xref: /openbmc/linux/drivers/usb/core/hcd.c (revision 545e4006)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47 
48 
49 /*-------------------------------------------------------------------------*/
50 
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
78  *		associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
80  */
81 
82 /*-------------------------------------------------------------------------*/
83 
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
87 
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS		64
90 struct usb_busmap {
91 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
92 };
93 static struct usb_busmap busmap;
94 
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
98 
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
101 
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
104 
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
107 
108 static inline int is_root_hub(struct usb_device *udev)
109 {
110 	return (udev->parent == NULL);
111 }
112 
113 /*-------------------------------------------------------------------------*/
114 
115 /*
116  * Sharable chunks of root hub code.
117  */
118 
119 /*-------------------------------------------------------------------------*/
120 
121 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
123 
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126 	0x12,       /*  __u8  bLength; */
127 	0x01,       /*  __u8  bDescriptorType; Device */
128 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
129 
130 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
131 	0x00,	    /*  __u8  bDeviceSubClass; */
132 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
133 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
134 
135 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
136 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
137 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
138 
139 	0x03,       /*  __u8  iManufacturer; */
140 	0x02,       /*  __u8  iProduct; */
141 	0x01,       /*  __u8  iSerialNumber; */
142 	0x01        /*  __u8  bNumConfigurations; */
143 };
144 
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
146 
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149 	0x12,       /*  __u8  bLength; */
150 	0x01,       /*  __u8  bDescriptorType; Device */
151 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
152 
153 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
154 	0x00,	    /*  __u8  bDeviceSubClass; */
155 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
156 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
157 
158 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
159 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
160 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
161 
162 	0x03,       /*  __u8  iManufacturer; */
163 	0x02,       /*  __u8  iProduct; */
164 	0x01,       /*  __u8  iSerialNumber; */
165 	0x01        /*  __u8  bNumConfigurations; */
166 };
167 
168 
169 /*-------------------------------------------------------------------------*/
170 
171 /* Configuration descriptors for our root hubs */
172 
173 static const u8 fs_rh_config_descriptor [] = {
174 
175 	/* one configuration */
176 	0x09,       /*  __u8  bLength; */
177 	0x02,       /*  __u8  bDescriptorType; Configuration */
178 	0x19, 0x00, /*  __le16 wTotalLength; */
179 	0x01,       /*  __u8  bNumInterfaces; (1) */
180 	0x01,       /*  __u8  bConfigurationValue; */
181 	0x00,       /*  __u8  iConfiguration; */
182 	0xc0,       /*  __u8  bmAttributes;
183 				 Bit 7: must be set,
184 				     6: Self-powered,
185 				     5: Remote wakeup,
186 				     4..0: resvd */
187 	0x00,       /*  __u8  MaxPower; */
188 
189 	/* USB 1.1:
190 	 * USB 2.0, single TT organization (mandatory):
191 	 *	one interface, protocol 0
192 	 *
193 	 * USB 2.0, multiple TT organization (optional):
194 	 *	two interfaces, protocols 1 (like single TT)
195 	 *	and 2 (multiple TT mode) ... config is
196 	 *	sometimes settable
197 	 *	NOT IMPLEMENTED
198 	 */
199 
200 	/* one interface */
201 	0x09,       /*  __u8  if_bLength; */
202 	0x04,       /*  __u8  if_bDescriptorType; Interface */
203 	0x00,       /*  __u8  if_bInterfaceNumber; */
204 	0x00,       /*  __u8  if_bAlternateSetting; */
205 	0x01,       /*  __u8  if_bNumEndpoints; */
206 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
207 	0x00,       /*  __u8  if_bInterfaceSubClass; */
208 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
209 	0x00,       /*  __u8  if_iInterface; */
210 
211 	/* one endpoint (status change endpoint) */
212 	0x07,       /*  __u8  ep_bLength; */
213 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
214 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
215  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
216  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
218 };
219 
220 static const u8 hs_rh_config_descriptor [] = {
221 
222 	/* one configuration */
223 	0x09,       /*  __u8  bLength; */
224 	0x02,       /*  __u8  bDescriptorType; Configuration */
225 	0x19, 0x00, /*  __le16 wTotalLength; */
226 	0x01,       /*  __u8  bNumInterfaces; (1) */
227 	0x01,       /*  __u8  bConfigurationValue; */
228 	0x00,       /*  __u8  iConfiguration; */
229 	0xc0,       /*  __u8  bmAttributes;
230 				 Bit 7: must be set,
231 				     6: Self-powered,
232 				     5: Remote wakeup,
233 				     4..0: resvd */
234 	0x00,       /*  __u8  MaxPower; */
235 
236 	/* USB 1.1:
237 	 * USB 2.0, single TT organization (mandatory):
238 	 *	one interface, protocol 0
239 	 *
240 	 * USB 2.0, multiple TT organization (optional):
241 	 *	two interfaces, protocols 1 (like single TT)
242 	 *	and 2 (multiple TT mode) ... config is
243 	 *	sometimes settable
244 	 *	NOT IMPLEMENTED
245 	 */
246 
247 	/* one interface */
248 	0x09,       /*  __u8  if_bLength; */
249 	0x04,       /*  __u8  if_bDescriptorType; Interface */
250 	0x00,       /*  __u8  if_bInterfaceNumber; */
251 	0x00,       /*  __u8  if_bAlternateSetting; */
252 	0x01,       /*  __u8  if_bNumEndpoints; */
253 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
254 	0x00,       /*  __u8  if_bInterfaceSubClass; */
255 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
256 	0x00,       /*  __u8  if_iInterface; */
257 
258 	/* one endpoint (status change endpoint) */
259 	0x07,       /*  __u8  ep_bLength; */
260 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
261 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
262  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
263 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264 		     * see hub.c:hub_configure() for details. */
265 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
267 };
268 
269 /*-------------------------------------------------------------------------*/
270 
271 /*
272  * helper routine for returning string descriptors in UTF-16LE
273  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
274  */
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
276 {
277 	int retval;
278 
279 	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
280 		*utf++ = *s++;
281 		*utf++ = 0;
282 	}
283 	if (utfmax > 0) {
284 		*utf = *s;
285 		++retval;
286 	}
287 	return retval;
288 }
289 
290 /*
291  * rh_string - provides manufacturer, product and serial strings for root hub
292  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293  * @hcd: the host controller for this root hub
294  * @data: return packet in UTF-16 LE
295  * @len: length of the return packet
296  *
297  * Produces either a manufacturer, product or serial number string for the
298  * virtual root hub device.
299  */
300 static int rh_string (
301 	int		id,
302 	struct usb_hcd	*hcd,
303 	u8		*data,
304 	int		len
305 ) {
306 	char buf [100];
307 
308 	// language ids
309 	if (id == 0) {
310 		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
311 		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
312 		len = min (len, 4);
313 		memcpy (data, buf, len);
314 		return len;
315 
316 	// serial number
317 	} else if (id == 1) {
318 		strlcpy (buf, hcd->self.bus_name, sizeof buf);
319 
320 	// product description
321 	} else if (id == 2) {
322 		strlcpy (buf, hcd->product_desc, sizeof buf);
323 
324  	// id 3 == vendor description
325 	} else if (id == 3) {
326 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
327 			init_utsname()->release, hcd->driver->description);
328 
329 	// unsupported IDs --> "protocol stall"
330 	} else
331 		return -EPIPE;
332 
333 	switch (len) {		/* All cases fall through */
334 	default:
335 		len = 2 + ascii2utf (buf, data + 2, len - 2);
336 	case 2:
337 		data [1] = 3;	/* type == string */
338 	case 1:
339 		data [0] = 2 * (strlen (buf) + 1);
340 	case 0:
341 		;		/* Compiler wants a statement here */
342 	}
343 	return len;
344 }
345 
346 
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350 	struct usb_ctrlrequest *cmd;
351  	u16		typeReq, wValue, wIndex, wLength;
352 	u8		*ubuf = urb->transfer_buffer;
353 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
354 		__attribute__((aligned(4)));
355 	const u8	*bufp = tbuf;
356 	int		len = 0;
357 	int		status;
358 	int		n;
359 	u8		patch_wakeup = 0;
360 	u8		patch_protocol = 0;
361 
362 	might_sleep();
363 
364 	spin_lock_irq(&hcd_root_hub_lock);
365 	status = usb_hcd_link_urb_to_ep(hcd, urb);
366 	spin_unlock_irq(&hcd_root_hub_lock);
367 	if (status)
368 		return status;
369 	urb->hcpriv = hcd;	/* Indicate it's queued */
370 
371 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
373 	wValue   = le16_to_cpu (cmd->wValue);
374 	wIndex   = le16_to_cpu (cmd->wIndex);
375 	wLength  = le16_to_cpu (cmd->wLength);
376 
377 	if (wLength > urb->transfer_buffer_length)
378 		goto error;
379 
380 	urb->actual_length = 0;
381 	switch (typeReq) {
382 
383 	/* DEVICE REQUESTS */
384 
385 	/* The root hub's remote wakeup enable bit is implemented using
386 	 * driver model wakeup flags.  If this system supports wakeup
387 	 * through USB, userspace may change the default "allow wakeup"
388 	 * policy through sysfs or these calls.
389 	 *
390 	 * Most root hubs support wakeup from downstream devices, for
391 	 * runtime power management (disabling USB clocks and reducing
392 	 * VBUS power usage).  However, not all of them do so; silicon,
393 	 * board, and BIOS bugs here are not uncommon, so these can't
394 	 * be treated quite like external hubs.
395 	 *
396 	 * Likewise, not all root hubs will pass wakeup events upstream,
397 	 * to wake up the whole system.  So don't assume root hub and
398 	 * controller capabilities are identical.
399 	 */
400 
401 	case DeviceRequest | USB_REQ_GET_STATUS:
402 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403 					<< USB_DEVICE_REMOTE_WAKEUP)
404 				| (1 << USB_DEVICE_SELF_POWERED);
405 		tbuf [1] = 0;
406 		len = 2;
407 		break;
408 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
411 		else
412 			goto error;
413 		break;
414 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
415 		if (device_can_wakeup(&hcd->self.root_hub->dev)
416 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
417 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
418 		else
419 			goto error;
420 		break;
421 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
422 		tbuf [0] = 1;
423 		len = 1;
424 			/* FALLTHROUGH */
425 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
426 		break;
427 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428 		switch (wValue & 0xff00) {
429 		case USB_DT_DEVICE << 8:
430 			if (hcd->driver->flags & HCD_USB2)
431 				bufp = usb2_rh_dev_descriptor;
432 			else if (hcd->driver->flags & HCD_USB11)
433 				bufp = usb11_rh_dev_descriptor;
434 			else
435 				goto error;
436 			len = 18;
437 			if (hcd->has_tt)
438 				patch_protocol = 1;
439 			break;
440 		case USB_DT_CONFIG << 8:
441 			if (hcd->driver->flags & HCD_USB2) {
442 				bufp = hs_rh_config_descriptor;
443 				len = sizeof hs_rh_config_descriptor;
444 			} else {
445 				bufp = fs_rh_config_descriptor;
446 				len = sizeof fs_rh_config_descriptor;
447 			}
448 			if (device_can_wakeup(&hcd->self.root_hub->dev))
449 				patch_wakeup = 1;
450 			break;
451 		case USB_DT_STRING << 8:
452 			n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
453 			if (n < 0)
454 				goto error;
455 			urb->actual_length = n;
456 			break;
457 		default:
458 			goto error;
459 		}
460 		break;
461 	case DeviceRequest | USB_REQ_GET_INTERFACE:
462 		tbuf [0] = 0;
463 		len = 1;
464 			/* FALLTHROUGH */
465 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
466 		break;
467 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468 		// wValue == urb->dev->devaddr
469 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
470 			wValue);
471 		break;
472 
473 	/* INTERFACE REQUESTS (no defined feature/status flags) */
474 
475 	/* ENDPOINT REQUESTS */
476 
477 	case EndpointRequest | USB_REQ_GET_STATUS:
478 		// ENDPOINT_HALT flag
479 		tbuf [0] = 0;
480 		tbuf [1] = 0;
481 		len = 2;
482 			/* FALLTHROUGH */
483 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
485 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
486 		break;
487 
488 	/* CLASS REQUESTS (and errors) */
489 
490 	default:
491 		/* non-generic request */
492 		switch (typeReq) {
493 		case GetHubStatus:
494 		case GetPortStatus:
495 			len = 4;
496 			break;
497 		case GetHubDescriptor:
498 			len = sizeof (struct usb_hub_descriptor);
499 			break;
500 		}
501 		status = hcd->driver->hub_control (hcd,
502 			typeReq, wValue, wIndex,
503 			tbuf, wLength);
504 		break;
505 error:
506 		/* "protocol stall" on error */
507 		status = -EPIPE;
508 	}
509 
510 	if (status) {
511 		len = 0;
512 		if (status != -EPIPE) {
513 			dev_dbg (hcd->self.controller,
514 				"CTRL: TypeReq=0x%x val=0x%x "
515 				"idx=0x%x len=%d ==> %d\n",
516 				typeReq, wValue, wIndex,
517 				wLength, status);
518 		}
519 	}
520 	if (len) {
521 		if (urb->transfer_buffer_length < len)
522 			len = urb->transfer_buffer_length;
523 		urb->actual_length = len;
524 		// always USB_DIR_IN, toward host
525 		memcpy (ubuf, bufp, len);
526 
527 		/* report whether RH hardware supports remote wakeup */
528 		if (patch_wakeup &&
529 				len > offsetof (struct usb_config_descriptor,
530 						bmAttributes))
531 			((struct usb_config_descriptor *)ubuf)->bmAttributes
532 				|= USB_CONFIG_ATT_WAKEUP;
533 
534 		/* report whether RH hardware has an integrated TT */
535 		if (patch_protocol &&
536 				len > offsetof(struct usb_device_descriptor,
537 						bDeviceProtocol))
538 			((struct usb_device_descriptor *) ubuf)->
539 					bDeviceProtocol = 1;
540 	}
541 
542 	/* any errors get returned through the urb completion */
543 	spin_lock_irq(&hcd_root_hub_lock);
544 	usb_hcd_unlink_urb_from_ep(hcd, urb);
545 
546 	/* This peculiar use of spinlocks echoes what real HC drivers do.
547 	 * Avoiding calls to local_irq_disable/enable makes the code
548 	 * RT-friendly.
549 	 */
550 	spin_unlock(&hcd_root_hub_lock);
551 	usb_hcd_giveback_urb(hcd, urb, status);
552 	spin_lock(&hcd_root_hub_lock);
553 
554 	spin_unlock_irq(&hcd_root_hub_lock);
555 	return 0;
556 }
557 
558 /*-------------------------------------------------------------------------*/
559 
560 /*
561  * Root Hub interrupt transfers are polled using a timer if the
562  * driver requests it; otherwise the driver is responsible for
563  * calling usb_hcd_poll_rh_status() when an event occurs.
564  *
565  * Completions are called in_interrupt(), but they may or may not
566  * be in_irq().
567  */
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
569 {
570 	struct urb	*urb;
571 	int		length;
572 	unsigned long	flags;
573 	char		buffer[4];	/* Any root hubs with > 31 ports? */
574 
575 	if (unlikely(!hcd->rh_registered))
576 		return;
577 	if (!hcd->uses_new_polling && !hcd->status_urb)
578 		return;
579 
580 	length = hcd->driver->hub_status_data(hcd, buffer);
581 	if (length > 0) {
582 
583 		/* try to complete the status urb */
584 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
585 		urb = hcd->status_urb;
586 		if (urb) {
587 			hcd->poll_pending = 0;
588 			hcd->status_urb = NULL;
589 			urb->actual_length = length;
590 			memcpy(urb->transfer_buffer, buffer, length);
591 
592 			usb_hcd_unlink_urb_from_ep(hcd, urb);
593 			spin_unlock(&hcd_root_hub_lock);
594 			usb_hcd_giveback_urb(hcd, urb, 0);
595 			spin_lock(&hcd_root_hub_lock);
596 		} else {
597 			length = 0;
598 			hcd->poll_pending = 1;
599 		}
600 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
601 	}
602 
603 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
604 	 * exceed that limit if HZ is 100. The math is more clunky than
605 	 * maybe expected, this is to make sure that all timers for USB devices
606 	 * fire at the same time to give the CPU a break inbetween */
607 	if (hcd->uses_new_polling ? hcd->poll_rh :
608 			(length == 0 && hcd->status_urb != NULL))
609 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
610 }
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
612 
613 /* timer callback */
614 static void rh_timer_func (unsigned long _hcd)
615 {
616 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
617 }
618 
619 /*-------------------------------------------------------------------------*/
620 
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
622 {
623 	int		retval;
624 	unsigned long	flags;
625 	int		len = 1 + (urb->dev->maxchild / 8);
626 
627 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
628 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
629 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
630 		retval = -EINVAL;
631 		goto done;
632 	}
633 
634 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
635 	if (retval)
636 		goto done;
637 
638 	hcd->status_urb = urb;
639 	urb->hcpriv = hcd;	/* indicate it's queued */
640 	if (!hcd->uses_new_polling)
641 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
642 
643 	/* If a status change has already occurred, report it ASAP */
644 	else if (hcd->poll_pending)
645 		mod_timer(&hcd->rh_timer, jiffies);
646 	retval = 0;
647  done:
648 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
649 	return retval;
650 }
651 
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
653 {
654 	if (usb_endpoint_xfer_int(&urb->ep->desc))
655 		return rh_queue_status (hcd, urb);
656 	if (usb_endpoint_xfer_control(&urb->ep->desc))
657 		return rh_call_control (hcd, urb);
658 	return -EINVAL;
659 }
660 
661 /*-------------------------------------------------------------------------*/
662 
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664  * since these URBs always execute synchronously.
665  */
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
667 {
668 	unsigned long	flags;
669 	int		rc;
670 
671 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
672 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
673 	if (rc)
674 		goto done;
675 
676 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
677 		;	/* Do nothing */
678 
679 	} else {				/* Status URB */
680 		if (!hcd->uses_new_polling)
681 			del_timer (&hcd->rh_timer);
682 		if (urb == hcd->status_urb) {
683 			hcd->status_urb = NULL;
684 			usb_hcd_unlink_urb_from_ep(hcd, urb);
685 
686 			spin_unlock(&hcd_root_hub_lock);
687 			usb_hcd_giveback_urb(hcd, urb, status);
688 			spin_lock(&hcd_root_hub_lock);
689 		}
690 	}
691  done:
692 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
693 	return rc;
694 }
695 
696 
697 
698 /*
699  * Show & store the current value of authorized_default
700  */
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702 						struct device_attribute *attr,
703 						char *buf)
704 {
705 	struct usb_device *rh_usb_dev = to_usb_device(dev);
706 	struct usb_bus *usb_bus = rh_usb_dev->bus;
707 	struct usb_hcd *usb_hcd;
708 
709 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
710 		return -ENODEV;
711 	usb_hcd = bus_to_hcd(usb_bus);
712 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
713 }
714 
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716 						 struct device_attribute *attr,
717 						 const char *buf, size_t size)
718 {
719 	ssize_t result;
720 	unsigned val;
721 	struct usb_device *rh_usb_dev = to_usb_device(dev);
722 	struct usb_bus *usb_bus = rh_usb_dev->bus;
723 	struct usb_hcd *usb_hcd;
724 
725 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
726 		return -ENODEV;
727 	usb_hcd = bus_to_hcd(usb_bus);
728 	result = sscanf(buf, "%u\n", &val);
729 	if (result == 1) {
730 		usb_hcd->authorized_default = val? 1 : 0;
731 		result = size;
732 	}
733 	else
734 		result = -EINVAL;
735 	return result;
736 }
737 
738 static DEVICE_ATTR(authorized_default, 0644,
739 	    usb_host_authorized_default_show,
740 	    usb_host_authorized_default_store);
741 
742 
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745 		&dev_attr_authorized_default.attr,
746 		NULL,
747 };
748 
749 static struct attribute_group usb_bus_attr_group = {
750 	.name = NULL,	/* we want them in the same directory */
751 	.attrs = usb_bus_attrs,
752 };
753 
754 
755 
756 /*-------------------------------------------------------------------------*/
757 
758 static struct class *usb_host_class;
759 
760 int usb_host_init(void)
761 {
762 	int retval = 0;
763 
764 	usb_host_class = class_create(THIS_MODULE, "usb_host");
765 	if (IS_ERR(usb_host_class))
766 		retval = PTR_ERR(usb_host_class);
767 	return retval;
768 }
769 
770 void usb_host_cleanup(void)
771 {
772 	class_destroy(usb_host_class);
773 }
774 
775 /**
776  * usb_bus_init - shared initialization code
777  * @bus: the bus structure being initialized
778  *
779  * This code is used to initialize a usb_bus structure, memory for which is
780  * separately managed.
781  */
782 static void usb_bus_init (struct usb_bus *bus)
783 {
784 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
785 
786 	bus->devnum_next = 1;
787 
788 	bus->root_hub = NULL;
789 	bus->busnum = -1;
790 	bus->bandwidth_allocated = 0;
791 	bus->bandwidth_int_reqs  = 0;
792 	bus->bandwidth_isoc_reqs = 0;
793 
794 	INIT_LIST_HEAD (&bus->bus_list);
795 }
796 
797 /*-------------------------------------------------------------------------*/
798 
799 /**
800  * usb_register_bus - registers the USB host controller with the usb core
801  * @bus: pointer to the bus to register
802  * Context: !in_interrupt()
803  *
804  * Assigns a bus number, and links the controller into usbcore data
805  * structures so that it can be seen by scanning the bus list.
806  */
807 static int usb_register_bus(struct usb_bus *bus)
808 {
809 	int result = -E2BIG;
810 	int busnum;
811 
812 	mutex_lock(&usb_bus_list_lock);
813 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814 	if (busnum >= USB_MAXBUS) {
815 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816 		goto error_find_busnum;
817 	}
818 	set_bit (busnum, busmap.busmap);
819 	bus->busnum = busnum;
820 
821 	bus->dev = device_create_drvdata(usb_host_class, bus->controller,
822 					 MKDEV(0, 0), bus,
823 					 "usb_host%d", busnum);
824 	result = PTR_ERR(bus->dev);
825 	if (IS_ERR(bus->dev))
826 		goto error_create_class_dev;
827 
828 	/* Add it to the local list of buses */
829 	list_add (&bus->bus_list, &usb_bus_list);
830 	mutex_unlock(&usb_bus_list_lock);
831 
832 	usb_notify_add_bus(bus);
833 
834 	dev_info (bus->controller, "new USB bus registered, assigned bus "
835 		  "number %d\n", bus->busnum);
836 	return 0;
837 
838 error_create_class_dev:
839 	clear_bit(busnum, busmap.busmap);
840 error_find_busnum:
841 	mutex_unlock(&usb_bus_list_lock);
842 	return result;
843 }
844 
845 /**
846  * usb_deregister_bus - deregisters the USB host controller
847  * @bus: pointer to the bus to deregister
848  * Context: !in_interrupt()
849  *
850  * Recycles the bus number, and unlinks the controller from usbcore data
851  * structures so that it won't be seen by scanning the bus list.
852  */
853 static void usb_deregister_bus (struct usb_bus *bus)
854 {
855 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
856 
857 	/*
858 	 * NOTE: make sure that all the devices are removed by the
859 	 * controller code, as well as having it call this when cleaning
860 	 * itself up
861 	 */
862 	mutex_lock(&usb_bus_list_lock);
863 	list_del (&bus->bus_list);
864 	mutex_unlock(&usb_bus_list_lock);
865 
866 	usb_notify_remove_bus(bus);
867 
868 	clear_bit (bus->busnum, busmap.busmap);
869 
870 	device_unregister(bus->dev);
871 }
872 
873 /**
874  * register_root_hub - called by usb_add_hcd() to register a root hub
875  * @hcd: host controller for this root hub
876  *
877  * This function registers the root hub with the USB subsystem.  It sets up
878  * the device properly in the device tree and then calls usb_new_device()
879  * to register the usb device.  It also assigns the root hub's USB address
880  * (always 1).
881  */
882 static int register_root_hub(struct usb_hcd *hcd)
883 {
884 	struct device *parent_dev = hcd->self.controller;
885 	struct usb_device *usb_dev = hcd->self.root_hub;
886 	const int devnum = 1;
887 	int retval;
888 
889 	usb_dev->devnum = devnum;
890 	usb_dev->bus->devnum_next = devnum + 1;
891 	memset (&usb_dev->bus->devmap.devicemap, 0,
892 			sizeof usb_dev->bus->devmap.devicemap);
893 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
894 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
895 
896 	mutex_lock(&usb_bus_list_lock);
897 
898 	usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
899 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
900 	if (retval != sizeof usb_dev->descriptor) {
901 		mutex_unlock(&usb_bus_list_lock);
902 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
903 				dev_name(&usb_dev->dev), retval);
904 		return (retval < 0) ? retval : -EMSGSIZE;
905 	}
906 
907 	retval = usb_new_device (usb_dev);
908 	if (retval) {
909 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
910 				dev_name(&usb_dev->dev), retval);
911 	}
912 	mutex_unlock(&usb_bus_list_lock);
913 
914 	if (retval == 0) {
915 		spin_lock_irq (&hcd_root_hub_lock);
916 		hcd->rh_registered = 1;
917 		spin_unlock_irq (&hcd_root_hub_lock);
918 
919 		/* Did the HC die before the root hub was registered? */
920 		if (hcd->state == HC_STATE_HALT)
921 			usb_hc_died (hcd);	/* This time clean up */
922 	}
923 
924 	return retval;
925 }
926 
927 void usb_enable_root_hub_irq (struct usb_bus *bus)
928 {
929 	struct usb_hcd *hcd;
930 
931 	hcd = container_of (bus, struct usb_hcd, self);
932 	if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT)
933 		hcd->driver->hub_irq_enable (hcd);
934 }
935 
936 
937 /*-------------------------------------------------------------------------*/
938 
939 /**
940  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
941  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
942  * @is_input: true iff the transaction sends data to the host
943  * @isoc: true for isochronous transactions, false for interrupt ones
944  * @bytecount: how many bytes in the transaction.
945  *
946  * Returns approximate bus time in nanoseconds for a periodic transaction.
947  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
948  * scheduled in software, this function is only used for such scheduling.
949  */
950 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
951 {
952 	unsigned long	tmp;
953 
954 	switch (speed) {
955 	case USB_SPEED_LOW: 	/* INTR only */
956 		if (is_input) {
957 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
958 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
959 		} else {
960 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
961 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
962 		}
963 	case USB_SPEED_FULL:	/* ISOC or INTR */
964 		if (isoc) {
965 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
966 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
967 		} else {
968 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
969 			return (9107L + BW_HOST_DELAY + tmp);
970 		}
971 	case USB_SPEED_HIGH:	/* ISOC or INTR */
972 		// FIXME adjust for input vs output
973 		if (isoc)
974 			tmp = HS_NSECS_ISO (bytecount);
975 		else
976 			tmp = HS_NSECS (bytecount);
977 		return tmp;
978 	default:
979 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
980 		return -1;
981 	}
982 }
983 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
984 
985 
986 /*-------------------------------------------------------------------------*/
987 
988 /*
989  * Generic HC operations.
990  */
991 
992 /*-------------------------------------------------------------------------*/
993 
994 /**
995  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
996  * @hcd: host controller to which @urb was submitted
997  * @urb: URB being submitted
998  *
999  * Host controller drivers should call this routine in their enqueue()
1000  * method.  The HCD's private spinlock must be held and interrupts must
1001  * be disabled.  The actions carried out here are required for URB
1002  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1003  *
1004  * Returns 0 for no error, otherwise a negative error code (in which case
1005  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1006  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1007  * the private spinlock and returning.
1008  */
1009 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1010 {
1011 	int		rc = 0;
1012 
1013 	spin_lock(&hcd_urb_list_lock);
1014 
1015 	/* Check that the URB isn't being killed */
1016 	if (unlikely(urb->reject)) {
1017 		rc = -EPERM;
1018 		goto done;
1019 	}
1020 
1021 	if (unlikely(!urb->ep->enabled)) {
1022 		rc = -ENOENT;
1023 		goto done;
1024 	}
1025 
1026 	if (unlikely(!urb->dev->can_submit)) {
1027 		rc = -EHOSTUNREACH;
1028 		goto done;
1029 	}
1030 
1031 	/*
1032 	 * Check the host controller's state and add the URB to the
1033 	 * endpoint's queue.
1034 	 */
1035 	switch (hcd->state) {
1036 	case HC_STATE_RUNNING:
1037 	case HC_STATE_RESUMING:
1038 		urb->unlinked = 0;
1039 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1040 		break;
1041 	default:
1042 		rc = -ESHUTDOWN;
1043 		goto done;
1044 	}
1045  done:
1046 	spin_unlock(&hcd_urb_list_lock);
1047 	return rc;
1048 }
1049 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1050 
1051 /**
1052  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1053  * @hcd: host controller to which @urb was submitted
1054  * @urb: URB being checked for unlinkability
1055  * @status: error code to store in @urb if the unlink succeeds
1056  *
1057  * Host controller drivers should call this routine in their dequeue()
1058  * method.  The HCD's private spinlock must be held and interrupts must
1059  * be disabled.  The actions carried out here are required for making
1060  * sure than an unlink is valid.
1061  *
1062  * Returns 0 for no error, otherwise a negative error code (in which case
1063  * the dequeue() method must fail).  The possible error codes are:
1064  *
1065  *	-EIDRM: @urb was not submitted or has already completed.
1066  *		The completion function may not have been called yet.
1067  *
1068  *	-EBUSY: @urb has already been unlinked.
1069  */
1070 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1071 		int status)
1072 {
1073 	struct list_head	*tmp;
1074 
1075 	/* insist the urb is still queued */
1076 	list_for_each(tmp, &urb->ep->urb_list) {
1077 		if (tmp == &urb->urb_list)
1078 			break;
1079 	}
1080 	if (tmp != &urb->urb_list)
1081 		return -EIDRM;
1082 
1083 	/* Any status except -EINPROGRESS means something already started to
1084 	 * unlink this URB from the hardware.  So there's no more work to do.
1085 	 */
1086 	if (urb->unlinked)
1087 		return -EBUSY;
1088 	urb->unlinked = status;
1089 
1090 	/* IRQ setup can easily be broken so that USB controllers
1091 	 * never get completion IRQs ... maybe even the ones we need to
1092 	 * finish unlinking the initial failed usb_set_address()
1093 	 * or device descriptor fetch.
1094 	 */
1095 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1096 			!is_root_hub(urb->dev)) {
1097 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1098 			"Controller is probably using the wrong IRQ.\n");
1099 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1100 	}
1101 
1102 	return 0;
1103 }
1104 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1105 
1106 /**
1107  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1108  * @hcd: host controller to which @urb was submitted
1109  * @urb: URB being unlinked
1110  *
1111  * Host controller drivers should call this routine before calling
1112  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1113  * interrupts must be disabled.  The actions carried out here are required
1114  * for URB completion.
1115  */
1116 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1117 {
1118 	/* clear all state linking urb to this dev (and hcd) */
1119 	spin_lock(&hcd_urb_list_lock);
1120 	list_del_init(&urb->urb_list);
1121 	spin_unlock(&hcd_urb_list_lock);
1122 }
1123 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1124 
1125 /*
1126  * Some usb host controllers can only perform dma using a small SRAM area.
1127  * The usb core itself is however optimized for host controllers that can dma
1128  * using regular system memory - like pci devices doing bus mastering.
1129  *
1130  * To support host controllers with limited dma capabilites we provide dma
1131  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1132  * For this to work properly the host controller code must first use the
1133  * function dma_declare_coherent_memory() to point out which memory area
1134  * that should be used for dma allocations.
1135  *
1136  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1137  * dma using dma_alloc_coherent() which in turn allocates from the memory
1138  * area pointed out with dma_declare_coherent_memory().
1139  *
1140  * So, to summarize...
1141  *
1142  * - We need "local" memory, canonical example being
1143  *   a small SRAM on a discrete controller being the
1144  *   only memory that the controller can read ...
1145  *   (a) "normal" kernel memory is no good, and
1146  *   (b) there's not enough to share
1147  *
1148  * - The only *portable* hook for such stuff in the
1149  *   DMA framework is dma_declare_coherent_memory()
1150  *
1151  * - So we use that, even though the primary requirement
1152  *   is that the memory be "local" (hence addressible
1153  *   by that device), not "coherent".
1154  *
1155  */
1156 
1157 static int hcd_alloc_coherent(struct usb_bus *bus,
1158 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1159 			      void **vaddr_handle, size_t size,
1160 			      enum dma_data_direction dir)
1161 {
1162 	unsigned char *vaddr;
1163 
1164 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1165 				 mem_flags, dma_handle);
1166 	if (!vaddr)
1167 		return -ENOMEM;
1168 
1169 	/*
1170 	 * Store the virtual address of the buffer at the end
1171 	 * of the allocated dma buffer. The size of the buffer
1172 	 * may be uneven so use unaligned functions instead
1173 	 * of just rounding up. It makes sense to optimize for
1174 	 * memory footprint over access speed since the amount
1175 	 * of memory available for dma may be limited.
1176 	 */
1177 	put_unaligned((unsigned long)*vaddr_handle,
1178 		      (unsigned long *)(vaddr + size));
1179 
1180 	if (dir == DMA_TO_DEVICE)
1181 		memcpy(vaddr, *vaddr_handle, size);
1182 
1183 	*vaddr_handle = vaddr;
1184 	return 0;
1185 }
1186 
1187 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1188 			      void **vaddr_handle, size_t size,
1189 			      enum dma_data_direction dir)
1190 {
1191 	unsigned char *vaddr = *vaddr_handle;
1192 
1193 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1194 
1195 	if (dir == DMA_FROM_DEVICE)
1196 		memcpy(vaddr, *vaddr_handle, size);
1197 
1198 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1199 
1200 	*vaddr_handle = vaddr;
1201 	*dma_handle = 0;
1202 }
1203 
1204 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1205 			   gfp_t mem_flags)
1206 {
1207 	enum dma_data_direction dir;
1208 	int ret = 0;
1209 
1210 	/* Map the URB's buffers for DMA access.
1211 	 * Lower level HCD code should use *_dma exclusively,
1212 	 * unless it uses pio or talks to another transport.
1213 	 */
1214 	if (is_root_hub(urb->dev))
1215 		return 0;
1216 
1217 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1218 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1219 		if (hcd->self.uses_dma)
1220 			urb->setup_dma = dma_map_single(
1221 					hcd->self.controller,
1222 					urb->setup_packet,
1223 					sizeof(struct usb_ctrlrequest),
1224 					DMA_TO_DEVICE);
1225 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1226 			ret = hcd_alloc_coherent(
1227 					urb->dev->bus, mem_flags,
1228 					&urb->setup_dma,
1229 					(void **)&urb->setup_packet,
1230 					sizeof(struct usb_ctrlrequest),
1231 					DMA_TO_DEVICE);
1232 	}
1233 
1234 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1235 	if (ret == 0 && urb->transfer_buffer_length != 0
1236 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1237 		if (hcd->self.uses_dma)
1238 			urb->transfer_dma = dma_map_single (
1239 					hcd->self.controller,
1240 					urb->transfer_buffer,
1241 					urb->transfer_buffer_length,
1242 					dir);
1243 		else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1244 			ret = hcd_alloc_coherent(
1245 					urb->dev->bus, mem_flags,
1246 					&urb->transfer_dma,
1247 					&urb->transfer_buffer,
1248 					urb->transfer_buffer_length,
1249 					dir);
1250 
1251 			if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1252 			    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1253 				hcd_free_coherent(urb->dev->bus,
1254 					&urb->setup_dma,
1255 					(void **)&urb->setup_packet,
1256 					sizeof(struct usb_ctrlrequest),
1257 					DMA_TO_DEVICE);
1258 		}
1259 	}
1260 	return ret;
1261 }
1262 
1263 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1264 {
1265 	enum dma_data_direction dir;
1266 
1267 	if (is_root_hub(urb->dev))
1268 		return;
1269 
1270 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1271 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1272 		if (hcd->self.uses_dma)
1273 			dma_unmap_single(hcd->self.controller, urb->setup_dma,
1274 					sizeof(struct usb_ctrlrequest),
1275 					DMA_TO_DEVICE);
1276 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1277 			hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1278 					(void **)&urb->setup_packet,
1279 					sizeof(struct usb_ctrlrequest),
1280 					DMA_TO_DEVICE);
1281 	}
1282 
1283 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1284 	if (urb->transfer_buffer_length != 0
1285 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1286 		if (hcd->self.uses_dma)
1287 			dma_unmap_single(hcd->self.controller,
1288 					urb->transfer_dma,
1289 					urb->transfer_buffer_length,
1290 					dir);
1291 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1292 			hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1293 					&urb->transfer_buffer,
1294 					urb->transfer_buffer_length,
1295 					dir);
1296 	}
1297 }
1298 
1299 /*-------------------------------------------------------------------------*/
1300 
1301 /* may be called in any context with a valid urb->dev usecount
1302  * caller surrenders "ownership" of urb
1303  * expects usb_submit_urb() to have sanity checked and conditioned all
1304  * inputs in the urb
1305  */
1306 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1307 {
1308 	int			status;
1309 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1310 
1311 	/* increment urb's reference count as part of giving it to the HCD
1312 	 * (which will control it).  HCD guarantees that it either returns
1313 	 * an error or calls giveback(), but not both.
1314 	 */
1315 	usb_get_urb(urb);
1316 	atomic_inc(&urb->use_count);
1317 	atomic_inc(&urb->dev->urbnum);
1318 	usbmon_urb_submit(&hcd->self, urb);
1319 
1320 	/* NOTE requirements on root-hub callers (usbfs and the hub
1321 	 * driver, for now):  URBs' urb->transfer_buffer must be
1322 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1323 	 * they could clobber root hub response data.  Also, control
1324 	 * URBs must be submitted in process context with interrupts
1325 	 * enabled.
1326 	 */
1327 	status = map_urb_for_dma(hcd, urb, mem_flags);
1328 	if (unlikely(status)) {
1329 		usbmon_urb_submit_error(&hcd->self, urb, status);
1330 		goto error;
1331 	}
1332 
1333 	if (is_root_hub(urb->dev))
1334 		status = rh_urb_enqueue(hcd, urb);
1335 	else
1336 		status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1337 
1338 	if (unlikely(status)) {
1339 		usbmon_urb_submit_error(&hcd->self, urb, status);
1340 		unmap_urb_for_dma(hcd, urb);
1341  error:
1342 		urb->hcpriv = NULL;
1343 		INIT_LIST_HEAD(&urb->urb_list);
1344 		atomic_dec(&urb->use_count);
1345 		atomic_dec(&urb->dev->urbnum);
1346 		if (urb->reject)
1347 			wake_up(&usb_kill_urb_queue);
1348 		usb_put_urb(urb);
1349 	}
1350 	return status;
1351 }
1352 
1353 /*-------------------------------------------------------------------------*/
1354 
1355 /* this makes the hcd giveback() the urb more quickly, by kicking it
1356  * off hardware queues (which may take a while) and returning it as
1357  * soon as practical.  we've already set up the urb's return status,
1358  * but we can't know if the callback completed already.
1359  */
1360 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1361 {
1362 	int		value;
1363 
1364 	if (is_root_hub(urb->dev))
1365 		value = usb_rh_urb_dequeue(hcd, urb, status);
1366 	else {
1367 
1368 		/* The only reason an HCD might fail this call is if
1369 		 * it has not yet fully queued the urb to begin with.
1370 		 * Such failures should be harmless. */
1371 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1372 	}
1373 	return value;
1374 }
1375 
1376 /*
1377  * called in any context
1378  *
1379  * caller guarantees urb won't be recycled till both unlink()
1380  * and the urb's completion function return
1381  */
1382 int usb_hcd_unlink_urb (struct urb *urb, int status)
1383 {
1384 	struct usb_hcd		*hcd;
1385 	int			retval;
1386 
1387 	hcd = bus_to_hcd(urb->dev->bus);
1388 	retval = unlink1(hcd, urb, status);
1389 
1390 	if (retval == 0)
1391 		retval = -EINPROGRESS;
1392 	else if (retval != -EIDRM && retval != -EBUSY)
1393 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1394 				urb, retval);
1395 	return retval;
1396 }
1397 
1398 /*-------------------------------------------------------------------------*/
1399 
1400 /**
1401  * usb_hcd_giveback_urb - return URB from HCD to device driver
1402  * @hcd: host controller returning the URB
1403  * @urb: urb being returned to the USB device driver.
1404  * @status: completion status code for the URB.
1405  * Context: in_interrupt()
1406  *
1407  * This hands the URB from HCD to its USB device driver, using its
1408  * completion function.  The HCD has freed all per-urb resources
1409  * (and is done using urb->hcpriv).  It also released all HCD locks;
1410  * the device driver won't cause problems if it frees, modifies,
1411  * or resubmits this URB.
1412  *
1413  * If @urb was unlinked, the value of @status will be overridden by
1414  * @urb->unlinked.  Erroneous short transfers are detected in case
1415  * the HCD hasn't checked for them.
1416  */
1417 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1418 {
1419 	urb->hcpriv = NULL;
1420 	if (unlikely(urb->unlinked))
1421 		status = urb->unlinked;
1422 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1423 			urb->actual_length < urb->transfer_buffer_length &&
1424 			!status))
1425 		status = -EREMOTEIO;
1426 
1427 	unmap_urb_for_dma(hcd, urb);
1428 	usbmon_urb_complete(&hcd->self, urb, status);
1429 	usb_unanchor_urb(urb);
1430 
1431 	/* pass ownership to the completion handler */
1432 	urb->status = status;
1433 	urb->complete (urb);
1434 	atomic_dec (&urb->use_count);
1435 	if (unlikely (urb->reject))
1436 		wake_up (&usb_kill_urb_queue);
1437 	usb_put_urb (urb);
1438 }
1439 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1440 
1441 /*-------------------------------------------------------------------------*/
1442 
1443 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1444  * queue to drain completely.  The caller must first insure that no more
1445  * URBs can be submitted for this endpoint.
1446  */
1447 void usb_hcd_flush_endpoint(struct usb_device *udev,
1448 		struct usb_host_endpoint *ep)
1449 {
1450 	struct usb_hcd		*hcd;
1451 	struct urb		*urb;
1452 
1453 	if (!ep)
1454 		return;
1455 	might_sleep();
1456 	hcd = bus_to_hcd(udev->bus);
1457 
1458 	/* No more submits can occur */
1459 	spin_lock_irq(&hcd_urb_list_lock);
1460 rescan:
1461 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1462 		int	is_in;
1463 
1464 		if (urb->unlinked)
1465 			continue;
1466 		usb_get_urb (urb);
1467 		is_in = usb_urb_dir_in(urb);
1468 		spin_unlock(&hcd_urb_list_lock);
1469 
1470 		/* kick hcd */
1471 		unlink1(hcd, urb, -ESHUTDOWN);
1472 		dev_dbg (hcd->self.controller,
1473 			"shutdown urb %p ep%d%s%s\n",
1474 			urb, usb_endpoint_num(&ep->desc),
1475 			is_in ? "in" : "out",
1476 			({	char *s;
1477 
1478 				 switch (usb_endpoint_type(&ep->desc)) {
1479 				 case USB_ENDPOINT_XFER_CONTROL:
1480 					s = ""; break;
1481 				 case USB_ENDPOINT_XFER_BULK:
1482 					s = "-bulk"; break;
1483 				 case USB_ENDPOINT_XFER_INT:
1484 					s = "-intr"; break;
1485 				 default:
1486 			 		s = "-iso"; break;
1487 				};
1488 				s;
1489 			}));
1490 		usb_put_urb (urb);
1491 
1492 		/* list contents may have changed */
1493 		spin_lock(&hcd_urb_list_lock);
1494 		goto rescan;
1495 	}
1496 	spin_unlock_irq(&hcd_urb_list_lock);
1497 
1498 	/* Wait until the endpoint queue is completely empty */
1499 	while (!list_empty (&ep->urb_list)) {
1500 		spin_lock_irq(&hcd_urb_list_lock);
1501 
1502 		/* The list may have changed while we acquired the spinlock */
1503 		urb = NULL;
1504 		if (!list_empty (&ep->urb_list)) {
1505 			urb = list_entry (ep->urb_list.prev, struct urb,
1506 					urb_list);
1507 			usb_get_urb (urb);
1508 		}
1509 		spin_unlock_irq(&hcd_urb_list_lock);
1510 
1511 		if (urb) {
1512 			usb_kill_urb (urb);
1513 			usb_put_urb (urb);
1514 		}
1515 	}
1516 }
1517 
1518 /* Disables the endpoint: synchronizes with the hcd to make sure all
1519  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1520  * have been called previously.  Use for set_configuration, set_interface,
1521  * driver removal, physical disconnect.
1522  *
1523  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1524  * type, maxpacket size, toggle, halt status, and scheduling.
1525  */
1526 void usb_hcd_disable_endpoint(struct usb_device *udev,
1527 		struct usb_host_endpoint *ep)
1528 {
1529 	struct usb_hcd		*hcd;
1530 
1531 	might_sleep();
1532 	hcd = bus_to_hcd(udev->bus);
1533 	if (hcd->driver->endpoint_disable)
1534 		hcd->driver->endpoint_disable(hcd, ep);
1535 }
1536 
1537 /*-------------------------------------------------------------------------*/
1538 
1539 /* called in any context */
1540 int usb_hcd_get_frame_number (struct usb_device *udev)
1541 {
1542 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1543 
1544 	if (!HC_IS_RUNNING (hcd->state))
1545 		return -ESHUTDOWN;
1546 	return hcd->driver->get_frame_number (hcd);
1547 }
1548 
1549 /*-------------------------------------------------------------------------*/
1550 
1551 #ifdef	CONFIG_PM
1552 
1553 int hcd_bus_suspend(struct usb_device *rhdev)
1554 {
1555 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1556 	int		status;
1557 	int		old_state = hcd->state;
1558 
1559 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1560 			rhdev->auto_pm ? "auto-" : "", "suspend");
1561 	if (!hcd->driver->bus_suspend) {
1562 		status = -ENOENT;
1563 	} else {
1564 		hcd->state = HC_STATE_QUIESCING;
1565 		status = hcd->driver->bus_suspend(hcd);
1566 	}
1567 	if (status == 0) {
1568 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1569 		hcd->state = HC_STATE_SUSPENDED;
1570 	} else {
1571 		hcd->state = old_state;
1572 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1573 				"suspend", status);
1574 	}
1575 	return status;
1576 }
1577 
1578 int hcd_bus_resume(struct usb_device *rhdev)
1579 {
1580 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1581 	int		status;
1582 	int		old_state = hcd->state;
1583 
1584 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1585 			rhdev->auto_pm ? "auto-" : "", "resume");
1586 	if (!hcd->driver->bus_resume)
1587 		return -ENOENT;
1588 	if (hcd->state == HC_STATE_RUNNING)
1589 		return 0;
1590 
1591 	hcd->state = HC_STATE_RESUMING;
1592 	status = hcd->driver->bus_resume(hcd);
1593 	if (status == 0) {
1594 		/* TRSMRCY = 10 msec */
1595 		msleep(10);
1596 		usb_set_device_state(rhdev, rhdev->actconfig
1597 				? USB_STATE_CONFIGURED
1598 				: USB_STATE_ADDRESS);
1599 		hcd->state = HC_STATE_RUNNING;
1600 	} else {
1601 		hcd->state = old_state;
1602 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1603 				"resume", status);
1604 		if (status != -ESHUTDOWN)
1605 			usb_hc_died(hcd);
1606 	}
1607 	return status;
1608 }
1609 
1610 /* Workqueue routine for root-hub remote wakeup */
1611 static void hcd_resume_work(struct work_struct *work)
1612 {
1613 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1614 	struct usb_device *udev = hcd->self.root_hub;
1615 
1616 	usb_lock_device(udev);
1617 	usb_mark_last_busy(udev);
1618 	usb_external_resume_device(udev);
1619 	usb_unlock_device(udev);
1620 }
1621 
1622 /**
1623  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1624  * @hcd: host controller for this root hub
1625  *
1626  * The USB host controller calls this function when its root hub is
1627  * suspended (with the remote wakeup feature enabled) and a remote
1628  * wakeup request is received.  The routine submits a workqueue request
1629  * to resume the root hub (that is, manage its downstream ports again).
1630  */
1631 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1632 {
1633 	unsigned long flags;
1634 
1635 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1636 	if (hcd->rh_registered)
1637 		queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1638 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1639 }
1640 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1641 
1642 #endif
1643 
1644 /*-------------------------------------------------------------------------*/
1645 
1646 #ifdef	CONFIG_USB_OTG
1647 
1648 /**
1649  * usb_bus_start_enum - start immediate enumeration (for OTG)
1650  * @bus: the bus (must use hcd framework)
1651  * @port_num: 1-based number of port; usually bus->otg_port
1652  * Context: in_interrupt()
1653  *
1654  * Starts enumeration, with an immediate reset followed later by
1655  * khubd identifying and possibly configuring the device.
1656  * This is needed by OTG controller drivers, where it helps meet
1657  * HNP protocol timing requirements for starting a port reset.
1658  */
1659 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1660 {
1661 	struct usb_hcd		*hcd;
1662 	int			status = -EOPNOTSUPP;
1663 
1664 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1665 	 * boards with root hubs hooked up to internal devices (instead of
1666 	 * just the OTG port) may need more attention to resetting...
1667 	 */
1668 	hcd = container_of (bus, struct usb_hcd, self);
1669 	if (port_num && hcd->driver->start_port_reset)
1670 		status = hcd->driver->start_port_reset(hcd, port_num);
1671 
1672 	/* run khubd shortly after (first) root port reset finishes;
1673 	 * it may issue others, until at least 50 msecs have passed.
1674 	 */
1675 	if (status == 0)
1676 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1677 	return status;
1678 }
1679 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1680 
1681 #endif
1682 
1683 /*-------------------------------------------------------------------------*/
1684 
1685 /**
1686  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1687  * @irq: the IRQ being raised
1688  * @__hcd: pointer to the HCD whose IRQ is being signaled
1689  *
1690  * If the controller isn't HALTed, calls the driver's irq handler.
1691  * Checks whether the controller is now dead.
1692  */
1693 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1694 {
1695 	struct usb_hcd		*hcd = __hcd;
1696 	unsigned long		flags;
1697 	irqreturn_t		rc;
1698 
1699 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
1700 	 * when the first handler doesn't use it.  So let's just
1701 	 * assume it's never used.
1702 	 */
1703 	local_irq_save(flags);
1704 
1705 	if (unlikely(hcd->state == HC_STATE_HALT ||
1706 		     !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1707 		rc = IRQ_NONE;
1708 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1709 		rc = IRQ_NONE;
1710 	} else {
1711 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1712 
1713 		if (unlikely(hcd->state == HC_STATE_HALT))
1714 			usb_hc_died(hcd);
1715 		rc = IRQ_HANDLED;
1716 	}
1717 
1718 	local_irq_restore(flags);
1719 	return rc;
1720 }
1721 
1722 /*-------------------------------------------------------------------------*/
1723 
1724 /**
1725  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1726  * @hcd: pointer to the HCD representing the controller
1727  *
1728  * This is called by bus glue to report a USB host controller that died
1729  * while operations may still have been pending.  It's called automatically
1730  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1731  */
1732 void usb_hc_died (struct usb_hcd *hcd)
1733 {
1734 	unsigned long flags;
1735 
1736 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1737 
1738 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1739 	if (hcd->rh_registered) {
1740 		hcd->poll_rh = 0;
1741 
1742 		/* make khubd clean up old urbs and devices */
1743 		usb_set_device_state (hcd->self.root_hub,
1744 				USB_STATE_NOTATTACHED);
1745 		usb_kick_khubd (hcd->self.root_hub);
1746 	}
1747 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1748 }
1749 EXPORT_SYMBOL_GPL (usb_hc_died);
1750 
1751 /*-------------------------------------------------------------------------*/
1752 
1753 /**
1754  * usb_create_hcd - create and initialize an HCD structure
1755  * @driver: HC driver that will use this hcd
1756  * @dev: device for this HC, stored in hcd->self.controller
1757  * @bus_name: value to store in hcd->self.bus_name
1758  * Context: !in_interrupt()
1759  *
1760  * Allocate a struct usb_hcd, with extra space at the end for the
1761  * HC driver's private data.  Initialize the generic members of the
1762  * hcd structure.
1763  *
1764  * If memory is unavailable, returns NULL.
1765  */
1766 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1767 		struct device *dev, const char *bus_name)
1768 {
1769 	struct usb_hcd *hcd;
1770 
1771 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1772 	if (!hcd) {
1773 		dev_dbg (dev, "hcd alloc failed\n");
1774 		return NULL;
1775 	}
1776 	dev_set_drvdata(dev, hcd);
1777 	kref_init(&hcd->kref);
1778 
1779 	usb_bus_init(&hcd->self);
1780 	hcd->self.controller = dev;
1781 	hcd->self.bus_name = bus_name;
1782 	hcd->self.uses_dma = (dev->dma_mask != NULL);
1783 
1784 	init_timer(&hcd->rh_timer);
1785 	hcd->rh_timer.function = rh_timer_func;
1786 	hcd->rh_timer.data = (unsigned long) hcd;
1787 #ifdef CONFIG_PM
1788 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1789 #endif
1790 
1791 	hcd->driver = driver;
1792 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1793 			"USB Host Controller";
1794 	return hcd;
1795 }
1796 EXPORT_SYMBOL_GPL(usb_create_hcd);
1797 
1798 static void hcd_release (struct kref *kref)
1799 {
1800 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1801 
1802 	kfree(hcd);
1803 }
1804 
1805 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1806 {
1807 	if (hcd)
1808 		kref_get (&hcd->kref);
1809 	return hcd;
1810 }
1811 EXPORT_SYMBOL_GPL(usb_get_hcd);
1812 
1813 void usb_put_hcd (struct usb_hcd *hcd)
1814 {
1815 	if (hcd)
1816 		kref_put (&hcd->kref, hcd_release);
1817 }
1818 EXPORT_SYMBOL_GPL(usb_put_hcd);
1819 
1820 /**
1821  * usb_add_hcd - finish generic HCD structure initialization and register
1822  * @hcd: the usb_hcd structure to initialize
1823  * @irqnum: Interrupt line to allocate
1824  * @irqflags: Interrupt type flags
1825  *
1826  * Finish the remaining parts of generic HCD initialization: allocate the
1827  * buffers of consistent memory, register the bus, request the IRQ line,
1828  * and call the driver's reset() and start() routines.
1829  */
1830 int usb_add_hcd(struct usb_hcd *hcd,
1831 		unsigned int irqnum, unsigned long irqflags)
1832 {
1833 	int retval;
1834 	struct usb_device *rhdev;
1835 
1836 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1837 
1838 	hcd->authorized_default = hcd->wireless? 0 : 1;
1839 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1840 
1841 	/* HC is in reset state, but accessible.  Now do the one-time init,
1842 	 * bottom up so that hcds can customize the root hubs before khubd
1843 	 * starts talking to them.  (Note, bus id is assigned early too.)
1844 	 */
1845 	if ((retval = hcd_buffer_create(hcd)) != 0) {
1846 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
1847 		return retval;
1848 	}
1849 
1850 	if ((retval = usb_register_bus(&hcd->self)) < 0)
1851 		goto err_register_bus;
1852 
1853 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1854 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
1855 		retval = -ENOMEM;
1856 		goto err_allocate_root_hub;
1857 	}
1858 	rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1859 			USB_SPEED_FULL;
1860 	hcd->self.root_hub = rhdev;
1861 
1862 	/* wakeup flag init defaults to "everything works" for root hubs,
1863 	 * but drivers can override it in reset() if needed, along with
1864 	 * recording the overall controller's system wakeup capability.
1865 	 */
1866 	device_init_wakeup(&rhdev->dev, 1);
1867 
1868 	/* "reset" is misnamed; its role is now one-time init. the controller
1869 	 * should already have been reset (and boot firmware kicked off etc).
1870 	 */
1871 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1872 		dev_err(hcd->self.controller, "can't setup\n");
1873 		goto err_hcd_driver_setup;
1874 	}
1875 
1876 	/* NOTE: root hub and controller capabilities may not be the same */
1877 	if (device_can_wakeup(hcd->self.controller)
1878 			&& device_can_wakeup(&hcd->self.root_hub->dev))
1879 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1880 
1881 	/* enable irqs just before we start the controller */
1882 	if (hcd->driver->irq) {
1883 
1884 		/* IRQF_DISABLED doesn't work as advertised when used together
1885 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1886 		 * interrupts we can remove it here.
1887 		 */
1888 		irqflags &= ~IRQF_DISABLED;
1889 
1890 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1891 				hcd->driver->description, hcd->self.busnum);
1892 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1893 				hcd->irq_descr, hcd)) != 0) {
1894 			dev_err(hcd->self.controller,
1895 					"request interrupt %d failed\n", irqnum);
1896 			goto err_request_irq;
1897 		}
1898 		hcd->irq = irqnum;
1899 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1900 				(hcd->driver->flags & HCD_MEMORY) ?
1901 					"io mem" : "io base",
1902 					(unsigned long long)hcd->rsrc_start);
1903 	} else {
1904 		hcd->irq = -1;
1905 		if (hcd->rsrc_start)
1906 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
1907 					(hcd->driver->flags & HCD_MEMORY) ?
1908 					"io mem" : "io base",
1909 					(unsigned long long)hcd->rsrc_start);
1910 	}
1911 
1912 	if ((retval = hcd->driver->start(hcd)) < 0) {
1913 		dev_err(hcd->self.controller, "startup error %d\n", retval);
1914 		goto err_hcd_driver_start;
1915 	}
1916 
1917 	/* starting here, usbcore will pay attention to this root hub */
1918 	rhdev->bus_mA = min(500u, hcd->power_budget);
1919 	if ((retval = register_root_hub(hcd)) != 0)
1920 		goto err_register_root_hub;
1921 
1922 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1923 	if (retval < 0) {
1924 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1925 		       retval);
1926 		goto error_create_attr_group;
1927 	}
1928 	if (hcd->uses_new_polling && hcd->poll_rh)
1929 		usb_hcd_poll_rh_status(hcd);
1930 	return retval;
1931 
1932 error_create_attr_group:
1933 	mutex_lock(&usb_bus_list_lock);
1934 	usb_disconnect(&hcd->self.root_hub);
1935 	mutex_unlock(&usb_bus_list_lock);
1936 err_register_root_hub:
1937 	hcd->driver->stop(hcd);
1938 err_hcd_driver_start:
1939 	if (hcd->irq >= 0)
1940 		free_irq(irqnum, hcd);
1941 err_request_irq:
1942 err_hcd_driver_setup:
1943 	hcd->self.root_hub = NULL;
1944 	usb_put_dev(rhdev);
1945 err_allocate_root_hub:
1946 	usb_deregister_bus(&hcd->self);
1947 err_register_bus:
1948 	hcd_buffer_destroy(hcd);
1949 	return retval;
1950 }
1951 EXPORT_SYMBOL_GPL(usb_add_hcd);
1952 
1953 /**
1954  * usb_remove_hcd - shutdown processing for generic HCDs
1955  * @hcd: the usb_hcd structure to remove
1956  * Context: !in_interrupt()
1957  *
1958  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1959  * invoking the HCD's stop() method.
1960  */
1961 void usb_remove_hcd(struct usb_hcd *hcd)
1962 {
1963 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1964 
1965 	if (HC_IS_RUNNING (hcd->state))
1966 		hcd->state = HC_STATE_QUIESCING;
1967 
1968 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1969 	spin_lock_irq (&hcd_root_hub_lock);
1970 	hcd->rh_registered = 0;
1971 	spin_unlock_irq (&hcd_root_hub_lock);
1972 
1973 #ifdef CONFIG_PM
1974 	cancel_work_sync(&hcd->wakeup_work);
1975 #endif
1976 
1977 	sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1978 	mutex_lock(&usb_bus_list_lock);
1979 	usb_disconnect(&hcd->self.root_hub);
1980 	mutex_unlock(&usb_bus_list_lock);
1981 
1982 	hcd->driver->stop(hcd);
1983 	hcd->state = HC_STATE_HALT;
1984 
1985 	hcd->poll_rh = 0;
1986 	del_timer_sync(&hcd->rh_timer);
1987 
1988 	if (hcd->irq >= 0)
1989 		free_irq(hcd->irq, hcd);
1990 	usb_deregister_bus(&hcd->self);
1991 	hcd_buffer_destroy(hcd);
1992 }
1993 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1994 
1995 void
1996 usb_hcd_platform_shutdown(struct platform_device* dev)
1997 {
1998 	struct usb_hcd *hcd = platform_get_drvdata(dev);
1999 
2000 	if (hcd->driver->shutdown)
2001 		hcd->driver->shutdown(hcd);
2002 }
2003 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2004 
2005 /*-------------------------------------------------------------------------*/
2006 
2007 #if defined(CONFIG_USB_MON)
2008 
2009 struct usb_mon_operations *mon_ops;
2010 
2011 /*
2012  * The registration is unlocked.
2013  * We do it this way because we do not want to lock in hot paths.
2014  *
2015  * Notice that the code is minimally error-proof. Because usbmon needs
2016  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2017  */
2018 
2019 int usb_mon_register (struct usb_mon_operations *ops)
2020 {
2021 
2022 	if (mon_ops)
2023 		return -EBUSY;
2024 
2025 	mon_ops = ops;
2026 	mb();
2027 	return 0;
2028 }
2029 EXPORT_SYMBOL_GPL (usb_mon_register);
2030 
2031 void usb_mon_deregister (void)
2032 {
2033 
2034 	if (mon_ops == NULL) {
2035 		printk(KERN_ERR "USB: monitor was not registered\n");
2036 		return;
2037 	}
2038 	mon_ops = NULL;
2039 	mb();
2040 }
2041 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2042 
2043 #endif /* CONFIG_USB_MON */
2044