1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 #include <linux/usb/hcd.h> 44 45 #include "usb.h" 46 47 48 /*-------------------------------------------------------------------------*/ 49 50 /* 51 * USB Host Controller Driver framework 52 * 53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 54 * HCD-specific behaviors/bugs. 55 * 56 * This does error checks, tracks devices and urbs, and delegates to a 57 * "hc_driver" only for code (and data) that really needs to know about 58 * hardware differences. That includes root hub registers, i/o queues, 59 * and so on ... but as little else as possible. 60 * 61 * Shared code includes most of the "root hub" code (these are emulated, 62 * though each HC's hardware works differently) and PCI glue, plus request 63 * tracking overhead. The HCD code should only block on spinlocks or on 64 * hardware handshaking; blocking on software events (such as other kernel 65 * threads releasing resources, or completing actions) is all generic. 66 * 67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 69 * only by the hub driver ... and that neither should be seen or used by 70 * usb client device drivers. 71 * 72 * Contributors of ideas or unattributed patches include: David Brownell, 73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 74 * 75 * HISTORY: 76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 77 * associated cleanup. "usb_hcd" still != "usb_bus". 78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 79 */ 80 81 /*-------------------------------------------------------------------------*/ 82 83 /* Keep track of which host controller drivers are loaded */ 84 unsigned long usb_hcds_loaded; 85 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 86 87 /* host controllers we manage */ 88 LIST_HEAD (usb_bus_list); 89 EXPORT_SYMBOL_GPL (usb_bus_list); 90 91 /* used when allocating bus numbers */ 92 #define USB_MAXBUS 64 93 struct usb_busmap { 94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 95 }; 96 static struct usb_busmap busmap; 97 98 /* used when updating list of hcds */ 99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 100 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 101 102 /* used for controlling access to virtual root hubs */ 103 static DEFINE_SPINLOCK(hcd_root_hub_lock); 104 105 /* used when updating an endpoint's URB list */ 106 static DEFINE_SPINLOCK(hcd_urb_list_lock); 107 108 /* used to protect against unlinking URBs after the device is gone */ 109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 110 111 /* wait queue for synchronous unlinks */ 112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 113 114 static inline int is_root_hub(struct usb_device *udev) 115 { 116 return (udev->parent == NULL); 117 } 118 119 /*-------------------------------------------------------------------------*/ 120 121 /* 122 * Sharable chunks of root hub code. 123 */ 124 125 /*-------------------------------------------------------------------------*/ 126 127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 129 130 /* usb 3.0 root hub device descriptor */ 131 static const u8 usb3_rh_dev_descriptor[18] = { 132 0x12, /* __u8 bLength; */ 133 0x01, /* __u8 bDescriptorType; Device */ 134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 135 136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 137 0x00, /* __u8 bDeviceSubClass; */ 138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 140 141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 144 145 0x03, /* __u8 iManufacturer; */ 146 0x02, /* __u8 iProduct; */ 147 0x01, /* __u8 iSerialNumber; */ 148 0x01 /* __u8 bNumConfigurations; */ 149 }; 150 151 /* usb 2.0 root hub device descriptor */ 152 static const u8 usb2_rh_dev_descriptor [18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 173 174 /* usb 1.1 root hub device descriptor */ 175 static const u8 usb11_rh_dev_descriptor [18] = { 176 0x12, /* __u8 bLength; */ 177 0x01, /* __u8 bDescriptorType; Device */ 178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 179 180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 181 0x00, /* __u8 bDeviceSubClass; */ 182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 184 185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 188 189 0x03, /* __u8 iManufacturer; */ 190 0x02, /* __u8 iProduct; */ 191 0x01, /* __u8 iSerialNumber; */ 192 0x01 /* __u8 bNumConfigurations; */ 193 }; 194 195 196 /*-------------------------------------------------------------------------*/ 197 198 /* Configuration descriptors for our root hubs */ 199 200 static const u8 fs_rh_config_descriptor [] = { 201 202 /* one configuration */ 203 0x09, /* __u8 bLength; */ 204 0x02, /* __u8 bDescriptorType; Configuration */ 205 0x19, 0x00, /* __le16 wTotalLength; */ 206 0x01, /* __u8 bNumInterfaces; (1) */ 207 0x01, /* __u8 bConfigurationValue; */ 208 0x00, /* __u8 iConfiguration; */ 209 0xc0, /* __u8 bmAttributes; 210 Bit 7: must be set, 211 6: Self-powered, 212 5: Remote wakeup, 213 4..0: resvd */ 214 0x00, /* __u8 MaxPower; */ 215 216 /* USB 1.1: 217 * USB 2.0, single TT organization (mandatory): 218 * one interface, protocol 0 219 * 220 * USB 2.0, multiple TT organization (optional): 221 * two interfaces, protocols 1 (like single TT) 222 * and 2 (multiple TT mode) ... config is 223 * sometimes settable 224 * NOT IMPLEMENTED 225 */ 226 227 /* one interface */ 228 0x09, /* __u8 if_bLength; */ 229 0x04, /* __u8 if_bDescriptorType; Interface */ 230 0x00, /* __u8 if_bInterfaceNumber; */ 231 0x00, /* __u8 if_bAlternateSetting; */ 232 0x01, /* __u8 if_bNumEndpoints; */ 233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 234 0x00, /* __u8 if_bInterfaceSubClass; */ 235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 236 0x00, /* __u8 if_iInterface; */ 237 238 /* one endpoint (status change endpoint) */ 239 0x07, /* __u8 ep_bLength; */ 240 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 242 0x03, /* __u8 ep_bmAttributes; Interrupt */ 243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 245 }; 246 247 static const u8 hs_rh_config_descriptor [] = { 248 249 /* one configuration */ 250 0x09, /* __u8 bLength; */ 251 0x02, /* __u8 bDescriptorType; Configuration */ 252 0x19, 0x00, /* __le16 wTotalLength; */ 253 0x01, /* __u8 bNumInterfaces; (1) */ 254 0x01, /* __u8 bConfigurationValue; */ 255 0x00, /* __u8 iConfiguration; */ 256 0xc0, /* __u8 bmAttributes; 257 Bit 7: must be set, 258 6: Self-powered, 259 5: Remote wakeup, 260 4..0: resvd */ 261 0x00, /* __u8 MaxPower; */ 262 263 /* USB 1.1: 264 * USB 2.0, single TT organization (mandatory): 265 * one interface, protocol 0 266 * 267 * USB 2.0, multiple TT organization (optional): 268 * two interfaces, protocols 1 (like single TT) 269 * and 2 (multiple TT mode) ... config is 270 * sometimes settable 271 * NOT IMPLEMENTED 272 */ 273 274 /* one interface */ 275 0x09, /* __u8 if_bLength; */ 276 0x04, /* __u8 if_bDescriptorType; Interface */ 277 0x00, /* __u8 if_bInterfaceNumber; */ 278 0x00, /* __u8 if_bAlternateSetting; */ 279 0x01, /* __u8 if_bNumEndpoints; */ 280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 281 0x00, /* __u8 if_bInterfaceSubClass; */ 282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 283 0x00, /* __u8 if_iInterface; */ 284 285 /* one endpoint (status change endpoint) */ 286 0x07, /* __u8 ep_bLength; */ 287 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 289 0x03, /* __u8 ep_bmAttributes; Interrupt */ 290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 291 * see hub.c:hub_configure() for details. */ 292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 294 }; 295 296 static const u8 ss_rh_config_descriptor[] = { 297 /* one configuration */ 298 0x09, /* __u8 bLength; */ 299 0x02, /* __u8 bDescriptorType; Configuration */ 300 0x1f, 0x00, /* __le16 wTotalLength; */ 301 0x01, /* __u8 bNumInterfaces; (1) */ 302 0x01, /* __u8 bConfigurationValue; */ 303 0x00, /* __u8 iConfiguration; */ 304 0xc0, /* __u8 bmAttributes; 305 Bit 7: must be set, 306 6: Self-powered, 307 5: Remote wakeup, 308 4..0: resvd */ 309 0x00, /* __u8 MaxPower; */ 310 311 /* one interface */ 312 0x09, /* __u8 if_bLength; */ 313 0x04, /* __u8 if_bDescriptorType; Interface */ 314 0x00, /* __u8 if_bInterfaceNumber; */ 315 0x00, /* __u8 if_bAlternateSetting; */ 316 0x01, /* __u8 if_bNumEndpoints; */ 317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 318 0x00, /* __u8 if_bInterfaceSubClass; */ 319 0x00, /* __u8 if_bInterfaceProtocol; */ 320 0x00, /* __u8 if_iInterface; */ 321 322 /* one endpoint (status change endpoint) */ 323 0x07, /* __u8 ep_bLength; */ 324 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 326 0x03, /* __u8 ep_bmAttributes; Interrupt */ 327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 328 * see hub.c:hub_configure() for details. */ 329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 331 332 /* one SuperSpeed endpoint companion descriptor */ 333 0x06, /* __u8 ss_bLength */ 334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 338 }; 339 340 /* authorized_default behaviour: 341 * -1 is authorized for all devices except wireless (old behaviour) 342 * 0 is unauthorized for all devices 343 * 1 is authorized for all devices 344 */ 345 static int authorized_default = -1; 346 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 347 MODULE_PARM_DESC(authorized_default, 348 "Default USB device authorization: 0 is not authorized, 1 is " 349 "authorized, -1 is authorized except for wireless USB (default, " 350 "old behaviour"); 351 /*-------------------------------------------------------------------------*/ 352 353 /** 354 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 355 * @s: Null-terminated ASCII (actually ISO-8859-1) string 356 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 357 * @len: Length (in bytes; may be odd) of descriptor buffer. 358 * 359 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 360 * buflen, whichever is less. 361 * 362 * USB String descriptors can contain at most 126 characters; input 363 * strings longer than that are truncated. 364 */ 365 static unsigned 366 ascii2desc(char const *s, u8 *buf, unsigned len) 367 { 368 unsigned n, t = 2 + 2*strlen(s); 369 370 if (t > 254) 371 t = 254; /* Longest possible UTF string descriptor */ 372 if (len > t) 373 len = t; 374 375 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 376 377 n = len; 378 while (n--) { 379 *buf++ = t; 380 if (!n--) 381 break; 382 *buf++ = t >> 8; 383 t = (unsigned char)*s++; 384 } 385 return len; 386 } 387 388 /** 389 * rh_string() - provides string descriptors for root hub 390 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 391 * @hcd: the host controller for this root hub 392 * @data: buffer for output packet 393 * @len: length of the provided buffer 394 * 395 * Produces either a manufacturer, product or serial number string for the 396 * virtual root hub device. 397 * Returns the number of bytes filled in: the length of the descriptor or 398 * of the provided buffer, whichever is less. 399 */ 400 static unsigned 401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 402 { 403 char buf[100]; 404 char const *s; 405 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 406 407 // language ids 408 switch (id) { 409 case 0: 410 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 411 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 412 if (len > 4) 413 len = 4; 414 memcpy(data, langids, len); 415 return len; 416 case 1: 417 /* Serial number */ 418 s = hcd->self.bus_name; 419 break; 420 case 2: 421 /* Product name */ 422 s = hcd->product_desc; 423 break; 424 case 3: 425 /* Manufacturer */ 426 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 427 init_utsname()->release, hcd->driver->description); 428 s = buf; 429 break; 430 default: 431 /* Can't happen; caller guarantees it */ 432 return 0; 433 } 434 435 return ascii2desc(s, data, len); 436 } 437 438 439 /* Root hub control transfers execute synchronously */ 440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 441 { 442 struct usb_ctrlrequest *cmd; 443 u16 typeReq, wValue, wIndex, wLength; 444 u8 *ubuf = urb->transfer_buffer; 445 /* 446 * tbuf should be as big as the BOS descriptor and 447 * the USB hub descriptor. 448 */ 449 u8 tbuf[USB_DT_BOS_SIZE + USB_DT_USB_SS_CAP_SIZE] 450 __attribute__((aligned(4))); 451 const u8 *bufp = tbuf; 452 unsigned len = 0; 453 int status; 454 u8 patch_wakeup = 0; 455 u8 patch_protocol = 0; 456 457 might_sleep(); 458 459 spin_lock_irq(&hcd_root_hub_lock); 460 status = usb_hcd_link_urb_to_ep(hcd, urb); 461 spin_unlock_irq(&hcd_root_hub_lock); 462 if (status) 463 return status; 464 urb->hcpriv = hcd; /* Indicate it's queued */ 465 466 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 467 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 468 wValue = le16_to_cpu (cmd->wValue); 469 wIndex = le16_to_cpu (cmd->wIndex); 470 wLength = le16_to_cpu (cmd->wLength); 471 472 if (wLength > urb->transfer_buffer_length) 473 goto error; 474 475 urb->actual_length = 0; 476 switch (typeReq) { 477 478 /* DEVICE REQUESTS */ 479 480 /* The root hub's remote wakeup enable bit is implemented using 481 * driver model wakeup flags. If this system supports wakeup 482 * through USB, userspace may change the default "allow wakeup" 483 * policy through sysfs or these calls. 484 * 485 * Most root hubs support wakeup from downstream devices, for 486 * runtime power management (disabling USB clocks and reducing 487 * VBUS power usage). However, not all of them do so; silicon, 488 * board, and BIOS bugs here are not uncommon, so these can't 489 * be treated quite like external hubs. 490 * 491 * Likewise, not all root hubs will pass wakeup events upstream, 492 * to wake up the whole system. So don't assume root hub and 493 * controller capabilities are identical. 494 */ 495 496 case DeviceRequest | USB_REQ_GET_STATUS: 497 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 498 << USB_DEVICE_REMOTE_WAKEUP) 499 | (1 << USB_DEVICE_SELF_POWERED); 500 tbuf [1] = 0; 501 len = 2; 502 break; 503 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 504 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 505 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 506 else 507 goto error; 508 break; 509 case DeviceOutRequest | USB_REQ_SET_FEATURE: 510 if (device_can_wakeup(&hcd->self.root_hub->dev) 511 && wValue == USB_DEVICE_REMOTE_WAKEUP) 512 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 513 else 514 goto error; 515 break; 516 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 517 tbuf [0] = 1; 518 len = 1; 519 /* FALLTHROUGH */ 520 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 521 break; 522 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 523 switch (wValue & 0xff00) { 524 case USB_DT_DEVICE << 8: 525 switch (hcd->speed) { 526 case HCD_USB3: 527 bufp = usb3_rh_dev_descriptor; 528 break; 529 case HCD_USB2: 530 bufp = usb2_rh_dev_descriptor; 531 break; 532 case HCD_USB11: 533 bufp = usb11_rh_dev_descriptor; 534 break; 535 default: 536 goto error; 537 } 538 len = 18; 539 if (hcd->has_tt) 540 patch_protocol = 1; 541 break; 542 case USB_DT_CONFIG << 8: 543 switch (hcd->speed) { 544 case HCD_USB3: 545 bufp = ss_rh_config_descriptor; 546 len = sizeof ss_rh_config_descriptor; 547 break; 548 case HCD_USB2: 549 bufp = hs_rh_config_descriptor; 550 len = sizeof hs_rh_config_descriptor; 551 break; 552 case HCD_USB11: 553 bufp = fs_rh_config_descriptor; 554 len = sizeof fs_rh_config_descriptor; 555 break; 556 default: 557 goto error; 558 } 559 if (device_can_wakeup(&hcd->self.root_hub->dev)) 560 patch_wakeup = 1; 561 break; 562 case USB_DT_STRING << 8: 563 if ((wValue & 0xff) < 4) 564 urb->actual_length = rh_string(wValue & 0xff, 565 hcd, ubuf, wLength); 566 else /* unsupported IDs --> "protocol stall" */ 567 goto error; 568 break; 569 case USB_DT_BOS << 8: 570 goto nongeneric; 571 default: 572 goto error; 573 } 574 break; 575 case DeviceRequest | USB_REQ_GET_INTERFACE: 576 tbuf [0] = 0; 577 len = 1; 578 /* FALLTHROUGH */ 579 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 580 break; 581 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 582 // wValue == urb->dev->devaddr 583 dev_dbg (hcd->self.controller, "root hub device address %d\n", 584 wValue); 585 break; 586 587 /* INTERFACE REQUESTS (no defined feature/status flags) */ 588 589 /* ENDPOINT REQUESTS */ 590 591 case EndpointRequest | USB_REQ_GET_STATUS: 592 // ENDPOINT_HALT flag 593 tbuf [0] = 0; 594 tbuf [1] = 0; 595 len = 2; 596 /* FALLTHROUGH */ 597 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 598 case EndpointOutRequest | USB_REQ_SET_FEATURE: 599 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 600 break; 601 602 /* CLASS REQUESTS (and errors) */ 603 604 default: 605 nongeneric: 606 /* non-generic request */ 607 switch (typeReq) { 608 case GetHubStatus: 609 case GetPortStatus: 610 len = 4; 611 break; 612 case GetHubDescriptor: 613 len = sizeof (struct usb_hub_descriptor); 614 break; 615 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 616 /* len is returned by hub_control */ 617 break; 618 } 619 status = hcd->driver->hub_control (hcd, 620 typeReq, wValue, wIndex, 621 tbuf, wLength); 622 break; 623 error: 624 /* "protocol stall" on error */ 625 status = -EPIPE; 626 } 627 628 if (status < 0) { 629 len = 0; 630 if (status != -EPIPE) { 631 dev_dbg (hcd->self.controller, 632 "CTRL: TypeReq=0x%x val=0x%x " 633 "idx=0x%x len=%d ==> %d\n", 634 typeReq, wValue, wIndex, 635 wLength, status); 636 } 637 } else if (status > 0) { 638 /* hub_control may return the length of data copied. */ 639 len = status; 640 status = 0; 641 } 642 if (len) { 643 if (urb->transfer_buffer_length < len) 644 len = urb->transfer_buffer_length; 645 urb->actual_length = len; 646 // always USB_DIR_IN, toward host 647 memcpy (ubuf, bufp, len); 648 649 /* report whether RH hardware supports remote wakeup */ 650 if (patch_wakeup && 651 len > offsetof (struct usb_config_descriptor, 652 bmAttributes)) 653 ((struct usb_config_descriptor *)ubuf)->bmAttributes 654 |= USB_CONFIG_ATT_WAKEUP; 655 656 /* report whether RH hardware has an integrated TT */ 657 if (patch_protocol && 658 len > offsetof(struct usb_device_descriptor, 659 bDeviceProtocol)) 660 ((struct usb_device_descriptor *) ubuf)-> 661 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 662 } 663 664 /* any errors get returned through the urb completion */ 665 spin_lock_irq(&hcd_root_hub_lock); 666 usb_hcd_unlink_urb_from_ep(hcd, urb); 667 668 /* This peculiar use of spinlocks echoes what real HC drivers do. 669 * Avoiding calls to local_irq_disable/enable makes the code 670 * RT-friendly. 671 */ 672 spin_unlock(&hcd_root_hub_lock); 673 usb_hcd_giveback_urb(hcd, urb, status); 674 spin_lock(&hcd_root_hub_lock); 675 676 spin_unlock_irq(&hcd_root_hub_lock); 677 return 0; 678 } 679 680 /*-------------------------------------------------------------------------*/ 681 682 /* 683 * Root Hub interrupt transfers are polled using a timer if the 684 * driver requests it; otherwise the driver is responsible for 685 * calling usb_hcd_poll_rh_status() when an event occurs. 686 * 687 * Completions are called in_interrupt(), but they may or may not 688 * be in_irq(). 689 */ 690 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 691 { 692 struct urb *urb; 693 int length; 694 unsigned long flags; 695 char buffer[6]; /* Any root hubs with > 31 ports? */ 696 697 if (unlikely(!hcd->rh_pollable)) 698 return; 699 if (!hcd->uses_new_polling && !hcd->status_urb) 700 return; 701 702 length = hcd->driver->hub_status_data(hcd, buffer); 703 if (length > 0) { 704 705 /* try to complete the status urb */ 706 spin_lock_irqsave(&hcd_root_hub_lock, flags); 707 urb = hcd->status_urb; 708 if (urb) { 709 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 710 hcd->status_urb = NULL; 711 urb->actual_length = length; 712 memcpy(urb->transfer_buffer, buffer, length); 713 714 usb_hcd_unlink_urb_from_ep(hcd, urb); 715 spin_unlock(&hcd_root_hub_lock); 716 usb_hcd_giveback_urb(hcd, urb, 0); 717 spin_lock(&hcd_root_hub_lock); 718 } else { 719 length = 0; 720 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 721 } 722 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 723 } 724 725 /* The USB 2.0 spec says 256 ms. This is close enough and won't 726 * exceed that limit if HZ is 100. The math is more clunky than 727 * maybe expected, this is to make sure that all timers for USB devices 728 * fire at the same time to give the CPU a break in between */ 729 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 730 (length == 0 && hcd->status_urb != NULL)) 731 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 732 } 733 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 734 735 /* timer callback */ 736 static void rh_timer_func (unsigned long _hcd) 737 { 738 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 739 } 740 741 /*-------------------------------------------------------------------------*/ 742 743 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 744 { 745 int retval; 746 unsigned long flags; 747 unsigned len = 1 + (urb->dev->maxchild / 8); 748 749 spin_lock_irqsave (&hcd_root_hub_lock, flags); 750 if (hcd->status_urb || urb->transfer_buffer_length < len) { 751 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 752 retval = -EINVAL; 753 goto done; 754 } 755 756 retval = usb_hcd_link_urb_to_ep(hcd, urb); 757 if (retval) 758 goto done; 759 760 hcd->status_urb = urb; 761 urb->hcpriv = hcd; /* indicate it's queued */ 762 if (!hcd->uses_new_polling) 763 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 764 765 /* If a status change has already occurred, report it ASAP */ 766 else if (HCD_POLL_PENDING(hcd)) 767 mod_timer(&hcd->rh_timer, jiffies); 768 retval = 0; 769 done: 770 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 771 return retval; 772 } 773 774 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 775 { 776 if (usb_endpoint_xfer_int(&urb->ep->desc)) 777 return rh_queue_status (hcd, urb); 778 if (usb_endpoint_xfer_control(&urb->ep->desc)) 779 return rh_call_control (hcd, urb); 780 return -EINVAL; 781 } 782 783 /*-------------------------------------------------------------------------*/ 784 785 /* Unlinks of root-hub control URBs are legal, but they don't do anything 786 * since these URBs always execute synchronously. 787 */ 788 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 789 { 790 unsigned long flags; 791 int rc; 792 793 spin_lock_irqsave(&hcd_root_hub_lock, flags); 794 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 795 if (rc) 796 goto done; 797 798 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 799 ; /* Do nothing */ 800 801 } else { /* Status URB */ 802 if (!hcd->uses_new_polling) 803 del_timer (&hcd->rh_timer); 804 if (urb == hcd->status_urb) { 805 hcd->status_urb = NULL; 806 usb_hcd_unlink_urb_from_ep(hcd, urb); 807 808 spin_unlock(&hcd_root_hub_lock); 809 usb_hcd_giveback_urb(hcd, urb, status); 810 spin_lock(&hcd_root_hub_lock); 811 } 812 } 813 done: 814 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 815 return rc; 816 } 817 818 819 820 /* 821 * Show & store the current value of authorized_default 822 */ 823 static ssize_t usb_host_authorized_default_show(struct device *dev, 824 struct device_attribute *attr, 825 char *buf) 826 { 827 struct usb_device *rh_usb_dev = to_usb_device(dev); 828 struct usb_bus *usb_bus = rh_usb_dev->bus; 829 struct usb_hcd *usb_hcd; 830 831 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 832 return -ENODEV; 833 usb_hcd = bus_to_hcd(usb_bus); 834 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 835 } 836 837 static ssize_t usb_host_authorized_default_store(struct device *dev, 838 struct device_attribute *attr, 839 const char *buf, size_t size) 840 { 841 ssize_t result; 842 unsigned val; 843 struct usb_device *rh_usb_dev = to_usb_device(dev); 844 struct usb_bus *usb_bus = rh_usb_dev->bus; 845 struct usb_hcd *usb_hcd; 846 847 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 848 return -ENODEV; 849 usb_hcd = bus_to_hcd(usb_bus); 850 result = sscanf(buf, "%u\n", &val); 851 if (result == 1) { 852 usb_hcd->authorized_default = val? 1 : 0; 853 result = size; 854 } 855 else 856 result = -EINVAL; 857 return result; 858 } 859 860 static DEVICE_ATTR(authorized_default, 0644, 861 usb_host_authorized_default_show, 862 usb_host_authorized_default_store); 863 864 865 /* Group all the USB bus attributes */ 866 static struct attribute *usb_bus_attrs[] = { 867 &dev_attr_authorized_default.attr, 868 NULL, 869 }; 870 871 static struct attribute_group usb_bus_attr_group = { 872 .name = NULL, /* we want them in the same directory */ 873 .attrs = usb_bus_attrs, 874 }; 875 876 877 878 /*-------------------------------------------------------------------------*/ 879 880 /** 881 * usb_bus_init - shared initialization code 882 * @bus: the bus structure being initialized 883 * 884 * This code is used to initialize a usb_bus structure, memory for which is 885 * separately managed. 886 */ 887 static void usb_bus_init (struct usb_bus *bus) 888 { 889 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 890 891 bus->devnum_next = 1; 892 893 bus->root_hub = NULL; 894 bus->busnum = -1; 895 bus->bandwidth_allocated = 0; 896 bus->bandwidth_int_reqs = 0; 897 bus->bandwidth_isoc_reqs = 0; 898 899 INIT_LIST_HEAD (&bus->bus_list); 900 } 901 902 /*-------------------------------------------------------------------------*/ 903 904 /** 905 * usb_register_bus - registers the USB host controller with the usb core 906 * @bus: pointer to the bus to register 907 * Context: !in_interrupt() 908 * 909 * Assigns a bus number, and links the controller into usbcore data 910 * structures so that it can be seen by scanning the bus list. 911 */ 912 static int usb_register_bus(struct usb_bus *bus) 913 { 914 int result = -E2BIG; 915 int busnum; 916 917 mutex_lock(&usb_bus_list_lock); 918 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 919 if (busnum >= USB_MAXBUS) { 920 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 921 goto error_find_busnum; 922 } 923 set_bit (busnum, busmap.busmap); 924 bus->busnum = busnum; 925 926 /* Add it to the local list of buses */ 927 list_add (&bus->bus_list, &usb_bus_list); 928 mutex_unlock(&usb_bus_list_lock); 929 930 usb_notify_add_bus(bus); 931 932 dev_info (bus->controller, "new USB bus registered, assigned bus " 933 "number %d\n", bus->busnum); 934 return 0; 935 936 error_find_busnum: 937 mutex_unlock(&usb_bus_list_lock); 938 return result; 939 } 940 941 /** 942 * usb_deregister_bus - deregisters the USB host controller 943 * @bus: pointer to the bus to deregister 944 * Context: !in_interrupt() 945 * 946 * Recycles the bus number, and unlinks the controller from usbcore data 947 * structures so that it won't be seen by scanning the bus list. 948 */ 949 static void usb_deregister_bus (struct usb_bus *bus) 950 { 951 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 952 953 /* 954 * NOTE: make sure that all the devices are removed by the 955 * controller code, as well as having it call this when cleaning 956 * itself up 957 */ 958 mutex_lock(&usb_bus_list_lock); 959 list_del (&bus->bus_list); 960 mutex_unlock(&usb_bus_list_lock); 961 962 usb_notify_remove_bus(bus); 963 964 clear_bit (bus->busnum, busmap.busmap); 965 } 966 967 /** 968 * register_root_hub - called by usb_add_hcd() to register a root hub 969 * @hcd: host controller for this root hub 970 * 971 * This function registers the root hub with the USB subsystem. It sets up 972 * the device properly in the device tree and then calls usb_new_device() 973 * to register the usb device. It also assigns the root hub's USB address 974 * (always 1). 975 */ 976 static int register_root_hub(struct usb_hcd *hcd) 977 { 978 struct device *parent_dev = hcd->self.controller; 979 struct usb_device *usb_dev = hcd->self.root_hub; 980 const int devnum = 1; 981 int retval; 982 983 usb_dev->devnum = devnum; 984 usb_dev->bus->devnum_next = devnum + 1; 985 memset (&usb_dev->bus->devmap.devicemap, 0, 986 sizeof usb_dev->bus->devmap.devicemap); 987 set_bit (devnum, usb_dev->bus->devmap.devicemap); 988 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 989 990 mutex_lock(&usb_bus_list_lock); 991 992 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 993 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 994 if (retval != sizeof usb_dev->descriptor) { 995 mutex_unlock(&usb_bus_list_lock); 996 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 997 dev_name(&usb_dev->dev), retval); 998 return (retval < 0) ? retval : -EMSGSIZE; 999 } 1000 if (usb_dev->speed == USB_SPEED_SUPER) { 1001 retval = usb_get_bos_descriptor(usb_dev); 1002 if (retval < 0) { 1003 mutex_unlock(&usb_bus_list_lock); 1004 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1005 dev_name(&usb_dev->dev), retval); 1006 return retval; 1007 } 1008 } 1009 1010 retval = usb_new_device (usb_dev); 1011 if (retval) { 1012 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1013 dev_name(&usb_dev->dev), retval); 1014 } 1015 mutex_unlock(&usb_bus_list_lock); 1016 1017 if (retval == 0) { 1018 spin_lock_irq (&hcd_root_hub_lock); 1019 hcd->rh_registered = 1; 1020 spin_unlock_irq (&hcd_root_hub_lock); 1021 1022 /* Did the HC die before the root hub was registered? */ 1023 if (HCD_DEAD(hcd)) 1024 usb_hc_died (hcd); /* This time clean up */ 1025 } 1026 1027 return retval; 1028 } 1029 1030 1031 /*-------------------------------------------------------------------------*/ 1032 1033 /** 1034 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1035 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1036 * @is_input: true iff the transaction sends data to the host 1037 * @isoc: true for isochronous transactions, false for interrupt ones 1038 * @bytecount: how many bytes in the transaction. 1039 * 1040 * Returns approximate bus time in nanoseconds for a periodic transaction. 1041 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1042 * scheduled in software, this function is only used for such scheduling. 1043 */ 1044 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1045 { 1046 unsigned long tmp; 1047 1048 switch (speed) { 1049 case USB_SPEED_LOW: /* INTR only */ 1050 if (is_input) { 1051 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1052 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1053 } else { 1054 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1055 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1056 } 1057 case USB_SPEED_FULL: /* ISOC or INTR */ 1058 if (isoc) { 1059 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1060 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1061 } else { 1062 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1063 return (9107L + BW_HOST_DELAY + tmp); 1064 } 1065 case USB_SPEED_HIGH: /* ISOC or INTR */ 1066 // FIXME adjust for input vs output 1067 if (isoc) 1068 tmp = HS_NSECS_ISO (bytecount); 1069 else 1070 tmp = HS_NSECS (bytecount); 1071 return tmp; 1072 default: 1073 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1074 return -1; 1075 } 1076 } 1077 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1078 1079 1080 /*-------------------------------------------------------------------------*/ 1081 1082 /* 1083 * Generic HC operations. 1084 */ 1085 1086 /*-------------------------------------------------------------------------*/ 1087 1088 /** 1089 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1090 * @hcd: host controller to which @urb was submitted 1091 * @urb: URB being submitted 1092 * 1093 * Host controller drivers should call this routine in their enqueue() 1094 * method. The HCD's private spinlock must be held and interrupts must 1095 * be disabled. The actions carried out here are required for URB 1096 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1097 * 1098 * Returns 0 for no error, otherwise a negative error code (in which case 1099 * the enqueue() method must fail). If no error occurs but enqueue() fails 1100 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1101 * the private spinlock and returning. 1102 */ 1103 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1104 { 1105 int rc = 0; 1106 1107 spin_lock(&hcd_urb_list_lock); 1108 1109 /* Check that the URB isn't being killed */ 1110 if (unlikely(atomic_read(&urb->reject))) { 1111 rc = -EPERM; 1112 goto done; 1113 } 1114 1115 if (unlikely(!urb->ep->enabled)) { 1116 rc = -ENOENT; 1117 goto done; 1118 } 1119 1120 if (unlikely(!urb->dev->can_submit)) { 1121 rc = -EHOSTUNREACH; 1122 goto done; 1123 } 1124 1125 /* 1126 * Check the host controller's state and add the URB to the 1127 * endpoint's queue. 1128 */ 1129 if (HCD_RH_RUNNING(hcd)) { 1130 urb->unlinked = 0; 1131 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1132 } else { 1133 rc = -ESHUTDOWN; 1134 goto done; 1135 } 1136 done: 1137 spin_unlock(&hcd_urb_list_lock); 1138 return rc; 1139 } 1140 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1141 1142 /** 1143 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1144 * @hcd: host controller to which @urb was submitted 1145 * @urb: URB being checked for unlinkability 1146 * @status: error code to store in @urb if the unlink succeeds 1147 * 1148 * Host controller drivers should call this routine in their dequeue() 1149 * method. The HCD's private spinlock must be held and interrupts must 1150 * be disabled. The actions carried out here are required for making 1151 * sure than an unlink is valid. 1152 * 1153 * Returns 0 for no error, otherwise a negative error code (in which case 1154 * the dequeue() method must fail). The possible error codes are: 1155 * 1156 * -EIDRM: @urb was not submitted or has already completed. 1157 * The completion function may not have been called yet. 1158 * 1159 * -EBUSY: @urb has already been unlinked. 1160 */ 1161 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1162 int status) 1163 { 1164 struct list_head *tmp; 1165 1166 /* insist the urb is still queued */ 1167 list_for_each(tmp, &urb->ep->urb_list) { 1168 if (tmp == &urb->urb_list) 1169 break; 1170 } 1171 if (tmp != &urb->urb_list) 1172 return -EIDRM; 1173 1174 /* Any status except -EINPROGRESS means something already started to 1175 * unlink this URB from the hardware. So there's no more work to do. 1176 */ 1177 if (urb->unlinked) 1178 return -EBUSY; 1179 urb->unlinked = status; 1180 return 0; 1181 } 1182 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1183 1184 /** 1185 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1186 * @hcd: host controller to which @urb was submitted 1187 * @urb: URB being unlinked 1188 * 1189 * Host controller drivers should call this routine before calling 1190 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1191 * interrupts must be disabled. The actions carried out here are required 1192 * for URB completion. 1193 */ 1194 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1195 { 1196 /* clear all state linking urb to this dev (and hcd) */ 1197 spin_lock(&hcd_urb_list_lock); 1198 list_del_init(&urb->urb_list); 1199 spin_unlock(&hcd_urb_list_lock); 1200 } 1201 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1202 1203 /* 1204 * Some usb host controllers can only perform dma using a small SRAM area. 1205 * The usb core itself is however optimized for host controllers that can dma 1206 * using regular system memory - like pci devices doing bus mastering. 1207 * 1208 * To support host controllers with limited dma capabilites we provide dma 1209 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1210 * For this to work properly the host controller code must first use the 1211 * function dma_declare_coherent_memory() to point out which memory area 1212 * that should be used for dma allocations. 1213 * 1214 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1215 * dma using dma_alloc_coherent() which in turn allocates from the memory 1216 * area pointed out with dma_declare_coherent_memory(). 1217 * 1218 * So, to summarize... 1219 * 1220 * - We need "local" memory, canonical example being 1221 * a small SRAM on a discrete controller being the 1222 * only memory that the controller can read ... 1223 * (a) "normal" kernel memory is no good, and 1224 * (b) there's not enough to share 1225 * 1226 * - The only *portable* hook for such stuff in the 1227 * DMA framework is dma_declare_coherent_memory() 1228 * 1229 * - So we use that, even though the primary requirement 1230 * is that the memory be "local" (hence addressible 1231 * by that device), not "coherent". 1232 * 1233 */ 1234 1235 static int hcd_alloc_coherent(struct usb_bus *bus, 1236 gfp_t mem_flags, dma_addr_t *dma_handle, 1237 void **vaddr_handle, size_t size, 1238 enum dma_data_direction dir) 1239 { 1240 unsigned char *vaddr; 1241 1242 if (*vaddr_handle == NULL) { 1243 WARN_ON_ONCE(1); 1244 return -EFAULT; 1245 } 1246 1247 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1248 mem_flags, dma_handle); 1249 if (!vaddr) 1250 return -ENOMEM; 1251 1252 /* 1253 * Store the virtual address of the buffer at the end 1254 * of the allocated dma buffer. The size of the buffer 1255 * may be uneven so use unaligned functions instead 1256 * of just rounding up. It makes sense to optimize for 1257 * memory footprint over access speed since the amount 1258 * of memory available for dma may be limited. 1259 */ 1260 put_unaligned((unsigned long)*vaddr_handle, 1261 (unsigned long *)(vaddr + size)); 1262 1263 if (dir == DMA_TO_DEVICE) 1264 memcpy(vaddr, *vaddr_handle, size); 1265 1266 *vaddr_handle = vaddr; 1267 return 0; 1268 } 1269 1270 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1271 void **vaddr_handle, size_t size, 1272 enum dma_data_direction dir) 1273 { 1274 unsigned char *vaddr = *vaddr_handle; 1275 1276 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1277 1278 if (dir == DMA_FROM_DEVICE) 1279 memcpy(vaddr, *vaddr_handle, size); 1280 1281 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1282 1283 *vaddr_handle = vaddr; 1284 *dma_handle = 0; 1285 } 1286 1287 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1288 { 1289 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1290 dma_unmap_single(hcd->self.controller, 1291 urb->setup_dma, 1292 sizeof(struct usb_ctrlrequest), 1293 DMA_TO_DEVICE); 1294 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1295 hcd_free_coherent(urb->dev->bus, 1296 &urb->setup_dma, 1297 (void **) &urb->setup_packet, 1298 sizeof(struct usb_ctrlrequest), 1299 DMA_TO_DEVICE); 1300 1301 /* Make it safe to call this routine more than once */ 1302 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1303 } 1304 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1305 1306 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1307 { 1308 if (hcd->driver->unmap_urb_for_dma) 1309 hcd->driver->unmap_urb_for_dma(hcd, urb); 1310 else 1311 usb_hcd_unmap_urb_for_dma(hcd, urb); 1312 } 1313 1314 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1315 { 1316 enum dma_data_direction dir; 1317 1318 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1319 1320 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1321 if (urb->transfer_flags & URB_DMA_MAP_SG) 1322 dma_unmap_sg(hcd->self.controller, 1323 urb->sg, 1324 urb->num_sgs, 1325 dir); 1326 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1327 dma_unmap_page(hcd->self.controller, 1328 urb->transfer_dma, 1329 urb->transfer_buffer_length, 1330 dir); 1331 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1332 dma_unmap_single(hcd->self.controller, 1333 urb->transfer_dma, 1334 urb->transfer_buffer_length, 1335 dir); 1336 else if (urb->transfer_flags & URB_MAP_LOCAL) 1337 hcd_free_coherent(urb->dev->bus, 1338 &urb->transfer_dma, 1339 &urb->transfer_buffer, 1340 urb->transfer_buffer_length, 1341 dir); 1342 1343 /* Make it safe to call this routine more than once */ 1344 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1345 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1346 } 1347 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1348 1349 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1350 gfp_t mem_flags) 1351 { 1352 if (hcd->driver->map_urb_for_dma) 1353 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1354 else 1355 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1356 } 1357 1358 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1359 gfp_t mem_flags) 1360 { 1361 enum dma_data_direction dir; 1362 int ret = 0; 1363 1364 /* Map the URB's buffers for DMA access. 1365 * Lower level HCD code should use *_dma exclusively, 1366 * unless it uses pio or talks to another transport, 1367 * or uses the provided scatter gather list for bulk. 1368 */ 1369 1370 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1371 if (hcd->self.uses_pio_for_control) 1372 return ret; 1373 if (hcd->self.uses_dma) { 1374 urb->setup_dma = dma_map_single( 1375 hcd->self.controller, 1376 urb->setup_packet, 1377 sizeof(struct usb_ctrlrequest), 1378 DMA_TO_DEVICE); 1379 if (dma_mapping_error(hcd->self.controller, 1380 urb->setup_dma)) 1381 return -EAGAIN; 1382 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1383 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1384 ret = hcd_alloc_coherent( 1385 urb->dev->bus, mem_flags, 1386 &urb->setup_dma, 1387 (void **)&urb->setup_packet, 1388 sizeof(struct usb_ctrlrequest), 1389 DMA_TO_DEVICE); 1390 if (ret) 1391 return ret; 1392 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1393 } 1394 } 1395 1396 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1397 if (urb->transfer_buffer_length != 0 1398 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1399 if (hcd->self.uses_dma) { 1400 if (urb->num_sgs) { 1401 int n; 1402 1403 /* We don't support sg for isoc transfers ! */ 1404 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1405 WARN_ON(1); 1406 return -EINVAL; 1407 } 1408 1409 n = dma_map_sg( 1410 hcd->self.controller, 1411 urb->sg, 1412 urb->num_sgs, 1413 dir); 1414 if (n <= 0) 1415 ret = -EAGAIN; 1416 else 1417 urb->transfer_flags |= URB_DMA_MAP_SG; 1418 urb->num_mapped_sgs = n; 1419 if (n != urb->num_sgs) 1420 urb->transfer_flags |= 1421 URB_DMA_SG_COMBINED; 1422 } else if (urb->sg) { 1423 struct scatterlist *sg = urb->sg; 1424 urb->transfer_dma = dma_map_page( 1425 hcd->self.controller, 1426 sg_page(sg), 1427 sg->offset, 1428 urb->transfer_buffer_length, 1429 dir); 1430 if (dma_mapping_error(hcd->self.controller, 1431 urb->transfer_dma)) 1432 ret = -EAGAIN; 1433 else 1434 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1435 } else { 1436 urb->transfer_dma = dma_map_single( 1437 hcd->self.controller, 1438 urb->transfer_buffer, 1439 urb->transfer_buffer_length, 1440 dir); 1441 if (dma_mapping_error(hcd->self.controller, 1442 urb->transfer_dma)) 1443 ret = -EAGAIN; 1444 else 1445 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1446 } 1447 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1448 ret = hcd_alloc_coherent( 1449 urb->dev->bus, mem_flags, 1450 &urb->transfer_dma, 1451 &urb->transfer_buffer, 1452 urb->transfer_buffer_length, 1453 dir); 1454 if (ret == 0) 1455 urb->transfer_flags |= URB_MAP_LOCAL; 1456 } 1457 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1458 URB_SETUP_MAP_LOCAL))) 1459 usb_hcd_unmap_urb_for_dma(hcd, urb); 1460 } 1461 return ret; 1462 } 1463 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1464 1465 /*-------------------------------------------------------------------------*/ 1466 1467 /* may be called in any context with a valid urb->dev usecount 1468 * caller surrenders "ownership" of urb 1469 * expects usb_submit_urb() to have sanity checked and conditioned all 1470 * inputs in the urb 1471 */ 1472 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1473 { 1474 int status; 1475 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1476 1477 /* increment urb's reference count as part of giving it to the HCD 1478 * (which will control it). HCD guarantees that it either returns 1479 * an error or calls giveback(), but not both. 1480 */ 1481 usb_get_urb(urb); 1482 atomic_inc(&urb->use_count); 1483 atomic_inc(&urb->dev->urbnum); 1484 usbmon_urb_submit(&hcd->self, urb); 1485 1486 /* NOTE requirements on root-hub callers (usbfs and the hub 1487 * driver, for now): URBs' urb->transfer_buffer must be 1488 * valid and usb_buffer_{sync,unmap}() not be needed, since 1489 * they could clobber root hub response data. Also, control 1490 * URBs must be submitted in process context with interrupts 1491 * enabled. 1492 */ 1493 1494 if (is_root_hub(urb->dev)) { 1495 status = rh_urb_enqueue(hcd, urb); 1496 } else { 1497 status = map_urb_for_dma(hcd, urb, mem_flags); 1498 if (likely(status == 0)) { 1499 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1500 if (unlikely(status)) 1501 unmap_urb_for_dma(hcd, urb); 1502 } 1503 } 1504 1505 if (unlikely(status)) { 1506 usbmon_urb_submit_error(&hcd->self, urb, status); 1507 urb->hcpriv = NULL; 1508 INIT_LIST_HEAD(&urb->urb_list); 1509 atomic_dec(&urb->use_count); 1510 atomic_dec(&urb->dev->urbnum); 1511 if (atomic_read(&urb->reject)) 1512 wake_up(&usb_kill_urb_queue); 1513 usb_put_urb(urb); 1514 } 1515 return status; 1516 } 1517 1518 /*-------------------------------------------------------------------------*/ 1519 1520 /* this makes the hcd giveback() the urb more quickly, by kicking it 1521 * off hardware queues (which may take a while) and returning it as 1522 * soon as practical. we've already set up the urb's return status, 1523 * but we can't know if the callback completed already. 1524 */ 1525 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1526 { 1527 int value; 1528 1529 if (is_root_hub(urb->dev)) 1530 value = usb_rh_urb_dequeue(hcd, urb, status); 1531 else { 1532 1533 /* The only reason an HCD might fail this call is if 1534 * it has not yet fully queued the urb to begin with. 1535 * Such failures should be harmless. */ 1536 value = hcd->driver->urb_dequeue(hcd, urb, status); 1537 } 1538 return value; 1539 } 1540 1541 /* 1542 * called in any context 1543 * 1544 * caller guarantees urb won't be recycled till both unlink() 1545 * and the urb's completion function return 1546 */ 1547 int usb_hcd_unlink_urb (struct urb *urb, int status) 1548 { 1549 struct usb_hcd *hcd; 1550 int retval = -EIDRM; 1551 unsigned long flags; 1552 1553 /* Prevent the device and bus from going away while 1554 * the unlink is carried out. If they are already gone 1555 * then urb->use_count must be 0, since disconnected 1556 * devices can't have any active URBs. 1557 */ 1558 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1559 if (atomic_read(&urb->use_count) > 0) { 1560 retval = 0; 1561 usb_get_dev(urb->dev); 1562 } 1563 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1564 if (retval == 0) { 1565 hcd = bus_to_hcd(urb->dev->bus); 1566 retval = unlink1(hcd, urb, status); 1567 usb_put_dev(urb->dev); 1568 } 1569 1570 if (retval == 0) 1571 retval = -EINPROGRESS; 1572 else if (retval != -EIDRM && retval != -EBUSY) 1573 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1574 urb, retval); 1575 return retval; 1576 } 1577 1578 /*-------------------------------------------------------------------------*/ 1579 1580 /** 1581 * usb_hcd_giveback_urb - return URB from HCD to device driver 1582 * @hcd: host controller returning the URB 1583 * @urb: urb being returned to the USB device driver. 1584 * @status: completion status code for the URB. 1585 * Context: in_interrupt() 1586 * 1587 * This hands the URB from HCD to its USB device driver, using its 1588 * completion function. The HCD has freed all per-urb resources 1589 * (and is done using urb->hcpriv). It also released all HCD locks; 1590 * the device driver won't cause problems if it frees, modifies, 1591 * or resubmits this URB. 1592 * 1593 * If @urb was unlinked, the value of @status will be overridden by 1594 * @urb->unlinked. Erroneous short transfers are detected in case 1595 * the HCD hasn't checked for them. 1596 */ 1597 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1598 { 1599 urb->hcpriv = NULL; 1600 if (unlikely(urb->unlinked)) 1601 status = urb->unlinked; 1602 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1603 urb->actual_length < urb->transfer_buffer_length && 1604 !status)) 1605 status = -EREMOTEIO; 1606 1607 unmap_urb_for_dma(hcd, urb); 1608 usbmon_urb_complete(&hcd->self, urb, status); 1609 usb_unanchor_urb(urb); 1610 1611 /* pass ownership to the completion handler */ 1612 urb->status = status; 1613 urb->complete (urb); 1614 atomic_dec (&urb->use_count); 1615 if (unlikely(atomic_read(&urb->reject))) 1616 wake_up (&usb_kill_urb_queue); 1617 usb_put_urb (urb); 1618 } 1619 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1620 1621 /*-------------------------------------------------------------------------*/ 1622 1623 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1624 * queue to drain completely. The caller must first insure that no more 1625 * URBs can be submitted for this endpoint. 1626 */ 1627 void usb_hcd_flush_endpoint(struct usb_device *udev, 1628 struct usb_host_endpoint *ep) 1629 { 1630 struct usb_hcd *hcd; 1631 struct urb *urb; 1632 1633 if (!ep) 1634 return; 1635 might_sleep(); 1636 hcd = bus_to_hcd(udev->bus); 1637 1638 /* No more submits can occur */ 1639 spin_lock_irq(&hcd_urb_list_lock); 1640 rescan: 1641 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1642 int is_in; 1643 1644 if (urb->unlinked) 1645 continue; 1646 usb_get_urb (urb); 1647 is_in = usb_urb_dir_in(urb); 1648 spin_unlock(&hcd_urb_list_lock); 1649 1650 /* kick hcd */ 1651 unlink1(hcd, urb, -ESHUTDOWN); 1652 dev_dbg (hcd->self.controller, 1653 "shutdown urb %p ep%d%s%s\n", 1654 urb, usb_endpoint_num(&ep->desc), 1655 is_in ? "in" : "out", 1656 ({ char *s; 1657 1658 switch (usb_endpoint_type(&ep->desc)) { 1659 case USB_ENDPOINT_XFER_CONTROL: 1660 s = ""; break; 1661 case USB_ENDPOINT_XFER_BULK: 1662 s = "-bulk"; break; 1663 case USB_ENDPOINT_XFER_INT: 1664 s = "-intr"; break; 1665 default: 1666 s = "-iso"; break; 1667 }; 1668 s; 1669 })); 1670 usb_put_urb (urb); 1671 1672 /* list contents may have changed */ 1673 spin_lock(&hcd_urb_list_lock); 1674 goto rescan; 1675 } 1676 spin_unlock_irq(&hcd_urb_list_lock); 1677 1678 /* Wait until the endpoint queue is completely empty */ 1679 while (!list_empty (&ep->urb_list)) { 1680 spin_lock_irq(&hcd_urb_list_lock); 1681 1682 /* The list may have changed while we acquired the spinlock */ 1683 urb = NULL; 1684 if (!list_empty (&ep->urb_list)) { 1685 urb = list_entry (ep->urb_list.prev, struct urb, 1686 urb_list); 1687 usb_get_urb (urb); 1688 } 1689 spin_unlock_irq(&hcd_urb_list_lock); 1690 1691 if (urb) { 1692 usb_kill_urb (urb); 1693 usb_put_urb (urb); 1694 } 1695 } 1696 } 1697 1698 /** 1699 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1700 * the bus bandwidth 1701 * @udev: target &usb_device 1702 * @new_config: new configuration to install 1703 * @cur_alt: the current alternate interface setting 1704 * @new_alt: alternate interface setting that is being installed 1705 * 1706 * To change configurations, pass in the new configuration in new_config, 1707 * and pass NULL for cur_alt and new_alt. 1708 * 1709 * To reset a device's configuration (put the device in the ADDRESSED state), 1710 * pass in NULL for new_config, cur_alt, and new_alt. 1711 * 1712 * To change alternate interface settings, pass in NULL for new_config, 1713 * pass in the current alternate interface setting in cur_alt, 1714 * and pass in the new alternate interface setting in new_alt. 1715 * 1716 * Returns an error if the requested bandwidth change exceeds the 1717 * bus bandwidth or host controller internal resources. 1718 */ 1719 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1720 struct usb_host_config *new_config, 1721 struct usb_host_interface *cur_alt, 1722 struct usb_host_interface *new_alt) 1723 { 1724 int num_intfs, i, j; 1725 struct usb_host_interface *alt = NULL; 1726 int ret = 0; 1727 struct usb_hcd *hcd; 1728 struct usb_host_endpoint *ep; 1729 1730 hcd = bus_to_hcd(udev->bus); 1731 if (!hcd->driver->check_bandwidth) 1732 return 0; 1733 1734 /* Configuration is being removed - set configuration 0 */ 1735 if (!new_config && !cur_alt) { 1736 for (i = 1; i < 16; ++i) { 1737 ep = udev->ep_out[i]; 1738 if (ep) 1739 hcd->driver->drop_endpoint(hcd, udev, ep); 1740 ep = udev->ep_in[i]; 1741 if (ep) 1742 hcd->driver->drop_endpoint(hcd, udev, ep); 1743 } 1744 hcd->driver->check_bandwidth(hcd, udev); 1745 return 0; 1746 } 1747 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1748 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1749 * of the bus. There will always be bandwidth for endpoint 0, so it's 1750 * ok to exclude it. 1751 */ 1752 if (new_config) { 1753 num_intfs = new_config->desc.bNumInterfaces; 1754 /* Remove endpoints (except endpoint 0, which is always on the 1755 * schedule) from the old config from the schedule 1756 */ 1757 for (i = 1; i < 16; ++i) { 1758 ep = udev->ep_out[i]; 1759 if (ep) { 1760 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1761 if (ret < 0) 1762 goto reset; 1763 } 1764 ep = udev->ep_in[i]; 1765 if (ep) { 1766 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1767 if (ret < 0) 1768 goto reset; 1769 } 1770 } 1771 for (i = 0; i < num_intfs; ++i) { 1772 struct usb_host_interface *first_alt; 1773 int iface_num; 1774 1775 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1776 iface_num = first_alt->desc.bInterfaceNumber; 1777 /* Set up endpoints for alternate interface setting 0 */ 1778 alt = usb_find_alt_setting(new_config, iface_num, 0); 1779 if (!alt) 1780 /* No alt setting 0? Pick the first setting. */ 1781 alt = first_alt; 1782 1783 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1784 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1785 if (ret < 0) 1786 goto reset; 1787 } 1788 } 1789 } 1790 if (cur_alt && new_alt) { 1791 struct usb_interface *iface = usb_ifnum_to_if(udev, 1792 cur_alt->desc.bInterfaceNumber); 1793 1794 if (!iface) 1795 return -EINVAL; 1796 if (iface->resetting_device) { 1797 /* 1798 * The USB core just reset the device, so the xHCI host 1799 * and the device will think alt setting 0 is installed. 1800 * However, the USB core will pass in the alternate 1801 * setting installed before the reset as cur_alt. Dig 1802 * out the alternate setting 0 structure, or the first 1803 * alternate setting if a broken device doesn't have alt 1804 * setting 0. 1805 */ 1806 cur_alt = usb_altnum_to_altsetting(iface, 0); 1807 if (!cur_alt) 1808 cur_alt = &iface->altsetting[0]; 1809 } 1810 1811 /* Drop all the endpoints in the current alt setting */ 1812 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1813 ret = hcd->driver->drop_endpoint(hcd, udev, 1814 &cur_alt->endpoint[i]); 1815 if (ret < 0) 1816 goto reset; 1817 } 1818 /* Add all the endpoints in the new alt setting */ 1819 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1820 ret = hcd->driver->add_endpoint(hcd, udev, 1821 &new_alt->endpoint[i]); 1822 if (ret < 0) 1823 goto reset; 1824 } 1825 } 1826 ret = hcd->driver->check_bandwidth(hcd, udev); 1827 reset: 1828 if (ret < 0) 1829 hcd->driver->reset_bandwidth(hcd, udev); 1830 return ret; 1831 } 1832 1833 /* Disables the endpoint: synchronizes with the hcd to make sure all 1834 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1835 * have been called previously. Use for set_configuration, set_interface, 1836 * driver removal, physical disconnect. 1837 * 1838 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1839 * type, maxpacket size, toggle, halt status, and scheduling. 1840 */ 1841 void usb_hcd_disable_endpoint(struct usb_device *udev, 1842 struct usb_host_endpoint *ep) 1843 { 1844 struct usb_hcd *hcd; 1845 1846 might_sleep(); 1847 hcd = bus_to_hcd(udev->bus); 1848 if (hcd->driver->endpoint_disable) 1849 hcd->driver->endpoint_disable(hcd, ep); 1850 } 1851 1852 /** 1853 * usb_hcd_reset_endpoint - reset host endpoint state 1854 * @udev: USB device. 1855 * @ep: the endpoint to reset. 1856 * 1857 * Resets any host endpoint state such as the toggle bit, sequence 1858 * number and current window. 1859 */ 1860 void usb_hcd_reset_endpoint(struct usb_device *udev, 1861 struct usb_host_endpoint *ep) 1862 { 1863 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1864 1865 if (hcd->driver->endpoint_reset) 1866 hcd->driver->endpoint_reset(hcd, ep); 1867 else { 1868 int epnum = usb_endpoint_num(&ep->desc); 1869 int is_out = usb_endpoint_dir_out(&ep->desc); 1870 int is_control = usb_endpoint_xfer_control(&ep->desc); 1871 1872 usb_settoggle(udev, epnum, is_out, 0); 1873 if (is_control) 1874 usb_settoggle(udev, epnum, !is_out, 0); 1875 } 1876 } 1877 1878 /** 1879 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1880 * @interface: alternate setting that includes all endpoints. 1881 * @eps: array of endpoints that need streams. 1882 * @num_eps: number of endpoints in the array. 1883 * @num_streams: number of streams to allocate. 1884 * @mem_flags: flags hcd should use to allocate memory. 1885 * 1886 * Sets up a group of bulk endpoints to have num_streams stream IDs available. 1887 * Drivers may queue multiple transfers to different stream IDs, which may 1888 * complete in a different order than they were queued. 1889 */ 1890 int usb_alloc_streams(struct usb_interface *interface, 1891 struct usb_host_endpoint **eps, unsigned int num_eps, 1892 unsigned int num_streams, gfp_t mem_flags) 1893 { 1894 struct usb_hcd *hcd; 1895 struct usb_device *dev; 1896 int i; 1897 1898 dev = interface_to_usbdev(interface); 1899 hcd = bus_to_hcd(dev->bus); 1900 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 1901 return -EINVAL; 1902 if (dev->speed != USB_SPEED_SUPER) 1903 return -EINVAL; 1904 1905 /* Streams only apply to bulk endpoints. */ 1906 for (i = 0; i < num_eps; i++) 1907 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1908 return -EINVAL; 1909 1910 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 1911 num_streams, mem_flags); 1912 } 1913 EXPORT_SYMBOL_GPL(usb_alloc_streams); 1914 1915 /** 1916 * usb_free_streams - free bulk endpoint stream IDs. 1917 * @interface: alternate setting that includes all endpoints. 1918 * @eps: array of endpoints to remove streams from. 1919 * @num_eps: number of endpoints in the array. 1920 * @mem_flags: flags hcd should use to allocate memory. 1921 * 1922 * Reverts a group of bulk endpoints back to not using stream IDs. 1923 * Can fail if we are given bad arguments, or HCD is broken. 1924 */ 1925 void usb_free_streams(struct usb_interface *interface, 1926 struct usb_host_endpoint **eps, unsigned int num_eps, 1927 gfp_t mem_flags) 1928 { 1929 struct usb_hcd *hcd; 1930 struct usb_device *dev; 1931 int i; 1932 1933 dev = interface_to_usbdev(interface); 1934 hcd = bus_to_hcd(dev->bus); 1935 if (dev->speed != USB_SPEED_SUPER) 1936 return; 1937 1938 /* Streams only apply to bulk endpoints. */ 1939 for (i = 0; i < num_eps; i++) 1940 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc)) 1941 return; 1942 1943 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 1944 } 1945 EXPORT_SYMBOL_GPL(usb_free_streams); 1946 1947 /* Protect against drivers that try to unlink URBs after the device 1948 * is gone, by waiting until all unlinks for @udev are finished. 1949 * Since we don't currently track URBs by device, simply wait until 1950 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1951 */ 1952 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1953 { 1954 spin_lock_irq(&hcd_urb_unlink_lock); 1955 spin_unlock_irq(&hcd_urb_unlink_lock); 1956 } 1957 1958 /*-------------------------------------------------------------------------*/ 1959 1960 /* called in any context */ 1961 int usb_hcd_get_frame_number (struct usb_device *udev) 1962 { 1963 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1964 1965 if (!HCD_RH_RUNNING(hcd)) 1966 return -ESHUTDOWN; 1967 return hcd->driver->get_frame_number (hcd); 1968 } 1969 1970 /*-------------------------------------------------------------------------*/ 1971 1972 #ifdef CONFIG_PM 1973 1974 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1975 { 1976 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1977 int status; 1978 int old_state = hcd->state; 1979 1980 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 1981 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 1982 rhdev->do_remote_wakeup); 1983 if (HCD_DEAD(hcd)) { 1984 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 1985 return 0; 1986 } 1987 1988 if (!hcd->driver->bus_suspend) { 1989 status = -ENOENT; 1990 } else { 1991 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 1992 hcd->state = HC_STATE_QUIESCING; 1993 status = hcd->driver->bus_suspend(hcd); 1994 } 1995 if (status == 0) { 1996 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1997 hcd->state = HC_STATE_SUSPENDED; 1998 1999 /* Did we race with a root-hub wakeup event? */ 2000 if (rhdev->do_remote_wakeup) { 2001 char buffer[6]; 2002 2003 status = hcd->driver->hub_status_data(hcd, buffer); 2004 if (status != 0) { 2005 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2006 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2007 status = -EBUSY; 2008 } 2009 } 2010 } else { 2011 spin_lock_irq(&hcd_root_hub_lock); 2012 if (!HCD_DEAD(hcd)) { 2013 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2014 hcd->state = old_state; 2015 } 2016 spin_unlock_irq(&hcd_root_hub_lock); 2017 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2018 "suspend", status); 2019 } 2020 return status; 2021 } 2022 2023 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2024 { 2025 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2026 int status; 2027 int old_state = hcd->state; 2028 2029 dev_dbg(&rhdev->dev, "usb %sresume\n", 2030 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2031 if (HCD_DEAD(hcd)) { 2032 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2033 return 0; 2034 } 2035 if (!hcd->driver->bus_resume) 2036 return -ENOENT; 2037 if (HCD_RH_RUNNING(hcd)) 2038 return 0; 2039 2040 hcd->state = HC_STATE_RESUMING; 2041 status = hcd->driver->bus_resume(hcd); 2042 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2043 if (status == 0) { 2044 /* TRSMRCY = 10 msec */ 2045 msleep(10); 2046 spin_lock_irq(&hcd_root_hub_lock); 2047 if (!HCD_DEAD(hcd)) { 2048 usb_set_device_state(rhdev, rhdev->actconfig 2049 ? USB_STATE_CONFIGURED 2050 : USB_STATE_ADDRESS); 2051 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2052 hcd->state = HC_STATE_RUNNING; 2053 } 2054 spin_unlock_irq(&hcd_root_hub_lock); 2055 } else { 2056 hcd->state = old_state; 2057 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2058 "resume", status); 2059 if (status != -ESHUTDOWN) 2060 usb_hc_died(hcd); 2061 } 2062 return status; 2063 } 2064 2065 #endif /* CONFIG_PM */ 2066 2067 #ifdef CONFIG_USB_SUSPEND 2068 2069 /* Workqueue routine for root-hub remote wakeup */ 2070 static void hcd_resume_work(struct work_struct *work) 2071 { 2072 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2073 struct usb_device *udev = hcd->self.root_hub; 2074 2075 usb_lock_device(udev); 2076 usb_remote_wakeup(udev); 2077 usb_unlock_device(udev); 2078 } 2079 2080 /** 2081 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2082 * @hcd: host controller for this root hub 2083 * 2084 * The USB host controller calls this function when its root hub is 2085 * suspended (with the remote wakeup feature enabled) and a remote 2086 * wakeup request is received. The routine submits a workqueue request 2087 * to resume the root hub (that is, manage its downstream ports again). 2088 */ 2089 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2090 { 2091 unsigned long flags; 2092 2093 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2094 if (hcd->rh_registered) { 2095 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2096 queue_work(pm_wq, &hcd->wakeup_work); 2097 } 2098 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2099 } 2100 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2101 2102 #endif /* CONFIG_USB_SUSPEND */ 2103 2104 /*-------------------------------------------------------------------------*/ 2105 2106 #ifdef CONFIG_USB_OTG 2107 2108 /** 2109 * usb_bus_start_enum - start immediate enumeration (for OTG) 2110 * @bus: the bus (must use hcd framework) 2111 * @port_num: 1-based number of port; usually bus->otg_port 2112 * Context: in_interrupt() 2113 * 2114 * Starts enumeration, with an immediate reset followed later by 2115 * khubd identifying and possibly configuring the device. 2116 * This is needed by OTG controller drivers, where it helps meet 2117 * HNP protocol timing requirements for starting a port reset. 2118 */ 2119 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2120 { 2121 struct usb_hcd *hcd; 2122 int status = -EOPNOTSUPP; 2123 2124 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2125 * boards with root hubs hooked up to internal devices (instead of 2126 * just the OTG port) may need more attention to resetting... 2127 */ 2128 hcd = container_of (bus, struct usb_hcd, self); 2129 if (port_num && hcd->driver->start_port_reset) 2130 status = hcd->driver->start_port_reset(hcd, port_num); 2131 2132 /* run khubd shortly after (first) root port reset finishes; 2133 * it may issue others, until at least 50 msecs have passed. 2134 */ 2135 if (status == 0) 2136 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2137 return status; 2138 } 2139 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2140 2141 #endif 2142 2143 /*-------------------------------------------------------------------------*/ 2144 2145 /** 2146 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2147 * @irq: the IRQ being raised 2148 * @__hcd: pointer to the HCD whose IRQ is being signaled 2149 * 2150 * If the controller isn't HALTed, calls the driver's irq handler. 2151 * Checks whether the controller is now dead. 2152 */ 2153 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2154 { 2155 struct usb_hcd *hcd = __hcd; 2156 unsigned long flags; 2157 irqreturn_t rc; 2158 2159 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2160 * when the first handler doesn't use it. So let's just 2161 * assume it's never used. 2162 */ 2163 local_irq_save(flags); 2164 2165 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2166 rc = IRQ_NONE; 2167 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2168 rc = IRQ_NONE; 2169 else 2170 rc = IRQ_HANDLED; 2171 2172 local_irq_restore(flags); 2173 return rc; 2174 } 2175 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2176 2177 /*-------------------------------------------------------------------------*/ 2178 2179 /** 2180 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2181 * @hcd: pointer to the HCD representing the controller 2182 * 2183 * This is called by bus glue to report a USB host controller that died 2184 * while operations may still have been pending. It's called automatically 2185 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2186 * 2187 * Only call this function with the primary HCD. 2188 */ 2189 void usb_hc_died (struct usb_hcd *hcd) 2190 { 2191 unsigned long flags; 2192 2193 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2194 2195 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2196 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2197 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2198 if (hcd->rh_registered) { 2199 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2200 2201 /* make khubd clean up old urbs and devices */ 2202 usb_set_device_state (hcd->self.root_hub, 2203 USB_STATE_NOTATTACHED); 2204 usb_kick_khubd (hcd->self.root_hub); 2205 } 2206 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2207 hcd = hcd->shared_hcd; 2208 if (hcd->rh_registered) { 2209 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2210 2211 /* make khubd clean up old urbs and devices */ 2212 usb_set_device_state(hcd->self.root_hub, 2213 USB_STATE_NOTATTACHED); 2214 usb_kick_khubd(hcd->self.root_hub); 2215 } 2216 } 2217 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2218 /* Make sure that the other roothub is also deallocated. */ 2219 } 2220 EXPORT_SYMBOL_GPL (usb_hc_died); 2221 2222 /*-------------------------------------------------------------------------*/ 2223 2224 /** 2225 * usb_create_shared_hcd - create and initialize an HCD structure 2226 * @driver: HC driver that will use this hcd 2227 * @dev: device for this HC, stored in hcd->self.controller 2228 * @bus_name: value to store in hcd->self.bus_name 2229 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2230 * PCI device. Only allocate certain resources for the primary HCD 2231 * Context: !in_interrupt() 2232 * 2233 * Allocate a struct usb_hcd, with extra space at the end for the 2234 * HC driver's private data. Initialize the generic members of the 2235 * hcd structure. 2236 * 2237 * If memory is unavailable, returns NULL. 2238 */ 2239 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2240 struct device *dev, const char *bus_name, 2241 struct usb_hcd *primary_hcd) 2242 { 2243 struct usb_hcd *hcd; 2244 2245 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2246 if (!hcd) { 2247 dev_dbg (dev, "hcd alloc failed\n"); 2248 return NULL; 2249 } 2250 if (primary_hcd == NULL) { 2251 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2252 GFP_KERNEL); 2253 if (!hcd->bandwidth_mutex) { 2254 kfree(hcd); 2255 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2256 return NULL; 2257 } 2258 mutex_init(hcd->bandwidth_mutex); 2259 dev_set_drvdata(dev, hcd); 2260 } else { 2261 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2262 hcd->primary_hcd = primary_hcd; 2263 primary_hcd->primary_hcd = primary_hcd; 2264 hcd->shared_hcd = primary_hcd; 2265 primary_hcd->shared_hcd = hcd; 2266 } 2267 2268 kref_init(&hcd->kref); 2269 2270 usb_bus_init(&hcd->self); 2271 hcd->self.controller = dev; 2272 hcd->self.bus_name = bus_name; 2273 hcd->self.uses_dma = (dev->dma_mask != NULL); 2274 2275 init_timer(&hcd->rh_timer); 2276 hcd->rh_timer.function = rh_timer_func; 2277 hcd->rh_timer.data = (unsigned long) hcd; 2278 #ifdef CONFIG_USB_SUSPEND 2279 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2280 #endif 2281 2282 hcd->driver = driver; 2283 hcd->speed = driver->flags & HCD_MASK; 2284 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2285 "USB Host Controller"; 2286 return hcd; 2287 } 2288 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2289 2290 /** 2291 * usb_create_hcd - create and initialize an HCD structure 2292 * @driver: HC driver that will use this hcd 2293 * @dev: device for this HC, stored in hcd->self.controller 2294 * @bus_name: value to store in hcd->self.bus_name 2295 * Context: !in_interrupt() 2296 * 2297 * Allocate a struct usb_hcd, with extra space at the end for the 2298 * HC driver's private data. Initialize the generic members of the 2299 * hcd structure. 2300 * 2301 * If memory is unavailable, returns NULL. 2302 */ 2303 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2304 struct device *dev, const char *bus_name) 2305 { 2306 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2307 } 2308 EXPORT_SYMBOL_GPL(usb_create_hcd); 2309 2310 /* 2311 * Roothubs that share one PCI device must also share the bandwidth mutex. 2312 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2313 * deallocated. 2314 * 2315 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2316 * freed. When hcd_release() is called for the non-primary HCD, set the 2317 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be 2318 * freed shortly). 2319 */ 2320 static void hcd_release (struct kref *kref) 2321 { 2322 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2323 2324 if (usb_hcd_is_primary_hcd(hcd)) 2325 kfree(hcd->bandwidth_mutex); 2326 else 2327 hcd->shared_hcd->shared_hcd = NULL; 2328 kfree(hcd); 2329 } 2330 2331 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2332 { 2333 if (hcd) 2334 kref_get (&hcd->kref); 2335 return hcd; 2336 } 2337 EXPORT_SYMBOL_GPL(usb_get_hcd); 2338 2339 void usb_put_hcd (struct usb_hcd *hcd) 2340 { 2341 if (hcd) 2342 kref_put (&hcd->kref, hcd_release); 2343 } 2344 EXPORT_SYMBOL_GPL(usb_put_hcd); 2345 2346 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2347 { 2348 if (!hcd->primary_hcd) 2349 return 1; 2350 return hcd == hcd->primary_hcd; 2351 } 2352 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2353 2354 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2355 unsigned int irqnum, unsigned long irqflags) 2356 { 2357 int retval; 2358 2359 if (hcd->driver->irq) { 2360 2361 /* IRQF_DISABLED doesn't work as advertised when used together 2362 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2363 * interrupts we can remove it here. 2364 */ 2365 if (irqflags & IRQF_SHARED) 2366 irqflags &= ~IRQF_DISABLED; 2367 2368 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2369 hcd->driver->description, hcd->self.busnum); 2370 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2371 hcd->irq_descr, hcd); 2372 if (retval != 0) { 2373 dev_err(hcd->self.controller, 2374 "request interrupt %d failed\n", 2375 irqnum); 2376 return retval; 2377 } 2378 hcd->irq = irqnum; 2379 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2380 (hcd->driver->flags & HCD_MEMORY) ? 2381 "io mem" : "io base", 2382 (unsigned long long)hcd->rsrc_start); 2383 } else { 2384 hcd->irq = 0; 2385 if (hcd->rsrc_start) 2386 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2387 (hcd->driver->flags & HCD_MEMORY) ? 2388 "io mem" : "io base", 2389 (unsigned long long)hcd->rsrc_start); 2390 } 2391 return 0; 2392 } 2393 2394 /** 2395 * usb_add_hcd - finish generic HCD structure initialization and register 2396 * @hcd: the usb_hcd structure to initialize 2397 * @irqnum: Interrupt line to allocate 2398 * @irqflags: Interrupt type flags 2399 * 2400 * Finish the remaining parts of generic HCD initialization: allocate the 2401 * buffers of consistent memory, register the bus, request the IRQ line, 2402 * and call the driver's reset() and start() routines. 2403 */ 2404 int usb_add_hcd(struct usb_hcd *hcd, 2405 unsigned int irqnum, unsigned long irqflags) 2406 { 2407 int retval; 2408 struct usb_device *rhdev; 2409 2410 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2411 2412 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2413 if (authorized_default < 0 || authorized_default > 1) 2414 hcd->authorized_default = hcd->wireless? 0 : 1; 2415 else 2416 hcd->authorized_default = authorized_default; 2417 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2418 2419 /* HC is in reset state, but accessible. Now do the one-time init, 2420 * bottom up so that hcds can customize the root hubs before khubd 2421 * starts talking to them. (Note, bus id is assigned early too.) 2422 */ 2423 if ((retval = hcd_buffer_create(hcd)) != 0) { 2424 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2425 return retval; 2426 } 2427 2428 if ((retval = usb_register_bus(&hcd->self)) < 0) 2429 goto err_register_bus; 2430 2431 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2432 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2433 retval = -ENOMEM; 2434 goto err_allocate_root_hub; 2435 } 2436 hcd->self.root_hub = rhdev; 2437 2438 switch (hcd->speed) { 2439 case HCD_USB11: 2440 rhdev->speed = USB_SPEED_FULL; 2441 break; 2442 case HCD_USB2: 2443 rhdev->speed = USB_SPEED_HIGH; 2444 break; 2445 case HCD_USB3: 2446 rhdev->speed = USB_SPEED_SUPER; 2447 break; 2448 default: 2449 retval = -EINVAL; 2450 goto err_set_rh_speed; 2451 } 2452 2453 /* wakeup flag init defaults to "everything works" for root hubs, 2454 * but drivers can override it in reset() if needed, along with 2455 * recording the overall controller's system wakeup capability. 2456 */ 2457 device_set_wakeup_capable(&rhdev->dev, 1); 2458 2459 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2460 * registered. But since the controller can die at any time, 2461 * let's initialize the flag before touching the hardware. 2462 */ 2463 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2464 2465 /* "reset" is misnamed; its role is now one-time init. the controller 2466 * should already have been reset (and boot firmware kicked off etc). 2467 */ 2468 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2469 dev_err(hcd->self.controller, "can't setup\n"); 2470 goto err_hcd_driver_setup; 2471 } 2472 hcd->rh_pollable = 1; 2473 2474 /* NOTE: root hub and controller capabilities may not be the same */ 2475 if (device_can_wakeup(hcd->self.controller) 2476 && device_can_wakeup(&hcd->self.root_hub->dev)) 2477 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2478 2479 /* enable irqs just before we start the controller, 2480 * if the BIOS provides legacy PCI irqs. 2481 */ 2482 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2483 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2484 if (retval) 2485 goto err_request_irq; 2486 } 2487 2488 hcd->state = HC_STATE_RUNNING; 2489 retval = hcd->driver->start(hcd); 2490 if (retval < 0) { 2491 dev_err(hcd->self.controller, "startup error %d\n", retval); 2492 goto err_hcd_driver_start; 2493 } 2494 2495 /* starting here, usbcore will pay attention to this root hub */ 2496 rhdev->bus_mA = min(500u, hcd->power_budget); 2497 if ((retval = register_root_hub(hcd)) != 0) 2498 goto err_register_root_hub; 2499 2500 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2501 if (retval < 0) { 2502 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2503 retval); 2504 goto error_create_attr_group; 2505 } 2506 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2507 usb_hcd_poll_rh_status(hcd); 2508 2509 /* 2510 * Host controllers don't generate their own wakeup requests; 2511 * they only forward requests from the root hub. Therefore 2512 * controllers should always be enabled for remote wakeup. 2513 */ 2514 device_wakeup_enable(hcd->self.controller); 2515 return retval; 2516 2517 error_create_attr_group: 2518 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2519 if (HC_IS_RUNNING(hcd->state)) 2520 hcd->state = HC_STATE_QUIESCING; 2521 spin_lock_irq(&hcd_root_hub_lock); 2522 hcd->rh_registered = 0; 2523 spin_unlock_irq(&hcd_root_hub_lock); 2524 2525 #ifdef CONFIG_USB_SUSPEND 2526 cancel_work_sync(&hcd->wakeup_work); 2527 #endif 2528 mutex_lock(&usb_bus_list_lock); 2529 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2530 mutex_unlock(&usb_bus_list_lock); 2531 err_register_root_hub: 2532 hcd->rh_pollable = 0; 2533 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2534 del_timer_sync(&hcd->rh_timer); 2535 hcd->driver->stop(hcd); 2536 hcd->state = HC_STATE_HALT; 2537 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2538 del_timer_sync(&hcd->rh_timer); 2539 err_hcd_driver_start: 2540 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2541 free_irq(irqnum, hcd); 2542 err_request_irq: 2543 err_hcd_driver_setup: 2544 err_set_rh_speed: 2545 usb_put_dev(hcd->self.root_hub); 2546 err_allocate_root_hub: 2547 usb_deregister_bus(&hcd->self); 2548 err_register_bus: 2549 hcd_buffer_destroy(hcd); 2550 return retval; 2551 } 2552 EXPORT_SYMBOL_GPL(usb_add_hcd); 2553 2554 /** 2555 * usb_remove_hcd - shutdown processing for generic HCDs 2556 * @hcd: the usb_hcd structure to remove 2557 * Context: !in_interrupt() 2558 * 2559 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2560 * invoking the HCD's stop() method. 2561 */ 2562 void usb_remove_hcd(struct usb_hcd *hcd) 2563 { 2564 struct usb_device *rhdev = hcd->self.root_hub; 2565 2566 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2567 2568 usb_get_dev(rhdev); 2569 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2570 2571 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2572 if (HC_IS_RUNNING (hcd->state)) 2573 hcd->state = HC_STATE_QUIESCING; 2574 2575 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2576 spin_lock_irq (&hcd_root_hub_lock); 2577 hcd->rh_registered = 0; 2578 spin_unlock_irq (&hcd_root_hub_lock); 2579 2580 #ifdef CONFIG_USB_SUSPEND 2581 cancel_work_sync(&hcd->wakeup_work); 2582 #endif 2583 2584 mutex_lock(&usb_bus_list_lock); 2585 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2586 mutex_unlock(&usb_bus_list_lock); 2587 2588 /* Prevent any more root-hub status calls from the timer. 2589 * The HCD might still restart the timer (if a port status change 2590 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2591 * the hub_status_data() callback. 2592 */ 2593 hcd->rh_pollable = 0; 2594 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2595 del_timer_sync(&hcd->rh_timer); 2596 2597 hcd->driver->stop(hcd); 2598 hcd->state = HC_STATE_HALT; 2599 2600 /* In case the HCD restarted the timer, stop it again. */ 2601 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2602 del_timer_sync(&hcd->rh_timer); 2603 2604 if (usb_hcd_is_primary_hcd(hcd)) { 2605 if (hcd->irq > 0) 2606 free_irq(hcd->irq, hcd); 2607 } 2608 2609 usb_put_dev(hcd->self.root_hub); 2610 usb_deregister_bus(&hcd->self); 2611 hcd_buffer_destroy(hcd); 2612 } 2613 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2614 2615 void 2616 usb_hcd_platform_shutdown(struct platform_device* dev) 2617 { 2618 struct usb_hcd *hcd = platform_get_drvdata(dev); 2619 2620 if (hcd->driver->shutdown) 2621 hcd->driver->shutdown(hcd); 2622 } 2623 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2624 2625 /*-------------------------------------------------------------------------*/ 2626 2627 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2628 2629 struct usb_mon_operations *mon_ops; 2630 2631 /* 2632 * The registration is unlocked. 2633 * We do it this way because we do not want to lock in hot paths. 2634 * 2635 * Notice that the code is minimally error-proof. Because usbmon needs 2636 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2637 */ 2638 2639 int usb_mon_register (struct usb_mon_operations *ops) 2640 { 2641 2642 if (mon_ops) 2643 return -EBUSY; 2644 2645 mon_ops = ops; 2646 mb(); 2647 return 0; 2648 } 2649 EXPORT_SYMBOL_GPL (usb_mon_register); 2650 2651 void usb_mon_deregister (void) 2652 { 2653 2654 if (mon_ops == NULL) { 2655 printk(KERN_ERR "USB: monitor was not registered\n"); 2656 return; 2657 } 2658 mon_ops = NULL; 2659 mb(); 2660 } 2661 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2662 2663 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2664