1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR) 115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 160 static const u8 usb25_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* usb 2.0 root hub device descriptor */ 181 static const u8 usb2_rh_dev_descriptor[18] = { 182 0x12, /* __u8 bLength; */ 183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 185 186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 187 0x00, /* __u8 bDeviceSubClass; */ 188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 190 191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 194 195 0x03, /* __u8 iManufacturer; */ 196 0x02, /* __u8 iProduct; */ 197 0x01, /* __u8 iSerialNumber; */ 198 0x01 /* __u8 bNumConfigurations; */ 199 }; 200 201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 202 203 /* usb 1.1 root hub device descriptor */ 204 static const u8 usb11_rh_dev_descriptor[18] = { 205 0x12, /* __u8 bLength; */ 206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 208 209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 210 0x00, /* __u8 bDeviceSubClass; */ 211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 213 214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 217 218 0x03, /* __u8 iManufacturer; */ 219 0x02, /* __u8 iProduct; */ 220 0x01, /* __u8 iSerialNumber; */ 221 0x01 /* __u8 bNumConfigurations; */ 222 }; 223 224 225 /*-------------------------------------------------------------------------*/ 226 227 /* Configuration descriptors for our root hubs */ 228 229 static const u8 fs_rh_config_descriptor[] = { 230 231 /* one configuration */ 232 0x09, /* __u8 bLength; */ 233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 234 0x19, 0x00, /* __le16 wTotalLength; */ 235 0x01, /* __u8 bNumInterfaces; (1) */ 236 0x01, /* __u8 bConfigurationValue; */ 237 0x00, /* __u8 iConfiguration; */ 238 0xc0, /* __u8 bmAttributes; 239 Bit 7: must be set, 240 6: Self-powered, 241 5: Remote wakeup, 242 4..0: resvd */ 243 0x00, /* __u8 MaxPower; */ 244 245 /* USB 1.1: 246 * USB 2.0, single TT organization (mandatory): 247 * one interface, protocol 0 248 * 249 * USB 2.0, multiple TT organization (optional): 250 * two interfaces, protocols 1 (like single TT) 251 * and 2 (multiple TT mode) ... config is 252 * sometimes settable 253 * NOT IMPLEMENTED 254 */ 255 256 /* one interface */ 257 0x09, /* __u8 if_bLength; */ 258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 259 0x00, /* __u8 if_bInterfaceNumber; */ 260 0x00, /* __u8 if_bAlternateSetting; */ 261 0x01, /* __u8 if_bNumEndpoints; */ 262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 263 0x00, /* __u8 if_bInterfaceSubClass; */ 264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 265 0x00, /* __u8 if_iInterface; */ 266 267 /* one endpoint (status change endpoint) */ 268 0x07, /* __u8 ep_bLength; */ 269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 271 0x03, /* __u8 ep_bmAttributes; Interrupt */ 272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 274 }; 275 276 static const u8 hs_rh_config_descriptor[] = { 277 278 /* one configuration */ 279 0x09, /* __u8 bLength; */ 280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 281 0x19, 0x00, /* __le16 wTotalLength; */ 282 0x01, /* __u8 bNumInterfaces; (1) */ 283 0x01, /* __u8 bConfigurationValue; */ 284 0x00, /* __u8 iConfiguration; */ 285 0xc0, /* __u8 bmAttributes; 286 Bit 7: must be set, 287 6: Self-powered, 288 5: Remote wakeup, 289 4..0: resvd */ 290 0x00, /* __u8 MaxPower; */ 291 292 /* USB 1.1: 293 * USB 2.0, single TT organization (mandatory): 294 * one interface, protocol 0 295 * 296 * USB 2.0, multiple TT organization (optional): 297 * two interfaces, protocols 1 (like single TT) 298 * and 2 (multiple TT mode) ... config is 299 * sometimes settable 300 * NOT IMPLEMENTED 301 */ 302 303 /* one interface */ 304 0x09, /* __u8 if_bLength; */ 305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 306 0x00, /* __u8 if_bInterfaceNumber; */ 307 0x00, /* __u8 if_bAlternateSetting; */ 308 0x01, /* __u8 if_bNumEndpoints; */ 309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 310 0x00, /* __u8 if_bInterfaceSubClass; */ 311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 312 0x00, /* __u8 if_iInterface; */ 313 314 /* one endpoint (status change endpoint) */ 315 0x07, /* __u8 ep_bLength; */ 316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 318 0x03, /* __u8 ep_bmAttributes; Interrupt */ 319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 320 * see hub.c:hub_configure() for details. */ 321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 323 }; 324 325 static const u8 ss_rh_config_descriptor[] = { 326 /* one configuration */ 327 0x09, /* __u8 bLength; */ 328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 329 0x1f, 0x00, /* __le16 wTotalLength; */ 330 0x01, /* __u8 bNumInterfaces; (1) */ 331 0x01, /* __u8 bConfigurationValue; */ 332 0x00, /* __u8 iConfiguration; */ 333 0xc0, /* __u8 bmAttributes; 334 Bit 7: must be set, 335 6: Self-powered, 336 5: Remote wakeup, 337 4..0: resvd */ 338 0x00, /* __u8 MaxPower; */ 339 340 /* one interface */ 341 0x09, /* __u8 if_bLength; */ 342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 343 0x00, /* __u8 if_bInterfaceNumber; */ 344 0x00, /* __u8 if_bAlternateSetting; */ 345 0x01, /* __u8 if_bNumEndpoints; */ 346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 347 0x00, /* __u8 if_bInterfaceSubClass; */ 348 0x00, /* __u8 if_bInterfaceProtocol; */ 349 0x00, /* __u8 if_iInterface; */ 350 351 /* one endpoint (status change endpoint) */ 352 0x07, /* __u8 ep_bLength; */ 353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 355 0x03, /* __u8 ep_bmAttributes; Interrupt */ 356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 357 * see hub.c:hub_configure() for details. */ 358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 360 361 /* one SuperSpeed endpoint companion descriptor */ 362 0x06, /* __u8 ss_bLength */ 363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 364 /* Companion */ 365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 368 }; 369 370 /* authorized_default behaviour: 371 * -1 is authorized for all devices except wireless (old behaviour) 372 * 0 is unauthorized for all devices 373 * 1 is authorized for all devices 374 * 2 is authorized for internal devices 375 */ 376 #define USB_AUTHORIZE_WIRED -1 377 #define USB_AUTHORIZE_NONE 0 378 #define USB_AUTHORIZE_ALL 1 379 #define USB_AUTHORIZE_INTERNAL 2 380 381 static int authorized_default = USB_AUTHORIZE_WIRED; 382 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 383 MODULE_PARM_DESC(authorized_default, 384 "Default USB device authorization: 0 is not authorized, 1 is " 385 "authorized, 2 is authorized for internal devices, -1 is " 386 "authorized except for wireless USB (default, old behaviour)"); 387 /*-------------------------------------------------------------------------*/ 388 389 /** 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 393 * @len: Length (in bytes; may be odd) of descriptor buffer. 394 * 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 396 * whichever is less. 397 * 398 * Note: 399 * USB String descriptors can contain at most 126 characters; input 400 * strings longer than that are truncated. 401 */ 402 static unsigned 403 ascii2desc(char const *s, u8 *buf, unsigned len) 404 { 405 unsigned n, t = 2 + 2*strlen(s); 406 407 if (t > 254) 408 t = 254; /* Longest possible UTF string descriptor */ 409 if (len > t) 410 len = t; 411 412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 413 414 n = len; 415 while (n--) { 416 *buf++ = t; 417 if (!n--) 418 break; 419 *buf++ = t >> 8; 420 t = (unsigned char)*s++; 421 } 422 return len; 423 } 424 425 /** 426 * rh_string() - provides string descriptors for root hub 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 428 * @hcd: the host controller for this root hub 429 * @data: buffer for output packet 430 * @len: length of the provided buffer 431 * 432 * Produces either a manufacturer, product or serial number string for the 433 * virtual root hub device. 434 * 435 * Return: The number of bytes filled in: the length of the descriptor or 436 * of the provided buffer, whichever is less. 437 */ 438 static unsigned 439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 440 { 441 char buf[100]; 442 char const *s; 443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 444 445 /* language ids */ 446 switch (id) { 447 case 0: 448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 450 if (len > 4) 451 len = 4; 452 memcpy(data, langids, len); 453 return len; 454 case 1: 455 /* Serial number */ 456 s = hcd->self.bus_name; 457 break; 458 case 2: 459 /* Product name */ 460 s = hcd->product_desc; 461 break; 462 case 3: 463 /* Manufacturer */ 464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 465 init_utsname()->release, hcd->driver->description); 466 s = buf; 467 break; 468 default: 469 /* Can't happen; caller guarantees it */ 470 return 0; 471 } 472 473 return ascii2desc(s, data, len); 474 } 475 476 477 /* Root hub control transfers execute synchronously */ 478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 479 { 480 struct usb_ctrlrequest *cmd; 481 u16 typeReq, wValue, wIndex, wLength; 482 u8 *ubuf = urb->transfer_buffer; 483 unsigned len = 0; 484 int status; 485 u8 patch_wakeup = 0; 486 u8 patch_protocol = 0; 487 u16 tbuf_size; 488 u8 *tbuf = NULL; 489 const u8 *bufp; 490 491 might_sleep(); 492 493 spin_lock_irq(&hcd_root_hub_lock); 494 status = usb_hcd_link_urb_to_ep(hcd, urb); 495 spin_unlock_irq(&hcd_root_hub_lock); 496 if (status) 497 return status; 498 urb->hcpriv = hcd; /* Indicate it's queued */ 499 500 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 502 wValue = le16_to_cpu (cmd->wValue); 503 wIndex = le16_to_cpu (cmd->wIndex); 504 wLength = le16_to_cpu (cmd->wLength); 505 506 if (wLength > urb->transfer_buffer_length) 507 goto error; 508 509 /* 510 * tbuf should be at least as big as the 511 * USB hub descriptor. 512 */ 513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 514 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 515 if (!tbuf) { 516 status = -ENOMEM; 517 goto err_alloc; 518 } 519 520 bufp = tbuf; 521 522 523 urb->actual_length = 0; 524 switch (typeReq) { 525 526 /* DEVICE REQUESTS */ 527 528 /* The root hub's remote wakeup enable bit is implemented using 529 * driver model wakeup flags. If this system supports wakeup 530 * through USB, userspace may change the default "allow wakeup" 531 * policy through sysfs or these calls. 532 * 533 * Most root hubs support wakeup from downstream devices, for 534 * runtime power management (disabling USB clocks and reducing 535 * VBUS power usage). However, not all of them do so; silicon, 536 * board, and BIOS bugs here are not uncommon, so these can't 537 * be treated quite like external hubs. 538 * 539 * Likewise, not all root hubs will pass wakeup events upstream, 540 * to wake up the whole system. So don't assume root hub and 541 * controller capabilities are identical. 542 */ 543 544 case DeviceRequest | USB_REQ_GET_STATUS: 545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 546 << USB_DEVICE_REMOTE_WAKEUP) 547 | (1 << USB_DEVICE_SELF_POWERED); 548 tbuf[1] = 0; 549 len = 2; 550 break; 551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 552 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 554 else 555 goto error; 556 break; 557 case DeviceOutRequest | USB_REQ_SET_FEATURE: 558 if (device_can_wakeup(&hcd->self.root_hub->dev) 559 && wValue == USB_DEVICE_REMOTE_WAKEUP) 560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 561 else 562 goto error; 563 break; 564 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 565 tbuf[0] = 1; 566 len = 1; 567 fallthrough; 568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 569 break; 570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 571 switch (wValue & 0xff00) { 572 case USB_DT_DEVICE << 8: 573 switch (hcd->speed) { 574 case HCD_USB32: 575 case HCD_USB31: 576 bufp = usb31_rh_dev_descriptor; 577 break; 578 case HCD_USB3: 579 bufp = usb3_rh_dev_descriptor; 580 break; 581 case HCD_USB25: 582 bufp = usb25_rh_dev_descriptor; 583 break; 584 case HCD_USB2: 585 bufp = usb2_rh_dev_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = usb11_rh_dev_descriptor; 589 break; 590 default: 591 goto error; 592 } 593 len = 18; 594 if (hcd->has_tt) 595 patch_protocol = 1; 596 break; 597 case USB_DT_CONFIG << 8: 598 switch (hcd->speed) { 599 case HCD_USB32: 600 case HCD_USB31: 601 case HCD_USB3: 602 bufp = ss_rh_config_descriptor; 603 len = sizeof ss_rh_config_descriptor; 604 break; 605 case HCD_USB25: 606 case HCD_USB2: 607 bufp = hs_rh_config_descriptor; 608 len = sizeof hs_rh_config_descriptor; 609 break; 610 case HCD_USB11: 611 bufp = fs_rh_config_descriptor; 612 len = sizeof fs_rh_config_descriptor; 613 break; 614 default: 615 goto error; 616 } 617 if (device_can_wakeup(&hcd->self.root_hub->dev)) 618 patch_wakeup = 1; 619 break; 620 case USB_DT_STRING << 8: 621 if ((wValue & 0xff) < 4) 622 urb->actual_length = rh_string(wValue & 0xff, 623 hcd, ubuf, wLength); 624 else /* unsupported IDs --> "protocol stall" */ 625 goto error; 626 break; 627 case USB_DT_BOS << 8: 628 goto nongeneric; 629 default: 630 goto error; 631 } 632 break; 633 case DeviceRequest | USB_REQ_GET_INTERFACE: 634 tbuf[0] = 0; 635 len = 1; 636 fallthrough; 637 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 638 break; 639 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 640 /* wValue == urb->dev->devaddr */ 641 dev_dbg (hcd->self.controller, "root hub device address %d\n", 642 wValue); 643 break; 644 645 /* INTERFACE REQUESTS (no defined feature/status flags) */ 646 647 /* ENDPOINT REQUESTS */ 648 649 case EndpointRequest | USB_REQ_GET_STATUS: 650 /* ENDPOINT_HALT flag */ 651 tbuf[0] = 0; 652 tbuf[1] = 0; 653 len = 2; 654 fallthrough; 655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 656 case EndpointOutRequest | USB_REQ_SET_FEATURE: 657 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 658 break; 659 660 /* CLASS REQUESTS (and errors) */ 661 662 default: 663 nongeneric: 664 /* non-generic request */ 665 switch (typeReq) { 666 case GetHubStatus: 667 len = 4; 668 break; 669 case GetPortStatus: 670 if (wValue == HUB_PORT_STATUS) 671 len = 4; 672 else 673 /* other port status types return 8 bytes */ 674 len = 8; 675 break; 676 case GetHubDescriptor: 677 len = sizeof (struct usb_hub_descriptor); 678 break; 679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 680 /* len is returned by hub_control */ 681 break; 682 } 683 status = hcd->driver->hub_control (hcd, 684 typeReq, wValue, wIndex, 685 tbuf, wLength); 686 687 if (typeReq == GetHubDescriptor) 688 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 689 (struct usb_hub_descriptor *)tbuf); 690 break; 691 error: 692 /* "protocol stall" on error */ 693 status = -EPIPE; 694 } 695 696 if (status < 0) { 697 len = 0; 698 if (status != -EPIPE) { 699 dev_dbg (hcd->self.controller, 700 "CTRL: TypeReq=0x%x val=0x%x " 701 "idx=0x%x len=%d ==> %d\n", 702 typeReq, wValue, wIndex, 703 wLength, status); 704 } 705 } else if (status > 0) { 706 /* hub_control may return the length of data copied. */ 707 len = status; 708 status = 0; 709 } 710 if (len) { 711 if (urb->transfer_buffer_length < len) 712 len = urb->transfer_buffer_length; 713 urb->actual_length = len; 714 /* always USB_DIR_IN, toward host */ 715 memcpy (ubuf, bufp, len); 716 717 /* report whether RH hardware supports remote wakeup */ 718 if (patch_wakeup && 719 len > offsetof (struct usb_config_descriptor, 720 bmAttributes)) 721 ((struct usb_config_descriptor *)ubuf)->bmAttributes 722 |= USB_CONFIG_ATT_WAKEUP; 723 724 /* report whether RH hardware has an integrated TT */ 725 if (patch_protocol && 726 len > offsetof(struct usb_device_descriptor, 727 bDeviceProtocol)) 728 ((struct usb_device_descriptor *) ubuf)-> 729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 730 } 731 732 kfree(tbuf); 733 err_alloc: 734 735 /* any errors get returned through the urb completion */ 736 spin_lock_irq(&hcd_root_hub_lock); 737 usb_hcd_unlink_urb_from_ep(hcd, urb); 738 usb_hcd_giveback_urb(hcd, urb, status); 739 spin_unlock_irq(&hcd_root_hub_lock); 740 return 0; 741 } 742 743 /*-------------------------------------------------------------------------*/ 744 745 /* 746 * Root Hub interrupt transfers are polled using a timer if the 747 * driver requests it; otherwise the driver is responsible for 748 * calling usb_hcd_poll_rh_status() when an event occurs. 749 * 750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. 751 */ 752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 753 { 754 struct urb *urb; 755 int length; 756 int status; 757 unsigned long flags; 758 char buffer[6]; /* Any root hubs with > 31 ports? */ 759 760 if (unlikely(!hcd->rh_pollable)) 761 return; 762 if (!hcd->uses_new_polling && !hcd->status_urb) 763 return; 764 765 length = hcd->driver->hub_status_data(hcd, buffer); 766 if (length > 0) { 767 768 /* try to complete the status urb */ 769 spin_lock_irqsave(&hcd_root_hub_lock, flags); 770 urb = hcd->status_urb; 771 if (urb) { 772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 773 hcd->status_urb = NULL; 774 if (urb->transfer_buffer_length >= length) { 775 status = 0; 776 } else { 777 status = -EOVERFLOW; 778 length = urb->transfer_buffer_length; 779 } 780 urb->actual_length = length; 781 memcpy(urb->transfer_buffer, buffer, length); 782 783 usb_hcd_unlink_urb_from_ep(hcd, urb); 784 usb_hcd_giveback_urb(hcd, urb, status); 785 } else { 786 length = 0; 787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 788 } 789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 790 } 791 792 /* The USB 2.0 spec says 256 ms. This is close enough and won't 793 * exceed that limit if HZ is 100. The math is more clunky than 794 * maybe expected, this is to make sure that all timers for USB devices 795 * fire at the same time to give the CPU a break in between */ 796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 797 (length == 0 && hcd->status_urb != NULL)) 798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 799 } 800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 801 802 /* timer callback */ 803 static void rh_timer_func (struct timer_list *t) 804 { 805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 806 807 usb_hcd_poll_rh_status(_hcd); 808 } 809 810 /*-------------------------------------------------------------------------*/ 811 812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 813 { 814 int retval; 815 unsigned long flags; 816 unsigned len = 1 + (urb->dev->maxchild / 8); 817 818 spin_lock_irqsave (&hcd_root_hub_lock, flags); 819 if (hcd->status_urb || urb->transfer_buffer_length < len) { 820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 821 retval = -EINVAL; 822 goto done; 823 } 824 825 retval = usb_hcd_link_urb_to_ep(hcd, urb); 826 if (retval) 827 goto done; 828 829 hcd->status_urb = urb; 830 urb->hcpriv = hcd; /* indicate it's queued */ 831 if (!hcd->uses_new_polling) 832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 833 834 /* If a status change has already occurred, report it ASAP */ 835 else if (HCD_POLL_PENDING(hcd)) 836 mod_timer(&hcd->rh_timer, jiffies); 837 retval = 0; 838 done: 839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 840 return retval; 841 } 842 843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 844 { 845 if (usb_endpoint_xfer_int(&urb->ep->desc)) 846 return rh_queue_status (hcd, urb); 847 if (usb_endpoint_xfer_control(&urb->ep->desc)) 848 return rh_call_control (hcd, urb); 849 return -EINVAL; 850 } 851 852 /*-------------------------------------------------------------------------*/ 853 854 /* Unlinks of root-hub control URBs are legal, but they don't do anything 855 * since these URBs always execute synchronously. 856 */ 857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 858 { 859 unsigned long flags; 860 int rc; 861 862 spin_lock_irqsave(&hcd_root_hub_lock, flags); 863 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 864 if (rc) 865 goto done; 866 867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 868 ; /* Do nothing */ 869 870 } else { /* Status URB */ 871 if (!hcd->uses_new_polling) 872 del_timer (&hcd->rh_timer); 873 if (urb == hcd->status_urb) { 874 hcd->status_urb = NULL; 875 usb_hcd_unlink_urb_from_ep(hcd, urb); 876 usb_hcd_giveback_urb(hcd, urb, status); 877 } 878 } 879 done: 880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 881 return rc; 882 } 883 884 885 /*-------------------------------------------------------------------------*/ 886 887 /** 888 * usb_bus_init - shared initialization code 889 * @bus: the bus structure being initialized 890 * 891 * This code is used to initialize a usb_bus structure, memory for which is 892 * separately managed. 893 */ 894 static void usb_bus_init (struct usb_bus *bus) 895 { 896 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 897 898 bus->devnum_next = 1; 899 900 bus->root_hub = NULL; 901 bus->busnum = -1; 902 bus->bandwidth_allocated = 0; 903 bus->bandwidth_int_reqs = 0; 904 bus->bandwidth_isoc_reqs = 0; 905 mutex_init(&bus->devnum_next_mutex); 906 } 907 908 /*-------------------------------------------------------------------------*/ 909 910 /** 911 * usb_register_bus - registers the USB host controller with the usb core 912 * @bus: pointer to the bus to register 913 * 914 * Context: task context, might sleep. 915 * 916 * Assigns a bus number, and links the controller into usbcore data 917 * structures so that it can be seen by scanning the bus list. 918 * 919 * Return: 0 if successful. A negative error code otherwise. 920 */ 921 static int usb_register_bus(struct usb_bus *bus) 922 { 923 int result = -E2BIG; 924 int busnum; 925 926 mutex_lock(&usb_bus_idr_lock); 927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 928 if (busnum < 0) { 929 pr_err("%s: failed to get bus number\n", usbcore_name); 930 goto error_find_busnum; 931 } 932 bus->busnum = busnum; 933 mutex_unlock(&usb_bus_idr_lock); 934 935 usb_notify_add_bus(bus); 936 937 dev_info (bus->controller, "new USB bus registered, assigned bus " 938 "number %d\n", bus->busnum); 939 return 0; 940 941 error_find_busnum: 942 mutex_unlock(&usb_bus_idr_lock); 943 return result; 944 } 945 946 /** 947 * usb_deregister_bus - deregisters the USB host controller 948 * @bus: pointer to the bus to deregister 949 * 950 * Context: task context, might sleep. 951 * 952 * Recycles the bus number, and unlinks the controller from usbcore data 953 * structures so that it won't be seen by scanning the bus list. 954 */ 955 static void usb_deregister_bus (struct usb_bus *bus) 956 { 957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 958 959 /* 960 * NOTE: make sure that all the devices are removed by the 961 * controller code, as well as having it call this when cleaning 962 * itself up 963 */ 964 mutex_lock(&usb_bus_idr_lock); 965 idr_remove(&usb_bus_idr, bus->busnum); 966 mutex_unlock(&usb_bus_idr_lock); 967 968 usb_notify_remove_bus(bus); 969 } 970 971 /** 972 * register_root_hub - called by usb_add_hcd() to register a root hub 973 * @hcd: host controller for this root hub 974 * 975 * This function registers the root hub with the USB subsystem. It sets up 976 * the device properly in the device tree and then calls usb_new_device() 977 * to register the usb device. It also assigns the root hub's USB address 978 * (always 1). 979 * 980 * Return: 0 if successful. A negative error code otherwise. 981 */ 982 static int register_root_hub(struct usb_hcd *hcd) 983 { 984 struct device *parent_dev = hcd->self.controller; 985 struct usb_device *usb_dev = hcd->self.root_hub; 986 const int devnum = 1; 987 int retval; 988 989 usb_dev->devnum = devnum; 990 usb_dev->bus->devnum_next = devnum + 1; 991 set_bit (devnum, usb_dev->bus->devmap.devicemap); 992 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 993 994 mutex_lock(&usb_bus_idr_lock); 995 996 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 997 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 998 if (retval != sizeof usb_dev->descriptor) { 999 mutex_unlock(&usb_bus_idr_lock); 1000 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1001 dev_name(&usb_dev->dev), retval); 1002 return (retval < 0) ? retval : -EMSGSIZE; 1003 } 1004 1005 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1006 retval = usb_get_bos_descriptor(usb_dev); 1007 if (!retval) { 1008 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1009 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1010 mutex_unlock(&usb_bus_idr_lock); 1011 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1012 dev_name(&usb_dev->dev), retval); 1013 return retval; 1014 } 1015 } 1016 1017 retval = usb_new_device (usb_dev); 1018 if (retval) { 1019 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1020 dev_name(&usb_dev->dev), retval); 1021 } else { 1022 spin_lock_irq (&hcd_root_hub_lock); 1023 hcd->rh_registered = 1; 1024 spin_unlock_irq (&hcd_root_hub_lock); 1025 1026 /* Did the HC die before the root hub was registered? */ 1027 if (HCD_DEAD(hcd)) 1028 usb_hc_died (hcd); /* This time clean up */ 1029 } 1030 mutex_unlock(&usb_bus_idr_lock); 1031 1032 return retval; 1033 } 1034 1035 /* 1036 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1037 * @bus: the bus which the root hub belongs to 1038 * @portnum: the port which is being resumed 1039 * 1040 * HCDs should call this function when they know that a resume signal is 1041 * being sent to a root-hub port. The root hub will be prevented from 1042 * going into autosuspend until usb_hcd_end_port_resume() is called. 1043 * 1044 * The bus's private lock must be held by the caller. 1045 */ 1046 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1047 { 1048 unsigned bit = 1 << portnum; 1049 1050 if (!(bus->resuming_ports & bit)) { 1051 bus->resuming_ports |= bit; 1052 pm_runtime_get_noresume(&bus->root_hub->dev); 1053 } 1054 } 1055 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1056 1057 /* 1058 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1059 * @bus: the bus which the root hub belongs to 1060 * @portnum: the port which is being resumed 1061 * 1062 * HCDs should call this function when they know that a resume signal has 1063 * stopped being sent to a root-hub port. The root hub will be allowed to 1064 * autosuspend again. 1065 * 1066 * The bus's private lock must be held by the caller. 1067 */ 1068 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1069 { 1070 unsigned bit = 1 << portnum; 1071 1072 if (bus->resuming_ports & bit) { 1073 bus->resuming_ports &= ~bit; 1074 pm_runtime_put_noidle(&bus->root_hub->dev); 1075 } 1076 } 1077 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1078 1079 /*-------------------------------------------------------------------------*/ 1080 1081 /** 1082 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1083 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1084 * @is_input: true iff the transaction sends data to the host 1085 * @isoc: true for isochronous transactions, false for interrupt ones 1086 * @bytecount: how many bytes in the transaction. 1087 * 1088 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1089 * 1090 * Note: 1091 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1092 * scheduled in software, this function is only used for such scheduling. 1093 */ 1094 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1095 { 1096 unsigned long tmp; 1097 1098 switch (speed) { 1099 case USB_SPEED_LOW: /* INTR only */ 1100 if (is_input) { 1101 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1102 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1103 } else { 1104 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1105 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1106 } 1107 case USB_SPEED_FULL: /* ISOC or INTR */ 1108 if (isoc) { 1109 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1110 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1111 } else { 1112 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1113 return 9107L + BW_HOST_DELAY + tmp; 1114 } 1115 case USB_SPEED_HIGH: /* ISOC or INTR */ 1116 /* FIXME adjust for input vs output */ 1117 if (isoc) 1118 tmp = HS_NSECS_ISO (bytecount); 1119 else 1120 tmp = HS_NSECS (bytecount); 1121 return tmp; 1122 default: 1123 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1124 return -1; 1125 } 1126 } 1127 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1128 1129 1130 /*-------------------------------------------------------------------------*/ 1131 1132 /* 1133 * Generic HC operations. 1134 */ 1135 1136 /*-------------------------------------------------------------------------*/ 1137 1138 /** 1139 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1140 * @hcd: host controller to which @urb was submitted 1141 * @urb: URB being submitted 1142 * 1143 * Host controller drivers should call this routine in their enqueue() 1144 * method. The HCD's private spinlock must be held and interrupts must 1145 * be disabled. The actions carried out here are required for URB 1146 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1147 * 1148 * Return: 0 for no error, otherwise a negative error code (in which case 1149 * the enqueue() method must fail). If no error occurs but enqueue() fails 1150 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1151 * the private spinlock and returning. 1152 */ 1153 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1154 { 1155 int rc = 0; 1156 1157 spin_lock(&hcd_urb_list_lock); 1158 1159 /* Check that the URB isn't being killed */ 1160 if (unlikely(atomic_read(&urb->reject))) { 1161 rc = -EPERM; 1162 goto done; 1163 } 1164 1165 if (unlikely(!urb->ep->enabled)) { 1166 rc = -ENOENT; 1167 goto done; 1168 } 1169 1170 if (unlikely(!urb->dev->can_submit)) { 1171 rc = -EHOSTUNREACH; 1172 goto done; 1173 } 1174 1175 /* 1176 * Check the host controller's state and add the URB to the 1177 * endpoint's queue. 1178 */ 1179 if (HCD_RH_RUNNING(hcd)) { 1180 urb->unlinked = 0; 1181 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1182 } else { 1183 rc = -ESHUTDOWN; 1184 goto done; 1185 } 1186 done: 1187 spin_unlock(&hcd_urb_list_lock); 1188 return rc; 1189 } 1190 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1191 1192 /** 1193 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1194 * @hcd: host controller to which @urb was submitted 1195 * @urb: URB being checked for unlinkability 1196 * @status: error code to store in @urb if the unlink succeeds 1197 * 1198 * Host controller drivers should call this routine in their dequeue() 1199 * method. The HCD's private spinlock must be held and interrupts must 1200 * be disabled. The actions carried out here are required for making 1201 * sure than an unlink is valid. 1202 * 1203 * Return: 0 for no error, otherwise a negative error code (in which case 1204 * the dequeue() method must fail). The possible error codes are: 1205 * 1206 * -EIDRM: @urb was not submitted or has already completed. 1207 * The completion function may not have been called yet. 1208 * 1209 * -EBUSY: @urb has already been unlinked. 1210 */ 1211 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1212 int status) 1213 { 1214 struct list_head *tmp; 1215 1216 /* insist the urb is still queued */ 1217 list_for_each(tmp, &urb->ep->urb_list) { 1218 if (tmp == &urb->urb_list) 1219 break; 1220 } 1221 if (tmp != &urb->urb_list) 1222 return -EIDRM; 1223 1224 /* Any status except -EINPROGRESS means something already started to 1225 * unlink this URB from the hardware. So there's no more work to do. 1226 */ 1227 if (urb->unlinked) 1228 return -EBUSY; 1229 urb->unlinked = status; 1230 return 0; 1231 } 1232 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1233 1234 /** 1235 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1236 * @hcd: host controller to which @urb was submitted 1237 * @urb: URB being unlinked 1238 * 1239 * Host controller drivers should call this routine before calling 1240 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1241 * interrupts must be disabled. The actions carried out here are required 1242 * for URB completion. 1243 */ 1244 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1245 { 1246 /* clear all state linking urb to this dev (and hcd) */ 1247 spin_lock(&hcd_urb_list_lock); 1248 list_del_init(&urb->urb_list); 1249 spin_unlock(&hcd_urb_list_lock); 1250 } 1251 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1252 1253 /* 1254 * Some usb host controllers can only perform dma using a small SRAM area. 1255 * The usb core itself is however optimized for host controllers that can dma 1256 * using regular system memory - like pci devices doing bus mastering. 1257 * 1258 * To support host controllers with limited dma capabilities we provide dma 1259 * bounce buffers. This feature can be enabled by initializing 1260 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1261 * 1262 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1263 * data for dma using the genalloc API. 1264 * 1265 * So, to summarize... 1266 * 1267 * - We need "local" memory, canonical example being 1268 * a small SRAM on a discrete controller being the 1269 * only memory that the controller can read ... 1270 * (a) "normal" kernel memory is no good, and 1271 * (b) there's not enough to share 1272 * 1273 * - So we use that, even though the primary requirement 1274 * is that the memory be "local" (hence addressable 1275 * by that device), not "coherent". 1276 * 1277 */ 1278 1279 static int hcd_alloc_coherent(struct usb_bus *bus, 1280 gfp_t mem_flags, dma_addr_t *dma_handle, 1281 void **vaddr_handle, size_t size, 1282 enum dma_data_direction dir) 1283 { 1284 unsigned char *vaddr; 1285 1286 if (*vaddr_handle == NULL) { 1287 WARN_ON_ONCE(1); 1288 return -EFAULT; 1289 } 1290 1291 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long), 1292 mem_flags, dma_handle); 1293 if (!vaddr) 1294 return -ENOMEM; 1295 1296 /* 1297 * Store the virtual address of the buffer at the end 1298 * of the allocated dma buffer. The size of the buffer 1299 * may be uneven so use unaligned functions instead 1300 * of just rounding up. It makes sense to optimize for 1301 * memory footprint over access speed since the amount 1302 * of memory available for dma may be limited. 1303 */ 1304 put_unaligned((unsigned long)*vaddr_handle, 1305 (unsigned long *)(vaddr + size)); 1306 1307 if (dir == DMA_TO_DEVICE) 1308 memcpy(vaddr, *vaddr_handle, size); 1309 1310 *vaddr_handle = vaddr; 1311 return 0; 1312 } 1313 1314 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1315 void **vaddr_handle, size_t size, 1316 enum dma_data_direction dir) 1317 { 1318 unsigned char *vaddr = *vaddr_handle; 1319 1320 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1321 1322 if (dir == DMA_FROM_DEVICE) 1323 memcpy(vaddr, *vaddr_handle, size); 1324 1325 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1326 1327 *vaddr_handle = vaddr; 1328 *dma_handle = 0; 1329 } 1330 1331 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1332 { 1333 if (IS_ENABLED(CONFIG_HAS_DMA) && 1334 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1335 dma_unmap_single(hcd->self.sysdev, 1336 urb->setup_dma, 1337 sizeof(struct usb_ctrlrequest), 1338 DMA_TO_DEVICE); 1339 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1340 hcd_free_coherent(urb->dev->bus, 1341 &urb->setup_dma, 1342 (void **) &urb->setup_packet, 1343 sizeof(struct usb_ctrlrequest), 1344 DMA_TO_DEVICE); 1345 1346 /* Make it safe to call this routine more than once */ 1347 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1348 } 1349 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1350 1351 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1352 { 1353 if (hcd->driver->unmap_urb_for_dma) 1354 hcd->driver->unmap_urb_for_dma(hcd, urb); 1355 else 1356 usb_hcd_unmap_urb_for_dma(hcd, urb); 1357 } 1358 1359 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1360 { 1361 enum dma_data_direction dir; 1362 1363 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1364 1365 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1366 if (IS_ENABLED(CONFIG_HAS_DMA) && 1367 (urb->transfer_flags & URB_DMA_MAP_SG)) 1368 dma_unmap_sg(hcd->self.sysdev, 1369 urb->sg, 1370 urb->num_sgs, 1371 dir); 1372 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1373 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1374 dma_unmap_page(hcd->self.sysdev, 1375 urb->transfer_dma, 1376 urb->transfer_buffer_length, 1377 dir); 1378 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1379 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1380 dma_unmap_single(hcd->self.sysdev, 1381 urb->transfer_dma, 1382 urb->transfer_buffer_length, 1383 dir); 1384 else if (urb->transfer_flags & URB_MAP_LOCAL) 1385 hcd_free_coherent(urb->dev->bus, 1386 &urb->transfer_dma, 1387 &urb->transfer_buffer, 1388 urb->transfer_buffer_length, 1389 dir); 1390 1391 /* Make it safe to call this routine more than once */ 1392 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1393 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1394 } 1395 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1396 1397 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1398 gfp_t mem_flags) 1399 { 1400 if (hcd->driver->map_urb_for_dma) 1401 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1402 else 1403 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1404 } 1405 1406 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1407 gfp_t mem_flags) 1408 { 1409 enum dma_data_direction dir; 1410 int ret = 0; 1411 1412 /* Map the URB's buffers for DMA access. 1413 * Lower level HCD code should use *_dma exclusively, 1414 * unless it uses pio or talks to another transport, 1415 * or uses the provided scatter gather list for bulk. 1416 */ 1417 1418 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1419 if (hcd->self.uses_pio_for_control) 1420 return ret; 1421 if (hcd->localmem_pool) { 1422 ret = hcd_alloc_coherent( 1423 urb->dev->bus, mem_flags, 1424 &urb->setup_dma, 1425 (void **)&urb->setup_packet, 1426 sizeof(struct usb_ctrlrequest), 1427 DMA_TO_DEVICE); 1428 if (ret) 1429 return ret; 1430 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1431 } else if (hcd_uses_dma(hcd)) { 1432 if (object_is_on_stack(urb->setup_packet)) { 1433 WARN_ONCE(1, "setup packet is on stack\n"); 1434 return -EAGAIN; 1435 } 1436 1437 urb->setup_dma = dma_map_single( 1438 hcd->self.sysdev, 1439 urb->setup_packet, 1440 sizeof(struct usb_ctrlrequest), 1441 DMA_TO_DEVICE); 1442 if (dma_mapping_error(hcd->self.sysdev, 1443 urb->setup_dma)) 1444 return -EAGAIN; 1445 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1446 } 1447 } 1448 1449 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1450 if (urb->transfer_buffer_length != 0 1451 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1452 if (hcd->localmem_pool) { 1453 ret = hcd_alloc_coherent( 1454 urb->dev->bus, mem_flags, 1455 &urb->transfer_dma, 1456 &urb->transfer_buffer, 1457 urb->transfer_buffer_length, 1458 dir); 1459 if (ret == 0) 1460 urb->transfer_flags |= URB_MAP_LOCAL; 1461 } else if (hcd_uses_dma(hcd)) { 1462 if (urb->num_sgs) { 1463 int n; 1464 1465 /* We don't support sg for isoc transfers ! */ 1466 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1467 WARN_ON(1); 1468 return -EINVAL; 1469 } 1470 1471 n = dma_map_sg( 1472 hcd->self.sysdev, 1473 urb->sg, 1474 urb->num_sgs, 1475 dir); 1476 if (n <= 0) 1477 ret = -EAGAIN; 1478 else 1479 urb->transfer_flags |= URB_DMA_MAP_SG; 1480 urb->num_mapped_sgs = n; 1481 if (n != urb->num_sgs) 1482 urb->transfer_flags |= 1483 URB_DMA_SG_COMBINED; 1484 } else if (urb->sg) { 1485 struct scatterlist *sg = urb->sg; 1486 urb->transfer_dma = dma_map_page( 1487 hcd->self.sysdev, 1488 sg_page(sg), 1489 sg->offset, 1490 urb->transfer_buffer_length, 1491 dir); 1492 if (dma_mapping_error(hcd->self.sysdev, 1493 urb->transfer_dma)) 1494 ret = -EAGAIN; 1495 else 1496 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1497 } else if (object_is_on_stack(urb->transfer_buffer)) { 1498 WARN_ONCE(1, "transfer buffer is on stack\n"); 1499 ret = -EAGAIN; 1500 } else { 1501 urb->transfer_dma = dma_map_single( 1502 hcd->self.sysdev, 1503 urb->transfer_buffer, 1504 urb->transfer_buffer_length, 1505 dir); 1506 if (dma_mapping_error(hcd->self.sysdev, 1507 urb->transfer_dma)) 1508 ret = -EAGAIN; 1509 else 1510 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1511 } 1512 } 1513 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1514 URB_SETUP_MAP_LOCAL))) 1515 usb_hcd_unmap_urb_for_dma(hcd, urb); 1516 } 1517 return ret; 1518 } 1519 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1520 1521 /*-------------------------------------------------------------------------*/ 1522 1523 /* may be called in any context with a valid urb->dev usecount 1524 * caller surrenders "ownership" of urb 1525 * expects usb_submit_urb() to have sanity checked and conditioned all 1526 * inputs in the urb 1527 */ 1528 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1529 { 1530 int status; 1531 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1532 1533 /* increment urb's reference count as part of giving it to the HCD 1534 * (which will control it). HCD guarantees that it either returns 1535 * an error or calls giveback(), but not both. 1536 */ 1537 usb_get_urb(urb); 1538 atomic_inc(&urb->use_count); 1539 atomic_inc(&urb->dev->urbnum); 1540 usbmon_urb_submit(&hcd->self, urb); 1541 1542 /* NOTE requirements on root-hub callers (usbfs and the hub 1543 * driver, for now): URBs' urb->transfer_buffer must be 1544 * valid and usb_buffer_{sync,unmap}() not be needed, since 1545 * they could clobber root hub response data. Also, control 1546 * URBs must be submitted in process context with interrupts 1547 * enabled. 1548 */ 1549 1550 if (is_root_hub(urb->dev)) { 1551 status = rh_urb_enqueue(hcd, urb); 1552 } else { 1553 status = map_urb_for_dma(hcd, urb, mem_flags); 1554 if (likely(status == 0)) { 1555 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1556 if (unlikely(status)) 1557 unmap_urb_for_dma(hcd, urb); 1558 } 1559 } 1560 1561 if (unlikely(status)) { 1562 usbmon_urb_submit_error(&hcd->self, urb, status); 1563 urb->hcpriv = NULL; 1564 INIT_LIST_HEAD(&urb->urb_list); 1565 atomic_dec(&urb->use_count); 1566 /* 1567 * Order the write of urb->use_count above before the read 1568 * of urb->reject below. Pairs with the memory barriers in 1569 * usb_kill_urb() and usb_poison_urb(). 1570 */ 1571 smp_mb__after_atomic(); 1572 1573 atomic_dec(&urb->dev->urbnum); 1574 if (atomic_read(&urb->reject)) 1575 wake_up(&usb_kill_urb_queue); 1576 usb_put_urb(urb); 1577 } 1578 return status; 1579 } 1580 1581 /*-------------------------------------------------------------------------*/ 1582 1583 /* this makes the hcd giveback() the urb more quickly, by kicking it 1584 * off hardware queues (which may take a while) and returning it as 1585 * soon as practical. we've already set up the urb's return status, 1586 * but we can't know if the callback completed already. 1587 */ 1588 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1589 { 1590 int value; 1591 1592 if (is_root_hub(urb->dev)) 1593 value = usb_rh_urb_dequeue(hcd, urb, status); 1594 else { 1595 1596 /* The only reason an HCD might fail this call is if 1597 * it has not yet fully queued the urb to begin with. 1598 * Such failures should be harmless. */ 1599 value = hcd->driver->urb_dequeue(hcd, urb, status); 1600 } 1601 return value; 1602 } 1603 1604 /* 1605 * called in any context 1606 * 1607 * caller guarantees urb won't be recycled till both unlink() 1608 * and the urb's completion function return 1609 */ 1610 int usb_hcd_unlink_urb (struct urb *urb, int status) 1611 { 1612 struct usb_hcd *hcd; 1613 struct usb_device *udev = urb->dev; 1614 int retval = -EIDRM; 1615 unsigned long flags; 1616 1617 /* Prevent the device and bus from going away while 1618 * the unlink is carried out. If they are already gone 1619 * then urb->use_count must be 0, since disconnected 1620 * devices can't have any active URBs. 1621 */ 1622 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1623 if (atomic_read(&urb->use_count) > 0) { 1624 retval = 0; 1625 usb_get_dev(udev); 1626 } 1627 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1628 if (retval == 0) { 1629 hcd = bus_to_hcd(urb->dev->bus); 1630 retval = unlink1(hcd, urb, status); 1631 if (retval == 0) 1632 retval = -EINPROGRESS; 1633 else if (retval != -EIDRM && retval != -EBUSY) 1634 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1635 urb, retval); 1636 usb_put_dev(udev); 1637 } 1638 return retval; 1639 } 1640 1641 /*-------------------------------------------------------------------------*/ 1642 1643 static void __usb_hcd_giveback_urb(struct urb *urb) 1644 { 1645 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1646 struct usb_anchor *anchor = urb->anchor; 1647 int status = urb->unlinked; 1648 1649 urb->hcpriv = NULL; 1650 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1651 urb->actual_length < urb->transfer_buffer_length && 1652 !status)) 1653 status = -EREMOTEIO; 1654 1655 unmap_urb_for_dma(hcd, urb); 1656 usbmon_urb_complete(&hcd->self, urb, status); 1657 usb_anchor_suspend_wakeups(anchor); 1658 usb_unanchor_urb(urb); 1659 if (likely(status == 0)) 1660 usb_led_activity(USB_LED_EVENT_HOST); 1661 1662 /* pass ownership to the completion handler */ 1663 urb->status = status; 1664 /* 1665 * This function can be called in task context inside another remote 1666 * coverage collection section, but kcov doesn't support that kind of 1667 * recursion yet. Only collect coverage in softirq context for now. 1668 */ 1669 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum); 1670 urb->complete(urb); 1671 kcov_remote_stop_softirq(); 1672 1673 usb_anchor_resume_wakeups(anchor); 1674 atomic_dec(&urb->use_count); 1675 /* 1676 * Order the write of urb->use_count above before the read 1677 * of urb->reject below. Pairs with the memory barriers in 1678 * usb_kill_urb() and usb_poison_urb(). 1679 */ 1680 smp_mb__after_atomic(); 1681 1682 if (unlikely(atomic_read(&urb->reject))) 1683 wake_up(&usb_kill_urb_queue); 1684 usb_put_urb(urb); 1685 } 1686 1687 static void usb_giveback_urb_bh(struct tasklet_struct *t) 1688 { 1689 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh); 1690 struct list_head local_list; 1691 1692 spin_lock_irq(&bh->lock); 1693 bh->running = true; 1694 list_replace_init(&bh->head, &local_list); 1695 spin_unlock_irq(&bh->lock); 1696 1697 while (!list_empty(&local_list)) { 1698 struct urb *urb; 1699 1700 urb = list_entry(local_list.next, struct urb, urb_list); 1701 list_del_init(&urb->urb_list); 1702 bh->completing_ep = urb->ep; 1703 __usb_hcd_giveback_urb(urb); 1704 bh->completing_ep = NULL; 1705 } 1706 1707 /* 1708 * giveback new URBs next time to prevent this function 1709 * from not exiting for a long time. 1710 */ 1711 spin_lock_irq(&bh->lock); 1712 if (!list_empty(&bh->head)) { 1713 if (bh->high_prio) 1714 tasklet_hi_schedule(&bh->bh); 1715 else 1716 tasklet_schedule(&bh->bh); 1717 } 1718 bh->running = false; 1719 spin_unlock_irq(&bh->lock); 1720 } 1721 1722 /** 1723 * usb_hcd_giveback_urb - return URB from HCD to device driver 1724 * @hcd: host controller returning the URB 1725 * @urb: urb being returned to the USB device driver. 1726 * @status: completion status code for the URB. 1727 * 1728 * Context: atomic. The completion callback is invoked in caller's context. 1729 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet 1730 * context (except for URBs submitted to the root hub which always complete in 1731 * caller's context). 1732 * 1733 * This hands the URB from HCD to its USB device driver, using its 1734 * completion function. The HCD has freed all per-urb resources 1735 * (and is done using urb->hcpriv). It also released all HCD locks; 1736 * the device driver won't cause problems if it frees, modifies, 1737 * or resubmits this URB. 1738 * 1739 * If @urb was unlinked, the value of @status will be overridden by 1740 * @urb->unlinked. Erroneous short transfers are detected in case 1741 * the HCD hasn't checked for them. 1742 */ 1743 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1744 { 1745 struct giveback_urb_bh *bh; 1746 bool running; 1747 1748 /* pass status to tasklet via unlinked */ 1749 if (likely(!urb->unlinked)) 1750 urb->unlinked = status; 1751 1752 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1753 __usb_hcd_giveback_urb(urb); 1754 return; 1755 } 1756 1757 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) 1758 bh = &hcd->high_prio_bh; 1759 else 1760 bh = &hcd->low_prio_bh; 1761 1762 spin_lock(&bh->lock); 1763 list_add_tail(&urb->urb_list, &bh->head); 1764 running = bh->running; 1765 spin_unlock(&bh->lock); 1766 1767 if (running) 1768 ; 1769 else if (bh->high_prio) 1770 tasklet_hi_schedule(&bh->bh); 1771 else 1772 tasklet_schedule(&bh->bh); 1773 } 1774 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1775 1776 /*-------------------------------------------------------------------------*/ 1777 1778 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1779 * queue to drain completely. The caller must first insure that no more 1780 * URBs can be submitted for this endpoint. 1781 */ 1782 void usb_hcd_flush_endpoint(struct usb_device *udev, 1783 struct usb_host_endpoint *ep) 1784 { 1785 struct usb_hcd *hcd; 1786 struct urb *urb; 1787 1788 if (!ep) 1789 return; 1790 might_sleep(); 1791 hcd = bus_to_hcd(udev->bus); 1792 1793 /* No more submits can occur */ 1794 spin_lock_irq(&hcd_urb_list_lock); 1795 rescan: 1796 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1797 int is_in; 1798 1799 if (urb->unlinked) 1800 continue; 1801 usb_get_urb (urb); 1802 is_in = usb_urb_dir_in(urb); 1803 spin_unlock(&hcd_urb_list_lock); 1804 1805 /* kick hcd */ 1806 unlink1(hcd, urb, -ESHUTDOWN); 1807 dev_dbg (hcd->self.controller, 1808 "shutdown urb %pK ep%d%s-%s\n", 1809 urb, usb_endpoint_num(&ep->desc), 1810 is_in ? "in" : "out", 1811 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1812 usb_put_urb (urb); 1813 1814 /* list contents may have changed */ 1815 spin_lock(&hcd_urb_list_lock); 1816 goto rescan; 1817 } 1818 spin_unlock_irq(&hcd_urb_list_lock); 1819 1820 /* Wait until the endpoint queue is completely empty */ 1821 while (!list_empty (&ep->urb_list)) { 1822 spin_lock_irq(&hcd_urb_list_lock); 1823 1824 /* The list may have changed while we acquired the spinlock */ 1825 urb = NULL; 1826 if (!list_empty (&ep->urb_list)) { 1827 urb = list_entry (ep->urb_list.prev, struct urb, 1828 urb_list); 1829 usb_get_urb (urb); 1830 } 1831 spin_unlock_irq(&hcd_urb_list_lock); 1832 1833 if (urb) { 1834 usb_kill_urb (urb); 1835 usb_put_urb (urb); 1836 } 1837 } 1838 } 1839 1840 /** 1841 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1842 * the bus bandwidth 1843 * @udev: target &usb_device 1844 * @new_config: new configuration to install 1845 * @cur_alt: the current alternate interface setting 1846 * @new_alt: alternate interface setting that is being installed 1847 * 1848 * To change configurations, pass in the new configuration in new_config, 1849 * and pass NULL for cur_alt and new_alt. 1850 * 1851 * To reset a device's configuration (put the device in the ADDRESSED state), 1852 * pass in NULL for new_config, cur_alt, and new_alt. 1853 * 1854 * To change alternate interface settings, pass in NULL for new_config, 1855 * pass in the current alternate interface setting in cur_alt, 1856 * and pass in the new alternate interface setting in new_alt. 1857 * 1858 * Return: An error if the requested bandwidth change exceeds the 1859 * bus bandwidth or host controller internal resources. 1860 */ 1861 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1862 struct usb_host_config *new_config, 1863 struct usb_host_interface *cur_alt, 1864 struct usb_host_interface *new_alt) 1865 { 1866 int num_intfs, i, j; 1867 struct usb_host_interface *alt = NULL; 1868 int ret = 0; 1869 struct usb_hcd *hcd; 1870 struct usb_host_endpoint *ep; 1871 1872 hcd = bus_to_hcd(udev->bus); 1873 if (!hcd->driver->check_bandwidth) 1874 return 0; 1875 1876 /* Configuration is being removed - set configuration 0 */ 1877 if (!new_config && !cur_alt) { 1878 for (i = 1; i < 16; ++i) { 1879 ep = udev->ep_out[i]; 1880 if (ep) 1881 hcd->driver->drop_endpoint(hcd, udev, ep); 1882 ep = udev->ep_in[i]; 1883 if (ep) 1884 hcd->driver->drop_endpoint(hcd, udev, ep); 1885 } 1886 hcd->driver->check_bandwidth(hcd, udev); 1887 return 0; 1888 } 1889 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1890 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1891 * of the bus. There will always be bandwidth for endpoint 0, so it's 1892 * ok to exclude it. 1893 */ 1894 if (new_config) { 1895 num_intfs = new_config->desc.bNumInterfaces; 1896 /* Remove endpoints (except endpoint 0, which is always on the 1897 * schedule) from the old config from the schedule 1898 */ 1899 for (i = 1; i < 16; ++i) { 1900 ep = udev->ep_out[i]; 1901 if (ep) { 1902 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1903 if (ret < 0) 1904 goto reset; 1905 } 1906 ep = udev->ep_in[i]; 1907 if (ep) { 1908 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1909 if (ret < 0) 1910 goto reset; 1911 } 1912 } 1913 for (i = 0; i < num_intfs; ++i) { 1914 struct usb_host_interface *first_alt; 1915 int iface_num; 1916 1917 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1918 iface_num = first_alt->desc.bInterfaceNumber; 1919 /* Set up endpoints for alternate interface setting 0 */ 1920 alt = usb_find_alt_setting(new_config, iface_num, 0); 1921 if (!alt) 1922 /* No alt setting 0? Pick the first setting. */ 1923 alt = first_alt; 1924 1925 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1926 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1927 if (ret < 0) 1928 goto reset; 1929 } 1930 } 1931 } 1932 if (cur_alt && new_alt) { 1933 struct usb_interface *iface = usb_ifnum_to_if(udev, 1934 cur_alt->desc.bInterfaceNumber); 1935 1936 if (!iface) 1937 return -EINVAL; 1938 if (iface->resetting_device) { 1939 /* 1940 * The USB core just reset the device, so the xHCI host 1941 * and the device will think alt setting 0 is installed. 1942 * However, the USB core will pass in the alternate 1943 * setting installed before the reset as cur_alt. Dig 1944 * out the alternate setting 0 structure, or the first 1945 * alternate setting if a broken device doesn't have alt 1946 * setting 0. 1947 */ 1948 cur_alt = usb_altnum_to_altsetting(iface, 0); 1949 if (!cur_alt) 1950 cur_alt = &iface->altsetting[0]; 1951 } 1952 1953 /* Drop all the endpoints in the current alt setting */ 1954 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1955 ret = hcd->driver->drop_endpoint(hcd, udev, 1956 &cur_alt->endpoint[i]); 1957 if (ret < 0) 1958 goto reset; 1959 } 1960 /* Add all the endpoints in the new alt setting */ 1961 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1962 ret = hcd->driver->add_endpoint(hcd, udev, 1963 &new_alt->endpoint[i]); 1964 if (ret < 0) 1965 goto reset; 1966 } 1967 } 1968 ret = hcd->driver->check_bandwidth(hcd, udev); 1969 reset: 1970 if (ret < 0) 1971 hcd->driver->reset_bandwidth(hcd, udev); 1972 return ret; 1973 } 1974 1975 /* Disables the endpoint: synchronizes with the hcd to make sure all 1976 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1977 * have been called previously. Use for set_configuration, set_interface, 1978 * driver removal, physical disconnect. 1979 * 1980 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1981 * type, maxpacket size, toggle, halt status, and scheduling. 1982 */ 1983 void usb_hcd_disable_endpoint(struct usb_device *udev, 1984 struct usb_host_endpoint *ep) 1985 { 1986 struct usb_hcd *hcd; 1987 1988 might_sleep(); 1989 hcd = bus_to_hcd(udev->bus); 1990 if (hcd->driver->endpoint_disable) 1991 hcd->driver->endpoint_disable(hcd, ep); 1992 } 1993 1994 /** 1995 * usb_hcd_reset_endpoint - reset host endpoint state 1996 * @udev: USB device. 1997 * @ep: the endpoint to reset. 1998 * 1999 * Resets any host endpoint state such as the toggle bit, sequence 2000 * number and current window. 2001 */ 2002 void usb_hcd_reset_endpoint(struct usb_device *udev, 2003 struct usb_host_endpoint *ep) 2004 { 2005 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2006 2007 if (hcd->driver->endpoint_reset) 2008 hcd->driver->endpoint_reset(hcd, ep); 2009 else { 2010 int epnum = usb_endpoint_num(&ep->desc); 2011 int is_out = usb_endpoint_dir_out(&ep->desc); 2012 int is_control = usb_endpoint_xfer_control(&ep->desc); 2013 2014 usb_settoggle(udev, epnum, is_out, 0); 2015 if (is_control) 2016 usb_settoggle(udev, epnum, !is_out, 0); 2017 } 2018 } 2019 2020 /** 2021 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2022 * @interface: alternate setting that includes all endpoints. 2023 * @eps: array of endpoints that need streams. 2024 * @num_eps: number of endpoints in the array. 2025 * @num_streams: number of streams to allocate. 2026 * @mem_flags: flags hcd should use to allocate memory. 2027 * 2028 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2029 * Drivers may queue multiple transfers to different stream IDs, which may 2030 * complete in a different order than they were queued. 2031 * 2032 * Return: On success, the number of allocated streams. On failure, a negative 2033 * error code. 2034 */ 2035 int usb_alloc_streams(struct usb_interface *interface, 2036 struct usb_host_endpoint **eps, unsigned int num_eps, 2037 unsigned int num_streams, gfp_t mem_flags) 2038 { 2039 struct usb_hcd *hcd; 2040 struct usb_device *dev; 2041 int i, ret; 2042 2043 dev = interface_to_usbdev(interface); 2044 hcd = bus_to_hcd(dev->bus); 2045 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2046 return -EINVAL; 2047 if (dev->speed < USB_SPEED_SUPER) 2048 return -EINVAL; 2049 if (dev->state < USB_STATE_CONFIGURED) 2050 return -ENODEV; 2051 2052 for (i = 0; i < num_eps; i++) { 2053 /* Streams only apply to bulk endpoints. */ 2054 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2055 return -EINVAL; 2056 /* Re-alloc is not allowed */ 2057 if (eps[i]->streams) 2058 return -EINVAL; 2059 } 2060 2061 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2062 num_streams, mem_flags); 2063 if (ret < 0) 2064 return ret; 2065 2066 for (i = 0; i < num_eps; i++) 2067 eps[i]->streams = ret; 2068 2069 return ret; 2070 } 2071 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2072 2073 /** 2074 * usb_free_streams - free bulk endpoint stream IDs. 2075 * @interface: alternate setting that includes all endpoints. 2076 * @eps: array of endpoints to remove streams from. 2077 * @num_eps: number of endpoints in the array. 2078 * @mem_flags: flags hcd should use to allocate memory. 2079 * 2080 * Reverts a group of bulk endpoints back to not using stream IDs. 2081 * Can fail if we are given bad arguments, or HCD is broken. 2082 * 2083 * Return: 0 on success. On failure, a negative error code. 2084 */ 2085 int usb_free_streams(struct usb_interface *interface, 2086 struct usb_host_endpoint **eps, unsigned int num_eps, 2087 gfp_t mem_flags) 2088 { 2089 struct usb_hcd *hcd; 2090 struct usb_device *dev; 2091 int i, ret; 2092 2093 dev = interface_to_usbdev(interface); 2094 hcd = bus_to_hcd(dev->bus); 2095 if (dev->speed < USB_SPEED_SUPER) 2096 return -EINVAL; 2097 2098 /* Double-free is not allowed */ 2099 for (i = 0; i < num_eps; i++) 2100 if (!eps[i] || !eps[i]->streams) 2101 return -EINVAL; 2102 2103 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2104 if (ret < 0) 2105 return ret; 2106 2107 for (i = 0; i < num_eps; i++) 2108 eps[i]->streams = 0; 2109 2110 return ret; 2111 } 2112 EXPORT_SYMBOL_GPL(usb_free_streams); 2113 2114 /* Protect against drivers that try to unlink URBs after the device 2115 * is gone, by waiting until all unlinks for @udev are finished. 2116 * Since we don't currently track URBs by device, simply wait until 2117 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2118 */ 2119 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2120 { 2121 spin_lock_irq(&hcd_urb_unlink_lock); 2122 spin_unlock_irq(&hcd_urb_unlink_lock); 2123 } 2124 2125 /*-------------------------------------------------------------------------*/ 2126 2127 /* called in any context */ 2128 int usb_hcd_get_frame_number (struct usb_device *udev) 2129 { 2130 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2131 2132 if (!HCD_RH_RUNNING(hcd)) 2133 return -ESHUTDOWN; 2134 return hcd->driver->get_frame_number (hcd); 2135 } 2136 2137 /*-------------------------------------------------------------------------*/ 2138 #ifdef CONFIG_USB_HCD_TEST_MODE 2139 2140 static void usb_ehset_completion(struct urb *urb) 2141 { 2142 struct completion *done = urb->context; 2143 2144 complete(done); 2145 } 2146 /* 2147 * Allocate and initialize a control URB. This request will be used by the 2148 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages 2149 * of the GetDescriptor request are sent 15 seconds after the SETUP stage. 2150 * Return NULL if failed. 2151 */ 2152 static struct urb *request_single_step_set_feature_urb( 2153 struct usb_device *udev, 2154 void *dr, 2155 void *buf, 2156 struct completion *done) 2157 { 2158 struct urb *urb; 2159 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2160 struct usb_host_endpoint *ep; 2161 2162 urb = usb_alloc_urb(0, GFP_KERNEL); 2163 if (!urb) 2164 return NULL; 2165 2166 urb->pipe = usb_rcvctrlpipe(udev, 0); 2167 ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out) 2168 [usb_pipeendpoint(urb->pipe)]; 2169 if (!ep) { 2170 usb_free_urb(urb); 2171 return NULL; 2172 } 2173 2174 urb->ep = ep; 2175 urb->dev = udev; 2176 urb->setup_packet = (void *)dr; 2177 urb->transfer_buffer = buf; 2178 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE; 2179 urb->complete = usb_ehset_completion; 2180 urb->status = -EINPROGRESS; 2181 urb->actual_length = 0; 2182 urb->transfer_flags = URB_DIR_IN; 2183 usb_get_urb(urb); 2184 atomic_inc(&urb->use_count); 2185 atomic_inc(&urb->dev->urbnum); 2186 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) { 2187 usb_put_urb(urb); 2188 usb_free_urb(urb); 2189 return NULL; 2190 } 2191 2192 urb->context = done; 2193 return urb; 2194 } 2195 2196 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) 2197 { 2198 int retval = -ENOMEM; 2199 struct usb_ctrlrequest *dr; 2200 struct urb *urb; 2201 struct usb_device *udev; 2202 struct usb_device_descriptor *buf; 2203 DECLARE_COMPLETION_ONSTACK(done); 2204 2205 /* Obtain udev of the rhub's child port */ 2206 udev = usb_hub_find_child(hcd->self.root_hub, port); 2207 if (!udev) { 2208 dev_err(hcd->self.controller, "No device attached to the RootHub\n"); 2209 return -ENODEV; 2210 } 2211 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL); 2212 if (!buf) 2213 return -ENOMEM; 2214 2215 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); 2216 if (!dr) { 2217 kfree(buf); 2218 return -ENOMEM; 2219 } 2220 2221 /* Fill Setup packet for GetDescriptor */ 2222 dr->bRequestType = USB_DIR_IN; 2223 dr->bRequest = USB_REQ_GET_DESCRIPTOR; 2224 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8); 2225 dr->wIndex = 0; 2226 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE); 2227 urb = request_single_step_set_feature_urb(udev, dr, buf, &done); 2228 if (!urb) 2229 goto cleanup; 2230 2231 /* Submit just the SETUP stage */ 2232 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1); 2233 if (retval) 2234 goto out1; 2235 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { 2236 usb_kill_urb(urb); 2237 retval = -ETIMEDOUT; 2238 dev_err(hcd->self.controller, 2239 "%s SETUP stage timed out on ep0\n", __func__); 2240 goto out1; 2241 } 2242 msleep(15 * 1000); 2243 2244 /* Complete remaining DATA and STATUS stages using the same URB */ 2245 urb->status = -EINPROGRESS; 2246 usb_get_urb(urb); 2247 atomic_inc(&urb->use_count); 2248 atomic_inc(&urb->dev->urbnum); 2249 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0); 2250 if (!retval && !wait_for_completion_timeout(&done, 2251 msecs_to_jiffies(2000))) { 2252 usb_kill_urb(urb); 2253 retval = -ETIMEDOUT; 2254 dev_err(hcd->self.controller, 2255 "%s IN stage timed out on ep0\n", __func__); 2256 } 2257 out1: 2258 usb_free_urb(urb); 2259 cleanup: 2260 kfree(dr); 2261 kfree(buf); 2262 return retval; 2263 } 2264 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature); 2265 #endif /* CONFIG_USB_HCD_TEST_MODE */ 2266 2267 /*-------------------------------------------------------------------------*/ 2268 2269 #ifdef CONFIG_PM 2270 2271 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2272 { 2273 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2274 int status; 2275 int old_state = hcd->state; 2276 2277 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2278 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2279 rhdev->do_remote_wakeup); 2280 if (HCD_DEAD(hcd)) { 2281 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2282 return 0; 2283 } 2284 2285 if (!hcd->driver->bus_suspend) { 2286 status = -ENOENT; 2287 } else { 2288 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2289 hcd->state = HC_STATE_QUIESCING; 2290 status = hcd->driver->bus_suspend(hcd); 2291 } 2292 if (status == 0) { 2293 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2294 hcd->state = HC_STATE_SUSPENDED; 2295 2296 if (!PMSG_IS_AUTO(msg)) 2297 usb_phy_roothub_suspend(hcd->self.sysdev, 2298 hcd->phy_roothub); 2299 2300 /* Did we race with a root-hub wakeup event? */ 2301 if (rhdev->do_remote_wakeup) { 2302 char buffer[6]; 2303 2304 status = hcd->driver->hub_status_data(hcd, buffer); 2305 if (status != 0) { 2306 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2307 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2308 status = -EBUSY; 2309 } 2310 } 2311 } else { 2312 spin_lock_irq(&hcd_root_hub_lock); 2313 if (!HCD_DEAD(hcd)) { 2314 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2315 hcd->state = old_state; 2316 } 2317 spin_unlock_irq(&hcd_root_hub_lock); 2318 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2319 "suspend", status); 2320 } 2321 return status; 2322 } 2323 2324 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2325 { 2326 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2327 int status; 2328 int old_state = hcd->state; 2329 2330 dev_dbg(&rhdev->dev, "usb %sresume\n", 2331 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2332 if (HCD_DEAD(hcd)) { 2333 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2334 return 0; 2335 } 2336 2337 if (!PMSG_IS_AUTO(msg)) { 2338 status = usb_phy_roothub_resume(hcd->self.sysdev, 2339 hcd->phy_roothub); 2340 if (status) 2341 return status; 2342 } 2343 2344 if (!hcd->driver->bus_resume) 2345 return -ENOENT; 2346 if (HCD_RH_RUNNING(hcd)) 2347 return 0; 2348 2349 hcd->state = HC_STATE_RESUMING; 2350 status = hcd->driver->bus_resume(hcd); 2351 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2352 if (status == 0) 2353 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2354 2355 if (status == 0) { 2356 struct usb_device *udev; 2357 int port1; 2358 2359 spin_lock_irq(&hcd_root_hub_lock); 2360 if (!HCD_DEAD(hcd)) { 2361 usb_set_device_state(rhdev, rhdev->actconfig 2362 ? USB_STATE_CONFIGURED 2363 : USB_STATE_ADDRESS); 2364 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2365 hcd->state = HC_STATE_RUNNING; 2366 } 2367 spin_unlock_irq(&hcd_root_hub_lock); 2368 2369 /* 2370 * Check whether any of the enabled ports on the root hub are 2371 * unsuspended. If they are then a TRSMRCY delay is needed 2372 * (this is what the USB-2 spec calls a "global resume"). 2373 * Otherwise we can skip the delay. 2374 */ 2375 usb_hub_for_each_child(rhdev, port1, udev) { 2376 if (udev->state != USB_STATE_NOTATTACHED && 2377 !udev->port_is_suspended) { 2378 usleep_range(10000, 11000); /* TRSMRCY */ 2379 break; 2380 } 2381 } 2382 } else { 2383 hcd->state = old_state; 2384 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2385 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2386 "resume", status); 2387 if (status != -ESHUTDOWN) 2388 usb_hc_died(hcd); 2389 } 2390 return status; 2391 } 2392 2393 /* Workqueue routine for root-hub remote wakeup */ 2394 static void hcd_resume_work(struct work_struct *work) 2395 { 2396 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2397 struct usb_device *udev = hcd->self.root_hub; 2398 2399 usb_remote_wakeup(udev); 2400 } 2401 2402 /** 2403 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2404 * @hcd: host controller for this root hub 2405 * 2406 * The USB host controller calls this function when its root hub is 2407 * suspended (with the remote wakeup feature enabled) and a remote 2408 * wakeup request is received. The routine submits a workqueue request 2409 * to resume the root hub (that is, manage its downstream ports again). 2410 */ 2411 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2412 { 2413 unsigned long flags; 2414 2415 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2416 if (hcd->rh_registered) { 2417 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2418 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2419 queue_work(pm_wq, &hcd->wakeup_work); 2420 } 2421 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2422 } 2423 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2424 2425 #endif /* CONFIG_PM */ 2426 2427 /*-------------------------------------------------------------------------*/ 2428 2429 #ifdef CONFIG_USB_OTG 2430 2431 /** 2432 * usb_bus_start_enum - start immediate enumeration (for OTG) 2433 * @bus: the bus (must use hcd framework) 2434 * @port_num: 1-based number of port; usually bus->otg_port 2435 * Context: atomic 2436 * 2437 * Starts enumeration, with an immediate reset followed later by 2438 * hub_wq identifying and possibly configuring the device. 2439 * This is needed by OTG controller drivers, where it helps meet 2440 * HNP protocol timing requirements for starting a port reset. 2441 * 2442 * Return: 0 if successful. 2443 */ 2444 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2445 { 2446 struct usb_hcd *hcd; 2447 int status = -EOPNOTSUPP; 2448 2449 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2450 * boards with root hubs hooked up to internal devices (instead of 2451 * just the OTG port) may need more attention to resetting... 2452 */ 2453 hcd = bus_to_hcd(bus); 2454 if (port_num && hcd->driver->start_port_reset) 2455 status = hcd->driver->start_port_reset(hcd, port_num); 2456 2457 /* allocate hub_wq shortly after (first) root port reset finishes; 2458 * it may issue others, until at least 50 msecs have passed. 2459 */ 2460 if (status == 0) 2461 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2462 return status; 2463 } 2464 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2465 2466 #endif 2467 2468 /*-------------------------------------------------------------------------*/ 2469 2470 /** 2471 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2472 * @irq: the IRQ being raised 2473 * @__hcd: pointer to the HCD whose IRQ is being signaled 2474 * 2475 * If the controller isn't HALTed, calls the driver's irq handler. 2476 * Checks whether the controller is now dead. 2477 * 2478 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2479 */ 2480 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2481 { 2482 struct usb_hcd *hcd = __hcd; 2483 irqreturn_t rc; 2484 2485 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2486 rc = IRQ_NONE; 2487 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2488 rc = IRQ_NONE; 2489 else 2490 rc = IRQ_HANDLED; 2491 2492 return rc; 2493 } 2494 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2495 2496 /*-------------------------------------------------------------------------*/ 2497 2498 /* Workqueue routine for when the root-hub has died. */ 2499 static void hcd_died_work(struct work_struct *work) 2500 { 2501 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2502 static char *env[] = { 2503 "ERROR=DEAD", 2504 NULL 2505 }; 2506 2507 /* Notify user space that the host controller has died */ 2508 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2509 } 2510 2511 /** 2512 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2513 * @hcd: pointer to the HCD representing the controller 2514 * 2515 * This is called by bus glue to report a USB host controller that died 2516 * while operations may still have been pending. It's called automatically 2517 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2518 * 2519 * Only call this function with the primary HCD. 2520 */ 2521 void usb_hc_died (struct usb_hcd *hcd) 2522 { 2523 unsigned long flags; 2524 2525 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2526 2527 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2528 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2529 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2530 if (hcd->rh_registered) { 2531 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2532 2533 /* make hub_wq clean up old urbs and devices */ 2534 usb_set_device_state (hcd->self.root_hub, 2535 USB_STATE_NOTATTACHED); 2536 usb_kick_hub_wq(hcd->self.root_hub); 2537 } 2538 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2539 hcd = hcd->shared_hcd; 2540 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2541 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2542 if (hcd->rh_registered) { 2543 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2544 2545 /* make hub_wq clean up old urbs and devices */ 2546 usb_set_device_state(hcd->self.root_hub, 2547 USB_STATE_NOTATTACHED); 2548 usb_kick_hub_wq(hcd->self.root_hub); 2549 } 2550 } 2551 2552 /* Handle the case where this function gets called with a shared HCD */ 2553 if (usb_hcd_is_primary_hcd(hcd)) 2554 schedule_work(&hcd->died_work); 2555 else 2556 schedule_work(&hcd->primary_hcd->died_work); 2557 2558 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2559 /* Make sure that the other roothub is also deallocated. */ 2560 } 2561 EXPORT_SYMBOL_GPL (usb_hc_died); 2562 2563 /*-------------------------------------------------------------------------*/ 2564 2565 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2566 { 2567 2568 spin_lock_init(&bh->lock); 2569 INIT_LIST_HEAD(&bh->head); 2570 tasklet_setup(&bh->bh, usb_giveback_urb_bh); 2571 } 2572 2573 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2574 struct device *sysdev, struct device *dev, const char *bus_name, 2575 struct usb_hcd *primary_hcd) 2576 { 2577 struct usb_hcd *hcd; 2578 2579 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2580 if (!hcd) 2581 return NULL; 2582 if (primary_hcd == NULL) { 2583 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2584 GFP_KERNEL); 2585 if (!hcd->address0_mutex) { 2586 kfree(hcd); 2587 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2588 return NULL; 2589 } 2590 mutex_init(hcd->address0_mutex); 2591 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2592 GFP_KERNEL); 2593 if (!hcd->bandwidth_mutex) { 2594 kfree(hcd->address0_mutex); 2595 kfree(hcd); 2596 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2597 return NULL; 2598 } 2599 mutex_init(hcd->bandwidth_mutex); 2600 dev_set_drvdata(dev, hcd); 2601 } else { 2602 mutex_lock(&usb_port_peer_mutex); 2603 hcd->address0_mutex = primary_hcd->address0_mutex; 2604 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2605 hcd->primary_hcd = primary_hcd; 2606 primary_hcd->primary_hcd = primary_hcd; 2607 hcd->shared_hcd = primary_hcd; 2608 primary_hcd->shared_hcd = hcd; 2609 mutex_unlock(&usb_port_peer_mutex); 2610 } 2611 2612 kref_init(&hcd->kref); 2613 2614 usb_bus_init(&hcd->self); 2615 hcd->self.controller = dev; 2616 hcd->self.sysdev = sysdev; 2617 hcd->self.bus_name = bus_name; 2618 2619 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2620 #ifdef CONFIG_PM 2621 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2622 #endif 2623 2624 INIT_WORK(&hcd->died_work, hcd_died_work); 2625 2626 hcd->driver = driver; 2627 hcd->speed = driver->flags & HCD_MASK; 2628 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2629 "USB Host Controller"; 2630 return hcd; 2631 } 2632 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2633 2634 /** 2635 * usb_create_shared_hcd - create and initialize an HCD structure 2636 * @driver: HC driver that will use this hcd 2637 * @dev: device for this HC, stored in hcd->self.controller 2638 * @bus_name: value to store in hcd->self.bus_name 2639 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2640 * PCI device. Only allocate certain resources for the primary HCD 2641 * 2642 * Context: task context, might sleep. 2643 * 2644 * Allocate a struct usb_hcd, with extra space at the end for the 2645 * HC driver's private data. Initialize the generic members of the 2646 * hcd structure. 2647 * 2648 * Return: On success, a pointer to the created and initialized HCD structure. 2649 * On failure (e.g. if memory is unavailable), %NULL. 2650 */ 2651 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2652 struct device *dev, const char *bus_name, 2653 struct usb_hcd *primary_hcd) 2654 { 2655 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2656 } 2657 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2658 2659 /** 2660 * usb_create_hcd - create and initialize an HCD structure 2661 * @driver: HC driver that will use this hcd 2662 * @dev: device for this HC, stored in hcd->self.controller 2663 * @bus_name: value to store in hcd->self.bus_name 2664 * 2665 * Context: task context, might sleep. 2666 * 2667 * Allocate a struct usb_hcd, with extra space at the end for the 2668 * HC driver's private data. Initialize the generic members of the 2669 * hcd structure. 2670 * 2671 * Return: On success, a pointer to the created and initialized HCD 2672 * structure. On failure (e.g. if memory is unavailable), %NULL. 2673 */ 2674 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2675 struct device *dev, const char *bus_name) 2676 { 2677 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2678 } 2679 EXPORT_SYMBOL_GPL(usb_create_hcd); 2680 2681 /* 2682 * Roothubs that share one PCI device must also share the bandwidth mutex. 2683 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2684 * deallocated. 2685 * 2686 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2687 * freed. When hcd_release() is called for either hcd in a peer set, 2688 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2689 */ 2690 static void hcd_release(struct kref *kref) 2691 { 2692 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2693 2694 mutex_lock(&usb_port_peer_mutex); 2695 if (hcd->shared_hcd) { 2696 struct usb_hcd *peer = hcd->shared_hcd; 2697 2698 peer->shared_hcd = NULL; 2699 peer->primary_hcd = NULL; 2700 } else { 2701 kfree(hcd->address0_mutex); 2702 kfree(hcd->bandwidth_mutex); 2703 } 2704 mutex_unlock(&usb_port_peer_mutex); 2705 kfree(hcd); 2706 } 2707 2708 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2709 { 2710 if (hcd) 2711 kref_get (&hcd->kref); 2712 return hcd; 2713 } 2714 EXPORT_SYMBOL_GPL(usb_get_hcd); 2715 2716 void usb_put_hcd (struct usb_hcd *hcd) 2717 { 2718 if (hcd) 2719 kref_put (&hcd->kref, hcd_release); 2720 } 2721 EXPORT_SYMBOL_GPL(usb_put_hcd); 2722 2723 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2724 { 2725 if (!hcd->primary_hcd) 2726 return 1; 2727 return hcd == hcd->primary_hcd; 2728 } 2729 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2730 2731 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2732 { 2733 if (!hcd->driver->find_raw_port_number) 2734 return port1; 2735 2736 return hcd->driver->find_raw_port_number(hcd, port1); 2737 } 2738 2739 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2740 unsigned int irqnum, unsigned long irqflags) 2741 { 2742 int retval; 2743 2744 if (hcd->driver->irq) { 2745 2746 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2747 hcd->driver->description, hcd->self.busnum); 2748 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2749 hcd->irq_descr, hcd); 2750 if (retval != 0) { 2751 dev_err(hcd->self.controller, 2752 "request interrupt %d failed\n", 2753 irqnum); 2754 return retval; 2755 } 2756 hcd->irq = irqnum; 2757 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2758 (hcd->driver->flags & HCD_MEMORY) ? 2759 "io mem" : "io port", 2760 (unsigned long long)hcd->rsrc_start); 2761 } else { 2762 hcd->irq = 0; 2763 if (hcd->rsrc_start) 2764 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2765 (hcd->driver->flags & HCD_MEMORY) ? 2766 "io mem" : "io port", 2767 (unsigned long long)hcd->rsrc_start); 2768 } 2769 return 0; 2770 } 2771 2772 /* 2773 * Before we free this root hub, flush in-flight peering attempts 2774 * and disable peer lookups 2775 */ 2776 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2777 { 2778 struct usb_device *rhdev; 2779 2780 mutex_lock(&usb_port_peer_mutex); 2781 rhdev = hcd->self.root_hub; 2782 hcd->self.root_hub = NULL; 2783 mutex_unlock(&usb_port_peer_mutex); 2784 usb_put_dev(rhdev); 2785 } 2786 2787 /** 2788 * usb_stop_hcd - Halt the HCD 2789 * @hcd: the usb_hcd that has to be halted 2790 * 2791 * Stop the root-hub polling timer and invoke the HCD's ->stop callback. 2792 */ 2793 static void usb_stop_hcd(struct usb_hcd *hcd) 2794 { 2795 hcd->rh_pollable = 0; 2796 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2797 del_timer_sync(&hcd->rh_timer); 2798 2799 hcd->driver->stop(hcd); 2800 hcd->state = HC_STATE_HALT; 2801 2802 /* In case the HCD restarted the timer, stop it again. */ 2803 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2804 del_timer_sync(&hcd->rh_timer); 2805 } 2806 2807 /** 2808 * usb_add_hcd - finish generic HCD structure initialization and register 2809 * @hcd: the usb_hcd structure to initialize 2810 * @irqnum: Interrupt line to allocate 2811 * @irqflags: Interrupt type flags 2812 * 2813 * Finish the remaining parts of generic HCD initialization: allocate the 2814 * buffers of consistent memory, register the bus, request the IRQ line, 2815 * and call the driver's reset() and start() routines. 2816 */ 2817 int usb_add_hcd(struct usb_hcd *hcd, 2818 unsigned int irqnum, unsigned long irqflags) 2819 { 2820 int retval; 2821 struct usb_device *rhdev; 2822 struct usb_hcd *shared_hcd; 2823 2824 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2825 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2826 if (IS_ERR(hcd->phy_roothub)) 2827 return PTR_ERR(hcd->phy_roothub); 2828 2829 retval = usb_phy_roothub_init(hcd->phy_roothub); 2830 if (retval) 2831 return retval; 2832 2833 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2834 PHY_MODE_USB_HOST_SS); 2835 if (retval) 2836 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2837 PHY_MODE_USB_HOST); 2838 if (retval) 2839 goto err_usb_phy_roothub_power_on; 2840 2841 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2842 if (retval) 2843 goto err_usb_phy_roothub_power_on; 2844 } 2845 2846 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2847 2848 switch (authorized_default) { 2849 case USB_AUTHORIZE_NONE: 2850 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2851 break; 2852 2853 case USB_AUTHORIZE_ALL: 2854 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2855 break; 2856 2857 case USB_AUTHORIZE_INTERNAL: 2858 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2859 break; 2860 2861 case USB_AUTHORIZE_WIRED: 2862 default: 2863 hcd->dev_policy = hcd->wireless ? 2864 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2865 break; 2866 } 2867 2868 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2869 2870 /* per default all interfaces are authorized */ 2871 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2872 2873 /* HC is in reset state, but accessible. Now do the one-time init, 2874 * bottom up so that hcds can customize the root hubs before hub_wq 2875 * starts talking to them. (Note, bus id is assigned early too.) 2876 */ 2877 retval = hcd_buffer_create(hcd); 2878 if (retval != 0) { 2879 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2880 goto err_create_buf; 2881 } 2882 2883 retval = usb_register_bus(&hcd->self); 2884 if (retval < 0) 2885 goto err_register_bus; 2886 2887 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2888 if (rhdev == NULL) { 2889 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2890 retval = -ENOMEM; 2891 goto err_allocate_root_hub; 2892 } 2893 mutex_lock(&usb_port_peer_mutex); 2894 hcd->self.root_hub = rhdev; 2895 mutex_unlock(&usb_port_peer_mutex); 2896 2897 rhdev->rx_lanes = 1; 2898 rhdev->tx_lanes = 1; 2899 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; 2900 2901 switch (hcd->speed) { 2902 case HCD_USB11: 2903 rhdev->speed = USB_SPEED_FULL; 2904 break; 2905 case HCD_USB2: 2906 rhdev->speed = USB_SPEED_HIGH; 2907 break; 2908 case HCD_USB25: 2909 rhdev->speed = USB_SPEED_WIRELESS; 2910 break; 2911 case HCD_USB3: 2912 rhdev->speed = USB_SPEED_SUPER; 2913 break; 2914 case HCD_USB32: 2915 rhdev->rx_lanes = 2; 2916 rhdev->tx_lanes = 2; 2917 rhdev->ssp_rate = USB_SSP_GEN_2x2; 2918 rhdev->speed = USB_SPEED_SUPER_PLUS; 2919 break; 2920 case HCD_USB31: 2921 rhdev->ssp_rate = USB_SSP_GEN_2x1; 2922 rhdev->speed = USB_SPEED_SUPER_PLUS; 2923 break; 2924 default: 2925 retval = -EINVAL; 2926 goto err_set_rh_speed; 2927 } 2928 2929 /* wakeup flag init defaults to "everything works" for root hubs, 2930 * but drivers can override it in reset() if needed, along with 2931 * recording the overall controller's system wakeup capability. 2932 */ 2933 device_set_wakeup_capable(&rhdev->dev, 1); 2934 2935 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2936 * registered. But since the controller can die at any time, 2937 * let's initialize the flag before touching the hardware. 2938 */ 2939 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2940 2941 /* "reset" is misnamed; its role is now one-time init. the controller 2942 * should already have been reset (and boot firmware kicked off etc). 2943 */ 2944 if (hcd->driver->reset) { 2945 retval = hcd->driver->reset(hcd); 2946 if (retval < 0) { 2947 dev_err(hcd->self.controller, "can't setup: %d\n", 2948 retval); 2949 goto err_hcd_driver_setup; 2950 } 2951 } 2952 hcd->rh_pollable = 1; 2953 2954 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2955 if (retval) 2956 goto err_hcd_driver_setup; 2957 2958 /* NOTE: root hub and controller capabilities may not be the same */ 2959 if (device_can_wakeup(hcd->self.controller) 2960 && device_can_wakeup(&hcd->self.root_hub->dev)) 2961 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2962 2963 /* initialize tasklets */ 2964 init_giveback_urb_bh(&hcd->high_prio_bh); 2965 hcd->high_prio_bh.high_prio = true; 2966 init_giveback_urb_bh(&hcd->low_prio_bh); 2967 2968 /* enable irqs just before we start the controller, 2969 * if the BIOS provides legacy PCI irqs. 2970 */ 2971 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2972 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2973 if (retval) 2974 goto err_request_irq; 2975 } 2976 2977 hcd->state = HC_STATE_RUNNING; 2978 retval = hcd->driver->start(hcd); 2979 if (retval < 0) { 2980 dev_err(hcd->self.controller, "startup error %d\n", retval); 2981 goto err_hcd_driver_start; 2982 } 2983 2984 /* starting here, usbcore will pay attention to the shared HCD roothub */ 2985 shared_hcd = hcd->shared_hcd; 2986 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { 2987 retval = register_root_hub(shared_hcd); 2988 if (retval != 0) 2989 goto err_register_root_hub; 2990 2991 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) 2992 usb_hcd_poll_rh_status(shared_hcd); 2993 } 2994 2995 /* starting here, usbcore will pay attention to this root hub */ 2996 if (!HCD_DEFER_RH_REGISTER(hcd)) { 2997 retval = register_root_hub(hcd); 2998 if (retval != 0) 2999 goto err_register_root_hub; 3000 3001 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 3002 usb_hcd_poll_rh_status(hcd); 3003 } 3004 3005 return retval; 3006 3007 err_register_root_hub: 3008 usb_stop_hcd(hcd); 3009 err_hcd_driver_start: 3010 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 3011 free_irq(irqnum, hcd); 3012 err_request_irq: 3013 err_hcd_driver_setup: 3014 err_set_rh_speed: 3015 usb_put_invalidate_rhdev(hcd); 3016 err_allocate_root_hub: 3017 usb_deregister_bus(&hcd->self); 3018 err_register_bus: 3019 hcd_buffer_destroy(hcd); 3020 err_create_buf: 3021 usb_phy_roothub_power_off(hcd->phy_roothub); 3022 err_usb_phy_roothub_power_on: 3023 usb_phy_roothub_exit(hcd->phy_roothub); 3024 3025 return retval; 3026 } 3027 EXPORT_SYMBOL_GPL(usb_add_hcd); 3028 3029 /** 3030 * usb_remove_hcd - shutdown processing for generic HCDs 3031 * @hcd: the usb_hcd structure to remove 3032 * 3033 * Context: task context, might sleep. 3034 * 3035 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 3036 * invoking the HCD's stop() method. 3037 */ 3038 void usb_remove_hcd(struct usb_hcd *hcd) 3039 { 3040 struct usb_device *rhdev; 3041 bool rh_registered; 3042 3043 if (!hcd) { 3044 pr_debug("%s: hcd is NULL\n", __func__); 3045 return; 3046 } 3047 rhdev = hcd->self.root_hub; 3048 3049 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 3050 3051 usb_get_dev(rhdev); 3052 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 3053 if (HC_IS_RUNNING (hcd->state)) 3054 hcd->state = HC_STATE_QUIESCING; 3055 3056 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 3057 spin_lock_irq (&hcd_root_hub_lock); 3058 rh_registered = hcd->rh_registered; 3059 hcd->rh_registered = 0; 3060 spin_unlock_irq (&hcd_root_hub_lock); 3061 3062 #ifdef CONFIG_PM 3063 cancel_work_sync(&hcd->wakeup_work); 3064 #endif 3065 cancel_work_sync(&hcd->died_work); 3066 3067 mutex_lock(&usb_bus_idr_lock); 3068 if (rh_registered) 3069 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 3070 mutex_unlock(&usb_bus_idr_lock); 3071 3072 /* 3073 * tasklet_kill() isn't needed here because: 3074 * - driver's disconnect() called from usb_disconnect() should 3075 * make sure its URBs are completed during the disconnect() 3076 * callback 3077 * 3078 * - it is too late to run complete() here since driver may have 3079 * been removed already now 3080 */ 3081 3082 /* Prevent any more root-hub status calls from the timer. 3083 * The HCD might still restart the timer (if a port status change 3084 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3085 * the hub_status_data() callback. 3086 */ 3087 usb_stop_hcd(hcd); 3088 3089 if (usb_hcd_is_primary_hcd(hcd)) { 3090 if (hcd->irq > 0) 3091 free_irq(hcd->irq, hcd); 3092 } 3093 3094 usb_deregister_bus(&hcd->self); 3095 hcd_buffer_destroy(hcd); 3096 3097 usb_phy_roothub_power_off(hcd->phy_roothub); 3098 usb_phy_roothub_exit(hcd->phy_roothub); 3099 3100 usb_put_invalidate_rhdev(hcd); 3101 hcd->flags = 0; 3102 } 3103 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3104 3105 void 3106 usb_hcd_platform_shutdown(struct platform_device *dev) 3107 { 3108 struct usb_hcd *hcd = platform_get_drvdata(dev); 3109 3110 /* No need for pm_runtime_put(), we're shutting down */ 3111 pm_runtime_get_sync(&dev->dev); 3112 3113 if (hcd->driver->shutdown) 3114 hcd->driver->shutdown(hcd); 3115 } 3116 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3117 3118 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 3119 dma_addr_t dma, size_t size) 3120 { 3121 int err; 3122 void *local_mem; 3123 3124 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 3125 dev_to_node(hcd->self.sysdev), 3126 dev_name(hcd->self.sysdev)); 3127 if (IS_ERR(hcd->localmem_pool)) 3128 return PTR_ERR(hcd->localmem_pool); 3129 3130 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 3131 size, MEMREMAP_WC); 3132 if (IS_ERR(local_mem)) 3133 return PTR_ERR(local_mem); 3134 3135 /* 3136 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 3137 * It's not backed by system memory and thus there's no kernel mapping 3138 * for it. 3139 */ 3140 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 3141 dma, size, dev_to_node(hcd->self.sysdev)); 3142 if (err < 0) { 3143 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3144 err); 3145 return err; 3146 } 3147 3148 return 0; 3149 } 3150 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3151 3152 /*-------------------------------------------------------------------------*/ 3153 3154 #if IS_ENABLED(CONFIG_USB_MON) 3155 3156 const struct usb_mon_operations *mon_ops; 3157 3158 /* 3159 * The registration is unlocked. 3160 * We do it this way because we do not want to lock in hot paths. 3161 * 3162 * Notice that the code is minimally error-proof. Because usbmon needs 3163 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3164 */ 3165 3166 int usb_mon_register(const struct usb_mon_operations *ops) 3167 { 3168 3169 if (mon_ops) 3170 return -EBUSY; 3171 3172 mon_ops = ops; 3173 mb(); 3174 return 0; 3175 } 3176 EXPORT_SYMBOL_GPL (usb_mon_register); 3177 3178 void usb_mon_deregister (void) 3179 { 3180 3181 if (mon_ops == NULL) { 3182 printk(KERN_ERR "USB: monitor was not registered\n"); 3183 return; 3184 } 3185 mon_ops = NULL; 3186 mb(); 3187 } 3188 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3189 3190 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3191