xref: /openbmc/linux/drivers/usb/core/hcd.c (revision 7587eb18)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bcd.h>
26 #include <linux/module.h>
27 #include <linux/version.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/completion.h>
31 #include <linux/utsname.h>
32 #include <linux/mm.h>
33 #include <asm/io.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/mutex.h>
37 #include <asm/irq.h>
38 #include <asm/byteorder.h>
39 #include <asm/unaligned.h>
40 #include <linux/platform_device.h>
41 #include <linux/workqueue.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/types.h>
44 
45 #include <linux/phy/phy.h>
46 #include <linux/usb.h>
47 #include <linux/usb/hcd.h>
48 #include <linux/usb/phy.h>
49 
50 #include "usb.h"
51 
52 
53 /*-------------------------------------------------------------------------*/
54 
55 /*
56  * USB Host Controller Driver framework
57  *
58  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59  * HCD-specific behaviors/bugs.
60  *
61  * This does error checks, tracks devices and urbs, and delegates to a
62  * "hc_driver" only for code (and data) that really needs to know about
63  * hardware differences.  That includes root hub registers, i/o queues,
64  * and so on ... but as little else as possible.
65  *
66  * Shared code includes most of the "root hub" code (these are emulated,
67  * though each HC's hardware works differently) and PCI glue, plus request
68  * tracking overhead.  The HCD code should only block on spinlocks or on
69  * hardware handshaking; blocking on software events (such as other kernel
70  * threads releasing resources, or completing actions) is all generic.
71  *
72  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74  * only by the hub driver ... and that neither should be seen or used by
75  * usb client device drivers.
76  *
77  * Contributors of ideas or unattributed patches include: David Brownell,
78  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79  *
80  * HISTORY:
81  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
82  *		associated cleanup.  "usb_hcd" still != "usb_bus".
83  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
84  */
85 
86 /*-------------------------------------------------------------------------*/
87 
88 /* Keep track of which host controller drivers are loaded */
89 unsigned long usb_hcds_loaded;
90 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91 
92 /* host controllers we manage */
93 DEFINE_IDR (usb_bus_idr);
94 EXPORT_SYMBOL_GPL (usb_bus_idr);
95 
96 /* used when allocating bus numbers */
97 #define USB_MAXBUS		64
98 
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
102 
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105 
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108 
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111 
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114 
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117 	return (udev->parent == NULL);
118 }
119 
120 /*-------------------------------------------------------------------------*/
121 
122 /*
123  * Sharable chunks of root hub code.
124  */
125 
126 /*-------------------------------------------------------------------------*/
127 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
128 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
129 
130 /* usb 3.1 root hub device descriptor */
131 static const u8 usb31_rh_dev_descriptor[18] = {
132 	0x12,       /*  __u8  bLength; */
133 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
134 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
135 
136 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
137 	0x00,	    /*  __u8  bDeviceSubClass; */
138 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
139 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140 
141 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
142 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144 
145 	0x03,       /*  __u8  iManufacturer; */
146 	0x02,       /*  __u8  iProduct; */
147 	0x01,       /*  __u8  iSerialNumber; */
148 	0x01        /*  __u8  bNumConfigurations; */
149 };
150 
151 /* usb 3.0 root hub device descriptor */
152 static const u8 usb3_rh_dev_descriptor[18] = {
153 	0x12,       /*  __u8  bLength; */
154 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
155 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
156 
157 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
158 	0x00,	    /*  __u8  bDeviceSubClass; */
159 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
160 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
161 
162 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
163 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
164 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165 
166 	0x03,       /*  __u8  iManufacturer; */
167 	0x02,       /*  __u8  iProduct; */
168 	0x01,       /*  __u8  iSerialNumber; */
169 	0x01        /*  __u8  bNumConfigurations; */
170 };
171 
172 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
173 static const u8 usb25_rh_dev_descriptor[18] = {
174 	0x12,       /*  __u8  bLength; */
175 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
176 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
177 
178 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
179 	0x00,	    /*  __u8  bDeviceSubClass; */
180 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
181 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
182 
183 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
184 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
185 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
186 
187 	0x03,       /*  __u8  iManufacturer; */
188 	0x02,       /*  __u8  iProduct; */
189 	0x01,       /*  __u8  iSerialNumber; */
190 	0x01        /*  __u8  bNumConfigurations; */
191 };
192 
193 /* usb 2.0 root hub device descriptor */
194 static const u8 usb2_rh_dev_descriptor[18] = {
195 	0x12,       /*  __u8  bLength; */
196 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
197 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
198 
199 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
200 	0x00,	    /*  __u8  bDeviceSubClass; */
201 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
202 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
203 
204 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
205 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
206 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
207 
208 	0x03,       /*  __u8  iManufacturer; */
209 	0x02,       /*  __u8  iProduct; */
210 	0x01,       /*  __u8  iSerialNumber; */
211 	0x01        /*  __u8  bNumConfigurations; */
212 };
213 
214 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
215 
216 /* usb 1.1 root hub device descriptor */
217 static const u8 usb11_rh_dev_descriptor[18] = {
218 	0x12,       /*  __u8  bLength; */
219 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
220 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
221 
222 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
223 	0x00,	    /*  __u8  bDeviceSubClass; */
224 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
225 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
226 
227 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
228 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
229 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
230 
231 	0x03,       /*  __u8  iManufacturer; */
232 	0x02,       /*  __u8  iProduct; */
233 	0x01,       /*  __u8  iSerialNumber; */
234 	0x01        /*  __u8  bNumConfigurations; */
235 };
236 
237 
238 /*-------------------------------------------------------------------------*/
239 
240 /* Configuration descriptors for our root hubs */
241 
242 static const u8 fs_rh_config_descriptor[] = {
243 
244 	/* one configuration */
245 	0x09,       /*  __u8  bLength; */
246 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
247 	0x19, 0x00, /*  __le16 wTotalLength; */
248 	0x01,       /*  __u8  bNumInterfaces; (1) */
249 	0x01,       /*  __u8  bConfigurationValue; */
250 	0x00,       /*  __u8  iConfiguration; */
251 	0xc0,       /*  __u8  bmAttributes;
252 				 Bit 7: must be set,
253 				     6: Self-powered,
254 				     5: Remote wakeup,
255 				     4..0: resvd */
256 	0x00,       /*  __u8  MaxPower; */
257 
258 	/* USB 1.1:
259 	 * USB 2.0, single TT organization (mandatory):
260 	 *	one interface, protocol 0
261 	 *
262 	 * USB 2.0, multiple TT organization (optional):
263 	 *	two interfaces, protocols 1 (like single TT)
264 	 *	and 2 (multiple TT mode) ... config is
265 	 *	sometimes settable
266 	 *	NOT IMPLEMENTED
267 	 */
268 
269 	/* one interface */
270 	0x09,       /*  __u8  if_bLength; */
271 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
272 	0x00,       /*  __u8  if_bInterfaceNumber; */
273 	0x00,       /*  __u8  if_bAlternateSetting; */
274 	0x01,       /*  __u8  if_bNumEndpoints; */
275 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
276 	0x00,       /*  __u8  if_bInterfaceSubClass; */
277 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
278 	0x00,       /*  __u8  if_iInterface; */
279 
280 	/* one endpoint (status change endpoint) */
281 	0x07,       /*  __u8  ep_bLength; */
282 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
283 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
284 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
285 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
286 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
287 };
288 
289 static const u8 hs_rh_config_descriptor[] = {
290 
291 	/* one configuration */
292 	0x09,       /*  __u8  bLength; */
293 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
294 	0x19, 0x00, /*  __le16 wTotalLength; */
295 	0x01,       /*  __u8  bNumInterfaces; (1) */
296 	0x01,       /*  __u8  bConfigurationValue; */
297 	0x00,       /*  __u8  iConfiguration; */
298 	0xc0,       /*  __u8  bmAttributes;
299 				 Bit 7: must be set,
300 				     6: Self-powered,
301 				     5: Remote wakeup,
302 				     4..0: resvd */
303 	0x00,       /*  __u8  MaxPower; */
304 
305 	/* USB 1.1:
306 	 * USB 2.0, single TT organization (mandatory):
307 	 *	one interface, protocol 0
308 	 *
309 	 * USB 2.0, multiple TT organization (optional):
310 	 *	two interfaces, protocols 1 (like single TT)
311 	 *	and 2 (multiple TT mode) ... config is
312 	 *	sometimes settable
313 	 *	NOT IMPLEMENTED
314 	 */
315 
316 	/* one interface */
317 	0x09,       /*  __u8  if_bLength; */
318 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
319 	0x00,       /*  __u8  if_bInterfaceNumber; */
320 	0x00,       /*  __u8  if_bAlternateSetting; */
321 	0x01,       /*  __u8  if_bNumEndpoints; */
322 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
323 	0x00,       /*  __u8  if_bInterfaceSubClass; */
324 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
325 	0x00,       /*  __u8  if_iInterface; */
326 
327 	/* one endpoint (status change endpoint) */
328 	0x07,       /*  __u8  ep_bLength; */
329 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
330 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
331 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
332 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
333 		     * see hub.c:hub_configure() for details. */
334 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
335 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
336 };
337 
338 static const u8 ss_rh_config_descriptor[] = {
339 	/* one configuration */
340 	0x09,       /*  __u8  bLength; */
341 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
342 	0x1f, 0x00, /*  __le16 wTotalLength; */
343 	0x01,       /*  __u8  bNumInterfaces; (1) */
344 	0x01,       /*  __u8  bConfigurationValue; */
345 	0x00,       /*  __u8  iConfiguration; */
346 	0xc0,       /*  __u8  bmAttributes;
347 				 Bit 7: must be set,
348 				     6: Self-powered,
349 				     5: Remote wakeup,
350 				     4..0: resvd */
351 	0x00,       /*  __u8  MaxPower; */
352 
353 	/* one interface */
354 	0x09,       /*  __u8  if_bLength; */
355 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
356 	0x00,       /*  __u8  if_bInterfaceNumber; */
357 	0x00,       /*  __u8  if_bAlternateSetting; */
358 	0x01,       /*  __u8  if_bNumEndpoints; */
359 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
360 	0x00,       /*  __u8  if_bInterfaceSubClass; */
361 	0x00,       /*  __u8  if_bInterfaceProtocol; */
362 	0x00,       /*  __u8  if_iInterface; */
363 
364 	/* one endpoint (status change endpoint) */
365 	0x07,       /*  __u8  ep_bLength; */
366 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
367 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
368 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
369 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
370 		     * see hub.c:hub_configure() for details. */
371 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
372 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
373 
374 	/* one SuperSpeed endpoint companion descriptor */
375 	0x06,        /* __u8 ss_bLength */
376 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
377 		     /* Companion */
378 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
379 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
380 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
381 };
382 
383 /* authorized_default behaviour:
384  * -1 is authorized for all devices except wireless (old behaviour)
385  * 0 is unauthorized for all devices
386  * 1 is authorized for all devices
387  */
388 static int authorized_default = -1;
389 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
390 MODULE_PARM_DESC(authorized_default,
391 		"Default USB device authorization: 0 is not authorized, 1 is "
392 		"authorized, -1 is authorized except for wireless USB (default, "
393 		"old behaviour");
394 /*-------------------------------------------------------------------------*/
395 
396 /**
397  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
398  * @s: Null-terminated ASCII (actually ISO-8859-1) string
399  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
400  * @len: Length (in bytes; may be odd) of descriptor buffer.
401  *
402  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
403  * whichever is less.
404  *
405  * Note:
406  * USB String descriptors can contain at most 126 characters; input
407  * strings longer than that are truncated.
408  */
409 static unsigned
410 ascii2desc(char const *s, u8 *buf, unsigned len)
411 {
412 	unsigned n, t = 2 + 2*strlen(s);
413 
414 	if (t > 254)
415 		t = 254;	/* Longest possible UTF string descriptor */
416 	if (len > t)
417 		len = t;
418 
419 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
420 
421 	n = len;
422 	while (n--) {
423 		*buf++ = t;
424 		if (!n--)
425 			break;
426 		*buf++ = t >> 8;
427 		t = (unsigned char)*s++;
428 	}
429 	return len;
430 }
431 
432 /**
433  * rh_string() - provides string descriptors for root hub
434  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
435  * @hcd: the host controller for this root hub
436  * @data: buffer for output packet
437  * @len: length of the provided buffer
438  *
439  * Produces either a manufacturer, product or serial number string for the
440  * virtual root hub device.
441  *
442  * Return: The number of bytes filled in: the length of the descriptor or
443  * of the provided buffer, whichever is less.
444  */
445 static unsigned
446 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
447 {
448 	char buf[100];
449 	char const *s;
450 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
451 
452 	/* language ids */
453 	switch (id) {
454 	case 0:
455 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
456 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
457 		if (len > 4)
458 			len = 4;
459 		memcpy(data, langids, len);
460 		return len;
461 	case 1:
462 		/* Serial number */
463 		s = hcd->self.bus_name;
464 		break;
465 	case 2:
466 		/* Product name */
467 		s = hcd->product_desc;
468 		break;
469 	case 3:
470 		/* Manufacturer */
471 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
472 			init_utsname()->release, hcd->driver->description);
473 		s = buf;
474 		break;
475 	default:
476 		/* Can't happen; caller guarantees it */
477 		return 0;
478 	}
479 
480 	return ascii2desc(s, data, len);
481 }
482 
483 
484 /* Root hub control transfers execute synchronously */
485 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
486 {
487 	struct usb_ctrlrequest *cmd;
488 	u16		typeReq, wValue, wIndex, wLength;
489 	u8		*ubuf = urb->transfer_buffer;
490 	unsigned	len = 0;
491 	int		status;
492 	u8		patch_wakeup = 0;
493 	u8		patch_protocol = 0;
494 	u16		tbuf_size;
495 	u8		*tbuf = NULL;
496 	const u8	*bufp;
497 
498 	might_sleep();
499 
500 	spin_lock_irq(&hcd_root_hub_lock);
501 	status = usb_hcd_link_urb_to_ep(hcd, urb);
502 	spin_unlock_irq(&hcd_root_hub_lock);
503 	if (status)
504 		return status;
505 	urb->hcpriv = hcd;	/* Indicate it's queued */
506 
507 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
508 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
509 	wValue   = le16_to_cpu (cmd->wValue);
510 	wIndex   = le16_to_cpu (cmd->wIndex);
511 	wLength  = le16_to_cpu (cmd->wLength);
512 
513 	if (wLength > urb->transfer_buffer_length)
514 		goto error;
515 
516 	/*
517 	 * tbuf should be at least as big as the
518 	 * USB hub descriptor.
519 	 */
520 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
521 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
522 	if (!tbuf)
523 		return -ENOMEM;
524 
525 	bufp = tbuf;
526 
527 
528 	urb->actual_length = 0;
529 	switch (typeReq) {
530 
531 	/* DEVICE REQUESTS */
532 
533 	/* The root hub's remote wakeup enable bit is implemented using
534 	 * driver model wakeup flags.  If this system supports wakeup
535 	 * through USB, userspace may change the default "allow wakeup"
536 	 * policy through sysfs or these calls.
537 	 *
538 	 * Most root hubs support wakeup from downstream devices, for
539 	 * runtime power management (disabling USB clocks and reducing
540 	 * VBUS power usage).  However, not all of them do so; silicon,
541 	 * board, and BIOS bugs here are not uncommon, so these can't
542 	 * be treated quite like external hubs.
543 	 *
544 	 * Likewise, not all root hubs will pass wakeup events upstream,
545 	 * to wake up the whole system.  So don't assume root hub and
546 	 * controller capabilities are identical.
547 	 */
548 
549 	case DeviceRequest | USB_REQ_GET_STATUS:
550 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
551 					<< USB_DEVICE_REMOTE_WAKEUP)
552 				| (1 << USB_DEVICE_SELF_POWERED);
553 		tbuf[1] = 0;
554 		len = 2;
555 		break;
556 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
557 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
558 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
559 		else
560 			goto error;
561 		break;
562 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
563 		if (device_can_wakeup(&hcd->self.root_hub->dev)
564 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
565 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
566 		else
567 			goto error;
568 		break;
569 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
570 		tbuf[0] = 1;
571 		len = 1;
572 			/* FALLTHROUGH */
573 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
574 		break;
575 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
576 		switch (wValue & 0xff00) {
577 		case USB_DT_DEVICE << 8:
578 			switch (hcd->speed) {
579 			case HCD_USB31:
580 				bufp = usb31_rh_dev_descriptor;
581 				break;
582 			case HCD_USB3:
583 				bufp = usb3_rh_dev_descriptor;
584 				break;
585 			case HCD_USB25:
586 				bufp = usb25_rh_dev_descriptor;
587 				break;
588 			case HCD_USB2:
589 				bufp = usb2_rh_dev_descriptor;
590 				break;
591 			case HCD_USB11:
592 				bufp = usb11_rh_dev_descriptor;
593 				break;
594 			default:
595 				goto error;
596 			}
597 			len = 18;
598 			if (hcd->has_tt)
599 				patch_protocol = 1;
600 			break;
601 		case USB_DT_CONFIG << 8:
602 			switch (hcd->speed) {
603 			case HCD_USB31:
604 			case HCD_USB3:
605 				bufp = ss_rh_config_descriptor;
606 				len = sizeof ss_rh_config_descriptor;
607 				break;
608 			case HCD_USB25:
609 			case HCD_USB2:
610 				bufp = hs_rh_config_descriptor;
611 				len = sizeof hs_rh_config_descriptor;
612 				break;
613 			case HCD_USB11:
614 				bufp = fs_rh_config_descriptor;
615 				len = sizeof fs_rh_config_descriptor;
616 				break;
617 			default:
618 				goto error;
619 			}
620 			if (device_can_wakeup(&hcd->self.root_hub->dev))
621 				patch_wakeup = 1;
622 			break;
623 		case USB_DT_STRING << 8:
624 			if ((wValue & 0xff) < 4)
625 				urb->actual_length = rh_string(wValue & 0xff,
626 						hcd, ubuf, wLength);
627 			else /* unsupported IDs --> "protocol stall" */
628 				goto error;
629 			break;
630 		case USB_DT_BOS << 8:
631 			goto nongeneric;
632 		default:
633 			goto error;
634 		}
635 		break;
636 	case DeviceRequest | USB_REQ_GET_INTERFACE:
637 		tbuf[0] = 0;
638 		len = 1;
639 			/* FALLTHROUGH */
640 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
641 		break;
642 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
643 		/* wValue == urb->dev->devaddr */
644 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
645 			wValue);
646 		break;
647 
648 	/* INTERFACE REQUESTS (no defined feature/status flags) */
649 
650 	/* ENDPOINT REQUESTS */
651 
652 	case EndpointRequest | USB_REQ_GET_STATUS:
653 		/* ENDPOINT_HALT flag */
654 		tbuf[0] = 0;
655 		tbuf[1] = 0;
656 		len = 2;
657 			/* FALLTHROUGH */
658 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
659 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
660 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
661 		break;
662 
663 	/* CLASS REQUESTS (and errors) */
664 
665 	default:
666 nongeneric:
667 		/* non-generic request */
668 		switch (typeReq) {
669 		case GetHubStatus:
670 			len = 4;
671 			break;
672 		case GetPortStatus:
673 			if (wValue == HUB_PORT_STATUS)
674 				len = 4;
675 			else
676 				/* other port status types return 8 bytes */
677 				len = 8;
678 			break;
679 		case GetHubDescriptor:
680 			len = sizeof (struct usb_hub_descriptor);
681 			break;
682 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
683 			/* len is returned by hub_control */
684 			break;
685 		}
686 		status = hcd->driver->hub_control (hcd,
687 			typeReq, wValue, wIndex,
688 			tbuf, wLength);
689 
690 		if (typeReq == GetHubDescriptor)
691 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
692 				(struct usb_hub_descriptor *)tbuf);
693 		break;
694 error:
695 		/* "protocol stall" on error */
696 		status = -EPIPE;
697 	}
698 
699 	if (status < 0) {
700 		len = 0;
701 		if (status != -EPIPE) {
702 			dev_dbg (hcd->self.controller,
703 				"CTRL: TypeReq=0x%x val=0x%x "
704 				"idx=0x%x len=%d ==> %d\n",
705 				typeReq, wValue, wIndex,
706 				wLength, status);
707 		}
708 	} else if (status > 0) {
709 		/* hub_control may return the length of data copied. */
710 		len = status;
711 		status = 0;
712 	}
713 	if (len) {
714 		if (urb->transfer_buffer_length < len)
715 			len = urb->transfer_buffer_length;
716 		urb->actual_length = len;
717 		/* always USB_DIR_IN, toward host */
718 		memcpy (ubuf, bufp, len);
719 
720 		/* report whether RH hardware supports remote wakeup */
721 		if (patch_wakeup &&
722 				len > offsetof (struct usb_config_descriptor,
723 						bmAttributes))
724 			((struct usb_config_descriptor *)ubuf)->bmAttributes
725 				|= USB_CONFIG_ATT_WAKEUP;
726 
727 		/* report whether RH hardware has an integrated TT */
728 		if (patch_protocol &&
729 				len > offsetof(struct usb_device_descriptor,
730 						bDeviceProtocol))
731 			((struct usb_device_descriptor *) ubuf)->
732 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
733 	}
734 
735 	kfree(tbuf);
736 
737 	/* any errors get returned through the urb completion */
738 	spin_lock_irq(&hcd_root_hub_lock);
739 	usb_hcd_unlink_urb_from_ep(hcd, urb);
740 	usb_hcd_giveback_urb(hcd, urb, status);
741 	spin_unlock_irq(&hcd_root_hub_lock);
742 	return 0;
743 }
744 
745 /*-------------------------------------------------------------------------*/
746 
747 /*
748  * Root Hub interrupt transfers are polled using a timer if the
749  * driver requests it; otherwise the driver is responsible for
750  * calling usb_hcd_poll_rh_status() when an event occurs.
751  *
752  * Completions are called in_interrupt(), but they may or may not
753  * be in_irq().
754  */
755 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
756 {
757 	struct urb	*urb;
758 	int		length;
759 	unsigned long	flags;
760 	char		buffer[6];	/* Any root hubs with > 31 ports? */
761 
762 	if (unlikely(!hcd->rh_pollable))
763 		return;
764 	if (!hcd->uses_new_polling && !hcd->status_urb)
765 		return;
766 
767 	length = hcd->driver->hub_status_data(hcd, buffer);
768 	if (length > 0) {
769 
770 		/* try to complete the status urb */
771 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
772 		urb = hcd->status_urb;
773 		if (urb) {
774 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
775 			hcd->status_urb = NULL;
776 			urb->actual_length = length;
777 			memcpy(urb->transfer_buffer, buffer, length);
778 
779 			usb_hcd_unlink_urb_from_ep(hcd, urb);
780 			usb_hcd_giveback_urb(hcd, urb, 0);
781 		} else {
782 			length = 0;
783 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
784 		}
785 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
786 	}
787 
788 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
789 	 * exceed that limit if HZ is 100. The math is more clunky than
790 	 * maybe expected, this is to make sure that all timers for USB devices
791 	 * fire at the same time to give the CPU a break in between */
792 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
793 			(length == 0 && hcd->status_urb != NULL))
794 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
795 }
796 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
797 
798 /* timer callback */
799 static void rh_timer_func (unsigned long _hcd)
800 {
801 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
802 }
803 
804 /*-------------------------------------------------------------------------*/
805 
806 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
807 {
808 	int		retval;
809 	unsigned long	flags;
810 	unsigned	len = 1 + (urb->dev->maxchild / 8);
811 
812 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
813 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
814 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
815 		retval = -EINVAL;
816 		goto done;
817 	}
818 
819 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
820 	if (retval)
821 		goto done;
822 
823 	hcd->status_urb = urb;
824 	urb->hcpriv = hcd;	/* indicate it's queued */
825 	if (!hcd->uses_new_polling)
826 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
827 
828 	/* If a status change has already occurred, report it ASAP */
829 	else if (HCD_POLL_PENDING(hcd))
830 		mod_timer(&hcd->rh_timer, jiffies);
831 	retval = 0;
832  done:
833 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
834 	return retval;
835 }
836 
837 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
838 {
839 	if (usb_endpoint_xfer_int(&urb->ep->desc))
840 		return rh_queue_status (hcd, urb);
841 	if (usb_endpoint_xfer_control(&urb->ep->desc))
842 		return rh_call_control (hcd, urb);
843 	return -EINVAL;
844 }
845 
846 /*-------------------------------------------------------------------------*/
847 
848 /* Unlinks of root-hub control URBs are legal, but they don't do anything
849  * since these URBs always execute synchronously.
850  */
851 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
852 {
853 	unsigned long	flags;
854 	int		rc;
855 
856 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
857 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
858 	if (rc)
859 		goto done;
860 
861 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
862 		;	/* Do nothing */
863 
864 	} else {				/* Status URB */
865 		if (!hcd->uses_new_polling)
866 			del_timer (&hcd->rh_timer);
867 		if (urb == hcd->status_urb) {
868 			hcd->status_urb = NULL;
869 			usb_hcd_unlink_urb_from_ep(hcd, urb);
870 			usb_hcd_giveback_urb(hcd, urb, status);
871 		}
872 	}
873  done:
874 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
875 	return rc;
876 }
877 
878 
879 
880 /*
881  * Show & store the current value of authorized_default
882  */
883 static ssize_t authorized_default_show(struct device *dev,
884 				       struct device_attribute *attr, char *buf)
885 {
886 	struct usb_device *rh_usb_dev = to_usb_device(dev);
887 	struct usb_bus *usb_bus = rh_usb_dev->bus;
888 	struct usb_hcd *hcd;
889 
890 	hcd = bus_to_hcd(usb_bus);
891 	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
892 }
893 
894 static ssize_t authorized_default_store(struct device *dev,
895 					struct device_attribute *attr,
896 					const char *buf, size_t size)
897 {
898 	ssize_t result;
899 	unsigned val;
900 	struct usb_device *rh_usb_dev = to_usb_device(dev);
901 	struct usb_bus *usb_bus = rh_usb_dev->bus;
902 	struct usb_hcd *hcd;
903 
904 	hcd = bus_to_hcd(usb_bus);
905 	result = sscanf(buf, "%u\n", &val);
906 	if (result == 1) {
907 		if (val)
908 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
909 		else
910 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
911 
912 		result = size;
913 	} else {
914 		result = -EINVAL;
915 	}
916 	return result;
917 }
918 static DEVICE_ATTR_RW(authorized_default);
919 
920 /*
921  * interface_authorized_default_show - show default authorization status
922  * for USB interfaces
923  *
924  * note: interface_authorized_default is the default value
925  *       for initializing the authorized attribute of interfaces
926  */
927 static ssize_t interface_authorized_default_show(struct device *dev,
928 		struct device_attribute *attr, char *buf)
929 {
930 	struct usb_device *usb_dev = to_usb_device(dev);
931 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
932 
933 	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
934 }
935 
936 /*
937  * interface_authorized_default_store - store default authorization status
938  * for USB interfaces
939  *
940  * note: interface_authorized_default is the default value
941  *       for initializing the authorized attribute of interfaces
942  */
943 static ssize_t interface_authorized_default_store(struct device *dev,
944 		struct device_attribute *attr, const char *buf, size_t count)
945 {
946 	struct usb_device *usb_dev = to_usb_device(dev);
947 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
948 	int rc = count;
949 	bool val;
950 
951 	if (strtobool(buf, &val) != 0)
952 		return -EINVAL;
953 
954 	if (val)
955 		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
956 	else
957 		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
958 
959 	return rc;
960 }
961 static DEVICE_ATTR_RW(interface_authorized_default);
962 
963 /* Group all the USB bus attributes */
964 static struct attribute *usb_bus_attrs[] = {
965 		&dev_attr_authorized_default.attr,
966 		&dev_attr_interface_authorized_default.attr,
967 		NULL,
968 };
969 
970 static struct attribute_group usb_bus_attr_group = {
971 	.name = NULL,	/* we want them in the same directory */
972 	.attrs = usb_bus_attrs,
973 };
974 
975 
976 
977 /*-------------------------------------------------------------------------*/
978 
979 /**
980  * usb_bus_init - shared initialization code
981  * @bus: the bus structure being initialized
982  *
983  * This code is used to initialize a usb_bus structure, memory for which is
984  * separately managed.
985  */
986 static void usb_bus_init (struct usb_bus *bus)
987 {
988 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
989 
990 	bus->devnum_next = 1;
991 
992 	bus->root_hub = NULL;
993 	bus->busnum = -1;
994 	bus->bandwidth_allocated = 0;
995 	bus->bandwidth_int_reqs  = 0;
996 	bus->bandwidth_isoc_reqs = 0;
997 	mutex_init(&bus->devnum_next_mutex);
998 }
999 
1000 /*-------------------------------------------------------------------------*/
1001 
1002 /**
1003  * usb_register_bus - registers the USB host controller with the usb core
1004  * @bus: pointer to the bus to register
1005  * Context: !in_interrupt()
1006  *
1007  * Assigns a bus number, and links the controller into usbcore data
1008  * structures so that it can be seen by scanning the bus list.
1009  *
1010  * Return: 0 if successful. A negative error code otherwise.
1011  */
1012 static int usb_register_bus(struct usb_bus *bus)
1013 {
1014 	int result = -E2BIG;
1015 	int busnum;
1016 
1017 	mutex_lock(&usb_bus_idr_lock);
1018 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1019 	if (busnum < 0) {
1020 		pr_err("%s: failed to get bus number\n", usbcore_name);
1021 		goto error_find_busnum;
1022 	}
1023 	bus->busnum = busnum;
1024 	mutex_unlock(&usb_bus_idr_lock);
1025 
1026 	usb_notify_add_bus(bus);
1027 
1028 	dev_info (bus->controller, "new USB bus registered, assigned bus "
1029 		  "number %d\n", bus->busnum);
1030 	return 0;
1031 
1032 error_find_busnum:
1033 	mutex_unlock(&usb_bus_idr_lock);
1034 	return result;
1035 }
1036 
1037 /**
1038  * usb_deregister_bus - deregisters the USB host controller
1039  * @bus: pointer to the bus to deregister
1040  * Context: !in_interrupt()
1041  *
1042  * Recycles the bus number, and unlinks the controller from usbcore data
1043  * structures so that it won't be seen by scanning the bus list.
1044  */
1045 static void usb_deregister_bus (struct usb_bus *bus)
1046 {
1047 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1048 
1049 	/*
1050 	 * NOTE: make sure that all the devices are removed by the
1051 	 * controller code, as well as having it call this when cleaning
1052 	 * itself up
1053 	 */
1054 	mutex_lock(&usb_bus_idr_lock);
1055 	idr_remove(&usb_bus_idr, bus->busnum);
1056 	mutex_unlock(&usb_bus_idr_lock);
1057 
1058 	usb_notify_remove_bus(bus);
1059 }
1060 
1061 /**
1062  * register_root_hub - called by usb_add_hcd() to register a root hub
1063  * @hcd: host controller for this root hub
1064  *
1065  * This function registers the root hub with the USB subsystem.  It sets up
1066  * the device properly in the device tree and then calls usb_new_device()
1067  * to register the usb device.  It also assigns the root hub's USB address
1068  * (always 1).
1069  *
1070  * Return: 0 if successful. A negative error code otherwise.
1071  */
1072 static int register_root_hub(struct usb_hcd *hcd)
1073 {
1074 	struct device *parent_dev = hcd->self.controller;
1075 	struct usb_device *usb_dev = hcd->self.root_hub;
1076 	const int devnum = 1;
1077 	int retval;
1078 
1079 	usb_dev->devnum = devnum;
1080 	usb_dev->bus->devnum_next = devnum + 1;
1081 	memset (&usb_dev->bus->devmap.devicemap, 0,
1082 			sizeof usb_dev->bus->devmap.devicemap);
1083 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1084 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1085 
1086 	mutex_lock(&usb_bus_idr_lock);
1087 
1088 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1089 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1090 	if (retval != sizeof usb_dev->descriptor) {
1091 		mutex_unlock(&usb_bus_idr_lock);
1092 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1093 				dev_name(&usb_dev->dev), retval);
1094 		return (retval < 0) ? retval : -EMSGSIZE;
1095 	}
1096 
1097 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1098 		retval = usb_get_bos_descriptor(usb_dev);
1099 		if (!retval) {
1100 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1101 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1102 			mutex_unlock(&usb_bus_idr_lock);
1103 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1104 					dev_name(&usb_dev->dev), retval);
1105 			return retval;
1106 		}
1107 	}
1108 
1109 	retval = usb_new_device (usb_dev);
1110 	if (retval) {
1111 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1112 				dev_name(&usb_dev->dev), retval);
1113 	} else {
1114 		spin_lock_irq (&hcd_root_hub_lock);
1115 		hcd->rh_registered = 1;
1116 		spin_unlock_irq (&hcd_root_hub_lock);
1117 
1118 		/* Did the HC die before the root hub was registered? */
1119 		if (HCD_DEAD(hcd))
1120 			usb_hc_died (hcd);	/* This time clean up */
1121 		usb_dev->dev.of_node = parent_dev->of_node;
1122 	}
1123 	mutex_unlock(&usb_bus_idr_lock);
1124 
1125 	return retval;
1126 }
1127 
1128 /*
1129  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1130  * @bus: the bus which the root hub belongs to
1131  * @portnum: the port which is being resumed
1132  *
1133  * HCDs should call this function when they know that a resume signal is
1134  * being sent to a root-hub port.  The root hub will be prevented from
1135  * going into autosuspend until usb_hcd_end_port_resume() is called.
1136  *
1137  * The bus's private lock must be held by the caller.
1138  */
1139 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1140 {
1141 	unsigned bit = 1 << portnum;
1142 
1143 	if (!(bus->resuming_ports & bit)) {
1144 		bus->resuming_ports |= bit;
1145 		pm_runtime_get_noresume(&bus->root_hub->dev);
1146 	}
1147 }
1148 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1149 
1150 /*
1151  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1152  * @bus: the bus which the root hub belongs to
1153  * @portnum: the port which is being resumed
1154  *
1155  * HCDs should call this function when they know that a resume signal has
1156  * stopped being sent to a root-hub port.  The root hub will be allowed to
1157  * autosuspend again.
1158  *
1159  * The bus's private lock must be held by the caller.
1160  */
1161 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1162 {
1163 	unsigned bit = 1 << portnum;
1164 
1165 	if (bus->resuming_ports & bit) {
1166 		bus->resuming_ports &= ~bit;
1167 		pm_runtime_put_noidle(&bus->root_hub->dev);
1168 	}
1169 }
1170 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1171 
1172 /*-------------------------------------------------------------------------*/
1173 
1174 /**
1175  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1176  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1177  * @is_input: true iff the transaction sends data to the host
1178  * @isoc: true for isochronous transactions, false for interrupt ones
1179  * @bytecount: how many bytes in the transaction.
1180  *
1181  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1182  *
1183  * Note:
1184  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1185  * scheduled in software, this function is only used for such scheduling.
1186  */
1187 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1188 {
1189 	unsigned long	tmp;
1190 
1191 	switch (speed) {
1192 	case USB_SPEED_LOW: 	/* INTR only */
1193 		if (is_input) {
1194 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1195 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1196 		} else {
1197 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1198 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1199 		}
1200 	case USB_SPEED_FULL:	/* ISOC or INTR */
1201 		if (isoc) {
1202 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1203 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1204 		} else {
1205 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1206 			return 9107L + BW_HOST_DELAY + tmp;
1207 		}
1208 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1209 		/* FIXME adjust for input vs output */
1210 		if (isoc)
1211 			tmp = HS_NSECS_ISO (bytecount);
1212 		else
1213 			tmp = HS_NSECS (bytecount);
1214 		return tmp;
1215 	default:
1216 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1217 		return -1;
1218 	}
1219 }
1220 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1221 
1222 
1223 /*-------------------------------------------------------------------------*/
1224 
1225 /*
1226  * Generic HC operations.
1227  */
1228 
1229 /*-------------------------------------------------------------------------*/
1230 
1231 /**
1232  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1233  * @hcd: host controller to which @urb was submitted
1234  * @urb: URB being submitted
1235  *
1236  * Host controller drivers should call this routine in their enqueue()
1237  * method.  The HCD's private spinlock must be held and interrupts must
1238  * be disabled.  The actions carried out here are required for URB
1239  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1240  *
1241  * Return: 0 for no error, otherwise a negative error code (in which case
1242  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1243  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1244  * the private spinlock and returning.
1245  */
1246 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1247 {
1248 	int		rc = 0;
1249 
1250 	spin_lock(&hcd_urb_list_lock);
1251 
1252 	/* Check that the URB isn't being killed */
1253 	if (unlikely(atomic_read(&urb->reject))) {
1254 		rc = -EPERM;
1255 		goto done;
1256 	}
1257 
1258 	if (unlikely(!urb->ep->enabled)) {
1259 		rc = -ENOENT;
1260 		goto done;
1261 	}
1262 
1263 	if (unlikely(!urb->dev->can_submit)) {
1264 		rc = -EHOSTUNREACH;
1265 		goto done;
1266 	}
1267 
1268 	/*
1269 	 * Check the host controller's state and add the URB to the
1270 	 * endpoint's queue.
1271 	 */
1272 	if (HCD_RH_RUNNING(hcd)) {
1273 		urb->unlinked = 0;
1274 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1275 	} else {
1276 		rc = -ESHUTDOWN;
1277 		goto done;
1278 	}
1279  done:
1280 	spin_unlock(&hcd_urb_list_lock);
1281 	return rc;
1282 }
1283 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1284 
1285 /**
1286  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1287  * @hcd: host controller to which @urb was submitted
1288  * @urb: URB being checked for unlinkability
1289  * @status: error code to store in @urb if the unlink succeeds
1290  *
1291  * Host controller drivers should call this routine in their dequeue()
1292  * method.  The HCD's private spinlock must be held and interrupts must
1293  * be disabled.  The actions carried out here are required for making
1294  * sure than an unlink is valid.
1295  *
1296  * Return: 0 for no error, otherwise a negative error code (in which case
1297  * the dequeue() method must fail).  The possible error codes are:
1298  *
1299  *	-EIDRM: @urb was not submitted or has already completed.
1300  *		The completion function may not have been called yet.
1301  *
1302  *	-EBUSY: @urb has already been unlinked.
1303  */
1304 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1305 		int status)
1306 {
1307 	struct list_head	*tmp;
1308 
1309 	/* insist the urb is still queued */
1310 	list_for_each(tmp, &urb->ep->urb_list) {
1311 		if (tmp == &urb->urb_list)
1312 			break;
1313 	}
1314 	if (tmp != &urb->urb_list)
1315 		return -EIDRM;
1316 
1317 	/* Any status except -EINPROGRESS means something already started to
1318 	 * unlink this URB from the hardware.  So there's no more work to do.
1319 	 */
1320 	if (urb->unlinked)
1321 		return -EBUSY;
1322 	urb->unlinked = status;
1323 	return 0;
1324 }
1325 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1326 
1327 /**
1328  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1329  * @hcd: host controller to which @urb was submitted
1330  * @urb: URB being unlinked
1331  *
1332  * Host controller drivers should call this routine before calling
1333  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1334  * interrupts must be disabled.  The actions carried out here are required
1335  * for URB completion.
1336  */
1337 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1338 {
1339 	/* clear all state linking urb to this dev (and hcd) */
1340 	spin_lock(&hcd_urb_list_lock);
1341 	list_del_init(&urb->urb_list);
1342 	spin_unlock(&hcd_urb_list_lock);
1343 }
1344 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1345 
1346 /*
1347  * Some usb host controllers can only perform dma using a small SRAM area.
1348  * The usb core itself is however optimized for host controllers that can dma
1349  * using regular system memory - like pci devices doing bus mastering.
1350  *
1351  * To support host controllers with limited dma capabilities we provide dma
1352  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1353  * For this to work properly the host controller code must first use the
1354  * function dma_declare_coherent_memory() to point out which memory area
1355  * that should be used for dma allocations.
1356  *
1357  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1358  * dma using dma_alloc_coherent() which in turn allocates from the memory
1359  * area pointed out with dma_declare_coherent_memory().
1360  *
1361  * So, to summarize...
1362  *
1363  * - We need "local" memory, canonical example being
1364  *   a small SRAM on a discrete controller being the
1365  *   only memory that the controller can read ...
1366  *   (a) "normal" kernel memory is no good, and
1367  *   (b) there's not enough to share
1368  *
1369  * - The only *portable* hook for such stuff in the
1370  *   DMA framework is dma_declare_coherent_memory()
1371  *
1372  * - So we use that, even though the primary requirement
1373  *   is that the memory be "local" (hence addressable
1374  *   by that device), not "coherent".
1375  *
1376  */
1377 
1378 static int hcd_alloc_coherent(struct usb_bus *bus,
1379 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1380 			      void **vaddr_handle, size_t size,
1381 			      enum dma_data_direction dir)
1382 {
1383 	unsigned char *vaddr;
1384 
1385 	if (*vaddr_handle == NULL) {
1386 		WARN_ON_ONCE(1);
1387 		return -EFAULT;
1388 	}
1389 
1390 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1391 				 mem_flags, dma_handle);
1392 	if (!vaddr)
1393 		return -ENOMEM;
1394 
1395 	/*
1396 	 * Store the virtual address of the buffer at the end
1397 	 * of the allocated dma buffer. The size of the buffer
1398 	 * may be uneven so use unaligned functions instead
1399 	 * of just rounding up. It makes sense to optimize for
1400 	 * memory footprint over access speed since the amount
1401 	 * of memory available for dma may be limited.
1402 	 */
1403 	put_unaligned((unsigned long)*vaddr_handle,
1404 		      (unsigned long *)(vaddr + size));
1405 
1406 	if (dir == DMA_TO_DEVICE)
1407 		memcpy(vaddr, *vaddr_handle, size);
1408 
1409 	*vaddr_handle = vaddr;
1410 	return 0;
1411 }
1412 
1413 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1414 			      void **vaddr_handle, size_t size,
1415 			      enum dma_data_direction dir)
1416 {
1417 	unsigned char *vaddr = *vaddr_handle;
1418 
1419 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1420 
1421 	if (dir == DMA_FROM_DEVICE)
1422 		memcpy(vaddr, *vaddr_handle, size);
1423 
1424 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1425 
1426 	*vaddr_handle = vaddr;
1427 	*dma_handle = 0;
1428 }
1429 
1430 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1431 {
1432 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1433 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1434 		dma_unmap_single(hcd->self.controller,
1435 				urb->setup_dma,
1436 				sizeof(struct usb_ctrlrequest),
1437 				DMA_TO_DEVICE);
1438 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1439 		hcd_free_coherent(urb->dev->bus,
1440 				&urb->setup_dma,
1441 				(void **) &urb->setup_packet,
1442 				sizeof(struct usb_ctrlrequest),
1443 				DMA_TO_DEVICE);
1444 
1445 	/* Make it safe to call this routine more than once */
1446 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1447 }
1448 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1449 
1450 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1451 {
1452 	if (hcd->driver->unmap_urb_for_dma)
1453 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1454 	else
1455 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1456 }
1457 
1458 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1459 {
1460 	enum dma_data_direction dir;
1461 
1462 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1463 
1464 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1465 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1467 		dma_unmap_sg(hcd->self.controller,
1468 				urb->sg,
1469 				urb->num_sgs,
1470 				dir);
1471 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1473 		dma_unmap_page(hcd->self.controller,
1474 				urb->transfer_dma,
1475 				urb->transfer_buffer_length,
1476 				dir);
1477 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1478 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1479 		dma_unmap_single(hcd->self.controller,
1480 				urb->transfer_dma,
1481 				urb->transfer_buffer_length,
1482 				dir);
1483 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1484 		hcd_free_coherent(urb->dev->bus,
1485 				&urb->transfer_dma,
1486 				&urb->transfer_buffer,
1487 				urb->transfer_buffer_length,
1488 				dir);
1489 
1490 	/* Make it safe to call this routine more than once */
1491 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1492 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1493 }
1494 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1495 
1496 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1497 			   gfp_t mem_flags)
1498 {
1499 	if (hcd->driver->map_urb_for_dma)
1500 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1501 	else
1502 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1503 }
1504 
1505 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1506 			    gfp_t mem_flags)
1507 {
1508 	enum dma_data_direction dir;
1509 	int ret = 0;
1510 
1511 	/* Map the URB's buffers for DMA access.
1512 	 * Lower level HCD code should use *_dma exclusively,
1513 	 * unless it uses pio or talks to another transport,
1514 	 * or uses the provided scatter gather list for bulk.
1515 	 */
1516 
1517 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1518 		if (hcd->self.uses_pio_for_control)
1519 			return ret;
1520 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1521 			urb->setup_dma = dma_map_single(
1522 					hcd->self.controller,
1523 					urb->setup_packet,
1524 					sizeof(struct usb_ctrlrequest),
1525 					DMA_TO_DEVICE);
1526 			if (dma_mapping_error(hcd->self.controller,
1527 						urb->setup_dma))
1528 				return -EAGAIN;
1529 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1530 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1531 			ret = hcd_alloc_coherent(
1532 					urb->dev->bus, mem_flags,
1533 					&urb->setup_dma,
1534 					(void **)&urb->setup_packet,
1535 					sizeof(struct usb_ctrlrequest),
1536 					DMA_TO_DEVICE);
1537 			if (ret)
1538 				return ret;
1539 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1540 		}
1541 	}
1542 
1543 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1544 	if (urb->transfer_buffer_length != 0
1545 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1546 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1547 			if (urb->num_sgs) {
1548 				int n;
1549 
1550 				/* We don't support sg for isoc transfers ! */
1551 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1552 					WARN_ON(1);
1553 					return -EINVAL;
1554 				}
1555 
1556 				n = dma_map_sg(
1557 						hcd->self.controller,
1558 						urb->sg,
1559 						urb->num_sgs,
1560 						dir);
1561 				if (n <= 0)
1562 					ret = -EAGAIN;
1563 				else
1564 					urb->transfer_flags |= URB_DMA_MAP_SG;
1565 				urb->num_mapped_sgs = n;
1566 				if (n != urb->num_sgs)
1567 					urb->transfer_flags |=
1568 							URB_DMA_SG_COMBINED;
1569 			} else if (urb->sg) {
1570 				struct scatterlist *sg = urb->sg;
1571 				urb->transfer_dma = dma_map_page(
1572 						hcd->self.controller,
1573 						sg_page(sg),
1574 						sg->offset,
1575 						urb->transfer_buffer_length,
1576 						dir);
1577 				if (dma_mapping_error(hcd->self.controller,
1578 						urb->transfer_dma))
1579 					ret = -EAGAIN;
1580 				else
1581 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1582 			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1583 				WARN_ONCE(1, "transfer buffer not dma capable\n");
1584 				ret = -EAGAIN;
1585 			} else {
1586 				urb->transfer_dma = dma_map_single(
1587 						hcd->self.controller,
1588 						urb->transfer_buffer,
1589 						urb->transfer_buffer_length,
1590 						dir);
1591 				if (dma_mapping_error(hcd->self.controller,
1592 						urb->transfer_dma))
1593 					ret = -EAGAIN;
1594 				else
1595 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1596 			}
1597 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1598 			ret = hcd_alloc_coherent(
1599 					urb->dev->bus, mem_flags,
1600 					&urb->transfer_dma,
1601 					&urb->transfer_buffer,
1602 					urb->transfer_buffer_length,
1603 					dir);
1604 			if (ret == 0)
1605 				urb->transfer_flags |= URB_MAP_LOCAL;
1606 		}
1607 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1608 				URB_SETUP_MAP_LOCAL)))
1609 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1610 	}
1611 	return ret;
1612 }
1613 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1614 
1615 /*-------------------------------------------------------------------------*/
1616 
1617 /* may be called in any context with a valid urb->dev usecount
1618  * caller surrenders "ownership" of urb
1619  * expects usb_submit_urb() to have sanity checked and conditioned all
1620  * inputs in the urb
1621  */
1622 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1623 {
1624 	int			status;
1625 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1626 
1627 	/* increment urb's reference count as part of giving it to the HCD
1628 	 * (which will control it).  HCD guarantees that it either returns
1629 	 * an error or calls giveback(), but not both.
1630 	 */
1631 	usb_get_urb(urb);
1632 	atomic_inc(&urb->use_count);
1633 	atomic_inc(&urb->dev->urbnum);
1634 	usbmon_urb_submit(&hcd->self, urb);
1635 
1636 	/* NOTE requirements on root-hub callers (usbfs and the hub
1637 	 * driver, for now):  URBs' urb->transfer_buffer must be
1638 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1639 	 * they could clobber root hub response data.  Also, control
1640 	 * URBs must be submitted in process context with interrupts
1641 	 * enabled.
1642 	 */
1643 
1644 	if (is_root_hub(urb->dev)) {
1645 		status = rh_urb_enqueue(hcd, urb);
1646 	} else {
1647 		status = map_urb_for_dma(hcd, urb, mem_flags);
1648 		if (likely(status == 0)) {
1649 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1650 			if (unlikely(status))
1651 				unmap_urb_for_dma(hcd, urb);
1652 		}
1653 	}
1654 
1655 	if (unlikely(status)) {
1656 		usbmon_urb_submit_error(&hcd->self, urb, status);
1657 		urb->hcpriv = NULL;
1658 		INIT_LIST_HEAD(&urb->urb_list);
1659 		atomic_dec(&urb->use_count);
1660 		atomic_dec(&urb->dev->urbnum);
1661 		if (atomic_read(&urb->reject))
1662 			wake_up(&usb_kill_urb_queue);
1663 		usb_put_urb(urb);
1664 	}
1665 	return status;
1666 }
1667 
1668 /*-------------------------------------------------------------------------*/
1669 
1670 /* this makes the hcd giveback() the urb more quickly, by kicking it
1671  * off hardware queues (which may take a while) and returning it as
1672  * soon as practical.  we've already set up the urb's return status,
1673  * but we can't know if the callback completed already.
1674  */
1675 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1676 {
1677 	int		value;
1678 
1679 	if (is_root_hub(urb->dev))
1680 		value = usb_rh_urb_dequeue(hcd, urb, status);
1681 	else {
1682 
1683 		/* The only reason an HCD might fail this call is if
1684 		 * it has not yet fully queued the urb to begin with.
1685 		 * Such failures should be harmless. */
1686 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1687 	}
1688 	return value;
1689 }
1690 
1691 /*
1692  * called in any context
1693  *
1694  * caller guarantees urb won't be recycled till both unlink()
1695  * and the urb's completion function return
1696  */
1697 int usb_hcd_unlink_urb (struct urb *urb, int status)
1698 {
1699 	struct usb_hcd		*hcd;
1700 	struct usb_device	*udev = urb->dev;
1701 	int			retval = -EIDRM;
1702 	unsigned long		flags;
1703 
1704 	/* Prevent the device and bus from going away while
1705 	 * the unlink is carried out.  If they are already gone
1706 	 * then urb->use_count must be 0, since disconnected
1707 	 * devices can't have any active URBs.
1708 	 */
1709 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1710 	if (atomic_read(&urb->use_count) > 0) {
1711 		retval = 0;
1712 		usb_get_dev(udev);
1713 	}
1714 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1715 	if (retval == 0) {
1716 		hcd = bus_to_hcd(urb->dev->bus);
1717 		retval = unlink1(hcd, urb, status);
1718 		if (retval == 0)
1719 			retval = -EINPROGRESS;
1720 		else if (retval != -EIDRM && retval != -EBUSY)
1721 			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1722 					urb, retval);
1723 		usb_put_dev(udev);
1724 	}
1725 	return retval;
1726 }
1727 
1728 /*-------------------------------------------------------------------------*/
1729 
1730 static void __usb_hcd_giveback_urb(struct urb *urb)
1731 {
1732 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1733 	struct usb_anchor *anchor = urb->anchor;
1734 	int status = urb->unlinked;
1735 	unsigned long flags;
1736 
1737 	urb->hcpriv = NULL;
1738 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1739 	    urb->actual_length < urb->transfer_buffer_length &&
1740 	    !status))
1741 		status = -EREMOTEIO;
1742 
1743 	unmap_urb_for_dma(hcd, urb);
1744 	usbmon_urb_complete(&hcd->self, urb, status);
1745 	usb_anchor_suspend_wakeups(anchor);
1746 	usb_unanchor_urb(urb);
1747 	if (likely(status == 0))
1748 		usb_led_activity(USB_LED_EVENT_HOST);
1749 
1750 	/* pass ownership to the completion handler */
1751 	urb->status = status;
1752 
1753 	/*
1754 	 * We disable local IRQs here avoid possible deadlock because
1755 	 * drivers may call spin_lock() to hold lock which might be
1756 	 * acquired in one hard interrupt handler.
1757 	 *
1758 	 * The local_irq_save()/local_irq_restore() around complete()
1759 	 * will be removed if current USB drivers have been cleaned up
1760 	 * and no one may trigger the above deadlock situation when
1761 	 * running complete() in tasklet.
1762 	 */
1763 	local_irq_save(flags);
1764 	urb->complete(urb);
1765 	local_irq_restore(flags);
1766 
1767 	usb_anchor_resume_wakeups(anchor);
1768 	atomic_dec(&urb->use_count);
1769 	if (unlikely(atomic_read(&urb->reject)))
1770 		wake_up(&usb_kill_urb_queue);
1771 	usb_put_urb(urb);
1772 }
1773 
1774 static void usb_giveback_urb_bh(unsigned long param)
1775 {
1776 	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1777 	struct list_head local_list;
1778 
1779 	spin_lock_irq(&bh->lock);
1780 	bh->running = true;
1781  restart:
1782 	list_replace_init(&bh->head, &local_list);
1783 	spin_unlock_irq(&bh->lock);
1784 
1785 	while (!list_empty(&local_list)) {
1786 		struct urb *urb;
1787 
1788 		urb = list_entry(local_list.next, struct urb, urb_list);
1789 		list_del_init(&urb->urb_list);
1790 		bh->completing_ep = urb->ep;
1791 		__usb_hcd_giveback_urb(urb);
1792 		bh->completing_ep = NULL;
1793 	}
1794 
1795 	/* check if there are new URBs to giveback */
1796 	spin_lock_irq(&bh->lock);
1797 	if (!list_empty(&bh->head))
1798 		goto restart;
1799 	bh->running = false;
1800 	spin_unlock_irq(&bh->lock);
1801 }
1802 
1803 /**
1804  * usb_hcd_giveback_urb - return URB from HCD to device driver
1805  * @hcd: host controller returning the URB
1806  * @urb: urb being returned to the USB device driver.
1807  * @status: completion status code for the URB.
1808  * Context: in_interrupt()
1809  *
1810  * This hands the URB from HCD to its USB device driver, using its
1811  * completion function.  The HCD has freed all per-urb resources
1812  * (and is done using urb->hcpriv).  It also released all HCD locks;
1813  * the device driver won't cause problems if it frees, modifies,
1814  * or resubmits this URB.
1815  *
1816  * If @urb was unlinked, the value of @status will be overridden by
1817  * @urb->unlinked.  Erroneous short transfers are detected in case
1818  * the HCD hasn't checked for them.
1819  */
1820 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1821 {
1822 	struct giveback_urb_bh *bh;
1823 	bool running, high_prio_bh;
1824 
1825 	/* pass status to tasklet via unlinked */
1826 	if (likely(!urb->unlinked))
1827 		urb->unlinked = status;
1828 
1829 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1830 		__usb_hcd_giveback_urb(urb);
1831 		return;
1832 	}
1833 
1834 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1835 		bh = &hcd->high_prio_bh;
1836 		high_prio_bh = true;
1837 	} else {
1838 		bh = &hcd->low_prio_bh;
1839 		high_prio_bh = false;
1840 	}
1841 
1842 	spin_lock(&bh->lock);
1843 	list_add_tail(&urb->urb_list, &bh->head);
1844 	running = bh->running;
1845 	spin_unlock(&bh->lock);
1846 
1847 	if (running)
1848 		;
1849 	else if (high_prio_bh)
1850 		tasklet_hi_schedule(&bh->bh);
1851 	else
1852 		tasklet_schedule(&bh->bh);
1853 }
1854 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1855 
1856 /*-------------------------------------------------------------------------*/
1857 
1858 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1859  * queue to drain completely.  The caller must first insure that no more
1860  * URBs can be submitted for this endpoint.
1861  */
1862 void usb_hcd_flush_endpoint(struct usb_device *udev,
1863 		struct usb_host_endpoint *ep)
1864 {
1865 	struct usb_hcd		*hcd;
1866 	struct urb		*urb;
1867 
1868 	if (!ep)
1869 		return;
1870 	might_sleep();
1871 	hcd = bus_to_hcd(udev->bus);
1872 
1873 	/* No more submits can occur */
1874 	spin_lock_irq(&hcd_urb_list_lock);
1875 rescan:
1876 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1877 		int	is_in;
1878 
1879 		if (urb->unlinked)
1880 			continue;
1881 		usb_get_urb (urb);
1882 		is_in = usb_urb_dir_in(urb);
1883 		spin_unlock(&hcd_urb_list_lock);
1884 
1885 		/* kick hcd */
1886 		unlink1(hcd, urb, -ESHUTDOWN);
1887 		dev_dbg (hcd->self.controller,
1888 			"shutdown urb %p ep%d%s%s\n",
1889 			urb, usb_endpoint_num(&ep->desc),
1890 			is_in ? "in" : "out",
1891 			({	char *s;
1892 
1893 				 switch (usb_endpoint_type(&ep->desc)) {
1894 				 case USB_ENDPOINT_XFER_CONTROL:
1895 					s = ""; break;
1896 				 case USB_ENDPOINT_XFER_BULK:
1897 					s = "-bulk"; break;
1898 				 case USB_ENDPOINT_XFER_INT:
1899 					s = "-intr"; break;
1900 				 default:
1901 					s = "-iso"; break;
1902 				};
1903 				s;
1904 			}));
1905 		usb_put_urb (urb);
1906 
1907 		/* list contents may have changed */
1908 		spin_lock(&hcd_urb_list_lock);
1909 		goto rescan;
1910 	}
1911 	spin_unlock_irq(&hcd_urb_list_lock);
1912 
1913 	/* Wait until the endpoint queue is completely empty */
1914 	while (!list_empty (&ep->urb_list)) {
1915 		spin_lock_irq(&hcd_urb_list_lock);
1916 
1917 		/* The list may have changed while we acquired the spinlock */
1918 		urb = NULL;
1919 		if (!list_empty (&ep->urb_list)) {
1920 			urb = list_entry (ep->urb_list.prev, struct urb,
1921 					urb_list);
1922 			usb_get_urb (urb);
1923 		}
1924 		spin_unlock_irq(&hcd_urb_list_lock);
1925 
1926 		if (urb) {
1927 			usb_kill_urb (urb);
1928 			usb_put_urb (urb);
1929 		}
1930 	}
1931 }
1932 
1933 /**
1934  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1935  *				the bus bandwidth
1936  * @udev: target &usb_device
1937  * @new_config: new configuration to install
1938  * @cur_alt: the current alternate interface setting
1939  * @new_alt: alternate interface setting that is being installed
1940  *
1941  * To change configurations, pass in the new configuration in new_config,
1942  * and pass NULL for cur_alt and new_alt.
1943  *
1944  * To reset a device's configuration (put the device in the ADDRESSED state),
1945  * pass in NULL for new_config, cur_alt, and new_alt.
1946  *
1947  * To change alternate interface settings, pass in NULL for new_config,
1948  * pass in the current alternate interface setting in cur_alt,
1949  * and pass in the new alternate interface setting in new_alt.
1950  *
1951  * Return: An error if the requested bandwidth change exceeds the
1952  * bus bandwidth or host controller internal resources.
1953  */
1954 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1955 		struct usb_host_config *new_config,
1956 		struct usb_host_interface *cur_alt,
1957 		struct usb_host_interface *new_alt)
1958 {
1959 	int num_intfs, i, j;
1960 	struct usb_host_interface *alt = NULL;
1961 	int ret = 0;
1962 	struct usb_hcd *hcd;
1963 	struct usb_host_endpoint *ep;
1964 
1965 	hcd = bus_to_hcd(udev->bus);
1966 	if (!hcd->driver->check_bandwidth)
1967 		return 0;
1968 
1969 	/* Configuration is being removed - set configuration 0 */
1970 	if (!new_config && !cur_alt) {
1971 		for (i = 1; i < 16; ++i) {
1972 			ep = udev->ep_out[i];
1973 			if (ep)
1974 				hcd->driver->drop_endpoint(hcd, udev, ep);
1975 			ep = udev->ep_in[i];
1976 			if (ep)
1977 				hcd->driver->drop_endpoint(hcd, udev, ep);
1978 		}
1979 		hcd->driver->check_bandwidth(hcd, udev);
1980 		return 0;
1981 	}
1982 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1983 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1984 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1985 	 * ok to exclude it.
1986 	 */
1987 	if (new_config) {
1988 		num_intfs = new_config->desc.bNumInterfaces;
1989 		/* Remove endpoints (except endpoint 0, which is always on the
1990 		 * schedule) from the old config from the schedule
1991 		 */
1992 		for (i = 1; i < 16; ++i) {
1993 			ep = udev->ep_out[i];
1994 			if (ep) {
1995 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1996 				if (ret < 0)
1997 					goto reset;
1998 			}
1999 			ep = udev->ep_in[i];
2000 			if (ep) {
2001 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2002 				if (ret < 0)
2003 					goto reset;
2004 			}
2005 		}
2006 		for (i = 0; i < num_intfs; ++i) {
2007 			struct usb_host_interface *first_alt;
2008 			int iface_num;
2009 
2010 			first_alt = &new_config->intf_cache[i]->altsetting[0];
2011 			iface_num = first_alt->desc.bInterfaceNumber;
2012 			/* Set up endpoints for alternate interface setting 0 */
2013 			alt = usb_find_alt_setting(new_config, iface_num, 0);
2014 			if (!alt)
2015 				/* No alt setting 0? Pick the first setting. */
2016 				alt = first_alt;
2017 
2018 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2019 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2020 				if (ret < 0)
2021 					goto reset;
2022 			}
2023 		}
2024 	}
2025 	if (cur_alt && new_alt) {
2026 		struct usb_interface *iface = usb_ifnum_to_if(udev,
2027 				cur_alt->desc.bInterfaceNumber);
2028 
2029 		if (!iface)
2030 			return -EINVAL;
2031 		if (iface->resetting_device) {
2032 			/*
2033 			 * The USB core just reset the device, so the xHCI host
2034 			 * and the device will think alt setting 0 is installed.
2035 			 * However, the USB core will pass in the alternate
2036 			 * setting installed before the reset as cur_alt.  Dig
2037 			 * out the alternate setting 0 structure, or the first
2038 			 * alternate setting if a broken device doesn't have alt
2039 			 * setting 0.
2040 			 */
2041 			cur_alt = usb_altnum_to_altsetting(iface, 0);
2042 			if (!cur_alt)
2043 				cur_alt = &iface->altsetting[0];
2044 		}
2045 
2046 		/* Drop all the endpoints in the current alt setting */
2047 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2048 			ret = hcd->driver->drop_endpoint(hcd, udev,
2049 					&cur_alt->endpoint[i]);
2050 			if (ret < 0)
2051 				goto reset;
2052 		}
2053 		/* Add all the endpoints in the new alt setting */
2054 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2055 			ret = hcd->driver->add_endpoint(hcd, udev,
2056 					&new_alt->endpoint[i]);
2057 			if (ret < 0)
2058 				goto reset;
2059 		}
2060 	}
2061 	ret = hcd->driver->check_bandwidth(hcd, udev);
2062 reset:
2063 	if (ret < 0)
2064 		hcd->driver->reset_bandwidth(hcd, udev);
2065 	return ret;
2066 }
2067 
2068 /* Disables the endpoint: synchronizes with the hcd to make sure all
2069  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2070  * have been called previously.  Use for set_configuration, set_interface,
2071  * driver removal, physical disconnect.
2072  *
2073  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2074  * type, maxpacket size, toggle, halt status, and scheduling.
2075  */
2076 void usb_hcd_disable_endpoint(struct usb_device *udev,
2077 		struct usb_host_endpoint *ep)
2078 {
2079 	struct usb_hcd		*hcd;
2080 
2081 	might_sleep();
2082 	hcd = bus_to_hcd(udev->bus);
2083 	if (hcd->driver->endpoint_disable)
2084 		hcd->driver->endpoint_disable(hcd, ep);
2085 }
2086 
2087 /**
2088  * usb_hcd_reset_endpoint - reset host endpoint state
2089  * @udev: USB device.
2090  * @ep:   the endpoint to reset.
2091  *
2092  * Resets any host endpoint state such as the toggle bit, sequence
2093  * number and current window.
2094  */
2095 void usb_hcd_reset_endpoint(struct usb_device *udev,
2096 			    struct usb_host_endpoint *ep)
2097 {
2098 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2099 
2100 	if (hcd->driver->endpoint_reset)
2101 		hcd->driver->endpoint_reset(hcd, ep);
2102 	else {
2103 		int epnum = usb_endpoint_num(&ep->desc);
2104 		int is_out = usb_endpoint_dir_out(&ep->desc);
2105 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2106 
2107 		usb_settoggle(udev, epnum, is_out, 0);
2108 		if (is_control)
2109 			usb_settoggle(udev, epnum, !is_out, 0);
2110 	}
2111 }
2112 
2113 /**
2114  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2115  * @interface:		alternate setting that includes all endpoints.
2116  * @eps:		array of endpoints that need streams.
2117  * @num_eps:		number of endpoints in the array.
2118  * @num_streams:	number of streams to allocate.
2119  * @mem_flags:		flags hcd should use to allocate memory.
2120  *
2121  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2122  * Drivers may queue multiple transfers to different stream IDs, which may
2123  * complete in a different order than they were queued.
2124  *
2125  * Return: On success, the number of allocated streams. On failure, a negative
2126  * error code.
2127  */
2128 int usb_alloc_streams(struct usb_interface *interface,
2129 		struct usb_host_endpoint **eps, unsigned int num_eps,
2130 		unsigned int num_streams, gfp_t mem_flags)
2131 {
2132 	struct usb_hcd *hcd;
2133 	struct usb_device *dev;
2134 	int i, ret;
2135 
2136 	dev = interface_to_usbdev(interface);
2137 	hcd = bus_to_hcd(dev->bus);
2138 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2139 		return -EINVAL;
2140 	if (dev->speed < USB_SPEED_SUPER)
2141 		return -EINVAL;
2142 	if (dev->state < USB_STATE_CONFIGURED)
2143 		return -ENODEV;
2144 
2145 	for (i = 0; i < num_eps; i++) {
2146 		/* Streams only apply to bulk endpoints. */
2147 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2148 			return -EINVAL;
2149 		/* Re-alloc is not allowed */
2150 		if (eps[i]->streams)
2151 			return -EINVAL;
2152 	}
2153 
2154 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2155 			num_streams, mem_flags);
2156 	if (ret < 0)
2157 		return ret;
2158 
2159 	for (i = 0; i < num_eps; i++)
2160 		eps[i]->streams = ret;
2161 
2162 	return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2165 
2166 /**
2167  * usb_free_streams - free bulk endpoint stream IDs.
2168  * @interface:	alternate setting that includes all endpoints.
2169  * @eps:	array of endpoints to remove streams from.
2170  * @num_eps:	number of endpoints in the array.
2171  * @mem_flags:	flags hcd should use to allocate memory.
2172  *
2173  * Reverts a group of bulk endpoints back to not using stream IDs.
2174  * Can fail if we are given bad arguments, or HCD is broken.
2175  *
2176  * Return: 0 on success. On failure, a negative error code.
2177  */
2178 int usb_free_streams(struct usb_interface *interface,
2179 		struct usb_host_endpoint **eps, unsigned int num_eps,
2180 		gfp_t mem_flags)
2181 {
2182 	struct usb_hcd *hcd;
2183 	struct usb_device *dev;
2184 	int i, ret;
2185 
2186 	dev = interface_to_usbdev(interface);
2187 	hcd = bus_to_hcd(dev->bus);
2188 	if (dev->speed < USB_SPEED_SUPER)
2189 		return -EINVAL;
2190 
2191 	/* Double-free is not allowed */
2192 	for (i = 0; i < num_eps; i++)
2193 		if (!eps[i] || !eps[i]->streams)
2194 			return -EINVAL;
2195 
2196 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2197 	if (ret < 0)
2198 		return ret;
2199 
2200 	for (i = 0; i < num_eps; i++)
2201 		eps[i]->streams = 0;
2202 
2203 	return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(usb_free_streams);
2206 
2207 /* Protect against drivers that try to unlink URBs after the device
2208  * is gone, by waiting until all unlinks for @udev are finished.
2209  * Since we don't currently track URBs by device, simply wait until
2210  * nothing is running in the locked region of usb_hcd_unlink_urb().
2211  */
2212 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2213 {
2214 	spin_lock_irq(&hcd_urb_unlink_lock);
2215 	spin_unlock_irq(&hcd_urb_unlink_lock);
2216 }
2217 
2218 /*-------------------------------------------------------------------------*/
2219 
2220 /* called in any context */
2221 int usb_hcd_get_frame_number (struct usb_device *udev)
2222 {
2223 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2224 
2225 	if (!HCD_RH_RUNNING(hcd))
2226 		return -ESHUTDOWN;
2227 	return hcd->driver->get_frame_number (hcd);
2228 }
2229 
2230 /*-------------------------------------------------------------------------*/
2231 
2232 #ifdef	CONFIG_PM
2233 
2234 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2235 {
2236 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2237 	int		status;
2238 	int		old_state = hcd->state;
2239 
2240 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2241 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2242 			rhdev->do_remote_wakeup);
2243 	if (HCD_DEAD(hcd)) {
2244 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2245 		return 0;
2246 	}
2247 
2248 	if (!hcd->driver->bus_suspend) {
2249 		status = -ENOENT;
2250 	} else {
2251 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2252 		hcd->state = HC_STATE_QUIESCING;
2253 		status = hcd->driver->bus_suspend(hcd);
2254 	}
2255 	if (status == 0) {
2256 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2257 		hcd->state = HC_STATE_SUSPENDED;
2258 
2259 		/* Did we race with a root-hub wakeup event? */
2260 		if (rhdev->do_remote_wakeup) {
2261 			char	buffer[6];
2262 
2263 			status = hcd->driver->hub_status_data(hcd, buffer);
2264 			if (status != 0) {
2265 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2266 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2267 				status = -EBUSY;
2268 			}
2269 		}
2270 	} else {
2271 		spin_lock_irq(&hcd_root_hub_lock);
2272 		if (!HCD_DEAD(hcd)) {
2273 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2274 			hcd->state = old_state;
2275 		}
2276 		spin_unlock_irq(&hcd_root_hub_lock);
2277 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2278 				"suspend", status);
2279 	}
2280 	return status;
2281 }
2282 
2283 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2284 {
2285 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2286 	int		status;
2287 	int		old_state = hcd->state;
2288 
2289 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2290 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2291 	if (HCD_DEAD(hcd)) {
2292 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2293 		return 0;
2294 	}
2295 	if (!hcd->driver->bus_resume)
2296 		return -ENOENT;
2297 	if (HCD_RH_RUNNING(hcd))
2298 		return 0;
2299 
2300 	hcd->state = HC_STATE_RESUMING;
2301 	status = hcd->driver->bus_resume(hcd);
2302 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2303 	if (status == 0) {
2304 		struct usb_device *udev;
2305 		int port1;
2306 
2307 		spin_lock_irq(&hcd_root_hub_lock);
2308 		if (!HCD_DEAD(hcd)) {
2309 			usb_set_device_state(rhdev, rhdev->actconfig
2310 					? USB_STATE_CONFIGURED
2311 					: USB_STATE_ADDRESS);
2312 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2313 			hcd->state = HC_STATE_RUNNING;
2314 		}
2315 		spin_unlock_irq(&hcd_root_hub_lock);
2316 
2317 		/*
2318 		 * Check whether any of the enabled ports on the root hub are
2319 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2320 		 * (this is what the USB-2 spec calls a "global resume").
2321 		 * Otherwise we can skip the delay.
2322 		 */
2323 		usb_hub_for_each_child(rhdev, port1, udev) {
2324 			if (udev->state != USB_STATE_NOTATTACHED &&
2325 					!udev->port_is_suspended) {
2326 				usleep_range(10000, 11000);	/* TRSMRCY */
2327 				break;
2328 			}
2329 		}
2330 	} else {
2331 		hcd->state = old_state;
2332 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2333 				"resume", status);
2334 		if (status != -ESHUTDOWN)
2335 			usb_hc_died(hcd);
2336 	}
2337 	return status;
2338 }
2339 
2340 /* Workqueue routine for root-hub remote wakeup */
2341 static void hcd_resume_work(struct work_struct *work)
2342 {
2343 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2344 	struct usb_device *udev = hcd->self.root_hub;
2345 
2346 	usb_remote_wakeup(udev);
2347 }
2348 
2349 /**
2350  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2351  * @hcd: host controller for this root hub
2352  *
2353  * The USB host controller calls this function when its root hub is
2354  * suspended (with the remote wakeup feature enabled) and a remote
2355  * wakeup request is received.  The routine submits a workqueue request
2356  * to resume the root hub (that is, manage its downstream ports again).
2357  */
2358 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2359 {
2360 	unsigned long flags;
2361 
2362 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2363 	if (hcd->rh_registered) {
2364 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2365 		queue_work(pm_wq, &hcd->wakeup_work);
2366 	}
2367 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2368 }
2369 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2370 
2371 #endif	/* CONFIG_PM */
2372 
2373 /*-------------------------------------------------------------------------*/
2374 
2375 #ifdef	CONFIG_USB_OTG
2376 
2377 /**
2378  * usb_bus_start_enum - start immediate enumeration (for OTG)
2379  * @bus: the bus (must use hcd framework)
2380  * @port_num: 1-based number of port; usually bus->otg_port
2381  * Context: in_interrupt()
2382  *
2383  * Starts enumeration, with an immediate reset followed later by
2384  * hub_wq identifying and possibly configuring the device.
2385  * This is needed by OTG controller drivers, where it helps meet
2386  * HNP protocol timing requirements for starting a port reset.
2387  *
2388  * Return: 0 if successful.
2389  */
2390 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2391 {
2392 	struct usb_hcd		*hcd;
2393 	int			status = -EOPNOTSUPP;
2394 
2395 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2396 	 * boards with root hubs hooked up to internal devices (instead of
2397 	 * just the OTG port) may need more attention to resetting...
2398 	 */
2399 	hcd = bus_to_hcd(bus);
2400 	if (port_num && hcd->driver->start_port_reset)
2401 		status = hcd->driver->start_port_reset(hcd, port_num);
2402 
2403 	/* allocate hub_wq shortly after (first) root port reset finishes;
2404 	 * it may issue others, until at least 50 msecs have passed.
2405 	 */
2406 	if (status == 0)
2407 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2408 	return status;
2409 }
2410 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2411 
2412 #endif
2413 
2414 /*-------------------------------------------------------------------------*/
2415 
2416 /**
2417  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2418  * @irq: the IRQ being raised
2419  * @__hcd: pointer to the HCD whose IRQ is being signaled
2420  *
2421  * If the controller isn't HALTed, calls the driver's irq handler.
2422  * Checks whether the controller is now dead.
2423  *
2424  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2425  */
2426 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2427 {
2428 	struct usb_hcd		*hcd = __hcd;
2429 	irqreturn_t		rc;
2430 
2431 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2432 		rc = IRQ_NONE;
2433 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2434 		rc = IRQ_NONE;
2435 	else
2436 		rc = IRQ_HANDLED;
2437 
2438 	return rc;
2439 }
2440 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2441 
2442 /*-------------------------------------------------------------------------*/
2443 
2444 /**
2445  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2446  * @hcd: pointer to the HCD representing the controller
2447  *
2448  * This is called by bus glue to report a USB host controller that died
2449  * while operations may still have been pending.  It's called automatically
2450  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2451  *
2452  * Only call this function with the primary HCD.
2453  */
2454 void usb_hc_died (struct usb_hcd *hcd)
2455 {
2456 	unsigned long flags;
2457 
2458 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2459 
2460 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2461 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2462 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2463 	if (hcd->rh_registered) {
2464 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2465 
2466 		/* make hub_wq clean up old urbs and devices */
2467 		usb_set_device_state (hcd->self.root_hub,
2468 				USB_STATE_NOTATTACHED);
2469 		usb_kick_hub_wq(hcd->self.root_hub);
2470 	}
2471 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2472 		hcd = hcd->shared_hcd;
2473 		if (hcd->rh_registered) {
2474 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2475 
2476 			/* make hub_wq clean up old urbs and devices */
2477 			usb_set_device_state(hcd->self.root_hub,
2478 					USB_STATE_NOTATTACHED);
2479 			usb_kick_hub_wq(hcd->self.root_hub);
2480 		}
2481 	}
2482 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2483 	/* Make sure that the other roothub is also deallocated. */
2484 }
2485 EXPORT_SYMBOL_GPL (usb_hc_died);
2486 
2487 /*-------------------------------------------------------------------------*/
2488 
2489 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2490 {
2491 
2492 	spin_lock_init(&bh->lock);
2493 	INIT_LIST_HEAD(&bh->head);
2494 	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2495 }
2496 
2497 /**
2498  * usb_create_shared_hcd - create and initialize an HCD structure
2499  * @driver: HC driver that will use this hcd
2500  * @dev: device for this HC, stored in hcd->self.controller
2501  * @bus_name: value to store in hcd->self.bus_name
2502  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2503  *              PCI device.  Only allocate certain resources for the primary HCD
2504  * Context: !in_interrupt()
2505  *
2506  * Allocate a struct usb_hcd, with extra space at the end for the
2507  * HC driver's private data.  Initialize the generic members of the
2508  * hcd structure.
2509  *
2510  * Return: On success, a pointer to the created and initialized HCD structure.
2511  * On failure (e.g. if memory is unavailable), %NULL.
2512  */
2513 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2514 		struct device *dev, const char *bus_name,
2515 		struct usb_hcd *primary_hcd)
2516 {
2517 	struct usb_hcd *hcd;
2518 
2519 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2520 	if (!hcd) {
2521 		dev_dbg (dev, "hcd alloc failed\n");
2522 		return NULL;
2523 	}
2524 	if (primary_hcd == NULL) {
2525 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2526 				GFP_KERNEL);
2527 		if (!hcd->address0_mutex) {
2528 			kfree(hcd);
2529 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2530 			return NULL;
2531 		}
2532 		mutex_init(hcd->address0_mutex);
2533 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2534 				GFP_KERNEL);
2535 		if (!hcd->bandwidth_mutex) {
2536 			kfree(hcd);
2537 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2538 			return NULL;
2539 		}
2540 		mutex_init(hcd->bandwidth_mutex);
2541 		dev_set_drvdata(dev, hcd);
2542 	} else {
2543 		mutex_lock(&usb_port_peer_mutex);
2544 		hcd->address0_mutex = primary_hcd->address0_mutex;
2545 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2546 		hcd->primary_hcd = primary_hcd;
2547 		primary_hcd->primary_hcd = primary_hcd;
2548 		hcd->shared_hcd = primary_hcd;
2549 		primary_hcd->shared_hcd = hcd;
2550 		mutex_unlock(&usb_port_peer_mutex);
2551 	}
2552 
2553 	kref_init(&hcd->kref);
2554 
2555 	usb_bus_init(&hcd->self);
2556 	hcd->self.controller = dev;
2557 	hcd->self.bus_name = bus_name;
2558 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2559 
2560 	init_timer(&hcd->rh_timer);
2561 	hcd->rh_timer.function = rh_timer_func;
2562 	hcd->rh_timer.data = (unsigned long) hcd;
2563 #ifdef CONFIG_PM
2564 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2565 #endif
2566 
2567 	hcd->driver = driver;
2568 	hcd->speed = driver->flags & HCD_MASK;
2569 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2570 			"USB Host Controller";
2571 	return hcd;
2572 }
2573 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2574 
2575 /**
2576  * usb_create_hcd - create and initialize an HCD structure
2577  * @driver: HC driver that will use this hcd
2578  * @dev: device for this HC, stored in hcd->self.controller
2579  * @bus_name: value to store in hcd->self.bus_name
2580  * Context: !in_interrupt()
2581  *
2582  * Allocate a struct usb_hcd, with extra space at the end for the
2583  * HC driver's private data.  Initialize the generic members of the
2584  * hcd structure.
2585  *
2586  * Return: On success, a pointer to the created and initialized HCD
2587  * structure. On failure (e.g. if memory is unavailable), %NULL.
2588  */
2589 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2590 		struct device *dev, const char *bus_name)
2591 {
2592 	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2593 }
2594 EXPORT_SYMBOL_GPL(usb_create_hcd);
2595 
2596 /*
2597  * Roothubs that share one PCI device must also share the bandwidth mutex.
2598  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2599  * deallocated.
2600  *
2601  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2602  * freed.  When hcd_release() is called for either hcd in a peer set
2603  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to
2604  * block new peering attempts
2605  */
2606 static void hcd_release(struct kref *kref)
2607 {
2608 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2609 
2610 	mutex_lock(&usb_port_peer_mutex);
2611 	if (usb_hcd_is_primary_hcd(hcd)) {
2612 		kfree(hcd->address0_mutex);
2613 		kfree(hcd->bandwidth_mutex);
2614 	}
2615 	if (hcd->shared_hcd) {
2616 		struct usb_hcd *peer = hcd->shared_hcd;
2617 
2618 		peer->shared_hcd = NULL;
2619 		if (peer->primary_hcd == hcd)
2620 			peer->primary_hcd = NULL;
2621 	}
2622 	mutex_unlock(&usb_port_peer_mutex);
2623 	kfree(hcd);
2624 }
2625 
2626 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2627 {
2628 	if (hcd)
2629 		kref_get (&hcd->kref);
2630 	return hcd;
2631 }
2632 EXPORT_SYMBOL_GPL(usb_get_hcd);
2633 
2634 void usb_put_hcd (struct usb_hcd *hcd)
2635 {
2636 	if (hcd)
2637 		kref_put (&hcd->kref, hcd_release);
2638 }
2639 EXPORT_SYMBOL_GPL(usb_put_hcd);
2640 
2641 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2642 {
2643 	if (!hcd->primary_hcd)
2644 		return 1;
2645 	return hcd == hcd->primary_hcd;
2646 }
2647 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2648 
2649 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2650 {
2651 	if (!hcd->driver->find_raw_port_number)
2652 		return port1;
2653 
2654 	return hcd->driver->find_raw_port_number(hcd, port1);
2655 }
2656 
2657 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2658 		unsigned int irqnum, unsigned long irqflags)
2659 {
2660 	int retval;
2661 
2662 	if (hcd->driver->irq) {
2663 
2664 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2665 				hcd->driver->description, hcd->self.busnum);
2666 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2667 				hcd->irq_descr, hcd);
2668 		if (retval != 0) {
2669 			dev_err(hcd->self.controller,
2670 					"request interrupt %d failed\n",
2671 					irqnum);
2672 			return retval;
2673 		}
2674 		hcd->irq = irqnum;
2675 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2676 				(hcd->driver->flags & HCD_MEMORY) ?
2677 					"io mem" : "io base",
2678 					(unsigned long long)hcd->rsrc_start);
2679 	} else {
2680 		hcd->irq = 0;
2681 		if (hcd->rsrc_start)
2682 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2683 					(hcd->driver->flags & HCD_MEMORY) ?
2684 					"io mem" : "io base",
2685 					(unsigned long long)hcd->rsrc_start);
2686 	}
2687 	return 0;
2688 }
2689 
2690 /*
2691  * Before we free this root hub, flush in-flight peering attempts
2692  * and disable peer lookups
2693  */
2694 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2695 {
2696 	struct usb_device *rhdev;
2697 
2698 	mutex_lock(&usb_port_peer_mutex);
2699 	rhdev = hcd->self.root_hub;
2700 	hcd->self.root_hub = NULL;
2701 	mutex_unlock(&usb_port_peer_mutex);
2702 	usb_put_dev(rhdev);
2703 }
2704 
2705 /**
2706  * usb_add_hcd - finish generic HCD structure initialization and register
2707  * @hcd: the usb_hcd structure to initialize
2708  * @irqnum: Interrupt line to allocate
2709  * @irqflags: Interrupt type flags
2710  *
2711  * Finish the remaining parts of generic HCD initialization: allocate the
2712  * buffers of consistent memory, register the bus, request the IRQ line,
2713  * and call the driver's reset() and start() routines.
2714  */
2715 int usb_add_hcd(struct usb_hcd *hcd,
2716 		unsigned int irqnum, unsigned long irqflags)
2717 {
2718 	int retval;
2719 	struct usb_device *rhdev;
2720 
2721 	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2722 		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2723 
2724 		if (IS_ERR(phy)) {
2725 			retval = PTR_ERR(phy);
2726 			if (retval == -EPROBE_DEFER)
2727 				return retval;
2728 		} else {
2729 			retval = usb_phy_init(phy);
2730 			if (retval) {
2731 				usb_put_phy(phy);
2732 				return retval;
2733 			}
2734 			hcd->usb_phy = phy;
2735 			hcd->remove_phy = 1;
2736 		}
2737 	}
2738 
2739 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2740 		struct phy *phy = phy_get(hcd->self.controller, "usb");
2741 
2742 		if (IS_ERR(phy)) {
2743 			retval = PTR_ERR(phy);
2744 			if (retval == -EPROBE_DEFER)
2745 				goto err_phy;
2746 		} else {
2747 			retval = phy_init(phy);
2748 			if (retval) {
2749 				phy_put(phy);
2750 				goto err_phy;
2751 			}
2752 			retval = phy_power_on(phy);
2753 			if (retval) {
2754 				phy_exit(phy);
2755 				phy_put(phy);
2756 				goto err_phy;
2757 			}
2758 			hcd->phy = phy;
2759 			hcd->remove_phy = 1;
2760 		}
2761 	}
2762 
2763 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2764 
2765 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2766 	if (authorized_default < 0 || authorized_default > 1) {
2767 		if (hcd->wireless)
2768 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2769 		else
2770 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2771 	} else {
2772 		if (authorized_default)
2773 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2774 		else
2775 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2776 	}
2777 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2778 
2779 	/* per default all interfaces are authorized */
2780 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2781 
2782 	/* HC is in reset state, but accessible.  Now do the one-time init,
2783 	 * bottom up so that hcds can customize the root hubs before hub_wq
2784 	 * starts talking to them.  (Note, bus id is assigned early too.)
2785 	 */
2786 	retval = hcd_buffer_create(hcd);
2787 	if (retval != 0) {
2788 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2789 		goto err_create_buf;
2790 	}
2791 
2792 	retval = usb_register_bus(&hcd->self);
2793 	if (retval < 0)
2794 		goto err_register_bus;
2795 
2796 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2797 	if (rhdev == NULL) {
2798 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2799 		retval = -ENOMEM;
2800 		goto err_allocate_root_hub;
2801 	}
2802 	mutex_lock(&usb_port_peer_mutex);
2803 	hcd->self.root_hub = rhdev;
2804 	mutex_unlock(&usb_port_peer_mutex);
2805 
2806 	switch (hcd->speed) {
2807 	case HCD_USB11:
2808 		rhdev->speed = USB_SPEED_FULL;
2809 		break;
2810 	case HCD_USB2:
2811 		rhdev->speed = USB_SPEED_HIGH;
2812 		break;
2813 	case HCD_USB25:
2814 		rhdev->speed = USB_SPEED_WIRELESS;
2815 		break;
2816 	case HCD_USB3:
2817 		rhdev->speed = USB_SPEED_SUPER;
2818 		break;
2819 	case HCD_USB31:
2820 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2821 		break;
2822 	default:
2823 		retval = -EINVAL;
2824 		goto err_set_rh_speed;
2825 	}
2826 
2827 	/* wakeup flag init defaults to "everything works" for root hubs,
2828 	 * but drivers can override it in reset() if needed, along with
2829 	 * recording the overall controller's system wakeup capability.
2830 	 */
2831 	device_set_wakeup_capable(&rhdev->dev, 1);
2832 
2833 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2834 	 * registered.  But since the controller can die at any time,
2835 	 * let's initialize the flag before touching the hardware.
2836 	 */
2837 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2838 
2839 	/* "reset" is misnamed; its role is now one-time init. the controller
2840 	 * should already have been reset (and boot firmware kicked off etc).
2841 	 */
2842 	if (hcd->driver->reset) {
2843 		retval = hcd->driver->reset(hcd);
2844 		if (retval < 0) {
2845 			dev_err(hcd->self.controller, "can't setup: %d\n",
2846 					retval);
2847 			goto err_hcd_driver_setup;
2848 		}
2849 	}
2850 	hcd->rh_pollable = 1;
2851 
2852 	/* NOTE: root hub and controller capabilities may not be the same */
2853 	if (device_can_wakeup(hcd->self.controller)
2854 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2855 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2856 
2857 	/* initialize tasklets */
2858 	init_giveback_urb_bh(&hcd->high_prio_bh);
2859 	init_giveback_urb_bh(&hcd->low_prio_bh);
2860 
2861 	/* enable irqs just before we start the controller,
2862 	 * if the BIOS provides legacy PCI irqs.
2863 	 */
2864 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2865 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2866 		if (retval)
2867 			goto err_request_irq;
2868 	}
2869 
2870 	hcd->state = HC_STATE_RUNNING;
2871 	retval = hcd->driver->start(hcd);
2872 	if (retval < 0) {
2873 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2874 		goto err_hcd_driver_start;
2875 	}
2876 
2877 	/* starting here, usbcore will pay attention to this root hub */
2878 	retval = register_root_hub(hcd);
2879 	if (retval != 0)
2880 		goto err_register_root_hub;
2881 
2882 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2883 	if (retval < 0) {
2884 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2885 		       retval);
2886 		goto error_create_attr_group;
2887 	}
2888 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2889 		usb_hcd_poll_rh_status(hcd);
2890 
2891 	return retval;
2892 
2893 error_create_attr_group:
2894 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2895 	if (HC_IS_RUNNING(hcd->state))
2896 		hcd->state = HC_STATE_QUIESCING;
2897 	spin_lock_irq(&hcd_root_hub_lock);
2898 	hcd->rh_registered = 0;
2899 	spin_unlock_irq(&hcd_root_hub_lock);
2900 
2901 #ifdef CONFIG_PM
2902 	cancel_work_sync(&hcd->wakeup_work);
2903 #endif
2904 	mutex_lock(&usb_bus_idr_lock);
2905 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2906 	mutex_unlock(&usb_bus_idr_lock);
2907 err_register_root_hub:
2908 	hcd->rh_pollable = 0;
2909 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2910 	del_timer_sync(&hcd->rh_timer);
2911 	hcd->driver->stop(hcd);
2912 	hcd->state = HC_STATE_HALT;
2913 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2914 	del_timer_sync(&hcd->rh_timer);
2915 err_hcd_driver_start:
2916 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2917 		free_irq(irqnum, hcd);
2918 err_request_irq:
2919 err_hcd_driver_setup:
2920 err_set_rh_speed:
2921 	usb_put_invalidate_rhdev(hcd);
2922 err_allocate_root_hub:
2923 	usb_deregister_bus(&hcd->self);
2924 err_register_bus:
2925 	hcd_buffer_destroy(hcd);
2926 err_create_buf:
2927 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2928 		phy_power_off(hcd->phy);
2929 		phy_exit(hcd->phy);
2930 		phy_put(hcd->phy);
2931 		hcd->phy = NULL;
2932 	}
2933 err_phy:
2934 	if (hcd->remove_phy && hcd->usb_phy) {
2935 		usb_phy_shutdown(hcd->usb_phy);
2936 		usb_put_phy(hcd->usb_phy);
2937 		hcd->usb_phy = NULL;
2938 	}
2939 	return retval;
2940 }
2941 EXPORT_SYMBOL_GPL(usb_add_hcd);
2942 
2943 /**
2944  * usb_remove_hcd - shutdown processing for generic HCDs
2945  * @hcd: the usb_hcd structure to remove
2946  * Context: !in_interrupt()
2947  *
2948  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2949  * invoking the HCD's stop() method.
2950  */
2951 void usb_remove_hcd(struct usb_hcd *hcd)
2952 {
2953 	struct usb_device *rhdev = hcd->self.root_hub;
2954 
2955 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2956 
2957 	usb_get_dev(rhdev);
2958 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2959 
2960 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2961 	if (HC_IS_RUNNING (hcd->state))
2962 		hcd->state = HC_STATE_QUIESCING;
2963 
2964 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2965 	spin_lock_irq (&hcd_root_hub_lock);
2966 	hcd->rh_registered = 0;
2967 	spin_unlock_irq (&hcd_root_hub_lock);
2968 
2969 #ifdef CONFIG_PM
2970 	cancel_work_sync(&hcd->wakeup_work);
2971 #endif
2972 
2973 	mutex_lock(&usb_bus_idr_lock);
2974 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2975 	mutex_unlock(&usb_bus_idr_lock);
2976 
2977 	/*
2978 	 * tasklet_kill() isn't needed here because:
2979 	 * - driver's disconnect() called from usb_disconnect() should
2980 	 *   make sure its URBs are completed during the disconnect()
2981 	 *   callback
2982 	 *
2983 	 * - it is too late to run complete() here since driver may have
2984 	 *   been removed already now
2985 	 */
2986 
2987 	/* Prevent any more root-hub status calls from the timer.
2988 	 * The HCD might still restart the timer (if a port status change
2989 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2990 	 * the hub_status_data() callback.
2991 	 */
2992 	hcd->rh_pollable = 0;
2993 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2994 	del_timer_sync(&hcd->rh_timer);
2995 
2996 	hcd->driver->stop(hcd);
2997 	hcd->state = HC_STATE_HALT;
2998 
2999 	/* In case the HCD restarted the timer, stop it again. */
3000 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3001 	del_timer_sync(&hcd->rh_timer);
3002 
3003 	if (usb_hcd_is_primary_hcd(hcd)) {
3004 		if (hcd->irq > 0)
3005 			free_irq(hcd->irq, hcd);
3006 	}
3007 
3008 	usb_deregister_bus(&hcd->self);
3009 	hcd_buffer_destroy(hcd);
3010 
3011 	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3012 		phy_power_off(hcd->phy);
3013 		phy_exit(hcd->phy);
3014 		phy_put(hcd->phy);
3015 		hcd->phy = NULL;
3016 	}
3017 	if (hcd->remove_phy && hcd->usb_phy) {
3018 		usb_phy_shutdown(hcd->usb_phy);
3019 		usb_put_phy(hcd->usb_phy);
3020 		hcd->usb_phy = NULL;
3021 	}
3022 
3023 	usb_put_invalidate_rhdev(hcd);
3024 }
3025 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3026 
3027 void
3028 usb_hcd_platform_shutdown(struct platform_device *dev)
3029 {
3030 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3031 
3032 	if (hcd->driver->shutdown)
3033 		hcd->driver->shutdown(hcd);
3034 }
3035 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3036 
3037 /*-------------------------------------------------------------------------*/
3038 
3039 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
3040 
3041 const struct usb_mon_operations *mon_ops;
3042 
3043 /*
3044  * The registration is unlocked.
3045  * We do it this way because we do not want to lock in hot paths.
3046  *
3047  * Notice that the code is minimally error-proof. Because usbmon needs
3048  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3049  */
3050 
3051 int usb_mon_register(const struct usb_mon_operations *ops)
3052 {
3053 
3054 	if (mon_ops)
3055 		return -EBUSY;
3056 
3057 	mon_ops = ops;
3058 	mb();
3059 	return 0;
3060 }
3061 EXPORT_SYMBOL_GPL (usb_mon_register);
3062 
3063 void usb_mon_deregister (void)
3064 {
3065 
3066 	if (mon_ops == NULL) {
3067 		printk(KERN_ERR "USB: monitor was not registered\n");
3068 		return;
3069 	}
3070 	mon_ops = NULL;
3071 	mb();
3072 }
3073 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3074 
3075 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3076