1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 33 #include <linux/phy/phy.h> 34 #include <linux/usb.h> 35 #include <linux/usb/hcd.h> 36 #include <linux/usb/phy.h> 37 #include <linux/usb/otg.h> 38 39 #include "usb.h" 40 #include "phy.h" 41 42 43 /*-------------------------------------------------------------------------*/ 44 45 /* 46 * USB Host Controller Driver framework 47 * 48 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 49 * HCD-specific behaviors/bugs. 50 * 51 * This does error checks, tracks devices and urbs, and delegates to a 52 * "hc_driver" only for code (and data) that really needs to know about 53 * hardware differences. That includes root hub registers, i/o queues, 54 * and so on ... but as little else as possible. 55 * 56 * Shared code includes most of the "root hub" code (these are emulated, 57 * though each HC's hardware works differently) and PCI glue, plus request 58 * tracking overhead. The HCD code should only block on spinlocks or on 59 * hardware handshaking; blocking on software events (such as other kernel 60 * threads releasing resources, or completing actions) is all generic. 61 * 62 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 63 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 64 * only by the hub driver ... and that neither should be seen or used by 65 * usb client device drivers. 66 * 67 * Contributors of ideas or unattributed patches include: David Brownell, 68 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 69 * 70 * HISTORY: 71 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 72 * associated cleanup. "usb_hcd" still != "usb_bus". 73 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 74 */ 75 76 /*-------------------------------------------------------------------------*/ 77 78 /* Keep track of which host controller drivers are loaded */ 79 unsigned long usb_hcds_loaded; 80 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 81 82 /* host controllers we manage */ 83 DEFINE_IDR (usb_bus_idr); 84 EXPORT_SYMBOL_GPL (usb_bus_idr); 85 86 /* used when allocating bus numbers */ 87 #define USB_MAXBUS 64 88 89 /* used when updating list of hcds */ 90 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 91 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 92 93 /* used for controlling access to virtual root hubs */ 94 static DEFINE_SPINLOCK(hcd_root_hub_lock); 95 96 /* used when updating an endpoint's URB list */ 97 static DEFINE_SPINLOCK(hcd_urb_list_lock); 98 99 /* used to protect against unlinking URBs after the device is gone */ 100 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 101 102 /* wait queue for synchronous unlinks */ 103 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 104 105 static inline int is_root_hub(struct usb_device *udev) 106 { 107 return (udev->parent == NULL); 108 } 109 110 /*-------------------------------------------------------------------------*/ 111 112 /* 113 * Sharable chunks of root hub code. 114 */ 115 116 /*-------------------------------------------------------------------------*/ 117 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 118 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 119 120 /* usb 3.1 root hub device descriptor */ 121 static const u8 usb31_rh_dev_descriptor[18] = { 122 0x12, /* __u8 bLength; */ 123 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 124 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 125 126 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 127 0x00, /* __u8 bDeviceSubClass; */ 128 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 129 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 130 131 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 132 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 133 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 134 135 0x03, /* __u8 iManufacturer; */ 136 0x02, /* __u8 iProduct; */ 137 0x01, /* __u8 iSerialNumber; */ 138 0x01 /* __u8 bNumConfigurations; */ 139 }; 140 141 /* usb 3.0 root hub device descriptor */ 142 static const u8 usb3_rh_dev_descriptor[18] = { 143 0x12, /* __u8 bLength; */ 144 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 145 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 146 147 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 148 0x00, /* __u8 bDeviceSubClass; */ 149 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 150 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 151 152 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 153 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 154 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 155 156 0x03, /* __u8 iManufacturer; */ 157 0x02, /* __u8 iProduct; */ 158 0x01, /* __u8 iSerialNumber; */ 159 0x01 /* __u8 bNumConfigurations; */ 160 }; 161 162 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 163 static const u8 usb25_rh_dev_descriptor[18] = { 164 0x12, /* __u8 bLength; */ 165 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 166 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 167 168 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 169 0x00, /* __u8 bDeviceSubClass; */ 170 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 171 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 172 173 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 174 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 175 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 176 177 0x03, /* __u8 iManufacturer; */ 178 0x02, /* __u8 iProduct; */ 179 0x01, /* __u8 iSerialNumber; */ 180 0x01 /* __u8 bNumConfigurations; */ 181 }; 182 183 /* usb 2.0 root hub device descriptor */ 184 static const u8 usb2_rh_dev_descriptor[18] = { 185 0x12, /* __u8 bLength; */ 186 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 187 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 188 189 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 190 0x00, /* __u8 bDeviceSubClass; */ 191 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 192 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 193 194 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 195 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 196 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 197 198 0x03, /* __u8 iManufacturer; */ 199 0x02, /* __u8 iProduct; */ 200 0x01, /* __u8 iSerialNumber; */ 201 0x01 /* __u8 bNumConfigurations; */ 202 }; 203 204 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 205 206 /* usb 1.1 root hub device descriptor */ 207 static const u8 usb11_rh_dev_descriptor[18] = { 208 0x12, /* __u8 bLength; */ 209 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 210 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 211 212 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 213 0x00, /* __u8 bDeviceSubClass; */ 214 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 215 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 216 217 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 218 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 219 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 220 221 0x03, /* __u8 iManufacturer; */ 222 0x02, /* __u8 iProduct; */ 223 0x01, /* __u8 iSerialNumber; */ 224 0x01 /* __u8 bNumConfigurations; */ 225 }; 226 227 228 /*-------------------------------------------------------------------------*/ 229 230 /* Configuration descriptors for our root hubs */ 231 232 static const u8 fs_rh_config_descriptor[] = { 233 234 /* one configuration */ 235 0x09, /* __u8 bLength; */ 236 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 237 0x19, 0x00, /* __le16 wTotalLength; */ 238 0x01, /* __u8 bNumInterfaces; (1) */ 239 0x01, /* __u8 bConfigurationValue; */ 240 0x00, /* __u8 iConfiguration; */ 241 0xc0, /* __u8 bmAttributes; 242 Bit 7: must be set, 243 6: Self-powered, 244 5: Remote wakeup, 245 4..0: resvd */ 246 0x00, /* __u8 MaxPower; */ 247 248 /* USB 1.1: 249 * USB 2.0, single TT organization (mandatory): 250 * one interface, protocol 0 251 * 252 * USB 2.0, multiple TT organization (optional): 253 * two interfaces, protocols 1 (like single TT) 254 * and 2 (multiple TT mode) ... config is 255 * sometimes settable 256 * NOT IMPLEMENTED 257 */ 258 259 /* one interface */ 260 0x09, /* __u8 if_bLength; */ 261 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 262 0x00, /* __u8 if_bInterfaceNumber; */ 263 0x00, /* __u8 if_bAlternateSetting; */ 264 0x01, /* __u8 if_bNumEndpoints; */ 265 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 266 0x00, /* __u8 if_bInterfaceSubClass; */ 267 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 268 0x00, /* __u8 if_iInterface; */ 269 270 /* one endpoint (status change endpoint) */ 271 0x07, /* __u8 ep_bLength; */ 272 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 273 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 274 0x03, /* __u8 ep_bmAttributes; Interrupt */ 275 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 276 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 277 }; 278 279 static const u8 hs_rh_config_descriptor[] = { 280 281 /* one configuration */ 282 0x09, /* __u8 bLength; */ 283 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 284 0x19, 0x00, /* __le16 wTotalLength; */ 285 0x01, /* __u8 bNumInterfaces; (1) */ 286 0x01, /* __u8 bConfigurationValue; */ 287 0x00, /* __u8 iConfiguration; */ 288 0xc0, /* __u8 bmAttributes; 289 Bit 7: must be set, 290 6: Self-powered, 291 5: Remote wakeup, 292 4..0: resvd */ 293 0x00, /* __u8 MaxPower; */ 294 295 /* USB 1.1: 296 * USB 2.0, single TT organization (mandatory): 297 * one interface, protocol 0 298 * 299 * USB 2.0, multiple TT organization (optional): 300 * two interfaces, protocols 1 (like single TT) 301 * and 2 (multiple TT mode) ... config is 302 * sometimes settable 303 * NOT IMPLEMENTED 304 */ 305 306 /* one interface */ 307 0x09, /* __u8 if_bLength; */ 308 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 309 0x00, /* __u8 if_bInterfaceNumber; */ 310 0x00, /* __u8 if_bAlternateSetting; */ 311 0x01, /* __u8 if_bNumEndpoints; */ 312 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 313 0x00, /* __u8 if_bInterfaceSubClass; */ 314 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 315 0x00, /* __u8 if_iInterface; */ 316 317 /* one endpoint (status change endpoint) */ 318 0x07, /* __u8 ep_bLength; */ 319 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 320 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 321 0x03, /* __u8 ep_bmAttributes; Interrupt */ 322 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 323 * see hub.c:hub_configure() for details. */ 324 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 325 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 326 }; 327 328 static const u8 ss_rh_config_descriptor[] = { 329 /* one configuration */ 330 0x09, /* __u8 bLength; */ 331 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 332 0x1f, 0x00, /* __le16 wTotalLength; */ 333 0x01, /* __u8 bNumInterfaces; (1) */ 334 0x01, /* __u8 bConfigurationValue; */ 335 0x00, /* __u8 iConfiguration; */ 336 0xc0, /* __u8 bmAttributes; 337 Bit 7: must be set, 338 6: Self-powered, 339 5: Remote wakeup, 340 4..0: resvd */ 341 0x00, /* __u8 MaxPower; */ 342 343 /* one interface */ 344 0x09, /* __u8 if_bLength; */ 345 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 346 0x00, /* __u8 if_bInterfaceNumber; */ 347 0x00, /* __u8 if_bAlternateSetting; */ 348 0x01, /* __u8 if_bNumEndpoints; */ 349 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 350 0x00, /* __u8 if_bInterfaceSubClass; */ 351 0x00, /* __u8 if_bInterfaceProtocol; */ 352 0x00, /* __u8 if_iInterface; */ 353 354 /* one endpoint (status change endpoint) */ 355 0x07, /* __u8 ep_bLength; */ 356 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 357 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 358 0x03, /* __u8 ep_bmAttributes; Interrupt */ 359 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 360 * see hub.c:hub_configure() for details. */ 361 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 362 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 363 364 /* one SuperSpeed endpoint companion descriptor */ 365 0x06, /* __u8 ss_bLength */ 366 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 367 /* Companion */ 368 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 369 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 370 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 371 }; 372 373 /* authorized_default behaviour: 374 * -1 is authorized for all devices except wireless (old behaviour) 375 * 0 is unauthorized for all devices 376 * 1 is authorized for all devices 377 */ 378 static int authorized_default = -1; 379 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 380 MODULE_PARM_DESC(authorized_default, 381 "Default USB device authorization: 0 is not authorized, 1 is " 382 "authorized, -1 is authorized except for wireless USB (default, " 383 "old behaviour"); 384 /*-------------------------------------------------------------------------*/ 385 386 /** 387 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 388 * @s: Null-terminated ASCII (actually ISO-8859-1) string 389 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 390 * @len: Length (in bytes; may be odd) of descriptor buffer. 391 * 392 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 393 * whichever is less. 394 * 395 * Note: 396 * USB String descriptors can contain at most 126 characters; input 397 * strings longer than that are truncated. 398 */ 399 static unsigned 400 ascii2desc(char const *s, u8 *buf, unsigned len) 401 { 402 unsigned n, t = 2 + 2*strlen(s); 403 404 if (t > 254) 405 t = 254; /* Longest possible UTF string descriptor */ 406 if (len > t) 407 len = t; 408 409 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 410 411 n = len; 412 while (n--) { 413 *buf++ = t; 414 if (!n--) 415 break; 416 *buf++ = t >> 8; 417 t = (unsigned char)*s++; 418 } 419 return len; 420 } 421 422 /** 423 * rh_string() - provides string descriptors for root hub 424 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 425 * @hcd: the host controller for this root hub 426 * @data: buffer for output packet 427 * @len: length of the provided buffer 428 * 429 * Produces either a manufacturer, product or serial number string for the 430 * virtual root hub device. 431 * 432 * Return: The number of bytes filled in: the length of the descriptor or 433 * of the provided buffer, whichever is less. 434 */ 435 static unsigned 436 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 437 { 438 char buf[100]; 439 char const *s; 440 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 441 442 /* language ids */ 443 switch (id) { 444 case 0: 445 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 446 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 447 if (len > 4) 448 len = 4; 449 memcpy(data, langids, len); 450 return len; 451 case 1: 452 /* Serial number */ 453 s = hcd->self.bus_name; 454 break; 455 case 2: 456 /* Product name */ 457 s = hcd->product_desc; 458 break; 459 case 3: 460 /* Manufacturer */ 461 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 462 init_utsname()->release, hcd->driver->description); 463 s = buf; 464 break; 465 default: 466 /* Can't happen; caller guarantees it */ 467 return 0; 468 } 469 470 return ascii2desc(s, data, len); 471 } 472 473 474 /* Root hub control transfers execute synchronously */ 475 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 476 { 477 struct usb_ctrlrequest *cmd; 478 u16 typeReq, wValue, wIndex, wLength; 479 u8 *ubuf = urb->transfer_buffer; 480 unsigned len = 0; 481 int status; 482 u8 patch_wakeup = 0; 483 u8 patch_protocol = 0; 484 u16 tbuf_size; 485 u8 *tbuf = NULL; 486 const u8 *bufp; 487 488 might_sleep(); 489 490 spin_lock_irq(&hcd_root_hub_lock); 491 status = usb_hcd_link_urb_to_ep(hcd, urb); 492 spin_unlock_irq(&hcd_root_hub_lock); 493 if (status) 494 return status; 495 urb->hcpriv = hcd; /* Indicate it's queued */ 496 497 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 498 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 499 wValue = le16_to_cpu (cmd->wValue); 500 wIndex = le16_to_cpu (cmd->wIndex); 501 wLength = le16_to_cpu (cmd->wLength); 502 503 if (wLength > urb->transfer_buffer_length) 504 goto error; 505 506 /* 507 * tbuf should be at least as big as the 508 * USB hub descriptor. 509 */ 510 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 511 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 512 if (!tbuf) { 513 status = -ENOMEM; 514 goto err_alloc; 515 } 516 517 bufp = tbuf; 518 519 520 urb->actual_length = 0; 521 switch (typeReq) { 522 523 /* DEVICE REQUESTS */ 524 525 /* The root hub's remote wakeup enable bit is implemented using 526 * driver model wakeup flags. If this system supports wakeup 527 * through USB, userspace may change the default "allow wakeup" 528 * policy through sysfs or these calls. 529 * 530 * Most root hubs support wakeup from downstream devices, for 531 * runtime power management (disabling USB clocks and reducing 532 * VBUS power usage). However, not all of them do so; silicon, 533 * board, and BIOS bugs here are not uncommon, so these can't 534 * be treated quite like external hubs. 535 * 536 * Likewise, not all root hubs will pass wakeup events upstream, 537 * to wake up the whole system. So don't assume root hub and 538 * controller capabilities are identical. 539 */ 540 541 case DeviceRequest | USB_REQ_GET_STATUS: 542 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 543 << USB_DEVICE_REMOTE_WAKEUP) 544 | (1 << USB_DEVICE_SELF_POWERED); 545 tbuf[1] = 0; 546 len = 2; 547 break; 548 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 549 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 550 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 551 else 552 goto error; 553 break; 554 case DeviceOutRequest | USB_REQ_SET_FEATURE: 555 if (device_can_wakeup(&hcd->self.root_hub->dev) 556 && wValue == USB_DEVICE_REMOTE_WAKEUP) 557 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 558 else 559 goto error; 560 break; 561 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 562 tbuf[0] = 1; 563 len = 1; 564 /* FALLTHROUGH */ 565 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 566 break; 567 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 568 switch (wValue & 0xff00) { 569 case USB_DT_DEVICE << 8: 570 switch (hcd->speed) { 571 case HCD_USB31: 572 bufp = usb31_rh_dev_descriptor; 573 break; 574 case HCD_USB3: 575 bufp = usb3_rh_dev_descriptor; 576 break; 577 case HCD_USB25: 578 bufp = usb25_rh_dev_descriptor; 579 break; 580 case HCD_USB2: 581 bufp = usb2_rh_dev_descriptor; 582 break; 583 case HCD_USB11: 584 bufp = usb11_rh_dev_descriptor; 585 break; 586 default: 587 goto error; 588 } 589 len = 18; 590 if (hcd->has_tt) 591 patch_protocol = 1; 592 break; 593 case USB_DT_CONFIG << 8: 594 switch (hcd->speed) { 595 case HCD_USB31: 596 case HCD_USB3: 597 bufp = ss_rh_config_descriptor; 598 len = sizeof ss_rh_config_descriptor; 599 break; 600 case HCD_USB25: 601 case HCD_USB2: 602 bufp = hs_rh_config_descriptor; 603 len = sizeof hs_rh_config_descriptor; 604 break; 605 case HCD_USB11: 606 bufp = fs_rh_config_descriptor; 607 len = sizeof fs_rh_config_descriptor; 608 break; 609 default: 610 goto error; 611 } 612 if (device_can_wakeup(&hcd->self.root_hub->dev)) 613 patch_wakeup = 1; 614 break; 615 case USB_DT_STRING << 8: 616 if ((wValue & 0xff) < 4) 617 urb->actual_length = rh_string(wValue & 0xff, 618 hcd, ubuf, wLength); 619 else /* unsupported IDs --> "protocol stall" */ 620 goto error; 621 break; 622 case USB_DT_BOS << 8: 623 goto nongeneric; 624 default: 625 goto error; 626 } 627 break; 628 case DeviceRequest | USB_REQ_GET_INTERFACE: 629 tbuf[0] = 0; 630 len = 1; 631 /* FALLTHROUGH */ 632 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 633 break; 634 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 635 /* wValue == urb->dev->devaddr */ 636 dev_dbg (hcd->self.controller, "root hub device address %d\n", 637 wValue); 638 break; 639 640 /* INTERFACE REQUESTS (no defined feature/status flags) */ 641 642 /* ENDPOINT REQUESTS */ 643 644 case EndpointRequest | USB_REQ_GET_STATUS: 645 /* ENDPOINT_HALT flag */ 646 tbuf[0] = 0; 647 tbuf[1] = 0; 648 len = 2; 649 /* FALLTHROUGH */ 650 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 651 case EndpointOutRequest | USB_REQ_SET_FEATURE: 652 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 653 break; 654 655 /* CLASS REQUESTS (and errors) */ 656 657 default: 658 nongeneric: 659 /* non-generic request */ 660 switch (typeReq) { 661 case GetHubStatus: 662 len = 4; 663 break; 664 case GetPortStatus: 665 if (wValue == HUB_PORT_STATUS) 666 len = 4; 667 else 668 /* other port status types return 8 bytes */ 669 len = 8; 670 break; 671 case GetHubDescriptor: 672 len = sizeof (struct usb_hub_descriptor); 673 break; 674 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 675 /* len is returned by hub_control */ 676 break; 677 } 678 status = hcd->driver->hub_control (hcd, 679 typeReq, wValue, wIndex, 680 tbuf, wLength); 681 682 if (typeReq == GetHubDescriptor) 683 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 684 (struct usb_hub_descriptor *)tbuf); 685 break; 686 error: 687 /* "protocol stall" on error */ 688 status = -EPIPE; 689 } 690 691 if (status < 0) { 692 len = 0; 693 if (status != -EPIPE) { 694 dev_dbg (hcd->self.controller, 695 "CTRL: TypeReq=0x%x val=0x%x " 696 "idx=0x%x len=%d ==> %d\n", 697 typeReq, wValue, wIndex, 698 wLength, status); 699 } 700 } else if (status > 0) { 701 /* hub_control may return the length of data copied. */ 702 len = status; 703 status = 0; 704 } 705 if (len) { 706 if (urb->transfer_buffer_length < len) 707 len = urb->transfer_buffer_length; 708 urb->actual_length = len; 709 /* always USB_DIR_IN, toward host */ 710 memcpy (ubuf, bufp, len); 711 712 /* report whether RH hardware supports remote wakeup */ 713 if (patch_wakeup && 714 len > offsetof (struct usb_config_descriptor, 715 bmAttributes)) 716 ((struct usb_config_descriptor *)ubuf)->bmAttributes 717 |= USB_CONFIG_ATT_WAKEUP; 718 719 /* report whether RH hardware has an integrated TT */ 720 if (patch_protocol && 721 len > offsetof(struct usb_device_descriptor, 722 bDeviceProtocol)) 723 ((struct usb_device_descriptor *) ubuf)-> 724 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 725 } 726 727 kfree(tbuf); 728 err_alloc: 729 730 /* any errors get returned through the urb completion */ 731 spin_lock_irq(&hcd_root_hub_lock); 732 usb_hcd_unlink_urb_from_ep(hcd, urb); 733 usb_hcd_giveback_urb(hcd, urb, status); 734 spin_unlock_irq(&hcd_root_hub_lock); 735 return 0; 736 } 737 738 /*-------------------------------------------------------------------------*/ 739 740 /* 741 * Root Hub interrupt transfers are polled using a timer if the 742 * driver requests it; otherwise the driver is responsible for 743 * calling usb_hcd_poll_rh_status() when an event occurs. 744 * 745 * Completions are called in_interrupt(), but they may or may not 746 * be in_irq(). 747 */ 748 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 749 { 750 struct urb *urb; 751 int length; 752 unsigned long flags; 753 char buffer[6]; /* Any root hubs with > 31 ports? */ 754 755 if (unlikely(!hcd->rh_pollable)) 756 return; 757 if (!hcd->uses_new_polling && !hcd->status_urb) 758 return; 759 760 length = hcd->driver->hub_status_data(hcd, buffer); 761 if (length > 0) { 762 763 /* try to complete the status urb */ 764 spin_lock_irqsave(&hcd_root_hub_lock, flags); 765 urb = hcd->status_urb; 766 if (urb) { 767 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 768 hcd->status_urb = NULL; 769 urb->actual_length = length; 770 memcpy(urb->transfer_buffer, buffer, length); 771 772 usb_hcd_unlink_urb_from_ep(hcd, urb); 773 usb_hcd_giveback_urb(hcd, urb, 0); 774 } else { 775 length = 0; 776 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 777 } 778 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 779 } 780 781 /* The USB 2.0 spec says 256 ms. This is close enough and won't 782 * exceed that limit if HZ is 100. The math is more clunky than 783 * maybe expected, this is to make sure that all timers for USB devices 784 * fire at the same time to give the CPU a break in between */ 785 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 786 (length == 0 && hcd->status_urb != NULL)) 787 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 788 } 789 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 790 791 /* timer callback */ 792 static void rh_timer_func (struct timer_list *t) 793 { 794 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 795 796 usb_hcd_poll_rh_status(_hcd); 797 } 798 799 /*-------------------------------------------------------------------------*/ 800 801 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 802 { 803 int retval; 804 unsigned long flags; 805 unsigned len = 1 + (urb->dev->maxchild / 8); 806 807 spin_lock_irqsave (&hcd_root_hub_lock, flags); 808 if (hcd->status_urb || urb->transfer_buffer_length < len) { 809 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 810 retval = -EINVAL; 811 goto done; 812 } 813 814 retval = usb_hcd_link_urb_to_ep(hcd, urb); 815 if (retval) 816 goto done; 817 818 hcd->status_urb = urb; 819 urb->hcpriv = hcd; /* indicate it's queued */ 820 if (!hcd->uses_new_polling) 821 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 822 823 /* If a status change has already occurred, report it ASAP */ 824 else if (HCD_POLL_PENDING(hcd)) 825 mod_timer(&hcd->rh_timer, jiffies); 826 retval = 0; 827 done: 828 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 829 return retval; 830 } 831 832 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 833 { 834 if (usb_endpoint_xfer_int(&urb->ep->desc)) 835 return rh_queue_status (hcd, urb); 836 if (usb_endpoint_xfer_control(&urb->ep->desc)) 837 return rh_call_control (hcd, urb); 838 return -EINVAL; 839 } 840 841 /*-------------------------------------------------------------------------*/ 842 843 /* Unlinks of root-hub control URBs are legal, but they don't do anything 844 * since these URBs always execute synchronously. 845 */ 846 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 847 { 848 unsigned long flags; 849 int rc; 850 851 spin_lock_irqsave(&hcd_root_hub_lock, flags); 852 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 853 if (rc) 854 goto done; 855 856 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 857 ; /* Do nothing */ 858 859 } else { /* Status URB */ 860 if (!hcd->uses_new_polling) 861 del_timer (&hcd->rh_timer); 862 if (urb == hcd->status_urb) { 863 hcd->status_urb = NULL; 864 usb_hcd_unlink_urb_from_ep(hcd, urb); 865 usb_hcd_giveback_urb(hcd, urb, status); 866 } 867 } 868 done: 869 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 870 return rc; 871 } 872 873 874 875 /* 876 * Show & store the current value of authorized_default 877 */ 878 static ssize_t authorized_default_show(struct device *dev, 879 struct device_attribute *attr, char *buf) 880 { 881 struct usb_device *rh_usb_dev = to_usb_device(dev); 882 struct usb_bus *usb_bus = rh_usb_dev->bus; 883 struct usb_hcd *hcd; 884 885 hcd = bus_to_hcd(usb_bus); 886 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 887 } 888 889 static ssize_t authorized_default_store(struct device *dev, 890 struct device_attribute *attr, 891 const char *buf, size_t size) 892 { 893 ssize_t result; 894 unsigned val; 895 struct usb_device *rh_usb_dev = to_usb_device(dev); 896 struct usb_bus *usb_bus = rh_usb_dev->bus; 897 struct usb_hcd *hcd; 898 899 hcd = bus_to_hcd(usb_bus); 900 result = sscanf(buf, "%u\n", &val); 901 if (result == 1) { 902 if (val) 903 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 904 else 905 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 906 907 result = size; 908 } else { 909 result = -EINVAL; 910 } 911 return result; 912 } 913 static DEVICE_ATTR_RW(authorized_default); 914 915 /* 916 * interface_authorized_default_show - show default authorization status 917 * for USB interfaces 918 * 919 * note: interface_authorized_default is the default value 920 * for initializing the authorized attribute of interfaces 921 */ 922 static ssize_t interface_authorized_default_show(struct device *dev, 923 struct device_attribute *attr, char *buf) 924 { 925 struct usb_device *usb_dev = to_usb_device(dev); 926 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 927 928 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 929 } 930 931 /* 932 * interface_authorized_default_store - store default authorization status 933 * for USB interfaces 934 * 935 * note: interface_authorized_default is the default value 936 * for initializing the authorized attribute of interfaces 937 */ 938 static ssize_t interface_authorized_default_store(struct device *dev, 939 struct device_attribute *attr, const char *buf, size_t count) 940 { 941 struct usb_device *usb_dev = to_usb_device(dev); 942 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 943 int rc = count; 944 bool val; 945 946 if (strtobool(buf, &val) != 0) 947 return -EINVAL; 948 949 if (val) 950 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 951 else 952 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 953 954 return rc; 955 } 956 static DEVICE_ATTR_RW(interface_authorized_default); 957 958 /* Group all the USB bus attributes */ 959 static struct attribute *usb_bus_attrs[] = { 960 &dev_attr_authorized_default.attr, 961 &dev_attr_interface_authorized_default.attr, 962 NULL, 963 }; 964 965 static const struct attribute_group usb_bus_attr_group = { 966 .name = NULL, /* we want them in the same directory */ 967 .attrs = usb_bus_attrs, 968 }; 969 970 971 972 /*-------------------------------------------------------------------------*/ 973 974 /** 975 * usb_bus_init - shared initialization code 976 * @bus: the bus structure being initialized 977 * 978 * This code is used to initialize a usb_bus structure, memory for which is 979 * separately managed. 980 */ 981 static void usb_bus_init (struct usb_bus *bus) 982 { 983 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 984 985 bus->devnum_next = 1; 986 987 bus->root_hub = NULL; 988 bus->busnum = -1; 989 bus->bandwidth_allocated = 0; 990 bus->bandwidth_int_reqs = 0; 991 bus->bandwidth_isoc_reqs = 0; 992 mutex_init(&bus->devnum_next_mutex); 993 } 994 995 /*-------------------------------------------------------------------------*/ 996 997 /** 998 * usb_register_bus - registers the USB host controller with the usb core 999 * @bus: pointer to the bus to register 1000 * Context: !in_interrupt() 1001 * 1002 * Assigns a bus number, and links the controller into usbcore data 1003 * structures so that it can be seen by scanning the bus list. 1004 * 1005 * Return: 0 if successful. A negative error code otherwise. 1006 */ 1007 static int usb_register_bus(struct usb_bus *bus) 1008 { 1009 int result = -E2BIG; 1010 int busnum; 1011 1012 mutex_lock(&usb_bus_idr_lock); 1013 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1014 if (busnum < 0) { 1015 pr_err("%s: failed to get bus number\n", usbcore_name); 1016 goto error_find_busnum; 1017 } 1018 bus->busnum = busnum; 1019 mutex_unlock(&usb_bus_idr_lock); 1020 1021 usb_notify_add_bus(bus); 1022 1023 dev_info (bus->controller, "new USB bus registered, assigned bus " 1024 "number %d\n", bus->busnum); 1025 return 0; 1026 1027 error_find_busnum: 1028 mutex_unlock(&usb_bus_idr_lock); 1029 return result; 1030 } 1031 1032 /** 1033 * usb_deregister_bus - deregisters the USB host controller 1034 * @bus: pointer to the bus to deregister 1035 * Context: !in_interrupt() 1036 * 1037 * Recycles the bus number, and unlinks the controller from usbcore data 1038 * structures so that it won't be seen by scanning the bus list. 1039 */ 1040 static void usb_deregister_bus (struct usb_bus *bus) 1041 { 1042 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1043 1044 /* 1045 * NOTE: make sure that all the devices are removed by the 1046 * controller code, as well as having it call this when cleaning 1047 * itself up 1048 */ 1049 mutex_lock(&usb_bus_idr_lock); 1050 idr_remove(&usb_bus_idr, bus->busnum); 1051 mutex_unlock(&usb_bus_idr_lock); 1052 1053 usb_notify_remove_bus(bus); 1054 } 1055 1056 /** 1057 * register_root_hub - called by usb_add_hcd() to register a root hub 1058 * @hcd: host controller for this root hub 1059 * 1060 * This function registers the root hub with the USB subsystem. It sets up 1061 * the device properly in the device tree and then calls usb_new_device() 1062 * to register the usb device. It also assigns the root hub's USB address 1063 * (always 1). 1064 * 1065 * Return: 0 if successful. A negative error code otherwise. 1066 */ 1067 static int register_root_hub(struct usb_hcd *hcd) 1068 { 1069 struct device *parent_dev = hcd->self.controller; 1070 struct usb_device *usb_dev = hcd->self.root_hub; 1071 const int devnum = 1; 1072 int retval; 1073 1074 usb_dev->devnum = devnum; 1075 usb_dev->bus->devnum_next = devnum + 1; 1076 memset (&usb_dev->bus->devmap.devicemap, 0, 1077 sizeof usb_dev->bus->devmap.devicemap); 1078 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1079 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1080 1081 mutex_lock(&usb_bus_idr_lock); 1082 1083 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1084 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1085 if (retval != sizeof usb_dev->descriptor) { 1086 mutex_unlock(&usb_bus_idr_lock); 1087 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1088 dev_name(&usb_dev->dev), retval); 1089 return (retval < 0) ? retval : -EMSGSIZE; 1090 } 1091 1092 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1093 retval = usb_get_bos_descriptor(usb_dev); 1094 if (!retval) { 1095 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1096 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1097 mutex_unlock(&usb_bus_idr_lock); 1098 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1099 dev_name(&usb_dev->dev), retval); 1100 return retval; 1101 } 1102 } 1103 1104 retval = usb_new_device (usb_dev); 1105 if (retval) { 1106 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1107 dev_name(&usb_dev->dev), retval); 1108 } else { 1109 spin_lock_irq (&hcd_root_hub_lock); 1110 hcd->rh_registered = 1; 1111 spin_unlock_irq (&hcd_root_hub_lock); 1112 1113 /* Did the HC die before the root hub was registered? */ 1114 if (HCD_DEAD(hcd)) 1115 usb_hc_died (hcd); /* This time clean up */ 1116 } 1117 mutex_unlock(&usb_bus_idr_lock); 1118 1119 return retval; 1120 } 1121 1122 /* 1123 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1124 * @bus: the bus which the root hub belongs to 1125 * @portnum: the port which is being resumed 1126 * 1127 * HCDs should call this function when they know that a resume signal is 1128 * being sent to a root-hub port. The root hub will be prevented from 1129 * going into autosuspend until usb_hcd_end_port_resume() is called. 1130 * 1131 * The bus's private lock must be held by the caller. 1132 */ 1133 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1134 { 1135 unsigned bit = 1 << portnum; 1136 1137 if (!(bus->resuming_ports & bit)) { 1138 bus->resuming_ports |= bit; 1139 pm_runtime_get_noresume(&bus->root_hub->dev); 1140 } 1141 } 1142 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1143 1144 /* 1145 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1146 * @bus: the bus which the root hub belongs to 1147 * @portnum: the port which is being resumed 1148 * 1149 * HCDs should call this function when they know that a resume signal has 1150 * stopped being sent to a root-hub port. The root hub will be allowed to 1151 * autosuspend again. 1152 * 1153 * The bus's private lock must be held by the caller. 1154 */ 1155 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1156 { 1157 unsigned bit = 1 << portnum; 1158 1159 if (bus->resuming_ports & bit) { 1160 bus->resuming_ports &= ~bit; 1161 pm_runtime_put_noidle(&bus->root_hub->dev); 1162 } 1163 } 1164 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1165 1166 /*-------------------------------------------------------------------------*/ 1167 1168 /** 1169 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1170 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1171 * @is_input: true iff the transaction sends data to the host 1172 * @isoc: true for isochronous transactions, false for interrupt ones 1173 * @bytecount: how many bytes in the transaction. 1174 * 1175 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1176 * 1177 * Note: 1178 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1179 * scheduled in software, this function is only used for such scheduling. 1180 */ 1181 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1182 { 1183 unsigned long tmp; 1184 1185 switch (speed) { 1186 case USB_SPEED_LOW: /* INTR only */ 1187 if (is_input) { 1188 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1189 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1190 } else { 1191 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1192 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1193 } 1194 case USB_SPEED_FULL: /* ISOC or INTR */ 1195 if (isoc) { 1196 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1197 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1198 } else { 1199 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1200 return 9107L + BW_HOST_DELAY + tmp; 1201 } 1202 case USB_SPEED_HIGH: /* ISOC or INTR */ 1203 /* FIXME adjust for input vs output */ 1204 if (isoc) 1205 tmp = HS_NSECS_ISO (bytecount); 1206 else 1207 tmp = HS_NSECS (bytecount); 1208 return tmp; 1209 default: 1210 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1211 return -1; 1212 } 1213 } 1214 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1215 1216 1217 /*-------------------------------------------------------------------------*/ 1218 1219 /* 1220 * Generic HC operations. 1221 */ 1222 1223 /*-------------------------------------------------------------------------*/ 1224 1225 /** 1226 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1227 * @hcd: host controller to which @urb was submitted 1228 * @urb: URB being submitted 1229 * 1230 * Host controller drivers should call this routine in their enqueue() 1231 * method. The HCD's private spinlock must be held and interrupts must 1232 * be disabled. The actions carried out here are required for URB 1233 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1234 * 1235 * Return: 0 for no error, otherwise a negative error code (in which case 1236 * the enqueue() method must fail). If no error occurs but enqueue() fails 1237 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1238 * the private spinlock and returning. 1239 */ 1240 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1241 { 1242 int rc = 0; 1243 1244 spin_lock(&hcd_urb_list_lock); 1245 1246 /* Check that the URB isn't being killed */ 1247 if (unlikely(atomic_read(&urb->reject))) { 1248 rc = -EPERM; 1249 goto done; 1250 } 1251 1252 if (unlikely(!urb->ep->enabled)) { 1253 rc = -ENOENT; 1254 goto done; 1255 } 1256 1257 if (unlikely(!urb->dev->can_submit)) { 1258 rc = -EHOSTUNREACH; 1259 goto done; 1260 } 1261 1262 /* 1263 * Check the host controller's state and add the URB to the 1264 * endpoint's queue. 1265 */ 1266 if (HCD_RH_RUNNING(hcd)) { 1267 urb->unlinked = 0; 1268 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1269 } else { 1270 rc = -ESHUTDOWN; 1271 goto done; 1272 } 1273 done: 1274 spin_unlock(&hcd_urb_list_lock); 1275 return rc; 1276 } 1277 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1278 1279 /** 1280 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1281 * @hcd: host controller to which @urb was submitted 1282 * @urb: URB being checked for unlinkability 1283 * @status: error code to store in @urb if the unlink succeeds 1284 * 1285 * Host controller drivers should call this routine in their dequeue() 1286 * method. The HCD's private spinlock must be held and interrupts must 1287 * be disabled. The actions carried out here are required for making 1288 * sure than an unlink is valid. 1289 * 1290 * Return: 0 for no error, otherwise a negative error code (in which case 1291 * the dequeue() method must fail). The possible error codes are: 1292 * 1293 * -EIDRM: @urb was not submitted or has already completed. 1294 * The completion function may not have been called yet. 1295 * 1296 * -EBUSY: @urb has already been unlinked. 1297 */ 1298 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1299 int status) 1300 { 1301 struct list_head *tmp; 1302 1303 /* insist the urb is still queued */ 1304 list_for_each(tmp, &urb->ep->urb_list) { 1305 if (tmp == &urb->urb_list) 1306 break; 1307 } 1308 if (tmp != &urb->urb_list) 1309 return -EIDRM; 1310 1311 /* Any status except -EINPROGRESS means something already started to 1312 * unlink this URB from the hardware. So there's no more work to do. 1313 */ 1314 if (urb->unlinked) 1315 return -EBUSY; 1316 urb->unlinked = status; 1317 return 0; 1318 } 1319 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1320 1321 /** 1322 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1323 * @hcd: host controller to which @urb was submitted 1324 * @urb: URB being unlinked 1325 * 1326 * Host controller drivers should call this routine before calling 1327 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1328 * interrupts must be disabled. The actions carried out here are required 1329 * for URB completion. 1330 */ 1331 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1332 { 1333 /* clear all state linking urb to this dev (and hcd) */ 1334 spin_lock(&hcd_urb_list_lock); 1335 list_del_init(&urb->urb_list); 1336 spin_unlock(&hcd_urb_list_lock); 1337 } 1338 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1339 1340 /* 1341 * Some usb host controllers can only perform dma using a small SRAM area. 1342 * The usb core itself is however optimized for host controllers that can dma 1343 * using regular system memory - like pci devices doing bus mastering. 1344 * 1345 * To support host controllers with limited dma capabilities we provide dma 1346 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1347 * For this to work properly the host controller code must first use the 1348 * function dma_declare_coherent_memory() to point out which memory area 1349 * that should be used for dma allocations. 1350 * 1351 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1352 * dma using dma_alloc_coherent() which in turn allocates from the memory 1353 * area pointed out with dma_declare_coherent_memory(). 1354 * 1355 * So, to summarize... 1356 * 1357 * - We need "local" memory, canonical example being 1358 * a small SRAM on a discrete controller being the 1359 * only memory that the controller can read ... 1360 * (a) "normal" kernel memory is no good, and 1361 * (b) there's not enough to share 1362 * 1363 * - The only *portable* hook for such stuff in the 1364 * DMA framework is dma_declare_coherent_memory() 1365 * 1366 * - So we use that, even though the primary requirement 1367 * is that the memory be "local" (hence addressable 1368 * by that device), not "coherent". 1369 * 1370 */ 1371 1372 static int hcd_alloc_coherent(struct usb_bus *bus, 1373 gfp_t mem_flags, dma_addr_t *dma_handle, 1374 void **vaddr_handle, size_t size, 1375 enum dma_data_direction dir) 1376 { 1377 unsigned char *vaddr; 1378 1379 if (*vaddr_handle == NULL) { 1380 WARN_ON_ONCE(1); 1381 return -EFAULT; 1382 } 1383 1384 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1385 mem_flags, dma_handle); 1386 if (!vaddr) 1387 return -ENOMEM; 1388 1389 /* 1390 * Store the virtual address of the buffer at the end 1391 * of the allocated dma buffer. The size of the buffer 1392 * may be uneven so use unaligned functions instead 1393 * of just rounding up. It makes sense to optimize for 1394 * memory footprint over access speed since the amount 1395 * of memory available for dma may be limited. 1396 */ 1397 put_unaligned((unsigned long)*vaddr_handle, 1398 (unsigned long *)(vaddr + size)); 1399 1400 if (dir == DMA_TO_DEVICE) 1401 memcpy(vaddr, *vaddr_handle, size); 1402 1403 *vaddr_handle = vaddr; 1404 return 0; 1405 } 1406 1407 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1408 void **vaddr_handle, size_t size, 1409 enum dma_data_direction dir) 1410 { 1411 unsigned char *vaddr = *vaddr_handle; 1412 1413 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1414 1415 if (dir == DMA_FROM_DEVICE) 1416 memcpy(vaddr, *vaddr_handle, size); 1417 1418 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1419 1420 *vaddr_handle = vaddr; 1421 *dma_handle = 0; 1422 } 1423 1424 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1425 { 1426 if (IS_ENABLED(CONFIG_HAS_DMA) && 1427 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1428 dma_unmap_single(hcd->self.sysdev, 1429 urb->setup_dma, 1430 sizeof(struct usb_ctrlrequest), 1431 DMA_TO_DEVICE); 1432 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1433 hcd_free_coherent(urb->dev->bus, 1434 &urb->setup_dma, 1435 (void **) &urb->setup_packet, 1436 sizeof(struct usb_ctrlrequest), 1437 DMA_TO_DEVICE); 1438 1439 /* Make it safe to call this routine more than once */ 1440 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1441 } 1442 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1443 1444 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1445 { 1446 if (hcd->driver->unmap_urb_for_dma) 1447 hcd->driver->unmap_urb_for_dma(hcd, urb); 1448 else 1449 usb_hcd_unmap_urb_for_dma(hcd, urb); 1450 } 1451 1452 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1453 { 1454 enum dma_data_direction dir; 1455 1456 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1457 1458 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1459 if (IS_ENABLED(CONFIG_HAS_DMA) && 1460 (urb->transfer_flags & URB_DMA_MAP_SG)) 1461 dma_unmap_sg(hcd->self.sysdev, 1462 urb->sg, 1463 urb->num_sgs, 1464 dir); 1465 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1466 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1467 dma_unmap_page(hcd->self.sysdev, 1468 urb->transfer_dma, 1469 urb->transfer_buffer_length, 1470 dir); 1471 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1472 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1473 dma_unmap_single(hcd->self.sysdev, 1474 urb->transfer_dma, 1475 urb->transfer_buffer_length, 1476 dir); 1477 else if (urb->transfer_flags & URB_MAP_LOCAL) 1478 hcd_free_coherent(urb->dev->bus, 1479 &urb->transfer_dma, 1480 &urb->transfer_buffer, 1481 urb->transfer_buffer_length, 1482 dir); 1483 1484 /* Make it safe to call this routine more than once */ 1485 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1486 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1487 } 1488 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1489 1490 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1491 gfp_t mem_flags) 1492 { 1493 if (hcd->driver->map_urb_for_dma) 1494 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1495 else 1496 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1497 } 1498 1499 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1500 gfp_t mem_flags) 1501 { 1502 enum dma_data_direction dir; 1503 int ret = 0; 1504 1505 /* Map the URB's buffers for DMA access. 1506 * Lower level HCD code should use *_dma exclusively, 1507 * unless it uses pio or talks to another transport, 1508 * or uses the provided scatter gather list for bulk. 1509 */ 1510 1511 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1512 if (hcd->self.uses_pio_for_control) 1513 return ret; 1514 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1515 if (is_vmalloc_addr(urb->setup_packet)) { 1516 WARN_ONCE(1, "setup packet is not dma capable\n"); 1517 return -EAGAIN; 1518 } else if (object_is_on_stack(urb->setup_packet)) { 1519 WARN_ONCE(1, "setup packet is on stack\n"); 1520 return -EAGAIN; 1521 } 1522 1523 urb->setup_dma = dma_map_single( 1524 hcd->self.sysdev, 1525 urb->setup_packet, 1526 sizeof(struct usb_ctrlrequest), 1527 DMA_TO_DEVICE); 1528 if (dma_mapping_error(hcd->self.sysdev, 1529 urb->setup_dma)) 1530 return -EAGAIN; 1531 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1532 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1533 ret = hcd_alloc_coherent( 1534 urb->dev->bus, mem_flags, 1535 &urb->setup_dma, 1536 (void **)&urb->setup_packet, 1537 sizeof(struct usb_ctrlrequest), 1538 DMA_TO_DEVICE); 1539 if (ret) 1540 return ret; 1541 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1542 } 1543 } 1544 1545 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1546 if (urb->transfer_buffer_length != 0 1547 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1548 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1549 if (urb->num_sgs) { 1550 int n; 1551 1552 /* We don't support sg for isoc transfers ! */ 1553 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1554 WARN_ON(1); 1555 return -EINVAL; 1556 } 1557 1558 n = dma_map_sg( 1559 hcd->self.sysdev, 1560 urb->sg, 1561 urb->num_sgs, 1562 dir); 1563 if (n <= 0) 1564 ret = -EAGAIN; 1565 else 1566 urb->transfer_flags |= URB_DMA_MAP_SG; 1567 urb->num_mapped_sgs = n; 1568 if (n != urb->num_sgs) 1569 urb->transfer_flags |= 1570 URB_DMA_SG_COMBINED; 1571 } else if (urb->sg) { 1572 struct scatterlist *sg = urb->sg; 1573 urb->transfer_dma = dma_map_page( 1574 hcd->self.sysdev, 1575 sg_page(sg), 1576 sg->offset, 1577 urb->transfer_buffer_length, 1578 dir); 1579 if (dma_mapping_error(hcd->self.sysdev, 1580 urb->transfer_dma)) 1581 ret = -EAGAIN; 1582 else 1583 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1584 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1585 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1586 ret = -EAGAIN; 1587 } else if (object_is_on_stack(urb->transfer_buffer)) { 1588 WARN_ONCE(1, "transfer buffer is on stack\n"); 1589 ret = -EAGAIN; 1590 } else { 1591 urb->transfer_dma = dma_map_single( 1592 hcd->self.sysdev, 1593 urb->transfer_buffer, 1594 urb->transfer_buffer_length, 1595 dir); 1596 if (dma_mapping_error(hcd->self.sysdev, 1597 urb->transfer_dma)) 1598 ret = -EAGAIN; 1599 else 1600 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1601 } 1602 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1603 ret = hcd_alloc_coherent( 1604 urb->dev->bus, mem_flags, 1605 &urb->transfer_dma, 1606 &urb->transfer_buffer, 1607 urb->transfer_buffer_length, 1608 dir); 1609 if (ret == 0) 1610 urb->transfer_flags |= URB_MAP_LOCAL; 1611 } 1612 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1613 URB_SETUP_MAP_LOCAL))) 1614 usb_hcd_unmap_urb_for_dma(hcd, urb); 1615 } 1616 return ret; 1617 } 1618 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1619 1620 /*-------------------------------------------------------------------------*/ 1621 1622 /* may be called in any context with a valid urb->dev usecount 1623 * caller surrenders "ownership" of urb 1624 * expects usb_submit_urb() to have sanity checked and conditioned all 1625 * inputs in the urb 1626 */ 1627 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1628 { 1629 int status; 1630 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1631 1632 /* increment urb's reference count as part of giving it to the HCD 1633 * (which will control it). HCD guarantees that it either returns 1634 * an error or calls giveback(), but not both. 1635 */ 1636 usb_get_urb(urb); 1637 atomic_inc(&urb->use_count); 1638 atomic_inc(&urb->dev->urbnum); 1639 usbmon_urb_submit(&hcd->self, urb); 1640 1641 /* NOTE requirements on root-hub callers (usbfs and the hub 1642 * driver, for now): URBs' urb->transfer_buffer must be 1643 * valid and usb_buffer_{sync,unmap}() not be needed, since 1644 * they could clobber root hub response data. Also, control 1645 * URBs must be submitted in process context with interrupts 1646 * enabled. 1647 */ 1648 1649 if (is_root_hub(urb->dev)) { 1650 status = rh_urb_enqueue(hcd, urb); 1651 } else { 1652 status = map_urb_for_dma(hcd, urb, mem_flags); 1653 if (likely(status == 0)) { 1654 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1655 if (unlikely(status)) 1656 unmap_urb_for_dma(hcd, urb); 1657 } 1658 } 1659 1660 if (unlikely(status)) { 1661 usbmon_urb_submit_error(&hcd->self, urb, status); 1662 urb->hcpriv = NULL; 1663 INIT_LIST_HEAD(&urb->urb_list); 1664 atomic_dec(&urb->use_count); 1665 atomic_dec(&urb->dev->urbnum); 1666 if (atomic_read(&urb->reject)) 1667 wake_up(&usb_kill_urb_queue); 1668 usb_put_urb(urb); 1669 } 1670 return status; 1671 } 1672 1673 /*-------------------------------------------------------------------------*/ 1674 1675 /* this makes the hcd giveback() the urb more quickly, by kicking it 1676 * off hardware queues (which may take a while) and returning it as 1677 * soon as practical. we've already set up the urb's return status, 1678 * but we can't know if the callback completed already. 1679 */ 1680 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1681 { 1682 int value; 1683 1684 if (is_root_hub(urb->dev)) 1685 value = usb_rh_urb_dequeue(hcd, urb, status); 1686 else { 1687 1688 /* The only reason an HCD might fail this call is if 1689 * it has not yet fully queued the urb to begin with. 1690 * Such failures should be harmless. */ 1691 value = hcd->driver->urb_dequeue(hcd, urb, status); 1692 } 1693 return value; 1694 } 1695 1696 /* 1697 * called in any context 1698 * 1699 * caller guarantees urb won't be recycled till both unlink() 1700 * and the urb's completion function return 1701 */ 1702 int usb_hcd_unlink_urb (struct urb *urb, int status) 1703 { 1704 struct usb_hcd *hcd; 1705 struct usb_device *udev = urb->dev; 1706 int retval = -EIDRM; 1707 unsigned long flags; 1708 1709 /* Prevent the device and bus from going away while 1710 * the unlink is carried out. If they are already gone 1711 * then urb->use_count must be 0, since disconnected 1712 * devices can't have any active URBs. 1713 */ 1714 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1715 if (atomic_read(&urb->use_count) > 0) { 1716 retval = 0; 1717 usb_get_dev(udev); 1718 } 1719 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1720 if (retval == 0) { 1721 hcd = bus_to_hcd(urb->dev->bus); 1722 retval = unlink1(hcd, urb, status); 1723 if (retval == 0) 1724 retval = -EINPROGRESS; 1725 else if (retval != -EIDRM && retval != -EBUSY) 1726 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1727 urb, retval); 1728 usb_put_dev(udev); 1729 } 1730 return retval; 1731 } 1732 1733 /*-------------------------------------------------------------------------*/ 1734 1735 static void __usb_hcd_giveback_urb(struct urb *urb) 1736 { 1737 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1738 struct usb_anchor *anchor = urb->anchor; 1739 int status = urb->unlinked; 1740 unsigned long flags; 1741 1742 urb->hcpriv = NULL; 1743 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1744 urb->actual_length < urb->transfer_buffer_length && 1745 !status)) 1746 status = -EREMOTEIO; 1747 1748 unmap_urb_for_dma(hcd, urb); 1749 usbmon_urb_complete(&hcd->self, urb, status); 1750 usb_anchor_suspend_wakeups(anchor); 1751 usb_unanchor_urb(urb); 1752 if (likely(status == 0)) 1753 usb_led_activity(USB_LED_EVENT_HOST); 1754 1755 /* pass ownership to the completion handler */ 1756 urb->status = status; 1757 1758 /* 1759 * We disable local IRQs here avoid possible deadlock because 1760 * drivers may call spin_lock() to hold lock which might be 1761 * acquired in one hard interrupt handler. 1762 * 1763 * The local_irq_save()/local_irq_restore() around complete() 1764 * will be removed if current USB drivers have been cleaned up 1765 * and no one may trigger the above deadlock situation when 1766 * running complete() in tasklet. 1767 */ 1768 local_irq_save(flags); 1769 urb->complete(urb); 1770 local_irq_restore(flags); 1771 1772 usb_anchor_resume_wakeups(anchor); 1773 atomic_dec(&urb->use_count); 1774 if (unlikely(atomic_read(&urb->reject))) 1775 wake_up(&usb_kill_urb_queue); 1776 usb_put_urb(urb); 1777 } 1778 1779 static void usb_giveback_urb_bh(unsigned long param) 1780 { 1781 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1782 struct list_head local_list; 1783 1784 spin_lock_irq(&bh->lock); 1785 bh->running = true; 1786 restart: 1787 list_replace_init(&bh->head, &local_list); 1788 spin_unlock_irq(&bh->lock); 1789 1790 while (!list_empty(&local_list)) { 1791 struct urb *urb; 1792 1793 urb = list_entry(local_list.next, struct urb, urb_list); 1794 list_del_init(&urb->urb_list); 1795 bh->completing_ep = urb->ep; 1796 __usb_hcd_giveback_urb(urb); 1797 bh->completing_ep = NULL; 1798 } 1799 1800 /* check if there are new URBs to giveback */ 1801 spin_lock_irq(&bh->lock); 1802 if (!list_empty(&bh->head)) 1803 goto restart; 1804 bh->running = false; 1805 spin_unlock_irq(&bh->lock); 1806 } 1807 1808 /** 1809 * usb_hcd_giveback_urb - return URB from HCD to device driver 1810 * @hcd: host controller returning the URB 1811 * @urb: urb being returned to the USB device driver. 1812 * @status: completion status code for the URB. 1813 * Context: in_interrupt() 1814 * 1815 * This hands the URB from HCD to its USB device driver, using its 1816 * completion function. The HCD has freed all per-urb resources 1817 * (and is done using urb->hcpriv). It also released all HCD locks; 1818 * the device driver won't cause problems if it frees, modifies, 1819 * or resubmits this URB. 1820 * 1821 * If @urb was unlinked, the value of @status will be overridden by 1822 * @urb->unlinked. Erroneous short transfers are detected in case 1823 * the HCD hasn't checked for them. 1824 */ 1825 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1826 { 1827 struct giveback_urb_bh *bh; 1828 bool running, high_prio_bh; 1829 1830 /* pass status to tasklet via unlinked */ 1831 if (likely(!urb->unlinked)) 1832 urb->unlinked = status; 1833 1834 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1835 __usb_hcd_giveback_urb(urb); 1836 return; 1837 } 1838 1839 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1840 bh = &hcd->high_prio_bh; 1841 high_prio_bh = true; 1842 } else { 1843 bh = &hcd->low_prio_bh; 1844 high_prio_bh = false; 1845 } 1846 1847 spin_lock(&bh->lock); 1848 list_add_tail(&urb->urb_list, &bh->head); 1849 running = bh->running; 1850 spin_unlock(&bh->lock); 1851 1852 if (running) 1853 ; 1854 else if (high_prio_bh) 1855 tasklet_hi_schedule(&bh->bh); 1856 else 1857 tasklet_schedule(&bh->bh); 1858 } 1859 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1860 1861 /*-------------------------------------------------------------------------*/ 1862 1863 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1864 * queue to drain completely. The caller must first insure that no more 1865 * URBs can be submitted for this endpoint. 1866 */ 1867 void usb_hcd_flush_endpoint(struct usb_device *udev, 1868 struct usb_host_endpoint *ep) 1869 { 1870 struct usb_hcd *hcd; 1871 struct urb *urb; 1872 1873 if (!ep) 1874 return; 1875 might_sleep(); 1876 hcd = bus_to_hcd(udev->bus); 1877 1878 /* No more submits can occur */ 1879 spin_lock_irq(&hcd_urb_list_lock); 1880 rescan: 1881 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1882 int is_in; 1883 1884 if (urb->unlinked) 1885 continue; 1886 usb_get_urb (urb); 1887 is_in = usb_urb_dir_in(urb); 1888 spin_unlock(&hcd_urb_list_lock); 1889 1890 /* kick hcd */ 1891 unlink1(hcd, urb, -ESHUTDOWN); 1892 dev_dbg (hcd->self.controller, 1893 "shutdown urb %pK ep%d%s%s\n", 1894 urb, usb_endpoint_num(&ep->desc), 1895 is_in ? "in" : "out", 1896 ({ char *s; 1897 1898 switch (usb_endpoint_type(&ep->desc)) { 1899 case USB_ENDPOINT_XFER_CONTROL: 1900 s = ""; break; 1901 case USB_ENDPOINT_XFER_BULK: 1902 s = "-bulk"; break; 1903 case USB_ENDPOINT_XFER_INT: 1904 s = "-intr"; break; 1905 default: 1906 s = "-iso"; break; 1907 }; 1908 s; 1909 })); 1910 usb_put_urb (urb); 1911 1912 /* list contents may have changed */ 1913 spin_lock(&hcd_urb_list_lock); 1914 goto rescan; 1915 } 1916 spin_unlock_irq(&hcd_urb_list_lock); 1917 1918 /* Wait until the endpoint queue is completely empty */ 1919 while (!list_empty (&ep->urb_list)) { 1920 spin_lock_irq(&hcd_urb_list_lock); 1921 1922 /* The list may have changed while we acquired the spinlock */ 1923 urb = NULL; 1924 if (!list_empty (&ep->urb_list)) { 1925 urb = list_entry (ep->urb_list.prev, struct urb, 1926 urb_list); 1927 usb_get_urb (urb); 1928 } 1929 spin_unlock_irq(&hcd_urb_list_lock); 1930 1931 if (urb) { 1932 usb_kill_urb (urb); 1933 usb_put_urb (urb); 1934 } 1935 } 1936 } 1937 1938 /** 1939 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1940 * the bus bandwidth 1941 * @udev: target &usb_device 1942 * @new_config: new configuration to install 1943 * @cur_alt: the current alternate interface setting 1944 * @new_alt: alternate interface setting that is being installed 1945 * 1946 * To change configurations, pass in the new configuration in new_config, 1947 * and pass NULL for cur_alt and new_alt. 1948 * 1949 * To reset a device's configuration (put the device in the ADDRESSED state), 1950 * pass in NULL for new_config, cur_alt, and new_alt. 1951 * 1952 * To change alternate interface settings, pass in NULL for new_config, 1953 * pass in the current alternate interface setting in cur_alt, 1954 * and pass in the new alternate interface setting in new_alt. 1955 * 1956 * Return: An error if the requested bandwidth change exceeds the 1957 * bus bandwidth or host controller internal resources. 1958 */ 1959 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1960 struct usb_host_config *new_config, 1961 struct usb_host_interface *cur_alt, 1962 struct usb_host_interface *new_alt) 1963 { 1964 int num_intfs, i, j; 1965 struct usb_host_interface *alt = NULL; 1966 int ret = 0; 1967 struct usb_hcd *hcd; 1968 struct usb_host_endpoint *ep; 1969 1970 hcd = bus_to_hcd(udev->bus); 1971 if (!hcd->driver->check_bandwidth) 1972 return 0; 1973 1974 /* Configuration is being removed - set configuration 0 */ 1975 if (!new_config && !cur_alt) { 1976 for (i = 1; i < 16; ++i) { 1977 ep = udev->ep_out[i]; 1978 if (ep) 1979 hcd->driver->drop_endpoint(hcd, udev, ep); 1980 ep = udev->ep_in[i]; 1981 if (ep) 1982 hcd->driver->drop_endpoint(hcd, udev, ep); 1983 } 1984 hcd->driver->check_bandwidth(hcd, udev); 1985 return 0; 1986 } 1987 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1988 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1989 * of the bus. There will always be bandwidth for endpoint 0, so it's 1990 * ok to exclude it. 1991 */ 1992 if (new_config) { 1993 num_intfs = new_config->desc.bNumInterfaces; 1994 /* Remove endpoints (except endpoint 0, which is always on the 1995 * schedule) from the old config from the schedule 1996 */ 1997 for (i = 1; i < 16; ++i) { 1998 ep = udev->ep_out[i]; 1999 if (ep) { 2000 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2001 if (ret < 0) 2002 goto reset; 2003 } 2004 ep = udev->ep_in[i]; 2005 if (ep) { 2006 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 2007 if (ret < 0) 2008 goto reset; 2009 } 2010 } 2011 for (i = 0; i < num_intfs; ++i) { 2012 struct usb_host_interface *first_alt; 2013 int iface_num; 2014 2015 first_alt = &new_config->intf_cache[i]->altsetting[0]; 2016 iface_num = first_alt->desc.bInterfaceNumber; 2017 /* Set up endpoints for alternate interface setting 0 */ 2018 alt = usb_find_alt_setting(new_config, iface_num, 0); 2019 if (!alt) 2020 /* No alt setting 0? Pick the first setting. */ 2021 alt = first_alt; 2022 2023 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 2024 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 2025 if (ret < 0) 2026 goto reset; 2027 } 2028 } 2029 } 2030 if (cur_alt && new_alt) { 2031 struct usb_interface *iface = usb_ifnum_to_if(udev, 2032 cur_alt->desc.bInterfaceNumber); 2033 2034 if (!iface) 2035 return -EINVAL; 2036 if (iface->resetting_device) { 2037 /* 2038 * The USB core just reset the device, so the xHCI host 2039 * and the device will think alt setting 0 is installed. 2040 * However, the USB core will pass in the alternate 2041 * setting installed before the reset as cur_alt. Dig 2042 * out the alternate setting 0 structure, or the first 2043 * alternate setting if a broken device doesn't have alt 2044 * setting 0. 2045 */ 2046 cur_alt = usb_altnum_to_altsetting(iface, 0); 2047 if (!cur_alt) 2048 cur_alt = &iface->altsetting[0]; 2049 } 2050 2051 /* Drop all the endpoints in the current alt setting */ 2052 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2053 ret = hcd->driver->drop_endpoint(hcd, udev, 2054 &cur_alt->endpoint[i]); 2055 if (ret < 0) 2056 goto reset; 2057 } 2058 /* Add all the endpoints in the new alt setting */ 2059 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2060 ret = hcd->driver->add_endpoint(hcd, udev, 2061 &new_alt->endpoint[i]); 2062 if (ret < 0) 2063 goto reset; 2064 } 2065 } 2066 ret = hcd->driver->check_bandwidth(hcd, udev); 2067 reset: 2068 if (ret < 0) 2069 hcd->driver->reset_bandwidth(hcd, udev); 2070 return ret; 2071 } 2072 2073 /* Disables the endpoint: synchronizes with the hcd to make sure all 2074 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2075 * have been called previously. Use for set_configuration, set_interface, 2076 * driver removal, physical disconnect. 2077 * 2078 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2079 * type, maxpacket size, toggle, halt status, and scheduling. 2080 */ 2081 void usb_hcd_disable_endpoint(struct usb_device *udev, 2082 struct usb_host_endpoint *ep) 2083 { 2084 struct usb_hcd *hcd; 2085 2086 might_sleep(); 2087 hcd = bus_to_hcd(udev->bus); 2088 if (hcd->driver->endpoint_disable) 2089 hcd->driver->endpoint_disable(hcd, ep); 2090 } 2091 2092 /** 2093 * usb_hcd_reset_endpoint - reset host endpoint state 2094 * @udev: USB device. 2095 * @ep: the endpoint to reset. 2096 * 2097 * Resets any host endpoint state such as the toggle bit, sequence 2098 * number and current window. 2099 */ 2100 void usb_hcd_reset_endpoint(struct usb_device *udev, 2101 struct usb_host_endpoint *ep) 2102 { 2103 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2104 2105 if (hcd->driver->endpoint_reset) 2106 hcd->driver->endpoint_reset(hcd, ep); 2107 else { 2108 int epnum = usb_endpoint_num(&ep->desc); 2109 int is_out = usb_endpoint_dir_out(&ep->desc); 2110 int is_control = usb_endpoint_xfer_control(&ep->desc); 2111 2112 usb_settoggle(udev, epnum, is_out, 0); 2113 if (is_control) 2114 usb_settoggle(udev, epnum, !is_out, 0); 2115 } 2116 } 2117 2118 /** 2119 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2120 * @interface: alternate setting that includes all endpoints. 2121 * @eps: array of endpoints that need streams. 2122 * @num_eps: number of endpoints in the array. 2123 * @num_streams: number of streams to allocate. 2124 * @mem_flags: flags hcd should use to allocate memory. 2125 * 2126 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2127 * Drivers may queue multiple transfers to different stream IDs, which may 2128 * complete in a different order than they were queued. 2129 * 2130 * Return: On success, the number of allocated streams. On failure, a negative 2131 * error code. 2132 */ 2133 int usb_alloc_streams(struct usb_interface *interface, 2134 struct usb_host_endpoint **eps, unsigned int num_eps, 2135 unsigned int num_streams, gfp_t mem_flags) 2136 { 2137 struct usb_hcd *hcd; 2138 struct usb_device *dev; 2139 int i, ret; 2140 2141 dev = interface_to_usbdev(interface); 2142 hcd = bus_to_hcd(dev->bus); 2143 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2144 return -EINVAL; 2145 if (dev->speed < USB_SPEED_SUPER) 2146 return -EINVAL; 2147 if (dev->state < USB_STATE_CONFIGURED) 2148 return -ENODEV; 2149 2150 for (i = 0; i < num_eps; i++) { 2151 /* Streams only apply to bulk endpoints. */ 2152 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2153 return -EINVAL; 2154 /* Re-alloc is not allowed */ 2155 if (eps[i]->streams) 2156 return -EINVAL; 2157 } 2158 2159 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2160 num_streams, mem_flags); 2161 if (ret < 0) 2162 return ret; 2163 2164 for (i = 0; i < num_eps; i++) 2165 eps[i]->streams = ret; 2166 2167 return ret; 2168 } 2169 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2170 2171 /** 2172 * usb_free_streams - free bulk endpoint stream IDs. 2173 * @interface: alternate setting that includes all endpoints. 2174 * @eps: array of endpoints to remove streams from. 2175 * @num_eps: number of endpoints in the array. 2176 * @mem_flags: flags hcd should use to allocate memory. 2177 * 2178 * Reverts a group of bulk endpoints back to not using stream IDs. 2179 * Can fail if we are given bad arguments, or HCD is broken. 2180 * 2181 * Return: 0 on success. On failure, a negative error code. 2182 */ 2183 int usb_free_streams(struct usb_interface *interface, 2184 struct usb_host_endpoint **eps, unsigned int num_eps, 2185 gfp_t mem_flags) 2186 { 2187 struct usb_hcd *hcd; 2188 struct usb_device *dev; 2189 int i, ret; 2190 2191 dev = interface_to_usbdev(interface); 2192 hcd = bus_to_hcd(dev->bus); 2193 if (dev->speed < USB_SPEED_SUPER) 2194 return -EINVAL; 2195 2196 /* Double-free is not allowed */ 2197 for (i = 0; i < num_eps; i++) 2198 if (!eps[i] || !eps[i]->streams) 2199 return -EINVAL; 2200 2201 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2202 if (ret < 0) 2203 return ret; 2204 2205 for (i = 0; i < num_eps; i++) 2206 eps[i]->streams = 0; 2207 2208 return ret; 2209 } 2210 EXPORT_SYMBOL_GPL(usb_free_streams); 2211 2212 /* Protect against drivers that try to unlink URBs after the device 2213 * is gone, by waiting until all unlinks for @udev are finished. 2214 * Since we don't currently track URBs by device, simply wait until 2215 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2216 */ 2217 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2218 { 2219 spin_lock_irq(&hcd_urb_unlink_lock); 2220 spin_unlock_irq(&hcd_urb_unlink_lock); 2221 } 2222 2223 /*-------------------------------------------------------------------------*/ 2224 2225 /* called in any context */ 2226 int usb_hcd_get_frame_number (struct usb_device *udev) 2227 { 2228 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2229 2230 if (!HCD_RH_RUNNING(hcd)) 2231 return -ESHUTDOWN; 2232 return hcd->driver->get_frame_number (hcd); 2233 } 2234 2235 /*-------------------------------------------------------------------------*/ 2236 2237 #ifdef CONFIG_PM 2238 2239 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2240 { 2241 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2242 int status; 2243 int old_state = hcd->state; 2244 2245 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2246 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2247 rhdev->do_remote_wakeup); 2248 if (HCD_DEAD(hcd)) { 2249 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2250 return 0; 2251 } 2252 2253 if (!hcd->driver->bus_suspend) { 2254 status = -ENOENT; 2255 } else { 2256 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2257 hcd->state = HC_STATE_QUIESCING; 2258 status = hcd->driver->bus_suspend(hcd); 2259 } 2260 if (status == 0) { 2261 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2262 hcd->state = HC_STATE_SUSPENDED; 2263 2264 if (!PMSG_IS_AUTO(msg)) 2265 usb_phy_roothub_suspend(hcd->self.sysdev, 2266 hcd->phy_roothub); 2267 2268 /* Did we race with a root-hub wakeup event? */ 2269 if (rhdev->do_remote_wakeup) { 2270 char buffer[6]; 2271 2272 status = hcd->driver->hub_status_data(hcd, buffer); 2273 if (status != 0) { 2274 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2275 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2276 status = -EBUSY; 2277 } 2278 } 2279 } else { 2280 spin_lock_irq(&hcd_root_hub_lock); 2281 if (!HCD_DEAD(hcd)) { 2282 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2283 hcd->state = old_state; 2284 } 2285 spin_unlock_irq(&hcd_root_hub_lock); 2286 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2287 "suspend", status); 2288 } 2289 return status; 2290 } 2291 2292 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2293 { 2294 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2295 int status; 2296 int old_state = hcd->state; 2297 2298 dev_dbg(&rhdev->dev, "usb %sresume\n", 2299 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2300 if (HCD_DEAD(hcd)) { 2301 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2302 return 0; 2303 } 2304 2305 if (!PMSG_IS_AUTO(msg)) { 2306 status = usb_phy_roothub_resume(hcd->self.sysdev, 2307 hcd->phy_roothub); 2308 if (status) 2309 return status; 2310 } 2311 2312 if (!hcd->driver->bus_resume) 2313 return -ENOENT; 2314 if (HCD_RH_RUNNING(hcd)) 2315 return 0; 2316 2317 hcd->state = HC_STATE_RESUMING; 2318 status = hcd->driver->bus_resume(hcd); 2319 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2320 if (status == 0) { 2321 struct usb_device *udev; 2322 int port1; 2323 2324 spin_lock_irq(&hcd_root_hub_lock); 2325 if (!HCD_DEAD(hcd)) { 2326 usb_set_device_state(rhdev, rhdev->actconfig 2327 ? USB_STATE_CONFIGURED 2328 : USB_STATE_ADDRESS); 2329 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2330 hcd->state = HC_STATE_RUNNING; 2331 } 2332 spin_unlock_irq(&hcd_root_hub_lock); 2333 2334 /* 2335 * Check whether any of the enabled ports on the root hub are 2336 * unsuspended. If they are then a TRSMRCY delay is needed 2337 * (this is what the USB-2 spec calls a "global resume"). 2338 * Otherwise we can skip the delay. 2339 */ 2340 usb_hub_for_each_child(rhdev, port1, udev) { 2341 if (udev->state != USB_STATE_NOTATTACHED && 2342 !udev->port_is_suspended) { 2343 usleep_range(10000, 11000); /* TRSMRCY */ 2344 break; 2345 } 2346 } 2347 } else { 2348 hcd->state = old_state; 2349 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2350 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2351 "resume", status); 2352 if (status != -ESHUTDOWN) 2353 usb_hc_died(hcd); 2354 } 2355 return status; 2356 } 2357 2358 /* Workqueue routine for root-hub remote wakeup */ 2359 static void hcd_resume_work(struct work_struct *work) 2360 { 2361 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2362 struct usb_device *udev = hcd->self.root_hub; 2363 2364 usb_remote_wakeup(udev); 2365 } 2366 2367 /** 2368 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2369 * @hcd: host controller for this root hub 2370 * 2371 * The USB host controller calls this function when its root hub is 2372 * suspended (with the remote wakeup feature enabled) and a remote 2373 * wakeup request is received. The routine submits a workqueue request 2374 * to resume the root hub (that is, manage its downstream ports again). 2375 */ 2376 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2377 { 2378 unsigned long flags; 2379 2380 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2381 if (hcd->rh_registered) { 2382 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2383 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2384 queue_work(pm_wq, &hcd->wakeup_work); 2385 } 2386 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2387 } 2388 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2389 2390 #endif /* CONFIG_PM */ 2391 2392 /*-------------------------------------------------------------------------*/ 2393 2394 #ifdef CONFIG_USB_OTG 2395 2396 /** 2397 * usb_bus_start_enum - start immediate enumeration (for OTG) 2398 * @bus: the bus (must use hcd framework) 2399 * @port_num: 1-based number of port; usually bus->otg_port 2400 * Context: in_interrupt() 2401 * 2402 * Starts enumeration, with an immediate reset followed later by 2403 * hub_wq identifying and possibly configuring the device. 2404 * This is needed by OTG controller drivers, where it helps meet 2405 * HNP protocol timing requirements for starting a port reset. 2406 * 2407 * Return: 0 if successful. 2408 */ 2409 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2410 { 2411 struct usb_hcd *hcd; 2412 int status = -EOPNOTSUPP; 2413 2414 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2415 * boards with root hubs hooked up to internal devices (instead of 2416 * just the OTG port) may need more attention to resetting... 2417 */ 2418 hcd = bus_to_hcd(bus); 2419 if (port_num && hcd->driver->start_port_reset) 2420 status = hcd->driver->start_port_reset(hcd, port_num); 2421 2422 /* allocate hub_wq shortly after (first) root port reset finishes; 2423 * it may issue others, until at least 50 msecs have passed. 2424 */ 2425 if (status == 0) 2426 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2427 return status; 2428 } 2429 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2430 2431 #endif 2432 2433 /*-------------------------------------------------------------------------*/ 2434 2435 /** 2436 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2437 * @irq: the IRQ being raised 2438 * @__hcd: pointer to the HCD whose IRQ is being signaled 2439 * 2440 * If the controller isn't HALTed, calls the driver's irq handler. 2441 * Checks whether the controller is now dead. 2442 * 2443 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2444 */ 2445 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2446 { 2447 struct usb_hcd *hcd = __hcd; 2448 irqreturn_t rc; 2449 2450 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2451 rc = IRQ_NONE; 2452 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2453 rc = IRQ_NONE; 2454 else 2455 rc = IRQ_HANDLED; 2456 2457 return rc; 2458 } 2459 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2460 2461 /*-------------------------------------------------------------------------*/ 2462 2463 /** 2464 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2465 * @hcd: pointer to the HCD representing the controller 2466 * 2467 * This is called by bus glue to report a USB host controller that died 2468 * while operations may still have been pending. It's called automatically 2469 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2470 * 2471 * Only call this function with the primary HCD. 2472 */ 2473 void usb_hc_died (struct usb_hcd *hcd) 2474 { 2475 unsigned long flags; 2476 2477 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2478 2479 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2480 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2481 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2482 if (hcd->rh_registered) { 2483 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2484 2485 /* make hub_wq clean up old urbs and devices */ 2486 usb_set_device_state (hcd->self.root_hub, 2487 USB_STATE_NOTATTACHED); 2488 usb_kick_hub_wq(hcd->self.root_hub); 2489 } 2490 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2491 hcd = hcd->shared_hcd; 2492 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2493 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2494 if (hcd->rh_registered) { 2495 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2496 2497 /* make hub_wq clean up old urbs and devices */ 2498 usb_set_device_state(hcd->self.root_hub, 2499 USB_STATE_NOTATTACHED); 2500 usb_kick_hub_wq(hcd->self.root_hub); 2501 } 2502 } 2503 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2504 /* Make sure that the other roothub is also deallocated. */ 2505 } 2506 EXPORT_SYMBOL_GPL (usb_hc_died); 2507 2508 /*-------------------------------------------------------------------------*/ 2509 2510 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2511 { 2512 2513 spin_lock_init(&bh->lock); 2514 INIT_LIST_HEAD(&bh->head); 2515 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2516 } 2517 2518 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2519 struct device *sysdev, struct device *dev, const char *bus_name, 2520 struct usb_hcd *primary_hcd) 2521 { 2522 struct usb_hcd *hcd; 2523 2524 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2525 if (!hcd) 2526 return NULL; 2527 if (primary_hcd == NULL) { 2528 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2529 GFP_KERNEL); 2530 if (!hcd->address0_mutex) { 2531 kfree(hcd); 2532 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2533 return NULL; 2534 } 2535 mutex_init(hcd->address0_mutex); 2536 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2537 GFP_KERNEL); 2538 if (!hcd->bandwidth_mutex) { 2539 kfree(hcd->address0_mutex); 2540 kfree(hcd); 2541 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2542 return NULL; 2543 } 2544 mutex_init(hcd->bandwidth_mutex); 2545 dev_set_drvdata(dev, hcd); 2546 } else { 2547 mutex_lock(&usb_port_peer_mutex); 2548 hcd->address0_mutex = primary_hcd->address0_mutex; 2549 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2550 hcd->primary_hcd = primary_hcd; 2551 primary_hcd->primary_hcd = primary_hcd; 2552 hcd->shared_hcd = primary_hcd; 2553 primary_hcd->shared_hcd = hcd; 2554 mutex_unlock(&usb_port_peer_mutex); 2555 } 2556 2557 kref_init(&hcd->kref); 2558 2559 usb_bus_init(&hcd->self); 2560 hcd->self.controller = dev; 2561 hcd->self.sysdev = sysdev; 2562 hcd->self.bus_name = bus_name; 2563 hcd->self.uses_dma = (sysdev->dma_mask != NULL); 2564 2565 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2566 #ifdef CONFIG_PM 2567 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2568 #endif 2569 2570 hcd->driver = driver; 2571 hcd->speed = driver->flags & HCD_MASK; 2572 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2573 "USB Host Controller"; 2574 return hcd; 2575 } 2576 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2577 2578 /** 2579 * usb_create_shared_hcd - create and initialize an HCD structure 2580 * @driver: HC driver that will use this hcd 2581 * @dev: device for this HC, stored in hcd->self.controller 2582 * @bus_name: value to store in hcd->self.bus_name 2583 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2584 * PCI device. Only allocate certain resources for the primary HCD 2585 * Context: !in_interrupt() 2586 * 2587 * Allocate a struct usb_hcd, with extra space at the end for the 2588 * HC driver's private data. Initialize the generic members of the 2589 * hcd structure. 2590 * 2591 * Return: On success, a pointer to the created and initialized HCD structure. 2592 * On failure (e.g. if memory is unavailable), %NULL. 2593 */ 2594 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2595 struct device *dev, const char *bus_name, 2596 struct usb_hcd *primary_hcd) 2597 { 2598 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2599 } 2600 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2601 2602 /** 2603 * usb_create_hcd - create and initialize an HCD structure 2604 * @driver: HC driver that will use this hcd 2605 * @dev: device for this HC, stored in hcd->self.controller 2606 * @bus_name: value to store in hcd->self.bus_name 2607 * Context: !in_interrupt() 2608 * 2609 * Allocate a struct usb_hcd, with extra space at the end for the 2610 * HC driver's private data. Initialize the generic members of the 2611 * hcd structure. 2612 * 2613 * Return: On success, a pointer to the created and initialized HCD 2614 * structure. On failure (e.g. if memory is unavailable), %NULL. 2615 */ 2616 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2617 struct device *dev, const char *bus_name) 2618 { 2619 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2620 } 2621 EXPORT_SYMBOL_GPL(usb_create_hcd); 2622 2623 /* 2624 * Roothubs that share one PCI device must also share the bandwidth mutex. 2625 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2626 * deallocated. 2627 * 2628 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2629 * freed. When hcd_release() is called for either hcd in a peer set, 2630 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2631 */ 2632 static void hcd_release(struct kref *kref) 2633 { 2634 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2635 2636 mutex_lock(&usb_port_peer_mutex); 2637 if (hcd->shared_hcd) { 2638 struct usb_hcd *peer = hcd->shared_hcd; 2639 2640 peer->shared_hcd = NULL; 2641 peer->primary_hcd = NULL; 2642 } else { 2643 kfree(hcd->address0_mutex); 2644 kfree(hcd->bandwidth_mutex); 2645 } 2646 mutex_unlock(&usb_port_peer_mutex); 2647 kfree(hcd); 2648 } 2649 2650 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2651 { 2652 if (hcd) 2653 kref_get (&hcd->kref); 2654 return hcd; 2655 } 2656 EXPORT_SYMBOL_GPL(usb_get_hcd); 2657 2658 void usb_put_hcd (struct usb_hcd *hcd) 2659 { 2660 if (hcd) 2661 kref_put (&hcd->kref, hcd_release); 2662 } 2663 EXPORT_SYMBOL_GPL(usb_put_hcd); 2664 2665 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2666 { 2667 if (!hcd->primary_hcd) 2668 return 1; 2669 return hcd == hcd->primary_hcd; 2670 } 2671 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2672 2673 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2674 { 2675 if (!hcd->driver->find_raw_port_number) 2676 return port1; 2677 2678 return hcd->driver->find_raw_port_number(hcd, port1); 2679 } 2680 2681 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2682 unsigned int irqnum, unsigned long irqflags) 2683 { 2684 int retval; 2685 2686 if (hcd->driver->irq) { 2687 2688 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2689 hcd->driver->description, hcd->self.busnum); 2690 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2691 hcd->irq_descr, hcd); 2692 if (retval != 0) { 2693 dev_err(hcd->self.controller, 2694 "request interrupt %d failed\n", 2695 irqnum); 2696 return retval; 2697 } 2698 hcd->irq = irqnum; 2699 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2700 (hcd->driver->flags & HCD_MEMORY) ? 2701 "io mem" : "io base", 2702 (unsigned long long)hcd->rsrc_start); 2703 } else { 2704 hcd->irq = 0; 2705 if (hcd->rsrc_start) 2706 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2707 (hcd->driver->flags & HCD_MEMORY) ? 2708 "io mem" : "io base", 2709 (unsigned long long)hcd->rsrc_start); 2710 } 2711 return 0; 2712 } 2713 2714 /* 2715 * Before we free this root hub, flush in-flight peering attempts 2716 * and disable peer lookups 2717 */ 2718 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2719 { 2720 struct usb_device *rhdev; 2721 2722 mutex_lock(&usb_port_peer_mutex); 2723 rhdev = hcd->self.root_hub; 2724 hcd->self.root_hub = NULL; 2725 mutex_unlock(&usb_port_peer_mutex); 2726 usb_put_dev(rhdev); 2727 } 2728 2729 /** 2730 * usb_add_hcd - finish generic HCD structure initialization and register 2731 * @hcd: the usb_hcd structure to initialize 2732 * @irqnum: Interrupt line to allocate 2733 * @irqflags: Interrupt type flags 2734 * 2735 * Finish the remaining parts of generic HCD initialization: allocate the 2736 * buffers of consistent memory, register the bus, request the IRQ line, 2737 * and call the driver's reset() and start() routines. 2738 */ 2739 int usb_add_hcd(struct usb_hcd *hcd, 2740 unsigned int irqnum, unsigned long irqflags) 2741 { 2742 int retval; 2743 struct usb_device *rhdev; 2744 2745 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->skip_phy_initialization) { 2746 struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0); 2747 2748 if (IS_ERR(phy)) { 2749 retval = PTR_ERR(phy); 2750 if (retval == -EPROBE_DEFER) 2751 return retval; 2752 } else { 2753 retval = usb_phy_init(phy); 2754 if (retval) { 2755 usb_put_phy(phy); 2756 return retval; 2757 } 2758 hcd->usb_phy = phy; 2759 hcd->remove_phy = 1; 2760 } 2761 } 2762 2763 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2764 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2765 if (IS_ERR(hcd->phy_roothub)) { 2766 retval = PTR_ERR(hcd->phy_roothub); 2767 goto err_phy_roothub_alloc; 2768 } 2769 2770 retval = usb_phy_roothub_init(hcd->phy_roothub); 2771 if (retval) 2772 goto err_phy_roothub_alloc; 2773 2774 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2775 if (retval) 2776 goto err_usb_phy_roothub_power_on; 2777 } 2778 2779 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2780 2781 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2782 if (authorized_default < 0 || authorized_default > 1) { 2783 if (hcd->wireless) 2784 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2785 else 2786 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2787 } else { 2788 if (authorized_default) 2789 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2790 else 2791 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2792 } 2793 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2794 2795 /* per default all interfaces are authorized */ 2796 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2797 2798 /* HC is in reset state, but accessible. Now do the one-time init, 2799 * bottom up so that hcds can customize the root hubs before hub_wq 2800 * starts talking to them. (Note, bus id is assigned early too.) 2801 */ 2802 retval = hcd_buffer_create(hcd); 2803 if (retval != 0) { 2804 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2805 goto err_create_buf; 2806 } 2807 2808 retval = usb_register_bus(&hcd->self); 2809 if (retval < 0) 2810 goto err_register_bus; 2811 2812 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2813 if (rhdev == NULL) { 2814 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2815 retval = -ENOMEM; 2816 goto err_allocate_root_hub; 2817 } 2818 mutex_lock(&usb_port_peer_mutex); 2819 hcd->self.root_hub = rhdev; 2820 mutex_unlock(&usb_port_peer_mutex); 2821 2822 switch (hcd->speed) { 2823 case HCD_USB11: 2824 rhdev->speed = USB_SPEED_FULL; 2825 break; 2826 case HCD_USB2: 2827 rhdev->speed = USB_SPEED_HIGH; 2828 break; 2829 case HCD_USB25: 2830 rhdev->speed = USB_SPEED_WIRELESS; 2831 break; 2832 case HCD_USB3: 2833 rhdev->speed = USB_SPEED_SUPER; 2834 break; 2835 case HCD_USB31: 2836 rhdev->speed = USB_SPEED_SUPER_PLUS; 2837 break; 2838 default: 2839 retval = -EINVAL; 2840 goto err_set_rh_speed; 2841 } 2842 2843 /* wakeup flag init defaults to "everything works" for root hubs, 2844 * but drivers can override it in reset() if needed, along with 2845 * recording the overall controller's system wakeup capability. 2846 */ 2847 device_set_wakeup_capable(&rhdev->dev, 1); 2848 2849 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2850 * registered. But since the controller can die at any time, 2851 * let's initialize the flag before touching the hardware. 2852 */ 2853 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2854 2855 /* "reset" is misnamed; its role is now one-time init. the controller 2856 * should already have been reset (and boot firmware kicked off etc). 2857 */ 2858 if (hcd->driver->reset) { 2859 retval = hcd->driver->reset(hcd); 2860 if (retval < 0) { 2861 dev_err(hcd->self.controller, "can't setup: %d\n", 2862 retval); 2863 goto err_hcd_driver_setup; 2864 } 2865 } 2866 hcd->rh_pollable = 1; 2867 2868 /* NOTE: root hub and controller capabilities may not be the same */ 2869 if (device_can_wakeup(hcd->self.controller) 2870 && device_can_wakeup(&hcd->self.root_hub->dev)) 2871 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2872 2873 /* initialize tasklets */ 2874 init_giveback_urb_bh(&hcd->high_prio_bh); 2875 init_giveback_urb_bh(&hcd->low_prio_bh); 2876 2877 /* enable irqs just before we start the controller, 2878 * if the BIOS provides legacy PCI irqs. 2879 */ 2880 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2881 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2882 if (retval) 2883 goto err_request_irq; 2884 } 2885 2886 hcd->state = HC_STATE_RUNNING; 2887 retval = hcd->driver->start(hcd); 2888 if (retval < 0) { 2889 dev_err(hcd->self.controller, "startup error %d\n", retval); 2890 goto err_hcd_driver_start; 2891 } 2892 2893 /* starting here, usbcore will pay attention to this root hub */ 2894 retval = register_root_hub(hcd); 2895 if (retval != 0) 2896 goto err_register_root_hub; 2897 2898 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2899 if (retval < 0) { 2900 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2901 retval); 2902 goto error_create_attr_group; 2903 } 2904 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2905 usb_hcd_poll_rh_status(hcd); 2906 2907 return retval; 2908 2909 error_create_attr_group: 2910 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2911 if (HC_IS_RUNNING(hcd->state)) 2912 hcd->state = HC_STATE_QUIESCING; 2913 spin_lock_irq(&hcd_root_hub_lock); 2914 hcd->rh_registered = 0; 2915 spin_unlock_irq(&hcd_root_hub_lock); 2916 2917 #ifdef CONFIG_PM 2918 cancel_work_sync(&hcd->wakeup_work); 2919 #endif 2920 mutex_lock(&usb_bus_idr_lock); 2921 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2922 mutex_unlock(&usb_bus_idr_lock); 2923 err_register_root_hub: 2924 hcd->rh_pollable = 0; 2925 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2926 del_timer_sync(&hcd->rh_timer); 2927 hcd->driver->stop(hcd); 2928 hcd->state = HC_STATE_HALT; 2929 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2930 del_timer_sync(&hcd->rh_timer); 2931 err_hcd_driver_start: 2932 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2933 free_irq(irqnum, hcd); 2934 err_request_irq: 2935 err_hcd_driver_setup: 2936 err_set_rh_speed: 2937 usb_put_invalidate_rhdev(hcd); 2938 err_allocate_root_hub: 2939 usb_deregister_bus(&hcd->self); 2940 err_register_bus: 2941 hcd_buffer_destroy(hcd); 2942 err_create_buf: 2943 usb_phy_roothub_power_off(hcd->phy_roothub); 2944 err_usb_phy_roothub_power_on: 2945 usb_phy_roothub_exit(hcd->phy_roothub); 2946 err_phy_roothub_alloc: 2947 if (hcd->remove_phy && hcd->usb_phy) { 2948 usb_phy_shutdown(hcd->usb_phy); 2949 usb_put_phy(hcd->usb_phy); 2950 hcd->usb_phy = NULL; 2951 } 2952 return retval; 2953 } 2954 EXPORT_SYMBOL_GPL(usb_add_hcd); 2955 2956 /** 2957 * usb_remove_hcd - shutdown processing for generic HCDs 2958 * @hcd: the usb_hcd structure to remove 2959 * Context: !in_interrupt() 2960 * 2961 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2962 * invoking the HCD's stop() method. 2963 */ 2964 void usb_remove_hcd(struct usb_hcd *hcd) 2965 { 2966 struct usb_device *rhdev = hcd->self.root_hub; 2967 2968 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2969 2970 usb_get_dev(rhdev); 2971 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2972 2973 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2974 if (HC_IS_RUNNING (hcd->state)) 2975 hcd->state = HC_STATE_QUIESCING; 2976 2977 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2978 spin_lock_irq (&hcd_root_hub_lock); 2979 hcd->rh_registered = 0; 2980 spin_unlock_irq (&hcd_root_hub_lock); 2981 2982 #ifdef CONFIG_PM 2983 cancel_work_sync(&hcd->wakeup_work); 2984 #endif 2985 2986 mutex_lock(&usb_bus_idr_lock); 2987 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2988 mutex_unlock(&usb_bus_idr_lock); 2989 2990 /* 2991 * tasklet_kill() isn't needed here because: 2992 * - driver's disconnect() called from usb_disconnect() should 2993 * make sure its URBs are completed during the disconnect() 2994 * callback 2995 * 2996 * - it is too late to run complete() here since driver may have 2997 * been removed already now 2998 */ 2999 3000 /* Prevent any more root-hub status calls from the timer. 3001 * The HCD might still restart the timer (if a port status change 3002 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3003 * the hub_status_data() callback. 3004 */ 3005 hcd->rh_pollable = 0; 3006 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3007 del_timer_sync(&hcd->rh_timer); 3008 3009 hcd->driver->stop(hcd); 3010 hcd->state = HC_STATE_HALT; 3011 3012 /* In case the HCD restarted the timer, stop it again. */ 3013 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 3014 del_timer_sync(&hcd->rh_timer); 3015 3016 if (usb_hcd_is_primary_hcd(hcd)) { 3017 if (hcd->irq > 0) 3018 free_irq(hcd->irq, hcd); 3019 } 3020 3021 usb_deregister_bus(&hcd->self); 3022 hcd_buffer_destroy(hcd); 3023 3024 usb_phy_roothub_power_off(hcd->phy_roothub); 3025 usb_phy_roothub_exit(hcd->phy_roothub); 3026 3027 if (hcd->remove_phy && hcd->usb_phy) { 3028 usb_phy_shutdown(hcd->usb_phy); 3029 usb_put_phy(hcd->usb_phy); 3030 hcd->usb_phy = NULL; 3031 } 3032 3033 usb_put_invalidate_rhdev(hcd); 3034 hcd->flags = 0; 3035 } 3036 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3037 3038 void 3039 usb_hcd_platform_shutdown(struct platform_device *dev) 3040 { 3041 struct usb_hcd *hcd = platform_get_drvdata(dev); 3042 3043 if (hcd->driver->shutdown) 3044 hcd->driver->shutdown(hcd); 3045 } 3046 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3047 3048 /*-------------------------------------------------------------------------*/ 3049 3050 #if IS_ENABLED(CONFIG_USB_MON) 3051 3052 const struct usb_mon_operations *mon_ops; 3053 3054 /* 3055 * The registration is unlocked. 3056 * We do it this way because we do not want to lock in hot paths. 3057 * 3058 * Notice that the code is minimally error-proof. Because usbmon needs 3059 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3060 */ 3061 3062 int usb_mon_register(const struct usb_mon_operations *ops) 3063 { 3064 3065 if (mon_ops) 3066 return -EBUSY; 3067 3068 mon_ops = ops; 3069 mb(); 3070 return 0; 3071 } 3072 EXPORT_SYMBOL_GPL (usb_mon_register); 3073 3074 void usb_mon_deregister (void) 3075 { 3076 3077 if (mon_ops == NULL) { 3078 printk(KERN_ERR "USB: monitor was not registered\n"); 3079 return; 3080 } 3081 mon_ops = NULL; 3082 mb(); 3083 } 3084 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3085 3086 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3087