1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 33 #include <linux/phy/phy.h> 34 #include <linux/usb.h> 35 #include <linux/usb/hcd.h> 36 #include <linux/usb/otg.h> 37 38 #include "usb.h" 39 #include "phy.h" 40 41 42 /*-------------------------------------------------------------------------*/ 43 44 /* 45 * USB Host Controller Driver framework 46 * 47 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 48 * HCD-specific behaviors/bugs. 49 * 50 * This does error checks, tracks devices and urbs, and delegates to a 51 * "hc_driver" only for code (and data) that really needs to know about 52 * hardware differences. That includes root hub registers, i/o queues, 53 * and so on ... but as little else as possible. 54 * 55 * Shared code includes most of the "root hub" code (these are emulated, 56 * though each HC's hardware works differently) and PCI glue, plus request 57 * tracking overhead. The HCD code should only block on spinlocks or on 58 * hardware handshaking; blocking on software events (such as other kernel 59 * threads releasing resources, or completing actions) is all generic. 60 * 61 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 62 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 63 * only by the hub driver ... and that neither should be seen or used by 64 * usb client device drivers. 65 * 66 * Contributors of ideas or unattributed patches include: David Brownell, 67 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 68 * 69 * HISTORY: 70 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 71 * associated cleanup. "usb_hcd" still != "usb_bus". 72 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 73 */ 74 75 /*-------------------------------------------------------------------------*/ 76 77 /* Keep track of which host controller drivers are loaded */ 78 unsigned long usb_hcds_loaded; 79 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 80 81 /* host controllers we manage */ 82 DEFINE_IDR (usb_bus_idr); 83 EXPORT_SYMBOL_GPL (usb_bus_idr); 84 85 /* used when allocating bus numbers */ 86 #define USB_MAXBUS 64 87 88 /* used when updating list of hcds */ 89 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 90 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 91 92 /* used for controlling access to virtual root hubs */ 93 static DEFINE_SPINLOCK(hcd_root_hub_lock); 94 95 /* used when updating an endpoint's URB list */ 96 static DEFINE_SPINLOCK(hcd_urb_list_lock); 97 98 /* used to protect against unlinking URBs after the device is gone */ 99 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 100 101 /* wait queue for synchronous unlinks */ 102 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 103 104 static inline int is_root_hub(struct usb_device *udev) 105 { 106 return (udev->parent == NULL); 107 } 108 109 /*-------------------------------------------------------------------------*/ 110 111 /* 112 * Sharable chunks of root hub code. 113 */ 114 115 /*-------------------------------------------------------------------------*/ 116 #define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff)) 117 #define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff)) 118 119 /* usb 3.1 root hub device descriptor */ 120 static const u8 usb31_rh_dev_descriptor[18] = { 121 0x12, /* __u8 bLength; */ 122 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 123 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 124 125 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 126 0x00, /* __u8 bDeviceSubClass; */ 127 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 128 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 129 130 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 131 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 132 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 133 134 0x03, /* __u8 iManufacturer; */ 135 0x02, /* __u8 iProduct; */ 136 0x01, /* __u8 iSerialNumber; */ 137 0x01 /* __u8 bNumConfigurations; */ 138 }; 139 140 /* usb 3.0 root hub device descriptor */ 141 static const u8 usb3_rh_dev_descriptor[18] = { 142 0x12, /* __u8 bLength; */ 143 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 144 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 145 146 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 147 0x00, /* __u8 bDeviceSubClass; */ 148 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 149 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 150 151 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 152 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 153 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 154 155 0x03, /* __u8 iManufacturer; */ 156 0x02, /* __u8 iProduct; */ 157 0x01, /* __u8 iSerialNumber; */ 158 0x01 /* __u8 bNumConfigurations; */ 159 }; 160 161 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 162 static const u8 usb25_rh_dev_descriptor[18] = { 163 0x12, /* __u8 bLength; */ 164 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 165 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 166 167 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 168 0x00, /* __u8 bDeviceSubClass; */ 169 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 170 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 171 172 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 173 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 174 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 175 176 0x03, /* __u8 iManufacturer; */ 177 0x02, /* __u8 iProduct; */ 178 0x01, /* __u8 iSerialNumber; */ 179 0x01 /* __u8 bNumConfigurations; */ 180 }; 181 182 /* usb 2.0 root hub device descriptor */ 183 static const u8 usb2_rh_dev_descriptor[18] = { 184 0x12, /* __u8 bLength; */ 185 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 186 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 187 188 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 189 0x00, /* __u8 bDeviceSubClass; */ 190 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 191 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 192 193 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 194 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 195 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 196 197 0x03, /* __u8 iManufacturer; */ 198 0x02, /* __u8 iProduct; */ 199 0x01, /* __u8 iSerialNumber; */ 200 0x01 /* __u8 bNumConfigurations; */ 201 }; 202 203 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 204 205 /* usb 1.1 root hub device descriptor */ 206 static const u8 usb11_rh_dev_descriptor[18] = { 207 0x12, /* __u8 bLength; */ 208 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 209 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 210 211 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 212 0x00, /* __u8 bDeviceSubClass; */ 213 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 214 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 215 216 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 217 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 218 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 219 220 0x03, /* __u8 iManufacturer; */ 221 0x02, /* __u8 iProduct; */ 222 0x01, /* __u8 iSerialNumber; */ 223 0x01 /* __u8 bNumConfigurations; */ 224 }; 225 226 227 /*-------------------------------------------------------------------------*/ 228 229 /* Configuration descriptors for our root hubs */ 230 231 static const u8 fs_rh_config_descriptor[] = { 232 233 /* one configuration */ 234 0x09, /* __u8 bLength; */ 235 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 236 0x19, 0x00, /* __le16 wTotalLength; */ 237 0x01, /* __u8 bNumInterfaces; (1) */ 238 0x01, /* __u8 bConfigurationValue; */ 239 0x00, /* __u8 iConfiguration; */ 240 0xc0, /* __u8 bmAttributes; 241 Bit 7: must be set, 242 6: Self-powered, 243 5: Remote wakeup, 244 4..0: resvd */ 245 0x00, /* __u8 MaxPower; */ 246 247 /* USB 1.1: 248 * USB 2.0, single TT organization (mandatory): 249 * one interface, protocol 0 250 * 251 * USB 2.0, multiple TT organization (optional): 252 * two interfaces, protocols 1 (like single TT) 253 * and 2 (multiple TT mode) ... config is 254 * sometimes settable 255 * NOT IMPLEMENTED 256 */ 257 258 /* one interface */ 259 0x09, /* __u8 if_bLength; */ 260 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 261 0x00, /* __u8 if_bInterfaceNumber; */ 262 0x00, /* __u8 if_bAlternateSetting; */ 263 0x01, /* __u8 if_bNumEndpoints; */ 264 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 265 0x00, /* __u8 if_bInterfaceSubClass; */ 266 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 267 0x00, /* __u8 if_iInterface; */ 268 269 /* one endpoint (status change endpoint) */ 270 0x07, /* __u8 ep_bLength; */ 271 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 272 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 273 0x03, /* __u8 ep_bmAttributes; Interrupt */ 274 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 275 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 276 }; 277 278 static const u8 hs_rh_config_descriptor[] = { 279 280 /* one configuration */ 281 0x09, /* __u8 bLength; */ 282 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 283 0x19, 0x00, /* __le16 wTotalLength; */ 284 0x01, /* __u8 bNumInterfaces; (1) */ 285 0x01, /* __u8 bConfigurationValue; */ 286 0x00, /* __u8 iConfiguration; */ 287 0xc0, /* __u8 bmAttributes; 288 Bit 7: must be set, 289 6: Self-powered, 290 5: Remote wakeup, 291 4..0: resvd */ 292 0x00, /* __u8 MaxPower; */ 293 294 /* USB 1.1: 295 * USB 2.0, single TT organization (mandatory): 296 * one interface, protocol 0 297 * 298 * USB 2.0, multiple TT organization (optional): 299 * two interfaces, protocols 1 (like single TT) 300 * and 2 (multiple TT mode) ... config is 301 * sometimes settable 302 * NOT IMPLEMENTED 303 */ 304 305 /* one interface */ 306 0x09, /* __u8 if_bLength; */ 307 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 308 0x00, /* __u8 if_bInterfaceNumber; */ 309 0x00, /* __u8 if_bAlternateSetting; */ 310 0x01, /* __u8 if_bNumEndpoints; */ 311 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 312 0x00, /* __u8 if_bInterfaceSubClass; */ 313 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 314 0x00, /* __u8 if_iInterface; */ 315 316 /* one endpoint (status change endpoint) */ 317 0x07, /* __u8 ep_bLength; */ 318 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 319 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 320 0x03, /* __u8 ep_bmAttributes; Interrupt */ 321 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 322 * see hub.c:hub_configure() for details. */ 323 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 324 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 325 }; 326 327 static const u8 ss_rh_config_descriptor[] = { 328 /* one configuration */ 329 0x09, /* __u8 bLength; */ 330 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 331 0x1f, 0x00, /* __le16 wTotalLength; */ 332 0x01, /* __u8 bNumInterfaces; (1) */ 333 0x01, /* __u8 bConfigurationValue; */ 334 0x00, /* __u8 iConfiguration; */ 335 0xc0, /* __u8 bmAttributes; 336 Bit 7: must be set, 337 6: Self-powered, 338 5: Remote wakeup, 339 4..0: resvd */ 340 0x00, /* __u8 MaxPower; */ 341 342 /* one interface */ 343 0x09, /* __u8 if_bLength; */ 344 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 345 0x00, /* __u8 if_bInterfaceNumber; */ 346 0x00, /* __u8 if_bAlternateSetting; */ 347 0x01, /* __u8 if_bNumEndpoints; */ 348 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 349 0x00, /* __u8 if_bInterfaceSubClass; */ 350 0x00, /* __u8 if_bInterfaceProtocol; */ 351 0x00, /* __u8 if_iInterface; */ 352 353 /* one endpoint (status change endpoint) */ 354 0x07, /* __u8 ep_bLength; */ 355 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 356 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 357 0x03, /* __u8 ep_bmAttributes; Interrupt */ 358 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 359 * see hub.c:hub_configure() for details. */ 360 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 361 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 362 363 /* one SuperSpeed endpoint companion descriptor */ 364 0x06, /* __u8 ss_bLength */ 365 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 366 /* Companion */ 367 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 368 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 369 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 370 }; 371 372 /* authorized_default behaviour: 373 * -1 is authorized for all devices except wireless (old behaviour) 374 * 0 is unauthorized for all devices 375 * 1 is authorized for all devices 376 */ 377 static int authorized_default = -1; 378 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 379 MODULE_PARM_DESC(authorized_default, 380 "Default USB device authorization: 0 is not authorized, 1 is " 381 "authorized, -1 is authorized except for wireless USB (default, " 382 "old behaviour"); 383 /*-------------------------------------------------------------------------*/ 384 385 /** 386 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 387 * @s: Null-terminated ASCII (actually ISO-8859-1) string 388 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 389 * @len: Length (in bytes; may be odd) of descriptor buffer. 390 * 391 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 392 * whichever is less. 393 * 394 * Note: 395 * USB String descriptors can contain at most 126 characters; input 396 * strings longer than that are truncated. 397 */ 398 static unsigned 399 ascii2desc(char const *s, u8 *buf, unsigned len) 400 { 401 unsigned n, t = 2 + 2*strlen(s); 402 403 if (t > 254) 404 t = 254; /* Longest possible UTF string descriptor */ 405 if (len > t) 406 len = t; 407 408 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 409 410 n = len; 411 while (n--) { 412 *buf++ = t; 413 if (!n--) 414 break; 415 *buf++ = t >> 8; 416 t = (unsigned char)*s++; 417 } 418 return len; 419 } 420 421 /** 422 * rh_string() - provides string descriptors for root hub 423 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 424 * @hcd: the host controller for this root hub 425 * @data: buffer for output packet 426 * @len: length of the provided buffer 427 * 428 * Produces either a manufacturer, product or serial number string for the 429 * virtual root hub device. 430 * 431 * Return: The number of bytes filled in: the length of the descriptor or 432 * of the provided buffer, whichever is less. 433 */ 434 static unsigned 435 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 436 { 437 char buf[100]; 438 char const *s; 439 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 440 441 /* language ids */ 442 switch (id) { 443 case 0: 444 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 445 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 446 if (len > 4) 447 len = 4; 448 memcpy(data, langids, len); 449 return len; 450 case 1: 451 /* Serial number */ 452 s = hcd->self.bus_name; 453 break; 454 case 2: 455 /* Product name */ 456 s = hcd->product_desc; 457 break; 458 case 3: 459 /* Manufacturer */ 460 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 461 init_utsname()->release, hcd->driver->description); 462 s = buf; 463 break; 464 default: 465 /* Can't happen; caller guarantees it */ 466 return 0; 467 } 468 469 return ascii2desc(s, data, len); 470 } 471 472 473 /* Root hub control transfers execute synchronously */ 474 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 475 { 476 struct usb_ctrlrequest *cmd; 477 u16 typeReq, wValue, wIndex, wLength; 478 u8 *ubuf = urb->transfer_buffer; 479 unsigned len = 0; 480 int status; 481 u8 patch_wakeup = 0; 482 u8 patch_protocol = 0; 483 u16 tbuf_size; 484 u8 *tbuf = NULL; 485 const u8 *bufp; 486 487 might_sleep(); 488 489 spin_lock_irq(&hcd_root_hub_lock); 490 status = usb_hcd_link_urb_to_ep(hcd, urb); 491 spin_unlock_irq(&hcd_root_hub_lock); 492 if (status) 493 return status; 494 urb->hcpriv = hcd; /* Indicate it's queued */ 495 496 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 497 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 498 wValue = le16_to_cpu (cmd->wValue); 499 wIndex = le16_to_cpu (cmd->wIndex); 500 wLength = le16_to_cpu (cmd->wLength); 501 502 if (wLength > urb->transfer_buffer_length) 503 goto error; 504 505 /* 506 * tbuf should be at least as big as the 507 * USB hub descriptor. 508 */ 509 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 510 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 511 if (!tbuf) { 512 status = -ENOMEM; 513 goto err_alloc; 514 } 515 516 bufp = tbuf; 517 518 519 urb->actual_length = 0; 520 switch (typeReq) { 521 522 /* DEVICE REQUESTS */ 523 524 /* The root hub's remote wakeup enable bit is implemented using 525 * driver model wakeup flags. If this system supports wakeup 526 * through USB, userspace may change the default "allow wakeup" 527 * policy through sysfs or these calls. 528 * 529 * Most root hubs support wakeup from downstream devices, for 530 * runtime power management (disabling USB clocks and reducing 531 * VBUS power usage). However, not all of them do so; silicon, 532 * board, and BIOS bugs here are not uncommon, so these can't 533 * be treated quite like external hubs. 534 * 535 * Likewise, not all root hubs will pass wakeup events upstream, 536 * to wake up the whole system. So don't assume root hub and 537 * controller capabilities are identical. 538 */ 539 540 case DeviceRequest | USB_REQ_GET_STATUS: 541 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 542 << USB_DEVICE_REMOTE_WAKEUP) 543 | (1 << USB_DEVICE_SELF_POWERED); 544 tbuf[1] = 0; 545 len = 2; 546 break; 547 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 548 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 549 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 550 else 551 goto error; 552 break; 553 case DeviceOutRequest | USB_REQ_SET_FEATURE: 554 if (device_can_wakeup(&hcd->self.root_hub->dev) 555 && wValue == USB_DEVICE_REMOTE_WAKEUP) 556 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 557 else 558 goto error; 559 break; 560 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 561 tbuf[0] = 1; 562 len = 1; 563 /* FALLTHROUGH */ 564 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 565 break; 566 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 567 switch (wValue & 0xff00) { 568 case USB_DT_DEVICE << 8: 569 switch (hcd->speed) { 570 case HCD_USB32: 571 case HCD_USB31: 572 bufp = usb31_rh_dev_descriptor; 573 break; 574 case HCD_USB3: 575 bufp = usb3_rh_dev_descriptor; 576 break; 577 case HCD_USB25: 578 bufp = usb25_rh_dev_descriptor; 579 break; 580 case HCD_USB2: 581 bufp = usb2_rh_dev_descriptor; 582 break; 583 case HCD_USB11: 584 bufp = usb11_rh_dev_descriptor; 585 break; 586 default: 587 goto error; 588 } 589 len = 18; 590 if (hcd->has_tt) 591 patch_protocol = 1; 592 break; 593 case USB_DT_CONFIG << 8: 594 switch (hcd->speed) { 595 case HCD_USB32: 596 case HCD_USB31: 597 case HCD_USB3: 598 bufp = ss_rh_config_descriptor; 599 len = sizeof ss_rh_config_descriptor; 600 break; 601 case HCD_USB25: 602 case HCD_USB2: 603 bufp = hs_rh_config_descriptor; 604 len = sizeof hs_rh_config_descriptor; 605 break; 606 case HCD_USB11: 607 bufp = fs_rh_config_descriptor; 608 len = sizeof fs_rh_config_descriptor; 609 break; 610 default: 611 goto error; 612 } 613 if (device_can_wakeup(&hcd->self.root_hub->dev)) 614 patch_wakeup = 1; 615 break; 616 case USB_DT_STRING << 8: 617 if ((wValue & 0xff) < 4) 618 urb->actual_length = rh_string(wValue & 0xff, 619 hcd, ubuf, wLength); 620 else /* unsupported IDs --> "protocol stall" */ 621 goto error; 622 break; 623 case USB_DT_BOS << 8: 624 goto nongeneric; 625 default: 626 goto error; 627 } 628 break; 629 case DeviceRequest | USB_REQ_GET_INTERFACE: 630 tbuf[0] = 0; 631 len = 1; 632 /* FALLTHROUGH */ 633 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 634 break; 635 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 636 /* wValue == urb->dev->devaddr */ 637 dev_dbg (hcd->self.controller, "root hub device address %d\n", 638 wValue); 639 break; 640 641 /* INTERFACE REQUESTS (no defined feature/status flags) */ 642 643 /* ENDPOINT REQUESTS */ 644 645 case EndpointRequest | USB_REQ_GET_STATUS: 646 /* ENDPOINT_HALT flag */ 647 tbuf[0] = 0; 648 tbuf[1] = 0; 649 len = 2; 650 /* FALLTHROUGH */ 651 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 652 case EndpointOutRequest | USB_REQ_SET_FEATURE: 653 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 654 break; 655 656 /* CLASS REQUESTS (and errors) */ 657 658 default: 659 nongeneric: 660 /* non-generic request */ 661 switch (typeReq) { 662 case GetHubStatus: 663 len = 4; 664 break; 665 case GetPortStatus: 666 if (wValue == HUB_PORT_STATUS) 667 len = 4; 668 else 669 /* other port status types return 8 bytes */ 670 len = 8; 671 break; 672 case GetHubDescriptor: 673 len = sizeof (struct usb_hub_descriptor); 674 break; 675 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 676 /* len is returned by hub_control */ 677 break; 678 } 679 status = hcd->driver->hub_control (hcd, 680 typeReq, wValue, wIndex, 681 tbuf, wLength); 682 683 if (typeReq == GetHubDescriptor) 684 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 685 (struct usb_hub_descriptor *)tbuf); 686 break; 687 error: 688 /* "protocol stall" on error */ 689 status = -EPIPE; 690 } 691 692 if (status < 0) { 693 len = 0; 694 if (status != -EPIPE) { 695 dev_dbg (hcd->self.controller, 696 "CTRL: TypeReq=0x%x val=0x%x " 697 "idx=0x%x len=%d ==> %d\n", 698 typeReq, wValue, wIndex, 699 wLength, status); 700 } 701 } else if (status > 0) { 702 /* hub_control may return the length of data copied. */ 703 len = status; 704 status = 0; 705 } 706 if (len) { 707 if (urb->transfer_buffer_length < len) 708 len = urb->transfer_buffer_length; 709 urb->actual_length = len; 710 /* always USB_DIR_IN, toward host */ 711 memcpy (ubuf, bufp, len); 712 713 /* report whether RH hardware supports remote wakeup */ 714 if (patch_wakeup && 715 len > offsetof (struct usb_config_descriptor, 716 bmAttributes)) 717 ((struct usb_config_descriptor *)ubuf)->bmAttributes 718 |= USB_CONFIG_ATT_WAKEUP; 719 720 /* report whether RH hardware has an integrated TT */ 721 if (patch_protocol && 722 len > offsetof(struct usb_device_descriptor, 723 bDeviceProtocol)) 724 ((struct usb_device_descriptor *) ubuf)-> 725 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 726 } 727 728 kfree(tbuf); 729 err_alloc: 730 731 /* any errors get returned through the urb completion */ 732 spin_lock_irq(&hcd_root_hub_lock); 733 usb_hcd_unlink_urb_from_ep(hcd, urb); 734 usb_hcd_giveback_urb(hcd, urb, status); 735 spin_unlock_irq(&hcd_root_hub_lock); 736 return 0; 737 } 738 739 /*-------------------------------------------------------------------------*/ 740 741 /* 742 * Root Hub interrupt transfers are polled using a timer if the 743 * driver requests it; otherwise the driver is responsible for 744 * calling usb_hcd_poll_rh_status() when an event occurs. 745 * 746 * Completions are called in_interrupt(), but they may or may not 747 * be in_irq(). 748 */ 749 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 750 { 751 struct urb *urb; 752 int length; 753 unsigned long flags; 754 char buffer[6]; /* Any root hubs with > 31 ports? */ 755 756 if (unlikely(!hcd->rh_pollable)) 757 return; 758 if (!hcd->uses_new_polling && !hcd->status_urb) 759 return; 760 761 length = hcd->driver->hub_status_data(hcd, buffer); 762 if (length > 0) { 763 764 /* try to complete the status urb */ 765 spin_lock_irqsave(&hcd_root_hub_lock, flags); 766 urb = hcd->status_urb; 767 if (urb) { 768 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 769 hcd->status_urb = NULL; 770 urb->actual_length = length; 771 memcpy(urb->transfer_buffer, buffer, length); 772 773 usb_hcd_unlink_urb_from_ep(hcd, urb); 774 usb_hcd_giveback_urb(hcd, urb, 0); 775 } else { 776 length = 0; 777 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 778 } 779 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 780 } 781 782 /* The USB 2.0 spec says 256 ms. This is close enough and won't 783 * exceed that limit if HZ is 100. The math is more clunky than 784 * maybe expected, this is to make sure that all timers for USB devices 785 * fire at the same time to give the CPU a break in between */ 786 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 787 (length == 0 && hcd->status_urb != NULL)) 788 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 789 } 790 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 791 792 /* timer callback */ 793 static void rh_timer_func (struct timer_list *t) 794 { 795 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 796 797 usb_hcd_poll_rh_status(_hcd); 798 } 799 800 /*-------------------------------------------------------------------------*/ 801 802 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 803 { 804 int retval; 805 unsigned long flags; 806 unsigned len = 1 + (urb->dev->maxchild / 8); 807 808 spin_lock_irqsave (&hcd_root_hub_lock, flags); 809 if (hcd->status_urb || urb->transfer_buffer_length < len) { 810 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 811 retval = -EINVAL; 812 goto done; 813 } 814 815 retval = usb_hcd_link_urb_to_ep(hcd, urb); 816 if (retval) 817 goto done; 818 819 hcd->status_urb = urb; 820 urb->hcpriv = hcd; /* indicate it's queued */ 821 if (!hcd->uses_new_polling) 822 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 823 824 /* If a status change has already occurred, report it ASAP */ 825 else if (HCD_POLL_PENDING(hcd)) 826 mod_timer(&hcd->rh_timer, jiffies); 827 retval = 0; 828 done: 829 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 830 return retval; 831 } 832 833 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 834 { 835 if (usb_endpoint_xfer_int(&urb->ep->desc)) 836 return rh_queue_status (hcd, urb); 837 if (usb_endpoint_xfer_control(&urb->ep->desc)) 838 return rh_call_control (hcd, urb); 839 return -EINVAL; 840 } 841 842 /*-------------------------------------------------------------------------*/ 843 844 /* Unlinks of root-hub control URBs are legal, but they don't do anything 845 * since these URBs always execute synchronously. 846 */ 847 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 848 { 849 unsigned long flags; 850 int rc; 851 852 spin_lock_irqsave(&hcd_root_hub_lock, flags); 853 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 854 if (rc) 855 goto done; 856 857 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 858 ; /* Do nothing */ 859 860 } else { /* Status URB */ 861 if (!hcd->uses_new_polling) 862 del_timer (&hcd->rh_timer); 863 if (urb == hcd->status_urb) { 864 hcd->status_urb = NULL; 865 usb_hcd_unlink_urb_from_ep(hcd, urb); 866 usb_hcd_giveback_urb(hcd, urb, status); 867 } 868 } 869 done: 870 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 871 return rc; 872 } 873 874 875 876 /* 877 * Show & store the current value of authorized_default 878 */ 879 static ssize_t authorized_default_show(struct device *dev, 880 struct device_attribute *attr, char *buf) 881 { 882 struct usb_device *rh_usb_dev = to_usb_device(dev); 883 struct usb_bus *usb_bus = rh_usb_dev->bus; 884 struct usb_hcd *hcd; 885 886 hcd = bus_to_hcd(usb_bus); 887 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd)); 888 } 889 890 static ssize_t authorized_default_store(struct device *dev, 891 struct device_attribute *attr, 892 const char *buf, size_t size) 893 { 894 ssize_t result; 895 unsigned val; 896 struct usb_device *rh_usb_dev = to_usb_device(dev); 897 struct usb_bus *usb_bus = rh_usb_dev->bus; 898 struct usb_hcd *hcd; 899 900 hcd = bus_to_hcd(usb_bus); 901 result = sscanf(buf, "%u\n", &val); 902 if (result == 1) { 903 if (val) 904 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 905 else 906 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 907 908 result = size; 909 } else { 910 result = -EINVAL; 911 } 912 return result; 913 } 914 static DEVICE_ATTR_RW(authorized_default); 915 916 /* 917 * interface_authorized_default_show - show default authorization status 918 * for USB interfaces 919 * 920 * note: interface_authorized_default is the default value 921 * for initializing the authorized attribute of interfaces 922 */ 923 static ssize_t interface_authorized_default_show(struct device *dev, 924 struct device_attribute *attr, char *buf) 925 { 926 struct usb_device *usb_dev = to_usb_device(dev); 927 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 928 929 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd)); 930 } 931 932 /* 933 * interface_authorized_default_store - store default authorization status 934 * for USB interfaces 935 * 936 * note: interface_authorized_default is the default value 937 * for initializing the authorized attribute of interfaces 938 */ 939 static ssize_t interface_authorized_default_store(struct device *dev, 940 struct device_attribute *attr, const char *buf, size_t count) 941 { 942 struct usb_device *usb_dev = to_usb_device(dev); 943 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus); 944 int rc = count; 945 bool val; 946 947 if (strtobool(buf, &val) != 0) 948 return -EINVAL; 949 950 if (val) 951 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 952 else 953 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 954 955 return rc; 956 } 957 static DEVICE_ATTR_RW(interface_authorized_default); 958 959 /* Group all the USB bus attributes */ 960 static struct attribute *usb_bus_attrs[] = { 961 &dev_attr_authorized_default.attr, 962 &dev_attr_interface_authorized_default.attr, 963 NULL, 964 }; 965 966 static const struct attribute_group usb_bus_attr_group = { 967 .name = NULL, /* we want them in the same directory */ 968 .attrs = usb_bus_attrs, 969 }; 970 971 972 973 /*-------------------------------------------------------------------------*/ 974 975 /** 976 * usb_bus_init - shared initialization code 977 * @bus: the bus structure being initialized 978 * 979 * This code is used to initialize a usb_bus structure, memory for which is 980 * separately managed. 981 */ 982 static void usb_bus_init (struct usb_bus *bus) 983 { 984 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 985 986 bus->devnum_next = 1; 987 988 bus->root_hub = NULL; 989 bus->busnum = -1; 990 bus->bandwidth_allocated = 0; 991 bus->bandwidth_int_reqs = 0; 992 bus->bandwidth_isoc_reqs = 0; 993 mutex_init(&bus->devnum_next_mutex); 994 } 995 996 /*-------------------------------------------------------------------------*/ 997 998 /** 999 * usb_register_bus - registers the USB host controller with the usb core 1000 * @bus: pointer to the bus to register 1001 * Context: !in_interrupt() 1002 * 1003 * Assigns a bus number, and links the controller into usbcore data 1004 * structures so that it can be seen by scanning the bus list. 1005 * 1006 * Return: 0 if successful. A negative error code otherwise. 1007 */ 1008 static int usb_register_bus(struct usb_bus *bus) 1009 { 1010 int result = -E2BIG; 1011 int busnum; 1012 1013 mutex_lock(&usb_bus_idr_lock); 1014 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 1015 if (busnum < 0) { 1016 pr_err("%s: failed to get bus number\n", usbcore_name); 1017 goto error_find_busnum; 1018 } 1019 bus->busnum = busnum; 1020 mutex_unlock(&usb_bus_idr_lock); 1021 1022 usb_notify_add_bus(bus); 1023 1024 dev_info (bus->controller, "new USB bus registered, assigned bus " 1025 "number %d\n", bus->busnum); 1026 return 0; 1027 1028 error_find_busnum: 1029 mutex_unlock(&usb_bus_idr_lock); 1030 return result; 1031 } 1032 1033 /** 1034 * usb_deregister_bus - deregisters the USB host controller 1035 * @bus: pointer to the bus to deregister 1036 * Context: !in_interrupt() 1037 * 1038 * Recycles the bus number, and unlinks the controller from usbcore data 1039 * structures so that it won't be seen by scanning the bus list. 1040 */ 1041 static void usb_deregister_bus (struct usb_bus *bus) 1042 { 1043 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 1044 1045 /* 1046 * NOTE: make sure that all the devices are removed by the 1047 * controller code, as well as having it call this when cleaning 1048 * itself up 1049 */ 1050 mutex_lock(&usb_bus_idr_lock); 1051 idr_remove(&usb_bus_idr, bus->busnum); 1052 mutex_unlock(&usb_bus_idr_lock); 1053 1054 usb_notify_remove_bus(bus); 1055 } 1056 1057 /** 1058 * register_root_hub - called by usb_add_hcd() to register a root hub 1059 * @hcd: host controller for this root hub 1060 * 1061 * This function registers the root hub with the USB subsystem. It sets up 1062 * the device properly in the device tree and then calls usb_new_device() 1063 * to register the usb device. It also assigns the root hub's USB address 1064 * (always 1). 1065 * 1066 * Return: 0 if successful. A negative error code otherwise. 1067 */ 1068 static int register_root_hub(struct usb_hcd *hcd) 1069 { 1070 struct device *parent_dev = hcd->self.controller; 1071 struct usb_device *usb_dev = hcd->self.root_hub; 1072 const int devnum = 1; 1073 int retval; 1074 1075 usb_dev->devnum = devnum; 1076 usb_dev->bus->devnum_next = devnum + 1; 1077 set_bit (devnum, usb_dev->bus->devmap.devicemap); 1078 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 1079 1080 mutex_lock(&usb_bus_idr_lock); 1081 1082 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 1083 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE); 1084 if (retval != sizeof usb_dev->descriptor) { 1085 mutex_unlock(&usb_bus_idr_lock); 1086 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1087 dev_name(&usb_dev->dev), retval); 1088 return (retval < 0) ? retval : -EMSGSIZE; 1089 } 1090 1091 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1092 retval = usb_get_bos_descriptor(usb_dev); 1093 if (!retval) { 1094 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1095 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1096 mutex_unlock(&usb_bus_idr_lock); 1097 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1098 dev_name(&usb_dev->dev), retval); 1099 return retval; 1100 } 1101 } 1102 1103 retval = usb_new_device (usb_dev); 1104 if (retval) { 1105 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1106 dev_name(&usb_dev->dev), retval); 1107 } else { 1108 spin_lock_irq (&hcd_root_hub_lock); 1109 hcd->rh_registered = 1; 1110 spin_unlock_irq (&hcd_root_hub_lock); 1111 1112 /* Did the HC die before the root hub was registered? */ 1113 if (HCD_DEAD(hcd)) 1114 usb_hc_died (hcd); /* This time clean up */ 1115 } 1116 mutex_unlock(&usb_bus_idr_lock); 1117 1118 return retval; 1119 } 1120 1121 /* 1122 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1123 * @bus: the bus which the root hub belongs to 1124 * @portnum: the port which is being resumed 1125 * 1126 * HCDs should call this function when they know that a resume signal is 1127 * being sent to a root-hub port. The root hub will be prevented from 1128 * going into autosuspend until usb_hcd_end_port_resume() is called. 1129 * 1130 * The bus's private lock must be held by the caller. 1131 */ 1132 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1133 { 1134 unsigned bit = 1 << portnum; 1135 1136 if (!(bus->resuming_ports & bit)) { 1137 bus->resuming_ports |= bit; 1138 pm_runtime_get_noresume(&bus->root_hub->dev); 1139 } 1140 } 1141 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1142 1143 /* 1144 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1145 * @bus: the bus which the root hub belongs to 1146 * @portnum: the port which is being resumed 1147 * 1148 * HCDs should call this function when they know that a resume signal has 1149 * stopped being sent to a root-hub port. The root hub will be allowed to 1150 * autosuspend again. 1151 * 1152 * The bus's private lock must be held by the caller. 1153 */ 1154 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1155 { 1156 unsigned bit = 1 << portnum; 1157 1158 if (bus->resuming_ports & bit) { 1159 bus->resuming_ports &= ~bit; 1160 pm_runtime_put_noidle(&bus->root_hub->dev); 1161 } 1162 } 1163 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1164 1165 /*-------------------------------------------------------------------------*/ 1166 1167 /** 1168 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1169 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1170 * @is_input: true iff the transaction sends data to the host 1171 * @isoc: true for isochronous transactions, false for interrupt ones 1172 * @bytecount: how many bytes in the transaction. 1173 * 1174 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1175 * 1176 * Note: 1177 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1178 * scheduled in software, this function is only used for such scheduling. 1179 */ 1180 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1181 { 1182 unsigned long tmp; 1183 1184 switch (speed) { 1185 case USB_SPEED_LOW: /* INTR only */ 1186 if (is_input) { 1187 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1188 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1189 } else { 1190 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1191 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1192 } 1193 case USB_SPEED_FULL: /* ISOC or INTR */ 1194 if (isoc) { 1195 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1196 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1197 } else { 1198 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1199 return 9107L + BW_HOST_DELAY + tmp; 1200 } 1201 case USB_SPEED_HIGH: /* ISOC or INTR */ 1202 /* FIXME adjust for input vs output */ 1203 if (isoc) 1204 tmp = HS_NSECS_ISO (bytecount); 1205 else 1206 tmp = HS_NSECS (bytecount); 1207 return tmp; 1208 default: 1209 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1210 return -1; 1211 } 1212 } 1213 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1214 1215 1216 /*-------------------------------------------------------------------------*/ 1217 1218 /* 1219 * Generic HC operations. 1220 */ 1221 1222 /*-------------------------------------------------------------------------*/ 1223 1224 /** 1225 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1226 * @hcd: host controller to which @urb was submitted 1227 * @urb: URB being submitted 1228 * 1229 * Host controller drivers should call this routine in their enqueue() 1230 * method. The HCD's private spinlock must be held and interrupts must 1231 * be disabled. The actions carried out here are required for URB 1232 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1233 * 1234 * Return: 0 for no error, otherwise a negative error code (in which case 1235 * the enqueue() method must fail). If no error occurs but enqueue() fails 1236 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1237 * the private spinlock and returning. 1238 */ 1239 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1240 { 1241 int rc = 0; 1242 1243 spin_lock(&hcd_urb_list_lock); 1244 1245 /* Check that the URB isn't being killed */ 1246 if (unlikely(atomic_read(&urb->reject))) { 1247 rc = -EPERM; 1248 goto done; 1249 } 1250 1251 if (unlikely(!urb->ep->enabled)) { 1252 rc = -ENOENT; 1253 goto done; 1254 } 1255 1256 if (unlikely(!urb->dev->can_submit)) { 1257 rc = -EHOSTUNREACH; 1258 goto done; 1259 } 1260 1261 /* 1262 * Check the host controller's state and add the URB to the 1263 * endpoint's queue. 1264 */ 1265 if (HCD_RH_RUNNING(hcd)) { 1266 urb->unlinked = 0; 1267 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1268 } else { 1269 rc = -ESHUTDOWN; 1270 goto done; 1271 } 1272 done: 1273 spin_unlock(&hcd_urb_list_lock); 1274 return rc; 1275 } 1276 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1277 1278 /** 1279 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1280 * @hcd: host controller to which @urb was submitted 1281 * @urb: URB being checked for unlinkability 1282 * @status: error code to store in @urb if the unlink succeeds 1283 * 1284 * Host controller drivers should call this routine in their dequeue() 1285 * method. The HCD's private spinlock must be held and interrupts must 1286 * be disabled. The actions carried out here are required for making 1287 * sure than an unlink is valid. 1288 * 1289 * Return: 0 for no error, otherwise a negative error code (in which case 1290 * the dequeue() method must fail). The possible error codes are: 1291 * 1292 * -EIDRM: @urb was not submitted or has already completed. 1293 * The completion function may not have been called yet. 1294 * 1295 * -EBUSY: @urb has already been unlinked. 1296 */ 1297 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1298 int status) 1299 { 1300 struct list_head *tmp; 1301 1302 /* insist the urb is still queued */ 1303 list_for_each(tmp, &urb->ep->urb_list) { 1304 if (tmp == &urb->urb_list) 1305 break; 1306 } 1307 if (tmp != &urb->urb_list) 1308 return -EIDRM; 1309 1310 /* Any status except -EINPROGRESS means something already started to 1311 * unlink this URB from the hardware. So there's no more work to do. 1312 */ 1313 if (urb->unlinked) 1314 return -EBUSY; 1315 urb->unlinked = status; 1316 return 0; 1317 } 1318 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1319 1320 /** 1321 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1322 * @hcd: host controller to which @urb was submitted 1323 * @urb: URB being unlinked 1324 * 1325 * Host controller drivers should call this routine before calling 1326 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1327 * interrupts must be disabled. The actions carried out here are required 1328 * for URB completion. 1329 */ 1330 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1331 { 1332 /* clear all state linking urb to this dev (and hcd) */ 1333 spin_lock(&hcd_urb_list_lock); 1334 list_del_init(&urb->urb_list); 1335 spin_unlock(&hcd_urb_list_lock); 1336 } 1337 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1338 1339 /* 1340 * Some usb host controllers can only perform dma using a small SRAM area. 1341 * The usb core itself is however optimized for host controllers that can dma 1342 * using regular system memory - like pci devices doing bus mastering. 1343 * 1344 * To support host controllers with limited dma capabilities we provide dma 1345 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. 1346 * For this to work properly the host controller code must first use the 1347 * function dma_declare_coherent_memory() to point out which memory area 1348 * that should be used for dma allocations. 1349 * 1350 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for 1351 * dma using dma_alloc_coherent() which in turn allocates from the memory 1352 * area pointed out with dma_declare_coherent_memory(). 1353 * 1354 * So, to summarize... 1355 * 1356 * - We need "local" memory, canonical example being 1357 * a small SRAM on a discrete controller being the 1358 * only memory that the controller can read ... 1359 * (a) "normal" kernel memory is no good, and 1360 * (b) there's not enough to share 1361 * 1362 * - The only *portable* hook for such stuff in the 1363 * DMA framework is dma_declare_coherent_memory() 1364 * 1365 * - So we use that, even though the primary requirement 1366 * is that the memory be "local" (hence addressable 1367 * by that device), not "coherent". 1368 * 1369 */ 1370 1371 static int hcd_alloc_coherent(struct usb_bus *bus, 1372 gfp_t mem_flags, dma_addr_t *dma_handle, 1373 void **vaddr_handle, size_t size, 1374 enum dma_data_direction dir) 1375 { 1376 unsigned char *vaddr; 1377 1378 if (*vaddr_handle == NULL) { 1379 WARN_ON_ONCE(1); 1380 return -EFAULT; 1381 } 1382 1383 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr), 1384 mem_flags, dma_handle); 1385 if (!vaddr) 1386 return -ENOMEM; 1387 1388 /* 1389 * Store the virtual address of the buffer at the end 1390 * of the allocated dma buffer. The size of the buffer 1391 * may be uneven so use unaligned functions instead 1392 * of just rounding up. It makes sense to optimize for 1393 * memory footprint over access speed since the amount 1394 * of memory available for dma may be limited. 1395 */ 1396 put_unaligned((unsigned long)*vaddr_handle, 1397 (unsigned long *)(vaddr + size)); 1398 1399 if (dir == DMA_TO_DEVICE) 1400 memcpy(vaddr, *vaddr_handle, size); 1401 1402 *vaddr_handle = vaddr; 1403 return 0; 1404 } 1405 1406 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1407 void **vaddr_handle, size_t size, 1408 enum dma_data_direction dir) 1409 { 1410 unsigned char *vaddr = *vaddr_handle; 1411 1412 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1413 1414 if (dir == DMA_FROM_DEVICE) 1415 memcpy(vaddr, *vaddr_handle, size); 1416 1417 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1418 1419 *vaddr_handle = vaddr; 1420 *dma_handle = 0; 1421 } 1422 1423 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1424 { 1425 if (IS_ENABLED(CONFIG_HAS_DMA) && 1426 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1427 dma_unmap_single(hcd->self.sysdev, 1428 urb->setup_dma, 1429 sizeof(struct usb_ctrlrequest), 1430 DMA_TO_DEVICE); 1431 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1432 hcd_free_coherent(urb->dev->bus, 1433 &urb->setup_dma, 1434 (void **) &urb->setup_packet, 1435 sizeof(struct usb_ctrlrequest), 1436 DMA_TO_DEVICE); 1437 1438 /* Make it safe to call this routine more than once */ 1439 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1440 } 1441 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1442 1443 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1444 { 1445 if (hcd->driver->unmap_urb_for_dma) 1446 hcd->driver->unmap_urb_for_dma(hcd, urb); 1447 else 1448 usb_hcd_unmap_urb_for_dma(hcd, urb); 1449 } 1450 1451 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1452 { 1453 enum dma_data_direction dir; 1454 1455 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1456 1457 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1458 if (IS_ENABLED(CONFIG_HAS_DMA) && 1459 (urb->transfer_flags & URB_DMA_MAP_SG)) 1460 dma_unmap_sg(hcd->self.sysdev, 1461 urb->sg, 1462 urb->num_sgs, 1463 dir); 1464 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1465 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1466 dma_unmap_page(hcd->self.sysdev, 1467 urb->transfer_dma, 1468 urb->transfer_buffer_length, 1469 dir); 1470 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1471 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1472 dma_unmap_single(hcd->self.sysdev, 1473 urb->transfer_dma, 1474 urb->transfer_buffer_length, 1475 dir); 1476 else if (urb->transfer_flags & URB_MAP_LOCAL) 1477 hcd_free_coherent(urb->dev->bus, 1478 &urb->transfer_dma, 1479 &urb->transfer_buffer, 1480 urb->transfer_buffer_length, 1481 dir); 1482 1483 /* Make it safe to call this routine more than once */ 1484 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1485 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1486 } 1487 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1488 1489 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1490 gfp_t mem_flags) 1491 { 1492 if (hcd->driver->map_urb_for_dma) 1493 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1494 else 1495 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1496 } 1497 1498 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1499 gfp_t mem_flags) 1500 { 1501 enum dma_data_direction dir; 1502 int ret = 0; 1503 1504 /* Map the URB's buffers for DMA access. 1505 * Lower level HCD code should use *_dma exclusively, 1506 * unless it uses pio or talks to another transport, 1507 * or uses the provided scatter gather list for bulk. 1508 */ 1509 1510 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1511 if (hcd->self.uses_pio_for_control) 1512 return ret; 1513 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1514 if (is_vmalloc_addr(urb->setup_packet)) { 1515 WARN_ONCE(1, "setup packet is not dma capable\n"); 1516 return -EAGAIN; 1517 } else if (object_is_on_stack(urb->setup_packet)) { 1518 WARN_ONCE(1, "setup packet is on stack\n"); 1519 return -EAGAIN; 1520 } 1521 1522 urb->setup_dma = dma_map_single( 1523 hcd->self.sysdev, 1524 urb->setup_packet, 1525 sizeof(struct usb_ctrlrequest), 1526 DMA_TO_DEVICE); 1527 if (dma_mapping_error(hcd->self.sysdev, 1528 urb->setup_dma)) 1529 return -EAGAIN; 1530 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1531 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1532 ret = hcd_alloc_coherent( 1533 urb->dev->bus, mem_flags, 1534 &urb->setup_dma, 1535 (void **)&urb->setup_packet, 1536 sizeof(struct usb_ctrlrequest), 1537 DMA_TO_DEVICE); 1538 if (ret) 1539 return ret; 1540 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1541 } 1542 } 1543 1544 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1545 if (urb->transfer_buffer_length != 0 1546 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1547 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) { 1548 if (urb->num_sgs) { 1549 int n; 1550 1551 /* We don't support sg for isoc transfers ! */ 1552 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1553 WARN_ON(1); 1554 return -EINVAL; 1555 } 1556 1557 n = dma_map_sg( 1558 hcd->self.sysdev, 1559 urb->sg, 1560 urb->num_sgs, 1561 dir); 1562 if (n <= 0) 1563 ret = -EAGAIN; 1564 else 1565 urb->transfer_flags |= URB_DMA_MAP_SG; 1566 urb->num_mapped_sgs = n; 1567 if (n != urb->num_sgs) 1568 urb->transfer_flags |= 1569 URB_DMA_SG_COMBINED; 1570 } else if (urb->sg) { 1571 struct scatterlist *sg = urb->sg; 1572 urb->transfer_dma = dma_map_page( 1573 hcd->self.sysdev, 1574 sg_page(sg), 1575 sg->offset, 1576 urb->transfer_buffer_length, 1577 dir); 1578 if (dma_mapping_error(hcd->self.sysdev, 1579 urb->transfer_dma)) 1580 ret = -EAGAIN; 1581 else 1582 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1583 } else if (is_vmalloc_addr(urb->transfer_buffer)) { 1584 WARN_ONCE(1, "transfer buffer not dma capable\n"); 1585 ret = -EAGAIN; 1586 } else if (object_is_on_stack(urb->transfer_buffer)) { 1587 WARN_ONCE(1, "transfer buffer is on stack\n"); 1588 ret = -EAGAIN; 1589 } else { 1590 urb->transfer_dma = dma_map_single( 1591 hcd->self.sysdev, 1592 urb->transfer_buffer, 1593 urb->transfer_buffer_length, 1594 dir); 1595 if (dma_mapping_error(hcd->self.sysdev, 1596 urb->transfer_dma)) 1597 ret = -EAGAIN; 1598 else 1599 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1600 } 1601 } else if (hcd->driver->flags & HCD_LOCAL_MEM) { 1602 ret = hcd_alloc_coherent( 1603 urb->dev->bus, mem_flags, 1604 &urb->transfer_dma, 1605 &urb->transfer_buffer, 1606 urb->transfer_buffer_length, 1607 dir); 1608 if (ret == 0) 1609 urb->transfer_flags |= URB_MAP_LOCAL; 1610 } 1611 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1612 URB_SETUP_MAP_LOCAL))) 1613 usb_hcd_unmap_urb_for_dma(hcd, urb); 1614 } 1615 return ret; 1616 } 1617 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1618 1619 /*-------------------------------------------------------------------------*/ 1620 1621 /* may be called in any context with a valid urb->dev usecount 1622 * caller surrenders "ownership" of urb 1623 * expects usb_submit_urb() to have sanity checked and conditioned all 1624 * inputs in the urb 1625 */ 1626 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1627 { 1628 int status; 1629 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1630 1631 /* increment urb's reference count as part of giving it to the HCD 1632 * (which will control it). HCD guarantees that it either returns 1633 * an error or calls giveback(), but not both. 1634 */ 1635 usb_get_urb(urb); 1636 atomic_inc(&urb->use_count); 1637 atomic_inc(&urb->dev->urbnum); 1638 usbmon_urb_submit(&hcd->self, urb); 1639 1640 /* NOTE requirements on root-hub callers (usbfs and the hub 1641 * driver, for now): URBs' urb->transfer_buffer must be 1642 * valid and usb_buffer_{sync,unmap}() not be needed, since 1643 * they could clobber root hub response data. Also, control 1644 * URBs must be submitted in process context with interrupts 1645 * enabled. 1646 */ 1647 1648 if (is_root_hub(urb->dev)) { 1649 status = rh_urb_enqueue(hcd, urb); 1650 } else { 1651 status = map_urb_for_dma(hcd, urb, mem_flags); 1652 if (likely(status == 0)) { 1653 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1654 if (unlikely(status)) 1655 unmap_urb_for_dma(hcd, urb); 1656 } 1657 } 1658 1659 if (unlikely(status)) { 1660 usbmon_urb_submit_error(&hcd->self, urb, status); 1661 urb->hcpriv = NULL; 1662 INIT_LIST_HEAD(&urb->urb_list); 1663 atomic_dec(&urb->use_count); 1664 atomic_dec(&urb->dev->urbnum); 1665 if (atomic_read(&urb->reject)) 1666 wake_up(&usb_kill_urb_queue); 1667 usb_put_urb(urb); 1668 } 1669 return status; 1670 } 1671 1672 /*-------------------------------------------------------------------------*/ 1673 1674 /* this makes the hcd giveback() the urb more quickly, by kicking it 1675 * off hardware queues (which may take a while) and returning it as 1676 * soon as practical. we've already set up the urb's return status, 1677 * but we can't know if the callback completed already. 1678 */ 1679 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1680 { 1681 int value; 1682 1683 if (is_root_hub(urb->dev)) 1684 value = usb_rh_urb_dequeue(hcd, urb, status); 1685 else { 1686 1687 /* The only reason an HCD might fail this call is if 1688 * it has not yet fully queued the urb to begin with. 1689 * Such failures should be harmless. */ 1690 value = hcd->driver->urb_dequeue(hcd, urb, status); 1691 } 1692 return value; 1693 } 1694 1695 /* 1696 * called in any context 1697 * 1698 * caller guarantees urb won't be recycled till both unlink() 1699 * and the urb's completion function return 1700 */ 1701 int usb_hcd_unlink_urb (struct urb *urb, int status) 1702 { 1703 struct usb_hcd *hcd; 1704 struct usb_device *udev = urb->dev; 1705 int retval = -EIDRM; 1706 unsigned long flags; 1707 1708 /* Prevent the device and bus from going away while 1709 * the unlink is carried out. If they are already gone 1710 * then urb->use_count must be 0, since disconnected 1711 * devices can't have any active URBs. 1712 */ 1713 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1714 if (atomic_read(&urb->use_count) > 0) { 1715 retval = 0; 1716 usb_get_dev(udev); 1717 } 1718 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1719 if (retval == 0) { 1720 hcd = bus_to_hcd(urb->dev->bus); 1721 retval = unlink1(hcd, urb, status); 1722 if (retval == 0) 1723 retval = -EINPROGRESS; 1724 else if (retval != -EIDRM && retval != -EBUSY) 1725 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1726 urb, retval); 1727 usb_put_dev(udev); 1728 } 1729 return retval; 1730 } 1731 1732 /*-------------------------------------------------------------------------*/ 1733 1734 static void __usb_hcd_giveback_urb(struct urb *urb) 1735 { 1736 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1737 struct usb_anchor *anchor = urb->anchor; 1738 int status = urb->unlinked; 1739 1740 urb->hcpriv = NULL; 1741 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1742 urb->actual_length < urb->transfer_buffer_length && 1743 !status)) 1744 status = -EREMOTEIO; 1745 1746 unmap_urb_for_dma(hcd, urb); 1747 usbmon_urb_complete(&hcd->self, urb, status); 1748 usb_anchor_suspend_wakeups(anchor); 1749 usb_unanchor_urb(urb); 1750 if (likely(status == 0)) 1751 usb_led_activity(USB_LED_EVENT_HOST); 1752 1753 /* pass ownership to the completion handler */ 1754 urb->status = status; 1755 urb->complete(urb); 1756 1757 usb_anchor_resume_wakeups(anchor); 1758 atomic_dec(&urb->use_count); 1759 if (unlikely(atomic_read(&urb->reject))) 1760 wake_up(&usb_kill_urb_queue); 1761 usb_put_urb(urb); 1762 } 1763 1764 static void usb_giveback_urb_bh(unsigned long param) 1765 { 1766 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param; 1767 struct list_head local_list; 1768 1769 spin_lock_irq(&bh->lock); 1770 bh->running = true; 1771 restart: 1772 list_replace_init(&bh->head, &local_list); 1773 spin_unlock_irq(&bh->lock); 1774 1775 while (!list_empty(&local_list)) { 1776 struct urb *urb; 1777 1778 urb = list_entry(local_list.next, struct urb, urb_list); 1779 list_del_init(&urb->urb_list); 1780 bh->completing_ep = urb->ep; 1781 __usb_hcd_giveback_urb(urb); 1782 bh->completing_ep = NULL; 1783 } 1784 1785 /* check if there are new URBs to giveback */ 1786 spin_lock_irq(&bh->lock); 1787 if (!list_empty(&bh->head)) 1788 goto restart; 1789 bh->running = false; 1790 spin_unlock_irq(&bh->lock); 1791 } 1792 1793 /** 1794 * usb_hcd_giveback_urb - return URB from HCD to device driver 1795 * @hcd: host controller returning the URB 1796 * @urb: urb being returned to the USB device driver. 1797 * @status: completion status code for the URB. 1798 * Context: in_interrupt() 1799 * 1800 * This hands the URB from HCD to its USB device driver, using its 1801 * completion function. The HCD has freed all per-urb resources 1802 * (and is done using urb->hcpriv). It also released all HCD locks; 1803 * the device driver won't cause problems if it frees, modifies, 1804 * or resubmits this URB. 1805 * 1806 * If @urb was unlinked, the value of @status will be overridden by 1807 * @urb->unlinked. Erroneous short transfers are detected in case 1808 * the HCD hasn't checked for them. 1809 */ 1810 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1811 { 1812 struct giveback_urb_bh *bh; 1813 bool running, high_prio_bh; 1814 1815 /* pass status to tasklet via unlinked */ 1816 if (likely(!urb->unlinked)) 1817 urb->unlinked = status; 1818 1819 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1820 __usb_hcd_giveback_urb(urb); 1821 return; 1822 } 1823 1824 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) { 1825 bh = &hcd->high_prio_bh; 1826 high_prio_bh = true; 1827 } else { 1828 bh = &hcd->low_prio_bh; 1829 high_prio_bh = false; 1830 } 1831 1832 spin_lock(&bh->lock); 1833 list_add_tail(&urb->urb_list, &bh->head); 1834 running = bh->running; 1835 spin_unlock(&bh->lock); 1836 1837 if (running) 1838 ; 1839 else if (high_prio_bh) 1840 tasklet_hi_schedule(&bh->bh); 1841 else 1842 tasklet_schedule(&bh->bh); 1843 } 1844 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1845 1846 /*-------------------------------------------------------------------------*/ 1847 1848 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1849 * queue to drain completely. The caller must first insure that no more 1850 * URBs can be submitted for this endpoint. 1851 */ 1852 void usb_hcd_flush_endpoint(struct usb_device *udev, 1853 struct usb_host_endpoint *ep) 1854 { 1855 struct usb_hcd *hcd; 1856 struct urb *urb; 1857 1858 if (!ep) 1859 return; 1860 might_sleep(); 1861 hcd = bus_to_hcd(udev->bus); 1862 1863 /* No more submits can occur */ 1864 spin_lock_irq(&hcd_urb_list_lock); 1865 rescan: 1866 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1867 int is_in; 1868 1869 if (urb->unlinked) 1870 continue; 1871 usb_get_urb (urb); 1872 is_in = usb_urb_dir_in(urb); 1873 spin_unlock(&hcd_urb_list_lock); 1874 1875 /* kick hcd */ 1876 unlink1(hcd, urb, -ESHUTDOWN); 1877 dev_dbg (hcd->self.controller, 1878 "shutdown urb %pK ep%d%s%s\n", 1879 urb, usb_endpoint_num(&ep->desc), 1880 is_in ? "in" : "out", 1881 ({ char *s; 1882 1883 switch (usb_endpoint_type(&ep->desc)) { 1884 case USB_ENDPOINT_XFER_CONTROL: 1885 s = ""; break; 1886 case USB_ENDPOINT_XFER_BULK: 1887 s = "-bulk"; break; 1888 case USB_ENDPOINT_XFER_INT: 1889 s = "-intr"; break; 1890 default: 1891 s = "-iso"; break; 1892 }; 1893 s; 1894 })); 1895 usb_put_urb (urb); 1896 1897 /* list contents may have changed */ 1898 spin_lock(&hcd_urb_list_lock); 1899 goto rescan; 1900 } 1901 spin_unlock_irq(&hcd_urb_list_lock); 1902 1903 /* Wait until the endpoint queue is completely empty */ 1904 while (!list_empty (&ep->urb_list)) { 1905 spin_lock_irq(&hcd_urb_list_lock); 1906 1907 /* The list may have changed while we acquired the spinlock */ 1908 urb = NULL; 1909 if (!list_empty (&ep->urb_list)) { 1910 urb = list_entry (ep->urb_list.prev, struct urb, 1911 urb_list); 1912 usb_get_urb (urb); 1913 } 1914 spin_unlock_irq(&hcd_urb_list_lock); 1915 1916 if (urb) { 1917 usb_kill_urb (urb); 1918 usb_put_urb (urb); 1919 } 1920 } 1921 } 1922 1923 /** 1924 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1925 * the bus bandwidth 1926 * @udev: target &usb_device 1927 * @new_config: new configuration to install 1928 * @cur_alt: the current alternate interface setting 1929 * @new_alt: alternate interface setting that is being installed 1930 * 1931 * To change configurations, pass in the new configuration in new_config, 1932 * and pass NULL for cur_alt and new_alt. 1933 * 1934 * To reset a device's configuration (put the device in the ADDRESSED state), 1935 * pass in NULL for new_config, cur_alt, and new_alt. 1936 * 1937 * To change alternate interface settings, pass in NULL for new_config, 1938 * pass in the current alternate interface setting in cur_alt, 1939 * and pass in the new alternate interface setting in new_alt. 1940 * 1941 * Return: An error if the requested bandwidth change exceeds the 1942 * bus bandwidth or host controller internal resources. 1943 */ 1944 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1945 struct usb_host_config *new_config, 1946 struct usb_host_interface *cur_alt, 1947 struct usb_host_interface *new_alt) 1948 { 1949 int num_intfs, i, j; 1950 struct usb_host_interface *alt = NULL; 1951 int ret = 0; 1952 struct usb_hcd *hcd; 1953 struct usb_host_endpoint *ep; 1954 1955 hcd = bus_to_hcd(udev->bus); 1956 if (!hcd->driver->check_bandwidth) 1957 return 0; 1958 1959 /* Configuration is being removed - set configuration 0 */ 1960 if (!new_config && !cur_alt) { 1961 for (i = 1; i < 16; ++i) { 1962 ep = udev->ep_out[i]; 1963 if (ep) 1964 hcd->driver->drop_endpoint(hcd, udev, ep); 1965 ep = udev->ep_in[i]; 1966 if (ep) 1967 hcd->driver->drop_endpoint(hcd, udev, ep); 1968 } 1969 hcd->driver->check_bandwidth(hcd, udev); 1970 return 0; 1971 } 1972 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1973 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1974 * of the bus. There will always be bandwidth for endpoint 0, so it's 1975 * ok to exclude it. 1976 */ 1977 if (new_config) { 1978 num_intfs = new_config->desc.bNumInterfaces; 1979 /* Remove endpoints (except endpoint 0, which is always on the 1980 * schedule) from the old config from the schedule 1981 */ 1982 for (i = 1; i < 16; ++i) { 1983 ep = udev->ep_out[i]; 1984 if (ep) { 1985 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1986 if (ret < 0) 1987 goto reset; 1988 } 1989 ep = udev->ep_in[i]; 1990 if (ep) { 1991 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1992 if (ret < 0) 1993 goto reset; 1994 } 1995 } 1996 for (i = 0; i < num_intfs; ++i) { 1997 struct usb_host_interface *first_alt; 1998 int iface_num; 1999 2000 first_alt = &new_config->intf_cache[i]->altsetting[0]; 2001 iface_num = first_alt->desc.bInterfaceNumber; 2002 /* Set up endpoints for alternate interface setting 0 */ 2003 alt = usb_find_alt_setting(new_config, iface_num, 0); 2004 if (!alt) 2005 /* No alt setting 0? Pick the first setting. */ 2006 alt = first_alt; 2007 2008 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 2009 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 2010 if (ret < 0) 2011 goto reset; 2012 } 2013 } 2014 } 2015 if (cur_alt && new_alt) { 2016 struct usb_interface *iface = usb_ifnum_to_if(udev, 2017 cur_alt->desc.bInterfaceNumber); 2018 2019 if (!iface) 2020 return -EINVAL; 2021 if (iface->resetting_device) { 2022 /* 2023 * The USB core just reset the device, so the xHCI host 2024 * and the device will think alt setting 0 is installed. 2025 * However, the USB core will pass in the alternate 2026 * setting installed before the reset as cur_alt. Dig 2027 * out the alternate setting 0 structure, or the first 2028 * alternate setting if a broken device doesn't have alt 2029 * setting 0. 2030 */ 2031 cur_alt = usb_altnum_to_altsetting(iface, 0); 2032 if (!cur_alt) 2033 cur_alt = &iface->altsetting[0]; 2034 } 2035 2036 /* Drop all the endpoints in the current alt setting */ 2037 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 2038 ret = hcd->driver->drop_endpoint(hcd, udev, 2039 &cur_alt->endpoint[i]); 2040 if (ret < 0) 2041 goto reset; 2042 } 2043 /* Add all the endpoints in the new alt setting */ 2044 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 2045 ret = hcd->driver->add_endpoint(hcd, udev, 2046 &new_alt->endpoint[i]); 2047 if (ret < 0) 2048 goto reset; 2049 } 2050 } 2051 ret = hcd->driver->check_bandwidth(hcd, udev); 2052 reset: 2053 if (ret < 0) 2054 hcd->driver->reset_bandwidth(hcd, udev); 2055 return ret; 2056 } 2057 2058 /* Disables the endpoint: synchronizes with the hcd to make sure all 2059 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 2060 * have been called previously. Use for set_configuration, set_interface, 2061 * driver removal, physical disconnect. 2062 * 2063 * example: a qh stored in ep->hcpriv, holding state related to endpoint 2064 * type, maxpacket size, toggle, halt status, and scheduling. 2065 */ 2066 void usb_hcd_disable_endpoint(struct usb_device *udev, 2067 struct usb_host_endpoint *ep) 2068 { 2069 struct usb_hcd *hcd; 2070 2071 might_sleep(); 2072 hcd = bus_to_hcd(udev->bus); 2073 if (hcd->driver->endpoint_disable) 2074 hcd->driver->endpoint_disable(hcd, ep); 2075 } 2076 2077 /** 2078 * usb_hcd_reset_endpoint - reset host endpoint state 2079 * @udev: USB device. 2080 * @ep: the endpoint to reset. 2081 * 2082 * Resets any host endpoint state such as the toggle bit, sequence 2083 * number and current window. 2084 */ 2085 void usb_hcd_reset_endpoint(struct usb_device *udev, 2086 struct usb_host_endpoint *ep) 2087 { 2088 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2089 2090 if (hcd->driver->endpoint_reset) 2091 hcd->driver->endpoint_reset(hcd, ep); 2092 else { 2093 int epnum = usb_endpoint_num(&ep->desc); 2094 int is_out = usb_endpoint_dir_out(&ep->desc); 2095 int is_control = usb_endpoint_xfer_control(&ep->desc); 2096 2097 usb_settoggle(udev, epnum, is_out, 0); 2098 if (is_control) 2099 usb_settoggle(udev, epnum, !is_out, 0); 2100 } 2101 } 2102 2103 /** 2104 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2105 * @interface: alternate setting that includes all endpoints. 2106 * @eps: array of endpoints that need streams. 2107 * @num_eps: number of endpoints in the array. 2108 * @num_streams: number of streams to allocate. 2109 * @mem_flags: flags hcd should use to allocate memory. 2110 * 2111 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2112 * Drivers may queue multiple transfers to different stream IDs, which may 2113 * complete in a different order than they were queued. 2114 * 2115 * Return: On success, the number of allocated streams. On failure, a negative 2116 * error code. 2117 */ 2118 int usb_alloc_streams(struct usb_interface *interface, 2119 struct usb_host_endpoint **eps, unsigned int num_eps, 2120 unsigned int num_streams, gfp_t mem_flags) 2121 { 2122 struct usb_hcd *hcd; 2123 struct usb_device *dev; 2124 int i, ret; 2125 2126 dev = interface_to_usbdev(interface); 2127 hcd = bus_to_hcd(dev->bus); 2128 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2129 return -EINVAL; 2130 if (dev->speed < USB_SPEED_SUPER) 2131 return -EINVAL; 2132 if (dev->state < USB_STATE_CONFIGURED) 2133 return -ENODEV; 2134 2135 for (i = 0; i < num_eps; i++) { 2136 /* Streams only apply to bulk endpoints. */ 2137 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2138 return -EINVAL; 2139 /* Re-alloc is not allowed */ 2140 if (eps[i]->streams) 2141 return -EINVAL; 2142 } 2143 2144 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2145 num_streams, mem_flags); 2146 if (ret < 0) 2147 return ret; 2148 2149 for (i = 0; i < num_eps; i++) 2150 eps[i]->streams = ret; 2151 2152 return ret; 2153 } 2154 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2155 2156 /** 2157 * usb_free_streams - free bulk endpoint stream IDs. 2158 * @interface: alternate setting that includes all endpoints. 2159 * @eps: array of endpoints to remove streams from. 2160 * @num_eps: number of endpoints in the array. 2161 * @mem_flags: flags hcd should use to allocate memory. 2162 * 2163 * Reverts a group of bulk endpoints back to not using stream IDs. 2164 * Can fail if we are given bad arguments, or HCD is broken. 2165 * 2166 * Return: 0 on success. On failure, a negative error code. 2167 */ 2168 int usb_free_streams(struct usb_interface *interface, 2169 struct usb_host_endpoint **eps, unsigned int num_eps, 2170 gfp_t mem_flags) 2171 { 2172 struct usb_hcd *hcd; 2173 struct usb_device *dev; 2174 int i, ret; 2175 2176 dev = interface_to_usbdev(interface); 2177 hcd = bus_to_hcd(dev->bus); 2178 if (dev->speed < USB_SPEED_SUPER) 2179 return -EINVAL; 2180 2181 /* Double-free is not allowed */ 2182 for (i = 0; i < num_eps; i++) 2183 if (!eps[i] || !eps[i]->streams) 2184 return -EINVAL; 2185 2186 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2187 if (ret < 0) 2188 return ret; 2189 2190 for (i = 0; i < num_eps; i++) 2191 eps[i]->streams = 0; 2192 2193 return ret; 2194 } 2195 EXPORT_SYMBOL_GPL(usb_free_streams); 2196 2197 /* Protect against drivers that try to unlink URBs after the device 2198 * is gone, by waiting until all unlinks for @udev are finished. 2199 * Since we don't currently track URBs by device, simply wait until 2200 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2201 */ 2202 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2203 { 2204 spin_lock_irq(&hcd_urb_unlink_lock); 2205 spin_unlock_irq(&hcd_urb_unlink_lock); 2206 } 2207 2208 /*-------------------------------------------------------------------------*/ 2209 2210 /* called in any context */ 2211 int usb_hcd_get_frame_number (struct usb_device *udev) 2212 { 2213 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2214 2215 if (!HCD_RH_RUNNING(hcd)) 2216 return -ESHUTDOWN; 2217 return hcd->driver->get_frame_number (hcd); 2218 } 2219 2220 /*-------------------------------------------------------------------------*/ 2221 2222 #ifdef CONFIG_PM 2223 2224 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2225 { 2226 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2227 int status; 2228 int old_state = hcd->state; 2229 2230 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2231 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2232 rhdev->do_remote_wakeup); 2233 if (HCD_DEAD(hcd)) { 2234 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2235 return 0; 2236 } 2237 2238 if (!hcd->driver->bus_suspend) { 2239 status = -ENOENT; 2240 } else { 2241 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2242 hcd->state = HC_STATE_QUIESCING; 2243 status = hcd->driver->bus_suspend(hcd); 2244 } 2245 if (status == 0) { 2246 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2247 hcd->state = HC_STATE_SUSPENDED; 2248 2249 if (!PMSG_IS_AUTO(msg)) 2250 usb_phy_roothub_suspend(hcd->self.sysdev, 2251 hcd->phy_roothub); 2252 2253 /* Did we race with a root-hub wakeup event? */ 2254 if (rhdev->do_remote_wakeup) { 2255 char buffer[6]; 2256 2257 status = hcd->driver->hub_status_data(hcd, buffer); 2258 if (status != 0) { 2259 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2260 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2261 status = -EBUSY; 2262 } 2263 } 2264 } else { 2265 spin_lock_irq(&hcd_root_hub_lock); 2266 if (!HCD_DEAD(hcd)) { 2267 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2268 hcd->state = old_state; 2269 } 2270 spin_unlock_irq(&hcd_root_hub_lock); 2271 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2272 "suspend", status); 2273 } 2274 return status; 2275 } 2276 2277 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2278 { 2279 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2280 int status; 2281 int old_state = hcd->state; 2282 2283 dev_dbg(&rhdev->dev, "usb %sresume\n", 2284 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2285 if (HCD_DEAD(hcd)) { 2286 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2287 return 0; 2288 } 2289 2290 if (!PMSG_IS_AUTO(msg)) { 2291 status = usb_phy_roothub_resume(hcd->self.sysdev, 2292 hcd->phy_roothub); 2293 if (status) 2294 return status; 2295 } 2296 2297 if (!hcd->driver->bus_resume) 2298 return -ENOENT; 2299 if (HCD_RH_RUNNING(hcd)) 2300 return 0; 2301 2302 hcd->state = HC_STATE_RESUMING; 2303 status = hcd->driver->bus_resume(hcd); 2304 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2305 if (status == 0) { 2306 struct usb_device *udev; 2307 int port1; 2308 2309 spin_lock_irq(&hcd_root_hub_lock); 2310 if (!HCD_DEAD(hcd)) { 2311 usb_set_device_state(rhdev, rhdev->actconfig 2312 ? USB_STATE_CONFIGURED 2313 : USB_STATE_ADDRESS); 2314 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2315 hcd->state = HC_STATE_RUNNING; 2316 } 2317 spin_unlock_irq(&hcd_root_hub_lock); 2318 2319 /* 2320 * Check whether any of the enabled ports on the root hub are 2321 * unsuspended. If they are then a TRSMRCY delay is needed 2322 * (this is what the USB-2 spec calls a "global resume"). 2323 * Otherwise we can skip the delay. 2324 */ 2325 usb_hub_for_each_child(rhdev, port1, udev) { 2326 if (udev->state != USB_STATE_NOTATTACHED && 2327 !udev->port_is_suspended) { 2328 usleep_range(10000, 11000); /* TRSMRCY */ 2329 break; 2330 } 2331 } 2332 } else { 2333 hcd->state = old_state; 2334 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2335 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2336 "resume", status); 2337 if (status != -ESHUTDOWN) 2338 usb_hc_died(hcd); 2339 } 2340 return status; 2341 } 2342 2343 /* Workqueue routine for root-hub remote wakeup */ 2344 static void hcd_resume_work(struct work_struct *work) 2345 { 2346 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2347 struct usb_device *udev = hcd->self.root_hub; 2348 2349 usb_remote_wakeup(udev); 2350 } 2351 2352 /** 2353 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2354 * @hcd: host controller for this root hub 2355 * 2356 * The USB host controller calls this function when its root hub is 2357 * suspended (with the remote wakeup feature enabled) and a remote 2358 * wakeup request is received. The routine submits a workqueue request 2359 * to resume the root hub (that is, manage its downstream ports again). 2360 */ 2361 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2362 { 2363 unsigned long flags; 2364 2365 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2366 if (hcd->rh_registered) { 2367 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2368 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2369 queue_work(pm_wq, &hcd->wakeup_work); 2370 } 2371 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2372 } 2373 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2374 2375 #endif /* CONFIG_PM */ 2376 2377 /*-------------------------------------------------------------------------*/ 2378 2379 #ifdef CONFIG_USB_OTG 2380 2381 /** 2382 * usb_bus_start_enum - start immediate enumeration (for OTG) 2383 * @bus: the bus (must use hcd framework) 2384 * @port_num: 1-based number of port; usually bus->otg_port 2385 * Context: in_interrupt() 2386 * 2387 * Starts enumeration, with an immediate reset followed later by 2388 * hub_wq identifying and possibly configuring the device. 2389 * This is needed by OTG controller drivers, where it helps meet 2390 * HNP protocol timing requirements for starting a port reset. 2391 * 2392 * Return: 0 if successful. 2393 */ 2394 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2395 { 2396 struct usb_hcd *hcd; 2397 int status = -EOPNOTSUPP; 2398 2399 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2400 * boards with root hubs hooked up to internal devices (instead of 2401 * just the OTG port) may need more attention to resetting... 2402 */ 2403 hcd = bus_to_hcd(bus); 2404 if (port_num && hcd->driver->start_port_reset) 2405 status = hcd->driver->start_port_reset(hcd, port_num); 2406 2407 /* allocate hub_wq shortly after (first) root port reset finishes; 2408 * it may issue others, until at least 50 msecs have passed. 2409 */ 2410 if (status == 0) 2411 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2412 return status; 2413 } 2414 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2415 2416 #endif 2417 2418 /*-------------------------------------------------------------------------*/ 2419 2420 /** 2421 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2422 * @irq: the IRQ being raised 2423 * @__hcd: pointer to the HCD whose IRQ is being signaled 2424 * 2425 * If the controller isn't HALTed, calls the driver's irq handler. 2426 * Checks whether the controller is now dead. 2427 * 2428 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2429 */ 2430 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2431 { 2432 struct usb_hcd *hcd = __hcd; 2433 irqreturn_t rc; 2434 2435 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2436 rc = IRQ_NONE; 2437 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2438 rc = IRQ_NONE; 2439 else 2440 rc = IRQ_HANDLED; 2441 2442 return rc; 2443 } 2444 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2445 2446 /*-------------------------------------------------------------------------*/ 2447 2448 /** 2449 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2450 * @hcd: pointer to the HCD representing the controller 2451 * 2452 * This is called by bus glue to report a USB host controller that died 2453 * while operations may still have been pending. It's called automatically 2454 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2455 * 2456 * Only call this function with the primary HCD. 2457 */ 2458 void usb_hc_died (struct usb_hcd *hcd) 2459 { 2460 unsigned long flags; 2461 2462 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2463 2464 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2465 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2466 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2467 if (hcd->rh_registered) { 2468 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2469 2470 /* make hub_wq clean up old urbs and devices */ 2471 usb_set_device_state (hcd->self.root_hub, 2472 USB_STATE_NOTATTACHED); 2473 usb_kick_hub_wq(hcd->self.root_hub); 2474 } 2475 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2476 hcd = hcd->shared_hcd; 2477 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2478 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2479 if (hcd->rh_registered) { 2480 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2481 2482 /* make hub_wq clean up old urbs and devices */ 2483 usb_set_device_state(hcd->self.root_hub, 2484 USB_STATE_NOTATTACHED); 2485 usb_kick_hub_wq(hcd->self.root_hub); 2486 } 2487 } 2488 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2489 /* Make sure that the other roothub is also deallocated. */ 2490 } 2491 EXPORT_SYMBOL_GPL (usb_hc_died); 2492 2493 /*-------------------------------------------------------------------------*/ 2494 2495 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2496 { 2497 2498 spin_lock_init(&bh->lock); 2499 INIT_LIST_HEAD(&bh->head); 2500 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh); 2501 } 2502 2503 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2504 struct device *sysdev, struct device *dev, const char *bus_name, 2505 struct usb_hcd *primary_hcd) 2506 { 2507 struct usb_hcd *hcd; 2508 2509 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2510 if (!hcd) 2511 return NULL; 2512 if (primary_hcd == NULL) { 2513 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2514 GFP_KERNEL); 2515 if (!hcd->address0_mutex) { 2516 kfree(hcd); 2517 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2518 return NULL; 2519 } 2520 mutex_init(hcd->address0_mutex); 2521 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2522 GFP_KERNEL); 2523 if (!hcd->bandwidth_mutex) { 2524 kfree(hcd->address0_mutex); 2525 kfree(hcd); 2526 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2527 return NULL; 2528 } 2529 mutex_init(hcd->bandwidth_mutex); 2530 dev_set_drvdata(dev, hcd); 2531 } else { 2532 mutex_lock(&usb_port_peer_mutex); 2533 hcd->address0_mutex = primary_hcd->address0_mutex; 2534 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2535 hcd->primary_hcd = primary_hcd; 2536 primary_hcd->primary_hcd = primary_hcd; 2537 hcd->shared_hcd = primary_hcd; 2538 primary_hcd->shared_hcd = hcd; 2539 mutex_unlock(&usb_port_peer_mutex); 2540 } 2541 2542 kref_init(&hcd->kref); 2543 2544 usb_bus_init(&hcd->self); 2545 hcd->self.controller = dev; 2546 hcd->self.sysdev = sysdev; 2547 hcd->self.bus_name = bus_name; 2548 hcd->self.uses_dma = (sysdev->dma_mask != NULL); 2549 2550 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2551 #ifdef CONFIG_PM 2552 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2553 #endif 2554 2555 hcd->driver = driver; 2556 hcd->speed = driver->flags & HCD_MASK; 2557 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2558 "USB Host Controller"; 2559 return hcd; 2560 } 2561 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2562 2563 /** 2564 * usb_create_shared_hcd - create and initialize an HCD structure 2565 * @driver: HC driver that will use this hcd 2566 * @dev: device for this HC, stored in hcd->self.controller 2567 * @bus_name: value to store in hcd->self.bus_name 2568 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2569 * PCI device. Only allocate certain resources for the primary HCD 2570 * Context: !in_interrupt() 2571 * 2572 * Allocate a struct usb_hcd, with extra space at the end for the 2573 * HC driver's private data. Initialize the generic members of the 2574 * hcd structure. 2575 * 2576 * Return: On success, a pointer to the created and initialized HCD structure. 2577 * On failure (e.g. if memory is unavailable), %NULL. 2578 */ 2579 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2580 struct device *dev, const char *bus_name, 2581 struct usb_hcd *primary_hcd) 2582 { 2583 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2584 } 2585 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2586 2587 /** 2588 * usb_create_hcd - create and initialize an HCD structure 2589 * @driver: HC driver that will use this hcd 2590 * @dev: device for this HC, stored in hcd->self.controller 2591 * @bus_name: value to store in hcd->self.bus_name 2592 * Context: !in_interrupt() 2593 * 2594 * Allocate a struct usb_hcd, with extra space at the end for the 2595 * HC driver's private data. Initialize the generic members of the 2596 * hcd structure. 2597 * 2598 * Return: On success, a pointer to the created and initialized HCD 2599 * structure. On failure (e.g. if memory is unavailable), %NULL. 2600 */ 2601 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2602 struct device *dev, const char *bus_name) 2603 { 2604 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2605 } 2606 EXPORT_SYMBOL_GPL(usb_create_hcd); 2607 2608 /* 2609 * Roothubs that share one PCI device must also share the bandwidth mutex. 2610 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2611 * deallocated. 2612 * 2613 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2614 * freed. When hcd_release() is called for either hcd in a peer set, 2615 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2616 */ 2617 static void hcd_release(struct kref *kref) 2618 { 2619 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2620 2621 mutex_lock(&usb_port_peer_mutex); 2622 if (hcd->shared_hcd) { 2623 struct usb_hcd *peer = hcd->shared_hcd; 2624 2625 peer->shared_hcd = NULL; 2626 peer->primary_hcd = NULL; 2627 } else { 2628 kfree(hcd->address0_mutex); 2629 kfree(hcd->bandwidth_mutex); 2630 } 2631 mutex_unlock(&usb_port_peer_mutex); 2632 kfree(hcd); 2633 } 2634 2635 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2636 { 2637 if (hcd) 2638 kref_get (&hcd->kref); 2639 return hcd; 2640 } 2641 EXPORT_SYMBOL_GPL(usb_get_hcd); 2642 2643 void usb_put_hcd (struct usb_hcd *hcd) 2644 { 2645 if (hcd) 2646 kref_put (&hcd->kref, hcd_release); 2647 } 2648 EXPORT_SYMBOL_GPL(usb_put_hcd); 2649 2650 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2651 { 2652 if (!hcd->primary_hcd) 2653 return 1; 2654 return hcd == hcd->primary_hcd; 2655 } 2656 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2657 2658 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2659 { 2660 if (!hcd->driver->find_raw_port_number) 2661 return port1; 2662 2663 return hcd->driver->find_raw_port_number(hcd, port1); 2664 } 2665 2666 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2667 unsigned int irqnum, unsigned long irqflags) 2668 { 2669 int retval; 2670 2671 if (hcd->driver->irq) { 2672 2673 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2674 hcd->driver->description, hcd->self.busnum); 2675 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2676 hcd->irq_descr, hcd); 2677 if (retval != 0) { 2678 dev_err(hcd->self.controller, 2679 "request interrupt %d failed\n", 2680 irqnum); 2681 return retval; 2682 } 2683 hcd->irq = irqnum; 2684 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2685 (hcd->driver->flags & HCD_MEMORY) ? 2686 "io mem" : "io base", 2687 (unsigned long long)hcd->rsrc_start); 2688 } else { 2689 hcd->irq = 0; 2690 if (hcd->rsrc_start) 2691 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2692 (hcd->driver->flags & HCD_MEMORY) ? 2693 "io mem" : "io base", 2694 (unsigned long long)hcd->rsrc_start); 2695 } 2696 return 0; 2697 } 2698 2699 /* 2700 * Before we free this root hub, flush in-flight peering attempts 2701 * and disable peer lookups 2702 */ 2703 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2704 { 2705 struct usb_device *rhdev; 2706 2707 mutex_lock(&usb_port_peer_mutex); 2708 rhdev = hcd->self.root_hub; 2709 hcd->self.root_hub = NULL; 2710 mutex_unlock(&usb_port_peer_mutex); 2711 usb_put_dev(rhdev); 2712 } 2713 2714 /** 2715 * usb_add_hcd - finish generic HCD structure initialization and register 2716 * @hcd: the usb_hcd structure to initialize 2717 * @irqnum: Interrupt line to allocate 2718 * @irqflags: Interrupt type flags 2719 * 2720 * Finish the remaining parts of generic HCD initialization: allocate the 2721 * buffers of consistent memory, register the bus, request the IRQ line, 2722 * and call the driver's reset() and start() routines. 2723 */ 2724 int usb_add_hcd(struct usb_hcd *hcd, 2725 unsigned int irqnum, unsigned long irqflags) 2726 { 2727 int retval; 2728 struct usb_device *rhdev; 2729 2730 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2731 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2732 if (IS_ERR(hcd->phy_roothub)) 2733 return PTR_ERR(hcd->phy_roothub); 2734 2735 retval = usb_phy_roothub_init(hcd->phy_roothub); 2736 if (retval) 2737 return retval; 2738 2739 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2740 if (retval) 2741 goto err_usb_phy_roothub_power_on; 2742 } 2743 2744 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2745 2746 /* Keep old behaviour if authorized_default is not in [0, 1]. */ 2747 if (authorized_default < 0 || authorized_default > 1) { 2748 if (hcd->wireless) 2749 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2750 else 2751 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2752 } else { 2753 if (authorized_default) 2754 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2755 else 2756 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags); 2757 } 2758 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2759 2760 /* per default all interfaces are authorized */ 2761 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2762 2763 /* HC is in reset state, but accessible. Now do the one-time init, 2764 * bottom up so that hcds can customize the root hubs before hub_wq 2765 * starts talking to them. (Note, bus id is assigned early too.) 2766 */ 2767 retval = hcd_buffer_create(hcd); 2768 if (retval != 0) { 2769 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2770 goto err_create_buf; 2771 } 2772 2773 retval = usb_register_bus(&hcd->self); 2774 if (retval < 0) 2775 goto err_register_bus; 2776 2777 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2778 if (rhdev == NULL) { 2779 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2780 retval = -ENOMEM; 2781 goto err_allocate_root_hub; 2782 } 2783 mutex_lock(&usb_port_peer_mutex); 2784 hcd->self.root_hub = rhdev; 2785 mutex_unlock(&usb_port_peer_mutex); 2786 2787 rhdev->rx_lanes = 1; 2788 rhdev->tx_lanes = 1; 2789 2790 switch (hcd->speed) { 2791 case HCD_USB11: 2792 rhdev->speed = USB_SPEED_FULL; 2793 break; 2794 case HCD_USB2: 2795 rhdev->speed = USB_SPEED_HIGH; 2796 break; 2797 case HCD_USB25: 2798 rhdev->speed = USB_SPEED_WIRELESS; 2799 break; 2800 case HCD_USB3: 2801 rhdev->speed = USB_SPEED_SUPER; 2802 break; 2803 case HCD_USB32: 2804 rhdev->rx_lanes = 2; 2805 rhdev->tx_lanes = 2; 2806 /* fall through */ 2807 case HCD_USB31: 2808 rhdev->speed = USB_SPEED_SUPER_PLUS; 2809 break; 2810 default: 2811 retval = -EINVAL; 2812 goto err_set_rh_speed; 2813 } 2814 2815 /* wakeup flag init defaults to "everything works" for root hubs, 2816 * but drivers can override it in reset() if needed, along with 2817 * recording the overall controller's system wakeup capability. 2818 */ 2819 device_set_wakeup_capable(&rhdev->dev, 1); 2820 2821 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2822 * registered. But since the controller can die at any time, 2823 * let's initialize the flag before touching the hardware. 2824 */ 2825 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2826 2827 /* "reset" is misnamed; its role is now one-time init. the controller 2828 * should already have been reset (and boot firmware kicked off etc). 2829 */ 2830 if (hcd->driver->reset) { 2831 retval = hcd->driver->reset(hcd); 2832 if (retval < 0) { 2833 dev_err(hcd->self.controller, "can't setup: %d\n", 2834 retval); 2835 goto err_hcd_driver_setup; 2836 } 2837 } 2838 hcd->rh_pollable = 1; 2839 2840 /* NOTE: root hub and controller capabilities may not be the same */ 2841 if (device_can_wakeup(hcd->self.controller) 2842 && device_can_wakeup(&hcd->self.root_hub->dev)) 2843 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2844 2845 /* initialize tasklets */ 2846 init_giveback_urb_bh(&hcd->high_prio_bh); 2847 init_giveback_urb_bh(&hcd->low_prio_bh); 2848 2849 /* enable irqs just before we start the controller, 2850 * if the BIOS provides legacy PCI irqs. 2851 */ 2852 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2853 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2854 if (retval) 2855 goto err_request_irq; 2856 } 2857 2858 hcd->state = HC_STATE_RUNNING; 2859 retval = hcd->driver->start(hcd); 2860 if (retval < 0) { 2861 dev_err(hcd->self.controller, "startup error %d\n", retval); 2862 goto err_hcd_driver_start; 2863 } 2864 2865 /* starting here, usbcore will pay attention to this root hub */ 2866 retval = register_root_hub(hcd); 2867 if (retval != 0) 2868 goto err_register_root_hub; 2869 2870 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2871 if (retval < 0) { 2872 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n", 2873 retval); 2874 goto error_create_attr_group; 2875 } 2876 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 2877 usb_hcd_poll_rh_status(hcd); 2878 2879 return retval; 2880 2881 error_create_attr_group: 2882 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2883 if (HC_IS_RUNNING(hcd->state)) 2884 hcd->state = HC_STATE_QUIESCING; 2885 spin_lock_irq(&hcd_root_hub_lock); 2886 hcd->rh_registered = 0; 2887 spin_unlock_irq(&hcd_root_hub_lock); 2888 2889 #ifdef CONFIG_PM 2890 cancel_work_sync(&hcd->wakeup_work); 2891 #endif 2892 mutex_lock(&usb_bus_idr_lock); 2893 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2894 mutex_unlock(&usb_bus_idr_lock); 2895 err_register_root_hub: 2896 hcd->rh_pollable = 0; 2897 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2898 del_timer_sync(&hcd->rh_timer); 2899 hcd->driver->stop(hcd); 2900 hcd->state = HC_STATE_HALT; 2901 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2902 del_timer_sync(&hcd->rh_timer); 2903 err_hcd_driver_start: 2904 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 2905 free_irq(irqnum, hcd); 2906 err_request_irq: 2907 err_hcd_driver_setup: 2908 err_set_rh_speed: 2909 usb_put_invalidate_rhdev(hcd); 2910 err_allocate_root_hub: 2911 usb_deregister_bus(&hcd->self); 2912 err_register_bus: 2913 hcd_buffer_destroy(hcd); 2914 err_create_buf: 2915 usb_phy_roothub_power_off(hcd->phy_roothub); 2916 err_usb_phy_roothub_power_on: 2917 usb_phy_roothub_exit(hcd->phy_roothub); 2918 2919 return retval; 2920 } 2921 EXPORT_SYMBOL_GPL(usb_add_hcd); 2922 2923 /** 2924 * usb_remove_hcd - shutdown processing for generic HCDs 2925 * @hcd: the usb_hcd structure to remove 2926 * Context: !in_interrupt() 2927 * 2928 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 2929 * invoking the HCD's stop() method. 2930 */ 2931 void usb_remove_hcd(struct usb_hcd *hcd) 2932 { 2933 struct usb_device *rhdev = hcd->self.root_hub; 2934 2935 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 2936 2937 usb_get_dev(rhdev); 2938 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group); 2939 2940 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2941 if (HC_IS_RUNNING (hcd->state)) 2942 hcd->state = HC_STATE_QUIESCING; 2943 2944 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 2945 spin_lock_irq (&hcd_root_hub_lock); 2946 hcd->rh_registered = 0; 2947 spin_unlock_irq (&hcd_root_hub_lock); 2948 2949 #ifdef CONFIG_PM 2950 cancel_work_sync(&hcd->wakeup_work); 2951 #endif 2952 2953 mutex_lock(&usb_bus_idr_lock); 2954 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 2955 mutex_unlock(&usb_bus_idr_lock); 2956 2957 /* 2958 * tasklet_kill() isn't needed here because: 2959 * - driver's disconnect() called from usb_disconnect() should 2960 * make sure its URBs are completed during the disconnect() 2961 * callback 2962 * 2963 * - it is too late to run complete() here since driver may have 2964 * been removed already now 2965 */ 2966 2967 /* Prevent any more root-hub status calls from the timer. 2968 * The HCD might still restart the timer (if a port status change 2969 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 2970 * the hub_status_data() callback. 2971 */ 2972 hcd->rh_pollable = 0; 2973 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2974 del_timer_sync(&hcd->rh_timer); 2975 2976 hcd->driver->stop(hcd); 2977 hcd->state = HC_STATE_HALT; 2978 2979 /* In case the HCD restarted the timer, stop it again. */ 2980 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2981 del_timer_sync(&hcd->rh_timer); 2982 2983 if (usb_hcd_is_primary_hcd(hcd)) { 2984 if (hcd->irq > 0) 2985 free_irq(hcd->irq, hcd); 2986 } 2987 2988 usb_deregister_bus(&hcd->self); 2989 hcd_buffer_destroy(hcd); 2990 2991 usb_phy_roothub_power_off(hcd->phy_roothub); 2992 usb_phy_roothub_exit(hcd->phy_roothub); 2993 2994 usb_put_invalidate_rhdev(hcd); 2995 hcd->flags = 0; 2996 } 2997 EXPORT_SYMBOL_GPL(usb_remove_hcd); 2998 2999 void 3000 usb_hcd_platform_shutdown(struct platform_device *dev) 3001 { 3002 struct usb_hcd *hcd = platform_get_drvdata(dev); 3003 3004 if (hcd->driver->shutdown) 3005 hcd->driver->shutdown(hcd); 3006 } 3007 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3008 3009 /*-------------------------------------------------------------------------*/ 3010 3011 #if IS_ENABLED(CONFIG_USB_MON) 3012 3013 const struct usb_mon_operations *mon_ops; 3014 3015 /* 3016 * The registration is unlocked. 3017 * We do it this way because we do not want to lock in hot paths. 3018 * 3019 * Notice that the code is minimally error-proof. Because usbmon needs 3020 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3021 */ 3022 3023 int usb_mon_register(const struct usb_mon_operations *ops) 3024 { 3025 3026 if (mon_ops) 3027 return -EBUSY; 3028 3029 mon_ops = ops; 3030 mb(); 3031 return 0; 3032 } 3033 EXPORT_SYMBOL_GPL (usb_mon_register); 3034 3035 void usb_mon_deregister (void) 3036 { 3037 3038 if (mon_ops == NULL) { 3039 printk(KERN_ERR "USB: monitor was not registered\n"); 3040 return; 3041 } 3042 mon_ops = NULL; 3043 mb(); 3044 } 3045 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3046 3047 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3048