xref: /openbmc/linux/drivers/usb/core/hcd.c (revision 078073a3)
1 /*
2  * (C) Copyright Linus Torvalds 1999
3  * (C) Copyright Johannes Erdfelt 1999-2001
4  * (C) Copyright Andreas Gal 1999
5  * (C) Copyright Gregory P. Smith 1999
6  * (C) Copyright Deti Fliegl 1999
7  * (C) Copyright Randy Dunlap 2000
8  * (C) Copyright David Brownell 2000-2002
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the
12  * Free Software Foundation; either version 2 of the License, or (at your
13  * option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18  * for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41 
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44 
45 #include "usb.h"
46 
47 
48 /*-------------------------------------------------------------------------*/
49 
50 /*
51  * USB Host Controller Driver framework
52  *
53  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54  * HCD-specific behaviors/bugs.
55  *
56  * This does error checks, tracks devices and urbs, and delegates to a
57  * "hc_driver" only for code (and data) that really needs to know about
58  * hardware differences.  That includes root hub registers, i/o queues,
59  * and so on ... but as little else as possible.
60  *
61  * Shared code includes most of the "root hub" code (these are emulated,
62  * though each HC's hardware works differently) and PCI glue, plus request
63  * tracking overhead.  The HCD code should only block on spinlocks or on
64  * hardware handshaking; blocking on software events (such as other kernel
65  * threads releasing resources, or completing actions) is all generic.
66  *
67  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69  * only by the hub driver ... and that neither should be seen or used by
70  * usb client device drivers.
71  *
72  * Contributors of ideas or unattributed patches include: David Brownell,
73  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74  *
75  * HISTORY:
76  * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
77  *		associated cleanup.  "usb_hcd" still != "usb_bus".
78  * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
79  */
80 
81 /*-------------------------------------------------------------------------*/
82 
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86 
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90 
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS		64
93 struct usb_busmap {
94 	unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97 
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101 
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104 
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107 
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110 
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113 
114 static inline int is_root_hub(struct usb_device *udev)
115 {
116 	return (udev->parent == NULL);
117 }
118 
119 /*-------------------------------------------------------------------------*/
120 
121 /*
122  * Sharable chunks of root hub code.
123  */
124 
125 /*-------------------------------------------------------------------------*/
126 
127 #define KERNEL_REL	((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER	((LINUX_VERSION_CODE >> 8) & 0x0ff)
129 
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 	0x12,       /*  __u8  bLength; */
133 	0x01,       /*  __u8  bDescriptorType; Device */
134 	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
135 
136 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
137 	0x00,	    /*  __u8  bDeviceSubClass; */
138 	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
139 	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
140 
141 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
142 	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
143 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
144 
145 	0x03,       /*  __u8  iManufacturer; */
146 	0x02,       /*  __u8  iProduct; */
147 	0x01,       /*  __u8  iSerialNumber; */
148 	0x01        /*  __u8  bNumConfigurations; */
149 };
150 
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 	0x12,       /*  __u8  bLength; */
154 	0x01,       /*  __u8  bDescriptorType; Device */
155 	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
156 
157 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
158 	0x00,	    /*  __u8  bDeviceSubClass; */
159 	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
160 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
161 
162 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
163 	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
164 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
165 
166 	0x03,       /*  __u8  iManufacturer; */
167 	0x02,       /*  __u8  iProduct; */
168 	0x01,       /*  __u8  iSerialNumber; */
169 	0x01        /*  __u8  bNumConfigurations; */
170 };
171 
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173 
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 	0x12,       /*  __u8  bLength; */
177 	0x01,       /*  __u8  bDescriptorType; Device */
178 	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
179 
180 	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
181 	0x00,	    /*  __u8  bDeviceSubClass; */
182 	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
183 	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
184 
185 	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation */
186 	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
187 	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
188 
189 	0x03,       /*  __u8  iManufacturer; */
190 	0x02,       /*  __u8  iProduct; */
191 	0x01,       /*  __u8  iSerialNumber; */
192 	0x01        /*  __u8  bNumConfigurations; */
193 };
194 
195 
196 /*-------------------------------------------------------------------------*/
197 
198 /* Configuration descriptors for our root hubs */
199 
200 static const u8 fs_rh_config_descriptor [] = {
201 
202 	/* one configuration */
203 	0x09,       /*  __u8  bLength; */
204 	0x02,       /*  __u8  bDescriptorType; Configuration */
205 	0x19, 0x00, /*  __le16 wTotalLength; */
206 	0x01,       /*  __u8  bNumInterfaces; (1) */
207 	0x01,       /*  __u8  bConfigurationValue; */
208 	0x00,       /*  __u8  iConfiguration; */
209 	0xc0,       /*  __u8  bmAttributes;
210 				 Bit 7: must be set,
211 				     6: Self-powered,
212 				     5: Remote wakeup,
213 				     4..0: resvd */
214 	0x00,       /*  __u8  MaxPower; */
215 
216 	/* USB 1.1:
217 	 * USB 2.0, single TT organization (mandatory):
218 	 *	one interface, protocol 0
219 	 *
220 	 * USB 2.0, multiple TT organization (optional):
221 	 *	two interfaces, protocols 1 (like single TT)
222 	 *	and 2 (multiple TT mode) ... config is
223 	 *	sometimes settable
224 	 *	NOT IMPLEMENTED
225 	 */
226 
227 	/* one interface */
228 	0x09,       /*  __u8  if_bLength; */
229 	0x04,       /*  __u8  if_bDescriptorType; Interface */
230 	0x00,       /*  __u8  if_bInterfaceNumber; */
231 	0x00,       /*  __u8  if_bAlternateSetting; */
232 	0x01,       /*  __u8  if_bNumEndpoints; */
233 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
234 	0x00,       /*  __u8  if_bInterfaceSubClass; */
235 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
236 	0x00,       /*  __u8  if_iInterface; */
237 
238 	/* one endpoint (status change endpoint) */
239 	0x07,       /*  __u8  ep_bLength; */
240 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
241 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
242  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
243  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246 
247 static const u8 hs_rh_config_descriptor [] = {
248 
249 	/* one configuration */
250 	0x09,       /*  __u8  bLength; */
251 	0x02,       /*  __u8  bDescriptorType; Configuration */
252 	0x19, 0x00, /*  __le16 wTotalLength; */
253 	0x01,       /*  __u8  bNumInterfaces; (1) */
254 	0x01,       /*  __u8  bConfigurationValue; */
255 	0x00,       /*  __u8  iConfiguration; */
256 	0xc0,       /*  __u8  bmAttributes;
257 				 Bit 7: must be set,
258 				     6: Self-powered,
259 				     5: Remote wakeup,
260 				     4..0: resvd */
261 	0x00,       /*  __u8  MaxPower; */
262 
263 	/* USB 1.1:
264 	 * USB 2.0, single TT organization (mandatory):
265 	 *	one interface, protocol 0
266 	 *
267 	 * USB 2.0, multiple TT organization (optional):
268 	 *	two interfaces, protocols 1 (like single TT)
269 	 *	and 2 (multiple TT mode) ... config is
270 	 *	sometimes settable
271 	 *	NOT IMPLEMENTED
272 	 */
273 
274 	/* one interface */
275 	0x09,       /*  __u8  if_bLength; */
276 	0x04,       /*  __u8  if_bDescriptorType; Interface */
277 	0x00,       /*  __u8  if_bInterfaceNumber; */
278 	0x00,       /*  __u8  if_bAlternateSetting; */
279 	0x01,       /*  __u8  if_bNumEndpoints; */
280 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
281 	0x00,       /*  __u8  if_bInterfaceSubClass; */
282 	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
283 	0x00,       /*  __u8  if_iInterface; */
284 
285 	/* one endpoint (status change endpoint) */
286 	0x07,       /*  __u8  ep_bLength; */
287 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
288 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
289  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
290 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 		     * see hub.c:hub_configure() for details. */
292 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295 
296 static const u8 ss_rh_config_descriptor[] = {
297 	/* one configuration */
298 	0x09,       /*  __u8  bLength; */
299 	0x02,       /*  __u8  bDescriptorType; Configuration */
300 	0x1f, 0x00, /*  __le16 wTotalLength; */
301 	0x01,       /*  __u8  bNumInterfaces; (1) */
302 	0x01,       /*  __u8  bConfigurationValue; */
303 	0x00,       /*  __u8  iConfiguration; */
304 	0xc0,       /*  __u8  bmAttributes;
305 				 Bit 7: must be set,
306 				     6: Self-powered,
307 				     5: Remote wakeup,
308 				     4..0: resvd */
309 	0x00,       /*  __u8  MaxPower; */
310 
311 	/* one interface */
312 	0x09,       /*  __u8  if_bLength; */
313 	0x04,       /*  __u8  if_bDescriptorType; Interface */
314 	0x00,       /*  __u8  if_bInterfaceNumber; */
315 	0x00,       /*  __u8  if_bAlternateSetting; */
316 	0x01,       /*  __u8  if_bNumEndpoints; */
317 	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
318 	0x00,       /*  __u8  if_bInterfaceSubClass; */
319 	0x00,       /*  __u8  if_bInterfaceProtocol; */
320 	0x00,       /*  __u8  if_iInterface; */
321 
322 	/* one endpoint (status change endpoint) */
323 	0x07,       /*  __u8  ep_bLength; */
324 	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
325 	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
326 	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
327 		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 		     * see hub.c:hub_configure() for details. */
329 	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
331 
332 	/* one SuperSpeed endpoint companion descriptor */
333 	0x06,        /* __u8 ss_bLength */
334 	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
337 	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339 
340 /* authorized_default behaviour:
341  * -1 is authorized for all devices except wireless (old behaviour)
342  * 0 is unauthorized for all devices
343  * 1 is authorized for all devices
344  */
345 static int authorized_default = -1;
346 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
347 MODULE_PARM_DESC(authorized_default,
348 		"Default USB device authorization: 0 is not authorized, 1 is "
349 		"authorized, -1 is authorized except for wireless USB (default, "
350 		"old behaviour");
351 /*-------------------------------------------------------------------------*/
352 
353 /**
354  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
355  * @s: Null-terminated ASCII (actually ISO-8859-1) string
356  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
357  * @len: Length (in bytes; may be odd) of descriptor buffer.
358  *
359  * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
360  * buflen, whichever is less.
361  *
362  * USB String descriptors can contain at most 126 characters; input
363  * strings longer than that are truncated.
364  */
365 static unsigned
366 ascii2desc(char const *s, u8 *buf, unsigned len)
367 {
368 	unsigned n, t = 2 + 2*strlen(s);
369 
370 	if (t > 254)
371 		t = 254;	/* Longest possible UTF string descriptor */
372 	if (len > t)
373 		len = t;
374 
375 	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
376 
377 	n = len;
378 	while (n--) {
379 		*buf++ = t;
380 		if (!n--)
381 			break;
382 		*buf++ = t >> 8;
383 		t = (unsigned char)*s++;
384 	}
385 	return len;
386 }
387 
388 /**
389  * rh_string() - provides string descriptors for root hub
390  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
391  * @hcd: the host controller for this root hub
392  * @data: buffer for output packet
393  * @len: length of the provided buffer
394  *
395  * Produces either a manufacturer, product or serial number string for the
396  * virtual root hub device.
397  * Returns the number of bytes filled in: the length of the descriptor or
398  * of the provided buffer, whichever is less.
399  */
400 static unsigned
401 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
402 {
403 	char buf[100];
404 	char const *s;
405 	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
406 
407 	// language ids
408 	switch (id) {
409 	case 0:
410 		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
411 		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
412 		if (len > 4)
413 			len = 4;
414 		memcpy(data, langids, len);
415 		return len;
416 	case 1:
417 		/* Serial number */
418 		s = hcd->self.bus_name;
419 		break;
420 	case 2:
421 		/* Product name */
422 		s = hcd->product_desc;
423 		break;
424 	case 3:
425 		/* Manufacturer */
426 		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
427 			init_utsname()->release, hcd->driver->description);
428 		s = buf;
429 		break;
430 	default:
431 		/* Can't happen; caller guarantees it */
432 		return 0;
433 	}
434 
435 	return ascii2desc(s, data, len);
436 }
437 
438 
439 /* Root hub control transfers execute synchronously */
440 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
441 {
442 	struct usb_ctrlrequest *cmd;
443  	u16		typeReq, wValue, wIndex, wLength;
444 	u8		*ubuf = urb->transfer_buffer;
445 	u8		tbuf [sizeof (struct usb_hub_descriptor)]
446 		__attribute__((aligned(4)));
447 	const u8	*bufp = tbuf;
448 	unsigned	len = 0;
449 	int		status;
450 	u8		patch_wakeup = 0;
451 	u8		patch_protocol = 0;
452 
453 	might_sleep();
454 
455 	spin_lock_irq(&hcd_root_hub_lock);
456 	status = usb_hcd_link_urb_to_ep(hcd, urb);
457 	spin_unlock_irq(&hcd_root_hub_lock);
458 	if (status)
459 		return status;
460 	urb->hcpriv = hcd;	/* Indicate it's queued */
461 
462 	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
463 	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
464 	wValue   = le16_to_cpu (cmd->wValue);
465 	wIndex   = le16_to_cpu (cmd->wIndex);
466 	wLength  = le16_to_cpu (cmd->wLength);
467 
468 	if (wLength > urb->transfer_buffer_length)
469 		goto error;
470 
471 	urb->actual_length = 0;
472 	switch (typeReq) {
473 
474 	/* DEVICE REQUESTS */
475 
476 	/* The root hub's remote wakeup enable bit is implemented using
477 	 * driver model wakeup flags.  If this system supports wakeup
478 	 * through USB, userspace may change the default "allow wakeup"
479 	 * policy through sysfs or these calls.
480 	 *
481 	 * Most root hubs support wakeup from downstream devices, for
482 	 * runtime power management (disabling USB clocks and reducing
483 	 * VBUS power usage).  However, not all of them do so; silicon,
484 	 * board, and BIOS bugs here are not uncommon, so these can't
485 	 * be treated quite like external hubs.
486 	 *
487 	 * Likewise, not all root hubs will pass wakeup events upstream,
488 	 * to wake up the whole system.  So don't assume root hub and
489 	 * controller capabilities are identical.
490 	 */
491 
492 	case DeviceRequest | USB_REQ_GET_STATUS:
493 		tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
494 					<< USB_DEVICE_REMOTE_WAKEUP)
495 				| (1 << USB_DEVICE_SELF_POWERED);
496 		tbuf [1] = 0;
497 		len = 2;
498 		break;
499 	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
500 		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
501 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
502 		else
503 			goto error;
504 		break;
505 	case DeviceOutRequest | USB_REQ_SET_FEATURE:
506 		if (device_can_wakeup(&hcd->self.root_hub->dev)
507 				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
508 			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
509 		else
510 			goto error;
511 		break;
512 	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
513 		tbuf [0] = 1;
514 		len = 1;
515 			/* FALLTHROUGH */
516 	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
517 		break;
518 	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
519 		switch (wValue & 0xff00) {
520 		case USB_DT_DEVICE << 8:
521 			switch (hcd->speed) {
522 			case HCD_USB3:
523 				bufp = usb3_rh_dev_descriptor;
524 				break;
525 			case HCD_USB2:
526 				bufp = usb2_rh_dev_descriptor;
527 				break;
528 			case HCD_USB11:
529 				bufp = usb11_rh_dev_descriptor;
530 				break;
531 			default:
532 				goto error;
533 			}
534 			len = 18;
535 			if (hcd->has_tt)
536 				patch_protocol = 1;
537 			break;
538 		case USB_DT_CONFIG << 8:
539 			switch (hcd->speed) {
540 			case HCD_USB3:
541 				bufp = ss_rh_config_descriptor;
542 				len = sizeof ss_rh_config_descriptor;
543 				break;
544 			case HCD_USB2:
545 				bufp = hs_rh_config_descriptor;
546 				len = sizeof hs_rh_config_descriptor;
547 				break;
548 			case HCD_USB11:
549 				bufp = fs_rh_config_descriptor;
550 				len = sizeof fs_rh_config_descriptor;
551 				break;
552 			default:
553 				goto error;
554 			}
555 			if (device_can_wakeup(&hcd->self.root_hub->dev))
556 				patch_wakeup = 1;
557 			break;
558 		case USB_DT_STRING << 8:
559 			if ((wValue & 0xff) < 4)
560 				urb->actual_length = rh_string(wValue & 0xff,
561 						hcd, ubuf, wLength);
562 			else /* unsupported IDs --> "protocol stall" */
563 				goto error;
564 			break;
565 		default:
566 			goto error;
567 		}
568 		break;
569 	case DeviceRequest | USB_REQ_GET_INTERFACE:
570 		tbuf [0] = 0;
571 		len = 1;
572 			/* FALLTHROUGH */
573 	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
574 		break;
575 	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
576 		// wValue == urb->dev->devaddr
577 		dev_dbg (hcd->self.controller, "root hub device address %d\n",
578 			wValue);
579 		break;
580 
581 	/* INTERFACE REQUESTS (no defined feature/status flags) */
582 
583 	/* ENDPOINT REQUESTS */
584 
585 	case EndpointRequest | USB_REQ_GET_STATUS:
586 		// ENDPOINT_HALT flag
587 		tbuf [0] = 0;
588 		tbuf [1] = 0;
589 		len = 2;
590 			/* FALLTHROUGH */
591 	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
592 	case EndpointOutRequest | USB_REQ_SET_FEATURE:
593 		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
594 		break;
595 
596 	/* CLASS REQUESTS (and errors) */
597 
598 	default:
599 		/* non-generic request */
600 		switch (typeReq) {
601 		case GetHubStatus:
602 		case GetPortStatus:
603 			len = 4;
604 			break;
605 		case GetHubDescriptor:
606 			len = sizeof (struct usb_hub_descriptor);
607 			break;
608 		}
609 		status = hcd->driver->hub_control (hcd,
610 			typeReq, wValue, wIndex,
611 			tbuf, wLength);
612 		break;
613 error:
614 		/* "protocol stall" on error */
615 		status = -EPIPE;
616 	}
617 
618 	if (status) {
619 		len = 0;
620 		if (status != -EPIPE) {
621 			dev_dbg (hcd->self.controller,
622 				"CTRL: TypeReq=0x%x val=0x%x "
623 				"idx=0x%x len=%d ==> %d\n",
624 				typeReq, wValue, wIndex,
625 				wLength, status);
626 		}
627 	}
628 	if (len) {
629 		if (urb->transfer_buffer_length < len)
630 			len = urb->transfer_buffer_length;
631 		urb->actual_length = len;
632 		// always USB_DIR_IN, toward host
633 		memcpy (ubuf, bufp, len);
634 
635 		/* report whether RH hardware supports remote wakeup */
636 		if (patch_wakeup &&
637 				len > offsetof (struct usb_config_descriptor,
638 						bmAttributes))
639 			((struct usb_config_descriptor *)ubuf)->bmAttributes
640 				|= USB_CONFIG_ATT_WAKEUP;
641 
642 		/* report whether RH hardware has an integrated TT */
643 		if (patch_protocol &&
644 				len > offsetof(struct usb_device_descriptor,
645 						bDeviceProtocol))
646 			((struct usb_device_descriptor *) ubuf)->
647 					bDeviceProtocol = 1;
648 	}
649 
650 	/* any errors get returned through the urb completion */
651 	spin_lock_irq(&hcd_root_hub_lock);
652 	usb_hcd_unlink_urb_from_ep(hcd, urb);
653 
654 	/* This peculiar use of spinlocks echoes what real HC drivers do.
655 	 * Avoiding calls to local_irq_disable/enable makes the code
656 	 * RT-friendly.
657 	 */
658 	spin_unlock(&hcd_root_hub_lock);
659 	usb_hcd_giveback_urb(hcd, urb, status);
660 	spin_lock(&hcd_root_hub_lock);
661 
662 	spin_unlock_irq(&hcd_root_hub_lock);
663 	return 0;
664 }
665 
666 /*-------------------------------------------------------------------------*/
667 
668 /*
669  * Root Hub interrupt transfers are polled using a timer if the
670  * driver requests it; otherwise the driver is responsible for
671  * calling usb_hcd_poll_rh_status() when an event occurs.
672  *
673  * Completions are called in_interrupt(), but they may or may not
674  * be in_irq().
675  */
676 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
677 {
678 	struct urb	*urb;
679 	int		length;
680 	unsigned long	flags;
681 	char		buffer[6];	/* Any root hubs with > 31 ports? */
682 
683 	if (unlikely(!hcd->rh_pollable))
684 		return;
685 	if (!hcd->uses_new_polling && !hcd->status_urb)
686 		return;
687 
688 	length = hcd->driver->hub_status_data(hcd, buffer);
689 	if (length > 0) {
690 
691 		/* try to complete the status urb */
692 		spin_lock_irqsave(&hcd_root_hub_lock, flags);
693 		urb = hcd->status_urb;
694 		if (urb) {
695 			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696 			hcd->status_urb = NULL;
697 			urb->actual_length = length;
698 			memcpy(urb->transfer_buffer, buffer, length);
699 
700 			usb_hcd_unlink_urb_from_ep(hcd, urb);
701 			spin_unlock(&hcd_root_hub_lock);
702 			usb_hcd_giveback_urb(hcd, urb, 0);
703 			spin_lock(&hcd_root_hub_lock);
704 		} else {
705 			length = 0;
706 			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
707 		}
708 		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
709 	}
710 
711 	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
712 	 * exceed that limit if HZ is 100. The math is more clunky than
713 	 * maybe expected, this is to make sure that all timers for USB devices
714 	 * fire at the same time to give the CPU a break in between */
715 	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
716 			(length == 0 && hcd->status_urb != NULL))
717 		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
718 }
719 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
720 
721 /* timer callback */
722 static void rh_timer_func (unsigned long _hcd)
723 {
724 	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
725 }
726 
727 /*-------------------------------------------------------------------------*/
728 
729 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
730 {
731 	int		retval;
732 	unsigned long	flags;
733 	unsigned	len = 1 + (urb->dev->maxchild / 8);
734 
735 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
736 	if (hcd->status_urb || urb->transfer_buffer_length < len) {
737 		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
738 		retval = -EINVAL;
739 		goto done;
740 	}
741 
742 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
743 	if (retval)
744 		goto done;
745 
746 	hcd->status_urb = urb;
747 	urb->hcpriv = hcd;	/* indicate it's queued */
748 	if (!hcd->uses_new_polling)
749 		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
750 
751 	/* If a status change has already occurred, report it ASAP */
752 	else if (HCD_POLL_PENDING(hcd))
753 		mod_timer(&hcd->rh_timer, jiffies);
754 	retval = 0;
755  done:
756 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
757 	return retval;
758 }
759 
760 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
761 {
762 	if (usb_endpoint_xfer_int(&urb->ep->desc))
763 		return rh_queue_status (hcd, urb);
764 	if (usb_endpoint_xfer_control(&urb->ep->desc))
765 		return rh_call_control (hcd, urb);
766 	return -EINVAL;
767 }
768 
769 /*-------------------------------------------------------------------------*/
770 
771 /* Unlinks of root-hub control URBs are legal, but they don't do anything
772  * since these URBs always execute synchronously.
773  */
774 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
775 {
776 	unsigned long	flags;
777 	int		rc;
778 
779 	spin_lock_irqsave(&hcd_root_hub_lock, flags);
780 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
781 	if (rc)
782 		goto done;
783 
784 	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
785 		;	/* Do nothing */
786 
787 	} else {				/* Status URB */
788 		if (!hcd->uses_new_polling)
789 			del_timer (&hcd->rh_timer);
790 		if (urb == hcd->status_urb) {
791 			hcd->status_urb = NULL;
792 			usb_hcd_unlink_urb_from_ep(hcd, urb);
793 
794 			spin_unlock(&hcd_root_hub_lock);
795 			usb_hcd_giveback_urb(hcd, urb, status);
796 			spin_lock(&hcd_root_hub_lock);
797 		}
798 	}
799  done:
800 	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
801 	return rc;
802 }
803 
804 
805 
806 /*
807  * Show & store the current value of authorized_default
808  */
809 static ssize_t usb_host_authorized_default_show(struct device *dev,
810 						struct device_attribute *attr,
811 						char *buf)
812 {
813 	struct usb_device *rh_usb_dev = to_usb_device(dev);
814 	struct usb_bus *usb_bus = rh_usb_dev->bus;
815 	struct usb_hcd *usb_hcd;
816 
817 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
818 		return -ENODEV;
819 	usb_hcd = bus_to_hcd(usb_bus);
820 	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
821 }
822 
823 static ssize_t usb_host_authorized_default_store(struct device *dev,
824 						 struct device_attribute *attr,
825 						 const char *buf, size_t size)
826 {
827 	ssize_t result;
828 	unsigned val;
829 	struct usb_device *rh_usb_dev = to_usb_device(dev);
830 	struct usb_bus *usb_bus = rh_usb_dev->bus;
831 	struct usb_hcd *usb_hcd;
832 
833 	if (usb_bus == NULL)	/* FIXME: not sure if this case is possible */
834 		return -ENODEV;
835 	usb_hcd = bus_to_hcd(usb_bus);
836 	result = sscanf(buf, "%u\n", &val);
837 	if (result == 1) {
838 		usb_hcd->authorized_default = val? 1 : 0;
839 		result = size;
840 	}
841 	else
842 		result = -EINVAL;
843 	return result;
844 }
845 
846 static DEVICE_ATTR(authorized_default, 0644,
847 	    usb_host_authorized_default_show,
848 	    usb_host_authorized_default_store);
849 
850 
851 /* Group all the USB bus attributes */
852 static struct attribute *usb_bus_attrs[] = {
853 		&dev_attr_authorized_default.attr,
854 		NULL,
855 };
856 
857 static struct attribute_group usb_bus_attr_group = {
858 	.name = NULL,	/* we want them in the same directory */
859 	.attrs = usb_bus_attrs,
860 };
861 
862 
863 
864 /*-------------------------------------------------------------------------*/
865 
866 /**
867  * usb_bus_init - shared initialization code
868  * @bus: the bus structure being initialized
869  *
870  * This code is used to initialize a usb_bus structure, memory for which is
871  * separately managed.
872  */
873 static void usb_bus_init (struct usb_bus *bus)
874 {
875 	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
876 
877 	bus->devnum_next = 1;
878 
879 	bus->root_hub = NULL;
880 	bus->busnum = -1;
881 	bus->bandwidth_allocated = 0;
882 	bus->bandwidth_int_reqs  = 0;
883 	bus->bandwidth_isoc_reqs = 0;
884 
885 	INIT_LIST_HEAD (&bus->bus_list);
886 }
887 
888 /*-------------------------------------------------------------------------*/
889 
890 /**
891  * usb_register_bus - registers the USB host controller with the usb core
892  * @bus: pointer to the bus to register
893  * Context: !in_interrupt()
894  *
895  * Assigns a bus number, and links the controller into usbcore data
896  * structures so that it can be seen by scanning the bus list.
897  */
898 static int usb_register_bus(struct usb_bus *bus)
899 {
900 	int result = -E2BIG;
901 	int busnum;
902 
903 	mutex_lock(&usb_bus_list_lock);
904 	busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
905 	if (busnum >= USB_MAXBUS) {
906 		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
907 		goto error_find_busnum;
908 	}
909 	set_bit (busnum, busmap.busmap);
910 	bus->busnum = busnum;
911 
912 	/* Add it to the local list of buses */
913 	list_add (&bus->bus_list, &usb_bus_list);
914 	mutex_unlock(&usb_bus_list_lock);
915 
916 	usb_notify_add_bus(bus);
917 
918 	dev_info (bus->controller, "new USB bus registered, assigned bus "
919 		  "number %d\n", bus->busnum);
920 	return 0;
921 
922 error_find_busnum:
923 	mutex_unlock(&usb_bus_list_lock);
924 	return result;
925 }
926 
927 /**
928  * usb_deregister_bus - deregisters the USB host controller
929  * @bus: pointer to the bus to deregister
930  * Context: !in_interrupt()
931  *
932  * Recycles the bus number, and unlinks the controller from usbcore data
933  * structures so that it won't be seen by scanning the bus list.
934  */
935 static void usb_deregister_bus (struct usb_bus *bus)
936 {
937 	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
938 
939 	/*
940 	 * NOTE: make sure that all the devices are removed by the
941 	 * controller code, as well as having it call this when cleaning
942 	 * itself up
943 	 */
944 	mutex_lock(&usb_bus_list_lock);
945 	list_del (&bus->bus_list);
946 	mutex_unlock(&usb_bus_list_lock);
947 
948 	usb_notify_remove_bus(bus);
949 
950 	clear_bit (bus->busnum, busmap.busmap);
951 }
952 
953 /**
954  * register_root_hub - called by usb_add_hcd() to register a root hub
955  * @hcd: host controller for this root hub
956  *
957  * This function registers the root hub with the USB subsystem.  It sets up
958  * the device properly in the device tree and then calls usb_new_device()
959  * to register the usb device.  It also assigns the root hub's USB address
960  * (always 1).
961  */
962 static int register_root_hub(struct usb_hcd *hcd)
963 {
964 	struct device *parent_dev = hcd->self.controller;
965 	struct usb_device *usb_dev = hcd->self.root_hub;
966 	const int devnum = 1;
967 	int retval;
968 
969 	usb_dev->devnum = devnum;
970 	usb_dev->bus->devnum_next = devnum + 1;
971 	memset (&usb_dev->bus->devmap.devicemap, 0,
972 			sizeof usb_dev->bus->devmap.devicemap);
973 	set_bit (devnum, usb_dev->bus->devmap.devicemap);
974 	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
975 
976 	mutex_lock(&usb_bus_list_lock);
977 
978 	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
979 	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
980 	if (retval != sizeof usb_dev->descriptor) {
981 		mutex_unlock(&usb_bus_list_lock);
982 		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
983 				dev_name(&usb_dev->dev), retval);
984 		return (retval < 0) ? retval : -EMSGSIZE;
985 	}
986 
987 	retval = usb_new_device (usb_dev);
988 	if (retval) {
989 		dev_err (parent_dev, "can't register root hub for %s, %d\n",
990 				dev_name(&usb_dev->dev), retval);
991 	}
992 	mutex_unlock(&usb_bus_list_lock);
993 
994 	if (retval == 0) {
995 		spin_lock_irq (&hcd_root_hub_lock);
996 		hcd->rh_registered = 1;
997 		spin_unlock_irq (&hcd_root_hub_lock);
998 
999 		/* Did the HC die before the root hub was registered? */
1000 		if (HCD_DEAD(hcd))
1001 			usb_hc_died (hcd);	/* This time clean up */
1002 	}
1003 
1004 	return retval;
1005 }
1006 
1007 
1008 /*-------------------------------------------------------------------------*/
1009 
1010 /**
1011  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1012  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1013  * @is_input: true iff the transaction sends data to the host
1014  * @isoc: true for isochronous transactions, false for interrupt ones
1015  * @bytecount: how many bytes in the transaction.
1016  *
1017  * Returns approximate bus time in nanoseconds for a periodic transaction.
1018  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1019  * scheduled in software, this function is only used for such scheduling.
1020  */
1021 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1022 {
1023 	unsigned long	tmp;
1024 
1025 	switch (speed) {
1026 	case USB_SPEED_LOW: 	/* INTR only */
1027 		if (is_input) {
1028 			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029 			return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1030 		} else {
1031 			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1032 			return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1033 		}
1034 	case USB_SPEED_FULL:	/* ISOC or INTR */
1035 		if (isoc) {
1036 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1037 			return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1038 		} else {
1039 			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1040 			return (9107L + BW_HOST_DELAY + tmp);
1041 		}
1042 	case USB_SPEED_HIGH:	/* ISOC or INTR */
1043 		// FIXME adjust for input vs output
1044 		if (isoc)
1045 			tmp = HS_NSECS_ISO (bytecount);
1046 		else
1047 			tmp = HS_NSECS (bytecount);
1048 		return tmp;
1049 	default:
1050 		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1051 		return -1;
1052 	}
1053 }
1054 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1055 
1056 
1057 /*-------------------------------------------------------------------------*/
1058 
1059 /*
1060  * Generic HC operations.
1061  */
1062 
1063 /*-------------------------------------------------------------------------*/
1064 
1065 /**
1066  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1067  * @hcd: host controller to which @urb was submitted
1068  * @urb: URB being submitted
1069  *
1070  * Host controller drivers should call this routine in their enqueue()
1071  * method.  The HCD's private spinlock must be held and interrupts must
1072  * be disabled.  The actions carried out here are required for URB
1073  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1074  *
1075  * Returns 0 for no error, otherwise a negative error code (in which case
1076  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1077  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1078  * the private spinlock and returning.
1079  */
1080 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1081 {
1082 	int		rc = 0;
1083 
1084 	spin_lock(&hcd_urb_list_lock);
1085 
1086 	/* Check that the URB isn't being killed */
1087 	if (unlikely(atomic_read(&urb->reject))) {
1088 		rc = -EPERM;
1089 		goto done;
1090 	}
1091 
1092 	if (unlikely(!urb->ep->enabled)) {
1093 		rc = -ENOENT;
1094 		goto done;
1095 	}
1096 
1097 	if (unlikely(!urb->dev->can_submit)) {
1098 		rc = -EHOSTUNREACH;
1099 		goto done;
1100 	}
1101 
1102 	/*
1103 	 * Check the host controller's state and add the URB to the
1104 	 * endpoint's queue.
1105 	 */
1106 	if (HCD_RH_RUNNING(hcd)) {
1107 		urb->unlinked = 0;
1108 		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1109 	} else {
1110 		rc = -ESHUTDOWN;
1111 		goto done;
1112 	}
1113  done:
1114 	spin_unlock(&hcd_urb_list_lock);
1115 	return rc;
1116 }
1117 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1118 
1119 /**
1120  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1121  * @hcd: host controller to which @urb was submitted
1122  * @urb: URB being checked for unlinkability
1123  * @status: error code to store in @urb if the unlink succeeds
1124  *
1125  * Host controller drivers should call this routine in their dequeue()
1126  * method.  The HCD's private spinlock must be held and interrupts must
1127  * be disabled.  The actions carried out here are required for making
1128  * sure than an unlink is valid.
1129  *
1130  * Returns 0 for no error, otherwise a negative error code (in which case
1131  * the dequeue() method must fail).  The possible error codes are:
1132  *
1133  *	-EIDRM: @urb was not submitted or has already completed.
1134  *		The completion function may not have been called yet.
1135  *
1136  *	-EBUSY: @urb has already been unlinked.
1137  */
1138 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1139 		int status)
1140 {
1141 	struct list_head	*tmp;
1142 
1143 	/* insist the urb is still queued */
1144 	list_for_each(tmp, &urb->ep->urb_list) {
1145 		if (tmp == &urb->urb_list)
1146 			break;
1147 	}
1148 	if (tmp != &urb->urb_list)
1149 		return -EIDRM;
1150 
1151 	/* Any status except -EINPROGRESS means something already started to
1152 	 * unlink this URB from the hardware.  So there's no more work to do.
1153 	 */
1154 	if (urb->unlinked)
1155 		return -EBUSY;
1156 	urb->unlinked = status;
1157 
1158 	/* IRQ setup can easily be broken so that USB controllers
1159 	 * never get completion IRQs ... maybe even the ones we need to
1160 	 * finish unlinking the initial failed usb_set_address()
1161 	 * or device descriptor fetch.
1162 	 */
1163 	if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1164 		dev_warn(hcd->self.controller, "Unlink after no-IRQ?  "
1165 			"Controller is probably using the wrong IRQ.\n");
1166 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1167 		if (hcd->shared_hcd)
1168 			set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1169 	}
1170 
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1174 
1175 /**
1176  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1177  * @hcd: host controller to which @urb was submitted
1178  * @urb: URB being unlinked
1179  *
1180  * Host controller drivers should call this routine before calling
1181  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1182  * interrupts must be disabled.  The actions carried out here are required
1183  * for URB completion.
1184  */
1185 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1186 {
1187 	/* clear all state linking urb to this dev (and hcd) */
1188 	spin_lock(&hcd_urb_list_lock);
1189 	list_del_init(&urb->urb_list);
1190 	spin_unlock(&hcd_urb_list_lock);
1191 }
1192 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1193 
1194 /*
1195  * Some usb host controllers can only perform dma using a small SRAM area.
1196  * The usb core itself is however optimized for host controllers that can dma
1197  * using regular system memory - like pci devices doing bus mastering.
1198  *
1199  * To support host controllers with limited dma capabilites we provide dma
1200  * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1201  * For this to work properly the host controller code must first use the
1202  * function dma_declare_coherent_memory() to point out which memory area
1203  * that should be used for dma allocations.
1204  *
1205  * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1206  * dma using dma_alloc_coherent() which in turn allocates from the memory
1207  * area pointed out with dma_declare_coherent_memory().
1208  *
1209  * So, to summarize...
1210  *
1211  * - We need "local" memory, canonical example being
1212  *   a small SRAM on a discrete controller being the
1213  *   only memory that the controller can read ...
1214  *   (a) "normal" kernel memory is no good, and
1215  *   (b) there's not enough to share
1216  *
1217  * - The only *portable* hook for such stuff in the
1218  *   DMA framework is dma_declare_coherent_memory()
1219  *
1220  * - So we use that, even though the primary requirement
1221  *   is that the memory be "local" (hence addressible
1222  *   by that device), not "coherent".
1223  *
1224  */
1225 
1226 static int hcd_alloc_coherent(struct usb_bus *bus,
1227 			      gfp_t mem_flags, dma_addr_t *dma_handle,
1228 			      void **vaddr_handle, size_t size,
1229 			      enum dma_data_direction dir)
1230 {
1231 	unsigned char *vaddr;
1232 
1233 	if (*vaddr_handle == NULL) {
1234 		WARN_ON_ONCE(1);
1235 		return -EFAULT;
1236 	}
1237 
1238 	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1239 				 mem_flags, dma_handle);
1240 	if (!vaddr)
1241 		return -ENOMEM;
1242 
1243 	/*
1244 	 * Store the virtual address of the buffer at the end
1245 	 * of the allocated dma buffer. The size of the buffer
1246 	 * may be uneven so use unaligned functions instead
1247 	 * of just rounding up. It makes sense to optimize for
1248 	 * memory footprint over access speed since the amount
1249 	 * of memory available for dma may be limited.
1250 	 */
1251 	put_unaligned((unsigned long)*vaddr_handle,
1252 		      (unsigned long *)(vaddr + size));
1253 
1254 	if (dir == DMA_TO_DEVICE)
1255 		memcpy(vaddr, *vaddr_handle, size);
1256 
1257 	*vaddr_handle = vaddr;
1258 	return 0;
1259 }
1260 
1261 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1262 			      void **vaddr_handle, size_t size,
1263 			      enum dma_data_direction dir)
1264 {
1265 	unsigned char *vaddr = *vaddr_handle;
1266 
1267 	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1268 
1269 	if (dir == DMA_FROM_DEVICE)
1270 		memcpy(vaddr, *vaddr_handle, size);
1271 
1272 	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1273 
1274 	*vaddr_handle = vaddr;
1275 	*dma_handle = 0;
1276 }
1277 
1278 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1279 {
1280 	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1281 		dma_unmap_single(hcd->self.controller,
1282 				urb->setup_dma,
1283 				sizeof(struct usb_ctrlrequest),
1284 				DMA_TO_DEVICE);
1285 	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1286 		hcd_free_coherent(urb->dev->bus,
1287 				&urb->setup_dma,
1288 				(void **) &urb->setup_packet,
1289 				sizeof(struct usb_ctrlrequest),
1290 				DMA_TO_DEVICE);
1291 
1292 	/* Make it safe to call this routine more than once */
1293 	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1294 }
1295 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1296 
1297 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1298 {
1299 	if (hcd->driver->unmap_urb_for_dma)
1300 		hcd->driver->unmap_urb_for_dma(hcd, urb);
1301 	else
1302 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1303 }
1304 
1305 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1306 {
1307 	enum dma_data_direction dir;
1308 
1309 	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1310 
1311 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1312 	if (urb->transfer_flags & URB_DMA_MAP_SG)
1313 		dma_unmap_sg(hcd->self.controller,
1314 				urb->sg,
1315 				urb->num_sgs,
1316 				dir);
1317 	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1318 		dma_unmap_page(hcd->self.controller,
1319 				urb->transfer_dma,
1320 				urb->transfer_buffer_length,
1321 				dir);
1322 	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1323 		dma_unmap_single(hcd->self.controller,
1324 				urb->transfer_dma,
1325 				urb->transfer_buffer_length,
1326 				dir);
1327 	else if (urb->transfer_flags & URB_MAP_LOCAL)
1328 		hcd_free_coherent(urb->dev->bus,
1329 				&urb->transfer_dma,
1330 				&urb->transfer_buffer,
1331 				urb->transfer_buffer_length,
1332 				dir);
1333 
1334 	/* Make it safe to call this routine more than once */
1335 	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1336 			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1337 }
1338 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1339 
1340 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1341 			   gfp_t mem_flags)
1342 {
1343 	if (hcd->driver->map_urb_for_dma)
1344 		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1345 	else
1346 		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1347 }
1348 
1349 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1350 			    gfp_t mem_flags)
1351 {
1352 	enum dma_data_direction dir;
1353 	int ret = 0;
1354 
1355 	/* Map the URB's buffers for DMA access.
1356 	 * Lower level HCD code should use *_dma exclusively,
1357 	 * unless it uses pio or talks to another transport,
1358 	 * or uses the provided scatter gather list for bulk.
1359 	 */
1360 
1361 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1362 		if (hcd->self.uses_pio_for_control)
1363 			return ret;
1364 		if (hcd->self.uses_dma) {
1365 			urb->setup_dma = dma_map_single(
1366 					hcd->self.controller,
1367 					urb->setup_packet,
1368 					sizeof(struct usb_ctrlrequest),
1369 					DMA_TO_DEVICE);
1370 			if (dma_mapping_error(hcd->self.controller,
1371 						urb->setup_dma))
1372 				return -EAGAIN;
1373 			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1374 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1375 			ret = hcd_alloc_coherent(
1376 					urb->dev->bus, mem_flags,
1377 					&urb->setup_dma,
1378 					(void **)&urb->setup_packet,
1379 					sizeof(struct usb_ctrlrequest),
1380 					DMA_TO_DEVICE);
1381 			if (ret)
1382 				return ret;
1383 			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1384 		}
1385 	}
1386 
1387 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1388 	if (urb->transfer_buffer_length != 0
1389 	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1390 		if (hcd->self.uses_dma) {
1391 			if (urb->num_sgs) {
1392 				int n = dma_map_sg(
1393 						hcd->self.controller,
1394 						urb->sg,
1395 						urb->num_sgs,
1396 						dir);
1397 				if (n <= 0)
1398 					ret = -EAGAIN;
1399 				else
1400 					urb->transfer_flags |= URB_DMA_MAP_SG;
1401 				if (n != urb->num_sgs) {
1402 					urb->num_sgs = n;
1403 					urb->transfer_flags |=
1404 							URB_DMA_SG_COMBINED;
1405 				}
1406 			} else if (urb->sg) {
1407 				struct scatterlist *sg = urb->sg;
1408 				urb->transfer_dma = dma_map_page(
1409 						hcd->self.controller,
1410 						sg_page(sg),
1411 						sg->offset,
1412 						urb->transfer_buffer_length,
1413 						dir);
1414 				if (dma_mapping_error(hcd->self.controller,
1415 						urb->transfer_dma))
1416 					ret = -EAGAIN;
1417 				else
1418 					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1419 			} else {
1420 				urb->transfer_dma = dma_map_single(
1421 						hcd->self.controller,
1422 						urb->transfer_buffer,
1423 						urb->transfer_buffer_length,
1424 						dir);
1425 				if (dma_mapping_error(hcd->self.controller,
1426 						urb->transfer_dma))
1427 					ret = -EAGAIN;
1428 				else
1429 					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1430 			}
1431 		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1432 			ret = hcd_alloc_coherent(
1433 					urb->dev->bus, mem_flags,
1434 					&urb->transfer_dma,
1435 					&urb->transfer_buffer,
1436 					urb->transfer_buffer_length,
1437 					dir);
1438 			if (ret == 0)
1439 				urb->transfer_flags |= URB_MAP_LOCAL;
1440 		}
1441 		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1442 				URB_SETUP_MAP_LOCAL)))
1443 			usb_hcd_unmap_urb_for_dma(hcd, urb);
1444 	}
1445 	return ret;
1446 }
1447 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1448 
1449 /*-------------------------------------------------------------------------*/
1450 
1451 /* may be called in any context with a valid urb->dev usecount
1452  * caller surrenders "ownership" of urb
1453  * expects usb_submit_urb() to have sanity checked and conditioned all
1454  * inputs in the urb
1455  */
1456 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1457 {
1458 	int			status;
1459 	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1460 
1461 	/* increment urb's reference count as part of giving it to the HCD
1462 	 * (which will control it).  HCD guarantees that it either returns
1463 	 * an error or calls giveback(), but not both.
1464 	 */
1465 	usb_get_urb(urb);
1466 	atomic_inc(&urb->use_count);
1467 	atomic_inc(&urb->dev->urbnum);
1468 	usbmon_urb_submit(&hcd->self, urb);
1469 
1470 	/* NOTE requirements on root-hub callers (usbfs and the hub
1471 	 * driver, for now):  URBs' urb->transfer_buffer must be
1472 	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1473 	 * they could clobber root hub response data.  Also, control
1474 	 * URBs must be submitted in process context with interrupts
1475 	 * enabled.
1476 	 */
1477 
1478 	if (is_root_hub(urb->dev)) {
1479 		status = rh_urb_enqueue(hcd, urb);
1480 	} else {
1481 		status = map_urb_for_dma(hcd, urb, mem_flags);
1482 		if (likely(status == 0)) {
1483 			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1484 			if (unlikely(status))
1485 				unmap_urb_for_dma(hcd, urb);
1486 		}
1487 	}
1488 
1489 	if (unlikely(status)) {
1490 		usbmon_urb_submit_error(&hcd->self, urb, status);
1491 		urb->hcpriv = NULL;
1492 		INIT_LIST_HEAD(&urb->urb_list);
1493 		atomic_dec(&urb->use_count);
1494 		atomic_dec(&urb->dev->urbnum);
1495 		if (atomic_read(&urb->reject))
1496 			wake_up(&usb_kill_urb_queue);
1497 		usb_put_urb(urb);
1498 	}
1499 	return status;
1500 }
1501 
1502 /*-------------------------------------------------------------------------*/
1503 
1504 /* this makes the hcd giveback() the urb more quickly, by kicking it
1505  * off hardware queues (which may take a while) and returning it as
1506  * soon as practical.  we've already set up the urb's return status,
1507  * but we can't know if the callback completed already.
1508  */
1509 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1510 {
1511 	int		value;
1512 
1513 	if (is_root_hub(urb->dev))
1514 		value = usb_rh_urb_dequeue(hcd, urb, status);
1515 	else {
1516 
1517 		/* The only reason an HCD might fail this call is if
1518 		 * it has not yet fully queued the urb to begin with.
1519 		 * Such failures should be harmless. */
1520 		value = hcd->driver->urb_dequeue(hcd, urb, status);
1521 	}
1522 	return value;
1523 }
1524 
1525 /*
1526  * called in any context
1527  *
1528  * caller guarantees urb won't be recycled till both unlink()
1529  * and the urb's completion function return
1530  */
1531 int usb_hcd_unlink_urb (struct urb *urb, int status)
1532 {
1533 	struct usb_hcd		*hcd;
1534 	int			retval = -EIDRM;
1535 	unsigned long		flags;
1536 
1537 	/* Prevent the device and bus from going away while
1538 	 * the unlink is carried out.  If they are already gone
1539 	 * then urb->use_count must be 0, since disconnected
1540 	 * devices can't have any active URBs.
1541 	 */
1542 	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1543 	if (atomic_read(&urb->use_count) > 0) {
1544 		retval = 0;
1545 		usb_get_dev(urb->dev);
1546 	}
1547 	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1548 	if (retval == 0) {
1549 		hcd = bus_to_hcd(urb->dev->bus);
1550 		retval = unlink1(hcd, urb, status);
1551 		usb_put_dev(urb->dev);
1552 	}
1553 
1554 	if (retval == 0)
1555 		retval = -EINPROGRESS;
1556 	else if (retval != -EIDRM && retval != -EBUSY)
1557 		dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1558 				urb, retval);
1559 	return retval;
1560 }
1561 
1562 /*-------------------------------------------------------------------------*/
1563 
1564 /**
1565  * usb_hcd_giveback_urb - return URB from HCD to device driver
1566  * @hcd: host controller returning the URB
1567  * @urb: urb being returned to the USB device driver.
1568  * @status: completion status code for the URB.
1569  * Context: in_interrupt()
1570  *
1571  * This hands the URB from HCD to its USB device driver, using its
1572  * completion function.  The HCD has freed all per-urb resources
1573  * (and is done using urb->hcpriv).  It also released all HCD locks;
1574  * the device driver won't cause problems if it frees, modifies,
1575  * or resubmits this URB.
1576  *
1577  * If @urb was unlinked, the value of @status will be overridden by
1578  * @urb->unlinked.  Erroneous short transfers are detected in case
1579  * the HCD hasn't checked for them.
1580  */
1581 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1582 {
1583 	urb->hcpriv = NULL;
1584 	if (unlikely(urb->unlinked))
1585 		status = urb->unlinked;
1586 	else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1587 			urb->actual_length < urb->transfer_buffer_length &&
1588 			!status))
1589 		status = -EREMOTEIO;
1590 
1591 	unmap_urb_for_dma(hcd, urb);
1592 	usbmon_urb_complete(&hcd->self, urb, status);
1593 	usb_unanchor_urb(urb);
1594 
1595 	/* pass ownership to the completion handler */
1596 	urb->status = status;
1597 	urb->complete (urb);
1598 	atomic_dec (&urb->use_count);
1599 	if (unlikely(atomic_read(&urb->reject)))
1600 		wake_up (&usb_kill_urb_queue);
1601 	usb_put_urb (urb);
1602 }
1603 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1604 
1605 /*-------------------------------------------------------------------------*/
1606 
1607 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1608  * queue to drain completely.  The caller must first insure that no more
1609  * URBs can be submitted for this endpoint.
1610  */
1611 void usb_hcd_flush_endpoint(struct usb_device *udev,
1612 		struct usb_host_endpoint *ep)
1613 {
1614 	struct usb_hcd		*hcd;
1615 	struct urb		*urb;
1616 
1617 	if (!ep)
1618 		return;
1619 	might_sleep();
1620 	hcd = bus_to_hcd(udev->bus);
1621 
1622 	/* No more submits can occur */
1623 	spin_lock_irq(&hcd_urb_list_lock);
1624 rescan:
1625 	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1626 		int	is_in;
1627 
1628 		if (urb->unlinked)
1629 			continue;
1630 		usb_get_urb (urb);
1631 		is_in = usb_urb_dir_in(urb);
1632 		spin_unlock(&hcd_urb_list_lock);
1633 
1634 		/* kick hcd */
1635 		unlink1(hcd, urb, -ESHUTDOWN);
1636 		dev_dbg (hcd->self.controller,
1637 			"shutdown urb %p ep%d%s%s\n",
1638 			urb, usb_endpoint_num(&ep->desc),
1639 			is_in ? "in" : "out",
1640 			({	char *s;
1641 
1642 				 switch (usb_endpoint_type(&ep->desc)) {
1643 				 case USB_ENDPOINT_XFER_CONTROL:
1644 					s = ""; break;
1645 				 case USB_ENDPOINT_XFER_BULK:
1646 					s = "-bulk"; break;
1647 				 case USB_ENDPOINT_XFER_INT:
1648 					s = "-intr"; break;
1649 				 default:
1650 			 		s = "-iso"; break;
1651 				};
1652 				s;
1653 			}));
1654 		usb_put_urb (urb);
1655 
1656 		/* list contents may have changed */
1657 		spin_lock(&hcd_urb_list_lock);
1658 		goto rescan;
1659 	}
1660 	spin_unlock_irq(&hcd_urb_list_lock);
1661 
1662 	/* Wait until the endpoint queue is completely empty */
1663 	while (!list_empty (&ep->urb_list)) {
1664 		spin_lock_irq(&hcd_urb_list_lock);
1665 
1666 		/* The list may have changed while we acquired the spinlock */
1667 		urb = NULL;
1668 		if (!list_empty (&ep->urb_list)) {
1669 			urb = list_entry (ep->urb_list.prev, struct urb,
1670 					urb_list);
1671 			usb_get_urb (urb);
1672 		}
1673 		spin_unlock_irq(&hcd_urb_list_lock);
1674 
1675 		if (urb) {
1676 			usb_kill_urb (urb);
1677 			usb_put_urb (urb);
1678 		}
1679 	}
1680 }
1681 
1682 /**
1683  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1684  *				the bus bandwidth
1685  * @udev: target &usb_device
1686  * @new_config: new configuration to install
1687  * @cur_alt: the current alternate interface setting
1688  * @new_alt: alternate interface setting that is being installed
1689  *
1690  * To change configurations, pass in the new configuration in new_config,
1691  * and pass NULL for cur_alt and new_alt.
1692  *
1693  * To reset a device's configuration (put the device in the ADDRESSED state),
1694  * pass in NULL for new_config, cur_alt, and new_alt.
1695  *
1696  * To change alternate interface settings, pass in NULL for new_config,
1697  * pass in the current alternate interface setting in cur_alt,
1698  * and pass in the new alternate interface setting in new_alt.
1699  *
1700  * Returns an error if the requested bandwidth change exceeds the
1701  * bus bandwidth or host controller internal resources.
1702  */
1703 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1704 		struct usb_host_config *new_config,
1705 		struct usb_host_interface *cur_alt,
1706 		struct usb_host_interface *new_alt)
1707 {
1708 	int num_intfs, i, j;
1709 	struct usb_host_interface *alt = NULL;
1710 	int ret = 0;
1711 	struct usb_hcd *hcd;
1712 	struct usb_host_endpoint *ep;
1713 
1714 	hcd = bus_to_hcd(udev->bus);
1715 	if (!hcd->driver->check_bandwidth)
1716 		return 0;
1717 
1718 	/* Configuration is being removed - set configuration 0 */
1719 	if (!new_config && !cur_alt) {
1720 		for (i = 1; i < 16; ++i) {
1721 			ep = udev->ep_out[i];
1722 			if (ep)
1723 				hcd->driver->drop_endpoint(hcd, udev, ep);
1724 			ep = udev->ep_in[i];
1725 			if (ep)
1726 				hcd->driver->drop_endpoint(hcd, udev, ep);
1727 		}
1728 		hcd->driver->check_bandwidth(hcd, udev);
1729 		return 0;
1730 	}
1731 	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1732 	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1733 	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1734 	 * ok to exclude it.
1735 	 */
1736 	if (new_config) {
1737 		num_intfs = new_config->desc.bNumInterfaces;
1738 		/* Remove endpoints (except endpoint 0, which is always on the
1739 		 * schedule) from the old config from the schedule
1740 		 */
1741 		for (i = 1; i < 16; ++i) {
1742 			ep = udev->ep_out[i];
1743 			if (ep) {
1744 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1745 				if (ret < 0)
1746 					goto reset;
1747 			}
1748 			ep = udev->ep_in[i];
1749 			if (ep) {
1750 				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1751 				if (ret < 0)
1752 					goto reset;
1753 			}
1754 		}
1755 		for (i = 0; i < num_intfs; ++i) {
1756 			struct usb_host_interface *first_alt;
1757 			int iface_num;
1758 
1759 			first_alt = &new_config->intf_cache[i]->altsetting[0];
1760 			iface_num = first_alt->desc.bInterfaceNumber;
1761 			/* Set up endpoints for alternate interface setting 0 */
1762 			alt = usb_find_alt_setting(new_config, iface_num, 0);
1763 			if (!alt)
1764 				/* No alt setting 0? Pick the first setting. */
1765 				alt = first_alt;
1766 
1767 			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1768 				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1769 				if (ret < 0)
1770 					goto reset;
1771 			}
1772 		}
1773 	}
1774 	if (cur_alt && new_alt) {
1775 		struct usb_interface *iface = usb_ifnum_to_if(udev,
1776 				cur_alt->desc.bInterfaceNumber);
1777 
1778 		if (!iface)
1779 			return -EINVAL;
1780 		if (iface->resetting_device) {
1781 			/*
1782 			 * The USB core just reset the device, so the xHCI host
1783 			 * and the device will think alt setting 0 is installed.
1784 			 * However, the USB core will pass in the alternate
1785 			 * setting installed before the reset as cur_alt.  Dig
1786 			 * out the alternate setting 0 structure, or the first
1787 			 * alternate setting if a broken device doesn't have alt
1788 			 * setting 0.
1789 			 */
1790 			cur_alt = usb_altnum_to_altsetting(iface, 0);
1791 			if (!cur_alt)
1792 				cur_alt = &iface->altsetting[0];
1793 		}
1794 
1795 		/* Drop all the endpoints in the current alt setting */
1796 		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1797 			ret = hcd->driver->drop_endpoint(hcd, udev,
1798 					&cur_alt->endpoint[i]);
1799 			if (ret < 0)
1800 				goto reset;
1801 		}
1802 		/* Add all the endpoints in the new alt setting */
1803 		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1804 			ret = hcd->driver->add_endpoint(hcd, udev,
1805 					&new_alt->endpoint[i]);
1806 			if (ret < 0)
1807 				goto reset;
1808 		}
1809 	}
1810 	ret = hcd->driver->check_bandwidth(hcd, udev);
1811 reset:
1812 	if (ret < 0)
1813 		hcd->driver->reset_bandwidth(hcd, udev);
1814 	return ret;
1815 }
1816 
1817 /* Disables the endpoint: synchronizes with the hcd to make sure all
1818  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1819  * have been called previously.  Use for set_configuration, set_interface,
1820  * driver removal, physical disconnect.
1821  *
1822  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1823  * type, maxpacket size, toggle, halt status, and scheduling.
1824  */
1825 void usb_hcd_disable_endpoint(struct usb_device *udev,
1826 		struct usb_host_endpoint *ep)
1827 {
1828 	struct usb_hcd		*hcd;
1829 
1830 	might_sleep();
1831 	hcd = bus_to_hcd(udev->bus);
1832 	if (hcd->driver->endpoint_disable)
1833 		hcd->driver->endpoint_disable(hcd, ep);
1834 }
1835 
1836 /**
1837  * usb_hcd_reset_endpoint - reset host endpoint state
1838  * @udev: USB device.
1839  * @ep:   the endpoint to reset.
1840  *
1841  * Resets any host endpoint state such as the toggle bit, sequence
1842  * number and current window.
1843  */
1844 void usb_hcd_reset_endpoint(struct usb_device *udev,
1845 			    struct usb_host_endpoint *ep)
1846 {
1847 	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1848 
1849 	if (hcd->driver->endpoint_reset)
1850 		hcd->driver->endpoint_reset(hcd, ep);
1851 	else {
1852 		int epnum = usb_endpoint_num(&ep->desc);
1853 		int is_out = usb_endpoint_dir_out(&ep->desc);
1854 		int is_control = usb_endpoint_xfer_control(&ep->desc);
1855 
1856 		usb_settoggle(udev, epnum, is_out, 0);
1857 		if (is_control)
1858 			usb_settoggle(udev, epnum, !is_out, 0);
1859 	}
1860 }
1861 
1862 /**
1863  * usb_alloc_streams - allocate bulk endpoint stream IDs.
1864  * @interface:		alternate setting that includes all endpoints.
1865  * @eps:		array of endpoints that need streams.
1866  * @num_eps:		number of endpoints in the array.
1867  * @num_streams:	number of streams to allocate.
1868  * @mem_flags:		flags hcd should use to allocate memory.
1869  *
1870  * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1871  * Drivers may queue multiple transfers to different stream IDs, which may
1872  * complete in a different order than they were queued.
1873  */
1874 int usb_alloc_streams(struct usb_interface *interface,
1875 		struct usb_host_endpoint **eps, unsigned int num_eps,
1876 		unsigned int num_streams, gfp_t mem_flags)
1877 {
1878 	struct usb_hcd *hcd;
1879 	struct usb_device *dev;
1880 	int i;
1881 
1882 	dev = interface_to_usbdev(interface);
1883 	hcd = bus_to_hcd(dev->bus);
1884 	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1885 		return -EINVAL;
1886 	if (dev->speed != USB_SPEED_SUPER)
1887 		return -EINVAL;
1888 
1889 	/* Streams only apply to bulk endpoints. */
1890 	for (i = 0; i < num_eps; i++)
1891 		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1892 			return -EINVAL;
1893 
1894 	return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1895 			num_streams, mem_flags);
1896 }
1897 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1898 
1899 /**
1900  * usb_free_streams - free bulk endpoint stream IDs.
1901  * @interface:	alternate setting that includes all endpoints.
1902  * @eps:	array of endpoints to remove streams from.
1903  * @num_eps:	number of endpoints in the array.
1904  * @mem_flags:	flags hcd should use to allocate memory.
1905  *
1906  * Reverts a group of bulk endpoints back to not using stream IDs.
1907  * Can fail if we are given bad arguments, or HCD is broken.
1908  */
1909 void usb_free_streams(struct usb_interface *interface,
1910 		struct usb_host_endpoint **eps, unsigned int num_eps,
1911 		gfp_t mem_flags)
1912 {
1913 	struct usb_hcd *hcd;
1914 	struct usb_device *dev;
1915 	int i;
1916 
1917 	dev = interface_to_usbdev(interface);
1918 	hcd = bus_to_hcd(dev->bus);
1919 	if (dev->speed != USB_SPEED_SUPER)
1920 		return;
1921 
1922 	/* Streams only apply to bulk endpoints. */
1923 	for (i = 0; i < num_eps; i++)
1924 		if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1925 			return;
1926 
1927 	hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1928 }
1929 EXPORT_SYMBOL_GPL(usb_free_streams);
1930 
1931 /* Protect against drivers that try to unlink URBs after the device
1932  * is gone, by waiting until all unlinks for @udev are finished.
1933  * Since we don't currently track URBs by device, simply wait until
1934  * nothing is running in the locked region of usb_hcd_unlink_urb().
1935  */
1936 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1937 {
1938 	spin_lock_irq(&hcd_urb_unlink_lock);
1939 	spin_unlock_irq(&hcd_urb_unlink_lock);
1940 }
1941 
1942 /*-------------------------------------------------------------------------*/
1943 
1944 /* called in any context */
1945 int usb_hcd_get_frame_number (struct usb_device *udev)
1946 {
1947 	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
1948 
1949 	if (!HCD_RH_RUNNING(hcd))
1950 		return -ESHUTDOWN;
1951 	return hcd->driver->get_frame_number (hcd);
1952 }
1953 
1954 /*-------------------------------------------------------------------------*/
1955 
1956 #ifdef	CONFIG_PM
1957 
1958 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1959 {
1960 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1961 	int		status;
1962 	int		old_state = hcd->state;
1963 
1964 	dev_dbg(&rhdev->dev, "bus %s%s\n",
1965 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1966 	if (HCD_DEAD(hcd)) {
1967 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1968 		return 0;
1969 	}
1970 
1971 	if (!hcd->driver->bus_suspend) {
1972 		status = -ENOENT;
1973 	} else {
1974 		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1975 		hcd->state = HC_STATE_QUIESCING;
1976 		status = hcd->driver->bus_suspend(hcd);
1977 	}
1978 	if (status == 0) {
1979 		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1980 		hcd->state = HC_STATE_SUSPENDED;
1981 	} else {
1982 		spin_lock_irq(&hcd_root_hub_lock);
1983 		if (!HCD_DEAD(hcd)) {
1984 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1985 			hcd->state = old_state;
1986 		}
1987 		spin_unlock_irq(&hcd_root_hub_lock);
1988 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1989 				"suspend", status);
1990 	}
1991 	return status;
1992 }
1993 
1994 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1995 {
1996 	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
1997 	int		status;
1998 	int		old_state = hcd->state;
1999 
2000 	dev_dbg(&rhdev->dev, "usb %s%s\n",
2001 			(msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
2002 	if (HCD_DEAD(hcd)) {
2003 		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2004 		return 0;
2005 	}
2006 	if (!hcd->driver->bus_resume)
2007 		return -ENOENT;
2008 	if (HCD_RH_RUNNING(hcd))
2009 		return 0;
2010 
2011 	hcd->state = HC_STATE_RESUMING;
2012 	status = hcd->driver->bus_resume(hcd);
2013 	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2014 	if (status == 0) {
2015 		/* TRSMRCY = 10 msec */
2016 		msleep(10);
2017 		spin_lock_irq(&hcd_root_hub_lock);
2018 		if (!HCD_DEAD(hcd)) {
2019 			usb_set_device_state(rhdev, rhdev->actconfig
2020 					? USB_STATE_CONFIGURED
2021 					: USB_STATE_ADDRESS);
2022 			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2023 			hcd->state = HC_STATE_RUNNING;
2024 		}
2025 		spin_unlock_irq(&hcd_root_hub_lock);
2026 	} else {
2027 		hcd->state = old_state;
2028 		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2029 				"resume", status);
2030 		if (status != -ESHUTDOWN)
2031 			usb_hc_died(hcd);
2032 	}
2033 	return status;
2034 }
2035 
2036 #endif	/* CONFIG_PM */
2037 
2038 #ifdef	CONFIG_USB_SUSPEND
2039 
2040 /* Workqueue routine for root-hub remote wakeup */
2041 static void hcd_resume_work(struct work_struct *work)
2042 {
2043 	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2044 	struct usb_device *udev = hcd->self.root_hub;
2045 
2046 	usb_lock_device(udev);
2047 	usb_remote_wakeup(udev);
2048 	usb_unlock_device(udev);
2049 }
2050 
2051 /**
2052  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2053  * @hcd: host controller for this root hub
2054  *
2055  * The USB host controller calls this function when its root hub is
2056  * suspended (with the remote wakeup feature enabled) and a remote
2057  * wakeup request is received.  The routine submits a workqueue request
2058  * to resume the root hub (that is, manage its downstream ports again).
2059  */
2060 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2061 {
2062 	unsigned long flags;
2063 
2064 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2065 	if (hcd->rh_registered) {
2066 		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2067 		queue_work(pm_wq, &hcd->wakeup_work);
2068 	}
2069 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2070 }
2071 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2072 
2073 #endif	/* CONFIG_USB_SUSPEND */
2074 
2075 /*-------------------------------------------------------------------------*/
2076 
2077 #ifdef	CONFIG_USB_OTG
2078 
2079 /**
2080  * usb_bus_start_enum - start immediate enumeration (for OTG)
2081  * @bus: the bus (must use hcd framework)
2082  * @port_num: 1-based number of port; usually bus->otg_port
2083  * Context: in_interrupt()
2084  *
2085  * Starts enumeration, with an immediate reset followed later by
2086  * khubd identifying and possibly configuring the device.
2087  * This is needed by OTG controller drivers, where it helps meet
2088  * HNP protocol timing requirements for starting a port reset.
2089  */
2090 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2091 {
2092 	struct usb_hcd		*hcd;
2093 	int			status = -EOPNOTSUPP;
2094 
2095 	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2096 	 * boards with root hubs hooked up to internal devices (instead of
2097 	 * just the OTG port) may need more attention to resetting...
2098 	 */
2099 	hcd = container_of (bus, struct usb_hcd, self);
2100 	if (port_num && hcd->driver->start_port_reset)
2101 		status = hcd->driver->start_port_reset(hcd, port_num);
2102 
2103 	/* run khubd shortly after (first) root port reset finishes;
2104 	 * it may issue others, until at least 50 msecs have passed.
2105 	 */
2106 	if (status == 0)
2107 		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2108 	return status;
2109 }
2110 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2111 
2112 #endif
2113 
2114 /*-------------------------------------------------------------------------*/
2115 
2116 /**
2117  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2118  * @irq: the IRQ being raised
2119  * @__hcd: pointer to the HCD whose IRQ is being signaled
2120  *
2121  * If the controller isn't HALTed, calls the driver's irq handler.
2122  * Checks whether the controller is now dead.
2123  */
2124 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2125 {
2126 	struct usb_hcd		*hcd = __hcd;
2127 	unsigned long		flags;
2128 	irqreturn_t		rc;
2129 
2130 	/* IRQF_DISABLED doesn't work correctly with shared IRQs
2131 	 * when the first handler doesn't use it.  So let's just
2132 	 * assume it's never used.
2133 	 */
2134 	local_irq_save(flags);
2135 
2136 	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2137 		rc = IRQ_NONE;
2138 	} else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2139 		rc = IRQ_NONE;
2140 	} else {
2141 		set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2142 		if (hcd->shared_hcd)
2143 			set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2144 		rc = IRQ_HANDLED;
2145 	}
2146 
2147 	local_irq_restore(flags);
2148 	return rc;
2149 }
2150 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2151 
2152 /*-------------------------------------------------------------------------*/
2153 
2154 /**
2155  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2156  * @hcd: pointer to the HCD representing the controller
2157  *
2158  * This is called by bus glue to report a USB host controller that died
2159  * while operations may still have been pending.  It's called automatically
2160  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2161  *
2162  * Only call this function with the primary HCD.
2163  */
2164 void usb_hc_died (struct usb_hcd *hcd)
2165 {
2166 	unsigned long flags;
2167 
2168 	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2169 
2170 	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2171 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2172 	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2173 	if (hcd->rh_registered) {
2174 		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2175 
2176 		/* make khubd clean up old urbs and devices */
2177 		usb_set_device_state (hcd->self.root_hub,
2178 				USB_STATE_NOTATTACHED);
2179 		usb_kick_khubd (hcd->self.root_hub);
2180 	}
2181 	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2182 		hcd = hcd->shared_hcd;
2183 		if (hcd->rh_registered) {
2184 			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2185 
2186 			/* make khubd clean up old urbs and devices */
2187 			usb_set_device_state(hcd->self.root_hub,
2188 					USB_STATE_NOTATTACHED);
2189 			usb_kick_khubd(hcd->self.root_hub);
2190 		}
2191 	}
2192 	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2193 	/* Make sure that the other roothub is also deallocated. */
2194 }
2195 EXPORT_SYMBOL_GPL (usb_hc_died);
2196 
2197 /*-------------------------------------------------------------------------*/
2198 
2199 /**
2200  * usb_create_shared_hcd - create and initialize an HCD structure
2201  * @driver: HC driver that will use this hcd
2202  * @dev: device for this HC, stored in hcd->self.controller
2203  * @bus_name: value to store in hcd->self.bus_name
2204  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2205  *              PCI device.  Only allocate certain resources for the primary HCD
2206  * Context: !in_interrupt()
2207  *
2208  * Allocate a struct usb_hcd, with extra space at the end for the
2209  * HC driver's private data.  Initialize the generic members of the
2210  * hcd structure.
2211  *
2212  * If memory is unavailable, returns NULL.
2213  */
2214 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2215 		struct device *dev, const char *bus_name,
2216 		struct usb_hcd *primary_hcd)
2217 {
2218 	struct usb_hcd *hcd;
2219 
2220 	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2221 	if (!hcd) {
2222 		dev_dbg (dev, "hcd alloc failed\n");
2223 		return NULL;
2224 	}
2225 	if (primary_hcd == NULL) {
2226 		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2227 				GFP_KERNEL);
2228 		if (!hcd->bandwidth_mutex) {
2229 			kfree(hcd);
2230 			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2231 			return NULL;
2232 		}
2233 		mutex_init(hcd->bandwidth_mutex);
2234 		dev_set_drvdata(dev, hcd);
2235 	} else {
2236 		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2237 		hcd->primary_hcd = primary_hcd;
2238 		primary_hcd->primary_hcd = primary_hcd;
2239 		hcd->shared_hcd = primary_hcd;
2240 		primary_hcd->shared_hcd = hcd;
2241 	}
2242 
2243 	kref_init(&hcd->kref);
2244 
2245 	usb_bus_init(&hcd->self);
2246 	hcd->self.controller = dev;
2247 	hcd->self.bus_name = bus_name;
2248 	hcd->self.uses_dma = (dev->dma_mask != NULL);
2249 
2250 	init_timer(&hcd->rh_timer);
2251 	hcd->rh_timer.function = rh_timer_func;
2252 	hcd->rh_timer.data = (unsigned long) hcd;
2253 #ifdef CONFIG_USB_SUSPEND
2254 	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2255 #endif
2256 
2257 	hcd->driver = driver;
2258 	hcd->speed = driver->flags & HCD_MASK;
2259 	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2260 			"USB Host Controller";
2261 	return hcd;
2262 }
2263 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2264 
2265 /**
2266  * usb_create_hcd - create and initialize an HCD structure
2267  * @driver: HC driver that will use this hcd
2268  * @dev: device for this HC, stored in hcd->self.controller
2269  * @bus_name: value to store in hcd->self.bus_name
2270  * Context: !in_interrupt()
2271  *
2272  * Allocate a struct usb_hcd, with extra space at the end for the
2273  * HC driver's private data.  Initialize the generic members of the
2274  * hcd structure.
2275  *
2276  * If memory is unavailable, returns NULL.
2277  */
2278 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2279 		struct device *dev, const char *bus_name)
2280 {
2281 	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2282 }
2283 EXPORT_SYMBOL_GPL(usb_create_hcd);
2284 
2285 /*
2286  * Roothubs that share one PCI device must also share the bandwidth mutex.
2287  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2288  * deallocated.
2289  *
2290  * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2291  * freed.  When hcd_release() is called for the non-primary HCD, set the
2292  * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2293  * freed shortly).
2294  */
2295 static void hcd_release (struct kref *kref)
2296 {
2297 	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2298 
2299 	if (usb_hcd_is_primary_hcd(hcd))
2300 		kfree(hcd->bandwidth_mutex);
2301 	else
2302 		hcd->shared_hcd->shared_hcd = NULL;
2303 	kfree(hcd);
2304 }
2305 
2306 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2307 {
2308 	if (hcd)
2309 		kref_get (&hcd->kref);
2310 	return hcd;
2311 }
2312 EXPORT_SYMBOL_GPL(usb_get_hcd);
2313 
2314 void usb_put_hcd (struct usb_hcd *hcd)
2315 {
2316 	if (hcd)
2317 		kref_put (&hcd->kref, hcd_release);
2318 }
2319 EXPORT_SYMBOL_GPL(usb_put_hcd);
2320 
2321 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2322 {
2323 	if (!hcd->primary_hcd)
2324 		return 1;
2325 	return hcd == hcd->primary_hcd;
2326 }
2327 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2328 
2329 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2330 		unsigned int irqnum, unsigned long irqflags)
2331 {
2332 	int retval;
2333 
2334 	if (hcd->driver->irq) {
2335 
2336 		/* IRQF_DISABLED doesn't work as advertised when used together
2337 		 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2338 		 * interrupts we can remove it here.
2339 		 */
2340 		if (irqflags & IRQF_SHARED)
2341 			irqflags &= ~IRQF_DISABLED;
2342 
2343 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2344 				hcd->driver->description, hcd->self.busnum);
2345 		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2346 				hcd->irq_descr, hcd);
2347 		if (retval != 0) {
2348 			dev_err(hcd->self.controller,
2349 					"request interrupt %d failed\n",
2350 					irqnum);
2351 			return retval;
2352 		}
2353 		hcd->irq = irqnum;
2354 		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2355 				(hcd->driver->flags & HCD_MEMORY) ?
2356 					"io mem" : "io base",
2357 					(unsigned long long)hcd->rsrc_start);
2358 	} else {
2359 		hcd->irq = -1;
2360 		if (hcd->rsrc_start)
2361 			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2362 					(hcd->driver->flags & HCD_MEMORY) ?
2363 					"io mem" : "io base",
2364 					(unsigned long long)hcd->rsrc_start);
2365 	}
2366 	return 0;
2367 }
2368 
2369 /**
2370  * usb_add_hcd - finish generic HCD structure initialization and register
2371  * @hcd: the usb_hcd structure to initialize
2372  * @irqnum: Interrupt line to allocate
2373  * @irqflags: Interrupt type flags
2374  *
2375  * Finish the remaining parts of generic HCD initialization: allocate the
2376  * buffers of consistent memory, register the bus, request the IRQ line,
2377  * and call the driver's reset() and start() routines.
2378  */
2379 int usb_add_hcd(struct usb_hcd *hcd,
2380 		unsigned int irqnum, unsigned long irqflags)
2381 {
2382 	int retval;
2383 	struct usb_device *rhdev;
2384 
2385 	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2386 
2387 	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2388 	if (authorized_default < 0 || authorized_default > 1)
2389 		hcd->authorized_default = hcd->wireless? 0 : 1;
2390 	else
2391 		hcd->authorized_default = authorized_default;
2392 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2393 
2394 	/* HC is in reset state, but accessible.  Now do the one-time init,
2395 	 * bottom up so that hcds can customize the root hubs before khubd
2396 	 * starts talking to them.  (Note, bus id is assigned early too.)
2397 	 */
2398 	if ((retval = hcd_buffer_create(hcd)) != 0) {
2399 		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2400 		return retval;
2401 	}
2402 
2403 	if ((retval = usb_register_bus(&hcd->self)) < 0)
2404 		goto err_register_bus;
2405 
2406 	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2407 		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2408 		retval = -ENOMEM;
2409 		goto err_allocate_root_hub;
2410 	}
2411 	hcd->self.root_hub = rhdev;
2412 
2413 	switch (hcd->speed) {
2414 	case HCD_USB11:
2415 		rhdev->speed = USB_SPEED_FULL;
2416 		break;
2417 	case HCD_USB2:
2418 		rhdev->speed = USB_SPEED_HIGH;
2419 		break;
2420 	case HCD_USB3:
2421 		rhdev->speed = USB_SPEED_SUPER;
2422 		break;
2423 	default:
2424 		retval = -EINVAL;
2425 		goto err_set_rh_speed;
2426 	}
2427 
2428 	/* wakeup flag init defaults to "everything works" for root hubs,
2429 	 * but drivers can override it in reset() if needed, along with
2430 	 * recording the overall controller's system wakeup capability.
2431 	 */
2432 	device_init_wakeup(&rhdev->dev, 1);
2433 
2434 	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2435 	 * registered.  But since the controller can die at any time,
2436 	 * let's initialize the flag before touching the hardware.
2437 	 */
2438 	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2439 
2440 	/* "reset" is misnamed; its role is now one-time init. the controller
2441 	 * should already have been reset (and boot firmware kicked off etc).
2442 	 */
2443 	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2444 		dev_err(hcd->self.controller, "can't setup\n");
2445 		goto err_hcd_driver_setup;
2446 	}
2447 	hcd->rh_pollable = 1;
2448 
2449 	/* NOTE: root hub and controller capabilities may not be the same */
2450 	if (device_can_wakeup(hcd->self.controller)
2451 			&& device_can_wakeup(&hcd->self.root_hub->dev))
2452 		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2453 
2454 	/* enable irqs just before we start the controller */
2455 	if (usb_hcd_is_primary_hcd(hcd)) {
2456 		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2457 		if (retval)
2458 			goto err_request_irq;
2459 	}
2460 
2461 	hcd->state = HC_STATE_RUNNING;
2462 	retval = hcd->driver->start(hcd);
2463 	if (retval < 0) {
2464 		dev_err(hcd->self.controller, "startup error %d\n", retval);
2465 		goto err_hcd_driver_start;
2466 	}
2467 
2468 	/* starting here, usbcore will pay attention to this root hub */
2469 	rhdev->bus_mA = min(500u, hcd->power_budget);
2470 	if ((retval = register_root_hub(hcd)) != 0)
2471 		goto err_register_root_hub;
2472 
2473 	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2474 	if (retval < 0) {
2475 		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2476 		       retval);
2477 		goto error_create_attr_group;
2478 	}
2479 	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2480 		usb_hcd_poll_rh_status(hcd);
2481 	return retval;
2482 
2483 error_create_attr_group:
2484 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2485 	if (HC_IS_RUNNING(hcd->state))
2486 		hcd->state = HC_STATE_QUIESCING;
2487 	spin_lock_irq(&hcd_root_hub_lock);
2488 	hcd->rh_registered = 0;
2489 	spin_unlock_irq(&hcd_root_hub_lock);
2490 
2491 #ifdef CONFIG_USB_SUSPEND
2492 	cancel_work_sync(&hcd->wakeup_work);
2493 #endif
2494 	mutex_lock(&usb_bus_list_lock);
2495 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2496 	mutex_unlock(&usb_bus_list_lock);
2497 err_register_root_hub:
2498 	hcd->rh_pollable = 0;
2499 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2500 	del_timer_sync(&hcd->rh_timer);
2501 	hcd->driver->stop(hcd);
2502 	hcd->state = HC_STATE_HALT;
2503 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2504 	del_timer_sync(&hcd->rh_timer);
2505 err_hcd_driver_start:
2506 	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2507 		free_irq(irqnum, hcd);
2508 err_request_irq:
2509 err_hcd_driver_setup:
2510 err_set_rh_speed:
2511 	usb_put_dev(hcd->self.root_hub);
2512 err_allocate_root_hub:
2513 	usb_deregister_bus(&hcd->self);
2514 err_register_bus:
2515 	hcd_buffer_destroy(hcd);
2516 	return retval;
2517 }
2518 EXPORT_SYMBOL_GPL(usb_add_hcd);
2519 
2520 /**
2521  * usb_remove_hcd - shutdown processing for generic HCDs
2522  * @hcd: the usb_hcd structure to remove
2523  * Context: !in_interrupt()
2524  *
2525  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2526  * invoking the HCD's stop() method.
2527  */
2528 void usb_remove_hcd(struct usb_hcd *hcd)
2529 {
2530 	struct usb_device *rhdev = hcd->self.root_hub;
2531 
2532 	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2533 
2534 	usb_get_dev(rhdev);
2535 	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2536 
2537 	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2538 	if (HC_IS_RUNNING (hcd->state))
2539 		hcd->state = HC_STATE_QUIESCING;
2540 
2541 	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2542 	spin_lock_irq (&hcd_root_hub_lock);
2543 	hcd->rh_registered = 0;
2544 	spin_unlock_irq (&hcd_root_hub_lock);
2545 
2546 #ifdef CONFIG_USB_SUSPEND
2547 	cancel_work_sync(&hcd->wakeup_work);
2548 #endif
2549 
2550 	mutex_lock(&usb_bus_list_lock);
2551 	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2552 	mutex_unlock(&usb_bus_list_lock);
2553 
2554 	/* Prevent any more root-hub status calls from the timer.
2555 	 * The HCD might still restart the timer (if a port status change
2556 	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2557 	 * the hub_status_data() callback.
2558 	 */
2559 	hcd->rh_pollable = 0;
2560 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2561 	del_timer_sync(&hcd->rh_timer);
2562 
2563 	hcd->driver->stop(hcd);
2564 	hcd->state = HC_STATE_HALT;
2565 
2566 	/* In case the HCD restarted the timer, stop it again. */
2567 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2568 	del_timer_sync(&hcd->rh_timer);
2569 
2570 	if (usb_hcd_is_primary_hcd(hcd)) {
2571 		if (hcd->irq >= 0)
2572 			free_irq(hcd->irq, hcd);
2573 	}
2574 
2575 	usb_put_dev(hcd->self.root_hub);
2576 	usb_deregister_bus(&hcd->self);
2577 	hcd_buffer_destroy(hcd);
2578 }
2579 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2580 
2581 void
2582 usb_hcd_platform_shutdown(struct platform_device* dev)
2583 {
2584 	struct usb_hcd *hcd = platform_get_drvdata(dev);
2585 
2586 	if (hcd->driver->shutdown)
2587 		hcd->driver->shutdown(hcd);
2588 }
2589 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2590 
2591 /*-------------------------------------------------------------------------*/
2592 
2593 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2594 
2595 struct usb_mon_operations *mon_ops;
2596 
2597 /*
2598  * The registration is unlocked.
2599  * We do it this way because we do not want to lock in hot paths.
2600  *
2601  * Notice that the code is minimally error-proof. Because usbmon needs
2602  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2603  */
2604 
2605 int usb_mon_register (struct usb_mon_operations *ops)
2606 {
2607 
2608 	if (mon_ops)
2609 		return -EBUSY;
2610 
2611 	mon_ops = ops;
2612 	mb();
2613 	return 0;
2614 }
2615 EXPORT_SYMBOL_GPL (usb_mon_register);
2616 
2617 void usb_mon_deregister (void)
2618 {
2619 
2620 	if (mon_ops == NULL) {
2621 		printk(KERN_ERR "USB: monitor was not registered\n");
2622 		return;
2623 	}
2624 	mon_ops = NULL;
2625 	mb();
2626 }
2627 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2628 
2629 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2630