1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * otg_fsm.c - ChipIdea USB IP core OTG FSM driver 4 * 5 * Copyright (C) 2014 Freescale Semiconductor, Inc. 6 * 7 * Author: Jun Li 8 */ 9 10 /* 11 * This file mainly handles OTG fsm, it includes OTG fsm operations 12 * for HNP and SRP. 13 * 14 * TODO List 15 * - ADP 16 * - OTG test device 17 */ 18 19 #include <linux/usb/otg.h> 20 #include <linux/usb/gadget.h> 21 #include <linux/usb/hcd.h> 22 #include <linux/usb/chipidea.h> 23 #include <linux/regulator/consumer.h> 24 25 #include "ci.h" 26 #include "bits.h" 27 #include "otg.h" 28 #include "otg_fsm.h" 29 30 /* Add for otg: interact with user space app */ 31 static ssize_t 32 a_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf) 33 { 34 char *next; 35 unsigned size, t; 36 struct ci_hdrc *ci = dev_get_drvdata(dev); 37 38 next = buf; 39 size = PAGE_SIZE; 40 t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_req); 41 size -= t; 42 next += t; 43 44 return PAGE_SIZE - size; 45 } 46 47 static ssize_t 48 a_bus_req_store(struct device *dev, struct device_attribute *attr, 49 const char *buf, size_t count) 50 { 51 struct ci_hdrc *ci = dev_get_drvdata(dev); 52 53 if (count > 2) 54 return -1; 55 56 mutex_lock(&ci->fsm.lock); 57 if (buf[0] == '0') { 58 ci->fsm.a_bus_req = 0; 59 } else if (buf[0] == '1') { 60 /* If a_bus_drop is TRUE, a_bus_req can't be set */ 61 if (ci->fsm.a_bus_drop) { 62 mutex_unlock(&ci->fsm.lock); 63 return count; 64 } 65 ci->fsm.a_bus_req = 1; 66 if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) { 67 ci->gadget.host_request_flag = 1; 68 mutex_unlock(&ci->fsm.lock); 69 return count; 70 } 71 } 72 73 ci_otg_queue_work(ci); 74 mutex_unlock(&ci->fsm.lock); 75 76 return count; 77 } 78 static DEVICE_ATTR_RW(a_bus_req); 79 80 static ssize_t 81 a_bus_drop_show(struct device *dev, struct device_attribute *attr, char *buf) 82 { 83 char *next; 84 unsigned size, t; 85 struct ci_hdrc *ci = dev_get_drvdata(dev); 86 87 next = buf; 88 size = PAGE_SIZE; 89 t = scnprintf(next, size, "%d\n", ci->fsm.a_bus_drop); 90 size -= t; 91 next += t; 92 93 return PAGE_SIZE - size; 94 } 95 96 static ssize_t 97 a_bus_drop_store(struct device *dev, struct device_attribute *attr, 98 const char *buf, size_t count) 99 { 100 struct ci_hdrc *ci = dev_get_drvdata(dev); 101 102 if (count > 2) 103 return -1; 104 105 mutex_lock(&ci->fsm.lock); 106 if (buf[0] == '0') { 107 ci->fsm.a_bus_drop = 0; 108 } else if (buf[0] == '1') { 109 ci->fsm.a_bus_drop = 1; 110 ci->fsm.a_bus_req = 0; 111 } 112 113 ci_otg_queue_work(ci); 114 mutex_unlock(&ci->fsm.lock); 115 116 return count; 117 } 118 static DEVICE_ATTR_RW(a_bus_drop); 119 120 static ssize_t 121 b_bus_req_show(struct device *dev, struct device_attribute *attr, char *buf) 122 { 123 char *next; 124 unsigned size, t; 125 struct ci_hdrc *ci = dev_get_drvdata(dev); 126 127 next = buf; 128 size = PAGE_SIZE; 129 t = scnprintf(next, size, "%d\n", ci->fsm.b_bus_req); 130 size -= t; 131 next += t; 132 133 return PAGE_SIZE - size; 134 } 135 136 static ssize_t 137 b_bus_req_store(struct device *dev, struct device_attribute *attr, 138 const char *buf, size_t count) 139 { 140 struct ci_hdrc *ci = dev_get_drvdata(dev); 141 142 if (count > 2) 143 return -1; 144 145 mutex_lock(&ci->fsm.lock); 146 if (buf[0] == '0') 147 ci->fsm.b_bus_req = 0; 148 else if (buf[0] == '1') { 149 ci->fsm.b_bus_req = 1; 150 if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) { 151 ci->gadget.host_request_flag = 1; 152 mutex_unlock(&ci->fsm.lock); 153 return count; 154 } 155 } 156 157 ci_otg_queue_work(ci); 158 mutex_unlock(&ci->fsm.lock); 159 160 return count; 161 } 162 static DEVICE_ATTR_RW(b_bus_req); 163 164 static ssize_t 165 a_clr_err_store(struct device *dev, struct device_attribute *attr, 166 const char *buf, size_t count) 167 { 168 struct ci_hdrc *ci = dev_get_drvdata(dev); 169 170 if (count > 2) 171 return -1; 172 173 mutex_lock(&ci->fsm.lock); 174 if (buf[0] == '1') 175 ci->fsm.a_clr_err = 1; 176 177 ci_otg_queue_work(ci); 178 mutex_unlock(&ci->fsm.lock); 179 180 return count; 181 } 182 static DEVICE_ATTR_WO(a_clr_err); 183 184 static struct attribute *inputs_attrs[] = { 185 &dev_attr_a_bus_req.attr, 186 &dev_attr_a_bus_drop.attr, 187 &dev_attr_b_bus_req.attr, 188 &dev_attr_a_clr_err.attr, 189 NULL, 190 }; 191 192 static const struct attribute_group inputs_attr_group = { 193 .name = "inputs", 194 .attrs = inputs_attrs, 195 }; 196 197 /* 198 * Keep this list in the same order as timers indexed 199 * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h 200 */ 201 static unsigned otg_timer_ms[] = { 202 TA_WAIT_VRISE, 203 TA_WAIT_VFALL, 204 TA_WAIT_BCON, 205 TA_AIDL_BDIS, 206 TB_ASE0_BRST, 207 TA_BIDL_ADIS, 208 TB_AIDL_BDIS, 209 TB_SE0_SRP, 210 TB_SRP_FAIL, 211 0, 212 TB_DATA_PLS, 213 TB_SSEND_SRP, 214 }; 215 216 /* 217 * Add timer to active timer list 218 */ 219 static void ci_otg_add_timer(struct ci_hdrc *ci, enum otg_fsm_timer t) 220 { 221 unsigned long flags, timer_sec, timer_nsec; 222 223 if (t >= NUM_OTG_FSM_TIMERS) 224 return; 225 226 spin_lock_irqsave(&ci->lock, flags); 227 timer_sec = otg_timer_ms[t] / MSEC_PER_SEC; 228 timer_nsec = (otg_timer_ms[t] % MSEC_PER_SEC) * NSEC_PER_MSEC; 229 ci->hr_timeouts[t] = ktime_add(ktime_get(), 230 ktime_set(timer_sec, timer_nsec)); 231 ci->enabled_otg_timer_bits |= (1 << t); 232 if ((ci->next_otg_timer == NUM_OTG_FSM_TIMERS) || 233 ktime_after(ci->hr_timeouts[ci->next_otg_timer], 234 ci->hr_timeouts[t])) { 235 ci->next_otg_timer = t; 236 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer, 237 ci->hr_timeouts[t], NSEC_PER_MSEC, 238 HRTIMER_MODE_ABS); 239 } 240 spin_unlock_irqrestore(&ci->lock, flags); 241 } 242 243 /* 244 * Remove timer from active timer list 245 */ 246 static void ci_otg_del_timer(struct ci_hdrc *ci, enum otg_fsm_timer t) 247 { 248 unsigned long flags, enabled_timer_bits; 249 enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS; 250 251 if ((t >= NUM_OTG_FSM_TIMERS) || 252 !(ci->enabled_otg_timer_bits & (1 << t))) 253 return; 254 255 spin_lock_irqsave(&ci->lock, flags); 256 ci->enabled_otg_timer_bits &= ~(1 << t); 257 if (ci->next_otg_timer == t) { 258 if (ci->enabled_otg_timer_bits == 0) { 259 spin_unlock_irqrestore(&ci->lock, flags); 260 /* No enabled timers after delete it */ 261 hrtimer_cancel(&ci->otg_fsm_hrtimer); 262 spin_lock_irqsave(&ci->lock, flags); 263 ci->next_otg_timer = NUM_OTG_FSM_TIMERS; 264 } else { 265 /* Find the next timer */ 266 enabled_timer_bits = ci->enabled_otg_timer_bits; 267 for_each_set_bit(cur_timer, &enabled_timer_bits, 268 NUM_OTG_FSM_TIMERS) { 269 if ((next_timer == NUM_OTG_FSM_TIMERS) || 270 ktime_before(ci->hr_timeouts[next_timer], 271 ci->hr_timeouts[cur_timer])) 272 next_timer = cur_timer; 273 } 274 } 275 } 276 if (next_timer != NUM_OTG_FSM_TIMERS) { 277 ci->next_otg_timer = next_timer; 278 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer, 279 ci->hr_timeouts[next_timer], NSEC_PER_MSEC, 280 HRTIMER_MODE_ABS); 281 } 282 spin_unlock_irqrestore(&ci->lock, flags); 283 } 284 285 /* OTG FSM timer handlers */ 286 static int a_wait_vrise_tmout(struct ci_hdrc *ci) 287 { 288 ci->fsm.a_wait_vrise_tmout = 1; 289 return 0; 290 } 291 292 static int a_wait_vfall_tmout(struct ci_hdrc *ci) 293 { 294 ci->fsm.a_wait_vfall_tmout = 1; 295 return 0; 296 } 297 298 static int a_wait_bcon_tmout(struct ci_hdrc *ci) 299 { 300 ci->fsm.a_wait_bcon_tmout = 1; 301 return 0; 302 } 303 304 static int a_aidl_bdis_tmout(struct ci_hdrc *ci) 305 { 306 ci->fsm.a_aidl_bdis_tmout = 1; 307 return 0; 308 } 309 310 static int b_ase0_brst_tmout(struct ci_hdrc *ci) 311 { 312 ci->fsm.b_ase0_brst_tmout = 1; 313 return 0; 314 } 315 316 static int a_bidl_adis_tmout(struct ci_hdrc *ci) 317 { 318 ci->fsm.a_bidl_adis_tmout = 1; 319 return 0; 320 } 321 322 static int b_aidl_bdis_tmout(struct ci_hdrc *ci) 323 { 324 ci->fsm.a_bus_suspend = 1; 325 return 0; 326 } 327 328 static int b_se0_srp_tmout(struct ci_hdrc *ci) 329 { 330 ci->fsm.b_se0_srp = 1; 331 return 0; 332 } 333 334 static int b_srp_fail_tmout(struct ci_hdrc *ci) 335 { 336 ci->fsm.b_srp_done = 1; 337 return 1; 338 } 339 340 static int b_data_pls_tmout(struct ci_hdrc *ci) 341 { 342 ci->fsm.b_srp_done = 1; 343 ci->fsm.b_bus_req = 0; 344 if (ci->fsm.power_up) 345 ci->fsm.power_up = 0; 346 hw_write_otgsc(ci, OTGSC_HABA, 0); 347 pm_runtime_put(ci->dev); 348 return 0; 349 } 350 351 static int b_ssend_srp_tmout(struct ci_hdrc *ci) 352 { 353 ci->fsm.b_ssend_srp = 1; 354 /* only vbus fall below B_sess_vld in b_idle state */ 355 if (ci->fsm.otg->state == OTG_STATE_B_IDLE) 356 return 0; 357 else 358 return 1; 359 } 360 361 /* 362 * Keep this list in the same order as timers indexed 363 * by enum otg_fsm_timer in include/linux/usb/otg-fsm.h 364 */ 365 static int (*otg_timer_handlers[])(struct ci_hdrc *) = { 366 a_wait_vrise_tmout, /* A_WAIT_VRISE */ 367 a_wait_vfall_tmout, /* A_WAIT_VFALL */ 368 a_wait_bcon_tmout, /* A_WAIT_BCON */ 369 a_aidl_bdis_tmout, /* A_AIDL_BDIS */ 370 b_ase0_brst_tmout, /* B_ASE0_BRST */ 371 a_bidl_adis_tmout, /* A_BIDL_ADIS */ 372 b_aidl_bdis_tmout, /* B_AIDL_BDIS */ 373 b_se0_srp_tmout, /* B_SE0_SRP */ 374 b_srp_fail_tmout, /* B_SRP_FAIL */ 375 NULL, /* A_WAIT_ENUM */ 376 b_data_pls_tmout, /* B_DATA_PLS */ 377 b_ssend_srp_tmout, /* B_SSEND_SRP */ 378 }; 379 380 /* 381 * Enable the next nearest enabled timer if have 382 */ 383 static enum hrtimer_restart ci_otg_hrtimer_func(struct hrtimer *t) 384 { 385 struct ci_hdrc *ci = container_of(t, struct ci_hdrc, otg_fsm_hrtimer); 386 ktime_t now, *timeout; 387 unsigned long enabled_timer_bits; 388 unsigned long flags; 389 enum otg_fsm_timer cur_timer, next_timer = NUM_OTG_FSM_TIMERS; 390 int ret = -EINVAL; 391 392 spin_lock_irqsave(&ci->lock, flags); 393 enabled_timer_bits = ci->enabled_otg_timer_bits; 394 ci->next_otg_timer = NUM_OTG_FSM_TIMERS; 395 396 now = ktime_get(); 397 for_each_set_bit(cur_timer, &enabled_timer_bits, NUM_OTG_FSM_TIMERS) { 398 if (ktime_compare(now, ci->hr_timeouts[cur_timer]) >= 0) { 399 ci->enabled_otg_timer_bits &= ~(1 << cur_timer); 400 if (otg_timer_handlers[cur_timer]) 401 ret = otg_timer_handlers[cur_timer](ci); 402 } else { 403 if ((next_timer == NUM_OTG_FSM_TIMERS) || 404 ktime_before(ci->hr_timeouts[cur_timer], 405 ci->hr_timeouts[next_timer])) 406 next_timer = cur_timer; 407 } 408 } 409 /* Enable the next nearest timer */ 410 if (next_timer < NUM_OTG_FSM_TIMERS) { 411 timeout = &ci->hr_timeouts[next_timer]; 412 hrtimer_start_range_ns(&ci->otg_fsm_hrtimer, *timeout, 413 NSEC_PER_MSEC, HRTIMER_MODE_ABS); 414 ci->next_otg_timer = next_timer; 415 } 416 spin_unlock_irqrestore(&ci->lock, flags); 417 418 if (!ret) 419 ci_otg_queue_work(ci); 420 421 return HRTIMER_NORESTART; 422 } 423 424 /* Initialize timers */ 425 static int ci_otg_init_timers(struct ci_hdrc *ci) 426 { 427 hrtimer_init(&ci->otg_fsm_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 428 ci->otg_fsm_hrtimer.function = ci_otg_hrtimer_func; 429 430 return 0; 431 } 432 433 /* -------------------------------------------------------------*/ 434 /* Operations that will be called from OTG Finite State Machine */ 435 /* -------------------------------------------------------------*/ 436 static void ci_otg_fsm_add_timer(struct otg_fsm *fsm, enum otg_fsm_timer t) 437 { 438 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); 439 440 if (t < NUM_OTG_FSM_TIMERS) 441 ci_otg_add_timer(ci, t); 442 return; 443 } 444 445 static void ci_otg_fsm_del_timer(struct otg_fsm *fsm, enum otg_fsm_timer t) 446 { 447 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); 448 449 if (t < NUM_OTG_FSM_TIMERS) 450 ci_otg_del_timer(ci, t); 451 return; 452 } 453 454 /* 455 * A-device drive vbus: turn on vbus regulator and enable port power 456 * Data pulse irq should be disabled while vbus is on. 457 */ 458 static void ci_otg_drv_vbus(struct otg_fsm *fsm, int on) 459 { 460 int ret; 461 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); 462 463 if (on) { 464 /* Enable power */ 465 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | PORTSC_PP, 466 PORTSC_PP); 467 if (ci->platdata->reg_vbus) { 468 ret = regulator_enable(ci->platdata->reg_vbus); 469 if (ret) { 470 dev_err(ci->dev, 471 "Failed to enable vbus regulator, ret=%d\n", 472 ret); 473 return; 474 } 475 } 476 477 if (ci->platdata->flags & CI_HDRC_PHY_VBUS_CONTROL) 478 usb_phy_vbus_on(ci->usb_phy); 479 480 /* Disable data pulse irq */ 481 hw_write_otgsc(ci, OTGSC_DPIE, 0); 482 483 fsm->a_srp_det = 0; 484 fsm->power_up = 0; 485 } else { 486 if (ci->platdata->reg_vbus) 487 regulator_disable(ci->platdata->reg_vbus); 488 489 if (ci->platdata->flags & CI_HDRC_PHY_VBUS_CONTROL) 490 usb_phy_vbus_off(ci->usb_phy); 491 492 fsm->a_bus_drop = 1; 493 fsm->a_bus_req = 0; 494 } 495 } 496 497 /* 498 * Control data line by Run Stop bit. 499 */ 500 static void ci_otg_loc_conn(struct otg_fsm *fsm, int on) 501 { 502 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); 503 504 if (on) 505 hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS); 506 else 507 hw_write(ci, OP_USBCMD, USBCMD_RS, 0); 508 } 509 510 /* 511 * Generate SOF by host. 512 * In host mode, controller will automatically send SOF. 513 * Suspend will block the data on the port. 514 * 515 * This is controlled through usbcore by usb autosuspend, 516 * so the usb device class driver need support autosuspend, 517 * otherwise the bus suspend will not happen. 518 */ 519 static void ci_otg_loc_sof(struct otg_fsm *fsm, int on) 520 { 521 struct usb_device *udev; 522 523 if (!fsm->otg->host) 524 return; 525 526 udev = usb_hub_find_child(fsm->otg->host->root_hub, 1); 527 if (!udev) 528 return; 529 530 if (on) { 531 usb_disable_autosuspend(udev); 532 } else { 533 pm_runtime_set_autosuspend_delay(&udev->dev, 0); 534 usb_enable_autosuspend(udev); 535 } 536 } 537 538 /* 539 * Start SRP pulsing by data-line pulsing, 540 * no v-bus pulsing followed 541 */ 542 static void ci_otg_start_pulse(struct otg_fsm *fsm) 543 { 544 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); 545 546 /* Hardware Assistant Data pulse */ 547 hw_write_otgsc(ci, OTGSC_HADP, OTGSC_HADP); 548 549 pm_runtime_get(ci->dev); 550 ci_otg_add_timer(ci, B_DATA_PLS); 551 } 552 553 static int ci_otg_start_host(struct otg_fsm *fsm, int on) 554 { 555 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); 556 557 if (on) { 558 ci_role_stop(ci); 559 ci_role_start(ci, CI_ROLE_HOST); 560 } else { 561 ci_role_stop(ci); 562 ci_role_start(ci, CI_ROLE_GADGET); 563 } 564 return 0; 565 } 566 567 static int ci_otg_start_gadget(struct otg_fsm *fsm, int on) 568 { 569 struct ci_hdrc *ci = container_of(fsm, struct ci_hdrc, fsm); 570 571 if (on) 572 usb_gadget_vbus_connect(&ci->gadget); 573 else 574 usb_gadget_vbus_disconnect(&ci->gadget); 575 576 return 0; 577 } 578 579 static struct otg_fsm_ops ci_otg_ops = { 580 .drv_vbus = ci_otg_drv_vbus, 581 .loc_conn = ci_otg_loc_conn, 582 .loc_sof = ci_otg_loc_sof, 583 .start_pulse = ci_otg_start_pulse, 584 .add_timer = ci_otg_fsm_add_timer, 585 .del_timer = ci_otg_fsm_del_timer, 586 .start_host = ci_otg_start_host, 587 .start_gadget = ci_otg_start_gadget, 588 }; 589 590 int ci_otg_fsm_work(struct ci_hdrc *ci) 591 { 592 /* 593 * Don't do fsm transition for B device 594 * when there is no gadget class driver 595 */ 596 if (ci->fsm.id && !(ci->driver) && 597 ci->fsm.otg->state < OTG_STATE_A_IDLE) 598 return 0; 599 600 pm_runtime_get_sync(ci->dev); 601 if (otg_statemachine(&ci->fsm)) { 602 if (ci->fsm.otg->state == OTG_STATE_A_IDLE) { 603 /* 604 * Further state change for cases: 605 * a_idle to b_idle; or 606 * a_idle to a_wait_vrise due to ID change(1->0), so 607 * B-dev becomes A-dev can try to start new session 608 * consequently; or 609 * a_idle to a_wait_vrise when power up 610 */ 611 if ((ci->fsm.id) || (ci->id_event) || 612 (ci->fsm.power_up)) { 613 ci_otg_queue_work(ci); 614 } else { 615 /* Enable data pulse irq */ 616 hw_write(ci, OP_PORTSC, PORTSC_W1C_BITS | 617 PORTSC_PP, 0); 618 hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS); 619 hw_write_otgsc(ci, OTGSC_DPIE, OTGSC_DPIE); 620 } 621 if (ci->id_event) 622 ci->id_event = false; 623 } else if (ci->fsm.otg->state == OTG_STATE_B_IDLE) { 624 if (ci->fsm.b_sess_vld) { 625 ci->fsm.power_up = 0; 626 /* 627 * Further transite to b_periphearl state 628 * when register gadget driver with vbus on 629 */ 630 ci_otg_queue_work(ci); 631 } 632 } else if (ci->fsm.otg->state == OTG_STATE_A_HOST) { 633 pm_runtime_mark_last_busy(ci->dev); 634 pm_runtime_put_autosuspend(ci->dev); 635 return 0; 636 } 637 } 638 pm_runtime_put_sync(ci->dev); 639 return 0; 640 } 641 642 /* 643 * Update fsm variables in each state if catching expected interrupts, 644 * called by otg fsm isr. 645 */ 646 static void ci_otg_fsm_event(struct ci_hdrc *ci) 647 { 648 u32 intr_sts, otg_bsess_vld, port_conn; 649 struct otg_fsm *fsm = &ci->fsm; 650 651 intr_sts = hw_read_intr_status(ci); 652 otg_bsess_vld = hw_read_otgsc(ci, OTGSC_BSV); 653 port_conn = hw_read(ci, OP_PORTSC, PORTSC_CCS); 654 655 switch (ci->fsm.otg->state) { 656 case OTG_STATE_A_WAIT_BCON: 657 if (port_conn) { 658 fsm->b_conn = 1; 659 fsm->a_bus_req = 1; 660 ci_otg_queue_work(ci); 661 } 662 break; 663 case OTG_STATE_B_IDLE: 664 if (otg_bsess_vld && (intr_sts & USBi_PCI) && port_conn) { 665 fsm->b_sess_vld = 1; 666 ci_otg_queue_work(ci); 667 } 668 break; 669 case OTG_STATE_B_PERIPHERAL: 670 if ((intr_sts & USBi_SLI) && port_conn && otg_bsess_vld) { 671 ci_otg_add_timer(ci, B_AIDL_BDIS); 672 } else if (intr_sts & USBi_PCI) { 673 ci_otg_del_timer(ci, B_AIDL_BDIS); 674 if (fsm->a_bus_suspend == 1) 675 fsm->a_bus_suspend = 0; 676 } 677 break; 678 case OTG_STATE_B_HOST: 679 if ((intr_sts & USBi_PCI) && !port_conn) { 680 fsm->a_conn = 0; 681 fsm->b_bus_req = 0; 682 ci_otg_queue_work(ci); 683 } 684 break; 685 case OTG_STATE_A_PERIPHERAL: 686 if (intr_sts & USBi_SLI) { 687 fsm->b_bus_suspend = 1; 688 /* 689 * Init a timer to know how long this suspend 690 * will continue, if time out, indicates B no longer 691 * wants to be host role 692 */ 693 ci_otg_add_timer(ci, A_BIDL_ADIS); 694 } 695 696 if (intr_sts & USBi_URI) 697 ci_otg_del_timer(ci, A_BIDL_ADIS); 698 699 if (intr_sts & USBi_PCI) { 700 if (fsm->b_bus_suspend == 1) { 701 ci_otg_del_timer(ci, A_BIDL_ADIS); 702 fsm->b_bus_suspend = 0; 703 } 704 } 705 break; 706 case OTG_STATE_A_SUSPEND: 707 if ((intr_sts & USBi_PCI) && !port_conn) { 708 fsm->b_conn = 0; 709 710 /* if gadget driver is binded */ 711 if (ci->driver) { 712 /* A device to be peripheral mode */ 713 ci->gadget.is_a_peripheral = 1; 714 } 715 ci_otg_queue_work(ci); 716 } 717 break; 718 case OTG_STATE_A_HOST: 719 if ((intr_sts & USBi_PCI) && !port_conn) { 720 fsm->b_conn = 0; 721 ci_otg_queue_work(ci); 722 } 723 break; 724 case OTG_STATE_B_WAIT_ACON: 725 if ((intr_sts & USBi_PCI) && port_conn) { 726 fsm->a_conn = 1; 727 ci_otg_queue_work(ci); 728 } 729 break; 730 default: 731 break; 732 } 733 } 734 735 /* 736 * ci_otg_irq - otg fsm related irq handling 737 * and also update otg fsm variable by monitoring usb host and udc 738 * state change interrupts. 739 * @ci: ci_hdrc 740 */ 741 irqreturn_t ci_otg_fsm_irq(struct ci_hdrc *ci) 742 { 743 irqreturn_t retval = IRQ_NONE; 744 u32 otgsc, otg_int_src = 0; 745 struct otg_fsm *fsm = &ci->fsm; 746 747 otgsc = hw_read_otgsc(ci, ~0); 748 otg_int_src = otgsc & OTGSC_INT_STATUS_BITS & (otgsc >> 8); 749 fsm->id = (otgsc & OTGSC_ID) ? 1 : 0; 750 751 if (otg_int_src) { 752 if (otg_int_src & OTGSC_DPIS) { 753 hw_write_otgsc(ci, OTGSC_DPIS, OTGSC_DPIS); 754 fsm->a_srp_det = 1; 755 fsm->a_bus_drop = 0; 756 } else if (otg_int_src & OTGSC_IDIS) { 757 hw_write_otgsc(ci, OTGSC_IDIS, OTGSC_IDIS); 758 if (fsm->id == 0) { 759 fsm->a_bus_drop = 0; 760 fsm->a_bus_req = 1; 761 ci->id_event = true; 762 } 763 } else if (otg_int_src & OTGSC_BSVIS) { 764 hw_write_otgsc(ci, OTGSC_BSVIS, OTGSC_BSVIS); 765 if (otgsc & OTGSC_BSV) { 766 fsm->b_sess_vld = 1; 767 ci_otg_del_timer(ci, B_SSEND_SRP); 768 ci_otg_del_timer(ci, B_SRP_FAIL); 769 fsm->b_ssend_srp = 0; 770 } else { 771 fsm->b_sess_vld = 0; 772 if (fsm->id) 773 ci_otg_add_timer(ci, B_SSEND_SRP); 774 } 775 } else if (otg_int_src & OTGSC_AVVIS) { 776 hw_write_otgsc(ci, OTGSC_AVVIS, OTGSC_AVVIS); 777 if (otgsc & OTGSC_AVV) { 778 fsm->a_vbus_vld = 1; 779 } else { 780 fsm->a_vbus_vld = 0; 781 fsm->b_conn = 0; 782 } 783 } 784 ci_otg_queue_work(ci); 785 return IRQ_HANDLED; 786 } 787 788 ci_otg_fsm_event(ci); 789 790 return retval; 791 } 792 793 void ci_hdrc_otg_fsm_start(struct ci_hdrc *ci) 794 { 795 ci_otg_queue_work(ci); 796 } 797 798 int ci_hdrc_otg_fsm_init(struct ci_hdrc *ci) 799 { 800 int retval = 0; 801 802 if (ci->phy) 803 ci->otg.phy = ci->phy; 804 else 805 ci->otg.usb_phy = ci->usb_phy; 806 807 ci->otg.gadget = &ci->gadget; 808 ci->fsm.otg = &ci->otg; 809 ci->fsm.power_up = 1; 810 ci->fsm.id = hw_read_otgsc(ci, OTGSC_ID) ? 1 : 0; 811 ci->fsm.otg->state = OTG_STATE_UNDEFINED; 812 ci->fsm.ops = &ci_otg_ops; 813 ci->gadget.hnp_polling_support = 1; 814 ci->fsm.host_req_flag = devm_kzalloc(ci->dev, 1, GFP_KERNEL); 815 if (!ci->fsm.host_req_flag) 816 return -ENOMEM; 817 818 mutex_init(&ci->fsm.lock); 819 820 retval = ci_otg_init_timers(ci); 821 if (retval) { 822 dev_err(ci->dev, "Couldn't init OTG timers\n"); 823 return retval; 824 } 825 ci->enabled_otg_timer_bits = 0; 826 ci->next_otg_timer = NUM_OTG_FSM_TIMERS; 827 828 retval = sysfs_create_group(&ci->dev->kobj, &inputs_attr_group); 829 if (retval < 0) { 830 dev_dbg(ci->dev, 831 "Can't register sysfs attr group: %d\n", retval); 832 return retval; 833 } 834 835 /* Enable A vbus valid irq */ 836 hw_write_otgsc(ci, OTGSC_AVVIE, OTGSC_AVVIE); 837 838 if (ci->fsm.id) { 839 ci->fsm.b_ssend_srp = 840 hw_read_otgsc(ci, OTGSC_BSV) ? 0 : 1; 841 ci->fsm.b_sess_vld = 842 hw_read_otgsc(ci, OTGSC_BSV) ? 1 : 0; 843 /* Enable BSV irq */ 844 hw_write_otgsc(ci, OTGSC_BSVIE, OTGSC_BSVIE); 845 } 846 847 return 0; 848 } 849 850 void ci_hdrc_otg_fsm_remove(struct ci_hdrc *ci) 851 { 852 sysfs_remove_group(&ci->dev->kobj, &inputs_attr_group); 853 } 854