xref: /openbmc/linux/drivers/usb/chipidea/udc.c (revision 19fbcb36)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23 
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 
30 /* control endpoint description */
31 static const struct usb_endpoint_descriptor
32 ctrl_endpt_out_desc = {
33 	.bLength         = USB_DT_ENDPOINT_SIZE,
34 	.bDescriptorType = USB_DT_ENDPOINT,
35 
36 	.bEndpointAddress = USB_DIR_OUT,
37 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
38 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
39 };
40 
41 static const struct usb_endpoint_descriptor
42 ctrl_endpt_in_desc = {
43 	.bLength         = USB_DT_ENDPOINT_SIZE,
44 	.bDescriptorType = USB_DT_ENDPOINT,
45 
46 	.bEndpointAddress = USB_DIR_IN,
47 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
48 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
49 };
50 
51 /**
52  * hw_ep_bit: calculates the bit number
53  * @num: endpoint number
54  * @dir: endpoint direction
55  *
56  * This function returns bit number
57  */
58 static inline int hw_ep_bit(int num, int dir)
59 {
60 	return num + ((dir == TX) ? 16 : 0);
61 }
62 
63 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
64 {
65 	int fill = 16 - ci->hw_ep_max / 2;
66 
67 	if (n >= ci->hw_ep_max / 2)
68 		n += fill;
69 
70 	return n;
71 }
72 
73 /**
74  * hw_device_state: enables/disables interrupts (execute without interruption)
75  * @ci: the controller
76  * @dma: 0 => disable, !0 => enable and set dma engine
77  *
78  * This function returns an error code
79  */
80 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
81 {
82 	if (dma) {
83 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
84 		/* interrupt, error, port change, reset, sleep/suspend */
85 		hw_write(ci, OP_USBINTR, ~0,
86 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
87 	} else {
88 		hw_write(ci, OP_USBINTR, ~0, 0);
89 	}
90 	return 0;
91 }
92 
93 /**
94  * hw_ep_flush: flush endpoint fifo (execute without interruption)
95  * @ci: the controller
96  * @num: endpoint number
97  * @dir: endpoint direction
98  *
99  * This function returns an error code
100  */
101 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
102 {
103 	int n = hw_ep_bit(num, dir);
104 
105 	do {
106 		/* flush any pending transfer */
107 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
108 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
109 			cpu_relax();
110 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
111 
112 	return 0;
113 }
114 
115 /**
116  * hw_ep_disable: disables endpoint (execute without interruption)
117  * @ci: the controller
118  * @num: endpoint number
119  * @dir: endpoint direction
120  *
121  * This function returns an error code
122  */
123 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
124 {
125 	hw_write(ci, OP_ENDPTCTRL + num,
126 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
127 	return 0;
128 }
129 
130 /**
131  * hw_ep_enable: enables endpoint (execute without interruption)
132  * @ci: the controller
133  * @num:  endpoint number
134  * @dir:  endpoint direction
135  * @type: endpoint type
136  *
137  * This function returns an error code
138  */
139 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
140 {
141 	u32 mask, data;
142 
143 	if (dir == TX) {
144 		mask  = ENDPTCTRL_TXT;  /* type    */
145 		data  = type << __ffs(mask);
146 
147 		mask |= ENDPTCTRL_TXS;  /* unstall */
148 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
149 		data |= ENDPTCTRL_TXR;
150 		mask |= ENDPTCTRL_TXE;  /* enable  */
151 		data |= ENDPTCTRL_TXE;
152 	} else {
153 		mask  = ENDPTCTRL_RXT;  /* type    */
154 		data  = type << __ffs(mask);
155 
156 		mask |= ENDPTCTRL_RXS;  /* unstall */
157 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
158 		data |= ENDPTCTRL_RXR;
159 		mask |= ENDPTCTRL_RXE;  /* enable  */
160 		data |= ENDPTCTRL_RXE;
161 	}
162 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
163 	return 0;
164 }
165 
166 /**
167  * hw_ep_get_halt: return endpoint halt status
168  * @ci: the controller
169  * @num: endpoint number
170  * @dir: endpoint direction
171  *
172  * This function returns 1 if endpoint halted
173  */
174 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
175 {
176 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
177 
178 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
179 }
180 
181 /**
182  * hw_ep_prime: primes endpoint (execute without interruption)
183  * @ci: the controller
184  * @num:     endpoint number
185  * @dir:     endpoint direction
186  * @is_ctrl: true if control endpoint
187  *
188  * This function returns an error code
189  */
190 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
191 {
192 	int n = hw_ep_bit(num, dir);
193 
194 	/* Synchronize before ep prime */
195 	wmb();
196 
197 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
198 		return -EAGAIN;
199 
200 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
201 
202 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
203 		cpu_relax();
204 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
205 		return -EAGAIN;
206 
207 	/* status shoult be tested according with manual but it doesn't work */
208 	return 0;
209 }
210 
211 /**
212  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
213  *                 without interruption)
214  * @ci: the controller
215  * @num:   endpoint number
216  * @dir:   endpoint direction
217  * @value: true => stall, false => unstall
218  *
219  * This function returns an error code
220  */
221 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
222 {
223 	if (value != 0 && value != 1)
224 		return -EINVAL;
225 
226 	do {
227 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
228 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
229 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
230 
231 		/* data toggle - reserved for EP0 but it's in ESS */
232 		hw_write(ci, reg, mask_xs|mask_xr,
233 			  value ? mask_xs : mask_xr);
234 	} while (value != hw_ep_get_halt(ci, num, dir));
235 
236 	return 0;
237 }
238 
239 /**
240  * hw_is_port_high_speed: test if port is high speed
241  * @ci: the controller
242  *
243  * This function returns true if high speed port
244  */
245 static int hw_port_is_high_speed(struct ci_hdrc *ci)
246 {
247 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
248 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
249 }
250 
251 /**
252  * hw_test_and_clear_complete: test & clear complete status (execute without
253  *                             interruption)
254  * @ci: the controller
255  * @n: endpoint number
256  *
257  * This function returns complete status
258  */
259 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
260 {
261 	n = ep_to_bit(ci, n);
262 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
263 }
264 
265 /**
266  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
267  *                                without interruption)
268  * @ci: the controller
269  *
270  * This function returns active interrutps
271  */
272 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
273 {
274 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
275 
276 	hw_write(ci, OP_USBSTS, ~0, reg);
277 	return reg;
278 }
279 
280 /**
281  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
282  *                                interruption)
283  * @ci: the controller
284  *
285  * This function returns guard value
286  */
287 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
288 {
289 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
290 }
291 
292 /**
293  * hw_test_and_set_setup_guard: test & set setup guard (execute without
294  *                              interruption)
295  * @ci: the controller
296  *
297  * This function returns guard value
298  */
299 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
300 {
301 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
302 }
303 
304 /**
305  * hw_usb_set_address: configures USB address (execute without interruption)
306  * @ci: the controller
307  * @value: new USB address
308  *
309  * This function explicitly sets the address, without the "USBADRA" (advance)
310  * feature, which is not supported by older versions of the controller.
311  */
312 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
313 {
314 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
315 		 value << __ffs(DEVICEADDR_USBADR));
316 }
317 
318 /**
319  * hw_usb_reset: restart device after a bus reset (execute without
320  *               interruption)
321  * @ci: the controller
322  *
323  * This function returns an error code
324  */
325 static int hw_usb_reset(struct ci_hdrc *ci)
326 {
327 	hw_usb_set_address(ci, 0);
328 
329 	/* ESS flushes only at end?!? */
330 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
331 
332 	/* clear setup token semaphores */
333 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
334 
335 	/* clear complete status */
336 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
337 
338 	/* wait until all bits cleared */
339 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
340 		udelay(10);             /* not RTOS friendly */
341 
342 	/* reset all endpoints ? */
343 
344 	/* reset internal status and wait for further instructions
345 	   no need to verify the port reset status (ESS does it) */
346 
347 	return 0;
348 }
349 
350 /******************************************************************************
351  * UTIL block
352  *****************************************************************************/
353 
354 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
355 			unsigned int length, struct scatterlist *s)
356 {
357 	int i;
358 	u32 temp;
359 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
360 						  GFP_ATOMIC);
361 
362 	if (node == NULL)
363 		return -ENOMEM;
364 
365 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
366 	if (node->ptr == NULL) {
367 		kfree(node);
368 		return -ENOMEM;
369 	}
370 
371 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
372 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
373 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
374 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
375 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
376 
377 		if (hwreq->req.length == 0
378 				|| hwreq->req.length % hwep->ep.maxpacket)
379 			mul++;
380 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
381 	}
382 
383 	if (s) {
384 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
385 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
386 	} else {
387 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
388 	}
389 
390 	if (length) {
391 		node->ptr->page[0] = cpu_to_le32(temp);
392 		for (i = 1; i < TD_PAGE_COUNT; i++) {
393 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
394 			page &= ~TD_RESERVED_MASK;
395 			node->ptr->page[i] = cpu_to_le32(page);
396 		}
397 	}
398 
399 	hwreq->req.actual += length;
400 
401 	if (!list_empty(&hwreq->tds)) {
402 		/* get the last entry */
403 		lastnode = list_entry(hwreq->tds.prev,
404 				struct td_node, td);
405 		lastnode->ptr->next = cpu_to_le32(node->dma);
406 	}
407 
408 	INIT_LIST_HEAD(&node->td);
409 	list_add_tail(&node->td, &hwreq->tds);
410 
411 	return 0;
412 }
413 
414 /**
415  * _usb_addr: calculates endpoint address from direction & number
416  * @ep:  endpoint
417  */
418 static inline u8 _usb_addr(struct ci_hw_ep *ep)
419 {
420 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
421 }
422 
423 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
424 		struct ci_hw_req *hwreq)
425 {
426 	unsigned int rest = hwreq->req.length;
427 	int pages = TD_PAGE_COUNT;
428 	int ret = 0;
429 
430 	if (rest == 0) {
431 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
432 		if (ret < 0)
433 			return ret;
434 	}
435 
436 	/*
437 	 * The first buffer could be not page aligned.
438 	 * In that case we have to span into one extra td.
439 	 */
440 	if (hwreq->req.dma % PAGE_SIZE)
441 		pages--;
442 
443 	while (rest > 0) {
444 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
445 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
446 
447 		ret = add_td_to_list(hwep, hwreq, count, NULL);
448 		if (ret < 0)
449 			return ret;
450 
451 		rest -= count;
452 	}
453 
454 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
455 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
456 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
457 		if (ret < 0)
458 			return ret;
459 	}
460 
461 	return ret;
462 }
463 
464 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
465 		struct scatterlist *s)
466 {
467 	unsigned int rest = sg_dma_len(s);
468 	int ret = 0;
469 
470 	hwreq->req.actual = 0;
471 	while (rest > 0) {
472 		unsigned int count = min_t(unsigned int, rest,
473 				CI_MAX_BUF_SIZE);
474 
475 		ret = add_td_to_list(hwep, hwreq, count, s);
476 		if (ret < 0)
477 			return ret;
478 
479 		rest -= count;
480 	}
481 
482 	return ret;
483 }
484 
485 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
486 {
487 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
488 			/ CI_HDRC_PAGE_SIZE;
489 	int i;
490 	u32 token;
491 
492 	token = le32_to_cpu(node->ptr->token) + (sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
493 	node->ptr->token = cpu_to_le32(token);
494 
495 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
496 		u32 page = (u32) sg_dma_address(s) +
497 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
498 
499 		page &= ~TD_RESERVED_MASK;
500 		node->ptr->page[i] = cpu_to_le32(page);
501 	}
502 }
503 
504 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
505 {
506 	struct usb_request *req = &hwreq->req;
507 	struct scatterlist *s = req->sg;
508 	int ret = 0, i = 0;
509 	struct td_node *node = NULL;
510 
511 	if (!s || req->zero || req->length == 0) {
512 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
513 		return -EINVAL;
514 	}
515 
516 	while (i++ < req->num_mapped_sgs) {
517 		if (sg_dma_address(s) % PAGE_SIZE) {
518 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
519 			return -EINVAL;
520 		}
521 
522 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
523 			ci_add_buffer_entry(node, s);
524 			node->td_remaining_size -= sg_dma_len(s);
525 		} else {
526 			ret = prepare_td_per_sg(hwep, hwreq, s);
527 			if (ret)
528 				return ret;
529 
530 			node = list_entry(hwreq->tds.prev,
531 				struct td_node, td);
532 		}
533 
534 		s = sg_next(s);
535 	}
536 
537 	return ret;
538 }
539 
540 /**
541  * _hardware_enqueue: configures a request at hardware level
542  * @hwep:   endpoint
543  * @hwreq:  request
544  *
545  * This function returns an error code
546  */
547 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
548 {
549 	struct ci_hdrc *ci = hwep->ci;
550 	int ret = 0;
551 	struct td_node *firstnode, *lastnode;
552 
553 	/* don't queue twice */
554 	if (hwreq->req.status == -EALREADY)
555 		return -EALREADY;
556 
557 	hwreq->req.status = -EALREADY;
558 
559 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
560 					    &hwreq->req, hwep->dir);
561 	if (ret)
562 		return ret;
563 
564 	if (hwreq->req.num_mapped_sgs)
565 		ret = prepare_td_for_sg(hwep, hwreq);
566 	else
567 		ret = prepare_td_for_non_sg(hwep, hwreq);
568 
569 	if (ret)
570 		return ret;
571 
572 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
573 
574 	lastnode = list_entry(hwreq->tds.prev,
575 		struct td_node, td);
576 
577 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
578 	if (!hwreq->req.no_interrupt)
579 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
580 	wmb();
581 
582 	hwreq->req.actual = 0;
583 	if (!list_empty(&hwep->qh.queue)) {
584 		struct ci_hw_req *hwreqprev;
585 		int n = hw_ep_bit(hwep->num, hwep->dir);
586 		int tmp_stat;
587 		struct td_node *prevlastnode;
588 		u32 next = firstnode->dma & TD_ADDR_MASK;
589 
590 		hwreqprev = list_entry(hwep->qh.queue.prev,
591 				struct ci_hw_req, queue);
592 		prevlastnode = list_entry(hwreqprev->tds.prev,
593 				struct td_node, td);
594 
595 		prevlastnode->ptr->next = cpu_to_le32(next);
596 		wmb();
597 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
598 			goto done;
599 		do {
600 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
601 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
602 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
603 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
604 		if (tmp_stat)
605 			goto done;
606 	}
607 
608 	/*  QH configuration */
609 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
610 	hwep->qh.ptr->td.token &=
611 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
612 
613 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
614 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
615 
616 		if (hwreq->req.length == 0
617 				|| hwreq->req.length % hwep->ep.maxpacket)
618 			mul++;
619 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
620 	}
621 
622 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
623 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
624 done:
625 	return ret;
626 }
627 
628 /**
629  * free_pending_td: remove a pending request for the endpoint
630  * @hwep: endpoint
631  */
632 static void free_pending_td(struct ci_hw_ep *hwep)
633 {
634 	struct td_node *pending = hwep->pending_td;
635 
636 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
637 	hwep->pending_td = NULL;
638 	kfree(pending);
639 }
640 
641 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
642 					   struct td_node *node)
643 {
644 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
645 	hwep->qh.ptr->td.token &=
646 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
647 
648 	return hw_ep_prime(ci, hwep->num, hwep->dir,
649 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
650 }
651 
652 /**
653  * _hardware_dequeue: handles a request at hardware level
654  * @hwep: endpoint
655  * @hwreq:  request
656  *
657  * This function returns an error code
658  */
659 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
660 {
661 	u32 tmptoken;
662 	struct td_node *node, *tmpnode;
663 	unsigned remaining_length;
664 	unsigned actual = hwreq->req.length;
665 	struct ci_hdrc *ci = hwep->ci;
666 
667 	if (hwreq->req.status != -EALREADY)
668 		return -EINVAL;
669 
670 	hwreq->req.status = 0;
671 
672 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
673 		tmptoken = le32_to_cpu(node->ptr->token);
674 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
675 			int n = hw_ep_bit(hwep->num, hwep->dir);
676 
677 			if (ci->rev == CI_REVISION_24)
678 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
679 					reprime_dtd(ci, hwep, node);
680 			hwreq->req.status = -EALREADY;
681 			return -EBUSY;
682 		}
683 
684 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
685 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
686 		actual -= remaining_length;
687 
688 		hwreq->req.status = tmptoken & TD_STATUS;
689 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
690 			hwreq->req.status = -EPIPE;
691 			break;
692 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
693 			hwreq->req.status = -EPROTO;
694 			break;
695 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
696 			hwreq->req.status = -EILSEQ;
697 			break;
698 		}
699 
700 		if (remaining_length) {
701 			if (hwep->dir == TX) {
702 				hwreq->req.status = -EPROTO;
703 				break;
704 			}
705 		}
706 		/*
707 		 * As the hardware could still address the freed td
708 		 * which will run the udc unusable, the cleanup of the
709 		 * td has to be delayed by one.
710 		 */
711 		if (hwep->pending_td)
712 			free_pending_td(hwep);
713 
714 		hwep->pending_td = node;
715 		list_del_init(&node->td);
716 	}
717 
718 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
719 					&hwreq->req, hwep->dir);
720 
721 	hwreq->req.actual += actual;
722 
723 	if (hwreq->req.status)
724 		return hwreq->req.status;
725 
726 	return hwreq->req.actual;
727 }
728 
729 /**
730  * _ep_nuke: dequeues all endpoint requests
731  * @hwep: endpoint
732  *
733  * This function returns an error code
734  * Caller must hold lock
735  */
736 static int _ep_nuke(struct ci_hw_ep *hwep)
737 __releases(hwep->lock)
738 __acquires(hwep->lock)
739 {
740 	struct td_node *node, *tmpnode;
741 	if (hwep == NULL)
742 		return -EINVAL;
743 
744 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
745 
746 	while (!list_empty(&hwep->qh.queue)) {
747 
748 		/* pop oldest request */
749 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
750 						     struct ci_hw_req, queue);
751 
752 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
753 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
754 			list_del_init(&node->td);
755 			node->ptr = NULL;
756 			kfree(node);
757 		}
758 
759 		list_del_init(&hwreq->queue);
760 		hwreq->req.status = -ESHUTDOWN;
761 
762 		if (hwreq->req.complete != NULL) {
763 			spin_unlock(hwep->lock);
764 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
765 			spin_lock(hwep->lock);
766 		}
767 	}
768 
769 	if (hwep->pending_td)
770 		free_pending_td(hwep);
771 
772 	return 0;
773 }
774 
775 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
776 {
777 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
778 	int direction, retval = 0;
779 	unsigned long flags;
780 
781 	if (ep == NULL || hwep->ep.desc == NULL)
782 		return -EINVAL;
783 
784 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
785 		return -EOPNOTSUPP;
786 
787 	spin_lock_irqsave(hwep->lock, flags);
788 
789 	if (value && hwep->dir == TX && check_transfer &&
790 		!list_empty(&hwep->qh.queue) &&
791 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
792 		spin_unlock_irqrestore(hwep->lock, flags);
793 		return -EAGAIN;
794 	}
795 
796 	direction = hwep->dir;
797 	do {
798 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
799 
800 		if (!value)
801 			hwep->wedge = 0;
802 
803 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
804 			hwep->dir = (hwep->dir == TX) ? RX : TX;
805 
806 	} while (hwep->dir != direction);
807 
808 	spin_unlock_irqrestore(hwep->lock, flags);
809 	return retval;
810 }
811 
812 
813 /**
814  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
815  * @gadget: gadget
816  *
817  * This function returns an error code
818  */
819 static int _gadget_stop_activity(struct usb_gadget *gadget)
820 {
821 	struct usb_ep *ep;
822 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
823 	unsigned long flags;
824 
825 	/* flush all endpoints */
826 	gadget_for_each_ep(ep, gadget) {
827 		usb_ep_fifo_flush(ep);
828 	}
829 	usb_ep_fifo_flush(&ci->ep0out->ep);
830 	usb_ep_fifo_flush(&ci->ep0in->ep);
831 
832 	/* make sure to disable all endpoints */
833 	gadget_for_each_ep(ep, gadget) {
834 		usb_ep_disable(ep);
835 	}
836 
837 	if (ci->status != NULL) {
838 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
839 		ci->status = NULL;
840 	}
841 
842 	spin_lock_irqsave(&ci->lock, flags);
843 	ci->gadget.speed = USB_SPEED_UNKNOWN;
844 	ci->remote_wakeup = 0;
845 	ci->suspended = 0;
846 	spin_unlock_irqrestore(&ci->lock, flags);
847 
848 	return 0;
849 }
850 
851 /******************************************************************************
852  * ISR block
853  *****************************************************************************/
854 /**
855  * isr_reset_handler: USB reset interrupt handler
856  * @ci: UDC device
857  *
858  * This function resets USB engine after a bus reset occurred
859  */
860 static void isr_reset_handler(struct ci_hdrc *ci)
861 __releases(ci->lock)
862 __acquires(ci->lock)
863 {
864 	int retval;
865 
866 	spin_unlock(&ci->lock);
867 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
868 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
869 
870 	retval = _gadget_stop_activity(&ci->gadget);
871 	if (retval)
872 		goto done;
873 
874 	retval = hw_usb_reset(ci);
875 	if (retval)
876 		goto done;
877 
878 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
879 	if (ci->status == NULL)
880 		retval = -ENOMEM;
881 
882 done:
883 	spin_lock(&ci->lock);
884 
885 	if (retval)
886 		dev_err(ci->dev, "error: %i\n", retval);
887 }
888 
889 /**
890  * isr_get_status_complete: get_status request complete function
891  * @ep:  endpoint
892  * @req: request handled
893  *
894  * Caller must release lock
895  */
896 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
897 {
898 	if (ep == NULL || req == NULL)
899 		return;
900 
901 	kfree(req->buf);
902 	usb_ep_free_request(ep, req);
903 }
904 
905 /**
906  * _ep_queue: queues (submits) an I/O request to an endpoint
907  * @ep:        endpoint
908  * @req:       request
909  * @gfp_flags: GFP flags (not used)
910  *
911  * Caller must hold lock
912  * This function returns an error code
913  */
914 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
915 		    gfp_t __maybe_unused gfp_flags)
916 {
917 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
918 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
919 	struct ci_hdrc *ci = hwep->ci;
920 	int retval = 0;
921 
922 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
923 		return -EINVAL;
924 
925 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
926 		if (req->length)
927 			hwep = (ci->ep0_dir == RX) ?
928 			       ci->ep0out : ci->ep0in;
929 		if (!list_empty(&hwep->qh.queue)) {
930 			_ep_nuke(hwep);
931 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
932 				 _usb_addr(hwep));
933 		}
934 	}
935 
936 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
937 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
938 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
939 		return -EMSGSIZE;
940 	}
941 
942 	/* first nuke then test link, e.g. previous status has not sent */
943 	if (!list_empty(&hwreq->queue)) {
944 		dev_err(hwep->ci->dev, "request already in queue\n");
945 		return -EBUSY;
946 	}
947 
948 	/* push request */
949 	hwreq->req.status = -EINPROGRESS;
950 	hwreq->req.actual = 0;
951 
952 	retval = _hardware_enqueue(hwep, hwreq);
953 
954 	if (retval == -EALREADY)
955 		retval = 0;
956 	if (!retval)
957 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
958 
959 	return retval;
960 }
961 
962 /**
963  * isr_get_status_response: get_status request response
964  * @ci: ci struct
965  * @setup: setup request packet
966  *
967  * This function returns an error code
968  */
969 static int isr_get_status_response(struct ci_hdrc *ci,
970 				   struct usb_ctrlrequest *setup)
971 __releases(hwep->lock)
972 __acquires(hwep->lock)
973 {
974 	struct ci_hw_ep *hwep = ci->ep0in;
975 	struct usb_request *req = NULL;
976 	gfp_t gfp_flags = GFP_ATOMIC;
977 	int dir, num, retval;
978 
979 	if (hwep == NULL || setup == NULL)
980 		return -EINVAL;
981 
982 	spin_unlock(hwep->lock);
983 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
984 	spin_lock(hwep->lock);
985 	if (req == NULL)
986 		return -ENOMEM;
987 
988 	req->complete = isr_get_status_complete;
989 	req->length   = 2;
990 	req->buf      = kzalloc(req->length, gfp_flags);
991 	if (req->buf == NULL) {
992 		retval = -ENOMEM;
993 		goto err_free_req;
994 	}
995 
996 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
997 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
998 			ci->gadget.is_selfpowered;
999 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
1000 		   == USB_RECIP_ENDPOINT) {
1001 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
1002 			TX : RX;
1003 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
1004 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1005 	}
1006 	/* else do nothing; reserved for future use */
1007 
1008 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1009 	if (retval)
1010 		goto err_free_buf;
1011 
1012 	return 0;
1013 
1014  err_free_buf:
1015 	kfree(req->buf);
1016  err_free_req:
1017 	spin_unlock(hwep->lock);
1018 	usb_ep_free_request(&hwep->ep, req);
1019 	spin_lock(hwep->lock);
1020 	return retval;
1021 }
1022 
1023 /**
1024  * isr_setup_status_complete: setup_status request complete function
1025  * @ep:  endpoint
1026  * @req: request handled
1027  *
1028  * Caller must release lock. Put the port in test mode if test mode
1029  * feature is selected.
1030  */
1031 static void
1032 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1033 {
1034 	struct ci_hdrc *ci = req->context;
1035 	unsigned long flags;
1036 
1037 	if (ci->setaddr) {
1038 		hw_usb_set_address(ci, ci->address);
1039 		ci->setaddr = false;
1040 		if (ci->address)
1041 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1042 	}
1043 
1044 	spin_lock_irqsave(&ci->lock, flags);
1045 	if (ci->test_mode)
1046 		hw_port_test_set(ci, ci->test_mode);
1047 	spin_unlock_irqrestore(&ci->lock, flags);
1048 }
1049 
1050 /**
1051  * isr_setup_status_phase: queues the status phase of a setup transation
1052  * @ci: ci struct
1053  *
1054  * This function returns an error code
1055  */
1056 static int isr_setup_status_phase(struct ci_hdrc *ci)
1057 {
1058 	struct ci_hw_ep *hwep;
1059 
1060 	/*
1061 	 * Unexpected USB controller behavior, caused by bad signal integrity
1062 	 * or ground reference problems, can lead to isr_setup_status_phase
1063 	 * being called with ci->status equal to NULL.
1064 	 * If this situation occurs, you should review your USB hardware design.
1065 	 */
1066 	if (WARN_ON_ONCE(!ci->status))
1067 		return -EPIPE;
1068 
1069 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1070 	ci->status->context = ci;
1071 	ci->status->complete = isr_setup_status_complete;
1072 
1073 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1074 }
1075 
1076 /**
1077  * isr_tr_complete_low: transaction complete low level handler
1078  * @hwep: endpoint
1079  *
1080  * This function returns an error code
1081  * Caller must hold lock
1082  */
1083 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1084 __releases(hwep->lock)
1085 __acquires(hwep->lock)
1086 {
1087 	struct ci_hw_req *hwreq, *hwreqtemp;
1088 	struct ci_hw_ep *hweptemp = hwep;
1089 	int retval = 0;
1090 
1091 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1092 			queue) {
1093 		retval = _hardware_dequeue(hwep, hwreq);
1094 		if (retval < 0)
1095 			break;
1096 		list_del_init(&hwreq->queue);
1097 		if (hwreq->req.complete != NULL) {
1098 			spin_unlock(hwep->lock);
1099 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1100 					hwreq->req.length)
1101 				hweptemp = hwep->ci->ep0in;
1102 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1103 			spin_lock(hwep->lock);
1104 		}
1105 	}
1106 
1107 	if (retval == -EBUSY)
1108 		retval = 0;
1109 
1110 	return retval;
1111 }
1112 
1113 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1114 {
1115 	dev_warn(&ci->gadget.dev,
1116 		"connect the device to an alternate port if you want HNP\n");
1117 	return isr_setup_status_phase(ci);
1118 }
1119 
1120 /**
1121  * isr_setup_packet_handler: setup packet handler
1122  * @ci: UDC descriptor
1123  *
1124  * This function handles setup packet
1125  */
1126 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1127 __releases(ci->lock)
1128 __acquires(ci->lock)
1129 {
1130 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1131 	struct usb_ctrlrequest req;
1132 	int type, num, dir, err = -EINVAL;
1133 	u8 tmode = 0;
1134 
1135 	/*
1136 	 * Flush data and handshake transactions of previous
1137 	 * setup packet.
1138 	 */
1139 	_ep_nuke(ci->ep0out);
1140 	_ep_nuke(ci->ep0in);
1141 
1142 	/* read_setup_packet */
1143 	do {
1144 		hw_test_and_set_setup_guard(ci);
1145 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1146 	} while (!hw_test_and_clear_setup_guard(ci));
1147 
1148 	type = req.bRequestType;
1149 
1150 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1151 
1152 	switch (req.bRequest) {
1153 	case USB_REQ_CLEAR_FEATURE:
1154 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1155 				le16_to_cpu(req.wValue) ==
1156 				USB_ENDPOINT_HALT) {
1157 			if (req.wLength != 0)
1158 				break;
1159 			num  = le16_to_cpu(req.wIndex);
1160 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1161 			num &= USB_ENDPOINT_NUMBER_MASK;
1162 			if (dir == TX)
1163 				num += ci->hw_ep_max / 2;
1164 			if (!ci->ci_hw_ep[num].wedge) {
1165 				spin_unlock(&ci->lock);
1166 				err = usb_ep_clear_halt(
1167 					&ci->ci_hw_ep[num].ep);
1168 				spin_lock(&ci->lock);
1169 				if (err)
1170 					break;
1171 			}
1172 			err = isr_setup_status_phase(ci);
1173 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1174 				le16_to_cpu(req.wValue) ==
1175 				USB_DEVICE_REMOTE_WAKEUP) {
1176 			if (req.wLength != 0)
1177 				break;
1178 			ci->remote_wakeup = 0;
1179 			err = isr_setup_status_phase(ci);
1180 		} else {
1181 			goto delegate;
1182 		}
1183 		break;
1184 	case USB_REQ_GET_STATUS:
1185 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1186 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1187 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1188 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1189 			goto delegate;
1190 		if (le16_to_cpu(req.wLength) != 2 ||
1191 		    le16_to_cpu(req.wValue)  != 0)
1192 			break;
1193 		err = isr_get_status_response(ci, &req);
1194 		break;
1195 	case USB_REQ_SET_ADDRESS:
1196 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1197 			goto delegate;
1198 		if (le16_to_cpu(req.wLength) != 0 ||
1199 		    le16_to_cpu(req.wIndex)  != 0)
1200 			break;
1201 		ci->address = (u8)le16_to_cpu(req.wValue);
1202 		ci->setaddr = true;
1203 		err = isr_setup_status_phase(ci);
1204 		break;
1205 	case USB_REQ_SET_FEATURE:
1206 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1207 				le16_to_cpu(req.wValue) ==
1208 				USB_ENDPOINT_HALT) {
1209 			if (req.wLength != 0)
1210 				break;
1211 			num  = le16_to_cpu(req.wIndex);
1212 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1213 			num &= USB_ENDPOINT_NUMBER_MASK;
1214 			if (dir == TX)
1215 				num += ci->hw_ep_max / 2;
1216 
1217 			spin_unlock(&ci->lock);
1218 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1219 			spin_lock(&ci->lock);
1220 			if (!err)
1221 				isr_setup_status_phase(ci);
1222 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1223 			if (req.wLength != 0)
1224 				break;
1225 			switch (le16_to_cpu(req.wValue)) {
1226 			case USB_DEVICE_REMOTE_WAKEUP:
1227 				ci->remote_wakeup = 1;
1228 				err = isr_setup_status_phase(ci);
1229 				break;
1230 			case USB_DEVICE_TEST_MODE:
1231 				tmode = le16_to_cpu(req.wIndex) >> 8;
1232 				switch (tmode) {
1233 				case USB_TEST_J:
1234 				case USB_TEST_K:
1235 				case USB_TEST_SE0_NAK:
1236 				case USB_TEST_PACKET:
1237 				case USB_TEST_FORCE_ENABLE:
1238 					ci->test_mode = tmode;
1239 					err = isr_setup_status_phase(
1240 							ci);
1241 					break;
1242 				default:
1243 					break;
1244 				}
1245 				break;
1246 			case USB_DEVICE_B_HNP_ENABLE:
1247 				if (ci_otg_is_fsm_mode(ci)) {
1248 					ci->gadget.b_hnp_enable = 1;
1249 					err = isr_setup_status_phase(
1250 							ci);
1251 				}
1252 				break;
1253 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1254 				if (ci_otg_is_fsm_mode(ci))
1255 					err = otg_a_alt_hnp_support(ci);
1256 				break;
1257 			case USB_DEVICE_A_HNP_SUPPORT:
1258 				if (ci_otg_is_fsm_mode(ci)) {
1259 					ci->gadget.a_hnp_support = 1;
1260 					err = isr_setup_status_phase(
1261 							ci);
1262 				}
1263 				break;
1264 			default:
1265 				goto delegate;
1266 			}
1267 		} else {
1268 			goto delegate;
1269 		}
1270 		break;
1271 	default:
1272 delegate:
1273 		if (req.wLength == 0)   /* no data phase */
1274 			ci->ep0_dir = TX;
1275 
1276 		spin_unlock(&ci->lock);
1277 		err = ci->driver->setup(&ci->gadget, &req);
1278 		spin_lock(&ci->lock);
1279 		break;
1280 	}
1281 
1282 	if (err < 0) {
1283 		spin_unlock(&ci->lock);
1284 		if (_ep_set_halt(&hwep->ep, 1, false))
1285 			dev_err(ci->dev, "error: _ep_set_halt\n");
1286 		spin_lock(&ci->lock);
1287 	}
1288 }
1289 
1290 /**
1291  * isr_tr_complete_handler: transaction complete interrupt handler
1292  * @ci: UDC descriptor
1293  *
1294  * This function handles traffic events
1295  */
1296 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1297 __releases(ci->lock)
1298 __acquires(ci->lock)
1299 {
1300 	unsigned i;
1301 	int err;
1302 
1303 	for (i = 0; i < ci->hw_ep_max; i++) {
1304 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1305 
1306 		if (hwep->ep.desc == NULL)
1307 			continue;   /* not configured */
1308 
1309 		if (hw_test_and_clear_complete(ci, i)) {
1310 			err = isr_tr_complete_low(hwep);
1311 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1312 				if (err > 0)   /* needs status phase */
1313 					err = isr_setup_status_phase(ci);
1314 				if (err < 0) {
1315 					spin_unlock(&ci->lock);
1316 					if (_ep_set_halt(&hwep->ep, 1, false))
1317 						dev_err(ci->dev,
1318 						"error: _ep_set_halt\n");
1319 					spin_lock(&ci->lock);
1320 				}
1321 			}
1322 		}
1323 
1324 		/* Only handle setup packet below */
1325 		if (i == 0 &&
1326 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1327 			isr_setup_packet_handler(ci);
1328 	}
1329 }
1330 
1331 /******************************************************************************
1332  * ENDPT block
1333  *****************************************************************************/
1334 /*
1335  * ep_enable: configure endpoint, making it usable
1336  *
1337  * Check usb_ep_enable() at "usb_gadget.h" for details
1338  */
1339 static int ep_enable(struct usb_ep *ep,
1340 		     const struct usb_endpoint_descriptor *desc)
1341 {
1342 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1343 	int retval = 0;
1344 	unsigned long flags;
1345 	u32 cap = 0;
1346 
1347 	if (ep == NULL || desc == NULL)
1348 		return -EINVAL;
1349 
1350 	spin_lock_irqsave(hwep->lock, flags);
1351 
1352 	/* only internal SW should enable ctrl endpts */
1353 
1354 	if (!list_empty(&hwep->qh.queue)) {
1355 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1356 		spin_unlock_irqrestore(hwep->lock, flags);
1357 		return -EBUSY;
1358 	}
1359 
1360 	hwep->ep.desc = desc;
1361 
1362 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1363 	hwep->num  = usb_endpoint_num(desc);
1364 	hwep->type = usb_endpoint_type(desc);
1365 
1366 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1367 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1368 
1369 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1370 		cap |= QH_IOS;
1371 
1372 	cap |= QH_ZLT;
1373 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1374 	/*
1375 	 * For ISO-TX, we set mult at QH as the largest value, and use
1376 	 * MultO at TD as real mult value.
1377 	 */
1378 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1379 		cap |= 3 << __ffs(QH_MULT);
1380 
1381 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1382 
1383 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1384 
1385 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1386 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1387 		retval = -EINVAL;
1388 	}
1389 
1390 	/*
1391 	 * Enable endpoints in the HW other than ep0 as ep0
1392 	 * is always enabled
1393 	 */
1394 	if (hwep->num)
1395 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1396 				       hwep->type);
1397 
1398 	spin_unlock_irqrestore(hwep->lock, flags);
1399 	return retval;
1400 }
1401 
1402 /*
1403  * ep_disable: endpoint is no longer usable
1404  *
1405  * Check usb_ep_disable() at "usb_gadget.h" for details
1406  */
1407 static int ep_disable(struct usb_ep *ep)
1408 {
1409 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1410 	int direction, retval = 0;
1411 	unsigned long flags;
1412 
1413 	if (ep == NULL)
1414 		return -EINVAL;
1415 	else if (hwep->ep.desc == NULL)
1416 		return -EBUSY;
1417 
1418 	spin_lock_irqsave(hwep->lock, flags);
1419 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1420 		spin_unlock_irqrestore(hwep->lock, flags);
1421 		return 0;
1422 	}
1423 
1424 	/* only internal SW should disable ctrl endpts */
1425 
1426 	direction = hwep->dir;
1427 	do {
1428 		retval |= _ep_nuke(hwep);
1429 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1430 
1431 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1432 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1433 
1434 	} while (hwep->dir != direction);
1435 
1436 	hwep->ep.desc = NULL;
1437 
1438 	spin_unlock_irqrestore(hwep->lock, flags);
1439 	return retval;
1440 }
1441 
1442 /*
1443  * ep_alloc_request: allocate a request object to use with this endpoint
1444  *
1445  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1446  */
1447 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1448 {
1449 	struct ci_hw_req *hwreq = NULL;
1450 
1451 	if (ep == NULL)
1452 		return NULL;
1453 
1454 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1455 	if (hwreq != NULL) {
1456 		INIT_LIST_HEAD(&hwreq->queue);
1457 		INIT_LIST_HEAD(&hwreq->tds);
1458 	}
1459 
1460 	return (hwreq == NULL) ? NULL : &hwreq->req;
1461 }
1462 
1463 /*
1464  * ep_free_request: frees a request object
1465  *
1466  * Check usb_ep_free_request() at "usb_gadget.h" for details
1467  */
1468 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1469 {
1470 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1471 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1472 	struct td_node *node, *tmpnode;
1473 	unsigned long flags;
1474 
1475 	if (ep == NULL || req == NULL) {
1476 		return;
1477 	} else if (!list_empty(&hwreq->queue)) {
1478 		dev_err(hwep->ci->dev, "freeing queued request\n");
1479 		return;
1480 	}
1481 
1482 	spin_lock_irqsave(hwep->lock, flags);
1483 
1484 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1485 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1486 		list_del_init(&node->td);
1487 		node->ptr = NULL;
1488 		kfree(node);
1489 	}
1490 
1491 	kfree(hwreq);
1492 
1493 	spin_unlock_irqrestore(hwep->lock, flags);
1494 }
1495 
1496 /*
1497  * ep_queue: queues (submits) an I/O request to an endpoint
1498  *
1499  * Check usb_ep_queue()* at usb_gadget.h" for details
1500  */
1501 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1502 		    gfp_t __maybe_unused gfp_flags)
1503 {
1504 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1505 	int retval = 0;
1506 	unsigned long flags;
1507 
1508 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1509 		return -EINVAL;
1510 
1511 	spin_lock_irqsave(hwep->lock, flags);
1512 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1513 		spin_unlock_irqrestore(hwep->lock, flags);
1514 		return 0;
1515 	}
1516 	retval = _ep_queue(ep, req, gfp_flags);
1517 	spin_unlock_irqrestore(hwep->lock, flags);
1518 	return retval;
1519 }
1520 
1521 /*
1522  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1523  *
1524  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1525  */
1526 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1527 {
1528 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1529 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1530 	unsigned long flags;
1531 	struct td_node *node, *tmpnode;
1532 
1533 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1534 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1535 		list_empty(&hwep->qh.queue))
1536 		return -EINVAL;
1537 
1538 	spin_lock_irqsave(hwep->lock, flags);
1539 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1540 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1541 
1542 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1543 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1544 		list_del(&node->td);
1545 		kfree(node);
1546 	}
1547 
1548 	/* pop request */
1549 	list_del_init(&hwreq->queue);
1550 
1551 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1552 
1553 	req->status = -ECONNRESET;
1554 
1555 	if (hwreq->req.complete != NULL) {
1556 		spin_unlock(hwep->lock);
1557 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1558 		spin_lock(hwep->lock);
1559 	}
1560 
1561 	spin_unlock_irqrestore(hwep->lock, flags);
1562 	return 0;
1563 }
1564 
1565 /*
1566  * ep_set_halt: sets the endpoint halt feature
1567  *
1568  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1569  */
1570 static int ep_set_halt(struct usb_ep *ep, int value)
1571 {
1572 	return _ep_set_halt(ep, value, true);
1573 }
1574 
1575 /*
1576  * ep_set_wedge: sets the halt feature and ignores clear requests
1577  *
1578  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1579  */
1580 static int ep_set_wedge(struct usb_ep *ep)
1581 {
1582 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1583 	unsigned long flags;
1584 
1585 	if (ep == NULL || hwep->ep.desc == NULL)
1586 		return -EINVAL;
1587 
1588 	spin_lock_irqsave(hwep->lock, flags);
1589 	hwep->wedge = 1;
1590 	spin_unlock_irqrestore(hwep->lock, flags);
1591 
1592 	return usb_ep_set_halt(ep);
1593 }
1594 
1595 /*
1596  * ep_fifo_flush: flushes contents of a fifo
1597  *
1598  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1599  */
1600 static void ep_fifo_flush(struct usb_ep *ep)
1601 {
1602 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1603 	unsigned long flags;
1604 
1605 	if (ep == NULL) {
1606 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1607 		return;
1608 	}
1609 
1610 	spin_lock_irqsave(hwep->lock, flags);
1611 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1612 		spin_unlock_irqrestore(hwep->lock, flags);
1613 		return;
1614 	}
1615 
1616 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1617 
1618 	spin_unlock_irqrestore(hwep->lock, flags);
1619 }
1620 
1621 /*
1622  * Endpoint-specific part of the API to the USB controller hardware
1623  * Check "usb_gadget.h" for details
1624  */
1625 static const struct usb_ep_ops usb_ep_ops = {
1626 	.enable	       = ep_enable,
1627 	.disable       = ep_disable,
1628 	.alloc_request = ep_alloc_request,
1629 	.free_request  = ep_free_request,
1630 	.queue	       = ep_queue,
1631 	.dequeue       = ep_dequeue,
1632 	.set_halt      = ep_set_halt,
1633 	.set_wedge     = ep_set_wedge,
1634 	.fifo_flush    = ep_fifo_flush,
1635 };
1636 
1637 /******************************************************************************
1638  * GADGET block
1639  *****************************************************************************/
1640 /*
1641  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1642  */
1643 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1644 {
1645 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1646 
1647 	if (is_active) {
1648 		pm_runtime_get_sync(ci->dev);
1649 		hw_device_reset(ci);
1650 		spin_lock_irq(&ci->lock);
1651 		if (ci->driver) {
1652 			hw_device_state(ci, ci->ep0out->qh.dma);
1653 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1654 			spin_unlock_irq(&ci->lock);
1655 			usb_udc_vbus_handler(_gadget, true);
1656 		} else {
1657 			spin_unlock_irq(&ci->lock);
1658 		}
1659 	} else {
1660 		usb_udc_vbus_handler(_gadget, false);
1661 		if (ci->driver)
1662 			ci->driver->disconnect(&ci->gadget);
1663 		hw_device_state(ci, 0);
1664 		if (ci->platdata->notify_event)
1665 			ci->platdata->notify_event(ci,
1666 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1667 		_gadget_stop_activity(&ci->gadget);
1668 		pm_runtime_put_sync(ci->dev);
1669 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1670 	}
1671 }
1672 
1673 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1674 {
1675 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1676 	unsigned long flags;
1677 	int ret = 0;
1678 
1679 	spin_lock_irqsave(&ci->lock, flags);
1680 	ci->vbus_active = is_active;
1681 	spin_unlock_irqrestore(&ci->lock, flags);
1682 
1683 	if (ci->usb_phy)
1684 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1685 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1686 
1687 	if (ci->platdata->notify_event)
1688 		ret = ci->platdata->notify_event(ci,
1689 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1690 
1691 	if (ci->driver)
1692 		ci_hdrc_gadget_connect(_gadget, is_active);
1693 
1694 	return ret;
1695 }
1696 
1697 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1698 {
1699 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1700 	unsigned long flags;
1701 	int ret = 0;
1702 
1703 	spin_lock_irqsave(&ci->lock, flags);
1704 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1705 		spin_unlock_irqrestore(&ci->lock, flags);
1706 		return 0;
1707 	}
1708 	if (!ci->remote_wakeup) {
1709 		ret = -EOPNOTSUPP;
1710 		goto out;
1711 	}
1712 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1713 		ret = -EINVAL;
1714 		goto out;
1715 	}
1716 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1717 out:
1718 	spin_unlock_irqrestore(&ci->lock, flags);
1719 	return ret;
1720 }
1721 
1722 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1723 {
1724 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1725 
1726 	if (ci->usb_phy)
1727 		return usb_phy_set_power(ci->usb_phy, ma);
1728 	return -ENOTSUPP;
1729 }
1730 
1731 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1732 {
1733 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1734 	struct ci_hw_ep *hwep = ci->ep0in;
1735 	unsigned long flags;
1736 
1737 	spin_lock_irqsave(hwep->lock, flags);
1738 	_gadget->is_selfpowered = (is_on != 0);
1739 	spin_unlock_irqrestore(hwep->lock, flags);
1740 
1741 	return 0;
1742 }
1743 
1744 /* Change Data+ pullup status
1745  * this func is used by usb_gadget_connect/disconnect
1746  */
1747 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1748 {
1749 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1750 
1751 	/*
1752 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1753 	 * and don't touch Data+ in host mode for dual role config.
1754 	 */
1755 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1756 		return 0;
1757 
1758 	pm_runtime_get_sync(ci->dev);
1759 	if (is_on)
1760 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1761 	else
1762 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1763 	pm_runtime_put_sync(ci->dev);
1764 
1765 	return 0;
1766 }
1767 
1768 static int ci_udc_start(struct usb_gadget *gadget,
1769 			 struct usb_gadget_driver *driver);
1770 static int ci_udc_stop(struct usb_gadget *gadget);
1771 
1772 /* Match ISOC IN from the highest endpoint */
1773 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1774 			      struct usb_endpoint_descriptor *desc,
1775 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1776 {
1777 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1778 	struct usb_ep *ep;
1779 
1780 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1781 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1782 			if (ep->caps.dir_in && !ep->claimed)
1783 				return ep;
1784 		}
1785 	}
1786 
1787 	return NULL;
1788 }
1789 
1790 /*
1791  * Device operations part of the API to the USB controller hardware,
1792  * which don't involve endpoints (or i/o)
1793  * Check  "usb_gadget.h" for details
1794  */
1795 static const struct usb_gadget_ops usb_gadget_ops = {
1796 	.vbus_session	= ci_udc_vbus_session,
1797 	.wakeup		= ci_udc_wakeup,
1798 	.set_selfpowered	= ci_udc_selfpowered,
1799 	.pullup		= ci_udc_pullup,
1800 	.vbus_draw	= ci_udc_vbus_draw,
1801 	.udc_start	= ci_udc_start,
1802 	.udc_stop	= ci_udc_stop,
1803 	.match_ep 	= ci_udc_match_ep,
1804 };
1805 
1806 static int init_eps(struct ci_hdrc *ci)
1807 {
1808 	int retval = 0, i, j;
1809 
1810 	for (i = 0; i < ci->hw_ep_max/2; i++)
1811 		for (j = RX; j <= TX; j++) {
1812 			int k = i + j * ci->hw_ep_max/2;
1813 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1814 
1815 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1816 					(j == TX)  ? "in" : "out");
1817 
1818 			hwep->ci          = ci;
1819 			hwep->lock         = &ci->lock;
1820 			hwep->td_pool      = ci->td_pool;
1821 
1822 			hwep->ep.name      = hwep->name;
1823 			hwep->ep.ops       = &usb_ep_ops;
1824 
1825 			if (i == 0) {
1826 				hwep->ep.caps.type_control = true;
1827 			} else {
1828 				hwep->ep.caps.type_iso = true;
1829 				hwep->ep.caps.type_bulk = true;
1830 				hwep->ep.caps.type_int = true;
1831 			}
1832 
1833 			if (j == TX)
1834 				hwep->ep.caps.dir_in = true;
1835 			else
1836 				hwep->ep.caps.dir_out = true;
1837 
1838 			/*
1839 			 * for ep0: maxP defined in desc, for other
1840 			 * eps, maxP is set by epautoconfig() called
1841 			 * by gadget layer
1842 			 */
1843 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1844 
1845 			INIT_LIST_HEAD(&hwep->qh.queue);
1846 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1847 						       &hwep->qh.dma);
1848 			if (hwep->qh.ptr == NULL)
1849 				retval = -ENOMEM;
1850 
1851 			/*
1852 			 * set up shorthands for ep0 out and in endpoints,
1853 			 * don't add to gadget's ep_list
1854 			 */
1855 			if (i == 0) {
1856 				if (j == RX)
1857 					ci->ep0out = hwep;
1858 				else
1859 					ci->ep0in = hwep;
1860 
1861 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1862 				continue;
1863 			}
1864 
1865 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1866 		}
1867 
1868 	return retval;
1869 }
1870 
1871 static void destroy_eps(struct ci_hdrc *ci)
1872 {
1873 	int i;
1874 
1875 	for (i = 0; i < ci->hw_ep_max; i++) {
1876 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1877 
1878 		if (hwep->pending_td)
1879 			free_pending_td(hwep);
1880 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1881 	}
1882 }
1883 
1884 /**
1885  * ci_udc_start: register a gadget driver
1886  * @gadget: our gadget
1887  * @driver: the driver being registered
1888  *
1889  * Interrupts are enabled here.
1890  */
1891 static int ci_udc_start(struct usb_gadget *gadget,
1892 			 struct usb_gadget_driver *driver)
1893 {
1894 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1895 	int retval;
1896 
1897 	if (driver->disconnect == NULL)
1898 		return -EINVAL;
1899 
1900 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1901 	retval = usb_ep_enable(&ci->ep0out->ep);
1902 	if (retval)
1903 		return retval;
1904 
1905 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1906 	retval = usb_ep_enable(&ci->ep0in->ep);
1907 	if (retval)
1908 		return retval;
1909 
1910 	ci->driver = driver;
1911 
1912 	/* Start otg fsm for B-device */
1913 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1914 		ci_hdrc_otg_fsm_start(ci);
1915 		return retval;
1916 	}
1917 
1918 	if (ci->vbus_active)
1919 		ci_hdrc_gadget_connect(gadget, 1);
1920 	else
1921 		usb_udc_vbus_handler(&ci->gadget, false);
1922 
1923 	return retval;
1924 }
1925 
1926 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1927 {
1928 	if (!ci_otg_is_fsm_mode(ci))
1929 		return;
1930 
1931 	mutex_lock(&ci->fsm.lock);
1932 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1933 		ci->fsm.a_bidl_adis_tmout = 1;
1934 		ci_hdrc_otg_fsm_start(ci);
1935 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1936 		ci->fsm.protocol = PROTO_UNDEF;
1937 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1938 	}
1939 	mutex_unlock(&ci->fsm.lock);
1940 }
1941 
1942 /*
1943  * ci_udc_stop: unregister a gadget driver
1944  */
1945 static int ci_udc_stop(struct usb_gadget *gadget)
1946 {
1947 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1948 	unsigned long flags;
1949 
1950 	spin_lock_irqsave(&ci->lock, flags);
1951 	ci->driver = NULL;
1952 
1953 	if (ci->vbus_active) {
1954 		hw_device_state(ci, 0);
1955 		spin_unlock_irqrestore(&ci->lock, flags);
1956 		if (ci->platdata->notify_event)
1957 			ci->platdata->notify_event(ci,
1958 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1959 		_gadget_stop_activity(&ci->gadget);
1960 		spin_lock_irqsave(&ci->lock, flags);
1961 		pm_runtime_put(ci->dev);
1962 	}
1963 
1964 	spin_unlock_irqrestore(&ci->lock, flags);
1965 
1966 	ci_udc_stop_for_otg_fsm(ci);
1967 	return 0;
1968 }
1969 
1970 /******************************************************************************
1971  * BUS block
1972  *****************************************************************************/
1973 /*
1974  * udc_irq: ci interrupt handler
1975  *
1976  * This function returns IRQ_HANDLED if the IRQ has been handled
1977  * It locks access to registers
1978  */
1979 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1980 {
1981 	irqreturn_t retval;
1982 	u32 intr;
1983 
1984 	if (ci == NULL)
1985 		return IRQ_HANDLED;
1986 
1987 	spin_lock(&ci->lock);
1988 
1989 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1990 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1991 				USBMODE_CM_DC) {
1992 			spin_unlock(&ci->lock);
1993 			return IRQ_NONE;
1994 		}
1995 	}
1996 	intr = hw_test_and_clear_intr_active(ci);
1997 
1998 	if (intr) {
1999 		/* order defines priority - do NOT change it */
2000 		if (USBi_URI & intr)
2001 			isr_reset_handler(ci);
2002 
2003 		if (USBi_PCI & intr) {
2004 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2005 				USB_SPEED_HIGH : USB_SPEED_FULL;
2006 			if (ci->suspended) {
2007 				if (ci->driver->resume) {
2008 					spin_unlock(&ci->lock);
2009 					ci->driver->resume(&ci->gadget);
2010 					spin_lock(&ci->lock);
2011 				}
2012 				ci->suspended = 0;
2013 				usb_gadget_set_state(&ci->gadget,
2014 						ci->resume_state);
2015 			}
2016 		}
2017 
2018 		if (USBi_UI  & intr)
2019 			isr_tr_complete_handler(ci);
2020 
2021 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2022 			ci->suspended = 1;
2023 			ci->resume_state = ci->gadget.state;
2024 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2025 			    ci->driver->suspend) {
2026 				spin_unlock(&ci->lock);
2027 				ci->driver->suspend(&ci->gadget);
2028 				spin_lock(&ci->lock);
2029 			}
2030 			usb_gadget_set_state(&ci->gadget,
2031 					USB_STATE_SUSPENDED);
2032 		}
2033 		retval = IRQ_HANDLED;
2034 	} else {
2035 		retval = IRQ_NONE;
2036 	}
2037 	spin_unlock(&ci->lock);
2038 
2039 	return retval;
2040 }
2041 
2042 /**
2043  * udc_start: initialize gadget role
2044  * @ci: chipidea controller
2045  */
2046 static int udc_start(struct ci_hdrc *ci)
2047 {
2048 	struct device *dev = ci->dev;
2049 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2050 	int retval = 0;
2051 
2052 	ci->gadget.ops          = &usb_gadget_ops;
2053 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2054 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2055 	ci->gadget.name         = ci->platdata->name;
2056 	ci->gadget.otg_caps	= otg_caps;
2057 	ci->gadget.sg_supported = 1;
2058 
2059 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2060 		ci->gadget.quirk_avoids_skb_reserve = 1;
2061 
2062 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2063 						otg_caps->adp_support))
2064 		ci->gadget.is_otg = 1;
2065 
2066 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2067 
2068 	/* alloc resources */
2069 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2070 				       sizeof(struct ci_hw_qh),
2071 				       64, CI_HDRC_PAGE_SIZE);
2072 	if (ci->qh_pool == NULL)
2073 		return -ENOMEM;
2074 
2075 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2076 				       sizeof(struct ci_hw_td),
2077 				       64, CI_HDRC_PAGE_SIZE);
2078 	if (ci->td_pool == NULL) {
2079 		retval = -ENOMEM;
2080 		goto free_qh_pool;
2081 	}
2082 
2083 	retval = init_eps(ci);
2084 	if (retval)
2085 		goto free_pools;
2086 
2087 	ci->gadget.ep0 = &ci->ep0in->ep;
2088 
2089 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2090 	if (retval)
2091 		goto destroy_eps;
2092 
2093 	return retval;
2094 
2095 destroy_eps:
2096 	destroy_eps(ci);
2097 free_pools:
2098 	dma_pool_destroy(ci->td_pool);
2099 free_qh_pool:
2100 	dma_pool_destroy(ci->qh_pool);
2101 	return retval;
2102 }
2103 
2104 /*
2105  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2106  *
2107  * No interrupts active, the IRQ has been released
2108  */
2109 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2110 {
2111 	if (!ci->roles[CI_ROLE_GADGET])
2112 		return;
2113 
2114 	usb_del_gadget_udc(&ci->gadget);
2115 
2116 	destroy_eps(ci);
2117 
2118 	dma_pool_destroy(ci->td_pool);
2119 	dma_pool_destroy(ci->qh_pool);
2120 }
2121 
2122 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2123 {
2124 	if (ci->platdata->pins_device)
2125 		pinctrl_select_state(ci->platdata->pctl,
2126 				     ci->platdata->pins_device);
2127 
2128 	if (ci->is_otg)
2129 		/* Clear and enable BSV irq */
2130 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2131 					OTGSC_BSVIS | OTGSC_BSVIE);
2132 
2133 	return 0;
2134 }
2135 
2136 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2137 {
2138 	/*
2139 	 * host doesn't care B_SESSION_VALID event
2140 	 * so clear and disbale BSV irq
2141 	 */
2142 	if (ci->is_otg)
2143 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2144 
2145 	ci->vbus_active = 0;
2146 
2147 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2148 		pinctrl_select_state(ci->platdata->pctl,
2149 				     ci->platdata->pins_default);
2150 }
2151 
2152 /**
2153  * ci_hdrc_gadget_init - initialize device related bits
2154  * @ci: the controller
2155  *
2156  * This function initializes the gadget, if the device is "device capable".
2157  */
2158 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2159 {
2160 	struct ci_role_driver *rdrv;
2161 	int ret;
2162 
2163 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2164 		return -ENXIO;
2165 
2166 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2167 	if (!rdrv)
2168 		return -ENOMEM;
2169 
2170 	rdrv->start	= udc_id_switch_for_device;
2171 	rdrv->stop	= udc_id_switch_for_host;
2172 	rdrv->irq	= udc_irq;
2173 	rdrv->name	= "gadget";
2174 
2175 	ret = udc_start(ci);
2176 	if (!ret)
2177 		ci->roles[CI_ROLE_GADGET] = rdrv;
2178 
2179 	return ret;
2180 }
2181