xref: /openbmc/linux/drivers/usb/core/hcd.c (revision 384740dc)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
47 
48 
49 /*-------------------------------------------------------------------------*/
50 
51 /*
52  * USB Host Controller Driver framework
53  *
54  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55  * HCD-specific behaviors/bugs.
56  *
57  * This does error checks, tracks devices and urbs, and delegates to a
58  * "hc_driver" only for code (and data) that really needs to know about
59  * hardware differences.  That includes root hub registers, i/o queues,
60  * and so on ... but as little else as possible.
61  *
62  * Shared code includes most of the "root hub" code (these are emulated,
63  * though each HC's hardware works differently) and PCI glue, plus request
64  * tracking overhead.  The HCD code should only block on spinlocks or on
65  * hardware handshaking; blocking on software events (such as other kernel
66  * threads releasing resources, or completing actions) is all generic.
67  *
68  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70  * only by the hub driver ... and that neither should be seen or used by
71  * usb client device drivers.
72  *
73  * Contributors of ideas or unattributed patches include: David Brownell,
74  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
75  *
76  * HISTORY:
77  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
78  *		associated cleanup.  "usb_hcd" still != "usb_bus".
79  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
80  */
81 
82 /*-------------------------------------------------------------------------*/
83 
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
87 
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS		64
90 struct usb_busmap {
91 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
92 };
93 static struct usb_busmap busmap;
94 
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
98 
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
101 
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
104 
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
107 
108 static inline int is_root_hub(struct usb_device *udev)
109 {
110 	return (udev->parent == NULL);
111 }
112 
113 /*-------------------------------------------------------------------------*/
114 
115 /*
116  * Sharable chunks of root hub code.
117  */
118 
119 /*-------------------------------------------------------------------------*/
120 
121 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
123 
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126 	0x12,       /*  __u8  bLength; */
127 	0x01,       /*  __u8  bDescriptorType; Device */
128 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
129 
130 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
131 	0x00,	    /*  __u8  bDeviceSubClass; */
132 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
133 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
134 
135 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
136 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
137 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
138 
139 	0x03,       /*  __u8  iManufacturer; */
140 	0x02,       /*  __u8  iProduct; */
141 	0x01,       /*  __u8  iSerialNumber; */
142 	0x01        /*  __u8  bNumConfigurations; */
143 };
144 
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
146 
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149 	0x12,       /*  __u8  bLength; */
150 	0x01,       /*  __u8  bDescriptorType; Device */
151 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
152 
153 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
154 	0x00,	    /*  __u8  bDeviceSubClass; */
155 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
156 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
157 
158 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
159 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
160 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
161 
162 	0x03,       /*  __u8  iManufacturer; */
163 	0x02,       /*  __u8  iProduct; */
164 	0x01,       /*  __u8  iSerialNumber; */
165 	0x01        /*  __u8  bNumConfigurations; */
166 };
167 
168 
169 /*-------------------------------------------------------------------------*/
170 
171 /* Configuration descriptors for our root hubs */
172 
173 static const u8 fs_rh_config_descriptor [] = {
174 
175 	/* one configuration */
176 	0x09,       /*  __u8  bLength; */
177 	0x02,       /*  __u8  bDescriptorType; Configuration */
178 	0x19, 0x00, /*  __le16 wTotalLength; */
179 	0x01,       /*  __u8  bNumInterfaces; (1) */
180 	0x01,       /*  __u8  bConfigurationValue; */
181 	0x00,       /*  __u8  iConfiguration; */
182 	0xc0,       /*  __u8  bmAttributes;
183 				 Bit 7: must be set,
184 				     6: Self-powered,
185 				     5: Remote wakeup,
186 				     4..0: resvd */
187 	0x00,       /*  __u8  MaxPower; */
188 
189 	/* USB 1.1:
190 	 * USB 2.0, single TT organization (mandatory):
191 	 *	one interface, protocol 0
192 	 *
193 	 * USB 2.0, multiple TT organization (optional):
194 	 *	two interfaces, protocols 1 (like single TT)
195 	 *	and 2 (multiple TT mode) ... config is
196 	 *	sometimes settable
197 	 *	NOT IMPLEMENTED
198 	 */
199 
200 	/* one interface */
201 	0x09,       /*  __u8  if_bLength; */
202 	0x04,       /*  __u8  if_bDescriptorType; Interface */
203 	0x00,       /*  __u8  if_bInterfaceNumber; */
204 	0x00,       /*  __u8  if_bAlternateSetting; */
205 	0x01,       /*  __u8  if_bNumEndpoints; */
206 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
207 	0x00,       /*  __u8  if_bInterfaceSubClass; */
208 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
209 	0x00,       /*  __u8  if_iInterface; */
210 
211 	/* one endpoint (status change endpoint) */
212 	0x07,       /*  __u8  ep_bLength; */
213 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
214 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
215  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
216  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
218 };
219 
220 static const u8 hs_rh_config_descriptor [] = {
221 
222 	/* one configuration */
223 	0x09,       /*  __u8  bLength; */
224 	0x02,       /*  __u8  bDescriptorType; Configuration */
225 	0x19, 0x00, /*  __le16 wTotalLength; */
226 	0x01,       /*  __u8  bNumInterfaces; (1) */
227 	0x01,       /*  __u8  bConfigurationValue; */
228 	0x00,       /*  __u8  iConfiguration; */
229 	0xc0,       /*  __u8  bmAttributes;
230 				 Bit 7: must be set,
231 				     6: Self-powered,
232 				     5: Remote wakeup,
233 				     4..0: resvd */
234 	0x00,       /*  __u8  MaxPower; */
235 
236 	/* USB 1.1:
237 	 * USB 2.0, single TT organization (mandatory):
238 	 *	one interface, protocol 0
239 	 *
240 	 * USB 2.0, multiple TT organization (optional):
241 	 *	two interfaces, protocols 1 (like single TT)
242 	 *	and 2 (multiple TT mode) ... config is
243 	 *	sometimes settable
244 	 *	NOT IMPLEMENTED
245 	 */
246 
247 	/* one interface */
248 	0x09,       /*  __u8  if_bLength; */
249 	0x04,       /*  __u8  if_bDescriptorType; Interface */
250 	0x00,       /*  __u8  if_bInterfaceNumber; */
251 	0x00,       /*  __u8  if_bAlternateSetting; */
252 	0x01,       /*  __u8  if_bNumEndpoints; */
253 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
254 	0x00,       /*  __u8  if_bInterfaceSubClass; */
255 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
256 	0x00,       /*  __u8  if_iInterface; */
257 
258 	/* one endpoint (status change endpoint) */
259 	0x07,       /*  __u8  ep_bLength; */
260 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
261 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
262  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
263 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264 		     * see hub.c:hub_configure() for details. */
265 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
267 };
268 
269 /*-------------------------------------------------------------------------*/
270 
271 /*
272  * helper routine for returning string descriptors in UTF-16LE
273  * input can actually be ISO-8859-1; ASCII is its 7-bit subset
274  */
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
276 {
277 	int retval;
278 
279 	for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
280 		*utf++ = *s++;
281 		*utf++ = 0;
282 	}
283 	if (utfmax > 0) {
284 		*utf = *s;
285 		++retval;
286 	}
287 	return retval;
288 }
289 
290 /*
291  * rh_string - provides manufacturer, product and serial strings for root hub
292  * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293  * @hcd: the host controller for this root hub
294  * @data: return packet in UTF-16 LE
295  * @len: length of the return packet
296  *
297  * Produces either a manufacturer, product or serial number string for the
298  * virtual root hub device.
299  */
300 static int rh_string (
301 	int		id,
302 	struct usb_hcd	*hcd,
303 	u8		*data,
304 	int		len
305 ) {
306 	char buf [100];
307 
308 	// language ids
309 	if (id == 0) {
310 		buf[0] = 4;    buf[1] = 3;	/* 4 bytes string data */
311 		buf[2] = 0x09; buf[3] = 0x04;	/* MSFT-speak for "en-us" */
312 		len = min (len, 4);
313 		memcpy (data, buf, len);
314 		return len;
315 
316 	// serial number
317 	} else if (id == 1) {
318 		strlcpy (buf, hcd->self.bus_name, sizeof buf);
319 
320 	// product description
321 	} else if (id == 2) {
322 		strlcpy (buf, hcd->product_desc, sizeof buf);
323 
324  	// id 3 == vendor description
325 	} else if (id == 3) {
326 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
327 			init_utsname()->release, hcd->driver->description);
328 
329 	// unsupported IDs --> "protocol stall"
330 	} else
331 		return -EPIPE;
332 
333 	switch (len) {		/* All cases fall through */
334 	default:
335 		len = 2 + ascii2utf (buf, data + 2, len - 2);
336 	case 2:
337 		data [1] = 3;	/* type == string */
338 	case 1:
339 		data [0] = 2 * (strlen (buf) + 1);
340 	case 0:
341 		;		/* Compiler wants a statement here */
342 	}
343 	return len;
344 }
345 
346 
347 /* Root hub control transfers execute synchronously */
348 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
349 {
350 	struct usb_ctrlrequest *cmd;
351  	u16		typeReq, wValue, wIndex, wLength;
352 	u8		*ubuf = urb->transfer_buffer;
353 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
354 		__attribute__((aligned(4)));
355 	const u8	*bufp = tbuf;
356 	int		len = 0;
357 	int		status;
358 	int		n;
359 	u8		patch_wakeup = 0;
360 	u8		patch_protocol = 0;
361 
362 	might_sleep();
363 
364 	spin_lock_irq(&hcd_root_hub_lock);
365 	status = usb_hcd_link_urb_to_ep(hcd, urb);
366 	spin_unlock_irq(&hcd_root_hub_lock);
367 	if (status)
368 		return status;
369 	urb->hcpriv = hcd;	/* Indicate it's queued */
370 
371 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
373 	wValue   = le16_to_cpu (cmd->wValue);
374 	wIndex   = le16_to_cpu (cmd->wIndex);
375 	wLength  = le16_to_cpu (cmd->wLength);
376 
377 	if (wLength > urb->transfer_buffer_length)
378 		goto error;
379 
380 	urb->actual_length = 0;
381 	switch (typeReq) {
382 
383 	/* DEVICE REQUESTS */
384 
385 	/* The root hub's remote wakeup enable bit is implemented using
386 	 * driver model wakeup flags.  If this system supports wakeup
387 	 * through USB, userspace may change the default "allow wakeup"
388 	 * policy through sysfs or these calls.
389 	 *
390 	 * Most root hubs support wakeup from downstream devices, for
391 	 * runtime power management (disabling USB clocks and reducing
392 	 * VBUS power usage).  However, not all of them do so; silicon,
393 	 * board, and BIOS bugs here are not uncommon, so these can't
394 	 * be treated quite like external hubs.
395 	 *
396 	 * Likewise, not all root hubs will pass wakeup events upstream,
397 	 * to wake up the whole system.  So don't assume root hub and
398 	 * controller capabilities are identical.
399 	 */
400 
401 	case DeviceRequest | USB_REQ_GET_STATUS:
402 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403 					<< USB_DEVICE_REMOTE_WAKEUP)
404 				| (1 << USB_DEVICE_SELF_POWERED);
405 		tbuf [1] = 0;
406 		len = 2;
407 		break;
408 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
411 		else
412 			goto error;
413 		break;
414 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
415 		if (device_can_wakeup(&hcd->self.root_hub->dev)
416 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
417 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
418 		else
419 			goto error;
420 		break;
421 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
422 		tbuf [0] = 1;
423 		len = 1;
424 			/* FALLTHROUGH */
425 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
426 		break;
427 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428 		switch (wValue & 0xff00) {
429 		case USB_DT_DEVICE << 8:
430 			if (hcd->driver->flags & HCD_USB2)
431 				bufp = usb2_rh_dev_descriptor;
432 			else if (hcd->driver->flags & HCD_USB11)
433 				bufp = usb11_rh_dev_descriptor;
434 			else
435 				goto error;
436 			len = 18;
437 			if (hcd->has_tt)
438 				patch_protocol = 1;
439 			break;
440 		case USB_DT_CONFIG << 8:
441 			if (hcd->driver->flags & HCD_USB2) {
442 				bufp = hs_rh_config_descriptor;
443 				len = sizeof hs_rh_config_descriptor;
444 			} else {
445 				bufp = fs_rh_config_descriptor;
446 				len = sizeof fs_rh_config_descriptor;
447 			}
448 			if (device_can_wakeup(&hcd->self.root_hub->dev))
449 				patch_wakeup = 1;
450 			break;
451 		case USB_DT_STRING << 8:
452 			n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
453 			if (n < 0)
454 				goto error;
455 			urb->actual_length = n;
456 			break;
457 		default:
458 			goto error;
459 		}
460 		break;
461 	case DeviceRequest | USB_REQ_GET_INTERFACE:
462 		tbuf [0] = 0;
463 		len = 1;
464 			/* FALLTHROUGH */
465 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
466 		break;
467 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
468 		// wValue == urb->dev->devaddr
469 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
470 			wValue);
471 		break;
472 
473 	/* INTERFACE REQUESTS (no defined feature/status flags) */
474 
475 	/* ENDPOINT REQUESTS */
476 
477 	case EndpointRequest | USB_REQ_GET_STATUS:
478 		// ENDPOINT_HALT flag
479 		tbuf [0] = 0;
480 		tbuf [1] = 0;
481 		len = 2;
482 			/* FALLTHROUGH */
483 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
484 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
485 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
486 		break;
487 
488 	/* CLASS REQUESTS (and errors) */
489 
490 	default:
491 		/* non-generic request */
492 		switch (typeReq) {
493 		case GetHubStatus:
494 		case GetPortStatus:
495 			len = 4;
496 			break;
497 		case GetHubDescriptor:
498 			len = sizeof (struct usb_hub_descriptor);
499 			break;
500 		}
501 		status = hcd->driver->hub_control (hcd,
502 			typeReq, wValue, wIndex,
503 			tbuf, wLength);
504 		break;
505 error:
506 		/* "protocol stall" on error */
507 		status = -EPIPE;
508 	}
509 
510 	if (status) {
511 		len = 0;
512 		if (status != -EPIPE) {
513 			dev_dbg (hcd->self.controller,
514 				"CTRL: TypeReq=0x%x val=0x%x "
515 				"idx=0x%x len=%d ==> %d\n",
516 				typeReq, wValue, wIndex,
517 				wLength, status);
518 		}
519 	}
520 	if (len) {
521 		if (urb->transfer_buffer_length < len)
522 			len = urb->transfer_buffer_length;
523 		urb->actual_length = len;
524 		// always USB_DIR_IN, toward host
525 		memcpy (ubuf, bufp, len);
526 
527 		/* report whether RH hardware supports remote wakeup */
528 		if (patch_wakeup &&
529 				len > offsetof (struct usb_config_descriptor,
530 						bmAttributes))
531 			((struct usb_config_descriptor *)ubuf)->bmAttributes
532 				|= USB_CONFIG_ATT_WAKEUP;
533 
534 		/* report whether RH hardware has an integrated TT */
535 		if (patch_protocol &&
536 				len > offsetof(struct usb_device_descriptor,
537 						bDeviceProtocol))
538 			((struct usb_device_descriptor *) ubuf)->
539 					bDeviceProtocol = 1;
540 	}
541 
542 	/* any errors get returned through the urb completion */
543 	spin_lock_irq(&hcd_root_hub_lock);
544 	usb_hcd_unlink_urb_from_ep(hcd, urb);
545 
546 	/* This peculiar use of spinlocks echoes what real HC drivers do.
547 	 * Avoiding calls to local_irq_disable/enable makes the code
548 	 * RT-friendly.
549 	 */
550 	spin_unlock(&hcd_root_hub_lock);
551 	usb_hcd_giveback_urb(hcd, urb, status);
552 	spin_lock(&hcd_root_hub_lock);
553 
554 	spin_unlock_irq(&hcd_root_hub_lock);
555 	return 0;
556 }
557 
558 /*-------------------------------------------------------------------------*/
559 
560 /*
561  * Root Hub interrupt transfers are polled using a timer if the
562  * driver requests it; otherwise the driver is responsible for
563  * calling usb_hcd_poll_rh_status() when an event occurs.
564  *
565  * Completions are called in_interrupt(), but they may or may not
566  * be in_irq().
567  */
568 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
569 {
570 	struct urb	*urb;
571 	int		length;
572 	unsigned long	flags;
573 	char		buffer[4];	/* Any root hubs with > 31 ports? */
574 
575 	if (unlikely(!hcd->rh_registered))
576 		return;
577 	if (!hcd->uses_new_polling && !hcd->status_urb)
578 		return;
579 
580 	length = hcd->driver->hub_status_data(hcd, buffer);
581 	if (length > 0) {
582 
583 		/* try to complete the status urb */
584 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
585 		urb = hcd->status_urb;
586 		if (urb) {
587 			hcd->poll_pending = 0;
588 			hcd->status_urb = NULL;
589 			urb->actual_length = length;
590 			memcpy(urb->transfer_buffer, buffer, length);
591 
592 			usb_hcd_unlink_urb_from_ep(hcd, urb);
593 			spin_unlock(&hcd_root_hub_lock);
594 			usb_hcd_giveback_urb(hcd, urb, 0);
595 			spin_lock(&hcd_root_hub_lock);
596 		} else {
597 			length = 0;
598 			hcd->poll_pending = 1;
599 		}
600 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
601 	}
602 
603 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
604 	 * exceed that limit if HZ is 100. The math is more clunky than
605 	 * maybe expected, this is to make sure that all timers for USB devices
606 	 * fire at the same time to give the CPU a break inbetween */
607 	if (hcd->uses_new_polling ? hcd->poll_rh :
608 			(length == 0 && hcd->status_urb != NULL))
609 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
610 }
611 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
612 
613 /* timer callback */
614 static void rh_timer_func (unsigned long _hcd)
615 {
616 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
617 }
618 
619 /*-------------------------------------------------------------------------*/
620 
621 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
622 {
623 	int		retval;
624 	unsigned long	flags;
625 	int		len = 1 + (urb->dev->maxchild / 8);
626 
627 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
628 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
629 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
630 		retval = -EINVAL;
631 		goto done;
632 	}
633 
634 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
635 	if (retval)
636 		goto done;
637 
638 	hcd->status_urb = urb;
639 	urb->hcpriv = hcd;	/* indicate it's queued */
640 	if (!hcd->uses_new_polling)
641 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
642 
643 	/* If a status change has already occurred, report it ASAP */
644 	else if (hcd->poll_pending)
645 		mod_timer(&hcd->rh_timer, jiffies);
646 	retval = 0;
647  done:
648 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
649 	return retval;
650 }
651 
652 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
653 {
654 	if (usb_endpoint_xfer_int(&urb->ep->desc))
655 		return rh_queue_status (hcd, urb);
656 	if (usb_endpoint_xfer_control(&urb->ep->desc))
657 		return rh_call_control (hcd, urb);
658 	return -EINVAL;
659 }
660 
661 /*-------------------------------------------------------------------------*/
662 
663 /* Unlinks of root-hub control URBs are legal, but they don't do anything
664  * since these URBs always execute synchronously.
665  */
666 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
667 {
668 	unsigned long	flags;
669 	int		rc;
670 
671 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
672 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
673 	if (rc)
674 		goto done;
675 
676 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
677 		;	/* Do nothing */
678 
679 	} else {				/* Status URB */
680 		if (!hcd->uses_new_polling)
681 			del_timer (&hcd->rh_timer);
682 		if (urb == hcd->status_urb) {
683 			hcd->status_urb = NULL;
684 			usb_hcd_unlink_urb_from_ep(hcd, urb);
685 
686 			spin_unlock(&hcd_root_hub_lock);
687 			usb_hcd_giveback_urb(hcd, urb, status);
688 			spin_lock(&hcd_root_hub_lock);
689 		}
690 	}
691  done:
692 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
693 	return rc;
694 }
695 
696 
697 
698 /*
699  * Show & store the current value of authorized_default
700  */
701 static ssize_t usb_host_authorized_default_show(struct device *dev,
702 						struct device_attribute *attr,
703 						char *buf)
704 {
705 	struct usb_device *rh_usb_dev = to_usb_device(dev);
706 	struct usb_bus *usb_bus = rh_usb_dev->bus;
707 	struct usb_hcd *usb_hcd;
708 
709 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
710 		return -ENODEV;
711 	usb_hcd = bus_to_hcd(usb_bus);
712 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
713 }
714 
715 static ssize_t usb_host_authorized_default_store(struct device *dev,
716 						 struct device_attribute *attr,
717 						 const char *buf, size_t size)
718 {
719 	ssize_t result;
720 	unsigned val;
721 	struct usb_device *rh_usb_dev = to_usb_device(dev);
722 	struct usb_bus *usb_bus = rh_usb_dev->bus;
723 	struct usb_hcd *usb_hcd;
724 
725 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
726 		return -ENODEV;
727 	usb_hcd = bus_to_hcd(usb_bus);
728 	result = sscanf(buf, "%u\n", &val);
729 	if (result == 1) {
730 		usb_hcd->authorized_default = val? 1 : 0;
731 		result = size;
732 	}
733 	else
734 		result = -EINVAL;
735 	return result;
736 }
737 
738 static DEVICE_ATTR(authorized_default, 0644,
739 	    usb_host_authorized_default_show,
740 	    usb_host_authorized_default_store);
741 
742 
743 /* Group all the USB bus attributes */
744 static struct attribute *usb_bus_attrs[] = {
745 		&dev_attr_authorized_default.attr,
746 		NULL,
747 };
748 
749 static struct attribute_group usb_bus_attr_group = {
750 	.name = NULL,	/* we want them in the same directory */
751 	.attrs = usb_bus_attrs,
752 };
753 
754 
755 
756 /*-------------------------------------------------------------------------*/
757 
758 static struct class *usb_host_class;
759 
760 int usb_host_init(void)
761 {
762 	int retval = 0;
763 
764 	usb_host_class = class_create(THIS_MODULE, "usb_host");
765 	if (IS_ERR(usb_host_class))
766 		retval = PTR_ERR(usb_host_class);
767 	return retval;
768 }
769 
770 void usb_host_cleanup(void)
771 {
772 	class_destroy(usb_host_class);
773 }
774 
775 /**
776  * usb_bus_init - shared initialization code
777  * @bus: the bus structure being initialized
778  *
779  * This code is used to initialize a usb_bus structure, memory for which is
780  * separately managed.
781  */
782 static void usb_bus_init (struct usb_bus *bus)
783 {
784 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
785 
786 	bus->devnum_next = 1;
787 
788 	bus->root_hub = NULL;
789 	bus->busnum = -1;
790 	bus->bandwidth_allocated = 0;
791 	bus->bandwidth_int_reqs  = 0;
792 	bus->bandwidth_isoc_reqs = 0;
793 
794 	INIT_LIST_HEAD (&bus->bus_list);
795 }
796 
797 /*-------------------------------------------------------------------------*/
798 
799 /**
800  * usb_register_bus - registers the USB host controller with the usb core
801  * @bus: pointer to the bus to register
802  * Context: !in_interrupt()
803  *
804  * Assigns a bus number, and links the controller into usbcore data
805  * structures so that it can be seen by scanning the bus list.
806  */
807 static int usb_register_bus(struct usb_bus *bus)
808 {
809 	int result = -E2BIG;
810 	int busnum;
811 
812 	mutex_lock(&usb_bus_list_lock);
813 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
814 	if (busnum >= USB_MAXBUS) {
815 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
816 		goto error_find_busnum;
817 	}
818 	set_bit (busnum, busmap.busmap);
819 	bus->busnum = busnum;
820 
821 	bus->dev = device_create_drvdata(usb_host_class, bus->controller,
822 					 MKDEV(0, 0), bus,
823 					 "usb_host%d", busnum);
824 	result = PTR_ERR(bus->dev);
825 	if (IS_ERR(bus->dev))
826 		goto error_create_class_dev;
827 
828 	/* Add it to the local list of buses */
829 	list_add (&bus->bus_list, &usb_bus_list);
830 	mutex_unlock(&usb_bus_list_lock);
831 
832 	usb_notify_add_bus(bus);
833 
834 	dev_info (bus->controller, "new USB bus registered, assigned bus "
835 		  "number %d\n", bus->busnum);
836 	return 0;
837 
838 error_create_class_dev:
839 	clear_bit(busnum, busmap.busmap);
840 error_find_busnum:
841 	mutex_unlock(&usb_bus_list_lock);
842 	return result;
843 }
844 
845 /**
846  * usb_deregister_bus - deregisters the USB host controller
847  * @bus: pointer to the bus to deregister
848  * Context: !in_interrupt()
849  *
850  * Recycles the bus number, and unlinks the controller from usbcore data
851  * structures so that it won't be seen by scanning the bus list.
852  */
853 static void usb_deregister_bus (struct usb_bus *bus)
854 {
855 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
856 
857 	/*
858 	 * NOTE: make sure that all the devices are removed by the
859 	 * controller code, as well as having it call this when cleaning
860 	 * itself up
861 	 */
862 	mutex_lock(&usb_bus_list_lock);
863 	list_del (&bus->bus_list);
864 	mutex_unlock(&usb_bus_list_lock);
865 
866 	usb_notify_remove_bus(bus);
867 
868 	clear_bit (bus->busnum, busmap.busmap);
869 
870 	device_unregister(bus->dev);
871 }
872 
873 /**
874  * register_root_hub - called by usb_add_hcd() to register a root hub
875  * @hcd: host controller for this root hub
876  *
877  * This function registers the root hub with the USB subsystem.  It sets up
878  * the device properly in the device tree and then calls usb_new_device()
879  * to register the usb device.  It also assigns the root hub's USB address
880  * (always 1).
881  */
882 static int register_root_hub(struct usb_hcd *hcd)
883 {
884 	struct device *parent_dev = hcd->self.controller;
885 	struct usb_device *usb_dev = hcd->self.root_hub;
886 	const int devnum = 1;
887 	int retval;
888 
889 	usb_dev->devnum = devnum;
890 	usb_dev->bus->devnum_next = devnum + 1;
891 	memset (&usb_dev->bus->devmap.devicemap, 0,
892 			sizeof usb_dev->bus->devmap.devicemap);
893 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
894 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
895 
896 	mutex_lock(&usb_bus_list_lock);
897 
898 	usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
899 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
900 	if (retval != sizeof usb_dev->descriptor) {
901 		mutex_unlock(&usb_bus_list_lock);
902 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
903 				dev_name(&usb_dev->dev), retval);
904 		return (retval < 0) ? retval : -EMSGSIZE;
905 	}
906 
907 	retval = usb_new_device (usb_dev);
908 	if (retval) {
909 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
910 				dev_name(&usb_dev->dev), retval);
911 	}
912 	mutex_unlock(&usb_bus_list_lock);
913 
914 	if (retval == 0) {
915 		spin_lock_irq (&hcd_root_hub_lock);
916 		hcd->rh_registered = 1;
917 		spin_unlock_irq (&hcd_root_hub_lock);
918 
919 		/* Did the HC die before the root hub was registered? */
920 		if (hcd->state == HC_STATE_HALT)
921 			usb_hc_died (hcd);	/* This time clean up */
922 	}
923 
924 	return retval;
925 }
926 
927 
928 /*-------------------------------------------------------------------------*/
929 
930 /**
931  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
932  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
933  * @is_input: true iff the transaction sends data to the host
934  * @isoc: true for isochronous transactions, false for interrupt ones
935  * @bytecount: how many bytes in the transaction.
936  *
937  * Returns approximate bus time in nanoseconds for a periodic transaction.
938  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
939  * scheduled in software, this function is only used for such scheduling.
940  */
941 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
942 {
943 	unsigned long	tmp;
944 
945 	switch (speed) {
946 	case USB_SPEED_LOW: 	/* INTR only */
947 		if (is_input) {
948 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
949 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
950 		} else {
951 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
952 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
953 		}
954 	case USB_SPEED_FULL:	/* ISOC or INTR */
955 		if (isoc) {
956 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
957 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
958 		} else {
959 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
960 			return (9107L + BW_HOST_DELAY + tmp);
961 		}
962 	case USB_SPEED_HIGH:	/* ISOC or INTR */
963 		// FIXME adjust for input vs output
964 		if (isoc)
965 			tmp = HS_NSECS_ISO (bytecount);
966 		else
967 			tmp = HS_NSECS (bytecount);
968 		return tmp;
969 	default:
970 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
971 		return -1;
972 	}
973 }
974 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
975 
976 
977 /*-------------------------------------------------------------------------*/
978 
979 /*
980  * Generic HC operations.
981  */
982 
983 /*-------------------------------------------------------------------------*/
984 
985 /**
986  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
987  * @hcd: host controller to which @urb was submitted
988  * @urb: URB being submitted
989  *
990  * Host controller drivers should call this routine in their enqueue()
991  * method.  The HCD's private spinlock must be held and interrupts must
992  * be disabled.  The actions carried out here are required for URB
993  * submission, as well as for endpoint shutdown and for usb_kill_urb.
994  *
995  * Returns 0 for no error, otherwise a negative error code (in which case
996  * the enqueue() method must fail).  If no error occurs but enqueue() fails
997  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
998  * the private spinlock and returning.
999  */
1000 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1001 {
1002 	int		rc = 0;
1003 
1004 	spin_lock(&hcd_urb_list_lock);
1005 
1006 	/* Check that the URB isn't being killed */
1007 	if (unlikely(urb->reject)) {
1008 		rc = -EPERM;
1009 		goto done;
1010 	}
1011 
1012 	if (unlikely(!urb->ep->enabled)) {
1013 		rc = -ENOENT;
1014 		goto done;
1015 	}
1016 
1017 	if (unlikely(!urb->dev->can_submit)) {
1018 		rc = -EHOSTUNREACH;
1019 		goto done;
1020 	}
1021 
1022 	/*
1023 	 * Check the host controller's state and add the URB to the
1024 	 * endpoint's queue.
1025 	 */
1026 	switch (hcd->state) {
1027 	case HC_STATE_RUNNING:
1028 	case HC_STATE_RESUMING:
1029 		urb->unlinked = 0;
1030 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1031 		break;
1032 	default:
1033 		rc = -ESHUTDOWN;
1034 		goto done;
1035 	}
1036  done:
1037 	spin_unlock(&hcd_urb_list_lock);
1038 	return rc;
1039 }
1040 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1041 
1042 /**
1043  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1044  * @hcd: host controller to which @urb was submitted
1045  * @urb: URB being checked for unlinkability
1046  * @status: error code to store in @urb if the unlink succeeds
1047  *
1048  * Host controller drivers should call this routine in their dequeue()
1049  * method.  The HCD's private spinlock must be held and interrupts must
1050  * be disabled.  The actions carried out here are required for making
1051  * sure than an unlink is valid.
1052  *
1053  * Returns 0 for no error, otherwise a negative error code (in which case
1054  * the dequeue() method must fail).  The possible error codes are:
1055  *
1056  *	-EIDRM: @urb was not submitted or has already completed.
1057  *		The completion function may not have been called yet.
1058  *
1059  *	-EBUSY: @urb has already been unlinked.
1060  */
1061 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1062 		int status)
1063 {
1064 	struct list_head	*tmp;
1065 
1066 	/* insist the urb is still queued */
1067 	list_for_each(tmp, &urb->ep->urb_list) {
1068 		if (tmp == &urb->urb_list)
1069 			break;
1070 	}
1071 	if (tmp != &urb->urb_list)
1072 		return -EIDRM;
1073 
1074 	/* Any status except -EINPROGRESS means something already started to
1075 	 * unlink this URB from the hardware.  So there's no more work to do.
1076 	 */
1077 	if (urb->unlinked)
1078 		return -EBUSY;
1079 	urb->unlinked = status;
1080 
1081 	/* IRQ setup can easily be broken so that USB controllers
1082 	 * never get completion IRQs ... maybe even the ones we need to
1083 	 * finish unlinking the initial failed usb_set_address()
1084 	 * or device descriptor fetch.
1085 	 */
1086 	if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1087 			!is_root_hub(urb->dev)) {
1088 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1089 			"Controller is probably using the wrong IRQ.\n");
1090 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1091 	}
1092 
1093 	return 0;
1094 }
1095 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1096 
1097 /**
1098  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1099  * @hcd: host controller to which @urb was submitted
1100  * @urb: URB being unlinked
1101  *
1102  * Host controller drivers should call this routine before calling
1103  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1104  * interrupts must be disabled.  The actions carried out here are required
1105  * for URB completion.
1106  */
1107 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1108 {
1109 	/* clear all state linking urb to this dev (and hcd) */
1110 	spin_lock(&hcd_urb_list_lock);
1111 	list_del_init(&urb->urb_list);
1112 	spin_unlock(&hcd_urb_list_lock);
1113 }
1114 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1115 
1116 /*
1117  * Some usb host controllers can only perform dma using a small SRAM area.
1118  * The usb core itself is however optimized for host controllers that can dma
1119  * using regular system memory - like pci devices doing bus mastering.
1120  *
1121  * To support host controllers with limited dma capabilites we provide dma
1122  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1123  * For this to work properly the host controller code must first use the
1124  * function dma_declare_coherent_memory() to point out which memory area
1125  * that should be used for dma allocations.
1126  *
1127  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1128  * dma using dma_alloc_coherent() which in turn allocates from the memory
1129  * area pointed out with dma_declare_coherent_memory().
1130  *
1131  * So, to summarize...
1132  *
1133  * - We need "local" memory, canonical example being
1134  *   a small SRAM on a discrete controller being the
1135  *   only memory that the controller can read ...
1136  *   (a) "normal" kernel memory is no good, and
1137  *   (b) there's not enough to share
1138  *
1139  * - The only *portable* hook for such stuff in the
1140  *   DMA framework is dma_declare_coherent_memory()
1141  *
1142  * - So we use that, even though the primary requirement
1143  *   is that the memory be "local" (hence addressible
1144  *   by that device), not "coherent".
1145  *
1146  */
1147 
1148 static int hcd_alloc_coherent(struct usb_bus *bus,
1149 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1150 			      void **vaddr_handle, size_t size,
1151 			      enum dma_data_direction dir)
1152 {
1153 	unsigned char *vaddr;
1154 
1155 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1156 				 mem_flags, dma_handle);
1157 	if (!vaddr)
1158 		return -ENOMEM;
1159 
1160 	/*
1161 	 * Store the virtual address of the buffer at the end
1162 	 * of the allocated dma buffer. The size of the buffer
1163 	 * may be uneven so use unaligned functions instead
1164 	 * of just rounding up. It makes sense to optimize for
1165 	 * memory footprint over access speed since the amount
1166 	 * of memory available for dma may be limited.
1167 	 */
1168 	put_unaligned((unsigned long)*vaddr_handle,
1169 		      (unsigned long *)(vaddr + size));
1170 
1171 	if (dir == DMA_TO_DEVICE)
1172 		memcpy(vaddr, *vaddr_handle, size);
1173 
1174 	*vaddr_handle = vaddr;
1175 	return 0;
1176 }
1177 
1178 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1179 			      void **vaddr_handle, size_t size,
1180 			      enum dma_data_direction dir)
1181 {
1182 	unsigned char *vaddr = *vaddr_handle;
1183 
1184 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1185 
1186 	if (dir == DMA_FROM_DEVICE)
1187 		memcpy(vaddr, *vaddr_handle, size);
1188 
1189 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1190 
1191 	*vaddr_handle = vaddr;
1192 	*dma_handle = 0;
1193 }
1194 
1195 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1196 			   gfp_t mem_flags)
1197 {
1198 	enum dma_data_direction dir;
1199 	int ret = 0;
1200 
1201 	/* Map the URB's buffers for DMA access.
1202 	 * Lower level HCD code should use *_dma exclusively,
1203 	 * unless it uses pio or talks to another transport.
1204 	 */
1205 	if (is_root_hub(urb->dev))
1206 		return 0;
1207 
1208 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1209 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1210 		if (hcd->self.uses_dma)
1211 			urb->setup_dma = dma_map_single(
1212 					hcd->self.controller,
1213 					urb->setup_packet,
1214 					sizeof(struct usb_ctrlrequest),
1215 					DMA_TO_DEVICE);
1216 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1217 			ret = hcd_alloc_coherent(
1218 					urb->dev->bus, mem_flags,
1219 					&urb->setup_dma,
1220 					(void **)&urb->setup_packet,
1221 					sizeof(struct usb_ctrlrequest),
1222 					DMA_TO_DEVICE);
1223 	}
1224 
1225 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1226 	if (ret == 0 && urb->transfer_buffer_length != 0
1227 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1228 		if (hcd->self.uses_dma)
1229 			urb->transfer_dma = dma_map_single (
1230 					hcd->self.controller,
1231 					urb->transfer_buffer,
1232 					urb->transfer_buffer_length,
1233 					dir);
1234 		else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1235 			ret = hcd_alloc_coherent(
1236 					urb->dev->bus, mem_flags,
1237 					&urb->transfer_dma,
1238 					&urb->transfer_buffer,
1239 					urb->transfer_buffer_length,
1240 					dir);
1241 
1242 			if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1243 			    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1244 				hcd_free_coherent(urb->dev->bus,
1245 					&urb->setup_dma,
1246 					(void **)&urb->setup_packet,
1247 					sizeof(struct usb_ctrlrequest),
1248 					DMA_TO_DEVICE);
1249 		}
1250 	}
1251 	return ret;
1252 }
1253 
1254 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1255 {
1256 	enum dma_data_direction dir;
1257 
1258 	if (is_root_hub(urb->dev))
1259 		return;
1260 
1261 	if (usb_endpoint_xfer_control(&urb->ep->desc)
1262 	    && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1263 		if (hcd->self.uses_dma)
1264 			dma_unmap_single(hcd->self.controller, urb->setup_dma,
1265 					sizeof(struct usb_ctrlrequest),
1266 					DMA_TO_DEVICE);
1267 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1268 			hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1269 					(void **)&urb->setup_packet,
1270 					sizeof(struct usb_ctrlrequest),
1271 					DMA_TO_DEVICE);
1272 	}
1273 
1274 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1275 	if (urb->transfer_buffer_length != 0
1276 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1277 		if (hcd->self.uses_dma)
1278 			dma_unmap_single(hcd->self.controller,
1279 					urb->transfer_dma,
1280 					urb->transfer_buffer_length,
1281 					dir);
1282 		else if (hcd->driver->flags & HCD_LOCAL_MEM)
1283 			hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1284 					&urb->transfer_buffer,
1285 					urb->transfer_buffer_length,
1286 					dir);
1287 	}
1288 }
1289 
1290 /*-------------------------------------------------------------------------*/
1291 
1292 /* may be called in any context with a valid urb->dev usecount
1293  * caller surrenders "ownership" of urb
1294  * expects usb_submit_urb() to have sanity checked and conditioned all
1295  * inputs in the urb
1296  */
1297 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1298 {
1299 	int			status;
1300 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1301 
1302 	/* increment urb's reference count as part of giving it to the HCD
1303 	 * (which will control it).  HCD guarantees that it either returns
1304 	 * an error or calls giveback(), but not both.
1305 	 */
1306 	usb_get_urb(urb);
1307 	atomic_inc(&urb->use_count);
1308 	atomic_inc(&urb->dev->urbnum);
1309 	usbmon_urb_submit(&hcd->self, urb);
1310 
1311 	/* NOTE requirements on root-hub callers (usbfs and the hub
1312 	 * driver, for now):  URBs' urb->transfer_buffer must be
1313 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1314 	 * they could clobber root hub response data.  Also, control
1315 	 * URBs must be submitted in process context with interrupts
1316 	 * enabled.
1317 	 */
1318 	status = map_urb_for_dma(hcd, urb, mem_flags);
1319 	if (unlikely(status)) {
1320 		usbmon_urb_submit_error(&hcd->self, urb, status);
1321 		goto error;
1322 	}
1323 
1324 	if (is_root_hub(urb->dev))
1325 		status = rh_urb_enqueue(hcd, urb);
1326 	else
1327 		status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1328 
1329 	if (unlikely(status)) {
1330 		usbmon_urb_submit_error(&hcd->self, urb, status);
1331 		unmap_urb_for_dma(hcd, urb);
1332  error:
1333 		urb->hcpriv = NULL;
1334 		INIT_LIST_HEAD(&urb->urb_list);
1335 		atomic_dec(&urb->use_count);
1336 		atomic_dec(&urb->dev->urbnum);
1337 		if (urb->reject)
1338 			wake_up(&usb_kill_urb_queue);
1339 		usb_put_urb(urb);
1340 	}
1341 	return status;
1342 }
1343 
1344 /*-------------------------------------------------------------------------*/
1345 
1346 /* this makes the hcd giveback() the urb more quickly, by kicking it
1347  * off hardware queues (which may take a while) and returning it as
1348  * soon as practical.  we've already set up the urb's return status,
1349  * but we can't know if the callback completed already.
1350  */
1351 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1352 {
1353 	int		value;
1354 
1355 	if (is_root_hub(urb->dev))
1356 		value = usb_rh_urb_dequeue(hcd, urb, status);
1357 	else {
1358 
1359 		/* The only reason an HCD might fail this call is if
1360 		 * it has not yet fully queued the urb to begin with.
1361 		 * Such failures should be harmless. */
1362 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1363 	}
1364 	return value;
1365 }
1366 
1367 /*
1368  * called in any context
1369  *
1370  * caller guarantees urb won't be recycled till both unlink()
1371  * and the urb's completion function return
1372  */
1373 int usb_hcd_unlink_urb (struct urb *urb, int status)
1374 {
1375 	struct usb_hcd		*hcd;
1376 	int			retval;
1377 
1378 	hcd = bus_to_hcd(urb->dev->bus);
1379 	retval = unlink1(hcd, urb, status);
1380 
1381 	if (retval == 0)
1382 		retval = -EINPROGRESS;
1383 	else if (retval != -EIDRM && retval != -EBUSY)
1384 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1385 				urb, retval);
1386 	return retval;
1387 }
1388 
1389 /*-------------------------------------------------------------------------*/
1390 
1391 /**
1392  * usb_hcd_giveback_urb - return URB from HCD to device driver
1393  * @hcd: host controller returning the URB
1394  * @urb: urb being returned to the USB device driver.
1395  * @status: completion status code for the URB.
1396  * Context: in_interrupt()
1397  *
1398  * This hands the URB from HCD to its USB device driver, using its
1399  * completion function.  The HCD has freed all per-urb resources
1400  * (and is done using urb->hcpriv).  It also released all HCD locks;
1401  * the device driver won't cause problems if it frees, modifies,
1402  * or resubmits this URB.
1403  *
1404  * If @urb was unlinked, the value of @status will be overridden by
1405  * @urb->unlinked.  Erroneous short transfers are detected in case
1406  * the HCD hasn't checked for them.
1407  */
1408 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1409 {
1410 	urb->hcpriv = NULL;
1411 	if (unlikely(urb->unlinked))
1412 		status = urb->unlinked;
1413 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1414 			urb->actual_length < urb->transfer_buffer_length &&
1415 			!status))
1416 		status = -EREMOTEIO;
1417 
1418 	unmap_urb_for_dma(hcd, urb);
1419 	usbmon_urb_complete(&hcd->self, urb, status);
1420 	usb_unanchor_urb(urb);
1421 
1422 	/* pass ownership to the completion handler */
1423 	urb->status = status;
1424 	urb->complete (urb);
1425 	atomic_dec (&urb->use_count);
1426 	if (unlikely (urb->reject))
1427 		wake_up (&usb_kill_urb_queue);
1428 	usb_put_urb (urb);
1429 }
1430 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1431 
1432 /*-------------------------------------------------------------------------*/
1433 
1434 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1435  * queue to drain completely.  The caller must first insure that no more
1436  * URBs can be submitted for this endpoint.
1437  */
1438 void usb_hcd_flush_endpoint(struct usb_device *udev,
1439 		struct usb_host_endpoint *ep)
1440 {
1441 	struct usb_hcd		*hcd;
1442 	struct urb		*urb;
1443 
1444 	if (!ep)
1445 		return;
1446 	might_sleep();
1447 	hcd = bus_to_hcd(udev->bus);
1448 
1449 	/* No more submits can occur */
1450 	spin_lock_irq(&hcd_urb_list_lock);
1451 rescan:
1452 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1453 		int	is_in;
1454 
1455 		if (urb->unlinked)
1456 			continue;
1457 		usb_get_urb (urb);
1458 		is_in = usb_urb_dir_in(urb);
1459 		spin_unlock(&hcd_urb_list_lock);
1460 
1461 		/* kick hcd */
1462 		unlink1(hcd, urb, -ESHUTDOWN);
1463 		dev_dbg (hcd->self.controller,
1464 			"shutdown urb %p ep%d%s%s\n",
1465 			urb, usb_endpoint_num(&ep->desc),
1466 			is_in ? "in" : "out",
1467 			({	char *s;
1468 
1469 				 switch (usb_endpoint_type(&ep->desc)) {
1470 				 case USB_ENDPOINT_XFER_CONTROL:
1471 					s = ""; break;
1472 				 case USB_ENDPOINT_XFER_BULK:
1473 					s = "-bulk"; break;
1474 				 case USB_ENDPOINT_XFER_INT:
1475 					s = "-intr"; break;
1476 				 default:
1477 			 		s = "-iso"; break;
1478 				};
1479 				s;
1480 			}));
1481 		usb_put_urb (urb);
1482 
1483 		/* list contents may have changed */
1484 		spin_lock(&hcd_urb_list_lock);
1485 		goto rescan;
1486 	}
1487 	spin_unlock_irq(&hcd_urb_list_lock);
1488 
1489 	/* Wait until the endpoint queue is completely empty */
1490 	while (!list_empty (&ep->urb_list)) {
1491 		spin_lock_irq(&hcd_urb_list_lock);
1492 
1493 		/* The list may have changed while we acquired the spinlock */
1494 		urb = NULL;
1495 		if (!list_empty (&ep->urb_list)) {
1496 			urb = list_entry (ep->urb_list.prev, struct urb,
1497 					urb_list);
1498 			usb_get_urb (urb);
1499 		}
1500 		spin_unlock_irq(&hcd_urb_list_lock);
1501 
1502 		if (urb) {
1503 			usb_kill_urb (urb);
1504 			usb_put_urb (urb);
1505 		}
1506 	}
1507 }
1508 
1509 /* Disables the endpoint: synchronizes with the hcd to make sure all
1510  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1511  * have been called previously.  Use for set_configuration, set_interface,
1512  * driver removal, physical disconnect.
1513  *
1514  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1515  * type, maxpacket size, toggle, halt status, and scheduling.
1516  */
1517 void usb_hcd_disable_endpoint(struct usb_device *udev,
1518 		struct usb_host_endpoint *ep)
1519 {
1520 	struct usb_hcd		*hcd;
1521 
1522 	might_sleep();
1523 	hcd = bus_to_hcd(udev->bus);
1524 	if (hcd->driver->endpoint_disable)
1525 		hcd->driver->endpoint_disable(hcd, ep);
1526 }
1527 
1528 /*-------------------------------------------------------------------------*/
1529 
1530 /* called in any context */
1531 int usb_hcd_get_frame_number (struct usb_device *udev)
1532 {
1533 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1534 
1535 	if (!HC_IS_RUNNING (hcd->state))
1536 		return -ESHUTDOWN;
1537 	return hcd->driver->get_frame_number (hcd);
1538 }
1539 
1540 /*-------------------------------------------------------------------------*/
1541 
1542 #ifdef	CONFIG_PM
1543 
1544 int hcd_bus_suspend(struct usb_device *rhdev)
1545 {
1546 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1547 	int		status;
1548 	int		old_state = hcd->state;
1549 
1550 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1551 			rhdev->auto_pm ? "auto-" : "", "suspend");
1552 	if (!hcd->driver->bus_suspend) {
1553 		status = -ENOENT;
1554 	} else {
1555 		hcd->state = HC_STATE_QUIESCING;
1556 		status = hcd->driver->bus_suspend(hcd);
1557 	}
1558 	if (status == 0) {
1559 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1560 		hcd->state = HC_STATE_SUSPENDED;
1561 	} else {
1562 		hcd->state = old_state;
1563 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1564 				"suspend", status);
1565 	}
1566 	return status;
1567 }
1568 
1569 int hcd_bus_resume(struct usb_device *rhdev)
1570 {
1571 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1572 	int		status;
1573 	int		old_state = hcd->state;
1574 
1575 	dev_dbg(&rhdev->dev, "usb %s%s\n",
1576 			rhdev->auto_pm ? "auto-" : "", "resume");
1577 	if (!hcd->driver->bus_resume)
1578 		return -ENOENT;
1579 	if (hcd->state == HC_STATE_RUNNING)
1580 		return 0;
1581 
1582 	hcd->state = HC_STATE_RESUMING;
1583 	status = hcd->driver->bus_resume(hcd);
1584 	if (status == 0) {
1585 		/* TRSMRCY = 10 msec */
1586 		msleep(10);
1587 		usb_set_device_state(rhdev, rhdev->actconfig
1588 				? USB_STATE_CONFIGURED
1589 				: USB_STATE_ADDRESS);
1590 		hcd->state = HC_STATE_RUNNING;
1591 	} else {
1592 		hcd->state = old_state;
1593 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1594 				"resume", status);
1595 		if (status != -ESHUTDOWN)
1596 			usb_hc_died(hcd);
1597 	}
1598 	return status;
1599 }
1600 
1601 /* Workqueue routine for root-hub remote wakeup */
1602 static void hcd_resume_work(struct work_struct *work)
1603 {
1604 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1605 	struct usb_device *udev = hcd->self.root_hub;
1606 
1607 	usb_lock_device(udev);
1608 	usb_mark_last_busy(udev);
1609 	usb_external_resume_device(udev);
1610 	usb_unlock_device(udev);
1611 }
1612 
1613 /**
1614  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1615  * @hcd: host controller for this root hub
1616  *
1617  * The USB host controller calls this function when its root hub is
1618  * suspended (with the remote wakeup feature enabled) and a remote
1619  * wakeup request is received.  The routine submits a workqueue request
1620  * to resume the root hub (that is, manage its downstream ports again).
1621  */
1622 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1623 {
1624 	unsigned long flags;
1625 
1626 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1627 	if (hcd->rh_registered)
1628 		queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1629 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1630 }
1631 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1632 
1633 #endif
1634 
1635 /*-------------------------------------------------------------------------*/
1636 
1637 #ifdef	CONFIG_USB_OTG
1638 
1639 /**
1640  * usb_bus_start_enum - start immediate enumeration (for OTG)
1641  * @bus: the bus (must use hcd framework)
1642  * @port_num: 1-based number of port; usually bus->otg_port
1643  * Context: in_interrupt()
1644  *
1645  * Starts enumeration, with an immediate reset followed later by
1646  * khubd identifying and possibly configuring the device.
1647  * This is needed by OTG controller drivers, where it helps meet
1648  * HNP protocol timing requirements for starting a port reset.
1649  */
1650 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1651 {
1652 	struct usb_hcd		*hcd;
1653 	int			status = -EOPNOTSUPP;
1654 
1655 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1656 	 * boards with root hubs hooked up to internal devices (instead of
1657 	 * just the OTG port) may need more attention to resetting...
1658 	 */
1659 	hcd = container_of (bus, struct usb_hcd, self);
1660 	if (port_num && hcd->driver->start_port_reset)
1661 		status = hcd->driver->start_port_reset(hcd, port_num);
1662 
1663 	/* run khubd shortly after (first) root port reset finishes;
1664 	 * it may issue others, until at least 50 msecs have passed.
1665 	 */
1666 	if (status == 0)
1667 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1668 	return status;
1669 }
1670 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1671 
1672 #endif
1673 
1674 /*-------------------------------------------------------------------------*/
1675 
1676 /**
1677  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1678  * @irq: the IRQ being raised
1679  * @__hcd: pointer to the HCD whose IRQ is being signaled
1680  *
1681  * If the controller isn't HALTed, calls the driver's irq handler.
1682  * Checks whether the controller is now dead.
1683  */
1684 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1685 {
1686 	struct usb_hcd		*hcd = __hcd;
1687 	unsigned long		flags;
1688 	irqreturn_t		rc;
1689 
1690 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
1691 	 * when the first handler doesn't use it.  So let's just
1692 	 * assume it's never used.
1693 	 */
1694 	local_irq_save(flags);
1695 
1696 	if (unlikely(hcd->state == HC_STATE_HALT ||
1697 		     !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags))) {
1698 		rc = IRQ_NONE;
1699 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
1700 		rc = IRQ_NONE;
1701 	} else {
1702 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1703 
1704 		if (unlikely(hcd->state == HC_STATE_HALT))
1705 			usb_hc_died(hcd);
1706 		rc = IRQ_HANDLED;
1707 	}
1708 
1709 	local_irq_restore(flags);
1710 	return rc;
1711 }
1712 
1713 /*-------------------------------------------------------------------------*/
1714 
1715 /**
1716  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1717  * @hcd: pointer to the HCD representing the controller
1718  *
1719  * This is called by bus glue to report a USB host controller that died
1720  * while operations may still have been pending.  It's called automatically
1721  * by the PCI glue, so only glue for non-PCI busses should need to call it.
1722  */
1723 void usb_hc_died (struct usb_hcd *hcd)
1724 {
1725 	unsigned long flags;
1726 
1727 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
1728 
1729 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
1730 	if (hcd->rh_registered) {
1731 		hcd->poll_rh = 0;
1732 
1733 		/* make khubd clean up old urbs and devices */
1734 		usb_set_device_state (hcd->self.root_hub,
1735 				USB_STATE_NOTATTACHED);
1736 		usb_kick_khubd (hcd->self.root_hub);
1737 	}
1738 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1739 }
1740 EXPORT_SYMBOL_GPL (usb_hc_died);
1741 
1742 /*-------------------------------------------------------------------------*/
1743 
1744 /**
1745  * usb_create_hcd - create and initialize an HCD structure
1746  * @driver: HC driver that will use this hcd
1747  * @dev: device for this HC, stored in hcd->self.controller
1748  * @bus_name: value to store in hcd->self.bus_name
1749  * Context: !in_interrupt()
1750  *
1751  * Allocate a struct usb_hcd, with extra space at the end for the
1752  * HC driver's private data.  Initialize the generic members of the
1753  * hcd structure.
1754  *
1755  * If memory is unavailable, returns NULL.
1756  */
1757 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1758 		struct device *dev, const char *bus_name)
1759 {
1760 	struct usb_hcd *hcd;
1761 
1762 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1763 	if (!hcd) {
1764 		dev_dbg (dev, "hcd alloc failed\n");
1765 		return NULL;
1766 	}
1767 	dev_set_drvdata(dev, hcd);
1768 	kref_init(&hcd->kref);
1769 
1770 	usb_bus_init(&hcd->self);
1771 	hcd->self.controller = dev;
1772 	hcd->self.bus_name = bus_name;
1773 	hcd->self.uses_dma = (dev->dma_mask != NULL);
1774 
1775 	init_timer(&hcd->rh_timer);
1776 	hcd->rh_timer.function = rh_timer_func;
1777 	hcd->rh_timer.data = (unsigned long) hcd;
1778 #ifdef CONFIG_PM
1779 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1780 #endif
1781 
1782 	hcd->driver = driver;
1783 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1784 			"USB Host Controller";
1785 	return hcd;
1786 }
1787 EXPORT_SYMBOL_GPL(usb_create_hcd);
1788 
1789 static void hcd_release (struct kref *kref)
1790 {
1791 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1792 
1793 	kfree(hcd);
1794 }
1795 
1796 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1797 {
1798 	if (hcd)
1799 		kref_get (&hcd->kref);
1800 	return hcd;
1801 }
1802 EXPORT_SYMBOL_GPL(usb_get_hcd);
1803 
1804 void usb_put_hcd (struct usb_hcd *hcd)
1805 {
1806 	if (hcd)
1807 		kref_put (&hcd->kref, hcd_release);
1808 }
1809 EXPORT_SYMBOL_GPL(usb_put_hcd);
1810 
1811 /**
1812  * usb_add_hcd - finish generic HCD structure initialization and register
1813  * @hcd: the usb_hcd structure to initialize
1814  * @irqnum: Interrupt line to allocate
1815  * @irqflags: Interrupt type flags
1816  *
1817  * Finish the remaining parts of generic HCD initialization: allocate the
1818  * buffers of consistent memory, register the bus, request the IRQ line,
1819  * and call the driver's reset() and start() routines.
1820  */
1821 int usb_add_hcd(struct usb_hcd *hcd,
1822 		unsigned int irqnum, unsigned long irqflags)
1823 {
1824 	int retval;
1825 	struct usb_device *rhdev;
1826 
1827 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1828 
1829 	hcd->authorized_default = hcd->wireless? 0 : 1;
1830 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1831 
1832 	/* HC is in reset state, but accessible.  Now do the one-time init,
1833 	 * bottom up so that hcds can customize the root hubs before khubd
1834 	 * starts talking to them.  (Note, bus id is assigned early too.)
1835 	 */
1836 	if ((retval = hcd_buffer_create(hcd)) != 0) {
1837 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
1838 		return retval;
1839 	}
1840 
1841 	if ((retval = usb_register_bus(&hcd->self)) < 0)
1842 		goto err_register_bus;
1843 
1844 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1845 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
1846 		retval = -ENOMEM;
1847 		goto err_allocate_root_hub;
1848 	}
1849 	rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1850 			USB_SPEED_FULL;
1851 	hcd->self.root_hub = rhdev;
1852 
1853 	/* wakeup flag init defaults to "everything works" for root hubs,
1854 	 * but drivers can override it in reset() if needed, along with
1855 	 * recording the overall controller's system wakeup capability.
1856 	 */
1857 	device_init_wakeup(&rhdev->dev, 1);
1858 
1859 	/* "reset" is misnamed; its role is now one-time init. the controller
1860 	 * should already have been reset (and boot firmware kicked off etc).
1861 	 */
1862 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1863 		dev_err(hcd->self.controller, "can't setup\n");
1864 		goto err_hcd_driver_setup;
1865 	}
1866 
1867 	/* NOTE: root hub and controller capabilities may not be the same */
1868 	if (device_can_wakeup(hcd->self.controller)
1869 			&& device_can_wakeup(&hcd->self.root_hub->dev))
1870 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1871 
1872 	/* enable irqs just before we start the controller */
1873 	if (hcd->driver->irq) {
1874 
1875 		/* IRQF_DISABLED doesn't work as advertised when used together
1876 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
1877 		 * interrupts we can remove it here.
1878 		 */
1879 		if (irqflags & IRQF_SHARED)
1880 			irqflags &= ~IRQF_DISABLED;
1881 
1882 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1883 				hcd->driver->description, hcd->self.busnum);
1884 		if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1885 				hcd->irq_descr, hcd)) != 0) {
1886 			dev_err(hcd->self.controller,
1887 					"request interrupt %d failed\n", irqnum);
1888 			goto err_request_irq;
1889 		}
1890 		hcd->irq = irqnum;
1891 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1892 				(hcd->driver->flags & HCD_MEMORY) ?
1893 					"io mem" : "io base",
1894 					(unsigned long long)hcd->rsrc_start);
1895 	} else {
1896 		hcd->irq = -1;
1897 		if (hcd->rsrc_start)
1898 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
1899 					(hcd->driver->flags & HCD_MEMORY) ?
1900 					"io mem" : "io base",
1901 					(unsigned long long)hcd->rsrc_start);
1902 	}
1903 
1904 	if ((retval = hcd->driver->start(hcd)) < 0) {
1905 		dev_err(hcd->self.controller, "startup error %d\n", retval);
1906 		goto err_hcd_driver_start;
1907 	}
1908 
1909 	/* starting here, usbcore will pay attention to this root hub */
1910 	rhdev->bus_mA = min(500u, hcd->power_budget);
1911 	if ((retval = register_root_hub(hcd)) != 0)
1912 		goto err_register_root_hub;
1913 
1914 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1915 	if (retval < 0) {
1916 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1917 		       retval);
1918 		goto error_create_attr_group;
1919 	}
1920 	if (hcd->uses_new_polling && hcd->poll_rh)
1921 		usb_hcd_poll_rh_status(hcd);
1922 	return retval;
1923 
1924 error_create_attr_group:
1925 	mutex_lock(&usb_bus_list_lock);
1926 	usb_disconnect(&hcd->self.root_hub);
1927 	mutex_unlock(&usb_bus_list_lock);
1928 err_register_root_hub:
1929 	hcd->driver->stop(hcd);
1930 err_hcd_driver_start:
1931 	if (hcd->irq >= 0)
1932 		free_irq(irqnum, hcd);
1933 err_request_irq:
1934 err_hcd_driver_setup:
1935 	hcd->self.root_hub = NULL;
1936 	usb_put_dev(rhdev);
1937 err_allocate_root_hub:
1938 	usb_deregister_bus(&hcd->self);
1939 err_register_bus:
1940 	hcd_buffer_destroy(hcd);
1941 	return retval;
1942 }
1943 EXPORT_SYMBOL_GPL(usb_add_hcd);
1944 
1945 /**
1946  * usb_remove_hcd - shutdown processing for generic HCDs
1947  * @hcd: the usb_hcd structure to remove
1948  * Context: !in_interrupt()
1949  *
1950  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1951  * invoking the HCD's stop() method.
1952  */
1953 void usb_remove_hcd(struct usb_hcd *hcd)
1954 {
1955 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1956 
1957 	if (HC_IS_RUNNING (hcd->state))
1958 		hcd->state = HC_STATE_QUIESCING;
1959 
1960 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1961 	spin_lock_irq (&hcd_root_hub_lock);
1962 	hcd->rh_registered = 0;
1963 	spin_unlock_irq (&hcd_root_hub_lock);
1964 
1965 #ifdef CONFIG_PM
1966 	cancel_work_sync(&hcd->wakeup_work);
1967 #endif
1968 
1969 	sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1970 	mutex_lock(&usb_bus_list_lock);
1971 	usb_disconnect(&hcd->self.root_hub);
1972 	mutex_unlock(&usb_bus_list_lock);
1973 
1974 	hcd->driver->stop(hcd);
1975 	hcd->state = HC_STATE_HALT;
1976 
1977 	hcd->poll_rh = 0;
1978 	del_timer_sync(&hcd->rh_timer);
1979 
1980 	if (hcd->irq >= 0)
1981 		free_irq(hcd->irq, hcd);
1982 	usb_deregister_bus(&hcd->self);
1983 	hcd_buffer_destroy(hcd);
1984 }
1985 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1986 
1987 void
1988 usb_hcd_platform_shutdown(struct platform_device* dev)
1989 {
1990 	struct usb_hcd *hcd = platform_get_drvdata(dev);
1991 
1992 	if (hcd->driver->shutdown)
1993 		hcd->driver->shutdown(hcd);
1994 }
1995 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1996 
1997 /*-------------------------------------------------------------------------*/
1998 
1999 #if defined(CONFIG_USB_MON)
2000 
2001 struct usb_mon_operations *mon_ops;
2002 
2003 /*
2004  * The registration is unlocked.
2005  * We do it this way because we do not want to lock in hot paths.
2006  *
2007  * Notice that the code is minimally error-proof. Because usbmon needs
2008  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2009  */
2010 
2011 int usb_mon_register (struct usb_mon_operations *ops)
2012 {
2013 
2014 	if (mon_ops)
2015 		return -EBUSY;
2016 
2017 	mon_ops = ops;
2018 	mb();
2019 	return 0;
2020 }
2021 EXPORT_SYMBOL_GPL (usb_mon_register);
2022 
2023 void usb_mon_deregister (void)
2024 {
2025 
2026 	if (mon_ops == NULL) {
2027 		printk(KERN_ERR "USB: monitor was not registered\n");
2028 		return;
2029 	}
2030 	mon_ops = NULL;
2031 	mb();
2032 }
2033 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2034 
2035 #endif /* CONFIG_USB_MON */
2036