1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * udc.c - ChipIdea UDC driver 4 * 5 * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved. 6 * 7 * Author: David Lopo 8 */ 9 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmapool.h> 13 #include <linux/err.h> 14 #include <linux/irqreturn.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/pm_runtime.h> 18 #include <linux/pinctrl/consumer.h> 19 #include <linux/usb/ch9.h> 20 #include <linux/usb/gadget.h> 21 #include <linux/usb/otg-fsm.h> 22 #include <linux/usb/chipidea.h> 23 24 #include "ci.h" 25 #include "udc.h" 26 #include "bits.h" 27 #include "otg.h" 28 #include "otg_fsm.h" 29 #include "trace.h" 30 31 /* control endpoint description */ 32 static const struct usb_endpoint_descriptor 33 ctrl_endpt_out_desc = { 34 .bLength = USB_DT_ENDPOINT_SIZE, 35 .bDescriptorType = USB_DT_ENDPOINT, 36 37 .bEndpointAddress = USB_DIR_OUT, 38 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 39 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), 40 }; 41 42 static const struct usb_endpoint_descriptor 43 ctrl_endpt_in_desc = { 44 .bLength = USB_DT_ENDPOINT_SIZE, 45 .bDescriptorType = USB_DT_ENDPOINT, 46 47 .bEndpointAddress = USB_DIR_IN, 48 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 49 .wMaxPacketSize = cpu_to_le16(CTRL_PAYLOAD_MAX), 50 }; 51 52 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep, 53 struct td_node *node); 54 /** 55 * hw_ep_bit: calculates the bit number 56 * @num: endpoint number 57 * @dir: endpoint direction 58 * 59 * This function returns bit number 60 */ 61 static inline int hw_ep_bit(int num, int dir) 62 { 63 return num + ((dir == TX) ? 16 : 0); 64 } 65 66 static inline int ep_to_bit(struct ci_hdrc *ci, int n) 67 { 68 int fill = 16 - ci->hw_ep_max / 2; 69 70 if (n >= ci->hw_ep_max / 2) 71 n += fill; 72 73 return n; 74 } 75 76 /** 77 * hw_device_state: enables/disables interrupts (execute without interruption) 78 * @ci: the controller 79 * @dma: 0 => disable, !0 => enable and set dma engine 80 * 81 * This function returns an error code 82 */ 83 static int hw_device_state(struct ci_hdrc *ci, u32 dma) 84 { 85 if (dma) { 86 hw_write(ci, OP_ENDPTLISTADDR, ~0, dma); 87 /* interrupt, error, port change, reset, sleep/suspend */ 88 hw_write(ci, OP_USBINTR, ~0, 89 USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI); 90 } else { 91 hw_write(ci, OP_USBINTR, ~0, 0); 92 } 93 return 0; 94 } 95 96 /** 97 * hw_ep_flush: flush endpoint fifo (execute without interruption) 98 * @ci: the controller 99 * @num: endpoint number 100 * @dir: endpoint direction 101 * 102 * This function returns an error code 103 */ 104 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir) 105 { 106 int n = hw_ep_bit(num, dir); 107 108 do { 109 /* flush any pending transfer */ 110 hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n)); 111 while (hw_read(ci, OP_ENDPTFLUSH, BIT(n))) 112 cpu_relax(); 113 } while (hw_read(ci, OP_ENDPTSTAT, BIT(n))); 114 115 return 0; 116 } 117 118 /** 119 * hw_ep_disable: disables endpoint (execute without interruption) 120 * @ci: the controller 121 * @num: endpoint number 122 * @dir: endpoint direction 123 * 124 * This function returns an error code 125 */ 126 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir) 127 { 128 hw_write(ci, OP_ENDPTCTRL + num, 129 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0); 130 return 0; 131 } 132 133 /** 134 * hw_ep_enable: enables endpoint (execute without interruption) 135 * @ci: the controller 136 * @num: endpoint number 137 * @dir: endpoint direction 138 * @type: endpoint type 139 * 140 * This function returns an error code 141 */ 142 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type) 143 { 144 u32 mask, data; 145 146 if (dir == TX) { 147 mask = ENDPTCTRL_TXT; /* type */ 148 data = type << __ffs(mask); 149 150 mask |= ENDPTCTRL_TXS; /* unstall */ 151 mask |= ENDPTCTRL_TXR; /* reset data toggle */ 152 data |= ENDPTCTRL_TXR; 153 mask |= ENDPTCTRL_TXE; /* enable */ 154 data |= ENDPTCTRL_TXE; 155 } else { 156 mask = ENDPTCTRL_RXT; /* type */ 157 data = type << __ffs(mask); 158 159 mask |= ENDPTCTRL_RXS; /* unstall */ 160 mask |= ENDPTCTRL_RXR; /* reset data toggle */ 161 data |= ENDPTCTRL_RXR; 162 mask |= ENDPTCTRL_RXE; /* enable */ 163 data |= ENDPTCTRL_RXE; 164 } 165 hw_write(ci, OP_ENDPTCTRL + num, mask, data); 166 return 0; 167 } 168 169 /** 170 * hw_ep_get_halt: return endpoint halt status 171 * @ci: the controller 172 * @num: endpoint number 173 * @dir: endpoint direction 174 * 175 * This function returns 1 if endpoint halted 176 */ 177 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir) 178 { 179 u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; 180 181 return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0; 182 } 183 184 /** 185 * hw_ep_prime: primes endpoint (execute without interruption) 186 * @ci: the controller 187 * @num: endpoint number 188 * @dir: endpoint direction 189 * @is_ctrl: true if control endpoint 190 * 191 * This function returns an error code 192 */ 193 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl) 194 { 195 int n = hw_ep_bit(num, dir); 196 197 /* Synchronize before ep prime */ 198 wmb(); 199 200 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num))) 201 return -EAGAIN; 202 203 hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n)); 204 205 while (hw_read(ci, OP_ENDPTPRIME, BIT(n))) 206 cpu_relax(); 207 if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num))) 208 return -EAGAIN; 209 210 /* status shoult be tested according with manual but it doesn't work */ 211 return 0; 212 } 213 214 /** 215 * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute 216 * without interruption) 217 * @ci: the controller 218 * @num: endpoint number 219 * @dir: endpoint direction 220 * @value: true => stall, false => unstall 221 * 222 * This function returns an error code 223 */ 224 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value) 225 { 226 if (value != 0 && value != 1) 227 return -EINVAL; 228 229 do { 230 enum ci_hw_regs reg = OP_ENDPTCTRL + num; 231 u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS; 232 u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR; 233 234 /* data toggle - reserved for EP0 but it's in ESS */ 235 hw_write(ci, reg, mask_xs|mask_xr, 236 value ? mask_xs : mask_xr); 237 } while (value != hw_ep_get_halt(ci, num, dir)); 238 239 return 0; 240 } 241 242 /** 243 * hw_port_is_high_speed: test if port is high speed 244 * @ci: the controller 245 * 246 * This function returns true if high speed port 247 */ 248 static int hw_port_is_high_speed(struct ci_hdrc *ci) 249 { 250 return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) : 251 hw_read(ci, OP_PORTSC, PORTSC_HSP); 252 } 253 254 /** 255 * hw_test_and_clear_complete: test & clear complete status (execute without 256 * interruption) 257 * @ci: the controller 258 * @n: endpoint number 259 * 260 * This function returns complete status 261 */ 262 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n) 263 { 264 n = ep_to_bit(ci, n); 265 return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n)); 266 } 267 268 /** 269 * hw_test_and_clear_intr_active: test & clear active interrupts (execute 270 * without interruption) 271 * @ci: the controller 272 * 273 * This function returns active interrutps 274 */ 275 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci) 276 { 277 u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci); 278 279 hw_write(ci, OP_USBSTS, ~0, reg); 280 return reg; 281 } 282 283 /** 284 * hw_test_and_clear_setup_guard: test & clear setup guard (execute without 285 * interruption) 286 * @ci: the controller 287 * 288 * This function returns guard value 289 */ 290 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci) 291 { 292 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0); 293 } 294 295 /** 296 * hw_test_and_set_setup_guard: test & set setup guard (execute without 297 * interruption) 298 * @ci: the controller 299 * 300 * This function returns guard value 301 */ 302 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci) 303 { 304 return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW); 305 } 306 307 /** 308 * hw_usb_set_address: configures USB address (execute without interruption) 309 * @ci: the controller 310 * @value: new USB address 311 * 312 * This function explicitly sets the address, without the "USBADRA" (advance) 313 * feature, which is not supported by older versions of the controller. 314 */ 315 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value) 316 { 317 hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR, 318 value << __ffs(DEVICEADDR_USBADR)); 319 } 320 321 /** 322 * hw_usb_reset: restart device after a bus reset (execute without 323 * interruption) 324 * @ci: the controller 325 * 326 * This function returns an error code 327 */ 328 static int hw_usb_reset(struct ci_hdrc *ci) 329 { 330 hw_usb_set_address(ci, 0); 331 332 /* ESS flushes only at end?!? */ 333 hw_write(ci, OP_ENDPTFLUSH, ~0, ~0); 334 335 /* clear setup token semaphores */ 336 hw_write(ci, OP_ENDPTSETUPSTAT, 0, 0); 337 338 /* clear complete status */ 339 hw_write(ci, OP_ENDPTCOMPLETE, 0, 0); 340 341 /* wait until all bits cleared */ 342 while (hw_read(ci, OP_ENDPTPRIME, ~0)) 343 udelay(10); /* not RTOS friendly */ 344 345 /* reset all endpoints ? */ 346 347 /* reset internal status and wait for further instructions 348 no need to verify the port reset status (ESS does it) */ 349 350 return 0; 351 } 352 353 /****************************************************************************** 354 * UTIL block 355 *****************************************************************************/ 356 357 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq, 358 unsigned int length, struct scatterlist *s) 359 { 360 int i; 361 u32 temp; 362 struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node), 363 GFP_ATOMIC); 364 365 if (node == NULL) 366 return -ENOMEM; 367 368 node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma); 369 if (node->ptr == NULL) { 370 kfree(node); 371 return -ENOMEM; 372 } 373 374 node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES)); 375 node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES); 376 node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE); 377 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) { 378 u32 mul = hwreq->req.length / hwep->ep.maxpacket; 379 380 if (hwreq->req.length == 0 381 || hwreq->req.length % hwep->ep.maxpacket) 382 mul++; 383 node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO)); 384 } 385 386 if (s) { 387 temp = (u32) (sg_dma_address(s) + hwreq->req.actual); 388 node->td_remaining_size = CI_MAX_BUF_SIZE - length; 389 } else { 390 temp = (u32) (hwreq->req.dma + hwreq->req.actual); 391 } 392 393 if (length) { 394 node->ptr->page[0] = cpu_to_le32(temp); 395 for (i = 1; i < TD_PAGE_COUNT; i++) { 396 u32 page = temp + i * CI_HDRC_PAGE_SIZE; 397 page &= ~TD_RESERVED_MASK; 398 node->ptr->page[i] = cpu_to_le32(page); 399 } 400 } 401 402 hwreq->req.actual += length; 403 404 if (!list_empty(&hwreq->tds)) { 405 /* get the last entry */ 406 lastnode = list_entry(hwreq->tds.prev, 407 struct td_node, td); 408 lastnode->ptr->next = cpu_to_le32(node->dma); 409 } 410 411 INIT_LIST_HEAD(&node->td); 412 list_add_tail(&node->td, &hwreq->tds); 413 414 return 0; 415 } 416 417 /** 418 * _usb_addr: calculates endpoint address from direction & number 419 * @ep: endpoint 420 */ 421 static inline u8 _usb_addr(struct ci_hw_ep *ep) 422 { 423 return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num; 424 } 425 426 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep, 427 struct ci_hw_req *hwreq) 428 { 429 unsigned int rest = hwreq->req.length; 430 int pages = TD_PAGE_COUNT; 431 int ret = 0; 432 433 if (rest == 0) { 434 ret = add_td_to_list(hwep, hwreq, 0, NULL); 435 if (ret < 0) 436 return ret; 437 } 438 439 /* 440 * The first buffer could be not page aligned. 441 * In that case we have to span into one extra td. 442 */ 443 if (hwreq->req.dma % PAGE_SIZE) 444 pages--; 445 446 while (rest > 0) { 447 unsigned int count = min(hwreq->req.length - hwreq->req.actual, 448 (unsigned int)(pages * CI_HDRC_PAGE_SIZE)); 449 450 ret = add_td_to_list(hwep, hwreq, count, NULL); 451 if (ret < 0) 452 return ret; 453 454 rest -= count; 455 } 456 457 if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX 458 && (hwreq->req.length % hwep->ep.maxpacket == 0)) { 459 ret = add_td_to_list(hwep, hwreq, 0, NULL); 460 if (ret < 0) 461 return ret; 462 } 463 464 return ret; 465 } 466 467 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq, 468 struct scatterlist *s) 469 { 470 unsigned int rest = sg_dma_len(s); 471 int ret = 0; 472 473 hwreq->req.actual = 0; 474 while (rest > 0) { 475 unsigned int count = min_t(unsigned int, rest, 476 CI_MAX_BUF_SIZE); 477 478 ret = add_td_to_list(hwep, hwreq, count, s); 479 if (ret < 0) 480 return ret; 481 482 rest -= count; 483 } 484 485 return ret; 486 } 487 488 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s) 489 { 490 int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size) 491 / CI_HDRC_PAGE_SIZE; 492 int i; 493 u32 token; 494 495 token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES)); 496 node->ptr->token = cpu_to_le32(token); 497 498 for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) { 499 u32 page = (u32) sg_dma_address(s) + 500 (i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE; 501 502 page &= ~TD_RESERVED_MASK; 503 node->ptr->page[i] = cpu_to_le32(page); 504 } 505 } 506 507 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) 508 { 509 struct usb_request *req = &hwreq->req; 510 struct scatterlist *s = req->sg; 511 int ret = 0, i = 0; 512 struct td_node *node = NULL; 513 514 if (!s || req->zero || req->length == 0) { 515 dev_err(hwep->ci->dev, "not supported operation for sg\n"); 516 return -EINVAL; 517 } 518 519 while (i++ < req->num_mapped_sgs) { 520 if (sg_dma_address(s) % PAGE_SIZE) { 521 dev_err(hwep->ci->dev, "not page aligned sg buffer\n"); 522 return -EINVAL; 523 } 524 525 if (node && (node->td_remaining_size >= sg_dma_len(s))) { 526 ci_add_buffer_entry(node, s); 527 node->td_remaining_size -= sg_dma_len(s); 528 } else { 529 ret = prepare_td_per_sg(hwep, hwreq, s); 530 if (ret) 531 return ret; 532 533 node = list_entry(hwreq->tds.prev, 534 struct td_node, td); 535 } 536 537 s = sg_next(s); 538 } 539 540 return ret; 541 } 542 543 /** 544 * _hardware_enqueue: configures a request at hardware level 545 * @hwep: endpoint 546 * @hwreq: request 547 * 548 * This function returns an error code 549 */ 550 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) 551 { 552 struct ci_hdrc *ci = hwep->ci; 553 int ret = 0; 554 struct td_node *firstnode, *lastnode; 555 556 /* don't queue twice */ 557 if (hwreq->req.status == -EALREADY) 558 return -EALREADY; 559 560 hwreq->req.status = -EALREADY; 561 562 ret = usb_gadget_map_request_by_dev(ci->dev->parent, 563 &hwreq->req, hwep->dir); 564 if (ret) 565 return ret; 566 567 if (hwreq->req.num_mapped_sgs) 568 ret = prepare_td_for_sg(hwep, hwreq); 569 else 570 ret = prepare_td_for_non_sg(hwep, hwreq); 571 572 if (ret) 573 return ret; 574 575 lastnode = list_entry(hwreq->tds.prev, 576 struct td_node, td); 577 578 lastnode->ptr->next = cpu_to_le32(TD_TERMINATE); 579 if (!hwreq->req.no_interrupt) 580 lastnode->ptr->token |= cpu_to_le32(TD_IOC); 581 582 list_for_each_entry_safe(firstnode, lastnode, &hwreq->tds, td) 583 trace_ci_prepare_td(hwep, hwreq, firstnode); 584 585 firstnode = list_first_entry(&hwreq->tds, struct td_node, td); 586 587 wmb(); 588 589 hwreq->req.actual = 0; 590 if (!list_empty(&hwep->qh.queue)) { 591 struct ci_hw_req *hwreqprev; 592 int n = hw_ep_bit(hwep->num, hwep->dir); 593 int tmp_stat; 594 struct td_node *prevlastnode; 595 u32 next = firstnode->dma & TD_ADDR_MASK; 596 597 hwreqprev = list_entry(hwep->qh.queue.prev, 598 struct ci_hw_req, queue); 599 prevlastnode = list_entry(hwreqprev->tds.prev, 600 struct td_node, td); 601 602 prevlastnode->ptr->next = cpu_to_le32(next); 603 wmb(); 604 605 if (ci->rev == CI_REVISION_22) { 606 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n))) 607 reprime_dtd(ci, hwep, prevlastnode); 608 } 609 610 if (hw_read(ci, OP_ENDPTPRIME, BIT(n))) 611 goto done; 612 do { 613 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW); 614 tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n)); 615 } while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW)); 616 hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0); 617 if (tmp_stat) 618 goto done; 619 } 620 621 /* QH configuration */ 622 hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma); 623 hwep->qh.ptr->td.token &= 624 cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE)); 625 626 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) { 627 u32 mul = hwreq->req.length / hwep->ep.maxpacket; 628 629 if (hwreq->req.length == 0 630 || hwreq->req.length % hwep->ep.maxpacket) 631 mul++; 632 hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT)); 633 } 634 635 ret = hw_ep_prime(ci, hwep->num, hwep->dir, 636 hwep->type == USB_ENDPOINT_XFER_CONTROL); 637 done: 638 return ret; 639 } 640 641 /** 642 * free_pending_td: remove a pending request for the endpoint 643 * @hwep: endpoint 644 */ 645 static void free_pending_td(struct ci_hw_ep *hwep) 646 { 647 struct td_node *pending = hwep->pending_td; 648 649 dma_pool_free(hwep->td_pool, pending->ptr, pending->dma); 650 hwep->pending_td = NULL; 651 kfree(pending); 652 } 653 654 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep, 655 struct td_node *node) 656 { 657 hwep->qh.ptr->td.next = cpu_to_le32(node->dma); 658 hwep->qh.ptr->td.token &= 659 cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE)); 660 661 return hw_ep_prime(ci, hwep->num, hwep->dir, 662 hwep->type == USB_ENDPOINT_XFER_CONTROL); 663 } 664 665 /** 666 * _hardware_dequeue: handles a request at hardware level 667 * @hwep: endpoint 668 * @hwreq: request 669 * 670 * This function returns an error code 671 */ 672 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq) 673 { 674 u32 tmptoken; 675 struct td_node *node, *tmpnode; 676 unsigned remaining_length; 677 unsigned actual = hwreq->req.length; 678 struct ci_hdrc *ci = hwep->ci; 679 680 if (hwreq->req.status != -EALREADY) 681 return -EINVAL; 682 683 hwreq->req.status = 0; 684 685 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { 686 tmptoken = le32_to_cpu(node->ptr->token); 687 trace_ci_complete_td(hwep, hwreq, node); 688 if ((TD_STATUS_ACTIVE & tmptoken) != 0) { 689 int n = hw_ep_bit(hwep->num, hwep->dir); 690 691 if (ci->rev == CI_REVISION_24) 692 if (!hw_read(ci, OP_ENDPTSTAT, BIT(n))) 693 reprime_dtd(ci, hwep, node); 694 hwreq->req.status = -EALREADY; 695 return -EBUSY; 696 } 697 698 remaining_length = (tmptoken & TD_TOTAL_BYTES); 699 remaining_length >>= __ffs(TD_TOTAL_BYTES); 700 actual -= remaining_length; 701 702 hwreq->req.status = tmptoken & TD_STATUS; 703 if ((TD_STATUS_HALTED & hwreq->req.status)) { 704 hwreq->req.status = -EPIPE; 705 break; 706 } else if ((TD_STATUS_DT_ERR & hwreq->req.status)) { 707 hwreq->req.status = -EPROTO; 708 break; 709 } else if ((TD_STATUS_TR_ERR & hwreq->req.status)) { 710 hwreq->req.status = -EILSEQ; 711 break; 712 } 713 714 if (remaining_length) { 715 if (hwep->dir == TX) { 716 hwreq->req.status = -EPROTO; 717 break; 718 } 719 } 720 /* 721 * As the hardware could still address the freed td 722 * which will run the udc unusable, the cleanup of the 723 * td has to be delayed by one. 724 */ 725 if (hwep->pending_td) 726 free_pending_td(hwep); 727 728 hwep->pending_td = node; 729 list_del_init(&node->td); 730 } 731 732 usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent, 733 &hwreq->req, hwep->dir); 734 735 hwreq->req.actual += actual; 736 737 if (hwreq->req.status) 738 return hwreq->req.status; 739 740 return hwreq->req.actual; 741 } 742 743 /** 744 * _ep_nuke: dequeues all endpoint requests 745 * @hwep: endpoint 746 * 747 * This function returns an error code 748 * Caller must hold lock 749 */ 750 static int _ep_nuke(struct ci_hw_ep *hwep) 751 __releases(hwep->lock) 752 __acquires(hwep->lock) 753 { 754 struct td_node *node, *tmpnode; 755 if (hwep == NULL) 756 return -EINVAL; 757 758 hw_ep_flush(hwep->ci, hwep->num, hwep->dir); 759 760 while (!list_empty(&hwep->qh.queue)) { 761 762 /* pop oldest request */ 763 struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next, 764 struct ci_hw_req, queue); 765 766 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { 767 dma_pool_free(hwep->td_pool, node->ptr, node->dma); 768 list_del_init(&node->td); 769 node->ptr = NULL; 770 kfree(node); 771 } 772 773 list_del_init(&hwreq->queue); 774 hwreq->req.status = -ESHUTDOWN; 775 776 if (hwreq->req.complete != NULL) { 777 spin_unlock(hwep->lock); 778 usb_gadget_giveback_request(&hwep->ep, &hwreq->req); 779 spin_lock(hwep->lock); 780 } 781 } 782 783 if (hwep->pending_td) 784 free_pending_td(hwep); 785 786 return 0; 787 } 788 789 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer) 790 { 791 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 792 int direction, retval = 0; 793 unsigned long flags; 794 795 if (ep == NULL || hwep->ep.desc == NULL) 796 return -EINVAL; 797 798 if (usb_endpoint_xfer_isoc(hwep->ep.desc)) 799 return -EOPNOTSUPP; 800 801 spin_lock_irqsave(hwep->lock, flags); 802 803 if (value && hwep->dir == TX && check_transfer && 804 !list_empty(&hwep->qh.queue) && 805 !usb_endpoint_xfer_control(hwep->ep.desc)) { 806 spin_unlock_irqrestore(hwep->lock, flags); 807 return -EAGAIN; 808 } 809 810 direction = hwep->dir; 811 do { 812 retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value); 813 814 if (!value) 815 hwep->wedge = 0; 816 817 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) 818 hwep->dir = (hwep->dir == TX) ? RX : TX; 819 820 } while (hwep->dir != direction); 821 822 spin_unlock_irqrestore(hwep->lock, flags); 823 return retval; 824 } 825 826 827 /** 828 * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts 829 * @gadget: gadget 830 * 831 * This function returns an error code 832 */ 833 static int _gadget_stop_activity(struct usb_gadget *gadget) 834 { 835 struct usb_ep *ep; 836 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); 837 unsigned long flags; 838 839 /* flush all endpoints */ 840 gadget_for_each_ep(ep, gadget) { 841 usb_ep_fifo_flush(ep); 842 } 843 usb_ep_fifo_flush(&ci->ep0out->ep); 844 usb_ep_fifo_flush(&ci->ep0in->ep); 845 846 /* make sure to disable all endpoints */ 847 gadget_for_each_ep(ep, gadget) { 848 usb_ep_disable(ep); 849 } 850 851 if (ci->status != NULL) { 852 usb_ep_free_request(&ci->ep0in->ep, ci->status); 853 ci->status = NULL; 854 } 855 856 spin_lock_irqsave(&ci->lock, flags); 857 ci->gadget.speed = USB_SPEED_UNKNOWN; 858 ci->remote_wakeup = 0; 859 ci->suspended = 0; 860 spin_unlock_irqrestore(&ci->lock, flags); 861 862 return 0; 863 } 864 865 /****************************************************************************** 866 * ISR block 867 *****************************************************************************/ 868 /** 869 * isr_reset_handler: USB reset interrupt handler 870 * @ci: UDC device 871 * 872 * This function resets USB engine after a bus reset occurred 873 */ 874 static void isr_reset_handler(struct ci_hdrc *ci) 875 __releases(ci->lock) 876 __acquires(ci->lock) 877 { 878 int retval; 879 880 spin_unlock(&ci->lock); 881 if (ci->gadget.speed != USB_SPEED_UNKNOWN) 882 usb_gadget_udc_reset(&ci->gadget, ci->driver); 883 884 retval = _gadget_stop_activity(&ci->gadget); 885 if (retval) 886 goto done; 887 888 retval = hw_usb_reset(ci); 889 if (retval) 890 goto done; 891 892 ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC); 893 if (ci->status == NULL) 894 retval = -ENOMEM; 895 896 done: 897 spin_lock(&ci->lock); 898 899 if (retval) 900 dev_err(ci->dev, "error: %i\n", retval); 901 } 902 903 /** 904 * isr_get_status_complete: get_status request complete function 905 * @ep: endpoint 906 * @req: request handled 907 * 908 * Caller must release lock 909 */ 910 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req) 911 { 912 if (ep == NULL || req == NULL) 913 return; 914 915 kfree(req->buf); 916 usb_ep_free_request(ep, req); 917 } 918 919 /** 920 * _ep_queue: queues (submits) an I/O request to an endpoint 921 * @ep: endpoint 922 * @req: request 923 * @gfp_flags: GFP flags (not used) 924 * 925 * Caller must hold lock 926 * This function returns an error code 927 */ 928 static int _ep_queue(struct usb_ep *ep, struct usb_request *req, 929 gfp_t __maybe_unused gfp_flags) 930 { 931 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 932 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); 933 struct ci_hdrc *ci = hwep->ci; 934 int retval = 0; 935 936 if (ep == NULL || req == NULL || hwep->ep.desc == NULL) 937 return -EINVAL; 938 939 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) { 940 if (req->length) 941 hwep = (ci->ep0_dir == RX) ? 942 ci->ep0out : ci->ep0in; 943 if (!list_empty(&hwep->qh.queue)) { 944 _ep_nuke(hwep); 945 dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n", 946 _usb_addr(hwep)); 947 } 948 } 949 950 if (usb_endpoint_xfer_isoc(hwep->ep.desc) && 951 hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) { 952 dev_err(hwep->ci->dev, "request length too big for isochronous\n"); 953 return -EMSGSIZE; 954 } 955 956 /* first nuke then test link, e.g. previous status has not sent */ 957 if (!list_empty(&hwreq->queue)) { 958 dev_err(hwep->ci->dev, "request already in queue\n"); 959 return -EBUSY; 960 } 961 962 /* push request */ 963 hwreq->req.status = -EINPROGRESS; 964 hwreq->req.actual = 0; 965 966 retval = _hardware_enqueue(hwep, hwreq); 967 968 if (retval == -EALREADY) 969 retval = 0; 970 if (!retval) 971 list_add_tail(&hwreq->queue, &hwep->qh.queue); 972 973 return retval; 974 } 975 976 /** 977 * isr_get_status_response: get_status request response 978 * @ci: ci struct 979 * @setup: setup request packet 980 * 981 * This function returns an error code 982 */ 983 static int isr_get_status_response(struct ci_hdrc *ci, 984 struct usb_ctrlrequest *setup) 985 __releases(hwep->lock) 986 __acquires(hwep->lock) 987 { 988 struct ci_hw_ep *hwep = ci->ep0in; 989 struct usb_request *req = NULL; 990 gfp_t gfp_flags = GFP_ATOMIC; 991 int dir, num, retval; 992 993 if (hwep == NULL || setup == NULL) 994 return -EINVAL; 995 996 spin_unlock(hwep->lock); 997 req = usb_ep_alloc_request(&hwep->ep, gfp_flags); 998 spin_lock(hwep->lock); 999 if (req == NULL) 1000 return -ENOMEM; 1001 1002 req->complete = isr_get_status_complete; 1003 req->length = 2; 1004 req->buf = kzalloc(req->length, gfp_flags); 1005 if (req->buf == NULL) { 1006 retval = -ENOMEM; 1007 goto err_free_req; 1008 } 1009 1010 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) { 1011 *(u16 *)req->buf = (ci->remote_wakeup << 1) | 1012 ci->gadget.is_selfpowered; 1013 } else if ((setup->bRequestType & USB_RECIP_MASK) \ 1014 == USB_RECIP_ENDPOINT) { 1015 dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ? 1016 TX : RX; 1017 num = le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK; 1018 *(u16 *)req->buf = hw_ep_get_halt(ci, num, dir); 1019 } 1020 /* else do nothing; reserved for future use */ 1021 1022 retval = _ep_queue(&hwep->ep, req, gfp_flags); 1023 if (retval) 1024 goto err_free_buf; 1025 1026 return 0; 1027 1028 err_free_buf: 1029 kfree(req->buf); 1030 err_free_req: 1031 spin_unlock(hwep->lock); 1032 usb_ep_free_request(&hwep->ep, req); 1033 spin_lock(hwep->lock); 1034 return retval; 1035 } 1036 1037 /** 1038 * isr_setup_status_complete: setup_status request complete function 1039 * @ep: endpoint 1040 * @req: request handled 1041 * 1042 * Caller must release lock. Put the port in test mode if test mode 1043 * feature is selected. 1044 */ 1045 static void 1046 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req) 1047 { 1048 struct ci_hdrc *ci = req->context; 1049 unsigned long flags; 1050 1051 if (ci->setaddr) { 1052 hw_usb_set_address(ci, ci->address); 1053 ci->setaddr = false; 1054 if (ci->address) 1055 usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS); 1056 } 1057 1058 spin_lock_irqsave(&ci->lock, flags); 1059 if (ci->test_mode) 1060 hw_port_test_set(ci, ci->test_mode); 1061 spin_unlock_irqrestore(&ci->lock, flags); 1062 } 1063 1064 /** 1065 * isr_setup_status_phase: queues the status phase of a setup transation 1066 * @ci: ci struct 1067 * 1068 * This function returns an error code 1069 */ 1070 static int isr_setup_status_phase(struct ci_hdrc *ci) 1071 { 1072 struct ci_hw_ep *hwep; 1073 1074 /* 1075 * Unexpected USB controller behavior, caused by bad signal integrity 1076 * or ground reference problems, can lead to isr_setup_status_phase 1077 * being called with ci->status equal to NULL. 1078 * If this situation occurs, you should review your USB hardware design. 1079 */ 1080 if (WARN_ON_ONCE(!ci->status)) 1081 return -EPIPE; 1082 1083 hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in; 1084 ci->status->context = ci; 1085 ci->status->complete = isr_setup_status_complete; 1086 1087 return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC); 1088 } 1089 1090 /** 1091 * isr_tr_complete_low: transaction complete low level handler 1092 * @hwep: endpoint 1093 * 1094 * This function returns an error code 1095 * Caller must hold lock 1096 */ 1097 static int isr_tr_complete_low(struct ci_hw_ep *hwep) 1098 __releases(hwep->lock) 1099 __acquires(hwep->lock) 1100 { 1101 struct ci_hw_req *hwreq, *hwreqtemp; 1102 struct ci_hw_ep *hweptemp = hwep; 1103 int retval = 0; 1104 1105 list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue, 1106 queue) { 1107 retval = _hardware_dequeue(hwep, hwreq); 1108 if (retval < 0) 1109 break; 1110 list_del_init(&hwreq->queue); 1111 if (hwreq->req.complete != NULL) { 1112 spin_unlock(hwep->lock); 1113 if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) && 1114 hwreq->req.length) 1115 hweptemp = hwep->ci->ep0in; 1116 usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req); 1117 spin_lock(hwep->lock); 1118 } 1119 } 1120 1121 if (retval == -EBUSY) 1122 retval = 0; 1123 1124 return retval; 1125 } 1126 1127 static int otg_a_alt_hnp_support(struct ci_hdrc *ci) 1128 { 1129 dev_warn(&ci->gadget.dev, 1130 "connect the device to an alternate port if you want HNP\n"); 1131 return isr_setup_status_phase(ci); 1132 } 1133 1134 /** 1135 * isr_setup_packet_handler: setup packet handler 1136 * @ci: UDC descriptor 1137 * 1138 * This function handles setup packet 1139 */ 1140 static void isr_setup_packet_handler(struct ci_hdrc *ci) 1141 __releases(ci->lock) 1142 __acquires(ci->lock) 1143 { 1144 struct ci_hw_ep *hwep = &ci->ci_hw_ep[0]; 1145 struct usb_ctrlrequest req; 1146 int type, num, dir, err = -EINVAL; 1147 u8 tmode = 0; 1148 1149 /* 1150 * Flush data and handshake transactions of previous 1151 * setup packet. 1152 */ 1153 _ep_nuke(ci->ep0out); 1154 _ep_nuke(ci->ep0in); 1155 1156 /* read_setup_packet */ 1157 do { 1158 hw_test_and_set_setup_guard(ci); 1159 memcpy(&req, &hwep->qh.ptr->setup, sizeof(req)); 1160 } while (!hw_test_and_clear_setup_guard(ci)); 1161 1162 type = req.bRequestType; 1163 1164 ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX; 1165 1166 switch (req.bRequest) { 1167 case USB_REQ_CLEAR_FEATURE: 1168 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && 1169 le16_to_cpu(req.wValue) == 1170 USB_ENDPOINT_HALT) { 1171 if (req.wLength != 0) 1172 break; 1173 num = le16_to_cpu(req.wIndex); 1174 dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX; 1175 num &= USB_ENDPOINT_NUMBER_MASK; 1176 if (dir == TX) 1177 num += ci->hw_ep_max / 2; 1178 if (!ci->ci_hw_ep[num].wedge) { 1179 spin_unlock(&ci->lock); 1180 err = usb_ep_clear_halt( 1181 &ci->ci_hw_ep[num].ep); 1182 spin_lock(&ci->lock); 1183 if (err) 1184 break; 1185 } 1186 err = isr_setup_status_phase(ci); 1187 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) && 1188 le16_to_cpu(req.wValue) == 1189 USB_DEVICE_REMOTE_WAKEUP) { 1190 if (req.wLength != 0) 1191 break; 1192 ci->remote_wakeup = 0; 1193 err = isr_setup_status_phase(ci); 1194 } else { 1195 goto delegate; 1196 } 1197 break; 1198 case USB_REQ_GET_STATUS: 1199 if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) || 1200 le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) && 1201 type != (USB_DIR_IN|USB_RECIP_ENDPOINT) && 1202 type != (USB_DIR_IN|USB_RECIP_INTERFACE)) 1203 goto delegate; 1204 if (le16_to_cpu(req.wLength) != 2 || 1205 le16_to_cpu(req.wValue) != 0) 1206 break; 1207 err = isr_get_status_response(ci, &req); 1208 break; 1209 case USB_REQ_SET_ADDRESS: 1210 if (type != (USB_DIR_OUT|USB_RECIP_DEVICE)) 1211 goto delegate; 1212 if (le16_to_cpu(req.wLength) != 0 || 1213 le16_to_cpu(req.wIndex) != 0) 1214 break; 1215 ci->address = (u8)le16_to_cpu(req.wValue); 1216 ci->setaddr = true; 1217 err = isr_setup_status_phase(ci); 1218 break; 1219 case USB_REQ_SET_FEATURE: 1220 if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) && 1221 le16_to_cpu(req.wValue) == 1222 USB_ENDPOINT_HALT) { 1223 if (req.wLength != 0) 1224 break; 1225 num = le16_to_cpu(req.wIndex); 1226 dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX; 1227 num &= USB_ENDPOINT_NUMBER_MASK; 1228 if (dir == TX) 1229 num += ci->hw_ep_max / 2; 1230 1231 spin_unlock(&ci->lock); 1232 err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false); 1233 spin_lock(&ci->lock); 1234 if (!err) 1235 isr_setup_status_phase(ci); 1236 } else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) { 1237 if (req.wLength != 0) 1238 break; 1239 switch (le16_to_cpu(req.wValue)) { 1240 case USB_DEVICE_REMOTE_WAKEUP: 1241 ci->remote_wakeup = 1; 1242 err = isr_setup_status_phase(ci); 1243 break; 1244 case USB_DEVICE_TEST_MODE: 1245 tmode = le16_to_cpu(req.wIndex) >> 8; 1246 switch (tmode) { 1247 case USB_TEST_J: 1248 case USB_TEST_K: 1249 case USB_TEST_SE0_NAK: 1250 case USB_TEST_PACKET: 1251 case USB_TEST_FORCE_ENABLE: 1252 ci->test_mode = tmode; 1253 err = isr_setup_status_phase( 1254 ci); 1255 break; 1256 default: 1257 break; 1258 } 1259 break; 1260 case USB_DEVICE_B_HNP_ENABLE: 1261 if (ci_otg_is_fsm_mode(ci)) { 1262 ci->gadget.b_hnp_enable = 1; 1263 err = isr_setup_status_phase( 1264 ci); 1265 } 1266 break; 1267 case USB_DEVICE_A_ALT_HNP_SUPPORT: 1268 if (ci_otg_is_fsm_mode(ci)) 1269 err = otg_a_alt_hnp_support(ci); 1270 break; 1271 case USB_DEVICE_A_HNP_SUPPORT: 1272 if (ci_otg_is_fsm_mode(ci)) { 1273 ci->gadget.a_hnp_support = 1; 1274 err = isr_setup_status_phase( 1275 ci); 1276 } 1277 break; 1278 default: 1279 goto delegate; 1280 } 1281 } else { 1282 goto delegate; 1283 } 1284 break; 1285 default: 1286 delegate: 1287 if (req.wLength == 0) /* no data phase */ 1288 ci->ep0_dir = TX; 1289 1290 spin_unlock(&ci->lock); 1291 err = ci->driver->setup(&ci->gadget, &req); 1292 spin_lock(&ci->lock); 1293 break; 1294 } 1295 1296 if (err < 0) { 1297 spin_unlock(&ci->lock); 1298 if (_ep_set_halt(&hwep->ep, 1, false)) 1299 dev_err(ci->dev, "error: _ep_set_halt\n"); 1300 spin_lock(&ci->lock); 1301 } 1302 } 1303 1304 /** 1305 * isr_tr_complete_handler: transaction complete interrupt handler 1306 * @ci: UDC descriptor 1307 * 1308 * This function handles traffic events 1309 */ 1310 static void isr_tr_complete_handler(struct ci_hdrc *ci) 1311 __releases(ci->lock) 1312 __acquires(ci->lock) 1313 { 1314 unsigned i; 1315 int err; 1316 1317 for (i = 0; i < ci->hw_ep_max; i++) { 1318 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i]; 1319 1320 if (hwep->ep.desc == NULL) 1321 continue; /* not configured */ 1322 1323 if (hw_test_and_clear_complete(ci, i)) { 1324 err = isr_tr_complete_low(hwep); 1325 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) { 1326 if (err > 0) /* needs status phase */ 1327 err = isr_setup_status_phase(ci); 1328 if (err < 0) { 1329 spin_unlock(&ci->lock); 1330 if (_ep_set_halt(&hwep->ep, 1, false)) 1331 dev_err(ci->dev, 1332 "error: _ep_set_halt\n"); 1333 spin_lock(&ci->lock); 1334 } 1335 } 1336 } 1337 1338 /* Only handle setup packet below */ 1339 if (i == 0 && 1340 hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0))) 1341 isr_setup_packet_handler(ci); 1342 } 1343 } 1344 1345 /****************************************************************************** 1346 * ENDPT block 1347 *****************************************************************************/ 1348 /* 1349 * ep_enable: configure endpoint, making it usable 1350 * 1351 * Check usb_ep_enable() at "usb_gadget.h" for details 1352 */ 1353 static int ep_enable(struct usb_ep *ep, 1354 const struct usb_endpoint_descriptor *desc) 1355 { 1356 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1357 int retval = 0; 1358 unsigned long flags; 1359 u32 cap = 0; 1360 1361 if (ep == NULL || desc == NULL) 1362 return -EINVAL; 1363 1364 spin_lock_irqsave(hwep->lock, flags); 1365 1366 /* only internal SW should enable ctrl endpts */ 1367 1368 if (!list_empty(&hwep->qh.queue)) { 1369 dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n"); 1370 spin_unlock_irqrestore(hwep->lock, flags); 1371 return -EBUSY; 1372 } 1373 1374 hwep->ep.desc = desc; 1375 1376 hwep->dir = usb_endpoint_dir_in(desc) ? TX : RX; 1377 hwep->num = usb_endpoint_num(desc); 1378 hwep->type = usb_endpoint_type(desc); 1379 1380 hwep->ep.maxpacket = usb_endpoint_maxp(desc); 1381 hwep->ep.mult = usb_endpoint_maxp_mult(desc); 1382 1383 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) 1384 cap |= QH_IOS; 1385 1386 cap |= QH_ZLT; 1387 cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT; 1388 /* 1389 * For ISO-TX, we set mult at QH as the largest value, and use 1390 * MultO at TD as real mult value. 1391 */ 1392 if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) 1393 cap |= 3 << __ffs(QH_MULT); 1394 1395 hwep->qh.ptr->cap = cpu_to_le32(cap); 1396 1397 hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE); /* needed? */ 1398 1399 if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) { 1400 dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n"); 1401 retval = -EINVAL; 1402 } 1403 1404 /* 1405 * Enable endpoints in the HW other than ep0 as ep0 1406 * is always enabled 1407 */ 1408 if (hwep->num) 1409 retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir, 1410 hwep->type); 1411 1412 spin_unlock_irqrestore(hwep->lock, flags); 1413 return retval; 1414 } 1415 1416 /* 1417 * ep_disable: endpoint is no longer usable 1418 * 1419 * Check usb_ep_disable() at "usb_gadget.h" for details 1420 */ 1421 static int ep_disable(struct usb_ep *ep) 1422 { 1423 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1424 int direction, retval = 0; 1425 unsigned long flags; 1426 1427 if (ep == NULL) 1428 return -EINVAL; 1429 else if (hwep->ep.desc == NULL) 1430 return -EBUSY; 1431 1432 spin_lock_irqsave(hwep->lock, flags); 1433 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) { 1434 spin_unlock_irqrestore(hwep->lock, flags); 1435 return 0; 1436 } 1437 1438 /* only internal SW should disable ctrl endpts */ 1439 1440 direction = hwep->dir; 1441 do { 1442 retval |= _ep_nuke(hwep); 1443 retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir); 1444 1445 if (hwep->type == USB_ENDPOINT_XFER_CONTROL) 1446 hwep->dir = (hwep->dir == TX) ? RX : TX; 1447 1448 } while (hwep->dir != direction); 1449 1450 hwep->ep.desc = NULL; 1451 1452 spin_unlock_irqrestore(hwep->lock, flags); 1453 return retval; 1454 } 1455 1456 /* 1457 * ep_alloc_request: allocate a request object to use with this endpoint 1458 * 1459 * Check usb_ep_alloc_request() at "usb_gadget.h" for details 1460 */ 1461 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) 1462 { 1463 struct ci_hw_req *hwreq = NULL; 1464 1465 if (ep == NULL) 1466 return NULL; 1467 1468 hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags); 1469 if (hwreq != NULL) { 1470 INIT_LIST_HEAD(&hwreq->queue); 1471 INIT_LIST_HEAD(&hwreq->tds); 1472 } 1473 1474 return (hwreq == NULL) ? NULL : &hwreq->req; 1475 } 1476 1477 /* 1478 * ep_free_request: frees a request object 1479 * 1480 * Check usb_ep_free_request() at "usb_gadget.h" for details 1481 */ 1482 static void ep_free_request(struct usb_ep *ep, struct usb_request *req) 1483 { 1484 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1485 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); 1486 struct td_node *node, *tmpnode; 1487 unsigned long flags; 1488 1489 if (ep == NULL || req == NULL) { 1490 return; 1491 } else if (!list_empty(&hwreq->queue)) { 1492 dev_err(hwep->ci->dev, "freeing queued request\n"); 1493 return; 1494 } 1495 1496 spin_lock_irqsave(hwep->lock, flags); 1497 1498 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { 1499 dma_pool_free(hwep->td_pool, node->ptr, node->dma); 1500 list_del_init(&node->td); 1501 node->ptr = NULL; 1502 kfree(node); 1503 } 1504 1505 kfree(hwreq); 1506 1507 spin_unlock_irqrestore(hwep->lock, flags); 1508 } 1509 1510 /* 1511 * ep_queue: queues (submits) an I/O request to an endpoint 1512 * 1513 * Check usb_ep_queue()* at usb_gadget.h" for details 1514 */ 1515 static int ep_queue(struct usb_ep *ep, struct usb_request *req, 1516 gfp_t __maybe_unused gfp_flags) 1517 { 1518 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1519 int retval = 0; 1520 unsigned long flags; 1521 1522 if (ep == NULL || req == NULL || hwep->ep.desc == NULL) 1523 return -EINVAL; 1524 1525 spin_lock_irqsave(hwep->lock, flags); 1526 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) { 1527 spin_unlock_irqrestore(hwep->lock, flags); 1528 return 0; 1529 } 1530 retval = _ep_queue(ep, req, gfp_flags); 1531 spin_unlock_irqrestore(hwep->lock, flags); 1532 return retval; 1533 } 1534 1535 /* 1536 * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint 1537 * 1538 * Check usb_ep_dequeue() at "usb_gadget.h" for details 1539 */ 1540 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req) 1541 { 1542 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1543 struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req); 1544 unsigned long flags; 1545 struct td_node *node, *tmpnode; 1546 1547 if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY || 1548 hwep->ep.desc == NULL || list_empty(&hwreq->queue) || 1549 list_empty(&hwep->qh.queue)) 1550 return -EINVAL; 1551 1552 spin_lock_irqsave(hwep->lock, flags); 1553 if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN) 1554 hw_ep_flush(hwep->ci, hwep->num, hwep->dir); 1555 1556 list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) { 1557 dma_pool_free(hwep->td_pool, node->ptr, node->dma); 1558 list_del(&node->td); 1559 kfree(node); 1560 } 1561 1562 /* pop request */ 1563 list_del_init(&hwreq->queue); 1564 1565 usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir); 1566 1567 req->status = -ECONNRESET; 1568 1569 if (hwreq->req.complete != NULL) { 1570 spin_unlock(hwep->lock); 1571 usb_gadget_giveback_request(&hwep->ep, &hwreq->req); 1572 spin_lock(hwep->lock); 1573 } 1574 1575 spin_unlock_irqrestore(hwep->lock, flags); 1576 return 0; 1577 } 1578 1579 /* 1580 * ep_set_halt: sets the endpoint halt feature 1581 * 1582 * Check usb_ep_set_halt() at "usb_gadget.h" for details 1583 */ 1584 static int ep_set_halt(struct usb_ep *ep, int value) 1585 { 1586 return _ep_set_halt(ep, value, true); 1587 } 1588 1589 /* 1590 * ep_set_wedge: sets the halt feature and ignores clear requests 1591 * 1592 * Check usb_ep_set_wedge() at "usb_gadget.h" for details 1593 */ 1594 static int ep_set_wedge(struct usb_ep *ep) 1595 { 1596 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1597 unsigned long flags; 1598 1599 if (ep == NULL || hwep->ep.desc == NULL) 1600 return -EINVAL; 1601 1602 spin_lock_irqsave(hwep->lock, flags); 1603 hwep->wedge = 1; 1604 spin_unlock_irqrestore(hwep->lock, flags); 1605 1606 return usb_ep_set_halt(ep); 1607 } 1608 1609 /* 1610 * ep_fifo_flush: flushes contents of a fifo 1611 * 1612 * Check usb_ep_fifo_flush() at "usb_gadget.h" for details 1613 */ 1614 static void ep_fifo_flush(struct usb_ep *ep) 1615 { 1616 struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep); 1617 unsigned long flags; 1618 1619 if (ep == NULL) { 1620 dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep)); 1621 return; 1622 } 1623 1624 spin_lock_irqsave(hwep->lock, flags); 1625 if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) { 1626 spin_unlock_irqrestore(hwep->lock, flags); 1627 return; 1628 } 1629 1630 hw_ep_flush(hwep->ci, hwep->num, hwep->dir); 1631 1632 spin_unlock_irqrestore(hwep->lock, flags); 1633 } 1634 1635 /* 1636 * Endpoint-specific part of the API to the USB controller hardware 1637 * Check "usb_gadget.h" for details 1638 */ 1639 static const struct usb_ep_ops usb_ep_ops = { 1640 .enable = ep_enable, 1641 .disable = ep_disable, 1642 .alloc_request = ep_alloc_request, 1643 .free_request = ep_free_request, 1644 .queue = ep_queue, 1645 .dequeue = ep_dequeue, 1646 .set_halt = ep_set_halt, 1647 .set_wedge = ep_set_wedge, 1648 .fifo_flush = ep_fifo_flush, 1649 }; 1650 1651 /****************************************************************************** 1652 * GADGET block 1653 *****************************************************************************/ 1654 /* 1655 * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded 1656 */ 1657 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active) 1658 { 1659 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1660 1661 if (is_active) { 1662 pm_runtime_get_sync(ci->dev); 1663 hw_device_reset(ci); 1664 spin_lock_irq(&ci->lock); 1665 if (ci->driver) { 1666 hw_device_state(ci, ci->ep0out->qh.dma); 1667 usb_gadget_set_state(_gadget, USB_STATE_POWERED); 1668 spin_unlock_irq(&ci->lock); 1669 usb_udc_vbus_handler(_gadget, true); 1670 } else { 1671 spin_unlock_irq(&ci->lock); 1672 } 1673 } else { 1674 usb_udc_vbus_handler(_gadget, false); 1675 if (ci->driver) 1676 ci->driver->disconnect(&ci->gadget); 1677 hw_device_state(ci, 0); 1678 if (ci->platdata->notify_event) 1679 ci->platdata->notify_event(ci, 1680 CI_HDRC_CONTROLLER_STOPPED_EVENT); 1681 _gadget_stop_activity(&ci->gadget); 1682 pm_runtime_put_sync(ci->dev); 1683 usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED); 1684 } 1685 } 1686 1687 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active) 1688 { 1689 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1690 unsigned long flags; 1691 int ret = 0; 1692 1693 spin_lock_irqsave(&ci->lock, flags); 1694 ci->vbus_active = is_active; 1695 spin_unlock_irqrestore(&ci->lock, flags); 1696 1697 if (ci->usb_phy) 1698 usb_phy_set_charger_state(ci->usb_phy, is_active ? 1699 USB_CHARGER_PRESENT : USB_CHARGER_ABSENT); 1700 1701 if (ci->platdata->notify_event) 1702 ret = ci->platdata->notify_event(ci, 1703 CI_HDRC_CONTROLLER_VBUS_EVENT); 1704 1705 if (ci->driver) 1706 ci_hdrc_gadget_connect(_gadget, is_active); 1707 1708 return ret; 1709 } 1710 1711 static int ci_udc_wakeup(struct usb_gadget *_gadget) 1712 { 1713 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1714 unsigned long flags; 1715 int ret = 0; 1716 1717 spin_lock_irqsave(&ci->lock, flags); 1718 if (ci->gadget.speed == USB_SPEED_UNKNOWN) { 1719 spin_unlock_irqrestore(&ci->lock, flags); 1720 return 0; 1721 } 1722 if (!ci->remote_wakeup) { 1723 ret = -EOPNOTSUPP; 1724 goto out; 1725 } 1726 if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) { 1727 ret = -EINVAL; 1728 goto out; 1729 } 1730 hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR); 1731 out: 1732 spin_unlock_irqrestore(&ci->lock, flags); 1733 return ret; 1734 } 1735 1736 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma) 1737 { 1738 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1739 1740 if (ci->usb_phy) 1741 return usb_phy_set_power(ci->usb_phy, ma); 1742 return -ENOTSUPP; 1743 } 1744 1745 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on) 1746 { 1747 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1748 struct ci_hw_ep *hwep = ci->ep0in; 1749 unsigned long flags; 1750 1751 spin_lock_irqsave(hwep->lock, flags); 1752 _gadget->is_selfpowered = (is_on != 0); 1753 spin_unlock_irqrestore(hwep->lock, flags); 1754 1755 return 0; 1756 } 1757 1758 /* Change Data+ pullup status 1759 * this func is used by usb_gadget_connect/disconnect 1760 */ 1761 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on) 1762 { 1763 struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget); 1764 1765 /* 1766 * Data+ pullup controlled by OTG state machine in OTG fsm mode; 1767 * and don't touch Data+ in host mode for dual role config. 1768 */ 1769 if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST) 1770 return 0; 1771 1772 pm_runtime_get_sync(ci->dev); 1773 if (is_on) 1774 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS); 1775 else 1776 hw_write(ci, OP_USBCMD, USBCMD_RS, 0); 1777 pm_runtime_put_sync(ci->dev); 1778 1779 return 0; 1780 } 1781 1782 static int ci_udc_start(struct usb_gadget *gadget, 1783 struct usb_gadget_driver *driver); 1784 static int ci_udc_stop(struct usb_gadget *gadget); 1785 1786 /* Match ISOC IN from the highest endpoint */ 1787 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget, 1788 struct usb_endpoint_descriptor *desc, 1789 struct usb_ss_ep_comp_descriptor *comp_desc) 1790 { 1791 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); 1792 struct usb_ep *ep; 1793 1794 if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) { 1795 list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) { 1796 if (ep->caps.dir_in && !ep->claimed) 1797 return ep; 1798 } 1799 } 1800 1801 return NULL; 1802 } 1803 1804 /* 1805 * Device operations part of the API to the USB controller hardware, 1806 * which don't involve endpoints (or i/o) 1807 * Check "usb_gadget.h" for details 1808 */ 1809 static const struct usb_gadget_ops usb_gadget_ops = { 1810 .vbus_session = ci_udc_vbus_session, 1811 .wakeup = ci_udc_wakeup, 1812 .set_selfpowered = ci_udc_selfpowered, 1813 .pullup = ci_udc_pullup, 1814 .vbus_draw = ci_udc_vbus_draw, 1815 .udc_start = ci_udc_start, 1816 .udc_stop = ci_udc_stop, 1817 .match_ep = ci_udc_match_ep, 1818 }; 1819 1820 static int init_eps(struct ci_hdrc *ci) 1821 { 1822 int retval = 0, i, j; 1823 1824 for (i = 0; i < ci->hw_ep_max/2; i++) 1825 for (j = RX; j <= TX; j++) { 1826 int k = i + j * ci->hw_ep_max/2; 1827 struct ci_hw_ep *hwep = &ci->ci_hw_ep[k]; 1828 1829 scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i, 1830 (j == TX) ? "in" : "out"); 1831 1832 hwep->ci = ci; 1833 hwep->lock = &ci->lock; 1834 hwep->td_pool = ci->td_pool; 1835 1836 hwep->ep.name = hwep->name; 1837 hwep->ep.ops = &usb_ep_ops; 1838 1839 if (i == 0) { 1840 hwep->ep.caps.type_control = true; 1841 } else { 1842 hwep->ep.caps.type_iso = true; 1843 hwep->ep.caps.type_bulk = true; 1844 hwep->ep.caps.type_int = true; 1845 } 1846 1847 if (j == TX) 1848 hwep->ep.caps.dir_in = true; 1849 else 1850 hwep->ep.caps.dir_out = true; 1851 1852 /* 1853 * for ep0: maxP defined in desc, for other 1854 * eps, maxP is set by epautoconfig() called 1855 * by gadget layer 1856 */ 1857 usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0); 1858 1859 INIT_LIST_HEAD(&hwep->qh.queue); 1860 hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL, 1861 &hwep->qh.dma); 1862 if (hwep->qh.ptr == NULL) 1863 retval = -ENOMEM; 1864 1865 /* 1866 * set up shorthands for ep0 out and in endpoints, 1867 * don't add to gadget's ep_list 1868 */ 1869 if (i == 0) { 1870 if (j == RX) 1871 ci->ep0out = hwep; 1872 else 1873 ci->ep0in = hwep; 1874 1875 usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX); 1876 continue; 1877 } 1878 1879 list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list); 1880 } 1881 1882 return retval; 1883 } 1884 1885 static void destroy_eps(struct ci_hdrc *ci) 1886 { 1887 int i; 1888 1889 for (i = 0; i < ci->hw_ep_max; i++) { 1890 struct ci_hw_ep *hwep = &ci->ci_hw_ep[i]; 1891 1892 if (hwep->pending_td) 1893 free_pending_td(hwep); 1894 dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma); 1895 } 1896 } 1897 1898 /** 1899 * ci_udc_start: register a gadget driver 1900 * @gadget: our gadget 1901 * @driver: the driver being registered 1902 * 1903 * Interrupts are enabled here. 1904 */ 1905 static int ci_udc_start(struct usb_gadget *gadget, 1906 struct usb_gadget_driver *driver) 1907 { 1908 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); 1909 int retval; 1910 1911 if (driver->disconnect == NULL) 1912 return -EINVAL; 1913 1914 ci->ep0out->ep.desc = &ctrl_endpt_out_desc; 1915 retval = usb_ep_enable(&ci->ep0out->ep); 1916 if (retval) 1917 return retval; 1918 1919 ci->ep0in->ep.desc = &ctrl_endpt_in_desc; 1920 retval = usb_ep_enable(&ci->ep0in->ep); 1921 if (retval) 1922 return retval; 1923 1924 ci->driver = driver; 1925 1926 /* Start otg fsm for B-device */ 1927 if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) { 1928 ci_hdrc_otg_fsm_start(ci); 1929 return retval; 1930 } 1931 1932 if (ci->vbus_active) 1933 ci_hdrc_gadget_connect(gadget, 1); 1934 else 1935 usb_udc_vbus_handler(&ci->gadget, false); 1936 1937 return retval; 1938 } 1939 1940 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci) 1941 { 1942 if (!ci_otg_is_fsm_mode(ci)) 1943 return; 1944 1945 mutex_lock(&ci->fsm.lock); 1946 if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) { 1947 ci->fsm.a_bidl_adis_tmout = 1; 1948 ci_hdrc_otg_fsm_start(ci); 1949 } else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) { 1950 ci->fsm.protocol = PROTO_UNDEF; 1951 ci->fsm.otg->state = OTG_STATE_UNDEFINED; 1952 } 1953 mutex_unlock(&ci->fsm.lock); 1954 } 1955 1956 /* 1957 * ci_udc_stop: unregister a gadget driver 1958 */ 1959 static int ci_udc_stop(struct usb_gadget *gadget) 1960 { 1961 struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget); 1962 unsigned long flags; 1963 1964 spin_lock_irqsave(&ci->lock, flags); 1965 ci->driver = NULL; 1966 1967 if (ci->vbus_active) { 1968 hw_device_state(ci, 0); 1969 spin_unlock_irqrestore(&ci->lock, flags); 1970 if (ci->platdata->notify_event) 1971 ci->platdata->notify_event(ci, 1972 CI_HDRC_CONTROLLER_STOPPED_EVENT); 1973 _gadget_stop_activity(&ci->gadget); 1974 spin_lock_irqsave(&ci->lock, flags); 1975 pm_runtime_put(ci->dev); 1976 } 1977 1978 spin_unlock_irqrestore(&ci->lock, flags); 1979 1980 ci_udc_stop_for_otg_fsm(ci); 1981 return 0; 1982 } 1983 1984 /****************************************************************************** 1985 * BUS block 1986 *****************************************************************************/ 1987 /* 1988 * udc_irq: ci interrupt handler 1989 * 1990 * This function returns IRQ_HANDLED if the IRQ has been handled 1991 * It locks access to registers 1992 */ 1993 static irqreturn_t udc_irq(struct ci_hdrc *ci) 1994 { 1995 irqreturn_t retval; 1996 u32 intr; 1997 1998 if (ci == NULL) 1999 return IRQ_HANDLED; 2000 2001 spin_lock(&ci->lock); 2002 2003 if (ci->platdata->flags & CI_HDRC_REGS_SHARED) { 2004 if (hw_read(ci, OP_USBMODE, USBMODE_CM) != 2005 USBMODE_CM_DC) { 2006 spin_unlock(&ci->lock); 2007 return IRQ_NONE; 2008 } 2009 } 2010 intr = hw_test_and_clear_intr_active(ci); 2011 2012 if (intr) { 2013 /* order defines priority - do NOT change it */ 2014 if (USBi_URI & intr) 2015 isr_reset_handler(ci); 2016 2017 if (USBi_PCI & intr) { 2018 ci->gadget.speed = hw_port_is_high_speed(ci) ? 2019 USB_SPEED_HIGH : USB_SPEED_FULL; 2020 if (ci->suspended) { 2021 if (ci->driver->resume) { 2022 spin_unlock(&ci->lock); 2023 ci->driver->resume(&ci->gadget); 2024 spin_lock(&ci->lock); 2025 } 2026 ci->suspended = 0; 2027 usb_gadget_set_state(&ci->gadget, 2028 ci->resume_state); 2029 } 2030 } 2031 2032 if (USBi_UI & intr) 2033 isr_tr_complete_handler(ci); 2034 2035 if ((USBi_SLI & intr) && !(ci->suspended)) { 2036 ci->suspended = 1; 2037 ci->resume_state = ci->gadget.state; 2038 if (ci->gadget.speed != USB_SPEED_UNKNOWN && 2039 ci->driver->suspend) { 2040 spin_unlock(&ci->lock); 2041 ci->driver->suspend(&ci->gadget); 2042 spin_lock(&ci->lock); 2043 } 2044 usb_gadget_set_state(&ci->gadget, 2045 USB_STATE_SUSPENDED); 2046 } 2047 retval = IRQ_HANDLED; 2048 } else { 2049 retval = IRQ_NONE; 2050 } 2051 spin_unlock(&ci->lock); 2052 2053 return retval; 2054 } 2055 2056 /** 2057 * udc_start: initialize gadget role 2058 * @ci: chipidea controller 2059 */ 2060 static int udc_start(struct ci_hdrc *ci) 2061 { 2062 struct device *dev = ci->dev; 2063 struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps; 2064 int retval = 0; 2065 2066 ci->gadget.ops = &usb_gadget_ops; 2067 ci->gadget.speed = USB_SPEED_UNKNOWN; 2068 ci->gadget.max_speed = USB_SPEED_HIGH; 2069 ci->gadget.name = ci->platdata->name; 2070 ci->gadget.otg_caps = otg_caps; 2071 ci->gadget.sg_supported = 1; 2072 ci->gadget.irq = ci->irq; 2073 2074 if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA) 2075 ci->gadget.quirk_avoids_skb_reserve = 1; 2076 2077 if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support || 2078 otg_caps->adp_support)) 2079 ci->gadget.is_otg = 1; 2080 2081 INIT_LIST_HEAD(&ci->gadget.ep_list); 2082 2083 /* alloc resources */ 2084 ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent, 2085 sizeof(struct ci_hw_qh), 2086 64, CI_HDRC_PAGE_SIZE); 2087 if (ci->qh_pool == NULL) 2088 return -ENOMEM; 2089 2090 ci->td_pool = dma_pool_create("ci_hw_td", dev->parent, 2091 sizeof(struct ci_hw_td), 2092 64, CI_HDRC_PAGE_SIZE); 2093 if (ci->td_pool == NULL) { 2094 retval = -ENOMEM; 2095 goto free_qh_pool; 2096 } 2097 2098 retval = init_eps(ci); 2099 if (retval) 2100 goto free_pools; 2101 2102 ci->gadget.ep0 = &ci->ep0in->ep; 2103 2104 retval = usb_add_gadget_udc(dev, &ci->gadget); 2105 if (retval) 2106 goto destroy_eps; 2107 2108 return retval; 2109 2110 destroy_eps: 2111 destroy_eps(ci); 2112 free_pools: 2113 dma_pool_destroy(ci->td_pool); 2114 free_qh_pool: 2115 dma_pool_destroy(ci->qh_pool); 2116 return retval; 2117 } 2118 2119 /* 2120 * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC 2121 * 2122 * No interrupts active, the IRQ has been released 2123 */ 2124 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci) 2125 { 2126 if (!ci->roles[CI_ROLE_GADGET]) 2127 return; 2128 2129 usb_del_gadget_udc(&ci->gadget); 2130 2131 destroy_eps(ci); 2132 2133 dma_pool_destroy(ci->td_pool); 2134 dma_pool_destroy(ci->qh_pool); 2135 } 2136 2137 static int udc_id_switch_for_device(struct ci_hdrc *ci) 2138 { 2139 if (ci->platdata->pins_device) 2140 pinctrl_select_state(ci->platdata->pctl, 2141 ci->platdata->pins_device); 2142 2143 if (ci->is_otg) 2144 /* Clear and enable BSV irq */ 2145 hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE, 2146 OTGSC_BSVIS | OTGSC_BSVIE); 2147 2148 return 0; 2149 } 2150 2151 static void udc_id_switch_for_host(struct ci_hdrc *ci) 2152 { 2153 /* 2154 * host doesn't care B_SESSION_VALID event 2155 * so clear and disable BSV irq 2156 */ 2157 if (ci->is_otg) 2158 hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS); 2159 2160 ci->vbus_active = 0; 2161 2162 if (ci->platdata->pins_device && ci->platdata->pins_default) 2163 pinctrl_select_state(ci->platdata->pctl, 2164 ci->platdata->pins_default); 2165 } 2166 2167 /** 2168 * ci_hdrc_gadget_init - initialize device related bits 2169 * @ci: the controller 2170 * 2171 * This function initializes the gadget, if the device is "device capable". 2172 */ 2173 int ci_hdrc_gadget_init(struct ci_hdrc *ci) 2174 { 2175 struct ci_role_driver *rdrv; 2176 int ret; 2177 2178 if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC)) 2179 return -ENXIO; 2180 2181 rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL); 2182 if (!rdrv) 2183 return -ENOMEM; 2184 2185 rdrv->start = udc_id_switch_for_device; 2186 rdrv->stop = udc_id_switch_for_host; 2187 rdrv->irq = udc_irq; 2188 rdrv->name = "gadget"; 2189 2190 ret = udc_start(ci); 2191 if (!ret) 2192 ci->roles[CI_ROLE_GADGET] = rdrv; 2193 2194 return ret; 2195 } 2196