1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 35 #include <linux/phy/phy.h> 36 #include <linux/usb.h> 37 #include <linux/usb/hcd.h> 38 #include <linux/usb/otg.h> 39 40 #include "usb.h" 41 #include "phy.h" 42 43 44 /*-------------------------------------------------------------------------*/ 45 46 /* 47 * USB Host Controller Driver framework 48 * 49 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 50 * HCD-specific behaviors/bugs. 51 * 52 * This does error checks, tracks devices and urbs, and delegates to a 53 * "hc_driver" only for code (and data) that really needs to know about 54 * hardware differences. That includes root hub registers, i/o queues, 55 * and so on ... but as little else as possible. 56 * 57 * Shared code includes most of the "root hub" code (these are emulated, 58 * though each HC's hardware works differently) and PCI glue, plus request 59 * tracking overhead. The HCD code should only block on spinlocks or on 60 * hardware handshaking; blocking on software events (such as other kernel 61 * threads releasing resources, or completing actions) is all generic. 62 * 63 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 64 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 65 * only by the hub driver ... and that neither should be seen or used by 66 * usb client device drivers. 67 * 68 * Contributors of ideas or unattributed patches include: David Brownell, 69 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 70 * 71 * HISTORY: 72 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 73 * associated cleanup. "usb_hcd" still != "usb_bus". 74 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 75 */ 76 77 /*-------------------------------------------------------------------------*/ 78 79 /* Keep track of which host controller drivers are loaded */ 80 unsigned long usb_hcds_loaded; 81 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 82 83 /* host controllers we manage */ 84 DEFINE_IDR (usb_bus_idr); 85 EXPORT_SYMBOL_GPL (usb_bus_idr); 86 87 /* used when allocating bus numbers */ 88 #define USB_MAXBUS 64 89 90 /* used when updating list of hcds */ 91 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 92 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 93 94 /* used for controlling access to virtual root hubs */ 95 static DEFINE_SPINLOCK(hcd_root_hub_lock); 96 97 /* used when updating an endpoint's URB list */ 98 static DEFINE_SPINLOCK(hcd_urb_list_lock); 99 100 /* used to protect against unlinking URBs after the device is gone */ 101 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 102 103 /* wait queue for synchronous unlinks */ 104 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 105 106 /*-------------------------------------------------------------------------*/ 107 108 /* 109 * Sharable chunks of root hub code. 110 */ 111 112 /*-------------------------------------------------------------------------*/ 113 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 114 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 115 116 /* usb 3.1 root hub device descriptor */ 117 static const u8 usb31_rh_dev_descriptor[18] = { 118 0x12, /* __u8 bLength; */ 119 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 120 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 121 122 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 123 0x00, /* __u8 bDeviceSubClass; */ 124 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 125 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 126 127 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 128 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 129 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 130 131 0x03, /* __u8 iManufacturer; */ 132 0x02, /* __u8 iProduct; */ 133 0x01, /* __u8 iSerialNumber; */ 134 0x01 /* __u8 bNumConfigurations; */ 135 }; 136 137 /* usb 3.0 root hub device descriptor */ 138 static const u8 usb3_rh_dev_descriptor[18] = { 139 0x12, /* __u8 bLength; */ 140 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 141 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 142 143 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 144 0x00, /* __u8 bDeviceSubClass; */ 145 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 146 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 147 148 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 149 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 150 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 151 152 0x03, /* __u8 iManufacturer; */ 153 0x02, /* __u8 iProduct; */ 154 0x01, /* __u8 iSerialNumber; */ 155 0x01 /* __u8 bNumConfigurations; */ 156 }; 157 158 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 159 static const u8 usb25_rh_dev_descriptor[18] = { 160 0x12, /* __u8 bLength; */ 161 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 162 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 163 164 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 165 0x00, /* __u8 bDeviceSubClass; */ 166 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 167 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 168 169 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 170 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 171 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 172 173 0x03, /* __u8 iManufacturer; */ 174 0x02, /* __u8 iProduct; */ 175 0x01, /* __u8 iSerialNumber; */ 176 0x01 /* __u8 bNumConfigurations; */ 177 }; 178 179 /* usb 2.0 root hub device descriptor */ 180 static const u8 usb2_rh_dev_descriptor[18] = { 181 0x12, /* __u8 bLength; */ 182 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 183 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 184 185 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 186 0x00, /* __u8 bDeviceSubClass; */ 187 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 188 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 189 190 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 191 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 192 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 193 194 0x03, /* __u8 iManufacturer; */ 195 0x02, /* __u8 iProduct; */ 196 0x01, /* __u8 iSerialNumber; */ 197 0x01 /* __u8 bNumConfigurations; */ 198 }; 199 200 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 201 202 /* usb 1.1 root hub device descriptor */ 203 static const u8 usb11_rh_dev_descriptor[18] = { 204 0x12, /* __u8 bLength; */ 205 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 206 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 207 208 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 209 0x00, /* __u8 bDeviceSubClass; */ 210 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 211 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 212 213 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 214 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 215 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 216 217 0x03, /* __u8 iManufacturer; */ 218 0x02, /* __u8 iProduct; */ 219 0x01, /* __u8 iSerialNumber; */ 220 0x01 /* __u8 bNumConfigurations; */ 221 }; 222 223 224 /*-------------------------------------------------------------------------*/ 225 226 /* Configuration descriptors for our root hubs */ 227 228 static const u8 fs_rh_config_descriptor[] = { 229 230 /* one configuration */ 231 0x09, /* __u8 bLength; */ 232 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 233 0x19, 0x00, /* __le16 wTotalLength; */ 234 0x01, /* __u8 bNumInterfaces; (1) */ 235 0x01, /* __u8 bConfigurationValue; */ 236 0x00, /* __u8 iConfiguration; */ 237 0xc0, /* __u8 bmAttributes; 238 Bit 7: must be set, 239 6: Self-powered, 240 5: Remote wakeup, 241 4..0: resvd */ 242 0x00, /* __u8 MaxPower; */ 243 244 /* USB 1.1: 245 * USB 2.0, single TT organization (mandatory): 246 * one interface, protocol 0 247 * 248 * USB 2.0, multiple TT organization (optional): 249 * two interfaces, protocols 1 (like single TT) 250 * and 2 (multiple TT mode) ... config is 251 * sometimes settable 252 * NOT IMPLEMENTED 253 */ 254 255 /* one interface */ 256 0x09, /* __u8 if_bLength; */ 257 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 258 0x00, /* __u8 if_bInterfaceNumber; */ 259 0x00, /* __u8 if_bAlternateSetting; */ 260 0x01, /* __u8 if_bNumEndpoints; */ 261 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 262 0x00, /* __u8 if_bInterfaceSubClass; */ 263 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 264 0x00, /* __u8 if_iInterface; */ 265 266 /* one endpoint (status change endpoint) */ 267 0x07, /* __u8 ep_bLength; */ 268 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 269 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 270 0x03, /* __u8 ep_bmAttributes; Interrupt */ 271 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 272 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 273 }; 274 275 static const u8 hs_rh_config_descriptor[] = { 276 277 /* one configuration */ 278 0x09, /* __u8 bLength; */ 279 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 280 0x19, 0x00, /* __le16 wTotalLength; */ 281 0x01, /* __u8 bNumInterfaces; (1) */ 282 0x01, /* __u8 bConfigurationValue; */ 283 0x00, /* __u8 iConfiguration; */ 284 0xc0, /* __u8 bmAttributes; 285 Bit 7: must be set, 286 6: Self-powered, 287 5: Remote wakeup, 288 4..0: resvd */ 289 0x00, /* __u8 MaxPower; */ 290 291 /* USB 1.1: 292 * USB 2.0, single TT organization (mandatory): 293 * one interface, protocol 0 294 * 295 * USB 2.0, multiple TT organization (optional): 296 * two interfaces, protocols 1 (like single TT) 297 * and 2 (multiple TT mode) ... config is 298 * sometimes settable 299 * NOT IMPLEMENTED 300 */ 301 302 /* one interface */ 303 0x09, /* __u8 if_bLength; */ 304 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 305 0x00, /* __u8 if_bInterfaceNumber; */ 306 0x00, /* __u8 if_bAlternateSetting; */ 307 0x01, /* __u8 if_bNumEndpoints; */ 308 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 309 0x00, /* __u8 if_bInterfaceSubClass; */ 310 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 311 0x00, /* __u8 if_iInterface; */ 312 313 /* one endpoint (status change endpoint) */ 314 0x07, /* __u8 ep_bLength; */ 315 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 316 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 317 0x03, /* __u8 ep_bmAttributes; Interrupt */ 318 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 319 * see hub.c:hub_configure() for details. */ 320 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 321 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 322 }; 323 324 static const u8 ss_rh_config_descriptor[] = { 325 /* one configuration */ 326 0x09, /* __u8 bLength; */ 327 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 328 0x1f, 0x00, /* __le16 wTotalLength; */ 329 0x01, /* __u8 bNumInterfaces; (1) */ 330 0x01, /* __u8 bConfigurationValue; */ 331 0x00, /* __u8 iConfiguration; */ 332 0xc0, /* __u8 bmAttributes; 333 Bit 7: must be set, 334 6: Self-powered, 335 5: Remote wakeup, 336 4..0: resvd */ 337 0x00, /* __u8 MaxPower; */ 338 339 /* one interface */ 340 0x09, /* __u8 if_bLength; */ 341 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 342 0x00, /* __u8 if_bInterfaceNumber; */ 343 0x00, /* __u8 if_bAlternateSetting; */ 344 0x01, /* __u8 if_bNumEndpoints; */ 345 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 346 0x00, /* __u8 if_bInterfaceSubClass; */ 347 0x00, /* __u8 if_bInterfaceProtocol; */ 348 0x00, /* __u8 if_iInterface; */ 349 350 /* one endpoint (status change endpoint) */ 351 0x07, /* __u8 ep_bLength; */ 352 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 353 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 354 0x03, /* __u8 ep_bmAttributes; Interrupt */ 355 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 356 * see hub.c:hub_configure() for details. */ 357 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 358 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 359 360 /* one SuperSpeed endpoint companion descriptor */ 361 0x06, /* __u8 ss_bLength */ 362 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 363 /* Companion */ 364 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 365 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 366 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 367 }; 368 369 /* authorized_default behaviour: 370 * -1 is authorized for all devices except wireless (old behaviour) 371 * 0 is unauthorized for all devices 372 * 1 is authorized for all devices 373 * 2 is authorized for internal devices 374 */ 375 #define USB_AUTHORIZE_WIRED -1 376 #define USB_AUTHORIZE_NONE 0 377 #define USB_AUTHORIZE_ALL 1 378 #define USB_AUTHORIZE_INTERNAL 2 379 380 static int authorized_default = USB_AUTHORIZE_WIRED; 381 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 382 MODULE_PARM_DESC(authorized_default, 383 "Default USB device authorization: 0 is not authorized, 1 is " 384 "authorized, 2 is authorized for internal devices, -1 is " 385 "authorized except for wireless USB (default, old behaviour)"); 386 /*-------------------------------------------------------------------------*/ 387 388 /** 389 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 390 * @s: Null-terminated ASCII (actually ISO-8859-1) string 391 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 392 * @len: Length (in bytes; may be odd) of descriptor buffer. 393 * 394 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 395 * whichever is less. 396 * 397 * Note: 398 * USB String descriptors can contain at most 126 characters; input 399 * strings longer than that are truncated. 400 */ 401 static unsigned 402 ascii2desc(char const *s, u8 *buf, unsigned len) 403 { 404 unsigned n, t = 2 + 2*strlen(s); 405 406 if (t > 254) 407 t = 254; /* Longest possible UTF string descriptor */ 408 if (len > t) 409 len = t; 410 411 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 412 413 n = len; 414 while (n--) { 415 *buf++ = t; 416 if (!n--) 417 break; 418 *buf++ = t >> 8; 419 t = (unsigned char)*s++; 420 } 421 return len; 422 } 423 424 /** 425 * rh_string() - provides string descriptors for root hub 426 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 427 * @hcd: the host controller for this root hub 428 * @data: buffer for output packet 429 * @len: length of the provided buffer 430 * 431 * Produces either a manufacturer, product or serial number string for the 432 * virtual root hub device. 433 * 434 * Return: The number of bytes filled in: the length of the descriptor or 435 * of the provided buffer, whichever is less. 436 */ 437 static unsigned 438 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 439 { 440 char buf[100]; 441 char const *s; 442 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 443 444 /* language ids */ 445 switch (id) { 446 case 0: 447 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 448 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 449 if (len > 4) 450 len = 4; 451 memcpy(data, langids, len); 452 return len; 453 case 1: 454 /* Serial number */ 455 s = hcd->self.bus_name; 456 break; 457 case 2: 458 /* Product name */ 459 s = hcd->product_desc; 460 break; 461 case 3: 462 /* Manufacturer */ 463 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 464 init_utsname()->release, hcd->driver->description); 465 s = buf; 466 break; 467 default: 468 /* Can't happen; caller guarantees it */ 469 return 0; 470 } 471 472 return ascii2desc(s, data, len); 473 } 474 475 476 /* Root hub control transfers execute synchronously */ 477 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 478 { 479 struct usb_ctrlrequest *cmd; 480 u16 typeReq, wValue, wIndex, wLength; 481 u8 *ubuf = urb->transfer_buffer; 482 unsigned len = 0; 483 int status; 484 u8 patch_wakeup = 0; 485 u8 patch_protocol = 0; 486 u16 tbuf_size; 487 u8 *tbuf = NULL; 488 const u8 *bufp; 489 490 might_sleep(); 491 492 spin_lock_irq(&hcd_root_hub_lock); 493 status = usb_hcd_link_urb_to_ep(hcd, urb); 494 spin_unlock_irq(&hcd_root_hub_lock); 495 if (status) 496 return status; 497 urb->hcpriv = hcd; /* Indicate it's queued */ 498 499 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 500 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 501 wValue = le16_to_cpu (cmd->wValue); 502 wIndex = le16_to_cpu (cmd->wIndex); 503 wLength = le16_to_cpu (cmd->wLength); 504 505 if (wLength > urb->transfer_buffer_length) 506 goto error; 507 508 /* 509 * tbuf should be at least as big as the 510 * USB hub descriptor. 511 */ 512 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 513 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 514 if (!tbuf) { 515 status = -ENOMEM; 516 goto err_alloc; 517 } 518 519 bufp = tbuf; 520 521 522 urb->actual_length = 0; 523 switch (typeReq) { 524 525 /* DEVICE REQUESTS */ 526 527 /* The root hub's remote wakeup enable bit is implemented using 528 * driver model wakeup flags. If this system supports wakeup 529 * through USB, userspace may change the default "allow wakeup" 530 * policy through sysfs or these calls. 531 * 532 * Most root hubs support wakeup from downstream devices, for 533 * runtime power management (disabling USB clocks and reducing 534 * VBUS power usage). However, not all of them do so; silicon, 535 * board, and BIOS bugs here are not uncommon, so these can't 536 * be treated quite like external hubs. 537 * 538 * Likewise, not all root hubs will pass wakeup events upstream, 539 * to wake up the whole system. So don't assume root hub and 540 * controller capabilities are identical. 541 */ 542 543 case DeviceRequest | USB_REQ_GET_STATUS: 544 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 545 << USB_DEVICE_REMOTE_WAKEUP) 546 | (1 << USB_DEVICE_SELF_POWERED); 547 tbuf[1] = 0; 548 len = 2; 549 break; 550 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 551 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 552 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 553 else 554 goto error; 555 break; 556 case DeviceOutRequest | USB_REQ_SET_FEATURE: 557 if (device_can_wakeup(&hcd->self.root_hub->dev) 558 && wValue == USB_DEVICE_REMOTE_WAKEUP) 559 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 560 else 561 goto error; 562 break; 563 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 564 tbuf[0] = 1; 565 len = 1; 566 /* FALLTHROUGH */ 567 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 568 break; 569 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 570 switch (wValue & 0xff00) { 571 case USB_DT_DEVICE << 8: 572 switch (hcd->speed) { 573 case HCD_USB32: 574 case HCD_USB31: 575 bufp = usb31_rh_dev_descriptor; 576 break; 577 case HCD_USB3: 578 bufp = usb3_rh_dev_descriptor; 579 break; 580 case HCD_USB25: 581 bufp = usb25_rh_dev_descriptor; 582 break; 583 case HCD_USB2: 584 bufp = usb2_rh_dev_descriptor; 585 break; 586 case HCD_USB11: 587 bufp = usb11_rh_dev_descriptor; 588 break; 589 default: 590 goto error; 591 } 592 len = 18; 593 if (hcd->has_tt) 594 patch_protocol = 1; 595 break; 596 case USB_DT_CONFIG << 8: 597 switch (hcd->speed) { 598 case HCD_USB32: 599 case HCD_USB31: 600 case HCD_USB3: 601 bufp = ss_rh_config_descriptor; 602 len = sizeof ss_rh_config_descriptor; 603 break; 604 case HCD_USB25: 605 case HCD_USB2: 606 bufp = hs_rh_config_descriptor; 607 len = sizeof hs_rh_config_descriptor; 608 break; 609 case HCD_USB11: 610 bufp = fs_rh_config_descriptor; 611 len = sizeof fs_rh_config_descriptor; 612 break; 613 default: 614 goto error; 615 } 616 if (device_can_wakeup(&hcd->self.root_hub->dev)) 617 patch_wakeup = 1; 618 break; 619 case USB_DT_STRING << 8: 620 if ((wValue & 0xff) < 4) 621 urb->actual_length = rh_string(wValue & 0xff, 622 hcd, ubuf, wLength); 623 else /* unsupported IDs --> "protocol stall" */ 624 goto error; 625 break; 626 case USB_DT_BOS << 8: 627 goto nongeneric; 628 default: 629 goto error; 630 } 631 break; 632 case DeviceRequest | USB_REQ_GET_INTERFACE: 633 tbuf[0] = 0; 634 len = 1; 635 /* FALLTHROUGH */ 636 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 637 break; 638 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 639 /* wValue == urb->dev->devaddr */ 640 dev_dbg (hcd->self.controller, "root hub device address %d\n", 641 wValue); 642 break; 643 644 /* INTERFACE REQUESTS (no defined feature/status flags) */ 645 646 /* ENDPOINT REQUESTS */ 647 648 case EndpointRequest | USB_REQ_GET_STATUS: 649 /* ENDPOINT_HALT flag */ 650 tbuf[0] = 0; 651 tbuf[1] = 0; 652 len = 2; 653 /* FALLTHROUGH */ 654 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 655 case EndpointOutRequest | USB_REQ_SET_FEATURE: 656 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 657 break; 658 659 /* CLASS REQUESTS (and errors) */ 660 661 default: 662 nongeneric: 663 /* non-generic request */ 664 switch (typeReq) { 665 case GetHubStatus: 666 len = 4; 667 break; 668 case GetPortStatus: 669 if (wValue == HUB_PORT_STATUS) 670 len = 4; 671 else 672 /* other port status types return 8 bytes */ 673 len = 8; 674 break; 675 case GetHubDescriptor: 676 len = sizeof (struct usb_hub_descriptor); 677 break; 678 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 679 /* len is returned by hub_control */ 680 break; 681 } 682 status = hcd->driver->hub_control (hcd, 683 typeReq, wValue, wIndex, 684 tbuf, wLength); 685 686 if (typeReq == GetHubDescriptor) 687 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 688 (struct usb_hub_descriptor *)tbuf); 689 break; 690 error: 691 /* "protocol stall" on error */ 692 status = -EPIPE; 693 } 694 695 if (status < 0) { 696 len = 0; 697 if (status != -EPIPE) { 698 dev_dbg (hcd->self.controller, 699 "CTRL: TypeReq=0x%x val=0x%x " 700 "idx=0x%x len=%d ==> %d\n", 701 typeReq, wValue, wIndex, 702 wLength, status); 703 } 704 } else if (status > 0) { 705 /* hub_control may return the length of data copied. */ 706 len = status; 707 status = 0; 708 } 709 if (len) { 710 if (urb->transfer_buffer_length < len) 711 len = urb->transfer_buffer_length; 712 urb->actual_length = len; 713 /* always USB_DIR_IN, toward host */ 714 memcpy (ubuf, bufp, len); 715 716 /* report whether RH hardware supports remote wakeup */ 717 if (patch_wakeup && 718 len > offsetof (struct usb_config_descriptor, 719 bmAttributes)) 720 ((struct usb_config_descriptor *)ubuf)->bmAttributes 721 |= USB_CONFIG_ATT_WAKEUP; 722 723 /* report whether RH hardware has an integrated TT */ 724 if (patch_protocol && 725 len > offsetof(struct usb_device_descriptor, 726 bDeviceProtocol)) 727 ((struct usb_device_descriptor *) ubuf)-> 728 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 729 } 730 731 kfree(tbuf); 732 err_alloc: 733 734 /* any errors get returned through the urb completion */ 735 spin_lock_irq(&hcd_root_hub_lock); 736 usb_hcd_unlink_urb_from_ep(hcd, urb); 737 usb_hcd_giveback_urb(hcd, urb, status); 738 spin_unlock_irq(&hcd_root_hub_lock); 739 return 0; 740 } 741 742 /*-------------------------------------------------------------------------*/ 743 744 /* 745 * Root Hub interrupt transfers are polled using a timer if the 746 * driver requests it; otherwise the driver is responsible for 747 * calling usb_hcd_poll_rh_status() when an event occurs. 748 * 749 * Completions are called in_interrupt(), but they may or may not 750 * be in_irq(). 751 */ 752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 753 { 754 struct urb *urb; 755 int length; 756 unsigned long flags; 757 char buffer[6]; /* Any root hubs with > 31 ports? */ 758 759 if (unlikely(!hcd->rh_pollable)) 760 return; 761 if (!hcd->uses_new_polling && !hcd->status_urb) 762 return; 763 764 length = hcd->driver->hub_status_data(hcd, buffer); 765 if (length > 0) { 766 767 /* try to complete the status urb */ 768 spin_lock_irqsave(&hcd_root_hub_lock, flags); 769 urb = hcd->status_urb; 770 if (urb) { 771 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 772 hcd->status_urb = NULL; 773 urb->actual_length = length; 774 memcpy(urb->transfer_buffer, buffer, length); 775 776 usb_hcd_unlink_urb_from_ep(hcd, urb); 777 usb_hcd_giveback_urb(hcd, urb, 0); 778 } else { 779 length = 0; 780 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 781 } 782 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 783 } 784 785 /* The USB 2.0 spec says 256 ms. This is close enough and won't 786 * exceed that limit if HZ is 100. The math is more clunky than 787 * maybe expected, this is to make sure that all timers for USB devices 788 * fire at the same time to give the CPU a break in between */ 789 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 790 (length == 0 && hcd->status_urb != NULL)) 791 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 792 } 793 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 794 795 /* timer callback */ 796 static void rh_timer_func (struct timer_list *t) 797 { 798 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 799 800 usb_hcd_poll_rh_status(_hcd); 801 } 802 803 /*-------------------------------------------------------------------------*/ 804 805 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 806 { 807 int retval; 808 unsigned long flags; 809 unsigned len = 1 + (urb->dev->maxchild / 8); 810 811 spin_lock_irqsave (&hcd_root_hub_lock, flags); 812 if (hcd->status_urb || urb->transfer_buffer_length < len) { 813 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 814 retval = -EINVAL; 815 goto done; 816 } 817 818 retval = usb_hcd_link_urb_to_ep(hcd, urb); 819 if (retval) 820 goto done; 821 822 hcd->status_urb = urb; 823 urb->hcpriv = hcd; /* indicate it's queued */ 824 if (!hcd->uses_new_polling) 825 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 826 827 /* If a status change has already occurred, report it ASAP */ 828 else if (HCD_POLL_PENDING(hcd)) 829 mod_timer(&hcd->rh_timer, jiffies); 830 retval = 0; 831 done: 832 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 833 return retval; 834 } 835 836 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 837 { 838 if (usb_endpoint_xfer_int(&urb->ep->desc)) 839 return rh_queue_status (hcd, urb); 840 if (usb_endpoint_xfer_control(&urb->ep->desc)) 841 return rh_call_control (hcd, urb); 842 return -EINVAL; 843 } 844 845 /*-------------------------------------------------------------------------*/ 846 847 /* Unlinks of root-hub control URBs are legal, but they don't do anything 848 * since these URBs always execute synchronously. 849 */ 850 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 851 { 852 unsigned long flags; 853 int rc; 854 855 spin_lock_irqsave(&hcd_root_hub_lock, flags); 856 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 857 if (rc) 858 goto done; 859 860 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 861 ; /* Do nothing */ 862 863 } else { /* Status URB */ 864 if (!hcd->uses_new_polling) 865 del_timer (&hcd->rh_timer); 866 if (urb == hcd->status_urb) { 867 hcd->status_urb = NULL; 868 usb_hcd_unlink_urb_from_ep(hcd, urb); 869 usb_hcd_giveback_urb(hcd, urb, status); 870 } 871 } 872 done: 873 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 874 return rc; 875 } 876 877 878 /*-------------------------------------------------------------------------*/ 879 880 /** 881 * usb_bus_init - shared initialization code 882 * @bus: the bus structure being initialized 883 * 884 * This code is used to initialize a usb_bus structure, memory for which is 885 * separately managed. 886 */ 887 static void usb_bus_init (struct usb_bus *bus) 888 { 889 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 890 891 bus->devnum_next = 1; 892 893 bus->root_hub = NULL; 894 bus->busnum = -1; 895 bus->bandwidth_allocated = 0; 896 bus->bandwidth_int_reqs = 0; 897 bus->bandwidth_isoc_reqs = 0; 898 mutex_init(&bus->devnum_next_mutex); 899 } 900 901 /*-------------------------------------------------------------------------*/ 902 903 /** 904 * usb_register_bus - registers the USB host controller with the usb core 905 * @bus: pointer to the bus to register 906 * Context: !in_interrupt() 907 * 908 * Assigns a bus number, and links the controller into usbcore data 909 * structures so that it can be seen by scanning the bus list. 910 * 911 * Return: 0 if successful. A negative error code otherwise. 912 */ 913 static int usb_register_bus(struct usb_bus *bus) 914 { 915 int result = -E2BIG; 916 int busnum; 917 918 mutex_lock(&usb_bus_idr_lock); 919 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 920 if (busnum < 0) { 921 pr_err("%s: failed to get bus number\n", usbcore_name); 922 goto error_find_busnum; 923 } 924 bus->busnum = busnum; 925 mutex_unlock(&usb_bus_idr_lock); 926 927 usb_notify_add_bus(bus); 928 929 dev_info (bus->controller, "new USB bus registered, assigned bus " 930 "number %d\n", bus->busnum); 931 return 0; 932 933 error_find_busnum: 934 mutex_unlock(&usb_bus_idr_lock); 935 return result; 936 } 937 938 /** 939 * usb_deregister_bus - deregisters the USB host controller 940 * @bus: pointer to the bus to deregister 941 * Context: !in_interrupt() 942 * 943 * Recycles the bus number, and unlinks the controller from usbcore data 944 * structures so that it won't be seen by scanning the bus list. 945 */ 946 static void usb_deregister_bus (struct usb_bus *bus) 947 { 948 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 949 950 /* 951 * NOTE: make sure that all the devices are removed by the 952 * controller code, as well as having it call this when cleaning 953 * itself up 954 */ 955 mutex_lock(&usb_bus_idr_lock); 956 idr_remove(&usb_bus_idr, bus->busnum); 957 mutex_unlock(&usb_bus_idr_lock); 958 959 usb_notify_remove_bus(bus); 960 } 961 962 /** 963 * register_root_hub - called by usb_add_hcd() to register a root hub 964 * @hcd: host controller for this root hub 965 * 966 * This function registers the root hub with the USB subsystem. It sets up 967 * the device properly in the device tree and then calls usb_new_device() 968 * to register the usb device. It also assigns the root hub's USB address 969 * (always 1). 970 * 971 * Return: 0 if successful. A negative error code otherwise. 972 */ 973 static int register_root_hub(struct usb_hcd *hcd) 974 { 975 struct device *parent_dev = hcd->self.controller; 976 struct usb_device *usb_dev = hcd->self.root_hub; 977 const int devnum = 1; 978 int retval; 979 980 usb_dev->devnum = devnum; 981 usb_dev->bus->devnum_next = devnum + 1; 982 set_bit (devnum, usb_dev->bus->devmap.devicemap); 983 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 984 985 mutex_lock(&usb_bus_idr_lock); 986 987 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 988 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 989 if (retval != sizeof usb_dev->descriptor) { 990 mutex_unlock(&usb_bus_idr_lock); 991 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 992 dev_name(&usb_dev->dev), retval); 993 return (retval < 0) ? retval : -EMSGSIZE; 994 } 995 996 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 997 retval = usb_get_bos_descriptor(usb_dev); 998 if (!retval) { 999 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1000 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1001 mutex_unlock(&usb_bus_idr_lock); 1002 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1003 dev_name(&usb_dev->dev), retval); 1004 return retval; 1005 } 1006 } 1007 1008 retval = usb_new_device (usb_dev); 1009 if (retval) { 1010 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1011 dev_name(&usb_dev->dev), retval); 1012 } else { 1013 spin_lock_irq (&hcd_root_hub_lock); 1014 hcd->rh_registered = 1; 1015 spin_unlock_irq (&hcd_root_hub_lock); 1016 1017 /* Did the HC die before the root hub was registered? */ 1018 if (HCD_DEAD(hcd)) 1019 usb_hc_died (hcd); /* This time clean up */ 1020 } 1021 mutex_unlock(&usb_bus_idr_lock); 1022 1023 return retval; 1024 } 1025 1026 /* 1027 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1028 * @bus: the bus which the root hub belongs to 1029 * @portnum: the port which is being resumed 1030 * 1031 * HCDs should call this function when they know that a resume signal is 1032 * being sent to a root-hub port. The root hub will be prevented from 1033 * going into autosuspend until usb_hcd_end_port_resume() is called. 1034 * 1035 * The bus's private lock must be held by the caller. 1036 */ 1037 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1038 { 1039 unsigned bit = 1 << portnum; 1040 1041 if (!(bus->resuming_ports & bit)) { 1042 bus->resuming_ports |= bit; 1043 pm_runtime_get_noresume(&bus->root_hub->dev); 1044 } 1045 } 1046 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1047 1048 /* 1049 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1050 * @bus: the bus which the root hub belongs to 1051 * @portnum: the port which is being resumed 1052 * 1053 * HCDs should call this function when they know that a resume signal has 1054 * stopped being sent to a root-hub port. The root hub will be allowed to 1055 * autosuspend again. 1056 * 1057 * The bus's private lock must be held by the caller. 1058 */ 1059 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1060 { 1061 unsigned bit = 1 << portnum; 1062 1063 if (bus->resuming_ports & bit) { 1064 bus->resuming_ports &= ~bit; 1065 pm_runtime_put_noidle(&bus->root_hub->dev); 1066 } 1067 } 1068 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1069 1070 /*-------------------------------------------------------------------------*/ 1071 1072 /** 1073 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1074 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1075 * @is_input: true iff the transaction sends data to the host 1076 * @isoc: true for isochronous transactions, false for interrupt ones 1077 * @bytecount: how many bytes in the transaction. 1078 * 1079 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1080 * 1081 * Note: 1082 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1083 * scheduled in software, this function is only used for such scheduling. 1084 */ 1085 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1086 { 1087 unsigned long tmp; 1088 1089 switch (speed) { 1090 case USB_SPEED_LOW: /* INTR only */ 1091 if (is_input) { 1092 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1093 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1094 } else { 1095 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1096 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1097 } 1098 case USB_SPEED_FULL: /* ISOC or INTR */ 1099 if (isoc) { 1100 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1101 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1102 } else { 1103 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1104 return 9107L + BW_HOST_DELAY + tmp; 1105 } 1106 case USB_SPEED_HIGH: /* ISOC or INTR */ 1107 /* FIXME adjust for input vs output */ 1108 if (isoc) 1109 tmp = HS_NSECS_ISO (bytecount); 1110 else 1111 tmp = HS_NSECS (bytecount); 1112 return tmp; 1113 default: 1114 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1115 return -1; 1116 } 1117 } 1118 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1119 1120 1121 /*-------------------------------------------------------------------------*/ 1122 1123 /* 1124 * Generic HC operations. 1125 */ 1126 1127 /*-------------------------------------------------------------------------*/ 1128 1129 /** 1130 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1131 * @hcd: host controller to which @urb was submitted 1132 * @urb: URB being submitted 1133 * 1134 * Host controller drivers should call this routine in their enqueue() 1135 * method. The HCD's private spinlock must be held and interrupts must 1136 * be disabled. The actions carried out here are required for URB 1137 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1138 * 1139 * Return: 0 for no error, otherwise a negative error code (in which case 1140 * the enqueue() method must fail). If no error occurs but enqueue() fails 1141 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1142 * the private spinlock and returning. 1143 */ 1144 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1145 { 1146 int rc = 0; 1147 1148 spin_lock(&hcd_urb_list_lock); 1149 1150 /* Check that the URB isn't being killed */ 1151 if (unlikely(atomic_read(&urb->reject))) { 1152 rc = -EPERM; 1153 goto done; 1154 } 1155 1156 if (unlikely(!urb->ep->enabled)) { 1157 rc = -ENOENT; 1158 goto done; 1159 } 1160 1161 if (unlikely(!urb->dev->can_submit)) { 1162 rc = -EHOSTUNREACH; 1163 goto done; 1164 } 1165 1166 /* 1167 * Check the host controller's state and add the URB to the 1168 * endpoint's queue. 1169 */ 1170 if (HCD_RH_RUNNING(hcd)) { 1171 urb->unlinked = 0; 1172 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1173 } else { 1174 rc = -ESHUTDOWN; 1175 goto done; 1176 } 1177 done: 1178 spin_unlock(&hcd_urb_list_lock); 1179 return rc; 1180 } 1181 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1182 1183 /** 1184 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1185 * @hcd: host controller to which @urb was submitted 1186 * @urb: URB being checked for unlinkability 1187 * @status: error code to store in @urb if the unlink succeeds 1188 * 1189 * Host controller drivers should call this routine in their dequeue() 1190 * method. The HCD's private spinlock must be held and interrupts must 1191 * be disabled. The actions carried out here are required for making 1192 * sure than an unlink is valid. 1193 * 1194 * Return: 0 for no error, otherwise a negative error code (in which case 1195 * the dequeue() method must fail). The possible error codes are: 1196 * 1197 * -EIDRM: @urb was not submitted or has already completed. 1198 * The completion function may not have been called yet. 1199 * 1200 * -EBUSY: @urb has already been unlinked. 1201 */ 1202 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1203 int status) 1204 { 1205 struct list_head *tmp; 1206 1207 /* insist the urb is still queued */ 1208 list_for_each(tmp, &urb->ep->urb_list) { 1209 if (tmp == &urb->urb_list) 1210 break; 1211 } 1212 if (tmp != &urb->urb_list) 1213 return -EIDRM; 1214 1215 /* Any status except -EINPROGRESS means something already started to 1216 * unlink this URB from the hardware. So there's no more work to do. 1217 */ 1218 if (urb->unlinked) 1219 return -EBUSY; 1220 urb->unlinked = status; 1221 return 0; 1222 } 1223 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1224 1225 /** 1226 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1227 * @hcd: host controller to which @urb was submitted 1228 * @urb: URB being unlinked 1229 * 1230 * Host controller drivers should call this routine before calling 1231 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1232 * interrupts must be disabled. The actions carried out here are required 1233 * for URB completion. 1234 */ 1235 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1236 { 1237 /* clear all state linking urb to this dev (and hcd) */ 1238 spin_lock(&hcd_urb_list_lock); 1239 list_del_init(&urb->urb_list); 1240 spin_unlock(&hcd_urb_list_lock); 1241 } 1242 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1243 1244 /* 1245 * Some usb host controllers can only perform dma using a small SRAM area. 1246 * The usb core itself is however optimized for host controllers that can dma 1247 * using regular system memory - like pci devices doing bus mastering. 1248 * 1249 * To support host controllers with limited dma capabilities we provide dma 1250 * bounce buffers. This feature can be enabled by initializing 1251 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1252 * 1253 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1254 * data for dma using the genalloc API. 1255 * 1256 * So, to summarize... 1257 * 1258 * - We need "local" memory, canonical example being 1259 * a small SRAM on a discrete controller being the 1260 * only memory that the controller can read ... 1261 * (a) "normal" kernel memory is no good, and 1262 * (b) there's not enough to share 1263 * 1264 * - So we use that, even though the primary requirement 1265 * is that the memory be "local" (hence addressable 1266 * by that device), not "coherent". 1267 * 1268 */ 1269 1270 static int hcd_alloc_coherent(struct usb_bus *bus, 1271 gfp_t mem_flags, dma_addr_t *dma_handle, 1272 void **vaddr_handle, size_t size, 1273 enum dma_data_direction dir) 1274 { 1275 unsigned char *vaddr; 1276 1277 if (*vaddr_handle == NULL) { 1278 WARN_ON_ONCE(1); 1279 return -EFAULT; 1280 } 1281 1282 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1283 mem_flags, dma_handle); 1284 if (!vaddr) 1285 return -ENOMEM; 1286 1287 /* 1288 * Store the virtual address of the buffer at the end 1289 * of the allocated dma buffer. The size of the buffer 1290 * may be uneven so use unaligned functions instead 1291 * of just rounding up. It makes sense to optimize for 1292 * memory footprint over access speed since the amount 1293 * of memory available for dma may be limited. 1294 */ 1295 put_unaligned((unsigned long)*vaddr_handle, 1296 (unsigned long *)(vaddr + size)); 1297 1298 if (dir == DMA_TO_DEVICE) 1299 memcpy(vaddr, *vaddr_handle, size); 1300 1301 *vaddr_handle = vaddr; 1302 return 0; 1303 } 1304 1305 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1306 void **vaddr_handle, size_t size, 1307 enum dma_data_direction dir) 1308 { 1309 unsigned char *vaddr = *vaddr_handle; 1310 1311 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1312 1313 if (dir == DMA_FROM_DEVICE) 1314 memcpy(vaddr, *vaddr_handle, size); 1315 1316 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1317 1318 *vaddr_handle = vaddr; 1319 *dma_handle = 0; 1320 } 1321 1322 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1323 { 1324 if (IS_ENABLED(CONFIG_HAS_DMA) && 1325 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1326 dma_unmap_single(hcd->self.sysdev, 1327 urb->setup_dma, 1328 sizeof(struct usb_ctrlrequest), 1329 DMA_TO_DEVICE); 1330 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1331 hcd_free_coherent(urb->dev->bus, 1332 &urb->setup_dma, 1333 (void **) &urb->setup_packet, 1334 sizeof(struct usb_ctrlrequest), 1335 DMA_TO_DEVICE); 1336 1337 /* Make it safe to call this routine more than once */ 1338 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1339 } 1340 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1341 1342 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1343 { 1344 if (hcd->driver->unmap_urb_for_dma) 1345 hcd->driver->unmap_urb_for_dma(hcd, urb); 1346 else 1347 usb_hcd_unmap_urb_for_dma(hcd, urb); 1348 } 1349 1350 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1351 { 1352 enum dma_data_direction dir; 1353 1354 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1355 1356 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1357 if (IS_ENABLED(CONFIG_HAS_DMA) && 1358 (urb->transfer_flags & URB_DMA_MAP_SG)) 1359 dma_unmap_sg(hcd->self.sysdev, 1360 urb->sg, 1361 urb->num_sgs, 1362 dir); 1363 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1364 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1365 dma_unmap_page(hcd->self.sysdev, 1366 urb->transfer_dma, 1367 urb->transfer_buffer_length, 1368 dir); 1369 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1370 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1371 dma_unmap_single(hcd->self.sysdev, 1372 urb->transfer_dma, 1373 urb->transfer_buffer_length, 1374 dir); 1375 else if (urb->transfer_flags & URB_MAP_LOCAL) 1376 hcd_free_coherent(urb->dev->bus, 1377 &urb->transfer_dma, 1378 &urb->transfer_buffer, 1379 urb->transfer_buffer_length, 1380 dir); 1381 1382 /* Make it safe to call this routine more than once */ 1383 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1384 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1385 } 1386 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1387 1388 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1389 gfp_t mem_flags) 1390 { 1391 if (hcd->driver->map_urb_for_dma) 1392 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1393 else 1394 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1395 } 1396 1397 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1398 gfp_t mem_flags) 1399 { 1400 enum dma_data_direction dir; 1401 int ret = 0; 1402 1403 /* Map the URB's buffers for DMA access. 1404 * Lower level HCD code should use *_dma exclusively, 1405 * unless it uses pio or talks to another transport, 1406 * or uses the provided scatter gather list for bulk. 1407 */ 1408 1409 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1410 if (hcd->self.uses_pio_for_control) 1411 return ret; 1412 if (hcd_uses_dma(hcd)) { 1413 if (is_vmalloc_addr(urb->setup_packet)) { 1414 WARN_ONCE(1, "setup packet is not dma capable\n"); 1415 return -EAGAIN; 1416 } else if (object_is_on_stack(urb->setup_packet)) { 1417 WARN_ONCE(1, "setup packet is on stack\n"); 1418 return -EAGAIN; 1419 } 1420 1421 urb->setup_dma = dma_map_single( 1422 hcd->self.sysdev, 1423 urb->setup_packet, 1424 sizeof(struct usb_ctrlrequest), 1425 DMA_TO_DEVICE); 1426 if (dma_mapping_error(hcd->self.sysdev, 1427 urb->setup_dma)) 1428 return -EAGAIN; 1429 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1430 } else if (hcd->localmem_pool) { 1431 ret = hcd_alloc_coherent( 1432 urb->dev->bus, mem_flags, 1433 &urb->setup_dma, 1434 (void **)&urb->setup_packet, 1435 sizeof(struct usb_ctrlrequest), 1436 DMA_TO_DEVICE); 1437 if (ret) 1438 return ret; 1439 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1440 } 1441 } 1442 1443 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1444 if (urb->transfer_buffer_length != 0 1445 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1446 if (hcd_uses_dma(hcd)) { 1447 if (urb->num_sgs) { 1448 int n; 1449 1450 /* We don't support sg for isoc transfers ! */ 1451 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1452 WARN_ON(1); 1453 return -EINVAL; 1454 } 1455 1456 n = dma_map_sg( 1457 hcd->self.sysdev, 1458 urb->sg, 1459 urb->num_sgs, 1460 dir); 1461 if (n <= 0) 1462 ret = -EAGAIN; 1463 else 1464 urb->transfer_flags |= URB_DMA_MAP_SG; 1465 urb->num_mapped_sgs = n; 1466 if (n != urb->num_sgs) 1467 urb->transfer_flags |= 1468 URB_DMA_SG_COMBINED; 1469 } else if (urb->sg) { 1470 struct scatterlist *sg = urb->sg; 1471 urb->transfer_dma = dma_map_page( 1472 hcd->self.sysdev, 1473 sg_page(sg), 1474 sg->offset, 1475 urb->transfer_buffer_length, 1476 dir); 1477 if (dma_mapping_error(hcd->self.sysdev, 1478 urb->transfer_dma)) 1479 ret = -EAGAIN; 1480 else 1481 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1482 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1483 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1484 ret = -EAGAIN; 1485 } else if (object_is_on_stack(urb->transfer_buffer)) { 1486 WARN_ONCE(1, "transfer buffer is on stack\n"); 1487 ret = -EAGAIN; 1488 } else { 1489 urb->transfer_dma = dma_map_single( 1490 hcd->self.sysdev, 1491 urb->transfer_buffer, 1492 urb->transfer_buffer_length, 1493 dir); 1494 if (dma_mapping_error(hcd->self.sysdev, 1495 urb->transfer_dma)) 1496 ret = -EAGAIN; 1497 else 1498 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1499 } 1500 } else if (hcd->localmem_pool) { 1501 ret = hcd_alloc_coherent( 1502 urb->dev->bus, mem_flags, 1503 &urb->transfer_dma, 1504 &urb->transfer_buffer, 1505 urb->transfer_buffer_length, 1506 dir); 1507 if (ret == 0) 1508 urb->transfer_flags |= URB_MAP_LOCAL; 1509 } 1510 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1511 URB_SETUP_MAP_LOCAL))) 1512 usb_hcd_unmap_urb_for_dma(hcd, urb); 1513 } 1514 return ret; 1515 } 1516 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1517 1518 /*-------------------------------------------------------------------------*/ 1519 1520 /* may be called in any context with a valid urb->dev usecount 1521 * caller surrenders "ownership" of urb 1522 * expects usb_submit_urb() to have sanity checked and conditioned all 1523 * inputs in the urb 1524 */ 1525 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1526 { 1527 int status; 1528 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1529 1530 /* increment urb's reference count as part of giving it to the HCD 1531 * (which will control it). HCD guarantees that it either returns 1532 * an error or calls giveback(), but not both. 1533 */ 1534 usb_get_urb(urb); 1535 atomic_inc(&urb->use_count); 1536 atomic_inc(&urb->dev->urbnum); 1537 usbmon_urb_submit(&hcd->self, urb); 1538 1539 /* NOTE requirements on root-hub callers (usbfs and the hub 1540 * driver, for now): URBs' urb->transfer_buffer must be 1541 * valid and usb_buffer_{sync,unmap}() not be needed, since 1542 * they could clobber root hub response data. Also, control 1543 * URBs must be submitted in process context with interrupts 1544 * enabled. 1545 */ 1546 1547 if (is_root_hub(urb->dev)) { 1548 status = rh_urb_enqueue(hcd, urb); 1549 } else { 1550 status = map_urb_for_dma(hcd, urb, mem_flags); 1551 if (likely(status == 0)) { 1552 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1553 if (unlikely(status)) 1554 unmap_urb_for_dma(hcd, urb); 1555 } 1556 } 1557 1558 if (unlikely(status)) { 1559 usbmon_urb_submit_error(&hcd->self, urb, status); 1560 urb->hcpriv = NULL; 1561 INIT_LIST_HEAD(&urb->urb_list); 1562 atomic_dec(&urb->use_count); 1563 atomic_dec(&urb->dev->urbnum); 1564 if (atomic_read(&urb->reject)) 1565 wake_up(&usb_kill_urb_queue); 1566 usb_put_urb(urb); 1567 } 1568 return status; 1569 } 1570 1571 /*-------------------------------------------------------------------------*/ 1572 1573 /* this makes the hcd giveback() the urb more quickly, by kicking it 1574 * off hardware queues (which may take a while) and returning it as 1575 * soon as practical. we've already set up the urb's return status, 1576 * but we can't know if the callback completed already. 1577 */ 1578 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1579 { 1580 int value; 1581 1582 if (is_root_hub(urb->dev)) 1583 value = usb_rh_urb_dequeue(hcd, urb, status); 1584 else { 1585 1586 /* The only reason an HCD might fail this call is if 1587 * it has not yet fully queued the urb to begin with. 1588 * Such failures should be harmless. */ 1589 value = hcd->driver->urb_dequeue(hcd, urb, status); 1590 } 1591 return value; 1592 } 1593 1594 /* 1595 * called in any context 1596 * 1597 * caller guarantees urb won't be recycled till both unlink() 1598 * and the urb's completion function return 1599 */ 1600 int usb_hcd_unlink_urb (struct urb *urb, int status) 1601 { 1602 struct usb_hcd *hcd; 1603 struct usb_device *udev = urb->dev; 1604 int retval = -EIDRM; 1605 unsigned long flags; 1606 1607 /* Prevent the device and bus from going away while 1608 * the unlink is carried out. If they are already gone 1609 * then urb->use_count must be 0, since disconnected 1610 * devices can't have any active URBs. 1611 */ 1612 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1613 if (atomic_read(&urb->use_count) > 0) { 1614 retval = 0; 1615 usb_get_dev(udev); 1616 } 1617 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1618 if (retval == 0) { 1619 hcd = bus_to_hcd(urb->dev->bus); 1620 retval = unlink1(hcd, urb, status); 1621 if (retval == 0) 1622 retval = -EINPROGRESS; 1623 else if (retval != -EIDRM && retval != -EBUSY) 1624 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1625 urb, retval); 1626 usb_put_dev(udev); 1627 } 1628 return retval; 1629 } 1630 1631 /*-------------------------------------------------------------------------*/ 1632 1633 static void __usb_hcd_giveback_urb(struct urb *urb) 1634 { 1635 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1636 struct usb_anchor *anchor = urb->anchor; 1637 int status = urb->unlinked; 1638 1639 urb->hcpriv = NULL; 1640 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1641 urb->actual_length < urb->transfer_buffer_length && 1642 !status)) 1643 status = -EREMOTEIO; 1644 1645 unmap_urb_for_dma(hcd, urb); 1646 usbmon_urb_complete(&hcd->self, urb, status); 1647 usb_anchor_suspend_wakeups(anchor); 1648 usb_unanchor_urb(urb); 1649 if (likely(status == 0)) 1650 usb_led_activity(USB_LED_EVENT_HOST); 1651 1652 /* pass ownership to the completion handler */ 1653 urb->status = status; 1654 urb->complete(urb); 1655 1656 usb_anchor_resume_wakeups(anchor); 1657 atomic_dec(&urb->use_count); 1658 if (unlikely(atomic_read(&urb->reject))) 1659 wake_up(&usb_kill_urb_queue); 1660 usb_put_urb(urb); 1661 } 1662 1663 static void usb_giveback_urb_bh(unsigned long param) 1664 { 1665 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1666 struct list_head local_list; 1667 1668 spin_lock_irq(&bh->lock); 1669 bh->running = true; 1670 restart: 1671 list_replace_init(&bh->head, &local_list); 1672 spin_unlock_irq(&bh->lock); 1673 1674 while (!list_empty(&local_list)) { 1675 struct urb *urb; 1676 1677 urb = list_entry(local_list.next, struct urb, urb_list); 1678 list_del_init(&urb->urb_list); 1679 bh->completing_ep = urb->ep; 1680 __usb_hcd_giveback_urb(urb); 1681 bh->completing_ep = NULL; 1682 } 1683 1684 /* check if there are new URBs to giveback */ 1685 spin_lock_irq(&bh->lock); 1686 if (!list_empty(&bh->head)) 1687 goto restart; 1688 bh->running = false; 1689 spin_unlock_irq(&bh->lock); 1690 } 1691 1692 /** 1693 * usb_hcd_giveback_urb - return URB from HCD to device driver 1694 * @hcd: host controller returning the URB 1695 * @urb: urb being returned to the USB device driver. 1696 * @status: completion status code for the URB. 1697 * Context: in_interrupt() 1698 * 1699 * This hands the URB from HCD to its USB device driver, using its 1700 * completion function. The HCD has freed all per-urb resources 1701 * (and is done using urb->hcpriv). It also released all HCD locks; 1702 * the device driver won't cause problems if it frees, modifies, 1703 * or resubmits this URB. 1704 * 1705 * If @urb was unlinked, the value of @status will be overridden by 1706 * @urb->unlinked. Erroneous short transfers are detected in case 1707 * the HCD hasn't checked for them. 1708 */ 1709 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1710 { 1711 struct giveback_urb_bh *bh; 1712 bool running, high_prio_bh; 1713 1714 /* pass status to tasklet via unlinked */ 1715 if (likely(!urb->unlinked)) 1716 urb->unlinked = status; 1717 1718 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1719 __usb_hcd_giveback_urb(urb); 1720 return; 1721 } 1722 1723 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1724 bh = &hcd->high_prio_bh; 1725 high_prio_bh = true; 1726 } else { 1727 bh = &hcd->low_prio_bh; 1728 high_prio_bh = false; 1729 } 1730 1731 spin_lock(&bh->lock); 1732 list_add_tail(&urb->urb_list, &bh->head); 1733 running = bh->running; 1734 spin_unlock(&bh->lock); 1735 1736 if (running) 1737 ; 1738 else if (high_prio_bh) 1739 tasklet_hi_schedule(&bh->bh); 1740 else 1741 tasklet_schedule(&bh->bh); 1742 } 1743 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1744 1745 /*-------------------------------------------------------------------------*/ 1746 1747 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1748 * queue to drain completely. The caller must first insure that no more 1749 * URBs can be submitted for this endpoint. 1750 */ 1751 void usb_hcd_flush_endpoint(struct usb_device *udev, 1752 struct usb_host_endpoint *ep) 1753 { 1754 struct usb_hcd *hcd; 1755 struct urb *urb; 1756 1757 if (!ep) 1758 return; 1759 might_sleep(); 1760 hcd = bus_to_hcd(udev->bus); 1761 1762 /* No more submits can occur */ 1763 spin_lock_irq(&hcd_urb_list_lock); 1764 rescan: 1765 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1766 int is_in; 1767 1768 if (urb->unlinked) 1769 continue; 1770 usb_get_urb (urb); 1771 is_in = usb_urb_dir_in(urb); 1772 spin_unlock(&hcd_urb_list_lock); 1773 1774 /* kick hcd */ 1775 unlink1(hcd, urb, -ESHUTDOWN); 1776 dev_dbg (hcd->self.controller, 1777 "shutdown urb %pK ep%d%s-%s\n", 1778 urb, usb_endpoint_num(&ep->desc), 1779 is_in ? "in" : "out", 1780 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1781 usb_put_urb (urb); 1782 1783 /* list contents may have changed */ 1784 spin_lock(&hcd_urb_list_lock); 1785 goto rescan; 1786 } 1787 spin_unlock_irq(&hcd_urb_list_lock); 1788 1789 /* Wait until the endpoint queue is completely empty */ 1790 while (!list_empty (&ep->urb_list)) { 1791 spin_lock_irq(&hcd_urb_list_lock); 1792 1793 /* The list may have changed while we acquired the spinlock */ 1794 urb = NULL; 1795 if (!list_empty (&ep->urb_list)) { 1796 urb = list_entry (ep->urb_list.prev, struct urb, 1797 urb_list); 1798 usb_get_urb (urb); 1799 } 1800 spin_unlock_irq(&hcd_urb_list_lock); 1801 1802 if (urb) { 1803 usb_kill_urb (urb); 1804 usb_put_urb (urb); 1805 } 1806 } 1807 } 1808 1809 /** 1810 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1811 * the bus bandwidth 1812 * @udev: target &usb_device 1813 * @new_config: new configuration to install 1814 * @cur_alt: the current alternate interface setting 1815 * @new_alt: alternate interface setting that is being installed 1816 * 1817 * To change configurations, pass in the new configuration in new_config, 1818 * and pass NULL for cur_alt and new_alt. 1819 * 1820 * To reset a device's configuration (put the device in the ADDRESSED state), 1821 * pass in NULL for new_config, cur_alt, and new_alt. 1822 * 1823 * To change alternate interface settings, pass in NULL for new_config, 1824 * pass in the current alternate interface setting in cur_alt, 1825 * and pass in the new alternate interface setting in new_alt. 1826 * 1827 * Return: An error if the requested bandwidth change exceeds the 1828 * bus bandwidth or host controller internal resources. 1829 */ 1830 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1831 struct usb_host_config *new_config, 1832 struct usb_host_interface *cur_alt, 1833 struct usb_host_interface *new_alt) 1834 { 1835 int num_intfs, i, j; 1836 struct usb_host_interface *alt = NULL; 1837 int ret = 0; 1838 struct usb_hcd *hcd; 1839 struct usb_host_endpoint *ep; 1840 1841 hcd = bus_to_hcd(udev->bus); 1842 if (!hcd->driver->check_bandwidth) 1843 return 0; 1844 1845 /* Configuration is being removed - set configuration 0 */ 1846 if (!new_config && !cur_alt) { 1847 for (i = 1; i < 16; ++i) { 1848 ep = udev->ep_out[i]; 1849 if (ep) 1850 hcd->driver->drop_endpoint(hcd, udev, ep); 1851 ep = udev->ep_in[i]; 1852 if (ep) 1853 hcd->driver->drop_endpoint(hcd, udev, ep); 1854 } 1855 hcd->driver->check_bandwidth(hcd, udev); 1856 return 0; 1857 } 1858 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1859 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1860 * of the bus. There will always be bandwidth for endpoint 0, so it's 1861 * ok to exclude it. 1862 */ 1863 if (new_config) { 1864 num_intfs = new_config->desc.bNumInterfaces; 1865 /* Remove endpoints (except endpoint 0, which is always on the 1866 * schedule) from the old config from the schedule 1867 */ 1868 for (i = 1; i < 16; ++i) { 1869 ep = udev->ep_out[i]; 1870 if (ep) { 1871 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1872 if (ret < 0) 1873 goto reset; 1874 } 1875 ep = udev->ep_in[i]; 1876 if (ep) { 1877 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1878 if (ret < 0) 1879 goto reset; 1880 } 1881 } 1882 for (i = 0; i < num_intfs; ++i) { 1883 struct usb_host_interface *first_alt; 1884 int iface_num; 1885 1886 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1887 iface_num = first_alt->desc.bInterfaceNumber; 1888 /* Set up endpoints for alternate interface setting 0 */ 1889 alt = usb_find_alt_setting(new_config, iface_num, 0); 1890 if (!alt) 1891 /* No alt setting 0? Pick the first setting. */ 1892 alt = first_alt; 1893 1894 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1895 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1896 if (ret < 0) 1897 goto reset; 1898 } 1899 } 1900 } 1901 if (cur_alt && new_alt) { 1902 struct usb_interface *iface = usb_ifnum_to_if(udev, 1903 cur_alt->desc.bInterfaceNumber); 1904 1905 if (!iface) 1906 return -EINVAL; 1907 if (iface->resetting_device) { 1908 /* 1909 * The USB core just reset the device, so the xHCI host 1910 * and the device will think alt setting 0 is installed. 1911 * However, the USB core will pass in the alternate 1912 * setting installed before the reset as cur_alt. Dig 1913 * out the alternate setting 0 structure, or the first 1914 * alternate setting if a broken device doesn't have alt 1915 * setting 0. 1916 */ 1917 cur_alt = usb_altnum_to_altsetting(iface, 0); 1918 if (!cur_alt) 1919 cur_alt = &iface->altsetting[0]; 1920 } 1921 1922 /* Drop all the endpoints in the current alt setting */ 1923 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1924 ret = hcd->driver->drop_endpoint(hcd, udev, 1925 &cur_alt->endpoint[i]); 1926 if (ret < 0) 1927 goto reset; 1928 } 1929 /* Add all the endpoints in the new alt setting */ 1930 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1931 ret = hcd->driver->add_endpoint(hcd, udev, 1932 &new_alt->endpoint[i]); 1933 if (ret < 0) 1934 goto reset; 1935 } 1936 } 1937 ret = hcd->driver->check_bandwidth(hcd, udev); 1938 reset: 1939 if (ret < 0) 1940 hcd->driver->reset_bandwidth(hcd, udev); 1941 return ret; 1942 } 1943 1944 /* Disables the endpoint: synchronizes with the hcd to make sure all 1945 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1946 * have been called previously. Use for set_configuration, set_interface, 1947 * driver removal, physical disconnect. 1948 * 1949 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1950 * type, maxpacket size, toggle, halt status, and scheduling. 1951 */ 1952 void usb_hcd_disable_endpoint(struct usb_device *udev, 1953 struct usb_host_endpoint *ep) 1954 { 1955 struct usb_hcd *hcd; 1956 1957 might_sleep(); 1958 hcd = bus_to_hcd(udev->bus); 1959 if (hcd->driver->endpoint_disable) 1960 hcd->driver->endpoint_disable(hcd, ep); 1961 } 1962 1963 /** 1964 * usb_hcd_reset_endpoint - reset host endpoint state 1965 * @udev: USB device. 1966 * @ep: the endpoint to reset. 1967 * 1968 * Resets any host endpoint state such as the toggle bit, sequence 1969 * number and current window. 1970 */ 1971 void usb_hcd_reset_endpoint(struct usb_device *udev, 1972 struct usb_host_endpoint *ep) 1973 { 1974 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1975 1976 if (hcd->driver->endpoint_reset) 1977 hcd->driver->endpoint_reset(hcd, ep); 1978 else { 1979 int epnum = usb_endpoint_num(&ep->desc); 1980 int is_out = usb_endpoint_dir_out(&ep->desc); 1981 int is_control = usb_endpoint_xfer_control(&ep->desc); 1982 1983 usb_settoggle(udev, epnum, is_out, 0); 1984 if (is_control) 1985 usb_settoggle(udev, epnum, !is_out, 0); 1986 } 1987 } 1988 1989 /** 1990 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1991 * @interface: alternate setting that includes all endpoints. 1992 * @eps: array of endpoints that need streams. 1993 * @num_eps: number of endpoints in the array. 1994 * @num_streams: number of streams to allocate. 1995 * @mem_flags: flags hcd should use to allocate memory. 1996 * 1997 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 1998 * Drivers may queue multiple transfers to different stream IDs, which may 1999 * complete in a different order than they were queued. 2000 * 2001 * Return: On success, the number of allocated streams. On failure, a negative 2002 * error code. 2003 */ 2004 int usb_alloc_streams(struct usb_interface *interface, 2005 struct usb_host_endpoint **eps, unsigned int num_eps, 2006 unsigned int num_streams, gfp_t mem_flags) 2007 { 2008 struct usb_hcd *hcd; 2009 struct usb_device *dev; 2010 int i, ret; 2011 2012 dev = interface_to_usbdev(interface); 2013 hcd = bus_to_hcd(dev->bus); 2014 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2015 return -EINVAL; 2016 if (dev->speed < USB_SPEED_SUPER) 2017 return -EINVAL; 2018 if (dev->state < USB_STATE_CONFIGURED) 2019 return -ENODEV; 2020 2021 for (i = 0; i < num_eps; i++) { 2022 /* Streams only apply to bulk endpoints. */ 2023 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2024 return -EINVAL; 2025 /* Re-alloc is not allowed */ 2026 if (eps[i]->streams) 2027 return -EINVAL; 2028 } 2029 2030 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2031 num_streams, mem_flags); 2032 if (ret < 0) 2033 return ret; 2034 2035 for (i = 0; i < num_eps; i++) 2036 eps[i]->streams = ret; 2037 2038 return ret; 2039 } 2040 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2041 2042 /** 2043 * usb_free_streams - free bulk endpoint stream IDs. 2044 * @interface: alternate setting that includes all endpoints. 2045 * @eps: array of endpoints to remove streams from. 2046 * @num_eps: number of endpoints in the array. 2047 * @mem_flags: flags hcd should use to allocate memory. 2048 * 2049 * Reverts a group of bulk endpoints back to not using stream IDs. 2050 * Can fail if we are given bad arguments, or HCD is broken. 2051 * 2052 * Return: 0 on success. On failure, a negative error code. 2053 */ 2054 int usb_free_streams(struct usb_interface *interface, 2055 struct usb_host_endpoint **eps, unsigned int num_eps, 2056 gfp_t mem_flags) 2057 { 2058 struct usb_hcd *hcd; 2059 struct usb_device *dev; 2060 int i, ret; 2061 2062 dev = interface_to_usbdev(interface); 2063 hcd = bus_to_hcd(dev->bus); 2064 if (dev->speed < USB_SPEED_SUPER) 2065 return -EINVAL; 2066 2067 /* Double-free is not allowed */ 2068 for (i = 0; i < num_eps; i++) 2069 if (!eps[i] || !eps[i]->streams) 2070 return -EINVAL; 2071 2072 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2073 if (ret < 0) 2074 return ret; 2075 2076 for (i = 0; i < num_eps; i++) 2077 eps[i]->streams = 0; 2078 2079 return ret; 2080 } 2081 EXPORT_SYMBOL_GPL(usb_free_streams); 2082 2083 /* Protect against drivers that try to unlink URBs after the device 2084 * is gone, by waiting until all unlinks for @udev are finished. 2085 * Since we don't currently track URBs by device, simply wait until 2086 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2087 */ 2088 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2089 { 2090 spin_lock_irq(&hcd_urb_unlink_lock); 2091 spin_unlock_irq(&hcd_urb_unlink_lock); 2092 } 2093 2094 /*-------------------------------------------------------------------------*/ 2095 2096 /* called in any context */ 2097 int usb_hcd_get_frame_number (struct usb_device *udev) 2098 { 2099 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2100 2101 if (!HCD_RH_RUNNING(hcd)) 2102 return -ESHUTDOWN; 2103 return hcd->driver->get_frame_number (hcd); 2104 } 2105 2106 /*-------------------------------------------------------------------------*/ 2107 2108 #ifdef CONFIG_PM 2109 2110 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2111 { 2112 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2113 int status; 2114 int old_state = hcd->state; 2115 2116 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2117 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2118 rhdev->do_remote_wakeup); 2119 if (HCD_DEAD(hcd)) { 2120 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2121 return 0; 2122 } 2123 2124 if (!hcd->driver->bus_suspend) { 2125 status = -ENOENT; 2126 } else { 2127 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2128 hcd->state = HC_STATE_QUIESCING; 2129 status = hcd->driver->bus_suspend(hcd); 2130 } 2131 if (status == 0) { 2132 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2133 hcd->state = HC_STATE_SUSPENDED; 2134 2135 if (!PMSG_IS_AUTO(msg)) 2136 usb_phy_roothub_suspend(hcd->self.sysdev, 2137 hcd->phy_roothub); 2138 2139 /* Did we race with a root-hub wakeup event? */ 2140 if (rhdev->do_remote_wakeup) { 2141 char buffer[6]; 2142 2143 status = hcd->driver->hub_status_data(hcd, buffer); 2144 if (status != 0) { 2145 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2146 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2147 status = -EBUSY; 2148 } 2149 } 2150 } else { 2151 spin_lock_irq(&hcd_root_hub_lock); 2152 if (!HCD_DEAD(hcd)) { 2153 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2154 hcd->state = old_state; 2155 } 2156 spin_unlock_irq(&hcd_root_hub_lock); 2157 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2158 "suspend", status); 2159 } 2160 return status; 2161 } 2162 2163 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2164 { 2165 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2166 int status; 2167 int old_state = hcd->state; 2168 2169 dev_dbg(&rhdev->dev, "usb %sresume\n", 2170 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2171 if (HCD_DEAD(hcd)) { 2172 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2173 return 0; 2174 } 2175 2176 if (!PMSG_IS_AUTO(msg)) { 2177 status = usb_phy_roothub_resume(hcd->self.sysdev, 2178 hcd->phy_roothub); 2179 if (status) 2180 return status; 2181 } 2182 2183 if (!hcd->driver->bus_resume) 2184 return -ENOENT; 2185 if (HCD_RH_RUNNING(hcd)) 2186 return 0; 2187 2188 hcd->state = HC_STATE_RESUMING; 2189 status = hcd->driver->bus_resume(hcd); 2190 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2191 if (status == 0) 2192 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2193 2194 if (status == 0) { 2195 struct usb_device *udev; 2196 int port1; 2197 2198 spin_lock_irq(&hcd_root_hub_lock); 2199 if (!HCD_DEAD(hcd)) { 2200 usb_set_device_state(rhdev, rhdev->actconfig 2201 ? USB_STATE_CONFIGURED 2202 : USB_STATE_ADDRESS); 2203 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2204 hcd->state = HC_STATE_RUNNING; 2205 } 2206 spin_unlock_irq(&hcd_root_hub_lock); 2207 2208 /* 2209 * Check whether any of the enabled ports on the root hub are 2210 * unsuspended. If they are then a TRSMRCY delay is needed 2211 * (this is what the USB-2 spec calls a "global resume"). 2212 * Otherwise we can skip the delay. 2213 */ 2214 usb_hub_for_each_child(rhdev, port1, udev) { 2215 if (udev->state != USB_STATE_NOTATTACHED && 2216 !udev->port_is_suspended) { 2217 usleep_range(10000, 11000); /* TRSMRCY */ 2218 break; 2219 } 2220 } 2221 } else { 2222 hcd->state = old_state; 2223 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2224 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2225 "resume", status); 2226 if (status != -ESHUTDOWN) 2227 usb_hc_died(hcd); 2228 } 2229 return status; 2230 } 2231 2232 /* Workqueue routine for root-hub remote wakeup */ 2233 static void hcd_resume_work(struct work_struct *work) 2234 { 2235 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2236 struct usb_device *udev = hcd->self.root_hub; 2237 2238 usb_remote_wakeup(udev); 2239 } 2240 2241 /** 2242 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2243 * @hcd: host controller for this root hub 2244 * 2245 * The USB host controller calls this function when its root hub is 2246 * suspended (with the remote wakeup feature enabled) and a remote 2247 * wakeup request is received. The routine submits a workqueue request 2248 * to resume the root hub (that is, manage its downstream ports again). 2249 */ 2250 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2251 { 2252 unsigned long flags; 2253 2254 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2255 if (hcd->rh_registered) { 2256 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2257 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2258 queue_work(pm_wq, &hcd->wakeup_work); 2259 } 2260 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2261 } 2262 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2263 2264 #endif /* CONFIG_PM */ 2265 2266 /*-------------------------------------------------------------------------*/ 2267 2268 #ifdef CONFIG_USB_OTG 2269 2270 /** 2271 * usb_bus_start_enum - start immediate enumeration (for OTG) 2272 * @bus: the bus (must use hcd framework) 2273 * @port_num: 1-based number of port; usually bus->otg_port 2274 * Context: in_interrupt() 2275 * 2276 * Starts enumeration, with an immediate reset followed later by 2277 * hub_wq identifying and possibly configuring the device. 2278 * This is needed by OTG controller drivers, where it helps meet 2279 * HNP protocol timing requirements for starting a port reset. 2280 * 2281 * Return: 0 if successful. 2282 */ 2283 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2284 { 2285 struct usb_hcd *hcd; 2286 int status = -EOPNOTSUPP; 2287 2288 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2289 * boards with root hubs hooked up to internal devices (instead of 2290 * just the OTG port) may need more attention to resetting... 2291 */ 2292 hcd = bus_to_hcd(bus); 2293 if (port_num && hcd->driver->start_port_reset) 2294 status = hcd->driver->start_port_reset(hcd, port_num); 2295 2296 /* allocate hub_wq shortly after (first) root port reset finishes; 2297 * it may issue others, until at least 50 msecs have passed. 2298 */ 2299 if (status == 0) 2300 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2301 return status; 2302 } 2303 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2304 2305 #endif 2306 2307 /*-------------------------------------------------------------------------*/ 2308 2309 /** 2310 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2311 * @irq: the IRQ being raised 2312 * @__hcd: pointer to the HCD whose IRQ is being signaled 2313 * 2314 * If the controller isn't HALTed, calls the driver's irq handler. 2315 * Checks whether the controller is now dead. 2316 * 2317 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2318 */ 2319 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2320 { 2321 struct usb_hcd *hcd = __hcd; 2322 irqreturn_t rc; 2323 2324 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2325 rc = IRQ_NONE; 2326 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2327 rc = IRQ_NONE; 2328 else 2329 rc = IRQ_HANDLED; 2330 2331 return rc; 2332 } 2333 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2334 2335 /*-------------------------------------------------------------------------*/ 2336 2337 /* Workqueue routine for when the root-hub has died. */ 2338 static void hcd_died_work(struct work_struct *work) 2339 { 2340 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2341 static char *env[] = { 2342 "ERROR=DEAD", 2343 NULL 2344 }; 2345 2346 /* Notify user space that the host controller has died */ 2347 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2348 } 2349 2350 /** 2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2352 * @hcd: pointer to the HCD representing the controller 2353 * 2354 * This is called by bus glue to report a USB host controller that died 2355 * while operations may still have been pending. It's called automatically 2356 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2357 * 2358 * Only call this function with the primary HCD. 2359 */ 2360 void usb_hc_died (struct usb_hcd *hcd) 2361 { 2362 unsigned long flags; 2363 2364 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2365 2366 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2367 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2368 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2369 if (hcd->rh_registered) { 2370 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2371 2372 /* make hub_wq clean up old urbs and devices */ 2373 usb_set_device_state (hcd->self.root_hub, 2374 USB_STATE_NOTATTACHED); 2375 usb_kick_hub_wq(hcd->self.root_hub); 2376 } 2377 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2378 hcd = hcd->shared_hcd; 2379 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2380 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2381 if (hcd->rh_registered) { 2382 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2383 2384 /* make hub_wq clean up old urbs and devices */ 2385 usb_set_device_state(hcd->self.root_hub, 2386 USB_STATE_NOTATTACHED); 2387 usb_kick_hub_wq(hcd->self.root_hub); 2388 } 2389 } 2390 2391 /* Handle the case where this function gets called with a shared HCD */ 2392 if (usb_hcd_is_primary_hcd(hcd)) 2393 schedule_work(&hcd->died_work); 2394 else 2395 schedule_work(&hcd->primary_hcd->died_work); 2396 2397 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2398 /* Make sure that the other roothub is also deallocated. */ 2399 } 2400 EXPORT_SYMBOL_GPL (usb_hc_died); 2401 2402 /*-------------------------------------------------------------------------*/ 2403 2404 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2405 { 2406 2407 spin_lock_init(&bh->lock); 2408 INIT_LIST_HEAD(&bh->head); 2409 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2410 } 2411 2412 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2413 struct device *sysdev, struct device *dev, const char *bus_name, 2414 struct usb_hcd *primary_hcd) 2415 { 2416 struct usb_hcd *hcd; 2417 2418 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2419 if (!hcd) 2420 return NULL; 2421 if (primary_hcd == NULL) { 2422 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2423 GFP_KERNEL); 2424 if (!hcd->address0_mutex) { 2425 kfree(hcd); 2426 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2427 return NULL; 2428 } 2429 mutex_init(hcd->address0_mutex); 2430 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2431 GFP_KERNEL); 2432 if (!hcd->bandwidth_mutex) { 2433 kfree(hcd->address0_mutex); 2434 kfree(hcd); 2435 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2436 return NULL; 2437 } 2438 mutex_init(hcd->bandwidth_mutex); 2439 dev_set_drvdata(dev, hcd); 2440 } else { 2441 mutex_lock(&usb_port_peer_mutex); 2442 hcd->address0_mutex = primary_hcd->address0_mutex; 2443 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2444 hcd->primary_hcd = primary_hcd; 2445 primary_hcd->primary_hcd = primary_hcd; 2446 hcd->shared_hcd = primary_hcd; 2447 primary_hcd->shared_hcd = hcd; 2448 mutex_unlock(&usb_port_peer_mutex); 2449 } 2450 2451 kref_init(&hcd->kref); 2452 2453 usb_bus_init(&hcd->self); 2454 hcd->self.controller = dev; 2455 hcd->self.sysdev = sysdev; 2456 hcd->self.bus_name = bus_name; 2457 2458 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2459 #ifdef CONFIG_PM 2460 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2461 #endif 2462 2463 INIT_WORK(&hcd->died_work, hcd_died_work); 2464 2465 hcd->driver = driver; 2466 hcd->speed = driver->flags & HCD_MASK; 2467 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2468 "USB Host Controller"; 2469 return hcd; 2470 } 2471 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2472 2473 /** 2474 * usb_create_shared_hcd - create and initialize an HCD structure 2475 * @driver: HC driver that will use this hcd 2476 * @dev: device for this HC, stored in hcd->self.controller 2477 * @bus_name: value to store in hcd->self.bus_name 2478 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2479 * PCI device. Only allocate certain resources for the primary HCD 2480 * Context: !in_interrupt() 2481 * 2482 * Allocate a struct usb_hcd, with extra space at the end for the 2483 * HC driver's private data. Initialize the generic members of the 2484 * hcd structure. 2485 * 2486 * Return: On success, a pointer to the created and initialized HCD structure. 2487 * On failure (e.g. if memory is unavailable), %NULL. 2488 */ 2489 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2490 struct device *dev, const char *bus_name, 2491 struct usb_hcd *primary_hcd) 2492 { 2493 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2494 } 2495 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2496 2497 /** 2498 * usb_create_hcd - create and initialize an HCD structure 2499 * @driver: HC driver that will use this hcd 2500 * @dev: device for this HC, stored in hcd->self.controller 2501 * @bus_name: value to store in hcd->self.bus_name 2502 * Context: !in_interrupt() 2503 * 2504 * Allocate a struct usb_hcd, with extra space at the end for the 2505 * HC driver's private data. Initialize the generic members of the 2506 * hcd structure. 2507 * 2508 * Return: On success, a pointer to the created and initialized HCD 2509 * structure. On failure (e.g. if memory is unavailable), %NULL. 2510 */ 2511 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2512 struct device *dev, const char *bus_name) 2513 { 2514 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2515 } 2516 EXPORT_SYMBOL_GPL(usb_create_hcd); 2517 2518 /* 2519 * Roothubs that share one PCI device must also share the bandwidth mutex. 2520 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2521 * deallocated. 2522 * 2523 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2524 * freed. When hcd_release() is called for either hcd in a peer set, 2525 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2526 */ 2527 static void hcd_release(struct kref *kref) 2528 { 2529 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2530 2531 mutex_lock(&usb_port_peer_mutex); 2532 if (hcd->shared_hcd) { 2533 struct usb_hcd *peer = hcd->shared_hcd; 2534 2535 peer->shared_hcd = NULL; 2536 peer->primary_hcd = NULL; 2537 } else { 2538 kfree(hcd->address0_mutex); 2539 kfree(hcd->bandwidth_mutex); 2540 } 2541 mutex_unlock(&usb_port_peer_mutex); 2542 kfree(hcd); 2543 } 2544 2545 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2546 { 2547 if (hcd) 2548 kref_get (&hcd->kref); 2549 return hcd; 2550 } 2551 EXPORT_SYMBOL_GPL(usb_get_hcd); 2552 2553 void usb_put_hcd (struct usb_hcd *hcd) 2554 { 2555 if (hcd) 2556 kref_put (&hcd->kref, hcd_release); 2557 } 2558 EXPORT_SYMBOL_GPL(usb_put_hcd); 2559 2560 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2561 { 2562 if (!hcd->primary_hcd) 2563 return 1; 2564 return hcd == hcd->primary_hcd; 2565 } 2566 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2567 2568 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2569 { 2570 if (!hcd->driver->find_raw_port_number) 2571 return port1; 2572 2573 return hcd->driver->find_raw_port_number(hcd, port1); 2574 } 2575 2576 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2577 unsigned int irqnum, unsigned long irqflags) 2578 { 2579 int retval; 2580 2581 if (hcd->driver->irq) { 2582 2583 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2584 hcd->driver->description, hcd->self.busnum); 2585 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2586 hcd->irq_descr, hcd); 2587 if (retval != 0) { 2588 dev_err(hcd->self.controller, 2589 "request interrupt %d failed\n", 2590 irqnum); 2591 return retval; 2592 } 2593 hcd->irq = irqnum; 2594 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2595 (hcd->driver->flags & HCD_MEMORY) ? 2596 "io mem" : "io base", 2597 (unsigned long long)hcd->rsrc_start); 2598 } else { 2599 hcd->irq = 0; 2600 if (hcd->rsrc_start) 2601 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2602 (hcd->driver->flags & HCD_MEMORY) ? 2603 "io mem" : "io base", 2604 (unsigned long long)hcd->rsrc_start); 2605 } 2606 return 0; 2607 } 2608 2609 /* 2610 * Before we free this root hub, flush in-flight peering attempts 2611 * and disable peer lookups 2612 */ 2613 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2614 { 2615 struct usb_device *rhdev; 2616 2617 mutex_lock(&usb_port_peer_mutex); 2618 rhdev = hcd->self.root_hub; 2619 hcd->self.root_hub = NULL; 2620 mutex_unlock(&usb_port_peer_mutex); 2621 usb_put_dev(rhdev); 2622 } 2623 2624 /** 2625 * usb_add_hcd - finish generic HCD structure initialization and register 2626 * @hcd: the usb_hcd structure to initialize 2627 * @irqnum: Interrupt line to allocate 2628 * @irqflags: Interrupt type flags 2629 * 2630 * Finish the remaining parts of generic HCD initialization: allocate the 2631 * buffers of consistent memory, register the bus, request the IRQ line, 2632 * and call the driver's reset() and start() routines. 2633 */ 2634 int usb_add_hcd(struct usb_hcd *hcd, 2635 unsigned int irqnum, unsigned long irqflags) 2636 { 2637 int retval; 2638 struct usb_device *rhdev; 2639 2640 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2641 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2642 if (IS_ERR(hcd->phy_roothub)) 2643 return PTR_ERR(hcd->phy_roothub); 2644 2645 retval = usb_phy_roothub_init(hcd->phy_roothub); 2646 if (retval) 2647 return retval; 2648 2649 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2650 PHY_MODE_USB_HOST_SS); 2651 if (retval) 2652 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2653 PHY_MODE_USB_HOST); 2654 if (retval) 2655 goto err_usb_phy_roothub_power_on; 2656 2657 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2658 if (retval) 2659 goto err_usb_phy_roothub_power_on; 2660 } 2661 2662 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2663 2664 switch (authorized_default) { 2665 case USB_AUTHORIZE_NONE: 2666 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2667 break; 2668 2669 case USB_AUTHORIZE_ALL: 2670 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2671 break; 2672 2673 case USB_AUTHORIZE_INTERNAL: 2674 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2675 break; 2676 2677 case USB_AUTHORIZE_WIRED: 2678 default: 2679 hcd->dev_policy = hcd->wireless ? 2680 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2681 break; 2682 } 2683 2684 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2685 2686 /* per default all interfaces are authorized */ 2687 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2688 2689 /* HC is in reset state, but accessible. Now do the one-time init, 2690 * bottom up so that hcds can customize the root hubs before hub_wq 2691 * starts talking to them. (Note, bus id is assigned early too.) 2692 */ 2693 retval = hcd_buffer_create(hcd); 2694 if (retval != 0) { 2695 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2696 goto err_create_buf; 2697 } 2698 2699 retval = usb_register_bus(&hcd->self); 2700 if (retval < 0) 2701 goto err_register_bus; 2702 2703 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2704 if (rhdev == NULL) { 2705 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2706 retval = -ENOMEM; 2707 goto err_allocate_root_hub; 2708 } 2709 mutex_lock(&usb_port_peer_mutex); 2710 hcd->self.root_hub = rhdev; 2711 mutex_unlock(&usb_port_peer_mutex); 2712 2713 rhdev->rx_lanes = 1; 2714 rhdev->tx_lanes = 1; 2715 2716 switch (hcd->speed) { 2717 case HCD_USB11: 2718 rhdev->speed = USB_SPEED_FULL; 2719 break; 2720 case HCD_USB2: 2721 rhdev->speed = USB_SPEED_HIGH; 2722 break; 2723 case HCD_USB25: 2724 rhdev->speed = USB_SPEED_WIRELESS; 2725 break; 2726 case HCD_USB3: 2727 rhdev->speed = USB_SPEED_SUPER; 2728 break; 2729 case HCD_USB32: 2730 rhdev->rx_lanes = 2; 2731 rhdev->tx_lanes = 2; 2732 /* fall through */ 2733 case HCD_USB31: 2734 rhdev->speed = USB_SPEED_SUPER_PLUS; 2735 break; 2736 default: 2737 retval = -EINVAL; 2738 goto err_set_rh_speed; 2739 } 2740 2741 /* wakeup flag init defaults to "everything works" for root hubs, 2742 * but drivers can override it in reset() if needed, along with 2743 * recording the overall controller's system wakeup capability. 2744 */ 2745 device_set_wakeup_capable(&rhdev->dev, 1); 2746 2747 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2748 * registered. But since the controller can die at any time, 2749 * let's initialize the flag before touching the hardware. 2750 */ 2751 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2752 2753 /* "reset" is misnamed; its role is now one-time init. the controller 2754 * should already have been reset (and boot firmware kicked off etc). 2755 */ 2756 if (hcd->driver->reset) { 2757 retval = hcd->driver->reset(hcd); 2758 if (retval < 0) { 2759 dev_err(hcd->self.controller, "can't setup: %d\n", 2760 retval); 2761 goto err_hcd_driver_setup; 2762 } 2763 } 2764 hcd->rh_pollable = 1; 2765 2766 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2767 if (retval) 2768 goto err_hcd_driver_setup; 2769 2770 /* NOTE: root hub and controller capabilities may not be the same */ 2771 if (device_can_wakeup(hcd->self.controller) 2772 && device_can_wakeup(&hcd->self.root_hub->dev)) 2773 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2774 2775 /* initialize tasklets */ 2776 init_giveback_urb_bh(&hcd->high_prio_bh); 2777 init_giveback_urb_bh(&hcd->low_prio_bh); 2778 2779 /* enable irqs just before we start the controller, 2780 * if the BIOS provides legacy PCI irqs. 2781 */ 2782 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2783 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2784 if (retval) 2785 goto err_request_irq; 2786 } 2787 2788 hcd->state = HC_STATE_RUNNING; 2789 retval = hcd->driver->start(hcd); 2790 if (retval < 0) { 2791 dev_err(hcd->self.controller, "startup error %d\n", retval); 2792 goto err_hcd_driver_start; 2793 } 2794 2795 /* starting here, usbcore will pay attention to this root hub */ 2796 retval = register_root_hub(hcd); 2797 if (retval != 0) 2798 goto err_register_root_hub; 2799 2800 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2801 usb_hcd_poll_rh_status(hcd); 2802 2803 return retval; 2804 2805 err_register_root_hub: 2806 hcd->rh_pollable = 0; 2807 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2808 del_timer_sync(&hcd->rh_timer); 2809 hcd->driver->stop(hcd); 2810 hcd->state = HC_STATE_HALT; 2811 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2812 del_timer_sync(&hcd->rh_timer); 2813 err_hcd_driver_start: 2814 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2815 free_irq(irqnum, hcd); 2816 err_request_irq: 2817 err_hcd_driver_setup: 2818 err_set_rh_speed: 2819 usb_put_invalidate_rhdev(hcd); 2820 err_allocate_root_hub: 2821 usb_deregister_bus(&hcd->self); 2822 err_register_bus: 2823 hcd_buffer_destroy(hcd); 2824 err_create_buf: 2825 usb_phy_roothub_power_off(hcd->phy_roothub); 2826 err_usb_phy_roothub_power_on: 2827 usb_phy_roothub_exit(hcd->phy_roothub); 2828 2829 return retval; 2830 } 2831 EXPORT_SYMBOL_GPL(usb_add_hcd); 2832 2833 /** 2834 * usb_remove_hcd - shutdown processing for generic HCDs 2835 * @hcd: the usb_hcd structure to remove 2836 * Context: !in_interrupt() 2837 * 2838 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2839 * invoking the HCD's stop() method. 2840 */ 2841 void usb_remove_hcd(struct usb_hcd *hcd) 2842 { 2843 struct usb_device *rhdev = hcd->self.root_hub; 2844 2845 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2846 2847 usb_get_dev(rhdev); 2848 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2849 if (HC_IS_RUNNING (hcd->state)) 2850 hcd->state = HC_STATE_QUIESCING; 2851 2852 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2853 spin_lock_irq (&hcd_root_hub_lock); 2854 hcd->rh_registered = 0; 2855 spin_unlock_irq (&hcd_root_hub_lock); 2856 2857 #ifdef CONFIG_PM 2858 cancel_work_sync(&hcd->wakeup_work); 2859 #endif 2860 cancel_work_sync(&hcd->died_work); 2861 2862 mutex_lock(&usb_bus_idr_lock); 2863 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2864 mutex_unlock(&usb_bus_idr_lock); 2865 2866 /* 2867 * tasklet_kill() isn't needed here because: 2868 * - driver's disconnect() called from usb_disconnect() should 2869 * make sure its URBs are completed during the disconnect() 2870 * callback 2871 * 2872 * - it is too late to run complete() here since driver may have 2873 * been removed already now 2874 */ 2875 2876 /* Prevent any more root-hub status calls from the timer. 2877 * The HCD might still restart the timer (if a port status change 2878 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2879 * the hub_status_data() callback. 2880 */ 2881 hcd->rh_pollable = 0; 2882 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2883 del_timer_sync(&hcd->rh_timer); 2884 2885 hcd->driver->stop(hcd); 2886 hcd->state = HC_STATE_HALT; 2887 2888 /* In case the HCD restarted the timer, stop it again. */ 2889 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2890 del_timer_sync(&hcd->rh_timer); 2891 2892 if (usb_hcd_is_primary_hcd(hcd)) { 2893 if (hcd->irq > 0) 2894 free_irq(hcd->irq, hcd); 2895 } 2896 2897 usb_deregister_bus(&hcd->self); 2898 hcd_buffer_destroy(hcd); 2899 2900 usb_phy_roothub_power_off(hcd->phy_roothub); 2901 usb_phy_roothub_exit(hcd->phy_roothub); 2902 2903 usb_put_invalidate_rhdev(hcd); 2904 hcd->flags = 0; 2905 } 2906 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2907 2908 void 2909 usb_hcd_platform_shutdown(struct platform_device *dev) 2910 { 2911 struct usb_hcd *hcd = platform_get_drvdata(dev); 2912 2913 /* No need for pm_runtime_put(), we're shutting down */ 2914 pm_runtime_get_sync(&dev->dev); 2915 2916 if (hcd->driver->shutdown) 2917 hcd->driver->shutdown(hcd); 2918 } 2919 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2920 2921 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 2922 dma_addr_t dma, size_t size) 2923 { 2924 int err; 2925 void *local_mem; 2926 2927 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 2928 dev_to_node(hcd->self.sysdev), 2929 dev_name(hcd->self.sysdev)); 2930 if (IS_ERR(hcd->localmem_pool)) 2931 return PTR_ERR(hcd->localmem_pool); 2932 2933 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 2934 size, MEMREMAP_WC); 2935 if (IS_ERR(local_mem)) 2936 return PTR_ERR(local_mem); 2937 2938 /* 2939 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 2940 * It's not backed by system memory and thus there's no kernel mapping 2941 * for it. 2942 */ 2943 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 2944 dma, size, dev_to_node(hcd->self.sysdev)); 2945 if (err < 0) { 2946 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 2947 err); 2948 return err; 2949 } 2950 2951 return 0; 2952 } 2953 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 2954 2955 /*-------------------------------------------------------------------------*/ 2956 2957 #if IS_ENABLED(CONFIG_USB_MON) 2958 2959 const struct usb_mon_operations *mon_ops; 2960 2961 /* 2962 * The registration is unlocked. 2963 * We do it this way because we do not want to lock in hot paths. 2964 * 2965 * Notice that the code is minimally error-proof. Because usbmon needs 2966 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2967 */ 2968 2969 int usb_mon_register(const struct usb_mon_operations *ops) 2970 { 2971 2972 if (mon_ops) 2973 return -EBUSY; 2974 2975 mon_ops = ops; 2976 mb(); 2977 return 0; 2978 } 2979 EXPORT_SYMBOL_GPL (usb_mon_register); 2980 2981 void usb_mon_deregister (void) 2982 { 2983 2984 if (mon_ops == NULL) { 2985 printk(KERN_ERR "USB: monitor was not registered\n"); 2986 return; 2987 } 2988 mon_ops = NULL; 2989 mb(); 2990 } 2991 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2992 2993 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2994