xref: /openbmc/linux/drivers/usb/chipidea/udc.c (revision 4a3fad70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/usb/ch9.h>
19 #include <linux/usb/gadget.h>
20 #include <linux/usb/otg-fsm.h>
21 #include <linux/usb/chipidea.h>
22 
23 #include "ci.h"
24 #include "udc.h"
25 #include "bits.h"
26 #include "otg.h"
27 #include "otg_fsm.h"
28 
29 /* control endpoint description */
30 static const struct usb_endpoint_descriptor
31 ctrl_endpt_out_desc = {
32 	.bLength         = USB_DT_ENDPOINT_SIZE,
33 	.bDescriptorType = USB_DT_ENDPOINT,
34 
35 	.bEndpointAddress = USB_DIR_OUT,
36 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
37 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
38 };
39 
40 static const struct usb_endpoint_descriptor
41 ctrl_endpt_in_desc = {
42 	.bLength         = USB_DT_ENDPOINT_SIZE,
43 	.bDescriptorType = USB_DT_ENDPOINT,
44 
45 	.bEndpointAddress = USB_DIR_IN,
46 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
47 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
48 };
49 
50 /**
51  * hw_ep_bit: calculates the bit number
52  * @num: endpoint number
53  * @dir: endpoint direction
54  *
55  * This function returns bit number
56  */
57 static inline int hw_ep_bit(int num, int dir)
58 {
59 	return num + ((dir == TX) ? 16 : 0);
60 }
61 
62 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
63 {
64 	int fill = 16 - ci->hw_ep_max / 2;
65 
66 	if (n >= ci->hw_ep_max / 2)
67 		n += fill;
68 
69 	return n;
70 }
71 
72 /**
73  * hw_device_state: enables/disables interrupts (execute without interruption)
74  * @dma: 0 => disable, !0 => enable and set dma engine
75  *
76  * This function returns an error code
77  */
78 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
79 {
80 	if (dma) {
81 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
82 		/* interrupt, error, port change, reset, sleep/suspend */
83 		hw_write(ci, OP_USBINTR, ~0,
84 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
85 	} else {
86 		hw_write(ci, OP_USBINTR, ~0, 0);
87 	}
88 	return 0;
89 }
90 
91 /**
92  * hw_ep_flush: flush endpoint fifo (execute without interruption)
93  * @num: endpoint number
94  * @dir: endpoint direction
95  *
96  * This function returns an error code
97  */
98 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
99 {
100 	int n = hw_ep_bit(num, dir);
101 
102 	do {
103 		/* flush any pending transfer */
104 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
105 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
106 			cpu_relax();
107 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
108 
109 	return 0;
110 }
111 
112 /**
113  * hw_ep_disable: disables endpoint (execute without interruption)
114  * @num: endpoint number
115  * @dir: endpoint direction
116  *
117  * This function returns an error code
118  */
119 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
120 {
121 	hw_write(ci, OP_ENDPTCTRL + num,
122 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
123 	return 0;
124 }
125 
126 /**
127  * hw_ep_enable: enables endpoint (execute without interruption)
128  * @num:  endpoint number
129  * @dir:  endpoint direction
130  * @type: endpoint type
131  *
132  * This function returns an error code
133  */
134 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
135 {
136 	u32 mask, data;
137 
138 	if (dir == TX) {
139 		mask  = ENDPTCTRL_TXT;  /* type    */
140 		data  = type << __ffs(mask);
141 
142 		mask |= ENDPTCTRL_TXS;  /* unstall */
143 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
144 		data |= ENDPTCTRL_TXR;
145 		mask |= ENDPTCTRL_TXE;  /* enable  */
146 		data |= ENDPTCTRL_TXE;
147 	} else {
148 		mask  = ENDPTCTRL_RXT;  /* type    */
149 		data  = type << __ffs(mask);
150 
151 		mask |= ENDPTCTRL_RXS;  /* unstall */
152 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
153 		data |= ENDPTCTRL_RXR;
154 		mask |= ENDPTCTRL_RXE;  /* enable  */
155 		data |= ENDPTCTRL_RXE;
156 	}
157 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
158 	return 0;
159 }
160 
161 /**
162  * hw_ep_get_halt: return endpoint halt status
163  * @num: endpoint number
164  * @dir: endpoint direction
165  *
166  * This function returns 1 if endpoint halted
167  */
168 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
169 {
170 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
171 
172 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
173 }
174 
175 /**
176  * hw_ep_prime: primes endpoint (execute without interruption)
177  * @num:     endpoint number
178  * @dir:     endpoint direction
179  * @is_ctrl: true if control endpoint
180  *
181  * This function returns an error code
182  */
183 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
184 {
185 	int n = hw_ep_bit(num, dir);
186 
187 	/* Synchronize before ep prime */
188 	wmb();
189 
190 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
191 		return -EAGAIN;
192 
193 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
194 
195 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
196 		cpu_relax();
197 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
198 		return -EAGAIN;
199 
200 	/* status shoult be tested according with manual but it doesn't work */
201 	return 0;
202 }
203 
204 /**
205  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
206  *                 without interruption)
207  * @num:   endpoint number
208  * @dir:   endpoint direction
209  * @value: true => stall, false => unstall
210  *
211  * This function returns an error code
212  */
213 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
214 {
215 	if (value != 0 && value != 1)
216 		return -EINVAL;
217 
218 	do {
219 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
220 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
221 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
222 
223 		/* data toggle - reserved for EP0 but it's in ESS */
224 		hw_write(ci, reg, mask_xs|mask_xr,
225 			  value ? mask_xs : mask_xr);
226 	} while (value != hw_ep_get_halt(ci, num, dir));
227 
228 	return 0;
229 }
230 
231 /**
232  * hw_is_port_high_speed: test if port is high speed
233  *
234  * This function returns true if high speed port
235  */
236 static int hw_port_is_high_speed(struct ci_hdrc *ci)
237 {
238 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
239 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
240 }
241 
242 /**
243  * hw_test_and_clear_complete: test & clear complete status (execute without
244  *                             interruption)
245  * @n: endpoint number
246  *
247  * This function returns complete status
248  */
249 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
250 {
251 	n = ep_to_bit(ci, n);
252 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
253 }
254 
255 /**
256  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
257  *                                without interruption)
258  *
259  * This function returns active interrutps
260  */
261 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
262 {
263 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
264 
265 	hw_write(ci, OP_USBSTS, ~0, reg);
266 	return reg;
267 }
268 
269 /**
270  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
271  *                                interruption)
272  *
273  * This function returns guard value
274  */
275 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
276 {
277 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
278 }
279 
280 /**
281  * hw_test_and_set_setup_guard: test & set setup guard (execute without
282  *                              interruption)
283  *
284  * This function returns guard value
285  */
286 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
287 {
288 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
289 }
290 
291 /**
292  * hw_usb_set_address: configures USB address (execute without interruption)
293  * @value: new USB address
294  *
295  * This function explicitly sets the address, without the "USBADRA" (advance)
296  * feature, which is not supported by older versions of the controller.
297  */
298 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
299 {
300 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
301 		 value << __ffs(DEVICEADDR_USBADR));
302 }
303 
304 /**
305  * hw_usb_reset: restart device after a bus reset (execute without
306  *               interruption)
307  *
308  * This function returns an error code
309  */
310 static int hw_usb_reset(struct ci_hdrc *ci)
311 {
312 	hw_usb_set_address(ci, 0);
313 
314 	/* ESS flushes only at end?!? */
315 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
316 
317 	/* clear setup token semaphores */
318 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
319 
320 	/* clear complete status */
321 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
322 
323 	/* wait until all bits cleared */
324 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
325 		udelay(10);             /* not RTOS friendly */
326 
327 	/* reset all endpoints ? */
328 
329 	/* reset internal status and wait for further instructions
330 	   no need to verify the port reset status (ESS does it) */
331 
332 	return 0;
333 }
334 
335 /******************************************************************************
336  * UTIL block
337  *****************************************************************************/
338 
339 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
340 			  unsigned length)
341 {
342 	int i;
343 	u32 temp;
344 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
345 						  GFP_ATOMIC);
346 
347 	if (node == NULL)
348 		return -ENOMEM;
349 
350 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
351 	if (node->ptr == NULL) {
352 		kfree(node);
353 		return -ENOMEM;
354 	}
355 
356 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
357 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
358 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
359 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
360 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
361 
362 		if (hwreq->req.length == 0
363 				|| hwreq->req.length % hwep->ep.maxpacket)
364 			mul++;
365 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
366 	}
367 
368 	temp = (u32) (hwreq->req.dma + hwreq->req.actual);
369 	if (length) {
370 		node->ptr->page[0] = cpu_to_le32(temp);
371 		for (i = 1; i < TD_PAGE_COUNT; i++) {
372 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
373 			page &= ~TD_RESERVED_MASK;
374 			node->ptr->page[i] = cpu_to_le32(page);
375 		}
376 	}
377 
378 	hwreq->req.actual += length;
379 
380 	if (!list_empty(&hwreq->tds)) {
381 		/* get the last entry */
382 		lastnode = list_entry(hwreq->tds.prev,
383 				struct td_node, td);
384 		lastnode->ptr->next = cpu_to_le32(node->dma);
385 	}
386 
387 	INIT_LIST_HEAD(&node->td);
388 	list_add_tail(&node->td, &hwreq->tds);
389 
390 	return 0;
391 }
392 
393 /**
394  * _usb_addr: calculates endpoint address from direction & number
395  * @ep:  endpoint
396  */
397 static inline u8 _usb_addr(struct ci_hw_ep *ep)
398 {
399 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
400 }
401 
402 /**
403  * _hardware_enqueue: configures a request at hardware level
404  * @hwep:   endpoint
405  * @hwreq:  request
406  *
407  * This function returns an error code
408  */
409 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
410 {
411 	struct ci_hdrc *ci = hwep->ci;
412 	int ret = 0;
413 	unsigned rest = hwreq->req.length;
414 	int pages = TD_PAGE_COUNT;
415 	struct td_node *firstnode, *lastnode;
416 
417 	/* don't queue twice */
418 	if (hwreq->req.status == -EALREADY)
419 		return -EALREADY;
420 
421 	hwreq->req.status = -EALREADY;
422 
423 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
424 					    &hwreq->req, hwep->dir);
425 	if (ret)
426 		return ret;
427 
428 	/*
429 	 * The first buffer could be not page aligned.
430 	 * In that case we have to span into one extra td.
431 	 */
432 	if (hwreq->req.dma % PAGE_SIZE)
433 		pages--;
434 
435 	if (rest == 0) {
436 		ret = add_td_to_list(hwep, hwreq, 0);
437 		if (ret < 0)
438 			goto done;
439 	}
440 
441 	while (rest > 0) {
442 		unsigned count = min(hwreq->req.length - hwreq->req.actual,
443 					(unsigned)(pages * CI_HDRC_PAGE_SIZE));
444 		ret = add_td_to_list(hwep, hwreq, count);
445 		if (ret < 0)
446 			goto done;
447 
448 		rest -= count;
449 	}
450 
451 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
452 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
453 		ret = add_td_to_list(hwep, hwreq, 0);
454 		if (ret < 0)
455 			goto done;
456 	}
457 
458 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
459 
460 	lastnode = list_entry(hwreq->tds.prev,
461 		struct td_node, td);
462 
463 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
464 	if (!hwreq->req.no_interrupt)
465 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
466 	wmb();
467 
468 	hwreq->req.actual = 0;
469 	if (!list_empty(&hwep->qh.queue)) {
470 		struct ci_hw_req *hwreqprev;
471 		int n = hw_ep_bit(hwep->num, hwep->dir);
472 		int tmp_stat;
473 		struct td_node *prevlastnode;
474 		u32 next = firstnode->dma & TD_ADDR_MASK;
475 
476 		hwreqprev = list_entry(hwep->qh.queue.prev,
477 				struct ci_hw_req, queue);
478 		prevlastnode = list_entry(hwreqprev->tds.prev,
479 				struct td_node, td);
480 
481 		prevlastnode->ptr->next = cpu_to_le32(next);
482 		wmb();
483 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
484 			goto done;
485 		do {
486 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
487 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
488 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
489 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
490 		if (tmp_stat)
491 			goto done;
492 	}
493 
494 	/*  QH configuration */
495 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
496 	hwep->qh.ptr->td.token &=
497 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
498 
499 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
500 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
501 
502 		if (hwreq->req.length == 0
503 				|| hwreq->req.length % hwep->ep.maxpacket)
504 			mul++;
505 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
506 	}
507 
508 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
509 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
510 done:
511 	return ret;
512 }
513 
514 /*
515  * free_pending_td: remove a pending request for the endpoint
516  * @hwep: endpoint
517  */
518 static void free_pending_td(struct ci_hw_ep *hwep)
519 {
520 	struct td_node *pending = hwep->pending_td;
521 
522 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
523 	hwep->pending_td = NULL;
524 	kfree(pending);
525 }
526 
527 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
528 					   struct td_node *node)
529 {
530 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
531 	hwep->qh.ptr->td.token &=
532 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
533 
534 	return hw_ep_prime(ci, hwep->num, hwep->dir,
535 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
536 }
537 
538 /**
539  * _hardware_dequeue: handles a request at hardware level
540  * @gadget: gadget
541  * @hwep:   endpoint
542  *
543  * This function returns an error code
544  */
545 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
546 {
547 	u32 tmptoken;
548 	struct td_node *node, *tmpnode;
549 	unsigned remaining_length;
550 	unsigned actual = hwreq->req.length;
551 	struct ci_hdrc *ci = hwep->ci;
552 
553 	if (hwreq->req.status != -EALREADY)
554 		return -EINVAL;
555 
556 	hwreq->req.status = 0;
557 
558 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
559 		tmptoken = le32_to_cpu(node->ptr->token);
560 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
561 			int n = hw_ep_bit(hwep->num, hwep->dir);
562 
563 			if (ci->rev == CI_REVISION_24)
564 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
565 					reprime_dtd(ci, hwep, node);
566 			hwreq->req.status = -EALREADY;
567 			return -EBUSY;
568 		}
569 
570 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
571 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
572 		actual -= remaining_length;
573 
574 		hwreq->req.status = tmptoken & TD_STATUS;
575 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
576 			hwreq->req.status = -EPIPE;
577 			break;
578 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
579 			hwreq->req.status = -EPROTO;
580 			break;
581 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
582 			hwreq->req.status = -EILSEQ;
583 			break;
584 		}
585 
586 		if (remaining_length) {
587 			if (hwep->dir == TX) {
588 				hwreq->req.status = -EPROTO;
589 				break;
590 			}
591 		}
592 		/*
593 		 * As the hardware could still address the freed td
594 		 * which will run the udc unusable, the cleanup of the
595 		 * td has to be delayed by one.
596 		 */
597 		if (hwep->pending_td)
598 			free_pending_td(hwep);
599 
600 		hwep->pending_td = node;
601 		list_del_init(&node->td);
602 	}
603 
604 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
605 					&hwreq->req, hwep->dir);
606 
607 	hwreq->req.actual += actual;
608 
609 	if (hwreq->req.status)
610 		return hwreq->req.status;
611 
612 	return hwreq->req.actual;
613 }
614 
615 /**
616  * _ep_nuke: dequeues all endpoint requests
617  * @hwep: endpoint
618  *
619  * This function returns an error code
620  * Caller must hold lock
621  */
622 static int _ep_nuke(struct ci_hw_ep *hwep)
623 __releases(hwep->lock)
624 __acquires(hwep->lock)
625 {
626 	struct td_node *node, *tmpnode;
627 	if (hwep == NULL)
628 		return -EINVAL;
629 
630 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
631 
632 	while (!list_empty(&hwep->qh.queue)) {
633 
634 		/* pop oldest request */
635 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
636 						     struct ci_hw_req, queue);
637 
638 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
639 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
640 			list_del_init(&node->td);
641 			node->ptr = NULL;
642 			kfree(node);
643 		}
644 
645 		list_del_init(&hwreq->queue);
646 		hwreq->req.status = -ESHUTDOWN;
647 
648 		if (hwreq->req.complete != NULL) {
649 			spin_unlock(hwep->lock);
650 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
651 			spin_lock(hwep->lock);
652 		}
653 	}
654 
655 	if (hwep->pending_td)
656 		free_pending_td(hwep);
657 
658 	return 0;
659 }
660 
661 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
662 {
663 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
664 	int direction, retval = 0;
665 	unsigned long flags;
666 
667 	if (ep == NULL || hwep->ep.desc == NULL)
668 		return -EINVAL;
669 
670 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
671 		return -EOPNOTSUPP;
672 
673 	spin_lock_irqsave(hwep->lock, flags);
674 
675 	if (value && hwep->dir == TX && check_transfer &&
676 		!list_empty(&hwep->qh.queue) &&
677 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
678 		spin_unlock_irqrestore(hwep->lock, flags);
679 		return -EAGAIN;
680 	}
681 
682 	direction = hwep->dir;
683 	do {
684 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
685 
686 		if (!value)
687 			hwep->wedge = 0;
688 
689 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
690 			hwep->dir = (hwep->dir == TX) ? RX : TX;
691 
692 	} while (hwep->dir != direction);
693 
694 	spin_unlock_irqrestore(hwep->lock, flags);
695 	return retval;
696 }
697 
698 
699 /**
700  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
701  * @gadget: gadget
702  *
703  * This function returns an error code
704  */
705 static int _gadget_stop_activity(struct usb_gadget *gadget)
706 {
707 	struct usb_ep *ep;
708 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
709 	unsigned long flags;
710 
711 	spin_lock_irqsave(&ci->lock, flags);
712 	ci->gadget.speed = USB_SPEED_UNKNOWN;
713 	ci->remote_wakeup = 0;
714 	ci->suspended = 0;
715 	spin_unlock_irqrestore(&ci->lock, flags);
716 
717 	/* flush all endpoints */
718 	gadget_for_each_ep(ep, gadget) {
719 		usb_ep_fifo_flush(ep);
720 	}
721 	usb_ep_fifo_flush(&ci->ep0out->ep);
722 	usb_ep_fifo_flush(&ci->ep0in->ep);
723 
724 	/* make sure to disable all endpoints */
725 	gadget_for_each_ep(ep, gadget) {
726 		usb_ep_disable(ep);
727 	}
728 
729 	if (ci->status != NULL) {
730 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
731 		ci->status = NULL;
732 	}
733 
734 	return 0;
735 }
736 
737 /******************************************************************************
738  * ISR block
739  *****************************************************************************/
740 /**
741  * isr_reset_handler: USB reset interrupt handler
742  * @ci: UDC device
743  *
744  * This function resets USB engine after a bus reset occurred
745  */
746 static void isr_reset_handler(struct ci_hdrc *ci)
747 __releases(ci->lock)
748 __acquires(ci->lock)
749 {
750 	int retval;
751 
752 	spin_unlock(&ci->lock);
753 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
754 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
755 
756 	retval = _gadget_stop_activity(&ci->gadget);
757 	if (retval)
758 		goto done;
759 
760 	retval = hw_usb_reset(ci);
761 	if (retval)
762 		goto done;
763 
764 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
765 	if (ci->status == NULL)
766 		retval = -ENOMEM;
767 
768 done:
769 	spin_lock(&ci->lock);
770 
771 	if (retval)
772 		dev_err(ci->dev, "error: %i\n", retval);
773 }
774 
775 /**
776  * isr_get_status_complete: get_status request complete function
777  * @ep:  endpoint
778  * @req: request handled
779  *
780  * Caller must release lock
781  */
782 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
783 {
784 	if (ep == NULL || req == NULL)
785 		return;
786 
787 	kfree(req->buf);
788 	usb_ep_free_request(ep, req);
789 }
790 
791 /**
792  * _ep_queue: queues (submits) an I/O request to an endpoint
793  * @ep:        endpoint
794  * @req:       request
795  * @gfp_flags: GFP flags (not used)
796  *
797  * Caller must hold lock
798  * This function returns an error code
799  */
800 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
801 		    gfp_t __maybe_unused gfp_flags)
802 {
803 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
804 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
805 	struct ci_hdrc *ci = hwep->ci;
806 	int retval = 0;
807 
808 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
809 		return -EINVAL;
810 
811 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
812 		if (req->length)
813 			hwep = (ci->ep0_dir == RX) ?
814 			       ci->ep0out : ci->ep0in;
815 		if (!list_empty(&hwep->qh.queue)) {
816 			_ep_nuke(hwep);
817 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
818 				 _usb_addr(hwep));
819 		}
820 	}
821 
822 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
823 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
824 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
825 		return -EMSGSIZE;
826 	}
827 
828 	/* first nuke then test link, e.g. previous status has not sent */
829 	if (!list_empty(&hwreq->queue)) {
830 		dev_err(hwep->ci->dev, "request already in queue\n");
831 		return -EBUSY;
832 	}
833 
834 	/* push request */
835 	hwreq->req.status = -EINPROGRESS;
836 	hwreq->req.actual = 0;
837 
838 	retval = _hardware_enqueue(hwep, hwreq);
839 
840 	if (retval == -EALREADY)
841 		retval = 0;
842 	if (!retval)
843 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
844 
845 	return retval;
846 }
847 
848 /**
849  * isr_get_status_response: get_status request response
850  * @ci: ci struct
851  * @setup: setup request packet
852  *
853  * This function returns an error code
854  */
855 static int isr_get_status_response(struct ci_hdrc *ci,
856 				   struct usb_ctrlrequest *setup)
857 __releases(hwep->lock)
858 __acquires(hwep->lock)
859 {
860 	struct ci_hw_ep *hwep = ci->ep0in;
861 	struct usb_request *req = NULL;
862 	gfp_t gfp_flags = GFP_ATOMIC;
863 	int dir, num, retval;
864 
865 	if (hwep == NULL || setup == NULL)
866 		return -EINVAL;
867 
868 	spin_unlock(hwep->lock);
869 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
870 	spin_lock(hwep->lock);
871 	if (req == NULL)
872 		return -ENOMEM;
873 
874 	req->complete = isr_get_status_complete;
875 	req->length   = 2;
876 	req->buf      = kzalloc(req->length, gfp_flags);
877 	if (req->buf == NULL) {
878 		retval = -ENOMEM;
879 		goto err_free_req;
880 	}
881 
882 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
883 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
884 			ci->gadget.is_selfpowered;
885 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
886 		   == USB_RECIP_ENDPOINT) {
887 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
888 			TX : RX;
889 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
890 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
891 	}
892 	/* else do nothing; reserved for future use */
893 
894 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
895 	if (retval)
896 		goto err_free_buf;
897 
898 	return 0;
899 
900  err_free_buf:
901 	kfree(req->buf);
902  err_free_req:
903 	spin_unlock(hwep->lock);
904 	usb_ep_free_request(&hwep->ep, req);
905 	spin_lock(hwep->lock);
906 	return retval;
907 }
908 
909 /**
910  * isr_setup_status_complete: setup_status request complete function
911  * @ep:  endpoint
912  * @req: request handled
913  *
914  * Caller must release lock. Put the port in test mode if test mode
915  * feature is selected.
916  */
917 static void
918 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
919 {
920 	struct ci_hdrc *ci = req->context;
921 	unsigned long flags;
922 
923 	if (ci->setaddr) {
924 		hw_usb_set_address(ci, ci->address);
925 		ci->setaddr = false;
926 		if (ci->address)
927 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
928 	}
929 
930 	spin_lock_irqsave(&ci->lock, flags);
931 	if (ci->test_mode)
932 		hw_port_test_set(ci, ci->test_mode);
933 	spin_unlock_irqrestore(&ci->lock, flags);
934 }
935 
936 /**
937  * isr_setup_status_phase: queues the status phase of a setup transation
938  * @ci: ci struct
939  *
940  * This function returns an error code
941  */
942 static int isr_setup_status_phase(struct ci_hdrc *ci)
943 {
944 	struct ci_hw_ep *hwep;
945 
946 	/*
947 	 * Unexpected USB controller behavior, caused by bad signal integrity
948 	 * or ground reference problems, can lead to isr_setup_status_phase
949 	 * being called with ci->status equal to NULL.
950 	 * If this situation occurs, you should review your USB hardware design.
951 	 */
952 	if (WARN_ON_ONCE(!ci->status))
953 		return -EPIPE;
954 
955 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
956 	ci->status->context = ci;
957 	ci->status->complete = isr_setup_status_complete;
958 
959 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
960 }
961 
962 /**
963  * isr_tr_complete_low: transaction complete low level handler
964  * @hwep: endpoint
965  *
966  * This function returns an error code
967  * Caller must hold lock
968  */
969 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
970 __releases(hwep->lock)
971 __acquires(hwep->lock)
972 {
973 	struct ci_hw_req *hwreq, *hwreqtemp;
974 	struct ci_hw_ep *hweptemp = hwep;
975 	int retval = 0;
976 
977 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
978 			queue) {
979 		retval = _hardware_dequeue(hwep, hwreq);
980 		if (retval < 0)
981 			break;
982 		list_del_init(&hwreq->queue);
983 		if (hwreq->req.complete != NULL) {
984 			spin_unlock(hwep->lock);
985 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
986 					hwreq->req.length)
987 				hweptemp = hwep->ci->ep0in;
988 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
989 			spin_lock(hwep->lock);
990 		}
991 	}
992 
993 	if (retval == -EBUSY)
994 		retval = 0;
995 
996 	return retval;
997 }
998 
999 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1000 {
1001 	dev_warn(&ci->gadget.dev,
1002 		"connect the device to an alternate port if you want HNP\n");
1003 	return isr_setup_status_phase(ci);
1004 }
1005 
1006 /**
1007  * isr_setup_packet_handler: setup packet handler
1008  * @ci: UDC descriptor
1009  *
1010  * This function handles setup packet
1011  */
1012 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1013 __releases(ci->lock)
1014 __acquires(ci->lock)
1015 {
1016 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1017 	struct usb_ctrlrequest req;
1018 	int type, num, dir, err = -EINVAL;
1019 	u8 tmode = 0;
1020 
1021 	/*
1022 	 * Flush data and handshake transactions of previous
1023 	 * setup packet.
1024 	 */
1025 	_ep_nuke(ci->ep0out);
1026 	_ep_nuke(ci->ep0in);
1027 
1028 	/* read_setup_packet */
1029 	do {
1030 		hw_test_and_set_setup_guard(ci);
1031 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1032 	} while (!hw_test_and_clear_setup_guard(ci));
1033 
1034 	type = req.bRequestType;
1035 
1036 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1037 
1038 	switch (req.bRequest) {
1039 	case USB_REQ_CLEAR_FEATURE:
1040 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1041 				le16_to_cpu(req.wValue) ==
1042 				USB_ENDPOINT_HALT) {
1043 			if (req.wLength != 0)
1044 				break;
1045 			num  = le16_to_cpu(req.wIndex);
1046 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1047 			num &= USB_ENDPOINT_NUMBER_MASK;
1048 			if (dir == TX)
1049 				num += ci->hw_ep_max / 2;
1050 			if (!ci->ci_hw_ep[num].wedge) {
1051 				spin_unlock(&ci->lock);
1052 				err = usb_ep_clear_halt(
1053 					&ci->ci_hw_ep[num].ep);
1054 				spin_lock(&ci->lock);
1055 				if (err)
1056 					break;
1057 			}
1058 			err = isr_setup_status_phase(ci);
1059 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1060 				le16_to_cpu(req.wValue) ==
1061 				USB_DEVICE_REMOTE_WAKEUP) {
1062 			if (req.wLength != 0)
1063 				break;
1064 			ci->remote_wakeup = 0;
1065 			err = isr_setup_status_phase(ci);
1066 		} else {
1067 			goto delegate;
1068 		}
1069 		break;
1070 	case USB_REQ_GET_STATUS:
1071 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1072 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1073 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1074 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1075 			goto delegate;
1076 		if (le16_to_cpu(req.wLength) != 2 ||
1077 		    le16_to_cpu(req.wValue)  != 0)
1078 			break;
1079 		err = isr_get_status_response(ci, &req);
1080 		break;
1081 	case USB_REQ_SET_ADDRESS:
1082 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1083 			goto delegate;
1084 		if (le16_to_cpu(req.wLength) != 0 ||
1085 		    le16_to_cpu(req.wIndex)  != 0)
1086 			break;
1087 		ci->address = (u8)le16_to_cpu(req.wValue);
1088 		ci->setaddr = true;
1089 		err = isr_setup_status_phase(ci);
1090 		break;
1091 	case USB_REQ_SET_FEATURE:
1092 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1093 				le16_to_cpu(req.wValue) ==
1094 				USB_ENDPOINT_HALT) {
1095 			if (req.wLength != 0)
1096 				break;
1097 			num  = le16_to_cpu(req.wIndex);
1098 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1099 			num &= USB_ENDPOINT_NUMBER_MASK;
1100 			if (dir == TX)
1101 				num += ci->hw_ep_max / 2;
1102 
1103 			spin_unlock(&ci->lock);
1104 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1105 			spin_lock(&ci->lock);
1106 			if (!err)
1107 				isr_setup_status_phase(ci);
1108 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1109 			if (req.wLength != 0)
1110 				break;
1111 			switch (le16_to_cpu(req.wValue)) {
1112 			case USB_DEVICE_REMOTE_WAKEUP:
1113 				ci->remote_wakeup = 1;
1114 				err = isr_setup_status_phase(ci);
1115 				break;
1116 			case USB_DEVICE_TEST_MODE:
1117 				tmode = le16_to_cpu(req.wIndex) >> 8;
1118 				switch (tmode) {
1119 				case TEST_J:
1120 				case TEST_K:
1121 				case TEST_SE0_NAK:
1122 				case TEST_PACKET:
1123 				case TEST_FORCE_EN:
1124 					ci->test_mode = tmode;
1125 					err = isr_setup_status_phase(
1126 							ci);
1127 					break;
1128 				default:
1129 					break;
1130 				}
1131 				break;
1132 			case USB_DEVICE_B_HNP_ENABLE:
1133 				if (ci_otg_is_fsm_mode(ci)) {
1134 					ci->gadget.b_hnp_enable = 1;
1135 					err = isr_setup_status_phase(
1136 							ci);
1137 				}
1138 				break;
1139 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1140 				if (ci_otg_is_fsm_mode(ci))
1141 					err = otg_a_alt_hnp_support(ci);
1142 				break;
1143 			case USB_DEVICE_A_HNP_SUPPORT:
1144 				if (ci_otg_is_fsm_mode(ci)) {
1145 					ci->gadget.a_hnp_support = 1;
1146 					err = isr_setup_status_phase(
1147 							ci);
1148 				}
1149 				break;
1150 			default:
1151 				goto delegate;
1152 			}
1153 		} else {
1154 			goto delegate;
1155 		}
1156 		break;
1157 	default:
1158 delegate:
1159 		if (req.wLength == 0)   /* no data phase */
1160 			ci->ep0_dir = TX;
1161 
1162 		spin_unlock(&ci->lock);
1163 		err = ci->driver->setup(&ci->gadget, &req);
1164 		spin_lock(&ci->lock);
1165 		break;
1166 	}
1167 
1168 	if (err < 0) {
1169 		spin_unlock(&ci->lock);
1170 		if (_ep_set_halt(&hwep->ep, 1, false))
1171 			dev_err(ci->dev, "error: _ep_set_halt\n");
1172 		spin_lock(&ci->lock);
1173 	}
1174 }
1175 
1176 /**
1177  * isr_tr_complete_handler: transaction complete interrupt handler
1178  * @ci: UDC descriptor
1179  *
1180  * This function handles traffic events
1181  */
1182 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1183 __releases(ci->lock)
1184 __acquires(ci->lock)
1185 {
1186 	unsigned i;
1187 	int err;
1188 
1189 	for (i = 0; i < ci->hw_ep_max; i++) {
1190 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1191 
1192 		if (hwep->ep.desc == NULL)
1193 			continue;   /* not configured */
1194 
1195 		if (hw_test_and_clear_complete(ci, i)) {
1196 			err = isr_tr_complete_low(hwep);
1197 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1198 				if (err > 0)   /* needs status phase */
1199 					err = isr_setup_status_phase(ci);
1200 				if (err < 0) {
1201 					spin_unlock(&ci->lock);
1202 					if (_ep_set_halt(&hwep->ep, 1, false))
1203 						dev_err(ci->dev,
1204 						"error: _ep_set_halt\n");
1205 					spin_lock(&ci->lock);
1206 				}
1207 			}
1208 		}
1209 
1210 		/* Only handle setup packet below */
1211 		if (i == 0 &&
1212 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1213 			isr_setup_packet_handler(ci);
1214 	}
1215 }
1216 
1217 /******************************************************************************
1218  * ENDPT block
1219  *****************************************************************************/
1220 /**
1221  * ep_enable: configure endpoint, making it usable
1222  *
1223  * Check usb_ep_enable() at "usb_gadget.h" for details
1224  */
1225 static int ep_enable(struct usb_ep *ep,
1226 		     const struct usb_endpoint_descriptor *desc)
1227 {
1228 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1229 	int retval = 0;
1230 	unsigned long flags;
1231 	u32 cap = 0;
1232 
1233 	if (ep == NULL || desc == NULL)
1234 		return -EINVAL;
1235 
1236 	spin_lock_irqsave(hwep->lock, flags);
1237 
1238 	/* only internal SW should enable ctrl endpts */
1239 
1240 	if (!list_empty(&hwep->qh.queue)) {
1241 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1242 		spin_unlock_irqrestore(hwep->lock, flags);
1243 		return -EBUSY;
1244 	}
1245 
1246 	hwep->ep.desc = desc;
1247 
1248 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1249 	hwep->num  = usb_endpoint_num(desc);
1250 	hwep->type = usb_endpoint_type(desc);
1251 
1252 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1253 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1254 
1255 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1256 		cap |= QH_IOS;
1257 
1258 	cap |= QH_ZLT;
1259 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1260 	/*
1261 	 * For ISO-TX, we set mult at QH as the largest value, and use
1262 	 * MultO at TD as real mult value.
1263 	 */
1264 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1265 		cap |= 3 << __ffs(QH_MULT);
1266 
1267 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1268 
1269 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1270 
1271 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1272 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1273 		retval = -EINVAL;
1274 	}
1275 
1276 	/*
1277 	 * Enable endpoints in the HW other than ep0 as ep0
1278 	 * is always enabled
1279 	 */
1280 	if (hwep->num)
1281 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1282 				       hwep->type);
1283 
1284 	spin_unlock_irqrestore(hwep->lock, flags);
1285 	return retval;
1286 }
1287 
1288 /**
1289  * ep_disable: endpoint is no longer usable
1290  *
1291  * Check usb_ep_disable() at "usb_gadget.h" for details
1292  */
1293 static int ep_disable(struct usb_ep *ep)
1294 {
1295 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1296 	int direction, retval = 0;
1297 	unsigned long flags;
1298 
1299 	if (ep == NULL)
1300 		return -EINVAL;
1301 	else if (hwep->ep.desc == NULL)
1302 		return -EBUSY;
1303 
1304 	spin_lock_irqsave(hwep->lock, flags);
1305 
1306 	/* only internal SW should disable ctrl endpts */
1307 
1308 	direction = hwep->dir;
1309 	do {
1310 		retval |= _ep_nuke(hwep);
1311 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1312 
1313 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1314 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1315 
1316 	} while (hwep->dir != direction);
1317 
1318 	hwep->ep.desc = NULL;
1319 
1320 	spin_unlock_irqrestore(hwep->lock, flags);
1321 	return retval;
1322 }
1323 
1324 /**
1325  * ep_alloc_request: allocate a request object to use with this endpoint
1326  *
1327  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1328  */
1329 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1330 {
1331 	struct ci_hw_req *hwreq = NULL;
1332 
1333 	if (ep == NULL)
1334 		return NULL;
1335 
1336 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1337 	if (hwreq != NULL) {
1338 		INIT_LIST_HEAD(&hwreq->queue);
1339 		INIT_LIST_HEAD(&hwreq->tds);
1340 	}
1341 
1342 	return (hwreq == NULL) ? NULL : &hwreq->req;
1343 }
1344 
1345 /**
1346  * ep_free_request: frees a request object
1347  *
1348  * Check usb_ep_free_request() at "usb_gadget.h" for details
1349  */
1350 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1351 {
1352 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1353 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1354 	struct td_node *node, *tmpnode;
1355 	unsigned long flags;
1356 
1357 	if (ep == NULL || req == NULL) {
1358 		return;
1359 	} else if (!list_empty(&hwreq->queue)) {
1360 		dev_err(hwep->ci->dev, "freeing queued request\n");
1361 		return;
1362 	}
1363 
1364 	spin_lock_irqsave(hwep->lock, flags);
1365 
1366 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1367 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1368 		list_del_init(&node->td);
1369 		node->ptr = NULL;
1370 		kfree(node);
1371 	}
1372 
1373 	kfree(hwreq);
1374 
1375 	spin_unlock_irqrestore(hwep->lock, flags);
1376 }
1377 
1378 /**
1379  * ep_queue: queues (submits) an I/O request to an endpoint
1380  *
1381  * Check usb_ep_queue()* at usb_gadget.h" for details
1382  */
1383 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1384 		    gfp_t __maybe_unused gfp_flags)
1385 {
1386 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1387 	int retval = 0;
1388 	unsigned long flags;
1389 
1390 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1391 		return -EINVAL;
1392 
1393 	spin_lock_irqsave(hwep->lock, flags);
1394 	retval = _ep_queue(ep, req, gfp_flags);
1395 	spin_unlock_irqrestore(hwep->lock, flags);
1396 	return retval;
1397 }
1398 
1399 /**
1400  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1401  *
1402  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1403  */
1404 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1405 {
1406 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1407 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1408 	unsigned long flags;
1409 	struct td_node *node, *tmpnode;
1410 
1411 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1412 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1413 		list_empty(&hwep->qh.queue))
1414 		return -EINVAL;
1415 
1416 	spin_lock_irqsave(hwep->lock, flags);
1417 
1418 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1419 
1420 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1421 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1422 		list_del(&node->td);
1423 		kfree(node);
1424 	}
1425 
1426 	/* pop request */
1427 	list_del_init(&hwreq->queue);
1428 
1429 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1430 
1431 	req->status = -ECONNRESET;
1432 
1433 	if (hwreq->req.complete != NULL) {
1434 		spin_unlock(hwep->lock);
1435 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1436 		spin_lock(hwep->lock);
1437 	}
1438 
1439 	spin_unlock_irqrestore(hwep->lock, flags);
1440 	return 0;
1441 }
1442 
1443 /**
1444  * ep_set_halt: sets the endpoint halt feature
1445  *
1446  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1447  */
1448 static int ep_set_halt(struct usb_ep *ep, int value)
1449 {
1450 	return _ep_set_halt(ep, value, true);
1451 }
1452 
1453 /**
1454  * ep_set_wedge: sets the halt feature and ignores clear requests
1455  *
1456  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1457  */
1458 static int ep_set_wedge(struct usb_ep *ep)
1459 {
1460 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1461 	unsigned long flags;
1462 
1463 	if (ep == NULL || hwep->ep.desc == NULL)
1464 		return -EINVAL;
1465 
1466 	spin_lock_irqsave(hwep->lock, flags);
1467 	hwep->wedge = 1;
1468 	spin_unlock_irqrestore(hwep->lock, flags);
1469 
1470 	return usb_ep_set_halt(ep);
1471 }
1472 
1473 /**
1474  * ep_fifo_flush: flushes contents of a fifo
1475  *
1476  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1477  */
1478 static void ep_fifo_flush(struct usb_ep *ep)
1479 {
1480 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1481 	unsigned long flags;
1482 
1483 	if (ep == NULL) {
1484 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1485 		return;
1486 	}
1487 
1488 	spin_lock_irqsave(hwep->lock, flags);
1489 
1490 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1491 
1492 	spin_unlock_irqrestore(hwep->lock, flags);
1493 }
1494 
1495 /**
1496  * Endpoint-specific part of the API to the USB controller hardware
1497  * Check "usb_gadget.h" for details
1498  */
1499 static const struct usb_ep_ops usb_ep_ops = {
1500 	.enable	       = ep_enable,
1501 	.disable       = ep_disable,
1502 	.alloc_request = ep_alloc_request,
1503 	.free_request  = ep_free_request,
1504 	.queue	       = ep_queue,
1505 	.dequeue       = ep_dequeue,
1506 	.set_halt      = ep_set_halt,
1507 	.set_wedge     = ep_set_wedge,
1508 	.fifo_flush    = ep_fifo_flush,
1509 };
1510 
1511 /******************************************************************************
1512  * GADGET block
1513  *****************************************************************************/
1514 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1515 {
1516 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1517 	unsigned long flags;
1518 	int gadget_ready = 0;
1519 
1520 	spin_lock_irqsave(&ci->lock, flags);
1521 	ci->vbus_active = is_active;
1522 	if (ci->driver)
1523 		gadget_ready = 1;
1524 	spin_unlock_irqrestore(&ci->lock, flags);
1525 
1526 	if (ci->usb_phy)
1527 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1528 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1529 
1530 	if (gadget_ready) {
1531 		if (is_active) {
1532 			pm_runtime_get_sync(&_gadget->dev);
1533 			hw_device_reset(ci);
1534 			hw_device_state(ci, ci->ep0out->qh.dma);
1535 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1536 			usb_udc_vbus_handler(_gadget, true);
1537 		} else {
1538 			usb_udc_vbus_handler(_gadget, false);
1539 			if (ci->driver)
1540 				ci->driver->disconnect(&ci->gadget);
1541 			hw_device_state(ci, 0);
1542 			if (ci->platdata->notify_event)
1543 				ci->platdata->notify_event(ci,
1544 				CI_HDRC_CONTROLLER_STOPPED_EVENT);
1545 			_gadget_stop_activity(&ci->gadget);
1546 			pm_runtime_put_sync(&_gadget->dev);
1547 			usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1548 		}
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1555 {
1556 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1557 	unsigned long flags;
1558 	int ret = 0;
1559 
1560 	spin_lock_irqsave(&ci->lock, flags);
1561 	if (!ci->remote_wakeup) {
1562 		ret = -EOPNOTSUPP;
1563 		goto out;
1564 	}
1565 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1566 		ret = -EINVAL;
1567 		goto out;
1568 	}
1569 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1570 out:
1571 	spin_unlock_irqrestore(&ci->lock, flags);
1572 	return ret;
1573 }
1574 
1575 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1576 {
1577 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1578 
1579 	if (ci->usb_phy)
1580 		return usb_phy_set_power(ci->usb_phy, ma);
1581 	return -ENOTSUPP;
1582 }
1583 
1584 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1585 {
1586 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1587 	struct ci_hw_ep *hwep = ci->ep0in;
1588 	unsigned long flags;
1589 
1590 	spin_lock_irqsave(hwep->lock, flags);
1591 	_gadget->is_selfpowered = (is_on != 0);
1592 	spin_unlock_irqrestore(hwep->lock, flags);
1593 
1594 	return 0;
1595 }
1596 
1597 /* Change Data+ pullup status
1598  * this func is used by usb_gadget_connect/disconnet
1599  */
1600 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1601 {
1602 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1603 
1604 	/*
1605 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1606 	 * and don't touch Data+ in host mode for dual role config.
1607 	 */
1608 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1609 		return 0;
1610 
1611 	pm_runtime_get_sync(&ci->gadget.dev);
1612 	if (is_on)
1613 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1614 	else
1615 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1616 	pm_runtime_put_sync(&ci->gadget.dev);
1617 
1618 	return 0;
1619 }
1620 
1621 static int ci_udc_start(struct usb_gadget *gadget,
1622 			 struct usb_gadget_driver *driver);
1623 static int ci_udc_stop(struct usb_gadget *gadget);
1624 /**
1625  * Device operations part of the API to the USB controller hardware,
1626  * which don't involve endpoints (or i/o)
1627  * Check  "usb_gadget.h" for details
1628  */
1629 static const struct usb_gadget_ops usb_gadget_ops = {
1630 	.vbus_session	= ci_udc_vbus_session,
1631 	.wakeup		= ci_udc_wakeup,
1632 	.set_selfpowered	= ci_udc_selfpowered,
1633 	.pullup		= ci_udc_pullup,
1634 	.vbus_draw	= ci_udc_vbus_draw,
1635 	.udc_start	= ci_udc_start,
1636 	.udc_stop	= ci_udc_stop,
1637 };
1638 
1639 static int init_eps(struct ci_hdrc *ci)
1640 {
1641 	int retval = 0, i, j;
1642 
1643 	for (i = 0; i < ci->hw_ep_max/2; i++)
1644 		for (j = RX; j <= TX; j++) {
1645 			int k = i + j * ci->hw_ep_max/2;
1646 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1647 
1648 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1649 					(j == TX)  ? "in" : "out");
1650 
1651 			hwep->ci          = ci;
1652 			hwep->lock         = &ci->lock;
1653 			hwep->td_pool      = ci->td_pool;
1654 
1655 			hwep->ep.name      = hwep->name;
1656 			hwep->ep.ops       = &usb_ep_ops;
1657 
1658 			if (i == 0) {
1659 				hwep->ep.caps.type_control = true;
1660 			} else {
1661 				hwep->ep.caps.type_iso = true;
1662 				hwep->ep.caps.type_bulk = true;
1663 				hwep->ep.caps.type_int = true;
1664 			}
1665 
1666 			if (j == TX)
1667 				hwep->ep.caps.dir_in = true;
1668 			else
1669 				hwep->ep.caps.dir_out = true;
1670 
1671 			/*
1672 			 * for ep0: maxP defined in desc, for other
1673 			 * eps, maxP is set by epautoconfig() called
1674 			 * by gadget layer
1675 			 */
1676 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1677 
1678 			INIT_LIST_HEAD(&hwep->qh.queue);
1679 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1680 						       &hwep->qh.dma);
1681 			if (hwep->qh.ptr == NULL)
1682 				retval = -ENOMEM;
1683 
1684 			/*
1685 			 * set up shorthands for ep0 out and in endpoints,
1686 			 * don't add to gadget's ep_list
1687 			 */
1688 			if (i == 0) {
1689 				if (j == RX)
1690 					ci->ep0out = hwep;
1691 				else
1692 					ci->ep0in = hwep;
1693 
1694 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1695 				continue;
1696 			}
1697 
1698 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1699 		}
1700 
1701 	return retval;
1702 }
1703 
1704 static void destroy_eps(struct ci_hdrc *ci)
1705 {
1706 	int i;
1707 
1708 	for (i = 0; i < ci->hw_ep_max; i++) {
1709 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1710 
1711 		if (hwep->pending_td)
1712 			free_pending_td(hwep);
1713 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1714 	}
1715 }
1716 
1717 /**
1718  * ci_udc_start: register a gadget driver
1719  * @gadget: our gadget
1720  * @driver: the driver being registered
1721  *
1722  * Interrupts are enabled here.
1723  */
1724 static int ci_udc_start(struct usb_gadget *gadget,
1725 			 struct usb_gadget_driver *driver)
1726 {
1727 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1728 	int retval = -ENOMEM;
1729 
1730 	if (driver->disconnect == NULL)
1731 		return -EINVAL;
1732 
1733 
1734 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1735 	retval = usb_ep_enable(&ci->ep0out->ep);
1736 	if (retval)
1737 		return retval;
1738 
1739 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1740 	retval = usb_ep_enable(&ci->ep0in->ep);
1741 	if (retval)
1742 		return retval;
1743 
1744 	ci->driver = driver;
1745 
1746 	/* Start otg fsm for B-device */
1747 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1748 		ci_hdrc_otg_fsm_start(ci);
1749 		return retval;
1750 	}
1751 
1752 	pm_runtime_get_sync(&ci->gadget.dev);
1753 	if (ci->vbus_active) {
1754 		hw_device_reset(ci);
1755 	} else {
1756 		usb_udc_vbus_handler(&ci->gadget, false);
1757 		pm_runtime_put_sync(&ci->gadget.dev);
1758 		return retval;
1759 	}
1760 
1761 	retval = hw_device_state(ci, ci->ep0out->qh.dma);
1762 	if (retval)
1763 		pm_runtime_put_sync(&ci->gadget.dev);
1764 
1765 	return retval;
1766 }
1767 
1768 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1769 {
1770 	if (!ci_otg_is_fsm_mode(ci))
1771 		return;
1772 
1773 	mutex_lock(&ci->fsm.lock);
1774 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1775 		ci->fsm.a_bidl_adis_tmout = 1;
1776 		ci_hdrc_otg_fsm_start(ci);
1777 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1778 		ci->fsm.protocol = PROTO_UNDEF;
1779 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1780 	}
1781 	mutex_unlock(&ci->fsm.lock);
1782 }
1783 
1784 /**
1785  * ci_udc_stop: unregister a gadget driver
1786  */
1787 static int ci_udc_stop(struct usb_gadget *gadget)
1788 {
1789 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1790 	unsigned long flags;
1791 
1792 	spin_lock_irqsave(&ci->lock, flags);
1793 
1794 	if (ci->vbus_active) {
1795 		hw_device_state(ci, 0);
1796 		spin_unlock_irqrestore(&ci->lock, flags);
1797 		if (ci->platdata->notify_event)
1798 			ci->platdata->notify_event(ci,
1799 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1800 		_gadget_stop_activity(&ci->gadget);
1801 		spin_lock_irqsave(&ci->lock, flags);
1802 		pm_runtime_put(&ci->gadget.dev);
1803 	}
1804 
1805 	ci->driver = NULL;
1806 	spin_unlock_irqrestore(&ci->lock, flags);
1807 
1808 	ci_udc_stop_for_otg_fsm(ci);
1809 	return 0;
1810 }
1811 
1812 /******************************************************************************
1813  * BUS block
1814  *****************************************************************************/
1815 /**
1816  * udc_irq: ci interrupt handler
1817  *
1818  * This function returns IRQ_HANDLED if the IRQ has been handled
1819  * It locks access to registers
1820  */
1821 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1822 {
1823 	irqreturn_t retval;
1824 	u32 intr;
1825 
1826 	if (ci == NULL)
1827 		return IRQ_HANDLED;
1828 
1829 	spin_lock(&ci->lock);
1830 
1831 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1832 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1833 				USBMODE_CM_DC) {
1834 			spin_unlock(&ci->lock);
1835 			return IRQ_NONE;
1836 		}
1837 	}
1838 	intr = hw_test_and_clear_intr_active(ci);
1839 
1840 	if (intr) {
1841 		/* order defines priority - do NOT change it */
1842 		if (USBi_URI & intr)
1843 			isr_reset_handler(ci);
1844 
1845 		if (USBi_PCI & intr) {
1846 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
1847 				USB_SPEED_HIGH : USB_SPEED_FULL;
1848 			if (ci->suspended) {
1849 				if (ci->driver->resume) {
1850 					spin_unlock(&ci->lock);
1851 					ci->driver->resume(&ci->gadget);
1852 					spin_lock(&ci->lock);
1853 				}
1854 				ci->suspended = 0;
1855 				usb_gadget_set_state(&ci->gadget,
1856 						ci->resume_state);
1857 			}
1858 		}
1859 
1860 		if (USBi_UI  & intr)
1861 			isr_tr_complete_handler(ci);
1862 
1863 		if ((USBi_SLI & intr) && !(ci->suspended)) {
1864 			ci->suspended = 1;
1865 			ci->resume_state = ci->gadget.state;
1866 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
1867 			    ci->driver->suspend) {
1868 				spin_unlock(&ci->lock);
1869 				ci->driver->suspend(&ci->gadget);
1870 				spin_lock(&ci->lock);
1871 			}
1872 			usb_gadget_set_state(&ci->gadget,
1873 					USB_STATE_SUSPENDED);
1874 		}
1875 		retval = IRQ_HANDLED;
1876 	} else {
1877 		retval = IRQ_NONE;
1878 	}
1879 	spin_unlock(&ci->lock);
1880 
1881 	return retval;
1882 }
1883 
1884 /**
1885  * udc_start: initialize gadget role
1886  * @ci: chipidea controller
1887  */
1888 static int udc_start(struct ci_hdrc *ci)
1889 {
1890 	struct device *dev = ci->dev;
1891 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
1892 	int retval = 0;
1893 
1894 	ci->gadget.ops          = &usb_gadget_ops;
1895 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
1896 	ci->gadget.max_speed    = USB_SPEED_HIGH;
1897 	ci->gadget.name         = ci->platdata->name;
1898 	ci->gadget.otg_caps	= otg_caps;
1899 
1900 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
1901 		ci->gadget.quirk_avoids_skb_reserve = 1;
1902 
1903 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
1904 						otg_caps->adp_support))
1905 		ci->gadget.is_otg = 1;
1906 
1907 	INIT_LIST_HEAD(&ci->gadget.ep_list);
1908 
1909 	/* alloc resources */
1910 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
1911 				       sizeof(struct ci_hw_qh),
1912 				       64, CI_HDRC_PAGE_SIZE);
1913 	if (ci->qh_pool == NULL)
1914 		return -ENOMEM;
1915 
1916 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
1917 				       sizeof(struct ci_hw_td),
1918 				       64, CI_HDRC_PAGE_SIZE);
1919 	if (ci->td_pool == NULL) {
1920 		retval = -ENOMEM;
1921 		goto free_qh_pool;
1922 	}
1923 
1924 	retval = init_eps(ci);
1925 	if (retval)
1926 		goto free_pools;
1927 
1928 	ci->gadget.ep0 = &ci->ep0in->ep;
1929 
1930 	retval = usb_add_gadget_udc(dev, &ci->gadget);
1931 	if (retval)
1932 		goto destroy_eps;
1933 
1934 	pm_runtime_no_callbacks(&ci->gadget.dev);
1935 	pm_runtime_enable(&ci->gadget.dev);
1936 
1937 	return retval;
1938 
1939 destroy_eps:
1940 	destroy_eps(ci);
1941 free_pools:
1942 	dma_pool_destroy(ci->td_pool);
1943 free_qh_pool:
1944 	dma_pool_destroy(ci->qh_pool);
1945 	return retval;
1946 }
1947 
1948 /**
1949  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
1950  *
1951  * No interrupts active, the IRQ has been released
1952  */
1953 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
1954 {
1955 	if (!ci->roles[CI_ROLE_GADGET])
1956 		return;
1957 
1958 	usb_del_gadget_udc(&ci->gadget);
1959 
1960 	destroy_eps(ci);
1961 
1962 	dma_pool_destroy(ci->td_pool);
1963 	dma_pool_destroy(ci->qh_pool);
1964 }
1965 
1966 static int udc_id_switch_for_device(struct ci_hdrc *ci)
1967 {
1968 	if (ci->is_otg)
1969 		/* Clear and enable BSV irq */
1970 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
1971 					OTGSC_BSVIS | OTGSC_BSVIE);
1972 
1973 	return 0;
1974 }
1975 
1976 static void udc_id_switch_for_host(struct ci_hdrc *ci)
1977 {
1978 	/*
1979 	 * host doesn't care B_SESSION_VALID event
1980 	 * so clear and disbale BSV irq
1981 	 */
1982 	if (ci->is_otg)
1983 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
1984 
1985 	ci->vbus_active = 0;
1986 }
1987 
1988 /**
1989  * ci_hdrc_gadget_init - initialize device related bits
1990  * ci: the controller
1991  *
1992  * This function initializes the gadget, if the device is "device capable".
1993  */
1994 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
1995 {
1996 	struct ci_role_driver *rdrv;
1997 	int ret;
1998 
1999 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2000 		return -ENXIO;
2001 
2002 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2003 	if (!rdrv)
2004 		return -ENOMEM;
2005 
2006 	rdrv->start	= udc_id_switch_for_device;
2007 	rdrv->stop	= udc_id_switch_for_host;
2008 	rdrv->irq	= udc_irq;
2009 	rdrv->name	= "gadget";
2010 
2011 	ret = udc_start(ci);
2012 	if (!ret)
2013 		ci->roles[CI_ROLE_GADGET] = rdrv;
2014 
2015 	return ret;
2016 }
2017