xref: /openbmc/linux/drivers/usb/core/hcd.c (revision 4cff79e9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11 
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 
33 #include <linux/phy/phy.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/usb/phy.h>
37 #include <linux/usb/otg.h>
38 
39 #include "usb.h"
40 #include "phy.h"
41 
42 
43 /*-------------------------------------------------------------------------*/
44 
45 /*
46  * USB Host Controller Driver framework
47  *
48  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
49  * HCD-specific behaviors/bugs.
50  *
51  * This does error checks, tracks devices and urbs, and delegates to a
52  * "hc_driver" only for code (and data) that really needs to know about
53  * hardware differences.  That includes root hub registers, i/o queues,
54  * and so on ... but as little else as possible.
55  *
56  * Shared code includes most of the "root hub" code (these are emulated,
57  * though each HC's hardware works differently) and PCI glue, plus request
58  * tracking overhead.  The HCD code should only block on spinlocks or on
59  * hardware handshaking; blocking on software events (such as other kernel
60  * threads releasing resources, or completing actions) is all generic.
61  *
62  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
63  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
64  * only by the hub driver ... and that neither should be seen or used by
65  * usb client device drivers.
66  *
67  * Contributors of ideas or unattributed patches include: David Brownell,
68  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
69  *
70  * HISTORY:
71  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
72  *		associated cleanup.  "usb_hcd" still != "usb_bus".
73  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
74  */
75 
76 /*-------------------------------------------------------------------------*/
77 
78 /* Keep track of which host controller drivers are loaded */
79 unsigned long usb_hcds_loaded;
80 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
81 
82 /* host controllers we manage */
83 DEFINE_IDR (usb_bus_idr);
84 EXPORT_SYMBOL_GPL (usb_bus_idr);
85 
86 /* used when allocating bus numbers */
87 #define USB_MAXBUS		64
88 
89 /* used when updating list of hcds */
90 DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
91 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
92 
93 /* used for controlling access to virtual root hubs */
94 static DEFINE_SPINLOCK(hcd_root_hub_lock);
95 
96 /* used when updating an endpoint's URB list */
97 static DEFINE_SPINLOCK(hcd_urb_list_lock);
98 
99 /* used to protect against unlinking URBs after the device is gone */
100 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
101 
102 /* wait queue for synchronous unlinks */
103 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
104 
105 static inline int is_root_hub(struct usb_device *udev)
106 {
107 	return (udev->parent == NULL);
108 }
109 
110 /*-------------------------------------------------------------------------*/
111 
112 /*
113  * Sharable chunks of root hub code.
114  */
115 
116 /*-------------------------------------------------------------------------*/
117 #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
118 #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
119 
120 /* usb 3.1 root hub device descriptor */
121 static const u8 usb31_rh_dev_descriptor[18] = {
122 	0x12,       /*  __u8  bLength; */
123 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
124 	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
125 
126 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
127 	0x00,	    /*  __u8  bDeviceSubClass; */
128 	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
129 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
130 
131 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
132 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
133 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
134 
135 	0x03,       /*  __u8  iManufacturer; */
136 	0x02,       /*  __u8  iProduct; */
137 	0x01,       /*  __u8  iSerialNumber; */
138 	0x01        /*  __u8  bNumConfigurations; */
139 };
140 
141 /* usb 3.0 root hub device descriptor */
142 static const u8 usb3_rh_dev_descriptor[18] = {
143 	0x12,       /*  __u8  bLength; */
144 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
145 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
146 
147 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
148 	0x00,	    /*  __u8  bDeviceSubClass; */
149 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
150 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
151 
152 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
153 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
154 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
155 
156 	0x03,       /*  __u8  iManufacturer; */
157 	0x02,       /*  __u8  iProduct; */
158 	0x01,       /*  __u8  iSerialNumber; */
159 	0x01        /*  __u8  bNumConfigurations; */
160 };
161 
162 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
163 static const u8 usb25_rh_dev_descriptor[18] = {
164 	0x12,       /*  __u8  bLength; */
165 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
166 	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
167 
168 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
169 	0x00,	    /*  __u8  bDeviceSubClass; */
170 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
171 	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
172 
173 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
174 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
175 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
176 
177 	0x03,       /*  __u8  iManufacturer; */
178 	0x02,       /*  __u8  iProduct; */
179 	0x01,       /*  __u8  iSerialNumber; */
180 	0x01        /*  __u8  bNumConfigurations; */
181 };
182 
183 /* usb 2.0 root hub device descriptor */
184 static const u8 usb2_rh_dev_descriptor[18] = {
185 	0x12,       /*  __u8  bLength; */
186 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
187 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
188 
189 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
190 	0x00,	    /*  __u8  bDeviceSubClass; */
191 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
192 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
193 
194 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
195 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
196 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
197 
198 	0x03,       /*  __u8  iManufacturer; */
199 	0x02,       /*  __u8  iProduct; */
200 	0x01,       /*  __u8  iSerialNumber; */
201 	0x01        /*  __u8  bNumConfigurations; */
202 };
203 
204 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
205 
206 /* usb 1.1 root hub device descriptor */
207 static const u8 usb11_rh_dev_descriptor[18] = {
208 	0x12,       /*  __u8  bLength; */
209 	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
210 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
211 
212 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
213 	0x00,	    /*  __u8  bDeviceSubClass; */
214 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
215 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
216 
217 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
218 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
219 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
220 
221 	0x03,       /*  __u8  iManufacturer; */
222 	0x02,       /*  __u8  iProduct; */
223 	0x01,       /*  __u8  iSerialNumber; */
224 	0x01        /*  __u8  bNumConfigurations; */
225 };
226 
227 
228 /*-------------------------------------------------------------------------*/
229 
230 /* Configuration descriptors for our root hubs */
231 
232 static const u8 fs_rh_config_descriptor[] = {
233 
234 	/* one configuration */
235 	0x09,       /*  __u8  bLength; */
236 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
237 	0x19, 0x00, /*  __le16 wTotalLength; */
238 	0x01,       /*  __u8  bNumInterfaces; (1) */
239 	0x01,       /*  __u8  bConfigurationValue; */
240 	0x00,       /*  __u8  iConfiguration; */
241 	0xc0,       /*  __u8  bmAttributes;
242 				 Bit 7: must be set,
243 				     6: Self-powered,
244 				     5: Remote wakeup,
245 				     4..0: resvd */
246 	0x00,       /*  __u8  MaxPower; */
247 
248 	/* USB 1.1:
249 	 * USB 2.0, single TT organization (mandatory):
250 	 *	one interface, protocol 0
251 	 *
252 	 * USB 2.0, multiple TT organization (optional):
253 	 *	two interfaces, protocols 1 (like single TT)
254 	 *	and 2 (multiple TT mode) ... config is
255 	 *	sometimes settable
256 	 *	NOT IMPLEMENTED
257 	 */
258 
259 	/* one interface */
260 	0x09,       /*  __u8  if_bLength; */
261 	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
262 	0x00,       /*  __u8  if_bInterfaceNumber; */
263 	0x00,       /*  __u8  if_bAlternateSetting; */
264 	0x01,       /*  __u8  if_bNumEndpoints; */
265 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
266 	0x00,       /*  __u8  if_bInterfaceSubClass; */
267 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
268 	0x00,       /*  __u8  if_iInterface; */
269 
270 	/* one endpoint (status change endpoint) */
271 	0x07,       /*  __u8  ep_bLength; */
272 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
273 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
274 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
275 	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
276 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
277 };
278 
279 static const u8 hs_rh_config_descriptor[] = {
280 
281 	/* one configuration */
282 	0x09,       /*  __u8  bLength; */
283 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
284 	0x19, 0x00, /*  __le16 wTotalLength; */
285 	0x01,       /*  __u8  bNumInterfaces; (1) */
286 	0x01,       /*  __u8  bConfigurationValue; */
287 	0x00,       /*  __u8  iConfiguration; */
288 	0xc0,       /*  __u8  bmAttributes;
289 				 Bit 7: must be set,
290 				     6: Self-powered,
291 				     5: Remote wakeup,
292 				     4..0: resvd */
293 	0x00,       /*  __u8  MaxPower; */
294 
295 	/* USB 1.1:
296 	 * USB 2.0, single TT organization (mandatory):
297 	 *	one interface, protocol 0
298 	 *
299 	 * USB 2.0, multiple TT organization (optional):
300 	 *	two interfaces, protocols 1 (like single TT)
301 	 *	and 2 (multiple TT mode) ... config is
302 	 *	sometimes settable
303 	 *	NOT IMPLEMENTED
304 	 */
305 
306 	/* one interface */
307 	0x09,       /*  __u8  if_bLength; */
308 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
309 	0x00,       /*  __u8  if_bInterfaceNumber; */
310 	0x00,       /*  __u8  if_bAlternateSetting; */
311 	0x01,       /*  __u8  if_bNumEndpoints; */
312 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
313 	0x00,       /*  __u8  if_bInterfaceSubClass; */
314 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
315 	0x00,       /*  __u8  if_iInterface; */
316 
317 	/* one endpoint (status change endpoint) */
318 	0x07,       /*  __u8  ep_bLength; */
319 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
320 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
321 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
322 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
323 		     * see hub.c:hub_configure() for details. */
324 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
325 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
326 };
327 
328 static const u8 ss_rh_config_descriptor[] = {
329 	/* one configuration */
330 	0x09,       /*  __u8  bLength; */
331 	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
332 	0x1f, 0x00, /*  __le16 wTotalLength; */
333 	0x01,       /*  __u8  bNumInterfaces; (1) */
334 	0x01,       /*  __u8  bConfigurationValue; */
335 	0x00,       /*  __u8  iConfiguration; */
336 	0xc0,       /*  __u8  bmAttributes;
337 				 Bit 7: must be set,
338 				     6: Self-powered,
339 				     5: Remote wakeup,
340 				     4..0: resvd */
341 	0x00,       /*  __u8  MaxPower; */
342 
343 	/* one interface */
344 	0x09,       /*  __u8  if_bLength; */
345 	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
346 	0x00,       /*  __u8  if_bInterfaceNumber; */
347 	0x00,       /*  __u8  if_bAlternateSetting; */
348 	0x01,       /*  __u8  if_bNumEndpoints; */
349 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
350 	0x00,       /*  __u8  if_bInterfaceSubClass; */
351 	0x00,       /*  __u8  if_bInterfaceProtocol; */
352 	0x00,       /*  __u8  if_iInterface; */
353 
354 	/* one endpoint (status change endpoint) */
355 	0x07,       /*  __u8  ep_bLength; */
356 	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
357 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
358 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
359 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
360 		     * see hub.c:hub_configure() for details. */
361 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
362 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
363 
364 	/* one SuperSpeed endpoint companion descriptor */
365 	0x06,        /* __u8 ss_bLength */
366 	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
367 		     /* Companion */
368 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
369 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
370 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
371 };
372 
373 /* authorized_default behaviour:
374  * -1 is authorized for all devices except wireless (old behaviour)
375  * 0 is unauthorized for all devices
376  * 1 is authorized for all devices
377  */
378 static int authorized_default = -1;
379 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
380 MODULE_PARM_DESC(authorized_default,
381 		"Default USB device authorization: 0 is not authorized, 1 is "
382 		"authorized, -1 is authorized except for wireless USB (default, "
383 		"old behaviour");
384 /*-------------------------------------------------------------------------*/
385 
386 /**
387  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
388  * @s: Null-terminated ASCII (actually ISO-8859-1) string
389  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
390  * @len: Length (in bytes; may be odd) of descriptor buffer.
391  *
392  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
393  * whichever is less.
394  *
395  * Note:
396  * USB String descriptors can contain at most 126 characters; input
397  * strings longer than that are truncated.
398  */
399 static unsigned
400 ascii2desc(char const *s, u8 *buf, unsigned len)
401 {
402 	unsigned n, t = 2 + 2*strlen(s);
403 
404 	if (t > 254)
405 		t = 254;	/* Longest possible UTF string descriptor */
406 	if (len > t)
407 		len = t;
408 
409 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
410 
411 	n = len;
412 	while (n--) {
413 		*buf++ = t;
414 		if (!n--)
415 			break;
416 		*buf++ = t >> 8;
417 		t = (unsigned char)*s++;
418 	}
419 	return len;
420 }
421 
422 /**
423  * rh_string() - provides string descriptors for root hub
424  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
425  * @hcd: the host controller for this root hub
426  * @data: buffer for output packet
427  * @len: length of the provided buffer
428  *
429  * Produces either a manufacturer, product or serial number string for the
430  * virtual root hub device.
431  *
432  * Return: The number of bytes filled in: the length of the descriptor or
433  * of the provided buffer, whichever is less.
434  */
435 static unsigned
436 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
437 {
438 	char buf[100];
439 	char const *s;
440 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
441 
442 	/* language ids */
443 	switch (id) {
444 	case 0:
445 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
446 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
447 		if (len > 4)
448 			len = 4;
449 		memcpy(data, langids, len);
450 		return len;
451 	case 1:
452 		/* Serial number */
453 		s = hcd->self.bus_name;
454 		break;
455 	case 2:
456 		/* Product name */
457 		s = hcd->product_desc;
458 		break;
459 	case 3:
460 		/* Manufacturer */
461 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
462 			init_utsname()->release, hcd->driver->description);
463 		s = buf;
464 		break;
465 	default:
466 		/* Can't happen; caller guarantees it */
467 		return 0;
468 	}
469 
470 	return ascii2desc(s, data, len);
471 }
472 
473 
474 /* Root hub control transfers execute synchronously */
475 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
476 {
477 	struct usb_ctrlrequest *cmd;
478 	u16		typeReq, wValue, wIndex, wLength;
479 	u8		*ubuf = urb->transfer_buffer;
480 	unsigned	len = 0;
481 	int		status;
482 	u8		patch_wakeup = 0;
483 	u8		patch_protocol = 0;
484 	u16		tbuf_size;
485 	u8		*tbuf = NULL;
486 	const u8	*bufp;
487 
488 	might_sleep();
489 
490 	spin_lock_irq(&hcd_root_hub_lock);
491 	status = usb_hcd_link_urb_to_ep(hcd, urb);
492 	spin_unlock_irq(&hcd_root_hub_lock);
493 	if (status)
494 		return status;
495 	urb->hcpriv = hcd;	/* Indicate it's queued */
496 
497 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
498 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
499 	wValue   = le16_to_cpu (cmd->wValue);
500 	wIndex   = le16_to_cpu (cmd->wIndex);
501 	wLength  = le16_to_cpu (cmd->wLength);
502 
503 	if (wLength > urb->transfer_buffer_length)
504 		goto error;
505 
506 	/*
507 	 * tbuf should be at least as big as the
508 	 * USB hub descriptor.
509 	 */
510 	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
511 	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
512 	if (!tbuf) {
513 		status = -ENOMEM;
514 		goto err_alloc;
515 	}
516 
517 	bufp = tbuf;
518 
519 
520 	urb->actual_length = 0;
521 	switch (typeReq) {
522 
523 	/* DEVICE REQUESTS */
524 
525 	/* The root hub's remote wakeup enable bit is implemented using
526 	 * driver model wakeup flags.  If this system supports wakeup
527 	 * through USB, userspace may change the default "allow wakeup"
528 	 * policy through sysfs or these calls.
529 	 *
530 	 * Most root hubs support wakeup from downstream devices, for
531 	 * runtime power management (disabling USB clocks and reducing
532 	 * VBUS power usage).  However, not all of them do so; silicon,
533 	 * board, and BIOS bugs here are not uncommon, so these can't
534 	 * be treated quite like external hubs.
535 	 *
536 	 * Likewise, not all root hubs will pass wakeup events upstream,
537 	 * to wake up the whole system.  So don't assume root hub and
538 	 * controller capabilities are identical.
539 	 */
540 
541 	case DeviceRequest | USB_REQ_GET_STATUS:
542 		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
543 					<< USB_DEVICE_REMOTE_WAKEUP)
544 				| (1 << USB_DEVICE_SELF_POWERED);
545 		tbuf[1] = 0;
546 		len = 2;
547 		break;
548 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
549 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
550 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
551 		else
552 			goto error;
553 		break;
554 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
555 		if (device_can_wakeup(&hcd->self.root_hub->dev)
556 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
557 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
558 		else
559 			goto error;
560 		break;
561 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
562 		tbuf[0] = 1;
563 		len = 1;
564 			/* FALLTHROUGH */
565 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
566 		break;
567 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
568 		switch (wValue & 0xff00) {
569 		case USB_DT_DEVICE << 8:
570 			switch (hcd->speed) {
571 			case HCD_USB31:
572 				bufp = usb31_rh_dev_descriptor;
573 				break;
574 			case HCD_USB3:
575 				bufp = usb3_rh_dev_descriptor;
576 				break;
577 			case HCD_USB25:
578 				bufp = usb25_rh_dev_descriptor;
579 				break;
580 			case HCD_USB2:
581 				bufp = usb2_rh_dev_descriptor;
582 				break;
583 			case HCD_USB11:
584 				bufp = usb11_rh_dev_descriptor;
585 				break;
586 			default:
587 				goto error;
588 			}
589 			len = 18;
590 			if (hcd->has_tt)
591 				patch_protocol = 1;
592 			break;
593 		case USB_DT_CONFIG << 8:
594 			switch (hcd->speed) {
595 			case HCD_USB31:
596 			case HCD_USB3:
597 				bufp = ss_rh_config_descriptor;
598 				len = sizeof ss_rh_config_descriptor;
599 				break;
600 			case HCD_USB25:
601 			case HCD_USB2:
602 				bufp = hs_rh_config_descriptor;
603 				len = sizeof hs_rh_config_descriptor;
604 				break;
605 			case HCD_USB11:
606 				bufp = fs_rh_config_descriptor;
607 				len = sizeof fs_rh_config_descriptor;
608 				break;
609 			default:
610 				goto error;
611 			}
612 			if (device_can_wakeup(&hcd->self.root_hub->dev))
613 				patch_wakeup = 1;
614 			break;
615 		case USB_DT_STRING << 8:
616 			if ((wValue & 0xff) < 4)
617 				urb->actual_length = rh_string(wValue & 0xff,
618 						hcd, ubuf, wLength);
619 			else /* unsupported IDs --> "protocol stall" */
620 				goto error;
621 			break;
622 		case USB_DT_BOS << 8:
623 			goto nongeneric;
624 		default:
625 			goto error;
626 		}
627 		break;
628 	case DeviceRequest | USB_REQ_GET_INTERFACE:
629 		tbuf[0] = 0;
630 		len = 1;
631 			/* FALLTHROUGH */
632 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
633 		break;
634 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
635 		/* wValue == urb->dev->devaddr */
636 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
637 			wValue);
638 		break;
639 
640 	/* INTERFACE REQUESTS (no defined feature/status flags) */
641 
642 	/* ENDPOINT REQUESTS */
643 
644 	case EndpointRequest | USB_REQ_GET_STATUS:
645 		/* ENDPOINT_HALT flag */
646 		tbuf[0] = 0;
647 		tbuf[1] = 0;
648 		len = 2;
649 			/* FALLTHROUGH */
650 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
651 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
652 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
653 		break;
654 
655 	/* CLASS REQUESTS (and errors) */
656 
657 	default:
658 nongeneric:
659 		/* non-generic request */
660 		switch (typeReq) {
661 		case GetHubStatus:
662 			len = 4;
663 			break;
664 		case GetPortStatus:
665 			if (wValue == HUB_PORT_STATUS)
666 				len = 4;
667 			else
668 				/* other port status types return 8 bytes */
669 				len = 8;
670 			break;
671 		case GetHubDescriptor:
672 			len = sizeof (struct usb_hub_descriptor);
673 			break;
674 		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
675 			/* len is returned by hub_control */
676 			break;
677 		}
678 		status = hcd->driver->hub_control (hcd,
679 			typeReq, wValue, wIndex,
680 			tbuf, wLength);
681 
682 		if (typeReq == GetHubDescriptor)
683 			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
684 				(struct usb_hub_descriptor *)tbuf);
685 		break;
686 error:
687 		/* "protocol stall" on error */
688 		status = -EPIPE;
689 	}
690 
691 	if (status < 0) {
692 		len = 0;
693 		if (status != -EPIPE) {
694 			dev_dbg (hcd->self.controller,
695 				"CTRL: TypeReq=0x%x val=0x%x "
696 				"idx=0x%x len=%d ==> %d\n",
697 				typeReq, wValue, wIndex,
698 				wLength, status);
699 		}
700 	} else if (status > 0) {
701 		/* hub_control may return the length of data copied. */
702 		len = status;
703 		status = 0;
704 	}
705 	if (len) {
706 		if (urb->transfer_buffer_length < len)
707 			len = urb->transfer_buffer_length;
708 		urb->actual_length = len;
709 		/* always USB_DIR_IN, toward host */
710 		memcpy (ubuf, bufp, len);
711 
712 		/* report whether RH hardware supports remote wakeup */
713 		if (patch_wakeup &&
714 				len > offsetof (struct usb_config_descriptor,
715 						bmAttributes))
716 			((struct usb_config_descriptor *)ubuf)->bmAttributes
717 				|= USB_CONFIG_ATT_WAKEUP;
718 
719 		/* report whether RH hardware has an integrated TT */
720 		if (patch_protocol &&
721 				len > offsetof(struct usb_device_descriptor,
722 						bDeviceProtocol))
723 			((struct usb_device_descriptor *) ubuf)->
724 				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
725 	}
726 
727 	kfree(tbuf);
728  err_alloc:
729 
730 	/* any errors get returned through the urb completion */
731 	spin_lock_irq(&hcd_root_hub_lock);
732 	usb_hcd_unlink_urb_from_ep(hcd, urb);
733 	usb_hcd_giveback_urb(hcd, urb, status);
734 	spin_unlock_irq(&hcd_root_hub_lock);
735 	return 0;
736 }
737 
738 /*-------------------------------------------------------------------------*/
739 
740 /*
741  * Root Hub interrupt transfers are polled using a timer if the
742  * driver requests it; otherwise the driver is responsible for
743  * calling usb_hcd_poll_rh_status() when an event occurs.
744  *
745  * Completions are called in_interrupt(), but they may or may not
746  * be in_irq().
747  */
748 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
749 {
750 	struct urb	*urb;
751 	int		length;
752 	unsigned long	flags;
753 	char		buffer[6];	/* Any root hubs with > 31 ports? */
754 
755 	if (unlikely(!hcd->rh_pollable))
756 		return;
757 	if (!hcd->uses_new_polling && !hcd->status_urb)
758 		return;
759 
760 	length = hcd->driver->hub_status_data(hcd, buffer);
761 	if (length > 0) {
762 
763 		/* try to complete the status urb */
764 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
765 		urb = hcd->status_urb;
766 		if (urb) {
767 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
768 			hcd->status_urb = NULL;
769 			urb->actual_length = length;
770 			memcpy(urb->transfer_buffer, buffer, length);
771 
772 			usb_hcd_unlink_urb_from_ep(hcd, urb);
773 			usb_hcd_giveback_urb(hcd, urb, 0);
774 		} else {
775 			length = 0;
776 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
777 		}
778 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
779 	}
780 
781 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
782 	 * exceed that limit if HZ is 100. The math is more clunky than
783 	 * maybe expected, this is to make sure that all timers for USB devices
784 	 * fire at the same time to give the CPU a break in between */
785 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
786 			(length == 0 && hcd->status_urb != NULL))
787 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
788 }
789 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
790 
791 /* timer callback */
792 static void rh_timer_func (struct timer_list *t)
793 {
794 	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
795 
796 	usb_hcd_poll_rh_status(_hcd);
797 }
798 
799 /*-------------------------------------------------------------------------*/
800 
801 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
802 {
803 	int		retval;
804 	unsigned long	flags;
805 	unsigned	len = 1 + (urb->dev->maxchild / 8);
806 
807 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
808 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
809 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
810 		retval = -EINVAL;
811 		goto done;
812 	}
813 
814 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
815 	if (retval)
816 		goto done;
817 
818 	hcd->status_urb = urb;
819 	urb->hcpriv = hcd;	/* indicate it's queued */
820 	if (!hcd->uses_new_polling)
821 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
822 
823 	/* If a status change has already occurred, report it ASAP */
824 	else if (HCD_POLL_PENDING(hcd))
825 		mod_timer(&hcd->rh_timer, jiffies);
826 	retval = 0;
827  done:
828 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
829 	return retval;
830 }
831 
832 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
833 {
834 	if (usb_endpoint_xfer_int(&urb->ep->desc))
835 		return rh_queue_status (hcd, urb);
836 	if (usb_endpoint_xfer_control(&urb->ep->desc))
837 		return rh_call_control (hcd, urb);
838 	return -EINVAL;
839 }
840 
841 /*-------------------------------------------------------------------------*/
842 
843 /* Unlinks of root-hub control URBs are legal, but they don't do anything
844  * since these URBs always execute synchronously.
845  */
846 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
847 {
848 	unsigned long	flags;
849 	int		rc;
850 
851 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
852 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
853 	if (rc)
854 		goto done;
855 
856 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
857 		;	/* Do nothing */
858 
859 	} else {				/* Status URB */
860 		if (!hcd->uses_new_polling)
861 			del_timer (&hcd->rh_timer);
862 		if (urb == hcd->status_urb) {
863 			hcd->status_urb = NULL;
864 			usb_hcd_unlink_urb_from_ep(hcd, urb);
865 			usb_hcd_giveback_urb(hcd, urb, status);
866 		}
867 	}
868  done:
869 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
870 	return rc;
871 }
872 
873 
874 
875 /*
876  * Show & store the current value of authorized_default
877  */
878 static ssize_t authorized_default_show(struct device *dev,
879 				       struct device_attribute *attr, char *buf)
880 {
881 	struct usb_device *rh_usb_dev = to_usb_device(dev);
882 	struct usb_bus *usb_bus = rh_usb_dev->bus;
883 	struct usb_hcd *hcd;
884 
885 	hcd = bus_to_hcd(usb_bus);
886 	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
887 }
888 
889 static ssize_t authorized_default_store(struct device *dev,
890 					struct device_attribute *attr,
891 					const char *buf, size_t size)
892 {
893 	ssize_t result;
894 	unsigned val;
895 	struct usb_device *rh_usb_dev = to_usb_device(dev);
896 	struct usb_bus *usb_bus = rh_usb_dev->bus;
897 	struct usb_hcd *hcd;
898 
899 	hcd = bus_to_hcd(usb_bus);
900 	result = sscanf(buf, "%u\n", &val);
901 	if (result == 1) {
902 		if (val)
903 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
904 		else
905 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
906 
907 		result = size;
908 	} else {
909 		result = -EINVAL;
910 	}
911 	return result;
912 }
913 static DEVICE_ATTR_RW(authorized_default);
914 
915 /*
916  * interface_authorized_default_show - show default authorization status
917  * for USB interfaces
918  *
919  * note: interface_authorized_default is the default value
920  *       for initializing the authorized attribute of interfaces
921  */
922 static ssize_t interface_authorized_default_show(struct device *dev,
923 		struct device_attribute *attr, char *buf)
924 {
925 	struct usb_device *usb_dev = to_usb_device(dev);
926 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
927 
928 	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
929 }
930 
931 /*
932  * interface_authorized_default_store - store default authorization status
933  * for USB interfaces
934  *
935  * note: interface_authorized_default is the default value
936  *       for initializing the authorized attribute of interfaces
937  */
938 static ssize_t interface_authorized_default_store(struct device *dev,
939 		struct device_attribute *attr, const char *buf, size_t count)
940 {
941 	struct usb_device *usb_dev = to_usb_device(dev);
942 	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
943 	int rc = count;
944 	bool val;
945 
946 	if (strtobool(buf, &val) != 0)
947 		return -EINVAL;
948 
949 	if (val)
950 		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
951 	else
952 		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
953 
954 	return rc;
955 }
956 static DEVICE_ATTR_RW(interface_authorized_default);
957 
958 /* Group all the USB bus attributes */
959 static struct attribute *usb_bus_attrs[] = {
960 		&dev_attr_authorized_default.attr,
961 		&dev_attr_interface_authorized_default.attr,
962 		NULL,
963 };
964 
965 static const struct attribute_group usb_bus_attr_group = {
966 	.name = NULL,	/* we want them in the same directory */
967 	.attrs = usb_bus_attrs,
968 };
969 
970 
971 
972 /*-------------------------------------------------------------------------*/
973 
974 /**
975  * usb_bus_init - shared initialization code
976  * @bus: the bus structure being initialized
977  *
978  * This code is used to initialize a usb_bus structure, memory for which is
979  * separately managed.
980  */
981 static void usb_bus_init (struct usb_bus *bus)
982 {
983 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
984 
985 	bus->devnum_next = 1;
986 
987 	bus->root_hub = NULL;
988 	bus->busnum = -1;
989 	bus->bandwidth_allocated = 0;
990 	bus->bandwidth_int_reqs  = 0;
991 	bus->bandwidth_isoc_reqs = 0;
992 	mutex_init(&bus->devnum_next_mutex);
993 }
994 
995 /*-------------------------------------------------------------------------*/
996 
997 /**
998  * usb_register_bus - registers the USB host controller with the usb core
999  * @bus: pointer to the bus to register
1000  * Context: !in_interrupt()
1001  *
1002  * Assigns a bus number, and links the controller into usbcore data
1003  * structures so that it can be seen by scanning the bus list.
1004  *
1005  * Return: 0 if successful. A negative error code otherwise.
1006  */
1007 static int usb_register_bus(struct usb_bus *bus)
1008 {
1009 	int result = -E2BIG;
1010 	int busnum;
1011 
1012 	mutex_lock(&usb_bus_idr_lock);
1013 	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1014 	if (busnum < 0) {
1015 		pr_err("%s: failed to get bus number\n", usbcore_name);
1016 		goto error_find_busnum;
1017 	}
1018 	bus->busnum = busnum;
1019 	mutex_unlock(&usb_bus_idr_lock);
1020 
1021 	usb_notify_add_bus(bus);
1022 
1023 	dev_info (bus->controller, "new USB bus registered, assigned bus "
1024 		  "number %d\n", bus->busnum);
1025 	return 0;
1026 
1027 error_find_busnum:
1028 	mutex_unlock(&usb_bus_idr_lock);
1029 	return result;
1030 }
1031 
1032 /**
1033  * usb_deregister_bus - deregisters the USB host controller
1034  * @bus: pointer to the bus to deregister
1035  * Context: !in_interrupt()
1036  *
1037  * Recycles the bus number, and unlinks the controller from usbcore data
1038  * structures so that it won't be seen by scanning the bus list.
1039  */
1040 static void usb_deregister_bus (struct usb_bus *bus)
1041 {
1042 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1043 
1044 	/*
1045 	 * NOTE: make sure that all the devices are removed by the
1046 	 * controller code, as well as having it call this when cleaning
1047 	 * itself up
1048 	 */
1049 	mutex_lock(&usb_bus_idr_lock);
1050 	idr_remove(&usb_bus_idr, bus->busnum);
1051 	mutex_unlock(&usb_bus_idr_lock);
1052 
1053 	usb_notify_remove_bus(bus);
1054 }
1055 
1056 /**
1057  * register_root_hub - called by usb_add_hcd() to register a root hub
1058  * @hcd: host controller for this root hub
1059  *
1060  * This function registers the root hub with the USB subsystem.  It sets up
1061  * the device properly in the device tree and then calls usb_new_device()
1062  * to register the usb device.  It also assigns the root hub's USB address
1063  * (always 1).
1064  *
1065  * Return: 0 if successful. A negative error code otherwise.
1066  */
1067 static int register_root_hub(struct usb_hcd *hcd)
1068 {
1069 	struct device *parent_dev = hcd->self.controller;
1070 	struct usb_device *usb_dev = hcd->self.root_hub;
1071 	const int devnum = 1;
1072 	int retval;
1073 
1074 	usb_dev->devnum = devnum;
1075 	usb_dev->bus->devnum_next = devnum + 1;
1076 	memset (&usb_dev->bus->devmap.devicemap, 0,
1077 			sizeof usb_dev->bus->devmap.devicemap);
1078 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1079 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1080 
1081 	mutex_lock(&usb_bus_idr_lock);
1082 
1083 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1084 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1085 	if (retval != sizeof usb_dev->descriptor) {
1086 		mutex_unlock(&usb_bus_idr_lock);
1087 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1088 				dev_name(&usb_dev->dev), retval);
1089 		return (retval < 0) ? retval : -EMSGSIZE;
1090 	}
1091 
1092 	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1093 		retval = usb_get_bos_descriptor(usb_dev);
1094 		if (!retval) {
1095 			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1096 		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1097 			mutex_unlock(&usb_bus_idr_lock);
1098 			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1099 					dev_name(&usb_dev->dev), retval);
1100 			return retval;
1101 		}
1102 	}
1103 
1104 	retval = usb_new_device (usb_dev);
1105 	if (retval) {
1106 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1107 				dev_name(&usb_dev->dev), retval);
1108 	} else {
1109 		spin_lock_irq (&hcd_root_hub_lock);
1110 		hcd->rh_registered = 1;
1111 		spin_unlock_irq (&hcd_root_hub_lock);
1112 
1113 		/* Did the HC die before the root hub was registered? */
1114 		if (HCD_DEAD(hcd))
1115 			usb_hc_died (hcd);	/* This time clean up */
1116 	}
1117 	mutex_unlock(&usb_bus_idr_lock);
1118 
1119 	return retval;
1120 }
1121 
1122 /*
1123  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1124  * @bus: the bus which the root hub belongs to
1125  * @portnum: the port which is being resumed
1126  *
1127  * HCDs should call this function when they know that a resume signal is
1128  * being sent to a root-hub port.  The root hub will be prevented from
1129  * going into autosuspend until usb_hcd_end_port_resume() is called.
1130  *
1131  * The bus's private lock must be held by the caller.
1132  */
1133 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1134 {
1135 	unsigned bit = 1 << portnum;
1136 
1137 	if (!(bus->resuming_ports & bit)) {
1138 		bus->resuming_ports |= bit;
1139 		pm_runtime_get_noresume(&bus->root_hub->dev);
1140 	}
1141 }
1142 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1143 
1144 /*
1145  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1146  * @bus: the bus which the root hub belongs to
1147  * @portnum: the port which is being resumed
1148  *
1149  * HCDs should call this function when they know that a resume signal has
1150  * stopped being sent to a root-hub port.  The root hub will be allowed to
1151  * autosuspend again.
1152  *
1153  * The bus's private lock must be held by the caller.
1154  */
1155 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1156 {
1157 	unsigned bit = 1 << portnum;
1158 
1159 	if (bus->resuming_ports & bit) {
1160 		bus->resuming_ports &= ~bit;
1161 		pm_runtime_put_noidle(&bus->root_hub->dev);
1162 	}
1163 }
1164 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1165 
1166 /*-------------------------------------------------------------------------*/
1167 
1168 /**
1169  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1170  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1171  * @is_input: true iff the transaction sends data to the host
1172  * @isoc: true for isochronous transactions, false for interrupt ones
1173  * @bytecount: how many bytes in the transaction.
1174  *
1175  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1176  *
1177  * Note:
1178  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1179  * scheduled in software, this function is only used for such scheduling.
1180  */
1181 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1182 {
1183 	unsigned long	tmp;
1184 
1185 	switch (speed) {
1186 	case USB_SPEED_LOW: 	/* INTR only */
1187 		if (is_input) {
1188 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1189 			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1190 		} else {
1191 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1192 			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1193 		}
1194 	case USB_SPEED_FULL:	/* ISOC or INTR */
1195 		if (isoc) {
1196 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197 			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1198 		} else {
1199 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200 			return 9107L + BW_HOST_DELAY + tmp;
1201 		}
1202 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1203 		/* FIXME adjust for input vs output */
1204 		if (isoc)
1205 			tmp = HS_NSECS_ISO (bytecount);
1206 		else
1207 			tmp = HS_NSECS (bytecount);
1208 		return tmp;
1209 	default:
1210 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1211 		return -1;
1212 	}
1213 }
1214 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1215 
1216 
1217 /*-------------------------------------------------------------------------*/
1218 
1219 /*
1220  * Generic HC operations.
1221  */
1222 
1223 /*-------------------------------------------------------------------------*/
1224 
1225 /**
1226  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1227  * @hcd: host controller to which @urb was submitted
1228  * @urb: URB being submitted
1229  *
1230  * Host controller drivers should call this routine in their enqueue()
1231  * method.  The HCD's private spinlock must be held and interrupts must
1232  * be disabled.  The actions carried out here are required for URB
1233  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1234  *
1235  * Return: 0 for no error, otherwise a negative error code (in which case
1236  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1237  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1238  * the private spinlock and returning.
1239  */
1240 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1241 {
1242 	int		rc = 0;
1243 
1244 	spin_lock(&hcd_urb_list_lock);
1245 
1246 	/* Check that the URB isn't being killed */
1247 	if (unlikely(atomic_read(&urb->reject))) {
1248 		rc = -EPERM;
1249 		goto done;
1250 	}
1251 
1252 	if (unlikely(!urb->ep->enabled)) {
1253 		rc = -ENOENT;
1254 		goto done;
1255 	}
1256 
1257 	if (unlikely(!urb->dev->can_submit)) {
1258 		rc = -EHOSTUNREACH;
1259 		goto done;
1260 	}
1261 
1262 	/*
1263 	 * Check the host controller's state and add the URB to the
1264 	 * endpoint's queue.
1265 	 */
1266 	if (HCD_RH_RUNNING(hcd)) {
1267 		urb->unlinked = 0;
1268 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1269 	} else {
1270 		rc = -ESHUTDOWN;
1271 		goto done;
1272 	}
1273  done:
1274 	spin_unlock(&hcd_urb_list_lock);
1275 	return rc;
1276 }
1277 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1278 
1279 /**
1280  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1281  * @hcd: host controller to which @urb was submitted
1282  * @urb: URB being checked for unlinkability
1283  * @status: error code to store in @urb if the unlink succeeds
1284  *
1285  * Host controller drivers should call this routine in their dequeue()
1286  * method.  The HCD's private spinlock must be held and interrupts must
1287  * be disabled.  The actions carried out here are required for making
1288  * sure than an unlink is valid.
1289  *
1290  * Return: 0 for no error, otherwise a negative error code (in which case
1291  * the dequeue() method must fail).  The possible error codes are:
1292  *
1293  *	-EIDRM: @urb was not submitted or has already completed.
1294  *		The completion function may not have been called yet.
1295  *
1296  *	-EBUSY: @urb has already been unlinked.
1297  */
1298 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1299 		int status)
1300 {
1301 	struct list_head	*tmp;
1302 
1303 	/* insist the urb is still queued */
1304 	list_for_each(tmp, &urb->ep->urb_list) {
1305 		if (tmp == &urb->urb_list)
1306 			break;
1307 	}
1308 	if (tmp != &urb->urb_list)
1309 		return -EIDRM;
1310 
1311 	/* Any status except -EINPROGRESS means something already started to
1312 	 * unlink this URB from the hardware.  So there's no more work to do.
1313 	 */
1314 	if (urb->unlinked)
1315 		return -EBUSY;
1316 	urb->unlinked = status;
1317 	return 0;
1318 }
1319 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1320 
1321 /**
1322  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1323  * @hcd: host controller to which @urb was submitted
1324  * @urb: URB being unlinked
1325  *
1326  * Host controller drivers should call this routine before calling
1327  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1328  * interrupts must be disabled.  The actions carried out here are required
1329  * for URB completion.
1330  */
1331 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1332 {
1333 	/* clear all state linking urb to this dev (and hcd) */
1334 	spin_lock(&hcd_urb_list_lock);
1335 	list_del_init(&urb->urb_list);
1336 	spin_unlock(&hcd_urb_list_lock);
1337 }
1338 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1339 
1340 /*
1341  * Some usb host controllers can only perform dma using a small SRAM area.
1342  * The usb core itself is however optimized for host controllers that can dma
1343  * using regular system memory - like pci devices doing bus mastering.
1344  *
1345  * To support host controllers with limited dma capabilities we provide dma
1346  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1347  * For this to work properly the host controller code must first use the
1348  * function dma_declare_coherent_memory() to point out which memory area
1349  * that should be used for dma allocations.
1350  *
1351  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1352  * dma using dma_alloc_coherent() which in turn allocates from the memory
1353  * area pointed out with dma_declare_coherent_memory().
1354  *
1355  * So, to summarize...
1356  *
1357  * - We need "local" memory, canonical example being
1358  *   a small SRAM on a discrete controller being the
1359  *   only memory that the controller can read ...
1360  *   (a) "normal" kernel memory is no good, and
1361  *   (b) there's not enough to share
1362  *
1363  * - The only *portable* hook for such stuff in the
1364  *   DMA framework is dma_declare_coherent_memory()
1365  *
1366  * - So we use that, even though the primary requirement
1367  *   is that the memory be "local" (hence addressable
1368  *   by that device), not "coherent".
1369  *
1370  */
1371 
1372 static int hcd_alloc_coherent(struct usb_bus *bus,
1373 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1374 			      void **vaddr_handle, size_t size,
1375 			      enum dma_data_direction dir)
1376 {
1377 	unsigned char *vaddr;
1378 
1379 	if (*vaddr_handle == NULL) {
1380 		WARN_ON_ONCE(1);
1381 		return -EFAULT;
1382 	}
1383 
1384 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1385 				 mem_flags, dma_handle);
1386 	if (!vaddr)
1387 		return -ENOMEM;
1388 
1389 	/*
1390 	 * Store the virtual address of the buffer at the end
1391 	 * of the allocated dma buffer. The size of the buffer
1392 	 * may be uneven so use unaligned functions instead
1393 	 * of just rounding up. It makes sense to optimize for
1394 	 * memory footprint over access speed since the amount
1395 	 * of memory available for dma may be limited.
1396 	 */
1397 	put_unaligned((unsigned long)*vaddr_handle,
1398 		      (unsigned long *)(vaddr + size));
1399 
1400 	if (dir == DMA_TO_DEVICE)
1401 		memcpy(vaddr, *vaddr_handle, size);
1402 
1403 	*vaddr_handle = vaddr;
1404 	return 0;
1405 }
1406 
1407 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1408 			      void **vaddr_handle, size_t size,
1409 			      enum dma_data_direction dir)
1410 {
1411 	unsigned char *vaddr = *vaddr_handle;
1412 
1413 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1414 
1415 	if (dir == DMA_FROM_DEVICE)
1416 		memcpy(vaddr, *vaddr_handle, size);
1417 
1418 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1419 
1420 	*vaddr_handle = vaddr;
1421 	*dma_handle = 0;
1422 }
1423 
1424 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1425 {
1426 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1427 	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1428 		dma_unmap_single(hcd->self.sysdev,
1429 				urb->setup_dma,
1430 				sizeof(struct usb_ctrlrequest),
1431 				DMA_TO_DEVICE);
1432 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1433 		hcd_free_coherent(urb->dev->bus,
1434 				&urb->setup_dma,
1435 				(void **) &urb->setup_packet,
1436 				sizeof(struct usb_ctrlrequest),
1437 				DMA_TO_DEVICE);
1438 
1439 	/* Make it safe to call this routine more than once */
1440 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1441 }
1442 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1443 
1444 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445 {
1446 	if (hcd->driver->unmap_urb_for_dma)
1447 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1448 	else
1449 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1450 }
1451 
1452 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1453 {
1454 	enum dma_data_direction dir;
1455 
1456 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1457 
1458 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1459 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1460 	    (urb->transfer_flags & URB_DMA_MAP_SG))
1461 		dma_unmap_sg(hcd->self.sysdev,
1462 				urb->sg,
1463 				urb->num_sgs,
1464 				dir);
1465 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466 		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1467 		dma_unmap_page(hcd->self.sysdev,
1468 				urb->transfer_dma,
1469 				urb->transfer_buffer_length,
1470 				dir);
1471 	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472 		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1473 		dma_unmap_single(hcd->self.sysdev,
1474 				urb->transfer_dma,
1475 				urb->transfer_buffer_length,
1476 				dir);
1477 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1478 		hcd_free_coherent(urb->dev->bus,
1479 				&urb->transfer_dma,
1480 				&urb->transfer_buffer,
1481 				urb->transfer_buffer_length,
1482 				dir);
1483 
1484 	/* Make it safe to call this routine more than once */
1485 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1486 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1487 }
1488 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1489 
1490 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1491 			   gfp_t mem_flags)
1492 {
1493 	if (hcd->driver->map_urb_for_dma)
1494 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1495 	else
1496 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1497 }
1498 
1499 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1500 			    gfp_t mem_flags)
1501 {
1502 	enum dma_data_direction dir;
1503 	int ret = 0;
1504 
1505 	/* Map the URB's buffers for DMA access.
1506 	 * Lower level HCD code should use *_dma exclusively,
1507 	 * unless it uses pio or talks to another transport,
1508 	 * or uses the provided scatter gather list for bulk.
1509 	 */
1510 
1511 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1512 		if (hcd->self.uses_pio_for_control)
1513 			return ret;
1514 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1515 			if (is_vmalloc_addr(urb->setup_packet)) {
1516 				WARN_ONCE(1, "setup packet is not dma capable\n");
1517 				return -EAGAIN;
1518 			} else if (object_is_on_stack(urb->setup_packet)) {
1519 				WARN_ONCE(1, "setup packet is on stack\n");
1520 				return -EAGAIN;
1521 			}
1522 
1523 			urb->setup_dma = dma_map_single(
1524 					hcd->self.sysdev,
1525 					urb->setup_packet,
1526 					sizeof(struct usb_ctrlrequest),
1527 					DMA_TO_DEVICE);
1528 			if (dma_mapping_error(hcd->self.sysdev,
1529 						urb->setup_dma))
1530 				return -EAGAIN;
1531 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1532 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1533 			ret = hcd_alloc_coherent(
1534 					urb->dev->bus, mem_flags,
1535 					&urb->setup_dma,
1536 					(void **)&urb->setup_packet,
1537 					sizeof(struct usb_ctrlrequest),
1538 					DMA_TO_DEVICE);
1539 			if (ret)
1540 				return ret;
1541 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1542 		}
1543 	}
1544 
1545 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1546 	if (urb->transfer_buffer_length != 0
1547 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1548 		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1549 			if (urb->num_sgs) {
1550 				int n;
1551 
1552 				/* We don't support sg for isoc transfers ! */
1553 				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1554 					WARN_ON(1);
1555 					return -EINVAL;
1556 				}
1557 
1558 				n = dma_map_sg(
1559 						hcd->self.sysdev,
1560 						urb->sg,
1561 						urb->num_sgs,
1562 						dir);
1563 				if (n <= 0)
1564 					ret = -EAGAIN;
1565 				else
1566 					urb->transfer_flags |= URB_DMA_MAP_SG;
1567 				urb->num_mapped_sgs = n;
1568 				if (n != urb->num_sgs)
1569 					urb->transfer_flags |=
1570 							URB_DMA_SG_COMBINED;
1571 			} else if (urb->sg) {
1572 				struct scatterlist *sg = urb->sg;
1573 				urb->transfer_dma = dma_map_page(
1574 						hcd->self.sysdev,
1575 						sg_page(sg),
1576 						sg->offset,
1577 						urb->transfer_buffer_length,
1578 						dir);
1579 				if (dma_mapping_error(hcd->self.sysdev,
1580 						urb->transfer_dma))
1581 					ret = -EAGAIN;
1582 				else
1583 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1584 			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1585 				WARN_ONCE(1, "transfer buffer not dma capable\n");
1586 				ret = -EAGAIN;
1587 			} else if (object_is_on_stack(urb->transfer_buffer)) {
1588 				WARN_ONCE(1, "transfer buffer is on stack\n");
1589 				ret = -EAGAIN;
1590 			} else {
1591 				urb->transfer_dma = dma_map_single(
1592 						hcd->self.sysdev,
1593 						urb->transfer_buffer,
1594 						urb->transfer_buffer_length,
1595 						dir);
1596 				if (dma_mapping_error(hcd->self.sysdev,
1597 						urb->transfer_dma))
1598 					ret = -EAGAIN;
1599 				else
1600 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601 			}
1602 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1603 			ret = hcd_alloc_coherent(
1604 					urb->dev->bus, mem_flags,
1605 					&urb->transfer_dma,
1606 					&urb->transfer_buffer,
1607 					urb->transfer_buffer_length,
1608 					dir);
1609 			if (ret == 0)
1610 				urb->transfer_flags |= URB_MAP_LOCAL;
1611 		}
1612 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1613 				URB_SETUP_MAP_LOCAL)))
1614 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1615 	}
1616 	return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619 
1620 /*-------------------------------------------------------------------------*/
1621 
1622 /* may be called in any context with a valid urb->dev usecount
1623  * caller surrenders "ownership" of urb
1624  * expects usb_submit_urb() to have sanity checked and conditioned all
1625  * inputs in the urb
1626  */
1627 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628 {
1629 	int			status;
1630 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1631 
1632 	/* increment urb's reference count as part of giving it to the HCD
1633 	 * (which will control it).  HCD guarantees that it either returns
1634 	 * an error or calls giveback(), but not both.
1635 	 */
1636 	usb_get_urb(urb);
1637 	atomic_inc(&urb->use_count);
1638 	atomic_inc(&urb->dev->urbnum);
1639 	usbmon_urb_submit(&hcd->self, urb);
1640 
1641 	/* NOTE requirements on root-hub callers (usbfs and the hub
1642 	 * driver, for now):  URBs' urb->transfer_buffer must be
1643 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1644 	 * they could clobber root hub response data.  Also, control
1645 	 * URBs must be submitted in process context with interrupts
1646 	 * enabled.
1647 	 */
1648 
1649 	if (is_root_hub(urb->dev)) {
1650 		status = rh_urb_enqueue(hcd, urb);
1651 	} else {
1652 		status = map_urb_for_dma(hcd, urb, mem_flags);
1653 		if (likely(status == 0)) {
1654 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1655 			if (unlikely(status))
1656 				unmap_urb_for_dma(hcd, urb);
1657 		}
1658 	}
1659 
1660 	if (unlikely(status)) {
1661 		usbmon_urb_submit_error(&hcd->self, urb, status);
1662 		urb->hcpriv = NULL;
1663 		INIT_LIST_HEAD(&urb->urb_list);
1664 		atomic_dec(&urb->use_count);
1665 		atomic_dec(&urb->dev->urbnum);
1666 		if (atomic_read(&urb->reject))
1667 			wake_up(&usb_kill_urb_queue);
1668 		usb_put_urb(urb);
1669 	}
1670 	return status;
1671 }
1672 
1673 /*-------------------------------------------------------------------------*/
1674 
1675 /* this makes the hcd giveback() the urb more quickly, by kicking it
1676  * off hardware queues (which may take a while) and returning it as
1677  * soon as practical.  we've already set up the urb's return status,
1678  * but we can't know if the callback completed already.
1679  */
1680 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681 {
1682 	int		value;
1683 
1684 	if (is_root_hub(urb->dev))
1685 		value = usb_rh_urb_dequeue(hcd, urb, status);
1686 	else {
1687 
1688 		/* The only reason an HCD might fail this call is if
1689 		 * it has not yet fully queued the urb to begin with.
1690 		 * Such failures should be harmless. */
1691 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1692 	}
1693 	return value;
1694 }
1695 
1696 /*
1697  * called in any context
1698  *
1699  * caller guarantees urb won't be recycled till both unlink()
1700  * and the urb's completion function return
1701  */
1702 int usb_hcd_unlink_urb (struct urb *urb, int status)
1703 {
1704 	struct usb_hcd		*hcd;
1705 	struct usb_device	*udev = urb->dev;
1706 	int			retval = -EIDRM;
1707 	unsigned long		flags;
1708 
1709 	/* Prevent the device and bus from going away while
1710 	 * the unlink is carried out.  If they are already gone
1711 	 * then urb->use_count must be 0, since disconnected
1712 	 * devices can't have any active URBs.
1713 	 */
1714 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1715 	if (atomic_read(&urb->use_count) > 0) {
1716 		retval = 0;
1717 		usb_get_dev(udev);
1718 	}
1719 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1720 	if (retval == 0) {
1721 		hcd = bus_to_hcd(urb->dev->bus);
1722 		retval = unlink1(hcd, urb, status);
1723 		if (retval == 0)
1724 			retval = -EINPROGRESS;
1725 		else if (retval != -EIDRM && retval != -EBUSY)
1726 			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1727 					urb, retval);
1728 		usb_put_dev(udev);
1729 	}
1730 	return retval;
1731 }
1732 
1733 /*-------------------------------------------------------------------------*/
1734 
1735 static void __usb_hcd_giveback_urb(struct urb *urb)
1736 {
1737 	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1738 	struct usb_anchor *anchor = urb->anchor;
1739 	int status = urb->unlinked;
1740 	unsigned long flags;
1741 
1742 	urb->hcpriv = NULL;
1743 	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1744 	    urb->actual_length < urb->transfer_buffer_length &&
1745 	    !status))
1746 		status = -EREMOTEIO;
1747 
1748 	unmap_urb_for_dma(hcd, urb);
1749 	usbmon_urb_complete(&hcd->self, urb, status);
1750 	usb_anchor_suspend_wakeups(anchor);
1751 	usb_unanchor_urb(urb);
1752 	if (likely(status == 0))
1753 		usb_led_activity(USB_LED_EVENT_HOST);
1754 
1755 	/* pass ownership to the completion handler */
1756 	urb->status = status;
1757 
1758 	/*
1759 	 * We disable local IRQs here avoid possible deadlock because
1760 	 * drivers may call spin_lock() to hold lock which might be
1761 	 * acquired in one hard interrupt handler.
1762 	 *
1763 	 * The local_irq_save()/local_irq_restore() around complete()
1764 	 * will be removed if current USB drivers have been cleaned up
1765 	 * and no one may trigger the above deadlock situation when
1766 	 * running complete() in tasklet.
1767 	 */
1768 	local_irq_save(flags);
1769 	urb->complete(urb);
1770 	local_irq_restore(flags);
1771 
1772 	usb_anchor_resume_wakeups(anchor);
1773 	atomic_dec(&urb->use_count);
1774 	if (unlikely(atomic_read(&urb->reject)))
1775 		wake_up(&usb_kill_urb_queue);
1776 	usb_put_urb(urb);
1777 }
1778 
1779 static void usb_giveback_urb_bh(unsigned long param)
1780 {
1781 	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1782 	struct list_head local_list;
1783 
1784 	spin_lock_irq(&bh->lock);
1785 	bh->running = true;
1786  restart:
1787 	list_replace_init(&bh->head, &local_list);
1788 	spin_unlock_irq(&bh->lock);
1789 
1790 	while (!list_empty(&local_list)) {
1791 		struct urb *urb;
1792 
1793 		urb = list_entry(local_list.next, struct urb, urb_list);
1794 		list_del_init(&urb->urb_list);
1795 		bh->completing_ep = urb->ep;
1796 		__usb_hcd_giveback_urb(urb);
1797 		bh->completing_ep = NULL;
1798 	}
1799 
1800 	/* check if there are new URBs to giveback */
1801 	spin_lock_irq(&bh->lock);
1802 	if (!list_empty(&bh->head))
1803 		goto restart;
1804 	bh->running = false;
1805 	spin_unlock_irq(&bh->lock);
1806 }
1807 
1808 /**
1809  * usb_hcd_giveback_urb - return URB from HCD to device driver
1810  * @hcd: host controller returning the URB
1811  * @urb: urb being returned to the USB device driver.
1812  * @status: completion status code for the URB.
1813  * Context: in_interrupt()
1814  *
1815  * This hands the URB from HCD to its USB device driver, using its
1816  * completion function.  The HCD has freed all per-urb resources
1817  * (and is done using urb->hcpriv).  It also released all HCD locks;
1818  * the device driver won't cause problems if it frees, modifies,
1819  * or resubmits this URB.
1820  *
1821  * If @urb was unlinked, the value of @status will be overridden by
1822  * @urb->unlinked.  Erroneous short transfers are detected in case
1823  * the HCD hasn't checked for them.
1824  */
1825 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826 {
1827 	struct giveback_urb_bh *bh;
1828 	bool running, high_prio_bh;
1829 
1830 	/* pass status to tasklet via unlinked */
1831 	if (likely(!urb->unlinked))
1832 		urb->unlinked = status;
1833 
1834 	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1835 		__usb_hcd_giveback_urb(urb);
1836 		return;
1837 	}
1838 
1839 	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1840 		bh = &hcd->high_prio_bh;
1841 		high_prio_bh = true;
1842 	} else {
1843 		bh = &hcd->low_prio_bh;
1844 		high_prio_bh = false;
1845 	}
1846 
1847 	spin_lock(&bh->lock);
1848 	list_add_tail(&urb->urb_list, &bh->head);
1849 	running = bh->running;
1850 	spin_unlock(&bh->lock);
1851 
1852 	if (running)
1853 		;
1854 	else if (high_prio_bh)
1855 		tasklet_hi_schedule(&bh->bh);
1856 	else
1857 		tasklet_schedule(&bh->bh);
1858 }
1859 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860 
1861 /*-------------------------------------------------------------------------*/
1862 
1863 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1864  * queue to drain completely.  The caller must first insure that no more
1865  * URBs can be submitted for this endpoint.
1866  */
1867 void usb_hcd_flush_endpoint(struct usb_device *udev,
1868 		struct usb_host_endpoint *ep)
1869 {
1870 	struct usb_hcd		*hcd;
1871 	struct urb		*urb;
1872 
1873 	if (!ep)
1874 		return;
1875 	might_sleep();
1876 	hcd = bus_to_hcd(udev->bus);
1877 
1878 	/* No more submits can occur */
1879 	spin_lock_irq(&hcd_urb_list_lock);
1880 rescan:
1881 	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1882 		int	is_in;
1883 
1884 		if (urb->unlinked)
1885 			continue;
1886 		usb_get_urb (urb);
1887 		is_in = usb_urb_dir_in(urb);
1888 		spin_unlock(&hcd_urb_list_lock);
1889 
1890 		/* kick hcd */
1891 		unlink1(hcd, urb, -ESHUTDOWN);
1892 		dev_dbg (hcd->self.controller,
1893 			"shutdown urb %pK ep%d%s%s\n",
1894 			urb, usb_endpoint_num(&ep->desc),
1895 			is_in ? "in" : "out",
1896 			({	char *s;
1897 
1898 				 switch (usb_endpoint_type(&ep->desc)) {
1899 				 case USB_ENDPOINT_XFER_CONTROL:
1900 					s = ""; break;
1901 				 case USB_ENDPOINT_XFER_BULK:
1902 					s = "-bulk"; break;
1903 				 case USB_ENDPOINT_XFER_INT:
1904 					s = "-intr"; break;
1905 				 default:
1906 					s = "-iso"; break;
1907 				};
1908 				s;
1909 			}));
1910 		usb_put_urb (urb);
1911 
1912 		/* list contents may have changed */
1913 		spin_lock(&hcd_urb_list_lock);
1914 		goto rescan;
1915 	}
1916 	spin_unlock_irq(&hcd_urb_list_lock);
1917 
1918 	/* Wait until the endpoint queue is completely empty */
1919 	while (!list_empty (&ep->urb_list)) {
1920 		spin_lock_irq(&hcd_urb_list_lock);
1921 
1922 		/* The list may have changed while we acquired the spinlock */
1923 		urb = NULL;
1924 		if (!list_empty (&ep->urb_list)) {
1925 			urb = list_entry (ep->urb_list.prev, struct urb,
1926 					urb_list);
1927 			usb_get_urb (urb);
1928 		}
1929 		spin_unlock_irq(&hcd_urb_list_lock);
1930 
1931 		if (urb) {
1932 			usb_kill_urb (urb);
1933 			usb_put_urb (urb);
1934 		}
1935 	}
1936 }
1937 
1938 /**
1939  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940  *				the bus bandwidth
1941  * @udev: target &usb_device
1942  * @new_config: new configuration to install
1943  * @cur_alt: the current alternate interface setting
1944  * @new_alt: alternate interface setting that is being installed
1945  *
1946  * To change configurations, pass in the new configuration in new_config,
1947  * and pass NULL for cur_alt and new_alt.
1948  *
1949  * To reset a device's configuration (put the device in the ADDRESSED state),
1950  * pass in NULL for new_config, cur_alt, and new_alt.
1951  *
1952  * To change alternate interface settings, pass in NULL for new_config,
1953  * pass in the current alternate interface setting in cur_alt,
1954  * and pass in the new alternate interface setting in new_alt.
1955  *
1956  * Return: An error if the requested bandwidth change exceeds the
1957  * bus bandwidth or host controller internal resources.
1958  */
1959 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1960 		struct usb_host_config *new_config,
1961 		struct usb_host_interface *cur_alt,
1962 		struct usb_host_interface *new_alt)
1963 {
1964 	int num_intfs, i, j;
1965 	struct usb_host_interface *alt = NULL;
1966 	int ret = 0;
1967 	struct usb_hcd *hcd;
1968 	struct usb_host_endpoint *ep;
1969 
1970 	hcd = bus_to_hcd(udev->bus);
1971 	if (!hcd->driver->check_bandwidth)
1972 		return 0;
1973 
1974 	/* Configuration is being removed - set configuration 0 */
1975 	if (!new_config && !cur_alt) {
1976 		for (i = 1; i < 16; ++i) {
1977 			ep = udev->ep_out[i];
1978 			if (ep)
1979 				hcd->driver->drop_endpoint(hcd, udev, ep);
1980 			ep = udev->ep_in[i];
1981 			if (ep)
1982 				hcd->driver->drop_endpoint(hcd, udev, ep);
1983 		}
1984 		hcd->driver->check_bandwidth(hcd, udev);
1985 		return 0;
1986 	}
1987 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1988 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1989 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1990 	 * ok to exclude it.
1991 	 */
1992 	if (new_config) {
1993 		num_intfs = new_config->desc.bNumInterfaces;
1994 		/* Remove endpoints (except endpoint 0, which is always on the
1995 		 * schedule) from the old config from the schedule
1996 		 */
1997 		for (i = 1; i < 16; ++i) {
1998 			ep = udev->ep_out[i];
1999 			if (ep) {
2000 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001 				if (ret < 0)
2002 					goto reset;
2003 			}
2004 			ep = udev->ep_in[i];
2005 			if (ep) {
2006 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2007 				if (ret < 0)
2008 					goto reset;
2009 			}
2010 		}
2011 		for (i = 0; i < num_intfs; ++i) {
2012 			struct usb_host_interface *first_alt;
2013 			int iface_num;
2014 
2015 			first_alt = &new_config->intf_cache[i]->altsetting[0];
2016 			iface_num = first_alt->desc.bInterfaceNumber;
2017 			/* Set up endpoints for alternate interface setting 0 */
2018 			alt = usb_find_alt_setting(new_config, iface_num, 0);
2019 			if (!alt)
2020 				/* No alt setting 0? Pick the first setting. */
2021 				alt = first_alt;
2022 
2023 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2024 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2025 				if (ret < 0)
2026 					goto reset;
2027 			}
2028 		}
2029 	}
2030 	if (cur_alt && new_alt) {
2031 		struct usb_interface *iface = usb_ifnum_to_if(udev,
2032 				cur_alt->desc.bInterfaceNumber);
2033 
2034 		if (!iface)
2035 			return -EINVAL;
2036 		if (iface->resetting_device) {
2037 			/*
2038 			 * The USB core just reset the device, so the xHCI host
2039 			 * and the device will think alt setting 0 is installed.
2040 			 * However, the USB core will pass in the alternate
2041 			 * setting installed before the reset as cur_alt.  Dig
2042 			 * out the alternate setting 0 structure, or the first
2043 			 * alternate setting if a broken device doesn't have alt
2044 			 * setting 0.
2045 			 */
2046 			cur_alt = usb_altnum_to_altsetting(iface, 0);
2047 			if (!cur_alt)
2048 				cur_alt = &iface->altsetting[0];
2049 		}
2050 
2051 		/* Drop all the endpoints in the current alt setting */
2052 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2053 			ret = hcd->driver->drop_endpoint(hcd, udev,
2054 					&cur_alt->endpoint[i]);
2055 			if (ret < 0)
2056 				goto reset;
2057 		}
2058 		/* Add all the endpoints in the new alt setting */
2059 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2060 			ret = hcd->driver->add_endpoint(hcd, udev,
2061 					&new_alt->endpoint[i]);
2062 			if (ret < 0)
2063 				goto reset;
2064 		}
2065 	}
2066 	ret = hcd->driver->check_bandwidth(hcd, udev);
2067 reset:
2068 	if (ret < 0)
2069 		hcd->driver->reset_bandwidth(hcd, udev);
2070 	return ret;
2071 }
2072 
2073 /* Disables the endpoint: synchronizes with the hcd to make sure all
2074  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2075  * have been called previously.  Use for set_configuration, set_interface,
2076  * driver removal, physical disconnect.
2077  *
2078  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2079  * type, maxpacket size, toggle, halt status, and scheduling.
2080  */
2081 void usb_hcd_disable_endpoint(struct usb_device *udev,
2082 		struct usb_host_endpoint *ep)
2083 {
2084 	struct usb_hcd		*hcd;
2085 
2086 	might_sleep();
2087 	hcd = bus_to_hcd(udev->bus);
2088 	if (hcd->driver->endpoint_disable)
2089 		hcd->driver->endpoint_disable(hcd, ep);
2090 }
2091 
2092 /**
2093  * usb_hcd_reset_endpoint - reset host endpoint state
2094  * @udev: USB device.
2095  * @ep:   the endpoint to reset.
2096  *
2097  * Resets any host endpoint state such as the toggle bit, sequence
2098  * number and current window.
2099  */
2100 void usb_hcd_reset_endpoint(struct usb_device *udev,
2101 			    struct usb_host_endpoint *ep)
2102 {
2103 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104 
2105 	if (hcd->driver->endpoint_reset)
2106 		hcd->driver->endpoint_reset(hcd, ep);
2107 	else {
2108 		int epnum = usb_endpoint_num(&ep->desc);
2109 		int is_out = usb_endpoint_dir_out(&ep->desc);
2110 		int is_control = usb_endpoint_xfer_control(&ep->desc);
2111 
2112 		usb_settoggle(udev, epnum, is_out, 0);
2113 		if (is_control)
2114 			usb_settoggle(udev, epnum, !is_out, 0);
2115 	}
2116 }
2117 
2118 /**
2119  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2120  * @interface:		alternate setting that includes all endpoints.
2121  * @eps:		array of endpoints that need streams.
2122  * @num_eps:		number of endpoints in the array.
2123  * @num_streams:	number of streams to allocate.
2124  * @mem_flags:		flags hcd should use to allocate memory.
2125  *
2126  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2127  * Drivers may queue multiple transfers to different stream IDs, which may
2128  * complete in a different order than they were queued.
2129  *
2130  * Return: On success, the number of allocated streams. On failure, a negative
2131  * error code.
2132  */
2133 int usb_alloc_streams(struct usb_interface *interface,
2134 		struct usb_host_endpoint **eps, unsigned int num_eps,
2135 		unsigned int num_streams, gfp_t mem_flags)
2136 {
2137 	struct usb_hcd *hcd;
2138 	struct usb_device *dev;
2139 	int i, ret;
2140 
2141 	dev = interface_to_usbdev(interface);
2142 	hcd = bus_to_hcd(dev->bus);
2143 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2144 		return -EINVAL;
2145 	if (dev->speed < USB_SPEED_SUPER)
2146 		return -EINVAL;
2147 	if (dev->state < USB_STATE_CONFIGURED)
2148 		return -ENODEV;
2149 
2150 	for (i = 0; i < num_eps; i++) {
2151 		/* Streams only apply to bulk endpoints. */
2152 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2153 			return -EINVAL;
2154 		/* Re-alloc is not allowed */
2155 		if (eps[i]->streams)
2156 			return -EINVAL;
2157 	}
2158 
2159 	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2160 			num_streams, mem_flags);
2161 	if (ret < 0)
2162 		return ret;
2163 
2164 	for (i = 0; i < num_eps; i++)
2165 		eps[i]->streams = ret;
2166 
2167 	return ret;
2168 }
2169 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2170 
2171 /**
2172  * usb_free_streams - free bulk endpoint stream IDs.
2173  * @interface:	alternate setting that includes all endpoints.
2174  * @eps:	array of endpoints to remove streams from.
2175  * @num_eps:	number of endpoints in the array.
2176  * @mem_flags:	flags hcd should use to allocate memory.
2177  *
2178  * Reverts a group of bulk endpoints back to not using stream IDs.
2179  * Can fail if we are given bad arguments, or HCD is broken.
2180  *
2181  * Return: 0 on success. On failure, a negative error code.
2182  */
2183 int usb_free_streams(struct usb_interface *interface,
2184 		struct usb_host_endpoint **eps, unsigned int num_eps,
2185 		gfp_t mem_flags)
2186 {
2187 	struct usb_hcd *hcd;
2188 	struct usb_device *dev;
2189 	int i, ret;
2190 
2191 	dev = interface_to_usbdev(interface);
2192 	hcd = bus_to_hcd(dev->bus);
2193 	if (dev->speed < USB_SPEED_SUPER)
2194 		return -EINVAL;
2195 
2196 	/* Double-free is not allowed */
2197 	for (i = 0; i < num_eps; i++)
2198 		if (!eps[i] || !eps[i]->streams)
2199 			return -EINVAL;
2200 
2201 	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202 	if (ret < 0)
2203 		return ret;
2204 
2205 	for (i = 0; i < num_eps; i++)
2206 		eps[i]->streams = 0;
2207 
2208 	return ret;
2209 }
2210 EXPORT_SYMBOL_GPL(usb_free_streams);
2211 
2212 /* Protect against drivers that try to unlink URBs after the device
2213  * is gone, by waiting until all unlinks for @udev are finished.
2214  * Since we don't currently track URBs by device, simply wait until
2215  * nothing is running in the locked region of usb_hcd_unlink_urb().
2216  */
2217 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218 {
2219 	spin_lock_irq(&hcd_urb_unlink_lock);
2220 	spin_unlock_irq(&hcd_urb_unlink_lock);
2221 }
2222 
2223 /*-------------------------------------------------------------------------*/
2224 
2225 /* called in any context */
2226 int usb_hcd_get_frame_number (struct usb_device *udev)
2227 {
2228 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2229 
2230 	if (!HCD_RH_RUNNING(hcd))
2231 		return -ESHUTDOWN;
2232 	return hcd->driver->get_frame_number (hcd);
2233 }
2234 
2235 /*-------------------------------------------------------------------------*/
2236 
2237 #ifdef	CONFIG_PM
2238 
2239 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240 {
2241 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2242 	int		status;
2243 	int		old_state = hcd->state;
2244 
2245 	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2246 			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2247 			rhdev->do_remote_wakeup);
2248 	if (HCD_DEAD(hcd)) {
2249 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250 		return 0;
2251 	}
2252 
2253 	if (!hcd->driver->bus_suspend) {
2254 		status = -ENOENT;
2255 	} else {
2256 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2257 		hcd->state = HC_STATE_QUIESCING;
2258 		status = hcd->driver->bus_suspend(hcd);
2259 	}
2260 	if (status == 0) {
2261 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2262 		hcd->state = HC_STATE_SUSPENDED;
2263 
2264 		if (!PMSG_IS_AUTO(msg))
2265 			usb_phy_roothub_suspend(hcd->self.sysdev,
2266 						hcd->phy_roothub);
2267 
2268 		/* Did we race with a root-hub wakeup event? */
2269 		if (rhdev->do_remote_wakeup) {
2270 			char	buffer[6];
2271 
2272 			status = hcd->driver->hub_status_data(hcd, buffer);
2273 			if (status != 0) {
2274 				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2275 				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2276 				status = -EBUSY;
2277 			}
2278 		}
2279 	} else {
2280 		spin_lock_irq(&hcd_root_hub_lock);
2281 		if (!HCD_DEAD(hcd)) {
2282 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2283 			hcd->state = old_state;
2284 		}
2285 		spin_unlock_irq(&hcd_root_hub_lock);
2286 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2287 				"suspend", status);
2288 	}
2289 	return status;
2290 }
2291 
2292 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2293 {
2294 	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2295 	int		status;
2296 	int		old_state = hcd->state;
2297 
2298 	dev_dbg(&rhdev->dev, "usb %sresume\n",
2299 			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2300 	if (HCD_DEAD(hcd)) {
2301 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2302 		return 0;
2303 	}
2304 
2305 	if (!PMSG_IS_AUTO(msg)) {
2306 		status = usb_phy_roothub_resume(hcd->self.sysdev,
2307 						hcd->phy_roothub);
2308 		if (status)
2309 			return status;
2310 	}
2311 
2312 	if (!hcd->driver->bus_resume)
2313 		return -ENOENT;
2314 	if (HCD_RH_RUNNING(hcd))
2315 		return 0;
2316 
2317 	hcd->state = HC_STATE_RESUMING;
2318 	status = hcd->driver->bus_resume(hcd);
2319 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2320 	if (status == 0) {
2321 		struct usb_device *udev;
2322 		int port1;
2323 
2324 		spin_lock_irq(&hcd_root_hub_lock);
2325 		if (!HCD_DEAD(hcd)) {
2326 			usb_set_device_state(rhdev, rhdev->actconfig
2327 					? USB_STATE_CONFIGURED
2328 					: USB_STATE_ADDRESS);
2329 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2330 			hcd->state = HC_STATE_RUNNING;
2331 		}
2332 		spin_unlock_irq(&hcd_root_hub_lock);
2333 
2334 		/*
2335 		 * Check whether any of the enabled ports on the root hub are
2336 		 * unsuspended.  If they are then a TRSMRCY delay is needed
2337 		 * (this is what the USB-2 spec calls a "global resume").
2338 		 * Otherwise we can skip the delay.
2339 		 */
2340 		usb_hub_for_each_child(rhdev, port1, udev) {
2341 			if (udev->state != USB_STATE_NOTATTACHED &&
2342 					!udev->port_is_suspended) {
2343 				usleep_range(10000, 11000);	/* TRSMRCY */
2344 				break;
2345 			}
2346 		}
2347 	} else {
2348 		hcd->state = old_state;
2349 		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2350 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2351 				"resume", status);
2352 		if (status != -ESHUTDOWN)
2353 			usb_hc_died(hcd);
2354 	}
2355 	return status;
2356 }
2357 
2358 /* Workqueue routine for root-hub remote wakeup */
2359 static void hcd_resume_work(struct work_struct *work)
2360 {
2361 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2362 	struct usb_device *udev = hcd->self.root_hub;
2363 
2364 	usb_remote_wakeup(udev);
2365 }
2366 
2367 /**
2368  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2369  * @hcd: host controller for this root hub
2370  *
2371  * The USB host controller calls this function when its root hub is
2372  * suspended (with the remote wakeup feature enabled) and a remote
2373  * wakeup request is received.  The routine submits a workqueue request
2374  * to resume the root hub (that is, manage its downstream ports again).
2375  */
2376 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2377 {
2378 	unsigned long flags;
2379 
2380 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2381 	if (hcd->rh_registered) {
2382 		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2383 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2384 		queue_work(pm_wq, &hcd->wakeup_work);
2385 	}
2386 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2387 }
2388 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2389 
2390 #endif	/* CONFIG_PM */
2391 
2392 /*-------------------------------------------------------------------------*/
2393 
2394 #ifdef	CONFIG_USB_OTG
2395 
2396 /**
2397  * usb_bus_start_enum - start immediate enumeration (for OTG)
2398  * @bus: the bus (must use hcd framework)
2399  * @port_num: 1-based number of port; usually bus->otg_port
2400  * Context: in_interrupt()
2401  *
2402  * Starts enumeration, with an immediate reset followed later by
2403  * hub_wq identifying and possibly configuring the device.
2404  * This is needed by OTG controller drivers, where it helps meet
2405  * HNP protocol timing requirements for starting a port reset.
2406  *
2407  * Return: 0 if successful.
2408  */
2409 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2410 {
2411 	struct usb_hcd		*hcd;
2412 	int			status = -EOPNOTSUPP;
2413 
2414 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2415 	 * boards with root hubs hooked up to internal devices (instead of
2416 	 * just the OTG port) may need more attention to resetting...
2417 	 */
2418 	hcd = bus_to_hcd(bus);
2419 	if (port_num && hcd->driver->start_port_reset)
2420 		status = hcd->driver->start_port_reset(hcd, port_num);
2421 
2422 	/* allocate hub_wq shortly after (first) root port reset finishes;
2423 	 * it may issue others, until at least 50 msecs have passed.
2424 	 */
2425 	if (status == 0)
2426 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2427 	return status;
2428 }
2429 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2430 
2431 #endif
2432 
2433 /*-------------------------------------------------------------------------*/
2434 
2435 /**
2436  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2437  * @irq: the IRQ being raised
2438  * @__hcd: pointer to the HCD whose IRQ is being signaled
2439  *
2440  * If the controller isn't HALTed, calls the driver's irq handler.
2441  * Checks whether the controller is now dead.
2442  *
2443  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2444  */
2445 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2446 {
2447 	struct usb_hcd		*hcd = __hcd;
2448 	irqreturn_t		rc;
2449 
2450 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2451 		rc = IRQ_NONE;
2452 	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2453 		rc = IRQ_NONE;
2454 	else
2455 		rc = IRQ_HANDLED;
2456 
2457 	return rc;
2458 }
2459 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2460 
2461 /*-------------------------------------------------------------------------*/
2462 
2463 /**
2464  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2465  * @hcd: pointer to the HCD representing the controller
2466  *
2467  * This is called by bus glue to report a USB host controller that died
2468  * while operations may still have been pending.  It's called automatically
2469  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2470  *
2471  * Only call this function with the primary HCD.
2472  */
2473 void usb_hc_died (struct usb_hcd *hcd)
2474 {
2475 	unsigned long flags;
2476 
2477 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2478 
2479 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2480 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2481 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2482 	if (hcd->rh_registered) {
2483 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2484 
2485 		/* make hub_wq clean up old urbs and devices */
2486 		usb_set_device_state (hcd->self.root_hub,
2487 				USB_STATE_NOTATTACHED);
2488 		usb_kick_hub_wq(hcd->self.root_hub);
2489 	}
2490 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2491 		hcd = hcd->shared_hcd;
2492 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2493 		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2494 		if (hcd->rh_registered) {
2495 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2496 
2497 			/* make hub_wq clean up old urbs and devices */
2498 			usb_set_device_state(hcd->self.root_hub,
2499 					USB_STATE_NOTATTACHED);
2500 			usb_kick_hub_wq(hcd->self.root_hub);
2501 		}
2502 	}
2503 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2504 	/* Make sure that the other roothub is also deallocated. */
2505 }
2506 EXPORT_SYMBOL_GPL (usb_hc_died);
2507 
2508 /*-------------------------------------------------------------------------*/
2509 
2510 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2511 {
2512 
2513 	spin_lock_init(&bh->lock);
2514 	INIT_LIST_HEAD(&bh->head);
2515 	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2516 }
2517 
2518 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2519 		struct device *sysdev, struct device *dev, const char *bus_name,
2520 		struct usb_hcd *primary_hcd)
2521 {
2522 	struct usb_hcd *hcd;
2523 
2524 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2525 	if (!hcd)
2526 		return NULL;
2527 	if (primary_hcd == NULL) {
2528 		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2529 				GFP_KERNEL);
2530 		if (!hcd->address0_mutex) {
2531 			kfree(hcd);
2532 			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2533 			return NULL;
2534 		}
2535 		mutex_init(hcd->address0_mutex);
2536 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2537 				GFP_KERNEL);
2538 		if (!hcd->bandwidth_mutex) {
2539 			kfree(hcd->address0_mutex);
2540 			kfree(hcd);
2541 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2542 			return NULL;
2543 		}
2544 		mutex_init(hcd->bandwidth_mutex);
2545 		dev_set_drvdata(dev, hcd);
2546 	} else {
2547 		mutex_lock(&usb_port_peer_mutex);
2548 		hcd->address0_mutex = primary_hcd->address0_mutex;
2549 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2550 		hcd->primary_hcd = primary_hcd;
2551 		primary_hcd->primary_hcd = primary_hcd;
2552 		hcd->shared_hcd = primary_hcd;
2553 		primary_hcd->shared_hcd = hcd;
2554 		mutex_unlock(&usb_port_peer_mutex);
2555 	}
2556 
2557 	kref_init(&hcd->kref);
2558 
2559 	usb_bus_init(&hcd->self);
2560 	hcd->self.controller = dev;
2561 	hcd->self.sysdev = sysdev;
2562 	hcd->self.bus_name = bus_name;
2563 	hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2564 
2565 	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2566 #ifdef CONFIG_PM
2567 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2568 #endif
2569 
2570 	hcd->driver = driver;
2571 	hcd->speed = driver->flags & HCD_MASK;
2572 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2573 			"USB Host Controller";
2574 	return hcd;
2575 }
2576 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2577 
2578 /**
2579  * usb_create_shared_hcd - create and initialize an HCD structure
2580  * @driver: HC driver that will use this hcd
2581  * @dev: device for this HC, stored in hcd->self.controller
2582  * @bus_name: value to store in hcd->self.bus_name
2583  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2584  *              PCI device.  Only allocate certain resources for the primary HCD
2585  * Context: !in_interrupt()
2586  *
2587  * Allocate a struct usb_hcd, with extra space at the end for the
2588  * HC driver's private data.  Initialize the generic members of the
2589  * hcd structure.
2590  *
2591  * Return: On success, a pointer to the created and initialized HCD structure.
2592  * On failure (e.g. if memory is unavailable), %NULL.
2593  */
2594 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2595 		struct device *dev, const char *bus_name,
2596 		struct usb_hcd *primary_hcd)
2597 {
2598 	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2599 }
2600 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2601 
2602 /**
2603  * usb_create_hcd - create and initialize an HCD structure
2604  * @driver: HC driver that will use this hcd
2605  * @dev: device for this HC, stored in hcd->self.controller
2606  * @bus_name: value to store in hcd->self.bus_name
2607  * Context: !in_interrupt()
2608  *
2609  * Allocate a struct usb_hcd, with extra space at the end for the
2610  * HC driver's private data.  Initialize the generic members of the
2611  * hcd structure.
2612  *
2613  * Return: On success, a pointer to the created and initialized HCD
2614  * structure. On failure (e.g. if memory is unavailable), %NULL.
2615  */
2616 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2617 		struct device *dev, const char *bus_name)
2618 {
2619 	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2620 }
2621 EXPORT_SYMBOL_GPL(usb_create_hcd);
2622 
2623 /*
2624  * Roothubs that share one PCI device must also share the bandwidth mutex.
2625  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2626  * deallocated.
2627  *
2628  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2629  * freed.  When hcd_release() is called for either hcd in a peer set,
2630  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2631  */
2632 static void hcd_release(struct kref *kref)
2633 {
2634 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2635 
2636 	mutex_lock(&usb_port_peer_mutex);
2637 	if (hcd->shared_hcd) {
2638 		struct usb_hcd *peer = hcd->shared_hcd;
2639 
2640 		peer->shared_hcd = NULL;
2641 		peer->primary_hcd = NULL;
2642 	} else {
2643 		kfree(hcd->address0_mutex);
2644 		kfree(hcd->bandwidth_mutex);
2645 	}
2646 	mutex_unlock(&usb_port_peer_mutex);
2647 	kfree(hcd);
2648 }
2649 
2650 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2651 {
2652 	if (hcd)
2653 		kref_get (&hcd->kref);
2654 	return hcd;
2655 }
2656 EXPORT_SYMBOL_GPL(usb_get_hcd);
2657 
2658 void usb_put_hcd (struct usb_hcd *hcd)
2659 {
2660 	if (hcd)
2661 		kref_put (&hcd->kref, hcd_release);
2662 }
2663 EXPORT_SYMBOL_GPL(usb_put_hcd);
2664 
2665 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2666 {
2667 	if (!hcd->primary_hcd)
2668 		return 1;
2669 	return hcd == hcd->primary_hcd;
2670 }
2671 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2672 
2673 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2674 {
2675 	if (!hcd->driver->find_raw_port_number)
2676 		return port1;
2677 
2678 	return hcd->driver->find_raw_port_number(hcd, port1);
2679 }
2680 
2681 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2682 		unsigned int irqnum, unsigned long irqflags)
2683 {
2684 	int retval;
2685 
2686 	if (hcd->driver->irq) {
2687 
2688 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2689 				hcd->driver->description, hcd->self.busnum);
2690 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2691 				hcd->irq_descr, hcd);
2692 		if (retval != 0) {
2693 			dev_err(hcd->self.controller,
2694 					"request interrupt %d failed\n",
2695 					irqnum);
2696 			return retval;
2697 		}
2698 		hcd->irq = irqnum;
2699 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2700 				(hcd->driver->flags & HCD_MEMORY) ?
2701 					"io mem" : "io base",
2702 					(unsigned long long)hcd->rsrc_start);
2703 	} else {
2704 		hcd->irq = 0;
2705 		if (hcd->rsrc_start)
2706 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2707 					(hcd->driver->flags & HCD_MEMORY) ?
2708 					"io mem" : "io base",
2709 					(unsigned long long)hcd->rsrc_start);
2710 	}
2711 	return 0;
2712 }
2713 
2714 /*
2715  * Before we free this root hub, flush in-flight peering attempts
2716  * and disable peer lookups
2717  */
2718 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2719 {
2720 	struct usb_device *rhdev;
2721 
2722 	mutex_lock(&usb_port_peer_mutex);
2723 	rhdev = hcd->self.root_hub;
2724 	hcd->self.root_hub = NULL;
2725 	mutex_unlock(&usb_port_peer_mutex);
2726 	usb_put_dev(rhdev);
2727 }
2728 
2729 /**
2730  * usb_add_hcd - finish generic HCD structure initialization and register
2731  * @hcd: the usb_hcd structure to initialize
2732  * @irqnum: Interrupt line to allocate
2733  * @irqflags: Interrupt type flags
2734  *
2735  * Finish the remaining parts of generic HCD initialization: allocate the
2736  * buffers of consistent memory, register the bus, request the IRQ line,
2737  * and call the driver's reset() and start() routines.
2738  */
2739 int usb_add_hcd(struct usb_hcd *hcd,
2740 		unsigned int irqnum, unsigned long irqflags)
2741 {
2742 	int retval;
2743 	struct usb_device *rhdev;
2744 
2745 	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->skip_phy_initialization) {
2746 		struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2747 
2748 		if (IS_ERR(phy)) {
2749 			retval = PTR_ERR(phy);
2750 			if (retval == -EPROBE_DEFER)
2751 				return retval;
2752 		} else {
2753 			retval = usb_phy_init(phy);
2754 			if (retval) {
2755 				usb_put_phy(phy);
2756 				return retval;
2757 			}
2758 			hcd->usb_phy = phy;
2759 			hcd->remove_phy = 1;
2760 		}
2761 	}
2762 
2763 	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2764 		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2765 		if (IS_ERR(hcd->phy_roothub)) {
2766 			retval = PTR_ERR(hcd->phy_roothub);
2767 			goto err_phy_roothub_alloc;
2768 		}
2769 
2770 		retval = usb_phy_roothub_init(hcd->phy_roothub);
2771 		if (retval)
2772 			goto err_phy_roothub_alloc;
2773 
2774 		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2775 		if (retval)
2776 			goto err_usb_phy_roothub_power_on;
2777 	}
2778 
2779 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2780 
2781 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2782 	if (authorized_default < 0 || authorized_default > 1) {
2783 		if (hcd->wireless)
2784 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785 		else
2786 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2787 	} else {
2788 		if (authorized_default)
2789 			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2790 		else
2791 			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2792 	}
2793 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2794 
2795 	/* per default all interfaces are authorized */
2796 	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2797 
2798 	/* HC is in reset state, but accessible.  Now do the one-time init,
2799 	 * bottom up so that hcds can customize the root hubs before hub_wq
2800 	 * starts talking to them.  (Note, bus id is assigned early too.)
2801 	 */
2802 	retval = hcd_buffer_create(hcd);
2803 	if (retval != 0) {
2804 		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2805 		goto err_create_buf;
2806 	}
2807 
2808 	retval = usb_register_bus(&hcd->self);
2809 	if (retval < 0)
2810 		goto err_register_bus;
2811 
2812 	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2813 	if (rhdev == NULL) {
2814 		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2815 		retval = -ENOMEM;
2816 		goto err_allocate_root_hub;
2817 	}
2818 	mutex_lock(&usb_port_peer_mutex);
2819 	hcd->self.root_hub = rhdev;
2820 	mutex_unlock(&usb_port_peer_mutex);
2821 
2822 	switch (hcd->speed) {
2823 	case HCD_USB11:
2824 		rhdev->speed = USB_SPEED_FULL;
2825 		break;
2826 	case HCD_USB2:
2827 		rhdev->speed = USB_SPEED_HIGH;
2828 		break;
2829 	case HCD_USB25:
2830 		rhdev->speed = USB_SPEED_WIRELESS;
2831 		break;
2832 	case HCD_USB3:
2833 		rhdev->speed = USB_SPEED_SUPER;
2834 		break;
2835 	case HCD_USB31:
2836 		rhdev->speed = USB_SPEED_SUPER_PLUS;
2837 		break;
2838 	default:
2839 		retval = -EINVAL;
2840 		goto err_set_rh_speed;
2841 	}
2842 
2843 	/* wakeup flag init defaults to "everything works" for root hubs,
2844 	 * but drivers can override it in reset() if needed, along with
2845 	 * recording the overall controller's system wakeup capability.
2846 	 */
2847 	device_set_wakeup_capable(&rhdev->dev, 1);
2848 
2849 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2850 	 * registered.  But since the controller can die at any time,
2851 	 * let's initialize the flag before touching the hardware.
2852 	 */
2853 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2854 
2855 	/* "reset" is misnamed; its role is now one-time init. the controller
2856 	 * should already have been reset (and boot firmware kicked off etc).
2857 	 */
2858 	if (hcd->driver->reset) {
2859 		retval = hcd->driver->reset(hcd);
2860 		if (retval < 0) {
2861 			dev_err(hcd->self.controller, "can't setup: %d\n",
2862 					retval);
2863 			goto err_hcd_driver_setup;
2864 		}
2865 	}
2866 	hcd->rh_pollable = 1;
2867 
2868 	/* NOTE: root hub and controller capabilities may not be the same */
2869 	if (device_can_wakeup(hcd->self.controller)
2870 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2871 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2872 
2873 	/* initialize tasklets */
2874 	init_giveback_urb_bh(&hcd->high_prio_bh);
2875 	init_giveback_urb_bh(&hcd->low_prio_bh);
2876 
2877 	/* enable irqs just before we start the controller,
2878 	 * if the BIOS provides legacy PCI irqs.
2879 	 */
2880 	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2881 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2882 		if (retval)
2883 			goto err_request_irq;
2884 	}
2885 
2886 	hcd->state = HC_STATE_RUNNING;
2887 	retval = hcd->driver->start(hcd);
2888 	if (retval < 0) {
2889 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2890 		goto err_hcd_driver_start;
2891 	}
2892 
2893 	/* starting here, usbcore will pay attention to this root hub */
2894 	retval = register_root_hub(hcd);
2895 	if (retval != 0)
2896 		goto err_register_root_hub;
2897 
2898 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2899 	if (retval < 0) {
2900 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2901 		       retval);
2902 		goto error_create_attr_group;
2903 	}
2904 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2905 		usb_hcd_poll_rh_status(hcd);
2906 
2907 	return retval;
2908 
2909 error_create_attr_group:
2910 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2911 	if (HC_IS_RUNNING(hcd->state))
2912 		hcd->state = HC_STATE_QUIESCING;
2913 	spin_lock_irq(&hcd_root_hub_lock);
2914 	hcd->rh_registered = 0;
2915 	spin_unlock_irq(&hcd_root_hub_lock);
2916 
2917 #ifdef CONFIG_PM
2918 	cancel_work_sync(&hcd->wakeup_work);
2919 #endif
2920 	mutex_lock(&usb_bus_idr_lock);
2921 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2922 	mutex_unlock(&usb_bus_idr_lock);
2923 err_register_root_hub:
2924 	hcd->rh_pollable = 0;
2925 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2926 	del_timer_sync(&hcd->rh_timer);
2927 	hcd->driver->stop(hcd);
2928 	hcd->state = HC_STATE_HALT;
2929 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2930 	del_timer_sync(&hcd->rh_timer);
2931 err_hcd_driver_start:
2932 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2933 		free_irq(irqnum, hcd);
2934 err_request_irq:
2935 err_hcd_driver_setup:
2936 err_set_rh_speed:
2937 	usb_put_invalidate_rhdev(hcd);
2938 err_allocate_root_hub:
2939 	usb_deregister_bus(&hcd->self);
2940 err_register_bus:
2941 	hcd_buffer_destroy(hcd);
2942 err_create_buf:
2943 	usb_phy_roothub_power_off(hcd->phy_roothub);
2944 err_usb_phy_roothub_power_on:
2945 	usb_phy_roothub_exit(hcd->phy_roothub);
2946 err_phy_roothub_alloc:
2947 	if (hcd->remove_phy && hcd->usb_phy) {
2948 		usb_phy_shutdown(hcd->usb_phy);
2949 		usb_put_phy(hcd->usb_phy);
2950 		hcd->usb_phy = NULL;
2951 	}
2952 	return retval;
2953 }
2954 EXPORT_SYMBOL_GPL(usb_add_hcd);
2955 
2956 /**
2957  * usb_remove_hcd - shutdown processing for generic HCDs
2958  * @hcd: the usb_hcd structure to remove
2959  * Context: !in_interrupt()
2960  *
2961  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2962  * invoking the HCD's stop() method.
2963  */
2964 void usb_remove_hcd(struct usb_hcd *hcd)
2965 {
2966 	struct usb_device *rhdev = hcd->self.root_hub;
2967 
2968 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2969 
2970 	usb_get_dev(rhdev);
2971 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2972 
2973 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2974 	if (HC_IS_RUNNING (hcd->state))
2975 		hcd->state = HC_STATE_QUIESCING;
2976 
2977 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2978 	spin_lock_irq (&hcd_root_hub_lock);
2979 	hcd->rh_registered = 0;
2980 	spin_unlock_irq (&hcd_root_hub_lock);
2981 
2982 #ifdef CONFIG_PM
2983 	cancel_work_sync(&hcd->wakeup_work);
2984 #endif
2985 
2986 	mutex_lock(&usb_bus_idr_lock);
2987 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2988 	mutex_unlock(&usb_bus_idr_lock);
2989 
2990 	/*
2991 	 * tasklet_kill() isn't needed here because:
2992 	 * - driver's disconnect() called from usb_disconnect() should
2993 	 *   make sure its URBs are completed during the disconnect()
2994 	 *   callback
2995 	 *
2996 	 * - it is too late to run complete() here since driver may have
2997 	 *   been removed already now
2998 	 */
2999 
3000 	/* Prevent any more root-hub status calls from the timer.
3001 	 * The HCD might still restart the timer (if a port status change
3002 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3003 	 * the hub_status_data() callback.
3004 	 */
3005 	hcd->rh_pollable = 0;
3006 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3007 	del_timer_sync(&hcd->rh_timer);
3008 
3009 	hcd->driver->stop(hcd);
3010 	hcd->state = HC_STATE_HALT;
3011 
3012 	/* In case the HCD restarted the timer, stop it again. */
3013 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3014 	del_timer_sync(&hcd->rh_timer);
3015 
3016 	if (usb_hcd_is_primary_hcd(hcd)) {
3017 		if (hcd->irq > 0)
3018 			free_irq(hcd->irq, hcd);
3019 	}
3020 
3021 	usb_deregister_bus(&hcd->self);
3022 	hcd_buffer_destroy(hcd);
3023 
3024 	usb_phy_roothub_power_off(hcd->phy_roothub);
3025 	usb_phy_roothub_exit(hcd->phy_roothub);
3026 
3027 	if (hcd->remove_phy && hcd->usb_phy) {
3028 		usb_phy_shutdown(hcd->usb_phy);
3029 		usb_put_phy(hcd->usb_phy);
3030 		hcd->usb_phy = NULL;
3031 	}
3032 
3033 	usb_put_invalidate_rhdev(hcd);
3034 	hcd->flags = 0;
3035 }
3036 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3037 
3038 void
3039 usb_hcd_platform_shutdown(struct platform_device *dev)
3040 {
3041 	struct usb_hcd *hcd = platform_get_drvdata(dev);
3042 
3043 	if (hcd->driver->shutdown)
3044 		hcd->driver->shutdown(hcd);
3045 }
3046 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3047 
3048 /*-------------------------------------------------------------------------*/
3049 
3050 #if IS_ENABLED(CONFIG_USB_MON)
3051 
3052 const struct usb_mon_operations *mon_ops;
3053 
3054 /*
3055  * The registration is unlocked.
3056  * We do it this way because we do not want to lock in hot paths.
3057  *
3058  * Notice that the code is minimally error-proof. Because usbmon needs
3059  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3060  */
3061 
3062 int usb_mon_register(const struct usb_mon_operations *ops)
3063 {
3064 
3065 	if (mon_ops)
3066 		return -EBUSY;
3067 
3068 	mon_ops = ops;
3069 	mb();
3070 	return 0;
3071 }
3072 EXPORT_SYMBOL_GPL (usb_mon_register);
3073 
3074 void usb_mon_deregister (void)
3075 {
3076 
3077 	if (mon_ops == NULL) {
3078 		printk(KERN_ERR "USB: monitor was not registered\n");
3079 		return;
3080 	}
3081 	mon_ops = NULL;
3082 	mb();
3083 }
3084 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3085 
3086 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
3087