1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR) 115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 160 static const u8 usb25_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* usb 2.0 root hub device descriptor */ 181 static const u8 usb2_rh_dev_descriptor[18] = { 182 0x12, /* __u8 bLength; */ 183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 185 186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 187 0x00, /* __u8 bDeviceSubClass; */ 188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 190 191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 194 195 0x03, /* __u8 iManufacturer; */ 196 0x02, /* __u8 iProduct; */ 197 0x01, /* __u8 iSerialNumber; */ 198 0x01 /* __u8 bNumConfigurations; */ 199 }; 200 201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 202 203 /* usb 1.1 root hub device descriptor */ 204 static const u8 usb11_rh_dev_descriptor[18] = { 205 0x12, /* __u8 bLength; */ 206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 208 209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 210 0x00, /* __u8 bDeviceSubClass; */ 211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 213 214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 217 218 0x03, /* __u8 iManufacturer; */ 219 0x02, /* __u8 iProduct; */ 220 0x01, /* __u8 iSerialNumber; */ 221 0x01 /* __u8 bNumConfigurations; */ 222 }; 223 224 225 /*-------------------------------------------------------------------------*/ 226 227 /* Configuration descriptors for our root hubs */ 228 229 static const u8 fs_rh_config_descriptor[] = { 230 231 /* one configuration */ 232 0x09, /* __u8 bLength; */ 233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 234 0x19, 0x00, /* __le16 wTotalLength; */ 235 0x01, /* __u8 bNumInterfaces; (1) */ 236 0x01, /* __u8 bConfigurationValue; */ 237 0x00, /* __u8 iConfiguration; */ 238 0xc0, /* __u8 bmAttributes; 239 Bit 7: must be set, 240 6: Self-powered, 241 5: Remote wakeup, 242 4..0: resvd */ 243 0x00, /* __u8 MaxPower; */ 244 245 /* USB 1.1: 246 * USB 2.0, single TT organization (mandatory): 247 * one interface, protocol 0 248 * 249 * USB 2.0, multiple TT organization (optional): 250 * two interfaces, protocols 1 (like single TT) 251 * and 2 (multiple TT mode) ... config is 252 * sometimes settable 253 * NOT IMPLEMENTED 254 */ 255 256 /* one interface */ 257 0x09, /* __u8 if_bLength; */ 258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 259 0x00, /* __u8 if_bInterfaceNumber; */ 260 0x00, /* __u8 if_bAlternateSetting; */ 261 0x01, /* __u8 if_bNumEndpoints; */ 262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 263 0x00, /* __u8 if_bInterfaceSubClass; */ 264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 265 0x00, /* __u8 if_iInterface; */ 266 267 /* one endpoint (status change endpoint) */ 268 0x07, /* __u8 ep_bLength; */ 269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 271 0x03, /* __u8 ep_bmAttributes; Interrupt */ 272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 274 }; 275 276 static const u8 hs_rh_config_descriptor[] = { 277 278 /* one configuration */ 279 0x09, /* __u8 bLength; */ 280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 281 0x19, 0x00, /* __le16 wTotalLength; */ 282 0x01, /* __u8 bNumInterfaces; (1) */ 283 0x01, /* __u8 bConfigurationValue; */ 284 0x00, /* __u8 iConfiguration; */ 285 0xc0, /* __u8 bmAttributes; 286 Bit 7: must be set, 287 6: Self-powered, 288 5: Remote wakeup, 289 4..0: resvd */ 290 0x00, /* __u8 MaxPower; */ 291 292 /* USB 1.1: 293 * USB 2.0, single TT organization (mandatory): 294 * one interface, protocol 0 295 * 296 * USB 2.0, multiple TT organization (optional): 297 * two interfaces, protocols 1 (like single TT) 298 * and 2 (multiple TT mode) ... config is 299 * sometimes settable 300 * NOT IMPLEMENTED 301 */ 302 303 /* one interface */ 304 0x09, /* __u8 if_bLength; */ 305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 306 0x00, /* __u8 if_bInterfaceNumber; */ 307 0x00, /* __u8 if_bAlternateSetting; */ 308 0x01, /* __u8 if_bNumEndpoints; */ 309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 310 0x00, /* __u8 if_bInterfaceSubClass; */ 311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 312 0x00, /* __u8 if_iInterface; */ 313 314 /* one endpoint (status change endpoint) */ 315 0x07, /* __u8 ep_bLength; */ 316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 318 0x03, /* __u8 ep_bmAttributes; Interrupt */ 319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 320 * see hub.c:hub_configure() for details. */ 321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 323 }; 324 325 static const u8 ss_rh_config_descriptor[] = { 326 /* one configuration */ 327 0x09, /* __u8 bLength; */ 328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 329 0x1f, 0x00, /* __le16 wTotalLength; */ 330 0x01, /* __u8 bNumInterfaces; (1) */ 331 0x01, /* __u8 bConfigurationValue; */ 332 0x00, /* __u8 iConfiguration; */ 333 0xc0, /* __u8 bmAttributes; 334 Bit 7: must be set, 335 6: Self-powered, 336 5: Remote wakeup, 337 4..0: resvd */ 338 0x00, /* __u8 MaxPower; */ 339 340 /* one interface */ 341 0x09, /* __u8 if_bLength; */ 342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 343 0x00, /* __u8 if_bInterfaceNumber; */ 344 0x00, /* __u8 if_bAlternateSetting; */ 345 0x01, /* __u8 if_bNumEndpoints; */ 346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 347 0x00, /* __u8 if_bInterfaceSubClass; */ 348 0x00, /* __u8 if_bInterfaceProtocol; */ 349 0x00, /* __u8 if_iInterface; */ 350 351 /* one endpoint (status change endpoint) */ 352 0x07, /* __u8 ep_bLength; */ 353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 355 0x03, /* __u8 ep_bmAttributes; Interrupt */ 356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 357 * see hub.c:hub_configure() for details. */ 358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 360 361 /* one SuperSpeed endpoint companion descriptor */ 362 0x06, /* __u8 ss_bLength */ 363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 364 /* Companion */ 365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 368 }; 369 370 /* authorized_default behaviour: 371 * -1 is authorized for all devices except wireless (old behaviour) 372 * 0 is unauthorized for all devices 373 * 1 is authorized for all devices 374 * 2 is authorized for internal devices 375 */ 376 #define USB_AUTHORIZE_WIRED -1 377 #define USB_AUTHORIZE_NONE 0 378 #define USB_AUTHORIZE_ALL 1 379 #define USB_AUTHORIZE_INTERNAL 2 380 381 static int authorized_default = USB_AUTHORIZE_WIRED; 382 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 383 MODULE_PARM_DESC(authorized_default, 384 "Default USB device authorization: 0 is not authorized, 1 is " 385 "authorized, 2 is authorized for internal devices, -1 is " 386 "authorized except for wireless USB (default, old behaviour)"); 387 /*-------------------------------------------------------------------------*/ 388 389 /** 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 393 * @len: Length (in bytes; may be odd) of descriptor buffer. 394 * 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 396 * whichever is less. 397 * 398 * Note: 399 * USB String descriptors can contain at most 126 characters; input 400 * strings longer than that are truncated. 401 */ 402 static unsigned 403 ascii2desc(char const *s, u8 *buf, unsigned len) 404 { 405 unsigned n, t = 2 + 2*strlen(s); 406 407 if (t > 254) 408 t = 254; /* Longest possible UTF string descriptor */ 409 if (len > t) 410 len = t; 411 412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 413 414 n = len; 415 while (n--) { 416 *buf++ = t; 417 if (!n--) 418 break; 419 *buf++ = t >> 8; 420 t = (unsigned char)*s++; 421 } 422 return len; 423 } 424 425 /** 426 * rh_string() - provides string descriptors for root hub 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 428 * @hcd: the host controller for this root hub 429 * @data: buffer for output packet 430 * @len: length of the provided buffer 431 * 432 * Produces either a manufacturer, product or serial number string for the 433 * virtual root hub device. 434 * 435 * Return: The number of bytes filled in: the length of the descriptor or 436 * of the provided buffer, whichever is less. 437 */ 438 static unsigned 439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 440 { 441 char buf[100]; 442 char const *s; 443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 444 445 /* language ids */ 446 switch (id) { 447 case 0: 448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 450 if (len > 4) 451 len = 4; 452 memcpy(data, langids, len); 453 return len; 454 case 1: 455 /* Serial number */ 456 s = hcd->self.bus_name; 457 break; 458 case 2: 459 /* Product name */ 460 s = hcd->product_desc; 461 break; 462 case 3: 463 /* Manufacturer */ 464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 465 init_utsname()->release, hcd->driver->description); 466 s = buf; 467 break; 468 default: 469 /* Can't happen; caller guarantees it */ 470 return 0; 471 } 472 473 return ascii2desc(s, data, len); 474 } 475 476 477 /* Root hub control transfers execute synchronously */ 478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 479 { 480 struct usb_ctrlrequest *cmd; 481 u16 typeReq, wValue, wIndex, wLength; 482 u8 *ubuf = urb->transfer_buffer; 483 unsigned len = 0; 484 int status; 485 u8 patch_wakeup = 0; 486 u8 patch_protocol = 0; 487 u16 tbuf_size; 488 u8 *tbuf = NULL; 489 const u8 *bufp; 490 491 might_sleep(); 492 493 spin_lock_irq(&hcd_root_hub_lock); 494 status = usb_hcd_link_urb_to_ep(hcd, urb); 495 spin_unlock_irq(&hcd_root_hub_lock); 496 if (status) 497 return status; 498 urb->hcpriv = hcd; /* Indicate it's queued */ 499 500 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 502 wValue = le16_to_cpu (cmd->wValue); 503 wIndex = le16_to_cpu (cmd->wIndex); 504 wLength = le16_to_cpu (cmd->wLength); 505 506 if (wLength > urb->transfer_buffer_length) 507 goto error; 508 509 /* 510 * tbuf should be at least as big as the 511 * USB hub descriptor. 512 */ 513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 514 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 515 if (!tbuf) { 516 status = -ENOMEM; 517 goto err_alloc; 518 } 519 520 bufp = tbuf; 521 522 523 urb->actual_length = 0; 524 switch (typeReq) { 525 526 /* DEVICE REQUESTS */ 527 528 /* The root hub's remote wakeup enable bit is implemented using 529 * driver model wakeup flags. If this system supports wakeup 530 * through USB, userspace may change the default "allow wakeup" 531 * policy through sysfs or these calls. 532 * 533 * Most root hubs support wakeup from downstream devices, for 534 * runtime power management (disabling USB clocks and reducing 535 * VBUS power usage). However, not all of them do so; silicon, 536 * board, and BIOS bugs here are not uncommon, so these can't 537 * be treated quite like external hubs. 538 * 539 * Likewise, not all root hubs will pass wakeup events upstream, 540 * to wake up the whole system. So don't assume root hub and 541 * controller capabilities are identical. 542 */ 543 544 case DeviceRequest | USB_REQ_GET_STATUS: 545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 546 << USB_DEVICE_REMOTE_WAKEUP) 547 | (1 << USB_DEVICE_SELF_POWERED); 548 tbuf[1] = 0; 549 len = 2; 550 break; 551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 552 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 554 else 555 goto error; 556 break; 557 case DeviceOutRequest | USB_REQ_SET_FEATURE: 558 if (device_can_wakeup(&hcd->self.root_hub->dev) 559 && wValue == USB_DEVICE_REMOTE_WAKEUP) 560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 561 else 562 goto error; 563 break; 564 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 565 tbuf[0] = 1; 566 len = 1; 567 fallthrough; 568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 569 break; 570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 571 switch (wValue & 0xff00) { 572 case USB_DT_DEVICE << 8: 573 switch (hcd->speed) { 574 case HCD_USB32: 575 case HCD_USB31: 576 bufp = usb31_rh_dev_descriptor; 577 break; 578 case HCD_USB3: 579 bufp = usb3_rh_dev_descriptor; 580 break; 581 case HCD_USB25: 582 bufp = usb25_rh_dev_descriptor; 583 break; 584 case HCD_USB2: 585 bufp = usb2_rh_dev_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = usb11_rh_dev_descriptor; 589 break; 590 default: 591 goto error; 592 } 593 len = 18; 594 if (hcd->has_tt) 595 patch_protocol = 1; 596 break; 597 case USB_DT_CONFIG << 8: 598 switch (hcd->speed) { 599 case HCD_USB32: 600 case HCD_USB31: 601 case HCD_USB3: 602 bufp = ss_rh_config_descriptor; 603 len = sizeof ss_rh_config_descriptor; 604 break; 605 case HCD_USB25: 606 case HCD_USB2: 607 bufp = hs_rh_config_descriptor; 608 len = sizeof hs_rh_config_descriptor; 609 break; 610 case HCD_USB11: 611 bufp = fs_rh_config_descriptor; 612 len = sizeof fs_rh_config_descriptor; 613 break; 614 default: 615 goto error; 616 } 617 if (device_can_wakeup(&hcd->self.root_hub->dev)) 618 patch_wakeup = 1; 619 break; 620 case USB_DT_STRING << 8: 621 if ((wValue & 0xff) < 4) 622 urb->actual_length = rh_string(wValue & 0xff, 623 hcd, ubuf, wLength); 624 else /* unsupported IDs --> "protocol stall" */ 625 goto error; 626 break; 627 case USB_DT_BOS << 8: 628 goto nongeneric; 629 default: 630 goto error; 631 } 632 break; 633 case DeviceRequest | USB_REQ_GET_INTERFACE: 634 tbuf[0] = 0; 635 len = 1; 636 fallthrough; 637 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 638 break; 639 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 640 /* wValue == urb->dev->devaddr */ 641 dev_dbg (hcd->self.controller, "root hub device address %d\n", 642 wValue); 643 break; 644 645 /* INTERFACE REQUESTS (no defined feature/status flags) */ 646 647 /* ENDPOINT REQUESTS */ 648 649 case EndpointRequest | USB_REQ_GET_STATUS: 650 /* ENDPOINT_HALT flag */ 651 tbuf[0] = 0; 652 tbuf[1] = 0; 653 len = 2; 654 fallthrough; 655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 656 case EndpointOutRequest | USB_REQ_SET_FEATURE: 657 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 658 break; 659 660 /* CLASS REQUESTS (and errors) */ 661 662 default: 663 nongeneric: 664 /* non-generic request */ 665 switch (typeReq) { 666 case GetHubStatus: 667 len = 4; 668 break; 669 case GetPortStatus: 670 if (wValue == HUB_PORT_STATUS) 671 len = 4; 672 else 673 /* other port status types return 8 bytes */ 674 len = 8; 675 break; 676 case GetHubDescriptor: 677 len = sizeof (struct usb_hub_descriptor); 678 break; 679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 680 /* len is returned by hub_control */ 681 break; 682 } 683 status = hcd->driver->hub_control (hcd, 684 typeReq, wValue, wIndex, 685 tbuf, wLength); 686 687 if (typeReq == GetHubDescriptor) 688 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 689 (struct usb_hub_descriptor *)tbuf); 690 break; 691 error: 692 /* "protocol stall" on error */ 693 status = -EPIPE; 694 } 695 696 if (status < 0) { 697 len = 0; 698 if (status != -EPIPE) { 699 dev_dbg (hcd->self.controller, 700 "CTRL: TypeReq=0x%x val=0x%x " 701 "idx=0x%x len=%d ==> %d\n", 702 typeReq, wValue, wIndex, 703 wLength, status); 704 } 705 } else if (status > 0) { 706 /* hub_control may return the length of data copied. */ 707 len = status; 708 status = 0; 709 } 710 if (len) { 711 if (urb->transfer_buffer_length < len) 712 len = urb->transfer_buffer_length; 713 urb->actual_length = len; 714 /* always USB_DIR_IN, toward host */ 715 memcpy (ubuf, bufp, len); 716 717 /* report whether RH hardware supports remote wakeup */ 718 if (patch_wakeup && 719 len > offsetof (struct usb_config_descriptor, 720 bmAttributes)) 721 ((struct usb_config_descriptor *)ubuf)->bmAttributes 722 |= USB_CONFIG_ATT_WAKEUP; 723 724 /* report whether RH hardware has an integrated TT */ 725 if (patch_protocol && 726 len > offsetof(struct usb_device_descriptor, 727 bDeviceProtocol)) 728 ((struct usb_device_descriptor *) ubuf)-> 729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 730 } 731 732 kfree(tbuf); 733 err_alloc: 734 735 /* any errors get returned through the urb completion */ 736 spin_lock_irq(&hcd_root_hub_lock); 737 usb_hcd_unlink_urb_from_ep(hcd, urb); 738 usb_hcd_giveback_urb(hcd, urb, status); 739 spin_unlock_irq(&hcd_root_hub_lock); 740 return 0; 741 } 742 743 /*-------------------------------------------------------------------------*/ 744 745 /* 746 * Root Hub interrupt transfers are polled using a timer if the 747 * driver requests it; otherwise the driver is responsible for 748 * calling usb_hcd_poll_rh_status() when an event occurs. 749 * 750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. 751 */ 752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 753 { 754 struct urb *urb; 755 int length; 756 int status; 757 unsigned long flags; 758 char buffer[6]; /* Any root hubs with > 31 ports? */ 759 760 if (unlikely(!hcd->rh_pollable)) 761 return; 762 if (!hcd->uses_new_polling && !hcd->status_urb) 763 return; 764 765 length = hcd->driver->hub_status_data(hcd, buffer); 766 if (length > 0) { 767 768 /* try to complete the status urb */ 769 spin_lock_irqsave(&hcd_root_hub_lock, flags); 770 urb = hcd->status_urb; 771 if (urb) { 772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 773 hcd->status_urb = NULL; 774 if (urb->transfer_buffer_length >= length) { 775 status = 0; 776 } else { 777 status = -EOVERFLOW; 778 length = urb->transfer_buffer_length; 779 } 780 urb->actual_length = length; 781 memcpy(urb->transfer_buffer, buffer, length); 782 783 usb_hcd_unlink_urb_from_ep(hcd, urb); 784 usb_hcd_giveback_urb(hcd, urb, status); 785 } else { 786 length = 0; 787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 788 } 789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 790 } 791 792 /* The USB 2.0 spec says 256 ms. This is close enough and won't 793 * exceed that limit if HZ is 100. The math is more clunky than 794 * maybe expected, this is to make sure that all timers for USB devices 795 * fire at the same time to give the CPU a break in between */ 796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 797 (length == 0 && hcd->status_urb != NULL)) 798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 799 } 800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 801 802 /* timer callback */ 803 static void rh_timer_func (struct timer_list *t) 804 { 805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 806 807 usb_hcd_poll_rh_status(_hcd); 808 } 809 810 /*-------------------------------------------------------------------------*/ 811 812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 813 { 814 int retval; 815 unsigned long flags; 816 unsigned len = 1 + (urb->dev->maxchild / 8); 817 818 spin_lock_irqsave (&hcd_root_hub_lock, flags); 819 if (hcd->status_urb || urb->transfer_buffer_length < len) { 820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 821 retval = -EINVAL; 822 goto done; 823 } 824 825 retval = usb_hcd_link_urb_to_ep(hcd, urb); 826 if (retval) 827 goto done; 828 829 hcd->status_urb = urb; 830 urb->hcpriv = hcd; /* indicate it's queued */ 831 if (!hcd->uses_new_polling) 832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 833 834 /* If a status change has already occurred, report it ASAP */ 835 else if (HCD_POLL_PENDING(hcd)) 836 mod_timer(&hcd->rh_timer, jiffies); 837 retval = 0; 838 done: 839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 840 return retval; 841 } 842 843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 844 { 845 if (usb_endpoint_xfer_int(&urb->ep->desc)) 846 return rh_queue_status (hcd, urb); 847 if (usb_endpoint_xfer_control(&urb->ep->desc)) 848 return rh_call_control (hcd, urb); 849 return -EINVAL; 850 } 851 852 /*-------------------------------------------------------------------------*/ 853 854 /* Unlinks of root-hub control URBs are legal, but they don't do anything 855 * since these URBs always execute synchronously. 856 */ 857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 858 { 859 unsigned long flags; 860 int rc; 861 862 spin_lock_irqsave(&hcd_root_hub_lock, flags); 863 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 864 if (rc) 865 goto done; 866 867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 868 ; /* Do nothing */ 869 870 } else { /* Status URB */ 871 if (!hcd->uses_new_polling) 872 del_timer (&hcd->rh_timer); 873 if (urb == hcd->status_urb) { 874 hcd->status_urb = NULL; 875 usb_hcd_unlink_urb_from_ep(hcd, urb); 876 usb_hcd_giveback_urb(hcd, urb, status); 877 } 878 } 879 done: 880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 881 return rc; 882 } 883 884 885 /*-------------------------------------------------------------------------*/ 886 887 /** 888 * usb_bus_init - shared initialization code 889 * @bus: the bus structure being initialized 890 * 891 * This code is used to initialize a usb_bus structure, memory for which is 892 * separately managed. 893 */ 894 static void usb_bus_init (struct usb_bus *bus) 895 { 896 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 897 898 bus->devnum_next = 1; 899 900 bus->root_hub = NULL; 901 bus->busnum = -1; 902 bus->bandwidth_allocated = 0; 903 bus->bandwidth_int_reqs = 0; 904 bus->bandwidth_isoc_reqs = 0; 905 mutex_init(&bus->devnum_next_mutex); 906 } 907 908 /*-------------------------------------------------------------------------*/ 909 910 /** 911 * usb_register_bus - registers the USB host controller with the usb core 912 * @bus: pointer to the bus to register 913 * 914 * Context: task context, might sleep. 915 * 916 * Assigns a bus number, and links the controller into usbcore data 917 * structures so that it can be seen by scanning the bus list. 918 * 919 * Return: 0 if successful. A negative error code otherwise. 920 */ 921 static int usb_register_bus(struct usb_bus *bus) 922 { 923 int result = -E2BIG; 924 int busnum; 925 926 mutex_lock(&usb_bus_idr_lock); 927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 928 if (busnum < 0) { 929 pr_err("%s: failed to get bus number\n", usbcore_name); 930 goto error_find_busnum; 931 } 932 bus->busnum = busnum; 933 mutex_unlock(&usb_bus_idr_lock); 934 935 usb_notify_add_bus(bus); 936 937 dev_info (bus->controller, "new USB bus registered, assigned bus " 938 "number %d\n", bus->busnum); 939 return 0; 940 941 error_find_busnum: 942 mutex_unlock(&usb_bus_idr_lock); 943 return result; 944 } 945 946 /** 947 * usb_deregister_bus - deregisters the USB host controller 948 * @bus: pointer to the bus to deregister 949 * 950 * Context: task context, might sleep. 951 * 952 * Recycles the bus number, and unlinks the controller from usbcore data 953 * structures so that it won't be seen by scanning the bus list. 954 */ 955 static void usb_deregister_bus (struct usb_bus *bus) 956 { 957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 958 959 /* 960 * NOTE: make sure that all the devices are removed by the 961 * controller code, as well as having it call this when cleaning 962 * itself up 963 */ 964 mutex_lock(&usb_bus_idr_lock); 965 idr_remove(&usb_bus_idr, bus->busnum); 966 mutex_unlock(&usb_bus_idr_lock); 967 968 usb_notify_remove_bus(bus); 969 } 970 971 /** 972 * register_root_hub - called by usb_add_hcd() to register a root hub 973 * @hcd: host controller for this root hub 974 * 975 * This function registers the root hub with the USB subsystem. It sets up 976 * the device properly in the device tree and then calls usb_new_device() 977 * to register the usb device. It also assigns the root hub's USB address 978 * (always 1). 979 * 980 * Return: 0 if successful. A negative error code otherwise. 981 */ 982 static int register_root_hub(struct usb_hcd *hcd) 983 { 984 struct device *parent_dev = hcd->self.controller; 985 struct usb_device *usb_dev = hcd->self.root_hub; 986 const int devnum = 1; 987 int retval; 988 989 usb_dev->devnum = devnum; 990 usb_dev->bus->devnum_next = devnum + 1; 991 set_bit (devnum, usb_dev->bus->devmap.devicemap); 992 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 993 994 mutex_lock(&usb_bus_idr_lock); 995 996 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 997 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 998 if (retval != sizeof usb_dev->descriptor) { 999 mutex_unlock(&usb_bus_idr_lock); 1000 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1001 dev_name(&usb_dev->dev), retval); 1002 return (retval < 0) ? retval : -EMSGSIZE; 1003 } 1004 1005 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1006 retval = usb_get_bos_descriptor(usb_dev); 1007 if (!retval) { 1008 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1009 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1010 mutex_unlock(&usb_bus_idr_lock); 1011 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1012 dev_name(&usb_dev->dev), retval); 1013 return retval; 1014 } 1015 } 1016 1017 retval = usb_new_device (usb_dev); 1018 if (retval) { 1019 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1020 dev_name(&usb_dev->dev), retval); 1021 } else { 1022 spin_lock_irq (&hcd_root_hub_lock); 1023 hcd->rh_registered = 1; 1024 spin_unlock_irq (&hcd_root_hub_lock); 1025 1026 /* Did the HC die before the root hub was registered? */ 1027 if (HCD_DEAD(hcd)) 1028 usb_hc_died (hcd); /* This time clean up */ 1029 } 1030 mutex_unlock(&usb_bus_idr_lock); 1031 1032 return retval; 1033 } 1034 1035 /* 1036 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1037 * @bus: the bus which the root hub belongs to 1038 * @portnum: the port which is being resumed 1039 * 1040 * HCDs should call this function when they know that a resume signal is 1041 * being sent to a root-hub port. The root hub will be prevented from 1042 * going into autosuspend until usb_hcd_end_port_resume() is called. 1043 * 1044 * The bus's private lock must be held by the caller. 1045 */ 1046 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1047 { 1048 unsigned bit = 1 << portnum; 1049 1050 if (!(bus->resuming_ports & bit)) { 1051 bus->resuming_ports |= bit; 1052 pm_runtime_get_noresume(&bus->root_hub->dev); 1053 } 1054 } 1055 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1056 1057 /* 1058 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1059 * @bus: the bus which the root hub belongs to 1060 * @portnum: the port which is being resumed 1061 * 1062 * HCDs should call this function when they know that a resume signal has 1063 * stopped being sent to a root-hub port. The root hub will be allowed to 1064 * autosuspend again. 1065 * 1066 * The bus's private lock must be held by the caller. 1067 */ 1068 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1069 { 1070 unsigned bit = 1 << portnum; 1071 1072 if (bus->resuming_ports & bit) { 1073 bus->resuming_ports &= ~bit; 1074 pm_runtime_put_noidle(&bus->root_hub->dev); 1075 } 1076 } 1077 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1078 1079 /*-------------------------------------------------------------------------*/ 1080 1081 /** 1082 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1083 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1084 * @is_input: true iff the transaction sends data to the host 1085 * @isoc: true for isochronous transactions, false for interrupt ones 1086 * @bytecount: how many bytes in the transaction. 1087 * 1088 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1089 * 1090 * Note: 1091 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1092 * scheduled in software, this function is only used for such scheduling. 1093 */ 1094 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1095 { 1096 unsigned long tmp; 1097 1098 switch (speed) { 1099 case USB_SPEED_LOW: /* INTR only */ 1100 if (is_input) { 1101 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1102 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1103 } else { 1104 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1105 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1106 } 1107 case USB_SPEED_FULL: /* ISOC or INTR */ 1108 if (isoc) { 1109 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1110 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1111 } else { 1112 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1113 return 9107L + BW_HOST_DELAY + tmp; 1114 } 1115 case USB_SPEED_HIGH: /* ISOC or INTR */ 1116 /* FIXME adjust for input vs output */ 1117 if (isoc) 1118 tmp = HS_NSECS_ISO (bytecount); 1119 else 1120 tmp = HS_NSECS (bytecount); 1121 return tmp; 1122 default: 1123 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1124 return -1; 1125 } 1126 } 1127 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1128 1129 1130 /*-------------------------------------------------------------------------*/ 1131 1132 /* 1133 * Generic HC operations. 1134 */ 1135 1136 /*-------------------------------------------------------------------------*/ 1137 1138 /** 1139 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1140 * @hcd: host controller to which @urb was submitted 1141 * @urb: URB being submitted 1142 * 1143 * Host controller drivers should call this routine in their enqueue() 1144 * method. The HCD's private spinlock must be held and interrupts must 1145 * be disabled. The actions carried out here are required for URB 1146 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1147 * 1148 * Return: 0 for no error, otherwise a negative error code (in which case 1149 * the enqueue() method must fail). If no error occurs but enqueue() fails 1150 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1151 * the private spinlock and returning. 1152 */ 1153 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1154 { 1155 int rc = 0; 1156 1157 spin_lock(&hcd_urb_list_lock); 1158 1159 /* Check that the URB isn't being killed */ 1160 if (unlikely(atomic_read(&urb->reject))) { 1161 rc = -EPERM; 1162 goto done; 1163 } 1164 1165 if (unlikely(!urb->ep->enabled)) { 1166 rc = -ENOENT; 1167 goto done; 1168 } 1169 1170 if (unlikely(!urb->dev->can_submit)) { 1171 rc = -EHOSTUNREACH; 1172 goto done; 1173 } 1174 1175 /* 1176 * Check the host controller's state and add the URB to the 1177 * endpoint's queue. 1178 */ 1179 if (HCD_RH_RUNNING(hcd)) { 1180 urb->unlinked = 0; 1181 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1182 } else { 1183 rc = -ESHUTDOWN; 1184 goto done; 1185 } 1186 done: 1187 spin_unlock(&hcd_urb_list_lock); 1188 return rc; 1189 } 1190 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1191 1192 /** 1193 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1194 * @hcd: host controller to which @urb was submitted 1195 * @urb: URB being checked for unlinkability 1196 * @status: error code to store in @urb if the unlink succeeds 1197 * 1198 * Host controller drivers should call this routine in their dequeue() 1199 * method. The HCD's private spinlock must be held and interrupts must 1200 * be disabled. The actions carried out here are required for making 1201 * sure than an unlink is valid. 1202 * 1203 * Return: 0 for no error, otherwise a negative error code (in which case 1204 * the dequeue() method must fail). The possible error codes are: 1205 * 1206 * -EIDRM: @urb was not submitted or has already completed. 1207 * The completion function may not have been called yet. 1208 * 1209 * -EBUSY: @urb has already been unlinked. 1210 */ 1211 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1212 int status) 1213 { 1214 struct list_head *tmp; 1215 1216 /* insist the urb is still queued */ 1217 list_for_each(tmp, &urb->ep->urb_list) { 1218 if (tmp == &urb->urb_list) 1219 break; 1220 } 1221 if (tmp != &urb->urb_list) 1222 return -EIDRM; 1223 1224 /* Any status except -EINPROGRESS means something already started to 1225 * unlink this URB from the hardware. So there's no more work to do. 1226 */ 1227 if (urb->unlinked) 1228 return -EBUSY; 1229 urb->unlinked = status; 1230 return 0; 1231 } 1232 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1233 1234 /** 1235 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1236 * @hcd: host controller to which @urb was submitted 1237 * @urb: URB being unlinked 1238 * 1239 * Host controller drivers should call this routine before calling 1240 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1241 * interrupts must be disabled. The actions carried out here are required 1242 * for URB completion. 1243 */ 1244 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1245 { 1246 /* clear all state linking urb to this dev (and hcd) */ 1247 spin_lock(&hcd_urb_list_lock); 1248 list_del_init(&urb->urb_list); 1249 spin_unlock(&hcd_urb_list_lock); 1250 } 1251 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1252 1253 /* 1254 * Some usb host controllers can only perform dma using a small SRAM area, 1255 * or have restrictions on addressable DRAM. 1256 * The usb core itself is however optimized for host controllers that can dma 1257 * using regular system memory - like pci devices doing bus mastering. 1258 * 1259 * To support host controllers with limited dma capabilities we provide dma 1260 * bounce buffers. This feature can be enabled by initializing 1261 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1262 * 1263 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1264 * data for dma using the genalloc API. 1265 * 1266 * So, to summarize... 1267 * 1268 * - We need "local" memory, canonical example being 1269 * a small SRAM on a discrete controller being the 1270 * only memory that the controller can read ... 1271 * (a) "normal" kernel memory is no good, and 1272 * (b) there's not enough to share 1273 * 1274 * - So we use that, even though the primary requirement 1275 * is that the memory be "local" (hence addressable 1276 * by that device), not "coherent". 1277 * 1278 */ 1279 1280 static int hcd_alloc_coherent(struct usb_bus *bus, 1281 gfp_t mem_flags, dma_addr_t *dma_handle, 1282 void **vaddr_handle, size_t size, 1283 enum dma_data_direction dir) 1284 { 1285 unsigned char *vaddr; 1286 1287 if (*vaddr_handle == NULL) { 1288 WARN_ON_ONCE(1); 1289 return -EFAULT; 1290 } 1291 1292 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long), 1293 mem_flags, dma_handle); 1294 if (!vaddr) 1295 return -ENOMEM; 1296 1297 /* 1298 * Store the virtual address of the buffer at the end 1299 * of the allocated dma buffer. The size of the buffer 1300 * may be uneven so use unaligned functions instead 1301 * of just rounding up. It makes sense to optimize for 1302 * memory footprint over access speed since the amount 1303 * of memory available for dma may be limited. 1304 */ 1305 put_unaligned((unsigned long)*vaddr_handle, 1306 (unsigned long *)(vaddr + size)); 1307 1308 if (dir == DMA_TO_DEVICE) 1309 memcpy(vaddr, *vaddr_handle, size); 1310 1311 *vaddr_handle = vaddr; 1312 return 0; 1313 } 1314 1315 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1316 void **vaddr_handle, size_t size, 1317 enum dma_data_direction dir) 1318 { 1319 unsigned char *vaddr = *vaddr_handle; 1320 1321 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1322 1323 if (dir == DMA_FROM_DEVICE) 1324 memcpy(vaddr, *vaddr_handle, size); 1325 1326 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1327 1328 *vaddr_handle = vaddr; 1329 *dma_handle = 0; 1330 } 1331 1332 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1333 { 1334 if (IS_ENABLED(CONFIG_HAS_DMA) && 1335 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1336 dma_unmap_single(hcd->self.sysdev, 1337 urb->setup_dma, 1338 sizeof(struct usb_ctrlrequest), 1339 DMA_TO_DEVICE); 1340 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1341 hcd_free_coherent(urb->dev->bus, 1342 &urb->setup_dma, 1343 (void **) &urb->setup_packet, 1344 sizeof(struct usb_ctrlrequest), 1345 DMA_TO_DEVICE); 1346 1347 /* Make it safe to call this routine more than once */ 1348 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1349 } 1350 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1351 1352 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1353 { 1354 if (hcd->driver->unmap_urb_for_dma) 1355 hcd->driver->unmap_urb_for_dma(hcd, urb); 1356 else 1357 usb_hcd_unmap_urb_for_dma(hcd, urb); 1358 } 1359 1360 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1361 { 1362 enum dma_data_direction dir; 1363 1364 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1365 1366 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1367 if (IS_ENABLED(CONFIG_HAS_DMA) && 1368 (urb->transfer_flags & URB_DMA_MAP_SG)) 1369 dma_unmap_sg(hcd->self.sysdev, 1370 urb->sg, 1371 urb->num_sgs, 1372 dir); 1373 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1374 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1375 dma_unmap_page(hcd->self.sysdev, 1376 urb->transfer_dma, 1377 urb->transfer_buffer_length, 1378 dir); 1379 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1380 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1381 dma_unmap_single(hcd->self.sysdev, 1382 urb->transfer_dma, 1383 urb->transfer_buffer_length, 1384 dir); 1385 else if (urb->transfer_flags & URB_MAP_LOCAL) 1386 hcd_free_coherent(urb->dev->bus, 1387 &urb->transfer_dma, 1388 &urb->transfer_buffer, 1389 urb->transfer_buffer_length, 1390 dir); 1391 1392 /* Make it safe to call this routine more than once */ 1393 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1394 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1395 } 1396 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1397 1398 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1399 gfp_t mem_flags) 1400 { 1401 if (hcd->driver->map_urb_for_dma) 1402 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1403 else 1404 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1405 } 1406 1407 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1408 gfp_t mem_flags) 1409 { 1410 enum dma_data_direction dir; 1411 int ret = 0; 1412 1413 /* Map the URB's buffers for DMA access. 1414 * Lower level HCD code should use *_dma exclusively, 1415 * unless it uses pio or talks to another transport, 1416 * or uses the provided scatter gather list for bulk. 1417 */ 1418 1419 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1420 if (hcd->self.uses_pio_for_control) 1421 return ret; 1422 if (hcd->localmem_pool) { 1423 ret = hcd_alloc_coherent( 1424 urb->dev->bus, mem_flags, 1425 &urb->setup_dma, 1426 (void **)&urb->setup_packet, 1427 sizeof(struct usb_ctrlrequest), 1428 DMA_TO_DEVICE); 1429 if (ret) 1430 return ret; 1431 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1432 } else if (hcd_uses_dma(hcd)) { 1433 if (object_is_on_stack(urb->setup_packet)) { 1434 WARN_ONCE(1, "setup packet is on stack\n"); 1435 return -EAGAIN; 1436 } 1437 1438 urb->setup_dma = dma_map_single( 1439 hcd->self.sysdev, 1440 urb->setup_packet, 1441 sizeof(struct usb_ctrlrequest), 1442 DMA_TO_DEVICE); 1443 if (dma_mapping_error(hcd->self.sysdev, 1444 urb->setup_dma)) 1445 return -EAGAIN; 1446 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1447 } 1448 } 1449 1450 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1451 if (urb->transfer_buffer_length != 0 1452 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1453 if (hcd->localmem_pool) { 1454 ret = hcd_alloc_coherent( 1455 urb->dev->bus, mem_flags, 1456 &urb->transfer_dma, 1457 &urb->transfer_buffer, 1458 urb->transfer_buffer_length, 1459 dir); 1460 if (ret == 0) 1461 urb->transfer_flags |= URB_MAP_LOCAL; 1462 } else if (hcd_uses_dma(hcd)) { 1463 if (urb->num_sgs) { 1464 int n; 1465 1466 /* We don't support sg for isoc transfers ! */ 1467 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1468 WARN_ON(1); 1469 return -EINVAL; 1470 } 1471 1472 n = dma_map_sg( 1473 hcd->self.sysdev, 1474 urb->sg, 1475 urb->num_sgs, 1476 dir); 1477 if (n <= 0) 1478 ret = -EAGAIN; 1479 else 1480 urb->transfer_flags |= URB_DMA_MAP_SG; 1481 urb->num_mapped_sgs = n; 1482 if (n != urb->num_sgs) 1483 urb->transfer_flags |= 1484 URB_DMA_SG_COMBINED; 1485 } else if (urb->sg) { 1486 struct scatterlist *sg = urb->sg; 1487 urb->transfer_dma = dma_map_page( 1488 hcd->self.sysdev, 1489 sg_page(sg), 1490 sg->offset, 1491 urb->transfer_buffer_length, 1492 dir); 1493 if (dma_mapping_error(hcd->self.sysdev, 1494 urb->transfer_dma)) 1495 ret = -EAGAIN; 1496 else 1497 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1498 } else if (object_is_on_stack(urb->transfer_buffer)) { 1499 WARN_ONCE(1, "transfer buffer is on stack\n"); 1500 ret = -EAGAIN; 1501 } else { 1502 urb->transfer_dma = dma_map_single( 1503 hcd->self.sysdev, 1504 urb->transfer_buffer, 1505 urb->transfer_buffer_length, 1506 dir); 1507 if (dma_mapping_error(hcd->self.sysdev, 1508 urb->transfer_dma)) 1509 ret = -EAGAIN; 1510 else 1511 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1512 } 1513 } 1514 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1515 URB_SETUP_MAP_LOCAL))) 1516 usb_hcd_unmap_urb_for_dma(hcd, urb); 1517 } 1518 return ret; 1519 } 1520 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1521 1522 /*-------------------------------------------------------------------------*/ 1523 1524 /* may be called in any context with a valid urb->dev usecount 1525 * caller surrenders "ownership" of urb 1526 * expects usb_submit_urb() to have sanity checked and conditioned all 1527 * inputs in the urb 1528 */ 1529 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1530 { 1531 int status; 1532 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1533 1534 /* increment urb's reference count as part of giving it to the HCD 1535 * (which will control it). HCD guarantees that it either returns 1536 * an error or calls giveback(), but not both. 1537 */ 1538 usb_get_urb(urb); 1539 atomic_inc(&urb->use_count); 1540 atomic_inc(&urb->dev->urbnum); 1541 usbmon_urb_submit(&hcd->self, urb); 1542 1543 /* NOTE requirements on root-hub callers (usbfs and the hub 1544 * driver, for now): URBs' urb->transfer_buffer must be 1545 * valid and usb_buffer_{sync,unmap}() not be needed, since 1546 * they could clobber root hub response data. Also, control 1547 * URBs must be submitted in process context with interrupts 1548 * enabled. 1549 */ 1550 1551 if (is_root_hub(urb->dev)) { 1552 status = rh_urb_enqueue(hcd, urb); 1553 } else { 1554 status = map_urb_for_dma(hcd, urb, mem_flags); 1555 if (likely(status == 0)) { 1556 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1557 if (unlikely(status)) 1558 unmap_urb_for_dma(hcd, urb); 1559 } 1560 } 1561 1562 if (unlikely(status)) { 1563 usbmon_urb_submit_error(&hcd->self, urb, status); 1564 urb->hcpriv = NULL; 1565 INIT_LIST_HEAD(&urb->urb_list); 1566 atomic_dec(&urb->use_count); 1567 /* 1568 * Order the write of urb->use_count above before the read 1569 * of urb->reject below. Pairs with the memory barriers in 1570 * usb_kill_urb() and usb_poison_urb(). 1571 */ 1572 smp_mb__after_atomic(); 1573 1574 atomic_dec(&urb->dev->urbnum); 1575 if (atomic_read(&urb->reject)) 1576 wake_up(&usb_kill_urb_queue); 1577 usb_put_urb(urb); 1578 } 1579 return status; 1580 } 1581 1582 /*-------------------------------------------------------------------------*/ 1583 1584 /* this makes the hcd giveback() the urb more quickly, by kicking it 1585 * off hardware queues (which may take a while) and returning it as 1586 * soon as practical. we've already set up the urb's return status, 1587 * but we can't know if the callback completed already. 1588 */ 1589 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1590 { 1591 int value; 1592 1593 if (is_root_hub(urb->dev)) 1594 value = usb_rh_urb_dequeue(hcd, urb, status); 1595 else { 1596 1597 /* The only reason an HCD might fail this call is if 1598 * it has not yet fully queued the urb to begin with. 1599 * Such failures should be harmless. */ 1600 value = hcd->driver->urb_dequeue(hcd, urb, status); 1601 } 1602 return value; 1603 } 1604 1605 /* 1606 * called in any context 1607 * 1608 * caller guarantees urb won't be recycled till both unlink() 1609 * and the urb's completion function return 1610 */ 1611 int usb_hcd_unlink_urb (struct urb *urb, int status) 1612 { 1613 struct usb_hcd *hcd; 1614 struct usb_device *udev = urb->dev; 1615 int retval = -EIDRM; 1616 unsigned long flags; 1617 1618 /* Prevent the device and bus from going away while 1619 * the unlink is carried out. If they are already gone 1620 * then urb->use_count must be 0, since disconnected 1621 * devices can't have any active URBs. 1622 */ 1623 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1624 if (atomic_read(&urb->use_count) > 0) { 1625 retval = 0; 1626 usb_get_dev(udev); 1627 } 1628 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1629 if (retval == 0) { 1630 hcd = bus_to_hcd(urb->dev->bus); 1631 retval = unlink1(hcd, urb, status); 1632 if (retval == 0) 1633 retval = -EINPROGRESS; 1634 else if (retval != -EIDRM && retval != -EBUSY) 1635 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1636 urb, retval); 1637 usb_put_dev(udev); 1638 } 1639 return retval; 1640 } 1641 1642 /*-------------------------------------------------------------------------*/ 1643 1644 static void __usb_hcd_giveback_urb(struct urb *urb) 1645 { 1646 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1647 struct usb_anchor *anchor = urb->anchor; 1648 int status = urb->unlinked; 1649 1650 urb->hcpriv = NULL; 1651 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1652 urb->actual_length < urb->transfer_buffer_length && 1653 !status)) 1654 status = -EREMOTEIO; 1655 1656 unmap_urb_for_dma(hcd, urb); 1657 usbmon_urb_complete(&hcd->self, urb, status); 1658 usb_anchor_suspend_wakeups(anchor); 1659 usb_unanchor_urb(urb); 1660 if (likely(status == 0)) 1661 usb_led_activity(USB_LED_EVENT_HOST); 1662 1663 /* pass ownership to the completion handler */ 1664 urb->status = status; 1665 /* 1666 * This function can be called in task context inside another remote 1667 * coverage collection section, but kcov doesn't support that kind of 1668 * recursion yet. Only collect coverage in softirq context for now. 1669 */ 1670 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum); 1671 urb->complete(urb); 1672 kcov_remote_stop_softirq(); 1673 1674 usb_anchor_resume_wakeups(anchor); 1675 atomic_dec(&urb->use_count); 1676 /* 1677 * Order the write of urb->use_count above before the read 1678 * of urb->reject below. Pairs with the memory barriers in 1679 * usb_kill_urb() and usb_poison_urb(). 1680 */ 1681 smp_mb__after_atomic(); 1682 1683 if (unlikely(atomic_read(&urb->reject))) 1684 wake_up(&usb_kill_urb_queue); 1685 usb_put_urb(urb); 1686 } 1687 1688 static void usb_giveback_urb_bh(struct tasklet_struct *t) 1689 { 1690 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh); 1691 struct list_head local_list; 1692 1693 spin_lock_irq(&bh->lock); 1694 bh->running = true; 1695 list_replace_init(&bh->head, &local_list); 1696 spin_unlock_irq(&bh->lock); 1697 1698 while (!list_empty(&local_list)) { 1699 struct urb *urb; 1700 1701 urb = list_entry(local_list.next, struct urb, urb_list); 1702 list_del_init(&urb->urb_list); 1703 bh->completing_ep = urb->ep; 1704 __usb_hcd_giveback_urb(urb); 1705 bh->completing_ep = NULL; 1706 } 1707 1708 /* 1709 * giveback new URBs next time to prevent this function 1710 * from not exiting for a long time. 1711 */ 1712 spin_lock_irq(&bh->lock); 1713 if (!list_empty(&bh->head)) { 1714 if (bh->high_prio) 1715 tasklet_hi_schedule(&bh->bh); 1716 else 1717 tasklet_schedule(&bh->bh); 1718 } 1719 bh->running = false; 1720 spin_unlock_irq(&bh->lock); 1721 } 1722 1723 /** 1724 * usb_hcd_giveback_urb - return URB from HCD to device driver 1725 * @hcd: host controller returning the URB 1726 * @urb: urb being returned to the USB device driver. 1727 * @status: completion status code for the URB. 1728 * 1729 * Context: atomic. The completion callback is invoked in caller's context. 1730 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet 1731 * context (except for URBs submitted to the root hub which always complete in 1732 * caller's context). 1733 * 1734 * This hands the URB from HCD to its USB device driver, using its 1735 * completion function. The HCD has freed all per-urb resources 1736 * (and is done using urb->hcpriv). It also released all HCD locks; 1737 * the device driver won't cause problems if it frees, modifies, 1738 * or resubmits this URB. 1739 * 1740 * If @urb was unlinked, the value of @status will be overridden by 1741 * @urb->unlinked. Erroneous short transfers are detected in case 1742 * the HCD hasn't checked for them. 1743 */ 1744 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1745 { 1746 struct giveback_urb_bh *bh; 1747 bool running; 1748 1749 /* pass status to tasklet via unlinked */ 1750 if (likely(!urb->unlinked)) 1751 urb->unlinked = status; 1752 1753 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1754 __usb_hcd_giveback_urb(urb); 1755 return; 1756 } 1757 1758 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) 1759 bh = &hcd->high_prio_bh; 1760 else 1761 bh = &hcd->low_prio_bh; 1762 1763 spin_lock(&bh->lock); 1764 list_add_tail(&urb->urb_list, &bh->head); 1765 running = bh->running; 1766 spin_unlock(&bh->lock); 1767 1768 if (running) 1769 ; 1770 else if (bh->high_prio) 1771 tasklet_hi_schedule(&bh->bh); 1772 else 1773 tasklet_schedule(&bh->bh); 1774 } 1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1776 1777 /*-------------------------------------------------------------------------*/ 1778 1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1780 * queue to drain completely. The caller must first insure that no more 1781 * URBs can be submitted for this endpoint. 1782 */ 1783 void usb_hcd_flush_endpoint(struct usb_device *udev, 1784 struct usb_host_endpoint *ep) 1785 { 1786 struct usb_hcd *hcd; 1787 struct urb *urb; 1788 1789 if (!ep) 1790 return; 1791 might_sleep(); 1792 hcd = bus_to_hcd(udev->bus); 1793 1794 /* No more submits can occur */ 1795 spin_lock_irq(&hcd_urb_list_lock); 1796 rescan: 1797 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1798 int is_in; 1799 1800 if (urb->unlinked) 1801 continue; 1802 usb_get_urb (urb); 1803 is_in = usb_urb_dir_in(urb); 1804 spin_unlock(&hcd_urb_list_lock); 1805 1806 /* kick hcd */ 1807 unlink1(hcd, urb, -ESHUTDOWN); 1808 dev_dbg (hcd->self.controller, 1809 "shutdown urb %pK ep%d%s-%s\n", 1810 urb, usb_endpoint_num(&ep->desc), 1811 is_in ? "in" : "out", 1812 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1813 usb_put_urb (urb); 1814 1815 /* list contents may have changed */ 1816 spin_lock(&hcd_urb_list_lock); 1817 goto rescan; 1818 } 1819 spin_unlock_irq(&hcd_urb_list_lock); 1820 1821 /* Wait until the endpoint queue is completely empty */ 1822 while (!list_empty (&ep->urb_list)) { 1823 spin_lock_irq(&hcd_urb_list_lock); 1824 1825 /* The list may have changed while we acquired the spinlock */ 1826 urb = NULL; 1827 if (!list_empty (&ep->urb_list)) { 1828 urb = list_entry (ep->urb_list.prev, struct urb, 1829 urb_list); 1830 usb_get_urb (urb); 1831 } 1832 spin_unlock_irq(&hcd_urb_list_lock); 1833 1834 if (urb) { 1835 usb_kill_urb (urb); 1836 usb_put_urb (urb); 1837 } 1838 } 1839 } 1840 1841 /** 1842 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1843 * the bus bandwidth 1844 * @udev: target &usb_device 1845 * @new_config: new configuration to install 1846 * @cur_alt: the current alternate interface setting 1847 * @new_alt: alternate interface setting that is being installed 1848 * 1849 * To change configurations, pass in the new configuration in new_config, 1850 * and pass NULL for cur_alt and new_alt. 1851 * 1852 * To reset a device's configuration (put the device in the ADDRESSED state), 1853 * pass in NULL for new_config, cur_alt, and new_alt. 1854 * 1855 * To change alternate interface settings, pass in NULL for new_config, 1856 * pass in the current alternate interface setting in cur_alt, 1857 * and pass in the new alternate interface setting in new_alt. 1858 * 1859 * Return: An error if the requested bandwidth change exceeds the 1860 * bus bandwidth or host controller internal resources. 1861 */ 1862 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1863 struct usb_host_config *new_config, 1864 struct usb_host_interface *cur_alt, 1865 struct usb_host_interface *new_alt) 1866 { 1867 int num_intfs, i, j; 1868 struct usb_host_interface *alt = NULL; 1869 int ret = 0; 1870 struct usb_hcd *hcd; 1871 struct usb_host_endpoint *ep; 1872 1873 hcd = bus_to_hcd(udev->bus); 1874 if (!hcd->driver->check_bandwidth) 1875 return 0; 1876 1877 /* Configuration is being removed - set configuration 0 */ 1878 if (!new_config && !cur_alt) { 1879 for (i = 1; i < 16; ++i) { 1880 ep = udev->ep_out[i]; 1881 if (ep) 1882 hcd->driver->drop_endpoint(hcd, udev, ep); 1883 ep = udev->ep_in[i]; 1884 if (ep) 1885 hcd->driver->drop_endpoint(hcd, udev, ep); 1886 } 1887 hcd->driver->check_bandwidth(hcd, udev); 1888 return 0; 1889 } 1890 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1891 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1892 * of the bus. There will always be bandwidth for endpoint 0, so it's 1893 * ok to exclude it. 1894 */ 1895 if (new_config) { 1896 num_intfs = new_config->desc.bNumInterfaces; 1897 /* Remove endpoints (except endpoint 0, which is always on the 1898 * schedule) from the old config from the schedule 1899 */ 1900 for (i = 1; i < 16; ++i) { 1901 ep = udev->ep_out[i]; 1902 if (ep) { 1903 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1904 if (ret < 0) 1905 goto reset; 1906 } 1907 ep = udev->ep_in[i]; 1908 if (ep) { 1909 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1910 if (ret < 0) 1911 goto reset; 1912 } 1913 } 1914 for (i = 0; i < num_intfs; ++i) { 1915 struct usb_host_interface *first_alt; 1916 int iface_num; 1917 1918 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1919 iface_num = first_alt->desc.bInterfaceNumber; 1920 /* Set up endpoints for alternate interface setting 0 */ 1921 alt = usb_find_alt_setting(new_config, iface_num, 0); 1922 if (!alt) 1923 /* No alt setting 0? Pick the first setting. */ 1924 alt = first_alt; 1925 1926 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1927 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1928 if (ret < 0) 1929 goto reset; 1930 } 1931 } 1932 } 1933 if (cur_alt && new_alt) { 1934 struct usb_interface *iface = usb_ifnum_to_if(udev, 1935 cur_alt->desc.bInterfaceNumber); 1936 1937 if (!iface) 1938 return -EINVAL; 1939 if (iface->resetting_device) { 1940 /* 1941 * The USB core just reset the device, so the xHCI host 1942 * and the device will think alt setting 0 is installed. 1943 * However, the USB core will pass in the alternate 1944 * setting installed before the reset as cur_alt. Dig 1945 * out the alternate setting 0 structure, or the first 1946 * alternate setting if a broken device doesn't have alt 1947 * setting 0. 1948 */ 1949 cur_alt = usb_altnum_to_altsetting(iface, 0); 1950 if (!cur_alt) 1951 cur_alt = &iface->altsetting[0]; 1952 } 1953 1954 /* Drop all the endpoints in the current alt setting */ 1955 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1956 ret = hcd->driver->drop_endpoint(hcd, udev, 1957 &cur_alt->endpoint[i]); 1958 if (ret < 0) 1959 goto reset; 1960 } 1961 /* Add all the endpoints in the new alt setting */ 1962 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1963 ret = hcd->driver->add_endpoint(hcd, udev, 1964 &new_alt->endpoint[i]); 1965 if (ret < 0) 1966 goto reset; 1967 } 1968 } 1969 ret = hcd->driver->check_bandwidth(hcd, udev); 1970 reset: 1971 if (ret < 0) 1972 hcd->driver->reset_bandwidth(hcd, udev); 1973 return ret; 1974 } 1975 1976 /* Disables the endpoint: synchronizes with the hcd to make sure all 1977 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1978 * have been called previously. Use for set_configuration, set_interface, 1979 * driver removal, physical disconnect. 1980 * 1981 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1982 * type, maxpacket size, toggle, halt status, and scheduling. 1983 */ 1984 void usb_hcd_disable_endpoint(struct usb_device *udev, 1985 struct usb_host_endpoint *ep) 1986 { 1987 struct usb_hcd *hcd; 1988 1989 might_sleep(); 1990 hcd = bus_to_hcd(udev->bus); 1991 if (hcd->driver->endpoint_disable) 1992 hcd->driver->endpoint_disable(hcd, ep); 1993 } 1994 1995 /** 1996 * usb_hcd_reset_endpoint - reset host endpoint state 1997 * @udev: USB device. 1998 * @ep: the endpoint to reset. 1999 * 2000 * Resets any host endpoint state such as the toggle bit, sequence 2001 * number and current window. 2002 */ 2003 void usb_hcd_reset_endpoint(struct usb_device *udev, 2004 struct usb_host_endpoint *ep) 2005 { 2006 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2007 2008 if (hcd->driver->endpoint_reset) 2009 hcd->driver->endpoint_reset(hcd, ep); 2010 else { 2011 int epnum = usb_endpoint_num(&ep->desc); 2012 int is_out = usb_endpoint_dir_out(&ep->desc); 2013 int is_control = usb_endpoint_xfer_control(&ep->desc); 2014 2015 usb_settoggle(udev, epnum, is_out, 0); 2016 if (is_control) 2017 usb_settoggle(udev, epnum, !is_out, 0); 2018 } 2019 } 2020 2021 /** 2022 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2023 * @interface: alternate setting that includes all endpoints. 2024 * @eps: array of endpoints that need streams. 2025 * @num_eps: number of endpoints in the array. 2026 * @num_streams: number of streams to allocate. 2027 * @mem_flags: flags hcd should use to allocate memory. 2028 * 2029 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2030 * Drivers may queue multiple transfers to different stream IDs, which may 2031 * complete in a different order than they were queued. 2032 * 2033 * Return: On success, the number of allocated streams. On failure, a negative 2034 * error code. 2035 */ 2036 int usb_alloc_streams(struct usb_interface *interface, 2037 struct usb_host_endpoint **eps, unsigned int num_eps, 2038 unsigned int num_streams, gfp_t mem_flags) 2039 { 2040 struct usb_hcd *hcd; 2041 struct usb_device *dev; 2042 int i, ret; 2043 2044 dev = interface_to_usbdev(interface); 2045 hcd = bus_to_hcd(dev->bus); 2046 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2047 return -EINVAL; 2048 if (dev->speed < USB_SPEED_SUPER) 2049 return -EINVAL; 2050 if (dev->state < USB_STATE_CONFIGURED) 2051 return -ENODEV; 2052 2053 for (i = 0; i < num_eps; i++) { 2054 /* Streams only apply to bulk endpoints. */ 2055 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2056 return -EINVAL; 2057 /* Re-alloc is not allowed */ 2058 if (eps[i]->streams) 2059 return -EINVAL; 2060 } 2061 2062 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2063 num_streams, mem_flags); 2064 if (ret < 0) 2065 return ret; 2066 2067 for (i = 0; i < num_eps; i++) 2068 eps[i]->streams = ret; 2069 2070 return ret; 2071 } 2072 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2073 2074 /** 2075 * usb_free_streams - free bulk endpoint stream IDs. 2076 * @interface: alternate setting that includes all endpoints. 2077 * @eps: array of endpoints to remove streams from. 2078 * @num_eps: number of endpoints in the array. 2079 * @mem_flags: flags hcd should use to allocate memory. 2080 * 2081 * Reverts a group of bulk endpoints back to not using stream IDs. 2082 * Can fail if we are given bad arguments, or HCD is broken. 2083 * 2084 * Return: 0 on success. On failure, a negative error code. 2085 */ 2086 int usb_free_streams(struct usb_interface *interface, 2087 struct usb_host_endpoint **eps, unsigned int num_eps, 2088 gfp_t mem_flags) 2089 { 2090 struct usb_hcd *hcd; 2091 struct usb_device *dev; 2092 int i, ret; 2093 2094 dev = interface_to_usbdev(interface); 2095 hcd = bus_to_hcd(dev->bus); 2096 if (dev->speed < USB_SPEED_SUPER) 2097 return -EINVAL; 2098 2099 /* Double-free is not allowed */ 2100 for (i = 0; i < num_eps; i++) 2101 if (!eps[i] || !eps[i]->streams) 2102 return -EINVAL; 2103 2104 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2105 if (ret < 0) 2106 return ret; 2107 2108 for (i = 0; i < num_eps; i++) 2109 eps[i]->streams = 0; 2110 2111 return ret; 2112 } 2113 EXPORT_SYMBOL_GPL(usb_free_streams); 2114 2115 /* Protect against drivers that try to unlink URBs after the device 2116 * is gone, by waiting until all unlinks for @udev are finished. 2117 * Since we don't currently track URBs by device, simply wait until 2118 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2119 */ 2120 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2121 { 2122 spin_lock_irq(&hcd_urb_unlink_lock); 2123 spin_unlock_irq(&hcd_urb_unlink_lock); 2124 } 2125 2126 /*-------------------------------------------------------------------------*/ 2127 2128 /* called in any context */ 2129 int usb_hcd_get_frame_number (struct usb_device *udev) 2130 { 2131 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2132 2133 if (!HCD_RH_RUNNING(hcd)) 2134 return -ESHUTDOWN; 2135 return hcd->driver->get_frame_number (hcd); 2136 } 2137 2138 /*-------------------------------------------------------------------------*/ 2139 #ifdef CONFIG_USB_HCD_TEST_MODE 2140 2141 static void usb_ehset_completion(struct urb *urb) 2142 { 2143 struct completion *done = urb->context; 2144 2145 complete(done); 2146 } 2147 /* 2148 * Allocate and initialize a control URB. This request will be used by the 2149 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages 2150 * of the GetDescriptor request are sent 15 seconds after the SETUP stage. 2151 * Return NULL if failed. 2152 */ 2153 static struct urb *request_single_step_set_feature_urb( 2154 struct usb_device *udev, 2155 void *dr, 2156 void *buf, 2157 struct completion *done) 2158 { 2159 struct urb *urb; 2160 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2161 struct usb_host_endpoint *ep; 2162 2163 urb = usb_alloc_urb(0, GFP_KERNEL); 2164 if (!urb) 2165 return NULL; 2166 2167 urb->pipe = usb_rcvctrlpipe(udev, 0); 2168 ep = (usb_pipein(urb->pipe) ? udev->ep_in : udev->ep_out) 2169 [usb_pipeendpoint(urb->pipe)]; 2170 if (!ep) { 2171 usb_free_urb(urb); 2172 return NULL; 2173 } 2174 2175 urb->ep = ep; 2176 urb->dev = udev; 2177 urb->setup_packet = (void *)dr; 2178 urb->transfer_buffer = buf; 2179 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE; 2180 urb->complete = usb_ehset_completion; 2181 urb->status = -EINPROGRESS; 2182 urb->actual_length = 0; 2183 urb->transfer_flags = URB_DIR_IN; 2184 usb_get_urb(urb); 2185 atomic_inc(&urb->use_count); 2186 atomic_inc(&urb->dev->urbnum); 2187 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) { 2188 usb_put_urb(urb); 2189 usb_free_urb(urb); 2190 return NULL; 2191 } 2192 2193 urb->context = done; 2194 return urb; 2195 } 2196 2197 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) 2198 { 2199 int retval = -ENOMEM; 2200 struct usb_ctrlrequest *dr; 2201 struct urb *urb; 2202 struct usb_device *udev; 2203 struct usb_device_descriptor *buf; 2204 DECLARE_COMPLETION_ONSTACK(done); 2205 2206 /* Obtain udev of the rhub's child port */ 2207 udev = usb_hub_find_child(hcd->self.root_hub, port); 2208 if (!udev) { 2209 dev_err(hcd->self.controller, "No device attached to the RootHub\n"); 2210 return -ENODEV; 2211 } 2212 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL); 2213 if (!buf) 2214 return -ENOMEM; 2215 2216 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); 2217 if (!dr) { 2218 kfree(buf); 2219 return -ENOMEM; 2220 } 2221 2222 /* Fill Setup packet for GetDescriptor */ 2223 dr->bRequestType = USB_DIR_IN; 2224 dr->bRequest = USB_REQ_GET_DESCRIPTOR; 2225 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8); 2226 dr->wIndex = 0; 2227 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE); 2228 urb = request_single_step_set_feature_urb(udev, dr, buf, &done); 2229 if (!urb) 2230 goto cleanup; 2231 2232 /* Submit just the SETUP stage */ 2233 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1); 2234 if (retval) 2235 goto out1; 2236 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { 2237 usb_kill_urb(urb); 2238 retval = -ETIMEDOUT; 2239 dev_err(hcd->self.controller, 2240 "%s SETUP stage timed out on ep0\n", __func__); 2241 goto out1; 2242 } 2243 msleep(15 * 1000); 2244 2245 /* Complete remaining DATA and STATUS stages using the same URB */ 2246 urb->status = -EINPROGRESS; 2247 usb_get_urb(urb); 2248 atomic_inc(&urb->use_count); 2249 atomic_inc(&urb->dev->urbnum); 2250 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0); 2251 if (!retval && !wait_for_completion_timeout(&done, 2252 msecs_to_jiffies(2000))) { 2253 usb_kill_urb(urb); 2254 retval = -ETIMEDOUT; 2255 dev_err(hcd->self.controller, 2256 "%s IN stage timed out on ep0\n", __func__); 2257 } 2258 out1: 2259 usb_free_urb(urb); 2260 cleanup: 2261 kfree(dr); 2262 kfree(buf); 2263 return retval; 2264 } 2265 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature); 2266 #endif /* CONFIG_USB_HCD_TEST_MODE */ 2267 2268 /*-------------------------------------------------------------------------*/ 2269 2270 #ifdef CONFIG_PM 2271 2272 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2273 { 2274 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2275 int status; 2276 int old_state = hcd->state; 2277 2278 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2279 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2280 rhdev->do_remote_wakeup); 2281 if (HCD_DEAD(hcd)) { 2282 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2283 return 0; 2284 } 2285 2286 if (!hcd->driver->bus_suspend) { 2287 status = -ENOENT; 2288 } else { 2289 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2290 hcd->state = HC_STATE_QUIESCING; 2291 status = hcd->driver->bus_suspend(hcd); 2292 } 2293 if (status == 0) { 2294 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2295 hcd->state = HC_STATE_SUSPENDED; 2296 2297 if (!PMSG_IS_AUTO(msg)) 2298 usb_phy_roothub_suspend(hcd->self.sysdev, 2299 hcd->phy_roothub); 2300 2301 /* Did we race with a root-hub wakeup event? */ 2302 if (rhdev->do_remote_wakeup) { 2303 char buffer[6]; 2304 2305 status = hcd->driver->hub_status_data(hcd, buffer); 2306 if (status != 0) { 2307 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2308 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2309 status = -EBUSY; 2310 } 2311 } 2312 } else { 2313 spin_lock_irq(&hcd_root_hub_lock); 2314 if (!HCD_DEAD(hcd)) { 2315 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2316 hcd->state = old_state; 2317 } 2318 spin_unlock_irq(&hcd_root_hub_lock); 2319 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2320 "suspend", status); 2321 } 2322 return status; 2323 } 2324 2325 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2326 { 2327 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2328 int status; 2329 int old_state = hcd->state; 2330 2331 dev_dbg(&rhdev->dev, "usb %sresume\n", 2332 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2333 if (HCD_DEAD(hcd)) { 2334 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2335 return 0; 2336 } 2337 2338 if (!PMSG_IS_AUTO(msg)) { 2339 status = usb_phy_roothub_resume(hcd->self.sysdev, 2340 hcd->phy_roothub); 2341 if (status) 2342 return status; 2343 } 2344 2345 if (!hcd->driver->bus_resume) 2346 return -ENOENT; 2347 if (HCD_RH_RUNNING(hcd)) 2348 return 0; 2349 2350 hcd->state = HC_STATE_RESUMING; 2351 status = hcd->driver->bus_resume(hcd); 2352 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2353 if (status == 0) 2354 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2355 2356 if (status == 0) { 2357 struct usb_device *udev; 2358 int port1; 2359 2360 spin_lock_irq(&hcd_root_hub_lock); 2361 if (!HCD_DEAD(hcd)) { 2362 usb_set_device_state(rhdev, rhdev->actconfig 2363 ? USB_STATE_CONFIGURED 2364 : USB_STATE_ADDRESS); 2365 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2366 hcd->state = HC_STATE_RUNNING; 2367 } 2368 spin_unlock_irq(&hcd_root_hub_lock); 2369 2370 /* 2371 * Check whether any of the enabled ports on the root hub are 2372 * unsuspended. If they are then a TRSMRCY delay is needed 2373 * (this is what the USB-2 spec calls a "global resume"). 2374 * Otherwise we can skip the delay. 2375 */ 2376 usb_hub_for_each_child(rhdev, port1, udev) { 2377 if (udev->state != USB_STATE_NOTATTACHED && 2378 !udev->port_is_suspended) { 2379 usleep_range(10000, 11000); /* TRSMRCY */ 2380 break; 2381 } 2382 } 2383 } else { 2384 hcd->state = old_state; 2385 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2386 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2387 "resume", status); 2388 if (status != -ESHUTDOWN) 2389 usb_hc_died(hcd); 2390 } 2391 return status; 2392 } 2393 2394 /* Workqueue routine for root-hub remote wakeup */ 2395 static void hcd_resume_work(struct work_struct *work) 2396 { 2397 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2398 struct usb_device *udev = hcd->self.root_hub; 2399 2400 usb_remote_wakeup(udev); 2401 } 2402 2403 /** 2404 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2405 * @hcd: host controller for this root hub 2406 * 2407 * The USB host controller calls this function when its root hub is 2408 * suspended (with the remote wakeup feature enabled) and a remote 2409 * wakeup request is received. The routine submits a workqueue request 2410 * to resume the root hub (that is, manage its downstream ports again). 2411 */ 2412 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2413 { 2414 unsigned long flags; 2415 2416 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2417 if (hcd->rh_registered) { 2418 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2419 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2420 queue_work(pm_wq, &hcd->wakeup_work); 2421 } 2422 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2423 } 2424 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2425 2426 #endif /* CONFIG_PM */ 2427 2428 /*-------------------------------------------------------------------------*/ 2429 2430 #ifdef CONFIG_USB_OTG 2431 2432 /** 2433 * usb_bus_start_enum - start immediate enumeration (for OTG) 2434 * @bus: the bus (must use hcd framework) 2435 * @port_num: 1-based number of port; usually bus->otg_port 2436 * Context: atomic 2437 * 2438 * Starts enumeration, with an immediate reset followed later by 2439 * hub_wq identifying and possibly configuring the device. 2440 * This is needed by OTG controller drivers, where it helps meet 2441 * HNP protocol timing requirements for starting a port reset. 2442 * 2443 * Return: 0 if successful. 2444 */ 2445 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2446 { 2447 struct usb_hcd *hcd; 2448 int status = -EOPNOTSUPP; 2449 2450 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2451 * boards with root hubs hooked up to internal devices (instead of 2452 * just the OTG port) may need more attention to resetting... 2453 */ 2454 hcd = bus_to_hcd(bus); 2455 if (port_num && hcd->driver->start_port_reset) 2456 status = hcd->driver->start_port_reset(hcd, port_num); 2457 2458 /* allocate hub_wq shortly after (first) root port reset finishes; 2459 * it may issue others, until at least 50 msecs have passed. 2460 */ 2461 if (status == 0) 2462 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2463 return status; 2464 } 2465 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2466 2467 #endif 2468 2469 /*-------------------------------------------------------------------------*/ 2470 2471 /** 2472 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2473 * @irq: the IRQ being raised 2474 * @__hcd: pointer to the HCD whose IRQ is being signaled 2475 * 2476 * If the controller isn't HALTed, calls the driver's irq handler. 2477 * Checks whether the controller is now dead. 2478 * 2479 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2480 */ 2481 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2482 { 2483 struct usb_hcd *hcd = __hcd; 2484 irqreturn_t rc; 2485 2486 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2487 rc = IRQ_NONE; 2488 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2489 rc = IRQ_NONE; 2490 else 2491 rc = IRQ_HANDLED; 2492 2493 return rc; 2494 } 2495 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2496 2497 /*-------------------------------------------------------------------------*/ 2498 2499 /* Workqueue routine for when the root-hub has died. */ 2500 static void hcd_died_work(struct work_struct *work) 2501 { 2502 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2503 static char *env[] = { 2504 "ERROR=DEAD", 2505 NULL 2506 }; 2507 2508 /* Notify user space that the host controller has died */ 2509 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2510 } 2511 2512 /** 2513 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2514 * @hcd: pointer to the HCD representing the controller 2515 * 2516 * This is called by bus glue to report a USB host controller that died 2517 * while operations may still have been pending. It's called automatically 2518 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2519 * 2520 * Only call this function with the primary HCD. 2521 */ 2522 void usb_hc_died (struct usb_hcd *hcd) 2523 { 2524 unsigned long flags; 2525 2526 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2527 2528 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2529 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2530 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2531 if (hcd->rh_registered) { 2532 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2533 2534 /* make hub_wq clean up old urbs and devices */ 2535 usb_set_device_state (hcd->self.root_hub, 2536 USB_STATE_NOTATTACHED); 2537 usb_kick_hub_wq(hcd->self.root_hub); 2538 } 2539 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2540 hcd = hcd->shared_hcd; 2541 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2542 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2543 if (hcd->rh_registered) { 2544 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2545 2546 /* make hub_wq clean up old urbs and devices */ 2547 usb_set_device_state(hcd->self.root_hub, 2548 USB_STATE_NOTATTACHED); 2549 usb_kick_hub_wq(hcd->self.root_hub); 2550 } 2551 } 2552 2553 /* Handle the case where this function gets called with a shared HCD */ 2554 if (usb_hcd_is_primary_hcd(hcd)) 2555 schedule_work(&hcd->died_work); 2556 else 2557 schedule_work(&hcd->primary_hcd->died_work); 2558 2559 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2560 /* Make sure that the other roothub is also deallocated. */ 2561 } 2562 EXPORT_SYMBOL_GPL (usb_hc_died); 2563 2564 /*-------------------------------------------------------------------------*/ 2565 2566 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2567 { 2568 2569 spin_lock_init(&bh->lock); 2570 INIT_LIST_HEAD(&bh->head); 2571 tasklet_setup(&bh->bh, usb_giveback_urb_bh); 2572 } 2573 2574 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2575 struct device *sysdev, struct device *dev, const char *bus_name, 2576 struct usb_hcd *primary_hcd) 2577 { 2578 struct usb_hcd *hcd; 2579 2580 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2581 if (!hcd) 2582 return NULL; 2583 if (primary_hcd == NULL) { 2584 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2585 GFP_KERNEL); 2586 if (!hcd->address0_mutex) { 2587 kfree(hcd); 2588 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2589 return NULL; 2590 } 2591 mutex_init(hcd->address0_mutex); 2592 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2593 GFP_KERNEL); 2594 if (!hcd->bandwidth_mutex) { 2595 kfree(hcd->address0_mutex); 2596 kfree(hcd); 2597 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2598 return NULL; 2599 } 2600 mutex_init(hcd->bandwidth_mutex); 2601 dev_set_drvdata(dev, hcd); 2602 } else { 2603 mutex_lock(&usb_port_peer_mutex); 2604 hcd->address0_mutex = primary_hcd->address0_mutex; 2605 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2606 hcd->primary_hcd = primary_hcd; 2607 primary_hcd->primary_hcd = primary_hcd; 2608 hcd->shared_hcd = primary_hcd; 2609 primary_hcd->shared_hcd = hcd; 2610 mutex_unlock(&usb_port_peer_mutex); 2611 } 2612 2613 kref_init(&hcd->kref); 2614 2615 usb_bus_init(&hcd->self); 2616 hcd->self.controller = dev; 2617 hcd->self.sysdev = sysdev; 2618 hcd->self.bus_name = bus_name; 2619 2620 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2621 #ifdef CONFIG_PM 2622 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2623 #endif 2624 2625 INIT_WORK(&hcd->died_work, hcd_died_work); 2626 2627 hcd->driver = driver; 2628 hcd->speed = driver->flags & HCD_MASK; 2629 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2630 "USB Host Controller"; 2631 return hcd; 2632 } 2633 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2634 2635 /** 2636 * usb_create_shared_hcd - create and initialize an HCD structure 2637 * @driver: HC driver that will use this hcd 2638 * @dev: device for this HC, stored in hcd->self.controller 2639 * @bus_name: value to store in hcd->self.bus_name 2640 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2641 * PCI device. Only allocate certain resources for the primary HCD 2642 * 2643 * Context: task context, might sleep. 2644 * 2645 * Allocate a struct usb_hcd, with extra space at the end for the 2646 * HC driver's private data. Initialize the generic members of the 2647 * hcd structure. 2648 * 2649 * Return: On success, a pointer to the created and initialized HCD structure. 2650 * On failure (e.g. if memory is unavailable), %NULL. 2651 */ 2652 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2653 struct device *dev, const char *bus_name, 2654 struct usb_hcd *primary_hcd) 2655 { 2656 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2657 } 2658 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2659 2660 /** 2661 * usb_create_hcd - create and initialize an HCD structure 2662 * @driver: HC driver that will use this hcd 2663 * @dev: device for this HC, stored in hcd->self.controller 2664 * @bus_name: value to store in hcd->self.bus_name 2665 * 2666 * Context: task context, might sleep. 2667 * 2668 * Allocate a struct usb_hcd, with extra space at the end for the 2669 * HC driver's private data. Initialize the generic members of the 2670 * hcd structure. 2671 * 2672 * Return: On success, a pointer to the created and initialized HCD 2673 * structure. On failure (e.g. if memory is unavailable), %NULL. 2674 */ 2675 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2676 struct device *dev, const char *bus_name) 2677 { 2678 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2679 } 2680 EXPORT_SYMBOL_GPL(usb_create_hcd); 2681 2682 /* 2683 * Roothubs that share one PCI device must also share the bandwidth mutex. 2684 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2685 * deallocated. 2686 * 2687 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2688 * freed. When hcd_release() is called for either hcd in a peer set, 2689 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2690 */ 2691 static void hcd_release(struct kref *kref) 2692 { 2693 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2694 2695 mutex_lock(&usb_port_peer_mutex); 2696 if (hcd->shared_hcd) { 2697 struct usb_hcd *peer = hcd->shared_hcd; 2698 2699 peer->shared_hcd = NULL; 2700 peer->primary_hcd = NULL; 2701 } else { 2702 kfree(hcd->address0_mutex); 2703 kfree(hcd->bandwidth_mutex); 2704 } 2705 mutex_unlock(&usb_port_peer_mutex); 2706 kfree(hcd); 2707 } 2708 2709 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2710 { 2711 if (hcd) 2712 kref_get (&hcd->kref); 2713 return hcd; 2714 } 2715 EXPORT_SYMBOL_GPL(usb_get_hcd); 2716 2717 void usb_put_hcd (struct usb_hcd *hcd) 2718 { 2719 if (hcd) 2720 kref_put (&hcd->kref, hcd_release); 2721 } 2722 EXPORT_SYMBOL_GPL(usb_put_hcd); 2723 2724 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2725 { 2726 if (!hcd->primary_hcd) 2727 return 1; 2728 return hcd == hcd->primary_hcd; 2729 } 2730 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2731 2732 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2733 { 2734 if (!hcd->driver->find_raw_port_number) 2735 return port1; 2736 2737 return hcd->driver->find_raw_port_number(hcd, port1); 2738 } 2739 2740 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2741 unsigned int irqnum, unsigned long irqflags) 2742 { 2743 int retval; 2744 2745 if (hcd->driver->irq) { 2746 2747 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2748 hcd->driver->description, hcd->self.busnum); 2749 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2750 hcd->irq_descr, hcd); 2751 if (retval != 0) { 2752 dev_err(hcd->self.controller, 2753 "request interrupt %d failed\n", 2754 irqnum); 2755 return retval; 2756 } 2757 hcd->irq = irqnum; 2758 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2759 (hcd->driver->flags & HCD_MEMORY) ? 2760 "io mem" : "io port", 2761 (unsigned long long)hcd->rsrc_start); 2762 } else { 2763 hcd->irq = 0; 2764 if (hcd->rsrc_start) 2765 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2766 (hcd->driver->flags & HCD_MEMORY) ? 2767 "io mem" : "io port", 2768 (unsigned long long)hcd->rsrc_start); 2769 } 2770 return 0; 2771 } 2772 2773 /* 2774 * Before we free this root hub, flush in-flight peering attempts 2775 * and disable peer lookups 2776 */ 2777 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2778 { 2779 struct usb_device *rhdev; 2780 2781 mutex_lock(&usb_port_peer_mutex); 2782 rhdev = hcd->self.root_hub; 2783 hcd->self.root_hub = NULL; 2784 mutex_unlock(&usb_port_peer_mutex); 2785 usb_put_dev(rhdev); 2786 } 2787 2788 /** 2789 * usb_stop_hcd - Halt the HCD 2790 * @hcd: the usb_hcd that has to be halted 2791 * 2792 * Stop the root-hub polling timer and invoke the HCD's ->stop callback. 2793 */ 2794 static void usb_stop_hcd(struct usb_hcd *hcd) 2795 { 2796 hcd->rh_pollable = 0; 2797 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2798 del_timer_sync(&hcd->rh_timer); 2799 2800 hcd->driver->stop(hcd); 2801 hcd->state = HC_STATE_HALT; 2802 2803 /* In case the HCD restarted the timer, stop it again. */ 2804 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2805 del_timer_sync(&hcd->rh_timer); 2806 } 2807 2808 /** 2809 * usb_add_hcd - finish generic HCD structure initialization and register 2810 * @hcd: the usb_hcd structure to initialize 2811 * @irqnum: Interrupt line to allocate 2812 * @irqflags: Interrupt type flags 2813 * 2814 * Finish the remaining parts of generic HCD initialization: allocate the 2815 * buffers of consistent memory, register the bus, request the IRQ line, 2816 * and call the driver's reset() and start() routines. 2817 */ 2818 int usb_add_hcd(struct usb_hcd *hcd, 2819 unsigned int irqnum, unsigned long irqflags) 2820 { 2821 int retval; 2822 struct usb_device *rhdev; 2823 struct usb_hcd *shared_hcd; 2824 2825 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2826 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2827 if (IS_ERR(hcd->phy_roothub)) 2828 return PTR_ERR(hcd->phy_roothub); 2829 2830 retval = usb_phy_roothub_init(hcd->phy_roothub); 2831 if (retval) 2832 return retval; 2833 2834 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2835 PHY_MODE_USB_HOST_SS); 2836 if (retval) 2837 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2838 PHY_MODE_USB_HOST); 2839 if (retval) 2840 goto err_usb_phy_roothub_power_on; 2841 2842 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2843 if (retval) 2844 goto err_usb_phy_roothub_power_on; 2845 } 2846 2847 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2848 2849 switch (authorized_default) { 2850 case USB_AUTHORIZE_NONE: 2851 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2852 break; 2853 2854 case USB_AUTHORIZE_ALL: 2855 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2856 break; 2857 2858 case USB_AUTHORIZE_INTERNAL: 2859 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2860 break; 2861 2862 case USB_AUTHORIZE_WIRED: 2863 default: 2864 hcd->dev_policy = hcd->wireless ? 2865 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2866 break; 2867 } 2868 2869 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2870 2871 /* per default all interfaces are authorized */ 2872 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2873 2874 /* HC is in reset state, but accessible. Now do the one-time init, 2875 * bottom up so that hcds can customize the root hubs before hub_wq 2876 * starts talking to them. (Note, bus id is assigned early too.) 2877 */ 2878 retval = hcd_buffer_create(hcd); 2879 if (retval != 0) { 2880 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2881 goto err_create_buf; 2882 } 2883 2884 retval = usb_register_bus(&hcd->self); 2885 if (retval < 0) 2886 goto err_register_bus; 2887 2888 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2889 if (rhdev == NULL) { 2890 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2891 retval = -ENOMEM; 2892 goto err_allocate_root_hub; 2893 } 2894 mutex_lock(&usb_port_peer_mutex); 2895 hcd->self.root_hub = rhdev; 2896 mutex_unlock(&usb_port_peer_mutex); 2897 2898 rhdev->rx_lanes = 1; 2899 rhdev->tx_lanes = 1; 2900 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; 2901 2902 switch (hcd->speed) { 2903 case HCD_USB11: 2904 rhdev->speed = USB_SPEED_FULL; 2905 break; 2906 case HCD_USB2: 2907 rhdev->speed = USB_SPEED_HIGH; 2908 break; 2909 case HCD_USB25: 2910 rhdev->speed = USB_SPEED_WIRELESS; 2911 break; 2912 case HCD_USB3: 2913 rhdev->speed = USB_SPEED_SUPER; 2914 break; 2915 case HCD_USB32: 2916 rhdev->rx_lanes = 2; 2917 rhdev->tx_lanes = 2; 2918 rhdev->ssp_rate = USB_SSP_GEN_2x2; 2919 rhdev->speed = USB_SPEED_SUPER_PLUS; 2920 break; 2921 case HCD_USB31: 2922 rhdev->ssp_rate = USB_SSP_GEN_2x1; 2923 rhdev->speed = USB_SPEED_SUPER_PLUS; 2924 break; 2925 default: 2926 retval = -EINVAL; 2927 goto err_set_rh_speed; 2928 } 2929 2930 /* wakeup flag init defaults to "everything works" for root hubs, 2931 * but drivers can override it in reset() if needed, along with 2932 * recording the overall controller's system wakeup capability. 2933 */ 2934 device_set_wakeup_capable(&rhdev->dev, 1); 2935 2936 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2937 * registered. But since the controller can die at any time, 2938 * let's initialize the flag before touching the hardware. 2939 */ 2940 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2941 2942 /* "reset" is misnamed; its role is now one-time init. the controller 2943 * should already have been reset (and boot firmware kicked off etc). 2944 */ 2945 if (hcd->driver->reset) { 2946 retval = hcd->driver->reset(hcd); 2947 if (retval < 0) { 2948 dev_err(hcd->self.controller, "can't setup: %d\n", 2949 retval); 2950 goto err_hcd_driver_setup; 2951 } 2952 } 2953 hcd->rh_pollable = 1; 2954 2955 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2956 if (retval) 2957 goto err_hcd_driver_setup; 2958 2959 /* NOTE: root hub and controller capabilities may not be the same */ 2960 if (device_can_wakeup(hcd->self.controller) 2961 && device_can_wakeup(&hcd->self.root_hub->dev)) 2962 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2963 2964 /* initialize tasklets */ 2965 init_giveback_urb_bh(&hcd->high_prio_bh); 2966 hcd->high_prio_bh.high_prio = true; 2967 init_giveback_urb_bh(&hcd->low_prio_bh); 2968 2969 /* enable irqs just before we start the controller, 2970 * if the BIOS provides legacy PCI irqs. 2971 */ 2972 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2973 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2974 if (retval) 2975 goto err_request_irq; 2976 } 2977 2978 hcd->state = HC_STATE_RUNNING; 2979 retval = hcd->driver->start(hcd); 2980 if (retval < 0) { 2981 dev_err(hcd->self.controller, "startup error %d\n", retval); 2982 goto err_hcd_driver_start; 2983 } 2984 2985 /* starting here, usbcore will pay attention to the shared HCD roothub */ 2986 shared_hcd = hcd->shared_hcd; 2987 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { 2988 retval = register_root_hub(shared_hcd); 2989 if (retval != 0) 2990 goto err_register_root_hub; 2991 2992 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) 2993 usb_hcd_poll_rh_status(shared_hcd); 2994 } 2995 2996 /* starting here, usbcore will pay attention to this root hub */ 2997 if (!HCD_DEFER_RH_REGISTER(hcd)) { 2998 retval = register_root_hub(hcd); 2999 if (retval != 0) 3000 goto err_register_root_hub; 3001 3002 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 3003 usb_hcd_poll_rh_status(hcd); 3004 } 3005 3006 return retval; 3007 3008 err_register_root_hub: 3009 usb_stop_hcd(hcd); 3010 err_hcd_driver_start: 3011 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 3012 free_irq(irqnum, hcd); 3013 err_request_irq: 3014 err_hcd_driver_setup: 3015 err_set_rh_speed: 3016 usb_put_invalidate_rhdev(hcd); 3017 err_allocate_root_hub: 3018 usb_deregister_bus(&hcd->self); 3019 err_register_bus: 3020 hcd_buffer_destroy(hcd); 3021 err_create_buf: 3022 usb_phy_roothub_power_off(hcd->phy_roothub); 3023 err_usb_phy_roothub_power_on: 3024 usb_phy_roothub_exit(hcd->phy_roothub); 3025 3026 return retval; 3027 } 3028 EXPORT_SYMBOL_GPL(usb_add_hcd); 3029 3030 /** 3031 * usb_remove_hcd - shutdown processing for generic HCDs 3032 * @hcd: the usb_hcd structure to remove 3033 * 3034 * Context: task context, might sleep. 3035 * 3036 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 3037 * invoking the HCD's stop() method. 3038 */ 3039 void usb_remove_hcd(struct usb_hcd *hcd) 3040 { 3041 struct usb_device *rhdev; 3042 bool rh_registered; 3043 3044 if (!hcd) { 3045 pr_debug("%s: hcd is NULL\n", __func__); 3046 return; 3047 } 3048 rhdev = hcd->self.root_hub; 3049 3050 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 3051 3052 usb_get_dev(rhdev); 3053 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 3054 if (HC_IS_RUNNING (hcd->state)) 3055 hcd->state = HC_STATE_QUIESCING; 3056 3057 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 3058 spin_lock_irq (&hcd_root_hub_lock); 3059 rh_registered = hcd->rh_registered; 3060 hcd->rh_registered = 0; 3061 spin_unlock_irq (&hcd_root_hub_lock); 3062 3063 #ifdef CONFIG_PM 3064 cancel_work_sync(&hcd->wakeup_work); 3065 #endif 3066 cancel_work_sync(&hcd->died_work); 3067 3068 mutex_lock(&usb_bus_idr_lock); 3069 if (rh_registered) 3070 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 3071 mutex_unlock(&usb_bus_idr_lock); 3072 3073 /* 3074 * tasklet_kill() isn't needed here because: 3075 * - driver's disconnect() called from usb_disconnect() should 3076 * make sure its URBs are completed during the disconnect() 3077 * callback 3078 * 3079 * - it is too late to run complete() here since driver may have 3080 * been removed already now 3081 */ 3082 3083 /* Prevent any more root-hub status calls from the timer. 3084 * The HCD might still restart the timer (if a port status change 3085 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3086 * the hub_status_data() callback. 3087 */ 3088 usb_stop_hcd(hcd); 3089 3090 if (usb_hcd_is_primary_hcd(hcd)) { 3091 if (hcd->irq > 0) 3092 free_irq(hcd->irq, hcd); 3093 } 3094 3095 usb_deregister_bus(&hcd->self); 3096 hcd_buffer_destroy(hcd); 3097 3098 usb_phy_roothub_power_off(hcd->phy_roothub); 3099 usb_phy_roothub_exit(hcd->phy_roothub); 3100 3101 usb_put_invalidate_rhdev(hcd); 3102 hcd->flags = 0; 3103 } 3104 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3105 3106 void 3107 usb_hcd_platform_shutdown(struct platform_device *dev) 3108 { 3109 struct usb_hcd *hcd = platform_get_drvdata(dev); 3110 3111 /* No need for pm_runtime_put(), we're shutting down */ 3112 pm_runtime_get_sync(&dev->dev); 3113 3114 if (hcd->driver->shutdown) 3115 hcd->driver->shutdown(hcd); 3116 } 3117 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3118 3119 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 3120 dma_addr_t dma, size_t size) 3121 { 3122 int err; 3123 void *local_mem; 3124 3125 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 3126 dev_to_node(hcd->self.sysdev), 3127 dev_name(hcd->self.sysdev)); 3128 if (IS_ERR(hcd->localmem_pool)) 3129 return PTR_ERR(hcd->localmem_pool); 3130 3131 /* 3132 * if a physical SRAM address was passed, map it, otherwise 3133 * allocate system memory as a buffer. 3134 */ 3135 if (phys_addr) 3136 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 3137 size, MEMREMAP_WC); 3138 else 3139 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma, 3140 GFP_KERNEL, 3141 DMA_ATTR_WRITE_COMBINE); 3142 3143 if (IS_ERR(local_mem)) 3144 return PTR_ERR(local_mem); 3145 3146 /* 3147 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 3148 * It's not backed by system memory and thus there's no kernel mapping 3149 * for it. 3150 */ 3151 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 3152 dma, size, dev_to_node(hcd->self.sysdev)); 3153 if (err < 0) { 3154 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3155 err); 3156 return err; 3157 } 3158 3159 return 0; 3160 } 3161 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3162 3163 /*-------------------------------------------------------------------------*/ 3164 3165 #if IS_ENABLED(CONFIG_USB_MON) 3166 3167 const struct usb_mon_operations *mon_ops; 3168 3169 /* 3170 * The registration is unlocked. 3171 * We do it this way because we do not want to lock in hot paths. 3172 * 3173 * Notice that the code is minimally error-proof. Because usbmon needs 3174 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3175 */ 3176 3177 int usb_mon_register(const struct usb_mon_operations *ops) 3178 { 3179 3180 if (mon_ops) 3181 return -EBUSY; 3182 3183 mon_ops = ops; 3184 mb(); 3185 return 0; 3186 } 3187 EXPORT_SYMBOL_GPL (usb_mon_register); 3188 3189 void usb_mon_deregister (void) 3190 { 3191 3192 if (mon_ops == NULL) { 3193 printk(KERN_ERR "USB: monitor was not registered\n"); 3194 return; 3195 } 3196 mon_ops = NULL; 3197 mb(); 3198 } 3199 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3200 3201 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3202