1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 35 #include <linux/phy/phy.h> 36 #include <linux/usb.h> 37 #include <linux/usb/hcd.h> 38 #include <linux/usb/otg.h> 39 40 #include "usb.h" 41 #include "phy.h" 42 43 44 /*-------------------------------------------------------------------------*/ 45 46 /* 47 * USB Host Controller Driver framework 48 * 49 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 50 * HCD-specific behaviors/bugs. 51 * 52 * This does error checks, tracks devices and urbs, and delegates to a 53 * "hc_driver" only for code (and data) that really needs to know about 54 * hardware differences. That includes root hub registers, i/o queues, 55 * and so on ... but as little else as possible. 56 * 57 * Shared code includes most of the "root hub" code (these are emulated, 58 * though each HC's hardware works differently) and PCI glue, plus request 59 * tracking overhead. The HCD code should only block on spinlocks or on 60 * hardware handshaking; blocking on software events (such as other kernel 61 * threads releasing resources, or completing actions) is all generic. 62 * 63 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 64 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 65 * only by the hub driver ... and that neither should be seen or used by 66 * usb client device drivers. 67 * 68 * Contributors of ideas or unattributed patches include: David Brownell, 69 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 70 * 71 * HISTORY: 72 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 73 * associated cleanup. "usb_hcd" still != "usb_bus". 74 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 75 */ 76 77 /*-------------------------------------------------------------------------*/ 78 79 /* Keep track of which host controller drivers are loaded */ 80 unsigned long usb_hcds_loaded; 81 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 82 83 /* host controllers we manage */ 84 DEFINE_IDR (usb_bus_idr); 85 EXPORT_SYMBOL_GPL (usb_bus_idr); 86 87 /* used when allocating bus numbers */ 88 #define USB_MAXBUS 64 89 90 /* used when updating list of hcds */ 91 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 92 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 93 94 /* used for controlling access to virtual root hubs */ 95 static DEFINE_SPINLOCK(hcd_root_hub_lock); 96 97 /* used when updating an endpoint's URB list */ 98 static DEFINE_SPINLOCK(hcd_urb_list_lock); 99 100 /* used to protect against unlinking URBs after the device is gone */ 101 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 102 103 /* wait queue for synchronous unlinks */ 104 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 105 106 /*-------------------------------------------------------------------------*/ 107 108 /* 109 * Sharable chunks of root hub code. 110 */ 111 112 /*-------------------------------------------------------------------------*/ 113 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 114 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 115 116 /* usb 3.1 root hub device descriptor */ 117 static const u8 usb31_rh_dev_descriptor[18] = { 118 0x12, /* __u8 bLength; */ 119 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 120 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 121 122 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 123 0x00, /* __u8 bDeviceSubClass; */ 124 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 125 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 126 127 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 128 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 129 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 130 131 0x03, /* __u8 iManufacturer; */ 132 0x02, /* __u8 iProduct; */ 133 0x01, /* __u8 iSerialNumber; */ 134 0x01 /* __u8 bNumConfigurations; */ 135 }; 136 137 /* usb 3.0 root hub device descriptor */ 138 static const u8 usb3_rh_dev_descriptor[18] = { 139 0x12, /* __u8 bLength; */ 140 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 141 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 142 143 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 144 0x00, /* __u8 bDeviceSubClass; */ 145 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 146 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 147 148 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 149 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 150 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 151 152 0x03, /* __u8 iManufacturer; */ 153 0x02, /* __u8 iProduct; */ 154 0x01, /* __u8 iSerialNumber; */ 155 0x01 /* __u8 bNumConfigurations; */ 156 }; 157 158 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 159 static const u8 usb25_rh_dev_descriptor[18] = { 160 0x12, /* __u8 bLength; */ 161 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 162 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 163 164 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 165 0x00, /* __u8 bDeviceSubClass; */ 166 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 167 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 168 169 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 170 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 171 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 172 173 0x03, /* __u8 iManufacturer; */ 174 0x02, /* __u8 iProduct; */ 175 0x01, /* __u8 iSerialNumber; */ 176 0x01 /* __u8 bNumConfigurations; */ 177 }; 178 179 /* usb 2.0 root hub device descriptor */ 180 static const u8 usb2_rh_dev_descriptor[18] = { 181 0x12, /* __u8 bLength; */ 182 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 183 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 184 185 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 186 0x00, /* __u8 bDeviceSubClass; */ 187 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 188 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 189 190 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 191 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 192 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 193 194 0x03, /* __u8 iManufacturer; */ 195 0x02, /* __u8 iProduct; */ 196 0x01, /* __u8 iSerialNumber; */ 197 0x01 /* __u8 bNumConfigurations; */ 198 }; 199 200 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 201 202 /* usb 1.1 root hub device descriptor */ 203 static const u8 usb11_rh_dev_descriptor[18] = { 204 0x12, /* __u8 bLength; */ 205 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 206 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 207 208 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 209 0x00, /* __u8 bDeviceSubClass; */ 210 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 211 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 212 213 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 214 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 215 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 216 217 0x03, /* __u8 iManufacturer; */ 218 0x02, /* __u8 iProduct; */ 219 0x01, /* __u8 iSerialNumber; */ 220 0x01 /* __u8 bNumConfigurations; */ 221 }; 222 223 224 /*-------------------------------------------------------------------------*/ 225 226 /* Configuration descriptors for our root hubs */ 227 228 static const u8 fs_rh_config_descriptor[] = { 229 230 /* one configuration */ 231 0x09, /* __u8 bLength; */ 232 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 233 0x19, 0x00, /* __le16 wTotalLength; */ 234 0x01, /* __u8 bNumInterfaces; (1) */ 235 0x01, /* __u8 bConfigurationValue; */ 236 0x00, /* __u8 iConfiguration; */ 237 0xc0, /* __u8 bmAttributes; 238 Bit 7: must be set, 239 6: Self-powered, 240 5: Remote wakeup, 241 4..0: resvd */ 242 0x00, /* __u8 MaxPower; */ 243 244 /* USB 1.1: 245 * USB 2.0, single TT organization (mandatory): 246 * one interface, protocol 0 247 * 248 * USB 2.0, multiple TT organization (optional): 249 * two interfaces, protocols 1 (like single TT) 250 * and 2 (multiple TT mode) ... config is 251 * sometimes settable 252 * NOT IMPLEMENTED 253 */ 254 255 /* one interface */ 256 0x09, /* __u8 if_bLength; */ 257 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 258 0x00, /* __u8 if_bInterfaceNumber; */ 259 0x00, /* __u8 if_bAlternateSetting; */ 260 0x01, /* __u8 if_bNumEndpoints; */ 261 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 262 0x00, /* __u8 if_bInterfaceSubClass; */ 263 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 264 0x00, /* __u8 if_iInterface; */ 265 266 /* one endpoint (status change endpoint) */ 267 0x07, /* __u8 ep_bLength; */ 268 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 269 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 270 0x03, /* __u8 ep_bmAttributes; Interrupt */ 271 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 272 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 273 }; 274 275 static const u8 hs_rh_config_descriptor[] = { 276 277 /* one configuration */ 278 0x09, /* __u8 bLength; */ 279 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 280 0x19, 0x00, /* __le16 wTotalLength; */ 281 0x01, /* __u8 bNumInterfaces; (1) */ 282 0x01, /* __u8 bConfigurationValue; */ 283 0x00, /* __u8 iConfiguration; */ 284 0xc0, /* __u8 bmAttributes; 285 Bit 7: must be set, 286 6: Self-powered, 287 5: Remote wakeup, 288 4..0: resvd */ 289 0x00, /* __u8 MaxPower; */ 290 291 /* USB 1.1: 292 * USB 2.0, single TT organization (mandatory): 293 * one interface, protocol 0 294 * 295 * USB 2.0, multiple TT organization (optional): 296 * two interfaces, protocols 1 (like single TT) 297 * and 2 (multiple TT mode) ... config is 298 * sometimes settable 299 * NOT IMPLEMENTED 300 */ 301 302 /* one interface */ 303 0x09, /* __u8 if_bLength; */ 304 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 305 0x00, /* __u8 if_bInterfaceNumber; */ 306 0x00, /* __u8 if_bAlternateSetting; */ 307 0x01, /* __u8 if_bNumEndpoints; */ 308 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 309 0x00, /* __u8 if_bInterfaceSubClass; */ 310 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 311 0x00, /* __u8 if_iInterface; */ 312 313 /* one endpoint (status change endpoint) */ 314 0x07, /* __u8 ep_bLength; */ 315 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 316 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 317 0x03, /* __u8 ep_bmAttributes; Interrupt */ 318 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 319 * see hub.c:hub_configure() for details. */ 320 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 321 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 322 }; 323 324 static const u8 ss_rh_config_descriptor[] = { 325 /* one configuration */ 326 0x09, /* __u8 bLength; */ 327 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 328 0x1f, 0x00, /* __le16 wTotalLength; */ 329 0x01, /* __u8 bNumInterfaces; (1) */ 330 0x01, /* __u8 bConfigurationValue; */ 331 0x00, /* __u8 iConfiguration; */ 332 0xc0, /* __u8 bmAttributes; 333 Bit 7: must be set, 334 6: Self-powered, 335 5: Remote wakeup, 336 4..0: resvd */ 337 0x00, /* __u8 MaxPower; */ 338 339 /* one interface */ 340 0x09, /* __u8 if_bLength; */ 341 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 342 0x00, /* __u8 if_bInterfaceNumber; */ 343 0x00, /* __u8 if_bAlternateSetting; */ 344 0x01, /* __u8 if_bNumEndpoints; */ 345 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 346 0x00, /* __u8 if_bInterfaceSubClass; */ 347 0x00, /* __u8 if_bInterfaceProtocol; */ 348 0x00, /* __u8 if_iInterface; */ 349 350 /* one endpoint (status change endpoint) */ 351 0x07, /* __u8 ep_bLength; */ 352 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 353 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 354 0x03, /* __u8 ep_bmAttributes; Interrupt */ 355 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 356 * see hub.c:hub_configure() for details. */ 357 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 358 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 359 360 /* one SuperSpeed endpoint companion descriptor */ 361 0x06, /* __u8 ss_bLength */ 362 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 363 /* Companion */ 364 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 365 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 366 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 367 }; 368 369 /* authorized_default behaviour: 370 * -1 is authorized for all devices except wireless (old behaviour) 371 * 0 is unauthorized for all devices 372 * 1 is authorized for all devices 373 * 2 is authorized for internal devices 374 */ 375 #define USB_AUTHORIZE_WIRED -1 376 #define USB_AUTHORIZE_NONE 0 377 #define USB_AUTHORIZE_ALL 1 378 #define USB_AUTHORIZE_INTERNAL 2 379 380 static int authorized_default = USB_AUTHORIZE_WIRED; 381 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 382 MODULE_PARM_DESC(authorized_default, 383 "Default USB device authorization: 0 is not authorized, 1 is " 384 "authorized, 2 is authorized for internal devices, -1 is " 385 "authorized except for wireless USB (default, old behaviour)"); 386 /*-------------------------------------------------------------------------*/ 387 388 /** 389 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 390 * @s: Null-terminated ASCII (actually ISO-8859-1) string 391 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 392 * @len: Length (in bytes; may be odd) of descriptor buffer. 393 * 394 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 395 * whichever is less. 396 * 397 * Note: 398 * USB String descriptors can contain at most 126 characters; input 399 * strings longer than that are truncated. 400 */ 401 static unsigned 402 ascii2desc(char const *s, u8 *buf, unsigned len) 403 { 404 unsigned n, t = 2 + 2*strlen(s); 405 406 if (t > 254) 407 t = 254; /* Longest possible UTF string descriptor */ 408 if (len > t) 409 len = t; 410 411 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 412 413 n = len; 414 while (n--) { 415 *buf++ = t; 416 if (!n--) 417 break; 418 *buf++ = t >> 8; 419 t = (unsigned char)*s++; 420 } 421 return len; 422 } 423 424 /** 425 * rh_string() - provides string descriptors for root hub 426 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 427 * @hcd: the host controller for this root hub 428 * @data: buffer for output packet 429 * @len: length of the provided buffer 430 * 431 * Produces either a manufacturer, product or serial number string for the 432 * virtual root hub device. 433 * 434 * Return: The number of bytes filled in: the length of the descriptor or 435 * of the provided buffer, whichever is less. 436 */ 437 static unsigned 438 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 439 { 440 char buf[100]; 441 char const *s; 442 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 443 444 /* language ids */ 445 switch (id) { 446 case 0: 447 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 448 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 449 if (len > 4) 450 len = 4; 451 memcpy(data, langids, len); 452 return len; 453 case 1: 454 /* Serial number */ 455 s = hcd->self.bus_name; 456 break; 457 case 2: 458 /* Product name */ 459 s = hcd->product_desc; 460 break; 461 case 3: 462 /* Manufacturer */ 463 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 464 init_utsname()->release, hcd->driver->description); 465 s = buf; 466 break; 467 default: 468 /* Can't happen; caller guarantees it */ 469 return 0; 470 } 471 472 return ascii2desc(s, data, len); 473 } 474 475 476 /* Root hub control transfers execute synchronously */ 477 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 478 { 479 struct usb_ctrlrequest *cmd; 480 u16 typeReq, wValue, wIndex, wLength; 481 u8 *ubuf = urb->transfer_buffer; 482 unsigned len = 0; 483 int status; 484 u8 patch_wakeup = 0; 485 u8 patch_protocol = 0; 486 u16 tbuf_size; 487 u8 *tbuf = NULL; 488 const u8 *bufp; 489 490 might_sleep(); 491 492 spin_lock_irq(&hcd_root_hub_lock); 493 status = usb_hcd_link_urb_to_ep(hcd, urb); 494 spin_unlock_irq(&hcd_root_hub_lock); 495 if (status) 496 return status; 497 urb->hcpriv = hcd; /* Indicate it's queued */ 498 499 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 500 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 501 wValue = le16_to_cpu (cmd->wValue); 502 wIndex = le16_to_cpu (cmd->wIndex); 503 wLength = le16_to_cpu (cmd->wLength); 504 505 if (wLength > urb->transfer_buffer_length) 506 goto error; 507 508 /* 509 * tbuf should be at least as big as the 510 * USB hub descriptor. 511 */ 512 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 513 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 514 if (!tbuf) { 515 status = -ENOMEM; 516 goto err_alloc; 517 } 518 519 bufp = tbuf; 520 521 522 urb->actual_length = 0; 523 switch (typeReq) { 524 525 /* DEVICE REQUESTS */ 526 527 /* The root hub's remote wakeup enable bit is implemented using 528 * driver model wakeup flags. If this system supports wakeup 529 * through USB, userspace may change the default "allow wakeup" 530 * policy through sysfs or these calls. 531 * 532 * Most root hubs support wakeup from downstream devices, for 533 * runtime power management (disabling USB clocks and reducing 534 * VBUS power usage). However, not all of them do so; silicon, 535 * board, and BIOS bugs here are not uncommon, so these can't 536 * be treated quite like external hubs. 537 * 538 * Likewise, not all root hubs will pass wakeup events upstream, 539 * to wake up the whole system. So don't assume root hub and 540 * controller capabilities are identical. 541 */ 542 543 case DeviceRequest | USB_REQ_GET_STATUS: 544 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 545 << USB_DEVICE_REMOTE_WAKEUP) 546 | (1 << USB_DEVICE_SELF_POWERED); 547 tbuf[1] = 0; 548 len = 2; 549 break; 550 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 551 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 552 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 553 else 554 goto error; 555 break; 556 case DeviceOutRequest | USB_REQ_SET_FEATURE: 557 if (device_can_wakeup(&hcd->self.root_hub->dev) 558 && wValue == USB_DEVICE_REMOTE_WAKEUP) 559 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 560 else 561 goto error; 562 break; 563 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 564 tbuf[0] = 1; 565 len = 1; 566 /* FALLTHROUGH */ 567 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 568 break; 569 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 570 switch (wValue & 0xff00) { 571 case USB_DT_DEVICE << 8: 572 switch (hcd->speed) { 573 case HCD_USB32: 574 case HCD_USB31: 575 bufp = usb31_rh_dev_descriptor; 576 break; 577 case HCD_USB3: 578 bufp = usb3_rh_dev_descriptor; 579 break; 580 case HCD_USB25: 581 bufp = usb25_rh_dev_descriptor; 582 break; 583 case HCD_USB2: 584 bufp = usb2_rh_dev_descriptor; 585 break; 586 case HCD_USB11: 587 bufp = usb11_rh_dev_descriptor; 588 break; 589 default: 590 goto error; 591 } 592 len = 18; 593 if (hcd->has_tt) 594 patch_protocol = 1; 595 break; 596 case USB_DT_CONFIG << 8: 597 switch (hcd->speed) { 598 case HCD_USB32: 599 case HCD_USB31: 600 case HCD_USB3: 601 bufp = ss_rh_config_descriptor; 602 len = sizeof ss_rh_config_descriptor; 603 break; 604 case HCD_USB25: 605 case HCD_USB2: 606 bufp = hs_rh_config_descriptor; 607 len = sizeof hs_rh_config_descriptor; 608 break; 609 case HCD_USB11: 610 bufp = fs_rh_config_descriptor; 611 len = sizeof fs_rh_config_descriptor; 612 break; 613 default: 614 goto error; 615 } 616 if (device_can_wakeup(&hcd->self.root_hub->dev)) 617 patch_wakeup = 1; 618 break; 619 case USB_DT_STRING << 8: 620 if ((wValue & 0xff) < 4) 621 urb->actual_length = rh_string(wValue & 0xff, 622 hcd, ubuf, wLength); 623 else /* unsupported IDs --> "protocol stall" */ 624 goto error; 625 break; 626 case USB_DT_BOS << 8: 627 goto nongeneric; 628 default: 629 goto error; 630 } 631 break; 632 case DeviceRequest | USB_REQ_GET_INTERFACE: 633 tbuf[0] = 0; 634 len = 1; 635 /* FALLTHROUGH */ 636 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 637 break; 638 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 639 /* wValue == urb->dev->devaddr */ 640 dev_dbg (hcd->self.controller, "root hub device address %d\n", 641 wValue); 642 break; 643 644 /* INTERFACE REQUESTS (no defined feature/status flags) */ 645 646 /* ENDPOINT REQUESTS */ 647 648 case EndpointRequest | USB_REQ_GET_STATUS: 649 /* ENDPOINT_HALT flag */ 650 tbuf[0] = 0; 651 tbuf[1] = 0; 652 len = 2; 653 /* FALLTHROUGH */ 654 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 655 case EndpointOutRequest | USB_REQ_SET_FEATURE: 656 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 657 break; 658 659 /* CLASS REQUESTS (and errors) */ 660 661 default: 662 nongeneric: 663 /* non-generic request */ 664 switch (typeReq) { 665 case GetHubStatus: 666 len = 4; 667 break; 668 case GetPortStatus: 669 if (wValue == HUB_PORT_STATUS) 670 len = 4; 671 else 672 /* other port status types return 8 bytes */ 673 len = 8; 674 break; 675 case GetHubDescriptor: 676 len = sizeof (struct usb_hub_descriptor); 677 break; 678 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 679 /* len is returned by hub_control */ 680 break; 681 } 682 status = hcd->driver->hub_control (hcd, 683 typeReq, wValue, wIndex, 684 tbuf, wLength); 685 686 if (typeReq == GetHubDescriptor) 687 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 688 (struct usb_hub_descriptor *)tbuf); 689 break; 690 error: 691 /* "protocol stall" on error */ 692 status = -EPIPE; 693 } 694 695 if (status < 0) { 696 len = 0; 697 if (status != -EPIPE) { 698 dev_dbg (hcd->self.controller, 699 "CTRL: TypeReq=0x%x val=0x%x " 700 "idx=0x%x len=%d ==> %d\n", 701 typeReq, wValue, wIndex, 702 wLength, status); 703 } 704 } else if (status > 0) { 705 /* hub_control may return the length of data copied. */ 706 len = status; 707 status = 0; 708 } 709 if (len) { 710 if (urb->transfer_buffer_length < len) 711 len = urb->transfer_buffer_length; 712 urb->actual_length = len; 713 /* always USB_DIR_IN, toward host */ 714 memcpy (ubuf, bufp, len); 715 716 /* report whether RH hardware supports remote wakeup */ 717 if (patch_wakeup && 718 len > offsetof (struct usb_config_descriptor, 719 bmAttributes)) 720 ((struct usb_config_descriptor *)ubuf)->bmAttributes 721 |= USB_CONFIG_ATT_WAKEUP; 722 723 /* report whether RH hardware has an integrated TT */ 724 if (patch_protocol && 725 len > offsetof(struct usb_device_descriptor, 726 bDeviceProtocol)) 727 ((struct usb_device_descriptor *) ubuf)-> 728 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 729 } 730 731 kfree(tbuf); 732 err_alloc: 733 734 /* any errors get returned through the urb completion */ 735 spin_lock_irq(&hcd_root_hub_lock); 736 usb_hcd_unlink_urb_from_ep(hcd, urb); 737 usb_hcd_giveback_urb(hcd, urb, status); 738 spin_unlock_irq(&hcd_root_hub_lock); 739 return 0; 740 } 741 742 /*-------------------------------------------------------------------------*/ 743 744 /* 745 * Root Hub interrupt transfers are polled using a timer if the 746 * driver requests it; otherwise the driver is responsible for 747 * calling usb_hcd_poll_rh_status() when an event occurs. 748 * 749 * Completions are called in_interrupt(), but they may or may not 750 * be in_irq(). 751 */ 752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 753 { 754 struct urb *urb; 755 int length; 756 unsigned long flags; 757 char buffer[6]; /* Any root hubs with > 31 ports? */ 758 759 if (unlikely(!hcd->rh_pollable)) 760 return; 761 if (!hcd->uses_new_polling && !hcd->status_urb) 762 return; 763 764 length = hcd->driver->hub_status_data(hcd, buffer); 765 if (length > 0) { 766 767 /* try to complete the status urb */ 768 spin_lock_irqsave(&hcd_root_hub_lock, flags); 769 urb = hcd->status_urb; 770 if (urb) { 771 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 772 hcd->status_urb = NULL; 773 urb->actual_length = length; 774 memcpy(urb->transfer_buffer, buffer, length); 775 776 usb_hcd_unlink_urb_from_ep(hcd, urb); 777 usb_hcd_giveback_urb(hcd, urb, 0); 778 } else { 779 length = 0; 780 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 781 } 782 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 783 } 784 785 /* The USB 2.0 spec says 256 ms. This is close enough and won't 786 * exceed that limit if HZ is 100. The math is more clunky than 787 * maybe expected, this is to make sure that all timers for USB devices 788 * fire at the same time to give the CPU a break in between */ 789 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 790 (length == 0 && hcd->status_urb != NULL)) 791 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 792 } 793 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 794 795 /* timer callback */ 796 static void rh_timer_func (struct timer_list *t) 797 { 798 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 799 800 usb_hcd_poll_rh_status(_hcd); 801 } 802 803 /*-------------------------------------------------------------------------*/ 804 805 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 806 { 807 int retval; 808 unsigned long flags; 809 unsigned len = 1 + (urb->dev->maxchild / 8); 810 811 spin_lock_irqsave (&hcd_root_hub_lock, flags); 812 if (hcd->status_urb || urb->transfer_buffer_length < len) { 813 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 814 retval = -EINVAL; 815 goto done; 816 } 817 818 retval = usb_hcd_link_urb_to_ep(hcd, urb); 819 if (retval) 820 goto done; 821 822 hcd->status_urb = urb; 823 urb->hcpriv = hcd; /* indicate it's queued */ 824 if (!hcd->uses_new_polling) 825 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 826 827 /* If a status change has already occurred, report it ASAP */ 828 else if (HCD_POLL_PENDING(hcd)) 829 mod_timer(&hcd->rh_timer, jiffies); 830 retval = 0; 831 done: 832 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 833 return retval; 834 } 835 836 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 837 { 838 if (usb_endpoint_xfer_int(&urb->ep->desc)) 839 return rh_queue_status (hcd, urb); 840 if (usb_endpoint_xfer_control(&urb->ep->desc)) 841 return rh_call_control (hcd, urb); 842 return -EINVAL; 843 } 844 845 /*-------------------------------------------------------------------------*/ 846 847 /* Unlinks of root-hub control URBs are legal, but they don't do anything 848 * since these URBs always execute synchronously. 849 */ 850 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 851 { 852 unsigned long flags; 853 int rc; 854 855 spin_lock_irqsave(&hcd_root_hub_lock, flags); 856 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 857 if (rc) 858 goto done; 859 860 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 861 ; /* Do nothing */ 862 863 } else { /* Status URB */ 864 if (!hcd->uses_new_polling) 865 del_timer (&hcd->rh_timer); 866 if (urb == hcd->status_urb) { 867 hcd->status_urb = NULL; 868 usb_hcd_unlink_urb_from_ep(hcd, urb); 869 usb_hcd_giveback_urb(hcd, urb, status); 870 } 871 } 872 done: 873 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 874 return rc; 875 } 876 877 878 /*-------------------------------------------------------------------------*/ 879 880 /** 881 * usb_bus_init - shared initialization code 882 * @bus: the bus structure being initialized 883 * 884 * This code is used to initialize a usb_bus structure, memory for which is 885 * separately managed. 886 */ 887 static void usb_bus_init (struct usb_bus *bus) 888 { 889 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 890 891 bus->devnum_next = 1; 892 893 bus->root_hub = NULL; 894 bus->busnum = -1; 895 bus->bandwidth_allocated = 0; 896 bus->bandwidth_int_reqs = 0; 897 bus->bandwidth_isoc_reqs = 0; 898 mutex_init(&bus->devnum_next_mutex); 899 } 900 901 /*-------------------------------------------------------------------------*/ 902 903 /** 904 * usb_register_bus - registers the USB host controller with the usb core 905 * @bus: pointer to the bus to register 906 * Context: !in_interrupt() 907 * 908 * Assigns a bus number, and links the controller into usbcore data 909 * structures so that it can be seen by scanning the bus list. 910 * 911 * Return: 0 if successful. A negative error code otherwise. 912 */ 913 static int usb_register_bus(struct usb_bus *bus) 914 { 915 int result = -E2BIG; 916 int busnum; 917 918 mutex_lock(&usb_bus_idr_lock); 919 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 920 if (busnum < 0) { 921 pr_err("%s: failed to get bus number\n", usbcore_name); 922 goto error_find_busnum; 923 } 924 bus->busnum = busnum; 925 mutex_unlock(&usb_bus_idr_lock); 926 927 usb_notify_add_bus(bus); 928 929 dev_info (bus->controller, "new USB bus registered, assigned bus " 930 "number %d\n", bus->busnum); 931 return 0; 932 933 error_find_busnum: 934 mutex_unlock(&usb_bus_idr_lock); 935 return result; 936 } 937 938 /** 939 * usb_deregister_bus - deregisters the USB host controller 940 * @bus: pointer to the bus to deregister 941 * Context: !in_interrupt() 942 * 943 * Recycles the bus number, and unlinks the controller from usbcore data 944 * structures so that it won't be seen by scanning the bus list. 945 */ 946 static void usb_deregister_bus (struct usb_bus *bus) 947 { 948 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 949 950 /* 951 * NOTE: make sure that all the devices are removed by the 952 * controller code, as well as having it call this when cleaning 953 * itself up 954 */ 955 mutex_lock(&usb_bus_idr_lock); 956 idr_remove(&usb_bus_idr, bus->busnum); 957 mutex_unlock(&usb_bus_idr_lock); 958 959 usb_notify_remove_bus(bus); 960 } 961 962 /** 963 * register_root_hub - called by usb_add_hcd() to register a root hub 964 * @hcd: host controller for this root hub 965 * 966 * This function registers the root hub with the USB subsystem. It sets up 967 * the device properly in the device tree and then calls usb_new_device() 968 * to register the usb device. It also assigns the root hub's USB address 969 * (always 1). 970 * 971 * Return: 0 if successful. A negative error code otherwise. 972 */ 973 static int register_root_hub(struct usb_hcd *hcd) 974 { 975 struct device *parent_dev = hcd->self.controller; 976 struct usb_device *usb_dev = hcd->self.root_hub; 977 const int devnum = 1; 978 int retval; 979 980 usb_dev->devnum = devnum; 981 usb_dev->bus->devnum_next = devnum + 1; 982 set_bit (devnum, usb_dev->bus->devmap.devicemap); 983 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 984 985 mutex_lock(&usb_bus_idr_lock); 986 987 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 988 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 989 if (retval != sizeof usb_dev->descriptor) { 990 mutex_unlock(&usb_bus_idr_lock); 991 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 992 dev_name(&usb_dev->dev), retval); 993 return (retval < 0) ? retval : -EMSGSIZE; 994 } 995 996 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 997 retval = usb_get_bos_descriptor(usb_dev); 998 if (!retval) { 999 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1000 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1001 mutex_unlock(&usb_bus_idr_lock); 1002 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1003 dev_name(&usb_dev->dev), retval); 1004 return retval; 1005 } 1006 } 1007 1008 retval = usb_new_device (usb_dev); 1009 if (retval) { 1010 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1011 dev_name(&usb_dev->dev), retval); 1012 } else { 1013 spin_lock_irq (&hcd_root_hub_lock); 1014 hcd->rh_registered = 1; 1015 spin_unlock_irq (&hcd_root_hub_lock); 1016 1017 /* Did the HC die before the root hub was registered? */ 1018 if (HCD_DEAD(hcd)) 1019 usb_hc_died (hcd); /* This time clean up */ 1020 } 1021 mutex_unlock(&usb_bus_idr_lock); 1022 1023 return retval; 1024 } 1025 1026 /* 1027 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1028 * @bus: the bus which the root hub belongs to 1029 * @portnum: the port which is being resumed 1030 * 1031 * HCDs should call this function when they know that a resume signal is 1032 * being sent to a root-hub port. The root hub will be prevented from 1033 * going into autosuspend until usb_hcd_end_port_resume() is called. 1034 * 1035 * The bus's private lock must be held by the caller. 1036 */ 1037 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1038 { 1039 unsigned bit = 1 << portnum; 1040 1041 if (!(bus->resuming_ports & bit)) { 1042 bus->resuming_ports |= bit; 1043 pm_runtime_get_noresume(&bus->root_hub->dev); 1044 } 1045 } 1046 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1047 1048 /* 1049 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1050 * @bus: the bus which the root hub belongs to 1051 * @portnum: the port which is being resumed 1052 * 1053 * HCDs should call this function when they know that a resume signal has 1054 * stopped being sent to a root-hub port. The root hub will be allowed to 1055 * autosuspend again. 1056 * 1057 * The bus's private lock must be held by the caller. 1058 */ 1059 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1060 { 1061 unsigned bit = 1 << portnum; 1062 1063 if (bus->resuming_ports & bit) { 1064 bus->resuming_ports &= ~bit; 1065 pm_runtime_put_noidle(&bus->root_hub->dev); 1066 } 1067 } 1068 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1069 1070 /*-------------------------------------------------------------------------*/ 1071 1072 /** 1073 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1074 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1075 * @is_input: true iff the transaction sends data to the host 1076 * @isoc: true for isochronous transactions, false for interrupt ones 1077 * @bytecount: how many bytes in the transaction. 1078 * 1079 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1080 * 1081 * Note: 1082 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1083 * scheduled in software, this function is only used for such scheduling. 1084 */ 1085 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1086 { 1087 unsigned long tmp; 1088 1089 switch (speed) { 1090 case USB_SPEED_LOW: /* INTR only */ 1091 if (is_input) { 1092 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1093 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1094 } else { 1095 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1096 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1097 } 1098 case USB_SPEED_FULL: /* ISOC or INTR */ 1099 if (isoc) { 1100 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1101 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1102 } else { 1103 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1104 return 9107L + BW_HOST_DELAY + tmp; 1105 } 1106 case USB_SPEED_HIGH: /* ISOC or INTR */ 1107 /* FIXME adjust for input vs output */ 1108 if (isoc) 1109 tmp = HS_NSECS_ISO (bytecount); 1110 else 1111 tmp = HS_NSECS (bytecount); 1112 return tmp; 1113 default: 1114 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1115 return -1; 1116 } 1117 } 1118 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1119 1120 1121 /*-------------------------------------------------------------------------*/ 1122 1123 /* 1124 * Generic HC operations. 1125 */ 1126 1127 /*-------------------------------------------------------------------------*/ 1128 1129 /** 1130 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1131 * @hcd: host controller to which @urb was submitted 1132 * @urb: URB being submitted 1133 * 1134 * Host controller drivers should call this routine in their enqueue() 1135 * method. The HCD's private spinlock must be held and interrupts must 1136 * be disabled. The actions carried out here are required for URB 1137 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1138 * 1139 * Return: 0 for no error, otherwise a negative error code (in which case 1140 * the enqueue() method must fail). If no error occurs but enqueue() fails 1141 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1142 * the private spinlock and returning. 1143 */ 1144 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1145 { 1146 int rc = 0; 1147 1148 spin_lock(&hcd_urb_list_lock); 1149 1150 /* Check that the URB isn't being killed */ 1151 if (unlikely(atomic_read(&urb->reject))) { 1152 rc = -EPERM; 1153 goto done; 1154 } 1155 1156 if (unlikely(!urb->ep->enabled)) { 1157 rc = -ENOENT; 1158 goto done; 1159 } 1160 1161 if (unlikely(!urb->dev->can_submit)) { 1162 rc = -EHOSTUNREACH; 1163 goto done; 1164 } 1165 1166 /* 1167 * Check the host controller's state and add the URB to the 1168 * endpoint's queue. 1169 */ 1170 if (HCD_RH_RUNNING(hcd)) { 1171 urb->unlinked = 0; 1172 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1173 } else { 1174 rc = -ESHUTDOWN; 1175 goto done; 1176 } 1177 done: 1178 spin_unlock(&hcd_urb_list_lock); 1179 return rc; 1180 } 1181 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1182 1183 /** 1184 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1185 * @hcd: host controller to which @urb was submitted 1186 * @urb: URB being checked for unlinkability 1187 * @status: error code to store in @urb if the unlink succeeds 1188 * 1189 * Host controller drivers should call this routine in their dequeue() 1190 * method. The HCD's private spinlock must be held and interrupts must 1191 * be disabled. The actions carried out here are required for making 1192 * sure than an unlink is valid. 1193 * 1194 * Return: 0 for no error, otherwise a negative error code (in which case 1195 * the dequeue() method must fail). The possible error codes are: 1196 * 1197 * -EIDRM: @urb was not submitted or has already completed. 1198 * The completion function may not have been called yet. 1199 * 1200 * -EBUSY: @urb has already been unlinked. 1201 */ 1202 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1203 int status) 1204 { 1205 struct list_head *tmp; 1206 1207 /* insist the urb is still queued */ 1208 list_for_each(tmp, &urb->ep->urb_list) { 1209 if (tmp == &urb->urb_list) 1210 break; 1211 } 1212 if (tmp != &urb->urb_list) 1213 return -EIDRM; 1214 1215 /* Any status except -EINPROGRESS means something already started to 1216 * unlink this URB from the hardware. So there's no more work to do. 1217 */ 1218 if (urb->unlinked) 1219 return -EBUSY; 1220 urb->unlinked = status; 1221 return 0; 1222 } 1223 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1224 1225 /** 1226 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1227 * @hcd: host controller to which @urb was submitted 1228 * @urb: URB being unlinked 1229 * 1230 * Host controller drivers should call this routine before calling 1231 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1232 * interrupts must be disabled. The actions carried out here are required 1233 * for URB completion. 1234 */ 1235 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1236 { 1237 /* clear all state linking urb to this dev (and hcd) */ 1238 spin_lock(&hcd_urb_list_lock); 1239 list_del_init(&urb->urb_list); 1240 spin_unlock(&hcd_urb_list_lock); 1241 } 1242 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1243 1244 /* 1245 * Some usb host controllers can only perform dma using a small SRAM area. 1246 * The usb core itself is however optimized for host controllers that can dma 1247 * using regular system memory - like pci devices doing bus mastering. 1248 * 1249 * To support host controllers with limited dma capabilities we provide dma 1250 * bounce buffers. This feature can be enabled by initializing 1251 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1252 * 1253 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1254 * data for dma using the genalloc API. 1255 * 1256 * So, to summarize... 1257 * 1258 * - We need "local" memory, canonical example being 1259 * a small SRAM on a discrete controller being the 1260 * only memory that the controller can read ... 1261 * (a) "normal" kernel memory is no good, and 1262 * (b) there's not enough to share 1263 * 1264 * - So we use that, even though the primary requirement 1265 * is that the memory be "local" (hence addressable 1266 * by that device), not "coherent". 1267 * 1268 */ 1269 1270 static int hcd_alloc_coherent(struct usb_bus *bus, 1271 gfp_t mem_flags, dma_addr_t *dma_handle, 1272 void **vaddr_handle, size_t size, 1273 enum dma_data_direction dir) 1274 { 1275 unsigned char *vaddr; 1276 1277 if (*vaddr_handle == NULL) { 1278 WARN_ON_ONCE(1); 1279 return -EFAULT; 1280 } 1281 1282 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1283 mem_flags, dma_handle); 1284 if (!vaddr) 1285 return -ENOMEM; 1286 1287 /* 1288 * Store the virtual address of the buffer at the end 1289 * of the allocated dma buffer. The size of the buffer 1290 * may be uneven so use unaligned functions instead 1291 * of just rounding up. It makes sense to optimize for 1292 * memory footprint over access speed since the amount 1293 * of memory available for dma may be limited. 1294 */ 1295 put_unaligned((unsigned long)*vaddr_handle, 1296 (unsigned long *)(vaddr + size)); 1297 1298 if (dir == DMA_TO_DEVICE) 1299 memcpy(vaddr, *vaddr_handle, size); 1300 1301 *vaddr_handle = vaddr; 1302 return 0; 1303 } 1304 1305 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1306 void **vaddr_handle, size_t size, 1307 enum dma_data_direction dir) 1308 { 1309 unsigned char *vaddr = *vaddr_handle; 1310 1311 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1312 1313 if (dir == DMA_FROM_DEVICE) 1314 memcpy(vaddr, *vaddr_handle, size); 1315 1316 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1317 1318 *vaddr_handle = vaddr; 1319 *dma_handle = 0; 1320 } 1321 1322 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1323 { 1324 if (IS_ENABLED(CONFIG_HAS_DMA) && 1325 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1326 dma_unmap_single(hcd->self.sysdev, 1327 urb->setup_dma, 1328 sizeof(struct usb_ctrlrequest), 1329 DMA_TO_DEVICE); 1330 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1331 hcd_free_coherent(urb->dev->bus, 1332 &urb->setup_dma, 1333 (void **) &urb->setup_packet, 1334 sizeof(struct usb_ctrlrequest), 1335 DMA_TO_DEVICE); 1336 1337 /* Make it safe to call this routine more than once */ 1338 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1339 } 1340 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1341 1342 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1343 { 1344 if (hcd->driver->unmap_urb_for_dma) 1345 hcd->driver->unmap_urb_for_dma(hcd, urb); 1346 else 1347 usb_hcd_unmap_urb_for_dma(hcd, urb); 1348 } 1349 1350 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1351 { 1352 enum dma_data_direction dir; 1353 1354 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1355 1356 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1357 if (IS_ENABLED(CONFIG_HAS_DMA) && 1358 (urb->transfer_flags & URB_DMA_MAP_SG)) 1359 dma_unmap_sg(hcd->self.sysdev, 1360 urb->sg, 1361 urb->num_sgs, 1362 dir); 1363 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1364 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1365 dma_unmap_page(hcd->self.sysdev, 1366 urb->transfer_dma, 1367 urb->transfer_buffer_length, 1368 dir); 1369 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1370 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1371 dma_unmap_single(hcd->self.sysdev, 1372 urb->transfer_dma, 1373 urb->transfer_buffer_length, 1374 dir); 1375 else if (urb->transfer_flags & URB_MAP_LOCAL) 1376 hcd_free_coherent(urb->dev->bus, 1377 &urb->transfer_dma, 1378 &urb->transfer_buffer, 1379 urb->transfer_buffer_length, 1380 dir); 1381 1382 /* Make it safe to call this routine more than once */ 1383 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1384 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1385 } 1386 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1387 1388 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1389 gfp_t mem_flags) 1390 { 1391 if (hcd->driver->map_urb_for_dma) 1392 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1393 else 1394 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1395 } 1396 1397 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1398 gfp_t mem_flags) 1399 { 1400 enum dma_data_direction dir; 1401 int ret = 0; 1402 1403 /* Map the URB's buffers for DMA access. 1404 * Lower level HCD code should use *_dma exclusively, 1405 * unless it uses pio or talks to another transport, 1406 * or uses the provided scatter gather list for bulk. 1407 */ 1408 1409 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1410 if (hcd->self.uses_pio_for_control) 1411 return ret; 1412 if (hcd->localmem_pool) { 1413 ret = hcd_alloc_coherent( 1414 urb->dev->bus, mem_flags, 1415 &urb->setup_dma, 1416 (void **)&urb->setup_packet, 1417 sizeof(struct usb_ctrlrequest), 1418 DMA_TO_DEVICE); 1419 if (ret) 1420 return ret; 1421 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1422 } else if (hcd_uses_dma(hcd)) { 1423 if (object_is_on_stack(urb->setup_packet)) { 1424 WARN_ONCE(1, "setup packet is on stack\n"); 1425 return -EAGAIN; 1426 } 1427 1428 urb->setup_dma = dma_map_single( 1429 hcd->self.sysdev, 1430 urb->setup_packet, 1431 sizeof(struct usb_ctrlrequest), 1432 DMA_TO_DEVICE); 1433 if (dma_mapping_error(hcd->self.sysdev, 1434 urb->setup_dma)) 1435 return -EAGAIN; 1436 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1437 } 1438 } 1439 1440 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1441 if (urb->transfer_buffer_length != 0 1442 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1443 if (hcd->localmem_pool) { 1444 ret = hcd_alloc_coherent( 1445 urb->dev->bus, mem_flags, 1446 &urb->transfer_dma, 1447 &urb->transfer_buffer, 1448 urb->transfer_buffer_length, 1449 dir); 1450 if (ret == 0) 1451 urb->transfer_flags |= URB_MAP_LOCAL; 1452 } else if (hcd_uses_dma(hcd)) { 1453 if (urb->num_sgs) { 1454 int n; 1455 1456 /* We don't support sg for isoc transfers ! */ 1457 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1458 WARN_ON(1); 1459 return -EINVAL; 1460 } 1461 1462 n = dma_map_sg( 1463 hcd->self.sysdev, 1464 urb->sg, 1465 urb->num_sgs, 1466 dir); 1467 if (n <= 0) 1468 ret = -EAGAIN; 1469 else 1470 urb->transfer_flags |= URB_DMA_MAP_SG; 1471 urb->num_mapped_sgs = n; 1472 if (n != urb->num_sgs) 1473 urb->transfer_flags |= 1474 URB_DMA_SG_COMBINED; 1475 } else if (urb->sg) { 1476 struct scatterlist *sg = urb->sg; 1477 urb->transfer_dma = dma_map_page( 1478 hcd->self.sysdev, 1479 sg_page(sg), 1480 sg->offset, 1481 urb->transfer_buffer_length, 1482 dir); 1483 if (dma_mapping_error(hcd->self.sysdev, 1484 urb->transfer_dma)) 1485 ret = -EAGAIN; 1486 else 1487 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1488 } else if (object_is_on_stack(urb->transfer_buffer)) { 1489 WARN_ONCE(1, "transfer buffer is on stack\n"); 1490 ret = -EAGAIN; 1491 } else { 1492 urb->transfer_dma = dma_map_single( 1493 hcd->self.sysdev, 1494 urb->transfer_buffer, 1495 urb->transfer_buffer_length, 1496 dir); 1497 if (dma_mapping_error(hcd->self.sysdev, 1498 urb->transfer_dma)) 1499 ret = -EAGAIN; 1500 else 1501 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1502 } 1503 } 1504 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1505 URB_SETUP_MAP_LOCAL))) 1506 usb_hcd_unmap_urb_for_dma(hcd, urb); 1507 } 1508 return ret; 1509 } 1510 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1511 1512 /*-------------------------------------------------------------------------*/ 1513 1514 /* may be called in any context with a valid urb->dev usecount 1515 * caller surrenders "ownership" of urb 1516 * expects usb_submit_urb() to have sanity checked and conditioned all 1517 * inputs in the urb 1518 */ 1519 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1520 { 1521 int status; 1522 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1523 1524 /* increment urb's reference count as part of giving it to the HCD 1525 * (which will control it). HCD guarantees that it either returns 1526 * an error or calls giveback(), but not both. 1527 */ 1528 usb_get_urb(urb); 1529 atomic_inc(&urb->use_count); 1530 atomic_inc(&urb->dev->urbnum); 1531 usbmon_urb_submit(&hcd->self, urb); 1532 1533 /* NOTE requirements on root-hub callers (usbfs and the hub 1534 * driver, for now): URBs' urb->transfer_buffer must be 1535 * valid and usb_buffer_{sync,unmap}() not be needed, since 1536 * they could clobber root hub response data. Also, control 1537 * URBs must be submitted in process context with interrupts 1538 * enabled. 1539 */ 1540 1541 if (is_root_hub(urb->dev)) { 1542 status = rh_urb_enqueue(hcd, urb); 1543 } else { 1544 status = map_urb_for_dma(hcd, urb, mem_flags); 1545 if (likely(status == 0)) { 1546 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1547 if (unlikely(status)) 1548 unmap_urb_for_dma(hcd, urb); 1549 } 1550 } 1551 1552 if (unlikely(status)) { 1553 usbmon_urb_submit_error(&hcd->self, urb, status); 1554 urb->hcpriv = NULL; 1555 INIT_LIST_HEAD(&urb->urb_list); 1556 atomic_dec(&urb->use_count); 1557 atomic_dec(&urb->dev->urbnum); 1558 if (atomic_read(&urb->reject)) 1559 wake_up(&usb_kill_urb_queue); 1560 usb_put_urb(urb); 1561 } 1562 return status; 1563 } 1564 1565 /*-------------------------------------------------------------------------*/ 1566 1567 /* this makes the hcd giveback() the urb more quickly, by kicking it 1568 * off hardware queues (which may take a while) and returning it as 1569 * soon as practical. we've already set up the urb's return status, 1570 * but we can't know if the callback completed already. 1571 */ 1572 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1573 { 1574 int value; 1575 1576 if (is_root_hub(urb->dev)) 1577 value = usb_rh_urb_dequeue(hcd, urb, status); 1578 else { 1579 1580 /* The only reason an HCD might fail this call is if 1581 * it has not yet fully queued the urb to begin with. 1582 * Such failures should be harmless. */ 1583 value = hcd->driver->urb_dequeue(hcd, urb, status); 1584 } 1585 return value; 1586 } 1587 1588 /* 1589 * called in any context 1590 * 1591 * caller guarantees urb won't be recycled till both unlink() 1592 * and the urb's completion function return 1593 */ 1594 int usb_hcd_unlink_urb (struct urb *urb, int status) 1595 { 1596 struct usb_hcd *hcd; 1597 struct usb_device *udev = urb->dev; 1598 int retval = -EIDRM; 1599 unsigned long flags; 1600 1601 /* Prevent the device and bus from going away while 1602 * the unlink is carried out. If they are already gone 1603 * then urb->use_count must be 0, since disconnected 1604 * devices can't have any active URBs. 1605 */ 1606 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1607 if (atomic_read(&urb->use_count) > 0) { 1608 retval = 0; 1609 usb_get_dev(udev); 1610 } 1611 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1612 if (retval == 0) { 1613 hcd = bus_to_hcd(urb->dev->bus); 1614 retval = unlink1(hcd, urb, status); 1615 if (retval == 0) 1616 retval = -EINPROGRESS; 1617 else if (retval != -EIDRM && retval != -EBUSY) 1618 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1619 urb, retval); 1620 usb_put_dev(udev); 1621 } 1622 return retval; 1623 } 1624 1625 /*-------------------------------------------------------------------------*/ 1626 1627 static void __usb_hcd_giveback_urb(struct urb *urb) 1628 { 1629 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1630 struct usb_anchor *anchor = urb->anchor; 1631 int status = urb->unlinked; 1632 1633 urb->hcpriv = NULL; 1634 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1635 urb->actual_length < urb->transfer_buffer_length && 1636 !status)) 1637 status = -EREMOTEIO; 1638 1639 unmap_urb_for_dma(hcd, urb); 1640 usbmon_urb_complete(&hcd->self, urb, status); 1641 usb_anchor_suspend_wakeups(anchor); 1642 usb_unanchor_urb(urb); 1643 if (likely(status == 0)) 1644 usb_led_activity(USB_LED_EVENT_HOST); 1645 1646 /* pass ownership to the completion handler */ 1647 urb->status = status; 1648 urb->complete(urb); 1649 1650 usb_anchor_resume_wakeups(anchor); 1651 atomic_dec(&urb->use_count); 1652 if (unlikely(atomic_read(&urb->reject))) 1653 wake_up(&usb_kill_urb_queue); 1654 usb_put_urb(urb); 1655 } 1656 1657 static void usb_giveback_urb_bh(unsigned long param) 1658 { 1659 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1660 struct list_head local_list; 1661 1662 spin_lock_irq(&bh->lock); 1663 bh->running = true; 1664 restart: 1665 list_replace_init(&bh->head, &local_list); 1666 spin_unlock_irq(&bh->lock); 1667 1668 while (!list_empty(&local_list)) { 1669 struct urb *urb; 1670 1671 urb = list_entry(local_list.next, struct urb, urb_list); 1672 list_del_init(&urb->urb_list); 1673 bh->completing_ep = urb->ep; 1674 __usb_hcd_giveback_urb(urb); 1675 bh->completing_ep = NULL; 1676 } 1677 1678 /* check if there are new URBs to giveback */ 1679 spin_lock_irq(&bh->lock); 1680 if (!list_empty(&bh->head)) 1681 goto restart; 1682 bh->running = false; 1683 spin_unlock_irq(&bh->lock); 1684 } 1685 1686 /** 1687 * usb_hcd_giveback_urb - return URB from HCD to device driver 1688 * @hcd: host controller returning the URB 1689 * @urb: urb being returned to the USB device driver. 1690 * @status: completion status code for the URB. 1691 * Context: in_interrupt() 1692 * 1693 * This hands the URB from HCD to its USB device driver, using its 1694 * completion function. The HCD has freed all per-urb resources 1695 * (and is done using urb->hcpriv). It also released all HCD locks; 1696 * the device driver won't cause problems if it frees, modifies, 1697 * or resubmits this URB. 1698 * 1699 * If @urb was unlinked, the value of @status will be overridden by 1700 * @urb->unlinked. Erroneous short transfers are detected in case 1701 * the HCD hasn't checked for them. 1702 */ 1703 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1704 { 1705 struct giveback_urb_bh *bh; 1706 bool running, high_prio_bh; 1707 1708 /* pass status to tasklet via unlinked */ 1709 if (likely(!urb->unlinked)) 1710 urb->unlinked = status; 1711 1712 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1713 __usb_hcd_giveback_urb(urb); 1714 return; 1715 } 1716 1717 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1718 bh = &hcd->high_prio_bh; 1719 high_prio_bh = true; 1720 } else { 1721 bh = &hcd->low_prio_bh; 1722 high_prio_bh = false; 1723 } 1724 1725 spin_lock(&bh->lock); 1726 list_add_tail(&urb->urb_list, &bh->head); 1727 running = bh->running; 1728 spin_unlock(&bh->lock); 1729 1730 if (running) 1731 ; 1732 else if (high_prio_bh) 1733 tasklet_hi_schedule(&bh->bh); 1734 else 1735 tasklet_schedule(&bh->bh); 1736 } 1737 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1738 1739 /*-------------------------------------------------------------------------*/ 1740 1741 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1742 * queue to drain completely. The caller must first insure that no more 1743 * URBs can be submitted for this endpoint. 1744 */ 1745 void usb_hcd_flush_endpoint(struct usb_device *udev, 1746 struct usb_host_endpoint *ep) 1747 { 1748 struct usb_hcd *hcd; 1749 struct urb *urb; 1750 1751 if (!ep) 1752 return; 1753 might_sleep(); 1754 hcd = bus_to_hcd(udev->bus); 1755 1756 /* No more submits can occur */ 1757 spin_lock_irq(&hcd_urb_list_lock); 1758 rescan: 1759 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1760 int is_in; 1761 1762 if (urb->unlinked) 1763 continue; 1764 usb_get_urb (urb); 1765 is_in = usb_urb_dir_in(urb); 1766 spin_unlock(&hcd_urb_list_lock); 1767 1768 /* kick hcd */ 1769 unlink1(hcd, urb, -ESHUTDOWN); 1770 dev_dbg (hcd->self.controller, 1771 "shutdown urb %pK ep%d%s-%s\n", 1772 urb, usb_endpoint_num(&ep->desc), 1773 is_in ? "in" : "out", 1774 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1775 usb_put_urb (urb); 1776 1777 /* list contents may have changed */ 1778 spin_lock(&hcd_urb_list_lock); 1779 goto rescan; 1780 } 1781 spin_unlock_irq(&hcd_urb_list_lock); 1782 1783 /* Wait until the endpoint queue is completely empty */ 1784 while (!list_empty (&ep->urb_list)) { 1785 spin_lock_irq(&hcd_urb_list_lock); 1786 1787 /* The list may have changed while we acquired the spinlock */ 1788 urb = NULL; 1789 if (!list_empty (&ep->urb_list)) { 1790 urb = list_entry (ep->urb_list.prev, struct urb, 1791 urb_list); 1792 usb_get_urb (urb); 1793 } 1794 spin_unlock_irq(&hcd_urb_list_lock); 1795 1796 if (urb) { 1797 usb_kill_urb (urb); 1798 usb_put_urb (urb); 1799 } 1800 } 1801 } 1802 1803 /** 1804 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1805 * the bus bandwidth 1806 * @udev: target &usb_device 1807 * @new_config: new configuration to install 1808 * @cur_alt: the current alternate interface setting 1809 * @new_alt: alternate interface setting that is being installed 1810 * 1811 * To change configurations, pass in the new configuration in new_config, 1812 * and pass NULL for cur_alt and new_alt. 1813 * 1814 * To reset a device's configuration (put the device in the ADDRESSED state), 1815 * pass in NULL for new_config, cur_alt, and new_alt. 1816 * 1817 * To change alternate interface settings, pass in NULL for new_config, 1818 * pass in the current alternate interface setting in cur_alt, 1819 * and pass in the new alternate interface setting in new_alt. 1820 * 1821 * Return: An error if the requested bandwidth change exceeds the 1822 * bus bandwidth or host controller internal resources. 1823 */ 1824 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1825 struct usb_host_config *new_config, 1826 struct usb_host_interface *cur_alt, 1827 struct usb_host_interface *new_alt) 1828 { 1829 int num_intfs, i, j; 1830 struct usb_host_interface *alt = NULL; 1831 int ret = 0; 1832 struct usb_hcd *hcd; 1833 struct usb_host_endpoint *ep; 1834 1835 hcd = bus_to_hcd(udev->bus); 1836 if (!hcd->driver->check_bandwidth) 1837 return 0; 1838 1839 /* Configuration is being removed - set configuration 0 */ 1840 if (!new_config && !cur_alt) { 1841 for (i = 1; i < 16; ++i) { 1842 ep = udev->ep_out[i]; 1843 if (ep) 1844 hcd->driver->drop_endpoint(hcd, udev, ep); 1845 ep = udev->ep_in[i]; 1846 if (ep) 1847 hcd->driver->drop_endpoint(hcd, udev, ep); 1848 } 1849 hcd->driver->check_bandwidth(hcd, udev); 1850 return 0; 1851 } 1852 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1853 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1854 * of the bus. There will always be bandwidth for endpoint 0, so it's 1855 * ok to exclude it. 1856 */ 1857 if (new_config) { 1858 num_intfs = new_config->desc.bNumInterfaces; 1859 /* Remove endpoints (except endpoint 0, which is always on the 1860 * schedule) from the old config from the schedule 1861 */ 1862 for (i = 1; i < 16; ++i) { 1863 ep = udev->ep_out[i]; 1864 if (ep) { 1865 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1866 if (ret < 0) 1867 goto reset; 1868 } 1869 ep = udev->ep_in[i]; 1870 if (ep) { 1871 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1872 if (ret < 0) 1873 goto reset; 1874 } 1875 } 1876 for (i = 0; i < num_intfs; ++i) { 1877 struct usb_host_interface *first_alt; 1878 int iface_num; 1879 1880 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1881 iface_num = first_alt->desc.bInterfaceNumber; 1882 /* Set up endpoints for alternate interface setting 0 */ 1883 alt = usb_find_alt_setting(new_config, iface_num, 0); 1884 if (!alt) 1885 /* No alt setting 0? Pick the first setting. */ 1886 alt = first_alt; 1887 1888 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1889 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1890 if (ret < 0) 1891 goto reset; 1892 } 1893 } 1894 } 1895 if (cur_alt && new_alt) { 1896 struct usb_interface *iface = usb_ifnum_to_if(udev, 1897 cur_alt->desc.bInterfaceNumber); 1898 1899 if (!iface) 1900 return -EINVAL; 1901 if (iface->resetting_device) { 1902 /* 1903 * The USB core just reset the device, so the xHCI host 1904 * and the device will think alt setting 0 is installed. 1905 * However, the USB core will pass in the alternate 1906 * setting installed before the reset as cur_alt. Dig 1907 * out the alternate setting 0 structure, or the first 1908 * alternate setting if a broken device doesn't have alt 1909 * setting 0. 1910 */ 1911 cur_alt = usb_altnum_to_altsetting(iface, 0); 1912 if (!cur_alt) 1913 cur_alt = &iface->altsetting[0]; 1914 } 1915 1916 /* Drop all the endpoints in the current alt setting */ 1917 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1918 ret = hcd->driver->drop_endpoint(hcd, udev, 1919 &cur_alt->endpoint[i]); 1920 if (ret < 0) 1921 goto reset; 1922 } 1923 /* Add all the endpoints in the new alt setting */ 1924 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1925 ret = hcd->driver->add_endpoint(hcd, udev, 1926 &new_alt->endpoint[i]); 1927 if (ret < 0) 1928 goto reset; 1929 } 1930 } 1931 ret = hcd->driver->check_bandwidth(hcd, udev); 1932 reset: 1933 if (ret < 0) 1934 hcd->driver->reset_bandwidth(hcd, udev); 1935 return ret; 1936 } 1937 1938 /* Disables the endpoint: synchronizes with the hcd to make sure all 1939 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1940 * have been called previously. Use for set_configuration, set_interface, 1941 * driver removal, physical disconnect. 1942 * 1943 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1944 * type, maxpacket size, toggle, halt status, and scheduling. 1945 */ 1946 void usb_hcd_disable_endpoint(struct usb_device *udev, 1947 struct usb_host_endpoint *ep) 1948 { 1949 struct usb_hcd *hcd; 1950 1951 might_sleep(); 1952 hcd = bus_to_hcd(udev->bus); 1953 if (hcd->driver->endpoint_disable) 1954 hcd->driver->endpoint_disable(hcd, ep); 1955 } 1956 1957 /** 1958 * usb_hcd_reset_endpoint - reset host endpoint state 1959 * @udev: USB device. 1960 * @ep: the endpoint to reset. 1961 * 1962 * Resets any host endpoint state such as the toggle bit, sequence 1963 * number and current window. 1964 */ 1965 void usb_hcd_reset_endpoint(struct usb_device *udev, 1966 struct usb_host_endpoint *ep) 1967 { 1968 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1969 1970 if (hcd->driver->endpoint_reset) 1971 hcd->driver->endpoint_reset(hcd, ep); 1972 else { 1973 int epnum = usb_endpoint_num(&ep->desc); 1974 int is_out = usb_endpoint_dir_out(&ep->desc); 1975 int is_control = usb_endpoint_xfer_control(&ep->desc); 1976 1977 usb_settoggle(udev, epnum, is_out, 0); 1978 if (is_control) 1979 usb_settoggle(udev, epnum, !is_out, 0); 1980 } 1981 } 1982 1983 /** 1984 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1985 * @interface: alternate setting that includes all endpoints. 1986 * @eps: array of endpoints that need streams. 1987 * @num_eps: number of endpoints in the array. 1988 * @num_streams: number of streams to allocate. 1989 * @mem_flags: flags hcd should use to allocate memory. 1990 * 1991 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 1992 * Drivers may queue multiple transfers to different stream IDs, which may 1993 * complete in a different order than they were queued. 1994 * 1995 * Return: On success, the number of allocated streams. On failure, a negative 1996 * error code. 1997 */ 1998 int usb_alloc_streams(struct usb_interface *interface, 1999 struct usb_host_endpoint **eps, unsigned int num_eps, 2000 unsigned int num_streams, gfp_t mem_flags) 2001 { 2002 struct usb_hcd *hcd; 2003 struct usb_device *dev; 2004 int i, ret; 2005 2006 dev = interface_to_usbdev(interface); 2007 hcd = bus_to_hcd(dev->bus); 2008 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2009 return -EINVAL; 2010 if (dev->speed < USB_SPEED_SUPER) 2011 return -EINVAL; 2012 if (dev->state < USB_STATE_CONFIGURED) 2013 return -ENODEV; 2014 2015 for (i = 0; i < num_eps; i++) { 2016 /* Streams only apply to bulk endpoints. */ 2017 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2018 return -EINVAL; 2019 /* Re-alloc is not allowed */ 2020 if (eps[i]->streams) 2021 return -EINVAL; 2022 } 2023 2024 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2025 num_streams, mem_flags); 2026 if (ret < 0) 2027 return ret; 2028 2029 for (i = 0; i < num_eps; i++) 2030 eps[i]->streams = ret; 2031 2032 return ret; 2033 } 2034 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2035 2036 /** 2037 * usb_free_streams - free bulk endpoint stream IDs. 2038 * @interface: alternate setting that includes all endpoints. 2039 * @eps: array of endpoints to remove streams from. 2040 * @num_eps: number of endpoints in the array. 2041 * @mem_flags: flags hcd should use to allocate memory. 2042 * 2043 * Reverts a group of bulk endpoints back to not using stream IDs. 2044 * Can fail if we are given bad arguments, or HCD is broken. 2045 * 2046 * Return: 0 on success. On failure, a negative error code. 2047 */ 2048 int usb_free_streams(struct usb_interface *interface, 2049 struct usb_host_endpoint **eps, unsigned int num_eps, 2050 gfp_t mem_flags) 2051 { 2052 struct usb_hcd *hcd; 2053 struct usb_device *dev; 2054 int i, ret; 2055 2056 dev = interface_to_usbdev(interface); 2057 hcd = bus_to_hcd(dev->bus); 2058 if (dev->speed < USB_SPEED_SUPER) 2059 return -EINVAL; 2060 2061 /* Double-free is not allowed */ 2062 for (i = 0; i < num_eps; i++) 2063 if (!eps[i] || !eps[i]->streams) 2064 return -EINVAL; 2065 2066 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2067 if (ret < 0) 2068 return ret; 2069 2070 for (i = 0; i < num_eps; i++) 2071 eps[i]->streams = 0; 2072 2073 return ret; 2074 } 2075 EXPORT_SYMBOL_GPL(usb_free_streams); 2076 2077 /* Protect against drivers that try to unlink URBs after the device 2078 * is gone, by waiting until all unlinks for @udev are finished. 2079 * Since we don't currently track URBs by device, simply wait until 2080 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2081 */ 2082 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2083 { 2084 spin_lock_irq(&hcd_urb_unlink_lock); 2085 spin_unlock_irq(&hcd_urb_unlink_lock); 2086 } 2087 2088 /*-------------------------------------------------------------------------*/ 2089 2090 /* called in any context */ 2091 int usb_hcd_get_frame_number (struct usb_device *udev) 2092 { 2093 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2094 2095 if (!HCD_RH_RUNNING(hcd)) 2096 return -ESHUTDOWN; 2097 return hcd->driver->get_frame_number (hcd); 2098 } 2099 2100 /*-------------------------------------------------------------------------*/ 2101 2102 #ifdef CONFIG_PM 2103 2104 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2105 { 2106 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2107 int status; 2108 int old_state = hcd->state; 2109 2110 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2111 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2112 rhdev->do_remote_wakeup); 2113 if (HCD_DEAD(hcd)) { 2114 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2115 return 0; 2116 } 2117 2118 if (!hcd->driver->bus_suspend) { 2119 status = -ENOENT; 2120 } else { 2121 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2122 hcd->state = HC_STATE_QUIESCING; 2123 status = hcd->driver->bus_suspend(hcd); 2124 } 2125 if (status == 0) { 2126 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2127 hcd->state = HC_STATE_SUSPENDED; 2128 2129 if (!PMSG_IS_AUTO(msg)) 2130 usb_phy_roothub_suspend(hcd->self.sysdev, 2131 hcd->phy_roothub); 2132 2133 /* Did we race with a root-hub wakeup event? */ 2134 if (rhdev->do_remote_wakeup) { 2135 char buffer[6]; 2136 2137 status = hcd->driver->hub_status_data(hcd, buffer); 2138 if (status != 0) { 2139 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2140 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2141 status = -EBUSY; 2142 } 2143 } 2144 } else { 2145 spin_lock_irq(&hcd_root_hub_lock); 2146 if (!HCD_DEAD(hcd)) { 2147 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2148 hcd->state = old_state; 2149 } 2150 spin_unlock_irq(&hcd_root_hub_lock); 2151 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2152 "suspend", status); 2153 } 2154 return status; 2155 } 2156 2157 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2158 { 2159 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2160 int status; 2161 int old_state = hcd->state; 2162 2163 dev_dbg(&rhdev->dev, "usb %sresume\n", 2164 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2165 if (HCD_DEAD(hcd)) { 2166 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2167 return 0; 2168 } 2169 2170 if (!PMSG_IS_AUTO(msg)) { 2171 status = usb_phy_roothub_resume(hcd->self.sysdev, 2172 hcd->phy_roothub); 2173 if (status) 2174 return status; 2175 } 2176 2177 if (!hcd->driver->bus_resume) 2178 return -ENOENT; 2179 if (HCD_RH_RUNNING(hcd)) 2180 return 0; 2181 2182 hcd->state = HC_STATE_RESUMING; 2183 status = hcd->driver->bus_resume(hcd); 2184 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2185 if (status == 0) 2186 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2187 2188 if (status == 0) { 2189 struct usb_device *udev; 2190 int port1; 2191 2192 spin_lock_irq(&hcd_root_hub_lock); 2193 if (!HCD_DEAD(hcd)) { 2194 usb_set_device_state(rhdev, rhdev->actconfig 2195 ? USB_STATE_CONFIGURED 2196 : USB_STATE_ADDRESS); 2197 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2198 hcd->state = HC_STATE_RUNNING; 2199 } 2200 spin_unlock_irq(&hcd_root_hub_lock); 2201 2202 /* 2203 * Check whether any of the enabled ports on the root hub are 2204 * unsuspended. If they are then a TRSMRCY delay is needed 2205 * (this is what the USB-2 spec calls a "global resume"). 2206 * Otherwise we can skip the delay. 2207 */ 2208 usb_hub_for_each_child(rhdev, port1, udev) { 2209 if (udev->state != USB_STATE_NOTATTACHED && 2210 !udev->port_is_suspended) { 2211 usleep_range(10000, 11000); /* TRSMRCY */ 2212 break; 2213 } 2214 } 2215 } else { 2216 hcd->state = old_state; 2217 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2218 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2219 "resume", status); 2220 if (status != -ESHUTDOWN) 2221 usb_hc_died(hcd); 2222 } 2223 return status; 2224 } 2225 2226 /* Workqueue routine for root-hub remote wakeup */ 2227 static void hcd_resume_work(struct work_struct *work) 2228 { 2229 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2230 struct usb_device *udev = hcd->self.root_hub; 2231 2232 usb_remote_wakeup(udev); 2233 } 2234 2235 /** 2236 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2237 * @hcd: host controller for this root hub 2238 * 2239 * The USB host controller calls this function when its root hub is 2240 * suspended (with the remote wakeup feature enabled) and a remote 2241 * wakeup request is received. The routine submits a workqueue request 2242 * to resume the root hub (that is, manage its downstream ports again). 2243 */ 2244 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2245 { 2246 unsigned long flags; 2247 2248 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2249 if (hcd->rh_registered) { 2250 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2251 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2252 queue_work(pm_wq, &hcd->wakeup_work); 2253 } 2254 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2255 } 2256 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2257 2258 #endif /* CONFIG_PM */ 2259 2260 /*-------------------------------------------------------------------------*/ 2261 2262 #ifdef CONFIG_USB_OTG 2263 2264 /** 2265 * usb_bus_start_enum - start immediate enumeration (for OTG) 2266 * @bus: the bus (must use hcd framework) 2267 * @port_num: 1-based number of port; usually bus->otg_port 2268 * Context: in_interrupt() 2269 * 2270 * Starts enumeration, with an immediate reset followed later by 2271 * hub_wq identifying and possibly configuring the device. 2272 * This is needed by OTG controller drivers, where it helps meet 2273 * HNP protocol timing requirements for starting a port reset. 2274 * 2275 * Return: 0 if successful. 2276 */ 2277 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2278 { 2279 struct usb_hcd *hcd; 2280 int status = -EOPNOTSUPP; 2281 2282 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2283 * boards with root hubs hooked up to internal devices (instead of 2284 * just the OTG port) may need more attention to resetting... 2285 */ 2286 hcd = bus_to_hcd(bus); 2287 if (port_num && hcd->driver->start_port_reset) 2288 status = hcd->driver->start_port_reset(hcd, port_num); 2289 2290 /* allocate hub_wq shortly after (first) root port reset finishes; 2291 * it may issue others, until at least 50 msecs have passed. 2292 */ 2293 if (status == 0) 2294 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2295 return status; 2296 } 2297 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2298 2299 #endif 2300 2301 /*-------------------------------------------------------------------------*/ 2302 2303 /** 2304 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2305 * @irq: the IRQ being raised 2306 * @__hcd: pointer to the HCD whose IRQ is being signaled 2307 * 2308 * If the controller isn't HALTed, calls the driver's irq handler. 2309 * Checks whether the controller is now dead. 2310 * 2311 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2312 */ 2313 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2314 { 2315 struct usb_hcd *hcd = __hcd; 2316 irqreturn_t rc; 2317 2318 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2319 rc = IRQ_NONE; 2320 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2321 rc = IRQ_NONE; 2322 else 2323 rc = IRQ_HANDLED; 2324 2325 return rc; 2326 } 2327 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2328 2329 /*-------------------------------------------------------------------------*/ 2330 2331 /* Workqueue routine for when the root-hub has died. */ 2332 static void hcd_died_work(struct work_struct *work) 2333 { 2334 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2335 static char *env[] = { 2336 "ERROR=DEAD", 2337 NULL 2338 }; 2339 2340 /* Notify user space that the host controller has died */ 2341 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2342 } 2343 2344 /** 2345 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2346 * @hcd: pointer to the HCD representing the controller 2347 * 2348 * This is called by bus glue to report a USB host controller that died 2349 * while operations may still have been pending. It's called automatically 2350 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2351 * 2352 * Only call this function with the primary HCD. 2353 */ 2354 void usb_hc_died (struct usb_hcd *hcd) 2355 { 2356 unsigned long flags; 2357 2358 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2359 2360 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2361 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2362 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2363 if (hcd->rh_registered) { 2364 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2365 2366 /* make hub_wq clean up old urbs and devices */ 2367 usb_set_device_state (hcd->self.root_hub, 2368 USB_STATE_NOTATTACHED); 2369 usb_kick_hub_wq(hcd->self.root_hub); 2370 } 2371 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2372 hcd = hcd->shared_hcd; 2373 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2374 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2375 if (hcd->rh_registered) { 2376 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2377 2378 /* make hub_wq clean up old urbs and devices */ 2379 usb_set_device_state(hcd->self.root_hub, 2380 USB_STATE_NOTATTACHED); 2381 usb_kick_hub_wq(hcd->self.root_hub); 2382 } 2383 } 2384 2385 /* Handle the case where this function gets called with a shared HCD */ 2386 if (usb_hcd_is_primary_hcd(hcd)) 2387 schedule_work(&hcd->died_work); 2388 else 2389 schedule_work(&hcd->primary_hcd->died_work); 2390 2391 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2392 /* Make sure that the other roothub is also deallocated. */ 2393 } 2394 EXPORT_SYMBOL_GPL (usb_hc_died); 2395 2396 /*-------------------------------------------------------------------------*/ 2397 2398 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2399 { 2400 2401 spin_lock_init(&bh->lock); 2402 INIT_LIST_HEAD(&bh->head); 2403 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2404 } 2405 2406 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2407 struct device *sysdev, struct device *dev, const char *bus_name, 2408 struct usb_hcd *primary_hcd) 2409 { 2410 struct usb_hcd *hcd; 2411 2412 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2413 if (!hcd) 2414 return NULL; 2415 if (primary_hcd == NULL) { 2416 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2417 GFP_KERNEL); 2418 if (!hcd->address0_mutex) { 2419 kfree(hcd); 2420 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2421 return NULL; 2422 } 2423 mutex_init(hcd->address0_mutex); 2424 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2425 GFP_KERNEL); 2426 if (!hcd->bandwidth_mutex) { 2427 kfree(hcd->address0_mutex); 2428 kfree(hcd); 2429 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2430 return NULL; 2431 } 2432 mutex_init(hcd->bandwidth_mutex); 2433 dev_set_drvdata(dev, hcd); 2434 } else { 2435 mutex_lock(&usb_port_peer_mutex); 2436 hcd->address0_mutex = primary_hcd->address0_mutex; 2437 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2438 hcd->primary_hcd = primary_hcd; 2439 primary_hcd->primary_hcd = primary_hcd; 2440 hcd->shared_hcd = primary_hcd; 2441 primary_hcd->shared_hcd = hcd; 2442 mutex_unlock(&usb_port_peer_mutex); 2443 } 2444 2445 kref_init(&hcd->kref); 2446 2447 usb_bus_init(&hcd->self); 2448 hcd->self.controller = dev; 2449 hcd->self.sysdev = sysdev; 2450 hcd->self.bus_name = bus_name; 2451 2452 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2453 #ifdef CONFIG_PM 2454 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2455 #endif 2456 2457 INIT_WORK(&hcd->died_work, hcd_died_work); 2458 2459 hcd->driver = driver; 2460 hcd->speed = driver->flags & HCD_MASK; 2461 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2462 "USB Host Controller"; 2463 return hcd; 2464 } 2465 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2466 2467 /** 2468 * usb_create_shared_hcd - create and initialize an HCD structure 2469 * @driver: HC driver that will use this hcd 2470 * @dev: device for this HC, stored in hcd->self.controller 2471 * @bus_name: value to store in hcd->self.bus_name 2472 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2473 * PCI device. Only allocate certain resources for the primary HCD 2474 * Context: !in_interrupt() 2475 * 2476 * Allocate a struct usb_hcd, with extra space at the end for the 2477 * HC driver's private data. Initialize the generic members of the 2478 * hcd structure. 2479 * 2480 * Return: On success, a pointer to the created and initialized HCD structure. 2481 * On failure (e.g. if memory is unavailable), %NULL. 2482 */ 2483 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2484 struct device *dev, const char *bus_name, 2485 struct usb_hcd *primary_hcd) 2486 { 2487 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2488 } 2489 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2490 2491 /** 2492 * usb_create_hcd - create and initialize an HCD structure 2493 * @driver: HC driver that will use this hcd 2494 * @dev: device for this HC, stored in hcd->self.controller 2495 * @bus_name: value to store in hcd->self.bus_name 2496 * Context: !in_interrupt() 2497 * 2498 * Allocate a struct usb_hcd, with extra space at the end for the 2499 * HC driver's private data. Initialize the generic members of the 2500 * hcd structure. 2501 * 2502 * Return: On success, a pointer to the created and initialized HCD 2503 * structure. On failure (e.g. if memory is unavailable), %NULL. 2504 */ 2505 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2506 struct device *dev, const char *bus_name) 2507 { 2508 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2509 } 2510 EXPORT_SYMBOL_GPL(usb_create_hcd); 2511 2512 /* 2513 * Roothubs that share one PCI device must also share the bandwidth mutex. 2514 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2515 * deallocated. 2516 * 2517 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2518 * freed. When hcd_release() is called for either hcd in a peer set, 2519 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2520 */ 2521 static void hcd_release(struct kref *kref) 2522 { 2523 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2524 2525 mutex_lock(&usb_port_peer_mutex); 2526 if (hcd->shared_hcd) { 2527 struct usb_hcd *peer = hcd->shared_hcd; 2528 2529 peer->shared_hcd = NULL; 2530 peer->primary_hcd = NULL; 2531 } else { 2532 kfree(hcd->address0_mutex); 2533 kfree(hcd->bandwidth_mutex); 2534 } 2535 mutex_unlock(&usb_port_peer_mutex); 2536 kfree(hcd); 2537 } 2538 2539 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2540 { 2541 if (hcd) 2542 kref_get (&hcd->kref); 2543 return hcd; 2544 } 2545 EXPORT_SYMBOL_GPL(usb_get_hcd); 2546 2547 void usb_put_hcd (struct usb_hcd *hcd) 2548 { 2549 if (hcd) 2550 kref_put (&hcd->kref, hcd_release); 2551 } 2552 EXPORT_SYMBOL_GPL(usb_put_hcd); 2553 2554 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2555 { 2556 if (!hcd->primary_hcd) 2557 return 1; 2558 return hcd == hcd->primary_hcd; 2559 } 2560 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2561 2562 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2563 { 2564 if (!hcd->driver->find_raw_port_number) 2565 return port1; 2566 2567 return hcd->driver->find_raw_port_number(hcd, port1); 2568 } 2569 2570 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2571 unsigned int irqnum, unsigned long irqflags) 2572 { 2573 int retval; 2574 2575 if (hcd->driver->irq) { 2576 2577 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2578 hcd->driver->description, hcd->self.busnum); 2579 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2580 hcd->irq_descr, hcd); 2581 if (retval != 0) { 2582 dev_err(hcd->self.controller, 2583 "request interrupt %d failed\n", 2584 irqnum); 2585 return retval; 2586 } 2587 hcd->irq = irqnum; 2588 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2589 (hcd->driver->flags & HCD_MEMORY) ? 2590 "io mem" : "io base", 2591 (unsigned long long)hcd->rsrc_start); 2592 } else { 2593 hcd->irq = 0; 2594 if (hcd->rsrc_start) 2595 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2596 (hcd->driver->flags & HCD_MEMORY) ? 2597 "io mem" : "io base", 2598 (unsigned long long)hcd->rsrc_start); 2599 } 2600 return 0; 2601 } 2602 2603 /* 2604 * Before we free this root hub, flush in-flight peering attempts 2605 * and disable peer lookups 2606 */ 2607 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2608 { 2609 struct usb_device *rhdev; 2610 2611 mutex_lock(&usb_port_peer_mutex); 2612 rhdev = hcd->self.root_hub; 2613 hcd->self.root_hub = NULL; 2614 mutex_unlock(&usb_port_peer_mutex); 2615 usb_put_dev(rhdev); 2616 } 2617 2618 /** 2619 * usb_add_hcd - finish generic HCD structure initialization and register 2620 * @hcd: the usb_hcd structure to initialize 2621 * @irqnum: Interrupt line to allocate 2622 * @irqflags: Interrupt type flags 2623 * 2624 * Finish the remaining parts of generic HCD initialization: allocate the 2625 * buffers of consistent memory, register the bus, request the IRQ line, 2626 * and call the driver's reset() and start() routines. 2627 */ 2628 int usb_add_hcd(struct usb_hcd *hcd, 2629 unsigned int irqnum, unsigned long irqflags) 2630 { 2631 int retval; 2632 struct usb_device *rhdev; 2633 2634 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2635 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2636 if (IS_ERR(hcd->phy_roothub)) 2637 return PTR_ERR(hcd->phy_roothub); 2638 2639 retval = usb_phy_roothub_init(hcd->phy_roothub); 2640 if (retval) 2641 return retval; 2642 2643 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2644 PHY_MODE_USB_HOST_SS); 2645 if (retval) 2646 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2647 PHY_MODE_USB_HOST); 2648 if (retval) 2649 goto err_usb_phy_roothub_power_on; 2650 2651 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2652 if (retval) 2653 goto err_usb_phy_roothub_power_on; 2654 } 2655 2656 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2657 2658 switch (authorized_default) { 2659 case USB_AUTHORIZE_NONE: 2660 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2661 break; 2662 2663 case USB_AUTHORIZE_ALL: 2664 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2665 break; 2666 2667 case USB_AUTHORIZE_INTERNAL: 2668 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2669 break; 2670 2671 case USB_AUTHORIZE_WIRED: 2672 default: 2673 hcd->dev_policy = hcd->wireless ? 2674 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2675 break; 2676 } 2677 2678 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2679 2680 /* per default all interfaces are authorized */ 2681 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2682 2683 /* HC is in reset state, but accessible. Now do the one-time init, 2684 * bottom up so that hcds can customize the root hubs before hub_wq 2685 * starts talking to them. (Note, bus id is assigned early too.) 2686 */ 2687 retval = hcd_buffer_create(hcd); 2688 if (retval != 0) { 2689 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2690 goto err_create_buf; 2691 } 2692 2693 retval = usb_register_bus(&hcd->self); 2694 if (retval < 0) 2695 goto err_register_bus; 2696 2697 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2698 if (rhdev == NULL) { 2699 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2700 retval = -ENOMEM; 2701 goto err_allocate_root_hub; 2702 } 2703 mutex_lock(&usb_port_peer_mutex); 2704 hcd->self.root_hub = rhdev; 2705 mutex_unlock(&usb_port_peer_mutex); 2706 2707 rhdev->rx_lanes = 1; 2708 rhdev->tx_lanes = 1; 2709 2710 switch (hcd->speed) { 2711 case HCD_USB11: 2712 rhdev->speed = USB_SPEED_FULL; 2713 break; 2714 case HCD_USB2: 2715 rhdev->speed = USB_SPEED_HIGH; 2716 break; 2717 case HCD_USB25: 2718 rhdev->speed = USB_SPEED_WIRELESS; 2719 break; 2720 case HCD_USB3: 2721 rhdev->speed = USB_SPEED_SUPER; 2722 break; 2723 case HCD_USB32: 2724 rhdev->rx_lanes = 2; 2725 rhdev->tx_lanes = 2; 2726 /* fall through */ 2727 case HCD_USB31: 2728 rhdev->speed = USB_SPEED_SUPER_PLUS; 2729 break; 2730 default: 2731 retval = -EINVAL; 2732 goto err_set_rh_speed; 2733 } 2734 2735 /* wakeup flag init defaults to "everything works" for root hubs, 2736 * but drivers can override it in reset() if needed, along with 2737 * recording the overall controller's system wakeup capability. 2738 */ 2739 device_set_wakeup_capable(&rhdev->dev, 1); 2740 2741 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2742 * registered. But since the controller can die at any time, 2743 * let's initialize the flag before touching the hardware. 2744 */ 2745 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2746 2747 /* "reset" is misnamed; its role is now one-time init. the controller 2748 * should already have been reset (and boot firmware kicked off etc). 2749 */ 2750 if (hcd->driver->reset) { 2751 retval = hcd->driver->reset(hcd); 2752 if (retval < 0) { 2753 dev_err(hcd->self.controller, "can't setup: %d\n", 2754 retval); 2755 goto err_hcd_driver_setup; 2756 } 2757 } 2758 hcd->rh_pollable = 1; 2759 2760 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2761 if (retval) 2762 goto err_hcd_driver_setup; 2763 2764 /* NOTE: root hub and controller capabilities may not be the same */ 2765 if (device_can_wakeup(hcd->self.controller) 2766 && device_can_wakeup(&hcd->self.root_hub->dev)) 2767 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2768 2769 /* initialize tasklets */ 2770 init_giveback_urb_bh(&hcd->high_prio_bh); 2771 init_giveback_urb_bh(&hcd->low_prio_bh); 2772 2773 /* enable irqs just before we start the controller, 2774 * if the BIOS provides legacy PCI irqs. 2775 */ 2776 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2777 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2778 if (retval) 2779 goto err_request_irq; 2780 } 2781 2782 hcd->state = HC_STATE_RUNNING; 2783 retval = hcd->driver->start(hcd); 2784 if (retval < 0) { 2785 dev_err(hcd->self.controller, "startup error %d\n", retval); 2786 goto err_hcd_driver_start; 2787 } 2788 2789 /* starting here, usbcore will pay attention to this root hub */ 2790 retval = register_root_hub(hcd); 2791 if (retval != 0) 2792 goto err_register_root_hub; 2793 2794 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2795 usb_hcd_poll_rh_status(hcd); 2796 2797 return retval; 2798 2799 err_register_root_hub: 2800 hcd->rh_pollable = 0; 2801 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2802 del_timer_sync(&hcd->rh_timer); 2803 hcd->driver->stop(hcd); 2804 hcd->state = HC_STATE_HALT; 2805 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2806 del_timer_sync(&hcd->rh_timer); 2807 err_hcd_driver_start: 2808 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2809 free_irq(irqnum, hcd); 2810 err_request_irq: 2811 err_hcd_driver_setup: 2812 err_set_rh_speed: 2813 usb_put_invalidate_rhdev(hcd); 2814 err_allocate_root_hub: 2815 usb_deregister_bus(&hcd->self); 2816 err_register_bus: 2817 hcd_buffer_destroy(hcd); 2818 err_create_buf: 2819 usb_phy_roothub_power_off(hcd->phy_roothub); 2820 err_usb_phy_roothub_power_on: 2821 usb_phy_roothub_exit(hcd->phy_roothub); 2822 2823 return retval; 2824 } 2825 EXPORT_SYMBOL_GPL(usb_add_hcd); 2826 2827 /** 2828 * usb_remove_hcd - shutdown processing for generic HCDs 2829 * @hcd: the usb_hcd structure to remove 2830 * Context: !in_interrupt() 2831 * 2832 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2833 * invoking the HCD's stop() method. 2834 */ 2835 void usb_remove_hcd(struct usb_hcd *hcd) 2836 { 2837 struct usb_device *rhdev = hcd->self.root_hub; 2838 2839 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2840 2841 usb_get_dev(rhdev); 2842 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2843 if (HC_IS_RUNNING (hcd->state)) 2844 hcd->state = HC_STATE_QUIESCING; 2845 2846 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2847 spin_lock_irq (&hcd_root_hub_lock); 2848 hcd->rh_registered = 0; 2849 spin_unlock_irq (&hcd_root_hub_lock); 2850 2851 #ifdef CONFIG_PM 2852 cancel_work_sync(&hcd->wakeup_work); 2853 #endif 2854 cancel_work_sync(&hcd->died_work); 2855 2856 mutex_lock(&usb_bus_idr_lock); 2857 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2858 mutex_unlock(&usb_bus_idr_lock); 2859 2860 /* 2861 * tasklet_kill() isn't needed here because: 2862 * - driver's disconnect() called from usb_disconnect() should 2863 * make sure its URBs are completed during the disconnect() 2864 * callback 2865 * 2866 * - it is too late to run complete() here since driver may have 2867 * been removed already now 2868 */ 2869 2870 /* Prevent any more root-hub status calls from the timer. 2871 * The HCD might still restart the timer (if a port status change 2872 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2873 * the hub_status_data() callback. 2874 */ 2875 hcd->rh_pollable = 0; 2876 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2877 del_timer_sync(&hcd->rh_timer); 2878 2879 hcd->driver->stop(hcd); 2880 hcd->state = HC_STATE_HALT; 2881 2882 /* In case the HCD restarted the timer, stop it again. */ 2883 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2884 del_timer_sync(&hcd->rh_timer); 2885 2886 if (usb_hcd_is_primary_hcd(hcd)) { 2887 if (hcd->irq > 0) 2888 free_irq(hcd->irq, hcd); 2889 } 2890 2891 usb_deregister_bus(&hcd->self); 2892 hcd_buffer_destroy(hcd); 2893 2894 usb_phy_roothub_power_off(hcd->phy_roothub); 2895 usb_phy_roothub_exit(hcd->phy_roothub); 2896 2897 usb_put_invalidate_rhdev(hcd); 2898 hcd->flags = 0; 2899 } 2900 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2901 2902 void 2903 usb_hcd_platform_shutdown(struct platform_device *dev) 2904 { 2905 struct usb_hcd *hcd = platform_get_drvdata(dev); 2906 2907 /* No need for pm_runtime_put(), we're shutting down */ 2908 pm_runtime_get_sync(&dev->dev); 2909 2910 if (hcd->driver->shutdown) 2911 hcd->driver->shutdown(hcd); 2912 } 2913 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2914 2915 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 2916 dma_addr_t dma, size_t size) 2917 { 2918 int err; 2919 void *local_mem; 2920 2921 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 2922 dev_to_node(hcd->self.sysdev), 2923 dev_name(hcd->self.sysdev)); 2924 if (IS_ERR(hcd->localmem_pool)) 2925 return PTR_ERR(hcd->localmem_pool); 2926 2927 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 2928 size, MEMREMAP_WC); 2929 if (IS_ERR(local_mem)) 2930 return PTR_ERR(local_mem); 2931 2932 /* 2933 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 2934 * It's not backed by system memory and thus there's no kernel mapping 2935 * for it. 2936 */ 2937 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 2938 dma, size, dev_to_node(hcd->self.sysdev)); 2939 if (err < 0) { 2940 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 2941 err); 2942 return err; 2943 } 2944 2945 return 0; 2946 } 2947 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 2948 2949 /*-------------------------------------------------------------------------*/ 2950 2951 #if IS_ENABLED(CONFIG_USB_MON) 2952 2953 const struct usb_mon_operations *mon_ops; 2954 2955 /* 2956 * The registration is unlocked. 2957 * We do it this way because we do not want to lock in hot paths. 2958 * 2959 * Notice that the code is minimally error-proof. Because usbmon needs 2960 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2961 */ 2962 2963 int usb_mon_register(const struct usb_mon_operations *ops) 2964 { 2965 2966 if (mon_ops) 2967 return -EBUSY; 2968 2969 mon_ops = ops; 2970 mb(); 2971 return 0; 2972 } 2973 EXPORT_SYMBOL_GPL (usb_mon_register); 2974 2975 void usb_mon_deregister (void) 2976 { 2977 2978 if (mon_ops == NULL) { 2979 printk(KERN_ERR "USB: monitor was not registered\n"); 2980 return; 2981 } 2982 mon_ops = NULL; 2983 mb(); 2984 } 2985 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2986 2987 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2988