1 /* 2 * (C) Copyright Linus Torvalds 1999 3 * (C) Copyright Johannes Erdfelt 1999-2001 4 * (C) Copyright Andreas Gal 1999 5 * (C) Copyright Gregory P. Smith 1999 6 * (C) Copyright Deti Fliegl 1999 7 * (C) Copyright Randy Dunlap 2000 8 * (C) Copyright David Brownell 2000-2002 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18 * for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software Foundation, 22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/bcd.h> 26 #include <linux/module.h> 27 #include <linux/version.h> 28 #include <linux/kernel.h> 29 #include <linux/slab.h> 30 #include <linux/completion.h> 31 #include <linux/utsname.h> 32 #include <linux/mm.h> 33 #include <asm/io.h> 34 #include <linux/device.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/mutex.h> 37 #include <asm/irq.h> 38 #include <asm/byteorder.h> 39 #include <asm/unaligned.h> 40 #include <linux/platform_device.h> 41 #include <linux/workqueue.h> 42 #include <linux/pm_runtime.h> 43 #include <linux/types.h> 44 45 #include <linux/phy/phy.h> 46 #include <linux/usb.h> 47 #include <linux/usb/hcd.h> 48 #include <linux/usb/phy.h> 49 #include <linux/usb/otg.h> 50 51 #include "usb.h" 52 53 54 /*-------------------------------------------------------------------------*/ 55 56 /* 57 * USB Host Controller Driver framework 58 * 59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 60 * HCD-specific behaviors/bugs. 61 * 62 * This does error checks, tracks devices and urbs, and delegates to a 63 * "hc_driver" only for code (and data) that really needs to know about 64 * hardware differences. That includes root hub registers, i/o queues, 65 * and so on ... but as little else as possible. 66 * 67 * Shared code includes most of the "root hub" code (these are emulated, 68 * though each HC's hardware works differently) and PCI glue, plus request 69 * tracking overhead. The HCD code should only block on spinlocks or on 70 * hardware handshaking; blocking on software events (such as other kernel 71 * threads releasing resources, or completing actions) is all generic. 72 * 73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 75 * only by the hub driver ... and that neither should be seen or used by 76 * usb client device drivers. 77 * 78 * Contributors of ideas or unattributed patches include: David Brownell, 79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 80 * 81 * HISTORY: 82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 83 * associated cleanup. "usb_hcd" still != "usb_bus". 84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 85 */ 86 87 /*-------------------------------------------------------------------------*/ 88 89 /* Keep track of which host controller drivers are loaded */ 90 unsigned long usb_hcds_loaded; 91 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 92 93 /* host controllers we manage */ 94 DEFINE_IDR (usb_bus_idr); 95 EXPORT_SYMBOL_GPL (usb_bus_idr); 96 97 /* used when allocating bus numbers */ 98 #define USB_MAXBUS 64 99 100 /* used when updating list of hcds */ 101 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 102 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 103 104 /* used for controlling access to virtual root hubs */ 105 static DEFINE_SPINLOCK(hcd_root_hub_lock); 106 107 /* used when updating an endpoint's URB list */ 108 static DEFINE_SPINLOCK(hcd_urb_list_lock); 109 110 /* used to protect against unlinking URBs after the device is gone */ 111 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 112 113 /* wait queue for synchronous unlinks */ 114 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 115 116 static inline int is_root_hub(struct usb_device *udev) 117 { 118 return (udev->parent == NULL); 119 } 120 121 /*-------------------------------------------------------------------------*/ 122 123 /* 124 * Sharable chunks of root hub code. 125 */ 126 127 /*-------------------------------------------------------------------------*/ 128 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 129 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 130 131 /* usb 3.1 root hub device descriptor */ 132 static const u8 usb31_rh_dev_descriptor[18] = { 133 0x12, /* __u8 bLength; */ 134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 136 137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 138 0x00, /* __u8 bDeviceSubClass; */ 139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 141 142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 145 146 0x03, /* __u8 iManufacturer; */ 147 0x02, /* __u8 iProduct; */ 148 0x01, /* __u8 iSerialNumber; */ 149 0x01 /* __u8 bNumConfigurations; */ 150 }; 151 152 /* usb 3.0 root hub device descriptor */ 153 static const u8 usb3_rh_dev_descriptor[18] = { 154 0x12, /* __u8 bLength; */ 155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 157 158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 159 0x00, /* __u8 bDeviceSubClass; */ 160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 162 163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 166 167 0x03, /* __u8 iManufacturer; */ 168 0x02, /* __u8 iProduct; */ 169 0x01, /* __u8 iSerialNumber; */ 170 0x01 /* __u8 bNumConfigurations; */ 171 }; 172 173 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 174 static const u8 usb25_rh_dev_descriptor[18] = { 175 0x12, /* __u8 bLength; */ 176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 178 179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 180 0x00, /* __u8 bDeviceSubClass; */ 181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 183 184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 187 188 0x03, /* __u8 iManufacturer; */ 189 0x02, /* __u8 iProduct; */ 190 0x01, /* __u8 iSerialNumber; */ 191 0x01 /* __u8 bNumConfigurations; */ 192 }; 193 194 /* usb 2.0 root hub device descriptor */ 195 static const u8 usb2_rh_dev_descriptor[18] = { 196 0x12, /* __u8 bLength; */ 197 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 199 200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 201 0x00, /* __u8 bDeviceSubClass; */ 202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 204 205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 207 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 208 209 0x03, /* __u8 iManufacturer; */ 210 0x02, /* __u8 iProduct; */ 211 0x01, /* __u8 iSerialNumber; */ 212 0x01 /* __u8 bNumConfigurations; */ 213 }; 214 215 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 216 217 /* usb 1.1 root hub device descriptor */ 218 static const u8 usb11_rh_dev_descriptor[18] = { 219 0x12, /* __u8 bLength; */ 220 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 222 223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 224 0x00, /* __u8 bDeviceSubClass; */ 225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 227 228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 230 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 231 232 0x03, /* __u8 iManufacturer; */ 233 0x02, /* __u8 iProduct; */ 234 0x01, /* __u8 iSerialNumber; */ 235 0x01 /* __u8 bNumConfigurations; */ 236 }; 237 238 239 /*-------------------------------------------------------------------------*/ 240 241 /* Configuration descriptors for our root hubs */ 242 243 static const u8 fs_rh_config_descriptor[] = { 244 245 /* one configuration */ 246 0x09, /* __u8 bLength; */ 247 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 248 0x19, 0x00, /* __le16 wTotalLength; */ 249 0x01, /* __u8 bNumInterfaces; (1) */ 250 0x01, /* __u8 bConfigurationValue; */ 251 0x00, /* __u8 iConfiguration; */ 252 0xc0, /* __u8 bmAttributes; 253 Bit 7: must be set, 254 6: Self-powered, 255 5: Remote wakeup, 256 4..0: resvd */ 257 0x00, /* __u8 MaxPower; */ 258 259 /* USB 1.1: 260 * USB 2.0, single TT organization (mandatory): 261 * one interface, protocol 0 262 * 263 * USB 2.0, multiple TT organization (optional): 264 * two interfaces, protocols 1 (like single TT) 265 * and 2 (multiple TT mode) ... config is 266 * sometimes settable 267 * NOT IMPLEMENTED 268 */ 269 270 /* one interface */ 271 0x09, /* __u8 if_bLength; */ 272 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 273 0x00, /* __u8 if_bInterfaceNumber; */ 274 0x00, /* __u8 if_bAlternateSetting; */ 275 0x01, /* __u8 if_bNumEndpoints; */ 276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 277 0x00, /* __u8 if_bInterfaceSubClass; */ 278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 279 0x00, /* __u8 if_iInterface; */ 280 281 /* one endpoint (status change endpoint) */ 282 0x07, /* __u8 ep_bLength; */ 283 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 285 0x03, /* __u8 ep_bmAttributes; Interrupt */ 286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 288 }; 289 290 static const u8 hs_rh_config_descriptor[] = { 291 292 /* one configuration */ 293 0x09, /* __u8 bLength; */ 294 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 295 0x19, 0x00, /* __le16 wTotalLength; */ 296 0x01, /* __u8 bNumInterfaces; (1) */ 297 0x01, /* __u8 bConfigurationValue; */ 298 0x00, /* __u8 iConfiguration; */ 299 0xc0, /* __u8 bmAttributes; 300 Bit 7: must be set, 301 6: Self-powered, 302 5: Remote wakeup, 303 4..0: resvd */ 304 0x00, /* __u8 MaxPower; */ 305 306 /* USB 1.1: 307 * USB 2.0, single TT organization (mandatory): 308 * one interface, protocol 0 309 * 310 * USB 2.0, multiple TT organization (optional): 311 * two interfaces, protocols 1 (like single TT) 312 * and 2 (multiple TT mode) ... config is 313 * sometimes settable 314 * NOT IMPLEMENTED 315 */ 316 317 /* one interface */ 318 0x09, /* __u8 if_bLength; */ 319 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 320 0x00, /* __u8 if_bInterfaceNumber; */ 321 0x00, /* __u8 if_bAlternateSetting; */ 322 0x01, /* __u8 if_bNumEndpoints; */ 323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 324 0x00, /* __u8 if_bInterfaceSubClass; */ 325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 326 0x00, /* __u8 if_iInterface; */ 327 328 /* one endpoint (status change endpoint) */ 329 0x07, /* __u8 ep_bLength; */ 330 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 332 0x03, /* __u8 ep_bmAttributes; Interrupt */ 333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 334 * see hub.c:hub_configure() for details. */ 335 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 337 }; 338 339 static const u8 ss_rh_config_descriptor[] = { 340 /* one configuration */ 341 0x09, /* __u8 bLength; */ 342 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 343 0x1f, 0x00, /* __le16 wTotalLength; */ 344 0x01, /* __u8 bNumInterfaces; (1) */ 345 0x01, /* __u8 bConfigurationValue; */ 346 0x00, /* __u8 iConfiguration; */ 347 0xc0, /* __u8 bmAttributes; 348 Bit 7: must be set, 349 6: Self-powered, 350 5: Remote wakeup, 351 4..0: resvd */ 352 0x00, /* __u8 MaxPower; */ 353 354 /* one interface */ 355 0x09, /* __u8 if_bLength; */ 356 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 357 0x00, /* __u8 if_bInterfaceNumber; */ 358 0x00, /* __u8 if_bAlternateSetting; */ 359 0x01, /* __u8 if_bNumEndpoints; */ 360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 361 0x00, /* __u8 if_bInterfaceSubClass; */ 362 0x00, /* __u8 if_bInterfaceProtocol; */ 363 0x00, /* __u8 if_iInterface; */ 364 365 /* one endpoint (status change endpoint) */ 366 0x07, /* __u8 ep_bLength; */ 367 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 369 0x03, /* __u8 ep_bmAttributes; Interrupt */ 370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 371 * see hub.c:hub_configure() for details. */ 372 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 374 375 /* one SuperSpeed endpoint companion descriptor */ 376 0x06, /* __u8 ss_bLength */ 377 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 378 /* Companion */ 379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 382 }; 383 384 /* authorized_default behaviour: 385 * -1 is authorized for all devices except wireless (old behaviour) 386 * 0 is unauthorized for all devices 387 * 1 is authorized for all devices 388 */ 389 static int authorized_default = -1; 390 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 391 MODULE_PARM_DESC(authorized_default, 392 "Default USB device authorization: 0 is not authorized, 1 is " 393 "authorized, -1 is authorized except for wireless USB (default, " 394 "old behaviour"); 395 /*-------------------------------------------------------------------------*/ 396 397 /** 398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 399 * @s: Null-terminated ASCII (actually ISO-8859-1) string 400 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 401 * @len: Length (in bytes; may be odd) of descriptor buffer. 402 * 403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 404 * whichever is less. 405 * 406 * Note: 407 * USB String descriptors can contain at most 126 characters; input 408 * strings longer than that are truncated. 409 */ 410 static unsigned 411 ascii2desc(char const *s, u8 *buf, unsigned len) 412 { 413 unsigned n, t = 2 + 2*strlen(s); 414 415 if (t > 254) 416 t = 254; /* Longest possible UTF string descriptor */ 417 if (len > t) 418 len = t; 419 420 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 421 422 n = len; 423 while (n--) { 424 *buf++ = t; 425 if (!n--) 426 break; 427 *buf++ = t >> 8; 428 t = (unsigned char)*s++; 429 } 430 return len; 431 } 432 433 /** 434 * rh_string() - provides string descriptors for root hub 435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 436 * @hcd: the host controller for this root hub 437 * @data: buffer for output packet 438 * @len: length of the provided buffer 439 * 440 * Produces either a manufacturer, product or serial number string for the 441 * virtual root hub device. 442 * 443 * Return: The number of bytes filled in: the length of the descriptor or 444 * of the provided buffer, whichever is less. 445 */ 446 static unsigned 447 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 448 { 449 char buf[100]; 450 char const *s; 451 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 452 453 /* language ids */ 454 switch (id) { 455 case 0: 456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 458 if (len > 4) 459 len = 4; 460 memcpy(data, langids, len); 461 return len; 462 case 1: 463 /* Serial number */ 464 s = hcd->self.bus_name; 465 break; 466 case 2: 467 /* Product name */ 468 s = hcd->product_desc; 469 break; 470 case 3: 471 /* Manufacturer */ 472 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 473 init_utsname()->release, hcd->driver->description); 474 s = buf; 475 break; 476 default: 477 /* Can't happen; caller guarantees it */ 478 return 0; 479 } 480 481 return ascii2desc(s, data, len); 482 } 483 484 485 /* Root hub control transfers execute synchronously */ 486 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 487 { 488 struct usb_ctrlrequest *cmd; 489 u16 typeReq, wValue, wIndex, wLength; 490 u8 *ubuf = urb->transfer_buffer; 491 unsigned len = 0; 492 int status; 493 u8 patch_wakeup = 0; 494 u8 patch_protocol = 0; 495 u16 tbuf_size; 496 u8 *tbuf = NULL; 497 const u8 *bufp; 498 499 might_sleep(); 500 501 spin_lock_irq(&hcd_root_hub_lock); 502 status = usb_hcd_link_urb_to_ep(hcd, urb); 503 spin_unlock_irq(&hcd_root_hub_lock); 504 if (status) 505 return status; 506 urb->hcpriv = hcd; /* Indicate it's queued */ 507 508 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 509 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 510 wValue = le16_to_cpu (cmd->wValue); 511 wIndex = le16_to_cpu (cmd->wIndex); 512 wLength = le16_to_cpu (cmd->wLength); 513 514 if (wLength > urb->transfer_buffer_length) 515 goto error; 516 517 /* 518 * tbuf should be at least as big as the 519 * USB hub descriptor. 520 */ 521 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 522 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 523 if (!tbuf) 524 return -ENOMEM; 525 526 bufp = tbuf; 527 528 529 urb->actual_length = 0; 530 switch (typeReq) { 531 532 /* DEVICE REQUESTS */ 533 534 /* The root hub's remote wakeup enable bit is implemented using 535 * driver model wakeup flags. If this system supports wakeup 536 * through USB, userspace may change the default "allow wakeup" 537 * policy through sysfs or these calls. 538 * 539 * Most root hubs support wakeup from downstream devices, for 540 * runtime power management (disabling USB clocks and reducing 541 * VBUS power usage). However, not all of them do so; silicon, 542 * board, and BIOS bugs here are not uncommon, so these can't 543 * be treated quite like external hubs. 544 * 545 * Likewise, not all root hubs will pass wakeup events upstream, 546 * to wake up the whole system. So don't assume root hub and 547 * controller capabilities are identical. 548 */ 549 550 case DeviceRequest | USB_REQ_GET_STATUS: 551 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 552 << USB_DEVICE_REMOTE_WAKEUP) 553 | (1 << USB_DEVICE_SELF_POWERED); 554 tbuf[1] = 0; 555 len = 2; 556 break; 557 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 558 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 559 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 560 else 561 goto error; 562 break; 563 case DeviceOutRequest | USB_REQ_SET_FEATURE: 564 if (device_can_wakeup(&hcd->self.root_hub->dev) 565 && wValue == USB_DEVICE_REMOTE_WAKEUP) 566 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 567 else 568 goto error; 569 break; 570 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 571 tbuf[0] = 1; 572 len = 1; 573 /* FALLTHROUGH */ 574 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 575 break; 576 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 577 switch (wValue & 0xff00) { 578 case USB_DT_DEVICE << 8: 579 switch (hcd->speed) { 580 case HCD_USB31: 581 bufp = usb31_rh_dev_descriptor; 582 break; 583 case HCD_USB3: 584 bufp = usb3_rh_dev_descriptor; 585 break; 586 case HCD_USB25: 587 bufp = usb25_rh_dev_descriptor; 588 break; 589 case HCD_USB2: 590 bufp = usb2_rh_dev_descriptor; 591 break; 592 case HCD_USB11: 593 bufp = usb11_rh_dev_descriptor; 594 break; 595 default: 596 goto error; 597 } 598 len = 18; 599 if (hcd->has_tt) 600 patch_protocol = 1; 601 break; 602 case USB_DT_CONFIG << 8: 603 switch (hcd->speed) { 604 case HCD_USB31: 605 case HCD_USB3: 606 bufp = ss_rh_config_descriptor; 607 len = sizeof ss_rh_config_descriptor; 608 break; 609 case HCD_USB25: 610 case HCD_USB2: 611 bufp = hs_rh_config_descriptor; 612 len = sizeof hs_rh_config_descriptor; 613 break; 614 case HCD_USB11: 615 bufp = fs_rh_config_descriptor; 616 len = sizeof fs_rh_config_descriptor; 617 break; 618 default: 619 goto error; 620 } 621 if (device_can_wakeup(&hcd->self.root_hub->dev)) 622 patch_wakeup = 1; 623 break; 624 case USB_DT_STRING << 8: 625 if ((wValue & 0xff) < 4) 626 urb->actual_length = rh_string(wValue & 0xff, 627 hcd, ubuf, wLength); 628 else /* unsupported IDs --> "protocol stall" */ 629 goto error; 630 break; 631 case USB_DT_BOS << 8: 632 goto nongeneric; 633 default: 634 goto error; 635 } 636 break; 637 case DeviceRequest | USB_REQ_GET_INTERFACE: 638 tbuf[0] = 0; 639 len = 1; 640 /* FALLTHROUGH */ 641 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 642 break; 643 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 644 /* wValue == urb->dev->devaddr */ 645 dev_dbg (hcd->self.controller, "root hub device address %d\n", 646 wValue); 647 break; 648 649 /* INTERFACE REQUESTS (no defined feature/status flags) */ 650 651 /* ENDPOINT REQUESTS */ 652 653 case EndpointRequest | USB_REQ_GET_STATUS: 654 /* ENDPOINT_HALT flag */ 655 tbuf[0] = 0; 656 tbuf[1] = 0; 657 len = 2; 658 /* FALLTHROUGH */ 659 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 660 case EndpointOutRequest | USB_REQ_SET_FEATURE: 661 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 662 break; 663 664 /* CLASS REQUESTS (and errors) */ 665 666 default: 667 nongeneric: 668 /* non-generic request */ 669 switch (typeReq) { 670 case GetHubStatus: 671 len = 4; 672 break; 673 case GetPortStatus: 674 if (wValue == HUB_PORT_STATUS) 675 len = 4; 676 else 677 /* other port status types return 8 bytes */ 678 len = 8; 679 break; 680 case GetHubDescriptor: 681 len = sizeof (struct usb_hub_descriptor); 682 break; 683 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 684 /* len is returned by hub_control */ 685 break; 686 } 687 status = hcd->driver->hub_control (hcd, 688 typeReq, wValue, wIndex, 689 tbuf, wLength); 690 691 if (typeReq == GetHubDescriptor) 692 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 693 (struct usb_hub_descriptor *)tbuf); 694 break; 695 error: 696 /* "protocol stall" on error */ 697 status = -EPIPE; 698 } 699 700 if (status < 0) { 701 len = 0; 702 if (status != -EPIPE) { 703 dev_dbg (hcd->self.controller, 704 "CTRL: TypeReq=0x%x val=0x%x " 705 "idx=0x%x len=%d ==> %d\n", 706 typeReq, wValue, wIndex, 707 wLength, status); 708 } 709 } else if (status > 0) { 710 /* hub_control may return the length of data copied. */ 711 len = status; 712 status = 0; 713 } 714 if (len) { 715 if (urb->transfer_buffer_length < len) 716 len = urb->transfer_buffer_length; 717 urb->actual_length = len; 718 /* always USB_DIR_IN, toward host */ 719 memcpy (ubuf, bufp, len); 720 721 /* report whether RH hardware supports remote wakeup */ 722 if (patch_wakeup && 723 len > offsetof (struct usb_config_descriptor, 724 bmAttributes)) 725 ((struct usb_config_descriptor *)ubuf)->bmAttributes 726 |= USB_CONFIG_ATT_WAKEUP; 727 728 /* report whether RH hardware has an integrated TT */ 729 if (patch_protocol && 730 len > offsetof(struct usb_device_descriptor, 731 bDeviceProtocol)) 732 ((struct usb_device_descriptor *) ubuf)-> 733 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 734 } 735 736 kfree(tbuf); 737 738 /* any errors get returned through the urb completion */ 739 spin_lock_irq(&hcd_root_hub_lock); 740 usb_hcd_unlink_urb_from_ep(hcd, urb); 741 usb_hcd_giveback_urb(hcd, urb, status); 742 spin_unlock_irq(&hcd_root_hub_lock); 743 return 0; 744 } 745 746 /*-------------------------------------------------------------------------*/ 747 748 /* 749 * Root Hub interrupt transfers are polled using a timer if the 750 * driver requests it; otherwise the driver is responsible for 751 * calling usb_hcd_poll_rh_status() when an event occurs. 752 * 753 * Completions are called in_interrupt(), but they may or may not 754 * be in_irq(). 755 */ 756 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 757 { 758 struct urb *urb; 759 int length; 760 unsigned long flags; 761 char buffer[6]; /* Any root hubs with > 31 ports? */ 762 763 if (unlikely(!hcd->rh_pollable)) 764 return; 765 if (!hcd->uses_new_polling && !hcd->status_urb) 766 return; 767 768 length = hcd->driver->hub_status_data(hcd, buffer); 769 if (length > 0) { 770 771 /* try to complete the status urb */ 772 spin_lock_irqsave(&hcd_root_hub_lock, flags); 773 urb = hcd->status_urb; 774 if (urb) { 775 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 776 hcd->status_urb = NULL; 777 urb->actual_length = length; 778 memcpy(urb->transfer_buffer, buffer, length); 779 780 usb_hcd_unlink_urb_from_ep(hcd, urb); 781 usb_hcd_giveback_urb(hcd, urb, 0); 782 } else { 783 length = 0; 784 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 785 } 786 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 787 } 788 789 /* The USB 2.0 spec says 256 ms. This is close enough and won't 790 * exceed that limit if HZ is 100. The math is more clunky than 791 * maybe expected, this is to make sure that all timers for USB devices 792 * fire at the same time to give the CPU a break in between */ 793 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 794 (length == 0 && hcd->status_urb != NULL)) 795 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 796 } 797 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 798 799 /* timer callback */ 800 static void rh_timer_func (unsigned long _hcd) 801 { 802 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd); 803 } 804 805 /*-------------------------------------------------------------------------*/ 806 807 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 808 { 809 int retval; 810 unsigned long flags; 811 unsigned len = 1 + (urb->dev->maxchild / 8); 812 813 spin_lock_irqsave (&hcd_root_hub_lock, flags); 814 if (hcd->status_urb || urb->transfer_buffer_length < len) { 815 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 816 retval = -EINVAL; 817 goto done; 818 } 819 820 retval = usb_hcd_link_urb_to_ep(hcd, urb); 821 if (retval) 822 goto done; 823 824 hcd->status_urb = urb; 825 urb->hcpriv = hcd; /* indicate it's queued */ 826 if (!hcd->uses_new_polling) 827 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 828 829 /* If a status change has already occurred, report it ASAP */ 830 else if (HCD_POLL_PENDING(hcd)) 831 mod_timer(&hcd->rh_timer, jiffies); 832 retval = 0; 833 done: 834 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 835 return retval; 836 } 837 838 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 839 { 840 if (usb_endpoint_xfer_int(&urb->ep->desc)) 841 return rh_queue_status (hcd, urb); 842 if (usb_endpoint_xfer_control(&urb->ep->desc)) 843 return rh_call_control (hcd, urb); 844 return -EINVAL; 845 } 846 847 /*-------------------------------------------------------------------------*/ 848 849 /* Unlinks of root-hub control URBs are legal, but they don't do anything 850 * since these URBs always execute synchronously. 851 */ 852 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 853 { 854 unsigned long flags; 855 int rc; 856 857 spin_lock_irqsave(&hcd_root_hub_lock, flags); 858 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 859 if (rc) 860 goto done; 861 862 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 863 ; /* Do nothing */ 864 865 } else { /* Status URB */ 866 if (!hcd->uses_new_polling) 867 del_timer (&hcd->rh_timer); 868 if (urb == hcd->status_urb) { 869 hcd->status_urb = NULL; 870 usb_hcd_unlink_urb_from_ep(hcd, urb); 871 usb_hcd_giveback_urb(hcd, urb, status); 872 } 873 } 874 done: 875 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 876 return rc; 877 } 878 879 880 881 /* 882 * Show & store the current value of authorized_default 883 */ 884 static ssize_t authorized_default_show(struct device *dev, 885 struct device_attribute *attr, char *buf) 886 { 887 struct usb_device *rh_usb_dev = to_usb_device(dev); 888 struct usb_bus *usb_bus = rh_usb_dev->bus; 889 struct usb_hcd *hcd; 890 891 hcd = bus_to_hcd(usb_bus); 892 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 893 } 894 895 static ssize_t authorized_default_store(struct device *dev, 896 struct device_attribute *attr, 897 const char *buf, size_t size) 898 { 899 ssize_t result; 900 unsigned val; 901 struct usb_device *rh_usb_dev = to_usb_device(dev); 902 struct usb_bus *usb_bus = rh_usb_dev->bus; 903 struct usb_hcd *hcd; 904 905 hcd = bus_to_hcd(usb_bus); 906 result = sscanf(buf, "%u\n", &val); 907 if (result == 1) { 908 if (val) 909 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 910 else 911 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 912 913 result = size; 914 } else { 915 result = -EINVAL; 916 } 917 return result; 918 } 919 static DEVICE_ATTR_RW(authorized_default); 920 921 /* 922 * interface_authorized_default_show - show default authorization status 923 * for USB interfaces 924 * 925 * note: interface_authorized_default is the default value 926 * for initializing the authorized attribute of interfaces 927 */ 928 static ssize_t interface_authorized_default_show(struct device *dev, 929 struct device_attribute *attr, char *buf) 930 { 931 struct usb_device *usb_dev = to_usb_device(dev); 932 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 933 934 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 935 } 936 937 /* 938 * interface_authorized_default_store - store default authorization status 939 * for USB interfaces 940 * 941 * note: interface_authorized_default is the default value 942 * for initializing the authorized attribute of interfaces 943 */ 944 static ssize_t interface_authorized_default_store(struct device *dev, 945 struct device_attribute *attr, const char *buf, size_t count) 946 { 947 struct usb_device *usb_dev = to_usb_device(dev); 948 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 949 int rc = count; 950 bool val; 951 952 if (strtobool(buf, &val) != 0) 953 return -EINVAL; 954 955 if (val) 956 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 957 else 958 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 959 960 return rc; 961 } 962 static DEVICE_ATTR_RW(interface_authorized_default); 963 964 /* Group all the USB bus attributes */ 965 static struct attribute *usb_bus_attrs[] = { 966 &dev_attr_authorized_default.attr, 967 &dev_attr_interface_authorized_default.attr, 968 NULL, 969 }; 970 971 static struct attribute_group usb_bus_attr_group = { 972 .name = NULL, /* we want them in the same directory */ 973 .attrs = usb_bus_attrs, 974 }; 975 976 977 978 /*-------------------------------------------------------------------------*/ 979 980 /** 981 * usb_bus_init - shared initialization code 982 * @bus: the bus structure being initialized 983 * 984 * This code is used to initialize a usb_bus structure, memory for which is 985 * separately managed. 986 */ 987 static void usb_bus_init (struct usb_bus *bus) 988 { 989 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 990 991 bus->devnum_next = 1; 992 993 bus->root_hub = NULL; 994 bus->busnum = -1; 995 bus->bandwidth_allocated = 0; 996 bus->bandwidth_int_reqs = 0; 997 bus->bandwidth_isoc_reqs = 0; 998 mutex_init(&bus->devnum_next_mutex); 999 } 1000 1001 /*-------------------------------------------------------------------------*/ 1002 1003 /** 1004 * usb_register_bus - registers the USB host controller with the usb core 1005 * @bus: pointer to the bus to register 1006 * Context: !in_interrupt() 1007 * 1008 * Assigns a bus number, and links the controller into usbcore data 1009 * structures so that it can be seen by scanning the bus list. 1010 * 1011 * Return: 0 if successful. A negative error code otherwise. 1012 */ 1013 static int usb_register_bus(struct usb_bus *bus) 1014 { 1015 int result = -E2BIG; 1016 int busnum; 1017 1018 mutex_lock(&usb_bus_idr_lock); 1019 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1020 if (busnum < 0) { 1021 pr_err("%s: failed to get bus number\n", usbcore_name); 1022 goto error_find_busnum; 1023 } 1024 bus->busnum = busnum; 1025 mutex_unlock(&usb_bus_idr_lock); 1026 1027 usb_notify_add_bus(bus); 1028 1029 dev_info (bus->controller, "new USB bus registered, assigned bus " 1030 "number %d\n", bus->busnum); 1031 return 0; 1032 1033 error_find_busnum: 1034 mutex_unlock(&usb_bus_idr_lock); 1035 return result; 1036 } 1037 1038 /** 1039 * usb_deregister_bus - deregisters the USB host controller 1040 * @bus: pointer to the bus to deregister 1041 * Context: !in_interrupt() 1042 * 1043 * Recycles the bus number, and unlinks the controller from usbcore data 1044 * structures so that it won't be seen by scanning the bus list. 1045 */ 1046 static void usb_deregister_bus (struct usb_bus *bus) 1047 { 1048 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1049 1050 /* 1051 * NOTE: make sure that all the devices are removed by the 1052 * controller code, as well as having it call this when cleaning 1053 * itself up 1054 */ 1055 mutex_lock(&usb_bus_idr_lock); 1056 idr_remove(&usb_bus_idr, bus->busnum); 1057 mutex_unlock(&usb_bus_idr_lock); 1058 1059 usb_notify_remove_bus(bus); 1060 } 1061 1062 /** 1063 * register_root_hub - called by usb_add_hcd() to register a root hub 1064 * @hcd: host controller for this root hub 1065 * 1066 * This function registers the root hub with the USB subsystem. It sets up 1067 * the device properly in the device tree and then calls usb_new_device() 1068 * to register the usb device. It also assigns the root hub's USB address 1069 * (always 1). 1070 * 1071 * Return: 0 if successful. A negative error code otherwise. 1072 */ 1073 static int register_root_hub(struct usb_hcd *hcd) 1074 { 1075 struct device *parent_dev = hcd->self.controller; 1076 struct usb_device *usb_dev = hcd->self.root_hub; 1077 const int devnum = 1; 1078 int retval; 1079 1080 usb_dev->devnum = devnum; 1081 usb_dev->bus->devnum_next = devnum + 1; 1082 memset (&usb_dev->bus->devmap.devicemap, 0, 1083 sizeof usb_dev->bus->devmap.devicemap); 1084 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1085 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1086 1087 mutex_lock(&usb_bus_idr_lock); 1088 1089 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1090 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1091 if (retval != sizeof usb_dev->descriptor) { 1092 mutex_unlock(&usb_bus_idr_lock); 1093 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1094 dev_name(&usb_dev->dev), retval); 1095 return (retval < 0) ? retval : -EMSGSIZE; 1096 } 1097 1098 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1099 retval = usb_get_bos_descriptor(usb_dev); 1100 if (!retval) { 1101 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1102 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1103 mutex_unlock(&usb_bus_idr_lock); 1104 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1105 dev_name(&usb_dev->dev), retval); 1106 return retval; 1107 } 1108 } 1109 1110 retval = usb_new_device (usb_dev); 1111 if (retval) { 1112 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1113 dev_name(&usb_dev->dev), retval); 1114 } else { 1115 spin_lock_irq (&hcd_root_hub_lock); 1116 hcd->rh_registered = 1; 1117 spin_unlock_irq (&hcd_root_hub_lock); 1118 1119 /* Did the HC die before the root hub was registered? */ 1120 if (HCD_DEAD(hcd)) 1121 usb_hc_died (hcd); /* This time clean up */ 1122 usb_dev->dev.of_node = parent_dev->of_node; 1123 } 1124 mutex_unlock(&usb_bus_idr_lock); 1125 1126 return retval; 1127 } 1128 1129 /* 1130 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1131 * @bus: the bus which the root hub belongs to 1132 * @portnum: the port which is being resumed 1133 * 1134 * HCDs should call this function when they know that a resume signal is 1135 * being sent to a root-hub port. The root hub will be prevented from 1136 * going into autosuspend until usb_hcd_end_port_resume() is called. 1137 * 1138 * The bus's private lock must be held by the caller. 1139 */ 1140 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1141 { 1142 unsigned bit = 1 << portnum; 1143 1144 if (!(bus->resuming_ports & bit)) { 1145 bus->resuming_ports |= bit; 1146 pm_runtime_get_noresume(&bus->root_hub->dev); 1147 } 1148 } 1149 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1150 1151 /* 1152 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1153 * @bus: the bus which the root hub belongs to 1154 * @portnum: the port which is being resumed 1155 * 1156 * HCDs should call this function when they know that a resume signal has 1157 * stopped being sent to a root-hub port. The root hub will be allowed to 1158 * autosuspend again. 1159 * 1160 * The bus's private lock must be held by the caller. 1161 */ 1162 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1163 { 1164 unsigned bit = 1 << portnum; 1165 1166 if (bus->resuming_ports & bit) { 1167 bus->resuming_ports &= ~bit; 1168 pm_runtime_put_noidle(&bus->root_hub->dev); 1169 } 1170 } 1171 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1172 1173 /*-------------------------------------------------------------------------*/ 1174 1175 /** 1176 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1177 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1178 * @is_input: true iff the transaction sends data to the host 1179 * @isoc: true for isochronous transactions, false for interrupt ones 1180 * @bytecount: how many bytes in the transaction. 1181 * 1182 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1183 * 1184 * Note: 1185 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1186 * scheduled in software, this function is only used for such scheduling. 1187 */ 1188 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1189 { 1190 unsigned long tmp; 1191 1192 switch (speed) { 1193 case USB_SPEED_LOW: /* INTR only */ 1194 if (is_input) { 1195 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1196 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1197 } else { 1198 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1199 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1200 } 1201 case USB_SPEED_FULL: /* ISOC or INTR */ 1202 if (isoc) { 1203 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1204 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1205 } else { 1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1207 return 9107L + BW_HOST_DELAY + tmp; 1208 } 1209 case USB_SPEED_HIGH: /* ISOC or INTR */ 1210 /* FIXME adjust for input vs output */ 1211 if (isoc) 1212 tmp = HS_NSECS_ISO (bytecount); 1213 else 1214 tmp = HS_NSECS (bytecount); 1215 return tmp; 1216 default: 1217 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1218 return -1; 1219 } 1220 } 1221 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1222 1223 1224 /*-------------------------------------------------------------------------*/ 1225 1226 /* 1227 * Generic HC operations. 1228 */ 1229 1230 /*-------------------------------------------------------------------------*/ 1231 1232 /** 1233 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1234 * @hcd: host controller to which @urb was submitted 1235 * @urb: URB being submitted 1236 * 1237 * Host controller drivers should call this routine in their enqueue() 1238 * method. The HCD's private spinlock must be held and interrupts must 1239 * be disabled. The actions carried out here are required for URB 1240 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1241 * 1242 * Return: 0 for no error, otherwise a negative error code (in which case 1243 * the enqueue() method must fail). If no error occurs but enqueue() fails 1244 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1245 * the private spinlock and returning. 1246 */ 1247 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1248 { 1249 int rc = 0; 1250 1251 spin_lock(&hcd_urb_list_lock); 1252 1253 /* Check that the URB isn't being killed */ 1254 if (unlikely(atomic_read(&urb->reject))) { 1255 rc = -EPERM; 1256 goto done; 1257 } 1258 1259 if (unlikely(!urb->ep->enabled)) { 1260 rc = -ENOENT; 1261 goto done; 1262 } 1263 1264 if (unlikely(!urb->dev->can_submit)) { 1265 rc = -EHOSTUNREACH; 1266 goto done; 1267 } 1268 1269 /* 1270 * Check the host controller's state and add the URB to the 1271 * endpoint's queue. 1272 */ 1273 if (HCD_RH_RUNNING(hcd)) { 1274 urb->unlinked = 0; 1275 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1276 } else { 1277 rc = -ESHUTDOWN; 1278 goto done; 1279 } 1280 done: 1281 spin_unlock(&hcd_urb_list_lock); 1282 return rc; 1283 } 1284 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1285 1286 /** 1287 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1288 * @hcd: host controller to which @urb was submitted 1289 * @urb: URB being checked for unlinkability 1290 * @status: error code to store in @urb if the unlink succeeds 1291 * 1292 * Host controller drivers should call this routine in their dequeue() 1293 * method. The HCD's private spinlock must be held and interrupts must 1294 * be disabled. The actions carried out here are required for making 1295 * sure than an unlink is valid. 1296 * 1297 * Return: 0 for no error, otherwise a negative error code (in which case 1298 * the dequeue() method must fail). The possible error codes are: 1299 * 1300 * -EIDRM: @urb was not submitted or has already completed. 1301 * The completion function may not have been called yet. 1302 * 1303 * -EBUSY: @urb has already been unlinked. 1304 */ 1305 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1306 int status) 1307 { 1308 struct list_head *tmp; 1309 1310 /* insist the urb is still queued */ 1311 list_for_each(tmp, &urb->ep->urb_list) { 1312 if (tmp == &urb->urb_list) 1313 break; 1314 } 1315 if (tmp != &urb->urb_list) 1316 return -EIDRM; 1317 1318 /* Any status except -EINPROGRESS means something already started to 1319 * unlink this URB from the hardware. So there's no more work to do. 1320 */ 1321 if (urb->unlinked) 1322 return -EBUSY; 1323 urb->unlinked = status; 1324 return 0; 1325 } 1326 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1327 1328 /** 1329 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1330 * @hcd: host controller to which @urb was submitted 1331 * @urb: URB being unlinked 1332 * 1333 * Host controller drivers should call this routine before calling 1334 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1335 * interrupts must be disabled. The actions carried out here are required 1336 * for URB completion. 1337 */ 1338 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1339 { 1340 /* clear all state linking urb to this dev (and hcd) */ 1341 spin_lock(&hcd_urb_list_lock); 1342 list_del_init(&urb->urb_list); 1343 spin_unlock(&hcd_urb_list_lock); 1344 } 1345 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1346 1347 /* 1348 * Some usb host controllers can only perform dma using a small SRAM area. 1349 * The usb core itself is however optimized for host controllers that can dma 1350 * using regular system memory - like pci devices doing bus mastering. 1351 * 1352 * To support host controllers with limited dma capabilities we provide dma 1353 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1354 * For this to work properly the host controller code must first use the 1355 * function dma_declare_coherent_memory() to point out which memory area 1356 * that should be used for dma allocations. 1357 * 1358 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1359 * dma using dma_alloc_coherent() which in turn allocates from the memory 1360 * area pointed out with dma_declare_coherent_memory(). 1361 * 1362 * So, to summarize... 1363 * 1364 * - We need "local" memory, canonical example being 1365 * a small SRAM on a discrete controller being the 1366 * only memory that the controller can read ... 1367 * (a) "normal" kernel memory is no good, and 1368 * (b) there's not enough to share 1369 * 1370 * - The only *portable* hook for such stuff in the 1371 * DMA framework is dma_declare_coherent_memory() 1372 * 1373 * - So we use that, even though the primary requirement 1374 * is that the memory be "local" (hence addressable 1375 * by that device), not "coherent". 1376 * 1377 */ 1378 1379 static int hcd_alloc_coherent(struct usb_bus *bus, 1380 gfp_t mem_flags, dma_addr_t *dma_handle, 1381 void **vaddr_handle, size_t size, 1382 enum dma_data_direction dir) 1383 { 1384 unsigned char *vaddr; 1385 1386 if (*vaddr_handle == NULL) { 1387 WARN_ON_ONCE(1); 1388 return -EFAULT; 1389 } 1390 1391 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1392 mem_flags, dma_handle); 1393 if (!vaddr) 1394 return -ENOMEM; 1395 1396 /* 1397 * Store the virtual address of the buffer at the end 1398 * of the allocated dma buffer. The size of the buffer 1399 * may be uneven so use unaligned functions instead 1400 * of just rounding up. It makes sense to optimize for 1401 * memory footprint over access speed since the amount 1402 * of memory available for dma may be limited. 1403 */ 1404 put_unaligned((unsigned long)*vaddr_handle, 1405 (unsigned long *)(vaddr + size)); 1406 1407 if (dir == DMA_TO_DEVICE) 1408 memcpy(vaddr, *vaddr_handle, size); 1409 1410 *vaddr_handle = vaddr; 1411 return 0; 1412 } 1413 1414 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1415 void **vaddr_handle, size_t size, 1416 enum dma_data_direction dir) 1417 { 1418 unsigned char *vaddr = *vaddr_handle; 1419 1420 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1421 1422 if (dir == DMA_FROM_DEVICE) 1423 memcpy(vaddr, *vaddr_handle, size); 1424 1425 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1426 1427 *vaddr_handle = vaddr; 1428 *dma_handle = 0; 1429 } 1430 1431 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1432 { 1433 if (IS_ENABLED(CONFIG_HAS_DMA) && 1434 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1435 dma_unmap_single(hcd->self.controller, 1436 urb->setup_dma, 1437 sizeof(struct usb_ctrlrequest), 1438 DMA_TO_DEVICE); 1439 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1440 hcd_free_coherent(urb->dev->bus, 1441 &urb->setup_dma, 1442 (void **) &urb->setup_packet, 1443 sizeof(struct usb_ctrlrequest), 1444 DMA_TO_DEVICE); 1445 1446 /* Make it safe to call this routine more than once */ 1447 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1448 } 1449 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1450 1451 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1452 { 1453 if (hcd->driver->unmap_urb_for_dma) 1454 hcd->driver->unmap_urb_for_dma(hcd, urb); 1455 else 1456 usb_hcd_unmap_urb_for_dma(hcd, urb); 1457 } 1458 1459 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1460 { 1461 enum dma_data_direction dir; 1462 1463 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1464 1465 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1466 if (IS_ENABLED(CONFIG_HAS_DMA) && 1467 (urb->transfer_flags & URB_DMA_MAP_SG)) 1468 dma_unmap_sg(hcd->self.controller, 1469 urb->sg, 1470 urb->num_sgs, 1471 dir); 1472 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1473 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1474 dma_unmap_page(hcd->self.controller, 1475 urb->transfer_dma, 1476 urb->transfer_buffer_length, 1477 dir); 1478 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1479 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1480 dma_unmap_single(hcd->self.controller, 1481 urb->transfer_dma, 1482 urb->transfer_buffer_length, 1483 dir); 1484 else if (urb->transfer_flags & URB_MAP_LOCAL) 1485 hcd_free_coherent(urb->dev->bus, 1486 &urb->transfer_dma, 1487 &urb->transfer_buffer, 1488 urb->transfer_buffer_length, 1489 dir); 1490 1491 /* Make it safe to call this routine more than once */ 1492 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1493 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1494 } 1495 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1496 1497 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1498 gfp_t mem_flags) 1499 { 1500 if (hcd->driver->map_urb_for_dma) 1501 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1502 else 1503 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1504 } 1505 1506 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1507 gfp_t mem_flags) 1508 { 1509 enum dma_data_direction dir; 1510 int ret = 0; 1511 1512 /* Map the URB's buffers for DMA access. 1513 * Lower level HCD code should use *_dma exclusively, 1514 * unless it uses pio or talks to another transport, 1515 * or uses the provided scatter gather list for bulk. 1516 */ 1517 1518 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1519 if (hcd->self.uses_pio_for_control) 1520 return ret; 1521 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1522 urb->setup_dma = dma_map_single( 1523 hcd->self.controller, 1524 urb->setup_packet, 1525 sizeof(struct usb_ctrlrequest), 1526 DMA_TO_DEVICE); 1527 if (dma_mapping_error(hcd->self.controller, 1528 urb->setup_dma)) 1529 return -EAGAIN; 1530 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1531 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1532 ret = hcd_alloc_coherent( 1533 urb->dev->bus, mem_flags, 1534 &urb->setup_dma, 1535 (void **)&urb->setup_packet, 1536 sizeof(struct usb_ctrlrequest), 1537 DMA_TO_DEVICE); 1538 if (ret) 1539 return ret; 1540 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1541 } 1542 } 1543 1544 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1545 if (urb->transfer_buffer_length != 0 1546 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1547 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1548 if (urb->num_sgs) { 1549 int n; 1550 1551 /* We don't support sg for isoc transfers ! */ 1552 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1553 WARN_ON(1); 1554 return -EINVAL; 1555 } 1556 1557 n = dma_map_sg( 1558 hcd->self.controller, 1559 urb->sg, 1560 urb->num_sgs, 1561 dir); 1562 if (n <= 0) 1563 ret = -EAGAIN; 1564 else 1565 urb->transfer_flags |= URB_DMA_MAP_SG; 1566 urb->num_mapped_sgs = n; 1567 if (n != urb->num_sgs) 1568 urb->transfer_flags |= 1569 URB_DMA_SG_COMBINED; 1570 } else if (urb->sg) { 1571 struct scatterlist *sg = urb->sg; 1572 urb->transfer_dma = dma_map_page( 1573 hcd->self.controller, 1574 sg_page(sg), 1575 sg->offset, 1576 urb->transfer_buffer_length, 1577 dir); 1578 if (dma_mapping_error(hcd->self.controller, 1579 urb->transfer_dma)) 1580 ret = -EAGAIN; 1581 else 1582 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1583 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1584 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1585 ret = -EAGAIN; 1586 } else { 1587 urb->transfer_dma = dma_map_single( 1588 hcd->self.controller, 1589 urb->transfer_buffer, 1590 urb->transfer_buffer_length, 1591 dir); 1592 if (dma_mapping_error(hcd->self.controller, 1593 urb->transfer_dma)) 1594 ret = -EAGAIN; 1595 else 1596 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1597 } 1598 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1599 ret = hcd_alloc_coherent( 1600 urb->dev->bus, mem_flags, 1601 &urb->transfer_dma, 1602 &urb->transfer_buffer, 1603 urb->transfer_buffer_length, 1604 dir); 1605 if (ret == 0) 1606 urb->transfer_flags |= URB_MAP_LOCAL; 1607 } 1608 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1609 URB_SETUP_MAP_LOCAL))) 1610 usb_hcd_unmap_urb_for_dma(hcd, urb); 1611 } 1612 return ret; 1613 } 1614 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1615 1616 /*-------------------------------------------------------------------------*/ 1617 1618 /* may be called in any context with a valid urb->dev usecount 1619 * caller surrenders "ownership" of urb 1620 * expects usb_submit_urb() to have sanity checked and conditioned all 1621 * inputs in the urb 1622 */ 1623 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1624 { 1625 int status; 1626 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1627 1628 /* increment urb's reference count as part of giving it to the HCD 1629 * (which will control it). HCD guarantees that it either returns 1630 * an error or calls giveback(), but not both. 1631 */ 1632 usb_get_urb(urb); 1633 atomic_inc(&urb->use_count); 1634 atomic_inc(&urb->dev->urbnum); 1635 usbmon_urb_submit(&hcd->self, urb); 1636 1637 /* NOTE requirements on root-hub callers (usbfs and the hub 1638 * driver, for now): URBs' urb->transfer_buffer must be 1639 * valid and usb_buffer_{sync,unmap}() not be needed, since 1640 * they could clobber root hub response data. Also, control 1641 * URBs must be submitted in process context with interrupts 1642 * enabled. 1643 */ 1644 1645 if (is_root_hub(urb->dev)) { 1646 status = rh_urb_enqueue(hcd, urb); 1647 } else { 1648 status = map_urb_for_dma(hcd, urb, mem_flags); 1649 if (likely(status == 0)) { 1650 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1651 if (unlikely(status)) 1652 unmap_urb_for_dma(hcd, urb); 1653 } 1654 } 1655 1656 if (unlikely(status)) { 1657 usbmon_urb_submit_error(&hcd->self, urb, status); 1658 urb->hcpriv = NULL; 1659 INIT_LIST_HEAD(&urb->urb_list); 1660 atomic_dec(&urb->use_count); 1661 atomic_dec(&urb->dev->urbnum); 1662 if (atomic_read(&urb->reject)) 1663 wake_up(&usb_kill_urb_queue); 1664 usb_put_urb(urb); 1665 } 1666 return status; 1667 } 1668 1669 /*-------------------------------------------------------------------------*/ 1670 1671 /* this makes the hcd giveback() the urb more quickly, by kicking it 1672 * off hardware queues (which may take a while) and returning it as 1673 * soon as practical. we've already set up the urb's return status, 1674 * but we can't know if the callback completed already. 1675 */ 1676 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1677 { 1678 int value; 1679 1680 if (is_root_hub(urb->dev)) 1681 value = usb_rh_urb_dequeue(hcd, urb, status); 1682 else { 1683 1684 /* The only reason an HCD might fail this call is if 1685 * it has not yet fully queued the urb to begin with. 1686 * Such failures should be harmless. */ 1687 value = hcd->driver->urb_dequeue(hcd, urb, status); 1688 } 1689 return value; 1690 } 1691 1692 /* 1693 * called in any context 1694 * 1695 * caller guarantees urb won't be recycled till both unlink() 1696 * and the urb's completion function return 1697 */ 1698 int usb_hcd_unlink_urb (struct urb *urb, int status) 1699 { 1700 struct usb_hcd *hcd; 1701 struct usb_device *udev = urb->dev; 1702 int retval = -EIDRM; 1703 unsigned long flags; 1704 1705 /* Prevent the device and bus from going away while 1706 * the unlink is carried out. If they are already gone 1707 * then urb->use_count must be 0, since disconnected 1708 * devices can't have any active URBs. 1709 */ 1710 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1711 if (atomic_read(&urb->use_count) > 0) { 1712 retval = 0; 1713 usb_get_dev(udev); 1714 } 1715 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1716 if (retval == 0) { 1717 hcd = bus_to_hcd(urb->dev->bus); 1718 retval = unlink1(hcd, urb, status); 1719 if (retval == 0) 1720 retval = -EINPROGRESS; 1721 else if (retval != -EIDRM && retval != -EBUSY) 1722 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n", 1723 urb, retval); 1724 usb_put_dev(udev); 1725 } 1726 return retval; 1727 } 1728 1729 /*-------------------------------------------------------------------------*/ 1730 1731 static void __usb_hcd_giveback_urb(struct urb *urb) 1732 { 1733 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1734 struct usb_anchor *anchor = urb->anchor; 1735 int status = urb->unlinked; 1736 unsigned long flags; 1737 1738 urb->hcpriv = NULL; 1739 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1740 urb->actual_length < urb->transfer_buffer_length && 1741 !status)) 1742 status = -EREMOTEIO; 1743 1744 unmap_urb_for_dma(hcd, urb); 1745 usbmon_urb_complete(&hcd->self, urb, status); 1746 usb_anchor_suspend_wakeups(anchor); 1747 usb_unanchor_urb(urb); 1748 if (likely(status == 0)) 1749 usb_led_activity(USB_LED_EVENT_HOST); 1750 1751 /* pass ownership to the completion handler */ 1752 urb->status = status; 1753 1754 /* 1755 * We disable local IRQs here avoid possible deadlock because 1756 * drivers may call spin_lock() to hold lock which might be 1757 * acquired in one hard interrupt handler. 1758 * 1759 * The local_irq_save()/local_irq_restore() around complete() 1760 * will be removed if current USB drivers have been cleaned up 1761 * and no one may trigger the above deadlock situation when 1762 * running complete() in tasklet. 1763 */ 1764 local_irq_save(flags); 1765 urb->complete(urb); 1766 local_irq_restore(flags); 1767 1768 usb_anchor_resume_wakeups(anchor); 1769 atomic_dec(&urb->use_count); 1770 if (unlikely(atomic_read(&urb->reject))) 1771 wake_up(&usb_kill_urb_queue); 1772 usb_put_urb(urb); 1773 } 1774 1775 static void usb_giveback_urb_bh(unsigned long param) 1776 { 1777 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1778 struct list_head local_list; 1779 1780 spin_lock_irq(&bh->lock); 1781 bh->running = true; 1782 restart: 1783 list_replace_init(&bh->head, &local_list); 1784 spin_unlock_irq(&bh->lock); 1785 1786 while (!list_empty(&local_list)) { 1787 struct urb *urb; 1788 1789 urb = list_entry(local_list.next, struct urb, urb_list); 1790 list_del_init(&urb->urb_list); 1791 bh->completing_ep = urb->ep; 1792 __usb_hcd_giveback_urb(urb); 1793 bh->completing_ep = NULL; 1794 } 1795 1796 /* check if there are new URBs to giveback */ 1797 spin_lock_irq(&bh->lock); 1798 if (!list_empty(&bh->head)) 1799 goto restart; 1800 bh->running = false; 1801 spin_unlock_irq(&bh->lock); 1802 } 1803 1804 /** 1805 * usb_hcd_giveback_urb - return URB from HCD to device driver 1806 * @hcd: host controller returning the URB 1807 * @urb: urb being returned to the USB device driver. 1808 * @status: completion status code for the URB. 1809 * Context: in_interrupt() 1810 * 1811 * This hands the URB from HCD to its USB device driver, using its 1812 * completion function. The HCD has freed all per-urb resources 1813 * (and is done using urb->hcpriv). It also released all HCD locks; 1814 * the device driver won't cause problems if it frees, modifies, 1815 * or resubmits this URB. 1816 * 1817 * If @urb was unlinked, the value of @status will be overridden by 1818 * @urb->unlinked. Erroneous short transfers are detected in case 1819 * the HCD hasn't checked for them. 1820 */ 1821 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1822 { 1823 struct giveback_urb_bh *bh; 1824 bool running, high_prio_bh; 1825 1826 /* pass status to tasklet via unlinked */ 1827 if (likely(!urb->unlinked)) 1828 urb->unlinked = status; 1829 1830 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1831 __usb_hcd_giveback_urb(urb); 1832 return; 1833 } 1834 1835 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1836 bh = &hcd->high_prio_bh; 1837 high_prio_bh = true; 1838 } else { 1839 bh = &hcd->low_prio_bh; 1840 high_prio_bh = false; 1841 } 1842 1843 spin_lock(&bh->lock); 1844 list_add_tail(&urb->urb_list, &bh->head); 1845 running = bh->running; 1846 spin_unlock(&bh->lock); 1847 1848 if (running) 1849 ; 1850 else if (high_prio_bh) 1851 tasklet_hi_schedule(&bh->bh); 1852 else 1853 tasklet_schedule(&bh->bh); 1854 } 1855 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1856 1857 /*-------------------------------------------------------------------------*/ 1858 1859 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1860 * queue to drain completely. The caller must first insure that no more 1861 * URBs can be submitted for this endpoint. 1862 */ 1863 void usb_hcd_flush_endpoint(struct usb_device *udev, 1864 struct usb_host_endpoint *ep) 1865 { 1866 struct usb_hcd *hcd; 1867 struct urb *urb; 1868 1869 if (!ep) 1870 return; 1871 might_sleep(); 1872 hcd = bus_to_hcd(udev->bus); 1873 1874 /* No more submits can occur */ 1875 spin_lock_irq(&hcd_urb_list_lock); 1876 rescan: 1877 list_for_each_entry (urb, &ep->urb_list, urb_list) { 1878 int is_in; 1879 1880 if (urb->unlinked) 1881 continue; 1882 usb_get_urb (urb); 1883 is_in = usb_urb_dir_in(urb); 1884 spin_unlock(&hcd_urb_list_lock); 1885 1886 /* kick hcd */ 1887 unlink1(hcd, urb, -ESHUTDOWN); 1888 dev_dbg (hcd->self.controller, 1889 "shutdown urb %p ep%d%s%s\n", 1890 urb, usb_endpoint_num(&ep->desc), 1891 is_in ? "in" : "out", 1892 ({ char *s; 1893 1894 switch (usb_endpoint_type(&ep->desc)) { 1895 case USB_ENDPOINT_XFER_CONTROL: 1896 s = ""; break; 1897 case USB_ENDPOINT_XFER_BULK: 1898 s = "-bulk"; break; 1899 case USB_ENDPOINT_XFER_INT: 1900 s = "-intr"; break; 1901 default: 1902 s = "-iso"; break; 1903 }; 1904 s; 1905 })); 1906 usb_put_urb (urb); 1907 1908 /* list contents may have changed */ 1909 spin_lock(&hcd_urb_list_lock); 1910 goto rescan; 1911 } 1912 spin_unlock_irq(&hcd_urb_list_lock); 1913 1914 /* Wait until the endpoint queue is completely empty */ 1915 while (!list_empty (&ep->urb_list)) { 1916 spin_lock_irq(&hcd_urb_list_lock); 1917 1918 /* The list may have changed while we acquired the spinlock */ 1919 urb = NULL; 1920 if (!list_empty (&ep->urb_list)) { 1921 urb = list_entry (ep->urb_list.prev, struct urb, 1922 urb_list); 1923 usb_get_urb (urb); 1924 } 1925 spin_unlock_irq(&hcd_urb_list_lock); 1926 1927 if (urb) { 1928 usb_kill_urb (urb); 1929 usb_put_urb (urb); 1930 } 1931 } 1932 } 1933 1934 /** 1935 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1936 * the bus bandwidth 1937 * @udev: target &usb_device 1938 * @new_config: new configuration to install 1939 * @cur_alt: the current alternate interface setting 1940 * @new_alt: alternate interface setting that is being installed 1941 * 1942 * To change configurations, pass in the new configuration in new_config, 1943 * and pass NULL for cur_alt and new_alt. 1944 * 1945 * To reset a device's configuration (put the device in the ADDRESSED state), 1946 * pass in NULL for new_config, cur_alt, and new_alt. 1947 * 1948 * To change alternate interface settings, pass in NULL for new_config, 1949 * pass in the current alternate interface setting in cur_alt, 1950 * and pass in the new alternate interface setting in new_alt. 1951 * 1952 * Return: An error if the requested bandwidth change exceeds the 1953 * bus bandwidth or host controller internal resources. 1954 */ 1955 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1956 struct usb_host_config *new_config, 1957 struct usb_host_interface *cur_alt, 1958 struct usb_host_interface *new_alt) 1959 { 1960 int num_intfs, i, j; 1961 struct usb_host_interface *alt = NULL; 1962 int ret = 0; 1963 struct usb_hcd *hcd; 1964 struct usb_host_endpoint *ep; 1965 1966 hcd = bus_to_hcd(udev->bus); 1967 if (!hcd->driver->check_bandwidth) 1968 return 0; 1969 1970 /* Configuration is being removed - set configuration 0 */ 1971 if (!new_config && !cur_alt) { 1972 for (i = 1; i < 16; ++i) { 1973 ep = udev->ep_out[i]; 1974 if (ep) 1975 hcd->driver->drop_endpoint(hcd, udev, ep); 1976 ep = udev->ep_in[i]; 1977 if (ep) 1978 hcd->driver->drop_endpoint(hcd, udev, ep); 1979 } 1980 hcd->driver->check_bandwidth(hcd, udev); 1981 return 0; 1982 } 1983 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1984 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1985 * of the bus. There will always be bandwidth for endpoint 0, so it's 1986 * ok to exclude it. 1987 */ 1988 if (new_config) { 1989 num_intfs = new_config->desc.bNumInterfaces; 1990 /* Remove endpoints (except endpoint 0, which is always on the 1991 * schedule) from the old config from the schedule 1992 */ 1993 for (i = 1; i < 16; ++i) { 1994 ep = udev->ep_out[i]; 1995 if (ep) { 1996 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1997 if (ret < 0) 1998 goto reset; 1999 } 2000 ep = udev->ep_in[i]; 2001 if (ep) { 2002 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2003 if (ret < 0) 2004 goto reset; 2005 } 2006 } 2007 for (i = 0; i < num_intfs; ++i) { 2008 struct usb_host_interface *first_alt; 2009 int iface_num; 2010 2011 first_alt = &new_config->intf_cache[i]->altsetting[0]; 2012 iface_num = first_alt->desc.bInterfaceNumber; 2013 /* Set up endpoints for alternate interface setting 0 */ 2014 alt = usb_find_alt_setting(new_config, iface_num, 0); 2015 if (!alt) 2016 /* No alt setting 0? Pick the first setting. */ 2017 alt = first_alt; 2018 2019 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 2020 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 2021 if (ret < 0) 2022 goto reset; 2023 } 2024 } 2025 } 2026 if (cur_alt && new_alt) { 2027 struct usb_interface *iface = usb_ifnum_to_if(udev, 2028 cur_alt->desc.bInterfaceNumber); 2029 2030 if (!iface) 2031 return -EINVAL; 2032 if (iface->resetting_device) { 2033 /* 2034 * The USB core just reset the device, so the xHCI host 2035 * and the device will think alt setting 0 is installed. 2036 * However, the USB core will pass in the alternate 2037 * setting installed before the reset as cur_alt. Dig 2038 * out the alternate setting 0 structure, or the first 2039 * alternate setting if a broken device doesn't have alt 2040 * setting 0. 2041 */ 2042 cur_alt = usb_altnum_to_altsetting(iface, 0); 2043 if (!cur_alt) 2044 cur_alt = &iface->altsetting[0]; 2045 } 2046 2047 /* Drop all the endpoints in the current alt setting */ 2048 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2049 ret = hcd->driver->drop_endpoint(hcd, udev, 2050 &cur_alt->endpoint[i]); 2051 if (ret < 0) 2052 goto reset; 2053 } 2054 /* Add all the endpoints in the new alt setting */ 2055 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2056 ret = hcd->driver->add_endpoint(hcd, udev, 2057 &new_alt->endpoint[i]); 2058 if (ret < 0) 2059 goto reset; 2060 } 2061 } 2062 ret = hcd->driver->check_bandwidth(hcd, udev); 2063 reset: 2064 if (ret < 0) 2065 hcd->driver->reset_bandwidth(hcd, udev); 2066 return ret; 2067 } 2068 2069 /* Disables the endpoint: synchronizes with the hcd to make sure all 2070 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2071 * have been called previously. Use for set_configuration, set_interface, 2072 * driver removal, physical disconnect. 2073 * 2074 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2075 * type, maxpacket size, toggle, halt status, and scheduling. 2076 */ 2077 void usb_hcd_disable_endpoint(struct usb_device *udev, 2078 struct usb_host_endpoint *ep) 2079 { 2080 struct usb_hcd *hcd; 2081 2082 might_sleep(); 2083 hcd = bus_to_hcd(udev->bus); 2084 if (hcd->driver->endpoint_disable) 2085 hcd->driver->endpoint_disable(hcd, ep); 2086 } 2087 2088 /** 2089 * usb_hcd_reset_endpoint - reset host endpoint state 2090 * @udev: USB device. 2091 * @ep: the endpoint to reset. 2092 * 2093 * Resets any host endpoint state such as the toggle bit, sequence 2094 * number and current window. 2095 */ 2096 void usb_hcd_reset_endpoint(struct usb_device *udev, 2097 struct usb_host_endpoint *ep) 2098 { 2099 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2100 2101 if (hcd->driver->endpoint_reset) 2102 hcd->driver->endpoint_reset(hcd, ep); 2103 else { 2104 int epnum = usb_endpoint_num(&ep->desc); 2105 int is_out = usb_endpoint_dir_out(&ep->desc); 2106 int is_control = usb_endpoint_xfer_control(&ep->desc); 2107 2108 usb_settoggle(udev, epnum, is_out, 0); 2109 if (is_control) 2110 usb_settoggle(udev, epnum, !is_out, 0); 2111 } 2112 } 2113 2114 /** 2115 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2116 * @interface: alternate setting that includes all endpoints. 2117 * @eps: array of endpoints that need streams. 2118 * @num_eps: number of endpoints in the array. 2119 * @num_streams: number of streams to allocate. 2120 * @mem_flags: flags hcd should use to allocate memory. 2121 * 2122 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2123 * Drivers may queue multiple transfers to different stream IDs, which may 2124 * complete in a different order than they were queued. 2125 * 2126 * Return: On success, the number of allocated streams. On failure, a negative 2127 * error code. 2128 */ 2129 int usb_alloc_streams(struct usb_interface *interface, 2130 struct usb_host_endpoint **eps, unsigned int num_eps, 2131 unsigned int num_streams, gfp_t mem_flags) 2132 { 2133 struct usb_hcd *hcd; 2134 struct usb_device *dev; 2135 int i, ret; 2136 2137 dev = interface_to_usbdev(interface); 2138 hcd = bus_to_hcd(dev->bus); 2139 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2140 return -EINVAL; 2141 if (dev->speed < USB_SPEED_SUPER) 2142 return -EINVAL; 2143 if (dev->state < USB_STATE_CONFIGURED) 2144 return -ENODEV; 2145 2146 for (i = 0; i < num_eps; i++) { 2147 /* Streams only apply to bulk endpoints. */ 2148 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2149 return -EINVAL; 2150 /* Re-alloc is not allowed */ 2151 if (eps[i]->streams) 2152 return -EINVAL; 2153 } 2154 2155 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2156 num_streams, mem_flags); 2157 if (ret < 0) 2158 return ret; 2159 2160 for (i = 0; i < num_eps; i++) 2161 eps[i]->streams = ret; 2162 2163 return ret; 2164 } 2165 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2166 2167 /** 2168 * usb_free_streams - free bulk endpoint stream IDs. 2169 * @interface: alternate setting that includes all endpoints. 2170 * @eps: array of endpoints to remove streams from. 2171 * @num_eps: number of endpoints in the array. 2172 * @mem_flags: flags hcd should use to allocate memory. 2173 * 2174 * Reverts a group of bulk endpoints back to not using stream IDs. 2175 * Can fail if we are given bad arguments, or HCD is broken. 2176 * 2177 * Return: 0 on success. On failure, a negative error code. 2178 */ 2179 int usb_free_streams(struct usb_interface *interface, 2180 struct usb_host_endpoint **eps, unsigned int num_eps, 2181 gfp_t mem_flags) 2182 { 2183 struct usb_hcd *hcd; 2184 struct usb_device *dev; 2185 int i, ret; 2186 2187 dev = interface_to_usbdev(interface); 2188 hcd = bus_to_hcd(dev->bus); 2189 if (dev->speed < USB_SPEED_SUPER) 2190 return -EINVAL; 2191 2192 /* Double-free is not allowed */ 2193 for (i = 0; i < num_eps; i++) 2194 if (!eps[i] || !eps[i]->streams) 2195 return -EINVAL; 2196 2197 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2198 if (ret < 0) 2199 return ret; 2200 2201 for (i = 0; i < num_eps; i++) 2202 eps[i]->streams = 0; 2203 2204 return ret; 2205 } 2206 EXPORT_SYMBOL_GPL(usb_free_streams); 2207 2208 /* Protect against drivers that try to unlink URBs after the device 2209 * is gone, by waiting until all unlinks for @udev are finished. 2210 * Since we don't currently track URBs by device, simply wait until 2211 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2212 */ 2213 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2214 { 2215 spin_lock_irq(&hcd_urb_unlink_lock); 2216 spin_unlock_irq(&hcd_urb_unlink_lock); 2217 } 2218 2219 /*-------------------------------------------------------------------------*/ 2220 2221 /* called in any context */ 2222 int usb_hcd_get_frame_number (struct usb_device *udev) 2223 { 2224 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2225 2226 if (!HCD_RH_RUNNING(hcd)) 2227 return -ESHUTDOWN; 2228 return hcd->driver->get_frame_number (hcd); 2229 } 2230 2231 /*-------------------------------------------------------------------------*/ 2232 2233 #ifdef CONFIG_PM 2234 2235 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2236 { 2237 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2238 int status; 2239 int old_state = hcd->state; 2240 2241 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2242 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2243 rhdev->do_remote_wakeup); 2244 if (HCD_DEAD(hcd)) { 2245 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2246 return 0; 2247 } 2248 2249 if (!hcd->driver->bus_suspend) { 2250 status = -ENOENT; 2251 } else { 2252 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2253 hcd->state = HC_STATE_QUIESCING; 2254 status = hcd->driver->bus_suspend(hcd); 2255 } 2256 if (status == 0) { 2257 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2258 hcd->state = HC_STATE_SUSPENDED; 2259 2260 /* Did we race with a root-hub wakeup event? */ 2261 if (rhdev->do_remote_wakeup) { 2262 char buffer[6]; 2263 2264 status = hcd->driver->hub_status_data(hcd, buffer); 2265 if (status != 0) { 2266 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2267 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2268 status = -EBUSY; 2269 } 2270 } 2271 } else { 2272 spin_lock_irq(&hcd_root_hub_lock); 2273 if (!HCD_DEAD(hcd)) { 2274 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2275 hcd->state = old_state; 2276 } 2277 spin_unlock_irq(&hcd_root_hub_lock); 2278 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2279 "suspend", status); 2280 } 2281 return status; 2282 } 2283 2284 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2285 { 2286 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2287 int status; 2288 int old_state = hcd->state; 2289 2290 dev_dbg(&rhdev->dev, "usb %sresume\n", 2291 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2292 if (HCD_DEAD(hcd)) { 2293 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2294 return 0; 2295 } 2296 if (!hcd->driver->bus_resume) 2297 return -ENOENT; 2298 if (HCD_RH_RUNNING(hcd)) 2299 return 0; 2300 2301 hcd->state = HC_STATE_RESUMING; 2302 status = hcd->driver->bus_resume(hcd); 2303 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2304 if (status == 0) { 2305 struct usb_device *udev; 2306 int port1; 2307 2308 spin_lock_irq(&hcd_root_hub_lock); 2309 if (!HCD_DEAD(hcd)) { 2310 usb_set_device_state(rhdev, rhdev->actconfig 2311 ? USB_STATE_CONFIGURED 2312 : USB_STATE_ADDRESS); 2313 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2314 hcd->state = HC_STATE_RUNNING; 2315 } 2316 spin_unlock_irq(&hcd_root_hub_lock); 2317 2318 /* 2319 * Check whether any of the enabled ports on the root hub are 2320 * unsuspended. If they are then a TRSMRCY delay is needed 2321 * (this is what the USB-2 spec calls a "global resume"). 2322 * Otherwise we can skip the delay. 2323 */ 2324 usb_hub_for_each_child(rhdev, port1, udev) { 2325 if (udev->state != USB_STATE_NOTATTACHED && 2326 !udev->port_is_suspended) { 2327 usleep_range(10000, 11000); /* TRSMRCY */ 2328 break; 2329 } 2330 } 2331 } else { 2332 hcd->state = old_state; 2333 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2334 "resume", status); 2335 if (status != -ESHUTDOWN) 2336 usb_hc_died(hcd); 2337 } 2338 return status; 2339 } 2340 2341 /* Workqueue routine for root-hub remote wakeup */ 2342 static void hcd_resume_work(struct work_struct *work) 2343 { 2344 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2345 struct usb_device *udev = hcd->self.root_hub; 2346 2347 usb_remote_wakeup(udev); 2348 } 2349 2350 /** 2351 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2352 * @hcd: host controller for this root hub 2353 * 2354 * The USB host controller calls this function when its root hub is 2355 * suspended (with the remote wakeup feature enabled) and a remote 2356 * wakeup request is received. The routine submits a workqueue request 2357 * to resume the root hub (that is, manage its downstream ports again). 2358 */ 2359 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2360 { 2361 unsigned long flags; 2362 2363 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2364 if (hcd->rh_registered) { 2365 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2366 queue_work(pm_wq, &hcd->wakeup_work); 2367 } 2368 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2369 } 2370 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2371 2372 #endif /* CONFIG_PM */ 2373 2374 /*-------------------------------------------------------------------------*/ 2375 2376 #ifdef CONFIG_USB_OTG 2377 2378 /** 2379 * usb_bus_start_enum - start immediate enumeration (for OTG) 2380 * @bus: the bus (must use hcd framework) 2381 * @port_num: 1-based number of port; usually bus->otg_port 2382 * Context: in_interrupt() 2383 * 2384 * Starts enumeration, with an immediate reset followed later by 2385 * hub_wq identifying and possibly configuring the device. 2386 * This is needed by OTG controller drivers, where it helps meet 2387 * HNP protocol timing requirements for starting a port reset. 2388 * 2389 * Return: 0 if successful. 2390 */ 2391 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2392 { 2393 struct usb_hcd *hcd; 2394 int status = -EOPNOTSUPP; 2395 2396 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2397 * boards with root hubs hooked up to internal devices (instead of 2398 * just the OTG port) may need more attention to resetting... 2399 */ 2400 hcd = bus_to_hcd(bus); 2401 if (port_num && hcd->driver->start_port_reset) 2402 status = hcd->driver->start_port_reset(hcd, port_num); 2403 2404 /* allocate hub_wq shortly after (first) root port reset finishes; 2405 * it may issue others, until at least 50 msecs have passed. 2406 */ 2407 if (status == 0) 2408 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2409 return status; 2410 } 2411 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2412 2413 #endif 2414 2415 /*-------------------------------------------------------------------------*/ 2416 2417 /** 2418 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2419 * @irq: the IRQ being raised 2420 * @__hcd: pointer to the HCD whose IRQ is being signaled 2421 * 2422 * If the controller isn't HALTed, calls the driver's irq handler. 2423 * Checks whether the controller is now dead. 2424 * 2425 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2426 */ 2427 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2428 { 2429 struct usb_hcd *hcd = __hcd; 2430 irqreturn_t rc; 2431 2432 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2433 rc = IRQ_NONE; 2434 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2435 rc = IRQ_NONE; 2436 else 2437 rc = IRQ_HANDLED; 2438 2439 return rc; 2440 } 2441 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2442 2443 /*-------------------------------------------------------------------------*/ 2444 2445 /** 2446 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2447 * @hcd: pointer to the HCD representing the controller 2448 * 2449 * This is called by bus glue to report a USB host controller that died 2450 * while operations may still have been pending. It's called automatically 2451 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2452 * 2453 * Only call this function with the primary HCD. 2454 */ 2455 void usb_hc_died (struct usb_hcd *hcd) 2456 { 2457 unsigned long flags; 2458 2459 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2460 2461 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2462 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2463 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2464 if (hcd->rh_registered) { 2465 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2466 2467 /* make hub_wq clean up old urbs and devices */ 2468 usb_set_device_state (hcd->self.root_hub, 2469 USB_STATE_NOTATTACHED); 2470 usb_kick_hub_wq(hcd->self.root_hub); 2471 } 2472 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2473 hcd = hcd->shared_hcd; 2474 if (hcd->rh_registered) { 2475 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2476 2477 /* make hub_wq clean up old urbs and devices */ 2478 usb_set_device_state(hcd->self.root_hub, 2479 USB_STATE_NOTATTACHED); 2480 usb_kick_hub_wq(hcd->self.root_hub); 2481 } 2482 } 2483 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2484 /* Make sure that the other roothub is also deallocated. */ 2485 } 2486 EXPORT_SYMBOL_GPL (usb_hc_died); 2487 2488 /*-------------------------------------------------------------------------*/ 2489 2490 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2491 { 2492 2493 spin_lock_init(&bh->lock); 2494 INIT_LIST_HEAD(&bh->head); 2495 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2496 } 2497 2498 /** 2499 * usb_create_shared_hcd - create and initialize an HCD structure 2500 * @driver: HC driver that will use this hcd 2501 * @dev: device for this HC, stored in hcd->self.controller 2502 * @bus_name: value to store in hcd->self.bus_name 2503 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2504 * PCI device. Only allocate certain resources for the primary HCD 2505 * Context: !in_interrupt() 2506 * 2507 * Allocate a struct usb_hcd, with extra space at the end for the 2508 * HC driver's private data. Initialize the generic members of the 2509 * hcd structure. 2510 * 2511 * Return: On success, a pointer to the created and initialized HCD structure. 2512 * On failure (e.g. if memory is unavailable), %NULL. 2513 */ 2514 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2515 struct device *dev, const char *bus_name, 2516 struct usb_hcd *primary_hcd) 2517 { 2518 struct usb_hcd *hcd; 2519 2520 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2521 if (!hcd) 2522 return NULL; 2523 if (primary_hcd == NULL) { 2524 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2525 GFP_KERNEL); 2526 if (!hcd->address0_mutex) { 2527 kfree(hcd); 2528 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2529 return NULL; 2530 } 2531 mutex_init(hcd->address0_mutex); 2532 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2533 GFP_KERNEL); 2534 if (!hcd->bandwidth_mutex) { 2535 kfree(hcd); 2536 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2537 return NULL; 2538 } 2539 mutex_init(hcd->bandwidth_mutex); 2540 dev_set_drvdata(dev, hcd); 2541 } else { 2542 mutex_lock(&usb_port_peer_mutex); 2543 hcd->address0_mutex = primary_hcd->address0_mutex; 2544 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2545 hcd->primary_hcd = primary_hcd; 2546 primary_hcd->primary_hcd = primary_hcd; 2547 hcd->shared_hcd = primary_hcd; 2548 primary_hcd->shared_hcd = hcd; 2549 mutex_unlock(&usb_port_peer_mutex); 2550 } 2551 2552 kref_init(&hcd->kref); 2553 2554 usb_bus_init(&hcd->self); 2555 hcd->self.controller = dev; 2556 hcd->self.bus_name = bus_name; 2557 hcd->self.uses_dma = (dev->dma_mask != NULL); 2558 2559 init_timer(&hcd->rh_timer); 2560 hcd->rh_timer.function = rh_timer_func; 2561 hcd->rh_timer.data = (unsigned long) hcd; 2562 #ifdef CONFIG_PM 2563 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2564 #endif 2565 2566 hcd->driver = driver; 2567 hcd->speed = driver->flags & HCD_MASK; 2568 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2569 "USB Host Controller"; 2570 return hcd; 2571 } 2572 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2573 2574 /** 2575 * usb_create_hcd - create and initialize an HCD structure 2576 * @driver: HC driver that will use this hcd 2577 * @dev: device for this HC, stored in hcd->self.controller 2578 * @bus_name: value to store in hcd->self.bus_name 2579 * Context: !in_interrupt() 2580 * 2581 * Allocate a struct usb_hcd, with extra space at the end for the 2582 * HC driver's private data. Initialize the generic members of the 2583 * hcd structure. 2584 * 2585 * Return: On success, a pointer to the created and initialized HCD 2586 * structure. On failure (e.g. if memory is unavailable), %NULL. 2587 */ 2588 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2589 struct device *dev, const char *bus_name) 2590 { 2591 return usb_create_shared_hcd(driver, dev, bus_name, NULL); 2592 } 2593 EXPORT_SYMBOL_GPL(usb_create_hcd); 2594 2595 /* 2596 * Roothubs that share one PCI device must also share the bandwidth mutex. 2597 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2598 * deallocated. 2599 * 2600 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2601 * freed. When hcd_release() is called for either hcd in a peer set, 2602 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2603 */ 2604 static void hcd_release(struct kref *kref) 2605 { 2606 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2607 2608 mutex_lock(&usb_port_peer_mutex); 2609 if (hcd->shared_hcd) { 2610 struct usb_hcd *peer = hcd->shared_hcd; 2611 2612 peer->shared_hcd = NULL; 2613 peer->primary_hcd = NULL; 2614 } else { 2615 kfree(hcd->address0_mutex); 2616 kfree(hcd->bandwidth_mutex); 2617 } 2618 mutex_unlock(&usb_port_peer_mutex); 2619 kfree(hcd); 2620 } 2621 2622 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2623 { 2624 if (hcd) 2625 kref_get (&hcd->kref); 2626 return hcd; 2627 } 2628 EXPORT_SYMBOL_GPL(usb_get_hcd); 2629 2630 void usb_put_hcd (struct usb_hcd *hcd) 2631 { 2632 if (hcd) 2633 kref_put (&hcd->kref, hcd_release); 2634 } 2635 EXPORT_SYMBOL_GPL(usb_put_hcd); 2636 2637 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2638 { 2639 if (!hcd->primary_hcd) 2640 return 1; 2641 return hcd == hcd->primary_hcd; 2642 } 2643 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2644 2645 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2646 { 2647 if (!hcd->driver->find_raw_port_number) 2648 return port1; 2649 2650 return hcd->driver->find_raw_port_number(hcd, port1); 2651 } 2652 2653 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2654 unsigned int irqnum, unsigned long irqflags) 2655 { 2656 int retval; 2657 2658 if (hcd->driver->irq) { 2659 2660 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2661 hcd->driver->description, hcd->self.busnum); 2662 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2663 hcd->irq_descr, hcd); 2664 if (retval != 0) { 2665 dev_err(hcd->self.controller, 2666 "request interrupt %d failed\n", 2667 irqnum); 2668 return retval; 2669 } 2670 hcd->irq = irqnum; 2671 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2672 (hcd->driver->flags & HCD_MEMORY) ? 2673 "io mem" : "io base", 2674 (unsigned long long)hcd->rsrc_start); 2675 } else { 2676 hcd->irq = 0; 2677 if (hcd->rsrc_start) 2678 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2679 (hcd->driver->flags & HCD_MEMORY) ? 2680 "io mem" : "io base", 2681 (unsigned long long)hcd->rsrc_start); 2682 } 2683 return 0; 2684 } 2685 2686 /* 2687 * Before we free this root hub, flush in-flight peering attempts 2688 * and disable peer lookups 2689 */ 2690 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2691 { 2692 struct usb_device *rhdev; 2693 2694 mutex_lock(&usb_port_peer_mutex); 2695 rhdev = hcd->self.root_hub; 2696 hcd->self.root_hub = NULL; 2697 mutex_unlock(&usb_port_peer_mutex); 2698 usb_put_dev(rhdev); 2699 } 2700 2701 /** 2702 * usb_add_hcd - finish generic HCD structure initialization and register 2703 * @hcd: the usb_hcd structure to initialize 2704 * @irqnum: Interrupt line to allocate 2705 * @irqflags: Interrupt type flags 2706 * 2707 * Finish the remaining parts of generic HCD initialization: allocate the 2708 * buffers of consistent memory, register the bus, request the IRQ line, 2709 * and call the driver's reset() and start() routines. 2710 */ 2711 int usb_add_hcd(struct usb_hcd *hcd, 2712 unsigned int irqnum, unsigned long irqflags) 2713 { 2714 int retval; 2715 struct usb_device *rhdev; 2716 2717 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) { 2718 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0); 2719 2720 if (IS_ERR(phy)) { 2721 retval = PTR_ERR(phy); 2722 if (retval == -EPROBE_DEFER) 2723 return retval; 2724 } else { 2725 retval = usb_phy_init(phy); 2726 if (retval) { 2727 usb_put_phy(phy); 2728 return retval; 2729 } 2730 hcd->usb_phy = phy; 2731 hcd->remove_phy = 1; 2732 } 2733 } 2734 2735 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) { 2736 struct phy *phy = phy_get(hcd->self.controller, "usb"); 2737 2738 if (IS_ERR(phy)) { 2739 retval = PTR_ERR(phy); 2740 if (retval == -EPROBE_DEFER) 2741 goto err_phy; 2742 } else { 2743 retval = phy_init(phy); 2744 if (retval) { 2745 phy_put(phy); 2746 goto err_phy; 2747 } 2748 retval = phy_power_on(phy); 2749 if (retval) { 2750 phy_exit(phy); 2751 phy_put(phy); 2752 goto err_phy; 2753 } 2754 hcd->phy = phy; 2755 hcd->remove_phy = 1; 2756 } 2757 } 2758 2759 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2760 2761 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2762 if (authorized_default < 0 || authorized_default > 1) { 2763 if (hcd->wireless) 2764 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2765 else 2766 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2767 } else { 2768 if (authorized_default) 2769 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2770 else 2771 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2772 } 2773 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2774 2775 /* per default all interfaces are authorized */ 2776 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2777 2778 /* HC is in reset state, but accessible. Now do the one-time init, 2779 * bottom up so that hcds can customize the root hubs before hub_wq 2780 * starts talking to them. (Note, bus id is assigned early too.) 2781 */ 2782 retval = hcd_buffer_create(hcd); 2783 if (retval != 0) { 2784 dev_dbg(hcd->self.controller, "pool alloc failed\n"); 2785 goto err_create_buf; 2786 } 2787 2788 retval = usb_register_bus(&hcd->self); 2789 if (retval < 0) 2790 goto err_register_bus; 2791 2792 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2793 if (rhdev == NULL) { 2794 dev_err(hcd->self.controller, "unable to allocate root hub\n"); 2795 retval = -ENOMEM; 2796 goto err_allocate_root_hub; 2797 } 2798 mutex_lock(&usb_port_peer_mutex); 2799 hcd->self.root_hub = rhdev; 2800 mutex_unlock(&usb_port_peer_mutex); 2801 2802 switch (hcd->speed) { 2803 case HCD_USB11: 2804 rhdev->speed = USB_SPEED_FULL; 2805 break; 2806 case HCD_USB2: 2807 rhdev->speed = USB_SPEED_HIGH; 2808 break; 2809 case HCD_USB25: 2810 rhdev->speed = USB_SPEED_WIRELESS; 2811 break; 2812 case HCD_USB3: 2813 rhdev->speed = USB_SPEED_SUPER; 2814 break; 2815 case HCD_USB31: 2816 rhdev->speed = USB_SPEED_SUPER_PLUS; 2817 break; 2818 default: 2819 retval = -EINVAL; 2820 goto err_set_rh_speed; 2821 } 2822 2823 /* wakeup flag init defaults to "everything works" for root hubs, 2824 * but drivers can override it in reset() if needed, along with 2825 * recording the overall controller's system wakeup capability. 2826 */ 2827 device_set_wakeup_capable(&rhdev->dev, 1); 2828 2829 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2830 * registered. But since the controller can die at any time, 2831 * let's initialize the flag before touching the hardware. 2832 */ 2833 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2834 2835 /* "reset" is misnamed; its role is now one-time init. the controller 2836 * should already have been reset (and boot firmware kicked off etc). 2837 */ 2838 if (hcd->driver->reset) { 2839 retval = hcd->driver->reset(hcd); 2840 if (retval < 0) { 2841 dev_err(hcd->self.controller, "can't setup: %d\n", 2842 retval); 2843 goto err_hcd_driver_setup; 2844 } 2845 } 2846 hcd->rh_pollable = 1; 2847 2848 /* NOTE: root hub and controller capabilities may not be the same */ 2849 if (device_can_wakeup(hcd->self.controller) 2850 && device_can_wakeup(&hcd->self.root_hub->dev)) 2851 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2852 2853 /* initialize tasklets */ 2854 init_giveback_urb_bh(&hcd->high_prio_bh); 2855 init_giveback_urb_bh(&hcd->low_prio_bh); 2856 2857 /* enable irqs just before we start the controller, 2858 * if the BIOS provides legacy PCI irqs. 2859 */ 2860 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2861 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2862 if (retval) 2863 goto err_request_irq; 2864 } 2865 2866 hcd->state = HC_STATE_RUNNING; 2867 retval = hcd->driver->start(hcd); 2868 if (retval < 0) { 2869 dev_err(hcd->self.controller, "startup error %d\n", retval); 2870 goto err_hcd_driver_start; 2871 } 2872 2873 /* starting here, usbcore will pay attention to this root hub */ 2874 retval = register_root_hub(hcd); 2875 if (retval != 0) 2876 goto err_register_root_hub; 2877 2878 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2879 if (retval < 0) { 2880 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2881 retval); 2882 goto error_create_attr_group; 2883 } 2884 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2885 usb_hcd_poll_rh_status(hcd); 2886 2887 return retval; 2888 2889 error_create_attr_group: 2890 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2891 if (HC_IS_RUNNING(hcd->state)) 2892 hcd->state = HC_STATE_QUIESCING; 2893 spin_lock_irq(&hcd_root_hub_lock); 2894 hcd->rh_registered = 0; 2895 spin_unlock_irq(&hcd_root_hub_lock); 2896 2897 #ifdef CONFIG_PM 2898 cancel_work_sync(&hcd->wakeup_work); 2899 #endif 2900 mutex_lock(&usb_bus_idr_lock); 2901 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2902 mutex_unlock(&usb_bus_idr_lock); 2903 err_register_root_hub: 2904 hcd->rh_pollable = 0; 2905 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2906 del_timer_sync(&hcd->rh_timer); 2907 hcd->driver->stop(hcd); 2908 hcd->state = HC_STATE_HALT; 2909 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2910 del_timer_sync(&hcd->rh_timer); 2911 err_hcd_driver_start: 2912 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2913 free_irq(irqnum, hcd); 2914 err_request_irq: 2915 err_hcd_driver_setup: 2916 err_set_rh_speed: 2917 usb_put_invalidate_rhdev(hcd); 2918 err_allocate_root_hub: 2919 usb_deregister_bus(&hcd->self); 2920 err_register_bus: 2921 hcd_buffer_destroy(hcd); 2922 err_create_buf: 2923 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 2924 phy_power_off(hcd->phy); 2925 phy_exit(hcd->phy); 2926 phy_put(hcd->phy); 2927 hcd->phy = NULL; 2928 } 2929 err_phy: 2930 if (hcd->remove_phy && hcd->usb_phy) { 2931 usb_phy_shutdown(hcd->usb_phy); 2932 usb_put_phy(hcd->usb_phy); 2933 hcd->usb_phy = NULL; 2934 } 2935 return retval; 2936 } 2937 EXPORT_SYMBOL_GPL(usb_add_hcd); 2938 2939 /** 2940 * usb_remove_hcd - shutdown processing for generic HCDs 2941 * @hcd: the usb_hcd structure to remove 2942 * Context: !in_interrupt() 2943 * 2944 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2945 * invoking the HCD's stop() method. 2946 */ 2947 void usb_remove_hcd(struct usb_hcd *hcd) 2948 { 2949 struct usb_device *rhdev = hcd->self.root_hub; 2950 2951 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2952 2953 usb_get_dev(rhdev); 2954 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2955 2956 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2957 if (HC_IS_RUNNING (hcd->state)) 2958 hcd->state = HC_STATE_QUIESCING; 2959 2960 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2961 spin_lock_irq (&hcd_root_hub_lock); 2962 hcd->rh_registered = 0; 2963 spin_unlock_irq (&hcd_root_hub_lock); 2964 2965 #ifdef CONFIG_PM 2966 cancel_work_sync(&hcd->wakeup_work); 2967 #endif 2968 2969 mutex_lock(&usb_bus_idr_lock); 2970 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2971 mutex_unlock(&usb_bus_idr_lock); 2972 2973 /* 2974 * tasklet_kill() isn't needed here because: 2975 * - driver's disconnect() called from usb_disconnect() should 2976 * make sure its URBs are completed during the disconnect() 2977 * callback 2978 * 2979 * - it is too late to run complete() here since driver may have 2980 * been removed already now 2981 */ 2982 2983 /* Prevent any more root-hub status calls from the timer. 2984 * The HCD might still restart the timer (if a port status change 2985 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2986 * the hub_status_data() callback. 2987 */ 2988 hcd->rh_pollable = 0; 2989 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2990 del_timer_sync(&hcd->rh_timer); 2991 2992 hcd->driver->stop(hcd); 2993 hcd->state = HC_STATE_HALT; 2994 2995 /* In case the HCD restarted the timer, stop it again. */ 2996 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2997 del_timer_sync(&hcd->rh_timer); 2998 2999 if (usb_hcd_is_primary_hcd(hcd)) { 3000 if (hcd->irq > 0) 3001 free_irq(hcd->irq, hcd); 3002 } 3003 3004 usb_deregister_bus(&hcd->self); 3005 hcd_buffer_destroy(hcd); 3006 3007 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) { 3008 phy_power_off(hcd->phy); 3009 phy_exit(hcd->phy); 3010 phy_put(hcd->phy); 3011 hcd->phy = NULL; 3012 } 3013 if (hcd->remove_phy && hcd->usb_phy) { 3014 usb_phy_shutdown(hcd->usb_phy); 3015 usb_put_phy(hcd->usb_phy); 3016 hcd->usb_phy = NULL; 3017 } 3018 3019 usb_put_invalidate_rhdev(hcd); 3020 hcd->flags = 0; 3021 } 3022 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3023 3024 void 3025 usb_hcd_platform_shutdown(struct platform_device *dev) 3026 { 3027 struct usb_hcd *hcd = platform_get_drvdata(dev); 3028 3029 if (hcd->driver->shutdown) 3030 hcd->driver->shutdown(hcd); 3031 } 3032 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3033 3034 /*-------------------------------------------------------------------------*/ 3035 3036 #if IS_ENABLED(CONFIG_USB_MON) 3037 3038 const struct usb_mon_operations *mon_ops; 3039 3040 /* 3041 * The registration is unlocked. 3042 * We do it this way because we do not want to lock in hot paths. 3043 * 3044 * Notice that the code is minimally error-proof. Because usbmon needs 3045 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3046 */ 3047 3048 int usb_mon_register(const struct usb_mon_operations *ops) 3049 { 3050 3051 if (mon_ops) 3052 return -EBUSY; 3053 3054 mon_ops = ops; 3055 mb(); 3056 return 0; 3057 } 3058 EXPORT_SYMBOL_GPL (usb_mon_register); 3059 3060 void usb_mon_deregister (void) 3061 { 3062 3063 if (mon_ops == NULL) { 3064 printk(KERN_ERR "USB: monitor was not registered\n"); 3065 return; 3066 } 3067 mon_ops = NULL; 3068 mb(); 3069 } 3070 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3071 3072 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3073