1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/version.h> 27 #include <linux/kernel.h> 28 #include <linux/slab.h> 29 #include <linux/completion.h> 30 #include <linux/utsname.h> 31 #include <linux/mm.h> 32 #include <asm/io.h> 33 #include <linux/device.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/mutex.h> 36 #include <asm/irq.h> 37 #include <asm/byteorder.h> 38 #include <asm/unaligned.h> 39 #include <linux/platform_device.h> 40 #include <linux/workqueue.h> 41 42 #include <linux/usb.h> 43 44 #include "usb.h" 45 #include "hcd.h" 46 #include "hub.h" 47 48 49 /*-------------------------------------------------------------------------*/ 50 51 /* 52 * USB Host Controller Driver framework 53 * 54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 55 * HCD-specific behaviors/bugs. 56 * 57 * This does error checks, tracks devices and urbs, and delegates to a 58 * "hc_driver" only for code (and data) that really needs to know about 59 * hardware differences. That includes root hub registers, i/o queues, 60 * and so on ... but as little else as possible. 61 * 62 * Shared code includes most of the "root hub" code (these are emulated, 63 * though each HC's hardware works differently) and PCI glue, plus request 64 * tracking overhead. The HCD code should only block on spinlocks or on 65 * hardware handshaking; blocking on software events (such as other kernel 66 * threads releasing resources, or completing actions) is all generic. 67 * 68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 70 * only by the hub driver ... and that neither should be seen or used by 71 * usb client device drivers. 72 * 73 * Contributors of ideas or unattributed patches include: David Brownell, 74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 75 * 76 * HISTORY: 77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 78 * associated cleanup. "usb_hcd" still != "usb_bus". 79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 80 */ 81 82 /*-------------------------------------------------------------------------*/ 83 84 /* host controllers we manage */ 85 LIST_HEAD (usb_bus_list); 86 EXPORT_SYMBOL_GPL (usb_bus_list); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 struct usb_busmap { 91 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))]; 92 }; 93 static struct usb_busmap busmap; 94 95 /* used when updating list of hcds */ 96 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */ 97 EXPORT_SYMBOL_GPL (usb_bus_list_lock); 98 99 /* used for controlling access to virtual root hubs */ 100 static DEFINE_SPINLOCK(hcd_root_hub_lock); 101 102 /* used when updating an endpoint's URB list */ 103 static DEFINE_SPINLOCK(hcd_urb_list_lock); 104 105 /* wait queue for synchronous unlinks */ 106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 107 108 static inline int is_root_hub(struct usb_device *udev) 109 { 110 return (udev->parent == NULL); 111 } 112 113 /*-------------------------------------------------------------------------*/ 114 115 /* 116 * Sharable chunks of root hub code. 117 */ 118 119 /*-------------------------------------------------------------------------*/ 120 121 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff) 122 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff) 123 124 /* usb 2.0 root hub device descriptor */ 125 static const u8 usb2_rh_dev_descriptor [18] = { 126 0x12, /* __u8 bLength; */ 127 0x01, /* __u8 bDescriptorType; Device */ 128 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 129 130 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 131 0x00, /* __u8 bDeviceSubClass; */ 132 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 133 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 134 135 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 136 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 137 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 138 139 0x03, /* __u8 iManufacturer; */ 140 0x02, /* __u8 iProduct; */ 141 0x01, /* __u8 iSerialNumber; */ 142 0x01 /* __u8 bNumConfigurations; */ 143 }; 144 145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 146 147 /* usb 1.1 root hub device descriptor */ 148 static const u8 usb11_rh_dev_descriptor [18] = { 149 0x12, /* __u8 bLength; */ 150 0x01, /* __u8 bDescriptorType; Device */ 151 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 152 153 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 154 0x00, /* __u8 bDeviceSubClass; */ 155 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 156 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 157 158 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */ 159 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 160 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 161 162 0x03, /* __u8 iManufacturer; */ 163 0x02, /* __u8 iProduct; */ 164 0x01, /* __u8 iSerialNumber; */ 165 0x01 /* __u8 bNumConfigurations; */ 166 }; 167 168 169 /*-------------------------------------------------------------------------*/ 170 171 /* Configuration descriptors for our root hubs */ 172 173 static const u8 fs_rh_config_descriptor [] = { 174 175 /* one configuration */ 176 0x09, /* __u8 bLength; */ 177 0x02, /* __u8 bDescriptorType; Configuration */ 178 0x19, 0x00, /* __le16 wTotalLength; */ 179 0x01, /* __u8 bNumInterfaces; (1) */ 180 0x01, /* __u8 bConfigurationValue; */ 181 0x00, /* __u8 iConfiguration; */ 182 0xc0, /* __u8 bmAttributes; 183 Bit 7: must be set, 184 6: Self-powered, 185 5: Remote wakeup, 186 4..0: resvd */ 187 0x00, /* __u8 MaxPower; */ 188 189 /* USB 1.1: 190 * USB 2.0, single TT organization (mandatory): 191 * one interface, protocol 0 192 * 193 * USB 2.0, multiple TT organization (optional): 194 * two interfaces, protocols 1 (like single TT) 195 * and 2 (multiple TT mode) ... config is 196 * sometimes settable 197 * NOT IMPLEMENTED 198 */ 199 200 /* one interface */ 201 0x09, /* __u8 if_bLength; */ 202 0x04, /* __u8 if_bDescriptorType; Interface */ 203 0x00, /* __u8 if_bInterfaceNumber; */ 204 0x00, /* __u8 if_bAlternateSetting; */ 205 0x01, /* __u8 if_bNumEndpoints; */ 206 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 207 0x00, /* __u8 if_bInterfaceSubClass; */ 208 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 209 0x00, /* __u8 if_iInterface; */ 210 211 /* one endpoint (status change endpoint) */ 212 0x07, /* __u8 ep_bLength; */ 213 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 214 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 215 0x03, /* __u8 ep_bmAttributes; Interrupt */ 216 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 217 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 218 }; 219 220 static const u8 hs_rh_config_descriptor [] = { 221 222 /* one configuration */ 223 0x09, /* __u8 bLength; */ 224 0x02, /* __u8 bDescriptorType; Configuration */ 225 0x19, 0x00, /* __le16 wTotalLength; */ 226 0x01, /* __u8 bNumInterfaces; (1) */ 227 0x01, /* __u8 bConfigurationValue; */ 228 0x00, /* __u8 iConfiguration; */ 229 0xc0, /* __u8 bmAttributes; 230 Bit 7: must be set, 231 6: Self-powered, 232 5: Remote wakeup, 233 4..0: resvd */ 234 0x00, /* __u8 MaxPower; */ 235 236 /* USB 1.1: 237 * USB 2.0, single TT organization (mandatory): 238 * one interface, protocol 0 239 * 240 * USB 2.0, multiple TT organization (optional): 241 * two interfaces, protocols 1 (like single TT) 242 * and 2 (multiple TT mode) ... config is 243 * sometimes settable 244 * NOT IMPLEMENTED 245 */ 246 247 /* one interface */ 248 0x09, /* __u8 if_bLength; */ 249 0x04, /* __u8 if_bDescriptorType; Interface */ 250 0x00, /* __u8 if_bInterfaceNumber; */ 251 0x00, /* __u8 if_bAlternateSetting; */ 252 0x01, /* __u8 if_bNumEndpoints; */ 253 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 254 0x00, /* __u8 if_bInterfaceSubClass; */ 255 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 256 0x00, /* __u8 if_iInterface; */ 257 258 /* one endpoint (status change endpoint) */ 259 0x07, /* __u8 ep_bLength; */ 260 0x05, /* __u8 ep_bDescriptorType; Endpoint */ 261 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 262 0x03, /* __u8 ep_bmAttributes; Interrupt */ 263 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 264 * see hub.c:hub_configure() for details. */ 265 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 266 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 267 }; 268 269 /*-------------------------------------------------------------------------*/ 270 271 /* 272 * helper routine for returning string descriptors in UTF-16LE 273 * input can actually be ISO-8859-1; ASCII is its 7-bit subset 274 */ 275 static int ascii2utf (char *s, u8 *utf, int utfmax) 276 { 277 int retval; 278 279 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) { 280 *utf++ = *s++; 281 *utf++ = 0; 282 } 283 if (utfmax > 0) { 284 *utf = *s; 285 ++retval; 286 } 287 return retval; 288 } 289 290 /* 291 * rh_string - provides manufacturer, product and serial strings for root hub 292 * @id: the string ID number (1: serial number, 2: product, 3: vendor) 293 * @hcd: the host controller for this root hub 294 * @data: return packet in UTF-16 LE 295 * @len: length of the return packet 296 * 297 * Produces either a manufacturer, product or serial number string for the 298 * virtual root hub device. 299 */ 300 static int rh_string ( 301 int id, 302 struct usb_hcd *hcd, 303 u8 *data, 304 int len 305 ) { 306 char buf [100]; 307 308 // language ids 309 if (id == 0) { 310 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */ 311 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */ 312 len = min (len, 4); 313 memcpy (data, buf, len); 314 return len; 315 316 // serial number 317 } else if (id == 1) { 318 strlcpy (buf, hcd->self.bus_name, sizeof buf); 319 320 // product description 321 } else if (id == 2) { 322 strlcpy (buf, hcd->product_desc, sizeof buf); 323 324 // id 3 == vendor description 325 } else if (id == 3) { 326 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 327 init_utsname()->release, hcd->driver->description); 328 329 // unsupported IDs --> "protocol stall" 330 } else 331 return -EPIPE; 332 333 switch (len) { /* All cases fall through */ 334 default: 335 len = 2 + ascii2utf (buf, data + 2, len - 2); 336 case 2: 337 data [1] = 3; /* type == string */ 338 case 1: 339 data [0] = 2 * (strlen (buf) + 1); 340 case 0: 341 ; /* Compiler wants a statement here */ 342 } 343 return len; 344 } 345 346 347 /* Root hub control transfers execute synchronously */ 348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 349 { 350 struct usb_ctrlrequest *cmd; 351 u16 typeReq, wValue, wIndex, wLength; 352 u8 *ubuf = urb->transfer_buffer; 353 u8 tbuf [sizeof (struct usb_hub_descriptor)] 354 __attribute__((aligned(4))); 355 const u8 *bufp = tbuf; 356 int len = 0; 357 int status; 358 int n; 359 u8 patch_wakeup = 0; 360 u8 patch_protocol = 0; 361 362 might_sleep(); 363 364 spin_lock_irq(&hcd_root_hub_lock); 365 status = usb_hcd_link_urb_to_ep(hcd, urb); 366 spin_unlock_irq(&hcd_root_hub_lock); 367 if (status) 368 return status; 369 urb->hcpriv = hcd; /* Indicate it's queued */ 370 371 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 372 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 373 wValue = le16_to_cpu (cmd->wValue); 374 wIndex = le16_to_cpu (cmd->wIndex); 375 wLength = le16_to_cpu (cmd->wLength); 376 377 if (wLength > urb->transfer_buffer_length) 378 goto error; 379 380 urb->actual_length = 0; 381 switch (typeReq) { 382 383 /* DEVICE REQUESTS */ 384 385 /* The root hub's remote wakeup enable bit is implemented using 386 * driver model wakeup flags. If this system supports wakeup 387 * through USB, userspace may change the default "allow wakeup" 388 * policy through sysfs or these calls. 389 * 390 * Most root hubs support wakeup from downstream devices, for 391 * runtime power management (disabling USB clocks and reducing 392 * VBUS power usage). However, not all of them do so; silicon, 393 * board, and BIOS bugs here are not uncommon, so these can't 394 * be treated quite like external hubs. 395 * 396 * Likewise, not all root hubs will pass wakeup events upstream, 397 * to wake up the whole system. So don't assume root hub and 398 * controller capabilities are identical. 399 */ 400 401 case DeviceRequest | USB_REQ_GET_STATUS: 402 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev) 403 << USB_DEVICE_REMOTE_WAKEUP) 404 | (1 << USB_DEVICE_SELF_POWERED); 405 tbuf [1] = 0; 406 len = 2; 407 break; 408 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 409 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 410 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 411 else 412 goto error; 413 break; 414 case DeviceOutRequest | USB_REQ_SET_FEATURE: 415 if (device_can_wakeup(&hcd->self.root_hub->dev) 416 && wValue == USB_DEVICE_REMOTE_WAKEUP) 417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 418 else 419 goto error; 420 break; 421 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 422 tbuf [0] = 1; 423 len = 1; 424 /* FALLTHROUGH */ 425 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 426 break; 427 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 428 switch (wValue & 0xff00) { 429 case USB_DT_DEVICE << 8: 430 if (hcd->driver->flags & HCD_USB2) 431 bufp = usb2_rh_dev_descriptor; 432 else if (hcd->driver->flags & HCD_USB11) 433 bufp = usb11_rh_dev_descriptor; 434 else 435 goto error; 436 len = 18; 437 if (hcd->has_tt) 438 patch_protocol = 1; 439 break; 440 case USB_DT_CONFIG << 8: 441 if (hcd->driver->flags & HCD_USB2) { 442 bufp = hs_rh_config_descriptor; 443 len = sizeof hs_rh_config_descriptor; 444 } else { 445 bufp = fs_rh_config_descriptor; 446 len = sizeof fs_rh_config_descriptor; 447 } 448 if (device_can_wakeup(&hcd->self.root_hub->dev)) 449 patch_wakeup = 1; 450 break; 451 case USB_DT_STRING << 8: 452 n = rh_string (wValue & 0xff, hcd, ubuf, wLength); 453 if (n < 0) 454 goto error; 455 urb->actual_length = n; 456 break; 457 default: 458 goto error; 459 } 460 break; 461 case DeviceRequest | USB_REQ_GET_INTERFACE: 462 tbuf [0] = 0; 463 len = 1; 464 /* FALLTHROUGH */ 465 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 466 break; 467 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 468 // wValue == urb->dev->devaddr 469 dev_dbg (hcd->self.controller, "root hub device address %d\n", 470 wValue); 471 break; 472 473 /* INTERFACE REQUESTS (no defined feature/status flags) */ 474 475 /* ENDPOINT REQUESTS */ 476 477 case EndpointRequest | USB_REQ_GET_STATUS: 478 // ENDPOINT_HALT flag 479 tbuf [0] = 0; 480 tbuf [1] = 0; 481 len = 2; 482 /* FALLTHROUGH */ 483 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 484 case EndpointOutRequest | USB_REQ_SET_FEATURE: 485 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 486 break; 487 488 /* CLASS REQUESTS (and errors) */ 489 490 default: 491 /* non-generic request */ 492 switch (typeReq) { 493 case GetHubStatus: 494 case GetPortStatus: 495 len = 4; 496 break; 497 case GetHubDescriptor: 498 len = sizeof (struct usb_hub_descriptor); 499 break; 500 } 501 status = hcd->driver->hub_control (hcd, 502 typeReq, wValue, wIndex, 503 tbuf, wLength); 504 break; 505 error: 506 /* "protocol stall" on error */ 507 status = -EPIPE; 508 } 509 510 if (status) { 511 len = 0; 512 if (status != -EPIPE) { 513 dev_dbg (hcd->self.controller, 514 "CTRL: TypeReq=0x%x val=0x%x " 515 "idx=0x%x len=%d ==> %d\n", 516 typeReq, wValue, wIndex, 517 wLength, status); 518 } 519 } 520 if (len) { 521 if (urb->transfer_buffer_length < len) 522 len = urb->transfer_buffer_length; 523 urb->actual_length = len; 524 // always USB_DIR_IN, toward host 525 memcpy (ubuf, bufp, len); 526 527 /* report whether RH hardware supports remote wakeup */ 528 if (patch_wakeup && 529 len > offsetof (struct usb_config_descriptor, 530 bmAttributes)) 531 ((struct usb_config_descriptor *)ubuf)->bmAttributes 532 |= USB_CONFIG_ATT_WAKEUP; 533 534 /* report whether RH hardware has an integrated TT */ 535 if (patch_protocol && 536 len > offsetof(struct usb_device_descriptor, 537 bDeviceProtocol)) 538 ((struct usb_device_descriptor *) ubuf)-> 539 bDeviceProtocol = 1; 540 } 541 542 /* any errors get returned through the urb completion */ 543 spin_lock_irq(&hcd_root_hub_lock); 544 usb_hcd_unlink_urb_from_ep(hcd, urb); 545 546 /* This peculiar use of spinlocks echoes what real HC drivers do. 547 * Avoiding calls to local_irq_disable/enable makes the code 548 * RT-friendly. 549 */ 550 spin_unlock(&hcd_root_hub_lock); 551 usb_hcd_giveback_urb(hcd, urb, status); 552 spin_lock(&hcd_root_hub_lock); 553 554 spin_unlock_irq(&hcd_root_hub_lock); 555 return 0; 556 } 557 558 /*-------------------------------------------------------------------------*/ 559 560 /* 561 * Root Hub interrupt transfers are polled using a timer if the 562 * driver requests it; otherwise the driver is responsible for 563 * calling usb_hcd_poll_rh_status() when an event occurs. 564 * 565 * Completions are called in_interrupt(), but they may or may not 566 * be in_irq(). 567 */ 568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 569 { 570 struct urb *urb; 571 int length; 572 unsigned long flags; 573 char buffer[4]; /* Any root hubs with > 31 ports? */ 574 575 if (unlikely(!hcd->rh_registered)) 576 return; 577 if (!hcd->uses_new_polling && !hcd->status_urb) 578 return; 579 580 length = hcd->driver->hub_status_data(hcd, buffer); 581 if (length > 0) { 582 583 /* try to complete the status urb */ 584 spin_lock_irqsave(&hcd_root_hub_lock, flags); 585 urb = hcd->status_urb; 586 if (urb) { 587 hcd->poll_pending = 0; 588 hcd->status_urb = NULL; 589 urb->actual_length = length; 590 memcpy(urb->transfer_buffer, buffer, length); 591 592 usb_hcd_unlink_urb_from_ep(hcd, urb); 593 spin_unlock(&hcd_root_hub_lock); 594 usb_hcd_giveback_urb(hcd, urb, 0); 595 spin_lock(&hcd_root_hub_lock); 596 } else { 597 length = 0; 598 hcd->poll_pending = 1; 599 } 600 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 601 } 602 603 /* The USB 2.0 spec says 256 ms. This is close enough and won't 604 * exceed that limit if HZ is 100. The math is more clunky than 605 * maybe expected, this is to make sure that all timers for USB devices 606 * fire at the same time to give the CPU a break inbetween */ 607 if (hcd->uses_new_polling ? hcd->poll_rh : 608 (length == 0 && hcd->status_urb != NULL)) 609 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 610 } 611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 612 613 /* timer callback */ 614 static void rh_timer_func (unsigned long _hcd) 615 { 616 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 617 } 618 619 /*-------------------------------------------------------------------------*/ 620 621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 622 { 623 int retval; 624 unsigned long flags; 625 int len = 1 + (urb->dev->maxchild / 8); 626 627 spin_lock_irqsave (&hcd_root_hub_lock, flags); 628 if (hcd->status_urb || urb->transfer_buffer_length < len) { 629 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 630 retval = -EINVAL; 631 goto done; 632 } 633 634 retval = usb_hcd_link_urb_to_ep(hcd, urb); 635 if (retval) 636 goto done; 637 638 hcd->status_urb = urb; 639 urb->hcpriv = hcd; /* indicate it's queued */ 640 if (!hcd->uses_new_polling) 641 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 642 643 /* If a status change has already occurred, report it ASAP */ 644 else if (hcd->poll_pending) 645 mod_timer(&hcd->rh_timer, jiffies); 646 retval = 0; 647 done: 648 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 649 return retval; 650 } 651 652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 653 { 654 if (usb_endpoint_xfer_int(&urb->ep->desc)) 655 return rh_queue_status (hcd, urb); 656 if (usb_endpoint_xfer_control(&urb->ep->desc)) 657 return rh_call_control (hcd, urb); 658 return -EINVAL; 659 } 660 661 /*-------------------------------------------------------------------------*/ 662 663 /* Unlinks of root-hub control URBs are legal, but they don't do anything 664 * since these URBs always execute synchronously. 665 */ 666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 667 { 668 unsigned long flags; 669 int rc; 670 671 spin_lock_irqsave(&hcd_root_hub_lock, flags); 672 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 673 if (rc) 674 goto done; 675 676 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 677 ; /* Do nothing */ 678 679 } else { /* Status URB */ 680 if (!hcd->uses_new_polling) 681 del_timer (&hcd->rh_timer); 682 if (urb == hcd->status_urb) { 683 hcd->status_urb = NULL; 684 usb_hcd_unlink_urb_from_ep(hcd, urb); 685 686 spin_unlock(&hcd_root_hub_lock); 687 usb_hcd_giveback_urb(hcd, urb, status); 688 spin_lock(&hcd_root_hub_lock); 689 } 690 } 691 done: 692 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 693 return rc; 694 } 695 696 697 698 /* 699 * Show & store the current value of authorized_default 700 */ 701 static ssize_t usb_host_authorized_default_show(struct device *dev, 702 struct device_attribute *attr, 703 char *buf) 704 { 705 struct usb_device *rh_usb_dev = to_usb_device(dev); 706 struct usb_bus *usb_bus = rh_usb_dev->bus; 707 struct usb_hcd *usb_hcd; 708 709 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 710 return -ENODEV; 711 usb_hcd = bus_to_hcd(usb_bus); 712 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default); 713 } 714 715 static ssize_t usb_host_authorized_default_store(struct device *dev, 716 struct device_attribute *attr, 717 const char *buf, size_t size) 718 { 719 ssize_t result; 720 unsigned val; 721 struct usb_device *rh_usb_dev = to_usb_device(dev); 722 struct usb_bus *usb_bus = rh_usb_dev->bus; 723 struct usb_hcd *usb_hcd; 724 725 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */ 726 return -ENODEV; 727 usb_hcd = bus_to_hcd(usb_bus); 728 result = sscanf(buf, "%u\n", &val); 729 if (result == 1) { 730 usb_hcd->authorized_default = val? 1 : 0; 731 result = size; 732 } 733 else 734 result = -EINVAL; 735 return result; 736 } 737 738 static DEVICE_ATTR(authorized_default, 0644, 739 usb_host_authorized_default_show, 740 usb_host_authorized_default_store); 741 742 743 /* Group all the USB bus attributes */ 744 static struct attribute *usb_bus_attrs[] = { 745 &dev_attr_authorized_default.attr, 746 NULL, 747 }; 748 749 static struct attribute_group usb_bus_attr_group = { 750 .name = NULL, /* we want them in the same directory */ 751 .attrs = usb_bus_attrs, 752 }; 753 754 755 756 /*-------------------------------------------------------------------------*/ 757 758 static struct class *usb_host_class; 759 760 int usb_host_init(void) 761 { 762 int retval = 0; 763 764 usb_host_class = class_create(THIS_MODULE, "usb_host"); 765 if (IS_ERR(usb_host_class)) 766 retval = PTR_ERR(usb_host_class); 767 return retval; 768 } 769 770 void usb_host_cleanup(void) 771 { 772 class_destroy(usb_host_class); 773 } 774 775 /** 776 * usb_bus_init - shared initialization code 777 * @bus: the bus structure being initialized 778 * 779 * This code is used to initialize a usb_bus structure, memory for which is 780 * separately managed. 781 */ 782 static void usb_bus_init (struct usb_bus *bus) 783 { 784 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 785 786 bus->devnum_next = 1; 787 788 bus->root_hub = NULL; 789 bus->busnum = -1; 790 bus->bandwidth_allocated = 0; 791 bus->bandwidth_int_reqs = 0; 792 bus->bandwidth_isoc_reqs = 0; 793 794 INIT_LIST_HEAD (&bus->bus_list); 795 } 796 797 /*-------------------------------------------------------------------------*/ 798 799 /** 800 * usb_register_bus - registers the USB host controller with the usb core 801 * @bus: pointer to the bus to register 802 * Context: !in_interrupt() 803 * 804 * Assigns a bus number, and links the controller into usbcore data 805 * structures so that it can be seen by scanning the bus list. 806 */ 807 static int usb_register_bus(struct usb_bus *bus) 808 { 809 int result = -E2BIG; 810 int busnum; 811 812 mutex_lock(&usb_bus_list_lock); 813 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1); 814 if (busnum >= USB_MAXBUS) { 815 printk (KERN_ERR "%s: too many buses\n", usbcore_name); 816 goto error_find_busnum; 817 } 818 set_bit (busnum, busmap.busmap); 819 bus->busnum = busnum; 820 821 bus->dev = device_create_drvdata(usb_host_class, bus->controller, 822 MKDEV(0, 0), bus, 823 "usb_host%d", busnum); 824 result = PTR_ERR(bus->dev); 825 if (IS_ERR(bus->dev)) 826 goto error_create_class_dev; 827 828 /* Add it to the local list of buses */ 829 list_add (&bus->bus_list, &usb_bus_list); 830 mutex_unlock(&usb_bus_list_lock); 831 832 usb_notify_add_bus(bus); 833 834 dev_info (bus->controller, "new USB bus registered, assigned bus " 835 "number %d\n", bus->busnum); 836 return 0; 837 838 error_create_class_dev: 839 clear_bit(busnum, busmap.busmap); 840 error_find_busnum: 841 mutex_unlock(&usb_bus_list_lock); 842 return result; 843 } 844 845 /** 846 * usb_deregister_bus - deregisters the USB host controller 847 * @bus: pointer to the bus to deregister 848 * Context: !in_interrupt() 849 * 850 * Recycles the bus number, and unlinks the controller from usbcore data 851 * structures so that it won't be seen by scanning the bus list. 852 */ 853 static void usb_deregister_bus (struct usb_bus *bus) 854 { 855 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 856 857 /* 858 * NOTE: make sure that all the devices are removed by the 859 * controller code, as well as having it call this when cleaning 860 * itself up 861 */ 862 mutex_lock(&usb_bus_list_lock); 863 list_del (&bus->bus_list); 864 mutex_unlock(&usb_bus_list_lock); 865 866 usb_notify_remove_bus(bus); 867 868 clear_bit (bus->busnum, busmap.busmap); 869 870 device_unregister(bus->dev); 871 } 872 873 /** 874 * register_root_hub - called by usb_add_hcd() to register a root hub 875 * @hcd: host controller for this root hub 876 * 877 * This function registers the root hub with the USB subsystem. It sets up 878 * the device properly in the device tree and then calls usb_new_device() 879 * to register the usb device. It also assigns the root hub's USB address 880 * (always 1). 881 */ 882 static int register_root_hub(struct usb_hcd *hcd) 883 { 884 struct device *parent_dev = hcd->self.controller; 885 struct usb_device *usb_dev = hcd->self.root_hub; 886 const int devnum = 1; 887 int retval; 888 889 usb_dev->devnum = devnum; 890 usb_dev->bus->devnum_next = devnum + 1; 891 memset (&usb_dev->bus->devmap.devicemap, 0, 892 sizeof usb_dev->bus->devmap.devicemap); 893 set_bit (devnum, usb_dev->bus->devmap.devicemap); 894 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 895 896 mutex_lock(&usb_bus_list_lock); 897 898 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64); 899 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 900 if (retval != sizeof usb_dev->descriptor) { 901 mutex_unlock(&usb_bus_list_lock); 902 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 903 dev_name(&usb_dev->dev), retval); 904 return (retval < 0) ? retval : -EMSGSIZE; 905 } 906 907 retval = usb_new_device (usb_dev); 908 if (retval) { 909 dev_err (parent_dev, "can't register root hub for %s, %d\n", 910 dev_name(&usb_dev->dev), retval); 911 } 912 mutex_unlock(&usb_bus_list_lock); 913 914 if (retval == 0) { 915 spin_lock_irq (&hcd_root_hub_lock); 916 hcd->rh_registered = 1; 917 spin_unlock_irq (&hcd_root_hub_lock); 918 919 /* Did the HC die before the root hub was registered? */ 920 if (hcd->state == HC_STATE_HALT) 921 usb_hc_died (hcd); /* This time clean up */ 922 } 923 924 return retval; 925 } 926 927 void usb_enable_root_hub_irq (struct usb_bus *bus) 928 { 929 struct usb_hcd *hcd; 930 931 hcd = container_of (bus, struct usb_hcd, self); 932 if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT) 933 hcd->driver->hub_irq_enable (hcd); 934 } 935 936 937 /*-------------------------------------------------------------------------*/ 938 939 /** 940 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 941 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 942 * @is_input: true iff the transaction sends data to the host 943 * @isoc: true for isochronous transactions, false for interrupt ones 944 * @bytecount: how many bytes in the transaction. 945 * 946 * Returns approximate bus time in nanoseconds for a periodic transaction. 947 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 948 * scheduled in software, this function is only used for such scheduling. 949 */ 950 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 951 { 952 unsigned long tmp; 953 954 switch (speed) { 955 case USB_SPEED_LOW: /* INTR only */ 956 if (is_input) { 957 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 958 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 959 } else { 960 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 961 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp); 962 } 963 case USB_SPEED_FULL: /* ISOC or INTR */ 964 if (isoc) { 965 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 966 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp); 967 } else { 968 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 969 return (9107L + BW_HOST_DELAY + tmp); 970 } 971 case USB_SPEED_HIGH: /* ISOC or INTR */ 972 // FIXME adjust for input vs output 973 if (isoc) 974 tmp = HS_NSECS_ISO (bytecount); 975 else 976 tmp = HS_NSECS (bytecount); 977 return tmp; 978 default: 979 pr_debug ("%s: bogus device speed!\n", usbcore_name); 980 return -1; 981 } 982 } 983 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 984 985 986 /*-------------------------------------------------------------------------*/ 987 988 /* 989 * Generic HC operations. 990 */ 991 992 /*-------------------------------------------------------------------------*/ 993 994 /** 995 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 996 * @hcd: host controller to which @urb was submitted 997 * @urb: URB being submitted 998 * 999 * Host controller drivers should call this routine in their enqueue() 1000 * method. The HCD's private spinlock must be held and interrupts must 1001 * be disabled. The actions carried out here are required for URB 1002 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1003 * 1004 * Returns 0 for no error, otherwise a negative error code (in which case 1005 * the enqueue() method must fail). If no error occurs but enqueue() fails 1006 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1007 * the private spinlock and returning. 1008 */ 1009 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1010 { 1011 int rc = 0; 1012 1013 spin_lock(&hcd_urb_list_lock); 1014 1015 /* Check that the URB isn't being killed */ 1016 if (unlikely(urb->reject)) { 1017 rc = -EPERM; 1018 goto done; 1019 } 1020 1021 if (unlikely(!urb->ep->enabled)) { 1022 rc = -ENOENT; 1023 goto done; 1024 } 1025 1026 if (unlikely(!urb->dev->can_submit)) { 1027 rc = -EHOSTUNREACH; 1028 goto done; 1029 } 1030 1031 /* 1032 * Check the host controller's state and add the URB to the 1033 * endpoint's queue. 1034 */ 1035 switch (hcd->state) { 1036 case HC_STATE_RUNNING: 1037 case HC_STATE_RESUMING: 1038 urb->unlinked = 0; 1039 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1040 break; 1041 default: 1042 rc = -ESHUTDOWN; 1043 goto done; 1044 } 1045 done: 1046 spin_unlock(&hcd_urb_list_lock); 1047 return rc; 1048 } 1049 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1050 1051 /** 1052 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1053 * @hcd: host controller to which @urb was submitted 1054 * @urb: URB being checked for unlinkability 1055 * @status: error code to store in @urb if the unlink succeeds 1056 * 1057 * Host controller drivers should call this routine in their dequeue() 1058 * method. The HCD's private spinlock must be held and interrupts must 1059 * be disabled. The actions carried out here are required for making 1060 * sure than an unlink is valid. 1061 * 1062 * Returns 0 for no error, otherwise a negative error code (in which case 1063 * the dequeue() method must fail). The possible error codes are: 1064 * 1065 * -EIDRM: @urb was not submitted or has already completed. 1066 * The completion function may not have been called yet. 1067 * 1068 * -EBUSY: @urb has already been unlinked. 1069 */ 1070 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1071 int status) 1072 { 1073 struct list_head *tmp; 1074 1075 /* insist the urb is still queued */ 1076 list_for_each(tmp, &urb->ep->urb_list) { 1077 if (tmp == &urb->urb_list) 1078 break; 1079 } 1080 if (tmp != &urb->urb_list) 1081 return -EIDRM; 1082 1083 /* Any status except -EINPROGRESS means something already started to 1084 * unlink this URB from the hardware. So there's no more work to do. 1085 */ 1086 if (urb->unlinked) 1087 return -EBUSY; 1088 urb->unlinked = status; 1089 1090 /* IRQ setup can easily be broken so that USB controllers 1091 * never get completion IRQs ... maybe even the ones we need to 1092 * finish unlinking the initial failed usb_set_address() 1093 * or device descriptor fetch. 1094 */ 1095 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) && 1096 !is_root_hub(urb->dev)) { 1097 dev_warn(hcd->self.controller, "Unlink after no-IRQ? " 1098 "Controller is probably using the wrong IRQ.\n"); 1099 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1100 } 1101 1102 return 0; 1103 } 1104 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1105 1106 /** 1107 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1108 * @hcd: host controller to which @urb was submitted 1109 * @urb: URB being unlinked 1110 * 1111 * Host controller drivers should call this routine before calling 1112 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1113 * interrupts must be disabled. The actions carried out here are required 1114 * for URB completion. 1115 */ 1116 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1117 { 1118 /* clear all state linking urb to this dev (and hcd) */ 1119 spin_lock(&hcd_urb_list_lock); 1120 list_del_init(&urb->urb_list); 1121 spin_unlock(&hcd_urb_list_lock); 1122 } 1123 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1124 1125 /* 1126 * Some usb host controllers can only perform dma using a small SRAM area. 1127 * The usb core itself is however optimized for host controllers that can dma 1128 * using regular system memory - like pci devices doing bus mastering. 1129 * 1130 * To support host controllers with limited dma capabilites we provide dma 1131 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1132 * For this to work properly the host controller code must first use the 1133 * function dma_declare_coherent_memory() to point out which memory area 1134 * that should be used for dma allocations. 1135 * 1136 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1137 * dma using dma_alloc_coherent() which in turn allocates from the memory 1138 * area pointed out with dma_declare_coherent_memory(). 1139 * 1140 * So, to summarize... 1141 * 1142 * - We need "local" memory, canonical example being 1143 * a small SRAM on a discrete controller being the 1144 * only memory that the controller can read ... 1145 * (a) "normal" kernel memory is no good, and 1146 * (b) there's not enough to share 1147 * 1148 * - The only *portable* hook for such stuff in the 1149 * DMA framework is dma_declare_coherent_memory() 1150 * 1151 * - So we use that, even though the primary requirement 1152 * is that the memory be "local" (hence addressible 1153 * by that device), not "coherent". 1154 * 1155 */ 1156 1157 static int hcd_alloc_coherent(struct usb_bus *bus, 1158 gfp_t mem_flags, dma_addr_t *dma_handle, 1159 void **vaddr_handle, size_t size, 1160 enum dma_data_direction dir) 1161 { 1162 unsigned char *vaddr; 1163 1164 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1165 mem_flags, dma_handle); 1166 if (!vaddr) 1167 return -ENOMEM; 1168 1169 /* 1170 * Store the virtual address of the buffer at the end 1171 * of the allocated dma buffer. The size of the buffer 1172 * may be uneven so use unaligned functions instead 1173 * of just rounding up. It makes sense to optimize for 1174 * memory footprint over access speed since the amount 1175 * of memory available for dma may be limited. 1176 */ 1177 put_unaligned((unsigned long)*vaddr_handle, 1178 (unsigned long *)(vaddr + size)); 1179 1180 if (dir == DMA_TO_DEVICE) 1181 memcpy(vaddr, *vaddr_handle, size); 1182 1183 *vaddr_handle = vaddr; 1184 return 0; 1185 } 1186 1187 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1188 void **vaddr_handle, size_t size, 1189 enum dma_data_direction dir) 1190 { 1191 unsigned char *vaddr = *vaddr_handle; 1192 1193 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1194 1195 if (dir == DMA_FROM_DEVICE) 1196 memcpy(vaddr, *vaddr_handle, size); 1197 1198 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1199 1200 *vaddr_handle = vaddr; 1201 *dma_handle = 0; 1202 } 1203 1204 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1205 gfp_t mem_flags) 1206 { 1207 enum dma_data_direction dir; 1208 int ret = 0; 1209 1210 /* Map the URB's buffers for DMA access. 1211 * Lower level HCD code should use *_dma exclusively, 1212 * unless it uses pio or talks to another transport. 1213 */ 1214 if (is_root_hub(urb->dev)) 1215 return 0; 1216 1217 if (usb_endpoint_xfer_control(&urb->ep->desc) 1218 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1219 if (hcd->self.uses_dma) 1220 urb->setup_dma = dma_map_single( 1221 hcd->self.controller, 1222 urb->setup_packet, 1223 sizeof(struct usb_ctrlrequest), 1224 DMA_TO_DEVICE); 1225 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1226 ret = hcd_alloc_coherent( 1227 urb->dev->bus, mem_flags, 1228 &urb->setup_dma, 1229 (void **)&urb->setup_packet, 1230 sizeof(struct usb_ctrlrequest), 1231 DMA_TO_DEVICE); 1232 } 1233 1234 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1235 if (ret == 0 && urb->transfer_buffer_length != 0 1236 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1237 if (hcd->self.uses_dma) 1238 urb->transfer_dma = dma_map_single ( 1239 hcd->self.controller, 1240 urb->transfer_buffer, 1241 urb->transfer_buffer_length, 1242 dir); 1243 else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1244 ret = hcd_alloc_coherent( 1245 urb->dev->bus, mem_flags, 1246 &urb->transfer_dma, 1247 &urb->transfer_buffer, 1248 urb->transfer_buffer_length, 1249 dir); 1250 1251 if (ret && usb_endpoint_xfer_control(&urb->ep->desc) 1252 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) 1253 hcd_free_coherent(urb->dev->bus, 1254 &urb->setup_dma, 1255 (void **)&urb->setup_packet, 1256 sizeof(struct usb_ctrlrequest), 1257 DMA_TO_DEVICE); 1258 } 1259 } 1260 return ret; 1261 } 1262 1263 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1264 { 1265 enum dma_data_direction dir; 1266 1267 if (is_root_hub(urb->dev)) 1268 return; 1269 1270 if (usb_endpoint_xfer_control(&urb->ep->desc) 1271 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) { 1272 if (hcd->self.uses_dma) 1273 dma_unmap_single(hcd->self.controller, urb->setup_dma, 1274 sizeof(struct usb_ctrlrequest), 1275 DMA_TO_DEVICE); 1276 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1277 hcd_free_coherent(urb->dev->bus, &urb->setup_dma, 1278 (void **)&urb->setup_packet, 1279 sizeof(struct usb_ctrlrequest), 1280 DMA_TO_DEVICE); 1281 } 1282 1283 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1284 if (urb->transfer_buffer_length != 0 1285 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1286 if (hcd->self.uses_dma) 1287 dma_unmap_single(hcd->self.controller, 1288 urb->transfer_dma, 1289 urb->transfer_buffer_length, 1290 dir); 1291 else if (hcd->driver->flags & HCD_LOCAL_MEM) 1292 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma, 1293 &urb->transfer_buffer, 1294 urb->transfer_buffer_length, 1295 dir); 1296 } 1297 } 1298 1299 /*-------------------------------------------------------------------------*/ 1300 1301 /* may be called in any context with a valid urb->dev usecount 1302 * caller surrenders "ownership" of urb 1303 * expects usb_submit_urb() to have sanity checked and conditioned all 1304 * inputs in the urb 1305 */ 1306 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1307 { 1308 int status; 1309 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1310 1311 /* increment urb's reference count as part of giving it to the HCD 1312 * (which will control it). HCD guarantees that it either returns 1313 * an error or calls giveback(), but not both. 1314 */ 1315 usb_get_urb(urb); 1316 atomic_inc(&urb->use_count); 1317 atomic_inc(&urb->dev->urbnum); 1318 usbmon_urb_submit(&hcd->self, urb); 1319 1320 /* NOTE requirements on root-hub callers (usbfs and the hub 1321 * driver, for now): URBs' urb->transfer_buffer must be 1322 * valid and usb_buffer_{sync,unmap}() not be needed, since 1323 * they could clobber root hub response data. Also, control 1324 * URBs must be submitted in process context with interrupts 1325 * enabled. 1326 */ 1327 status = map_urb_for_dma(hcd, urb, mem_flags); 1328 if (unlikely(status)) { 1329 usbmon_urb_submit_error(&hcd->self, urb, status); 1330 goto error; 1331 } 1332 1333 if (is_root_hub(urb->dev)) 1334 status = rh_urb_enqueue(hcd, urb); 1335 else 1336 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1337 1338 if (unlikely(status)) { 1339 usbmon_urb_submit_error(&hcd->self, urb, status); 1340 unmap_urb_for_dma(hcd, urb); 1341 error: 1342 urb->hcpriv = NULL; 1343 INIT_LIST_HEAD(&urb->urb_list); 1344 atomic_dec(&urb->use_count); 1345 atomic_dec(&urb->dev->urbnum); 1346 if (urb->reject) 1347 wake_up(&usb_kill_urb_queue); 1348 usb_put_urb(urb); 1349 } 1350 return status; 1351 } 1352 1353 /*-------------------------------------------------------------------------*/ 1354 1355 /* this makes the hcd giveback() the urb more quickly, by kicking it 1356 * off hardware queues (which may take a while) and returning it as 1357 * soon as practical. we've already set up the urb's return status, 1358 * but we can't know if the callback completed already. 1359 */ 1360 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1361 { 1362 int value; 1363 1364 if (is_root_hub(urb->dev)) 1365 value = usb_rh_urb_dequeue(hcd, urb, status); 1366 else { 1367 1368 /* The only reason an HCD might fail this call is if 1369 * it has not yet fully queued the urb to begin with. 1370 * Such failures should be harmless. */ 1371 value = hcd->driver->urb_dequeue(hcd, urb, status); 1372 } 1373 return value; 1374 } 1375 1376 /* 1377 * called in any context 1378 * 1379 * caller guarantees urb won't be recycled till both unlink() 1380 * and the urb's completion function return 1381 */ 1382 int usb_hcd_unlink_urb (struct urb *urb, int status) 1383 { 1384 struct usb_hcd *hcd; 1385 int retval; 1386 1387 hcd = bus_to_hcd(urb->dev->bus); 1388 retval = unlink1(hcd, urb, status); 1389 1390 if (retval == 0) 1391 retval = -EINPROGRESS; 1392 else if (retval != -EIDRM && retval != -EBUSY) 1393 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n", 1394 urb, retval); 1395 return retval; 1396 } 1397 1398 /*-------------------------------------------------------------------------*/ 1399 1400 /** 1401 * usb_hcd_giveback_urb - return URB from HCD to device driver 1402 * @hcd: host controller returning the URB 1403 * @urb: urb being returned to the USB device driver. 1404 * @status: completion status code for the URB. 1405 * Context: in_interrupt() 1406 * 1407 * This hands the URB from HCD to its USB device driver, using its 1408 * completion function. The HCD has freed all per-urb resources 1409 * (and is done using urb->hcpriv). It also released all HCD locks; 1410 * the device driver won't cause problems if it frees, modifies, 1411 * or resubmits this URB. 1412 * 1413 * If @urb was unlinked, the value of @status will be overridden by 1414 * @urb->unlinked. Erroneous short transfers are detected in case 1415 * the HCD hasn't checked for them. 1416 */ 1417 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1418 { 1419 urb->hcpriv = NULL; 1420 if (unlikely(urb->unlinked)) 1421 status = urb->unlinked; 1422 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1423 urb->actual_length < urb->transfer_buffer_length && 1424 !status)) 1425 status = -EREMOTEIO; 1426 1427 unmap_urb_for_dma(hcd, urb); 1428 usbmon_urb_complete(&hcd->self, urb, status); 1429 usb_unanchor_urb(urb); 1430 1431 /* pass ownership to the completion handler */ 1432 urb->status = status; 1433 urb->complete (urb); 1434 atomic_dec (&urb->use_count); 1435 if (unlikely (urb->reject)) 1436 wake_up (&usb_kill_urb_queue); 1437 usb_put_urb (urb); 1438 } 1439 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1440 1441 /*-------------------------------------------------------------------------*/ 1442 1443 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1444 * queue to drain completely. The caller must first insure that no more 1445 * URBs can be submitted for this endpoint. 1446 */ 1447 void usb_hcd_flush_endpoint(struct usb_device *udev, 1448 struct usb_host_endpoint *ep) 1449 { 1450 struct usb_hcd *hcd; 1451 struct urb *urb; 1452 1453 if (!ep) 1454 return; 1455 might_sleep(); 1456 hcd = bus_to_hcd(udev->bus); 1457 1458 /* No more submits can occur */ 1459 spin_lock_irq(&hcd_urb_list_lock); 1460 rescan: 1461 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1462 int is_in; 1463 1464 if (urb->unlinked) 1465 continue; 1466 usb_get_urb (urb); 1467 is_in = usb_urb_dir_in(urb); 1468 spin_unlock(&hcd_urb_list_lock); 1469 1470 /* kick hcd */ 1471 unlink1(hcd, urb, -ESHUTDOWN); 1472 dev_dbg (hcd->self.controller, 1473 "shutdown urb %p ep%d%s%s\n", 1474 urb, usb_endpoint_num(&ep->desc), 1475 is_in ? "in" : "out", 1476 ({ char *s; 1477 1478 switch (usb_endpoint_type(&ep->desc)) { 1479 case USB_ENDPOINT_XFER_CONTROL: 1480 s = ""; break; 1481 case USB_ENDPOINT_XFER_BULK: 1482 s = "-bulk"; break; 1483 case USB_ENDPOINT_XFER_INT: 1484 s = "-intr"; break; 1485 default: 1486 s = "-iso"; break; 1487 }; 1488 s; 1489 })); 1490 usb_put_urb (urb); 1491 1492 /* list contents may have changed */ 1493 spin_lock(&hcd_urb_list_lock); 1494 goto rescan; 1495 } 1496 spin_unlock_irq(&hcd_urb_list_lock); 1497 1498 /* Wait until the endpoint queue is completely empty */ 1499 while (!list_empty (&ep->urb_list)) { 1500 spin_lock_irq(&hcd_urb_list_lock); 1501 1502 /* The list may have changed while we acquired the spinlock */ 1503 urb = NULL; 1504 if (!list_empty (&ep->urb_list)) { 1505 urb = list_entry (ep->urb_list.prev, struct urb, 1506 urb_list); 1507 usb_get_urb (urb); 1508 } 1509 spin_unlock_irq(&hcd_urb_list_lock); 1510 1511 if (urb) { 1512 usb_kill_urb (urb); 1513 usb_put_urb (urb); 1514 } 1515 } 1516 } 1517 1518 /* Disables the endpoint: synchronizes with the hcd to make sure all 1519 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1520 * have been called previously. Use for set_configuration, set_interface, 1521 * driver removal, physical disconnect. 1522 * 1523 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1524 * type, maxpacket size, toggle, halt status, and scheduling. 1525 */ 1526 void usb_hcd_disable_endpoint(struct usb_device *udev, 1527 struct usb_host_endpoint *ep) 1528 { 1529 struct usb_hcd *hcd; 1530 1531 might_sleep(); 1532 hcd = bus_to_hcd(udev->bus); 1533 if (hcd->driver->endpoint_disable) 1534 hcd->driver->endpoint_disable(hcd, ep); 1535 } 1536 1537 /*-------------------------------------------------------------------------*/ 1538 1539 /* called in any context */ 1540 int usb_hcd_get_frame_number (struct usb_device *udev) 1541 { 1542 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 1543 1544 if (!HC_IS_RUNNING (hcd->state)) 1545 return -ESHUTDOWN; 1546 return hcd->driver->get_frame_number (hcd); 1547 } 1548 1549 /*-------------------------------------------------------------------------*/ 1550 1551 #ifdef CONFIG_PM 1552 1553 int hcd_bus_suspend(struct usb_device *rhdev) 1554 { 1555 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1556 int status; 1557 int old_state = hcd->state; 1558 1559 dev_dbg(&rhdev->dev, "bus %s%s\n", 1560 rhdev->auto_pm ? "auto-" : "", "suspend"); 1561 if (!hcd->driver->bus_suspend) { 1562 status = -ENOENT; 1563 } else { 1564 hcd->state = HC_STATE_QUIESCING; 1565 status = hcd->driver->bus_suspend(hcd); 1566 } 1567 if (status == 0) { 1568 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 1569 hcd->state = HC_STATE_SUSPENDED; 1570 } else { 1571 hcd->state = old_state; 1572 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1573 "suspend", status); 1574 } 1575 return status; 1576 } 1577 1578 int hcd_bus_resume(struct usb_device *rhdev) 1579 { 1580 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self); 1581 int status; 1582 int old_state = hcd->state; 1583 1584 dev_dbg(&rhdev->dev, "usb %s%s\n", 1585 rhdev->auto_pm ? "auto-" : "", "resume"); 1586 if (!hcd->driver->bus_resume) 1587 return -ENOENT; 1588 if (hcd->state == HC_STATE_RUNNING) 1589 return 0; 1590 1591 hcd->state = HC_STATE_RESUMING; 1592 status = hcd->driver->bus_resume(hcd); 1593 if (status == 0) { 1594 /* TRSMRCY = 10 msec */ 1595 msleep(10); 1596 usb_set_device_state(rhdev, rhdev->actconfig 1597 ? USB_STATE_CONFIGURED 1598 : USB_STATE_ADDRESS); 1599 hcd->state = HC_STATE_RUNNING; 1600 } else { 1601 hcd->state = old_state; 1602 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 1603 "resume", status); 1604 if (status != -ESHUTDOWN) 1605 usb_hc_died(hcd); 1606 } 1607 return status; 1608 } 1609 1610 /* Workqueue routine for root-hub remote wakeup */ 1611 static void hcd_resume_work(struct work_struct *work) 1612 { 1613 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 1614 struct usb_device *udev = hcd->self.root_hub; 1615 1616 usb_lock_device(udev); 1617 usb_mark_last_busy(udev); 1618 usb_external_resume_device(udev); 1619 usb_unlock_device(udev); 1620 } 1621 1622 /** 1623 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 1624 * @hcd: host controller for this root hub 1625 * 1626 * The USB host controller calls this function when its root hub is 1627 * suspended (with the remote wakeup feature enabled) and a remote 1628 * wakeup request is received. The routine submits a workqueue request 1629 * to resume the root hub (that is, manage its downstream ports again). 1630 */ 1631 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 1632 { 1633 unsigned long flags; 1634 1635 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1636 if (hcd->rh_registered) 1637 queue_work(ksuspend_usb_wq, &hcd->wakeup_work); 1638 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1639 } 1640 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 1641 1642 #endif 1643 1644 /*-------------------------------------------------------------------------*/ 1645 1646 #ifdef CONFIG_USB_OTG 1647 1648 /** 1649 * usb_bus_start_enum - start immediate enumeration (for OTG) 1650 * @bus: the bus (must use hcd framework) 1651 * @port_num: 1-based number of port; usually bus->otg_port 1652 * Context: in_interrupt() 1653 * 1654 * Starts enumeration, with an immediate reset followed later by 1655 * khubd identifying and possibly configuring the device. 1656 * This is needed by OTG controller drivers, where it helps meet 1657 * HNP protocol timing requirements for starting a port reset. 1658 */ 1659 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 1660 { 1661 struct usb_hcd *hcd; 1662 int status = -EOPNOTSUPP; 1663 1664 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 1665 * boards with root hubs hooked up to internal devices (instead of 1666 * just the OTG port) may need more attention to resetting... 1667 */ 1668 hcd = container_of (bus, struct usb_hcd, self); 1669 if (port_num && hcd->driver->start_port_reset) 1670 status = hcd->driver->start_port_reset(hcd, port_num); 1671 1672 /* run khubd shortly after (first) root port reset finishes; 1673 * it may issue others, until at least 50 msecs have passed. 1674 */ 1675 if (status == 0) 1676 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 1677 return status; 1678 } 1679 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 1680 1681 #endif 1682 1683 /*-------------------------------------------------------------------------*/ 1684 1685 /** 1686 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 1687 * @irq: the IRQ being raised 1688 * @__hcd: pointer to the HCD whose IRQ is being signaled 1689 * 1690 * If the controller isn't HALTed, calls the driver's irq handler. 1691 * Checks whether the controller is now dead. 1692 */ 1693 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 1694 { 1695 struct usb_hcd *hcd = __hcd; 1696 unsigned long flags; 1697 irqreturn_t rc; 1698 1699 /* IRQF_DISABLED doesn't work correctly with shared IRQs 1700 * when the first handler doesn't use it. So let's just 1701 * assume it's never used. 1702 */ 1703 local_irq_save(flags); 1704 1705 if (unlikely(hcd->state == HC_STATE_HALT || 1706 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) { 1707 rc = IRQ_NONE; 1708 } else if (hcd->driver->irq(hcd) == IRQ_NONE) { 1709 rc = IRQ_NONE; 1710 } else { 1711 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); 1712 1713 if (unlikely(hcd->state == HC_STATE_HALT)) 1714 usb_hc_died(hcd); 1715 rc = IRQ_HANDLED; 1716 } 1717 1718 local_irq_restore(flags); 1719 return rc; 1720 } 1721 1722 /*-------------------------------------------------------------------------*/ 1723 1724 /** 1725 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 1726 * @hcd: pointer to the HCD representing the controller 1727 * 1728 * This is called by bus glue to report a USB host controller that died 1729 * while operations may still have been pending. It's called automatically 1730 * by the PCI glue, so only glue for non-PCI busses should need to call it. 1731 */ 1732 void usb_hc_died (struct usb_hcd *hcd) 1733 { 1734 unsigned long flags; 1735 1736 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 1737 1738 spin_lock_irqsave (&hcd_root_hub_lock, flags); 1739 if (hcd->rh_registered) { 1740 hcd->poll_rh = 0; 1741 1742 /* make khubd clean up old urbs and devices */ 1743 usb_set_device_state (hcd->self.root_hub, 1744 USB_STATE_NOTATTACHED); 1745 usb_kick_khubd (hcd->self.root_hub); 1746 } 1747 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 1748 } 1749 EXPORT_SYMBOL_GPL (usb_hc_died); 1750 1751 /*-------------------------------------------------------------------------*/ 1752 1753 /** 1754 * usb_create_hcd - create and initialize an HCD structure 1755 * @driver: HC driver that will use this hcd 1756 * @dev: device for this HC, stored in hcd->self.controller 1757 * @bus_name: value to store in hcd->self.bus_name 1758 * Context: !in_interrupt() 1759 * 1760 * Allocate a struct usb_hcd, with extra space at the end for the 1761 * HC driver's private data. Initialize the generic members of the 1762 * hcd structure. 1763 * 1764 * If memory is unavailable, returns NULL. 1765 */ 1766 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver, 1767 struct device *dev, const char *bus_name) 1768 { 1769 struct usb_hcd *hcd; 1770 1771 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 1772 if (!hcd) { 1773 dev_dbg (dev, "hcd alloc failed\n"); 1774 return NULL; 1775 } 1776 dev_set_drvdata(dev, hcd); 1777 kref_init(&hcd->kref); 1778 1779 usb_bus_init(&hcd->self); 1780 hcd->self.controller = dev; 1781 hcd->self.bus_name = bus_name; 1782 hcd->self.uses_dma = (dev->dma_mask != NULL); 1783 1784 init_timer(&hcd->rh_timer); 1785 hcd->rh_timer.function = rh_timer_func; 1786 hcd->rh_timer.data = (unsigned long) hcd; 1787 #ifdef CONFIG_PM 1788 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 1789 #endif 1790 1791 hcd->driver = driver; 1792 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 1793 "USB Host Controller"; 1794 return hcd; 1795 } 1796 EXPORT_SYMBOL_GPL(usb_create_hcd); 1797 1798 static void hcd_release (struct kref *kref) 1799 { 1800 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 1801 1802 kfree(hcd); 1803 } 1804 1805 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 1806 { 1807 if (hcd) 1808 kref_get (&hcd->kref); 1809 return hcd; 1810 } 1811 EXPORT_SYMBOL_GPL(usb_get_hcd); 1812 1813 void usb_put_hcd (struct usb_hcd *hcd) 1814 { 1815 if (hcd) 1816 kref_put (&hcd->kref, hcd_release); 1817 } 1818 EXPORT_SYMBOL_GPL(usb_put_hcd); 1819 1820 /** 1821 * usb_add_hcd - finish generic HCD structure initialization and register 1822 * @hcd: the usb_hcd structure to initialize 1823 * @irqnum: Interrupt line to allocate 1824 * @irqflags: Interrupt type flags 1825 * 1826 * Finish the remaining parts of generic HCD initialization: allocate the 1827 * buffers of consistent memory, register the bus, request the IRQ line, 1828 * and call the driver's reset() and start() routines. 1829 */ 1830 int usb_add_hcd(struct usb_hcd *hcd, 1831 unsigned int irqnum, unsigned long irqflags) 1832 { 1833 int retval; 1834 struct usb_device *rhdev; 1835 1836 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 1837 1838 hcd->authorized_default = hcd->wireless? 0 : 1; 1839 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 1840 1841 /* HC is in reset state, but accessible. Now do the one-time init, 1842 * bottom up so that hcds can customize the root hubs before khubd 1843 * starts talking to them. (Note, bus id is assigned early too.) 1844 */ 1845 if ((retval = hcd_buffer_create(hcd)) != 0) { 1846 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 1847 return retval; 1848 } 1849 1850 if ((retval = usb_register_bus(&hcd->self)) < 0) 1851 goto err_register_bus; 1852 1853 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) { 1854 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 1855 retval = -ENOMEM; 1856 goto err_allocate_root_hub; 1857 } 1858 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH : 1859 USB_SPEED_FULL; 1860 hcd->self.root_hub = rhdev; 1861 1862 /* wakeup flag init defaults to "everything works" for root hubs, 1863 * but drivers can override it in reset() if needed, along with 1864 * recording the overall controller's system wakeup capability. 1865 */ 1866 device_init_wakeup(&rhdev->dev, 1); 1867 1868 /* "reset" is misnamed; its role is now one-time init. the controller 1869 * should already have been reset (and boot firmware kicked off etc). 1870 */ 1871 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) { 1872 dev_err(hcd->self.controller, "can't setup\n"); 1873 goto err_hcd_driver_setup; 1874 } 1875 1876 /* NOTE: root hub and controller capabilities may not be the same */ 1877 if (device_can_wakeup(hcd->self.controller) 1878 && device_can_wakeup(&hcd->self.root_hub->dev)) 1879 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 1880 1881 /* enable irqs just before we start the controller */ 1882 if (hcd->driver->irq) { 1883 1884 /* IRQF_DISABLED doesn't work as advertised when used together 1885 * with IRQF_SHARED. As usb_hcd_irq() will always disable 1886 * interrupts we can remove it here. 1887 */ 1888 irqflags &= ~IRQF_DISABLED; 1889 1890 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 1891 hcd->driver->description, hcd->self.busnum); 1892 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 1893 hcd->irq_descr, hcd)) != 0) { 1894 dev_err(hcd->self.controller, 1895 "request interrupt %d failed\n", irqnum); 1896 goto err_request_irq; 1897 } 1898 hcd->irq = irqnum; 1899 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 1900 (hcd->driver->flags & HCD_MEMORY) ? 1901 "io mem" : "io base", 1902 (unsigned long long)hcd->rsrc_start); 1903 } else { 1904 hcd->irq = -1; 1905 if (hcd->rsrc_start) 1906 dev_info(hcd->self.controller, "%s 0x%08llx\n", 1907 (hcd->driver->flags & HCD_MEMORY) ? 1908 "io mem" : "io base", 1909 (unsigned long long)hcd->rsrc_start); 1910 } 1911 1912 if ((retval = hcd->driver->start(hcd)) < 0) { 1913 dev_err(hcd->self.controller, "startup error %d\n", retval); 1914 goto err_hcd_driver_start; 1915 } 1916 1917 /* starting here, usbcore will pay attention to this root hub */ 1918 rhdev->bus_mA = min(500u, hcd->power_budget); 1919 if ((retval = register_root_hub(hcd)) != 0) 1920 goto err_register_root_hub; 1921 1922 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 1923 if (retval < 0) { 1924 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 1925 retval); 1926 goto error_create_attr_group; 1927 } 1928 if (hcd->uses_new_polling && hcd->poll_rh) 1929 usb_hcd_poll_rh_status(hcd); 1930 return retval; 1931 1932 error_create_attr_group: 1933 mutex_lock(&usb_bus_list_lock); 1934 usb_disconnect(&hcd->self.root_hub); 1935 mutex_unlock(&usb_bus_list_lock); 1936 err_register_root_hub: 1937 hcd->driver->stop(hcd); 1938 err_hcd_driver_start: 1939 if (hcd->irq >= 0) 1940 free_irq(irqnum, hcd); 1941 err_request_irq: 1942 err_hcd_driver_setup: 1943 hcd->self.root_hub = NULL; 1944 usb_put_dev(rhdev); 1945 err_allocate_root_hub: 1946 usb_deregister_bus(&hcd->self); 1947 err_register_bus: 1948 hcd_buffer_destroy(hcd); 1949 return retval; 1950 } 1951 EXPORT_SYMBOL_GPL(usb_add_hcd); 1952 1953 /** 1954 * usb_remove_hcd - shutdown processing for generic HCDs 1955 * @hcd: the usb_hcd structure to remove 1956 * Context: !in_interrupt() 1957 * 1958 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 1959 * invoking the HCD's stop() method. 1960 */ 1961 void usb_remove_hcd(struct usb_hcd *hcd) 1962 { 1963 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 1964 1965 if (HC_IS_RUNNING (hcd->state)) 1966 hcd->state = HC_STATE_QUIESCING; 1967 1968 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 1969 spin_lock_irq (&hcd_root_hub_lock); 1970 hcd->rh_registered = 0; 1971 spin_unlock_irq (&hcd_root_hub_lock); 1972 1973 #ifdef CONFIG_PM 1974 cancel_work_sync(&hcd->wakeup_work); 1975 #endif 1976 1977 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group); 1978 mutex_lock(&usb_bus_list_lock); 1979 usb_disconnect(&hcd->self.root_hub); 1980 mutex_unlock(&usb_bus_list_lock); 1981 1982 hcd->driver->stop(hcd); 1983 hcd->state = HC_STATE_HALT; 1984 1985 hcd->poll_rh = 0; 1986 del_timer_sync(&hcd->rh_timer); 1987 1988 if (hcd->irq >= 0) 1989 free_irq(hcd->irq, hcd); 1990 usb_deregister_bus(&hcd->self); 1991 hcd_buffer_destroy(hcd); 1992 } 1993 EXPORT_SYMBOL_GPL(usb_remove_hcd); 1994 1995 void 1996 usb_hcd_platform_shutdown(struct platform_device* dev) 1997 { 1998 struct usb_hcd *hcd = platform_get_drvdata(dev); 1999 2000 if (hcd->driver->shutdown) 2001 hcd->driver->shutdown(hcd); 2002 } 2003 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 2004 2005 /*-------------------------------------------------------------------------*/ 2006 2007 #if defined(CONFIG_USB_MON) 2008 2009 struct usb_mon_operations *mon_ops; 2010 2011 /* 2012 * The registration is unlocked. 2013 * We do it this way because we do not want to lock in hot paths. 2014 * 2015 * Notice that the code is minimally error-proof. Because usbmon needs 2016 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 2017 */ 2018 2019 int usb_mon_register (struct usb_mon_operations *ops) 2020 { 2021 2022 if (mon_ops) 2023 return -EBUSY; 2024 2025 mon_ops = ops; 2026 mb(); 2027 return 0; 2028 } 2029 EXPORT_SYMBOL_GPL (usb_mon_register); 2030 2031 void usb_mon_deregister (void) 2032 { 2033 2034 if (mon_ops == NULL) { 2035 printk(KERN_ERR "USB: monitor was not registered\n"); 2036 return; 2037 } 2038 mon_ops = NULL; 2039 mb(); 2040 } 2041 EXPORT_SYMBOL_GPL (usb_mon_deregister); 2042 2043 #endif /* CONFIG_USB_MON */ 2044