1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 #include <linux/usb/hcd.h> 44 45 #include "usb.h" 46 47 48 /*-------------------------------------------------------------------------*/ 49 50 /* 51 * USB Host Controller Driver framework 52 * 53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 54 * HCD-specific behaviors/bugs. 55 * 56 * This does error checks, tracks devices and urbs, and delegates to a 57 * "hc_driver" only for code (and data) that really needs to know about 58 * hardware differences. That includes root hub registers, i/o queues, 59 * and so on ... but as little else as possible. 60 * 61 * Shared code includes most of the "root hub" code (these are emulated, 62 * though each HC's hardware works differently) and PCI glue, plus request 63 * tracking overhead. The HCD code should only block on spinlocks or on 64 * hardware handshaking; blocking on software events (such as other kernel 65 * threads releasing resources, or completing actions) is all generic. 66 * 67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 69 * only by the hub driver ... and that neither should be seen or used by 70 * usb client device drivers. 71 * 72 * Contributors of ideas or unattributed patches include: David Brownell, 73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 74 * 75 * HISTORY: 76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 77 * associated cleanup. "usb_hcd" still != "usb_bus". 78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 79 */ 80 81 /*-------------------------------------------------------------------------*/ 82 83 /* Keep track of which host controller drivers are loaded */ 84 unsigned long usb_hcds_loaded; 85 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 86 87 /* host controllers we manage */ 88 LIST_HEAD (usb_bus_list); 89 EXPORT_SYMBOL_GPL (usb_bus_list); 90 91 /* used when allocating bus numbers */ 92 #define USB_MAXBUS 64 93 struct usb_busmap { 94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 95 }; 96 static struct usb_busmap busmap; 97 98 /* used when updating list of hcds */ 99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 100 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 101 102 /* used for controlling access to virtual root hubs */ 103 static DEFINE_SPINLOCK(hcd_root_hub_lock); 104 105 /* used when updating an endpoint's URB list */ 106 static DEFINE_SPINLOCK(hcd_urb_list_lock); 107 108 /* used to protect against unlinking URBs after the device is gone */ 109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 110 111 /* wait queue for synchronous unlinks */ 112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 113 114 static inline int is_root_hub(struct usb_device *udev) 115 { 116 return (udev->parent == NULL); 117 } 118 119 /*-------------------------------------------------------------------------*/ 120 121 /* 122 * Sharable chunks of root hub code. 123 */ 124 125 /*-------------------------------------------------------------------------*/ 126 127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 129 130 /* usb 3.0 root hub device descriptor */ 131 static const u8 usb3_rh_dev_descriptor[18] = { 132 0x12, /* __u8 bLength; */ 133 0x01, /* __u8 bDescriptorType; Device */ 134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 135 136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 137 0x00, /* __u8 bDeviceSubClass; */ 138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 140 141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 144 145 0x03, /* __u8 iManufacturer; */ 146 0x02, /* __u8 iProduct; */ 147 0x01, /* __u8 iSerialNumber; */ 148 0x01 /* __u8 bNumConfigurations; */ 149 }; 150 151 /* usb 2.0 root hub device descriptor */ 152 static const u8 usb2_rh_dev_descriptor [18] = { 153 0x12, /* __u8 bLength; */ 154 0x01, /* __u8 bDescriptorType; Device */ 155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 156 157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 158 0x00, /* __u8 bDeviceSubClass; */ 159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 161 162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 165 166 0x03, /* __u8 iManufacturer; */ 167 0x02, /* __u8 iProduct; */ 168 0x01, /* __u8 iSerialNumber; */ 169 0x01 /* __u8 bNumConfigurations; */ 170 }; 171 172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 173 174 /* usb 1.1 root hub device descriptor */ 175 static const u8 usb11_rh_dev_descriptor [18] = { 176 0x12, /* __u8 bLength; */ 177 0x01, /* __u8 bDescriptorType; Device */ 178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 179 180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 181 0x00, /* __u8 bDeviceSubClass; */ 182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 184 185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 188 189 0x03, /* __u8 iManufacturer; */ 190 0x02, /* __u8 iProduct; */ 191 0x01, /* __u8 iSerialNumber; */ 192 0x01 /* __u8 bNumConfigurations; */ 193 }; 194 195 196 /*-------------------------------------------------------------------------*/ 197 198 /* Configuration descriptors for our root hubs */ 199 200 static const u8 fs_rh_config_descriptor [] = { 201 202 /* one configuration */ 203 0x09, /* __u8 bLength; */ 204 0x02, /* __u8 bDescriptorType; Configuration */ 205 0x19, 0x00, /* __le16 wTotalLength; */ 206 0x01, /* __u8 bNumInterfaces; (1) */ 207 0x01, /* __u8 bConfigurationValue; */ 208 0x00, /* __u8 iConfiguration; */ 209 0xc0, /* __u8 bmAttributes; 210 Bit 7: must be set, 211 6: Self-powered, 212 5: Remote wakeup, 213 4..0: resvd */ 214 0x00, /* __u8 MaxPower; */ 215 216 /* USB 1.1: 217 * USB 2.0, single TT organization (mandatory): 218 * one interface, protocol 0 219 * 220 * USB 2.0, multiple TT organization (optional): 221 * two interfaces, protocols 1 (like single TT) 222 * and 2 (multiple TT mode) ... config is 223 * sometimes settable 224 * NOT IMPLEMENTED 225 */ 226 227 /* one interface */ 228 0x09, /* __u8 if_bLength; */ 229 0x04, /* __u8 if_bDescriptorType; Interface */ 230 0x00, /* __u8 if_bInterfaceNumber; */ 231 0x00, /* __u8 if_bAlternateSetting; */ 232 0x01, /* __u8 if_bNumEndpoints; */ 233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 234 0x00, /* __u8 if_bInterfaceSubClass; */ 235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 236 0x00, /* __u8 if_iInterface; */ 237 238 /* one endpoint (status change endpoint) */ 239 0x07, /* __u8 ep_bLength; */ 240 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 242 0x03, /* __u8 ep_bmAttributes; Interrupt */ 243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 245 }; 246 247 static const u8 hs_rh_config_descriptor [] = { 248 249 /* one configuration */ 250 0x09, /* __u8 bLength; */ 251 0x02, /* __u8 bDescriptorType; Configuration */ 252 0x19, 0x00, /* __le16 wTotalLength; */ 253 0x01, /* __u8 bNumInterfaces; (1) */ 254 0x01, /* __u8 bConfigurationValue; */ 255 0x00, /* __u8 iConfiguration; */ 256 0xc0, /* __u8 bmAttributes; 257 Bit 7: must be set, 258 6: Self-powered, 259 5: Remote wakeup, 260 4..0: resvd */ 261 0x00, /* __u8 MaxPower; */ 262 263 /* USB 1.1: 264 * USB 2.0, single TT organization (mandatory): 265 * one interface, protocol 0 266 * 267 * USB 2.0, multiple TT organization (optional): 268 * two interfaces, protocols 1 (like single TT) 269 * and 2 (multiple TT mode) ... config is 270 * sometimes settable 271 * NOT IMPLEMENTED 272 */ 273 274 /* one interface */ 275 0x09, /* __u8 if_bLength; */ 276 0x04, /* __u8 if_bDescriptorType; Interface */ 277 0x00, /* __u8 if_bInterfaceNumber; */ 278 0x00, /* __u8 if_bAlternateSetting; */ 279 0x01, /* __u8 if_bNumEndpoints; */ 280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 281 0x00, /* __u8 if_bInterfaceSubClass; */ 282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 283 0x00, /* __u8 if_iInterface; */ 284 285 /* one endpoint (status change endpoint) */ 286 0x07, /* __u8 ep_bLength; */ 287 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 289 0x03, /* __u8 ep_bmAttributes; Interrupt */ 290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 291 * see hub.c:hub_configure() for details. */ 292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 294 }; 295 296 static const u8 ss_rh_config_descriptor[] = { 297 /* one configuration */ 298 0x09, /* __u8 bLength; */ 299 0x02, /* __u8 bDescriptorType; Configuration */ 300 0x1f, 0x00, /* __le16 wTotalLength; */ 301 0x01, /* __u8 bNumInterfaces; (1) */ 302 0x01, /* __u8 bConfigurationValue; */ 303 0x00, /* __u8 iConfiguration; */ 304 0xc0, /* __u8 bmAttributes; 305 Bit 7: must be set, 306 6: Self-powered, 307 5: Remote wakeup, 308 4..0: resvd */ 309 0x00, /* __u8 MaxPower; */ 310 311 /* one interface */ 312 0x09, /* __u8 if_bLength; */ 313 0x04, /* __u8 if_bDescriptorType; Interface */ 314 0x00, /* __u8 if_bInterfaceNumber; */ 315 0x00, /* __u8 if_bAlternateSetting; */ 316 0x01, /* __u8 if_bNumEndpoints; */ 317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 318 0x00, /* __u8 if_bInterfaceSubClass; */ 319 0x00, /* __u8 if_bInterfaceProtocol; */ 320 0x00, /* __u8 if_iInterface; */ 321 322 /* one endpoint (status change endpoint) */ 323 0x07, /* __u8 ep_bLength; */ 324 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 326 0x03, /* __u8 ep_bmAttributes; Interrupt */ 327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 328 * see hub.c:hub_configure() for details. */ 329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 331 332 /* one SuperSpeed endpoint companion descriptor */ 333 0x06, /* __u8 ss_bLength */ 334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */ 335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 338 }; 339 340 /*-------------------------------------------------------------------------*/ 341 342 /** 343 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 344 * @s: Null-terminated ASCII (actually ISO-8859-1) string 345 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 346 * @len: Length (in bytes; may be odd) of descriptor buffer. 347 * 348 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or 349 * buflen, whichever is less. 350 * 351 * USB String descriptors can contain at most 126 characters; input 352 * strings longer than that are truncated. 353 */ 354 static unsigned 355 ascii2desc(char const *s, u8 *buf, unsigned len) 356 { 357 unsigned n, t = 2 + 2*strlen(s); 358 359 if (t > 254) 360 t = 254; /* Longest possible UTF string descriptor */ 361 if (len > t) 362 len = t; 363 364 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 365 366 n = len; 367 while (n--) { 368 *buf++ = t; 369 if (!n--) 370 break; 371 *buf++ = t >> 8; 372 t = (unsigned char)*s++; 373 } 374 return len; 375 } 376 377 /** 378 * rh_string() - provides string descriptors for root hub 379 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 380 * @hcd: the host controller for this root hub 381 * @data: buffer for output packet 382 * @len: length of the provided buffer 383 * 384 * Produces either a manufacturer, product or serial number string for the 385 * virtual root hub device. 386 * Returns the number of bytes filled in: the length of the descriptor or 387 * of the provided buffer, whichever is less. 388 */ 389 static unsigned 390 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 391 { 392 char buf[100]; 393 char const *s; 394 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 395 396 // language ids 397 switch (id) { 398 case 0: 399 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 400 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 401 if (len > 4) 402 len = 4; 403 memcpy(data, langids, len); 404 return len; 405 case 1: 406 /* Serial number */ 407 s = hcd->self.bus_name; 408 break; 409 case 2: 410 /* Product name */ 411 s = hcd->product_desc; 412 break; 413 case 3: 414 /* Manufacturer */ 415 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 416 init_utsname()->release, hcd->driver->description); 417 s = buf; 418 break; 419 default: 420 /* Can't happen; caller guarantees it */ 421 return 0; 422 } 423 424 return ascii2desc(s, data, len); 425 } 426 427 428 /* Root hub control transfers execute synchronously */ 429 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 430 { 431 struct usb_ctrlrequest *cmd; 432 u16 typeReq, wValue, wIndex, wLength; 433 u8 *ubuf = urb->transfer_buffer; 434 u8 tbuf [sizeof (struct usb_hub_descriptor)] 435 __attribute__((aligned(4))); 436 const u8 *bufp = tbuf; 437 unsigned len = 0; 438 int status; 439 u8 patch_wakeup = 0; 440 u8 patch_protocol = 0; 441 442 might_sleep(); 443 444 spin_lock_irq(&hcd_root_hub_lock); 445 status = usb_hcd_link_urb_to_ep(hcd, urb); 446 spin_unlock_irq(&hcd_root_hub_lock); 447 if (status) 448 return status; 449 urb->hcpriv = hcd; /* Indicate it's queued */ 450 451 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 452 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 453 wValue = le16_to_cpu (cmd->wValue); 454 wIndex = le16_to_cpu (cmd->wIndex); 455 wLength = le16_to_cpu (cmd->wLength); 456 457 if (wLength > urb->transfer_buffer_length) 458 goto error; 459 460 urb->actual_length = 0; 461 switch (typeReq) { 462 463 /* DEVICE REQUESTS */ 464 465 /* The root hub's remote wakeup enable bit is implemented using 466 * driver model wakeup flags. If this system supports wakeup 467 * through USB, userspace may change the default "allow wakeup" 468 * policy through sysfs or these calls. 469 * 470 * Most root hubs support wakeup from downstream devices, for 471 * runtime power management (disabling USB clocks and reducing 472 * VBUS power usage). However, not all of them do so; silicon, 473 * board, and BIOS bugs here are not uncommon, so these can't 474 * be treated quite like external hubs. 475 * 476 * Likewise, not all root hubs will pass wakeup events upstream, 477 * to wake up the whole system. So don't assume root hub and 478 * controller capabilities are identical. 479 */ 480 481 case DeviceRequest | USB_REQ_GET_STATUS: 482 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 483 << USB_DEVICE_REMOTE_WAKEUP) 484 | (1 << USB_DEVICE_SELF_POWERED); 485 tbuf [1] = 0; 486 len = 2; 487 break; 488 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 489 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 490 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 491 else 492 goto error; 493 break; 494 case DeviceOutRequest | USB_REQ_SET_FEATURE: 495 if (device_can_wakeup(&hcd->self.root_hub->dev) 496 && wValue == USB_DEVICE_REMOTE_WAKEUP) 497 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 498 else 499 goto error; 500 break; 501 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 502 tbuf [0] = 1; 503 len = 1; 504 /* FALLTHROUGH */ 505 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 506 break; 507 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 508 switch (wValue & 0xff00) { 509 case USB_DT_DEVICE << 8: 510 switch (hcd->speed) { 511 case HCD_USB3: 512 bufp = usb3_rh_dev_descriptor; 513 break; 514 case HCD_USB2: 515 bufp = usb2_rh_dev_descriptor; 516 break; 517 case HCD_USB11: 518 bufp = usb11_rh_dev_descriptor; 519 break; 520 default: 521 goto error; 522 } 523 len = 18; 524 if (hcd->has_tt) 525 patch_protocol = 1; 526 break; 527 case USB_DT_CONFIG << 8: 528 switch (hcd->speed) { 529 case HCD_USB3: 530 bufp = ss_rh_config_descriptor; 531 len = sizeof ss_rh_config_descriptor; 532 break; 533 case HCD_USB2: 534 bufp = hs_rh_config_descriptor; 535 len = sizeof hs_rh_config_descriptor; 536 break; 537 case HCD_USB11: 538 bufp = fs_rh_config_descriptor; 539 len = sizeof fs_rh_config_descriptor; 540 break; 541 default: 542 goto error; 543 } 544 if (device_can_wakeup(&hcd->self.root_hub->dev)) 545 patch_wakeup = 1; 546 break; 547 case USB_DT_STRING << 8: 548 if ((wValue & 0xff) < 4) 549 urb->actual_length = rh_string(wValue & 0xff, 550 hcd, ubuf, wLength); 551 else /* unsupported IDs --> "protocol stall" */ 552 goto error; 553 break; 554 default: 555 goto error; 556 } 557 break; 558 case DeviceRequest | USB_REQ_GET_INTERFACE: 559 tbuf [0] = 0; 560 len = 1; 561 /* FALLTHROUGH */ 562 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 563 break; 564 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 565 // wValue == urb->dev->devaddr 566 dev_dbg (hcd->self.controller, "root hub device address %d\n", 567 wValue); 568 break; 569 570 /* INTERFACE REQUESTS (no defined feature/status flags) */ 571 572 /* ENDPOINT REQUESTS */ 573 574 case EndpointRequest | USB_REQ_GET_STATUS: 575 // ENDPOINT_HALT flag 576 tbuf [0] = 0; 577 tbuf [1] = 0; 578 len = 2; 579 /* FALLTHROUGH */ 580 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 581 case EndpointOutRequest | USB_REQ_SET_FEATURE: 582 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 583 break; 584 585 /* CLASS REQUESTS (and errors) */ 586 587 default: 588 /* non-generic request */ 589 switch (typeReq) { 590 case GetHubStatus: 591 case GetPortStatus: 592 len = 4; 593 break; 594 case GetHubDescriptor: 595 len = sizeof (struct usb_hub_descriptor); 596 break; 597 } 598 status = hcd->driver->hub_control (hcd, 599 typeReq, wValue, wIndex, 600 tbuf, wLength); 601 break; 602 error: 603 /* "protocol stall" on error */ 604 status = -EPIPE; 605 } 606 607 if (status) { 608 len = 0; 609 if (status != -EPIPE) { 610 dev_dbg (hcd->self.controller, 611 "CTRL: TypeReq=0x%x val=0x%x " 612 "idx=0x%x len=%d ==> %d\n", 613 typeReq, wValue, wIndex, 614 wLength, status); 615 } 616 } 617 if (len) { 618 if (urb->transfer_buffer_length < len) 619 len = urb->transfer_buffer_length; 620 urb->actual_length = len; 621 // always USB_DIR_IN, toward host 622 memcpy (ubuf, bufp, len); 623 624 /* report whether RH hardware supports remote wakeup */ 625 if (patch_wakeup && 626 len > offsetof (struct usb_config_descriptor, 627 bmAttributes)) 628 ((struct usb_config_descriptor *)ubuf)->bmAttributes 629 |= USB_CONFIG_ATT_WAKEUP; 630 631 /* report whether RH hardware has an integrated TT */ 632 if (patch_protocol && 633 len > offsetof(struct usb_device_descriptor, 634 bDeviceProtocol)) 635 ((struct usb_device_descriptor *) ubuf)-> 636 bDeviceProtocol = 1; 637 } 638 639 /* any errors get returned through the urb completion */ 640 spin_lock_irq(&hcd_root_hub_lock); 641 usb_hcd_unlink_urb_from_ep(hcd, urb); 642 643 /* This peculiar use of spinlocks echoes what real HC drivers do. 644 * Avoiding calls to local_irq_disable/enable makes the code 645 * RT-friendly. 646 */ 647 spin_unlock(&hcd_root_hub_lock); 648 usb_hcd_giveback_urb(hcd, urb, status); 649 spin_lock(&hcd_root_hub_lock); 650 651 spin_unlock_irq(&hcd_root_hub_lock); 652 return 0; 653 } 654 655 /*-------------------------------------------------------------------------*/ 656 657 /* 658 * Root Hub interrupt transfers are polled using a timer if the 659 * driver requests it; otherwise the driver is responsible for 660 * calling usb_hcd_poll_rh_status() when an event occurs. 661 * 662 * Completions are called in_interrupt(), but they may or may not 663 * be in_irq(). 664 */ 665 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 666 { 667 struct urb *urb; 668 int length; 669 unsigned long flags; 670 char buffer[6]; /* Any root hubs with > 31 ports? */ 671 672 if (unlikely(!hcd->rh_pollable)) 673 return; 674 if (!hcd->uses_new_polling && !hcd->status_urb) 675 return; 676 677 length = hcd->driver->hub_status_data(hcd, buffer); 678 if (length > 0) { 679 680 /* try to complete the status urb */ 681 spin_lock_irqsave(&hcd_root_hub_lock, flags); 682 urb = hcd->status_urb; 683 if (urb) { 684 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 685 hcd->status_urb = NULL; 686 urb->actual_length = length; 687 memcpy(urb->transfer_buffer, buffer, length); 688 689 usb_hcd_unlink_urb_from_ep(hcd, urb); 690 spin_unlock(&hcd_root_hub_lock); 691 usb_hcd_giveback_urb(hcd, urb, 0); 692 spin_lock(&hcd_root_hub_lock); 693 } else { 694 length = 0; 695 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 696 } 697 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 698 } 699 700 /* The USB 2.0 spec says 256 ms. This is close enough and won't 701 * exceed that limit if HZ is 100. The math is more clunky than 702 * maybe expected, this is to make sure that all timers for USB devices 703 * fire at the same time to give the CPU a break inbetween */ 704 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 705 (length == 0 && hcd->status_urb != NULL)) 706 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 707 } 708 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 709 710 /* timer callback */ 711 static void rh_timer_func (unsigned long _hcd) 712 { 713 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 714 } 715 716 /*-------------------------------------------------------------------------*/ 717 718 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 719 { 720 int retval; 721 unsigned long flags; 722 unsigned len = 1 + (urb->dev->maxchild / 8); 723 724 spin_lock_irqsave (&hcd_root_hub_lock, flags); 725 if (hcd->status_urb || urb->transfer_buffer_length < len) { 726 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 727 retval = -EINVAL; 728 goto done; 729 } 730 731 retval = usb_hcd_link_urb_to_ep(hcd, urb); 732 if (retval) 733 goto done; 734 735 hcd->status_urb = urb; 736 urb->hcpriv = hcd; /* indicate it's queued */ 737 if (!hcd->uses_new_polling) 738 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 739 740 /* If a status change has already occurred, report it ASAP */ 741 else if (HCD_POLL_PENDING(hcd)) 742 mod_timer(&hcd->rh_timer, jiffies); 743 retval = 0; 744 done: 745 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 746 return retval; 747 } 748 749 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 750 { 751 if (usb_endpoint_xfer_int(&urb->ep->desc)) 752 return rh_queue_status (hcd, urb); 753 if (usb_endpoint_xfer_control(&urb->ep->desc)) 754 return rh_call_control (hcd, urb); 755 return -EINVAL; 756 } 757 758 /*-------------------------------------------------------------------------*/ 759 760 /* Unlinks of root-hub control URBs are legal, but they don't do anything 761 * since these URBs always execute synchronously. 762 */ 763 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 764 { 765 unsigned long flags; 766 int rc; 767 768 spin_lock_irqsave(&hcd_root_hub_lock, flags); 769 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 770 if (rc) 771 goto done; 772 773 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 774 ; /* Do nothing */ 775 776 } else { /* Status URB */ 777 if (!hcd->uses_new_polling) 778 del_timer (&hcd->rh_timer); 779 if (urb == hcd->status_urb) { 780 hcd->status_urb = NULL; 781 usb_hcd_unlink_urb_from_ep(hcd, urb); 782 783 spin_unlock(&hcd_root_hub_lock); 784 usb_hcd_giveback_urb(hcd, urb, status); 785 spin_lock(&hcd_root_hub_lock); 786 } 787 } 788 done: 789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 790 return rc; 791 } 792 793 794 795 /* 796 * Show & store the current value of authorized_default 797 */ 798 static ssize_t usb_host_authorized_default_show(struct device *dev, 799 struct device_attribute *attr, 800 char *buf) 801 { 802 struct usb_device *rh_usb_dev = to_usb_device(dev); 803 struct usb_bus *usb_bus = rh_usb_dev->bus; 804 struct usb_hcd *usb_hcd; 805 806 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 807 return -ENODEV; 808 usb_hcd = bus_to_hcd(usb_bus); 809 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 810 } 811 812 static ssize_t usb_host_authorized_default_store(struct device *dev, 813 struct device_attribute *attr, 814 const char *buf, size_t size) 815 { 816 ssize_t result; 817 unsigned val; 818 struct usb_device *rh_usb_dev = to_usb_device(dev); 819 struct usb_bus *usb_bus = rh_usb_dev->bus; 820 struct usb_hcd *usb_hcd; 821 822 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 823 return -ENODEV; 824 usb_hcd = bus_to_hcd(usb_bus); 825 result = sscanf(buf, "%u\n", &val); 826 if (result == 1) { 827 usb_hcd->authorized_default = val? 1 : 0; 828 result = size; 829 } 830 else 831 result = -EINVAL; 832 return result; 833 } 834 835 static DEVICE_ATTR(authorized_default, 0644, 836 usb_host_authorized_default_show, 837 usb_host_authorized_default_store); 838 839 840 /* Group all the USB bus attributes */ 841 static struct attribute *usb_bus_attrs[] = { 842 &dev_attr_authorized_default.attr, 843 NULL, 844 }; 845 846 static struct attribute_group usb_bus_attr_group = { 847 .name = NULL, /* we want them in the same directory */ 848 .attrs = usb_bus_attrs, 849 }; 850 851 852 853 /*-------------------------------------------------------------------------*/ 854 855 /** 856 * usb_bus_init - shared initialization code 857 * @bus: the bus structure being initialized 858 * 859 * This code is used to initialize a usb_bus structure, memory for which is 860 * separately managed. 861 */ 862 static void usb_bus_init (struct usb_bus *bus) 863 { 864 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 865 866 bus->devnum_next = 1; 867 868 bus->root_hub = NULL; 869 bus->busnum = -1; 870 bus->bandwidth_allocated = 0; 871 bus->bandwidth_int_reqs = 0; 872 bus->bandwidth_isoc_reqs = 0; 873 874 INIT_LIST_HEAD (&bus->bus_list); 875 } 876 877 /*-------------------------------------------------------------------------*/ 878 879 /** 880 * usb_register_bus - registers the USB host controller with the usb core 881 * @bus: pointer to the bus to register 882 * Context: !in_interrupt() 883 * 884 * Assigns a bus number, and links the controller into usbcore data 885 * structures so that it can be seen by scanning the bus list. 886 */ 887 static int usb_register_bus(struct usb_bus *bus) 888 { 889 int result = -E2BIG; 890 int busnum; 891 892 mutex_lock(&usb_bus_list_lock); 893 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 894 if (busnum >= USB_MAXBUS) { 895 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 896 goto error_find_busnum; 897 } 898 set_bit (busnum, busmap.busmap); 899 bus->busnum = busnum; 900 901 /* Add it to the local list of buses */ 902 list_add (&bus->bus_list, &usb_bus_list); 903 mutex_unlock(&usb_bus_list_lock); 904 905 usb_notify_add_bus(bus); 906 907 dev_info (bus->controller, "new USB bus registered, assigned bus " 908 "number %d\n", bus->busnum); 909 return 0; 910 911 error_find_busnum: 912 mutex_unlock(&usb_bus_list_lock); 913 return result; 914 } 915 916 /** 917 * usb_deregister_bus - deregisters the USB host controller 918 * @bus: pointer to the bus to deregister 919 * Context: !in_interrupt() 920 * 921 * Recycles the bus number, and unlinks the controller from usbcore data 922 * structures so that it won't be seen by scanning the bus list. 923 */ 924 static void usb_deregister_bus (struct usb_bus *bus) 925 { 926 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 927 928 /* 929 * NOTE: make sure that all the devices are removed by the 930 * controller code, as well as having it call this when cleaning 931 * itself up 932 */ 933 mutex_lock(&usb_bus_list_lock); 934 list_del (&bus->bus_list); 935 mutex_unlock(&usb_bus_list_lock); 936 937 usb_notify_remove_bus(bus); 938 939 clear_bit (bus->busnum, busmap.busmap); 940 } 941 942 /** 943 * register_root_hub - called by usb_add_hcd() to register a root hub 944 * @hcd: host controller for this root hub 945 * 946 * This function registers the root hub with the USB subsystem. It sets up 947 * the device properly in the device tree and then calls usb_new_device() 948 * to register the usb device. It also assigns the root hub's USB address 949 * (always 1). 950 */ 951 static int register_root_hub(struct usb_hcd *hcd) 952 { 953 struct device *parent_dev = hcd->self.controller; 954 struct usb_device *usb_dev = hcd->self.root_hub; 955 const int devnum = 1; 956 int retval; 957 958 usb_dev->devnum = devnum; 959 usb_dev->bus->devnum_next = devnum + 1; 960 memset (&usb_dev->bus->devmap.devicemap, 0, 961 sizeof usb_dev->bus->devmap.devicemap); 962 set_bit (devnum, usb_dev->bus->devmap.devicemap); 963 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 964 965 mutex_lock(&usb_bus_list_lock); 966 967 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 968 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 969 if (retval != sizeof usb_dev->descriptor) { 970 mutex_unlock(&usb_bus_list_lock); 971 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 972 dev_name(&usb_dev->dev), retval); 973 return (retval < 0) ? retval : -EMSGSIZE; 974 } 975 976 retval = usb_new_device (usb_dev); 977 if (retval) { 978 dev_err (parent_dev, "can't register root hub for %s, %d\n", 979 dev_name(&usb_dev->dev), retval); 980 } 981 mutex_unlock(&usb_bus_list_lock); 982 983 if (retval == 0) { 984 spin_lock_irq (&hcd_root_hub_lock); 985 hcd->rh_registered = 1; 986 spin_unlock_irq (&hcd_root_hub_lock); 987 988 /* Did the HC die before the root hub was registered? */ 989 if (HCD_DEAD(hcd) || hcd->state == HC_STATE_HALT) 990 usb_hc_died (hcd); /* This time clean up */ 991 } 992 993 return retval; 994 } 995 996 997 /*-------------------------------------------------------------------------*/ 998 999 /** 1000 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1001 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1002 * @is_input: true iff the transaction sends data to the host 1003 * @isoc: true for isochronous transactions, false for interrupt ones 1004 * @bytecount: how many bytes in the transaction. 1005 * 1006 * Returns approximate bus time in nanoseconds for a periodic transaction. 1007 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1008 * scheduled in software, this function is only used for such scheduling. 1009 */ 1010 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1011 { 1012 unsigned long tmp; 1013 1014 switch (speed) { 1015 case USB_SPEED_LOW: /* INTR only */ 1016 if (is_input) { 1017 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1018 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1019 } else { 1020 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1021 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 1022 } 1023 case USB_SPEED_FULL: /* ISOC or INTR */ 1024 if (isoc) { 1025 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1026 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 1027 } else { 1028 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1029 return (9107L + BW_HOST_DELAY + tmp); 1030 } 1031 case USB_SPEED_HIGH: /* ISOC or INTR */ 1032 // FIXME adjust for input vs output 1033 if (isoc) 1034 tmp = HS_NSECS_ISO (bytecount); 1035 else 1036 tmp = HS_NSECS (bytecount); 1037 return tmp; 1038 default: 1039 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1040 return -1; 1041 } 1042 } 1043 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1044 1045 1046 /*-------------------------------------------------------------------------*/ 1047 1048 /* 1049 * Generic HC operations. 1050 */ 1051 1052 /*-------------------------------------------------------------------------*/ 1053 1054 /** 1055 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1056 * @hcd: host controller to which @urb was submitted 1057 * @urb: URB being submitted 1058 * 1059 * Host controller drivers should call this routine in their enqueue() 1060 * method. The HCD's private spinlock must be held and interrupts must 1061 * be disabled. The actions carried out here are required for URB 1062 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1063 * 1064 * Returns 0 for no error, otherwise a negative error code (in which case 1065 * the enqueue() method must fail). If no error occurs but enqueue() fails 1066 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1067 * the private spinlock and returning. 1068 */ 1069 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1070 { 1071 int rc = 0; 1072 1073 spin_lock(&hcd_urb_list_lock); 1074 1075 /* Check that the URB isn't being killed */ 1076 if (unlikely(atomic_read(&urb->reject))) { 1077 rc = -EPERM; 1078 goto done; 1079 } 1080 1081 if (unlikely(!urb->ep->enabled)) { 1082 rc = -ENOENT; 1083 goto done; 1084 } 1085 1086 if (unlikely(!urb->dev->can_submit)) { 1087 rc = -EHOSTUNREACH; 1088 goto done; 1089 } 1090 1091 /* 1092 * Check the host controller's state and add the URB to the 1093 * endpoint's queue. 1094 */ 1095 if (HCD_RH_RUNNING(hcd)) { 1096 urb->unlinked = 0; 1097 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1098 } else { 1099 rc = -ESHUTDOWN; 1100 goto done; 1101 } 1102 done: 1103 spin_unlock(&hcd_urb_list_lock); 1104 return rc; 1105 } 1106 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1107 1108 /** 1109 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1110 * @hcd: host controller to which @urb was submitted 1111 * @urb: URB being checked for unlinkability 1112 * @status: error code to store in @urb if the unlink succeeds 1113 * 1114 * Host controller drivers should call this routine in their dequeue() 1115 * method. The HCD's private spinlock must be held and interrupts must 1116 * be disabled. The actions carried out here are required for making 1117 * sure than an unlink is valid. 1118 * 1119 * Returns 0 for no error, otherwise a negative error code (in which case 1120 * the dequeue() method must fail). The possible error codes are: 1121 * 1122 * -EIDRM: @urb was not submitted or has already completed. 1123 * The completion function may not have been called yet. 1124 * 1125 * -EBUSY: @urb has already been unlinked. 1126 */ 1127 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1128 int status) 1129 { 1130 struct list_head *tmp; 1131 1132 /* insist the urb is still queued */ 1133 list_for_each(tmp, &urb->ep->urb_list) { 1134 if (tmp == &urb->urb_list) 1135 break; 1136 } 1137 if (tmp != &urb->urb_list) 1138 return -EIDRM; 1139 1140 /* Any status except -EINPROGRESS means something already started to 1141 * unlink this URB from the hardware. So there's no more work to do. 1142 */ 1143 if (urb->unlinked) 1144 return -EBUSY; 1145 urb->unlinked = status; 1146 1147 /* IRQ setup can easily be broken so that USB controllers 1148 * never get completion IRQs ... maybe even the ones we need to 1149 * finish unlinking the initial failed usb_set_address() 1150 * or device descriptor fetch. 1151 */ 1152 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) { 1153 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1154 "Controller is probably using the wrong IRQ.\n"); 1155 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1156 if (hcd->shared_hcd) 1157 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags); 1158 } 1159 1160 return 0; 1161 } 1162 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1163 1164 /** 1165 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1166 * @hcd: host controller to which @urb was submitted 1167 * @urb: URB being unlinked 1168 * 1169 * Host controller drivers should call this routine before calling 1170 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1171 * interrupts must be disabled. The actions carried out here are required 1172 * for URB completion. 1173 */ 1174 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1175 { 1176 /* clear all state linking urb to this dev (and hcd) */ 1177 spin_lock(&hcd_urb_list_lock); 1178 list_del_init(&urb->urb_list); 1179 spin_unlock(&hcd_urb_list_lock); 1180 } 1181 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1182 1183 /* 1184 * Some usb host controllers can only perform dma using a small SRAM area. 1185 * The usb core itself is however optimized for host controllers that can dma 1186 * using regular system memory - like pci devices doing bus mastering. 1187 * 1188 * To support host controllers with limited dma capabilites we provide dma 1189 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1190 * For this to work properly the host controller code must first use the 1191 * function dma_declare_coherent_memory() to point out which memory area 1192 * that should be used for dma allocations. 1193 * 1194 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1195 * dma using dma_alloc_coherent() which in turn allocates from the memory 1196 * area pointed out with dma_declare_coherent_memory(). 1197 * 1198 * So, to summarize... 1199 * 1200 * - We need "local" memory, canonical example being 1201 * a small SRAM on a discrete controller being the 1202 * only memory that the controller can read ... 1203 * (a) "normal" kernel memory is no good, and 1204 * (b) there's not enough to share 1205 * 1206 * - The only *portable* hook for such stuff in the 1207 * DMA framework is dma_declare_coherent_memory() 1208 * 1209 * - So we use that, even though the primary requirement 1210 * is that the memory be "local" (hence addressible 1211 * by that device), not "coherent". 1212 * 1213 */ 1214 1215 static int hcd_alloc_coherent(struct usb_bus *bus, 1216 gfp_t mem_flags, dma_addr_t *dma_handle, 1217 void **vaddr_handle, size_t size, 1218 enum dma_data_direction dir) 1219 { 1220 unsigned char *vaddr; 1221 1222 if (*vaddr_handle == NULL) { 1223 WARN_ON_ONCE(1); 1224 return -EFAULT; 1225 } 1226 1227 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1228 mem_flags, dma_handle); 1229 if (!vaddr) 1230 return -ENOMEM; 1231 1232 /* 1233 * Store the virtual address of the buffer at the end 1234 * of the allocated dma buffer. The size of the buffer 1235 * may be uneven so use unaligned functions instead 1236 * of just rounding up. It makes sense to optimize for 1237 * memory footprint over access speed since the amount 1238 * of memory available for dma may be limited. 1239 */ 1240 put_unaligned((unsigned long)*vaddr_handle, 1241 (unsigned long *)(vaddr + size)); 1242 1243 if (dir == DMA_TO_DEVICE) 1244 memcpy(vaddr, *vaddr_handle, size); 1245 1246 *vaddr_handle = vaddr; 1247 return 0; 1248 } 1249 1250 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1251 void **vaddr_handle, size_t size, 1252 enum dma_data_direction dir) 1253 { 1254 unsigned char *vaddr = *vaddr_handle; 1255 1256 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1257 1258 if (dir == DMA_FROM_DEVICE) 1259 memcpy(vaddr, *vaddr_handle, size); 1260 1261 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1262 1263 *vaddr_handle = vaddr; 1264 *dma_handle = 0; 1265 } 1266 1267 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1268 { 1269 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE) 1270 dma_unmap_single(hcd->self.controller, 1271 urb->setup_dma, 1272 sizeof(struct usb_ctrlrequest), 1273 DMA_TO_DEVICE); 1274 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1275 hcd_free_coherent(urb->dev->bus, 1276 &urb->setup_dma, 1277 (void **) &urb->setup_packet, 1278 sizeof(struct usb_ctrlrequest), 1279 DMA_TO_DEVICE); 1280 1281 /* Make it safe to call this routine more than once */ 1282 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1283 } 1284 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1285 1286 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1287 { 1288 if (hcd->driver->unmap_urb_for_dma) 1289 hcd->driver->unmap_urb_for_dma(hcd, urb); 1290 else 1291 usb_hcd_unmap_urb_for_dma(hcd, urb); 1292 } 1293 1294 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1295 { 1296 enum dma_data_direction dir; 1297 1298 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1299 1300 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1301 if (urb->transfer_flags & URB_DMA_MAP_SG) 1302 dma_unmap_sg(hcd->self.controller, 1303 urb->sg, 1304 urb->num_sgs, 1305 dir); 1306 else if (urb->transfer_flags & URB_DMA_MAP_PAGE) 1307 dma_unmap_page(hcd->self.controller, 1308 urb->transfer_dma, 1309 urb->transfer_buffer_length, 1310 dir); 1311 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE) 1312 dma_unmap_single(hcd->self.controller, 1313 urb->transfer_dma, 1314 urb->transfer_buffer_length, 1315 dir); 1316 else if (urb->transfer_flags & URB_MAP_LOCAL) 1317 hcd_free_coherent(urb->dev->bus, 1318 &urb->transfer_dma, 1319 &urb->transfer_buffer, 1320 urb->transfer_buffer_length, 1321 dir); 1322 1323 /* Make it safe to call this routine more than once */ 1324 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1325 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1326 } 1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1328 1329 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1330 gfp_t mem_flags) 1331 { 1332 if (hcd->driver->map_urb_for_dma) 1333 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1334 else 1335 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1336 } 1337 1338 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1339 gfp_t mem_flags) 1340 { 1341 enum dma_data_direction dir; 1342 int ret = 0; 1343 1344 /* Map the URB's buffers for DMA access. 1345 * Lower level HCD code should use *_dma exclusively, 1346 * unless it uses pio or talks to another transport, 1347 * or uses the provided scatter gather list for bulk. 1348 */ 1349 1350 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1351 if (hcd->self.uses_pio_for_control) 1352 return ret; 1353 if (hcd->self.uses_dma) { 1354 urb->setup_dma = dma_map_single( 1355 hcd->self.controller, 1356 urb->setup_packet, 1357 sizeof(struct usb_ctrlrequest), 1358 DMA_TO_DEVICE); 1359 if (dma_mapping_error(hcd->self.controller, 1360 urb->setup_dma)) 1361 return -EAGAIN; 1362 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1363 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1364 ret = hcd_alloc_coherent( 1365 urb->dev->bus, mem_flags, 1366 &urb->setup_dma, 1367 (void **)&urb->setup_packet, 1368 sizeof(struct usb_ctrlrequest), 1369 DMA_TO_DEVICE); 1370 if (ret) 1371 return ret; 1372 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1373 } 1374 } 1375 1376 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1377 if (urb->transfer_buffer_length != 0 1378 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1379 if (hcd->self.uses_dma) { 1380 if (urb->num_sgs) { 1381 int n = dma_map_sg( 1382 hcd->self.controller, 1383 urb->sg, 1384 urb->num_sgs, 1385 dir); 1386 if (n <= 0) 1387 ret = -EAGAIN; 1388 else 1389 urb->transfer_flags |= URB_DMA_MAP_SG; 1390 if (n != urb->num_sgs) { 1391 urb->num_sgs = n; 1392 urb->transfer_flags |= 1393 URB_DMA_SG_COMBINED; 1394 } 1395 } else if (urb->sg) { 1396 struct scatterlist *sg = urb->sg; 1397 urb->transfer_dma = dma_map_page( 1398 hcd->self.controller, 1399 sg_page(sg), 1400 sg->offset, 1401 urb->transfer_buffer_length, 1402 dir); 1403 if (dma_mapping_error(hcd->self.controller, 1404 urb->transfer_dma)) 1405 ret = -EAGAIN; 1406 else 1407 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1408 } else { 1409 urb->transfer_dma = dma_map_single( 1410 hcd->self.controller, 1411 urb->transfer_buffer, 1412 urb->transfer_buffer_length, 1413 dir); 1414 if (dma_mapping_error(hcd->self.controller, 1415 urb->transfer_dma)) 1416 ret = -EAGAIN; 1417 else 1418 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1419 } 1420 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1421 ret = hcd_alloc_coherent( 1422 urb->dev->bus, mem_flags, 1423 &urb->transfer_dma, 1424 &urb->transfer_buffer, 1425 urb->transfer_buffer_length, 1426 dir); 1427 if (ret == 0) 1428 urb->transfer_flags |= URB_MAP_LOCAL; 1429 } 1430 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1431 URB_SETUP_MAP_LOCAL))) 1432 usb_hcd_unmap_urb_for_dma(hcd, urb); 1433 } 1434 return ret; 1435 } 1436 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1437 1438 /*-------------------------------------------------------------------------*/ 1439 1440 /* may be called in any context with a valid urb->dev usecount 1441 * caller surrenders "ownership" of urb 1442 * expects usb_submit_urb() to have sanity checked and conditioned all 1443 * inputs in the urb 1444 */ 1445 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1446 { 1447 int status; 1448 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1449 1450 /* increment urb's reference count as part of giving it to the HCD 1451 * (which will control it). HCD guarantees that it either returns 1452 * an error or calls giveback(), but not both. 1453 */ 1454 usb_get_urb(urb); 1455 atomic_inc(&urb->use_count); 1456 atomic_inc(&urb->dev->urbnum); 1457 usbmon_urb_submit(&hcd->self, urb); 1458 1459 /* NOTE requirements on root-hub callers (usbfs and the hub 1460 * driver, for now): URBs' urb->transfer_buffer must be 1461 * valid and usb_buffer_{sync,unmap}() not be needed, since 1462 * they could clobber root hub response data. Also, control 1463 * URBs must be submitted in process context with interrupts 1464 * enabled. 1465 */ 1466 1467 if (is_root_hub(urb->dev)) { 1468 status = rh_urb_enqueue(hcd, urb); 1469 } else { 1470 status = map_urb_for_dma(hcd, urb, mem_flags); 1471 if (likely(status == 0)) { 1472 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1473 if (unlikely(status)) 1474 unmap_urb_for_dma(hcd, urb); 1475 } 1476 } 1477 1478 if (unlikely(status)) { 1479 usbmon_urb_submit_error(&hcd->self, urb, status); 1480 urb->hcpriv = NULL; 1481 INIT_LIST_HEAD(&urb->urb_list); 1482 atomic_dec(&urb->use_count); 1483 atomic_dec(&urb->dev->urbnum); 1484 if (atomic_read(&urb->reject)) 1485 wake_up(&usb_kill_urb_queue); 1486 usb_put_urb(urb); 1487 } 1488 return status; 1489 } 1490 1491 /*-------------------------------------------------------------------------*/ 1492 1493 /* this makes the hcd giveback() the urb more quickly, by kicking it 1494 * off hardware queues (which may take a while) and returning it as 1495 * soon as practical. we've already set up the urb's return status, 1496 * but we can't know if the callback completed already. 1497 */ 1498 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1499 { 1500 int value; 1501 1502 if (is_root_hub(urb->dev)) 1503 value = usb_rh_urb_dequeue(hcd, urb, status); 1504 else { 1505 1506 /* The only reason an HCD might fail this call is if 1507 * it has not yet fully queued the urb to begin with. 1508 * Such failures should be harmless. */ 1509 value = hcd->driver->urb_dequeue(hcd, urb, status); 1510 } 1511 return value; 1512 } 1513 1514 /* 1515 * called in any context 1516 * 1517 * caller guarantees urb won't be recycled till both unlink() 1518 * and the urb's completion function return 1519 */ 1520 int usb_hcd_unlink_urb (struct urb *urb, int status) 1521 { 1522 struct usb_hcd *hcd; 1523 int retval = -EIDRM; 1524 unsigned long flags; 1525 1526 /* Prevent the device and bus from going away while 1527 * the unlink is carried out. If they are already gone 1528 * then urb->use_count must be 0, since disconnected 1529 * devices can't have any active URBs. 1530 */ 1531 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1532 if (atomic_read(&urb->use_count) > 0) { 1533 retval = 0; 1534 usb_get_dev(urb->dev); 1535 } 1536 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1537 if (retval == 0) { 1538 hcd = bus_to_hcd(urb->dev->bus); 1539 retval = unlink1(hcd, urb, status); 1540 usb_put_dev(urb->dev); 1541 } 1542 1543 if (retval == 0) 1544 retval = -EINPROGRESS; 1545 else if (retval != -EIDRM && retval != -EBUSY) 1546 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1547 urb, retval); 1548 return retval; 1549 } 1550 1551 /*-------------------------------------------------------------------------*/ 1552 1553 /** 1554 * usb_hcd_giveback_urb - return URB from HCD to device driver 1555 * @hcd: host controller returning the URB 1556 * @urb: urb being returned to the USB device driver. 1557 * @status: completion status code for the URB. 1558 * Context: in_interrupt() 1559 * 1560 * This hands the URB from HCD to its USB device driver, using its 1561 * completion function. The HCD has freed all per-urb resources 1562 * (and is done using urb->hcpriv). It also released all HCD locks; 1563 * the device driver won't cause problems if it frees, modifies, 1564 * or resubmits this URB. 1565 * 1566 * If @urb was unlinked, the value of @status will be overridden by 1567 * @urb->unlinked. Erroneous short transfers are detected in case 1568 * the HCD hasn't checked for them. 1569 */ 1570 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1571 { 1572 urb->hcpriv = NULL; 1573 if (unlikely(urb->unlinked)) 1574 status = urb->unlinked; 1575 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1576 urb->actual_length < urb->transfer_buffer_length && 1577 !status)) 1578 status = -EREMOTEIO; 1579 1580 unmap_urb_for_dma(hcd, urb); 1581 usbmon_urb_complete(&hcd->self, urb, status); 1582 usb_unanchor_urb(urb); 1583 1584 /* pass ownership to the completion handler */ 1585 urb->status = status; 1586 urb->complete (urb); 1587 atomic_dec (&urb->use_count); 1588 if (unlikely(atomic_read(&urb->reject))) 1589 wake_up (&usb_kill_urb_queue); 1590 usb_put_urb (urb); 1591 } 1592 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1593 1594 /*-------------------------------------------------------------------------*/ 1595 1596 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1597 * queue to drain completely. The caller must first insure that no more 1598 * URBs can be submitted for this endpoint. 1599 */ 1600 void usb_hcd_flush_endpoint(struct usb_device *udev, 1601 struct usb_host_endpoint *ep) 1602 { 1603 struct usb_hcd *hcd; 1604 struct urb *urb; 1605 1606 if (!ep) 1607 return; 1608 might_sleep(); 1609 hcd = bus_to_hcd(udev->bus); 1610 1611 /* No more submits can occur */ 1612 spin_lock_irq(&hcd_urb_list_lock); 1613 rescan: 1614 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1615 int is_in; 1616 1617 if (urb->unlinked) 1618 continue; 1619 usb_get_urb (urb); 1620 is_in = usb_urb_dir_in(urb); 1621 spin_unlock(&hcd_urb_list_lock); 1622 1623 /* kick hcd */ 1624 unlink1(hcd, urb, -ESHUTDOWN); 1625 dev_dbg (hcd->self.controller, 1626 "shutdown urb %p ep%d%s%s\n", 1627 urb, usb_endpoint_num(&ep->desc), 1628 is_in ? "in" : "out", 1629 ({ char *s; 1630 1631 switch (usb_endpoint_type(&ep->desc)) { 1632 case USB_ENDPOINT_XFER_CONTROL: 1633 s = ""; break; 1634 case USB_ENDPOINT_XFER_BULK: 1635 s = "-bulk"; break; 1636 case USB_ENDPOINT_XFER_INT: 1637 s = "-intr"; break; 1638 default: 1639 s = "-iso"; break; 1640 }; 1641 s; 1642 })); 1643 usb_put_urb (urb); 1644 1645 /* list contents may have changed */ 1646 spin_lock(&hcd_urb_list_lock); 1647 goto rescan; 1648 } 1649 spin_unlock_irq(&hcd_urb_list_lock); 1650 1651 /* Wait until the endpoint queue is completely empty */ 1652 while (!list_empty (&ep->urb_list)) { 1653 spin_lock_irq(&hcd_urb_list_lock); 1654 1655 /* The list may have changed while we acquired the spinlock */ 1656 urb = NULL; 1657 if (!list_empty (&ep->urb_list)) { 1658 urb = list_entry (ep->urb_list.prev, struct urb, 1659 urb_list); 1660 usb_get_urb (urb); 1661 } 1662 spin_unlock_irq(&hcd_urb_list_lock); 1663 1664 if (urb) { 1665 usb_kill_urb (urb); 1666 usb_put_urb (urb); 1667 } 1668 } 1669 } 1670 1671 /** 1672 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1673 * the bus bandwidth 1674 * @udev: target &usb_device 1675 * @new_config: new configuration to install 1676 * @cur_alt: the current alternate interface setting 1677 * @new_alt: alternate interface setting that is being installed 1678 * 1679 * To change configurations, pass in the new configuration in new_config, 1680 * and pass NULL for cur_alt and new_alt. 1681 * 1682 * To reset a device's configuration (put the device in the ADDRESSED state), 1683 * pass in NULL for new_config, cur_alt, and new_alt. 1684 * 1685 * To change alternate interface settings, pass in NULL for new_config, 1686 * pass in the current alternate interface setting in cur_alt, 1687 * and pass in the new alternate interface setting in new_alt. 1688 * 1689 * Returns an error if the requested bandwidth change exceeds the 1690 * bus bandwidth or host controller internal resources. 1691 */ 1692 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1693 struct usb_host_config *new_config, 1694 struct usb_host_interface *cur_alt, 1695 struct usb_host_interface *new_alt) 1696 { 1697 int num_intfs, i, j; 1698 struct usb_host_interface *alt = NULL; 1699 int ret = 0; 1700 struct usb_hcd *hcd; 1701 struct usb_host_endpoint *ep; 1702 1703 hcd = bus_to_hcd(udev->bus); 1704 if (!hcd->driver->check_bandwidth) 1705 return 0; 1706 1707 /* Configuration is being removed - set configuration 0 */ 1708 if (!new_config && !cur_alt) { 1709 for (i = 1; i < 16; ++i) { 1710 ep = udev->ep_out[i]; 1711 if (ep) 1712 hcd->driver->drop_endpoint(hcd, udev, ep); 1713 ep = udev->ep_in[i]; 1714 if (ep) 1715 hcd->driver->drop_endpoint(hcd, udev, ep); 1716 } 1717 hcd->driver->check_bandwidth(hcd, udev); 1718 return 0; 1719 } 1720 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1721 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1722 * of the bus. There will always be bandwidth for endpoint 0, so it's 1723 * ok to exclude it. 1724 */ 1725 if (new_config) { 1726 num_intfs = new_config->desc.bNumInterfaces; 1727 /* Remove endpoints (except endpoint 0, which is always on the 1728 * schedule) from the old config from the schedule 1729 */ 1730 for (i = 1; i < 16; ++i) { 1731 ep = udev->ep_out[i]; 1732 if (ep) { 1733 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1734 if (ret < 0) 1735 goto reset; 1736 } 1737 ep = udev->ep_in[i]; 1738 if (ep) { 1739 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1740 if (ret < 0) 1741 goto reset; 1742 } 1743 } 1744 for (i = 0; i < num_intfs; ++i) { 1745 struct usb_host_interface *first_alt; 1746 int iface_num; 1747 1748 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1749 iface_num = first_alt->desc.bInterfaceNumber; 1750 /* Set up endpoints for alternate interface setting 0 */ 1751 alt = usb_find_alt_setting(new_config, iface_num, 0); 1752 if (!alt) 1753 /* No alt setting 0? Pick the first setting. */ 1754 alt = first_alt; 1755 1756 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1757 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1758 if (ret < 0) 1759 goto reset; 1760 } 1761 } 1762 } 1763 if (cur_alt && new_alt) { 1764 struct usb_interface *iface = usb_ifnum_to_if(udev, 1765 cur_alt->desc.bInterfaceNumber); 1766 1767 if (iface->resetting_device) { 1768 /* 1769 * The USB core just reset the device, so the xHCI host 1770 * and the device will think alt setting 0 is installed. 1771 * However, the USB core will pass in the alternate 1772 * setting installed before the reset as cur_alt. Dig 1773 * out the alternate setting 0 structure, or the first 1774 * alternate setting if a broken device doesn't have alt 1775 * setting 0. 1776 */ 1777 cur_alt = usb_altnum_to_altsetting(iface, 0); 1778 if (!cur_alt) 1779 cur_alt = &iface->altsetting[0]; 1780 } 1781 1782 /* Drop all the endpoints in the current alt setting */ 1783 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1784 ret = hcd->driver->drop_endpoint(hcd, udev, 1785 &cur_alt->endpoint[i]); 1786 if (ret < 0) 1787 goto reset; 1788 } 1789 /* Add all the endpoints in the new alt setting */ 1790 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1791 ret = hcd->driver->add_endpoint(hcd, udev, 1792 &new_alt->endpoint[i]); 1793 if (ret < 0) 1794 goto reset; 1795 } 1796 } 1797 ret = hcd->driver->check_bandwidth(hcd, udev); 1798 reset: 1799 if (ret < 0) 1800 hcd->driver->reset_bandwidth(hcd, udev); 1801 return ret; 1802 } 1803 1804 /* Disables the endpoint: synchronizes with the hcd to make sure all 1805 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1806 * have been called previously. Use for set_configuration, set_interface, 1807 * driver removal, physical disconnect. 1808 * 1809 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1810 * type, maxpacket size, toggle, halt status, and scheduling. 1811 */ 1812 void usb_hcd_disable_endpoint(struct usb_device *udev, 1813 struct usb_host_endpoint *ep) 1814 { 1815 struct usb_hcd *hcd; 1816 1817 might_sleep(); 1818 hcd = bus_to_hcd(udev->bus); 1819 if (hcd->driver->endpoint_disable) 1820 hcd->driver->endpoint_disable(hcd, ep); 1821 } 1822 1823 /** 1824 * usb_hcd_reset_endpoint - reset host endpoint state 1825 * @udev: USB device. 1826 * @ep: the endpoint to reset. 1827 * 1828 * Resets any host endpoint state such as the toggle bit, sequence 1829 * number and current window. 1830 */ 1831 void usb_hcd_reset_endpoint(struct usb_device *udev, 1832 struct usb_host_endpoint *ep) 1833 { 1834 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1835 1836 if (hcd->driver->endpoint_reset) 1837 hcd->driver->endpoint_reset(hcd, ep); 1838 else { 1839 int epnum = usb_endpoint_num(&ep->desc); 1840 int is_out = usb_endpoint_dir_out(&ep->desc); 1841 int is_control = usb_endpoint_xfer_control(&ep->desc); 1842 1843 usb_settoggle(udev, epnum, is_out, 0); 1844 if (is_control) 1845 usb_settoggle(udev, epnum, !is_out, 0); 1846 } 1847 } 1848 1849 /** 1850 * usb_alloc_streams - allocate bulk endpoint stream IDs. 1851 * @interface: alternate setting that includes all endpoints. 1852 * @eps: array of endpoints that need streams. 1853 * @num_eps: number of endpoints in the array. 1854 * @num_streams: number of streams to allocate. 1855 * @mem_flags: flags hcd should use to allocate memory. 1856 * 1857 * Sets up a group of bulk endpoints to have num_streams stream IDs available. 1858 * Drivers may queue multiple transfers to different stream IDs, which may 1859 * complete in a different order than they were queued. 1860 */ 1861 int usb_alloc_streams(struct usb_interface *interface, 1862 struct usb_host_endpoint **eps, unsigned int num_eps, 1863 unsigned int num_streams, gfp_t mem_flags) 1864 { 1865 struct usb_hcd *hcd; 1866 struct usb_device *dev; 1867 int i; 1868 1869 dev = interface_to_usbdev(interface); 1870 hcd = bus_to_hcd(dev->bus); 1871 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 1872 return -EINVAL; 1873 if (dev->speed != USB_SPEED_SUPER) 1874 return -EINVAL; 1875 1876 /* Streams only apply to bulk endpoints. */ 1877 for (i = 0; i < num_eps; i++) 1878 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1879 return -EINVAL; 1880 1881 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 1882 num_streams, mem_flags); 1883 } 1884 EXPORT_SYMBOL_GPL(usb_alloc_streams); 1885 1886 /** 1887 * usb_free_streams - free bulk endpoint stream IDs. 1888 * @interface: alternate setting that includes all endpoints. 1889 * @eps: array of endpoints to remove streams from. 1890 * @num_eps: number of endpoints in the array. 1891 * @mem_flags: flags hcd should use to allocate memory. 1892 * 1893 * Reverts a group of bulk endpoints back to not using stream IDs. 1894 * Can fail if we are given bad arguments, or HCD is broken. 1895 */ 1896 void usb_free_streams(struct usb_interface *interface, 1897 struct usb_host_endpoint **eps, unsigned int num_eps, 1898 gfp_t mem_flags) 1899 { 1900 struct usb_hcd *hcd; 1901 struct usb_device *dev; 1902 int i; 1903 1904 dev = interface_to_usbdev(interface); 1905 hcd = bus_to_hcd(dev->bus); 1906 if (dev->speed != USB_SPEED_SUPER) 1907 return; 1908 1909 /* Streams only apply to bulk endpoints. */ 1910 for (i = 0; i < num_eps; i++) 1911 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 1912 return; 1913 1914 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 1915 } 1916 EXPORT_SYMBOL_GPL(usb_free_streams); 1917 1918 /* Protect against drivers that try to unlink URBs after the device 1919 * is gone, by waiting until all unlinks for @udev are finished. 1920 * Since we don't currently track URBs by device, simply wait until 1921 * nothing is running in the locked region of usb_hcd_unlink_urb(). 1922 */ 1923 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 1924 { 1925 spin_lock_irq(&hcd_urb_unlink_lock); 1926 spin_unlock_irq(&hcd_urb_unlink_lock); 1927 } 1928 1929 /*-------------------------------------------------------------------------*/ 1930 1931 /* called in any context */ 1932 int usb_hcd_get_frame_number (struct usb_device *udev) 1933 { 1934 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1935 1936 if (!HCD_RH_RUNNING(hcd)) 1937 return -ESHUTDOWN; 1938 return hcd->driver->get_frame_number (hcd); 1939 } 1940 1941 /*-------------------------------------------------------------------------*/ 1942 1943 #ifdef CONFIG_PM 1944 1945 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 1946 { 1947 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1948 int status; 1949 int old_state = hcd->state; 1950 1951 dev_dbg(&rhdev->dev, "bus %s%s\n", 1952 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend"); 1953 if (HCD_DEAD(hcd)) { 1954 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 1955 return 0; 1956 } 1957 1958 if (!hcd->driver->bus_suspend) { 1959 status = -ENOENT; 1960 } else { 1961 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 1962 hcd->state = HC_STATE_QUIESCING; 1963 status = hcd->driver->bus_suspend(hcd); 1964 } 1965 if (status == 0) { 1966 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1967 hcd->state = HC_STATE_SUSPENDED; 1968 } else { 1969 spin_lock_irq(&hcd_root_hub_lock); 1970 if (!HCD_DEAD(hcd)) { 1971 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 1972 hcd->state = old_state; 1973 } 1974 spin_unlock_irq(&hcd_root_hub_lock); 1975 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1976 "suspend", status); 1977 } 1978 return status; 1979 } 1980 1981 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 1982 { 1983 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1984 int status; 1985 int old_state = hcd->state; 1986 1987 dev_dbg(&rhdev->dev, "usb %s%s\n", 1988 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume"); 1989 if (HCD_DEAD(hcd)) { 1990 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 1991 return 0; 1992 } 1993 if (!hcd->driver->bus_resume) 1994 return -ENOENT; 1995 if (HCD_RH_RUNNING(hcd)) 1996 return 0; 1997 1998 hcd->state = HC_STATE_RESUMING; 1999 status = hcd->driver->bus_resume(hcd); 2000 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2001 if (status == 0) { 2002 /* TRSMRCY = 10 msec */ 2003 msleep(10); 2004 spin_lock_irq(&hcd_root_hub_lock); 2005 if (!HCD_DEAD(hcd)) { 2006 usb_set_device_state(rhdev, rhdev->actconfig 2007 ? USB_STATE_CONFIGURED 2008 : USB_STATE_ADDRESS); 2009 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2010 hcd->state = HC_STATE_RUNNING; 2011 } 2012 spin_unlock_irq(&hcd_root_hub_lock); 2013 } else { 2014 hcd->state = old_state; 2015 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2016 "resume", status); 2017 if (status != -ESHUTDOWN) 2018 usb_hc_died(hcd); 2019 } 2020 return status; 2021 } 2022 2023 #endif /* CONFIG_PM */ 2024 2025 #ifdef CONFIG_USB_SUSPEND 2026 2027 /* Workqueue routine for root-hub remote wakeup */ 2028 static void hcd_resume_work(struct work_struct *work) 2029 { 2030 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2031 struct usb_device *udev = hcd->self.root_hub; 2032 2033 usb_lock_device(udev); 2034 usb_remote_wakeup(udev); 2035 usb_unlock_device(udev); 2036 } 2037 2038 /** 2039 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2040 * @hcd: host controller for this root hub 2041 * 2042 * The USB host controller calls this function when its root hub is 2043 * suspended (with the remote wakeup feature enabled) and a remote 2044 * wakeup request is received. The routine submits a workqueue request 2045 * to resume the root hub (that is, manage its downstream ports again). 2046 */ 2047 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2048 { 2049 unsigned long flags; 2050 2051 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2052 if (hcd->rh_registered) { 2053 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2054 queue_work(pm_wq, &hcd->wakeup_work); 2055 } 2056 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2057 } 2058 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2059 2060 #endif /* CONFIG_USB_SUSPEND */ 2061 2062 /*-------------------------------------------------------------------------*/ 2063 2064 #ifdef CONFIG_USB_OTG 2065 2066 /** 2067 * usb_bus_start_enum - start immediate enumeration (for OTG) 2068 * @bus: the bus (must use hcd framework) 2069 * @port_num: 1-based number of port; usually bus->otg_port 2070 * Context: in_interrupt() 2071 * 2072 * Starts enumeration, with an immediate reset followed later by 2073 * khubd identifying and possibly configuring the device. 2074 * This is needed by OTG controller drivers, where it helps meet 2075 * HNP protocol timing requirements for starting a port reset. 2076 */ 2077 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2078 { 2079 struct usb_hcd *hcd; 2080 int status = -EOPNOTSUPP; 2081 2082 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2083 * boards with root hubs hooked up to internal devices (instead of 2084 * just the OTG port) may need more attention to resetting... 2085 */ 2086 hcd = container_of (bus, struct usb_hcd, self); 2087 if (port_num && hcd->driver->start_port_reset) 2088 status = hcd->driver->start_port_reset(hcd, port_num); 2089 2090 /* run khubd shortly after (first) root port reset finishes; 2091 * it may issue others, until at least 50 msecs have passed. 2092 */ 2093 if (status == 0) 2094 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2095 return status; 2096 } 2097 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2098 2099 #endif 2100 2101 /*-------------------------------------------------------------------------*/ 2102 2103 /** 2104 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2105 * @irq: the IRQ being raised 2106 * @__hcd: pointer to the HCD whose IRQ is being signaled 2107 * 2108 * If the controller isn't HALTed, calls the driver's irq handler. 2109 * Checks whether the controller is now dead. 2110 */ 2111 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2112 { 2113 struct usb_hcd *hcd = __hcd; 2114 unsigned long flags; 2115 irqreturn_t rc; 2116 2117 /* IRQF_DISABLED doesn't work correctly with shared IRQs 2118 * when the first handler doesn't use it. So let's just 2119 * assume it's never used. 2120 */ 2121 local_irq_save(flags); 2122 2123 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) { 2124 rc = IRQ_NONE; 2125 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 2126 rc = IRQ_NONE; 2127 } else { 2128 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 2129 if (hcd->shared_hcd) 2130 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags); 2131 2132 if (unlikely(hcd->state == HC_STATE_HALT)) 2133 usb_hc_died(hcd); 2134 rc = IRQ_HANDLED; 2135 } 2136 2137 local_irq_restore(flags); 2138 return rc; 2139 } 2140 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2141 2142 /*-------------------------------------------------------------------------*/ 2143 2144 /** 2145 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2146 * @hcd: pointer to the HCD representing the controller 2147 * 2148 * This is called by bus glue to report a USB host controller that died 2149 * while operations may still have been pending. It's called automatically 2150 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2151 * 2152 * Only call this function with the primary HCD. 2153 */ 2154 void usb_hc_died (struct usb_hcd *hcd) 2155 { 2156 unsigned long flags; 2157 2158 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2159 2160 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2161 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2162 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2163 if (hcd->rh_registered) { 2164 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2165 2166 /* make khubd clean up old urbs and devices */ 2167 usb_set_device_state (hcd->self.root_hub, 2168 USB_STATE_NOTATTACHED); 2169 usb_kick_khubd (hcd->self.root_hub); 2170 } 2171 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2172 hcd = hcd->shared_hcd; 2173 if (hcd->rh_registered) { 2174 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2175 2176 /* make khubd clean up old urbs and devices */ 2177 usb_set_device_state(hcd->self.root_hub, 2178 USB_STATE_NOTATTACHED); 2179 usb_kick_khubd(hcd->self.root_hub); 2180 } 2181 } 2182 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2183 /* Make sure that the other roothub is also deallocated. */ 2184 } 2185 EXPORT_SYMBOL_GPL (usb_hc_died); 2186 2187 /*-------------------------------------------------------------------------*/ 2188 2189 /** 2190 * usb_create_shared_hcd - create and initialize an HCD structure 2191 * @driver: HC driver that will use this hcd 2192 * @dev: device for this HC, stored in hcd->self.controller 2193 * @bus_name: value to store in hcd->self.bus_name 2194 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2195 * PCI device. Only allocate certain resources for the primary HCD 2196 * Context: !in_interrupt() 2197 * 2198 * Allocate a struct usb_hcd, with extra space at the end for the 2199 * HC driver's private data. Initialize the generic members of the 2200 * hcd structure. 2201 * 2202 * If memory is unavailable, returns NULL. 2203 */ 2204 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2205 struct device *dev, const char *bus_name, 2206 struct usb_hcd *primary_hcd) 2207 { 2208 struct usb_hcd *hcd; 2209 2210 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2211 if (!hcd) { 2212 dev_dbg (dev, "hcd alloc failed\n"); 2213 return NULL; 2214 } 2215 if (primary_hcd == NULL) { 2216 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2217 GFP_KERNEL); 2218 if (!hcd->bandwidth_mutex) { 2219 kfree(hcd); 2220 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2221 return NULL; 2222 } 2223 mutex_init(hcd->bandwidth_mutex); 2224 dev_set_drvdata(dev, hcd); 2225 } else { 2226 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2227 hcd->primary_hcd = primary_hcd; 2228 primary_hcd->primary_hcd = primary_hcd; 2229 hcd->shared_hcd = primary_hcd; 2230 primary_hcd->shared_hcd = hcd; 2231 } 2232 2233 kref_init(&hcd->kref); 2234 2235 usb_bus_init(&hcd->self); 2236 hcd->self.controller = dev; 2237 hcd->self.bus_name = bus_name; 2238 hcd->self.uses_dma = (dev->dma_mask != NULL); 2239 2240 init_timer(&hcd->rh_timer); 2241 hcd->rh_timer.function = rh_timer_func; 2242 hcd->rh_timer.data = (unsigned long) hcd; 2243 #ifdef CONFIG_USB_SUSPEND 2244 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2245 #endif 2246 2247 hcd->driver = driver; 2248 hcd->speed = driver->flags & HCD_MASK; 2249 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2250 "USB Host Controller"; 2251 return hcd; 2252 } 2253 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2254 2255 /** 2256 * usb_create_hcd - create and initialize an HCD structure 2257 * @driver: HC driver that will use this hcd 2258 * @dev: device for this HC, stored in hcd->self.controller 2259 * @bus_name: value to store in hcd->self.bus_name 2260 * Context: !in_interrupt() 2261 * 2262 * Allocate a struct usb_hcd, with extra space at the end for the 2263 * HC driver's private data. Initialize the generic members of the 2264 * hcd structure. 2265 * 2266 * If memory is unavailable, returns NULL. 2267 */ 2268 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2269 struct device *dev, const char *bus_name) 2270 { 2271 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2272 } 2273 EXPORT_SYMBOL_GPL(usb_create_hcd); 2274 2275 /* 2276 * Roothubs that share one PCI device must also share the bandwidth mutex. 2277 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2278 * deallocated. 2279 * 2280 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is 2281 * freed. When hcd_release() is called for the non-primary HCD, set the 2282 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be 2283 * freed shortly). 2284 */ 2285 static void hcd_release (struct kref *kref) 2286 { 2287 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2288 2289 if (usb_hcd_is_primary_hcd(hcd)) 2290 kfree(hcd->bandwidth_mutex); 2291 else 2292 hcd->shared_hcd->shared_hcd = NULL; 2293 kfree(hcd); 2294 } 2295 2296 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2297 { 2298 if (hcd) 2299 kref_get (&hcd->kref); 2300 return hcd; 2301 } 2302 EXPORT_SYMBOL_GPL(usb_get_hcd); 2303 2304 void usb_put_hcd (struct usb_hcd *hcd) 2305 { 2306 if (hcd) 2307 kref_put (&hcd->kref, hcd_release); 2308 } 2309 EXPORT_SYMBOL_GPL(usb_put_hcd); 2310 2311 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2312 { 2313 if (!hcd->primary_hcd) 2314 return 1; 2315 return hcd == hcd->primary_hcd; 2316 } 2317 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2318 2319 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2320 unsigned int irqnum, unsigned long irqflags) 2321 { 2322 int retval; 2323 2324 if (hcd->driver->irq) { 2325 2326 /* IRQF_DISABLED doesn't work as advertised when used together 2327 * with IRQF_SHARED. As usb_hcd_irq() will always disable 2328 * interrupts we can remove it here. 2329 */ 2330 if (irqflags & IRQF_SHARED) 2331 irqflags &= ~IRQF_DISABLED; 2332 2333 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2334 hcd->driver->description, hcd->self.busnum); 2335 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2336 hcd->irq_descr, hcd); 2337 if (retval != 0) { 2338 dev_err(hcd->self.controller, 2339 "request interrupt %d failed\n", 2340 irqnum); 2341 return retval; 2342 } 2343 hcd->irq = irqnum; 2344 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2345 (hcd->driver->flags & HCD_MEMORY) ? 2346 "io mem" : "io base", 2347 (unsigned long long)hcd->rsrc_start); 2348 } else { 2349 hcd->irq = -1; 2350 if (hcd->rsrc_start) 2351 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2352 (hcd->driver->flags & HCD_MEMORY) ? 2353 "io mem" : "io base", 2354 (unsigned long long)hcd->rsrc_start); 2355 } 2356 return 0; 2357 } 2358 2359 /** 2360 * usb_add_hcd - finish generic HCD structure initialization and register 2361 * @hcd: the usb_hcd structure to initialize 2362 * @irqnum: Interrupt line to allocate 2363 * @irqflags: Interrupt type flags 2364 * 2365 * Finish the remaining parts of generic HCD initialization: allocate the 2366 * buffers of consistent memory, register the bus, request the IRQ line, 2367 * and call the driver's reset() and start() routines. 2368 */ 2369 int usb_add_hcd(struct usb_hcd *hcd, 2370 unsigned int irqnum, unsigned long irqflags) 2371 { 2372 int retval; 2373 struct usb_device *rhdev; 2374 2375 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2376 2377 hcd->authorized_default = hcd->wireless? 0 : 1; 2378 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2379 2380 /* HC is in reset state, but accessible. Now do the one-time init, 2381 * bottom up so that hcds can customize the root hubs before khubd 2382 * starts talking to them. (Note, bus id is assigned early too.) 2383 */ 2384 if ((retval = hcd_buffer_create(hcd)) != 0) { 2385 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2386 return retval; 2387 } 2388 2389 if ((retval = usb_register_bus(&hcd->self)) < 0) 2390 goto err_register_bus; 2391 2392 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 2393 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2394 retval = -ENOMEM; 2395 goto err_allocate_root_hub; 2396 } 2397 hcd->self.root_hub = rhdev; 2398 2399 switch (hcd->speed) { 2400 case HCD_USB11: 2401 rhdev->speed = USB_SPEED_FULL; 2402 break; 2403 case HCD_USB2: 2404 rhdev->speed = USB_SPEED_HIGH; 2405 break; 2406 case HCD_USB3: 2407 rhdev->speed = USB_SPEED_SUPER; 2408 break; 2409 default: 2410 goto err_set_rh_speed; 2411 } 2412 2413 /* wakeup flag init defaults to "everything works" for root hubs, 2414 * but drivers can override it in reset() if needed, along with 2415 * recording the overall controller's system wakeup capability. 2416 */ 2417 device_init_wakeup(&rhdev->dev, 1); 2418 2419 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2420 * registered. But since the controller can die at any time, 2421 * let's initialize the flag before touching the hardware. 2422 */ 2423 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2424 2425 /* "reset" is misnamed; its role is now one-time init. the controller 2426 * should already have been reset (and boot firmware kicked off etc). 2427 */ 2428 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 2429 dev_err(hcd->self.controller, "can't setup\n"); 2430 goto err_hcd_driver_setup; 2431 } 2432 hcd->rh_pollable = 1; 2433 2434 /* NOTE: root hub and controller capabilities may not be the same */ 2435 if (device_can_wakeup(hcd->self.controller) 2436 && device_can_wakeup(&hcd->self.root_hub->dev)) 2437 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2438 2439 /* enable irqs just before we start the controller */ 2440 if (usb_hcd_is_primary_hcd(hcd)) { 2441 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2442 if (retval) 2443 goto err_request_irq; 2444 } 2445 2446 hcd->state = HC_STATE_RUNNING; 2447 retval = hcd->driver->start(hcd); 2448 if (retval < 0) { 2449 dev_err(hcd->self.controller, "startup error %d\n", retval); 2450 goto err_hcd_driver_start; 2451 } 2452 2453 /* starting here, usbcore will pay attention to this root hub */ 2454 rhdev->bus_mA = min(500u, hcd->power_budget); 2455 if ((retval = register_root_hub(hcd)) != 0) 2456 goto err_register_root_hub; 2457 2458 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2459 if (retval < 0) { 2460 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2461 retval); 2462 goto error_create_attr_group; 2463 } 2464 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2465 usb_hcd_poll_rh_status(hcd); 2466 return retval; 2467 2468 error_create_attr_group: 2469 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2470 if (HC_IS_RUNNING(hcd->state)) 2471 hcd->state = HC_STATE_QUIESCING; 2472 spin_lock_irq(&hcd_root_hub_lock); 2473 hcd->rh_registered = 0; 2474 spin_unlock_irq(&hcd_root_hub_lock); 2475 2476 #ifdef CONFIG_USB_SUSPEND 2477 cancel_work_sync(&hcd->wakeup_work); 2478 #endif 2479 mutex_lock(&usb_bus_list_lock); 2480 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2481 mutex_unlock(&usb_bus_list_lock); 2482 err_register_root_hub: 2483 hcd->rh_pollable = 0; 2484 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2485 del_timer_sync(&hcd->rh_timer); 2486 hcd->driver->stop(hcd); 2487 hcd->state = HC_STATE_HALT; 2488 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2489 del_timer_sync(&hcd->rh_timer); 2490 err_hcd_driver_start: 2491 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0) 2492 free_irq(irqnum, hcd); 2493 err_request_irq: 2494 err_hcd_driver_setup: 2495 err_set_rh_speed: 2496 usb_put_dev(hcd->self.root_hub); 2497 err_allocate_root_hub: 2498 usb_deregister_bus(&hcd->self); 2499 err_register_bus: 2500 hcd_buffer_destroy(hcd); 2501 return retval; 2502 } 2503 EXPORT_SYMBOL_GPL(usb_add_hcd); 2504 2505 /** 2506 * usb_remove_hcd - shutdown processing for generic HCDs 2507 * @hcd: the usb_hcd structure to remove 2508 * Context: !in_interrupt() 2509 * 2510 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2511 * invoking the HCD's stop() method. 2512 */ 2513 void usb_remove_hcd(struct usb_hcd *hcd) 2514 { 2515 struct usb_device *rhdev = hcd->self.root_hub; 2516 2517 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2518 2519 usb_get_dev(rhdev); 2520 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2521 2522 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2523 if (HC_IS_RUNNING (hcd->state)) 2524 hcd->state = HC_STATE_QUIESCING; 2525 2526 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2527 spin_lock_irq (&hcd_root_hub_lock); 2528 hcd->rh_registered = 0; 2529 spin_unlock_irq (&hcd_root_hub_lock); 2530 2531 #ifdef CONFIG_USB_SUSPEND 2532 cancel_work_sync(&hcd->wakeup_work); 2533 #endif 2534 2535 mutex_lock(&usb_bus_list_lock); 2536 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2537 mutex_unlock(&usb_bus_list_lock); 2538 2539 /* Prevent any more root-hub status calls from the timer. 2540 * The HCD might still restart the timer (if a port status change 2541 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2542 * the hub_status_data() callback. 2543 */ 2544 hcd->rh_pollable = 0; 2545 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2546 del_timer_sync(&hcd->rh_timer); 2547 2548 hcd->driver->stop(hcd); 2549 hcd->state = HC_STATE_HALT; 2550 2551 /* In case the HCD restarted the timer, stop it again. */ 2552 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2553 del_timer_sync(&hcd->rh_timer); 2554 2555 if (usb_hcd_is_primary_hcd(hcd)) { 2556 if (hcd->irq >= 0) 2557 free_irq(hcd->irq, hcd); 2558 } 2559 2560 usb_put_dev(hcd->self.root_hub); 2561 usb_deregister_bus(&hcd->self); 2562 hcd_buffer_destroy(hcd); 2563 } 2564 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2565 2566 void 2567 usb_hcd_platform_shutdown(struct platform_device* dev) 2568 { 2569 struct usb_hcd *hcd = platform_get_drvdata(dev); 2570 2571 if (hcd->driver->shutdown) 2572 hcd->driver->shutdown(hcd); 2573 } 2574 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2575 2576 /*-------------------------------------------------------------------------*/ 2577 2578 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 2579 2580 struct usb_mon_operations *mon_ops; 2581 2582 /* 2583 * The registration is unlocked. 2584 * We do it this way because we do not want to lock in hot paths. 2585 * 2586 * Notice that the code is minimally error-proof. Because usbmon needs 2587 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2588 */ 2589 2590 int usb_mon_register (struct usb_mon_operations *ops) 2591 { 2592 2593 if (mon_ops) 2594 return -EBUSY; 2595 2596 mon_ops = ops; 2597 mb(); 2598 return 0; 2599 } 2600 EXPORT_SYMBOL_GPL (usb_mon_register); 2601 2602 void usb_mon_deregister (void) 2603 { 2604 2605 if (mon_ops == NULL) { 2606 printk(KERN_ERR "USB: monitor was not registered\n"); 2607 return; 2608 } 2609 mon_ops = NULL; 2610 mb(); 2611 } 2612 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2613 2614 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 2615