xref: /openbmc/linux/drivers/usb/core/hcd.c (revision 5f5bac82)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47 
48 
49 /*-------------------------------------------------------------------------*/
50 
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
78  *		associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
80  */
81 
82 /*-------------------------------------------------------------------------*/
83 
84 /* Keep track of which host controller drivers are loaded */
85 unsigned long usb_hcds_loaded;
86 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
87 
88 /* host controllers we manage */
89 LIST_HEAD (usb_bus_list);
90 EXPORT_SYMBOL_GPL (usb_bus_list);
91 
92 /* used when allocating bus numbers */
93 #define USB_MAXBUS		64
94 struct usb_busmap {
95 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
96 };
97 static struct usb_busmap busmap;
98 
99 /* used when updating list of hcds */
100 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
101 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
102 
103 /* used for controlling access to virtual root hubs */
104 static DEFINE_SPINLOCK(hcd_root_hub_lock);
105 
106 /* used when updating an endpoint's URB list */
107 static DEFINE_SPINLOCK(hcd_urb_list_lock);
108 
109 /* used to protect against unlinking URBs after the device is gone */
110 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
111 
112 /* wait queue for synchronous unlinks */
113 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
114 
115 static inline int is_root_hub(struct usb_device *udev)
116 {
117 	return (udev->parent == NULL);
118 }
119 
120 /*-------------------------------------------------------------------------*/
121 
122 /*
123  * Sharable chunks of root hub code.
124  */
125 
126 /*-------------------------------------------------------------------------*/
127 
128 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
129 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
130 
131 /* usb 2.0 root hub device descriptor */
132 static const u8 usb2_rh_dev_descriptor [18] = {
133 	0x12,       /*  __u8  bLength; */
134 	0x01,       /*  __u8  bDescriptorType; Device */
135 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
136 
137 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138 	0x00,	    /*  __u8  bDeviceSubClass; */
139 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
140 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
141 
142 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
143 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
144 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145 
146 	0x03,       /*  __u8  iManufacturer; */
147 	0x02,       /*  __u8  iProduct; */
148 	0x01,       /*  __u8  iSerialNumber; */
149 	0x01        /*  __u8  bNumConfigurations; */
150 };
151 
152 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
153 
154 /* usb 1.1 root hub device descriptor */
155 static const u8 usb11_rh_dev_descriptor [18] = {
156 	0x12,       /*  __u8  bLength; */
157 	0x01,       /*  __u8  bDescriptorType; Device */
158 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
159 
160 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
161 	0x00,	    /*  __u8  bDeviceSubClass; */
162 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
163 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
164 
165 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
166 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
167 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
168 
169 	0x03,       /*  __u8  iManufacturer; */
170 	0x02,       /*  __u8  iProduct; */
171 	0x01,       /*  __u8  iSerialNumber; */
172 	0x01        /*  __u8  bNumConfigurations; */
173 };
174 
175 
176 /*-------------------------------------------------------------------------*/
177 
178 /* Configuration descriptors for our root hubs */
179 
180 static const u8 fs_rh_config_descriptor [] = {
181 
182 	/* one configuration */
183 	0x09,       /*  __u8  bLength; */
184 	0x02,       /*  __u8  bDescriptorType; Configuration */
185 	0x19, 0x00, /*  __le16 wTotalLength; */
186 	0x01,       /*  __u8  bNumInterfaces; (1) */
187 	0x01,       /*  __u8  bConfigurationValue; */
188 	0x00,       /*  __u8  iConfiguration; */
189 	0xc0,       /*  __u8  bmAttributes;
190 				 Bit 7: must be set,
191 				     6: Self-powered,
192 				     5: Remote wakeup,
193 				     4..0: resvd */
194 	0x00,       /*  __u8  MaxPower; */
195 
196 	/* USB 1.1:
197 	 * USB 2.0, single TT organization (mandatory):
198 	 *	one interface, protocol 0
199 	 *
200 	 * USB 2.0, multiple TT organization (optional):
201 	 *	two interfaces, protocols 1 (like single TT)
202 	 *	and 2 (multiple TT mode) ... config is
203 	 *	sometimes settable
204 	 *	NOT IMPLEMENTED
205 	 */
206 
207 	/* one interface */
208 	0x09,       /*  __u8  if_bLength; */
209 	0x04,       /*  __u8  if_bDescriptorType; Interface */
210 	0x00,       /*  __u8  if_bInterfaceNumber; */
211 	0x00,       /*  __u8  if_bAlternateSetting; */
212 	0x01,       /*  __u8  if_bNumEndpoints; */
213 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
214 	0x00,       /*  __u8  if_bInterfaceSubClass; */
215 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
216 	0x00,       /*  __u8  if_iInterface; */
217 
218 	/* one endpoint (status change endpoint) */
219 	0x07,       /*  __u8  ep_bLength; */
220 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
221 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
222  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
223  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
224 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
225 };
226 
227 static const u8 hs_rh_config_descriptor [] = {
228 
229 	/* one configuration */
230 	0x09,       /*  __u8  bLength; */
231 	0x02,       /*  __u8  bDescriptorType; Configuration */
232 	0x19, 0x00, /*  __le16 wTotalLength; */
233 	0x01,       /*  __u8  bNumInterfaces; (1) */
234 	0x01,       /*  __u8  bConfigurationValue; */
235 	0x00,       /*  __u8  iConfiguration; */
236 	0xc0,       /*  __u8  bmAttributes;
237 				 Bit 7: must be set,
238 				     6: Self-powered,
239 				     5: Remote wakeup,
240 				     4..0: resvd */
241 	0x00,       /*  __u8  MaxPower; */
242 
243 	/* USB 1.1:
244 	 * USB 2.0, single TT organization (mandatory):
245 	 *	one interface, protocol 0
246 	 *
247 	 * USB 2.0, multiple TT organization (optional):
248 	 *	two interfaces, protocols 1 (like single TT)
249 	 *	and 2 (multiple TT mode) ... config is
250 	 *	sometimes settable
251 	 *	NOT IMPLEMENTED
252 	 */
253 
254 	/* one interface */
255 	0x09,       /*  __u8  if_bLength; */
256 	0x04,       /*  __u8  if_bDescriptorType; Interface */
257 	0x00,       /*  __u8  if_bInterfaceNumber; */
258 	0x00,       /*  __u8  if_bAlternateSetting; */
259 	0x01,       /*  __u8  if_bNumEndpoints; */
260 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
261 	0x00,       /*  __u8  if_bInterfaceSubClass; */
262 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
263 	0x00,       /*  __u8  if_iInterface; */
264 
265 	/* one endpoint (status change endpoint) */
266 	0x07,       /*  __u8  ep_bLength; */
267 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
268 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
269  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
270 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
271 		     * see hub.c:hub_configure() for details. */
272 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
273 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
274 };
275 
276 /*-------------------------------------------------------------------------*/
277 
278 /*
279  * helper routine for returning string descriptors in UTF-16LE
280  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
281  */
282 static unsigned ascii2utf(char *s, u8 *utf, int utfmax)
283 {
284 	unsigned retval;
285 
286 	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
287 		*utf++ = *s++;
288 		*utf++ = 0;
289 	}
290 	if (utfmax > 0) {
291 		*utf = *s;
292 		++retval;
293 	}
294 	return retval;
295 }
296 
297 /*
298  * rh_string - provides manufacturer, product and serial strings for root hub
299  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
300  * @hcd: the host controller for this root hub
301  * @data: return packet in UTF-16 LE
302  * @len: length of the return packet
303  *
304  * Produces either a manufacturer, product or serial number string for the
305  * virtual root hub device.
306  */
307 static unsigned rh_string(int id, struct usb_hcd *hcd, u8 *data, unsigned len)
308 {
309 	char buf [100];
310 
311 	// language ids
312 	if (id == 0) {
313 		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
314 		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
315 		len = min_t(unsigned, len, 4);
316 		memcpy (data, buf, len);
317 		return len;
318 
319 	// serial number
320 	} else if (id == 1) {
321 		strlcpy (buf, hcd->self.bus_name, sizeof buf);
322 
323 	// product description
324 	} else if (id == 2) {
325 		strlcpy (buf, hcd->product_desc, sizeof buf);
326 
327  	// id 3 == vendor description
328 	} else if (id == 3) {
329 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
330 			init_utsname()->release, hcd->driver->description);
331 	}
332 
333 	switch (len) {		/* All cases fall through */
334 	default:
335 		len = 2 + ascii2utf (buf, data + 2, len - 2);
336 	case 2:
337 		data [1] = 3;	/* type == string */
338 	case 1:
339 		data [0] = 2 * (strlen (buf) + 1);
340 	case 0:
341 		;		/* Compiler wants a statement here */
342 	}
343 	return len;
344 }
345 
346 
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350 	struct usb_ctrlrequest *cmd;
351  	u16		typeReq, wValue, wIndex, wLength;
352 	u8		*ubuf = urb->transfer_buffer;
353 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
354 		__attribute__((aligned(4)));
355 	const u8	*bufp = tbuf;
356 	unsigned	len = 0;
357 	int		status;
358 	u8		patch_wakeup = 0;
359 	u8		patch_protocol = 0;
360 
361 	might_sleep();
362 
363 	spin_lock_irq(&hcd_root_hub_lock);
364 	status = usb_hcd_link_urb_to_ep(hcd, urb);
365 	spin_unlock_irq(&hcd_root_hub_lock);
366 	if (status)
367 		return status;
368 	urb->hcpriv = hcd;	/* Indicate it's queued */
369 
370 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
371 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
372 	wValue   = le16_to_cpu (cmd->wValue);
373 	wIndex   = le16_to_cpu (cmd->wIndex);
374 	wLength  = le16_to_cpu (cmd->wLength);
375 
376 	if (wLength > urb->transfer_buffer_length)
377 		goto error;
378 
379 	urb->actual_length = 0;
380 	switch (typeReq) {
381 
382 	/* DEVICE REQUESTS */
383 
384 	/* The root hub's remote wakeup enable bit is implemented using
385 	 * driver model wakeup flags.  If this system supports wakeup
386 	 * through USB, userspace may change the default "allow wakeup"
387 	 * policy through sysfs or these calls.
388 	 *
389 	 * Most root hubs support wakeup from downstream devices, for
390 	 * runtime power management (disabling USB clocks and reducing
391 	 * VBUS power usage).  However, not all of them do so; silicon,
392 	 * board, and BIOS bugs here are not uncommon, so these can't
393 	 * be treated quite like external hubs.
394 	 *
395 	 * Likewise, not all root hubs will pass wakeup events upstream,
396 	 * to wake up the whole system.  So don't assume root hub and
397 	 * controller capabilities are identical.
398 	 */
399 
400 	case DeviceRequest | USB_REQ_GET_STATUS:
401 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
402 					<< USB_DEVICE_REMOTE_WAKEUP)
403 				| (1 << USB_DEVICE_SELF_POWERED);
404 		tbuf [1] = 0;
405 		len = 2;
406 		break;
407 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
408 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
409 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
410 		else
411 			goto error;
412 		break;
413 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
414 		if (device_can_wakeup(&hcd->self.root_hub->dev)
415 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
416 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
417 		else
418 			goto error;
419 		break;
420 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
421 		tbuf [0] = 1;
422 		len = 1;
423 			/* FALLTHROUGH */
424 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
425 		break;
426 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
427 		switch (wValue & 0xff00) {
428 		case USB_DT_DEVICE << 8:
429 			if (hcd->driver->flags & HCD_USB2)
430 				bufp = usb2_rh_dev_descriptor;
431 			else if (hcd->driver->flags & HCD_USB11)
432 				bufp = usb11_rh_dev_descriptor;
433 			else
434 				goto error;
435 			len = 18;
436 			if (hcd->has_tt)
437 				patch_protocol = 1;
438 			break;
439 		case USB_DT_CONFIG << 8:
440 			if (hcd->driver->flags & HCD_USB2) {
441 				bufp = hs_rh_config_descriptor;
442 				len = sizeof hs_rh_config_descriptor;
443 			} else {
444 				bufp = fs_rh_config_descriptor;
445 				len = sizeof fs_rh_config_descriptor;
446 			}
447 			if (device_can_wakeup(&hcd->self.root_hub->dev))
448 				patch_wakeup = 1;
449 			break;
450 		case USB_DT_STRING << 8:
451 			if ((wValue & 0xff) < 4)
452 				urb->actual_length = rh_string(wValue & 0xff,
453 						hcd, ubuf, wLength);
454 			else /* unsupported IDs --> "protocol stall" */
455 				goto error;
456 			break;
457 		default:
458 			goto error;
459 		}
460 		break;
461 	case DeviceRequest | USB_REQ_GET_INTERFACE:
462 		tbuf [0] = 0;
463 		len = 1;
464 			/* FALLTHROUGH */
465 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
466 		break;
467 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468 		// wValue == urb->dev->devaddr
469 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
470 			wValue);
471 		break;
472 
473 	/* INTERFACE REQUESTS (no defined feature/status flags) */
474 
475 	/* ENDPOINT REQUESTS */
476 
477 	case EndpointRequest | USB_REQ_GET_STATUS:
478 		// ENDPOINT_HALT flag
479 		tbuf [0] = 0;
480 		tbuf [1] = 0;
481 		len = 2;
482 			/* FALLTHROUGH */
483 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
485 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
486 		break;
487 
488 	/* CLASS REQUESTS (and errors) */
489 
490 	default:
491 		/* non-generic request */
492 		switch (typeReq) {
493 		case GetHubStatus:
494 		case GetPortStatus:
495 			len = 4;
496 			break;
497 		case GetHubDescriptor:
498 			len = sizeof (struct usb_hub_descriptor);
499 			break;
500 		}
501 		status = hcd->driver->hub_control (hcd,
502 			typeReq, wValue, wIndex,
503 			tbuf, wLength);
504 		break;
505 error:
506 		/* "protocol stall" on error */
507 		status = -EPIPE;
508 	}
509 
510 	if (status) {
511 		len = 0;
512 		if (status != -EPIPE) {
513 			dev_dbg (hcd->self.controller,
514 				"CTRL: TypeReq=0x%x val=0x%x "
515 				"idx=0x%x len=%d ==> %d\n",
516 				typeReq, wValue, wIndex,
517 				wLength, status);
518 		}
519 	}
520 	if (len) {
521 		if (urb->transfer_buffer_length < len)
522 			len = urb->transfer_buffer_length;
523 		urb->actual_length = len;
524 		// always USB_DIR_IN, toward host
525 		memcpy (ubuf, bufp, len);
526 
527 		/* report whether RH hardware supports remote wakeup */
528 		if (patch_wakeup &&
529 				len > offsetof (struct usb_config_descriptor,
530 						bmAttributes))
531 			((struct usb_config_descriptor *)ubuf)->bmAttributes
532 				|= USB_CONFIG_ATT_WAKEUP;
533 
534 		/* report whether RH hardware has an integrated TT */
535 		if (patch_protocol &&
536 				len > offsetof(struct usb_device_descriptor,
537 						bDeviceProtocol))
538 			((struct usb_device_descriptor *) ubuf)->
539 					bDeviceProtocol = 1;
540 	}
541 
542 	/* any errors get returned through the urb completion */
543 	spin_lock_irq(&hcd_root_hub_lock);
544 	usb_hcd_unlink_urb_from_ep(hcd, urb);
545 
546 	/* This peculiar use of spinlocks echoes what real HC drivers do.
547 	 * Avoiding calls to local_irq_disable/enable makes the code
548 	 * RT-friendly.
549 	 */
550 	spin_unlock(&hcd_root_hub_lock);
551 	usb_hcd_giveback_urb(hcd, urb, status);
552 	spin_lock(&hcd_root_hub_lock);
553 
554 	spin_unlock_irq(&hcd_root_hub_lock);
555 	return 0;
556 }
557 
558 /*-------------------------------------------------------------------------*/
559 
560 /*
561  * Root Hub interrupt transfers are polled using a timer if the
562  * driver requests it; otherwise the driver is responsible for
563  * calling usb_hcd_poll_rh_status() when an event occurs.
564  *
565  * Completions are called in_interrupt(), but they may or may not
566  * be in_irq().
567  */
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
569 {
570 	struct urb	*urb;
571 	int		length;
572 	unsigned long	flags;
573 	char		buffer[4];	/* Any root hubs with > 31 ports? */
574 
575 	if (unlikely(!hcd->rh_registered))
576 		return;
577 	if (!hcd->uses_new_polling && !hcd->status_urb)
578 		return;
579 
580 	length = hcd->driver->hub_status_data(hcd, buffer);
581 	if (length > 0) {
582 
583 		/* try to complete the status urb */
584 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
585 		urb = hcd->status_urb;
586 		if (urb) {
587 			hcd->poll_pending = 0;
588 			hcd->status_urb = NULL;
589 			urb->actual_length = length;
590 			memcpy(urb->transfer_buffer, buffer, length);
591 
592 			usb_hcd_unlink_urb_from_ep(hcd, urb);
593 			spin_unlock(&hcd_root_hub_lock);
594 			usb_hcd_giveback_urb(hcd, urb, 0);
595 			spin_lock(&hcd_root_hub_lock);
596 		} else {
597 			length = 0;
598 			hcd->poll_pending = 1;
599 		}
600 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
601 	}
602 
603 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
604 	 * exceed that limit if HZ is 100. The math is more clunky than
605 	 * maybe expected, this is to make sure that all timers for USB devices
606 	 * fire at the same time to give the CPU a break inbetween */
607 	if (hcd->uses_new_polling ? hcd->poll_rh :
608 			(length == 0 && hcd->status_urb != NULL))
609 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
610 }
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
612 
613 /* timer callback */
614 static void rh_timer_func (unsigned long _hcd)
615 {
616 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
617 }
618 
619 /*-------------------------------------------------------------------------*/
620 
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
622 {
623 	int		retval;
624 	unsigned long	flags;
625 	unsigned	len = 1 + (urb->dev->maxchild / 8);
626 
627 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
628 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
629 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
630 		retval = -EINVAL;
631 		goto done;
632 	}
633 
634 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
635 	if (retval)
636 		goto done;
637 
638 	hcd->status_urb = urb;
639 	urb->hcpriv = hcd;	/* indicate it's queued */
640 	if (!hcd->uses_new_polling)
641 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
642 
643 	/* If a status change has already occurred, report it ASAP */
644 	else if (hcd->poll_pending)
645 		mod_timer(&hcd->rh_timer, jiffies);
646 	retval = 0;
647  done:
648 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
649 	return retval;
650 }
651 
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
653 {
654 	if (usb_endpoint_xfer_int(&urb->ep->desc))
655 		return rh_queue_status (hcd, urb);
656 	if (usb_endpoint_xfer_control(&urb->ep->desc))
657 		return rh_call_control (hcd, urb);
658 	return -EINVAL;
659 }
660 
661 /*-------------------------------------------------------------------------*/
662 
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664  * since these URBs always execute synchronously.
665  */
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
667 {
668 	unsigned long	flags;
669 	int		rc;
670 
671 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
672 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
673 	if (rc)
674 		goto done;
675 
676 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
677 		;	/* Do nothing */
678 
679 	} else {				/* Status URB */
680 		if (!hcd->uses_new_polling)
681 			del_timer (&hcd->rh_timer);
682 		if (urb == hcd->status_urb) {
683 			hcd->status_urb = NULL;
684 			usb_hcd_unlink_urb_from_ep(hcd, urb);
685 
686 			spin_unlock(&hcd_root_hub_lock);
687 			usb_hcd_giveback_urb(hcd, urb, status);
688 			spin_lock(&hcd_root_hub_lock);
689 		}
690 	}
691  done:
692 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
693 	return rc;
694 }
695 
696 
697 
698 /*
699  * Show & store the current value of authorized_default
700  */
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702 						struct device_attribute *attr,
703 						char *buf)
704 {
705 	struct usb_device *rh_usb_dev = to_usb_device(dev);
706 	struct usb_bus *usb_bus = rh_usb_dev->bus;
707 	struct usb_hcd *usb_hcd;
708 
709 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
710 		return -ENODEV;
711 	usb_hcd = bus_to_hcd(usb_bus);
712 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
713 }
714 
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716 						 struct device_attribute *attr,
717 						 const char *buf, size_t size)
718 {
719 	ssize_t result;
720 	unsigned val;
721 	struct usb_device *rh_usb_dev = to_usb_device(dev);
722 	struct usb_bus *usb_bus = rh_usb_dev->bus;
723 	struct usb_hcd *usb_hcd;
724 
725 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
726 		return -ENODEV;
727 	usb_hcd = bus_to_hcd(usb_bus);
728 	result = sscanf(buf, "%u\n", &val);
729 	if (result == 1) {
730 		usb_hcd->authorized_default = val? 1 : 0;
731 		result = size;
732 	}
733 	else
734 		result = -EINVAL;
735 	return result;
736 }
737 
738 static DEVICE_ATTR(authorized_default, 0644,
739 	    usb_host_authorized_default_show,
740 	    usb_host_authorized_default_store);
741 
742 
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745 		&dev_attr_authorized_default.attr,
746 		NULL,
747 };
748 
749 static struct attribute_group usb_bus_attr_group = {
750 	.name = NULL,	/* we want them in the same directory */
751 	.attrs = usb_bus_attrs,
752 };
753 
754 
755 
756 /*-------------------------------------------------------------------------*/
757 
758 static struct class *usb_host_class;
759 
760 int usb_host_init(void)
761 {
762 	int retval = 0;
763 
764 	usb_host_class = class_create(THIS_MODULE, "usb_host");
765 	if (IS_ERR(usb_host_class))
766 		retval = PTR_ERR(usb_host_class);
767 	return retval;
768 }
769 
770 void usb_host_cleanup(void)
771 {
772 	class_destroy(usb_host_class);
773 }
774 
775 /**
776  * usb_bus_init - shared initialization code
777  * @bus: the bus structure being initialized
778  *
779  * This code is used to initialize a usb_bus structure, memory for which is
780  * separately managed.
781  */
782 static void usb_bus_init (struct usb_bus *bus)
783 {
784 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
785 
786 	bus->devnum_next = 1;
787 
788 	bus->root_hub = NULL;
789 	bus->busnum = -1;
790 	bus->bandwidth_allocated = 0;
791 	bus->bandwidth_int_reqs  = 0;
792 	bus->bandwidth_isoc_reqs = 0;
793 
794 	INIT_LIST_HEAD (&bus->bus_list);
795 }
796 
797 /*-------------------------------------------------------------------------*/
798 
799 /**
800  * usb_register_bus - registers the USB host controller with the usb core
801  * @bus: pointer to the bus to register
802  * Context: !in_interrupt()
803  *
804  * Assigns a bus number, and links the controller into usbcore data
805  * structures so that it can be seen by scanning the bus list.
806  */
807 static int usb_register_bus(struct usb_bus *bus)
808 {
809 	int result = -E2BIG;
810 	int busnum;
811 
812 	mutex_lock(&usb_bus_list_lock);
813 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814 	if (busnum >= USB_MAXBUS) {
815 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816 		goto error_find_busnum;
817 	}
818 	set_bit (busnum, busmap.busmap);
819 	bus->busnum = busnum;
820 
821 	bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
822 				 bus, "usb_host%d", busnum);
823 	result = PTR_ERR(bus->dev);
824 	if (IS_ERR(bus->dev))
825 		goto error_create_class_dev;
826 
827 	/* Add it to the local list of buses */
828 	list_add (&bus->bus_list, &usb_bus_list);
829 	mutex_unlock(&usb_bus_list_lock);
830 
831 	usb_notify_add_bus(bus);
832 
833 	dev_info (bus->controller, "new USB bus registered, assigned bus "
834 		  "number %d\n", bus->busnum);
835 	return 0;
836 
837 error_create_class_dev:
838 	clear_bit(busnum, busmap.busmap);
839 error_find_busnum:
840 	mutex_unlock(&usb_bus_list_lock);
841 	return result;
842 }
843 
844 /**
845  * usb_deregister_bus - deregisters the USB host controller
846  * @bus: pointer to the bus to deregister
847  * Context: !in_interrupt()
848  *
849  * Recycles the bus number, and unlinks the controller from usbcore data
850  * structures so that it won't be seen by scanning the bus list.
851  */
852 static void usb_deregister_bus (struct usb_bus *bus)
853 {
854 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
855 
856 	/*
857 	 * NOTE: make sure that all the devices are removed by the
858 	 * controller code, as well as having it call this when cleaning
859 	 * itself up
860 	 */
861 	mutex_lock(&usb_bus_list_lock);
862 	list_del (&bus->bus_list);
863 	mutex_unlock(&usb_bus_list_lock);
864 
865 	usb_notify_remove_bus(bus);
866 
867 	clear_bit (bus->busnum, busmap.busmap);
868 
869 	device_unregister(bus->dev);
870 }
871 
872 /**
873  * register_root_hub - called by usb_add_hcd() to register a root hub
874  * @hcd: host controller for this root hub
875  *
876  * This function registers the root hub with the USB subsystem.  It sets up
877  * the device properly in the device tree and then calls usb_new_device()
878  * to register the usb device.  It also assigns the root hub's USB address
879  * (always 1).
880  */
881 static int register_root_hub(struct usb_hcd *hcd)
882 {
883 	struct device *parent_dev = hcd->self.controller;
884 	struct usb_device *usb_dev = hcd->self.root_hub;
885 	const int devnum = 1;
886 	int retval;
887 
888 	usb_dev->devnum = devnum;
889 	usb_dev->bus->devnum_next = devnum + 1;
890 	memset (&usb_dev->bus->devmap.devicemap, 0,
891 			sizeof usb_dev->bus->devmap.devicemap);
892 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
893 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
894 
895 	mutex_lock(&usb_bus_list_lock);
896 
897 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
898 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
899 	if (retval != sizeof usb_dev->descriptor) {
900 		mutex_unlock(&usb_bus_list_lock);
901 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
902 				dev_name(&usb_dev->dev), retval);
903 		return (retval < 0) ? retval : -EMSGSIZE;
904 	}
905 
906 	retval = usb_new_device (usb_dev);
907 	if (retval) {
908 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
909 				dev_name(&usb_dev->dev), retval);
910 	}
911 	mutex_unlock(&usb_bus_list_lock);
912 
913 	if (retval == 0) {
914 		spin_lock_irq (&hcd_root_hub_lock);
915 		hcd->rh_registered = 1;
916 		spin_unlock_irq (&hcd_root_hub_lock);
917 
918 		/* Did the HC die before the root hub was registered? */
919 		if (hcd->state == HC_STATE_HALT)
920 			usb_hc_died (hcd);	/* This time clean up */
921 	}
922 
923 	return retval;
924 }
925 
926 
927 /*-------------------------------------------------------------------------*/
928 
929 /**
930  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
931  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
932  * @is_input: true iff the transaction sends data to the host
933  * @isoc: true for isochronous transactions, false for interrupt ones
934  * @bytecount: how many bytes in the transaction.
935  *
936  * Returns approximate bus time in nanoseconds for a periodic transaction.
937  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
938  * scheduled in software, this function is only used for such scheduling.
939  */
940 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
941 {
942 	unsigned long	tmp;
943 
944 	switch (speed) {
945 	case USB_SPEED_LOW: 	/* INTR only */
946 		if (is_input) {
947 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
948 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
949 		} else {
950 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
951 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
952 		}
953 	case USB_SPEED_FULL:	/* ISOC or INTR */
954 		if (isoc) {
955 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
956 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
957 		} else {
958 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
959 			return (9107L + BW_HOST_DELAY + tmp);
960 		}
961 	case USB_SPEED_HIGH:	/* ISOC or INTR */
962 		// FIXME adjust for input vs output
963 		if (isoc)
964 			tmp = HS_NSECS_ISO (bytecount);
965 		else
966 			tmp = HS_NSECS (bytecount);
967 		return tmp;
968 	default:
969 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
970 		return -1;
971 	}
972 }
973 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
974 
975 
976 /*-------------------------------------------------------------------------*/
977 
978 /*
979  * Generic HC operations.
980  */
981 
982 /*-------------------------------------------------------------------------*/
983 
984 /**
985  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
986  * @hcd: host controller to which @urb was submitted
987  * @urb: URB being submitted
988  *
989  * Host controller drivers should call this routine in their enqueue()
990  * method.  The HCD's private spinlock must be held and interrupts must
991  * be disabled.  The actions carried out here are required for URB
992  * submission, as well as for endpoint shutdown and for usb_kill_urb.
993  *
994  * Returns 0 for no error, otherwise a negative error code (in which case
995  * the enqueue() method must fail).  If no error occurs but enqueue() fails
996  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
997  * the private spinlock and returning.
998  */
999 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1000 {
1001 	int		rc = 0;
1002 
1003 	spin_lock(&hcd_urb_list_lock);
1004 
1005 	/* Check that the URB isn't being killed */
1006 	if (unlikely(atomic_read(&urb->reject))) {
1007 		rc = -EPERM;
1008 		goto done;
1009 	}
1010 
1011 	if (unlikely(!urb->ep->enabled)) {
1012 		rc = -ENOENT;
1013 		goto done;
1014 	}
1015 
1016 	if (unlikely(!urb->dev->can_submit)) {
1017 		rc = -EHOSTUNREACH;
1018 		goto done;
1019 	}
1020 
1021 	/*
1022 	 * Check the host controller's state and add the URB to the
1023 	 * endpoint's queue.
1024 	 */
1025 	switch (hcd->state) {
1026 	case HC_STATE_RUNNING:
1027 	case HC_STATE_RESUMING:
1028 		urb->unlinked = 0;
1029 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1030 		break;
1031 	default:
1032 		rc = -ESHUTDOWN;
1033 		goto done;
1034 	}
1035  done:
1036 	spin_unlock(&hcd_urb_list_lock);
1037 	return rc;
1038 }
1039 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1040 
1041 /**
1042  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1043  * @hcd: host controller to which @urb was submitted
1044  * @urb: URB being checked for unlinkability
1045  * @status: error code to store in @urb if the unlink succeeds
1046  *
1047  * Host controller drivers should call this routine in their dequeue()
1048  * method.  The HCD's private spinlock must be held and interrupts must
1049  * be disabled.  The actions carried out here are required for making
1050  * sure than an unlink is valid.
1051  *
1052  * Returns 0 for no error, otherwise a negative error code (in which case
1053  * the dequeue() method must fail).  The possible error codes are:
1054  *
1055  *	-EIDRM: @urb was not submitted or has already completed.
1056  *		The completion function may not have been called yet.
1057  *
1058  *	-EBUSY: @urb has already been unlinked.
1059  */
1060 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1061 		int status)
1062 {
1063 	struct list_head	*tmp;
1064 
1065 	/* insist the urb is still queued */
1066 	list_for_each(tmp, &urb->ep->urb_list) {
1067 		if (tmp == &urb->urb_list)
1068 			break;
1069 	}
1070 	if (tmp != &urb->urb_list)
1071 		return -EIDRM;
1072 
1073 	/* Any status except -EINPROGRESS means something already started to
1074 	 * unlink this URB from the hardware.  So there's no more work to do.
1075 	 */
1076 	if (urb->unlinked)
1077 		return -EBUSY;
1078 	urb->unlinked = status;
1079 
1080 	/* IRQ setup can easily be broken so that USB controllers
1081 	 * never get completion IRQs ... maybe even the ones we need to
1082 	 * finish unlinking the initial failed usb_set_address()
1083 	 * or device descriptor fetch.
1084 	 */
1085 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1086 			!is_root_hub(urb->dev)) {
1087 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1088 			"Controller is probably using the wrong IRQ.\n");
1089 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1090 	}
1091 
1092 	return 0;
1093 }
1094 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1095 
1096 /**
1097  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1098  * @hcd: host controller to which @urb was submitted
1099  * @urb: URB being unlinked
1100  *
1101  * Host controller drivers should call this routine before calling
1102  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1103  * interrupts must be disabled.  The actions carried out here are required
1104  * for URB completion.
1105  */
1106 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1107 {
1108 	/* clear all state linking urb to this dev (and hcd) */
1109 	spin_lock(&hcd_urb_list_lock);
1110 	list_del_init(&urb->urb_list);
1111 	spin_unlock(&hcd_urb_list_lock);
1112 }
1113 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1114 
1115 /*
1116  * Some usb host controllers can only perform dma using a small SRAM area.
1117  * The usb core itself is however optimized for host controllers that can dma
1118  * using regular system memory - like pci devices doing bus mastering.
1119  *
1120  * To support host controllers with limited dma capabilites we provide dma
1121  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1122  * For this to work properly the host controller code must first use the
1123  * function dma_declare_coherent_memory() to point out which memory area
1124  * that should be used for dma allocations.
1125  *
1126  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1127  * dma using dma_alloc_coherent() which in turn allocates from the memory
1128  * area pointed out with dma_declare_coherent_memory().
1129  *
1130  * So, to summarize...
1131  *
1132  * - We need "local" memory, canonical example being
1133  *   a small SRAM on a discrete controller being the
1134  *   only memory that the controller can read ...
1135  *   (a) "normal" kernel memory is no good, and
1136  *   (b) there's not enough to share
1137  *
1138  * - The only *portable* hook for such stuff in the
1139  *   DMA framework is dma_declare_coherent_memory()
1140  *
1141  * - So we use that, even though the primary requirement
1142  *   is that the memory be "local" (hence addressible
1143  *   by that device), not "coherent".
1144  *
1145  */
1146 
1147 static int hcd_alloc_coherent(struct usb_bus *bus,
1148 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1149 			      void **vaddr_handle, size_t size,
1150 			      enum dma_data_direction dir)
1151 {
1152 	unsigned char *vaddr;
1153 
1154 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1155 				 mem_flags, dma_handle);
1156 	if (!vaddr)
1157 		return -ENOMEM;
1158 
1159 	/*
1160 	 * Store the virtual address of the buffer at the end
1161 	 * of the allocated dma buffer. The size of the buffer
1162 	 * may be uneven so use unaligned functions instead
1163 	 * of just rounding up. It makes sense to optimize for
1164 	 * memory footprint over access speed since the amount
1165 	 * of memory available for dma may be limited.
1166 	 */
1167 	put_unaligned((unsigned long)*vaddr_handle,
1168 		      (unsigned long *)(vaddr + size));
1169 
1170 	if (dir == DMA_TO_DEVICE)
1171 		memcpy(vaddr, *vaddr_handle, size);
1172 
1173 	*vaddr_handle = vaddr;
1174 	return 0;
1175 }
1176 
1177 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1178 			      void **vaddr_handle, size_t size,
1179 			      enum dma_data_direction dir)
1180 {
1181 	unsigned char *vaddr = *vaddr_handle;
1182 
1183 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1184 
1185 	if (dir == DMA_FROM_DEVICE)
1186 		memcpy(vaddr, *vaddr_handle, size);
1187 
1188 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1189 
1190 	*vaddr_handle = vaddr;
1191 	*dma_handle = 0;
1192 }
1193 
1194 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1195 			   gfp_t mem_flags)
1196 {
1197 	enum dma_data_direction dir;
1198 	int ret = 0;
1199 
1200 	/* Map the URB's buffers for DMA access.
1201 	 * Lower level HCD code should use *_dma exclusively,
1202 	 * unless it uses pio or talks to another transport.
1203 	 */
1204 	if (is_root_hub(urb->dev))
1205 		return 0;
1206 
1207 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1208 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1209 		if (hcd->self.uses_dma)
1210 			urb->setup_dma = dma_map_single(
1211 					hcd->self.controller,
1212 					urb->setup_packet,
1213 					sizeof(struct usb_ctrlrequest),
1214 					DMA_TO_DEVICE);
1215 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1216 			ret = hcd_alloc_coherent(
1217 					urb->dev->bus, mem_flags,
1218 					&urb->setup_dma,
1219 					(void **)&urb->setup_packet,
1220 					sizeof(struct usb_ctrlrequest),
1221 					DMA_TO_DEVICE);
1222 	}
1223 
1224 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1225 	if (ret == 0 && urb->transfer_buffer_length != 0
1226 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1227 		if (hcd->self.uses_dma)
1228 			urb->transfer_dma = dma_map_single (
1229 					hcd->self.controller,
1230 					urb->transfer_buffer,
1231 					urb->transfer_buffer_length,
1232 					dir);
1233 		else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1234 			ret = hcd_alloc_coherent(
1235 					urb->dev->bus, mem_flags,
1236 					&urb->transfer_dma,
1237 					&urb->transfer_buffer,
1238 					urb->transfer_buffer_length,
1239 					dir);
1240 
1241 			if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1242 			    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1243 				hcd_free_coherent(urb->dev->bus,
1244 					&urb->setup_dma,
1245 					(void **)&urb->setup_packet,
1246 					sizeof(struct usb_ctrlrequest),
1247 					DMA_TO_DEVICE);
1248 		}
1249 	}
1250 	return ret;
1251 }
1252 
1253 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1254 {
1255 	enum dma_data_direction dir;
1256 
1257 	if (is_root_hub(urb->dev))
1258 		return;
1259 
1260 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1261 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1262 		if (hcd->self.uses_dma)
1263 			dma_unmap_single(hcd->self.controller, urb->setup_dma,
1264 					sizeof(struct usb_ctrlrequest),
1265 					DMA_TO_DEVICE);
1266 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1267 			hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1268 					(void **)&urb->setup_packet,
1269 					sizeof(struct usb_ctrlrequest),
1270 					DMA_TO_DEVICE);
1271 	}
1272 
1273 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1274 	if (urb->transfer_buffer_length != 0
1275 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1276 		if (hcd->self.uses_dma)
1277 			dma_unmap_single(hcd->self.controller,
1278 					urb->transfer_dma,
1279 					urb->transfer_buffer_length,
1280 					dir);
1281 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1282 			hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1283 					&urb->transfer_buffer,
1284 					urb->transfer_buffer_length,
1285 					dir);
1286 	}
1287 }
1288 
1289 /*-------------------------------------------------------------------------*/
1290 
1291 /* may be called in any context with a valid urb->dev usecount
1292  * caller surrenders "ownership" of urb
1293  * expects usb_submit_urb() to have sanity checked and conditioned all
1294  * inputs in the urb
1295  */
1296 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1297 {
1298 	int			status;
1299 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1300 
1301 	/* increment urb's reference count as part of giving it to the HCD
1302 	 * (which will control it).  HCD guarantees that it either returns
1303 	 * an error or calls giveback(), but not both.
1304 	 */
1305 	usb_get_urb(urb);
1306 	atomic_inc(&urb->use_count);
1307 	atomic_inc(&urb->dev->urbnum);
1308 	usbmon_urb_submit(&hcd->self, urb);
1309 
1310 	/* NOTE requirements on root-hub callers (usbfs and the hub
1311 	 * driver, for now):  URBs' urb->transfer_buffer must be
1312 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1313 	 * they could clobber root hub response data.  Also, control
1314 	 * URBs must be submitted in process context with interrupts
1315 	 * enabled.
1316 	 */
1317 	status = map_urb_for_dma(hcd, urb, mem_flags);
1318 	if (unlikely(status)) {
1319 		usbmon_urb_submit_error(&hcd->self, urb, status);
1320 		goto error;
1321 	}
1322 
1323 	if (is_root_hub(urb->dev))
1324 		status = rh_urb_enqueue(hcd, urb);
1325 	else
1326 		status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1327 
1328 	if (unlikely(status)) {
1329 		usbmon_urb_submit_error(&hcd->self, urb, status);
1330 		unmap_urb_for_dma(hcd, urb);
1331  error:
1332 		urb->hcpriv = NULL;
1333 		INIT_LIST_HEAD(&urb->urb_list);
1334 		atomic_dec(&urb->use_count);
1335 		atomic_dec(&urb->dev->urbnum);
1336 		if (atomic_read(&urb->reject))
1337 			wake_up(&usb_kill_urb_queue);
1338 		usb_put_urb(urb);
1339 	}
1340 	return status;
1341 }
1342 
1343 /*-------------------------------------------------------------------------*/
1344 
1345 /* this makes the hcd giveback() the urb more quickly, by kicking it
1346  * off hardware queues (which may take a while) and returning it as
1347  * soon as practical.  we've already set up the urb's return status,
1348  * but we can't know if the callback completed already.
1349  */
1350 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1351 {
1352 	int		value;
1353 
1354 	if (is_root_hub(urb->dev))
1355 		value = usb_rh_urb_dequeue(hcd, urb, status);
1356 	else {
1357 
1358 		/* The only reason an HCD might fail this call is if
1359 		 * it has not yet fully queued the urb to begin with.
1360 		 * Such failures should be harmless. */
1361 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1362 	}
1363 	return value;
1364 }
1365 
1366 /*
1367  * called in any context
1368  *
1369  * caller guarantees urb won't be recycled till both unlink()
1370  * and the urb's completion function return
1371  */
1372 int usb_hcd_unlink_urb (struct urb *urb, int status)
1373 {
1374 	struct usb_hcd		*hcd;
1375 	int			retval = -EIDRM;
1376 	unsigned long		flags;
1377 
1378 	/* Prevent the device and bus from going away while
1379 	 * the unlink is carried out.  If they are already gone
1380 	 * then urb->use_count must be 0, since disconnected
1381 	 * devices can't have any active URBs.
1382 	 */
1383 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1384 	if (atomic_read(&urb->use_count) > 0) {
1385 		retval = 0;
1386 		usb_get_dev(urb->dev);
1387 	}
1388 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1389 	if (retval == 0) {
1390 		hcd = bus_to_hcd(urb->dev->bus);
1391 		retval = unlink1(hcd, urb, status);
1392 		usb_put_dev(urb->dev);
1393 	}
1394 
1395 	if (retval == 0)
1396 		retval = -EINPROGRESS;
1397 	else if (retval != -EIDRM && retval != -EBUSY)
1398 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1399 				urb, retval);
1400 	return retval;
1401 }
1402 
1403 /*-------------------------------------------------------------------------*/
1404 
1405 /**
1406  * usb_hcd_giveback_urb - return URB from HCD to device driver
1407  * @hcd: host controller returning the URB
1408  * @urb: urb being returned to the USB device driver.
1409  * @status: completion status code for the URB.
1410  * Context: in_interrupt()
1411  *
1412  * This hands the URB from HCD to its USB device driver, using its
1413  * completion function.  The HCD has freed all per-urb resources
1414  * (and is done using urb->hcpriv).  It also released all HCD locks;
1415  * the device driver won't cause problems if it frees, modifies,
1416  * or resubmits this URB.
1417  *
1418  * If @urb was unlinked, the value of @status will be overridden by
1419  * @urb->unlinked.  Erroneous short transfers are detected in case
1420  * the HCD hasn't checked for them.
1421  */
1422 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1423 {
1424 	urb->hcpriv = NULL;
1425 	if (unlikely(urb->unlinked))
1426 		status = urb->unlinked;
1427 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1428 			urb->actual_length < urb->transfer_buffer_length &&
1429 			!status))
1430 		status = -EREMOTEIO;
1431 
1432 	unmap_urb_for_dma(hcd, urb);
1433 	usbmon_urb_complete(&hcd->self, urb, status);
1434 	usb_unanchor_urb(urb);
1435 
1436 	/* pass ownership to the completion handler */
1437 	urb->status = status;
1438 	urb->complete (urb);
1439 	atomic_dec (&urb->use_count);
1440 	if (unlikely(atomic_read(&urb->reject)))
1441 		wake_up (&usb_kill_urb_queue);
1442 	usb_put_urb (urb);
1443 }
1444 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1445 
1446 /*-------------------------------------------------------------------------*/
1447 
1448 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1449  * queue to drain completely.  The caller must first insure that no more
1450  * URBs can be submitted for this endpoint.
1451  */
1452 void usb_hcd_flush_endpoint(struct usb_device *udev,
1453 		struct usb_host_endpoint *ep)
1454 {
1455 	struct usb_hcd		*hcd;
1456 	struct urb		*urb;
1457 
1458 	if (!ep)
1459 		return;
1460 	might_sleep();
1461 	hcd = bus_to_hcd(udev->bus);
1462 
1463 	/* No more submits can occur */
1464 	spin_lock_irq(&hcd_urb_list_lock);
1465 rescan:
1466 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1467 		int	is_in;
1468 
1469 		if (urb->unlinked)
1470 			continue;
1471 		usb_get_urb (urb);
1472 		is_in = usb_urb_dir_in(urb);
1473 		spin_unlock(&hcd_urb_list_lock);
1474 
1475 		/* kick hcd */
1476 		unlink1(hcd, urb, -ESHUTDOWN);
1477 		dev_dbg (hcd->self.controller,
1478 			"shutdown urb %p ep%d%s%s\n",
1479 			urb, usb_endpoint_num(&ep->desc),
1480 			is_in ? "in" : "out",
1481 			({	char *s;
1482 
1483 				 switch (usb_endpoint_type(&ep->desc)) {
1484 				 case USB_ENDPOINT_XFER_CONTROL:
1485 					s = ""; break;
1486 				 case USB_ENDPOINT_XFER_BULK:
1487 					s = "-bulk"; break;
1488 				 case USB_ENDPOINT_XFER_INT:
1489 					s = "-intr"; break;
1490 				 default:
1491 			 		s = "-iso"; break;
1492 				};
1493 				s;
1494 			}));
1495 		usb_put_urb (urb);
1496 
1497 		/* list contents may have changed */
1498 		spin_lock(&hcd_urb_list_lock);
1499 		goto rescan;
1500 	}
1501 	spin_unlock_irq(&hcd_urb_list_lock);
1502 
1503 	/* Wait until the endpoint queue is completely empty */
1504 	while (!list_empty (&ep->urb_list)) {
1505 		spin_lock_irq(&hcd_urb_list_lock);
1506 
1507 		/* The list may have changed while we acquired the spinlock */
1508 		urb = NULL;
1509 		if (!list_empty (&ep->urb_list)) {
1510 			urb = list_entry (ep->urb_list.prev, struct urb,
1511 					urb_list);
1512 			usb_get_urb (urb);
1513 		}
1514 		spin_unlock_irq(&hcd_urb_list_lock);
1515 
1516 		if (urb) {
1517 			usb_kill_urb (urb);
1518 			usb_put_urb (urb);
1519 		}
1520 	}
1521 }
1522 
1523 /* Disables the endpoint: synchronizes with the hcd to make sure all
1524  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1525  * have been called previously.  Use for set_configuration, set_interface,
1526  * driver removal, physical disconnect.
1527  *
1528  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1529  * type, maxpacket size, toggle, halt status, and scheduling.
1530  */
1531 void usb_hcd_disable_endpoint(struct usb_device *udev,
1532 		struct usb_host_endpoint *ep)
1533 {
1534 	struct usb_hcd		*hcd;
1535 
1536 	might_sleep();
1537 	hcd = bus_to_hcd(udev->bus);
1538 	if (hcd->driver->endpoint_disable)
1539 		hcd->driver->endpoint_disable(hcd, ep);
1540 }
1541 
1542 /**
1543  * usb_hcd_reset_endpoint - reset host endpoint state
1544  * @udev: USB device.
1545  * @ep:   the endpoint to reset.
1546  *
1547  * Resets any host endpoint state such as the toggle bit, sequence
1548  * number and current window.
1549  */
1550 void usb_hcd_reset_endpoint(struct usb_device *udev,
1551 			    struct usb_host_endpoint *ep)
1552 {
1553 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1554 
1555 	if (hcd->driver->endpoint_reset)
1556 		hcd->driver->endpoint_reset(hcd, ep);
1557 	else {
1558 		int epnum = usb_endpoint_num(&ep->desc);
1559 		int is_out = usb_endpoint_dir_out(&ep->desc);
1560 		int is_control = usb_endpoint_xfer_control(&ep->desc);
1561 
1562 		usb_settoggle(udev, epnum, is_out, 0);
1563 		if (is_control)
1564 			usb_settoggle(udev, epnum, !is_out, 0);
1565 	}
1566 }
1567 
1568 /* Protect against drivers that try to unlink URBs after the device
1569  * is gone, by waiting until all unlinks for @udev are finished.
1570  * Since we don't currently track URBs by device, simply wait until
1571  * nothing is running in the locked region of usb_hcd_unlink_urb().
1572  */
1573 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1574 {
1575 	spin_lock_irq(&hcd_urb_unlink_lock);
1576 	spin_unlock_irq(&hcd_urb_unlink_lock);
1577 }
1578 
1579 /*-------------------------------------------------------------------------*/
1580 
1581 /* called in any context */
1582 int usb_hcd_get_frame_number (struct usb_device *udev)
1583 {
1584 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1585 
1586 	if (!HC_IS_RUNNING (hcd->state))
1587 		return -ESHUTDOWN;
1588 	return hcd->driver->get_frame_number (hcd);
1589 }
1590 
1591 /*-------------------------------------------------------------------------*/
1592 
1593 #ifdef	CONFIG_PM
1594 
1595 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1596 {
1597 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1598 	int		status;
1599 	int		old_state = hcd->state;
1600 
1601 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1602 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1603 	if (!hcd->driver->bus_suspend) {
1604 		status = -ENOENT;
1605 	} else {
1606 		hcd->state = HC_STATE_QUIESCING;
1607 		status = hcd->driver->bus_suspend(hcd);
1608 	}
1609 	if (status == 0) {
1610 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1611 		hcd->state = HC_STATE_SUSPENDED;
1612 	} else {
1613 		hcd->state = old_state;
1614 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1615 				"suspend", status);
1616 	}
1617 	return status;
1618 }
1619 
1620 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1621 {
1622 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1623 	int		status;
1624 	int		old_state = hcd->state;
1625 
1626 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1627 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1628 	if (!hcd->driver->bus_resume)
1629 		return -ENOENT;
1630 	if (hcd->state == HC_STATE_RUNNING)
1631 		return 0;
1632 
1633 	hcd->state = HC_STATE_RESUMING;
1634 	status = hcd->driver->bus_resume(hcd);
1635 	if (status == 0) {
1636 		/* TRSMRCY = 10 msec */
1637 		msleep(10);
1638 		usb_set_device_state(rhdev, rhdev->actconfig
1639 				? USB_STATE_CONFIGURED
1640 				: USB_STATE_ADDRESS);
1641 		hcd->state = HC_STATE_RUNNING;
1642 	} else {
1643 		hcd->state = old_state;
1644 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1645 				"resume", status);
1646 		if (status != -ESHUTDOWN)
1647 			usb_hc_died(hcd);
1648 	}
1649 	return status;
1650 }
1651 
1652 /* Workqueue routine for root-hub remote wakeup */
1653 static void hcd_resume_work(struct work_struct *work)
1654 {
1655 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1656 	struct usb_device *udev = hcd->self.root_hub;
1657 
1658 	usb_lock_device(udev);
1659 	usb_mark_last_busy(udev);
1660 	usb_external_resume_device(udev, PMSG_REMOTE_RESUME);
1661 	usb_unlock_device(udev);
1662 }
1663 
1664 /**
1665  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1666  * @hcd: host controller for this root hub
1667  *
1668  * The USB host controller calls this function when its root hub is
1669  * suspended (with the remote wakeup feature enabled) and a remote
1670  * wakeup request is received.  The routine submits a workqueue request
1671  * to resume the root hub (that is, manage its downstream ports again).
1672  */
1673 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1674 {
1675 	unsigned long flags;
1676 
1677 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1678 	if (hcd->rh_registered)
1679 		queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1680 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1681 }
1682 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1683 
1684 #endif
1685 
1686 /*-------------------------------------------------------------------------*/
1687 
1688 #ifdef	CONFIG_USB_OTG
1689 
1690 /**
1691  * usb_bus_start_enum - start immediate enumeration (for OTG)
1692  * @bus: the bus (must use hcd framework)
1693  * @port_num: 1-based number of port; usually bus->otg_port
1694  * Context: in_interrupt()
1695  *
1696  * Starts enumeration, with an immediate reset followed later by
1697  * khubd identifying and possibly configuring the device.
1698  * This is needed by OTG controller drivers, where it helps meet
1699  * HNP protocol timing requirements for starting a port reset.
1700  */
1701 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1702 {
1703 	struct usb_hcd		*hcd;
1704 	int			status = -EOPNOTSUPP;
1705 
1706 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1707 	 * boards with root hubs hooked up to internal devices (instead of
1708 	 * just the OTG port) may need more attention to resetting...
1709 	 */
1710 	hcd = container_of (bus, struct usb_hcd, self);
1711 	if (port_num && hcd->driver->start_port_reset)
1712 		status = hcd->driver->start_port_reset(hcd, port_num);
1713 
1714 	/* run khubd shortly after (first) root port reset finishes;
1715 	 * it may issue others, until at least 50 msecs have passed.
1716 	 */
1717 	if (status == 0)
1718 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1719 	return status;
1720 }
1721 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1722 
1723 #endif
1724 
1725 /*-------------------------------------------------------------------------*/
1726 
1727 /**
1728  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1729  * @irq: the IRQ being raised
1730  * @__hcd: pointer to the HCD whose IRQ is being signaled
1731  *
1732  * If the controller isn't HALTed, calls the driver's irq handler.
1733  * Checks whether the controller is now dead.
1734  */
1735 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1736 {
1737 	struct usb_hcd		*hcd = __hcd;
1738 	unsigned long		flags;
1739 	irqreturn_t		rc;
1740 
1741 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
1742 	 * when the first handler doesn't use it.  So let's just
1743 	 * assume it's never used.
1744 	 */
1745 	local_irq_save(flags);
1746 
1747 	if (unlikely(hcd->state == HC_STATE_HALT ||
1748 		     !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1749 		rc = IRQ_NONE;
1750 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1751 		rc = IRQ_NONE;
1752 	} else {
1753 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1754 
1755 		if (unlikely(hcd->state == HC_STATE_HALT))
1756 			usb_hc_died(hcd);
1757 		rc = IRQ_HANDLED;
1758 	}
1759 
1760 	local_irq_restore(flags);
1761 	return rc;
1762 }
1763 
1764 /*-------------------------------------------------------------------------*/
1765 
1766 /**
1767  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1768  * @hcd: pointer to the HCD representing the controller
1769  *
1770  * This is called by bus glue to report a USB host controller that died
1771  * while operations may still have been pending.  It's called automatically
1772  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1773  */
1774 void usb_hc_died (struct usb_hcd *hcd)
1775 {
1776 	unsigned long flags;
1777 
1778 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1779 
1780 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1781 	if (hcd->rh_registered) {
1782 		hcd->poll_rh = 0;
1783 
1784 		/* make khubd clean up old urbs and devices */
1785 		usb_set_device_state (hcd->self.root_hub,
1786 				USB_STATE_NOTATTACHED);
1787 		usb_kick_khubd (hcd->self.root_hub);
1788 	}
1789 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1790 }
1791 EXPORT_SYMBOL_GPL (usb_hc_died);
1792 
1793 /*-------------------------------------------------------------------------*/
1794 
1795 /**
1796  * usb_create_hcd - create and initialize an HCD structure
1797  * @driver: HC driver that will use this hcd
1798  * @dev: device for this HC, stored in hcd->self.controller
1799  * @bus_name: value to store in hcd->self.bus_name
1800  * Context: !in_interrupt()
1801  *
1802  * Allocate a struct usb_hcd, with extra space at the end for the
1803  * HC driver's private data.  Initialize the generic members of the
1804  * hcd structure.
1805  *
1806  * If memory is unavailable, returns NULL.
1807  */
1808 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1809 		struct device *dev, const char *bus_name)
1810 {
1811 	struct usb_hcd *hcd;
1812 
1813 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1814 	if (!hcd) {
1815 		dev_dbg (dev, "hcd alloc failed\n");
1816 		return NULL;
1817 	}
1818 	dev_set_drvdata(dev, hcd);
1819 	kref_init(&hcd->kref);
1820 
1821 	usb_bus_init(&hcd->self);
1822 	hcd->self.controller = dev;
1823 	hcd->self.bus_name = bus_name;
1824 	hcd->self.uses_dma = (dev->dma_mask != NULL);
1825 
1826 	init_timer(&hcd->rh_timer);
1827 	hcd->rh_timer.function = rh_timer_func;
1828 	hcd->rh_timer.data = (unsigned long) hcd;
1829 #ifdef CONFIG_PM
1830 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1831 #endif
1832 
1833 	hcd->driver = driver;
1834 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1835 			"USB Host Controller";
1836 	return hcd;
1837 }
1838 EXPORT_SYMBOL_GPL(usb_create_hcd);
1839 
1840 static void hcd_release (struct kref *kref)
1841 {
1842 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1843 
1844 	kfree(hcd);
1845 }
1846 
1847 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1848 {
1849 	if (hcd)
1850 		kref_get (&hcd->kref);
1851 	return hcd;
1852 }
1853 EXPORT_SYMBOL_GPL(usb_get_hcd);
1854 
1855 void usb_put_hcd (struct usb_hcd *hcd)
1856 {
1857 	if (hcd)
1858 		kref_put (&hcd->kref, hcd_release);
1859 }
1860 EXPORT_SYMBOL_GPL(usb_put_hcd);
1861 
1862 /**
1863  * usb_add_hcd - finish generic HCD structure initialization and register
1864  * @hcd: the usb_hcd structure to initialize
1865  * @irqnum: Interrupt line to allocate
1866  * @irqflags: Interrupt type flags
1867  *
1868  * Finish the remaining parts of generic HCD initialization: allocate the
1869  * buffers of consistent memory, register the bus, request the IRQ line,
1870  * and call the driver's reset() and start() routines.
1871  */
1872 int usb_add_hcd(struct usb_hcd *hcd,
1873 		unsigned int irqnum, unsigned long irqflags)
1874 {
1875 	int retval;
1876 	struct usb_device *rhdev;
1877 
1878 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1879 
1880 	hcd->authorized_default = hcd->wireless? 0 : 1;
1881 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1882 
1883 	/* HC is in reset state, but accessible.  Now do the one-time init,
1884 	 * bottom up so that hcds can customize the root hubs before khubd
1885 	 * starts talking to them.  (Note, bus id is assigned early too.)
1886 	 */
1887 	if ((retval = hcd_buffer_create(hcd)) != 0) {
1888 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
1889 		return retval;
1890 	}
1891 
1892 	if ((retval = usb_register_bus(&hcd->self)) < 0)
1893 		goto err_register_bus;
1894 
1895 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1896 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
1897 		retval = -ENOMEM;
1898 		goto err_allocate_root_hub;
1899 	}
1900 	rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1901 			USB_SPEED_FULL;
1902 	hcd->self.root_hub = rhdev;
1903 
1904 	/* wakeup flag init defaults to "everything works" for root hubs,
1905 	 * but drivers can override it in reset() if needed, along with
1906 	 * recording the overall controller's system wakeup capability.
1907 	 */
1908 	device_init_wakeup(&rhdev->dev, 1);
1909 
1910 	/* "reset" is misnamed; its role is now one-time init. the controller
1911 	 * should already have been reset (and boot firmware kicked off etc).
1912 	 */
1913 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1914 		dev_err(hcd->self.controller, "can't setup\n");
1915 		goto err_hcd_driver_setup;
1916 	}
1917 
1918 	/* NOTE: root hub and controller capabilities may not be the same */
1919 	if (device_can_wakeup(hcd->self.controller)
1920 			&& device_can_wakeup(&hcd->self.root_hub->dev))
1921 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1922 
1923 	/* enable irqs just before we start the controller */
1924 	if (hcd->driver->irq) {
1925 
1926 		/* IRQF_DISABLED doesn't work as advertised when used together
1927 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1928 		 * interrupts we can remove it here.
1929 		 */
1930 		if (irqflags & IRQF_SHARED)
1931 			irqflags &= ~IRQF_DISABLED;
1932 
1933 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1934 				hcd->driver->description, hcd->self.busnum);
1935 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1936 				hcd->irq_descr, hcd)) != 0) {
1937 			dev_err(hcd->self.controller,
1938 					"request interrupt %d failed\n", irqnum);
1939 			goto err_request_irq;
1940 		}
1941 		hcd->irq = irqnum;
1942 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1943 				(hcd->driver->flags & HCD_MEMORY) ?
1944 					"io mem" : "io base",
1945 					(unsigned long long)hcd->rsrc_start);
1946 	} else {
1947 		hcd->irq = -1;
1948 		if (hcd->rsrc_start)
1949 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
1950 					(hcd->driver->flags & HCD_MEMORY) ?
1951 					"io mem" : "io base",
1952 					(unsigned long long)hcd->rsrc_start);
1953 	}
1954 
1955 	if ((retval = hcd->driver->start(hcd)) < 0) {
1956 		dev_err(hcd->self.controller, "startup error %d\n", retval);
1957 		goto err_hcd_driver_start;
1958 	}
1959 
1960 	/* starting here, usbcore will pay attention to this root hub */
1961 	rhdev->bus_mA = min(500u, hcd->power_budget);
1962 	if ((retval = register_root_hub(hcd)) != 0)
1963 		goto err_register_root_hub;
1964 
1965 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1966 	if (retval < 0) {
1967 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1968 		       retval);
1969 		goto error_create_attr_group;
1970 	}
1971 	if (hcd->uses_new_polling && hcd->poll_rh)
1972 		usb_hcd_poll_rh_status(hcd);
1973 	return retval;
1974 
1975 error_create_attr_group:
1976 	mutex_lock(&usb_bus_list_lock);
1977 	usb_disconnect(&hcd->self.root_hub);
1978 	mutex_unlock(&usb_bus_list_lock);
1979 err_register_root_hub:
1980 	hcd->driver->stop(hcd);
1981 err_hcd_driver_start:
1982 	if (hcd->irq >= 0)
1983 		free_irq(irqnum, hcd);
1984 err_request_irq:
1985 err_hcd_driver_setup:
1986 	hcd->self.root_hub = NULL;
1987 	usb_put_dev(rhdev);
1988 err_allocate_root_hub:
1989 	usb_deregister_bus(&hcd->self);
1990 err_register_bus:
1991 	hcd_buffer_destroy(hcd);
1992 	return retval;
1993 }
1994 EXPORT_SYMBOL_GPL(usb_add_hcd);
1995 
1996 /**
1997  * usb_remove_hcd - shutdown processing for generic HCDs
1998  * @hcd: the usb_hcd structure to remove
1999  * Context: !in_interrupt()
2000  *
2001  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2002  * invoking the HCD's stop() method.
2003  */
2004 void usb_remove_hcd(struct usb_hcd *hcd)
2005 {
2006 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2007 
2008 	if (HC_IS_RUNNING (hcd->state))
2009 		hcd->state = HC_STATE_QUIESCING;
2010 
2011 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2012 	spin_lock_irq (&hcd_root_hub_lock);
2013 	hcd->rh_registered = 0;
2014 	spin_unlock_irq (&hcd_root_hub_lock);
2015 
2016 #ifdef CONFIG_PM
2017 	cancel_work_sync(&hcd->wakeup_work);
2018 #endif
2019 
2020 	sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
2021 	mutex_lock(&usb_bus_list_lock);
2022 	usb_disconnect(&hcd->self.root_hub);
2023 	mutex_unlock(&usb_bus_list_lock);
2024 
2025 	hcd->driver->stop(hcd);
2026 	hcd->state = HC_STATE_HALT;
2027 
2028 	hcd->poll_rh = 0;
2029 	del_timer_sync(&hcd->rh_timer);
2030 
2031 	if (hcd->irq >= 0)
2032 		free_irq(hcd->irq, hcd);
2033 	usb_deregister_bus(&hcd->self);
2034 	hcd_buffer_destroy(hcd);
2035 }
2036 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2037 
2038 void
2039 usb_hcd_platform_shutdown(struct platform_device* dev)
2040 {
2041 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2042 
2043 	if (hcd->driver->shutdown)
2044 		hcd->driver->shutdown(hcd);
2045 }
2046 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2047 
2048 /*-------------------------------------------------------------------------*/
2049 
2050 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2051 
2052 struct usb_mon_operations *mon_ops;
2053 
2054 /*
2055  * The registration is unlocked.
2056  * We do it this way because we do not want to lock in hot paths.
2057  *
2058  * Notice that the code is minimally error-proof. Because usbmon needs
2059  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2060  */
2061 
2062 int usb_mon_register (struct usb_mon_operations *ops)
2063 {
2064 
2065 	if (mon_ops)
2066 		return -EBUSY;
2067 
2068 	mon_ops = ops;
2069 	mb();
2070 	return 0;
2071 }
2072 EXPORT_SYMBOL_GPL (usb_mon_register);
2073 
2074 void usb_mon_deregister (void)
2075 {
2076 
2077 	if (mon_ops == NULL) {
2078 		printk(KERN_ERR "USB: monitor was not registered\n");
2079 		return;
2080 	}
2081 	mon_ops = NULL;
2082 	mb();
2083 }
2084 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2085 
2086 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2087