1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/types.h> 44 45 #include <linux/phy/phy.h> 46 #include <linux/usb.h> 47 #include <linux/usb/hcd.h> 48 #include <linux/usb/phy.h> 49 50 #include "usb.h" 51 52 53 /*-------------------------------------------------------------------------*/ 54 55 /* 56 * USB Host Controller Driver framework 57 * 58 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 59 * HCD-specific behaviors/bugs. 60 * 61 * This does error checks, tracks devices and urbs, and delegates to a 62 * "hc_driver" only for code (and data) that really needs to know about 63 * hardware differences. That includes root hub registers, i/o queues, 64 * and so on ... but as little else as possible. 65 * 66 * Shared code includes most of the "root hub" code (these are emulated, 67 * though each HC's hardware works differently) and PCI glue, plus request 68 * tracking overhead. The HCD code should only block on spinlocks or on 69 * hardware handshaking; blocking on software events (such as other kernel 70 * threads releasing resources, or completing actions) is all generic. 71 * 72 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 73 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 74 * only by the hub driver ... and that neither should be seen or used by 75 * usb client device drivers. 76 * 77 * Contributors of ideas or unattributed patches include: David Brownell, 78 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 79 * 80 * HISTORY: 81 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 82 * associated cleanup. "usb_hcd" still != "usb_bus". 83 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 84 */ 85 86 /*-------------------------------------------------------------------------*/ 87 88 /* Keep track of which host controller drivers are loaded */ 89 unsigned long usb_hcds_loaded; 90 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 91 92 /* host controllers we manage */ 93 LIST_HEAD (usb_bus_list); 94 EXPORT_SYMBOL_GPL (usb_bus_list); 95 96 /* used when allocating bus numbers */ 97 #define USB_MAXBUS 64 98 static DECLARE_BITMAP(busmap, USB_MAXBUS); 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 130 131 /* usb 3.0 root hub device descriptor */ 132 static const u8 usb3_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 0x01, /* __u8 bDescriptorType; Device */ 135 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 153 static const u8 usb25_rh_dev_descriptor[18] = { 154 0x12, /* __u8 bLength; */ 155 0x01, /* __u8 bDescriptorType; Device */ 156 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 161 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 164 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* usb 2.0 root hub device descriptor */ 174 static const u8 usb2_rh_dev_descriptor[18] = { 175 0x12, /* __u8 bLength; */ 176 0x01, /* __u8 bDescriptorType; Device */ 177 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 178 179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 180 0x00, /* __u8 bDeviceSubClass; */ 181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 182 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 183 184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 187 188 0x03, /* __u8 iManufacturer; */ 189 0x02, /* __u8 iProduct; */ 190 0x01, /* __u8 iSerialNumber; */ 191 0x01 /* __u8 bNumConfigurations; */ 192 }; 193 194 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 195 196 /* usb 1.1 root hub device descriptor */ 197 static const u8 usb11_rh_dev_descriptor[18] = { 198 0x12, /* __u8 bLength; */ 199 0x01, /* __u8 bDescriptorType; Device */ 200 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 201 202 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 203 0x00, /* __u8 bDeviceSubClass; */ 204 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 205 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 206 207 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 208 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 209 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 210 211 0x03, /* __u8 iManufacturer; */ 212 0x02, /* __u8 iProduct; */ 213 0x01, /* __u8 iSerialNumber; */ 214 0x01 /* __u8 bNumConfigurations; */ 215 }; 216 217 218 /*-------------------------------------------------------------------------*/ 219 220 /* Configuration descriptors for our root hubs */ 221 222 static const u8 fs_rh_config_descriptor[] = { 223 224 /* one configuration */ 225 0x09, /* __u8 bLength; */ 226 0x02, /* __u8 bDescriptorType; Configuration */ 227 0x19, 0x00, /* __le16 wTotalLength; */ 228 0x01, /* __u8 bNumInterfaces; (1) */ 229 0x01, /* __u8 bConfigurationValue; */ 230 0x00, /* __u8 iConfiguration; */ 231 0xc0, /* __u8 bmAttributes; 232 Bit 7: must be set, 233 6: Self-powered, 234 5: Remote wakeup, 235 4..0: resvd */ 236 0x00, /* __u8 MaxPower; */ 237 238 /* USB 1.1: 239 * USB 2.0, single TT organization (mandatory): 240 * one interface, protocol 0 241 * 242 * USB 2.0, multiple TT organization (optional): 243 * two interfaces, protocols 1 (like single TT) 244 * and 2 (multiple TT mode) ... config is 245 * sometimes settable 246 * NOT IMPLEMENTED 247 */ 248 249 /* one interface */ 250 0x09, /* __u8 if_bLength; */ 251 0x04, /* __u8 if_bDescriptorType; Interface */ 252 0x00, /* __u8 if_bInterfaceNumber; */ 253 0x00, /* __u8 if_bAlternateSetting; */ 254 0x01, /* __u8 if_bNumEndpoints; */ 255 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 256 0x00, /* __u8 if_bInterfaceSubClass; */ 257 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 258 0x00, /* __u8 if_iInterface; */ 259 260 /* one endpoint (status change endpoint) */ 261 0x07, /* __u8 ep_bLength; */ 262 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 263 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 264 0x03, /* __u8 ep_bmAttributes; Interrupt */ 265 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 266 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 267 }; 268 269 static const u8 hs_rh_config_descriptor[] = { 270 271 /* one configuration */ 272 0x09, /* __u8 bLength; */ 273 0x02, /* __u8 bDescriptorType; Configuration */ 274 0x19, 0x00, /* __le16 wTotalLength; */ 275 0x01, /* __u8 bNumInterfaces; (1) */ 276 0x01, /* __u8 bConfigurationValue; */ 277 0x00, /* __u8 iConfiguration; */ 278 0xc0, /* __u8 bmAttributes; 279 Bit 7: must be set, 280 6: Self-powered, 281 5: Remote wakeup, 282 4..0: resvd */ 283 0x00, /* __u8 MaxPower; */ 284 285 /* USB 1.1: 286 * USB 2.0, single TT organization (mandatory): 287 * one interface, protocol 0 288 * 289 * USB 2.0, multiple TT organization (optional): 290 * two interfaces, protocols 1 (like single TT) 291 * and 2 (multiple TT mode) ... config is 292 * sometimes settable 293 * NOT IMPLEMENTED 294 */ 295 296 /* one interface */ 297 0x09, /* __u8 if_bLength; */ 298 0x04, /* __u8 if_bDescriptorType; Interface */ 299 0x00, /* __u8 if_bInterfaceNumber; */ 300 0x00, /* __u8 if_bAlternateSetting; */ 301 0x01, /* __u8 if_bNumEndpoints; */ 302 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 303 0x00, /* __u8 if_bInterfaceSubClass; */ 304 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 305 0x00, /* __u8 if_iInterface; */ 306 307 /* one endpoint (status change endpoint) */ 308 0x07, /* __u8 ep_bLength; */ 309 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 310 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 311 0x03, /* __u8 ep_bmAttributes; Interrupt */ 312 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 313 * see hub.c:hub_configure() for details. */ 314 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 315 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 316 }; 317 318 static const u8 ss_rh_config_descriptor[] = { 319 /* one configuration */ 320 0x09, /* __u8 bLength; */ 321 0x02, /* __u8 bDescriptorType; Configuration */ 322 0x1f, 0x00, /* __le16 wTotalLength; */ 323 0x01, /* __u8 bNumInterfaces; (1) */ 324 0x01, /* __u8 bConfigurationValue; */ 325 0x00, /* __u8 iConfiguration; */ 326 0xc0, /* __u8 bmAttributes; 327 Bit 7: must be set, 328 6: Self-powered, 329 5: Remote wakeup, 330 4..0: resvd */ 331 0x00, /* __u8 MaxPower; */ 332 333 /* one interface */ 334 0x09, /* __u8 if_bLength; */ 335 0x04, /* __u8 if_bDescriptorType; Interface */ 336 0x00, /* __u8 if_bInterfaceNumber; */ 337 0x00, /* __u8 if_bAlternateSetting; */ 338 0x01, /* __u8 if_bNumEndpoints; */ 339 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 340 0x00, /* __u8 if_bInterfaceSubClass; */ 341 0x00, /* __u8 if_bInterfaceProtocol; */ 342 0x00, /* __u8 if_iInterface; */ 343 344 /* one endpoint (status change endpoint) */ 345 0x07, /* __u8 ep_bLength; */ 346 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 347 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 348 0x03, /* __u8 ep_bmAttributes; Interrupt */ 349 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 350 * see hub.c:hub_configure() for details. */ 351 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 352 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 353 354 /* one SuperSpeed endpoint companion descriptor */ 355 0x06, /* __u8 ss_bLength */ 356 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 357 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 358 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 359 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 360 }; 361 362 /* authorized_default behaviour: 363 * -1 is authorized for all devices except wireless (old behaviour) 364 * 0 is unauthorized for all devices 365 * 1 is authorized for all devices 366 */ 367 static int authorized_default = -1; 368 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 369 MODULE_PARM_DESC(authorized_default, 370 "Default USB device authorization: 0 is not authorized, 1 is " 371 "authorized, -1 is authorized except for wireless USB (default, " 372 "old behaviour"); 373 /*-------------------------------------------------------------------------*/ 374 375 /** 376 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 377 * @s: Null-terminated ASCII (actually ISO-8859-1) string 378 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 379 * @len: Length (in bytes; may be odd) of descriptor buffer. 380 * 381 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 382 * whichever is less. 383 * 384 * Note: 385 * USB String descriptors can contain at most 126 characters; input 386 * strings longer than that are truncated. 387 */ 388 static unsigned 389 ascii2desc(char const *s, u8 *buf, unsigned len) 390 { 391 unsigned n, t = 2 + 2*strlen(s); 392 393 if (t > 254) 394 t = 254; /* Longest possible UTF string descriptor */ 395 if (len > t) 396 len = t; 397 398 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 399 400 n = len; 401 while (n--) { 402 *buf++ = t; 403 if (!n--) 404 break; 405 *buf++ = t >> 8; 406 t = (unsigned char)*s++; 407 } 408 return len; 409 } 410 411 /** 412 * rh_string() - provides string descriptors for root hub 413 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 414 * @hcd: the host controller for this root hub 415 * @data: buffer for output packet 416 * @len: length of the provided buffer 417 * 418 * Produces either a manufacturer, product or serial number string for the 419 * virtual root hub device. 420 * 421 * Return: The number of bytes filled in: the length of the descriptor or 422 * of the provided buffer, whichever is less. 423 */ 424 static unsigned 425 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 426 { 427 char buf[100]; 428 char const *s; 429 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 430 431 /* language ids */ 432 switch (id) { 433 case 0: 434 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 435 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 436 if (len > 4) 437 len = 4; 438 memcpy(data, langids, len); 439 return len; 440 case 1: 441 /* Serial number */ 442 s = hcd->self.bus_name; 443 break; 444 case 2: 445 /* Product name */ 446 s = hcd->product_desc; 447 break; 448 case 3: 449 /* Manufacturer */ 450 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 451 init_utsname()->release, hcd->driver->description); 452 s = buf; 453 break; 454 default: 455 /* Can't happen; caller guarantees it */ 456 return 0; 457 } 458 459 return ascii2desc(s, data, len); 460 } 461 462 463 /* Root hub control transfers execute synchronously */ 464 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 465 { 466 struct usb_ctrlrequest *cmd; 467 u16 typeReq, wValue, wIndex, wLength; 468 u8 *ubuf = urb->transfer_buffer; 469 unsigned len = 0; 470 int status; 471 u8 patch_wakeup = 0; 472 u8 patch_protocol = 0; 473 u16 tbuf_size; 474 u8 *tbuf = NULL; 475 const u8 *bufp; 476 477 might_sleep(); 478 479 spin_lock_irq(&hcd_root_hub_lock); 480 status = usb_hcd_link_urb_to_ep(hcd, urb); 481 spin_unlock_irq(&hcd_root_hub_lock); 482 if (status) 483 return status; 484 urb->hcpriv = hcd; /* Indicate it's queued */ 485 486 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 487 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 488 wValue = le16_to_cpu (cmd->wValue); 489 wIndex = le16_to_cpu (cmd->wIndex); 490 wLength = le16_to_cpu (cmd->wLength); 491 492 if (wLength > urb->transfer_buffer_length) 493 goto error; 494 495 /* 496 * tbuf should be at least as big as the 497 * USB hub descriptor. 498 */ 499 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 500 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 501 if (!tbuf) 502 return -ENOMEM; 503 504 bufp = tbuf; 505 506 507 urb->actual_length = 0; 508 switch (typeReq) { 509 510 /* DEVICE REQUESTS */ 511 512 /* The root hub's remote wakeup enable bit is implemented using 513 * driver model wakeup flags. If this system supports wakeup 514 * through USB, userspace may change the default "allow wakeup" 515 * policy through sysfs or these calls. 516 * 517 * Most root hubs support wakeup from downstream devices, for 518 * runtime power management (disabling USB clocks and reducing 519 * VBUS power usage). However, not all of them do so; silicon, 520 * board, and BIOS bugs here are not uncommon, so these can't 521 * be treated quite like external hubs. 522 * 523 * Likewise, not all root hubs will pass wakeup events upstream, 524 * to wake up the whole system. So don't assume root hub and 525 * controller capabilities are identical. 526 */ 527 528 case DeviceRequest | USB_REQ_GET_STATUS: 529 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 530 << USB_DEVICE_REMOTE_WAKEUP) 531 | (1 << USB_DEVICE_SELF_POWERED); 532 tbuf[1] = 0; 533 len = 2; 534 break; 535 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 536 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 537 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 538 else 539 goto error; 540 break; 541 case DeviceOutRequest | USB_REQ_SET_FEATURE: 542 if (device_can_wakeup(&hcd->self.root_hub->dev) 543 && wValue == USB_DEVICE_REMOTE_WAKEUP) 544 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 545 else 546 goto error; 547 break; 548 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 549 tbuf[0] = 1; 550 len = 1; 551 /* FALLTHROUGH */ 552 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 553 break; 554 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 555 switch (wValue & 0xff00) { 556 case USB_DT_DEVICE << 8: 557 switch (hcd->speed) { 558 case HCD_USB3: 559 bufp = usb3_rh_dev_descriptor; 560 break; 561 case HCD_USB25: 562 bufp = usb25_rh_dev_descriptor; 563 break; 564 case HCD_USB2: 565 bufp = usb2_rh_dev_descriptor; 566 break; 567 case HCD_USB11: 568 bufp = usb11_rh_dev_descriptor; 569 break; 570 default: 571 goto error; 572 } 573 len = 18; 574 if (hcd->has_tt) 575 patch_protocol = 1; 576 break; 577 case USB_DT_CONFIG << 8: 578 switch (hcd->speed) { 579 case HCD_USB3: 580 bufp = ss_rh_config_descriptor; 581 len = sizeof ss_rh_config_descriptor; 582 break; 583 case HCD_USB25: 584 case HCD_USB2: 585 bufp = hs_rh_config_descriptor; 586 len = sizeof hs_rh_config_descriptor; 587 break; 588 case HCD_USB11: 589 bufp = fs_rh_config_descriptor; 590 len = sizeof fs_rh_config_descriptor; 591 break; 592 default: 593 goto error; 594 } 595 if (device_can_wakeup(&hcd->self.root_hub->dev)) 596 patch_wakeup = 1; 597 break; 598 case USB_DT_STRING << 8: 599 if ((wValue & 0xff) < 4) 600 urb->actual_length = rh_string(wValue & 0xff, 601 hcd, ubuf, wLength); 602 else /* unsupported IDs --> "protocol stall" */ 603 goto error; 604 break; 605 case USB_DT_BOS << 8: 606 goto nongeneric; 607 default: 608 goto error; 609 } 610 break; 611 case DeviceRequest | USB_REQ_GET_INTERFACE: 612 tbuf[0] = 0; 613 len = 1; 614 /* FALLTHROUGH */ 615 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 616 break; 617 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 618 /* wValue == urb->dev->devaddr */ 619 dev_dbg (hcd->self.controller, "root hub device address %d\n", 620 wValue); 621 break; 622 623 /* INTERFACE REQUESTS (no defined feature/status flags) */ 624 625 /* ENDPOINT REQUESTS */ 626 627 case EndpointRequest | USB_REQ_GET_STATUS: 628 /* ENDPOINT_HALT flag */ 629 tbuf[0] = 0; 630 tbuf[1] = 0; 631 len = 2; 632 /* FALLTHROUGH */ 633 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 634 case EndpointOutRequest | USB_REQ_SET_FEATURE: 635 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 636 break; 637 638 /* CLASS REQUESTS (and errors) */ 639 640 default: 641 nongeneric: 642 /* non-generic request */ 643 switch (typeReq) { 644 case GetHubStatus: 645 case GetPortStatus: 646 len = 4; 647 break; 648 case GetHubDescriptor: 649 len = sizeof (struct usb_hub_descriptor); 650 break; 651 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 652 /* len is returned by hub_control */ 653 break; 654 } 655 status = hcd->driver->hub_control (hcd, 656 typeReq, wValue, wIndex, 657 tbuf, wLength); 658 659 if (typeReq == GetHubDescriptor) 660 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 661 (struct usb_hub_descriptor *)tbuf); 662 break; 663 error: 664 /* "protocol stall" on error */ 665 status = -EPIPE; 666 } 667 668 if (status < 0) { 669 len = 0; 670 if (status != -EPIPE) { 671 dev_dbg (hcd->self.controller, 672 "CTRL: TypeReq=0x%x val=0x%x " 673 "idx=0x%x len=%d ==> %d\n", 674 typeReq, wValue, wIndex, 675 wLength, status); 676 } 677 } else if (status > 0) { 678 /* hub_control may return the length of data copied. */ 679 len = status; 680 status = 0; 681 } 682 if (len) { 683 if (urb->transfer_buffer_length < len) 684 len = urb->transfer_buffer_length; 685 urb->actual_length = len; 686 /* always USB_DIR_IN, toward host */ 687 memcpy (ubuf, bufp, len); 688 689 /* report whether RH hardware supports remote wakeup */ 690 if (patch_wakeup && 691 len > offsetof (struct usb_config_descriptor, 692 bmAttributes)) 693 ((struct usb_config_descriptor *)ubuf)->bmAttributes 694 |= USB_CONFIG_ATT_WAKEUP; 695 696 /* report whether RH hardware has an integrated TT */ 697 if (patch_protocol && 698 len > offsetof(struct usb_device_descriptor, 699 bDeviceProtocol)) 700 ((struct usb_device_descriptor *) ubuf)-> 701 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 702 } 703 704 kfree(tbuf); 705 706 /* any errors get returned through the urb completion */ 707 spin_lock_irq(&hcd_root_hub_lock); 708 usb_hcd_unlink_urb_from_ep(hcd, urb); 709 usb_hcd_giveback_urb(hcd, urb, status); 710 spin_unlock_irq(&hcd_root_hub_lock); 711 return 0; 712 } 713 714 /*-------------------------------------------------------------------------*/ 715 716 /* 717 * Root Hub interrupt transfers are polled using a timer if the 718 * driver requests it; otherwise the driver is responsible for 719 * calling usb_hcd_poll_rh_status() when an event occurs. 720 * 721 * Completions are called in_interrupt(), but they may or may not 722 * be in_irq(). 723 */ 724 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 725 { 726 struct urb *urb; 727 int length; 728 unsigned long flags; 729 char buffer[6]; /* Any root hubs with > 31 ports? */ 730 731 if (unlikely(!hcd->rh_pollable)) 732 return; 733 if (!hcd->uses_new_polling && !hcd->status_urb) 734 return; 735 736 length = hcd->driver->hub_status_data(hcd, buffer); 737 if (length > 0) { 738 739 /* try to complete the status urb */ 740 spin_lock_irqsave(&hcd_root_hub_lock, flags); 741 urb = hcd->status_urb; 742 if (urb) { 743 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 744 hcd->status_urb = NULL; 745 urb->actual_length = length; 746 memcpy(urb->transfer_buffer, buffer, length); 747 748 usb_hcd_unlink_urb_from_ep(hcd, urb); 749 usb_hcd_giveback_urb(hcd, urb, 0); 750 } else { 751 length = 0; 752 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 753 } 754 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 755 } 756 757 /* The USB 2.0 spec says 256 ms. This is close enough and won't 758 * exceed that limit if HZ is 100. The math is more clunky than 759 * maybe expected, this is to make sure that all timers for USB devices 760 * fire at the same time to give the CPU a break in between */ 761 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 762 (length == 0 && hcd->status_urb != NULL)) 763 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 764 } 765 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 766 767 /* timer callback */ 768 static void rh_timer_func (unsigned long _hcd) 769 { 770 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 771 } 772 773 /*-------------------------------------------------------------------------*/ 774 775 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 776 { 777 int retval; 778 unsigned long flags; 779 unsigned len = 1 + (urb->dev->maxchild / 8); 780 781 spin_lock_irqsave (&hcd_root_hub_lock, flags); 782 if (hcd->status_urb || urb->transfer_buffer_length < len) { 783 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 784 retval = -EINVAL; 785 goto done; 786 } 787 788 retval = usb_hcd_link_urb_to_ep(hcd, urb); 789 if (retval) 790 goto done; 791 792 hcd->status_urb = urb; 793 urb->hcpriv = hcd; /* indicate it's queued */ 794 if (!hcd->uses_new_polling) 795 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 796 797 /* If a status change has already occurred, report it ASAP */ 798 else if (HCD_POLL_PENDING(hcd)) 799 mod_timer(&hcd->rh_timer, jiffies); 800 retval = 0; 801 done: 802 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 803 return retval; 804 } 805 806 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 807 { 808 if (usb_endpoint_xfer_int(&urb->ep->desc)) 809 return rh_queue_status (hcd, urb); 810 if (usb_endpoint_xfer_control(&urb->ep->desc)) 811 return rh_call_control (hcd, urb); 812 return -EINVAL; 813 } 814 815 /*-------------------------------------------------------------------------*/ 816 817 /* Unlinks of root-hub control URBs are legal, but they don't do anything 818 * since these URBs always execute synchronously. 819 */ 820 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 821 { 822 unsigned long flags; 823 int rc; 824 825 spin_lock_irqsave(&hcd_root_hub_lock, flags); 826 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 827 if (rc) 828 goto done; 829 830 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 831 ; /* Do nothing */ 832 833 } else { /* Status URB */ 834 if (!hcd->uses_new_polling) 835 del_timer (&hcd->rh_timer); 836 if (urb == hcd->status_urb) { 837 hcd->status_urb = NULL; 838 usb_hcd_unlink_urb_from_ep(hcd, urb); 839 usb_hcd_giveback_urb(hcd, urb, status); 840 } 841 } 842 done: 843 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 844 return rc; 845 } 846 847 848 849 /* 850 * Show & store the current value of authorized_default 851 */ 852 static ssize_t authorized_default_show(struct device *dev, 853 struct device_attribute *attr, char *buf) 854 { 855 struct usb_device *rh_usb_dev = to_usb_device(dev); 856 struct usb_bus *usb_bus = rh_usb_dev->bus; 857 struct usb_hcd *usb_hcd; 858 859 usb_hcd = bus_to_hcd(usb_bus); 860 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 861 } 862 863 static ssize_t authorized_default_store(struct device *dev, 864 struct device_attribute *attr, 865 const char *buf, size_t size) 866 { 867 ssize_t result; 868 unsigned val; 869 struct usb_device *rh_usb_dev = to_usb_device(dev); 870 struct usb_bus *usb_bus = rh_usb_dev->bus; 871 struct usb_hcd *usb_hcd; 872 873 usb_hcd = bus_to_hcd(usb_bus); 874 result = sscanf(buf, "%u\n", &val); 875 if (result == 1) { 876 usb_hcd->authorized_default = val ? 1 : 0; 877 result = size; 878 } else { 879 result = -EINVAL; 880 } 881 return result; 882 } 883 static DEVICE_ATTR_RW(authorized_default); 884 885 /* Group all the USB bus attributes */ 886 static struct attribute *usb_bus_attrs[] = { 887 &dev_attr_authorized_default.attr, 888 NULL, 889 }; 890 891 static struct attribute_group usb_bus_attr_group = { 892 .name = NULL, /* we want them in the same directory */ 893 .attrs = usb_bus_attrs, 894 }; 895 896 897 898 /*-------------------------------------------------------------------------*/ 899 900 /** 901 * usb_bus_init - shared initialization code 902 * @bus: the bus structure being initialized 903 * 904 * This code is used to initialize a usb_bus structure, memory for which is 905 * separately managed. 906 */ 907 static void usb_bus_init (struct usb_bus *bus) 908 { 909 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 910 911 bus->devnum_next = 1; 912 913 bus->root_hub = NULL; 914 bus->busnum = -1; 915 bus->bandwidth_allocated = 0; 916 bus->bandwidth_int_reqs = 0; 917 bus->bandwidth_isoc_reqs = 0; 918 mutex_init(&bus->usb_address0_mutex); 919 920 INIT_LIST_HEAD (&bus->bus_list); 921 } 922 923 /*-------------------------------------------------------------------------*/ 924 925 /** 926 * usb_register_bus - registers the USB host controller with the usb core 927 * @bus: pointer to the bus to register 928 * Context: !in_interrupt() 929 * 930 * Assigns a bus number, and links the controller into usbcore data 931 * structures so that it can be seen by scanning the bus list. 932 * 933 * Return: 0 if successful. A negative error code otherwise. 934 */ 935 static int usb_register_bus(struct usb_bus *bus) 936 { 937 int result = -E2BIG; 938 int busnum; 939 940 mutex_lock(&usb_bus_list_lock); 941 busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1); 942 if (busnum >= USB_MAXBUS) { 943 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 944 goto error_find_busnum; 945 } 946 set_bit(busnum, busmap); 947 bus->busnum = busnum; 948 949 /* Add it to the local list of buses */ 950 list_add (&bus->bus_list, &usb_bus_list); 951 mutex_unlock(&usb_bus_list_lock); 952 953 usb_notify_add_bus(bus); 954 955 dev_info (bus->controller, "new USB bus registered, assigned bus " 956 "number %d\n", bus->busnum); 957 return 0; 958 959 error_find_busnum: 960 mutex_unlock(&usb_bus_list_lock); 961 return result; 962 } 963 964 /** 965 * usb_deregister_bus - deregisters the USB host controller 966 * @bus: pointer to the bus to deregister 967 * Context: !in_interrupt() 968 * 969 * Recycles the bus number, and unlinks the controller from usbcore data 970 * structures so that it won't be seen by scanning the bus list. 971 */ 972 static void usb_deregister_bus (struct usb_bus *bus) 973 { 974 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 975 976 /* 977 * NOTE: make sure that all the devices are removed by the 978 * controller code, as well as having it call this when cleaning 979 * itself up 980 */ 981 mutex_lock(&usb_bus_list_lock); 982 list_del (&bus->bus_list); 983 mutex_unlock(&usb_bus_list_lock); 984 985 usb_notify_remove_bus(bus); 986 987 clear_bit(bus->busnum, busmap); 988 } 989 990 /** 991 * register_root_hub - called by usb_add_hcd() to register a root hub 992 * @hcd: host controller for this root hub 993 * 994 * This function registers the root hub with the USB subsystem. It sets up 995 * the device properly in the device tree and then calls usb_new_device() 996 * to register the usb device. It also assigns the root hub's USB address 997 * (always 1). 998 * 999 * Return: 0 if successful. A negative error code otherwise. 1000 */ 1001 static int register_root_hub(struct usb_hcd *hcd) 1002 { 1003 struct device *parent_dev = hcd->self.controller; 1004 struct usb_device *usb_dev = hcd->self.root_hub; 1005 const int devnum = 1; 1006 int retval; 1007 1008 usb_dev->devnum = devnum; 1009 usb_dev->bus->devnum_next = devnum + 1; 1010 memset (&usb_dev->bus->devmap.devicemap, 0, 1011 sizeof usb_dev->bus->devmap.devicemap); 1012 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1013 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1014 1015 mutex_lock(&usb_bus_list_lock); 1016 1017 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1018 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1019 if (retval != sizeof usb_dev->descriptor) { 1020 mutex_unlock(&usb_bus_list_lock); 1021 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1022 dev_name(&usb_dev->dev), retval); 1023 return (retval < 0) ? retval : -EMSGSIZE; 1024 } 1025 if (usb_dev->speed == USB_SPEED_SUPER) { 1026 retval = usb_get_bos_descriptor(usb_dev); 1027 if (retval < 0) { 1028 mutex_unlock(&usb_bus_list_lock); 1029 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1030 dev_name(&usb_dev->dev), retval); 1031 return retval; 1032 } 1033 } 1034 1035 retval = usb_new_device (usb_dev); 1036 if (retval) { 1037 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1038 dev_name(&usb_dev->dev), retval); 1039 } else { 1040 spin_lock_irq (&hcd_root_hub_lock); 1041 hcd->rh_registered = 1; 1042 spin_unlock_irq (&hcd_root_hub_lock); 1043 1044 /* Did the HC die before the root hub was registered? */ 1045 if (HCD_DEAD(hcd)) 1046 usb_hc_died (hcd); /* This time clean up */ 1047 } 1048 mutex_unlock(&usb_bus_list_lock); 1049 1050 return retval; 1051 } 1052 1053 /* 1054 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1055 * @bus: the bus which the root hub belongs to 1056 * @portnum: the port which is being resumed 1057 * 1058 * HCDs should call this function when they know that a resume signal is 1059 * being sent to a root-hub port. The root hub will be prevented from 1060 * going into autosuspend until usb_hcd_end_port_resume() is called. 1061 * 1062 * The bus's private lock must be held by the caller. 1063 */ 1064 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1065 { 1066 unsigned bit = 1 << portnum; 1067 1068 if (!(bus->resuming_ports & bit)) { 1069 bus->resuming_ports |= bit; 1070 pm_runtime_get_noresume(&bus->root_hub->dev); 1071 } 1072 } 1073 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1074 1075 /* 1076 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1077 * @bus: the bus which the root hub belongs to 1078 * @portnum: the port which is being resumed 1079 * 1080 * HCDs should call this function when they know that a resume signal has 1081 * stopped being sent to a root-hub port. The root hub will be allowed to 1082 * autosuspend again. 1083 * 1084 * The bus's private lock must be held by the caller. 1085 */ 1086 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1087 { 1088 unsigned bit = 1 << portnum; 1089 1090 if (bus->resuming_ports & bit) { 1091 bus->resuming_ports &= ~bit; 1092 pm_runtime_put_noidle(&bus->root_hub->dev); 1093 } 1094 } 1095 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1096 1097 /*-------------------------------------------------------------------------*/ 1098 1099 /** 1100 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1101 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1102 * @is_input: true iff the transaction sends data to the host 1103 * @isoc: true for isochronous transactions, false for interrupt ones 1104 * @bytecount: how many bytes in the transaction. 1105 * 1106 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1107 * 1108 * Note: 1109 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1110 * scheduled in software, this function is only used for such scheduling. 1111 */ 1112 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1113 { 1114 unsigned long tmp; 1115 1116 switch (speed) { 1117 case USB_SPEED_LOW: /* INTR only */ 1118 if (is_input) { 1119 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1120 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1121 } else { 1122 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1123 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1124 } 1125 case USB_SPEED_FULL: /* ISOC or INTR */ 1126 if (isoc) { 1127 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1128 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1129 } else { 1130 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1131 return 9107L + BW_HOST_DELAY + tmp; 1132 } 1133 case USB_SPEED_HIGH: /* ISOC or INTR */ 1134 /* FIXME adjust for input vs output */ 1135 if (isoc) 1136 tmp = HS_NSECS_ISO (bytecount); 1137 else 1138 tmp = HS_NSECS (bytecount); 1139 return tmp; 1140 default: 1141 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1142 return -1; 1143 } 1144 } 1145 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1146 1147 1148 /*-------------------------------------------------------------------------*/ 1149 1150 /* 1151 * Generic HC operations. 1152 */ 1153 1154 /*-------------------------------------------------------------------------*/ 1155 1156 /** 1157 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1158 * @hcd: host controller to which @urb was submitted 1159 * @urb: URB being submitted 1160 * 1161 * Host controller drivers should call this routine in their enqueue() 1162 * method. The HCD's private spinlock must be held and interrupts must 1163 * be disabled. The actions carried out here are required for URB 1164 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1165 * 1166 * Return: 0 for no error, otherwise a negative error code (in which case 1167 * the enqueue() method must fail). If no error occurs but enqueue() fails 1168 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1169 * the private spinlock and returning. 1170 */ 1171 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1172 { 1173 int rc = 0; 1174 1175 spin_lock(&hcd_urb_list_lock); 1176 1177 /* Check that the URB isn't being killed */ 1178 if (unlikely(atomic_read(&urb->reject))) { 1179 rc = -EPERM; 1180 goto done; 1181 } 1182 1183 if (unlikely(!urb->ep->enabled)) { 1184 rc = -ENOENT; 1185 goto done; 1186 } 1187 1188 if (unlikely(!urb->dev->can_submit)) { 1189 rc = -EHOSTUNREACH; 1190 goto done; 1191 } 1192 1193 /* 1194 * Check the host controller's state and add the URB to the 1195 * endpoint's queue. 1196 */ 1197 if (HCD_RH_RUNNING(hcd)) { 1198 urb->unlinked = 0; 1199 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1200 } else { 1201 rc = -ESHUTDOWN; 1202 goto done; 1203 } 1204 done: 1205 spin_unlock(&hcd_urb_list_lock); 1206 return rc; 1207 } 1208 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1209 1210 /** 1211 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1212 * @hcd: host controller to which @urb was submitted 1213 * @urb: URB being checked for unlinkability 1214 * @status: error code to store in @urb if the unlink succeeds 1215 * 1216 * Host controller drivers should call this routine in their dequeue() 1217 * method. The HCD's private spinlock must be held and interrupts must 1218 * be disabled. The actions carried out here are required for making 1219 * sure than an unlink is valid. 1220 * 1221 * Return: 0 for no error, otherwise a negative error code (in which case 1222 * the dequeue() method must fail). The possible error codes are: 1223 * 1224 * -EIDRM: @urb was not submitted or has already completed. 1225 * The completion function may not have been called yet. 1226 * 1227 * -EBUSY: @urb has already been unlinked. 1228 */ 1229 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1230 int status) 1231 { 1232 struct list_head *tmp; 1233 1234 /* insist the urb is still queued */ 1235 list_for_each(tmp, &urb->ep->urb_list) { 1236 if (tmp == &urb->urb_list) 1237 break; 1238 } 1239 if (tmp != &urb->urb_list) 1240 return -EIDRM; 1241 1242 /* Any status except -EINPROGRESS means something already started to 1243 * unlink this URB from the hardware. So there's no more work to do. 1244 */ 1245 if (urb->unlinked) 1246 return -EBUSY; 1247 urb->unlinked = status; 1248 return 0; 1249 } 1250 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1251 1252 /** 1253 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1254 * @hcd: host controller to which @urb was submitted 1255 * @urb: URB being unlinked 1256 * 1257 * Host controller drivers should call this routine before calling 1258 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1259 * interrupts must be disabled. The actions carried out here are required 1260 * for URB completion. 1261 */ 1262 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1263 { 1264 /* clear all state linking urb to this dev (and hcd) */ 1265 spin_lock(&hcd_urb_list_lock); 1266 list_del_init(&urb->urb_list); 1267 spin_unlock(&hcd_urb_list_lock); 1268 } 1269 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1270 1271 /* 1272 * Some usb host controllers can only perform dma using a small SRAM area. 1273 * The usb core itself is however optimized for host controllers that can dma 1274 * using regular system memory - like pci devices doing bus mastering. 1275 * 1276 * To support host controllers with limited dma capabilities we provide dma 1277 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1278 * For this to work properly the host controller code must first use the 1279 * function dma_declare_coherent_memory() to point out which memory area 1280 * that should be used for dma allocations. 1281 * 1282 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1283 * dma using dma_alloc_coherent() which in turn allocates from the memory 1284 * area pointed out with dma_declare_coherent_memory(). 1285 * 1286 * So, to summarize... 1287 * 1288 * - We need "local" memory, canonical example being 1289 * a small SRAM on a discrete controller being the 1290 * only memory that the controller can read ... 1291 * (a) "normal" kernel memory is no good, and 1292 * (b) there's not enough to share 1293 * 1294 * - The only *portable* hook for such stuff in the 1295 * DMA framework is dma_declare_coherent_memory() 1296 * 1297 * - So we use that, even though the primary requirement 1298 * is that the memory be "local" (hence addressable 1299 * by that device), not "coherent". 1300 * 1301 */ 1302 1303 static int hcd_alloc_coherent(struct usb_bus *bus, 1304 gfp_t mem_flags, dma_addr_t *dma_handle, 1305 void **vaddr_handle, size_t size, 1306 enum dma_data_direction dir) 1307 { 1308 unsigned char *vaddr; 1309 1310 if (*vaddr_handle == NULL) { 1311 WARN_ON_ONCE(1); 1312 return -EFAULT; 1313 } 1314 1315 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1316 mem_flags, dma_handle); 1317 if (!vaddr) 1318 return -ENOMEM; 1319 1320 /* 1321 * Store the virtual address of the buffer at the end 1322 * of the allocated dma buffer. The size of the buffer 1323 * may be uneven so use unaligned functions instead 1324 * of just rounding up. It makes sense to optimize for 1325 * memory footprint over access speed since the amount 1326 * of memory available for dma may be limited. 1327 */ 1328 put_unaligned((unsigned long)*vaddr_handle, 1329 (unsigned long *)(vaddr + size)); 1330 1331 if (dir == DMA_TO_DEVICE) 1332 memcpy(vaddr, *vaddr_handle, size); 1333 1334 *vaddr_handle = vaddr; 1335 return 0; 1336 } 1337 1338 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1339 void **vaddr_handle, size_t size, 1340 enum dma_data_direction dir) 1341 { 1342 unsigned char *vaddr = *vaddr_handle; 1343 1344 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1345 1346 if (dir == DMA_FROM_DEVICE) 1347 memcpy(vaddr, *vaddr_handle, size); 1348 1349 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1350 1351 *vaddr_handle = vaddr; 1352 *dma_handle = 0; 1353 } 1354 1355 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1356 { 1357 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1358 dma_unmap_single(hcd->self.controller, 1359 urb->setup_dma, 1360 sizeof(struct usb_ctrlrequest), 1361 DMA_TO_DEVICE); 1362 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1363 hcd_free_coherent(urb->dev->bus, 1364 &urb->setup_dma, 1365 (void **) &urb->setup_packet, 1366 sizeof(struct usb_ctrlrequest), 1367 DMA_TO_DEVICE); 1368 1369 /* Make it safe to call this routine more than once */ 1370 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1371 } 1372 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1373 1374 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1375 { 1376 if (hcd->driver->unmap_urb_for_dma) 1377 hcd->driver->unmap_urb_for_dma(hcd, urb); 1378 else 1379 usb_hcd_unmap_urb_for_dma(hcd, urb); 1380 } 1381 1382 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1383 { 1384 enum dma_data_direction dir; 1385 1386 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1387 1388 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1389 if (urb->transfer_flags & URB_DMA_MAP_SG) 1390 dma_unmap_sg(hcd->self.controller, 1391 urb->sg, 1392 urb->num_sgs, 1393 dir); 1394 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1395 dma_unmap_page(hcd->self.controller, 1396 urb->transfer_dma, 1397 urb->transfer_buffer_length, 1398 dir); 1399 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1400 dma_unmap_single(hcd->self.controller, 1401 urb->transfer_dma, 1402 urb->transfer_buffer_length, 1403 dir); 1404 else if (urb->transfer_flags & URB_MAP_LOCAL) 1405 hcd_free_coherent(urb->dev->bus, 1406 &urb->transfer_dma, 1407 &urb->transfer_buffer, 1408 urb->transfer_buffer_length, 1409 dir); 1410 1411 /* Make it safe to call this routine more than once */ 1412 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1413 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1414 } 1415 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1416 1417 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1418 gfp_t mem_flags) 1419 { 1420 if (hcd->driver->map_urb_for_dma) 1421 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1422 else 1423 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1424 } 1425 1426 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1427 gfp_t mem_flags) 1428 { 1429 enum dma_data_direction dir; 1430 int ret = 0; 1431 1432 /* Map the URB's buffers for DMA access. 1433 * Lower level HCD code should use *_dma exclusively, 1434 * unless it uses pio or talks to another transport, 1435 * or uses the provided scatter gather list for bulk. 1436 */ 1437 1438 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1439 if (hcd->self.uses_pio_for_control) 1440 return ret; 1441 if (hcd->self.uses_dma) { 1442 urb->setup_dma = dma_map_single( 1443 hcd->self.controller, 1444 urb->setup_packet, 1445 sizeof(struct usb_ctrlrequest), 1446 DMA_TO_DEVICE); 1447 if (dma_mapping_error(hcd->self.controller, 1448 urb->setup_dma)) 1449 return -EAGAIN; 1450 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1451 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1452 ret = hcd_alloc_coherent( 1453 urb->dev->bus, mem_flags, 1454 &urb->setup_dma, 1455 (void **)&urb->setup_packet, 1456 sizeof(struct usb_ctrlrequest), 1457 DMA_TO_DEVICE); 1458 if (ret) 1459 return ret; 1460 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1461 } 1462 } 1463 1464 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1465 if (urb->transfer_buffer_length != 0 1466 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1467 if (hcd->self.uses_dma) { 1468 if (urb->num_sgs) { 1469 int n; 1470 1471 /* We don't support sg for isoc transfers ! */ 1472 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1473 WARN_ON(1); 1474 return -EINVAL; 1475 } 1476 1477 n = dma_map_sg( 1478 hcd->self.controller, 1479 urb->sg, 1480 urb->num_sgs, 1481 dir); 1482 if (n <= 0) 1483 ret = -EAGAIN; 1484 else 1485 urb->transfer_flags |= URB_DMA_MAP_SG; 1486 urb->num_mapped_sgs = n; 1487 if (n != urb->num_sgs) 1488 urb->transfer_flags |= 1489 URB_DMA_SG_COMBINED; 1490 } else if (urb->sg) { 1491 struct scatterlist *sg = urb->sg; 1492 urb->transfer_dma = dma_map_page( 1493 hcd->self.controller, 1494 sg_page(sg), 1495 sg->offset, 1496 urb->transfer_buffer_length, 1497 dir); 1498 if (dma_mapping_error(hcd->self.controller, 1499 urb->transfer_dma)) 1500 ret = -EAGAIN; 1501 else 1502 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1503 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1504 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1505 ret = -EAGAIN; 1506 } else { 1507 urb->transfer_dma = dma_map_single( 1508 hcd->self.controller, 1509 urb->transfer_buffer, 1510 urb->transfer_buffer_length, 1511 dir); 1512 if (dma_mapping_error(hcd->self.controller, 1513 urb->transfer_dma)) 1514 ret = -EAGAIN; 1515 else 1516 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1517 } 1518 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1519 ret = hcd_alloc_coherent( 1520 urb->dev->bus, mem_flags, 1521 &urb->transfer_dma, 1522 &urb->transfer_buffer, 1523 urb->transfer_buffer_length, 1524 dir); 1525 if (ret == 0) 1526 urb->transfer_flags |= URB_MAP_LOCAL; 1527 } 1528 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1529 URB_SETUP_MAP_LOCAL))) 1530 usb_hcd_unmap_urb_for_dma(hcd, urb); 1531 } 1532 return ret; 1533 } 1534 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1535 1536 /*-------------------------------------------------------------------------*/ 1537 1538 /* may be called in any context with a valid urb->dev usecount 1539 * caller surrenders "ownership" of urb 1540 * expects usb_submit_urb() to have sanity checked and conditioned all 1541 * inputs in the urb 1542 */ 1543 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1544 { 1545 int status; 1546 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1547 1548 /* increment urb's reference count as part of giving it to the HCD 1549 * (which will control it). HCD guarantees that it either returns 1550 * an error or calls giveback(), but not both. 1551 */ 1552 usb_get_urb(urb); 1553 atomic_inc(&urb->use_count); 1554 atomic_inc(&urb->dev->urbnum); 1555 usbmon_urb_submit(&hcd->self, urb); 1556 1557 /* NOTE requirements on root-hub callers (usbfs and the hub 1558 * driver, for now): URBs' urb->transfer_buffer must be 1559 * valid and usb_buffer_{sync,unmap}() not be needed, since 1560 * they could clobber root hub response data. Also, control 1561 * URBs must be submitted in process context with interrupts 1562 * enabled. 1563 */ 1564 1565 if (is_root_hub(urb->dev)) { 1566 status = rh_urb_enqueue(hcd, urb); 1567 } else { 1568 status = map_urb_for_dma(hcd, urb, mem_flags); 1569 if (likely(status == 0)) { 1570 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1571 if (unlikely(status)) 1572 unmap_urb_for_dma(hcd, urb); 1573 } 1574 } 1575 1576 if (unlikely(status)) { 1577 usbmon_urb_submit_error(&hcd->self, urb, status); 1578 urb->hcpriv = NULL; 1579 INIT_LIST_HEAD(&urb->urb_list); 1580 atomic_dec(&urb->use_count); 1581 atomic_dec(&urb->dev->urbnum); 1582 if (atomic_read(&urb->reject)) 1583 wake_up(&usb_kill_urb_queue); 1584 usb_put_urb(urb); 1585 } 1586 return status; 1587 } 1588 1589 /*-------------------------------------------------------------------------*/ 1590 1591 /* this makes the hcd giveback() the urb more quickly, by kicking it 1592 * off hardware queues (which may take a while) and returning it as 1593 * soon as practical. we've already set up the urb's return status, 1594 * but we can't know if the callback completed already. 1595 */ 1596 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1597 { 1598 int value; 1599 1600 if (is_root_hub(urb->dev)) 1601 value = usb_rh_urb_dequeue(hcd, urb, status); 1602 else { 1603 1604 /* The only reason an HCD might fail this call is if 1605 * it has not yet fully queued the urb to begin with. 1606 * Such failures should be harmless. */ 1607 value = hcd->driver->urb_dequeue(hcd, urb, status); 1608 } 1609 return value; 1610 } 1611 1612 /* 1613 * called in any context 1614 * 1615 * caller guarantees urb won't be recycled till both unlink() 1616 * and the urb's completion function return 1617 */ 1618 int usb_hcd_unlink_urb (struct urb *urb, int status) 1619 { 1620 struct usb_hcd *hcd; 1621 int retval = -EIDRM; 1622 unsigned long flags; 1623 1624 /* Prevent the device and bus from going away while 1625 * the unlink is carried out. If they are already gone 1626 * then urb->use_count must be 0, since disconnected 1627 * devices can't have any active URBs. 1628 */ 1629 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1630 if (atomic_read(&urb->use_count) > 0) { 1631 retval = 0; 1632 usb_get_dev(urb->dev); 1633 } 1634 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1635 if (retval == 0) { 1636 hcd = bus_to_hcd(urb->dev->bus); 1637 retval = unlink1(hcd, urb, status); 1638 usb_put_dev(urb->dev); 1639 } 1640 1641 if (retval == 0) 1642 retval = -EINPROGRESS; 1643 else if (retval != -EIDRM && retval != -EBUSY) 1644 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1645 urb, retval); 1646 return retval; 1647 } 1648 1649 /*-------------------------------------------------------------------------*/ 1650 1651 static void __usb_hcd_giveback_urb(struct urb *urb) 1652 { 1653 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1654 struct usb_anchor *anchor = urb->anchor; 1655 int status = urb->unlinked; 1656 unsigned long flags; 1657 1658 urb->hcpriv = NULL; 1659 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1660 urb->actual_length < urb->transfer_buffer_length && 1661 !status)) 1662 status = -EREMOTEIO; 1663 1664 unmap_urb_for_dma(hcd, urb); 1665 usbmon_urb_complete(&hcd->self, urb, status); 1666 usb_anchor_suspend_wakeups(anchor); 1667 usb_unanchor_urb(urb); 1668 if (likely(status == 0)) 1669 usb_led_activity(USB_LED_EVENT_HOST); 1670 1671 /* pass ownership to the completion handler */ 1672 urb->status = status; 1673 1674 /* 1675 * We disable local IRQs here avoid possible deadlock because 1676 * drivers may call spin_lock() to hold lock which might be 1677 * acquired in one hard interrupt handler. 1678 * 1679 * The local_irq_save()/local_irq_restore() around complete() 1680 * will be removed if current USB drivers have been cleaned up 1681 * and no one may trigger the above deadlock situation when 1682 * running complete() in tasklet. 1683 */ 1684 local_irq_save(flags); 1685 urb->complete(urb); 1686 local_irq_restore(flags); 1687 1688 usb_anchor_resume_wakeups(anchor); 1689 atomic_dec(&urb->use_count); 1690 if (unlikely(atomic_read(&urb->reject))) 1691 wake_up(&usb_kill_urb_queue); 1692 usb_put_urb(urb); 1693 } 1694 1695 static void usb_giveback_urb_bh(unsigned long param) 1696 { 1697 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1698 struct list_head local_list; 1699 1700 spin_lock_irq(&bh->lock); 1701 bh->running = true; 1702 restart: 1703 list_replace_init(&bh->head, &local_list); 1704 spin_unlock_irq(&bh->lock); 1705 1706 while (!list_empty(&local_list)) { 1707 struct urb *urb; 1708 1709 urb = list_entry(local_list.next, struct urb, urb_list); 1710 list_del_init(&urb->urb_list); 1711 bh->completing_ep = urb->ep; 1712 __usb_hcd_giveback_urb(urb); 1713 bh->completing_ep = NULL; 1714 } 1715 1716 /* check if there are new URBs to giveback */ 1717 spin_lock_irq(&bh->lock); 1718 if (!list_empty(&bh->head)) 1719 goto restart; 1720 bh->running = false; 1721 spin_unlock_irq(&bh->lock); 1722 } 1723 1724 /** 1725 * usb_hcd_giveback_urb - return URB from HCD to device driver 1726 * @hcd: host controller returning the URB 1727 * @urb: urb being returned to the USB device driver. 1728 * @status: completion status code for the URB. 1729 * Context: in_interrupt() 1730 * 1731 * This hands the URB from HCD to its USB device driver, using its 1732 * completion function. The HCD has freed all per-urb resources 1733 * (and is done using urb->hcpriv). It also released all HCD locks; 1734 * the device driver won't cause problems if it frees, modifies, 1735 * or resubmits this URB. 1736 * 1737 * If @urb was unlinked, the value of @status will be overridden by 1738 * @urb->unlinked. Erroneous short transfers are detected in case 1739 * the HCD hasn't checked for them. 1740 */ 1741 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1742 { 1743 struct giveback_urb_bh *bh; 1744 bool running, high_prio_bh; 1745 1746 /* pass status to tasklet via unlinked */ 1747 if (likely(!urb->unlinked)) 1748 urb->unlinked = status; 1749 1750 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1751 __usb_hcd_giveback_urb(urb); 1752 return; 1753 } 1754 1755 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1756 bh = &hcd->high_prio_bh; 1757 high_prio_bh = true; 1758 } else { 1759 bh = &hcd->low_prio_bh; 1760 high_prio_bh = false; 1761 } 1762 1763 spin_lock(&bh->lock); 1764 list_add_tail(&urb->urb_list, &bh->head); 1765 running = bh->running; 1766 spin_unlock(&bh->lock); 1767 1768 if (running) 1769 ; 1770 else if (high_prio_bh) 1771 tasklet_hi_schedule(&bh->bh); 1772 else 1773 tasklet_schedule(&bh->bh); 1774 } 1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1776 1777 /*-------------------------------------------------------------------------*/ 1778 1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1780 * queue to drain completely. The caller must first insure that no more 1781 * URBs can be submitted for this endpoint. 1782 */ 1783 void usb_hcd_flush_endpoint(struct usb_device *udev, 1784 struct usb_host_endpoint *ep) 1785 { 1786 struct usb_hcd *hcd; 1787 struct urb *urb; 1788 1789 if (!ep) 1790 return; 1791 might_sleep(); 1792 hcd = bus_to_hcd(udev->bus); 1793 1794 /* No more submits can occur */ 1795 spin_lock_irq(&hcd_urb_list_lock); 1796 rescan: 1797 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1798 int is_in; 1799 1800 if (urb->unlinked) 1801 continue; 1802 usb_get_urb (urb); 1803 is_in = usb_urb_dir_in(urb); 1804 spin_unlock(&hcd_urb_list_lock); 1805 1806 /* kick hcd */ 1807 unlink1(hcd, urb, -ESHUTDOWN); 1808 dev_dbg (hcd->self.controller, 1809 "shutdown urb %p ep%d%s%s\n", 1810 urb, usb_endpoint_num(&ep->desc), 1811 is_in ? "in" : "out", 1812 ({ char *s; 1813 1814 switch (usb_endpoint_type(&ep->desc)) { 1815 case USB_ENDPOINT_XFER_CONTROL: 1816 s = ""; break; 1817 case USB_ENDPOINT_XFER_BULK: 1818 s = "-bulk"; break; 1819 case USB_ENDPOINT_XFER_INT: 1820 s = "-intr"; break; 1821 default: 1822 s = "-iso"; break; 1823 }; 1824 s; 1825 })); 1826 usb_put_urb (urb); 1827 1828 /* list contents may have changed */ 1829 spin_lock(&hcd_urb_list_lock); 1830 goto rescan; 1831 } 1832 spin_unlock_irq(&hcd_urb_list_lock); 1833 1834 /* Wait until the endpoint queue is completely empty */ 1835 while (!list_empty (&ep->urb_list)) { 1836 spin_lock_irq(&hcd_urb_list_lock); 1837 1838 /* The list may have changed while we acquired the spinlock */ 1839 urb = NULL; 1840 if (!list_empty (&ep->urb_list)) { 1841 urb = list_entry (ep->urb_list.prev, struct urb, 1842 urb_list); 1843 usb_get_urb (urb); 1844 } 1845 spin_unlock_irq(&hcd_urb_list_lock); 1846 1847 if (urb) { 1848 usb_kill_urb (urb); 1849 usb_put_urb (urb); 1850 } 1851 } 1852 } 1853 1854 /** 1855 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1856 * the bus bandwidth 1857 * @udev: target &usb_device 1858 * @new_config: new configuration to install 1859 * @cur_alt: the current alternate interface setting 1860 * @new_alt: alternate interface setting that is being installed 1861 * 1862 * To change configurations, pass in the new configuration in new_config, 1863 * and pass NULL for cur_alt and new_alt. 1864 * 1865 * To reset a device's configuration (put the device in the ADDRESSED state), 1866 * pass in NULL for new_config, cur_alt, and new_alt. 1867 * 1868 * To change alternate interface settings, pass in NULL for new_config, 1869 * pass in the current alternate interface setting in cur_alt, 1870 * and pass in the new alternate interface setting in new_alt. 1871 * 1872 * Return: An error if the requested bandwidth change exceeds the 1873 * bus bandwidth or host controller internal resources. 1874 */ 1875 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1876 struct usb_host_config *new_config, 1877 struct usb_host_interface *cur_alt, 1878 struct usb_host_interface *new_alt) 1879 { 1880 int num_intfs, i, j; 1881 struct usb_host_interface *alt = NULL; 1882 int ret = 0; 1883 struct usb_hcd *hcd; 1884 struct usb_host_endpoint *ep; 1885 1886 hcd = bus_to_hcd(udev->bus); 1887 if (!hcd->driver->check_bandwidth) 1888 return 0; 1889 1890 /* Configuration is being removed - set configuration 0 */ 1891 if (!new_config && !cur_alt) { 1892 for (i = 1; i < 16; ++i) { 1893 ep = udev->ep_out[i]; 1894 if (ep) 1895 hcd->driver->drop_endpoint(hcd, udev, ep); 1896 ep = udev->ep_in[i]; 1897 if (ep) 1898 hcd->driver->drop_endpoint(hcd, udev, ep); 1899 } 1900 hcd->driver->check_bandwidth(hcd, udev); 1901 return 0; 1902 } 1903 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1904 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1905 * of the bus. There will always be bandwidth for endpoint 0, so it's 1906 * ok to exclude it. 1907 */ 1908 if (new_config) { 1909 num_intfs = new_config->desc.bNumInterfaces; 1910 /* Remove endpoints (except endpoint 0, which is always on the 1911 * schedule) from the old config from the schedule 1912 */ 1913 for (i = 1; i < 16; ++i) { 1914 ep = udev->ep_out[i]; 1915 if (ep) { 1916 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1917 if (ret < 0) 1918 goto reset; 1919 } 1920 ep = udev->ep_in[i]; 1921 if (ep) { 1922 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1923 if (ret < 0) 1924 goto reset; 1925 } 1926 } 1927 for (i = 0; i < num_intfs; ++i) { 1928 struct usb_host_interface *first_alt; 1929 int iface_num; 1930 1931 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1932 iface_num = first_alt->desc.bInterfaceNumber; 1933 /* Set up endpoints for alternate interface setting 0 */ 1934 alt = usb_find_alt_setting(new_config, iface_num, 0); 1935 if (!alt) 1936 /* No alt setting 0? Pick the first setting. */ 1937 alt = first_alt; 1938 1939 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1940 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1941 if (ret < 0) 1942 goto reset; 1943 } 1944 } 1945 } 1946 if (cur_alt && new_alt) { 1947 struct usb_interface *iface = usb_ifnum_to_if(udev, 1948 cur_alt->desc.bInterfaceNumber); 1949 1950 if (!iface) 1951 return -EINVAL; 1952 if (iface->resetting_device) { 1953 /* 1954 * The USB core just reset the device, so the xHCI host 1955 * and the device will think alt setting 0 is installed. 1956 * However, the USB core will pass in the alternate 1957 * setting installed before the reset as cur_alt. Dig 1958 * out the alternate setting 0 structure, or the first 1959 * alternate setting if a broken device doesn't have alt 1960 * setting 0. 1961 */ 1962 cur_alt = usb_altnum_to_altsetting(iface, 0); 1963 if (!cur_alt) 1964 cur_alt = &iface->altsetting[0]; 1965 } 1966 1967 /* Drop all the endpoints in the current alt setting */ 1968 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1969 ret = hcd->driver->drop_endpoint(hcd, udev, 1970 &cur_alt->endpoint[i]); 1971 if (ret < 0) 1972 goto reset; 1973 } 1974 /* Add all the endpoints in the new alt setting */ 1975 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1976 ret = hcd->driver->add_endpoint(hcd, udev, 1977 &new_alt->endpoint[i]); 1978 if (ret < 0) 1979 goto reset; 1980 } 1981 } 1982 ret = hcd->driver->check_bandwidth(hcd, udev); 1983 reset: 1984 if (ret < 0) 1985 hcd->driver->reset_bandwidth(hcd, udev); 1986 return ret; 1987 } 1988 1989 /* Disables the endpoint: synchronizes with the hcd to make sure all 1990 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1991 * have been called previously. Use for set_configuration, set_interface, 1992 * driver removal, physical disconnect. 1993 * 1994 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1995 * type, maxpacket size, toggle, halt status, and scheduling. 1996 */ 1997 void usb_hcd_disable_endpoint(struct usb_device *udev, 1998 struct usb_host_endpoint *ep) 1999 { 2000 struct usb_hcd *hcd; 2001 2002 might_sleep(); 2003 hcd = bus_to_hcd(udev->bus); 2004 if (hcd->driver->endpoint_disable) 2005 hcd->driver->endpoint_disable(hcd, ep); 2006 } 2007 2008 /** 2009 * usb_hcd_reset_endpoint - reset host endpoint state 2010 * @udev: USB device. 2011 * @ep: the endpoint to reset. 2012 * 2013 * Resets any host endpoint state such as the toggle bit, sequence 2014 * number and current window. 2015 */ 2016 void usb_hcd_reset_endpoint(struct usb_device *udev, 2017 struct usb_host_endpoint *ep) 2018 { 2019 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2020 2021 if (hcd->driver->endpoint_reset) 2022 hcd->driver->endpoint_reset(hcd, ep); 2023 else { 2024 int epnum = usb_endpoint_num(&ep->desc); 2025 int is_out = usb_endpoint_dir_out(&ep->desc); 2026 int is_control = usb_endpoint_xfer_control(&ep->desc); 2027 2028 usb_settoggle(udev, epnum, is_out, 0); 2029 if (is_control) 2030 usb_settoggle(udev, epnum, !is_out, 0); 2031 } 2032 } 2033 2034 /** 2035 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2036 * @interface: alternate setting that includes all endpoints. 2037 * @eps: array of endpoints that need streams. 2038 * @num_eps: number of endpoints in the array. 2039 * @num_streams: number of streams to allocate. 2040 * @mem_flags: flags hcd should use to allocate memory. 2041 * 2042 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2043 * Drivers may queue multiple transfers to different stream IDs, which may 2044 * complete in a different order than they were queued. 2045 * 2046 * Return: On success, the number of allocated streams. On failure, a negative 2047 * error code. 2048 */ 2049 int usb_alloc_streams(struct usb_interface *interface, 2050 struct usb_host_endpoint **eps, unsigned int num_eps, 2051 unsigned int num_streams, gfp_t mem_flags) 2052 { 2053 struct usb_hcd *hcd; 2054 struct usb_device *dev; 2055 int i, ret; 2056 2057 dev = interface_to_usbdev(interface); 2058 hcd = bus_to_hcd(dev->bus); 2059 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2060 return -EINVAL; 2061 if (dev->speed != USB_SPEED_SUPER) 2062 return -EINVAL; 2063 if (dev->state < USB_STATE_CONFIGURED) 2064 return -ENODEV; 2065 2066 for (i = 0; i < num_eps; i++) { 2067 /* Streams only apply to bulk endpoints. */ 2068 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2069 return -EINVAL; 2070 /* Re-alloc is not allowed */ 2071 if (eps[i]->streams) 2072 return -EINVAL; 2073 } 2074 2075 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2076 num_streams, mem_flags); 2077 if (ret < 0) 2078 return ret; 2079 2080 for (i = 0; i < num_eps; i++) 2081 eps[i]->streams = ret; 2082 2083 return ret; 2084 } 2085 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2086 2087 /** 2088 * usb_free_streams - free bulk endpoint stream IDs. 2089 * @interface: alternate setting that includes all endpoints. 2090 * @eps: array of endpoints to remove streams from. 2091 * @num_eps: number of endpoints in the array. 2092 * @mem_flags: flags hcd should use to allocate memory. 2093 * 2094 * Reverts a group of bulk endpoints back to not using stream IDs. 2095 * Can fail if we are given bad arguments, or HCD is broken. 2096 * 2097 * Return: 0 on success. On failure, a negative error code. 2098 */ 2099 int usb_free_streams(struct usb_interface *interface, 2100 struct usb_host_endpoint **eps, unsigned int num_eps, 2101 gfp_t mem_flags) 2102 { 2103 struct usb_hcd *hcd; 2104 struct usb_device *dev; 2105 int i, ret; 2106 2107 dev = interface_to_usbdev(interface); 2108 hcd = bus_to_hcd(dev->bus); 2109 if (dev->speed != USB_SPEED_SUPER) 2110 return -EINVAL; 2111 2112 /* Double-free is not allowed */ 2113 for (i = 0; i < num_eps; i++) 2114 if (!eps[i] || !eps[i]->streams) 2115 return -EINVAL; 2116 2117 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2118 if (ret < 0) 2119 return ret; 2120 2121 for (i = 0; i < num_eps; i++) 2122 eps[i]->streams = 0; 2123 2124 return ret; 2125 } 2126 EXPORT_SYMBOL_GPL(usb_free_streams); 2127 2128 /* Protect against drivers that try to unlink URBs after the device 2129 * is gone, by waiting until all unlinks for @udev are finished. 2130 * Since we don't currently track URBs by device, simply wait until 2131 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2132 */ 2133 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2134 { 2135 spin_lock_irq(&hcd_urb_unlink_lock); 2136 spin_unlock_irq(&hcd_urb_unlink_lock); 2137 } 2138 2139 /*-------------------------------------------------------------------------*/ 2140 2141 /* called in any context */ 2142 int usb_hcd_get_frame_number (struct usb_device *udev) 2143 { 2144 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2145 2146 if (!HCD_RH_RUNNING(hcd)) 2147 return -ESHUTDOWN; 2148 return hcd->driver->get_frame_number (hcd); 2149 } 2150 2151 /*-------------------------------------------------------------------------*/ 2152 2153 #ifdef CONFIG_PM 2154 2155 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2156 { 2157 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2158 int status; 2159 int old_state = hcd->state; 2160 2161 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2162 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2163 rhdev->do_remote_wakeup); 2164 if (HCD_DEAD(hcd)) { 2165 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2166 return 0; 2167 } 2168 2169 if (!hcd->driver->bus_suspend) { 2170 status = -ENOENT; 2171 } else { 2172 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2173 hcd->state = HC_STATE_QUIESCING; 2174 status = hcd->driver->bus_suspend(hcd); 2175 } 2176 if (status == 0) { 2177 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2178 hcd->state = HC_STATE_SUSPENDED; 2179 2180 /* Did we race with a root-hub wakeup event? */ 2181 if (rhdev->do_remote_wakeup) { 2182 char buffer[6]; 2183 2184 status = hcd->driver->hub_status_data(hcd, buffer); 2185 if (status != 0) { 2186 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2187 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2188 status = -EBUSY; 2189 } 2190 } 2191 } else { 2192 spin_lock_irq(&hcd_root_hub_lock); 2193 if (!HCD_DEAD(hcd)) { 2194 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2195 hcd->state = old_state; 2196 } 2197 spin_unlock_irq(&hcd_root_hub_lock); 2198 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2199 "suspend", status); 2200 } 2201 return status; 2202 } 2203 2204 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2205 { 2206 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 2207 int status; 2208 int old_state = hcd->state; 2209 2210 dev_dbg(&rhdev->dev, "usb %sresume\n", 2211 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2212 if (HCD_DEAD(hcd)) { 2213 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2214 return 0; 2215 } 2216 if (!hcd->driver->bus_resume) 2217 return -ENOENT; 2218 if (HCD_RH_RUNNING(hcd)) 2219 return 0; 2220 2221 hcd->state = HC_STATE_RESUMING; 2222 status = hcd->driver->bus_resume(hcd); 2223 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2224 if (status == 0) { 2225 struct usb_device *udev; 2226 int port1; 2227 2228 spin_lock_irq(&hcd_root_hub_lock); 2229 if (!HCD_DEAD(hcd)) { 2230 usb_set_device_state(rhdev, rhdev->actconfig 2231 ? USB_STATE_CONFIGURED 2232 : USB_STATE_ADDRESS); 2233 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2234 hcd->state = HC_STATE_RUNNING; 2235 } 2236 spin_unlock_irq(&hcd_root_hub_lock); 2237 2238 /* 2239 * Check whether any of the enabled ports on the root hub are 2240 * unsuspended. If they are then a TRSMRCY delay is needed 2241 * (this is what the USB-2 spec calls a "global resume"). 2242 * Otherwise we can skip the delay. 2243 */ 2244 usb_hub_for_each_child(rhdev, port1, udev) { 2245 if (udev->state != USB_STATE_NOTATTACHED && 2246 !udev->port_is_suspended) { 2247 usleep_range(10000, 11000); /* TRSMRCY */ 2248 break; 2249 } 2250 } 2251 } else { 2252 hcd->state = old_state; 2253 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2254 "resume", status); 2255 if (status != -ESHUTDOWN) 2256 usb_hc_died(hcd); 2257 } 2258 return status; 2259 } 2260 2261 #endif /* CONFIG_PM */ 2262 2263 #ifdef CONFIG_PM_RUNTIME 2264 2265 /* Workqueue routine for root-hub remote wakeup */ 2266 static void hcd_resume_work(struct work_struct *work) 2267 { 2268 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2269 struct usb_device *udev = hcd->self.root_hub; 2270 2271 usb_remote_wakeup(udev); 2272 } 2273 2274 /** 2275 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2276 * @hcd: host controller for this root hub 2277 * 2278 * The USB host controller calls this function when its root hub is 2279 * suspended (with the remote wakeup feature enabled) and a remote 2280 * wakeup request is received. The routine submits a workqueue request 2281 * to resume the root hub (that is, manage its downstream ports again). 2282 */ 2283 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2284 { 2285 unsigned long flags; 2286 2287 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2288 if (hcd->rh_registered) { 2289 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2290 queue_work(pm_wq, &hcd->wakeup_work); 2291 } 2292 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2293 } 2294 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2295 2296 #endif /* CONFIG_PM_RUNTIME */ 2297 2298 /*-------------------------------------------------------------------------*/ 2299 2300 #ifdef CONFIG_USB_OTG 2301 2302 /** 2303 * usb_bus_start_enum - start immediate enumeration (for OTG) 2304 * @bus: the bus (must use hcd framework) 2305 * @port_num: 1-based number of port; usually bus->otg_port 2306 * Context: in_interrupt() 2307 * 2308 * Starts enumeration, with an immediate reset followed later by 2309 * hub_wq identifying and possibly configuring the device. 2310 * This is needed by OTG controller drivers, where it helps meet 2311 * HNP protocol timing requirements for starting a port reset. 2312 * 2313 * Return: 0 if successful. 2314 */ 2315 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2316 { 2317 struct usb_hcd *hcd; 2318 int status = -EOPNOTSUPP; 2319 2320 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2321 * boards with root hubs hooked up to internal devices (instead of 2322 * just the OTG port) may need more attention to resetting... 2323 */ 2324 hcd = container_of (bus, struct usb_hcd, self); 2325 if (port_num && hcd->driver->start_port_reset) 2326 status = hcd->driver->start_port_reset(hcd, port_num); 2327 2328 /* allocate hub_wq shortly after (first) root port reset finishes; 2329 * it may issue others, until at least 50 msecs have passed. 2330 */ 2331 if (status == 0) 2332 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2333 return status; 2334 } 2335 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2336 2337 #endif 2338 2339 /*-------------------------------------------------------------------------*/ 2340 2341 /** 2342 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2343 * @irq: the IRQ being raised 2344 * @__hcd: pointer to the HCD whose IRQ is being signaled 2345 * 2346 * If the controller isn't HALTed, calls the driver's irq handler. 2347 * Checks whether the controller is now dead. 2348 * 2349 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2350 */ 2351 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2352 { 2353 struct usb_hcd *hcd = __hcd; 2354 irqreturn_t rc; 2355 2356 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2357 rc = IRQ_NONE; 2358 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2359 rc = IRQ_NONE; 2360 else 2361 rc = IRQ_HANDLED; 2362 2363 return rc; 2364 } 2365 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2366 2367 /*-------------------------------------------------------------------------*/ 2368 2369 /** 2370 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2371 * @hcd: pointer to the HCD representing the controller 2372 * 2373 * This is called by bus glue to report a USB host controller that died 2374 * while operations may still have been pending. It's called automatically 2375 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2376 * 2377 * Only call this function with the primary HCD. 2378 */ 2379 void usb_hc_died (struct usb_hcd *hcd) 2380 { 2381 unsigned long flags; 2382 2383 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2384 2385 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2386 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2387 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2388 if (hcd->rh_registered) { 2389 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2390 2391 /* make hub_wq clean up old urbs and devices */ 2392 usb_set_device_state (hcd->self.root_hub, 2393 USB_STATE_NOTATTACHED); 2394 usb_kick_hub_wq(hcd->self.root_hub); 2395 } 2396 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2397 hcd = hcd->shared_hcd; 2398 if (hcd->rh_registered) { 2399 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2400 2401 /* make hub_wq clean up old urbs and devices */ 2402 usb_set_device_state(hcd->self.root_hub, 2403 USB_STATE_NOTATTACHED); 2404 usb_kick_hub_wq(hcd->self.root_hub); 2405 } 2406 } 2407 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2408 /* Make sure that the other roothub is also deallocated. */ 2409 } 2410 EXPORT_SYMBOL_GPL (usb_hc_died); 2411 2412 /*-------------------------------------------------------------------------*/ 2413 2414 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2415 { 2416 2417 spin_lock_init(&bh->lock); 2418 INIT_LIST_HEAD(&bh->head); 2419 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2420 } 2421 2422 /** 2423 * usb_create_shared_hcd - create and initialize an HCD structure 2424 * @driver: HC driver that will use this hcd 2425 * @dev: device for this HC, stored in hcd->self.controller 2426 * @bus_name: value to store in hcd->self.bus_name 2427 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2428 * PCI device. Only allocate certain resources for the primary HCD 2429 * Context: !in_interrupt() 2430 * 2431 * Allocate a struct usb_hcd, with extra space at the end for the 2432 * HC driver's private data. Initialize the generic members of the 2433 * hcd structure. 2434 * 2435 * Return: On success, a pointer to the created and initialized HCD structure. 2436 * On failure (e.g. if memory is unavailable), %NULL. 2437 */ 2438 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2439 struct device *dev, const char *bus_name, 2440 struct usb_hcd *primary_hcd) 2441 { 2442 struct usb_hcd *hcd; 2443 2444 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2445 if (!hcd) { 2446 dev_dbg (dev, "hcd alloc failed\n"); 2447 return NULL; 2448 } 2449 if (primary_hcd == NULL) { 2450 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2451 GFP_KERNEL); 2452 if (!hcd->bandwidth_mutex) { 2453 kfree(hcd); 2454 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2455 return NULL; 2456 } 2457 mutex_init(hcd->bandwidth_mutex); 2458 dev_set_drvdata(dev, hcd); 2459 } else { 2460 mutex_lock(&usb_port_peer_mutex); 2461 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2462 hcd->primary_hcd = primary_hcd; 2463 primary_hcd->primary_hcd = primary_hcd; 2464 hcd->shared_hcd = primary_hcd; 2465 primary_hcd->shared_hcd = hcd; 2466 mutex_unlock(&usb_port_peer_mutex); 2467 } 2468 2469 kref_init(&hcd->kref); 2470 2471 usb_bus_init(&hcd->self); 2472 hcd->self.controller = dev; 2473 hcd->self.bus_name = bus_name; 2474 hcd->self.uses_dma = (dev->dma_mask != NULL); 2475 2476 init_timer(&hcd->rh_timer); 2477 hcd->rh_timer.function = rh_timer_func; 2478 hcd->rh_timer.data = (unsigned long) hcd; 2479 #ifdef CONFIG_PM_RUNTIME 2480 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2481 #endif 2482 2483 hcd->driver = driver; 2484 hcd->speed = driver->flags & HCD_MASK; 2485 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2486 "USB Host Controller"; 2487 return hcd; 2488 } 2489 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2490 2491 /** 2492 * usb_create_hcd - create and initialize an HCD structure 2493 * @driver: HC driver that will use this hcd 2494 * @dev: device for this HC, stored in hcd->self.controller 2495 * @bus_name: value to store in hcd->self.bus_name 2496 * Context: !in_interrupt() 2497 * 2498 * Allocate a struct usb_hcd, with extra space at the end for the 2499 * HC driver's private data. Initialize the generic members of the 2500 * hcd structure. 2501 * 2502 * Return: On success, a pointer to the created and initialized HCD 2503 * structure. On failure (e.g. if memory is unavailable), %NULL. 2504 */ 2505 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2506 struct device *dev, const char *bus_name) 2507 { 2508 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2509 } 2510 EXPORT_SYMBOL_GPL(usb_create_hcd); 2511 2512 /* 2513 * Roothubs that share one PCI device must also share the bandwidth mutex. 2514 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2515 * deallocated. 2516 * 2517 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2518 * freed. When hcd_release() is called for either hcd in a peer set 2519 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers to 2520 * block new peering attempts 2521 */ 2522 static void hcd_release(struct kref *kref) 2523 { 2524 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2525 2526 mutex_lock(&usb_port_peer_mutex); 2527 if (usb_hcd_is_primary_hcd(hcd)) 2528 kfree(hcd->bandwidth_mutex); 2529 if (hcd->shared_hcd) { 2530 struct usb_hcd *peer = hcd->shared_hcd; 2531 2532 peer->shared_hcd = NULL; 2533 if (peer->primary_hcd == hcd) 2534 peer->primary_hcd = NULL; 2535 } 2536 mutex_unlock(&usb_port_peer_mutex); 2537 kfree(hcd); 2538 } 2539 2540 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2541 { 2542 if (hcd) 2543 kref_get (&hcd->kref); 2544 return hcd; 2545 } 2546 EXPORT_SYMBOL_GPL(usb_get_hcd); 2547 2548 void usb_put_hcd (struct usb_hcd *hcd) 2549 { 2550 if (hcd) 2551 kref_put (&hcd->kref, hcd_release); 2552 } 2553 EXPORT_SYMBOL_GPL(usb_put_hcd); 2554 2555 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2556 { 2557 if (!hcd->primary_hcd) 2558 return 1; 2559 return hcd == hcd->primary_hcd; 2560 } 2561 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2562 2563 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2564 { 2565 if (!hcd->driver->find_raw_port_number) 2566 return port1; 2567 2568 return hcd->driver->find_raw_port_number(hcd, port1); 2569 } 2570 2571 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2572 unsigned int irqnum, unsigned long irqflags) 2573 { 2574 int retval; 2575 2576 if (hcd->driver->irq) { 2577 2578 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2579 hcd->driver->description, hcd->self.busnum); 2580 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2581 hcd->irq_descr, hcd); 2582 if (retval != 0) { 2583 dev_err(hcd->self.controller, 2584 "request interrupt %d failed\n", 2585 irqnum); 2586 return retval; 2587 } 2588 hcd->irq = irqnum; 2589 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2590 (hcd->driver->flags & HCD_MEMORY) ? 2591 "io mem" : "io base", 2592 (unsigned long long)hcd->rsrc_start); 2593 } else { 2594 hcd->irq = 0; 2595 if (hcd->rsrc_start) 2596 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2597 (hcd->driver->flags & HCD_MEMORY) ? 2598 "io mem" : "io base", 2599 (unsigned long long)hcd->rsrc_start); 2600 } 2601 return 0; 2602 } 2603 2604 /* 2605 * Before we free this root hub, flush in-flight peering attempts 2606 * and disable peer lookups 2607 */ 2608 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2609 { 2610 struct usb_device *rhdev; 2611 2612 mutex_lock(&usb_port_peer_mutex); 2613 rhdev = hcd->self.root_hub; 2614 hcd->self.root_hub = NULL; 2615 mutex_unlock(&usb_port_peer_mutex); 2616 usb_put_dev(rhdev); 2617 } 2618 2619 /** 2620 * usb_add_hcd - finish generic HCD structure initialization and register 2621 * @hcd: the usb_hcd structure to initialize 2622 * @irqnum: Interrupt line to allocate 2623 * @irqflags: Interrupt type flags 2624 * 2625 * Finish the remaining parts of generic HCD initialization: allocate the 2626 * buffers of consistent memory, register the bus, request the IRQ line, 2627 * and call the driver's reset() and start() routines. 2628 */ 2629 int usb_add_hcd(struct usb_hcd *hcd, 2630 unsigned int irqnum, unsigned long irqflags) 2631 { 2632 int retval; 2633 struct usb_device *rhdev; 2634 2635 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { 2636 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0); 2637 2638 if (IS_ERR(phy)) { 2639 retval = PTR_ERR(phy); 2640 if (retval == -EPROBE_DEFER) 2641 return retval; 2642 } else { 2643 retval = usb_phy_init(phy); 2644 if (retval) { 2645 usb_put_phy(phy); 2646 return retval; 2647 } 2648 hcd->usb_phy = phy; 2649 hcd->remove_phy = 1; 2650 } 2651 } 2652 2653 if (IS_ENABLED(CONFIG_GENERIC_PHY)) { 2654 struct phy *phy = phy_get(hcd->self.controller, "usb"); 2655 2656 if (IS_ERR(phy)) { 2657 retval = PTR_ERR(phy); 2658 if (retval == -EPROBE_DEFER) 2659 goto err_phy; 2660 } else { 2661 retval = phy_init(phy); 2662 if (retval) { 2663 phy_put(phy); 2664 goto err_phy; 2665 } 2666 retval = phy_power_on(phy); 2667 if (retval) { 2668 phy_exit(phy); 2669 phy_put(phy); 2670 goto err_phy; 2671 } 2672 hcd->phy = phy; 2673 } 2674 } 2675 2676 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2677 2678 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2679 if (authorized_default < 0 || authorized_default > 1) 2680 hcd->authorized_default = hcd->wireless ? 0 : 1; 2681 else 2682 hcd->authorized_default = authorized_default; 2683 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2684 2685 /* HC is in reset state, but accessible. Now do the one-time init, 2686 * bottom up so that hcds can customize the root hubs before hub_wq 2687 * starts talking to them. (Note, bus id is assigned early too.) 2688 */ 2689 if ((retval = hcd_buffer_create(hcd)) != 0) { 2690 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2691 goto err_create_buf; 2692 } 2693 2694 if ((retval = usb_register_bus(&hcd->self)) < 0) 2695 goto err_register_bus; 2696 2697 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2698 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2699 retval = -ENOMEM; 2700 goto err_allocate_root_hub; 2701 } 2702 mutex_lock(&usb_port_peer_mutex); 2703 hcd->self.root_hub = rhdev; 2704 mutex_unlock(&usb_port_peer_mutex); 2705 2706 switch (hcd->speed) { 2707 case HCD_USB11: 2708 rhdev->speed = USB_SPEED_FULL; 2709 break; 2710 case HCD_USB2: 2711 rhdev->speed = USB_SPEED_HIGH; 2712 break; 2713 case HCD_USB25: 2714 rhdev->speed = USB_SPEED_WIRELESS; 2715 break; 2716 case HCD_USB3: 2717 rhdev->speed = USB_SPEED_SUPER; 2718 break; 2719 default: 2720 retval = -EINVAL; 2721 goto err_set_rh_speed; 2722 } 2723 2724 /* wakeup flag init defaults to "everything works" for root hubs, 2725 * but drivers can override it in reset() if needed, along with 2726 * recording the overall controller's system wakeup capability. 2727 */ 2728 device_set_wakeup_capable(&rhdev->dev, 1); 2729 2730 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2731 * registered. But since the controller can die at any time, 2732 * let's initialize the flag before touching the hardware. 2733 */ 2734 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2735 2736 /* "reset" is misnamed; its role is now one-time init. the controller 2737 * should already have been reset (and boot firmware kicked off etc). 2738 */ 2739 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2740 dev_err(hcd->self.controller, "can't setup: %d\n", retval); 2741 goto err_hcd_driver_setup; 2742 } 2743 hcd->rh_pollable = 1; 2744 2745 /* NOTE: root hub and controller capabilities may not be the same */ 2746 if (device_can_wakeup(hcd->self.controller) 2747 && device_can_wakeup(&hcd->self.root_hub->dev)) 2748 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2749 2750 /* initialize tasklets */ 2751 init_giveback_urb_bh(&hcd->high_prio_bh); 2752 init_giveback_urb_bh(&hcd->low_prio_bh); 2753 2754 /* enable irqs just before we start the controller, 2755 * if the BIOS provides legacy PCI irqs. 2756 */ 2757 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2758 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2759 if (retval) 2760 goto err_request_irq; 2761 } 2762 2763 hcd->state = HC_STATE_RUNNING; 2764 retval = hcd->driver->start(hcd); 2765 if (retval < 0) { 2766 dev_err(hcd->self.controller, "startup error %d\n", retval); 2767 goto err_hcd_driver_start; 2768 } 2769 2770 /* starting here, usbcore will pay attention to this root hub */ 2771 if ((retval = register_root_hub(hcd)) != 0) 2772 goto err_register_root_hub; 2773 2774 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2775 if (retval < 0) { 2776 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2777 retval); 2778 goto error_create_attr_group; 2779 } 2780 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2781 usb_hcd_poll_rh_status(hcd); 2782 2783 return retval; 2784 2785 error_create_attr_group: 2786 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2787 if (HC_IS_RUNNING(hcd->state)) 2788 hcd->state = HC_STATE_QUIESCING; 2789 spin_lock_irq(&hcd_root_hub_lock); 2790 hcd->rh_registered = 0; 2791 spin_unlock_irq(&hcd_root_hub_lock); 2792 2793 #ifdef CONFIG_PM_RUNTIME 2794 cancel_work_sync(&hcd->wakeup_work); 2795 #endif 2796 mutex_lock(&usb_bus_list_lock); 2797 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2798 mutex_unlock(&usb_bus_list_lock); 2799 err_register_root_hub: 2800 hcd->rh_pollable = 0; 2801 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2802 del_timer_sync(&hcd->rh_timer); 2803 hcd->driver->stop(hcd); 2804 hcd->state = HC_STATE_HALT; 2805 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2806 del_timer_sync(&hcd->rh_timer); 2807 err_hcd_driver_start: 2808 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2809 free_irq(irqnum, hcd); 2810 err_request_irq: 2811 err_hcd_driver_setup: 2812 err_set_rh_speed: 2813 usb_put_invalidate_rhdev(hcd); 2814 err_allocate_root_hub: 2815 usb_deregister_bus(&hcd->self); 2816 err_register_bus: 2817 hcd_buffer_destroy(hcd); 2818 err_create_buf: 2819 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->phy) { 2820 phy_power_off(hcd->phy); 2821 phy_exit(hcd->phy); 2822 phy_put(hcd->phy); 2823 hcd->phy = NULL; 2824 } 2825 err_phy: 2826 if (hcd->remove_phy && hcd->usb_phy) { 2827 usb_phy_shutdown(hcd->usb_phy); 2828 usb_put_phy(hcd->usb_phy); 2829 hcd->usb_phy = NULL; 2830 } 2831 return retval; 2832 } 2833 EXPORT_SYMBOL_GPL(usb_add_hcd); 2834 2835 /** 2836 * usb_remove_hcd - shutdown processing for generic HCDs 2837 * @hcd: the usb_hcd structure to remove 2838 * Context: !in_interrupt() 2839 * 2840 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2841 * invoking the HCD's stop() method. 2842 */ 2843 void usb_remove_hcd(struct usb_hcd *hcd) 2844 { 2845 struct usb_device *rhdev = hcd->self.root_hub; 2846 2847 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2848 2849 usb_get_dev(rhdev); 2850 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2851 2852 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2853 if (HC_IS_RUNNING (hcd->state)) 2854 hcd->state = HC_STATE_QUIESCING; 2855 2856 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2857 spin_lock_irq (&hcd_root_hub_lock); 2858 hcd->rh_registered = 0; 2859 spin_unlock_irq (&hcd_root_hub_lock); 2860 2861 #ifdef CONFIG_PM_RUNTIME 2862 cancel_work_sync(&hcd->wakeup_work); 2863 #endif 2864 2865 mutex_lock(&usb_bus_list_lock); 2866 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2867 mutex_unlock(&usb_bus_list_lock); 2868 2869 /* 2870 * tasklet_kill() isn't needed here because: 2871 * - driver's disconnect() called from usb_disconnect() should 2872 * make sure its URBs are completed during the disconnect() 2873 * callback 2874 * 2875 * - it is too late to run complete() here since driver may have 2876 * been removed already now 2877 */ 2878 2879 /* Prevent any more root-hub status calls from the timer. 2880 * The HCD might still restart the timer (if a port status change 2881 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2882 * the hub_status_data() callback. 2883 */ 2884 hcd->rh_pollable = 0; 2885 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2886 del_timer_sync(&hcd->rh_timer); 2887 2888 hcd->driver->stop(hcd); 2889 hcd->state = HC_STATE_HALT; 2890 2891 /* In case the HCD restarted the timer, stop it again. */ 2892 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2893 del_timer_sync(&hcd->rh_timer); 2894 2895 if (usb_hcd_is_primary_hcd(hcd)) { 2896 if (hcd->irq > 0) 2897 free_irq(hcd->irq, hcd); 2898 } 2899 2900 usb_deregister_bus(&hcd->self); 2901 hcd_buffer_destroy(hcd); 2902 2903 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->phy) { 2904 phy_power_off(hcd->phy); 2905 phy_exit(hcd->phy); 2906 phy_put(hcd->phy); 2907 hcd->phy = NULL; 2908 } 2909 if (hcd->remove_phy && hcd->usb_phy) { 2910 usb_phy_shutdown(hcd->usb_phy); 2911 usb_put_phy(hcd->usb_phy); 2912 hcd->usb_phy = NULL; 2913 } 2914 2915 usb_put_invalidate_rhdev(hcd); 2916 } 2917 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2918 2919 void 2920 usb_hcd_platform_shutdown(struct platform_device *dev) 2921 { 2922 struct usb_hcd *hcd = platform_get_drvdata(dev); 2923 2924 if (hcd->driver->shutdown) 2925 hcd->driver->shutdown(hcd); 2926 } 2927 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2928 2929 /*-------------------------------------------------------------------------*/ 2930 2931 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2932 2933 struct usb_mon_operations *mon_ops; 2934 2935 /* 2936 * The registration is unlocked. 2937 * We do it this way because we do not want to lock in hot paths. 2938 * 2939 * Notice that the code is minimally error-proof. Because usbmon needs 2940 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2941 */ 2942 2943 int usb_mon_register (struct usb_mon_operations *ops) 2944 { 2945 2946 if (mon_ops) 2947 return -EBUSY; 2948 2949 mon_ops = ops; 2950 mb(); 2951 return 0; 2952 } 2953 EXPORT_SYMBOL_GPL (usb_mon_register); 2954 2955 void usb_mon_deregister (void) 2956 { 2957 2958 if (mon_ops == NULL) { 2959 printk(KERN_ERR "USB: monitor was not registered\n"); 2960 return; 2961 } 2962 mon_ops = NULL; 2963 mb(); 2964 } 2965 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2966 2967 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2968