615 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 616 /* len is returned by hub_control */ 617 break; 618 } 619 status = hcd->driver->hub_control (hcd, 620 typeReq, wValue, wIndex, 621 tbuf, wLength); 622 break; 623 error: 624 /* "protocol stall" on error */ 625 status = -EPIPE; 626 } 627 628 if (status < 0) { 629 len = 0; 630 if (status != -EPIPE) { 631 dev_dbg (hcd->self.controller, 632 "CTRL: TypeReq=0x%x val=0x%x " 633 "idx=0x%x len=%d ==> %d\n", 634 typeReq, wValue, wIndex, 635 wLength, status); 636 } 637 } else if (status > 0) { 638 /* hub_control may return the length of data copied. */ 639 len = status; 640 status = 0; 641 } 642 if (len) { 643 if (urb->transfer_buffer_length < len) 644 len = urb->transfer_buffer_length; 645 urb->actual_length = len; 646 // always USB_DIR_IN, toward host 647 memcpy (ubuf, bufp, len); 648 649 /* report whether RH hardware supports remote wakeup */ 650 if (patch_wakeup && 651 len > offsetof (struct usb_config_descriptor, 652 bmAttributes)) 653 ((struct usb_config_descriptor *)ubuf)->bmAttributes 654 |= USB_CONFIG_ATT_WAKEUP; 655 656 /* report whether RH hardware has an integrated TT */ 657 if (patch_protocol && 658 len > offsetof(struct usb_device_descriptor, 659 bDeviceProtocol)) 660 ((struct usb_device_descriptor *) ubuf)-> 661 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 662 } 663 664 /* any errors get returned through the urb completion */ 665 spin_lock_irq(&hcd_root_hub_lock); 666 usb_hcd_unlink_urb_from_ep(hcd, urb); 667 668 /* This peculiar use of spinlocks echoes what real HC drivers do. 669 * Avoiding calls to local_irq_disable/enable makes the code 670 * RT-friendly. 671 */ 672 spin_unlock(&hcd_root_hub_lock); 673 usb_hcd_giveback_urb(hcd, urb, status); 674 spin_lock(&hcd_root_hub_lock); 675 676 spin_unlock_irq(&hcd_root_hub_lock); 677 return 0; 678 } 679 680 /*-------------------------------------------------------------------------*/ 681 682 /* 683 * Root Hub interrupt transfers are polled using a timer if the 684 * driver requests it; otherwise the driver is responsible for 685 * calling usb_hcd_poll_rh_status() when an event occurs. 686 * 687 * Completions are called in_interrupt(), but they may or may not 688 * be in_irq(). 689 */ 690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 691 { 692 struct urb *urb; 693 int length; 694 unsigned long flags; 695 char buffer[6]; /* Any root hubs with > 31 ports? */ 696 697 if (unlikely(!hcd->rh_pollable)) 698 return; 699 if (!hcd->uses_new_polling && !hcd->status_urb) 700 return; 701 702 length = hcd->driver->hub_status_data(hcd, buffer); 703 if (length > 0) { 704 705 /* try to complete the status urb */ 706 spin_lock_irqsave(&hcd_root_hub_lock, flags); 707 urb = hcd->status_urb; 708 if (urb) { 709 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 710 hcd->status_urb = NULL; 711 urb->actual_length = length; 712 memcpy(urb->transfer_buffer, buffer, length); 713 714 usb_hcd_unlink_urb_from_ep(hcd, urb); 715 spin_unlock(&hcd_root_hub_lock); 716 usb_hcd_giveback_urb(hcd, urb, 0); 717 spin_lock(&hcd_root_hub_lock); 718 } else { 719 length = 0; 720 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 721 } 722 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 723 } 724 725 /* The USB 2.0 spec says 256 ms. This is close enough and won't 726 * exceed that limit if HZ is 100. The math is more clunky than 727 * maybe expected, this is to make sure that all timers for USB devices 728 * fire at the same time to give the CPU a break in between */ 729 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 730 (length == 0 && hcd->status_urb != NULL)) 731 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 732 } 733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 734 735 /* timer callback */ 736 static void rh_timer_func (unsigned long _hcd) 737 { 738 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 739 } 740 741 /*-------------------------------------------------------------------------*/ 742 743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 744 { 745 int retval; 746 unsigned long flags; 747 unsigned len = 1 + (urb->dev->maxchild / 8); 748 749 spin_lock_irqsave (&hcd_root_hub_lock, flags); 750 if (hcd->status_urb || urb->transfer_buffer_length < len) { 751 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 752 retval = -EINVAL; 753 goto done; 754 } 755 756 retval = usb_hcd_link_urb_to_ep(hcd, urb); 757 if (retval) 758 goto done; 759 760 hcd->status_urb = urb; 761 urb->hcpriv = hcd; /* indicate it's queued */ 762 if (!hcd->uses_new_polling) 763 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 764 765 /* If a status change has already occurred, report it ASAP */ 766 else if (HCD_POLL_PENDING(hcd)) 767 mod_timer(&hcd->rh_timer, jiffies); 768 retval = 0; 769 done: 770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 771 return retval; 772 } 773 774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 775 { 776 if (usb_endpoint_xfer_int(&urb->ep->desc)) 777 return rh_queue_status (hcd, urb); 778 if (usb_endpoint_xfer_control(&urb->ep->desc)) 779 return rh_call_control (hcd, urb); 780 return -EINVAL; 781 } 782 783 /*-------------------------------------------------------------------------*/ 784 785 /* Unlinks of root-hub control URBs are legal, but they don't do anything 786 * since these URBs always execute synchronously. 787 */ 788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 789 { 790 unsigned long flags; 791 int rc; 792 793 spin_lock_irqsave(&hcd_root_hub_lock, flags); 794 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 795 if (rc) 796 goto done; 797 798 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 799 ; /* Do nothing */ 800 801 } else { /* Status URB */ 802 if (!hcd->uses_new_polling) 803 del_timer (&hcd->rh_timer); 804 if (urb == hcd->status_urb) { 805 hcd->status_urb = NULL; 806 usb_hcd_unlink_urb_from_ep(hcd, urb); 807 808 spin_unlock(&hcd_root_hub_lock); 809 usb_hcd_giveback_urb(hcd, urb, status); 810 spin_lock(&hcd_root_hub_lock); 811 } 812 } 813 done: 814 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 815 return rc; 816 } 817 818 819 820 /* 821 * Show & store the current value of authorized_default 822 */ 823 static ssize_t usb_host_authorized_default_show(struct device *dev, 824 struct device_attribute *attr, 825 char *buf) 826 { 827 struct usb_device *rh_usb_dev = to_usb_device(dev); 828 struct usb_bus *usb_bus = rh_usb_dev->bus; 829 struct usb_hcd *usb_hcd; 830 831 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 832 return -ENODEV; 833 usb_hcd = bus_to_hcd(usb_bus); 834 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 835 } 836 837 static ssize_t usb_host_authorized_default_store(struct device *dev, 838 struct device_attribute *attr, 839 const char *buf, size_t size) 840 { 841 ssize_t result; 842 unsigned val; 843 struct usb_device *rh_usb_dev = to_usb_device(dev); 844 struct usb_bus *usb_bus = rh_usb_dev->bus; 845 struct usb_hcd *usb_hcd; 846 847 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 848 return -ENODEV; 849 usb_hcd = bus_to_hcd(usb_bus); 850 result = sscanf(buf, "%u\n", &val); 851 if (result == 1) { 852 usb_hcd->authorized_default = val? 1 : 0; 853 result = size; 854 } 855 else 856 result = -EINVAL; 857 return result; 858 } 859 860 static DEVICE_ATTR(authorized_default, 0644, 861 usb_host_authorized_default_show, 862 usb_host_authorized_default_store); 863 864 865 /* Group all the USB bus attributes */ 866 static struct attribute *usb_bus_attrs[] = { 867 &dev_attr_authorized_default.attr, 868 NULL, 869 }; 870 871 static struct attribute_group usb_bus_attr_group = { 872 .name = NULL, /* we want them in the same directory */ 873 .attrs = usb_bus_attrs, 874 }; 875 876 877 878 /*-------------------------------------------------------------------------*/ 879 880 /** 881 * usb_bus_init - shared initialization code 882 * @bus: the bus structure being initialized 883 * 884 * This code is used to initialize a usb_bus structure, memory for which is 885 * separately managed. 886 */ 887 static void usb_bus_init (struct usb_bus *bus) 888 { 889 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 890 891 bus->devnum_next = 1; 892 893 bus->root_hub = NULL; 894 bus->busnum = -1; 895 bus->bandwidth_allocated = 0; 896 bus->bandwidth_int_reqs = 0; 897 bus->bandwidth_isoc_reqs = 0; 898 899 INIT_LIST_HEAD (&bus->bus_list); 900 } 901 902 /*-------------------------------------------------------------------------*/ 903 904 /** 905 * usb_register_bus - registers the USB host controller with the usb core 906 * @bus: pointer to the bus to register 907 * Context: !in_interrupt() 908 * 909 * Assigns a bus number, and links the controller into usbcore data 910 * structures so that it can be seen by scanning the bus list. 911 */ 912 static int usb_register_bus(struct usb_bus *bus) 913 { 914 int result = -E2BIG; 915 int busnum; 916 917 mutex_lock(&usb_bus_list_lock); 918 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 919 if (busnum >= USB_MAXBUS) { 920 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 921 goto error_find_busnum; 922 } 923 set_bit (busnum, busmap.busmap); 924 bus->busnum = busnum; 925 926 /* Add it to the local list of buses */ 927 list_add (&bus->bus_list, &usb_bus_list); 928 mutex_unlock(&usb_bus_list_lock); 929 930 usb_notify_add_bus(bus); 931 932 dev_info (bus->controller, "new USB bus registered, assigned bus " 933 "number %d\n", bus->busnum); 934 return 0; 935 936 error_find_busnum: 937 mutex_unlock(&usb_bus_list_lock); 938 return result; 939 } 940 941 /** 942 * usb_deregister_bus - deregisters the USB host controller 943 * @bus: pointer to the bus to deregister 944 * Context: !in_interrupt() 945 * 946 * Recycles the bus number, and unlinks the controller from usbcore data 947 * structures so that it won't be seen by scanning the bus list. 948 */ 949 static void usb_deregister_bus (struct usb_bus *bus) 950 { 951 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 952 953 /* 954 * NOTE: make sure that all the devices are removed by the 955 * controller code, as well as having it call this when cleaning 956 * itself up 957 */ 958 mutex_lock(&usb_bus_list_lock); 959 list_del (&bus->bus_list); 960 mutex_unlock(&usb_bus_list_lock); 961 962 usb_notify_remove_bus(bus); 963 964 clear_bit (bus->busnum, busmap.busmap); 965 } 966 967 /** 968 * register_root_hub - called by usb_add_hcd() to register a root hub 969 * @hcd: host controller for this root hub 970 * 971 * This function registers the root hub with the USB subsystem. It sets up 972 * the device properly in the device tree and then calls usb_new_device() 973 * to register the usb device. It also assigns the root hub's USB address 974 * (always 1). 975 */ 976 static int register_root_hub(struct usb_hcd *hcd) 977 { 978 struct device *parent_dev = hcd->self.controller; 979 struct usb_device *usb_dev = hcd->self.root_hub; 980 const int devnum = 1; 981 int retval; 982 983 usb_dev->devnum = devnum; 984 usb_dev->bus->devnum_next = devnum + 1; 985 memset (&usb_dev->bus->devmap.devicemap, 0, 986 sizeof usb_dev->bus->devmap.devicemap); 987 set_bit (devnum, usb_dev->bus->devmap.devicemap); 988 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 989 990 mutex_lock(&usb_bus_list_lock); 991 992 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 993 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 994 if (retval != sizeof usb_dev->descriptor) { 995 mutex_unlock(&usb_bus_list_lock); 996 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 997 dev_name(&usb_dev->dev), retval); 998 return (retval < 0) ? retval : -EMSGSIZE; 999 } 1000 1001 retval = usb_new_device (usb_dev); 1002 if (retval) { 1003 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1004 dev_name(&usb_dev->dev), retval); 1005 } 1006 mutex_unlock(&usb_bus_list_lock); 1007 1008 if (retval == 0) { 1009 spin_lock_irq (&hcd_root_hub_lock); 1010 hcd->rh_registered = 1; 1011 spin_unlock_irq (&hcd_root_hub_lock); 1012 1013 /* Did the HC die before the root hub was registered? */ 1014 if (HCD_DEAD(hcd)) 1015 usb_hc_died (hcd); /* This time clean up */ 1016 } 1017 1018 return retval; 1019 } 1020 1021 1022 /*-------------------------------------------------------------------------*/ 1023 1024 /** 1025 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1026 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1027 * @is_input: true iff the transaction sends data to the host 1028 * @isoc: true for isochronous transactions, false for interrupt ones 1029 * @bytecount: how many bytes in the transaction. 1030 * 1031 * Returns approximate bus time in nanoseconds for a periodic transaction. 1032 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1033 * scheduled in software, this function is only used for such scheduling. 1034 */ 1035 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1036 { 1037 unsigned long tmp; 1038 1039 switch (speed) { 1040 case USB_SPEED_LOW: /* INTR only */ 1041 if (is_input) { 1042 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1043 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1044 } else { 1045 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1046 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1047 } 1048 case USB_SPEED_FULL: /* ISOC or INTR */ 1049 if (isoc) { 1050 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1051 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1052 } else { 1053 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1054 return (9107L + BW_HOST_DELAY + tmp); 1055 } 1056 case USB_SPEED_HIGH: /* ISOC or INTR */ 1057 // FIXME adjust for input vs output 1058 if (isoc) 1059 tmp = HS_NSECS_ISO (bytecount); 1060 else 1061 tmp = HS_NSECS (bytecount); 1062 return tmp; 1063 default: 1064 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1065 return -1; 1066 } 1067 } 1068 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1069 1070 1071 /*-------------------------------------------------------------------------*/ 1072 1073 /* 1074 * Generic HC operations. 1075 */ 1076 1077 /*-------------------------------------------------------------------------*/ 1078 1079 /** 1080 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1081 * @hcd: host controller to which @urb was submitted 1082 * @urb: URB being submitted 1083 * 1084 * Host controller drivers should call this routine in their enqueue() 1085 * method. The HCD's private spinlock must be held and interrupts must 1086 * be disabled. The actions carried out here are required for URB 1087 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1088 * 1089 * Returns 0 for no error, otherwise a negative error code (in which case 1090 * the enqueue() method must fail). If no error occurs but enqueue() fails 1091 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1092 * the private spinlock and returning. 1093 */ 1094 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1095 { 1096 int rc = 0; 1097 1098 spin_lock(&hcd_urb_list_lock); 1099 1100 /* Check that the URB isn't being killed */ 1101 if (unlikely(atomic_read(&urb->reject))) { 1102 rc = -EPERM; 1103 goto done; 1104 } 1105 1106 if (unlikely(!urb->ep->enabled)) { 1107 rc = -ENOENT; 1108 goto done; 1109 } 1110 1111 if (unlikely(!urb->dev->can_submit)) { 1112 rc = -EHOSTUNREACH; 1113 goto done; 1114 } 1115 1116 /* 1117 * Check the host controller's state and add the URB to the 1118 * endpoint's queue. 1119 */ 1120 if (HCD_RH_RUNNING(hcd)) { 1121 urb->unlinked = 0; 1122 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1123 } else { 1124 rc = -ESHUTDOWN; 1125 goto done; 1126 } 1127 done: 1128 spin_unlock(&hcd_urb_list_lock); 1129 return rc; 1130 } 1131 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1132 1133 /** 1134 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1135 * @hcd: host controller to which @urb was submitted 1136 * @urb: URB being checked for unlinkability 1137 * @status: error code to store in @urb if the unlink succeeds 1138 * 1139 * Host controller drivers should call this routine in their dequeue() 1140 * method. The HCD's private spinlock must be held and interrupts must 1141 * be disabled. The actions carried out here are required for making 1142 * sure than an unlink is valid. 1143 * 1144 * Returns 0 for no error, otherwise a negative error code (in which case 1145 * the dequeue() method must fail). The possible error codes are: 1146 * 1147 * -EIDRM: @urb was not submitted or has already completed. 1148 * The completion function may not have been called yet. 1149 * 1150 * -EBUSY: @urb has already been unlinked. 1151 */ 1152 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1153 int status) 1154 { 1155 struct list_head *tmp; 1156 1157 /* insist the urb is still queued */ 1158 list_for_each(tmp, &urb->ep->urb_list) { 1159 if (tmp == &urb->urb_list) 1160 break; 1161 } 1162 if (tmp != &urb->urb_list) 1163 return -EIDRM; 1164 1165 /* Any status except -EINPROGRESS means something already started to 1166 * unlink this URB from the hardware. So there's no more work to do. 1167 */ 1168 if (urb->unlinked) 1169 return -EBUSY; 1170 urb->unlinked = status; 1171 return 0; 1172 } 1173 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1174 1175 /** 1176 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1177 * @hcd: host controller to which @urb was submitted 1178 * @urb: URB being unlinked 1179 * 1180 * Host controller drivers should call this routine before calling 1181 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1182 * interrupts must be disabled. The actions carried out here are required 1183 * for URB completion. 1184 */ 1185 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1186 { 1187 /* clear all state linking urb to this dev (and hcd) */ 1188 spin_lock(&hcd_urb_list_lock); 1189 list_del_init(&urb->urb_list); 1190 spin_unlock(&hcd_urb_list_lock); 1191 } 1192 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1193 1194 /* 1195 * Some usb host controllers can only perform dma using a small SRAM area. 1196 * The usb core itself is however optimized for host controllers that can dma 1197 * using regular system memory - like pci devices doing bus mastering. 1198 * 1199 * To support host controllers with limited dma capabilites we provide dma 1200 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1201 * For this to work properly the host controller code must first use the 1202 * function dma_declare_coherent_memory() to point out which memory area 1203 * that should be used for dma allocations. 1204 * 1205 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1206 * dma using dma_alloc_coherent() which in turn allocates from the memory 1207 * area pointed out with dma_declare_coherent_memory(). 1208 * 1209 * So, to summarize... 1210 * 1211 * - We need "local" memory, canonical example being 1212 * a small SRAM on a discrete controller being the 1213 * only memory that the controller can read ... 1214 * (a) "normal" kernel memory is no good, and 1215 * (b) there's not enough to share 1216 * 1217 * - The only *portable* hook for such stuff in the 1218 * DMA framework is dma_declare_coherent_memory() 1219 * 1220 * - So we use that, even though the primary requirement 1221 * is that the memory be "local" (hence addressible 1222 * by that device), not "coherent". 1223 * 1224 */ 1225 1226 static int hcd_alloc_coherent(struct usb_bus *bus, 1227 gfp_t mem_flags, dma_addr_t *dma_handle, 1228 void **vaddr_handle, size_t size, 1229 enum dma_data_direction dir) 1230 { 1231 unsigned char *vaddr; 1232 1233 if (*vaddr_handle == NULL) { 1234 WARN_ON_ONCE(1); 1235 return -EFAULT; 1236 } 1237 1238 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1239 mem_flags, dma_handle); 1240 if (!vaddr) 1241 return -ENOMEM; 1242 1243 /* 1244 * Store the virtual address of the buffer at the end 1245 * of the allocated dma buffer. The size of the buffer 1246 * may be uneven so use unaligned functions instead 1247 * of just rounding up. It makes sense to optimize for 1248 * memory footprint over access speed since the amount 1249 * of memory available for dma may be limited. 1250 */ 1251 put_unaligned((unsigned long)*vaddr_handle, 1252 (unsigned long *)(vaddr + size)); 1253 1254 if (dir == DMA_TO_DEVICE) 1255 memcpy(vaddr, *vaddr_handle, size); 1256 1257 *vaddr_handle = vaddr; 1258 return 0; 1259 } 1260 1261 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1262 void **vaddr_handle, size_t size, 1263 enum dma_data_direction dir) 1264 { 1265 unsigned char *vaddr = *vaddr_handle; 1266 1267 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1268 1269 if (dir == DMA_FROM_DEVICE) 1270 memcpy(vaddr, *vaddr_handle, size); 1271 1272 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1273 1274 *vaddr_handle = vaddr; 1275 *dma_handle = 0; 1276 } 1277 1278 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1279 { 1280 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1281 dma_unmap_single(hcd->self.controller, 1282 urb->setup_dma, 1283 sizeof(struct usb_ctrlrequest), 1284 DMA_TO_DEVICE); 1285 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1286 hcd_free_coherent(urb->dev->bus, 1287 &urb->setup_dma, 1288 (void **) &urb->setup_packet, 1289 sizeof(struct usb_ctrlrequest), 1290 DMA_TO_DEVICE); 1291 1292 /* Make it safe to call this routine more than once */ 1293 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1294 } 1295 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1296 1297 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1298 { 1299 if (hcd->driver->unmap_urb_for_dma) 1300 hcd->driver->unmap_urb_for_dma(hcd, urb); 1301 else 1302 usb_hcd_unmap_urb_for_dma(hcd, urb); 1303 } 1304 1305 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1306 { 1307 enum dma_data_direction dir; 1308 1309 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1310 1311 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1312 if (urb->transfer_flags & URB_DMA_MAP_SG) 1313 dma_unmap_sg(hcd->self.controller, 1314 urb->sg, 1315 urb->num_sgs, 1316 dir); 1317 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1318 dma_unmap_page(hcd->self.controller, 1319 urb->transfer_dma, 1320 urb->transfer_buffer_length, 1321 dir); 1322 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1323 dma_unmap_single(hcd->self.controller, 1324 urb->transfer_dma, 1325 urb->transfer_buffer_length, 1326 dir); 1327 else if (urb->transfer_flags & URB_MAP_LOCAL) 1328 hcd_free_coherent(urb->dev->bus, 1329 &urb->transfer_dma, 1330 &urb->transfer_buffer, 1331 urb->transfer_buffer_length, 1332 dir); 1333 1334 /* Make it safe to call this routine more than once */ 1335 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1336 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1337 } 1338 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1339 1340 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1341 gfp_t mem_flags) 1342 { 1343 if (hcd->driver->map_urb_for_dma) 1344 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1345 else 1346 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1347 } 1348 1349 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1350 gfp_t mem_flags) 1351 { 1352 enum dma_data_direction dir; 1353 int ret = 0; 1354 1355 /* Map the URB's buffers for DMA access. 1356 * Lower level HCD code should use *_dma exclusively, 1357 * unless it uses pio or talks to another transport, 1358 * or uses the provided scatter gather list for bulk. 1359 */ 1360 1361 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1362 if (hcd->self.uses_pio_for_control) 1363 return ret; 1364 if (hcd->self.uses_dma) { 1365 urb->setup_dma = dma_map_single( 1366 hcd->self.controller, 1367 urb->setup_packet, 1368 sizeof(struct usb_ctrlrequest), 1369 DMA_TO_DEVICE); 1370 if (dma_mapping_error(hcd->self.controller, 1371 urb->setup_dma)) 1372 return -EAGAIN; 1373 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1374 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1375 ret = hcd_alloc_coherent( 1376 urb->dev->bus, mem_flags, 1377 &urb->setup_dma, 1378 (void **)&urb->setup_packet, 1379 sizeof(struct usb_ctrlrequest), 1380 DMA_TO_DEVICE); 1381 if (ret) 1382 return ret; 1383 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1384 } 1385 } 1386 1387 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1388 if (urb->transfer_buffer_length != 0 1389 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1390 if (hcd->self.uses_dma) { 1391 if (urb->num_sgs) { 1392 int n = dma_map_sg( 1393 hcd->self.controller, 1394 urb->sg, 1395 urb->num_sgs, 1396 dir); 1397 if (n <= 0) 1398 ret = -EAGAIN; 1399 else 1400 urb->transfer_flags |= URB_DMA_MAP_SG; 1401 urb->num_mapped_sgs = n; 1402 if (n != urb->num_sgs) 1403 urb->transfer_flags |= 1404 URB_DMA_SG_COMBINED; 1405 } else if (urb->sg) { 1406 struct scatterlist *sg = urb->sg; 1407 urb->transfer_dma = dma_map_page( 1408 hcd->self.controller, 1409 sg_page(sg), 1410 sg->offset, 1411 urb->transfer_buffer_length, 1412 dir); 1413 if (dma_mapping_error(hcd->self.controller, 1414 urb->transfer_dma)) 1415 ret = -EAGAIN; 1416 else 1417 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1418 } else { 1419 urb->transfer_dma = dma_map_single( 1420 hcd->self.controller, 1421 urb->transfer_buffer, 1422 urb->transfer_buffer_length, 1423 dir); 1424 if (dma_mapping_error(hcd->self.controller, 1425 urb->transfer_dma)) 1426 ret = -EAGAIN; 1427 else 1428 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1429 } 1430 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1431 ret = hcd_alloc_coherent( 1432 urb->dev->bus, mem_flags, 1433 &urb->transfer_dma, 1434 &urb->transfer_buffer, 1435 urb->transfer_buffer_length, 1436 dir); 1437 if (ret == 0) 1438 urb->transfer_flags |= URB_MAP_LOCAL; 1439 } 1440 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1441 URB_SETUP_MAP_LOCAL))) 1442 usb_hcd_unmap_urb_for_dma(hcd, urb); 1443 } 1444 return ret; 1445 } 1446 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1447 1448 /*-------------------------------------------------------------------------*/ 1449 1450 /* may be called in any context with a valid urb->dev usecount 1451 * caller surrenders "ownership" of urb 1452 * expects usb_submit_urb() to have sanity checked and conditioned all 1453 * inputs in the urb 1454 */ 1455 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1456 { 1457 int status; 1458 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1459 1460 /* increment urb's reference count as part of giving it to the HCD 1461 * (which will control it). HCD guarantees that it either returns 1462 * an error or calls giveback(), but not both. 1463 */ 1464 usb_get_urb(urb); 1465 atomic_inc(&urb->use_count); 1466 atomic_inc(&urb->dev->urbnum); 1467 usbmon_urb_submit(&hcd->self, urb); 1468 1469 /* NOTE requirements on root-hub callers (usbfs and the hub 1470 * driver, for now): URBs' urb->transfer_buffer must be 1471 * valid and usb_buffer_{sync,unmap}() not be needed, since 1472 * they could clobber root hub response data. Also, control 1473 * URBs must be submitted in process context with interrupts 1474 * enabled. 1475 */ 1476 1477 if (is_root_hub(urb->dev)) { 1478 status = rh_urb_enqueue(hcd, urb); 1479 } else { 1480 status = map_urb_for_dma(hcd, urb, mem_flags); 1481 if (likely(status == 0)) { 1482 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1483 if (unlikely(status)) 1484 unmap_urb_for_dma(hcd, urb); 1485 } 1486 } 1487 1488 if (unlikely(status)) { 1489 usbmon_urb_submit_error(&hcd->self, urb, status); 1490 urb->hcpriv = NULL; 1491 INIT_LIST_HEAD(&urb->urb_list); 1492 atomic_dec(&urb->use_count); 1493 atomic_dec(&urb->dev->urbnum); 1494 if (atomic_read(&urb->reject)) 1495 wake_up(&usb_kill_urb_queue); 1496 usb_put_urb(urb); 1497 } 1498 return status; 1499 } 1500 1501 /*-------------------------------------------------------------------------*/ 1502 1503 /* this makes the hcd giveback() the urb more quickly, by kicking it 1504 * off hardware queues (which may take a while) and returning it as 1505 * soon as practical. we've already set up the urb's return status, 1506 * but we can't know if the callback completed already. 1507 */ 1508 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1509 { 1510 int value; 1511 1512 if (is_root_hub(urb->dev)) 1513 value = usb_rh_urb_dequeue(hcd, urb, status); 1514 else { 1515 1516 /* The only reason an HCD might fail this call is if 1517 * it has not yet fully queued the urb to begin with. 1518 * Such failures should be harmless. */ 1519 value = hcd->driver->urb_dequeue(hcd, urb, status); 1520 } 1521 return value; 1522 } 1523 1524 /* 1525 * called in any context 1526 * 1527 * caller guarantees urb won't be recycled till both unlink() 1528 * and the urb's completion function return 1529 */ 1530 int usb_hcd_unlink_urb (struct urb *urb, int status) 1531 { 1532 struct usb_hcd *hcd; 1533 int retval = -EIDRM; 1534 unsigned long flags; 1535 1536 /* Prevent the device and bus from going away while 1537 * the unlink is carried out. If they are already gone 1538 * then urb->use_count must be 0, since disconnected 1539 * devices can't have any active URBs. 1540 */ 1541 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1542 if (atomic_read(&urb->use_count) > 0) { 1543 retval = 0; 1544 usb_get_dev(urb->dev); 1545 } 1546 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1547 if (retval == 0) { 1548 hcd = bus_to_hcd(urb->dev->bus); 1549 retval = unlink1(hcd, urb, status); 1550 usb_put_dev(urb->dev); 1551 } 1552 1553 if (retval == 0) 1554 retval = -EINPROGRESS; 1555 else if (retval != -EIDRM && retval != -EBUSY) 1556 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1557 urb, retval); 1558 return retval; 1559 } 1560 1561 /*-------------------------------------------------------------------------*/ 1562 1563 /** 1564 * usb_hcd_giveback_urb - return URB from HCD to device driver 1565 * @hcd: host controller returning the URB 1566 * @urb: urb being returned to the USB device driver. 1567 * @status: completion status code for the URB. 1568 * Context: in_interrupt() 1569 * 1570 * This hands the URB from HCD to its USB device driver, using its 1571 * completion function. The HCD has freed all per-urb resources 1572 * (and is done using urb->hcpriv). It also released all HCD locks; 1573 * the device driver won't cause problems if it frees, modifies, 1574 * or resubmits this URB. 1575 * 1576 * If @urb was unlinked, the value of @status will be overridden by 1577 * @urb->unlinked. Erroneous short transfers are detected in case 1578 * the HCD hasn't checked for them. 1579 */ 1580 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1581 { 1582 urb->hcpriv = NULL; 1583 if (unlikely(urb->unlinked)) 1584 status = urb->unlinked; 1585 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1586 urb->actual_length < urb->transfer_buffer_length && 1587 !status)) 1588 status = -EREMOTEIO; 1589 1590 unmap_urb_for_dma(hcd, urb); 1591 usbmon_urb_complete(&hcd->self, urb, status); 1592 usb_unanchor_urb(urb); 1593 1594 /* pass ownership to the completion handler */ 1595 urb->status = status; 1596 urb->complete (urb); 1597 atomic_dec (&urb->use_count); 1598 if (unlikely(atomic_read(&urb->reject))) 1599 wake_up (&usb_kill_urb_queue); 1600 usb_put_urb (urb); 1601 } 1602 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1603 1604 /*-------------------------------------------------------------------------*/ 1605 1606 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1607 * queue to drain completely. The caller must first insure that no more 1608 * URBs can be submitted for this endpoint. 1609 */ 1610 void usb_hcd_flush_endpoint(struct usb_device *udev, 1611 struct usb_host_endpoint *ep) 1612 { 1613 struct usb_hcd *hcd; 1614 struct urb *urb; 1615 1616 if (!ep) 1617 return; 1618 might_sleep(); 1619 hcd = bus_to_hcd(udev->bus); 1620 1621 /* No more submits can occur */ 1622 spin_lock_irq(&hcd_urb_list_lock); 1623 rescan: 1624 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1625 int is_in; 1626 1627 if (urb->unlinked) 1628 continue; 1629 usb_get_urb (urb); 1630 is_in = usb_urb_dir_in(urb); 1631 spin_unlock(&hcd_urb_list_lock); 1632 1633 /* kick hcd */ 1634 unlink1(hcd, urb, -ESHUTDOWN); 1635 dev_dbg (hcd->self.controller, 1636 "shutdown urb %p ep%d%s%s\n", 1637 urb, usb_endpoint_num(&ep->desc), 1638 is_in ? "in" : "out", 1639 ({ char *s; 1640 1641 switch (usb_endpoint_type(&ep->desc)) { 1642 case USB_ENDPOINT_XFER_CONTROL: 1643 s = ""; break; 1644 case USB_ENDPOINT_XFER_BULK: 1645 s = "-bulk"; break; 1646 case USB_ENDPOINT_XFER_INT: 1647 s = "-intr"; break; 1648 default: 1649 s = "-iso"; break; 1650 }; 1651 s; 1652 })); 1653 usb_put_urb (urb); 1654 1655 /* list contents may have changed */ 1656 spin_lock(&hcd_urb_list_lock); 1657 goto rescan; 1658 } 1659 spin_unlock_irq(&hcd_urb_list_lock); 1660 1661 /* Wait until the endpoint queue is completely empty */ 1662 while (!list_empty (&ep->urb_list)) { 1663 spin_lock_irq(&hcd_urb_list_lock); 1664 1665 /* The list may have changed while we acquired the spinlock */ 1666 urb = NULL; 1667 if (!list_empty (&ep->urb_list)) { 1668 urb = list_entry (ep->urb_list.prev, struct urb, 1669 urb_list); 1670 usb_get_urb (urb); 1671 } 1672 spin_unlock_irq(&hcd_urb_list_lock); 1673 1674 if (urb) { 1675 usb_kill_urb (urb); 1676 usb_put_urb (urb); 1677 } 1678 } 1679 } 1680 1681 /** 1682 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1683 * the bus bandwidth 1684 * @udev: target &usb_device 1685 * @new_config: new configuration to install 1686 * @cur_alt: the current alternate interface setting 1687 * @new_alt: alternate interface setting that is being installed 1688 * 1689 * To change configurations, pass in the new configuration in new_config, 1690 * and pass NULL for cur_alt and new_alt. 1691 * 1692 * To reset a device's configuration (put the device in the ADDRESSED state), 1693 * pass in NULL for new_config, cur_alt, and new_alt. 1694 * 1695 * To change alternate interface settings, pass in NULL for new_config, 1696 * pass in the current alternate interface setting in cur_alt, 1697 * and pass in the new alternate interface setting in new_alt. 1698 * 1699 * Returns an error if the requested bandwidth change exceeds the 1700 * bus bandwidth or host controller internal resources. 1701 */ 1702 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1703 struct usb_host_config *new_config, 1704 struct usb_host_interface *cur_alt, 1705 struct usb_host_interface *new_alt) 1706 { 1707 int num_intfs, i, j; 1708 struct usb_host_interface *alt = NULL; 1709 int ret = 0; 1710 struct usb_hcd *hcd; 1711 struct usb_host_endpoint *ep; 1712 1713 hcd = bus_to_hcd(udev->bus); 1714 if (!hcd->driver->check_bandwidth) 1715 return 0; 1716 1717 /* Configuration is being removed - set configuration 0 */ 1718 if (!new_config && !cur_alt) { 1719 for (i = 1; i < 16; ++i) { 1720 ep = udev->ep_out[i]; 1721 if (ep) 1722 hcd->driver->drop_endpoint(hcd, udev, ep); 1723 ep = udev->ep_in[i]; 1724 if (ep) 1725 hcd->driver->drop_endpoint(hcd, udev, ep); 1726 } 1727 hcd->driver->check_bandwidth(hcd, udev); 1728 return 0; 1729 } 1730 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1731 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1732 * of the bus. There will always be bandwidth for endpoint 0, so it's 1733 * ok to exclude it. 1734 */ 1735 if (new_config) { 1736 num_intfs = new_config->desc.bNumInterfaces; 1737 /* Remove endpoints (except endpoint 0, which is always on the 1738 * schedule) from the old config from the schedule 1739 */ 1740 for (i = 1; i < 16; ++i) { 1741 ep = udev->ep_out[i]; 1742 if (ep) { 1743 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1744 if (ret < 0) 1745 goto reset; 1746 } 1747 ep = udev->ep_in[i]; 1748 if (ep) { 1749 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1750 if (ret < 0) 1751 goto reset; 1752 } 1753 } 1754 for (i = 0; i < num_intfs; ++i) { 1755 struct usb_host_interface *first_alt; 1756 int iface_num; 1757 1758 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1759 iface_num = first_alt->desc.bInterfaceNumber; 1760 /* Set up endpoints for alternate interface setting 0 */ 1761 alt = usb_find_alt_setting(new_config, iface_num, 0); 1762 if (!alt) 1763 /* No alt setting 0? Pick the first setting. */ 1764 alt = first_alt; 1765 1766 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1767 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1768 if (ret < 0) 1769 goto reset; 1770 } 1771 } 1772 } 1773 if (cur_alt && new_alt) { 1774 struct usb_interface *iface = usb_ifnum_to_if(udev, 1775 cur_alt->desc.bInterfaceNumber); 1776 1777 if (!iface) 1778 return -EINVAL; 1779 if (iface->resetting_device) { 1780 /* 1781 * The USB core just reset the device, so the xHCI host 1782 * and the device will think alt setting 0 is installed. 1783 * However, the USB core will pass in the alternate 1784 * setting installed before the reset as cur_alt. Dig 1785 * out the alternate setting 0 structure, or the first 1786 * alternate setting if a broken device doesn't have alt 1787 * setting 0. 1788 */ 1789 cur_alt = usb_altnum_to_altsetting(iface, 0); 1790 if (!cur_alt) 1791 cur_alt = &iface->altsetting[0]; 1792 } 1793 1794 /* Drop all the endpoints in the current alt setting */ 1795 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1796 ret = hcd->driver->drop_endpoint(hcd, udev, 1797 &cur_alt->endpoint[i]); 1798 if (ret < 0) 1799 goto reset; 1800 } 1801 /* Add all the endpoints in the new alt setting */ 1802 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1803 ret = hcd->driver->add_endpoint(hcd, udev, 1804 &new_alt->endpoint[i]); 1805 if (ret < 0) 1806 goto reset; 1807 } 1808 } 1809 ret = hcd->driver->check_bandwidth(hcd, udev); 1810 reset: 1811 if (ret < 0) 1812 hcd->driver->reset_bandwidth(hcd, udev); 1813 return ret; 1814 } 1815 1816 /* Disables the endpoint: synchronizes with the hcd to make sure all 1817 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1818 * have been called previously. Use for set_configuration, set_interface, 1819 * driver removal, physical disconnect. 1820 * 1821 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1822 * type, maxpacket size, toggle, halt status, and scheduling. 1823 */ 1824 void usb_hcd_disable_endpoint(struct usb_device *udev, 1825 struct usb_host_endpoint *ep) 1826 { 1827 struct usb_hcd *hcd; 1828 1829 might_sleep(); 1830 hcd = bus_to_hcd(udev->bus); 1831 if (hcd->driver->endpoint_disable) 1832 hcd->driver->endpoint_disable(hcd, ep); 1833 } 1834 1835 /** 1836 * usb_hcd_reset_endpoint - reset host endpoint state 1837 * @udev: USB device. 1838 * @ep: the endpoint to reset. 1839 * 1840 * Resets any host endpoint state such as the toggle bit, sequence 1841 * number and current window. 1842 */ 1843 void usb_hcd_reset_endpoint(struct usb_device *udev, 1844 struct usb_host_endpoint *ep) 1845 { 1846 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1847 1848 if (hcd->driver->endpoint_reset) 1849 hcd->driver->endpoint_reset(hcd, ep); 1850 else { 1851 int epnum = usb_endpoint_num(&ep->desc); 1852 int is_out = usb_endpoint_dir_out(&ep->desc); 1853 int is_control = usb_endpoint_xfer_control(&ep->desc); 1854 1855 usb_settoggle(udev, epnum, is_out, 0); 1856 if (is_control) 1857 usb_settoggle(udev, epnum, !is_out, 0); 1858 } 1859 } 1860 1861 /** 1862 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1863 * @interface: alternate setting that includes all endpoints. 1864 * @eps: array of endpoints that need streams. 1865 * @num_eps: number of endpoints in the array. 1866 * @num_streams: number of streams to allocate. 1867 * @mem_flags: flags hcd should use to allocate memory. 1868 * 1869 * Sets up a group of bulk endpoints to have num_streams stream IDs available. 1870 * Drivers may queue multiple transfers to different stream IDs, which may 1871 * complete in a different order than they were queued. 1872 */ 1873 int usb_alloc_streams(struct usb_interface *interface, 1874 struct usb_host_endpoint **eps, unsigned int num_eps, 1875 unsigned int num_streams, gfp_t mem_flags) 1876 { 1877 struct usb_hcd *hcd; 1878 struct usb_device *dev; 1879 int i; 1880 1881 dev = interface_to_usbdev(interface); 1882 hcd = bus_to_hcd(dev->bus); 1883 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 1884 return -EINVAL; 1885 if (dev->speed != USB_SPEED_SUPER) 1886 return -EINVAL; 1887 1888 /* Streams only apply to bulk endpoints. */ 1889 for (i = 0; i < num_eps; i++) 1890 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1891 return -EINVAL; 1892 1893 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 1894 num_streams, mem_flags); 1895 } 1896 EXPORT_SYMBOL_GPL(usb_alloc_streams); 1897 1898 /** 1899 * usb_free_streams - free bulk endpoint stream IDs. 1900 * @interface: alternate setting that includes all endpoints. 1901 * @eps: array of endpoints to remove streams from. 1902 * @num_eps: number of endpoints in the array. 1903 * @mem_flags: flags hcd should use to allocate memory. 1904 * 1905 * Reverts a group of bulk endpoints back to not using stream IDs. 1906 * Can fail if we are given bad arguments, or HCD is broken. 1907 */ 1908 void usb_free_streams(struct usb_interface *interface, 1909 struct usb_host_endpoint **eps, unsigned int num_eps, 1910 gfp_t mem_flags) 1911 { 1912 struct usb_hcd *hcd; 1913 struct usb_device *dev; 1914 int i; 1915 1916 dev = interface_to_usbdev(interface); 1917 hcd = bus_to_hcd(dev->bus); 1918 if (dev->speed != USB_SPEED_SUPER) 1919 return; 1920 1921 /* Streams only apply to bulk endpoints. */ 1922 for (i = 0; i < num_eps; i++) 1923 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc)) 1924 return; 1925 1926 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 1927 } 1928 EXPORT_SYMBOL_GPL(usb_free_streams); 1929 1930 /* Protect against drivers that try to unlink URBs after the device 1931 * is gone, by waiting until all unlinks for @udev are finished. 1932 * Since we don't currently track URBs by device, simply wait until 1933 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1934 */ 1935 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1936 { 1937 spin_lock_irq(&hcd_urb_unlink_lock); 1938 spin_unlock_irq(&hcd_urb_unlink_lock); 1939 } 1940 1941 /*-------------------------------------------------------------------------*/ 1942 1943 /* called in any context */ 1944 int usb_hcd_get_frame_number (struct usb_device *udev) 1945 { 1946 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1947 1948 if (!HCD_RH_RUNNING(hcd)) 1949 return -ESHUTDOWN; 1950 return hcd->driver->get_frame_number (hcd); 1951 } 1952 1953 /*-------------------------------------------------------------------------*/ 1954 1955 #ifdef CONFIG_PM 1956 1957 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1958 { 1959 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1960 int status; 1961 int old_state = hcd->state; 1962 1963 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 1964 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 1965 rhdev->do_remote_wakeup); 1966 if (HCD_DEAD(hcd)) { 1967 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 1968 return 0; 1969 } 1970 1971 if (!hcd->driver->bus_suspend) { 1972 status = -ENOENT; 1973 } else { 1974 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 1975 hcd->state = HC_STATE_QUIESCING; 1976 status = hcd->driver->bus_suspend(hcd); 1977 } 1978 if (status == 0) { 1979 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1980 hcd->state = HC_STATE_SUSPENDED; 1981 } else { 1982 spin_lock_irq(&hcd_root_hub_lock); 1983 if (!HCD_DEAD(hcd)) { 1984 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 1985 hcd->state = old_state; 1986 } 1987 spin_unlock_irq(&hcd_root_hub_lock); 1988 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1989 "suspend", status); 1990 } 1991 return status; 1992 } 1993 1994 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1995 { 1996 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1997 int status; 1998 int old_state = hcd->state; 1999 2000 dev_dbg(&rhdev->dev, "usb %sresume\n", 2001 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2002 if (HCD_DEAD(hcd)) { 2003 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2004 return 0; 2005 } 2006 if (!hcd->driver->bus_resume) 2007 return -ENOENT; 2008 if (HCD_RH_RUNNING(hcd)) 2009 return 0; 2010 2011 hcd->state = HC_STATE_RESUMING; 2012 status = hcd->driver->bus_resume(hcd); 2013 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2014 if (status == 0) { 2015 /* TRSMRCY = 10 msec */ 2016 msleep(10); 2017 spin_lock_irq(&hcd_root_hub_lock); 2018 if (!HCD_DEAD(hcd)) { 2019 usb_set_device_state(rhdev, rhdev->actconfig 2020 ? USB_STATE_CONFIGURED 2021 : USB_STATE_ADDRESS); 2022 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2023 hcd->state = HC_STATE_RUNNING; 2024 } 2025 spin_unlock_irq(&hcd_root_hub_lock); 2026 } else { 2027 hcd->state = old_state; 2028 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2029 "resume", status); 2030 if (status != -ESHUTDOWN) 2031 usb_hc_died(hcd); 2032 } 2033 return status; 2034 } 2035 2036 #endif /* CONFIG_PM */ 2037 2038 #ifdef CONFIG_USB_SUSPEND 2039 2040 /* Workqueue routine for root-hub remote wakeup */ 2041 static void hcd_resume_work(struct work_struct *work) 2042 { 2043 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2044 struct usb_device *udev = hcd->self.root_hub; 2045 2046 usb_lock_device(udev); 2047 usb_remote_wakeup(udev); 2048 usb_unlock_device(udev); 2049 } 2050 2051 /** 2052 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2053 * @hcd: host controller for this root hub 2054 * 2055 * The USB host controller calls this function when its root hub is 2056 * suspended (with the remote wakeup feature enabled) and a remote 2057 * wakeup request is received. The routine submits a workqueue request 2058 * to resume the root hub (that is, manage its downstream ports again). 2059 */ 2060 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2061 { 2062 unsigned long flags; 2063 2064 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2065 if (hcd->rh_registered) { 2066 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2067 queue_work(pm_wq, &hcd->wakeup_work); 2068 } 2069 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2070 } 2071 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2072 2073 #endif /* CONFIG_USB_SUSPEND */ 2074 2075 /*-------------------------------------------------------------------------*/ 2076 2077 #ifdef CONFIG_USB_OTG 2078 2079 /** 2080 * usb_bus_start_enum - start immediate enumeration (for OTG) 2081 * @bus: the bus (must use hcd framework) 2082 * @port_num: 1-based number of port; usually bus->otg_port 2083 * Context: in_interrupt() 2084 * 2085 * Starts enumeration, with an immediate reset followed later by 2086 * khubd identifying and possibly configuring the device. 2087 * This is needed by OTG controller drivers, where it helps meet 2088 * HNP protocol timing requirements for starting a port reset. 2089 */ 2090 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2091 { 2092 struct usb_hcd *hcd; 2093 int status = -EOPNOTSUPP; 2094 2095 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2096 * boards with root hubs hooked up to internal devices (instead of 2097 * just the OTG port) may need more attention to resetting... 2098 */ 2099 hcd = container_of (bus, struct usb_hcd, self); 2100 if (port_num && hcd->driver->start_port_reset) 2101 status = hcd->driver->start_port_reset(hcd, port_num); 2102 2103 /* run khubd shortly after (first) root port reset finishes; 2104 * it may issue others, until at least 50 msecs have passed. 2105 */ 2106 if (status == 0) 2107 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2108 return status; 2109 } 2110 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2111 2112 #endif 2113 2114 /*-------------------------------------------------------------------------*/ 2115 2116 /** 2117 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2118 * @irq: the IRQ being raised 2119 * @__hcd: pointer to the HCD whose IRQ is being signaled 2120 * 2121 * If the controller isn't HALTed, calls the driver's irq handler. 2122 * Checks whether the controller is now dead. 2123 */ 2124 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2125 { 2126 struct usb_hcd *hcd = __hcd; 2127 unsigned long flags; 2128 irqreturn_t rc; 2129 2130 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2131 * when the first handler doesn't use it. So let's just 2132 * assume it's never used. 2133 */ 2134 local_irq_save(flags); 2135 2136 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2137 rc = IRQ_NONE; 2138 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2139 rc = IRQ_NONE; 2140 else 2141 rc = IRQ_HANDLED; 2142 2143 local_irq_restore(flags); 2144 return rc; 2145 } 2146 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2147 2148 /*-------------------------------------------------------------------------*/ 2149 2150 /** 2151 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2152 * @hcd: pointer to the HCD representing the controller 2153 * 2154 * This is called by bus glue to report a USB host controller that died 2155 * while operations may still have been pending. It's called automatically 2156 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2157 * 2158 * Only call this function with the primary HCD. 2159 */ 2160 void usb_hc_died (struct usb_hcd *hcd) 2161 { 2162 unsigned long flags; 2163 2164 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2165 2166 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2167 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2168 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2169 if (hcd->rh_registered) { 2170 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2171 2172 /* make khubd clean up old urbs and devices */ 2173 usb_set_device_state (hcd->self.root_hub, 2174 USB_STATE_NOTATTACHED); 2175 usb_kick_khubd (hcd->self.root_hub); 2176 } 2177 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2178 hcd = hcd->shared_hcd; 2179 if (hcd->rh_registered) { 2180 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2181 2182 /* make khubd clean up old urbs and devices */ 2183 usb_set_device_state(hcd->self.root_hub, 2184 USB_STATE_NOTATTACHED); 2185 usb_kick_khubd(hcd->self.root_hub); 2186 } 2187 } 2188 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2189 /* Make sure that the other roothub is also deallocated. */ 2190 } 2191 EXPORT_SYMBOL_GPL (usb_hc_died); 2192 2193 /*-------------------------------------------------------------------------*/ 2194 2195 /** 2196 * usb_create_shared_hcd - create and initialize an HCD structure 2197 * @driver: HC driver that will use this hcd 2198 * @dev: device for this HC, stored in hcd->self.controller 2199 * @bus_name: value to store in hcd->self.bus_name 2200 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2201 * PCI device. Only allocate certain resources for the primary HCD 2202 * Context: !in_interrupt() 2203 * 2204 * Allocate a struct usb_hcd, with extra space at the end for the 2205 * HC driver's private data. Initialize the generic members of the 2206 * hcd structure. 2207 * 2208 * If memory is unavailable, returns NULL. 2209 */ 2210 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2211 struct device *dev, const char *bus_name, 2212 struct usb_hcd *primary_hcd) 2213 { 2214 struct usb_hcd *hcd; 2215 2216 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2217 if (!hcd) { 2218 dev_dbg (dev, "hcd alloc failed\n"); 2219 return NULL; 2220 } 2221 if (primary_hcd == NULL) { 2222 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2223 GFP_KERNEL); 2224 if (!hcd->bandwidth_mutex) { 2225 kfree(hcd); 2226 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2227 return NULL; 2228 } 2229 mutex_init(hcd->bandwidth_mutex); 2230 dev_set_drvdata(dev, hcd); 2231 } else { 2232 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2233 hcd->primary_hcd = primary_hcd; 2234 primary_hcd->primary_hcd = primary_hcd; 2235 hcd->shared_hcd = primary_hcd; 2236 primary_hcd->shared_hcd = hcd; 2237 } 2238 2239 kref_init(&hcd->kref); 2240 2241 usb_bus_init(&hcd->self); 2242 hcd->self.controller = dev; 2243 hcd->self.bus_name = bus_name; 2244 hcd->self.uses_dma = (dev->dma_mask != NULL); 2245 2246 init_timer(&hcd->rh_timer); 2247 hcd->rh_timer.function = rh_timer_func; 2248 hcd->rh_timer.data = (unsigned long) hcd; 2249 #ifdef CONFIG_USB_SUSPEND 2250 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2251 #endif 2252 2253 hcd->driver = driver; 2254 hcd->speed = driver->flags & HCD_MASK; 2255 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2256 "USB Host Controller"; 2257 return hcd; 2258 } 2259 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2260 2261 /** 2262 * usb_create_hcd - create and initialize an HCD structure 2263 * @driver: HC driver that will use this hcd 2264 * @dev: device for this HC, stored in hcd->self.controller 2265 * @bus_name: value to store in hcd->self.bus_name 2266 * Context: !in_interrupt() 2267 * 2268 * Allocate a struct usb_hcd, with extra space at the end for the 2269 * HC driver's private data. Initialize the generic members of the 2270 * hcd structure. 2271 * 2272 * If memory is unavailable, returns NULL. 2273 */ 2274 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2275 struct device *dev, const char *bus_name) 2276 { 2277 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2278 } 2279 EXPORT_SYMBOL_GPL(usb_create_hcd); 2280 2281 /* 2282 * Roothubs that share one PCI device must also share the bandwidth mutex. 2283 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2284 * deallocated. 2285 * 2286 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2287 * freed. When hcd_release() is called for the non-primary HCD, set the 2288 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be 2289 * freed shortly). 2290 */ 2291 static void hcd_release (struct kref *kref) 2292 { 2293 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2294 2295 if (usb_hcd_is_primary_hcd(hcd)) 2296 kfree(hcd->bandwidth_mutex); 2297 else 2298 hcd->shared_hcd->shared_hcd = NULL; 2299 kfree(hcd); 2300 } 2301 2302 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2303 { 2304 if (hcd) 2305 kref_get (&hcd->kref); 2306 return hcd; 2307 } 2308 EXPORT_SYMBOL_GPL(usb_get_hcd); 2309 2310 void usb_put_hcd (struct usb_hcd *hcd) 2311 { 2312 if (hcd) 2313 kref_put (&hcd->kref, hcd_release); 2314 } 2315 EXPORT_SYMBOL_GPL(usb_put_hcd); 2316 2317 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2318 { 2319 if (!hcd->primary_hcd) 2320 return 1; 2321 return hcd == hcd->primary_hcd; 2322 } 2323 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2324 2325 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2326 unsigned int irqnum, unsigned long irqflags) 2327 { 2328 int retval; 2329 2330 if (hcd->driver->irq) { 2331 2332 /* IRQF_DISABLED doesn't work as advertised when used together 2333 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2334 * interrupts we can remove it here. 2335 */ 2336 if (irqflags & IRQF_SHARED) 2337 irqflags &= ~IRQF_DISABLED; 2338 2339 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2340 hcd->driver->description, hcd->self.busnum); 2341 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2342 hcd->irq_descr, hcd); 2343 if (retval != 0) { 2344 dev_err(hcd->self.controller, 2345 "request interrupt %d failed\n", 2346 irqnum); 2347 return retval; 2348 } 2349 hcd->irq = irqnum; 2350 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2351 (hcd->driver->flags & HCD_MEMORY) ? 2352 "io mem" : "io base", 2353 (unsigned long long)hcd->rsrc_start); 2354 } else { 2355 hcd->irq = 0; 2356 if (hcd->rsrc_start) 2357 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2358 (hcd->driver->flags & HCD_MEMORY) ? 2359 "io mem" : "io base", 2360 (unsigned long long)hcd->rsrc_start); 2361 } 2362 return 0; 2363 } 2364 2365 /** 2366 * usb_add_hcd - finish generic HCD structure initialization and register 2367 * @hcd: the usb_hcd structure to initialize 2368 * @irqnum: Interrupt line to allocate 2369 * @irqflags: Interrupt type flags 2370 * 2371 * Finish the remaining parts of generic HCD initialization: allocate the 2372 * buffers of consistent memory, register the bus, request the IRQ line, 2373 * and call the driver's reset() and start() routines. 2374 */ 2375 int usb_add_hcd(struct usb_hcd *hcd, 2376 unsigned int irqnum, unsigned long irqflags) 2377 { 2378 int retval; 2379 struct usb_device *rhdev; 2380 2381 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2382 2383 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2384 if (authorized_default < 0 || authorized_default > 1) 2385 hcd->authorized_default = hcd->wireless? 0 : 1; 2386 else 2387 hcd->authorized_default = authorized_default; 2388 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2389 2390 /* HC is in reset state, but accessible. Now do the one-time init, 2391 * bottom up so that hcds can customize the root hubs before khubd 2392 * starts talking to them. (Note, bus id is assigned early too.) 2393 */ 2394 if ((retval = hcd_buffer_create(hcd)) != 0) { 2395 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2396 return retval; 2397 } 2398 2399 if ((retval = usb_register_bus(&hcd->self)) < 0) 2400 goto err_register_bus; 2401 2402 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2403 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2404 retval = -ENOMEM; 2405 goto err_allocate_root_hub; 2406 } 2407 hcd->self.root_hub = rhdev; 2408 2409 switch (hcd->speed) { 2410 case HCD_USB11: 2411 rhdev->speed = USB_SPEED_FULL; 2412 break; 2413 case HCD_USB2: 2414 rhdev->speed = USB_SPEED_HIGH; 2415 break; 2416 case HCD_USB3: 2417 rhdev->speed = USB_SPEED_SUPER; 2418 break; 2419 default: 2420 retval = -EINVAL; 2421 goto err_set_rh_speed; 2422 } 2423 2424 /* wakeup flag init defaults to "everything works" for root hubs, 2425 * but drivers can override it in reset() if needed, along with 2426 * recording the overall controller's system wakeup capability. 2427 */ 2428 device_set_wakeup_capable(&rhdev->dev, 1); 2429 2430 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2431 * registered. But since the controller can die at any time, 2432 * let's initialize the flag before touching the hardware. 2433 */ 2434 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2435 2436 /* "reset" is misnamed; its role is now one-time init. the controller 2437 * should already have been reset (and boot firmware kicked off etc). 2438 */ 2439 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2440 dev_err(hcd->self.controller, "can't setup\n"); 2441 goto err_hcd_driver_setup; 2442 } 2443 hcd->rh_pollable = 1; 2444 2445 /* NOTE: root hub and controller capabilities may not be the same */ 2446 if (device_can_wakeup(hcd->self.controller) 2447 && device_can_wakeup(&hcd->self.root_hub->dev)) 2448 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2449 2450 /* enable irqs just before we start the controller, 2451 * if the BIOS provides legacy PCI irqs. 2452 */ 2453 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2454 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2455 if (retval) 2456 goto err_request_irq; 2457 } 2458 2459 hcd->state = HC_STATE_RUNNING; 2460 retval = hcd->driver->start(hcd); 2461 if (retval < 0) { 2462 dev_err(hcd->self.controller, "startup error %d\n", retval); 2463 goto err_hcd_driver_start; 2464 } 2465 2466 /* starting here, usbcore will pay attention to this root hub */ 2467 rhdev->bus_mA = min(500u, hcd->power_budget); 2468 if ((retval = register_root_hub(hcd)) != 0) 2469 goto err_register_root_hub; 2470 2471 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2472 if (retval < 0) { 2473 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2474 retval); 2475 goto error_create_attr_group; 2476 } 2477 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2478 usb_hcd_poll_rh_status(hcd); 2479 2480 /* 2481 * Host controllers don't generate their own wakeup requests; 2482 * they only forward requests from the root hub. Therefore 2483 * controllers should always be enabled for remote wakeup. 2484 */ 2485 device_wakeup_enable(hcd->self.controller); 2486 return retval; 2487 2488 error_create_attr_group: 2489 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2490 if (HC_IS_RUNNING(hcd->state)) 2491 hcd->state = HC_STATE_QUIESCING; 2492 spin_lock_irq(&hcd_root_hub_lock); 2493 hcd->rh_registered = 0; 2494 spin_unlock_irq(&hcd_root_hub_lock); 2495 2496 #ifdef CONFIG_USB_SUSPEND 2497 cancel_work_sync(&hcd->wakeup_work); 2498 #endif 2499 mutex_lock(&usb_bus_list_lock); 2500 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2501 mutex_unlock(&usb_bus_list_lock); 2502 err_register_root_hub: 2503 hcd->rh_pollable = 0; 2504 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2505 del_timer_sync(&hcd->rh_timer); 2506 hcd->driver->stop(hcd); 2507 hcd->state = HC_STATE_HALT; 2508 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2509 del_timer_sync(&hcd->rh_timer); 2510 err_hcd_driver_start: 2511 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2512 free_irq(irqnum, hcd); 2513 err_request_irq: 2514 err_hcd_driver_setup: 2515 err_set_rh_speed: 2516 usb_put_dev(hcd->self.root_hub); 2517 err_allocate_root_hub: 2518 usb_deregister_bus(&hcd->self); 2519 err_register_bus: 2520 hcd_buffer_destroy(hcd); 2521 return retval; 2522 } 2523 EXPORT_SYMBOL_GPL(usb_add_hcd); 2524 2525 /** 2526 * usb_remove_hcd - shutdown processing for generic HCDs 2527 * @hcd: the usb_hcd structure to remove 2528 * Context: !in_interrupt() 2529 * 2530 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2531 * invoking the HCD's stop() method. 2532 */ 2533 void usb_remove_hcd(struct usb_hcd *hcd) 2534 { 2535 struct usb_device *rhdev = hcd->self.root_hub; 2536 2537 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2538 2539 usb_get_dev(rhdev); 2540 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2541 2542 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2543 if (HC_IS_RUNNING (hcd->state)) 2544 hcd->state = HC_STATE_QUIESCING; 2545 2546 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2547 spin_lock_irq (&hcd_root_hub_lock); 2548 hcd->rh_registered = 0; 2549 spin_unlock_irq (&hcd_root_hub_lock); 2550 2551 #ifdef CONFIG_USB_SUSPEND 2552 cancel_work_sync(&hcd->wakeup_work); 2553 #endif 2554 2555 mutex_lock(&usb_bus_list_lock); 2556 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2557 mutex_unlock(&usb_bus_list_lock); 2558 2559 /* Prevent any more root-hub status calls from the timer. 2560 * The HCD might still restart the timer (if a port status change 2561 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2562 * the hub_status_data() callback. 2563 */ 2564 hcd->rh_pollable = 0; 2565 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2566 del_timer_sync(&hcd->rh_timer); 2567 2568 hcd->driver->stop(hcd); 2569 hcd->state = HC_STATE_HALT; 2570 2571 /* In case the HCD restarted the timer, stop it again. */ 2572 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2573 del_timer_sync(&hcd->rh_timer); 2574 2575 if (usb_hcd_is_primary_hcd(hcd)) { 2576 if (hcd->irq > 0) 2577 free_irq(hcd->irq, hcd); 2578 } 2579 2580 usb_put_dev(hcd->self.root_hub); 2581 usb_deregister_bus(&hcd->self); 2582 hcd_buffer_destroy(hcd); 2583 } 2584 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2585 2586 void 2587 usb_hcd_platform_shutdown(struct platform_device* dev) 2588 { 2589 struct usb_hcd *hcd = platform_get_drvdata(dev); 2590 2591 if (hcd->driver->shutdown) 2592 hcd->driver->shutdown(hcd); 2593 } 2594 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2595 2596 /*-------------------------------------------------------------------------*/ 2597 2598 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2599 2600 struct usb_mon_operations *mon_ops; 2601 2602 /* 2603 * The registration is unlocked. 2604 * We do it this way because we do not want to lock in hot paths. 2605 * 2606 * Notice that the code is minimally error-proof. Because usbmon needs 2607 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2608 */ 2609 2610 int usb_mon_register (struct usb_mon_operations *ops) 2611 { 2612 2613 if (mon_ops) 2614 return -EBUSY; 2615 2616 mon_ops = ops; 2617 mb(); 2618 return 0; 2619 } 2620 EXPORT_SYMBOL_GPL (usb_mon_register); 2621 2622 void usb_mon_deregister (void) 2623 { 2624 2625 if (mon_ops == NULL) { 2626 printk(KERN_ERR "USB: monitor was not registered\n"); 2627 return; 2628 } 2629 mon_ops = NULL; 2630 mb(); 2631 } 2632 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2633 2634 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2635