1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 115 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 160 static const u8 usb25_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* usb 2.0 root hub device descriptor */ 181 static const u8 usb2_rh_dev_descriptor[18] = { 182 0x12, /* __u8 bLength; */ 183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 185 186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 187 0x00, /* __u8 bDeviceSubClass; */ 188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 190 191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 194 195 0x03, /* __u8 iManufacturer; */ 196 0x02, /* __u8 iProduct; */ 197 0x01, /* __u8 iSerialNumber; */ 198 0x01 /* __u8 bNumConfigurations; */ 199 }; 200 201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 202 203 /* usb 1.1 root hub device descriptor */ 204 static const u8 usb11_rh_dev_descriptor[18] = { 205 0x12, /* __u8 bLength; */ 206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 208 209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 210 0x00, /* __u8 bDeviceSubClass; */ 211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 213 214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 217 218 0x03, /* __u8 iManufacturer; */ 219 0x02, /* __u8 iProduct; */ 220 0x01, /* __u8 iSerialNumber; */ 221 0x01 /* __u8 bNumConfigurations; */ 222 }; 223 224 225 /*-------------------------------------------------------------------------*/ 226 227 /* Configuration descriptors for our root hubs */ 228 229 static const u8 fs_rh_config_descriptor[] = { 230 231 /* one configuration */ 232 0x09, /* __u8 bLength; */ 233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 234 0x19, 0x00, /* __le16 wTotalLength; */ 235 0x01, /* __u8 bNumInterfaces; (1) */ 236 0x01, /* __u8 bConfigurationValue; */ 237 0x00, /* __u8 iConfiguration; */ 238 0xc0, /* __u8 bmAttributes; 239 Bit 7: must be set, 240 6: Self-powered, 241 5: Remote wakeup, 242 4..0: resvd */ 243 0x00, /* __u8 MaxPower; */ 244 245 /* USB 1.1: 246 * USB 2.0, single TT organization (mandatory): 247 * one interface, protocol 0 248 * 249 * USB 2.0, multiple TT organization (optional): 250 * two interfaces, protocols 1 (like single TT) 251 * and 2 (multiple TT mode) ... config is 252 * sometimes settable 253 * NOT IMPLEMENTED 254 */ 255 256 /* one interface */ 257 0x09, /* __u8 if_bLength; */ 258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 259 0x00, /* __u8 if_bInterfaceNumber; */ 260 0x00, /* __u8 if_bAlternateSetting; */ 261 0x01, /* __u8 if_bNumEndpoints; */ 262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 263 0x00, /* __u8 if_bInterfaceSubClass; */ 264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 265 0x00, /* __u8 if_iInterface; */ 266 267 /* one endpoint (status change endpoint) */ 268 0x07, /* __u8 ep_bLength; */ 269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 271 0x03, /* __u8 ep_bmAttributes; Interrupt */ 272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 274 }; 275 276 static const u8 hs_rh_config_descriptor[] = { 277 278 /* one configuration */ 279 0x09, /* __u8 bLength; */ 280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 281 0x19, 0x00, /* __le16 wTotalLength; */ 282 0x01, /* __u8 bNumInterfaces; (1) */ 283 0x01, /* __u8 bConfigurationValue; */ 284 0x00, /* __u8 iConfiguration; */ 285 0xc0, /* __u8 bmAttributes; 286 Bit 7: must be set, 287 6: Self-powered, 288 5: Remote wakeup, 289 4..0: resvd */ 290 0x00, /* __u8 MaxPower; */ 291 292 /* USB 1.1: 293 * USB 2.0, single TT organization (mandatory): 294 * one interface, protocol 0 295 * 296 * USB 2.0, multiple TT organization (optional): 297 * two interfaces, protocols 1 (like single TT) 298 * and 2 (multiple TT mode) ... config is 299 * sometimes settable 300 * NOT IMPLEMENTED 301 */ 302 303 /* one interface */ 304 0x09, /* __u8 if_bLength; */ 305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 306 0x00, /* __u8 if_bInterfaceNumber; */ 307 0x00, /* __u8 if_bAlternateSetting; */ 308 0x01, /* __u8 if_bNumEndpoints; */ 309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 310 0x00, /* __u8 if_bInterfaceSubClass; */ 311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 312 0x00, /* __u8 if_iInterface; */ 313 314 /* one endpoint (status change endpoint) */ 315 0x07, /* __u8 ep_bLength; */ 316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 318 0x03, /* __u8 ep_bmAttributes; Interrupt */ 319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 320 * see hub.c:hub_configure() for details. */ 321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 323 }; 324 325 static const u8 ss_rh_config_descriptor[] = { 326 /* one configuration */ 327 0x09, /* __u8 bLength; */ 328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 329 0x1f, 0x00, /* __le16 wTotalLength; */ 330 0x01, /* __u8 bNumInterfaces; (1) */ 331 0x01, /* __u8 bConfigurationValue; */ 332 0x00, /* __u8 iConfiguration; */ 333 0xc0, /* __u8 bmAttributes; 334 Bit 7: must be set, 335 6: Self-powered, 336 5: Remote wakeup, 337 4..0: resvd */ 338 0x00, /* __u8 MaxPower; */ 339 340 /* one interface */ 341 0x09, /* __u8 if_bLength; */ 342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 343 0x00, /* __u8 if_bInterfaceNumber; */ 344 0x00, /* __u8 if_bAlternateSetting; */ 345 0x01, /* __u8 if_bNumEndpoints; */ 346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 347 0x00, /* __u8 if_bInterfaceSubClass; */ 348 0x00, /* __u8 if_bInterfaceProtocol; */ 349 0x00, /* __u8 if_iInterface; */ 350 351 /* one endpoint (status change endpoint) */ 352 0x07, /* __u8 ep_bLength; */ 353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 355 0x03, /* __u8 ep_bmAttributes; Interrupt */ 356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 357 * see hub.c:hub_configure() for details. */ 358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 360 361 /* one SuperSpeed endpoint companion descriptor */ 362 0x06, /* __u8 ss_bLength */ 363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 364 /* Companion */ 365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 368 }; 369 370 /* authorized_default behaviour: 371 * -1 is authorized for all devices except wireless (old behaviour) 372 * 0 is unauthorized for all devices 373 * 1 is authorized for all devices 374 * 2 is authorized for internal devices 375 */ 376 #define USB_AUTHORIZE_WIRED -1 377 #define USB_AUTHORIZE_NONE 0 378 #define USB_AUTHORIZE_ALL 1 379 #define USB_AUTHORIZE_INTERNAL 2 380 381 static int authorized_default = USB_AUTHORIZE_WIRED; 382 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 383 MODULE_PARM_DESC(authorized_default, 384 "Default USB device authorization: 0 is not authorized, 1 is " 385 "authorized, 2 is authorized for internal devices, -1 is " 386 "authorized except for wireless USB (default, old behaviour)"); 387 /*-------------------------------------------------------------------------*/ 388 389 /** 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 393 * @len: Length (in bytes; may be odd) of descriptor buffer. 394 * 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 396 * whichever is less. 397 * 398 * Note: 399 * USB String descriptors can contain at most 126 characters; input 400 * strings longer than that are truncated. 401 */ 402 static unsigned 403 ascii2desc(char const *s, u8 *buf, unsigned len) 404 { 405 unsigned n, t = 2 + 2*strlen(s); 406 407 if (t > 254) 408 t = 254; /* Longest possible UTF string descriptor */ 409 if (len > t) 410 len = t; 411 412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 413 414 n = len; 415 while (n--) { 416 *buf++ = t; 417 if (!n--) 418 break; 419 *buf++ = t >> 8; 420 t = (unsigned char)*s++; 421 } 422 return len; 423 } 424 425 /** 426 * rh_string() - provides string descriptors for root hub 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 428 * @hcd: the host controller for this root hub 429 * @data: buffer for output packet 430 * @len: length of the provided buffer 431 * 432 * Produces either a manufacturer, product or serial number string for the 433 * virtual root hub device. 434 * 435 * Return: The number of bytes filled in: the length of the descriptor or 436 * of the provided buffer, whichever is less. 437 */ 438 static unsigned 439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 440 { 441 char buf[100]; 442 char const *s; 443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 444 445 /* language ids */ 446 switch (id) { 447 case 0: 448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 450 if (len > 4) 451 len = 4; 452 memcpy(data, langids, len); 453 return len; 454 case 1: 455 /* Serial number */ 456 s = hcd->self.bus_name; 457 break; 458 case 2: 459 /* Product name */ 460 s = hcd->product_desc; 461 break; 462 case 3: 463 /* Manufacturer */ 464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 465 init_utsname()->release, hcd->driver->description); 466 s = buf; 467 break; 468 default: 469 /* Can't happen; caller guarantees it */ 470 return 0; 471 } 472 473 return ascii2desc(s, data, len); 474 } 475 476 477 /* Root hub control transfers execute synchronously */ 478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 479 { 480 struct usb_ctrlrequest *cmd; 481 u16 typeReq, wValue, wIndex, wLength; 482 u8 *ubuf = urb->transfer_buffer; 483 unsigned len = 0; 484 int status; 485 u8 patch_wakeup = 0; 486 u8 patch_protocol = 0; 487 u16 tbuf_size; 488 u8 *tbuf = NULL; 489 const u8 *bufp; 490 491 might_sleep(); 492 493 spin_lock_irq(&hcd_root_hub_lock); 494 status = usb_hcd_link_urb_to_ep(hcd, urb); 495 spin_unlock_irq(&hcd_root_hub_lock); 496 if (status) 497 return status; 498 urb->hcpriv = hcd; /* Indicate it's queued */ 499 500 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 502 wValue = le16_to_cpu (cmd->wValue); 503 wIndex = le16_to_cpu (cmd->wIndex); 504 wLength = le16_to_cpu (cmd->wLength); 505 506 if (wLength > urb->transfer_buffer_length) 507 goto error; 508 509 /* 510 * tbuf should be at least as big as the 511 * USB hub descriptor. 512 */ 513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 514 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 515 if (!tbuf) { 516 status = -ENOMEM; 517 goto err_alloc; 518 } 519 520 bufp = tbuf; 521 522 523 urb->actual_length = 0; 524 switch (typeReq) { 525 526 /* DEVICE REQUESTS */ 527 528 /* The root hub's remote wakeup enable bit is implemented using 529 * driver model wakeup flags. If this system supports wakeup 530 * through USB, userspace may change the default "allow wakeup" 531 * policy through sysfs or these calls. 532 * 533 * Most root hubs support wakeup from downstream devices, for 534 * runtime power management (disabling USB clocks and reducing 535 * VBUS power usage). However, not all of them do so; silicon, 536 * board, and BIOS bugs here are not uncommon, so these can't 537 * be treated quite like external hubs. 538 * 539 * Likewise, not all root hubs will pass wakeup events upstream, 540 * to wake up the whole system. So don't assume root hub and 541 * controller capabilities are identical. 542 */ 543 544 case DeviceRequest | USB_REQ_GET_STATUS: 545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 546 << USB_DEVICE_REMOTE_WAKEUP) 547 | (1 << USB_DEVICE_SELF_POWERED); 548 tbuf[1] = 0; 549 len = 2; 550 break; 551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 552 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 554 else 555 goto error; 556 break; 557 case DeviceOutRequest | USB_REQ_SET_FEATURE: 558 if (device_can_wakeup(&hcd->self.root_hub->dev) 559 && wValue == USB_DEVICE_REMOTE_WAKEUP) 560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 561 else 562 goto error; 563 break; 564 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 565 tbuf[0] = 1; 566 len = 1; 567 /* FALLTHROUGH */ 568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 569 break; 570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 571 switch (wValue & 0xff00) { 572 case USB_DT_DEVICE << 8: 573 switch (hcd->speed) { 574 case HCD_USB32: 575 case HCD_USB31: 576 bufp = usb31_rh_dev_descriptor; 577 break; 578 case HCD_USB3: 579 bufp = usb3_rh_dev_descriptor; 580 break; 581 case HCD_USB25: 582 bufp = usb25_rh_dev_descriptor; 583 break; 584 case HCD_USB2: 585 bufp = usb2_rh_dev_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = usb11_rh_dev_descriptor; 589 break; 590 default: 591 goto error; 592 } 593 len = 18; 594 if (hcd->has_tt) 595 patch_protocol = 1; 596 break; 597 case USB_DT_CONFIG << 8: 598 switch (hcd->speed) { 599 case HCD_USB32: 600 case HCD_USB31: 601 case HCD_USB3: 602 bufp = ss_rh_config_descriptor; 603 len = sizeof ss_rh_config_descriptor; 604 break; 605 case HCD_USB25: 606 case HCD_USB2: 607 bufp = hs_rh_config_descriptor; 608 len = sizeof hs_rh_config_descriptor; 609 break; 610 case HCD_USB11: 611 bufp = fs_rh_config_descriptor; 612 len = sizeof fs_rh_config_descriptor; 613 break; 614 default: 615 goto error; 616 } 617 if (device_can_wakeup(&hcd->self.root_hub->dev)) 618 patch_wakeup = 1; 619 break; 620 case USB_DT_STRING << 8: 621 if ((wValue & 0xff) < 4) 622 urb->actual_length = rh_string(wValue & 0xff, 623 hcd, ubuf, wLength); 624 else /* unsupported IDs --> "protocol stall" */ 625 goto error; 626 break; 627 case USB_DT_BOS << 8: 628 goto nongeneric; 629 default: 630 goto error; 631 } 632 break; 633 case DeviceRequest | USB_REQ_GET_INTERFACE: 634 tbuf[0] = 0; 635 len = 1; 636 /* FALLTHROUGH */ 637 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 638 break; 639 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 640 /* wValue == urb->dev->devaddr */ 641 dev_dbg (hcd->self.controller, "root hub device address %d\n", 642 wValue); 643 break; 644 645 /* INTERFACE REQUESTS (no defined feature/status flags) */ 646 647 /* ENDPOINT REQUESTS */ 648 649 case EndpointRequest | USB_REQ_GET_STATUS: 650 /* ENDPOINT_HALT flag */ 651 tbuf[0] = 0; 652 tbuf[1] = 0; 653 len = 2; 654 /* FALLTHROUGH */ 655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 656 case EndpointOutRequest | USB_REQ_SET_FEATURE: 657 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 658 break; 659 660 /* CLASS REQUESTS (and errors) */ 661 662 default: 663 nongeneric: 664 /* non-generic request */ 665 switch (typeReq) { 666 case GetHubStatus: 667 len = 4; 668 break; 669 case GetPortStatus: 670 if (wValue == HUB_PORT_STATUS) 671 len = 4; 672 else 673 /* other port status types return 8 bytes */ 674 len = 8; 675 break; 676 case GetHubDescriptor: 677 len = sizeof (struct usb_hub_descriptor); 678 break; 679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 680 /* len is returned by hub_control */ 681 break; 682 } 683 status = hcd->driver->hub_control (hcd, 684 typeReq, wValue, wIndex, 685 tbuf, wLength); 686 687 if (typeReq == GetHubDescriptor) 688 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 689 (struct usb_hub_descriptor *)tbuf); 690 break; 691 error: 692 /* "protocol stall" on error */ 693 status = -EPIPE; 694 } 695 696 if (status < 0) { 697 len = 0; 698 if (status != -EPIPE) { 699 dev_dbg (hcd->self.controller, 700 "CTRL: TypeReq=0x%x val=0x%x " 701 "idx=0x%x len=%d ==> %d\n", 702 typeReq, wValue, wIndex, 703 wLength, status); 704 } 705 } else if (status > 0) { 706 /* hub_control may return the length of data copied. */ 707 len = status; 708 status = 0; 709 } 710 if (len) { 711 if (urb->transfer_buffer_length < len) 712 len = urb->transfer_buffer_length; 713 urb->actual_length = len; 714 /* always USB_DIR_IN, toward host */ 715 memcpy (ubuf, bufp, len); 716 717 /* report whether RH hardware supports remote wakeup */ 718 if (patch_wakeup && 719 len > offsetof (struct usb_config_descriptor, 720 bmAttributes)) 721 ((struct usb_config_descriptor *)ubuf)->bmAttributes 722 |= USB_CONFIG_ATT_WAKEUP; 723 724 /* report whether RH hardware has an integrated TT */ 725 if (patch_protocol && 726 len > offsetof(struct usb_device_descriptor, 727 bDeviceProtocol)) 728 ((struct usb_device_descriptor *) ubuf)-> 729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 730 } 731 732 kfree(tbuf); 733 err_alloc: 734 735 /* any errors get returned through the urb completion */ 736 spin_lock_irq(&hcd_root_hub_lock); 737 usb_hcd_unlink_urb_from_ep(hcd, urb); 738 usb_hcd_giveback_urb(hcd, urb, status); 739 spin_unlock_irq(&hcd_root_hub_lock); 740 return 0; 741 } 742 743 /*-------------------------------------------------------------------------*/ 744 745 /* 746 * Root Hub interrupt transfers are polled using a timer if the 747 * driver requests it; otherwise the driver is responsible for 748 * calling usb_hcd_poll_rh_status() when an event occurs. 749 * 750 * Completions are called in_interrupt(), but they may or may not 751 * be in_irq(). 752 */ 753 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 754 { 755 struct urb *urb; 756 int length; 757 unsigned long flags; 758 char buffer[6]; /* Any root hubs with > 31 ports? */ 759 760 if (unlikely(!hcd->rh_pollable)) 761 return; 762 if (!hcd->uses_new_polling && !hcd->status_urb) 763 return; 764 765 length = hcd->driver->hub_status_data(hcd, buffer); 766 if (length > 0) { 767 768 /* try to complete the status urb */ 769 spin_lock_irqsave(&hcd_root_hub_lock, flags); 770 urb = hcd->status_urb; 771 if (urb) { 772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 773 hcd->status_urb = NULL; 774 urb->actual_length = length; 775 memcpy(urb->transfer_buffer, buffer, length); 776 777 usb_hcd_unlink_urb_from_ep(hcd, urb); 778 usb_hcd_giveback_urb(hcd, urb, 0); 779 } else { 780 length = 0; 781 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 782 } 783 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 784 } 785 786 /* The USB 2.0 spec says 256 ms. This is close enough and won't 787 * exceed that limit if HZ is 100. The math is more clunky than 788 * maybe expected, this is to make sure that all timers for USB devices 789 * fire at the same time to give the CPU a break in between */ 790 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 791 (length == 0 && hcd->status_urb != NULL)) 792 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 793 } 794 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 795 796 /* timer callback */ 797 static void rh_timer_func (struct timer_list *t) 798 { 799 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 800 801 usb_hcd_poll_rh_status(_hcd); 802 } 803 804 /*-------------------------------------------------------------------------*/ 805 806 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 807 { 808 int retval; 809 unsigned long flags; 810 unsigned len = 1 + (urb->dev->maxchild / 8); 811 812 spin_lock_irqsave (&hcd_root_hub_lock, flags); 813 if (hcd->status_urb || urb->transfer_buffer_length < len) { 814 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 815 retval = -EINVAL; 816 goto done; 817 } 818 819 retval = usb_hcd_link_urb_to_ep(hcd, urb); 820 if (retval) 821 goto done; 822 823 hcd->status_urb = urb; 824 urb->hcpriv = hcd; /* indicate it's queued */ 825 if (!hcd->uses_new_polling) 826 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 827 828 /* If a status change has already occurred, report it ASAP */ 829 else if (HCD_POLL_PENDING(hcd)) 830 mod_timer(&hcd->rh_timer, jiffies); 831 retval = 0; 832 done: 833 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 834 return retval; 835 } 836 837 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 838 { 839 if (usb_endpoint_xfer_int(&urb->ep->desc)) 840 return rh_queue_status (hcd, urb); 841 if (usb_endpoint_xfer_control(&urb->ep->desc)) 842 return rh_call_control (hcd, urb); 843 return -EINVAL; 844 } 845 846 /*-------------------------------------------------------------------------*/ 847 848 /* Unlinks of root-hub control URBs are legal, but they don't do anything 849 * since these URBs always execute synchronously. 850 */ 851 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 852 { 853 unsigned long flags; 854 int rc; 855 856 spin_lock_irqsave(&hcd_root_hub_lock, flags); 857 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 858 if (rc) 859 goto done; 860 861 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 862 ; /* Do nothing */ 863 864 } else { /* Status URB */ 865 if (!hcd->uses_new_polling) 866 del_timer (&hcd->rh_timer); 867 if (urb == hcd->status_urb) { 868 hcd->status_urb = NULL; 869 usb_hcd_unlink_urb_from_ep(hcd, urb); 870 usb_hcd_giveback_urb(hcd, urb, status); 871 } 872 } 873 done: 874 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 875 return rc; 876 } 877 878 879 /*-------------------------------------------------------------------------*/ 880 881 /** 882 * usb_bus_init - shared initialization code 883 * @bus: the bus structure being initialized 884 * 885 * This code is used to initialize a usb_bus structure, memory for which is 886 * separately managed. 887 */ 888 static void usb_bus_init (struct usb_bus *bus) 889 { 890 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 891 892 bus->devnum_next = 1; 893 894 bus->root_hub = NULL; 895 bus->busnum = -1; 896 bus->bandwidth_allocated = 0; 897 bus->bandwidth_int_reqs = 0; 898 bus->bandwidth_isoc_reqs = 0; 899 mutex_init(&bus->devnum_next_mutex); 900 } 901 902 /*-------------------------------------------------------------------------*/ 903 904 /** 905 * usb_register_bus - registers the USB host controller with the usb core 906 * @bus: pointer to the bus to register 907 * Context: !in_interrupt() 908 * 909 * Assigns a bus number, and links the controller into usbcore data 910 * structures so that it can be seen by scanning the bus list. 911 * 912 * Return: 0 if successful. A negative error code otherwise. 913 */ 914 static int usb_register_bus(struct usb_bus *bus) 915 { 916 int result = -E2BIG; 917 int busnum; 918 919 mutex_lock(&usb_bus_idr_lock); 920 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 921 if (busnum < 0) { 922 pr_err("%s: failed to get bus number\n", usbcore_name); 923 goto error_find_busnum; 924 } 925 bus->busnum = busnum; 926 mutex_unlock(&usb_bus_idr_lock); 927 928 usb_notify_add_bus(bus); 929 930 dev_info (bus->controller, "new USB bus registered, assigned bus " 931 "number %d\n", bus->busnum); 932 return 0; 933 934 error_find_busnum: 935 mutex_unlock(&usb_bus_idr_lock); 936 return result; 937 } 938 939 /** 940 * usb_deregister_bus - deregisters the USB host controller 941 * @bus: pointer to the bus to deregister 942 * Context: !in_interrupt() 943 * 944 * Recycles the bus number, and unlinks the controller from usbcore data 945 * structures so that it won't be seen by scanning the bus list. 946 */ 947 static void usb_deregister_bus (struct usb_bus *bus) 948 { 949 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 950 951 /* 952 * NOTE: make sure that all the devices are removed by the 953 * controller code, as well as having it call this when cleaning 954 * itself up 955 */ 956 mutex_lock(&usb_bus_idr_lock); 957 idr_remove(&usb_bus_idr, bus->busnum); 958 mutex_unlock(&usb_bus_idr_lock); 959 960 usb_notify_remove_bus(bus); 961 } 962 963 /** 964 * register_root_hub - called by usb_add_hcd() to register a root hub 965 * @hcd: host controller for this root hub 966 * 967 * This function registers the root hub with the USB subsystem. It sets up 968 * the device properly in the device tree and then calls usb_new_device() 969 * to register the usb device. It also assigns the root hub's USB address 970 * (always 1). 971 * 972 * Return: 0 if successful. A negative error code otherwise. 973 */ 974 static int register_root_hub(struct usb_hcd *hcd) 975 { 976 struct device *parent_dev = hcd->self.controller; 977 struct usb_device *usb_dev = hcd->self.root_hub; 978 const int devnum = 1; 979 int retval; 980 981 usb_dev->devnum = devnum; 982 usb_dev->bus->devnum_next = devnum + 1; 983 set_bit (devnum, usb_dev->bus->devmap.devicemap); 984 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 985 986 mutex_lock(&usb_bus_idr_lock); 987 988 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 989 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 990 if (retval != sizeof usb_dev->descriptor) { 991 mutex_unlock(&usb_bus_idr_lock); 992 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 993 dev_name(&usb_dev->dev), retval); 994 return (retval < 0) ? retval : -EMSGSIZE; 995 } 996 997 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 998 retval = usb_get_bos_descriptor(usb_dev); 999 if (!retval) { 1000 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1001 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1002 mutex_unlock(&usb_bus_idr_lock); 1003 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1004 dev_name(&usb_dev->dev), retval); 1005 return retval; 1006 } 1007 } 1008 1009 retval = usb_new_device (usb_dev); 1010 if (retval) { 1011 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1012 dev_name(&usb_dev->dev), retval); 1013 } else { 1014 spin_lock_irq (&hcd_root_hub_lock); 1015 hcd->rh_registered = 1; 1016 spin_unlock_irq (&hcd_root_hub_lock); 1017 1018 /* Did the HC die before the root hub was registered? */ 1019 if (HCD_DEAD(hcd)) 1020 usb_hc_died (hcd); /* This time clean up */ 1021 } 1022 mutex_unlock(&usb_bus_idr_lock); 1023 1024 return retval; 1025 } 1026 1027 /* 1028 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1029 * @bus: the bus which the root hub belongs to 1030 * @portnum: the port which is being resumed 1031 * 1032 * HCDs should call this function when they know that a resume signal is 1033 * being sent to a root-hub port. The root hub will be prevented from 1034 * going into autosuspend until usb_hcd_end_port_resume() is called. 1035 * 1036 * The bus's private lock must be held by the caller. 1037 */ 1038 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1039 { 1040 unsigned bit = 1 << portnum; 1041 1042 if (!(bus->resuming_ports & bit)) { 1043 bus->resuming_ports |= bit; 1044 pm_runtime_get_noresume(&bus->root_hub->dev); 1045 } 1046 } 1047 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1048 1049 /* 1050 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1051 * @bus: the bus which the root hub belongs to 1052 * @portnum: the port which is being resumed 1053 * 1054 * HCDs should call this function when they know that a resume signal has 1055 * stopped being sent to a root-hub port. The root hub will be allowed to 1056 * autosuspend again. 1057 * 1058 * The bus's private lock must be held by the caller. 1059 */ 1060 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1061 { 1062 unsigned bit = 1 << portnum; 1063 1064 if (bus->resuming_ports & bit) { 1065 bus->resuming_ports &= ~bit; 1066 pm_runtime_put_noidle(&bus->root_hub->dev); 1067 } 1068 } 1069 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1070 1071 /*-------------------------------------------------------------------------*/ 1072 1073 /** 1074 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1075 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1076 * @is_input: true iff the transaction sends data to the host 1077 * @isoc: true for isochronous transactions, false for interrupt ones 1078 * @bytecount: how many bytes in the transaction. 1079 * 1080 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1081 * 1082 * Note: 1083 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1084 * scheduled in software, this function is only used for such scheduling. 1085 */ 1086 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1087 { 1088 unsigned long tmp; 1089 1090 switch (speed) { 1091 case USB_SPEED_LOW: /* INTR only */ 1092 if (is_input) { 1093 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1094 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1095 } else { 1096 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1097 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1098 } 1099 case USB_SPEED_FULL: /* ISOC or INTR */ 1100 if (isoc) { 1101 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1102 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1103 } else { 1104 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1105 return 9107L + BW_HOST_DELAY + tmp; 1106 } 1107 case USB_SPEED_HIGH: /* ISOC or INTR */ 1108 /* FIXME adjust for input vs output */ 1109 if (isoc) 1110 tmp = HS_NSECS_ISO (bytecount); 1111 else 1112 tmp = HS_NSECS (bytecount); 1113 return tmp; 1114 default: 1115 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1116 return -1; 1117 } 1118 } 1119 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1120 1121 1122 /*-------------------------------------------------------------------------*/ 1123 1124 /* 1125 * Generic HC operations. 1126 */ 1127 1128 /*-------------------------------------------------------------------------*/ 1129 1130 /** 1131 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1132 * @hcd: host controller to which @urb was submitted 1133 * @urb: URB being submitted 1134 * 1135 * Host controller drivers should call this routine in their enqueue() 1136 * method. The HCD's private spinlock must be held and interrupts must 1137 * be disabled. The actions carried out here are required for URB 1138 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1139 * 1140 * Return: 0 for no error, otherwise a negative error code (in which case 1141 * the enqueue() method must fail). If no error occurs but enqueue() fails 1142 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1143 * the private spinlock and returning. 1144 */ 1145 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1146 { 1147 int rc = 0; 1148 1149 spin_lock(&hcd_urb_list_lock); 1150 1151 /* Check that the URB isn't being killed */ 1152 if (unlikely(atomic_read(&urb->reject))) { 1153 rc = -EPERM; 1154 goto done; 1155 } 1156 1157 if (unlikely(!urb->ep->enabled)) { 1158 rc = -ENOENT; 1159 goto done; 1160 } 1161 1162 if (unlikely(!urb->dev->can_submit)) { 1163 rc = -EHOSTUNREACH; 1164 goto done; 1165 } 1166 1167 /* 1168 * Check the host controller's state and add the URB to the 1169 * endpoint's queue. 1170 */ 1171 if (HCD_RH_RUNNING(hcd)) { 1172 urb->unlinked = 0; 1173 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1174 } else { 1175 rc = -ESHUTDOWN; 1176 goto done; 1177 } 1178 done: 1179 spin_unlock(&hcd_urb_list_lock); 1180 return rc; 1181 } 1182 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1183 1184 /** 1185 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1186 * @hcd: host controller to which @urb was submitted 1187 * @urb: URB being checked for unlinkability 1188 * @status: error code to store in @urb if the unlink succeeds 1189 * 1190 * Host controller drivers should call this routine in their dequeue() 1191 * method. The HCD's private spinlock must be held and interrupts must 1192 * be disabled. The actions carried out here are required for making 1193 * sure than an unlink is valid. 1194 * 1195 * Return: 0 for no error, otherwise a negative error code (in which case 1196 * the dequeue() method must fail). The possible error codes are: 1197 * 1198 * -EIDRM: @urb was not submitted or has already completed. 1199 * The completion function may not have been called yet. 1200 * 1201 * -EBUSY: @urb has already been unlinked. 1202 */ 1203 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1204 int status) 1205 { 1206 struct list_head *tmp; 1207 1208 /* insist the urb is still queued */ 1209 list_for_each(tmp, &urb->ep->urb_list) { 1210 if (tmp == &urb->urb_list) 1211 break; 1212 } 1213 if (tmp != &urb->urb_list) 1214 return -EIDRM; 1215 1216 /* Any status except -EINPROGRESS means something already started to 1217 * unlink this URB from the hardware. So there's no more work to do. 1218 */ 1219 if (urb->unlinked) 1220 return -EBUSY; 1221 urb->unlinked = status; 1222 return 0; 1223 } 1224 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1225 1226 /** 1227 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1228 * @hcd: host controller to which @urb was submitted 1229 * @urb: URB being unlinked 1230 * 1231 * Host controller drivers should call this routine before calling 1232 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1233 * interrupts must be disabled. The actions carried out here are required 1234 * for URB completion. 1235 */ 1236 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1237 { 1238 /* clear all state linking urb to this dev (and hcd) */ 1239 spin_lock(&hcd_urb_list_lock); 1240 list_del_init(&urb->urb_list); 1241 spin_unlock(&hcd_urb_list_lock); 1242 } 1243 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1244 1245 /* 1246 * Some usb host controllers can only perform dma using a small SRAM area. 1247 * The usb core itself is however optimized for host controllers that can dma 1248 * using regular system memory - like pci devices doing bus mastering. 1249 * 1250 * To support host controllers with limited dma capabilities we provide dma 1251 * bounce buffers. This feature can be enabled by initializing 1252 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1253 * 1254 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1255 * data for dma using the genalloc API. 1256 * 1257 * So, to summarize... 1258 * 1259 * - We need "local" memory, canonical example being 1260 * a small SRAM on a discrete controller being the 1261 * only memory that the controller can read ... 1262 * (a) "normal" kernel memory is no good, and 1263 * (b) there's not enough to share 1264 * 1265 * - So we use that, even though the primary requirement 1266 * is that the memory be "local" (hence addressable 1267 * by that device), not "coherent". 1268 * 1269 */ 1270 1271 static int hcd_alloc_coherent(struct usb_bus *bus, 1272 gfp_t mem_flags, dma_addr_t *dma_handle, 1273 void **vaddr_handle, size_t size, 1274 enum dma_data_direction dir) 1275 { 1276 unsigned char *vaddr; 1277 1278 if (*vaddr_handle == NULL) { 1279 WARN_ON_ONCE(1); 1280 return -EFAULT; 1281 } 1282 1283 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1284 mem_flags, dma_handle); 1285 if (!vaddr) 1286 return -ENOMEM; 1287 1288 /* 1289 * Store the virtual address of the buffer at the end 1290 * of the allocated dma buffer. The size of the buffer 1291 * may be uneven so use unaligned functions instead 1292 * of just rounding up. It makes sense to optimize for 1293 * memory footprint over access speed since the amount 1294 * of memory available for dma may be limited. 1295 */ 1296 put_unaligned((unsigned long)*vaddr_handle, 1297 (unsigned long *)(vaddr + size)); 1298 1299 if (dir == DMA_TO_DEVICE) 1300 memcpy(vaddr, *vaddr_handle, size); 1301 1302 *vaddr_handle = vaddr; 1303 return 0; 1304 } 1305 1306 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1307 void **vaddr_handle, size_t size, 1308 enum dma_data_direction dir) 1309 { 1310 unsigned char *vaddr = *vaddr_handle; 1311 1312 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1313 1314 if (dir == DMA_FROM_DEVICE) 1315 memcpy(vaddr, *vaddr_handle, size); 1316 1317 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1318 1319 *vaddr_handle = vaddr; 1320 *dma_handle = 0; 1321 } 1322 1323 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1324 { 1325 if (IS_ENABLED(CONFIG_HAS_DMA) && 1326 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1327 dma_unmap_single(hcd->self.sysdev, 1328 urb->setup_dma, 1329 sizeof(struct usb_ctrlrequest), 1330 DMA_TO_DEVICE); 1331 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1332 hcd_free_coherent(urb->dev->bus, 1333 &urb->setup_dma, 1334 (void **) &urb->setup_packet, 1335 sizeof(struct usb_ctrlrequest), 1336 DMA_TO_DEVICE); 1337 1338 /* Make it safe to call this routine more than once */ 1339 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1340 } 1341 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1342 1343 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1344 { 1345 if (hcd->driver->unmap_urb_for_dma) 1346 hcd->driver->unmap_urb_for_dma(hcd, urb); 1347 else 1348 usb_hcd_unmap_urb_for_dma(hcd, urb); 1349 } 1350 1351 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1352 { 1353 enum dma_data_direction dir; 1354 1355 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1356 1357 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1358 if (IS_ENABLED(CONFIG_HAS_DMA) && 1359 (urb->transfer_flags & URB_DMA_MAP_SG)) 1360 dma_unmap_sg(hcd->self.sysdev, 1361 urb->sg, 1362 urb->num_sgs, 1363 dir); 1364 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1365 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1366 dma_unmap_page(hcd->self.sysdev, 1367 urb->transfer_dma, 1368 urb->transfer_buffer_length, 1369 dir); 1370 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1371 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1372 dma_unmap_single(hcd->self.sysdev, 1373 urb->transfer_dma, 1374 urb->transfer_buffer_length, 1375 dir); 1376 else if (urb->transfer_flags & URB_MAP_LOCAL) 1377 hcd_free_coherent(urb->dev->bus, 1378 &urb->transfer_dma, 1379 &urb->transfer_buffer, 1380 urb->transfer_buffer_length, 1381 dir); 1382 1383 /* Make it safe to call this routine more than once */ 1384 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1385 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1386 } 1387 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1388 1389 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1390 gfp_t mem_flags) 1391 { 1392 if (hcd->driver->map_urb_for_dma) 1393 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1394 else 1395 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1396 } 1397 1398 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1399 gfp_t mem_flags) 1400 { 1401 enum dma_data_direction dir; 1402 int ret = 0; 1403 1404 /* Map the URB's buffers for DMA access. 1405 * Lower level HCD code should use *_dma exclusively, 1406 * unless it uses pio or talks to another transport, 1407 * or uses the provided scatter gather list for bulk. 1408 */ 1409 1410 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1411 if (hcd->self.uses_pio_for_control) 1412 return ret; 1413 if (hcd->localmem_pool) { 1414 ret = hcd_alloc_coherent( 1415 urb->dev->bus, mem_flags, 1416 &urb->setup_dma, 1417 (void **)&urb->setup_packet, 1418 sizeof(struct usb_ctrlrequest), 1419 DMA_TO_DEVICE); 1420 if (ret) 1421 return ret; 1422 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1423 } else if (hcd_uses_dma(hcd)) { 1424 if (object_is_on_stack(urb->setup_packet)) { 1425 WARN_ONCE(1, "setup packet is on stack\n"); 1426 return -EAGAIN; 1427 } 1428 1429 urb->setup_dma = dma_map_single( 1430 hcd->self.sysdev, 1431 urb->setup_packet, 1432 sizeof(struct usb_ctrlrequest), 1433 DMA_TO_DEVICE); 1434 if (dma_mapping_error(hcd->self.sysdev, 1435 urb->setup_dma)) 1436 return -EAGAIN; 1437 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1438 } 1439 } 1440 1441 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1442 if (urb->transfer_buffer_length != 0 1443 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1444 if (hcd->localmem_pool) { 1445 ret = hcd_alloc_coherent( 1446 urb->dev->bus, mem_flags, 1447 &urb->transfer_dma, 1448 &urb->transfer_buffer, 1449 urb->transfer_buffer_length, 1450 dir); 1451 if (ret == 0) 1452 urb->transfer_flags |= URB_MAP_LOCAL; 1453 } else if (hcd_uses_dma(hcd)) { 1454 if (urb->num_sgs) { 1455 int n; 1456 1457 /* We don't support sg for isoc transfers ! */ 1458 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1459 WARN_ON(1); 1460 return -EINVAL; 1461 } 1462 1463 n = dma_map_sg( 1464 hcd->self.sysdev, 1465 urb->sg, 1466 urb->num_sgs, 1467 dir); 1468 if (n <= 0) 1469 ret = -EAGAIN; 1470 else 1471 urb->transfer_flags |= URB_DMA_MAP_SG; 1472 urb->num_mapped_sgs = n; 1473 if (n != urb->num_sgs) 1474 urb->transfer_flags |= 1475 URB_DMA_SG_COMBINED; 1476 } else if (urb->sg) { 1477 struct scatterlist *sg = urb->sg; 1478 urb->transfer_dma = dma_map_page( 1479 hcd->self.sysdev, 1480 sg_page(sg), 1481 sg->offset, 1482 urb->transfer_buffer_length, 1483 dir); 1484 if (dma_mapping_error(hcd->self.sysdev, 1485 urb->transfer_dma)) 1486 ret = -EAGAIN; 1487 else 1488 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1489 } else if (object_is_on_stack(urb->transfer_buffer)) { 1490 WARN_ONCE(1, "transfer buffer is on stack\n"); 1491 ret = -EAGAIN; 1492 } else { 1493 urb->transfer_dma = dma_map_single( 1494 hcd->self.sysdev, 1495 urb->transfer_buffer, 1496 urb->transfer_buffer_length, 1497 dir); 1498 if (dma_mapping_error(hcd->self.sysdev, 1499 urb->transfer_dma)) 1500 ret = -EAGAIN; 1501 else 1502 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1503 } 1504 } 1505 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1506 URB_SETUP_MAP_LOCAL))) 1507 usb_hcd_unmap_urb_for_dma(hcd, urb); 1508 } 1509 return ret; 1510 } 1511 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1512 1513 /*-------------------------------------------------------------------------*/ 1514 1515 /* may be called in any context with a valid urb->dev usecount 1516 * caller surrenders "ownership" of urb 1517 * expects usb_submit_urb() to have sanity checked and conditioned all 1518 * inputs in the urb 1519 */ 1520 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1521 { 1522 int status; 1523 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1524 1525 /* increment urb's reference count as part of giving it to the HCD 1526 * (which will control it). HCD guarantees that it either returns 1527 * an error or calls giveback(), but not both. 1528 */ 1529 usb_get_urb(urb); 1530 atomic_inc(&urb->use_count); 1531 atomic_inc(&urb->dev->urbnum); 1532 usbmon_urb_submit(&hcd->self, urb); 1533 1534 /* NOTE requirements on root-hub callers (usbfs and the hub 1535 * driver, for now): URBs' urb->transfer_buffer must be 1536 * valid and usb_buffer_{sync,unmap}() not be needed, since 1537 * they could clobber root hub response data. Also, control 1538 * URBs must be submitted in process context with interrupts 1539 * enabled. 1540 */ 1541 1542 if (is_root_hub(urb->dev)) { 1543 status = rh_urb_enqueue(hcd, urb); 1544 } else { 1545 status = map_urb_for_dma(hcd, urb, mem_flags); 1546 if (likely(status == 0)) { 1547 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1548 if (unlikely(status)) 1549 unmap_urb_for_dma(hcd, urb); 1550 } 1551 } 1552 1553 if (unlikely(status)) { 1554 usbmon_urb_submit_error(&hcd->self, urb, status); 1555 urb->hcpriv = NULL; 1556 INIT_LIST_HEAD(&urb->urb_list); 1557 atomic_dec(&urb->use_count); 1558 atomic_dec(&urb->dev->urbnum); 1559 if (atomic_read(&urb->reject)) 1560 wake_up(&usb_kill_urb_queue); 1561 usb_put_urb(urb); 1562 } 1563 return status; 1564 } 1565 1566 /*-------------------------------------------------------------------------*/ 1567 1568 /* this makes the hcd giveback() the urb more quickly, by kicking it 1569 * off hardware queues (which may take a while) and returning it as 1570 * soon as practical. we've already set up the urb's return status, 1571 * but we can't know if the callback completed already. 1572 */ 1573 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1574 { 1575 int value; 1576 1577 if (is_root_hub(urb->dev)) 1578 value = usb_rh_urb_dequeue(hcd, urb, status); 1579 else { 1580 1581 /* The only reason an HCD might fail this call is if 1582 * it has not yet fully queued the urb to begin with. 1583 * Such failures should be harmless. */ 1584 value = hcd->driver->urb_dequeue(hcd, urb, status); 1585 } 1586 return value; 1587 } 1588 1589 /* 1590 * called in any context 1591 * 1592 * caller guarantees urb won't be recycled till both unlink() 1593 * and the urb's completion function return 1594 */ 1595 int usb_hcd_unlink_urb (struct urb *urb, int status) 1596 { 1597 struct usb_hcd *hcd; 1598 struct usb_device *udev = urb->dev; 1599 int retval = -EIDRM; 1600 unsigned long flags; 1601 1602 /* Prevent the device and bus from going away while 1603 * the unlink is carried out. If they are already gone 1604 * then urb->use_count must be 0, since disconnected 1605 * devices can't have any active URBs. 1606 */ 1607 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1608 if (atomic_read(&urb->use_count) > 0) { 1609 retval = 0; 1610 usb_get_dev(udev); 1611 } 1612 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1613 if (retval == 0) { 1614 hcd = bus_to_hcd(urb->dev->bus); 1615 retval = unlink1(hcd, urb, status); 1616 if (retval == 0) 1617 retval = -EINPROGRESS; 1618 else if (retval != -EIDRM && retval != -EBUSY) 1619 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1620 urb, retval); 1621 usb_put_dev(udev); 1622 } 1623 return retval; 1624 } 1625 1626 /*-------------------------------------------------------------------------*/ 1627 1628 static void __usb_hcd_giveback_urb(struct urb *urb) 1629 { 1630 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1631 struct usb_anchor *anchor = urb->anchor; 1632 int status = urb->unlinked; 1633 1634 urb->hcpriv = NULL; 1635 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1636 urb->actual_length < urb->transfer_buffer_length && 1637 !status)) 1638 status = -EREMOTEIO; 1639 1640 unmap_urb_for_dma(hcd, urb); 1641 usbmon_urb_complete(&hcd->self, urb, status); 1642 usb_anchor_suspend_wakeups(anchor); 1643 usb_unanchor_urb(urb); 1644 if (likely(status == 0)) 1645 usb_led_activity(USB_LED_EVENT_HOST); 1646 1647 /* pass ownership to the completion handler */ 1648 urb->status = status; 1649 kcov_remote_start_usb((u64)urb->dev->bus->busnum); 1650 urb->complete(urb); 1651 kcov_remote_stop(); 1652 1653 usb_anchor_resume_wakeups(anchor); 1654 atomic_dec(&urb->use_count); 1655 if (unlikely(atomic_read(&urb->reject))) 1656 wake_up(&usb_kill_urb_queue); 1657 usb_put_urb(urb); 1658 } 1659 1660 static void usb_giveback_urb_bh(unsigned long param) 1661 { 1662 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1663 struct list_head local_list; 1664 1665 spin_lock_irq(&bh->lock); 1666 bh->running = true; 1667 restart: 1668 list_replace_init(&bh->head, &local_list); 1669 spin_unlock_irq(&bh->lock); 1670 1671 while (!list_empty(&local_list)) { 1672 struct urb *urb; 1673 1674 urb = list_entry(local_list.next, struct urb, urb_list); 1675 list_del_init(&urb->urb_list); 1676 bh->completing_ep = urb->ep; 1677 __usb_hcd_giveback_urb(urb); 1678 bh->completing_ep = NULL; 1679 } 1680 1681 /* check if there are new URBs to giveback */ 1682 spin_lock_irq(&bh->lock); 1683 if (!list_empty(&bh->head)) 1684 goto restart; 1685 bh->running = false; 1686 spin_unlock_irq(&bh->lock); 1687 } 1688 1689 /** 1690 * usb_hcd_giveback_urb - return URB from HCD to device driver 1691 * @hcd: host controller returning the URB 1692 * @urb: urb being returned to the USB device driver. 1693 * @status: completion status code for the URB. 1694 * Context: in_interrupt() 1695 * 1696 * This hands the URB from HCD to its USB device driver, using its 1697 * completion function. The HCD has freed all per-urb resources 1698 * (and is done using urb->hcpriv). It also released all HCD locks; 1699 * the device driver won't cause problems if it frees, modifies, 1700 * or resubmits this URB. 1701 * 1702 * If @urb was unlinked, the value of @status will be overridden by 1703 * @urb->unlinked. Erroneous short transfers are detected in case 1704 * the HCD hasn't checked for them. 1705 */ 1706 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1707 { 1708 struct giveback_urb_bh *bh; 1709 bool running, high_prio_bh; 1710 1711 /* pass status to tasklet via unlinked */ 1712 if (likely(!urb->unlinked)) 1713 urb->unlinked = status; 1714 1715 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1716 __usb_hcd_giveback_urb(urb); 1717 return; 1718 } 1719 1720 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1721 bh = &hcd->high_prio_bh; 1722 high_prio_bh = true; 1723 } else { 1724 bh = &hcd->low_prio_bh; 1725 high_prio_bh = false; 1726 } 1727 1728 spin_lock(&bh->lock); 1729 list_add_tail(&urb->urb_list, &bh->head); 1730 running = bh->running; 1731 spin_unlock(&bh->lock); 1732 1733 if (running) 1734 ; 1735 else if (high_prio_bh) 1736 tasklet_hi_schedule(&bh->bh); 1737 else 1738 tasklet_schedule(&bh->bh); 1739 } 1740 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1741 1742 /*-------------------------------------------------------------------------*/ 1743 1744 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1745 * queue to drain completely. The caller must first insure that no more 1746 * URBs can be submitted for this endpoint. 1747 */ 1748 void usb_hcd_flush_endpoint(struct usb_device *udev, 1749 struct usb_host_endpoint *ep) 1750 { 1751 struct usb_hcd *hcd; 1752 struct urb *urb; 1753 1754 if (!ep) 1755 return; 1756 might_sleep(); 1757 hcd = bus_to_hcd(udev->bus); 1758 1759 /* No more submits can occur */ 1760 spin_lock_irq(&hcd_urb_list_lock); 1761 rescan: 1762 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1763 int is_in; 1764 1765 if (urb->unlinked) 1766 continue; 1767 usb_get_urb (urb); 1768 is_in = usb_urb_dir_in(urb); 1769 spin_unlock(&hcd_urb_list_lock); 1770 1771 /* kick hcd */ 1772 unlink1(hcd, urb, -ESHUTDOWN); 1773 dev_dbg (hcd->self.controller, 1774 "shutdown urb %pK ep%d%s-%s\n", 1775 urb, usb_endpoint_num(&ep->desc), 1776 is_in ? "in" : "out", 1777 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1778 usb_put_urb (urb); 1779 1780 /* list contents may have changed */ 1781 spin_lock(&hcd_urb_list_lock); 1782 goto rescan; 1783 } 1784 spin_unlock_irq(&hcd_urb_list_lock); 1785 1786 /* Wait until the endpoint queue is completely empty */ 1787 while (!list_empty (&ep->urb_list)) { 1788 spin_lock_irq(&hcd_urb_list_lock); 1789 1790 /* The list may have changed while we acquired the spinlock */ 1791 urb = NULL; 1792 if (!list_empty (&ep->urb_list)) { 1793 urb = list_entry (ep->urb_list.prev, struct urb, 1794 urb_list); 1795 usb_get_urb (urb); 1796 } 1797 spin_unlock_irq(&hcd_urb_list_lock); 1798 1799 if (urb) { 1800 usb_kill_urb (urb); 1801 usb_put_urb (urb); 1802 } 1803 } 1804 } 1805 1806 /** 1807 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1808 * the bus bandwidth 1809 * @udev: target &usb_device 1810 * @new_config: new configuration to install 1811 * @cur_alt: the current alternate interface setting 1812 * @new_alt: alternate interface setting that is being installed 1813 * 1814 * To change configurations, pass in the new configuration in new_config, 1815 * and pass NULL for cur_alt and new_alt. 1816 * 1817 * To reset a device's configuration (put the device in the ADDRESSED state), 1818 * pass in NULL for new_config, cur_alt, and new_alt. 1819 * 1820 * To change alternate interface settings, pass in NULL for new_config, 1821 * pass in the current alternate interface setting in cur_alt, 1822 * and pass in the new alternate interface setting in new_alt. 1823 * 1824 * Return: An error if the requested bandwidth change exceeds the 1825 * bus bandwidth or host controller internal resources. 1826 */ 1827 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1828 struct usb_host_config *new_config, 1829 struct usb_host_interface *cur_alt, 1830 struct usb_host_interface *new_alt) 1831 { 1832 int num_intfs, i, j; 1833 struct usb_host_interface *alt = NULL; 1834 int ret = 0; 1835 struct usb_hcd *hcd; 1836 struct usb_host_endpoint *ep; 1837 1838 hcd = bus_to_hcd(udev->bus); 1839 if (!hcd->driver->check_bandwidth) 1840 return 0; 1841 1842 /* Configuration is being removed - set configuration 0 */ 1843 if (!new_config && !cur_alt) { 1844 for (i = 1; i < 16; ++i) { 1845 ep = udev->ep_out[i]; 1846 if (ep) 1847 hcd->driver->drop_endpoint(hcd, udev, ep); 1848 ep = udev->ep_in[i]; 1849 if (ep) 1850 hcd->driver->drop_endpoint(hcd, udev, ep); 1851 } 1852 hcd->driver->check_bandwidth(hcd, udev); 1853 return 0; 1854 } 1855 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1856 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1857 * of the bus. There will always be bandwidth for endpoint 0, so it's 1858 * ok to exclude it. 1859 */ 1860 if (new_config) { 1861 num_intfs = new_config->desc.bNumInterfaces; 1862 /* Remove endpoints (except endpoint 0, which is always on the 1863 * schedule) from the old config from the schedule 1864 */ 1865 for (i = 1; i < 16; ++i) { 1866 ep = udev->ep_out[i]; 1867 if (ep) { 1868 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1869 if (ret < 0) 1870 goto reset; 1871 } 1872 ep = udev->ep_in[i]; 1873 if (ep) { 1874 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1875 if (ret < 0) 1876 goto reset; 1877 } 1878 } 1879 for (i = 0; i < num_intfs; ++i) { 1880 struct usb_host_interface *first_alt; 1881 int iface_num; 1882 1883 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1884 iface_num = first_alt->desc.bInterfaceNumber; 1885 /* Set up endpoints for alternate interface setting 0 */ 1886 alt = usb_find_alt_setting(new_config, iface_num, 0); 1887 if (!alt) 1888 /* No alt setting 0? Pick the first setting. */ 1889 alt = first_alt; 1890 1891 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1892 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1893 if (ret < 0) 1894 goto reset; 1895 } 1896 } 1897 } 1898 if (cur_alt && new_alt) { 1899 struct usb_interface *iface = usb_ifnum_to_if(udev, 1900 cur_alt->desc.bInterfaceNumber); 1901 1902 if (!iface) 1903 return -EINVAL; 1904 if (iface->resetting_device) { 1905 /* 1906 * The USB core just reset the device, so the xHCI host 1907 * and the device will think alt setting 0 is installed. 1908 * However, the USB core will pass in the alternate 1909 * setting installed before the reset as cur_alt. Dig 1910 * out the alternate setting 0 structure, or the first 1911 * alternate setting if a broken device doesn't have alt 1912 * setting 0. 1913 */ 1914 cur_alt = usb_altnum_to_altsetting(iface, 0); 1915 if (!cur_alt) 1916 cur_alt = &iface->altsetting[0]; 1917 } 1918 1919 /* Drop all the endpoints in the current alt setting */ 1920 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1921 ret = hcd->driver->drop_endpoint(hcd, udev, 1922 &cur_alt->endpoint[i]); 1923 if (ret < 0) 1924 goto reset; 1925 } 1926 /* Add all the endpoints in the new alt setting */ 1927 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1928 ret = hcd->driver->add_endpoint(hcd, udev, 1929 &new_alt->endpoint[i]); 1930 if (ret < 0) 1931 goto reset; 1932 } 1933 } 1934 ret = hcd->driver->check_bandwidth(hcd, udev); 1935 reset: 1936 if (ret < 0) 1937 hcd->driver->reset_bandwidth(hcd, udev); 1938 return ret; 1939 } 1940 1941 /* Disables the endpoint: synchronizes with the hcd to make sure all 1942 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1943 * have been called previously. Use for set_configuration, set_interface, 1944 * driver removal, physical disconnect. 1945 * 1946 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1947 * type, maxpacket size, toggle, halt status, and scheduling. 1948 */ 1949 void usb_hcd_disable_endpoint(struct usb_device *udev, 1950 struct usb_host_endpoint *ep) 1951 { 1952 struct usb_hcd *hcd; 1953 1954 might_sleep(); 1955 hcd = bus_to_hcd(udev->bus); 1956 if (hcd->driver->endpoint_disable) 1957 hcd->driver->endpoint_disable(hcd, ep); 1958 } 1959 1960 /** 1961 * usb_hcd_reset_endpoint - reset host endpoint state 1962 * @udev: USB device. 1963 * @ep: the endpoint to reset. 1964 * 1965 * Resets any host endpoint state such as the toggle bit, sequence 1966 * number and current window. 1967 */ 1968 void usb_hcd_reset_endpoint(struct usb_device *udev, 1969 struct usb_host_endpoint *ep) 1970 { 1971 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1972 1973 if (hcd->driver->endpoint_reset) 1974 hcd->driver->endpoint_reset(hcd, ep); 1975 else { 1976 int epnum = usb_endpoint_num(&ep->desc); 1977 int is_out = usb_endpoint_dir_out(&ep->desc); 1978 int is_control = usb_endpoint_xfer_control(&ep->desc); 1979 1980 usb_settoggle(udev, epnum, is_out, 0); 1981 if (is_control) 1982 usb_settoggle(udev, epnum, !is_out, 0); 1983 } 1984 } 1985 1986 /** 1987 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1988 * @interface: alternate setting that includes all endpoints. 1989 * @eps: array of endpoints that need streams. 1990 * @num_eps: number of endpoints in the array. 1991 * @num_streams: number of streams to allocate. 1992 * @mem_flags: flags hcd should use to allocate memory. 1993 * 1994 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 1995 * Drivers may queue multiple transfers to different stream IDs, which may 1996 * complete in a different order than they were queued. 1997 * 1998 * Return: On success, the number of allocated streams. On failure, a negative 1999 * error code. 2000 */ 2001 int usb_alloc_streams(struct usb_interface *interface, 2002 struct usb_host_endpoint **eps, unsigned int num_eps, 2003 unsigned int num_streams, gfp_t mem_flags) 2004 { 2005 struct usb_hcd *hcd; 2006 struct usb_device *dev; 2007 int i, ret; 2008 2009 dev = interface_to_usbdev(interface); 2010 hcd = bus_to_hcd(dev->bus); 2011 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2012 return -EINVAL; 2013 if (dev->speed < USB_SPEED_SUPER) 2014 return -EINVAL; 2015 if (dev->state < USB_STATE_CONFIGURED) 2016 return -ENODEV; 2017 2018 for (i = 0; i < num_eps; i++) { 2019 /* Streams only apply to bulk endpoints. */ 2020 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2021 return -EINVAL; 2022 /* Re-alloc is not allowed */ 2023 if (eps[i]->streams) 2024 return -EINVAL; 2025 } 2026 2027 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2028 num_streams, mem_flags); 2029 if (ret < 0) 2030 return ret; 2031 2032 for (i = 0; i < num_eps; i++) 2033 eps[i]->streams = ret; 2034 2035 return ret; 2036 } 2037 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2038 2039 /** 2040 * usb_free_streams - free bulk endpoint stream IDs. 2041 * @interface: alternate setting that includes all endpoints. 2042 * @eps: array of endpoints to remove streams from. 2043 * @num_eps: number of endpoints in the array. 2044 * @mem_flags: flags hcd should use to allocate memory. 2045 * 2046 * Reverts a group of bulk endpoints back to not using stream IDs. 2047 * Can fail if we are given bad arguments, or HCD is broken. 2048 * 2049 * Return: 0 on success. On failure, a negative error code. 2050 */ 2051 int usb_free_streams(struct usb_interface *interface, 2052 struct usb_host_endpoint **eps, unsigned int num_eps, 2053 gfp_t mem_flags) 2054 { 2055 struct usb_hcd *hcd; 2056 struct usb_device *dev; 2057 int i, ret; 2058 2059 dev = interface_to_usbdev(interface); 2060 hcd = bus_to_hcd(dev->bus); 2061 if (dev->speed < USB_SPEED_SUPER) 2062 return -EINVAL; 2063 2064 /* Double-free is not allowed */ 2065 for (i = 0; i < num_eps; i++) 2066 if (!eps[i] || !eps[i]->streams) 2067 return -EINVAL; 2068 2069 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2070 if (ret < 0) 2071 return ret; 2072 2073 for (i = 0; i < num_eps; i++) 2074 eps[i]->streams = 0; 2075 2076 return ret; 2077 } 2078 EXPORT_SYMBOL_GPL(usb_free_streams); 2079 2080 /* Protect against drivers that try to unlink URBs after the device 2081 * is gone, by waiting until all unlinks for @udev are finished. 2082 * Since we don't currently track URBs by device, simply wait until 2083 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2084 */ 2085 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2086 { 2087 spin_lock_irq(&hcd_urb_unlink_lock); 2088 spin_unlock_irq(&hcd_urb_unlink_lock); 2089 } 2090 2091 /*-------------------------------------------------------------------------*/ 2092 2093 /* called in any context */ 2094 int usb_hcd_get_frame_number (struct usb_device *udev) 2095 { 2096 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2097 2098 if (!HCD_RH_RUNNING(hcd)) 2099 return -ESHUTDOWN; 2100 return hcd->driver->get_frame_number (hcd); 2101 } 2102 2103 /*-------------------------------------------------------------------------*/ 2104 2105 #ifdef CONFIG_PM 2106 2107 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2108 { 2109 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2110 int status; 2111 int old_state = hcd->state; 2112 2113 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2114 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2115 rhdev->do_remote_wakeup); 2116 if (HCD_DEAD(hcd)) { 2117 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2118 return 0; 2119 } 2120 2121 if (!hcd->driver->bus_suspend) { 2122 status = -ENOENT; 2123 } else { 2124 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2125 hcd->state = HC_STATE_QUIESCING; 2126 status = hcd->driver->bus_suspend(hcd); 2127 } 2128 if (status == 0) { 2129 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2130 hcd->state = HC_STATE_SUSPENDED; 2131 2132 if (!PMSG_IS_AUTO(msg)) 2133 usb_phy_roothub_suspend(hcd->self.sysdev, 2134 hcd->phy_roothub); 2135 2136 /* Did we race with a root-hub wakeup event? */ 2137 if (rhdev->do_remote_wakeup) { 2138 char buffer[6]; 2139 2140 status = hcd->driver->hub_status_data(hcd, buffer); 2141 if (status != 0) { 2142 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2143 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2144 status = -EBUSY; 2145 } 2146 } 2147 } else { 2148 spin_lock_irq(&hcd_root_hub_lock); 2149 if (!HCD_DEAD(hcd)) { 2150 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2151 hcd->state = old_state; 2152 } 2153 spin_unlock_irq(&hcd_root_hub_lock); 2154 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2155 "suspend", status); 2156 } 2157 return status; 2158 } 2159 2160 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2161 { 2162 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2163 int status; 2164 int old_state = hcd->state; 2165 2166 dev_dbg(&rhdev->dev, "usb %sresume\n", 2167 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2168 if (HCD_DEAD(hcd)) { 2169 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2170 return 0; 2171 } 2172 2173 if (!PMSG_IS_AUTO(msg)) { 2174 status = usb_phy_roothub_resume(hcd->self.sysdev, 2175 hcd->phy_roothub); 2176 if (status) 2177 return status; 2178 } 2179 2180 if (!hcd->driver->bus_resume) 2181 return -ENOENT; 2182 if (HCD_RH_RUNNING(hcd)) 2183 return 0; 2184 2185 hcd->state = HC_STATE_RESUMING; 2186 status = hcd->driver->bus_resume(hcd); 2187 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2188 if (status == 0) 2189 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2190 2191 if (status == 0) { 2192 struct usb_device *udev; 2193 int port1; 2194 2195 spin_lock_irq(&hcd_root_hub_lock); 2196 if (!HCD_DEAD(hcd)) { 2197 usb_set_device_state(rhdev, rhdev->actconfig 2198 ? USB_STATE_CONFIGURED 2199 : USB_STATE_ADDRESS); 2200 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2201 hcd->state = HC_STATE_RUNNING; 2202 } 2203 spin_unlock_irq(&hcd_root_hub_lock); 2204 2205 /* 2206 * Check whether any of the enabled ports on the root hub are 2207 * unsuspended. If they are then a TRSMRCY delay is needed 2208 * (this is what the USB-2 spec calls a "global resume"). 2209 * Otherwise we can skip the delay. 2210 */ 2211 usb_hub_for_each_child(rhdev, port1, udev) { 2212 if (udev->state != USB_STATE_NOTATTACHED && 2213 !udev->port_is_suspended) { 2214 usleep_range(10000, 11000); /* TRSMRCY */ 2215 break; 2216 } 2217 } 2218 } else { 2219 hcd->state = old_state; 2220 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2221 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2222 "resume", status); 2223 if (status != -ESHUTDOWN) 2224 usb_hc_died(hcd); 2225 } 2226 return status; 2227 } 2228 2229 /* Workqueue routine for root-hub remote wakeup */ 2230 static void hcd_resume_work(struct work_struct *work) 2231 { 2232 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2233 struct usb_device *udev = hcd->self.root_hub; 2234 2235 usb_remote_wakeup(udev); 2236 } 2237 2238 /** 2239 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2240 * @hcd: host controller for this root hub 2241 * 2242 * The USB host controller calls this function when its root hub is 2243 * suspended (with the remote wakeup feature enabled) and a remote 2244 * wakeup request is received. The routine submits a workqueue request 2245 * to resume the root hub (that is, manage its downstream ports again). 2246 */ 2247 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2248 { 2249 unsigned long flags; 2250 2251 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2252 if (hcd->rh_registered) { 2253 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2254 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2255 queue_work(pm_wq, &hcd->wakeup_work); 2256 } 2257 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2258 } 2259 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2260 2261 #endif /* CONFIG_PM */ 2262 2263 /*-------------------------------------------------------------------------*/ 2264 2265 #ifdef CONFIG_USB_OTG 2266 2267 /** 2268 * usb_bus_start_enum - start immediate enumeration (for OTG) 2269 * @bus: the bus (must use hcd framework) 2270 * @port_num: 1-based number of port; usually bus->otg_port 2271 * Context: in_interrupt() 2272 * 2273 * Starts enumeration, with an immediate reset followed later by 2274 * hub_wq identifying and possibly configuring the device. 2275 * This is needed by OTG controller drivers, where it helps meet 2276 * HNP protocol timing requirements for starting a port reset. 2277 * 2278 * Return: 0 if successful. 2279 */ 2280 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2281 { 2282 struct usb_hcd *hcd; 2283 int status = -EOPNOTSUPP; 2284 2285 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2286 * boards with root hubs hooked up to internal devices (instead of 2287 * just the OTG port) may need more attention to resetting... 2288 */ 2289 hcd = bus_to_hcd(bus); 2290 if (port_num && hcd->driver->start_port_reset) 2291 status = hcd->driver->start_port_reset(hcd, port_num); 2292 2293 /* allocate hub_wq shortly after (first) root port reset finishes; 2294 * it may issue others, until at least 50 msecs have passed. 2295 */ 2296 if (status == 0) 2297 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2298 return status; 2299 } 2300 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2301 2302 #endif 2303 2304 /*-------------------------------------------------------------------------*/ 2305 2306 /** 2307 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2308 * @irq: the IRQ being raised 2309 * @__hcd: pointer to the HCD whose IRQ is being signaled 2310 * 2311 * If the controller isn't HALTed, calls the driver's irq handler. 2312 * Checks whether the controller is now dead. 2313 * 2314 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2315 */ 2316 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2317 { 2318 struct usb_hcd *hcd = __hcd; 2319 irqreturn_t rc; 2320 2321 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2322 rc = IRQ_NONE; 2323 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2324 rc = IRQ_NONE; 2325 else 2326 rc = IRQ_HANDLED; 2327 2328 return rc; 2329 } 2330 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2331 2332 /*-------------------------------------------------------------------------*/ 2333 2334 /* Workqueue routine for when the root-hub has died. */ 2335 static void hcd_died_work(struct work_struct *work) 2336 { 2337 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2338 static char *env[] = { 2339 "ERROR=DEAD", 2340 NULL 2341 }; 2342 2343 /* Notify user space that the host controller has died */ 2344 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2345 } 2346 2347 /** 2348 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2349 * @hcd: pointer to the HCD representing the controller 2350 * 2351 * This is called by bus glue to report a USB host controller that died 2352 * while operations may still have been pending. It's called automatically 2353 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2354 * 2355 * Only call this function with the primary HCD. 2356 */ 2357 void usb_hc_died (struct usb_hcd *hcd) 2358 { 2359 unsigned long flags; 2360 2361 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2362 2363 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2364 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2365 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2366 if (hcd->rh_registered) { 2367 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2368 2369 /* make hub_wq clean up old urbs and devices */ 2370 usb_set_device_state (hcd->self.root_hub, 2371 USB_STATE_NOTATTACHED); 2372 usb_kick_hub_wq(hcd->self.root_hub); 2373 } 2374 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2375 hcd = hcd->shared_hcd; 2376 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2377 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2378 if (hcd->rh_registered) { 2379 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2380 2381 /* make hub_wq clean up old urbs and devices */ 2382 usb_set_device_state(hcd->self.root_hub, 2383 USB_STATE_NOTATTACHED); 2384 usb_kick_hub_wq(hcd->self.root_hub); 2385 } 2386 } 2387 2388 /* Handle the case where this function gets called with a shared HCD */ 2389 if (usb_hcd_is_primary_hcd(hcd)) 2390 schedule_work(&hcd->died_work); 2391 else 2392 schedule_work(&hcd->primary_hcd->died_work); 2393 2394 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2395 /* Make sure that the other roothub is also deallocated. */ 2396 } 2397 EXPORT_SYMBOL_GPL (usb_hc_died); 2398 2399 /*-------------------------------------------------------------------------*/ 2400 2401 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2402 { 2403 2404 spin_lock_init(&bh->lock); 2405 INIT_LIST_HEAD(&bh->head); 2406 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2407 } 2408 2409 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2410 struct device *sysdev, struct device *dev, const char *bus_name, 2411 struct usb_hcd *primary_hcd) 2412 { 2413 struct usb_hcd *hcd; 2414 2415 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2416 if (!hcd) 2417 return NULL; 2418 if (primary_hcd == NULL) { 2419 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2420 GFP_KERNEL); 2421 if (!hcd->address0_mutex) { 2422 kfree(hcd); 2423 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2424 return NULL; 2425 } 2426 mutex_init(hcd->address0_mutex); 2427 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2428 GFP_KERNEL); 2429 if (!hcd->bandwidth_mutex) { 2430 kfree(hcd->address0_mutex); 2431 kfree(hcd); 2432 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2433 return NULL; 2434 } 2435 mutex_init(hcd->bandwidth_mutex); 2436 dev_set_drvdata(dev, hcd); 2437 } else { 2438 mutex_lock(&usb_port_peer_mutex); 2439 hcd->address0_mutex = primary_hcd->address0_mutex; 2440 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2441 hcd->primary_hcd = primary_hcd; 2442 primary_hcd->primary_hcd = primary_hcd; 2443 hcd->shared_hcd = primary_hcd; 2444 primary_hcd->shared_hcd = hcd; 2445 mutex_unlock(&usb_port_peer_mutex); 2446 } 2447 2448 kref_init(&hcd->kref); 2449 2450 usb_bus_init(&hcd->self); 2451 hcd->self.controller = dev; 2452 hcd->self.sysdev = sysdev; 2453 hcd->self.bus_name = bus_name; 2454 2455 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2456 #ifdef CONFIG_PM 2457 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2458 #endif 2459 2460 INIT_WORK(&hcd->died_work, hcd_died_work); 2461 2462 hcd->driver = driver; 2463 hcd->speed = driver->flags & HCD_MASK; 2464 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2465 "USB Host Controller"; 2466 return hcd; 2467 } 2468 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2469 2470 /** 2471 * usb_create_shared_hcd - create and initialize an HCD structure 2472 * @driver: HC driver that will use this hcd 2473 * @dev: device for this HC, stored in hcd->self.controller 2474 * @bus_name: value to store in hcd->self.bus_name 2475 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2476 * PCI device. Only allocate certain resources for the primary HCD 2477 * Context: !in_interrupt() 2478 * 2479 * Allocate a struct usb_hcd, with extra space at the end for the 2480 * HC driver's private data. Initialize the generic members of the 2481 * hcd structure. 2482 * 2483 * Return: On success, a pointer to the created and initialized HCD structure. 2484 * On failure (e.g. if memory is unavailable), %NULL. 2485 */ 2486 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2487 struct device *dev, const char *bus_name, 2488 struct usb_hcd *primary_hcd) 2489 { 2490 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2491 } 2492 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2493 2494 /** 2495 * usb_create_hcd - create and initialize an HCD structure 2496 * @driver: HC driver that will use this hcd 2497 * @dev: device for this HC, stored in hcd->self.controller 2498 * @bus_name: value to store in hcd->self.bus_name 2499 * Context: !in_interrupt() 2500 * 2501 * Allocate a struct usb_hcd, with extra space at the end for the 2502 * HC driver's private data. Initialize the generic members of the 2503 * hcd structure. 2504 * 2505 * Return: On success, a pointer to the created and initialized HCD 2506 * structure. On failure (e.g. if memory is unavailable), %NULL. 2507 */ 2508 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2509 struct device *dev, const char *bus_name) 2510 { 2511 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2512 } 2513 EXPORT_SYMBOL_GPL(usb_create_hcd); 2514 2515 /* 2516 * Roothubs that share one PCI device must also share the bandwidth mutex. 2517 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2518 * deallocated. 2519 * 2520 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2521 * freed. When hcd_release() is called for either hcd in a peer set, 2522 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2523 */ 2524 static void hcd_release(struct kref *kref) 2525 { 2526 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2527 2528 mutex_lock(&usb_port_peer_mutex); 2529 if (hcd->shared_hcd) { 2530 struct usb_hcd *peer = hcd->shared_hcd; 2531 2532 peer->shared_hcd = NULL; 2533 peer->primary_hcd = NULL; 2534 } else { 2535 kfree(hcd->address0_mutex); 2536 kfree(hcd->bandwidth_mutex); 2537 } 2538 mutex_unlock(&usb_port_peer_mutex); 2539 kfree(hcd); 2540 } 2541 2542 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2543 { 2544 if (hcd) 2545 kref_get (&hcd->kref); 2546 return hcd; 2547 } 2548 EXPORT_SYMBOL_GPL(usb_get_hcd); 2549 2550 void usb_put_hcd (struct usb_hcd *hcd) 2551 { 2552 if (hcd) 2553 kref_put (&hcd->kref, hcd_release); 2554 } 2555 EXPORT_SYMBOL_GPL(usb_put_hcd); 2556 2557 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2558 { 2559 if (!hcd->primary_hcd) 2560 return 1; 2561 return hcd == hcd->primary_hcd; 2562 } 2563 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2564 2565 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2566 { 2567 if (!hcd->driver->find_raw_port_number) 2568 return port1; 2569 2570 return hcd->driver->find_raw_port_number(hcd, port1); 2571 } 2572 2573 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2574 unsigned int irqnum, unsigned long irqflags) 2575 { 2576 int retval; 2577 2578 if (hcd->driver->irq) { 2579 2580 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2581 hcd->driver->description, hcd->self.busnum); 2582 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2583 hcd->irq_descr, hcd); 2584 if (retval != 0) { 2585 dev_err(hcd->self.controller, 2586 "request interrupt %d failed\n", 2587 irqnum); 2588 return retval; 2589 } 2590 hcd->irq = irqnum; 2591 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2592 (hcd->driver->flags & HCD_MEMORY) ? 2593 "io mem" : "io base", 2594 (unsigned long long)hcd->rsrc_start); 2595 } else { 2596 hcd->irq = 0; 2597 if (hcd->rsrc_start) 2598 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2599 (hcd->driver->flags & HCD_MEMORY) ? 2600 "io mem" : "io base", 2601 (unsigned long long)hcd->rsrc_start); 2602 } 2603 return 0; 2604 } 2605 2606 /* 2607 * Before we free this root hub, flush in-flight peering attempts 2608 * and disable peer lookups 2609 */ 2610 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2611 { 2612 struct usb_device *rhdev; 2613 2614 mutex_lock(&usb_port_peer_mutex); 2615 rhdev = hcd->self.root_hub; 2616 hcd->self.root_hub = NULL; 2617 mutex_unlock(&usb_port_peer_mutex); 2618 usb_put_dev(rhdev); 2619 } 2620 2621 /** 2622 * usb_add_hcd - finish generic HCD structure initialization and register 2623 * @hcd: the usb_hcd structure to initialize 2624 * @irqnum: Interrupt line to allocate 2625 * @irqflags: Interrupt type flags 2626 * 2627 * Finish the remaining parts of generic HCD initialization: allocate the 2628 * buffers of consistent memory, register the bus, request the IRQ line, 2629 * and call the driver's reset() and start() routines. 2630 */ 2631 int usb_add_hcd(struct usb_hcd *hcd, 2632 unsigned int irqnum, unsigned long irqflags) 2633 { 2634 int retval; 2635 struct usb_device *rhdev; 2636 2637 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2638 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2639 if (IS_ERR(hcd->phy_roothub)) 2640 return PTR_ERR(hcd->phy_roothub); 2641 2642 retval = usb_phy_roothub_init(hcd->phy_roothub); 2643 if (retval) 2644 return retval; 2645 2646 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2647 PHY_MODE_USB_HOST_SS); 2648 if (retval) 2649 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2650 PHY_MODE_USB_HOST); 2651 if (retval) 2652 goto err_usb_phy_roothub_power_on; 2653 2654 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2655 if (retval) 2656 goto err_usb_phy_roothub_power_on; 2657 } 2658 2659 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2660 2661 switch (authorized_default) { 2662 case USB_AUTHORIZE_NONE: 2663 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2664 break; 2665 2666 case USB_AUTHORIZE_ALL: 2667 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2668 break; 2669 2670 case USB_AUTHORIZE_INTERNAL: 2671 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2672 break; 2673 2674 case USB_AUTHORIZE_WIRED: 2675 default: 2676 hcd->dev_policy = hcd->wireless ? 2677 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2678 break; 2679 } 2680 2681 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2682 2683 /* per default all interfaces are authorized */ 2684 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2685 2686 /* HC is in reset state, but accessible. Now do the one-time init, 2687 * bottom up so that hcds can customize the root hubs before hub_wq 2688 * starts talking to them. (Note, bus id is assigned early too.) 2689 */ 2690 retval = hcd_buffer_create(hcd); 2691 if (retval != 0) { 2692 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2693 goto err_create_buf; 2694 } 2695 2696 retval = usb_register_bus(&hcd->self); 2697 if (retval < 0) 2698 goto err_register_bus; 2699 2700 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2701 if (rhdev == NULL) { 2702 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2703 retval = -ENOMEM; 2704 goto err_allocate_root_hub; 2705 } 2706 mutex_lock(&usb_port_peer_mutex); 2707 hcd->self.root_hub = rhdev; 2708 mutex_unlock(&usb_port_peer_mutex); 2709 2710 rhdev->rx_lanes = 1; 2711 rhdev->tx_lanes = 1; 2712 2713 switch (hcd->speed) { 2714 case HCD_USB11: 2715 rhdev->speed = USB_SPEED_FULL; 2716 break; 2717 case HCD_USB2: 2718 rhdev->speed = USB_SPEED_HIGH; 2719 break; 2720 case HCD_USB25: 2721 rhdev->speed = USB_SPEED_WIRELESS; 2722 break; 2723 case HCD_USB3: 2724 rhdev->speed = USB_SPEED_SUPER; 2725 break; 2726 case HCD_USB32: 2727 rhdev->rx_lanes = 2; 2728 rhdev->tx_lanes = 2; 2729 /* fall through */ 2730 case HCD_USB31: 2731 rhdev->speed = USB_SPEED_SUPER_PLUS; 2732 break; 2733 default: 2734 retval = -EINVAL; 2735 goto err_set_rh_speed; 2736 } 2737 2738 /* wakeup flag init defaults to "everything works" for root hubs, 2739 * but drivers can override it in reset() if needed, along with 2740 * recording the overall controller's system wakeup capability. 2741 */ 2742 device_set_wakeup_capable(&rhdev->dev, 1); 2743 2744 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2745 * registered. But since the controller can die at any time, 2746 * let's initialize the flag before touching the hardware. 2747 */ 2748 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2749 2750 /* "reset" is misnamed; its role is now one-time init. the controller 2751 * should already have been reset (and boot firmware kicked off etc). 2752 */ 2753 if (hcd->driver->reset) { 2754 retval = hcd->driver->reset(hcd); 2755 if (retval < 0) { 2756 dev_err(hcd->self.controller, "can't setup: %d\n", 2757 retval); 2758 goto err_hcd_driver_setup; 2759 } 2760 } 2761 hcd->rh_pollable = 1; 2762 2763 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2764 if (retval) 2765 goto err_hcd_driver_setup; 2766 2767 /* NOTE: root hub and controller capabilities may not be the same */ 2768 if (device_can_wakeup(hcd->self.controller) 2769 && device_can_wakeup(&hcd->self.root_hub->dev)) 2770 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2771 2772 /* initialize tasklets */ 2773 init_giveback_urb_bh(&hcd->high_prio_bh); 2774 init_giveback_urb_bh(&hcd->low_prio_bh); 2775 2776 /* enable irqs just before we start the controller, 2777 * if the BIOS provides legacy PCI irqs. 2778 */ 2779 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2780 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2781 if (retval) 2782 goto err_request_irq; 2783 } 2784 2785 hcd->state = HC_STATE_RUNNING; 2786 retval = hcd->driver->start(hcd); 2787 if (retval < 0) { 2788 dev_err(hcd->self.controller, "startup error %d\n", retval); 2789 goto err_hcd_driver_start; 2790 } 2791 2792 /* starting here, usbcore will pay attention to this root hub */ 2793 retval = register_root_hub(hcd); 2794 if (retval != 0) 2795 goto err_register_root_hub; 2796 2797 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2798 usb_hcd_poll_rh_status(hcd); 2799 2800 return retval; 2801 2802 err_register_root_hub: 2803 hcd->rh_pollable = 0; 2804 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2805 del_timer_sync(&hcd->rh_timer); 2806 hcd->driver->stop(hcd); 2807 hcd->state = HC_STATE_HALT; 2808 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2809 del_timer_sync(&hcd->rh_timer); 2810 err_hcd_driver_start: 2811 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2812 free_irq(irqnum, hcd); 2813 err_request_irq: 2814 err_hcd_driver_setup: 2815 err_set_rh_speed: 2816 usb_put_invalidate_rhdev(hcd); 2817 err_allocate_root_hub: 2818 usb_deregister_bus(&hcd->self); 2819 err_register_bus: 2820 hcd_buffer_destroy(hcd); 2821 err_create_buf: 2822 usb_phy_roothub_power_off(hcd->phy_roothub); 2823 err_usb_phy_roothub_power_on: 2824 usb_phy_roothub_exit(hcd->phy_roothub); 2825 2826 return retval; 2827 } 2828 EXPORT_SYMBOL_GPL(usb_add_hcd); 2829 2830 /** 2831 * usb_remove_hcd - shutdown processing for generic HCDs 2832 * @hcd: the usb_hcd structure to remove 2833 * Context: !in_interrupt() 2834 * 2835 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2836 * invoking the HCD's stop() method. 2837 */ 2838 void usb_remove_hcd(struct usb_hcd *hcd) 2839 { 2840 struct usb_device *rhdev = hcd->self.root_hub; 2841 2842 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2843 2844 usb_get_dev(rhdev); 2845 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2846 if (HC_IS_RUNNING (hcd->state)) 2847 hcd->state = HC_STATE_QUIESCING; 2848 2849 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2850 spin_lock_irq (&hcd_root_hub_lock); 2851 hcd->rh_registered = 0; 2852 spin_unlock_irq (&hcd_root_hub_lock); 2853 2854 #ifdef CONFIG_PM 2855 cancel_work_sync(&hcd->wakeup_work); 2856 #endif 2857 cancel_work_sync(&hcd->died_work); 2858 2859 mutex_lock(&usb_bus_idr_lock); 2860 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2861 mutex_unlock(&usb_bus_idr_lock); 2862 2863 /* 2864 * tasklet_kill() isn't needed here because: 2865 * - driver's disconnect() called from usb_disconnect() should 2866 * make sure its URBs are completed during the disconnect() 2867 * callback 2868 * 2869 * - it is too late to run complete() here since driver may have 2870 * been removed already now 2871 */ 2872 2873 /* Prevent any more root-hub status calls from the timer. 2874 * The HCD might still restart the timer (if a port status change 2875 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2876 * the hub_status_data() callback. 2877 */ 2878 hcd->rh_pollable = 0; 2879 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2880 del_timer_sync(&hcd->rh_timer); 2881 2882 hcd->driver->stop(hcd); 2883 hcd->state = HC_STATE_HALT; 2884 2885 /* In case the HCD restarted the timer, stop it again. */ 2886 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2887 del_timer_sync(&hcd->rh_timer); 2888 2889 if (usb_hcd_is_primary_hcd(hcd)) { 2890 if (hcd->irq > 0) 2891 free_irq(hcd->irq, hcd); 2892 } 2893 2894 usb_deregister_bus(&hcd->self); 2895 hcd_buffer_destroy(hcd); 2896 2897 usb_phy_roothub_power_off(hcd->phy_roothub); 2898 usb_phy_roothub_exit(hcd->phy_roothub); 2899 2900 usb_put_invalidate_rhdev(hcd); 2901 hcd->flags = 0; 2902 } 2903 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2904 2905 void 2906 usb_hcd_platform_shutdown(struct platform_device *dev) 2907 { 2908 struct usb_hcd *hcd = platform_get_drvdata(dev); 2909 2910 /* No need for pm_runtime_put(), we're shutting down */ 2911 pm_runtime_get_sync(&dev->dev); 2912 2913 if (hcd->driver->shutdown) 2914 hcd->driver->shutdown(hcd); 2915 } 2916 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2917 2918 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 2919 dma_addr_t dma, size_t size) 2920 { 2921 int err; 2922 void *local_mem; 2923 2924 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 2925 dev_to_node(hcd->self.sysdev), 2926 dev_name(hcd->self.sysdev)); 2927 if (IS_ERR(hcd->localmem_pool)) 2928 return PTR_ERR(hcd->localmem_pool); 2929 2930 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 2931 size, MEMREMAP_WC); 2932 if (IS_ERR(local_mem)) 2933 return PTR_ERR(local_mem); 2934 2935 /* 2936 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 2937 * It's not backed by system memory and thus there's no kernel mapping 2938 * for it. 2939 */ 2940 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 2941 dma, size, dev_to_node(hcd->self.sysdev)); 2942 if (err < 0) { 2943 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 2944 err); 2945 return err; 2946 } 2947 2948 return 0; 2949 } 2950 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 2951 2952 /*-------------------------------------------------------------------------*/ 2953 2954 #if IS_ENABLED(CONFIG_USB_MON) 2955 2956 const struct usb_mon_operations *mon_ops; 2957 2958 /* 2959 * The registration is unlocked. 2960 * We do it this way because we do not want to lock in hot paths. 2961 * 2962 * Notice that the code is minimally error-proof. Because usbmon needs 2963 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2964 */ 2965 2966 int usb_mon_register(const struct usb_mon_operations *ops) 2967 { 2968 2969 if (mon_ops) 2970 return -EBUSY; 2971 2972 mon_ops = ops; 2973 mb(); 2974 return 0; 2975 } 2976 EXPORT_SYMBOL_GPL (usb_mon_register); 2977 2978 void usb_mon_deregister (void) 2979 { 2980 2981 if (mon_ops == NULL) { 2982 printk(KERN_ERR "USB: monitor was not registered\n"); 2983 return; 2984 } 2985 mon_ops = NULL; 2986 mb(); 2987 } 2988 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2989 2990 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2991