1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 44 #include "usb.h" 45 #include "hcd.h" 46 #include "hub.h" 47 48 49 /*-------------------------------------------------------------------------*/ 50 51 /* 52 * USB Host Controller Driver framework 53 * 54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 55 * HCD-specific behaviors/bugs. 56 * 57 * This does error checks, tracks devices and urbs, and delegates to a 58 * "hc_driver" only for code (and data) that really needs to know about 59 * hardware differences. That includes root hub registers, i/o queues, 60 * and so on ... but as little else as possible. 61 * 62 * Shared code includes most of the "root hub" code (these are emulated, 63 * though each HC's hardware works differently) and PCI glue, plus request 64 * tracking overhead. The HCD code should only block on spinlocks or on 65 * hardware handshaking; blocking on software events (such as other kernel 66 * threads releasing resources, or completing actions) is all generic. 67 * 68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 70 * only by the hub driver ... and that neither should be seen or used by 71 * usb client device drivers. 72 * 73 * Contributors of ideas or unattributed patches include: David Brownell, 74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 75 * 76 * HISTORY: 77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 78 * associated cleanup. "usb_hcd" still != "usb_bus". 79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 80 */ 81 82 /*-------------------------------------------------------------------------*/ 83 84 /* host controllers we manage */ 85 LIST_HEAD (usb_bus_list); 86 EXPORT_SYMBOL_GPL (usb_bus_list); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 struct usb_busmap { 91 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 92 }; 93 static struct usb_busmap busmap; 94 95 /* used when updating list of hcds */ 96 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 97 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 98 99 /* used for controlling access to virtual root hubs */ 100 static DEFINE_SPINLOCK(hcd_root_hub_lock); 101 102 /* used when updating an endpoint's URB list */ 103 static DEFINE_SPINLOCK(hcd_urb_list_lock); 104 105 /* wait queue for synchronous unlinks */ 106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 107 108 static inline int is_root_hub(struct usb_device *udev) 109 { 110 return (udev->parent == NULL); 111 } 112 113 /*-------------------------------------------------------------------------*/ 114 115 /* 116 * Sharable chunks of root hub code. 117 */ 118 119 /*-------------------------------------------------------------------------*/ 120 121 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 122 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 123 124 /* usb 2.0 root hub device descriptor */ 125 static const u8 usb2_rh_dev_descriptor [18] = { 126 0x12, /* __u8 bLength; */ 127 0x01, /* __u8 bDescriptorType; Device */ 128 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 129 130 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 131 0x00, /* __u8 bDeviceSubClass; */ 132 0x01, /* __u8 bDeviceProtocol; [ usb 2.0 single TT ]*/ 133 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 134 135 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 136 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 137 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 138 139 0x03, /* __u8 iManufacturer; */ 140 0x02, /* __u8 iProduct; */ 141 0x01, /* __u8 iSerialNumber; */ 142 0x01 /* __u8 bNumConfigurations; */ 143 }; 144 145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 146 147 /* usb 1.1 root hub device descriptor */ 148 static const u8 usb11_rh_dev_descriptor [18] = { 149 0x12, /* __u8 bLength; */ 150 0x01, /* __u8 bDescriptorType; Device */ 151 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 152 153 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 154 0x00, /* __u8 bDeviceSubClass; */ 155 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 156 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 157 158 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 159 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 160 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 161 162 0x03, /* __u8 iManufacturer; */ 163 0x02, /* __u8 iProduct; */ 164 0x01, /* __u8 iSerialNumber; */ 165 0x01 /* __u8 bNumConfigurations; */ 166 }; 167 168 169 /*-------------------------------------------------------------------------*/ 170 171 /* Configuration descriptors for our root hubs */ 172 173 static const u8 fs_rh_config_descriptor [] = { 174 175 /* one configuration */ 176 0x09, /* __u8 bLength; */ 177 0x02, /* __u8 bDescriptorType; Configuration */ 178 0x19, 0x00, /* __le16 wTotalLength; */ 179 0x01, /* __u8 bNumInterfaces; (1) */ 180 0x01, /* __u8 bConfigurationValue; */ 181 0x00, /* __u8 iConfiguration; */ 182 0xc0, /* __u8 bmAttributes; 183 Bit 7: must be set, 184 6: Self-powered, 185 5: Remote wakeup, 186 4..0: resvd */ 187 0x00, /* __u8 MaxPower; */ 188 189 /* USB 1.1: 190 * USB 2.0, single TT organization (mandatory): 191 * one interface, protocol 0 192 * 193 * USB 2.0, multiple TT organization (optional): 194 * two interfaces, protocols 1 (like single TT) 195 * and 2 (multiple TT mode) ... config is 196 * sometimes settable 197 * NOT IMPLEMENTED 198 */ 199 200 /* one interface */ 201 0x09, /* __u8 if_bLength; */ 202 0x04, /* __u8 if_bDescriptorType; Interface */ 203 0x00, /* __u8 if_bInterfaceNumber; */ 204 0x00, /* __u8 if_bAlternateSetting; */ 205 0x01, /* __u8 if_bNumEndpoints; */ 206 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 207 0x00, /* __u8 if_bInterfaceSubClass; */ 208 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 209 0x00, /* __u8 if_iInterface; */ 210 211 /* one endpoint (status change endpoint) */ 212 0x07, /* __u8 ep_bLength; */ 213 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 214 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 215 0x03, /* __u8 ep_bmAttributes; Interrupt */ 216 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 217 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 218 }; 219 220 static const u8 hs_rh_config_descriptor [] = { 221 222 /* one configuration */ 223 0x09, /* __u8 bLength; */ 224 0x02, /* __u8 bDescriptorType; Configuration */ 225 0x19, 0x00, /* __le16 wTotalLength; */ 226 0x01, /* __u8 bNumInterfaces; (1) */ 227 0x01, /* __u8 bConfigurationValue; */ 228 0x00, /* __u8 iConfiguration; */ 229 0xc0, /* __u8 bmAttributes; 230 Bit 7: must be set, 231 6: Self-powered, 232 5: Remote wakeup, 233 4..0: resvd */ 234 0x00, /* __u8 MaxPower; */ 235 236 /* USB 1.1: 237 * USB 2.0, single TT organization (mandatory): 238 * one interface, protocol 0 239 * 240 * USB 2.0, multiple TT organization (optional): 241 * two interfaces, protocols 1 (like single TT) 242 * and 2 (multiple TT mode) ... config is 243 * sometimes settable 244 * NOT IMPLEMENTED 245 */ 246 247 /* one interface */ 248 0x09, /* __u8 if_bLength; */ 249 0x04, /* __u8 if_bDescriptorType; Interface */ 250 0x00, /* __u8 if_bInterfaceNumber; */ 251 0x00, /* __u8 if_bAlternateSetting; */ 252 0x01, /* __u8 if_bNumEndpoints; */ 253 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 254 0x00, /* __u8 if_bInterfaceSubClass; */ 255 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 256 0x00, /* __u8 if_iInterface; */ 257 258 /* one endpoint (status change endpoint) */ 259 0x07, /* __u8 ep_bLength; */ 260 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 261 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 262 0x03, /* __u8 ep_bmAttributes; Interrupt */ 263 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 264 * see hub.c:hub_configure() for details. */ 265 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 266 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 267 }; 268 269 /*-------------------------------------------------------------------------*/ 270 271 /* 272 * helper routine for returning string descriptors in UTF-16LE 273 * input can actually be ISO-8859-1; ASCII is its 7-bit subset 274 */ 275 static int ascii2utf (char *s, u8 *utf, int utfmax) 276 { 277 int retval; 278 279 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { 280 *utf++ = *s++; 281 *utf++ = 0; 282 } 283 if (utfmax > 0) { 284 *utf = *s; 285 ++retval; 286 } 287 return retval; 288 } 289 290 /* 291 * rh_string - provides manufacturer, product and serial strings for root hub 292 * @id: the string ID number (1: serial number, 2: product, 3: vendor) 293 * @hcd: the host controller for this root hub 294 * @type: string describing our driver 295 * @data: return packet in UTF-16 LE 296 * @len: length of the return packet 297 * 298 * Produces either a manufacturer, product or serial number string for the 299 * virtual root hub device. 300 */ 301 static int rh_string ( 302 int id, 303 struct usb_hcd *hcd, 304 u8 *data, 305 int len 306 ) { 307 char buf [100]; 308 309 // language ids 310 if (id == 0) { 311 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */ 312 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */ 313 len = min (len, 4); 314 memcpy (data, buf, len); 315 return len; 316 317 // serial number 318 } else if (id == 1) { 319 strlcpy (buf, hcd->self.bus_name, sizeof buf); 320 321 // product description 322 } else if (id == 2) { 323 strlcpy (buf, hcd->product_desc, sizeof buf); 324 325 // id 3 == vendor description 326 } else if (id == 3) { 327 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 328 init_utsname()->release, hcd->driver->description); 329 330 // unsupported IDs --> "protocol stall" 331 } else 332 return -EPIPE; 333 334 switch (len) { /* All cases fall through */ 335 default: 336 len = 2 + ascii2utf (buf, data + 2, len - 2); 337 case 2: 338 data [1] = 3; /* type == string */ 339 case 1: 340 data [0] = 2 * (strlen (buf) + 1); 341 case 0: 342 ; /* Compiler wants a statement here */ 343 } 344 return len; 345 } 346 347 348 /* Root hub control transfers execute synchronously */ 349 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 350 { 351 struct usb_ctrlrequest *cmd; 352 u16 typeReq, wValue, wIndex, wLength; 353 u8 *ubuf = urb->transfer_buffer; 354 u8 tbuf [sizeof (struct usb_hub_descriptor)] 355 __attribute__((aligned(4))); 356 const u8 *bufp = tbuf; 357 int len = 0; 358 int patch_wakeup = 0; 359 int status; 360 int n; 361 362 might_sleep(); 363 364 spin_lock_irq(&hcd_root_hub_lock); 365 status = usb_hcd_link_urb_to_ep(hcd, urb); 366 spin_unlock_irq(&hcd_root_hub_lock); 367 if (status) 368 return status; 369 urb->hcpriv = hcd; /* Indicate it's queued */ 370 371 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 372 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 373 wValue = le16_to_cpu (cmd->wValue); 374 wIndex = le16_to_cpu (cmd->wIndex); 375 wLength = le16_to_cpu (cmd->wLength); 376 377 if (wLength > urb->transfer_buffer_length) 378 goto error; 379 380 urb->actual_length = 0; 381 switch (typeReq) { 382 383 /* DEVICE REQUESTS */ 384 385 /* The root hub's remote wakeup enable bit is implemented using 386 * driver model wakeup flags. If this system supports wakeup 387 * through USB, userspace may change the default "allow wakeup" 388 * policy through sysfs or these calls. 389 * 390 * Most root hubs support wakeup from downstream devices, for 391 * runtime power management (disabling USB clocks and reducing 392 * VBUS power usage). However, not all of them do so; silicon, 393 * board, and BIOS bugs here are not uncommon, so these can't 394 * be treated quite like external hubs. 395 * 396 * Likewise, not all root hubs will pass wakeup events upstream, 397 * to wake up the whole system. So don't assume root hub and 398 * controller capabilities are identical. 399 */ 400 401 case DeviceRequest | USB_REQ_GET_STATUS: 402 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 403 << USB_DEVICE_REMOTE_WAKEUP) 404 | (1 << USB_DEVICE_SELF_POWERED); 405 tbuf [1] = 0; 406 len = 2; 407 break; 408 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 409 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 410 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 411 else 412 goto error; 413 break; 414 case DeviceOutRequest | USB_REQ_SET_FEATURE: 415 if (device_can_wakeup(&hcd->self.root_hub->dev) 416 && wValue == USB_DEVICE_REMOTE_WAKEUP) 417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 418 else 419 goto error; 420 break; 421 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 422 tbuf [0] = 1; 423 len = 1; 424 /* FALLTHROUGH */ 425 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 426 break; 427 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 428 switch (wValue & 0xff00) { 429 case USB_DT_DEVICE << 8: 430 if (hcd->driver->flags & HCD_USB2) 431 bufp = usb2_rh_dev_descriptor; 432 else if (hcd->driver->flags & HCD_USB11) 433 bufp = usb11_rh_dev_descriptor; 434 else 435 goto error; 436 len = 18; 437 break; 438 case USB_DT_CONFIG << 8: 439 if (hcd->driver->flags & HCD_USB2) { 440 bufp = hs_rh_config_descriptor; 441 len = sizeof hs_rh_config_descriptor; 442 } else { 443 bufp = fs_rh_config_descriptor; 444 len = sizeof fs_rh_config_descriptor; 445 } 446 if (device_can_wakeup(&hcd->self.root_hub->dev)) 447 patch_wakeup = 1; 448 break; 449 case USB_DT_STRING << 8: 450 n = rh_string (wValue & 0xff, hcd, ubuf, wLength); 451 if (n < 0) 452 goto error; 453 urb->actual_length = n; 454 break; 455 default: 456 goto error; 457 } 458 break; 459 case DeviceRequest | USB_REQ_GET_INTERFACE: 460 tbuf [0] = 0; 461 len = 1; 462 /* FALLTHROUGH */ 463 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 464 break; 465 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 466 // wValue == urb->dev->devaddr 467 dev_dbg (hcd->self.controller, "root hub device address %d\n", 468 wValue); 469 break; 470 471 /* INTERFACE REQUESTS (no defined feature/status flags) */ 472 473 /* ENDPOINT REQUESTS */ 474 475 case EndpointRequest | USB_REQ_GET_STATUS: 476 // ENDPOINT_HALT flag 477 tbuf [0] = 0; 478 tbuf [1] = 0; 479 len = 2; 480 /* FALLTHROUGH */ 481 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 482 case EndpointOutRequest | USB_REQ_SET_FEATURE: 483 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 484 break; 485 486 /* CLASS REQUESTS (and errors) */ 487 488 default: 489 /* non-generic request */ 490 switch (typeReq) { 491 case GetHubStatus: 492 case GetPortStatus: 493 len = 4; 494 break; 495 case GetHubDescriptor: 496 len = sizeof (struct usb_hub_descriptor); 497 break; 498 } 499 status = hcd->driver->hub_control (hcd, 500 typeReq, wValue, wIndex, 501 tbuf, wLength); 502 break; 503 error: 504 /* "protocol stall" on error */ 505 status = -EPIPE; 506 } 507 508 if (status) { 509 len = 0; 510 if (status != -EPIPE) { 511 dev_dbg (hcd->self.controller, 512 "CTRL: TypeReq=0x%x val=0x%x " 513 "idx=0x%x len=%d ==> %d\n", 514 typeReq, wValue, wIndex, 515 wLength, status); 516 } 517 } 518 if (len) { 519 if (urb->transfer_buffer_length < len) 520 len = urb->transfer_buffer_length; 521 urb->actual_length = len; 522 // always USB_DIR_IN, toward host 523 memcpy (ubuf, bufp, len); 524 525 /* report whether RH hardware supports remote wakeup */ 526 if (patch_wakeup && 527 len > offsetof (struct usb_config_descriptor, 528 bmAttributes)) 529 ((struct usb_config_descriptor *)ubuf)->bmAttributes 530 |= USB_CONFIG_ATT_WAKEUP; 531 } 532 533 /* any errors get returned through the urb completion */ 534 spin_lock_irq(&hcd_root_hub_lock); 535 usb_hcd_unlink_urb_from_ep(hcd, urb); 536 537 /* This peculiar use of spinlocks echoes what real HC drivers do. 538 * Avoiding calls to local_irq_disable/enable makes the code 539 * RT-friendly. 540 */ 541 spin_unlock(&hcd_root_hub_lock); 542 usb_hcd_giveback_urb(hcd, urb, status); 543 spin_lock(&hcd_root_hub_lock); 544 545 spin_unlock_irq(&hcd_root_hub_lock); 546 return 0; 547 } 548 549 /*-------------------------------------------------------------------------*/ 550 551 /* 552 * Root Hub interrupt transfers are polled using a timer if the 553 * driver requests it; otherwise the driver is responsible for 554 * calling usb_hcd_poll_rh_status() when an event occurs. 555 * 556 * Completions are called in_interrupt(), but they may or may not 557 * be in_irq(). 558 */ 559 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 560 { 561 struct urb *urb; 562 int length; 563 unsigned long flags; 564 char buffer[4]; /* Any root hubs with > 31 ports? */ 565 566 if (unlikely(!hcd->rh_registered)) 567 return; 568 if (!hcd->uses_new_polling && !hcd->status_urb) 569 return; 570 571 length = hcd->driver->hub_status_data(hcd, buffer); 572 if (length > 0) { 573 574 /* try to complete the status urb */ 575 spin_lock_irqsave(&hcd_root_hub_lock, flags); 576 urb = hcd->status_urb; 577 if (urb) { 578 hcd->poll_pending = 0; 579 hcd->status_urb = NULL; 580 urb->actual_length = length; 581 memcpy(urb->transfer_buffer, buffer, length); 582 583 usb_hcd_unlink_urb_from_ep(hcd, urb); 584 spin_unlock(&hcd_root_hub_lock); 585 usb_hcd_giveback_urb(hcd, urb, 0); 586 spin_lock(&hcd_root_hub_lock); 587 } else { 588 length = 0; 589 hcd->poll_pending = 1; 590 } 591 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 592 } 593 594 /* The USB 2.0 spec says 256 ms. This is close enough and won't 595 * exceed that limit if HZ is 100. The math is more clunky than 596 * maybe expected, this is to make sure that all timers for USB devices 597 * fire at the same time to give the CPU a break inbetween */ 598 if (hcd->uses_new_polling ? hcd->poll_rh : 599 (length == 0 && hcd->status_urb != NULL)) 600 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 601 } 602 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 603 604 /* timer callback */ 605 static void rh_timer_func (unsigned long _hcd) 606 { 607 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 608 } 609 610 /*-------------------------------------------------------------------------*/ 611 612 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 613 { 614 int retval; 615 unsigned long flags; 616 int len = 1 + (urb->dev->maxchild / 8); 617 618 spin_lock_irqsave (&hcd_root_hub_lock, flags); 619 if (hcd->status_urb || urb->transfer_buffer_length < len) { 620 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 621 retval = -EINVAL; 622 goto done; 623 } 624 625 retval = usb_hcd_link_urb_to_ep(hcd, urb); 626 if (retval) 627 goto done; 628 629 hcd->status_urb = urb; 630 urb->hcpriv = hcd; /* indicate it's queued */ 631 if (!hcd->uses_new_polling) 632 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 633 634 /* If a status change has already occurred, report it ASAP */ 635 else if (hcd->poll_pending) 636 mod_timer(&hcd->rh_timer, jiffies); 637 retval = 0; 638 done: 639 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 640 return retval; 641 } 642 643 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 644 { 645 if (usb_endpoint_xfer_int(&urb->ep->desc)) 646 return rh_queue_status (hcd, urb); 647 if (usb_endpoint_xfer_control(&urb->ep->desc)) 648 return rh_call_control (hcd, urb); 649 return -EINVAL; 650 } 651 652 /*-------------------------------------------------------------------------*/ 653 654 /* Unlinks of root-hub control URBs are legal, but they don't do anything 655 * since these URBs always execute synchronously. 656 */ 657 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 658 { 659 unsigned long flags; 660 int rc; 661 662 spin_lock_irqsave(&hcd_root_hub_lock, flags); 663 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 664 if (rc) 665 goto done; 666 667 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 668 ; /* Do nothing */ 669 670 } else { /* Status URB */ 671 if (!hcd->uses_new_polling) 672 del_timer (&hcd->rh_timer); 673 if (urb == hcd->status_urb) { 674 hcd->status_urb = NULL; 675 usb_hcd_unlink_urb_from_ep(hcd, urb); 676 677 spin_unlock(&hcd_root_hub_lock); 678 usb_hcd_giveback_urb(hcd, urb, status); 679 spin_lock(&hcd_root_hub_lock); 680 } 681 } 682 done: 683 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 684 return rc; 685 } 686 687 688 689 /* 690 * Show & store the current value of authorized_default 691 */ 692 static ssize_t usb_host_authorized_default_show(struct device *dev, 693 struct device_attribute *attr, 694 char *buf) 695 { 696 struct usb_device *rh_usb_dev = to_usb_device(dev); 697 struct usb_bus *usb_bus = rh_usb_dev->bus; 698 struct usb_hcd *usb_hcd; 699 700 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 701 return -ENODEV; 702 usb_hcd = bus_to_hcd(usb_bus); 703 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 704 } 705 706 static ssize_t usb_host_authorized_default_store(struct device *dev, 707 struct device_attribute *attr, 708 const char *buf, size_t size) 709 { 710 ssize_t result; 711 unsigned val; 712 struct usb_device *rh_usb_dev = to_usb_device(dev); 713 struct usb_bus *usb_bus = rh_usb_dev->bus; 714 struct usb_hcd *usb_hcd; 715 716 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 717 return -ENODEV; 718 usb_hcd = bus_to_hcd(usb_bus); 719 result = sscanf(buf, "%u\n", &val); 720 if (result == 1) { 721 usb_hcd->authorized_default = val? 1 : 0; 722 result = size; 723 } 724 else 725 result = -EINVAL; 726 return result; 727 } 728 729 static DEVICE_ATTR(authorized_default, 0644, 730 usb_host_authorized_default_show, 731 usb_host_authorized_default_store); 732 733 734 /* Group all the USB bus attributes */ 735 static struct attribute *usb_bus_attrs[] = { 736 &dev_attr_authorized_default.attr, 737 NULL, 738 }; 739 740 static struct attribute_group usb_bus_attr_group = { 741 .name = NULL, /* we want them in the same directory */ 742 .attrs = usb_bus_attrs, 743 }; 744 745 746 747 /*-------------------------------------------------------------------------*/ 748 749 static struct class *usb_host_class; 750 751 int usb_host_init(void) 752 { 753 int retval = 0; 754 755 usb_host_class = class_create(THIS_MODULE, "usb_host"); 756 if (IS_ERR(usb_host_class)) 757 retval = PTR_ERR(usb_host_class); 758 return retval; 759 } 760 761 void usb_host_cleanup(void) 762 { 763 class_destroy(usb_host_class); 764 } 765 766 /** 767 * usb_bus_init - shared initialization code 768 * @bus: the bus structure being initialized 769 * 770 * This code is used to initialize a usb_bus structure, memory for which is 771 * separately managed. 772 */ 773 static void usb_bus_init (struct usb_bus *bus) 774 { 775 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 776 777 bus->devnum_next = 1; 778 779 bus->root_hub = NULL; 780 bus->busnum = -1; 781 bus->bandwidth_allocated = 0; 782 bus->bandwidth_int_reqs = 0; 783 bus->bandwidth_isoc_reqs = 0; 784 785 INIT_LIST_HEAD (&bus->bus_list); 786 } 787 788 /*-------------------------------------------------------------------------*/ 789 790 /** 791 * usb_register_bus - registers the USB host controller with the usb core 792 * @bus: pointer to the bus to register 793 * Context: !in_interrupt() 794 * 795 * Assigns a bus number, and links the controller into usbcore data 796 * structures so that it can be seen by scanning the bus list. 797 */ 798 static int usb_register_bus(struct usb_bus *bus) 799 { 800 int result = -E2BIG; 801 int busnum; 802 803 mutex_lock(&usb_bus_list_lock); 804 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 805 if (busnum >= USB_MAXBUS) { 806 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 807 goto error_find_busnum; 808 } 809 set_bit (busnum, busmap.busmap); 810 bus->busnum = busnum; 811 812 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0), 813 "usb_host%d", busnum); 814 result = PTR_ERR(bus->dev); 815 if (IS_ERR(bus->dev)) 816 goto error_create_class_dev; 817 dev_set_drvdata(bus->dev, bus); 818 819 /* Add it to the local list of buses */ 820 list_add (&bus->bus_list, &usb_bus_list); 821 mutex_unlock(&usb_bus_list_lock); 822 823 usb_notify_add_bus(bus); 824 825 dev_info (bus->controller, "new USB bus registered, assigned bus " 826 "number %d\n", bus->busnum); 827 return 0; 828 829 error_create_class_dev: 830 clear_bit(busnum, busmap.busmap); 831 error_find_busnum: 832 mutex_unlock(&usb_bus_list_lock); 833 return result; 834 } 835 836 /** 837 * usb_deregister_bus - deregisters the USB host controller 838 * @bus: pointer to the bus to deregister 839 * Context: !in_interrupt() 840 * 841 * Recycles the bus number, and unlinks the controller from usbcore data 842 * structures so that it won't be seen by scanning the bus list. 843 */ 844 static void usb_deregister_bus (struct usb_bus *bus) 845 { 846 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 847 848 /* 849 * NOTE: make sure that all the devices are removed by the 850 * controller code, as well as having it call this when cleaning 851 * itself up 852 */ 853 mutex_lock(&usb_bus_list_lock); 854 list_del (&bus->bus_list); 855 mutex_unlock(&usb_bus_list_lock); 856 857 usb_notify_remove_bus(bus); 858 859 clear_bit (bus->busnum, busmap.busmap); 860 861 device_unregister(bus->dev); 862 } 863 864 /** 865 * register_root_hub - called by usb_add_hcd() to register a root hub 866 * @hcd: host controller for this root hub 867 * 868 * This function registers the root hub with the USB subsystem. It sets up 869 * the device properly in the device tree and then calls usb_new_device() 870 * to register the usb device. It also assigns the root hub's USB address 871 * (always 1). 872 */ 873 static int register_root_hub(struct usb_hcd *hcd) 874 { 875 struct device *parent_dev = hcd->self.controller; 876 struct usb_device *usb_dev = hcd->self.root_hub; 877 const int devnum = 1; 878 int retval; 879 880 usb_dev->devnum = devnum; 881 usb_dev->bus->devnum_next = devnum + 1; 882 memset (&usb_dev->bus->devmap.devicemap, 0, 883 sizeof usb_dev->bus->devmap.devicemap); 884 set_bit (devnum, usb_dev->bus->devmap.devicemap); 885 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 886 887 mutex_lock(&usb_bus_list_lock); 888 889 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64); 890 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 891 if (retval != sizeof usb_dev->descriptor) { 892 mutex_unlock(&usb_bus_list_lock); 893 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 894 usb_dev->dev.bus_id, retval); 895 return (retval < 0) ? retval : -EMSGSIZE; 896 } 897 898 retval = usb_new_device (usb_dev); 899 if (retval) { 900 dev_err (parent_dev, "can't register root hub for %s, %d\n", 901 usb_dev->dev.bus_id, retval); 902 } 903 mutex_unlock(&usb_bus_list_lock); 904 905 if (retval == 0) { 906 spin_lock_irq (&hcd_root_hub_lock); 907 hcd->rh_registered = 1; 908 spin_unlock_irq (&hcd_root_hub_lock); 909 910 /* Did the HC die before the root hub was registered? */ 911 if (hcd->state == HC_STATE_HALT) 912 usb_hc_died (hcd); /* This time clean up */ 913 } 914 915 return retval; 916 } 917 918 void usb_enable_root_hub_irq (struct usb_bus *bus) 919 { 920 struct usb_hcd *hcd; 921 922 hcd = container_of (bus, struct usb_hcd, self); 923 if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT) 924 hcd->driver->hub_irq_enable (hcd); 925 } 926 927 928 /*-------------------------------------------------------------------------*/ 929 930 /** 931 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 932 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 933 * @is_input: true iff the transaction sends data to the host 934 * @isoc: true for isochronous transactions, false for interrupt ones 935 * @bytecount: how many bytes in the transaction. 936 * 937 * Returns approximate bus time in nanoseconds for a periodic transaction. 938 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 939 * scheduled in software, this function is only used for such scheduling. 940 */ 941 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 942 { 943 unsigned long tmp; 944 945 switch (speed) { 946 case USB_SPEED_LOW: /* INTR only */ 947 if (is_input) { 948 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 949 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 950 } else { 951 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 952 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 953 } 954 case USB_SPEED_FULL: /* ISOC or INTR */ 955 if (isoc) { 956 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 957 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 958 } else { 959 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 960 return (9107L + BW_HOST_DELAY + tmp); 961 } 962 case USB_SPEED_HIGH: /* ISOC or INTR */ 963 // FIXME adjust for input vs output 964 if (isoc) 965 tmp = HS_NSECS_ISO (bytecount); 966 else 967 tmp = HS_NSECS (bytecount); 968 return tmp; 969 default: 970 pr_debug ("%s: bogus device speed!\n", usbcore_name); 971 return -1; 972 } 973 } 974 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 975 976 977 /*-------------------------------------------------------------------------*/ 978 979 /* 980 * Generic HC operations. 981 */ 982 983 /*-------------------------------------------------------------------------*/ 984 985 /** 986 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 987 * @hcd: host controller to which @urb was submitted 988 * @urb: URB being submitted 989 * 990 * Host controller drivers should call this routine in their enqueue() 991 * method. The HCD's private spinlock must be held and interrupts must 992 * be disabled. The actions carried out here are required for URB 993 * submission, as well as for endpoint shutdown and for usb_kill_urb. 994 * 995 * Returns 0 for no error, otherwise a negative error code (in which case 996 * the enqueue() method must fail). If no error occurs but enqueue() fails 997 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 998 * the private spinlock and returning. 999 */ 1000 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1001 { 1002 int rc = 0; 1003 1004 spin_lock(&hcd_urb_list_lock); 1005 1006 /* Check that the URB isn't being killed */ 1007 if (unlikely(urb->reject)) { 1008 rc = -EPERM; 1009 goto done; 1010 } 1011 1012 if (unlikely(!urb->ep->enabled)) { 1013 rc = -ENOENT; 1014 goto done; 1015 } 1016 1017 if (unlikely(!urb->dev->can_submit)) { 1018 rc = -EHOSTUNREACH; 1019 goto done; 1020 } 1021 1022 /* 1023 * Check the host controller's state and add the URB to the 1024 * endpoint's queue. 1025 */ 1026 switch (hcd->state) { 1027 case HC_STATE_RUNNING: 1028 case HC_STATE_RESUMING: 1029 urb->unlinked = 0; 1030 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1031 break; 1032 default: 1033 rc = -ESHUTDOWN; 1034 goto done; 1035 } 1036 done: 1037 spin_unlock(&hcd_urb_list_lock); 1038 return rc; 1039 } 1040 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1041 1042 /** 1043 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1044 * @hcd: host controller to which @urb was submitted 1045 * @urb: URB being checked for unlinkability 1046 * @status: error code to store in @urb if the unlink succeeds 1047 * 1048 * Host controller drivers should call this routine in their dequeue() 1049 * method. The HCD's private spinlock must be held and interrupts must 1050 * be disabled. The actions carried out here are required for making 1051 * sure than an unlink is valid. 1052 * 1053 * Returns 0 for no error, otherwise a negative error code (in which case 1054 * the dequeue() method must fail). The possible error codes are: 1055 * 1056 * -EIDRM: @urb was not submitted or has already completed. 1057 * The completion function may not have been called yet. 1058 * 1059 * -EBUSY: @urb has already been unlinked. 1060 */ 1061 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1062 int status) 1063 { 1064 struct list_head *tmp; 1065 1066 /* insist the urb is still queued */ 1067 list_for_each(tmp, &urb->ep->urb_list) { 1068 if (tmp == &urb->urb_list) 1069 break; 1070 } 1071 if (tmp != &urb->urb_list) 1072 return -EIDRM; 1073 1074 /* Any status except -EINPROGRESS means something already started to 1075 * unlink this URB from the hardware. So there's no more work to do. 1076 */ 1077 if (urb->unlinked) 1078 return -EBUSY; 1079 urb->unlinked = status; 1080 1081 /* IRQ setup can easily be broken so that USB controllers 1082 * never get completion IRQs ... maybe even the ones we need to 1083 * finish unlinking the initial failed usb_set_address() 1084 * or device descriptor fetch. 1085 */ 1086 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && 1087 !is_root_hub(urb->dev)) { 1088 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1089 "Controller is probably using the wrong IRQ.\n"); 1090 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1091 } 1092 1093 return 0; 1094 } 1095 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1096 1097 /** 1098 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1099 * @hcd: host controller to which @urb was submitted 1100 * @urb: URB being unlinked 1101 * 1102 * Host controller drivers should call this routine before calling 1103 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1104 * interrupts must be disabled. The actions carried out here are required 1105 * for URB completion. 1106 */ 1107 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1108 { 1109 /* clear all state linking urb to this dev (and hcd) */ 1110 spin_lock(&hcd_urb_list_lock); 1111 list_del_init(&urb->urb_list); 1112 spin_unlock(&hcd_urb_list_lock); 1113 } 1114 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1115 1116 /* 1117 * Some usb host controllers can only perform dma using a small SRAM area. 1118 * The usb core itself is however optimized for host controllers that can dma 1119 * using regular system memory - like pci devices doing bus mastering. 1120 * 1121 * To support host controllers with limited dma capabilites we provide dma 1122 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1123 * For this to work properly the host controller code must first use the 1124 * function dma_declare_coherent_memory() to point out which memory area 1125 * that should be used for dma allocations. 1126 * 1127 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1128 * dma using dma_alloc_coherent() which in turn allocates from the memory 1129 * area pointed out with dma_declare_coherent_memory(). 1130 * 1131 * So, to summarize... 1132 * 1133 * - We need "local" memory, canonical example being 1134 * a small SRAM on a discrete controller being the 1135 * only memory that the controller can read ... 1136 * (a) "normal" kernel memory is no good, and 1137 * (b) there's not enough to share 1138 * 1139 * - The only *portable* hook for such stuff in the 1140 * DMA framework is dma_declare_coherent_memory() 1141 * 1142 * - So we use that, even though the primary requirement 1143 * is that the memory be "local" (hence addressible 1144 * by that device), not "coherent". 1145 * 1146 */ 1147 1148 static int hcd_alloc_coherent(struct usb_bus *bus, 1149 gfp_t mem_flags, dma_addr_t *dma_handle, 1150 void **vaddr_handle, size_t size, 1151 enum dma_data_direction dir) 1152 { 1153 unsigned char *vaddr; 1154 1155 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1156 mem_flags, dma_handle); 1157 if (!vaddr) 1158 return -ENOMEM; 1159 1160 /* 1161 * Store the virtual address of the buffer at the end 1162 * of the allocated dma buffer. The size of the buffer 1163 * may be uneven so use unaligned functions instead 1164 * of just rounding up. It makes sense to optimize for 1165 * memory footprint over access speed since the amount 1166 * of memory available for dma may be limited. 1167 */ 1168 put_unaligned((unsigned long)*vaddr_handle, 1169 (unsigned long *)(vaddr + size)); 1170 1171 if (dir == DMA_TO_DEVICE) 1172 memcpy(vaddr, *vaddr_handle, size); 1173 1174 *vaddr_handle = vaddr; 1175 return 0; 1176 } 1177 1178 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1179 void **vaddr_handle, size_t size, 1180 enum dma_data_direction dir) 1181 { 1182 unsigned char *vaddr = *vaddr_handle; 1183 1184 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1185 1186 if (dir == DMA_FROM_DEVICE) 1187 memcpy(vaddr, *vaddr_handle, size); 1188 1189 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1190 1191 *vaddr_handle = vaddr; 1192 *dma_handle = 0; 1193 } 1194 1195 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1196 gfp_t mem_flags) 1197 { 1198 enum dma_data_direction dir; 1199 int ret = 0; 1200 1201 /* Map the URB's buffers for DMA access. 1202 * Lower level HCD code should use *_dma exclusively, 1203 * unless it uses pio or talks to another transport. 1204 */ 1205 if (is_root_hub(urb->dev)) 1206 return 0; 1207 1208 if (usb_endpoint_xfer_control(&urb->ep->desc) 1209 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1210 if (hcd->self.uses_dma) 1211 urb->setup_dma = dma_map_single( 1212 hcd->self.controller, 1213 urb->setup_packet, 1214 sizeof(struct usb_ctrlrequest), 1215 DMA_TO_DEVICE); 1216 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1217 ret = hcd_alloc_coherent( 1218 urb->dev->bus, mem_flags, 1219 &urb->setup_dma, 1220 (void **)&urb->setup_packet, 1221 sizeof(struct usb_ctrlrequest), 1222 DMA_TO_DEVICE); 1223 } 1224 1225 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1226 if (ret == 0 && urb->transfer_buffer_length != 0 1227 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1228 if (hcd->self.uses_dma) 1229 urb->transfer_dma = dma_map_single ( 1230 hcd->self.controller, 1231 urb->transfer_buffer, 1232 urb->transfer_buffer_length, 1233 dir); 1234 else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1235 ret = hcd_alloc_coherent( 1236 urb->dev->bus, mem_flags, 1237 &urb->transfer_dma, 1238 &urb->transfer_buffer, 1239 urb->transfer_buffer_length, 1240 dir); 1241 1242 if (ret && usb_endpoint_xfer_control(&urb->ep->desc) 1243 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1244 hcd_free_coherent(urb->dev->bus, 1245 &urb->setup_dma, 1246 (void **)&urb->setup_packet, 1247 sizeof(struct usb_ctrlrequest), 1248 DMA_TO_DEVICE); 1249 } 1250 } 1251 return ret; 1252 } 1253 1254 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1255 { 1256 enum dma_data_direction dir; 1257 1258 if (is_root_hub(urb->dev)) 1259 return; 1260 1261 if (usb_endpoint_xfer_control(&urb->ep->desc) 1262 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1263 if (hcd->self.uses_dma) 1264 dma_unmap_single(hcd->self.controller, urb->setup_dma, 1265 sizeof(struct usb_ctrlrequest), 1266 DMA_TO_DEVICE); 1267 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1268 hcd_free_coherent(urb->dev->bus, &urb->setup_dma, 1269 (void **)&urb->setup_packet, 1270 sizeof(struct usb_ctrlrequest), 1271 DMA_TO_DEVICE); 1272 } 1273 1274 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1275 if (urb->transfer_buffer_length != 0 1276 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1277 if (hcd->self.uses_dma) 1278 dma_unmap_single(hcd->self.controller, 1279 urb->transfer_dma, 1280 urb->transfer_buffer_length, 1281 dir); 1282 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1283 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, 1284 &urb->transfer_buffer, 1285 urb->transfer_buffer_length, 1286 dir); 1287 } 1288 } 1289 1290 /*-------------------------------------------------------------------------*/ 1291 1292 /* may be called in any context with a valid urb->dev usecount 1293 * caller surrenders "ownership" of urb 1294 * expects usb_submit_urb() to have sanity checked and conditioned all 1295 * inputs in the urb 1296 */ 1297 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1298 { 1299 int status; 1300 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1301 1302 /* increment urb's reference count as part of giving it to the HCD 1303 * (which will control it). HCD guarantees that it either returns 1304 * an error or calls giveback(), but not both. 1305 */ 1306 usb_get_urb(urb); 1307 atomic_inc(&urb->use_count); 1308 atomic_inc(&urb->dev->urbnum); 1309 usbmon_urb_submit(&hcd->self, urb); 1310 1311 /* NOTE requirements on root-hub callers (usbfs and the hub 1312 * driver, for now): URBs' urb->transfer_buffer must be 1313 * valid and usb_buffer_{sync,unmap}() not be needed, since 1314 * they could clobber root hub response data. Also, control 1315 * URBs must be submitted in process context with interrupts 1316 * enabled. 1317 */ 1318 status = map_urb_for_dma(hcd, urb, mem_flags); 1319 if (unlikely(status)) { 1320 usbmon_urb_submit_error(&hcd->self, urb, status); 1321 goto error; 1322 } 1323 1324 if (is_root_hub(urb->dev)) 1325 status = rh_urb_enqueue(hcd, urb); 1326 else 1327 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1328 1329 if (unlikely(status)) { 1330 usbmon_urb_submit_error(&hcd->self, urb, status); 1331 unmap_urb_for_dma(hcd, urb); 1332 error: 1333 urb->hcpriv = NULL; 1334 INIT_LIST_HEAD(&urb->urb_list); 1335 atomic_dec(&urb->use_count); 1336 atomic_dec(&urb->dev->urbnum); 1337 if (urb->reject) 1338 wake_up(&usb_kill_urb_queue); 1339 usb_put_urb(urb); 1340 } 1341 return status; 1342 } 1343 1344 /*-------------------------------------------------------------------------*/ 1345 1346 /* this makes the hcd giveback() the urb more quickly, by kicking it 1347 * off hardware queues (which may take a while) and returning it as 1348 * soon as practical. we've already set up the urb's return status, 1349 * but we can't know if the callback completed already. 1350 */ 1351 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1352 { 1353 int value; 1354 1355 if (is_root_hub(urb->dev)) 1356 value = usb_rh_urb_dequeue(hcd, urb, status); 1357 else { 1358 1359 /* The only reason an HCD might fail this call is if 1360 * it has not yet fully queued the urb to begin with. 1361 * Such failures should be harmless. */ 1362 value = hcd->driver->urb_dequeue(hcd, urb, status); 1363 } 1364 return value; 1365 } 1366 1367 /* 1368 * called in any context 1369 * 1370 * caller guarantees urb won't be recycled till both unlink() 1371 * and the urb's completion function return 1372 */ 1373 int usb_hcd_unlink_urb (struct urb *urb, int status) 1374 { 1375 struct usb_hcd *hcd; 1376 int retval; 1377 1378 hcd = bus_to_hcd(urb->dev->bus); 1379 retval = unlink1(hcd, urb, status); 1380 1381 if (retval == 0) 1382 retval = -EINPROGRESS; 1383 else if (retval != -EIDRM && retval != -EBUSY) 1384 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1385 urb, retval); 1386 return retval; 1387 } 1388 1389 /*-------------------------------------------------------------------------*/ 1390 1391 /** 1392 * usb_hcd_giveback_urb - return URB from HCD to device driver 1393 * @hcd: host controller returning the URB 1394 * @urb: urb being returned to the USB device driver. 1395 * @status: completion status code for the URB. 1396 * Context: in_interrupt() 1397 * 1398 * This hands the URB from HCD to its USB device driver, using its 1399 * completion function. The HCD has freed all per-urb resources 1400 * (and is done using urb->hcpriv). It also released all HCD locks; 1401 * the device driver won't cause problems if it frees, modifies, 1402 * or resubmits this URB. 1403 * 1404 * If @urb was unlinked, the value of @status will be overridden by 1405 * @urb->unlinked. Erroneous short transfers are detected in case 1406 * the HCD hasn't checked for them. 1407 */ 1408 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1409 { 1410 urb->hcpriv = NULL; 1411 if (unlikely(urb->unlinked)) 1412 status = urb->unlinked; 1413 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1414 urb->actual_length < urb->transfer_buffer_length && 1415 !status)) 1416 status = -EREMOTEIO; 1417 1418 unmap_urb_for_dma(hcd, urb); 1419 usbmon_urb_complete(&hcd->self, urb, status); 1420 usb_unanchor_urb(urb); 1421 1422 /* pass ownership to the completion handler */ 1423 urb->status = status; 1424 urb->complete (urb); 1425 atomic_dec (&urb->use_count); 1426 if (unlikely (urb->reject)) 1427 wake_up (&usb_kill_urb_queue); 1428 usb_put_urb (urb); 1429 } 1430 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1431 1432 /*-------------------------------------------------------------------------*/ 1433 1434 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1435 * queue to drain completely. The caller must first insure that no more 1436 * URBs can be submitted for this endpoint. 1437 */ 1438 void usb_hcd_flush_endpoint(struct usb_device *udev, 1439 struct usb_host_endpoint *ep) 1440 { 1441 struct usb_hcd *hcd; 1442 struct urb *urb; 1443 1444 if (!ep) 1445 return; 1446 might_sleep(); 1447 hcd = bus_to_hcd(udev->bus); 1448 1449 /* No more submits can occur */ 1450 spin_lock_irq(&hcd_urb_list_lock); 1451 rescan: 1452 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1453 int is_in; 1454 1455 if (urb->unlinked) 1456 continue; 1457 usb_get_urb (urb); 1458 is_in = usb_urb_dir_in(urb); 1459 spin_unlock(&hcd_urb_list_lock); 1460 1461 /* kick hcd */ 1462 unlink1(hcd, urb, -ESHUTDOWN); 1463 dev_dbg (hcd->self.controller, 1464 "shutdown urb %p ep%d%s%s\n", 1465 urb, usb_endpoint_num(&ep->desc), 1466 is_in ? "in" : "out", 1467 ({ char *s; 1468 1469 switch (usb_endpoint_type(&ep->desc)) { 1470 case USB_ENDPOINT_XFER_CONTROL: 1471 s = ""; break; 1472 case USB_ENDPOINT_XFER_BULK: 1473 s = "-bulk"; break; 1474 case USB_ENDPOINT_XFER_INT: 1475 s = "-intr"; break; 1476 default: 1477 s = "-iso"; break; 1478 }; 1479 s; 1480 })); 1481 usb_put_urb (urb); 1482 1483 /* list contents may have changed */ 1484 spin_lock(&hcd_urb_list_lock); 1485 goto rescan; 1486 } 1487 spin_unlock_irq(&hcd_urb_list_lock); 1488 1489 /* Wait until the endpoint queue is completely empty */ 1490 while (!list_empty (&ep->urb_list)) { 1491 spin_lock_irq(&hcd_urb_list_lock); 1492 1493 /* The list may have changed while we acquired the spinlock */ 1494 urb = NULL; 1495 if (!list_empty (&ep->urb_list)) { 1496 urb = list_entry (ep->urb_list.prev, struct urb, 1497 urb_list); 1498 usb_get_urb (urb); 1499 } 1500 spin_unlock_irq(&hcd_urb_list_lock); 1501 1502 if (urb) { 1503 usb_kill_urb (urb); 1504 usb_put_urb (urb); 1505 } 1506 } 1507 } 1508 1509 /* Disables the endpoint: synchronizes with the hcd to make sure all 1510 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1511 * have been called previously. Use for set_configuration, set_interface, 1512 * driver removal, physical disconnect. 1513 * 1514 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1515 * type, maxpacket size, toggle, halt status, and scheduling. 1516 */ 1517 void usb_hcd_disable_endpoint(struct usb_device *udev, 1518 struct usb_host_endpoint *ep) 1519 { 1520 struct usb_hcd *hcd; 1521 1522 might_sleep(); 1523 hcd = bus_to_hcd(udev->bus); 1524 if (hcd->driver->endpoint_disable) 1525 hcd->driver->endpoint_disable(hcd, ep); 1526 } 1527 1528 /*-------------------------------------------------------------------------*/ 1529 1530 /* called in any context */ 1531 int usb_hcd_get_frame_number (struct usb_device *udev) 1532 { 1533 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1534 1535 if (!HC_IS_RUNNING (hcd->state)) 1536 return -ESHUTDOWN; 1537 return hcd->driver->get_frame_number (hcd); 1538 } 1539 1540 /*-------------------------------------------------------------------------*/ 1541 1542 #ifdef CONFIG_PM 1543 1544 int hcd_bus_suspend(struct usb_device *rhdev) 1545 { 1546 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1547 int status; 1548 int old_state = hcd->state; 1549 1550 dev_dbg(&rhdev->dev, "bus %s%s\n", 1551 rhdev->auto_pm ? "auto-" : "", "suspend"); 1552 if (!hcd->driver->bus_suspend) { 1553 status = -ENOENT; 1554 } else { 1555 hcd->state = HC_STATE_QUIESCING; 1556 status = hcd->driver->bus_suspend(hcd); 1557 } 1558 if (status == 0) { 1559 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1560 hcd->state = HC_STATE_SUSPENDED; 1561 } else { 1562 hcd->state = old_state; 1563 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1564 "suspend", status); 1565 } 1566 return status; 1567 } 1568 1569 int hcd_bus_resume(struct usb_device *rhdev) 1570 { 1571 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1572 int status; 1573 int old_state = hcd->state; 1574 1575 dev_dbg(&rhdev->dev, "usb %s%s\n", 1576 rhdev->auto_pm ? "auto-" : "", "resume"); 1577 if (!hcd->driver->bus_resume) 1578 return -ENOENT; 1579 if (hcd->state == HC_STATE_RUNNING) 1580 return 0; 1581 1582 hcd->state = HC_STATE_RESUMING; 1583 status = hcd->driver->bus_resume(hcd); 1584 if (status == 0) { 1585 /* TRSMRCY = 10 msec */ 1586 msleep(10); 1587 usb_set_device_state(rhdev, rhdev->actconfig 1588 ? USB_STATE_CONFIGURED 1589 : USB_STATE_ADDRESS); 1590 hcd->state = HC_STATE_RUNNING; 1591 } else { 1592 hcd->state = old_state; 1593 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1594 "resume", status); 1595 if (status != -ESHUTDOWN) 1596 usb_hc_died(hcd); 1597 } 1598 return status; 1599 } 1600 1601 /* Workqueue routine for root-hub remote wakeup */ 1602 static void hcd_resume_work(struct work_struct *work) 1603 { 1604 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1605 struct usb_device *udev = hcd->self.root_hub; 1606 1607 usb_lock_device(udev); 1608 usb_mark_last_busy(udev); 1609 usb_external_resume_device(udev); 1610 usb_unlock_device(udev); 1611 } 1612 1613 /** 1614 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1615 * @hcd: host controller for this root hub 1616 * 1617 * The USB host controller calls this function when its root hub is 1618 * suspended (with the remote wakeup feature enabled) and a remote 1619 * wakeup request is received. The routine submits a workqueue request 1620 * to resume the root hub (that is, manage its downstream ports again). 1621 */ 1622 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1623 { 1624 unsigned long flags; 1625 1626 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1627 if (hcd->rh_registered) 1628 queue_work(ksuspend_usb_wq, &hcd->wakeup_work); 1629 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1630 } 1631 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1632 1633 #endif 1634 1635 /*-------------------------------------------------------------------------*/ 1636 1637 #ifdef CONFIG_USB_OTG 1638 1639 /** 1640 * usb_bus_start_enum - start immediate enumeration (for OTG) 1641 * @bus: the bus (must use hcd framework) 1642 * @port_num: 1-based number of port; usually bus->otg_port 1643 * Context: in_interrupt() 1644 * 1645 * Starts enumeration, with an immediate reset followed later by 1646 * khubd identifying and possibly configuring the device. 1647 * This is needed by OTG controller drivers, where it helps meet 1648 * HNP protocol timing requirements for starting a port reset. 1649 */ 1650 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1651 { 1652 struct usb_hcd *hcd; 1653 int status = -EOPNOTSUPP; 1654 1655 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1656 * boards with root hubs hooked up to internal devices (instead of 1657 * just the OTG port) may need more attention to resetting... 1658 */ 1659 hcd = container_of (bus, struct usb_hcd, self); 1660 if (port_num && hcd->driver->start_port_reset) 1661 status = hcd->driver->start_port_reset(hcd, port_num); 1662 1663 /* run khubd shortly after (first) root port reset finishes; 1664 * it may issue others, until at least 50 msecs have passed. 1665 */ 1666 if (status == 0) 1667 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1668 return status; 1669 } 1670 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 1671 1672 #endif 1673 1674 /*-------------------------------------------------------------------------*/ 1675 1676 /** 1677 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1678 * @irq: the IRQ being raised 1679 * @__hcd: pointer to the HCD whose IRQ is being signaled 1680 * @r: saved hardware registers 1681 * 1682 * If the controller isn't HALTed, calls the driver's irq handler. 1683 * Checks whether the controller is now dead. 1684 */ 1685 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1686 { 1687 struct usb_hcd *hcd = __hcd; 1688 int start = hcd->state; 1689 1690 if (unlikely(start == HC_STATE_HALT || 1691 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) 1692 return IRQ_NONE; 1693 if (hcd->driver->irq (hcd) == IRQ_NONE) 1694 return IRQ_NONE; 1695 1696 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1697 1698 if (unlikely(hcd->state == HC_STATE_HALT)) 1699 usb_hc_died (hcd); 1700 return IRQ_HANDLED; 1701 } 1702 1703 /*-------------------------------------------------------------------------*/ 1704 1705 /** 1706 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1707 * @hcd: pointer to the HCD representing the controller 1708 * 1709 * This is called by bus glue to report a USB host controller that died 1710 * while operations may still have been pending. It's called automatically 1711 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1712 */ 1713 void usb_hc_died (struct usb_hcd *hcd) 1714 { 1715 unsigned long flags; 1716 1717 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1718 1719 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1720 if (hcd->rh_registered) { 1721 hcd->poll_rh = 0; 1722 1723 /* make khubd clean up old urbs and devices */ 1724 usb_set_device_state (hcd->self.root_hub, 1725 USB_STATE_NOTATTACHED); 1726 usb_kick_khubd (hcd->self.root_hub); 1727 } 1728 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1729 } 1730 EXPORT_SYMBOL_GPL (usb_hc_died); 1731 1732 /*-------------------------------------------------------------------------*/ 1733 1734 /** 1735 * usb_create_hcd - create and initialize an HCD structure 1736 * @driver: HC driver that will use this hcd 1737 * @dev: device for this HC, stored in hcd->self.controller 1738 * @bus_name: value to store in hcd->self.bus_name 1739 * Context: !in_interrupt() 1740 * 1741 * Allocate a struct usb_hcd, with extra space at the end for the 1742 * HC driver's private data. Initialize the generic members of the 1743 * hcd structure. 1744 * 1745 * If memory is unavailable, returns NULL. 1746 */ 1747 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 1748 struct device *dev, char *bus_name) 1749 { 1750 struct usb_hcd *hcd; 1751 1752 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 1753 if (!hcd) { 1754 dev_dbg (dev, "hcd alloc failed\n"); 1755 return NULL; 1756 } 1757 dev_set_drvdata(dev, hcd); 1758 kref_init(&hcd->kref); 1759 1760 usb_bus_init(&hcd->self); 1761 hcd->self.controller = dev; 1762 hcd->self.bus_name = bus_name; 1763 hcd->self.uses_dma = (dev->dma_mask != NULL); 1764 1765 init_timer(&hcd->rh_timer); 1766 hcd->rh_timer.function = rh_timer_func; 1767 hcd->rh_timer.data = (unsigned long) hcd; 1768 #ifdef CONFIG_PM 1769 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 1770 #endif 1771 1772 hcd->driver = driver; 1773 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 1774 "USB Host Controller"; 1775 return hcd; 1776 } 1777 EXPORT_SYMBOL_GPL(usb_create_hcd); 1778 1779 static void hcd_release (struct kref *kref) 1780 { 1781 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 1782 1783 kfree(hcd); 1784 } 1785 1786 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 1787 { 1788 if (hcd) 1789 kref_get (&hcd->kref); 1790 return hcd; 1791 } 1792 EXPORT_SYMBOL_GPL(usb_get_hcd); 1793 1794 void usb_put_hcd (struct usb_hcd *hcd) 1795 { 1796 if (hcd) 1797 kref_put (&hcd->kref, hcd_release); 1798 } 1799 EXPORT_SYMBOL_GPL(usb_put_hcd); 1800 1801 /** 1802 * usb_add_hcd - finish generic HCD structure initialization and register 1803 * @hcd: the usb_hcd structure to initialize 1804 * @irqnum: Interrupt line to allocate 1805 * @irqflags: Interrupt type flags 1806 * 1807 * Finish the remaining parts of generic HCD initialization: allocate the 1808 * buffers of consistent memory, register the bus, request the IRQ line, 1809 * and call the driver's reset() and start() routines. 1810 */ 1811 int usb_add_hcd(struct usb_hcd *hcd, 1812 unsigned int irqnum, unsigned long irqflags) 1813 { 1814 int retval; 1815 struct usb_device *rhdev; 1816 1817 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 1818 1819 hcd->authorized_default = hcd->wireless? 0 : 1; 1820 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1821 1822 /* HC is in reset state, but accessible. Now do the one-time init, 1823 * bottom up so that hcds can customize the root hubs before khubd 1824 * starts talking to them. (Note, bus id is assigned early too.) 1825 */ 1826 if ((retval = hcd_buffer_create(hcd)) != 0) { 1827 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 1828 return retval; 1829 } 1830 1831 if ((retval = usb_register_bus(&hcd->self)) < 0) 1832 goto err_register_bus; 1833 1834 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 1835 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 1836 retval = -ENOMEM; 1837 goto err_allocate_root_hub; 1838 } 1839 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH : 1840 USB_SPEED_FULL; 1841 hcd->self.root_hub = rhdev; 1842 1843 /* wakeup flag init defaults to "everything works" for root hubs, 1844 * but drivers can override it in reset() if needed, along with 1845 * recording the overall controller's system wakeup capability. 1846 */ 1847 device_init_wakeup(&rhdev->dev, 1); 1848 1849 /* "reset" is misnamed; its role is now one-time init. the controller 1850 * should already have been reset (and boot firmware kicked off etc). 1851 */ 1852 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 1853 dev_err(hcd->self.controller, "can't setup\n"); 1854 goto err_hcd_driver_setup; 1855 } 1856 1857 /* NOTE: root hub and controller capabilities may not be the same */ 1858 if (device_can_wakeup(hcd->self.controller) 1859 && device_can_wakeup(&hcd->self.root_hub->dev)) 1860 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 1861 1862 /* enable irqs just before we start the controller */ 1863 if (hcd->driver->irq) { 1864 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 1865 hcd->driver->description, hcd->self.busnum); 1866 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 1867 hcd->irq_descr, hcd)) != 0) { 1868 dev_err(hcd->self.controller, 1869 "request interrupt %d failed\n", irqnum); 1870 goto err_request_irq; 1871 } 1872 hcd->irq = irqnum; 1873 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 1874 (hcd->driver->flags & HCD_MEMORY) ? 1875 "io mem" : "io base", 1876 (unsigned long long)hcd->rsrc_start); 1877 } else { 1878 hcd->irq = -1; 1879 if (hcd->rsrc_start) 1880 dev_info(hcd->self.controller, "%s 0x%08llx\n", 1881 (hcd->driver->flags & HCD_MEMORY) ? 1882 "io mem" : "io base", 1883 (unsigned long long)hcd->rsrc_start); 1884 } 1885 1886 if ((retval = hcd->driver->start(hcd)) < 0) { 1887 dev_err(hcd->self.controller, "startup error %d\n", retval); 1888 goto err_hcd_driver_start; 1889 } 1890 1891 /* starting here, usbcore will pay attention to this root hub */ 1892 rhdev->bus_mA = min(500u, hcd->power_budget); 1893 if ((retval = register_root_hub(hcd)) != 0) 1894 goto err_register_root_hub; 1895 1896 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 1897 if (retval < 0) { 1898 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 1899 retval); 1900 goto error_create_attr_group; 1901 } 1902 if (hcd->uses_new_polling && hcd->poll_rh) 1903 usb_hcd_poll_rh_status(hcd); 1904 return retval; 1905 1906 error_create_attr_group: 1907 mutex_lock(&usb_bus_list_lock); 1908 usb_disconnect(&hcd->self.root_hub); 1909 mutex_unlock(&usb_bus_list_lock); 1910 err_register_root_hub: 1911 hcd->driver->stop(hcd); 1912 err_hcd_driver_start: 1913 if (hcd->irq >= 0) 1914 free_irq(irqnum, hcd); 1915 err_request_irq: 1916 err_hcd_driver_setup: 1917 hcd->self.root_hub = NULL; 1918 usb_put_dev(rhdev); 1919 err_allocate_root_hub: 1920 usb_deregister_bus(&hcd->self); 1921 err_register_bus: 1922 hcd_buffer_destroy(hcd); 1923 return retval; 1924 } 1925 EXPORT_SYMBOL_GPL(usb_add_hcd); 1926 1927 /** 1928 * usb_remove_hcd - shutdown processing for generic HCDs 1929 * @hcd: the usb_hcd structure to remove 1930 * Context: !in_interrupt() 1931 * 1932 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 1933 * invoking the HCD's stop() method. 1934 */ 1935 void usb_remove_hcd(struct usb_hcd *hcd) 1936 { 1937 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 1938 1939 if (HC_IS_RUNNING (hcd->state)) 1940 hcd->state = HC_STATE_QUIESCING; 1941 1942 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 1943 spin_lock_irq (&hcd_root_hub_lock); 1944 hcd->rh_registered = 0; 1945 spin_unlock_irq (&hcd_root_hub_lock); 1946 1947 #ifdef CONFIG_PM 1948 cancel_work_sync(&hcd->wakeup_work); 1949 #endif 1950 1951 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); 1952 mutex_lock(&usb_bus_list_lock); 1953 usb_disconnect(&hcd->self.root_hub); 1954 mutex_unlock(&usb_bus_list_lock); 1955 1956 hcd->driver->stop(hcd); 1957 hcd->state = HC_STATE_HALT; 1958 1959 hcd->poll_rh = 0; 1960 del_timer_sync(&hcd->rh_timer); 1961 1962 if (hcd->irq >= 0) 1963 free_irq(hcd->irq, hcd); 1964 usb_deregister_bus(&hcd->self); 1965 hcd_buffer_destroy(hcd); 1966 } 1967 EXPORT_SYMBOL_GPL(usb_remove_hcd); 1968 1969 void 1970 usb_hcd_platform_shutdown(struct platform_device* dev) 1971 { 1972 struct usb_hcd *hcd = platform_get_drvdata(dev); 1973 1974 if (hcd->driver->shutdown) 1975 hcd->driver->shutdown(hcd); 1976 } 1977 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 1978 1979 /*-------------------------------------------------------------------------*/ 1980 1981 #if defined(CONFIG_USB_MON) 1982 1983 struct usb_mon_operations *mon_ops; 1984 1985 /* 1986 * The registration is unlocked. 1987 * We do it this way because we do not want to lock in hot paths. 1988 * 1989 * Notice that the code is minimally error-proof. Because usbmon needs 1990 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 1991 */ 1992 1993 int usb_mon_register (struct usb_mon_operations *ops) 1994 { 1995 1996 if (mon_ops) 1997 return -EBUSY; 1998 1999 mon_ops = ops; 2000 mb(); 2001 return 0; 2002 } 2003 EXPORT_SYMBOL_GPL (usb_mon_register); 2004 2005 void usb_mon_deregister (void) 2006 { 2007 2008 if (mon_ops == NULL) { 2009 printk(KERN_ERR "USB: monitor was not registered\n"); 2010 return; 2011 } 2012 mon_ops = NULL; 2013 mb(); 2014 } 2015 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2016 2017 #endif /* CONFIG_USB_MON */ 2018