xref: /openbmc/linux/drivers/usb/chipidea/udc.c (revision efe4a1ac)
1 /*
2  * udc.c - ChipIdea UDC driver
3  *
4  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
5  *
6  * Author: David Lopo
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/err.h>
17 #include <linux/irqreturn.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb/otg-fsm.h>
24 #include <linux/usb/chipidea.h>
25 
26 #include "ci.h"
27 #include "udc.h"
28 #include "bits.h"
29 #include "otg.h"
30 #include "otg_fsm.h"
31 
32 /* control endpoint description */
33 static const struct usb_endpoint_descriptor
34 ctrl_endpt_out_desc = {
35 	.bLength         = USB_DT_ENDPOINT_SIZE,
36 	.bDescriptorType = USB_DT_ENDPOINT,
37 
38 	.bEndpointAddress = USB_DIR_OUT,
39 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
40 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
41 };
42 
43 static const struct usb_endpoint_descriptor
44 ctrl_endpt_in_desc = {
45 	.bLength         = USB_DT_ENDPOINT_SIZE,
46 	.bDescriptorType = USB_DT_ENDPOINT,
47 
48 	.bEndpointAddress = USB_DIR_IN,
49 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
50 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
51 };
52 
53 /**
54  * hw_ep_bit: calculates the bit number
55  * @num: endpoint number
56  * @dir: endpoint direction
57  *
58  * This function returns bit number
59  */
60 static inline int hw_ep_bit(int num, int dir)
61 {
62 	return num + ((dir == TX) ? 16 : 0);
63 }
64 
65 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
66 {
67 	int fill = 16 - ci->hw_ep_max / 2;
68 
69 	if (n >= ci->hw_ep_max / 2)
70 		n += fill;
71 
72 	return n;
73 }
74 
75 /**
76  * hw_device_state: enables/disables interrupts (execute without interruption)
77  * @dma: 0 => disable, !0 => enable and set dma engine
78  *
79  * This function returns an error code
80  */
81 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
82 {
83 	if (dma) {
84 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
85 		/* interrupt, error, port change, reset, sleep/suspend */
86 		hw_write(ci, OP_USBINTR, ~0,
87 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
88 	} else {
89 		hw_write(ci, OP_USBINTR, ~0, 0);
90 	}
91 	return 0;
92 }
93 
94 /**
95  * hw_ep_flush: flush endpoint fifo (execute without interruption)
96  * @num: endpoint number
97  * @dir: endpoint direction
98  *
99  * This function returns an error code
100  */
101 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
102 {
103 	int n = hw_ep_bit(num, dir);
104 
105 	do {
106 		/* flush any pending transfer */
107 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
108 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
109 			cpu_relax();
110 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
111 
112 	return 0;
113 }
114 
115 /**
116  * hw_ep_disable: disables endpoint (execute without interruption)
117  * @num: endpoint number
118  * @dir: endpoint direction
119  *
120  * This function returns an error code
121  */
122 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
123 {
124 	hw_write(ci, OP_ENDPTCTRL + num,
125 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
126 	return 0;
127 }
128 
129 /**
130  * hw_ep_enable: enables endpoint (execute without interruption)
131  * @num:  endpoint number
132  * @dir:  endpoint direction
133  * @type: endpoint type
134  *
135  * This function returns an error code
136  */
137 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
138 {
139 	u32 mask, data;
140 
141 	if (dir == TX) {
142 		mask  = ENDPTCTRL_TXT;  /* type    */
143 		data  = type << __ffs(mask);
144 
145 		mask |= ENDPTCTRL_TXS;  /* unstall */
146 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
147 		data |= ENDPTCTRL_TXR;
148 		mask |= ENDPTCTRL_TXE;  /* enable  */
149 		data |= ENDPTCTRL_TXE;
150 	} else {
151 		mask  = ENDPTCTRL_RXT;  /* type    */
152 		data  = type << __ffs(mask);
153 
154 		mask |= ENDPTCTRL_RXS;  /* unstall */
155 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
156 		data |= ENDPTCTRL_RXR;
157 		mask |= ENDPTCTRL_RXE;  /* enable  */
158 		data |= ENDPTCTRL_RXE;
159 	}
160 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
161 	return 0;
162 }
163 
164 /**
165  * hw_ep_get_halt: return endpoint halt status
166  * @num: endpoint number
167  * @dir: endpoint direction
168  *
169  * This function returns 1 if endpoint halted
170  */
171 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
172 {
173 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
174 
175 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
176 }
177 
178 /**
179  * hw_ep_prime: primes endpoint (execute without interruption)
180  * @num:     endpoint number
181  * @dir:     endpoint direction
182  * @is_ctrl: true if control endpoint
183  *
184  * This function returns an error code
185  */
186 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
187 {
188 	int n = hw_ep_bit(num, dir);
189 
190 	/* Synchronize before ep prime */
191 	wmb();
192 
193 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
194 		return -EAGAIN;
195 
196 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
197 
198 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
199 		cpu_relax();
200 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
201 		return -EAGAIN;
202 
203 	/* status shoult be tested according with manual but it doesn't work */
204 	return 0;
205 }
206 
207 /**
208  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
209  *                 without interruption)
210  * @num:   endpoint number
211  * @dir:   endpoint direction
212  * @value: true => stall, false => unstall
213  *
214  * This function returns an error code
215  */
216 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
217 {
218 	if (value != 0 && value != 1)
219 		return -EINVAL;
220 
221 	do {
222 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
223 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
224 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
225 
226 		/* data toggle - reserved for EP0 but it's in ESS */
227 		hw_write(ci, reg, mask_xs|mask_xr,
228 			  value ? mask_xs : mask_xr);
229 	} while (value != hw_ep_get_halt(ci, num, dir));
230 
231 	return 0;
232 }
233 
234 /**
235  * hw_is_port_high_speed: test if port is high speed
236  *
237  * This function returns true if high speed port
238  */
239 static int hw_port_is_high_speed(struct ci_hdrc *ci)
240 {
241 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
242 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
243 }
244 
245 /**
246  * hw_test_and_clear_complete: test & clear complete status (execute without
247  *                             interruption)
248  * @n: endpoint number
249  *
250  * This function returns complete status
251  */
252 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
253 {
254 	n = ep_to_bit(ci, n);
255 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
256 }
257 
258 /**
259  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
260  *                                without interruption)
261  *
262  * This function returns active interrutps
263  */
264 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
265 {
266 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
267 
268 	hw_write(ci, OP_USBSTS, ~0, reg);
269 	return reg;
270 }
271 
272 /**
273  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
274  *                                interruption)
275  *
276  * This function returns guard value
277  */
278 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
279 {
280 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
281 }
282 
283 /**
284  * hw_test_and_set_setup_guard: test & set setup guard (execute without
285  *                              interruption)
286  *
287  * This function returns guard value
288  */
289 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
290 {
291 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
292 }
293 
294 /**
295  * hw_usb_set_address: configures USB address (execute without interruption)
296  * @value: new USB address
297  *
298  * This function explicitly sets the address, without the "USBADRA" (advance)
299  * feature, which is not supported by older versions of the controller.
300  */
301 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
302 {
303 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
304 		 value << __ffs(DEVICEADDR_USBADR));
305 }
306 
307 /**
308  * hw_usb_reset: restart device after a bus reset (execute without
309  *               interruption)
310  *
311  * This function returns an error code
312  */
313 static int hw_usb_reset(struct ci_hdrc *ci)
314 {
315 	hw_usb_set_address(ci, 0);
316 
317 	/* ESS flushes only at end?!? */
318 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
319 
320 	/* clear setup token semaphores */
321 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
322 
323 	/* clear complete status */
324 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
325 
326 	/* wait until all bits cleared */
327 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
328 		udelay(10);             /* not RTOS friendly */
329 
330 	/* reset all endpoints ? */
331 
332 	/* reset internal status and wait for further instructions
333 	   no need to verify the port reset status (ESS does it) */
334 
335 	return 0;
336 }
337 
338 /******************************************************************************
339  * UTIL block
340  *****************************************************************************/
341 
342 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
343 			  unsigned length)
344 {
345 	int i;
346 	u32 temp;
347 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
348 						  GFP_ATOMIC);
349 
350 	if (node == NULL)
351 		return -ENOMEM;
352 
353 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
354 	if (node->ptr == NULL) {
355 		kfree(node);
356 		return -ENOMEM;
357 	}
358 
359 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
360 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
361 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
362 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
363 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
364 
365 		if (hwreq->req.length == 0
366 				|| hwreq->req.length % hwep->ep.maxpacket)
367 			mul++;
368 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
369 	}
370 
371 	temp = (u32) (hwreq->req.dma + hwreq->req.actual);
372 	if (length) {
373 		node->ptr->page[0] = cpu_to_le32(temp);
374 		for (i = 1; i < TD_PAGE_COUNT; i++) {
375 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
376 			page &= ~TD_RESERVED_MASK;
377 			node->ptr->page[i] = cpu_to_le32(page);
378 		}
379 	}
380 
381 	hwreq->req.actual += length;
382 
383 	if (!list_empty(&hwreq->tds)) {
384 		/* get the last entry */
385 		lastnode = list_entry(hwreq->tds.prev,
386 				struct td_node, td);
387 		lastnode->ptr->next = cpu_to_le32(node->dma);
388 	}
389 
390 	INIT_LIST_HEAD(&node->td);
391 	list_add_tail(&node->td, &hwreq->tds);
392 
393 	return 0;
394 }
395 
396 /**
397  * _usb_addr: calculates endpoint address from direction & number
398  * @ep:  endpoint
399  */
400 static inline u8 _usb_addr(struct ci_hw_ep *ep)
401 {
402 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
403 }
404 
405 /**
406  * _hardware_enqueue: configures a request at hardware level
407  * @hwep:   endpoint
408  * @hwreq:  request
409  *
410  * This function returns an error code
411  */
412 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
413 {
414 	struct ci_hdrc *ci = hwep->ci;
415 	int ret = 0;
416 	unsigned rest = hwreq->req.length;
417 	int pages = TD_PAGE_COUNT;
418 	struct td_node *firstnode, *lastnode;
419 
420 	/* don't queue twice */
421 	if (hwreq->req.status == -EALREADY)
422 		return -EALREADY;
423 
424 	hwreq->req.status = -EALREADY;
425 
426 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
427 					    &hwreq->req, hwep->dir);
428 	if (ret)
429 		return ret;
430 
431 	/*
432 	 * The first buffer could be not page aligned.
433 	 * In that case we have to span into one extra td.
434 	 */
435 	if (hwreq->req.dma % PAGE_SIZE)
436 		pages--;
437 
438 	if (rest == 0) {
439 		ret = add_td_to_list(hwep, hwreq, 0);
440 		if (ret < 0)
441 			goto done;
442 	}
443 
444 	while (rest > 0) {
445 		unsigned count = min(hwreq->req.length - hwreq->req.actual,
446 					(unsigned)(pages * CI_HDRC_PAGE_SIZE));
447 		ret = add_td_to_list(hwep, hwreq, count);
448 		if (ret < 0)
449 			goto done;
450 
451 		rest -= count;
452 	}
453 
454 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
455 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
456 		ret = add_td_to_list(hwep, hwreq, 0);
457 		if (ret < 0)
458 			goto done;
459 	}
460 
461 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
462 
463 	lastnode = list_entry(hwreq->tds.prev,
464 		struct td_node, td);
465 
466 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
467 	if (!hwreq->req.no_interrupt)
468 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
469 	wmb();
470 
471 	hwreq->req.actual = 0;
472 	if (!list_empty(&hwep->qh.queue)) {
473 		struct ci_hw_req *hwreqprev;
474 		int n = hw_ep_bit(hwep->num, hwep->dir);
475 		int tmp_stat;
476 		struct td_node *prevlastnode;
477 		u32 next = firstnode->dma & TD_ADDR_MASK;
478 
479 		hwreqprev = list_entry(hwep->qh.queue.prev,
480 				struct ci_hw_req, queue);
481 		prevlastnode = list_entry(hwreqprev->tds.prev,
482 				struct td_node, td);
483 
484 		prevlastnode->ptr->next = cpu_to_le32(next);
485 		wmb();
486 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
487 			goto done;
488 		do {
489 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
490 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
491 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
492 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
493 		if (tmp_stat)
494 			goto done;
495 	}
496 
497 	/*  QH configuration */
498 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
499 	hwep->qh.ptr->td.token &=
500 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
501 
502 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
503 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
504 
505 		if (hwreq->req.length == 0
506 				|| hwreq->req.length % hwep->ep.maxpacket)
507 			mul++;
508 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
509 	}
510 
511 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
512 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
513 done:
514 	return ret;
515 }
516 
517 /*
518  * free_pending_td: remove a pending request for the endpoint
519  * @hwep: endpoint
520  */
521 static void free_pending_td(struct ci_hw_ep *hwep)
522 {
523 	struct td_node *pending = hwep->pending_td;
524 
525 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
526 	hwep->pending_td = NULL;
527 	kfree(pending);
528 }
529 
530 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
531 					   struct td_node *node)
532 {
533 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
534 	hwep->qh.ptr->td.token &=
535 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
536 
537 	return hw_ep_prime(ci, hwep->num, hwep->dir,
538 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
539 }
540 
541 /**
542  * _hardware_dequeue: handles a request at hardware level
543  * @gadget: gadget
544  * @hwep:   endpoint
545  *
546  * This function returns an error code
547  */
548 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
549 {
550 	u32 tmptoken;
551 	struct td_node *node, *tmpnode;
552 	unsigned remaining_length;
553 	unsigned actual = hwreq->req.length;
554 	struct ci_hdrc *ci = hwep->ci;
555 
556 	if (hwreq->req.status != -EALREADY)
557 		return -EINVAL;
558 
559 	hwreq->req.status = 0;
560 
561 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
562 		tmptoken = le32_to_cpu(node->ptr->token);
563 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
564 			int n = hw_ep_bit(hwep->num, hwep->dir);
565 
566 			if (ci->rev == CI_REVISION_24)
567 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
568 					reprime_dtd(ci, hwep, node);
569 			hwreq->req.status = -EALREADY;
570 			return -EBUSY;
571 		}
572 
573 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
574 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
575 		actual -= remaining_length;
576 
577 		hwreq->req.status = tmptoken & TD_STATUS;
578 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
579 			hwreq->req.status = -EPIPE;
580 			break;
581 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
582 			hwreq->req.status = -EPROTO;
583 			break;
584 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
585 			hwreq->req.status = -EILSEQ;
586 			break;
587 		}
588 
589 		if (remaining_length) {
590 			if (hwep->dir == TX) {
591 				hwreq->req.status = -EPROTO;
592 				break;
593 			}
594 		}
595 		/*
596 		 * As the hardware could still address the freed td
597 		 * which will run the udc unusable, the cleanup of the
598 		 * td has to be delayed by one.
599 		 */
600 		if (hwep->pending_td)
601 			free_pending_td(hwep);
602 
603 		hwep->pending_td = node;
604 		list_del_init(&node->td);
605 	}
606 
607 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
608 					&hwreq->req, hwep->dir);
609 
610 	hwreq->req.actual += actual;
611 
612 	if (hwreq->req.status)
613 		return hwreq->req.status;
614 
615 	return hwreq->req.actual;
616 }
617 
618 /**
619  * _ep_nuke: dequeues all endpoint requests
620  * @hwep: endpoint
621  *
622  * This function returns an error code
623  * Caller must hold lock
624  */
625 static int _ep_nuke(struct ci_hw_ep *hwep)
626 __releases(hwep->lock)
627 __acquires(hwep->lock)
628 {
629 	struct td_node *node, *tmpnode;
630 	if (hwep == NULL)
631 		return -EINVAL;
632 
633 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
634 
635 	while (!list_empty(&hwep->qh.queue)) {
636 
637 		/* pop oldest request */
638 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
639 						     struct ci_hw_req, queue);
640 
641 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
642 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
643 			list_del_init(&node->td);
644 			node->ptr = NULL;
645 			kfree(node);
646 		}
647 
648 		list_del_init(&hwreq->queue);
649 		hwreq->req.status = -ESHUTDOWN;
650 
651 		if (hwreq->req.complete != NULL) {
652 			spin_unlock(hwep->lock);
653 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
654 			spin_lock(hwep->lock);
655 		}
656 	}
657 
658 	if (hwep->pending_td)
659 		free_pending_td(hwep);
660 
661 	return 0;
662 }
663 
664 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
665 {
666 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
667 	int direction, retval = 0;
668 	unsigned long flags;
669 
670 	if (ep == NULL || hwep->ep.desc == NULL)
671 		return -EINVAL;
672 
673 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
674 		return -EOPNOTSUPP;
675 
676 	spin_lock_irqsave(hwep->lock, flags);
677 
678 	if (value && hwep->dir == TX && check_transfer &&
679 		!list_empty(&hwep->qh.queue) &&
680 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
681 		spin_unlock_irqrestore(hwep->lock, flags);
682 		return -EAGAIN;
683 	}
684 
685 	direction = hwep->dir;
686 	do {
687 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
688 
689 		if (!value)
690 			hwep->wedge = 0;
691 
692 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
693 			hwep->dir = (hwep->dir == TX) ? RX : TX;
694 
695 	} while (hwep->dir != direction);
696 
697 	spin_unlock_irqrestore(hwep->lock, flags);
698 	return retval;
699 }
700 
701 
702 /**
703  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
704  * @gadget: gadget
705  *
706  * This function returns an error code
707  */
708 static int _gadget_stop_activity(struct usb_gadget *gadget)
709 {
710 	struct usb_ep *ep;
711 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
712 	unsigned long flags;
713 
714 	spin_lock_irqsave(&ci->lock, flags);
715 	ci->gadget.speed = USB_SPEED_UNKNOWN;
716 	ci->remote_wakeup = 0;
717 	ci->suspended = 0;
718 	spin_unlock_irqrestore(&ci->lock, flags);
719 
720 	/* flush all endpoints */
721 	gadget_for_each_ep(ep, gadget) {
722 		usb_ep_fifo_flush(ep);
723 	}
724 	usb_ep_fifo_flush(&ci->ep0out->ep);
725 	usb_ep_fifo_flush(&ci->ep0in->ep);
726 
727 	/* make sure to disable all endpoints */
728 	gadget_for_each_ep(ep, gadget) {
729 		usb_ep_disable(ep);
730 	}
731 
732 	if (ci->status != NULL) {
733 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
734 		ci->status = NULL;
735 	}
736 
737 	return 0;
738 }
739 
740 /******************************************************************************
741  * ISR block
742  *****************************************************************************/
743 /**
744  * isr_reset_handler: USB reset interrupt handler
745  * @ci: UDC device
746  *
747  * This function resets USB engine after a bus reset occurred
748  */
749 static void isr_reset_handler(struct ci_hdrc *ci)
750 __releases(ci->lock)
751 __acquires(ci->lock)
752 {
753 	int retval;
754 
755 	spin_unlock(&ci->lock);
756 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
757 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
758 
759 	retval = _gadget_stop_activity(&ci->gadget);
760 	if (retval)
761 		goto done;
762 
763 	retval = hw_usb_reset(ci);
764 	if (retval)
765 		goto done;
766 
767 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
768 	if (ci->status == NULL)
769 		retval = -ENOMEM;
770 
771 done:
772 	spin_lock(&ci->lock);
773 
774 	if (retval)
775 		dev_err(ci->dev, "error: %i\n", retval);
776 }
777 
778 /**
779  * isr_get_status_complete: get_status request complete function
780  * @ep:  endpoint
781  * @req: request handled
782  *
783  * Caller must release lock
784  */
785 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
786 {
787 	if (ep == NULL || req == NULL)
788 		return;
789 
790 	kfree(req->buf);
791 	usb_ep_free_request(ep, req);
792 }
793 
794 /**
795  * _ep_queue: queues (submits) an I/O request to an endpoint
796  * @ep:        endpoint
797  * @req:       request
798  * @gfp_flags: GFP flags (not used)
799  *
800  * Caller must hold lock
801  * This function returns an error code
802  */
803 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
804 		    gfp_t __maybe_unused gfp_flags)
805 {
806 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
807 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
808 	struct ci_hdrc *ci = hwep->ci;
809 	int retval = 0;
810 
811 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
812 		return -EINVAL;
813 
814 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
815 		if (req->length)
816 			hwep = (ci->ep0_dir == RX) ?
817 			       ci->ep0out : ci->ep0in;
818 		if (!list_empty(&hwep->qh.queue)) {
819 			_ep_nuke(hwep);
820 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
821 				 _usb_addr(hwep));
822 		}
823 	}
824 
825 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
826 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
827 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
828 		return -EMSGSIZE;
829 	}
830 
831 	/* first nuke then test link, e.g. previous status has not sent */
832 	if (!list_empty(&hwreq->queue)) {
833 		dev_err(hwep->ci->dev, "request already in queue\n");
834 		return -EBUSY;
835 	}
836 
837 	/* push request */
838 	hwreq->req.status = -EINPROGRESS;
839 	hwreq->req.actual = 0;
840 
841 	retval = _hardware_enqueue(hwep, hwreq);
842 
843 	if (retval == -EALREADY)
844 		retval = 0;
845 	if (!retval)
846 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
847 
848 	return retval;
849 }
850 
851 /**
852  * isr_get_status_response: get_status request response
853  * @ci: ci struct
854  * @setup: setup request packet
855  *
856  * This function returns an error code
857  */
858 static int isr_get_status_response(struct ci_hdrc *ci,
859 				   struct usb_ctrlrequest *setup)
860 __releases(hwep->lock)
861 __acquires(hwep->lock)
862 {
863 	struct ci_hw_ep *hwep = ci->ep0in;
864 	struct usb_request *req = NULL;
865 	gfp_t gfp_flags = GFP_ATOMIC;
866 	int dir, num, retval;
867 
868 	if (hwep == NULL || setup == NULL)
869 		return -EINVAL;
870 
871 	spin_unlock(hwep->lock);
872 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
873 	spin_lock(hwep->lock);
874 	if (req == NULL)
875 		return -ENOMEM;
876 
877 	req->complete = isr_get_status_complete;
878 	req->length   = 2;
879 	req->buf      = kzalloc(req->length, gfp_flags);
880 	if (req->buf == NULL) {
881 		retval = -ENOMEM;
882 		goto err_free_req;
883 	}
884 
885 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
886 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
887 			ci->gadget.is_selfpowered;
888 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
889 		   == USB_RECIP_ENDPOINT) {
890 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
891 			TX : RX;
892 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
893 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
894 	}
895 	/* else do nothing; reserved for future use */
896 
897 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
898 	if (retval)
899 		goto err_free_buf;
900 
901 	return 0;
902 
903  err_free_buf:
904 	kfree(req->buf);
905  err_free_req:
906 	spin_unlock(hwep->lock);
907 	usb_ep_free_request(&hwep->ep, req);
908 	spin_lock(hwep->lock);
909 	return retval;
910 }
911 
912 /**
913  * isr_setup_status_complete: setup_status request complete function
914  * @ep:  endpoint
915  * @req: request handled
916  *
917  * Caller must release lock. Put the port in test mode if test mode
918  * feature is selected.
919  */
920 static void
921 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
922 {
923 	struct ci_hdrc *ci = req->context;
924 	unsigned long flags;
925 
926 	if (ci->setaddr) {
927 		hw_usb_set_address(ci, ci->address);
928 		ci->setaddr = false;
929 		if (ci->address)
930 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
931 	}
932 
933 	spin_lock_irqsave(&ci->lock, flags);
934 	if (ci->test_mode)
935 		hw_port_test_set(ci, ci->test_mode);
936 	spin_unlock_irqrestore(&ci->lock, flags);
937 }
938 
939 /**
940  * isr_setup_status_phase: queues the status phase of a setup transation
941  * @ci: ci struct
942  *
943  * This function returns an error code
944  */
945 static int isr_setup_status_phase(struct ci_hdrc *ci)
946 {
947 	int retval;
948 	struct ci_hw_ep *hwep;
949 
950 	/*
951 	 * Unexpected USB controller behavior, caused by bad signal integrity
952 	 * or ground reference problems, can lead to isr_setup_status_phase
953 	 * being called with ci->status equal to NULL.
954 	 * If this situation occurs, you should review your USB hardware design.
955 	 */
956 	if (WARN_ON_ONCE(!ci->status))
957 		return -EPIPE;
958 
959 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
960 	ci->status->context = ci;
961 	ci->status->complete = isr_setup_status_complete;
962 
963 	retval = _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
964 
965 	return retval;
966 }
967 
968 /**
969  * isr_tr_complete_low: transaction complete low level handler
970  * @hwep: endpoint
971  *
972  * This function returns an error code
973  * Caller must hold lock
974  */
975 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
976 __releases(hwep->lock)
977 __acquires(hwep->lock)
978 {
979 	struct ci_hw_req *hwreq, *hwreqtemp;
980 	struct ci_hw_ep *hweptemp = hwep;
981 	int retval = 0;
982 
983 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
984 			queue) {
985 		retval = _hardware_dequeue(hwep, hwreq);
986 		if (retval < 0)
987 			break;
988 		list_del_init(&hwreq->queue);
989 		if (hwreq->req.complete != NULL) {
990 			spin_unlock(hwep->lock);
991 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
992 					hwreq->req.length)
993 				hweptemp = hwep->ci->ep0in;
994 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
995 			spin_lock(hwep->lock);
996 		}
997 	}
998 
999 	if (retval == -EBUSY)
1000 		retval = 0;
1001 
1002 	return retval;
1003 }
1004 
1005 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1006 {
1007 	dev_warn(&ci->gadget.dev,
1008 		"connect the device to an alternate port if you want HNP\n");
1009 	return isr_setup_status_phase(ci);
1010 }
1011 
1012 /**
1013  * isr_setup_packet_handler: setup packet handler
1014  * @ci: UDC descriptor
1015  *
1016  * This function handles setup packet
1017  */
1018 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1019 __releases(ci->lock)
1020 __acquires(ci->lock)
1021 {
1022 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1023 	struct usb_ctrlrequest req;
1024 	int type, num, dir, err = -EINVAL;
1025 	u8 tmode = 0;
1026 
1027 	/*
1028 	 * Flush data and handshake transactions of previous
1029 	 * setup packet.
1030 	 */
1031 	_ep_nuke(ci->ep0out);
1032 	_ep_nuke(ci->ep0in);
1033 
1034 	/* read_setup_packet */
1035 	do {
1036 		hw_test_and_set_setup_guard(ci);
1037 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1038 	} while (!hw_test_and_clear_setup_guard(ci));
1039 
1040 	type = req.bRequestType;
1041 
1042 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1043 
1044 	switch (req.bRequest) {
1045 	case USB_REQ_CLEAR_FEATURE:
1046 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1047 				le16_to_cpu(req.wValue) ==
1048 				USB_ENDPOINT_HALT) {
1049 			if (req.wLength != 0)
1050 				break;
1051 			num  = le16_to_cpu(req.wIndex);
1052 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1053 			num &= USB_ENDPOINT_NUMBER_MASK;
1054 			if (dir == TX)
1055 				num += ci->hw_ep_max / 2;
1056 			if (!ci->ci_hw_ep[num].wedge) {
1057 				spin_unlock(&ci->lock);
1058 				err = usb_ep_clear_halt(
1059 					&ci->ci_hw_ep[num].ep);
1060 				spin_lock(&ci->lock);
1061 				if (err)
1062 					break;
1063 			}
1064 			err = isr_setup_status_phase(ci);
1065 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1066 				le16_to_cpu(req.wValue) ==
1067 				USB_DEVICE_REMOTE_WAKEUP) {
1068 			if (req.wLength != 0)
1069 				break;
1070 			ci->remote_wakeup = 0;
1071 			err = isr_setup_status_phase(ci);
1072 		} else {
1073 			goto delegate;
1074 		}
1075 		break;
1076 	case USB_REQ_GET_STATUS:
1077 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1078 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1079 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1080 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1081 			goto delegate;
1082 		if (le16_to_cpu(req.wLength) != 2 ||
1083 		    le16_to_cpu(req.wValue)  != 0)
1084 			break;
1085 		err = isr_get_status_response(ci, &req);
1086 		break;
1087 	case USB_REQ_SET_ADDRESS:
1088 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1089 			goto delegate;
1090 		if (le16_to_cpu(req.wLength) != 0 ||
1091 		    le16_to_cpu(req.wIndex)  != 0)
1092 			break;
1093 		ci->address = (u8)le16_to_cpu(req.wValue);
1094 		ci->setaddr = true;
1095 		err = isr_setup_status_phase(ci);
1096 		break;
1097 	case USB_REQ_SET_FEATURE:
1098 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1099 				le16_to_cpu(req.wValue) ==
1100 				USB_ENDPOINT_HALT) {
1101 			if (req.wLength != 0)
1102 				break;
1103 			num  = le16_to_cpu(req.wIndex);
1104 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1105 			num &= USB_ENDPOINT_NUMBER_MASK;
1106 			if (dir == TX)
1107 				num += ci->hw_ep_max / 2;
1108 
1109 			spin_unlock(&ci->lock);
1110 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1111 			spin_lock(&ci->lock);
1112 			if (!err)
1113 				isr_setup_status_phase(ci);
1114 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1115 			if (req.wLength != 0)
1116 				break;
1117 			switch (le16_to_cpu(req.wValue)) {
1118 			case USB_DEVICE_REMOTE_WAKEUP:
1119 				ci->remote_wakeup = 1;
1120 				err = isr_setup_status_phase(ci);
1121 				break;
1122 			case USB_DEVICE_TEST_MODE:
1123 				tmode = le16_to_cpu(req.wIndex) >> 8;
1124 				switch (tmode) {
1125 				case TEST_J:
1126 				case TEST_K:
1127 				case TEST_SE0_NAK:
1128 				case TEST_PACKET:
1129 				case TEST_FORCE_EN:
1130 					ci->test_mode = tmode;
1131 					err = isr_setup_status_phase(
1132 							ci);
1133 					break;
1134 				default:
1135 					break;
1136 				}
1137 				break;
1138 			case USB_DEVICE_B_HNP_ENABLE:
1139 				if (ci_otg_is_fsm_mode(ci)) {
1140 					ci->gadget.b_hnp_enable = 1;
1141 					err = isr_setup_status_phase(
1142 							ci);
1143 				}
1144 				break;
1145 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1146 				if (ci_otg_is_fsm_mode(ci))
1147 					err = otg_a_alt_hnp_support(ci);
1148 				break;
1149 			case USB_DEVICE_A_HNP_SUPPORT:
1150 				if (ci_otg_is_fsm_mode(ci)) {
1151 					ci->gadget.a_hnp_support = 1;
1152 					err = isr_setup_status_phase(
1153 							ci);
1154 				}
1155 				break;
1156 			default:
1157 				goto delegate;
1158 			}
1159 		} else {
1160 			goto delegate;
1161 		}
1162 		break;
1163 	default:
1164 delegate:
1165 		if (req.wLength == 0)   /* no data phase */
1166 			ci->ep0_dir = TX;
1167 
1168 		spin_unlock(&ci->lock);
1169 		err = ci->driver->setup(&ci->gadget, &req);
1170 		spin_lock(&ci->lock);
1171 		break;
1172 	}
1173 
1174 	if (err < 0) {
1175 		spin_unlock(&ci->lock);
1176 		if (_ep_set_halt(&hwep->ep, 1, false))
1177 			dev_err(ci->dev, "error: _ep_set_halt\n");
1178 		spin_lock(&ci->lock);
1179 	}
1180 }
1181 
1182 /**
1183  * isr_tr_complete_handler: transaction complete interrupt handler
1184  * @ci: UDC descriptor
1185  *
1186  * This function handles traffic events
1187  */
1188 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1189 __releases(ci->lock)
1190 __acquires(ci->lock)
1191 {
1192 	unsigned i;
1193 	int err;
1194 
1195 	for (i = 0; i < ci->hw_ep_max; i++) {
1196 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1197 
1198 		if (hwep->ep.desc == NULL)
1199 			continue;   /* not configured */
1200 
1201 		if (hw_test_and_clear_complete(ci, i)) {
1202 			err = isr_tr_complete_low(hwep);
1203 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1204 				if (err > 0)   /* needs status phase */
1205 					err = isr_setup_status_phase(ci);
1206 				if (err < 0) {
1207 					spin_unlock(&ci->lock);
1208 					if (_ep_set_halt(&hwep->ep, 1, false))
1209 						dev_err(ci->dev,
1210 						"error: _ep_set_halt\n");
1211 					spin_lock(&ci->lock);
1212 				}
1213 			}
1214 		}
1215 
1216 		/* Only handle setup packet below */
1217 		if (i == 0 &&
1218 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1219 			isr_setup_packet_handler(ci);
1220 	}
1221 }
1222 
1223 /******************************************************************************
1224  * ENDPT block
1225  *****************************************************************************/
1226 /**
1227  * ep_enable: configure endpoint, making it usable
1228  *
1229  * Check usb_ep_enable() at "usb_gadget.h" for details
1230  */
1231 static int ep_enable(struct usb_ep *ep,
1232 		     const struct usb_endpoint_descriptor *desc)
1233 {
1234 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1235 	int retval = 0;
1236 	unsigned long flags;
1237 	u32 cap = 0;
1238 
1239 	if (ep == NULL || desc == NULL)
1240 		return -EINVAL;
1241 
1242 	spin_lock_irqsave(hwep->lock, flags);
1243 
1244 	/* only internal SW should enable ctrl endpts */
1245 
1246 	if (!list_empty(&hwep->qh.queue)) {
1247 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1248 		spin_unlock_irqrestore(hwep->lock, flags);
1249 		return -EBUSY;
1250 	}
1251 
1252 	hwep->ep.desc = desc;
1253 
1254 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1255 	hwep->num  = usb_endpoint_num(desc);
1256 	hwep->type = usb_endpoint_type(desc);
1257 
1258 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1259 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1260 
1261 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1262 		cap |= QH_IOS;
1263 
1264 	cap |= QH_ZLT;
1265 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1266 	/*
1267 	 * For ISO-TX, we set mult at QH as the largest value, and use
1268 	 * MultO at TD as real mult value.
1269 	 */
1270 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1271 		cap |= 3 << __ffs(QH_MULT);
1272 
1273 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1274 
1275 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1276 
1277 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1278 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1279 		retval = -EINVAL;
1280 	}
1281 
1282 	/*
1283 	 * Enable endpoints in the HW other than ep0 as ep0
1284 	 * is always enabled
1285 	 */
1286 	if (hwep->num)
1287 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1288 				       hwep->type);
1289 
1290 	spin_unlock_irqrestore(hwep->lock, flags);
1291 	return retval;
1292 }
1293 
1294 /**
1295  * ep_disable: endpoint is no longer usable
1296  *
1297  * Check usb_ep_disable() at "usb_gadget.h" for details
1298  */
1299 static int ep_disable(struct usb_ep *ep)
1300 {
1301 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1302 	int direction, retval = 0;
1303 	unsigned long flags;
1304 
1305 	if (ep == NULL)
1306 		return -EINVAL;
1307 	else if (hwep->ep.desc == NULL)
1308 		return -EBUSY;
1309 
1310 	spin_lock_irqsave(hwep->lock, flags);
1311 
1312 	/* only internal SW should disable ctrl endpts */
1313 
1314 	direction = hwep->dir;
1315 	do {
1316 		retval |= _ep_nuke(hwep);
1317 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1318 
1319 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1320 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1321 
1322 	} while (hwep->dir != direction);
1323 
1324 	hwep->ep.desc = NULL;
1325 
1326 	spin_unlock_irqrestore(hwep->lock, flags);
1327 	return retval;
1328 }
1329 
1330 /**
1331  * ep_alloc_request: allocate a request object to use with this endpoint
1332  *
1333  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1334  */
1335 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1336 {
1337 	struct ci_hw_req *hwreq = NULL;
1338 
1339 	if (ep == NULL)
1340 		return NULL;
1341 
1342 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1343 	if (hwreq != NULL) {
1344 		INIT_LIST_HEAD(&hwreq->queue);
1345 		INIT_LIST_HEAD(&hwreq->tds);
1346 	}
1347 
1348 	return (hwreq == NULL) ? NULL : &hwreq->req;
1349 }
1350 
1351 /**
1352  * ep_free_request: frees a request object
1353  *
1354  * Check usb_ep_free_request() at "usb_gadget.h" for details
1355  */
1356 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1357 {
1358 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1359 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1360 	struct td_node *node, *tmpnode;
1361 	unsigned long flags;
1362 
1363 	if (ep == NULL || req == NULL) {
1364 		return;
1365 	} else if (!list_empty(&hwreq->queue)) {
1366 		dev_err(hwep->ci->dev, "freeing queued request\n");
1367 		return;
1368 	}
1369 
1370 	spin_lock_irqsave(hwep->lock, flags);
1371 
1372 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1373 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1374 		list_del_init(&node->td);
1375 		node->ptr = NULL;
1376 		kfree(node);
1377 	}
1378 
1379 	kfree(hwreq);
1380 
1381 	spin_unlock_irqrestore(hwep->lock, flags);
1382 }
1383 
1384 /**
1385  * ep_queue: queues (submits) an I/O request to an endpoint
1386  *
1387  * Check usb_ep_queue()* at usb_gadget.h" for details
1388  */
1389 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1390 		    gfp_t __maybe_unused gfp_flags)
1391 {
1392 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1393 	int retval = 0;
1394 	unsigned long flags;
1395 
1396 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1397 		return -EINVAL;
1398 
1399 	spin_lock_irqsave(hwep->lock, flags);
1400 	retval = _ep_queue(ep, req, gfp_flags);
1401 	spin_unlock_irqrestore(hwep->lock, flags);
1402 	return retval;
1403 }
1404 
1405 /**
1406  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1407  *
1408  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1409  */
1410 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1411 {
1412 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1413 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1414 	unsigned long flags;
1415 	struct td_node *node, *tmpnode;
1416 
1417 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1418 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1419 		list_empty(&hwep->qh.queue))
1420 		return -EINVAL;
1421 
1422 	spin_lock_irqsave(hwep->lock, flags);
1423 
1424 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1425 
1426 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1427 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1428 		list_del(&node->td);
1429 		kfree(node);
1430 	}
1431 
1432 	/* pop request */
1433 	list_del_init(&hwreq->queue);
1434 
1435 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1436 
1437 	req->status = -ECONNRESET;
1438 
1439 	if (hwreq->req.complete != NULL) {
1440 		spin_unlock(hwep->lock);
1441 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1442 		spin_lock(hwep->lock);
1443 	}
1444 
1445 	spin_unlock_irqrestore(hwep->lock, flags);
1446 	return 0;
1447 }
1448 
1449 /**
1450  * ep_set_halt: sets the endpoint halt feature
1451  *
1452  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1453  */
1454 static int ep_set_halt(struct usb_ep *ep, int value)
1455 {
1456 	return _ep_set_halt(ep, value, true);
1457 }
1458 
1459 /**
1460  * ep_set_wedge: sets the halt feature and ignores clear requests
1461  *
1462  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1463  */
1464 static int ep_set_wedge(struct usb_ep *ep)
1465 {
1466 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1467 	unsigned long flags;
1468 
1469 	if (ep == NULL || hwep->ep.desc == NULL)
1470 		return -EINVAL;
1471 
1472 	spin_lock_irqsave(hwep->lock, flags);
1473 	hwep->wedge = 1;
1474 	spin_unlock_irqrestore(hwep->lock, flags);
1475 
1476 	return usb_ep_set_halt(ep);
1477 }
1478 
1479 /**
1480  * ep_fifo_flush: flushes contents of a fifo
1481  *
1482  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1483  */
1484 static void ep_fifo_flush(struct usb_ep *ep)
1485 {
1486 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1487 	unsigned long flags;
1488 
1489 	if (ep == NULL) {
1490 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1491 		return;
1492 	}
1493 
1494 	spin_lock_irqsave(hwep->lock, flags);
1495 
1496 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1497 
1498 	spin_unlock_irqrestore(hwep->lock, flags);
1499 }
1500 
1501 /**
1502  * Endpoint-specific part of the API to the USB controller hardware
1503  * Check "usb_gadget.h" for details
1504  */
1505 static const struct usb_ep_ops usb_ep_ops = {
1506 	.enable	       = ep_enable,
1507 	.disable       = ep_disable,
1508 	.alloc_request = ep_alloc_request,
1509 	.free_request  = ep_free_request,
1510 	.queue	       = ep_queue,
1511 	.dequeue       = ep_dequeue,
1512 	.set_halt      = ep_set_halt,
1513 	.set_wedge     = ep_set_wedge,
1514 	.fifo_flush    = ep_fifo_flush,
1515 };
1516 
1517 /******************************************************************************
1518  * GADGET block
1519  *****************************************************************************/
1520 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1521 {
1522 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1523 	unsigned long flags;
1524 	int gadget_ready = 0;
1525 
1526 	spin_lock_irqsave(&ci->lock, flags);
1527 	ci->vbus_active = is_active;
1528 	if (ci->driver)
1529 		gadget_ready = 1;
1530 	spin_unlock_irqrestore(&ci->lock, flags);
1531 
1532 	if (gadget_ready) {
1533 		if (is_active) {
1534 			pm_runtime_get_sync(&_gadget->dev);
1535 			hw_device_reset(ci);
1536 			hw_device_state(ci, ci->ep0out->qh.dma);
1537 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1538 			usb_udc_vbus_handler(_gadget, true);
1539 		} else {
1540 			usb_udc_vbus_handler(_gadget, false);
1541 			if (ci->driver)
1542 				ci->driver->disconnect(&ci->gadget);
1543 			hw_device_state(ci, 0);
1544 			if (ci->platdata->notify_event)
1545 				ci->platdata->notify_event(ci,
1546 				CI_HDRC_CONTROLLER_STOPPED_EVENT);
1547 			_gadget_stop_activity(&ci->gadget);
1548 			pm_runtime_put_sync(&_gadget->dev);
1549 			usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1550 		}
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1557 {
1558 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1559 	unsigned long flags;
1560 	int ret = 0;
1561 
1562 	spin_lock_irqsave(&ci->lock, flags);
1563 	if (!ci->remote_wakeup) {
1564 		ret = -EOPNOTSUPP;
1565 		goto out;
1566 	}
1567 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1568 		ret = -EINVAL;
1569 		goto out;
1570 	}
1571 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1572 out:
1573 	spin_unlock_irqrestore(&ci->lock, flags);
1574 	return ret;
1575 }
1576 
1577 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1578 {
1579 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1580 
1581 	if (ci->usb_phy)
1582 		return usb_phy_set_power(ci->usb_phy, ma);
1583 	return -ENOTSUPP;
1584 }
1585 
1586 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1587 {
1588 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1589 	struct ci_hw_ep *hwep = ci->ep0in;
1590 	unsigned long flags;
1591 
1592 	spin_lock_irqsave(hwep->lock, flags);
1593 	_gadget->is_selfpowered = (is_on != 0);
1594 	spin_unlock_irqrestore(hwep->lock, flags);
1595 
1596 	return 0;
1597 }
1598 
1599 /* Change Data+ pullup status
1600  * this func is used by usb_gadget_connect/disconnet
1601  */
1602 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1603 {
1604 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1605 
1606 	/*
1607 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1608 	 * and don't touch Data+ in host mode for dual role config.
1609 	 */
1610 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1611 		return 0;
1612 
1613 	pm_runtime_get_sync(&ci->gadget.dev);
1614 	if (is_on)
1615 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1616 	else
1617 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1618 	pm_runtime_put_sync(&ci->gadget.dev);
1619 
1620 	return 0;
1621 }
1622 
1623 static int ci_udc_start(struct usb_gadget *gadget,
1624 			 struct usb_gadget_driver *driver);
1625 static int ci_udc_stop(struct usb_gadget *gadget);
1626 /**
1627  * Device operations part of the API to the USB controller hardware,
1628  * which don't involve endpoints (or i/o)
1629  * Check  "usb_gadget.h" for details
1630  */
1631 static const struct usb_gadget_ops usb_gadget_ops = {
1632 	.vbus_session	= ci_udc_vbus_session,
1633 	.wakeup		= ci_udc_wakeup,
1634 	.set_selfpowered	= ci_udc_selfpowered,
1635 	.pullup		= ci_udc_pullup,
1636 	.vbus_draw	= ci_udc_vbus_draw,
1637 	.udc_start	= ci_udc_start,
1638 	.udc_stop	= ci_udc_stop,
1639 };
1640 
1641 static int init_eps(struct ci_hdrc *ci)
1642 {
1643 	int retval = 0, i, j;
1644 
1645 	for (i = 0; i < ci->hw_ep_max/2; i++)
1646 		for (j = RX; j <= TX; j++) {
1647 			int k = i + j * ci->hw_ep_max/2;
1648 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1649 
1650 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1651 					(j == TX)  ? "in" : "out");
1652 
1653 			hwep->ci          = ci;
1654 			hwep->lock         = &ci->lock;
1655 			hwep->td_pool      = ci->td_pool;
1656 
1657 			hwep->ep.name      = hwep->name;
1658 			hwep->ep.ops       = &usb_ep_ops;
1659 
1660 			if (i == 0) {
1661 				hwep->ep.caps.type_control = true;
1662 			} else {
1663 				hwep->ep.caps.type_iso = true;
1664 				hwep->ep.caps.type_bulk = true;
1665 				hwep->ep.caps.type_int = true;
1666 			}
1667 
1668 			if (j == TX)
1669 				hwep->ep.caps.dir_in = true;
1670 			else
1671 				hwep->ep.caps.dir_out = true;
1672 
1673 			/*
1674 			 * for ep0: maxP defined in desc, for other
1675 			 * eps, maxP is set by epautoconfig() called
1676 			 * by gadget layer
1677 			 */
1678 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1679 
1680 			INIT_LIST_HEAD(&hwep->qh.queue);
1681 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1682 						       &hwep->qh.dma);
1683 			if (hwep->qh.ptr == NULL)
1684 				retval = -ENOMEM;
1685 
1686 			/*
1687 			 * set up shorthands for ep0 out and in endpoints,
1688 			 * don't add to gadget's ep_list
1689 			 */
1690 			if (i == 0) {
1691 				if (j == RX)
1692 					ci->ep0out = hwep;
1693 				else
1694 					ci->ep0in = hwep;
1695 
1696 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1697 				continue;
1698 			}
1699 
1700 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1701 		}
1702 
1703 	return retval;
1704 }
1705 
1706 static void destroy_eps(struct ci_hdrc *ci)
1707 {
1708 	int i;
1709 
1710 	for (i = 0; i < ci->hw_ep_max; i++) {
1711 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1712 
1713 		if (hwep->pending_td)
1714 			free_pending_td(hwep);
1715 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1716 	}
1717 }
1718 
1719 /**
1720  * ci_udc_start: register a gadget driver
1721  * @gadget: our gadget
1722  * @driver: the driver being registered
1723  *
1724  * Interrupts are enabled here.
1725  */
1726 static int ci_udc_start(struct usb_gadget *gadget,
1727 			 struct usb_gadget_driver *driver)
1728 {
1729 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1730 	int retval = -ENOMEM;
1731 
1732 	if (driver->disconnect == NULL)
1733 		return -EINVAL;
1734 
1735 
1736 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1737 	retval = usb_ep_enable(&ci->ep0out->ep);
1738 	if (retval)
1739 		return retval;
1740 
1741 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1742 	retval = usb_ep_enable(&ci->ep0in->ep);
1743 	if (retval)
1744 		return retval;
1745 
1746 	ci->driver = driver;
1747 
1748 	/* Start otg fsm for B-device */
1749 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1750 		ci_hdrc_otg_fsm_start(ci);
1751 		return retval;
1752 	}
1753 
1754 	pm_runtime_get_sync(&ci->gadget.dev);
1755 	if (ci->vbus_active) {
1756 		hw_device_reset(ci);
1757 	} else {
1758 		usb_udc_vbus_handler(&ci->gadget, false);
1759 		pm_runtime_put_sync(&ci->gadget.dev);
1760 		return retval;
1761 	}
1762 
1763 	retval = hw_device_state(ci, ci->ep0out->qh.dma);
1764 	if (retval)
1765 		pm_runtime_put_sync(&ci->gadget.dev);
1766 
1767 	return retval;
1768 }
1769 
1770 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1771 {
1772 	if (!ci_otg_is_fsm_mode(ci))
1773 		return;
1774 
1775 	mutex_lock(&ci->fsm.lock);
1776 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1777 		ci->fsm.a_bidl_adis_tmout = 1;
1778 		ci_hdrc_otg_fsm_start(ci);
1779 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1780 		ci->fsm.protocol = PROTO_UNDEF;
1781 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1782 	}
1783 	mutex_unlock(&ci->fsm.lock);
1784 }
1785 
1786 /**
1787  * ci_udc_stop: unregister a gadget driver
1788  */
1789 static int ci_udc_stop(struct usb_gadget *gadget)
1790 {
1791 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1792 	unsigned long flags;
1793 
1794 	spin_lock_irqsave(&ci->lock, flags);
1795 
1796 	if (ci->vbus_active) {
1797 		hw_device_state(ci, 0);
1798 		spin_unlock_irqrestore(&ci->lock, flags);
1799 		if (ci->platdata->notify_event)
1800 			ci->platdata->notify_event(ci,
1801 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1802 		_gadget_stop_activity(&ci->gadget);
1803 		spin_lock_irqsave(&ci->lock, flags);
1804 		pm_runtime_put(&ci->gadget.dev);
1805 	}
1806 
1807 	ci->driver = NULL;
1808 	spin_unlock_irqrestore(&ci->lock, flags);
1809 
1810 	ci_udc_stop_for_otg_fsm(ci);
1811 	return 0;
1812 }
1813 
1814 /******************************************************************************
1815  * BUS block
1816  *****************************************************************************/
1817 /**
1818  * udc_irq: ci interrupt handler
1819  *
1820  * This function returns IRQ_HANDLED if the IRQ has been handled
1821  * It locks access to registers
1822  */
1823 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1824 {
1825 	irqreturn_t retval;
1826 	u32 intr;
1827 
1828 	if (ci == NULL)
1829 		return IRQ_HANDLED;
1830 
1831 	spin_lock(&ci->lock);
1832 
1833 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1834 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1835 				USBMODE_CM_DC) {
1836 			spin_unlock(&ci->lock);
1837 			return IRQ_NONE;
1838 		}
1839 	}
1840 	intr = hw_test_and_clear_intr_active(ci);
1841 
1842 	if (intr) {
1843 		/* order defines priority - do NOT change it */
1844 		if (USBi_URI & intr)
1845 			isr_reset_handler(ci);
1846 
1847 		if (USBi_PCI & intr) {
1848 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
1849 				USB_SPEED_HIGH : USB_SPEED_FULL;
1850 			if (ci->suspended) {
1851 				if (ci->driver->resume) {
1852 					spin_unlock(&ci->lock);
1853 					ci->driver->resume(&ci->gadget);
1854 					spin_lock(&ci->lock);
1855 				}
1856 				ci->suspended = 0;
1857 				usb_gadget_set_state(&ci->gadget,
1858 						ci->resume_state);
1859 			}
1860 		}
1861 
1862 		if (USBi_UI  & intr)
1863 			isr_tr_complete_handler(ci);
1864 
1865 		if ((USBi_SLI & intr) && !(ci->suspended)) {
1866 			ci->suspended = 1;
1867 			ci->resume_state = ci->gadget.state;
1868 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
1869 			    ci->driver->suspend) {
1870 				spin_unlock(&ci->lock);
1871 				ci->driver->suspend(&ci->gadget);
1872 				spin_lock(&ci->lock);
1873 			}
1874 			usb_gadget_set_state(&ci->gadget,
1875 					USB_STATE_SUSPENDED);
1876 		}
1877 		retval = IRQ_HANDLED;
1878 	} else {
1879 		retval = IRQ_NONE;
1880 	}
1881 	spin_unlock(&ci->lock);
1882 
1883 	return retval;
1884 }
1885 
1886 /**
1887  * udc_start: initialize gadget role
1888  * @ci: chipidea controller
1889  */
1890 static int udc_start(struct ci_hdrc *ci)
1891 {
1892 	struct device *dev = ci->dev;
1893 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
1894 	int retval = 0;
1895 
1896 	ci->gadget.ops          = &usb_gadget_ops;
1897 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
1898 	ci->gadget.max_speed    = USB_SPEED_HIGH;
1899 	ci->gadget.name         = ci->platdata->name;
1900 	ci->gadget.otg_caps	= otg_caps;
1901 
1902 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
1903 						otg_caps->adp_support))
1904 		ci->gadget.is_otg = 1;
1905 
1906 	INIT_LIST_HEAD(&ci->gadget.ep_list);
1907 
1908 	/* alloc resources */
1909 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
1910 				       sizeof(struct ci_hw_qh),
1911 				       64, CI_HDRC_PAGE_SIZE);
1912 	if (ci->qh_pool == NULL)
1913 		return -ENOMEM;
1914 
1915 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
1916 				       sizeof(struct ci_hw_td),
1917 				       64, CI_HDRC_PAGE_SIZE);
1918 	if (ci->td_pool == NULL) {
1919 		retval = -ENOMEM;
1920 		goto free_qh_pool;
1921 	}
1922 
1923 	retval = init_eps(ci);
1924 	if (retval)
1925 		goto free_pools;
1926 
1927 	ci->gadget.ep0 = &ci->ep0in->ep;
1928 
1929 	retval = usb_add_gadget_udc(dev, &ci->gadget);
1930 	if (retval)
1931 		goto destroy_eps;
1932 
1933 	pm_runtime_no_callbacks(&ci->gadget.dev);
1934 	pm_runtime_enable(&ci->gadget.dev);
1935 
1936 	return retval;
1937 
1938 destroy_eps:
1939 	destroy_eps(ci);
1940 free_pools:
1941 	dma_pool_destroy(ci->td_pool);
1942 free_qh_pool:
1943 	dma_pool_destroy(ci->qh_pool);
1944 	return retval;
1945 }
1946 
1947 /**
1948  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
1949  *
1950  * No interrupts active, the IRQ has been released
1951  */
1952 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
1953 {
1954 	if (!ci->roles[CI_ROLE_GADGET])
1955 		return;
1956 
1957 	usb_del_gadget_udc(&ci->gadget);
1958 
1959 	destroy_eps(ci);
1960 
1961 	dma_pool_destroy(ci->td_pool);
1962 	dma_pool_destroy(ci->qh_pool);
1963 }
1964 
1965 static int udc_id_switch_for_device(struct ci_hdrc *ci)
1966 {
1967 	if (ci->is_otg)
1968 		/* Clear and enable BSV irq */
1969 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
1970 					OTGSC_BSVIS | OTGSC_BSVIE);
1971 
1972 	return 0;
1973 }
1974 
1975 static void udc_id_switch_for_host(struct ci_hdrc *ci)
1976 {
1977 	/*
1978 	 * host doesn't care B_SESSION_VALID event
1979 	 * so clear and disbale BSV irq
1980 	 */
1981 	if (ci->is_otg)
1982 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
1983 
1984 	ci->vbus_active = 0;
1985 }
1986 
1987 /**
1988  * ci_hdrc_gadget_init - initialize device related bits
1989  * ci: the controller
1990  *
1991  * This function initializes the gadget, if the device is "device capable".
1992  */
1993 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
1994 {
1995 	struct ci_role_driver *rdrv;
1996 	int ret;
1997 
1998 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
1999 		return -ENXIO;
2000 
2001 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2002 	if (!rdrv)
2003 		return -ENOMEM;
2004 
2005 	rdrv->start	= udc_id_switch_for_device;
2006 	rdrv->stop	= udc_id_switch_for_host;
2007 	rdrv->irq	= udc_irq;
2008 	rdrv->name	= "gadget";
2009 
2010 	ret = udc_start(ci);
2011 	if (!ret)
2012 		ci->roles[CI_ROLE_GADGET] = rdrv;
2013 
2014 	return ret;
2015 }
2016