xref: /openbmc/linux/drivers/usb/cdns3/cdnsp-ring.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  * Code based on Linux XHCI driver.
10  * Origin: Copyright (C) 2008 Intel Corp
11  */
12 
13 /*
14  * Ring initialization rules:
15  * 1. Each segment is initialized to zero, except for link TRBs.
16  * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
17  *    Consumer Cycle State (CCS), depending on ring function.
18  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
19  *
20  * Ring behavior rules:
21  * 1. A ring is empty if enqueue == dequeue. This means there will always be at
22  *    least one free TRB in the ring. This is useful if you want to turn that
23  *    into a link TRB and expand the ring.
24  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
25  *    link TRB, then load the pointer with the address in the link TRB. If the
26  *    link TRB had its toggle bit set, you may need to update the ring cycle
27  *    state (see cycle bit rules). You may have to do this multiple times
28  *    until you reach a non-link TRB.
29  * 3. A ring is full if enqueue++ (for the definition of increment above)
30  *    equals the dequeue pointer.
31  *
32  * Cycle bit rules:
33  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
34  *    in a link TRB, it must toggle the ring cycle state.
35  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
36  *    in a link TRB, it must toggle the ring cycle state.
37  *
38  * Producer rules:
39  * 1. Check if ring is full before you enqueue.
40  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
41  *    Update enqueue pointer between each write (which may update the ring
42  *    cycle state).
43  * 3. Notify consumer. If SW is producer, it rings the doorbell for command
44  *    and endpoint rings. If controller is the producer for the event ring,
45  *    and it generates an interrupt according to interrupt modulation rules.
46  *
47  * Consumer rules:
48  * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
49  *    the TRB is owned by the consumer.
50  * 2. Update dequeue pointer (which may update the ring cycle state) and
51  *    continue processing TRBs until you reach a TRB which is not owned by you.
52  * 3. Notify the producer. SW is the consumer for the event ring, and it
53  *    updates event ring dequeue pointer. Controller is the consumer for the
54  *    command and endpoint rings; it generates events on the event ring
55  *    for these.
56  */
57 
58 #include <linux/scatterlist.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/delay.h>
61 #include <linux/slab.h>
62 #include <linux/irq.h>
63 
64 #include "cdnsp-trace.h"
65 #include "cdnsp-gadget.h"
66 
67 /*
68  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
69  * address of the TRB.
70  */
71 dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg,
72 				 union cdnsp_trb *trb)
73 {
74 	unsigned long segment_offset = trb - seg->trbs;
75 
76 	if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT)
77 		return 0;
78 
79 	return seg->dma + (segment_offset * sizeof(*trb));
80 }
81 
82 static bool cdnsp_trb_is_noop(union cdnsp_trb *trb)
83 {
84 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
85 }
86 
87 static bool cdnsp_trb_is_link(union cdnsp_trb *trb)
88 {
89 	return TRB_TYPE_LINK_LE32(trb->link.control);
90 }
91 
92 bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb)
93 {
94 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
95 }
96 
97 bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring,
98 			    struct cdnsp_segment *seg,
99 			    union cdnsp_trb *trb)
100 {
101 	return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
102 }
103 
104 static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb)
105 {
106 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 }
108 
109 static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type)
110 {
111 	if (cdnsp_trb_is_link(trb)) {
112 		/* Unchain chained link TRBs. */
113 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
114 	} else {
115 		trb->generic.field[0] = 0;
116 		trb->generic.field[1] = 0;
117 		trb->generic.field[2] = 0;
118 		/* Preserve only the cycle bit of this TRB. */
119 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
120 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
121 	}
122 }
123 
124 /*
125  * Updates trb to point to the next TRB in the ring, and updates seg if the next
126  * TRB is in a new segment. This does not skip over link TRBs, and it does not
127  * effect the ring dequeue or enqueue pointers.
128  */
129 static void cdnsp_next_trb(struct cdnsp_device *pdev,
130 			   struct cdnsp_ring *ring,
131 			   struct cdnsp_segment **seg,
132 			   union cdnsp_trb **trb)
133 {
134 	if (cdnsp_trb_is_link(*trb)) {
135 		*seg = (*seg)->next;
136 		*trb = ((*seg)->trbs);
137 	} else {
138 		(*trb)++;
139 	}
140 }
141 
142 /*
143  * See Cycle bit rules. SW is the consumer for the event ring only.
144  * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145  */
146 void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
147 {
148 	/* event ring doesn't have link trbs, check for last trb. */
149 	if (ring->type == TYPE_EVENT) {
150 		if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
151 			ring->dequeue++;
152 			goto out;
153 		}
154 
155 		if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
156 			ring->cycle_state ^= 1;
157 
158 		ring->deq_seg = ring->deq_seg->next;
159 		ring->dequeue = ring->deq_seg->trbs;
160 		goto out;
161 	}
162 
163 	/* All other rings have link trbs. */
164 	if (!cdnsp_trb_is_link(ring->dequeue)) {
165 		ring->dequeue++;
166 		ring->num_trbs_free++;
167 	}
168 	while (cdnsp_trb_is_link(ring->dequeue)) {
169 		ring->deq_seg = ring->deq_seg->next;
170 		ring->dequeue = ring->deq_seg->trbs;
171 	}
172 out:
173 	trace_cdnsp_inc_deq(ring);
174 }
175 
176 /*
177  * See Cycle bit rules. SW is the consumer for the event ring only.
178  * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179  *
180  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181  * chain bit is set), then set the chain bit in all the following link TRBs.
182  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183  * have their chain bit cleared (so that each Link TRB is a separate TD).
184  *
185  * @more_trbs_coming:	Will you enqueue more TRBs before ringing the doorbell.
186  */
187 static void cdnsp_inc_enq(struct cdnsp_device *pdev,
188 			  struct cdnsp_ring *ring,
189 			  bool more_trbs_coming)
190 {
191 	union cdnsp_trb *next;
192 	u32 chain;
193 
194 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 
196 	/* If this is not event ring, there is one less usable TRB. */
197 	if (!cdnsp_trb_is_link(ring->enqueue))
198 		ring->num_trbs_free--;
199 	next = ++(ring->enqueue);
200 
201 	/* Update the dequeue pointer further if that was a link TRB */
202 	while (cdnsp_trb_is_link(next)) {
203 		/*
204 		 * If the caller doesn't plan on enqueuing more TDs before
205 		 * ringing the doorbell, then we don't want to give the link TRB
206 		 * to the hardware just yet. We'll give the link TRB back in
207 		 * cdnsp_prepare_ring() just before we enqueue the TD at the
208 		 * top of the ring.
209 		 */
210 		if (!chain && !more_trbs_coming)
211 			break;
212 
213 		next->link.control &= cpu_to_le32(~TRB_CHAIN);
214 		next->link.control |= cpu_to_le32(chain);
215 
216 		/* Give this link TRB to the hardware */
217 		wmb();
218 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
219 
220 		/* Toggle the cycle bit after the last ring segment. */
221 		if (cdnsp_link_trb_toggles_cycle(next))
222 			ring->cycle_state ^= 1;
223 
224 		ring->enq_seg = ring->enq_seg->next;
225 		ring->enqueue = ring->enq_seg->trbs;
226 		next = ring->enqueue;
227 	}
228 
229 	trace_cdnsp_inc_enq(ring);
230 }
231 
232 /*
233  * Check to see if there's room to enqueue num_trbs on the ring and make sure
234  * enqueue pointer will not advance into dequeue segment.
235  */
236 static bool cdnsp_room_on_ring(struct cdnsp_device *pdev,
237 			       struct cdnsp_ring *ring,
238 			       unsigned int num_trbs)
239 {
240 	int num_trbs_in_deq_seg;
241 
242 	if (ring->num_trbs_free < num_trbs)
243 		return false;
244 
245 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
246 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
247 
248 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
249 			return false;
250 	}
251 
252 	return true;
253 }
254 
255 /*
256  * Workaround for L1: controller has issue with resuming from L1 after
257  * setting doorbell for endpoint during L1 state. This function forces
258  * resume signal in such case.
259  */
260 static void cdnsp_force_l0_go(struct cdnsp_device *pdev)
261 {
262 	if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable)
263 		cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0);
264 }
265 
266 /* Ring the doorbell after placing a command on the ring. */
267 void cdnsp_ring_cmd_db(struct cdnsp_device *pdev)
268 {
269 	writel(DB_VALUE_CMD, &pdev->dba->cmd_db);
270 }
271 
272 /*
273  * Ring the doorbell after placing a transfer on the ring.
274  * Returns true if doorbell was set, otherwise false.
275  */
276 static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev,
277 				   struct cdnsp_ep *pep,
278 				   unsigned int stream_id)
279 {
280 	__le32 __iomem *reg_addr = &pdev->dba->ep_db;
281 	unsigned int ep_state = pep->ep_state;
282 	unsigned int db_value;
283 
284 	/*
285 	 * Don't ring the doorbell for this endpoint if endpoint is halted or
286 	 * disabled.
287 	 */
288 	if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED))
289 		return false;
290 
291 	/* For stream capable endpoints driver can ring doorbell only twice. */
292 	if (pep->ep_state & EP_HAS_STREAMS) {
293 		if (pep->stream_info.drbls_count >= 2)
294 			return false;
295 
296 		pep->stream_info.drbls_count++;
297 	}
298 
299 	pep->ep_state &= ~EP_STOPPED;
300 
301 	if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE &&
302 	    !pdev->ep0_expect_in)
303 		db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id);
304 	else
305 		db_value = DB_VALUE(pep->idx, stream_id);
306 
307 	trace_cdnsp_tr_drbl(pep, stream_id);
308 
309 	writel(db_value, reg_addr);
310 
311 	cdnsp_force_l0_go(pdev);
312 
313 	/* Doorbell was set. */
314 	return true;
315 }
316 
317 /*
318  * Get the right ring for the given pep and stream_id.
319  * If the endpoint supports streams, boundary check the USB request's stream ID.
320  * If the endpoint doesn't support streams, return the singular endpoint ring.
321  */
322 static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev,
323 						  struct cdnsp_ep *pep,
324 						  unsigned int stream_id)
325 {
326 	if (!(pep->ep_state & EP_HAS_STREAMS))
327 		return pep->ring;
328 
329 	if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) {
330 		dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n",
331 			pep->name, stream_id);
332 		return NULL;
333 	}
334 
335 	return pep->stream_info.stream_rings[stream_id];
336 }
337 
338 static struct cdnsp_ring *
339 	cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev,
340 				       struct cdnsp_request *preq)
341 {
342 	return cdnsp_get_transfer_ring(pdev, preq->pep,
343 				       preq->request.stream_id);
344 }
345 
346 /* Ring the doorbell for any rings with pending requests. */
347 void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev,
348 					  struct cdnsp_ep *pep)
349 {
350 	struct cdnsp_stream_info *stream_info;
351 	unsigned int stream_id;
352 	int ret;
353 
354 	if (pep->ep_state & EP_DIS_IN_RROGRESS)
355 		return;
356 
357 	/* A ring has pending Request if its TD list is not empty. */
358 	if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) {
359 		if (pep->ring && !list_empty(&pep->ring->td_list))
360 			cdnsp_ring_ep_doorbell(pdev, pep, 0);
361 		return;
362 	}
363 
364 	stream_info = &pep->stream_info;
365 
366 	for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) {
367 		struct cdnsp_td *td, *td_temp;
368 		struct cdnsp_ring *ep_ring;
369 
370 		if (stream_info->drbls_count >= 2)
371 			return;
372 
373 		ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
374 		if (!ep_ring)
375 			continue;
376 
377 		if (!ep_ring->stream_active || ep_ring->stream_rejected)
378 			continue;
379 
380 		list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
381 					 td_list) {
382 			if (td->drbl)
383 				continue;
384 
385 			ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
386 			if (ret)
387 				td->drbl = 1;
388 		}
389 	}
390 }
391 
392 /*
393  * Get the hw dequeue pointer controller stopped on, either directly from the
394  * endpoint context, or if streams are in use from the stream context.
395  * The returned hw_dequeue contains the lowest four bits with cycle state
396  * and possible stream context type.
397  */
398 static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev,
399 			    unsigned int ep_index,
400 			    unsigned int stream_id)
401 {
402 	struct cdnsp_stream_ctx *st_ctx;
403 	struct cdnsp_ep *pep;
404 
405 	pep = &pdev->eps[stream_id];
406 
407 	if (pep->ep_state & EP_HAS_STREAMS) {
408 		st_ctx = &pep->stream_info.stream_ctx_array[stream_id];
409 		return le64_to_cpu(st_ctx->stream_ring);
410 	}
411 
412 	return le64_to_cpu(pep->out_ctx->deq);
413 }
414 
415 /*
416  * Move the controller endpoint ring dequeue pointer past cur_td.
417  * Record the new state of the controller endpoint ring dequeue segment,
418  * dequeue pointer, and new consumer cycle state in state.
419  * Update internal representation of the ring's dequeue pointer.
420  *
421  * We do this in three jumps:
422  *  - First we update our new ring state to be the same as when the
423  *    controller stopped.
424  *  - Then we traverse the ring to find the segment that contains
425  *    the last TRB in the TD. We toggle the controller new cycle state
426  *    when we pass any link TRBs with the toggle cycle bit set.
427  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
428  *    if we've moved it past a link TRB with the toggle cycle bit set.
429  */
430 static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev,
431 					 struct cdnsp_ep *pep,
432 					 unsigned int stream_id,
433 					 struct cdnsp_td *cur_td,
434 					 struct cdnsp_dequeue_state *state)
435 {
436 	bool td_last_trb_found = false;
437 	struct cdnsp_segment *new_seg;
438 	struct cdnsp_ring *ep_ring;
439 	union cdnsp_trb *new_deq;
440 	bool cycle_found = false;
441 	u64 hw_dequeue;
442 
443 	ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
444 	if (!ep_ring)
445 		return;
446 
447 	/*
448 	 * Dig out the cycle state saved by the controller during the
449 	 * stop endpoint command.
450 	 */
451 	hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id);
452 	new_seg = ep_ring->deq_seg;
453 	new_deq = ep_ring->dequeue;
454 	state->new_cycle_state = hw_dequeue & 0x1;
455 	state->stream_id = stream_id;
456 
457 	/*
458 	 * We want to find the pointer, segment and cycle state of the new trb
459 	 * (the one after current TD's last_trb). We know the cycle state at
460 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
461 	 * found.
462 	 */
463 	do {
464 		if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq)
465 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
466 			cycle_found = true;
467 
468 			if (td_last_trb_found)
469 				break;
470 		}
471 
472 		if (new_deq == cur_td->last_trb)
473 			td_last_trb_found = true;
474 
475 		if (cycle_found && cdnsp_trb_is_link(new_deq) &&
476 		    cdnsp_link_trb_toggles_cycle(new_deq))
477 			state->new_cycle_state ^= 0x1;
478 
479 		cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq);
480 
481 		/* Search wrapped around, bail out. */
482 		if (new_deq == pep->ring->dequeue) {
483 			dev_err(pdev->dev,
484 				"Error: Failed finding new dequeue state\n");
485 			state->new_deq_seg = NULL;
486 			state->new_deq_ptr = NULL;
487 			return;
488 		}
489 
490 	} while (!cycle_found || !td_last_trb_found);
491 
492 	state->new_deq_seg = new_seg;
493 	state->new_deq_ptr = new_deq;
494 
495 	trace_cdnsp_new_deq_state(state);
496 }
497 
498 /*
499  * flip_cycle means flip the cycle bit of all but the first and last TRB.
500  * (The last TRB actually points to the ring enqueue pointer, which is not part
501  * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
502  */
503 static void cdnsp_td_to_noop(struct cdnsp_device *pdev,
504 			     struct cdnsp_ring *ep_ring,
505 			     struct cdnsp_td *td,
506 			     bool flip_cycle)
507 {
508 	struct cdnsp_segment *seg = td->start_seg;
509 	union cdnsp_trb *trb = td->first_trb;
510 
511 	while (1) {
512 		cdnsp_trb_to_noop(trb, TRB_TR_NOOP);
513 
514 		/* flip cycle if asked to */
515 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
516 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
517 
518 		if (trb == td->last_trb)
519 			break;
520 
521 		cdnsp_next_trb(pdev, ep_ring, &seg, &trb);
522 	}
523 }
524 
525 /*
526  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
527  * at end_trb, which may be in another segment. If the suspect DMA address is a
528  * TRB in this TD, this function returns that TRB's segment. Otherwise it
529  * returns 0.
530  */
531 static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev,
532 					     struct cdnsp_segment *start_seg,
533 					     union cdnsp_trb *start_trb,
534 					     union cdnsp_trb *end_trb,
535 					     dma_addr_t suspect_dma)
536 {
537 	struct cdnsp_segment *cur_seg;
538 	union cdnsp_trb *temp_trb;
539 	dma_addr_t end_seg_dma;
540 	dma_addr_t end_trb_dma;
541 	dma_addr_t start_dma;
542 
543 	start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb);
544 	cur_seg = start_seg;
545 
546 	do {
547 		if (start_dma == 0)
548 			return NULL;
549 
550 		temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1];
551 		/* We may get an event for a Link TRB in the middle of a TD */
552 		end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb);
553 		/* If the end TRB isn't in this segment, this is set to 0 */
554 		end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb);
555 
556 		trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma,
557 					      end_trb_dma, cur_seg->dma,
558 					      end_seg_dma);
559 
560 		if (end_trb_dma > 0) {
561 			/*
562 			 * The end TRB is in this segment, so suspect should
563 			 * be here
564 			 */
565 			if (start_dma <= end_trb_dma) {
566 				if (suspect_dma >= start_dma &&
567 				    suspect_dma <= end_trb_dma) {
568 					return cur_seg;
569 				}
570 			} else {
571 				/*
572 				 * Case for one segment with a
573 				 * TD wrapped around to the top
574 				 */
575 				if ((suspect_dma >= start_dma &&
576 				     suspect_dma <= end_seg_dma) ||
577 				    (suspect_dma >= cur_seg->dma &&
578 				     suspect_dma <= end_trb_dma)) {
579 					return cur_seg;
580 				}
581 			}
582 
583 			return NULL;
584 		}
585 
586 		/* Might still be somewhere in this segment */
587 		if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
588 			return cur_seg;
589 
590 		cur_seg = cur_seg->next;
591 		start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
592 	} while (cur_seg != start_seg);
593 
594 	return NULL;
595 }
596 
597 static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev,
598 					 struct cdnsp_ring *ring,
599 					 struct cdnsp_td *td)
600 {
601 	struct cdnsp_segment *seg = td->bounce_seg;
602 	struct cdnsp_request *preq;
603 	size_t len;
604 
605 	if (!seg)
606 		return;
607 
608 	preq = td->preq;
609 
610 	trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs,
611 				 seg->bounce_dma, 0);
612 
613 	if (!preq->direction) {
614 		dma_unmap_single(pdev->dev, seg->bounce_dma,
615 				 ring->bounce_buf_len,  DMA_TO_DEVICE);
616 		return;
617 	}
618 
619 	dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len,
620 			 DMA_FROM_DEVICE);
621 
622 	/* For in transfers we need to copy the data from bounce to sg */
623 	len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs,
624 				   seg->bounce_buf, seg->bounce_len,
625 				   seg->bounce_offs);
626 	if (len != seg->bounce_len)
627 		dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n",
628 			 len, seg->bounce_len);
629 
630 	seg->bounce_len = 0;
631 	seg->bounce_offs = 0;
632 }
633 
634 static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev,
635 			     struct cdnsp_ep *pep,
636 			     struct cdnsp_dequeue_state *deq_state)
637 {
638 	struct cdnsp_ring *ep_ring;
639 	int ret;
640 
641 	if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) {
642 		cdnsp_ring_doorbell_for_active_rings(pdev, pep);
643 		return 0;
644 	}
645 
646 	cdnsp_queue_new_dequeue_state(pdev, pep, deq_state);
647 	cdnsp_ring_cmd_db(pdev);
648 	ret = cdnsp_wait_for_cmd_compl(pdev);
649 
650 	trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx));
651 	trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx);
652 
653 	/*
654 	 * Update the ring's dequeue segment and dequeue pointer
655 	 * to reflect the new position.
656 	 */
657 	ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id);
658 
659 	if (cdnsp_trb_is_link(ep_ring->dequeue)) {
660 		ep_ring->deq_seg = ep_ring->deq_seg->next;
661 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
662 	}
663 
664 	while (ep_ring->dequeue != deq_state->new_deq_ptr) {
665 		ep_ring->num_trbs_free++;
666 		ep_ring->dequeue++;
667 
668 		if (cdnsp_trb_is_link(ep_ring->dequeue)) {
669 			if (ep_ring->dequeue == deq_state->new_deq_ptr)
670 				break;
671 
672 			ep_ring->deq_seg = ep_ring->deq_seg->next;
673 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
674 		}
675 	}
676 
677 	/*
678 	 * Probably there was TIMEOUT during handling Set Dequeue Pointer
679 	 * command. It's critical error and controller will be stopped.
680 	 */
681 	if (ret)
682 		return -ESHUTDOWN;
683 
684 	/* Restart any rings with pending requests */
685 	cdnsp_ring_doorbell_for_active_rings(pdev, pep);
686 
687 	return 0;
688 }
689 
690 int cdnsp_remove_request(struct cdnsp_device *pdev,
691 			 struct cdnsp_request *preq,
692 			 struct cdnsp_ep *pep)
693 {
694 	struct cdnsp_dequeue_state deq_state;
695 	struct cdnsp_td *cur_td = NULL;
696 	struct cdnsp_ring *ep_ring;
697 	struct cdnsp_segment *seg;
698 	int status = -ECONNRESET;
699 	int ret = 0;
700 	u64 hw_deq;
701 
702 	memset(&deq_state, 0, sizeof(deq_state));
703 
704 	trace_cdnsp_remove_request(pep->out_ctx);
705 	trace_cdnsp_remove_request_td(preq);
706 
707 	cur_td = &preq->td;
708 	ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
709 
710 	/*
711 	 * If we stopped on the TD we need to cancel, then we have to
712 	 * move the controller endpoint ring dequeue pointer past
713 	 * this TD.
714 	 */
715 	hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id);
716 	hw_deq &= ~0xf;
717 
718 	seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb,
719 			      cur_td->last_trb, hw_deq);
720 
721 	if (seg && (pep->ep_state & EP_ENABLED))
722 		cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id,
723 					     cur_td, &deq_state);
724 	else
725 		cdnsp_td_to_noop(pdev, ep_ring, cur_td, false);
726 
727 	/*
728 	 * The event handler won't see a completion for this TD anymore,
729 	 * so remove it from the endpoint ring's TD list.
730 	 */
731 	list_del_init(&cur_td->td_list);
732 	ep_ring->num_tds--;
733 	pep->stream_info.td_count--;
734 
735 	/*
736 	 * During disconnecting all endpoint will be disabled so we don't
737 	 * have to worry about updating dequeue pointer.
738 	 */
739 	if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING) {
740 		status = -ESHUTDOWN;
741 		ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state);
742 	}
743 
744 	cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td);
745 	cdnsp_gadget_giveback(pep, cur_td->preq, status);
746 
747 	return ret;
748 }
749 
750 static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id)
751 {
752 	struct cdnsp_port *port = pdev->active_port;
753 	u8 old_port = 0;
754 
755 	if (port && port->port_num == port_id)
756 		return 0;
757 
758 	if (port)
759 		old_port = port->port_num;
760 
761 	if (port_id == pdev->usb2_port.port_num) {
762 		port = &pdev->usb2_port;
763 	} else if (port_id == pdev->usb3_port.port_num) {
764 		port  = &pdev->usb3_port;
765 	} else {
766 		dev_err(pdev->dev, "Port event with invalid port ID %d\n",
767 			port_id);
768 		return -EINVAL;
769 	}
770 
771 	if (port_id != old_port) {
772 		cdnsp_disable_slot(pdev);
773 		pdev->active_port = port;
774 		cdnsp_enable_slot(pdev);
775 	}
776 
777 	if (port_id == pdev->usb2_port.port_num)
778 		cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1);
779 	else
780 		writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1),
781 		       &pdev->usb3_port.regs->portpmsc);
782 
783 	return 0;
784 }
785 
786 static void cdnsp_handle_port_status(struct cdnsp_device *pdev,
787 				     union cdnsp_trb *event)
788 {
789 	struct cdnsp_port_regs __iomem *port_regs;
790 	u32 portsc, cmd_regs;
791 	bool port2 = false;
792 	u32 link_state;
793 	u32 port_id;
794 
795 	/* Port status change events always have a successful completion code */
796 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
797 		dev_err(pdev->dev, "ERR: incorrect PSC event\n");
798 
799 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
800 
801 	if (cdnsp_update_port_id(pdev, port_id))
802 		goto cleanup;
803 
804 	port_regs = pdev->active_port->regs;
805 
806 	if (port_id == pdev->usb2_port.port_num)
807 		port2 = true;
808 
809 new_event:
810 	portsc = readl(&port_regs->portsc);
811 	writel(cdnsp_port_state_to_neutral(portsc) |
812 	       (portsc & PORT_CHANGE_BITS), &port_regs->portsc);
813 
814 	trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc);
815 
816 	pdev->gadget.speed = cdnsp_port_speed(portsc);
817 	link_state = portsc & PORT_PLS_MASK;
818 
819 	/* Port Link State change detected. */
820 	if ((portsc & PORT_PLC)) {
821 		if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING)  &&
822 		    link_state == XDEV_RESUME) {
823 			cmd_regs = readl(&pdev->op_regs->command);
824 			if (!(cmd_regs & CMD_R_S))
825 				goto cleanup;
826 
827 			if (DEV_SUPERSPEED_ANY(portsc)) {
828 				cdnsp_set_link_state(pdev, &port_regs->portsc,
829 						     XDEV_U0);
830 
831 				cdnsp_resume_gadget(pdev);
832 			}
833 		}
834 
835 		if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
836 		    link_state == XDEV_U0) {
837 			pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING;
838 
839 			cdnsp_force_header_wakeup(pdev, 1);
840 			cdnsp_ring_cmd_db(pdev);
841 			cdnsp_wait_for_cmd_compl(pdev);
842 		}
843 
844 		if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 &&
845 		    !DEV_SUPERSPEED_ANY(portsc))
846 			cdnsp_resume_gadget(pdev);
847 
848 		if (link_state == XDEV_U3 &&  pdev->link_state != XDEV_U3)
849 			cdnsp_suspend_gadget(pdev);
850 
851 		pdev->link_state = link_state;
852 	}
853 
854 	if (portsc & PORT_CSC) {
855 		/* Detach device. */
856 		if (pdev->gadget.connected && !(portsc & PORT_CONNECT))
857 			cdnsp_disconnect_gadget(pdev);
858 
859 		/* Attach device. */
860 		if (portsc & PORT_CONNECT) {
861 			if (!port2)
862 				cdnsp_irq_reset(pdev);
863 
864 			usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED);
865 		}
866 	}
867 
868 	/* Port reset. */
869 	if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) {
870 		cdnsp_irq_reset(pdev);
871 		pdev->u1_allowed = 0;
872 		pdev->u2_allowed = 0;
873 		pdev->may_wakeup = 0;
874 	}
875 
876 	if (portsc & PORT_CEC)
877 		dev_err(pdev->dev, "Port Over Current detected\n");
878 
879 	if (portsc & PORT_CEC)
880 		dev_err(pdev->dev, "Port Configure Error detected\n");
881 
882 	if (readl(&port_regs->portsc) & PORT_CHANGE_BITS)
883 		goto new_event;
884 
885 cleanup:
886 	cdnsp_inc_deq(pdev, pdev->event_ring);
887 }
888 
889 static void cdnsp_td_cleanup(struct cdnsp_device *pdev,
890 			     struct cdnsp_td *td,
891 			     struct cdnsp_ring *ep_ring,
892 			     int *status)
893 {
894 	struct cdnsp_request *preq = td->preq;
895 
896 	/* if a bounce buffer was used to align this td then unmap it */
897 	cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td);
898 
899 	/*
900 	 * If the controller said we transferred more data than the buffer
901 	 * length, Play it safe and say we didn't transfer anything.
902 	 */
903 	if (preq->request.actual > preq->request.length) {
904 		preq->request.actual = 0;
905 		*status = 0;
906 	}
907 
908 	list_del_init(&td->td_list);
909 	ep_ring->num_tds--;
910 	preq->pep->stream_info.td_count--;
911 
912 	cdnsp_gadget_giveback(preq->pep, preq, *status);
913 }
914 
915 static void cdnsp_finish_td(struct cdnsp_device *pdev,
916 			    struct cdnsp_td *td,
917 			    struct cdnsp_transfer_event *event,
918 			    struct cdnsp_ep *ep,
919 			    int *status)
920 {
921 	struct cdnsp_ring *ep_ring;
922 	u32 trb_comp_code;
923 
924 	ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
925 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
926 
927 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
928 	    trb_comp_code == COMP_STOPPED ||
929 	    trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
930 		/*
931 		 * The Endpoint Stop Command completion will take care of any
932 		 * stopped TDs. A stopped TD may be restarted, so don't update
933 		 * the ring dequeue pointer or take this TD off any lists yet.
934 		 */
935 		return;
936 	}
937 
938 	/* Update ring dequeue pointer */
939 	while (ep_ring->dequeue != td->last_trb)
940 		cdnsp_inc_deq(pdev, ep_ring);
941 
942 	cdnsp_inc_deq(pdev, ep_ring);
943 
944 	cdnsp_td_cleanup(pdev, td, ep_ring, status);
945 }
946 
947 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
948 static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev,
949 				 struct cdnsp_ring *ring,
950 				 union cdnsp_trb *stop_trb)
951 {
952 	struct cdnsp_segment *seg = ring->deq_seg;
953 	union cdnsp_trb *trb = ring->dequeue;
954 	u32 sum;
955 
956 	for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) {
957 		if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb))
958 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
959 	}
960 	return sum;
961 }
962 
963 static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev,
964 				    struct cdnsp_ep *pep,
965 				    unsigned int stream_id,
966 				    int start_cycle,
967 				    struct cdnsp_generic_trb *start_trb)
968 {
969 	/*
970 	 * Pass all the TRBs to the hardware at once and make sure this write
971 	 * isn't reordered.
972 	 */
973 	wmb();
974 
975 	if (start_cycle)
976 		start_trb->field[3] |= cpu_to_le32(start_cycle);
977 	else
978 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
979 
980 	if ((pep->ep_state & EP_HAS_STREAMS) &&
981 	    !pep->stream_info.first_prime_det) {
982 		trace_cdnsp_wait_for_prime(pep, stream_id);
983 		return 0;
984 	}
985 
986 	return cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
987 }
988 
989 /*
990  * Process control tds, update USB request status and actual_length.
991  */
992 static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev,
993 				  struct cdnsp_td *td,
994 				  union cdnsp_trb *event_trb,
995 				  struct cdnsp_transfer_event *event,
996 				  struct cdnsp_ep *pep,
997 				  int *status)
998 {
999 	struct cdnsp_ring *ep_ring;
1000 	u32 remaining;
1001 	u32 trb_type;
1002 
1003 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3]));
1004 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1005 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1006 
1007 	/*
1008 	 * if on data stage then update the actual_length of the USB
1009 	 * request and flag it as set, so it won't be overwritten in the event
1010 	 * for the last TRB.
1011 	 */
1012 	if (trb_type == TRB_DATA) {
1013 		td->request_length_set = true;
1014 		td->preq->request.actual = td->preq->request.length - remaining;
1015 	}
1016 
1017 	/* at status stage */
1018 	if (!td->request_length_set)
1019 		td->preq->request.actual = td->preq->request.length;
1020 
1021 	if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 &&
1022 	    pdev->three_stage_setup) {
1023 		td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1024 				td_list);
1025 		pdev->ep0_stage = CDNSP_STATUS_STAGE;
1026 
1027 		cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state,
1028 					 &td->last_trb->generic);
1029 		return;
1030 	}
1031 
1032 	cdnsp_finish_td(pdev, td, event, pep, status);
1033 }
1034 
1035 /*
1036  * Process isochronous tds, update usb request status and actual_length.
1037  */
1038 static void cdnsp_process_isoc_td(struct cdnsp_device *pdev,
1039 				  struct cdnsp_td *td,
1040 				  union cdnsp_trb *ep_trb,
1041 				  struct cdnsp_transfer_event *event,
1042 				  struct cdnsp_ep *pep,
1043 				  int status)
1044 {
1045 	struct cdnsp_request *preq = td->preq;
1046 	u32 remaining, requested, ep_trb_len;
1047 	bool sum_trbs_for_length = false;
1048 	struct cdnsp_ring *ep_ring;
1049 	u32 trb_comp_code;
1050 	u32 td_length;
1051 
1052 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1053 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1054 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1055 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1056 
1057 	requested = preq->request.length;
1058 
1059 	/* handle completion code */
1060 	switch (trb_comp_code) {
1061 	case COMP_SUCCESS:
1062 		preq->request.status = 0;
1063 		break;
1064 	case COMP_SHORT_PACKET:
1065 		preq->request.status = 0;
1066 		sum_trbs_for_length = true;
1067 		break;
1068 	case COMP_ISOCH_BUFFER_OVERRUN:
1069 	case COMP_BABBLE_DETECTED_ERROR:
1070 		preq->request.status = -EOVERFLOW;
1071 		break;
1072 	case COMP_STOPPED:
1073 		sum_trbs_for_length = true;
1074 		break;
1075 	case COMP_STOPPED_SHORT_PACKET:
1076 		/* field normally containing residue now contains transferred */
1077 		preq->request.status  = 0;
1078 		requested = remaining;
1079 		break;
1080 	case COMP_STOPPED_LENGTH_INVALID:
1081 		requested = 0;
1082 		remaining = 0;
1083 		break;
1084 	default:
1085 		sum_trbs_for_length = true;
1086 		preq->request.status = -1;
1087 		break;
1088 	}
1089 
1090 	if (sum_trbs_for_length) {
1091 		td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb);
1092 		td_length += ep_trb_len - remaining;
1093 	} else {
1094 		td_length = requested;
1095 	}
1096 
1097 	td->preq->request.actual += td_length;
1098 
1099 	cdnsp_finish_td(pdev, td, event, pep, &status);
1100 }
1101 
1102 static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev,
1103 			       struct cdnsp_td *td,
1104 			       struct cdnsp_transfer_event *event,
1105 			       struct cdnsp_ep *pep,
1106 			       int status)
1107 {
1108 	struct cdnsp_ring *ep_ring;
1109 
1110 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1111 	td->preq->request.status = -EXDEV;
1112 	td->preq->request.actual = 0;
1113 
1114 	/* Update ring dequeue pointer */
1115 	while (ep_ring->dequeue != td->last_trb)
1116 		cdnsp_inc_deq(pdev, ep_ring);
1117 
1118 	cdnsp_inc_deq(pdev, ep_ring);
1119 
1120 	cdnsp_td_cleanup(pdev, td, ep_ring, &status);
1121 }
1122 
1123 /*
1124  * Process bulk and interrupt tds, update usb request status and actual_length.
1125  */
1126 static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev,
1127 				       struct cdnsp_td *td,
1128 				       union cdnsp_trb *ep_trb,
1129 				       struct cdnsp_transfer_event *event,
1130 				       struct cdnsp_ep *ep,
1131 				       int *status)
1132 {
1133 	u32 remaining, requested, ep_trb_len;
1134 	struct cdnsp_ring *ep_ring;
1135 	u32 trb_comp_code;
1136 
1137 	ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1138 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1139 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1140 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1141 	requested = td->preq->request.length;
1142 
1143 	switch (trb_comp_code) {
1144 	case COMP_SUCCESS:
1145 	case COMP_SHORT_PACKET:
1146 		*status = 0;
1147 		break;
1148 	case COMP_STOPPED_SHORT_PACKET:
1149 		td->preq->request.actual = remaining;
1150 		goto finish_td;
1151 	case COMP_STOPPED_LENGTH_INVALID:
1152 		/* Stopped on ep trb with invalid length, exclude it. */
1153 		ep_trb_len = 0;
1154 		remaining = 0;
1155 		break;
1156 	}
1157 
1158 	if (ep_trb == td->last_trb)
1159 		ep_trb_len = requested - remaining;
1160 	else
1161 		ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) +
1162 						   ep_trb_len - remaining;
1163 	td->preq->request.actual = ep_trb_len;
1164 
1165 finish_td:
1166 	ep->stream_info.drbls_count--;
1167 
1168 	cdnsp_finish_td(pdev, td, event, ep, status);
1169 }
1170 
1171 static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev,
1172 				 struct cdnsp_transfer_event *event)
1173 {
1174 	struct cdnsp_generic_trb *generic;
1175 	struct cdnsp_ring *ep_ring;
1176 	struct cdnsp_ep *pep;
1177 	int cur_stream;
1178 	int ep_index;
1179 	int host_sid;
1180 	int dev_sid;
1181 
1182 	generic = (struct cdnsp_generic_trb *)event;
1183 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1184 	dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0]));
1185 	host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2]));
1186 
1187 	pep = &pdev->eps[ep_index];
1188 
1189 	if (!(pep->ep_state & EP_HAS_STREAMS))
1190 		return;
1191 
1192 	if (host_sid == STREAM_PRIME_ACK) {
1193 		pep->stream_info.first_prime_det = 1;
1194 		for (cur_stream = 1; cur_stream < pep->stream_info.num_streams;
1195 		    cur_stream++) {
1196 			ep_ring = pep->stream_info.stream_rings[cur_stream];
1197 			ep_ring->stream_active = 1;
1198 			ep_ring->stream_rejected = 0;
1199 		}
1200 	}
1201 
1202 	if (host_sid == STREAM_REJECTED) {
1203 		struct cdnsp_td *td, *td_temp;
1204 
1205 		pep->stream_info.drbls_count--;
1206 		ep_ring = pep->stream_info.stream_rings[dev_sid];
1207 		ep_ring->stream_active = 0;
1208 		ep_ring->stream_rejected = 1;
1209 
1210 		list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
1211 					 td_list) {
1212 			td->drbl = 0;
1213 		}
1214 	}
1215 
1216 	cdnsp_ring_doorbell_for_active_rings(pdev, pep);
1217 }
1218 
1219 /*
1220  * If this function returns an error condition, it means it got a Transfer
1221  * event with a corrupted TRB DMA address or endpoint is disabled.
1222  */
1223 static int cdnsp_handle_tx_event(struct cdnsp_device *pdev,
1224 				 struct cdnsp_transfer_event *event)
1225 {
1226 	const struct usb_endpoint_descriptor *desc;
1227 	bool handling_skipped_tds = false;
1228 	struct cdnsp_segment *ep_seg;
1229 	struct cdnsp_ring *ep_ring;
1230 	int status = -EINPROGRESS;
1231 	union cdnsp_trb *ep_trb;
1232 	dma_addr_t ep_trb_dma;
1233 	struct cdnsp_ep *pep;
1234 	struct cdnsp_td *td;
1235 	u32 trb_comp_code;
1236 	int invalidate;
1237 	int ep_index;
1238 
1239 	invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE;
1240 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1241 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1242 	ep_trb_dma = le64_to_cpu(event->buffer);
1243 
1244 	pep = &pdev->eps[ep_index];
1245 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1246 
1247 	/*
1248 	 * If device is disconnect then all requests will be dequeued
1249 	 * by upper layers as part of disconnect sequence.
1250 	 * We don't want handle such event to avoid racing.
1251 	 */
1252 	if (invalidate || !pdev->gadget.connected)
1253 		goto cleanup;
1254 
1255 	if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) {
1256 		trace_cdnsp_ep_disabled(pep->out_ctx);
1257 		goto err_out;
1258 	}
1259 
1260 	/* Some transfer events don't always point to a trb*/
1261 	if (!ep_ring) {
1262 		switch (trb_comp_code) {
1263 		case COMP_INVALID_STREAM_TYPE_ERROR:
1264 		case COMP_INVALID_STREAM_ID_ERROR:
1265 		case COMP_RING_UNDERRUN:
1266 		case COMP_RING_OVERRUN:
1267 			goto cleanup;
1268 		default:
1269 			dev_err(pdev->dev, "ERROR: %s event for unknown ring\n",
1270 				pep->name);
1271 			goto err_out;
1272 		}
1273 	}
1274 
1275 	/* Look for some error cases that need special treatment. */
1276 	switch (trb_comp_code) {
1277 	case COMP_BABBLE_DETECTED_ERROR:
1278 		status = -EOVERFLOW;
1279 		break;
1280 	case COMP_RING_UNDERRUN:
1281 	case COMP_RING_OVERRUN:
1282 		/*
1283 		 * When the Isoch ring is empty, the controller will generate
1284 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
1285 		 * Underrun Event for OUT Isoch endpoint.
1286 		 */
1287 		goto cleanup;
1288 	case COMP_MISSED_SERVICE_ERROR:
1289 		/*
1290 		 * When encounter missed service error, one or more isoc tds
1291 		 * may be missed by controller.
1292 		 * Set skip flag of the ep_ring; Complete the missed tds as
1293 		 * short transfer when process the ep_ring next time.
1294 		 */
1295 		pep->skip = true;
1296 		break;
1297 	}
1298 
1299 	do {
1300 		/*
1301 		 * This TRB should be in the TD at the head of this ring's TD
1302 		 * list.
1303 		 */
1304 		if (list_empty(&ep_ring->td_list)) {
1305 			/*
1306 			 * Don't print warnings if it's due to a stopped
1307 			 * endpoint generating an extra completion event, or
1308 			 * a event for the last TRB of a short TD we already
1309 			 * got a short event for.
1310 			 * The short TD is already removed from the TD list.
1311 			 */
1312 			if (!(trb_comp_code == COMP_STOPPED ||
1313 			      trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1314 			      ep_ring->last_td_was_short))
1315 				trace_cdnsp_trb_without_td(ep_ring,
1316 					(struct cdnsp_generic_trb *)event);
1317 
1318 			if (pep->skip) {
1319 				pep->skip = false;
1320 				trace_cdnsp_ep_list_empty_with_skip(pep, 0);
1321 			}
1322 
1323 			goto cleanup;
1324 		}
1325 
1326 		td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1327 				td_list);
1328 
1329 		/* Is this a TRB in the currently executing TD? */
1330 		ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg,
1331 					 ep_ring->dequeue, td->last_trb,
1332 					 ep_trb_dma);
1333 
1334 		/*
1335 		 * Skip the Force Stopped Event. The event_trb(ep_trb_dma)
1336 		 * of FSE is not in the current TD pointed by ep_ring->dequeue
1337 		 * because that the hardware dequeue pointer still at the
1338 		 * previous TRB of the current TD. The previous TRB maybe a
1339 		 * Link TD or the last TRB of the previous TD. The command
1340 		 * completion handle will take care the rest.
1341 		 */
1342 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
1343 				trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
1344 			pep->skip = false;
1345 			goto cleanup;
1346 		}
1347 
1348 		desc = td->preq->pep->endpoint.desc;
1349 		if (!ep_seg) {
1350 			if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) {
1351 				/* Something is busted, give up! */
1352 				dev_err(pdev->dev,
1353 					"ERROR Transfer event TRB DMA ptr not "
1354 					"part of current TD ep_index %d "
1355 					"comp_code %u\n", ep_index,
1356 					trb_comp_code);
1357 				return -EINVAL;
1358 			}
1359 
1360 			cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1361 			goto cleanup;
1362 		}
1363 
1364 		if (trb_comp_code == COMP_SHORT_PACKET)
1365 			ep_ring->last_td_was_short = true;
1366 		else
1367 			ep_ring->last_td_was_short = false;
1368 
1369 		if (pep->skip) {
1370 			pep->skip = false;
1371 			cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1372 			goto cleanup;
1373 		}
1374 
1375 		ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma)
1376 				       / sizeof(*ep_trb)];
1377 
1378 		trace_cdnsp_handle_transfer(ep_ring,
1379 					    (struct cdnsp_generic_trb *)ep_trb);
1380 
1381 		if (cdnsp_trb_is_noop(ep_trb))
1382 			goto cleanup;
1383 
1384 		if (usb_endpoint_xfer_control(desc))
1385 			cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep,
1386 					      &status);
1387 		else if (usb_endpoint_xfer_isoc(desc))
1388 			cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep,
1389 					      status);
1390 		else
1391 			cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep,
1392 						   &status);
1393 cleanup:
1394 		handling_skipped_tds = pep->skip;
1395 
1396 		/*
1397 		 * Do not update event ring dequeue pointer if we're in a loop
1398 		 * processing missed tds.
1399 		 */
1400 		if (!handling_skipped_tds)
1401 			cdnsp_inc_deq(pdev, pdev->event_ring);
1402 
1403 	/*
1404 	 * If ep->skip is set, it means there are missed tds on the
1405 	 * endpoint ring need to take care of.
1406 	 * Process them as short transfer until reach the td pointed by
1407 	 * the event.
1408 	 */
1409 	} while (handling_skipped_tds);
1410 	return 0;
1411 
1412 err_out:
1413 	dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n",
1414 		(unsigned long long)
1415 		cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1416 				      pdev->event_ring->dequeue),
1417 		 lower_32_bits(le64_to_cpu(event->buffer)),
1418 		 upper_32_bits(le64_to_cpu(event->buffer)),
1419 		 le32_to_cpu(event->transfer_len),
1420 		 le32_to_cpu(event->flags));
1421 	return -EINVAL;
1422 }
1423 
1424 /*
1425  * This function handles all events on the event ring.
1426  * Returns true for "possibly more events to process" (caller should call
1427  * again), otherwise false if done.
1428  */
1429 static bool cdnsp_handle_event(struct cdnsp_device *pdev)
1430 {
1431 	unsigned int comp_code;
1432 	union cdnsp_trb *event;
1433 	bool update_ptrs = true;
1434 	u32 cycle_bit;
1435 	int ret = 0;
1436 	u32 flags;
1437 
1438 	event = pdev->event_ring->dequeue;
1439 	flags = le32_to_cpu(event->event_cmd.flags);
1440 	cycle_bit = (flags & TRB_CYCLE);
1441 
1442 	/* Does the controller or driver own the TRB? */
1443 	if (cycle_bit != pdev->event_ring->cycle_state)
1444 		return false;
1445 
1446 	trace_cdnsp_handle_event(pdev->event_ring, &event->generic);
1447 
1448 	/*
1449 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
1450 	 * reads of the event's flags/data below.
1451 	 */
1452 	rmb();
1453 
1454 	switch (flags & TRB_TYPE_BITMASK) {
1455 	case TRB_TYPE(TRB_COMPLETION):
1456 		/*
1457 		 * Command can't be handled in interrupt context so just
1458 		 * increment command ring dequeue pointer.
1459 		 */
1460 		cdnsp_inc_deq(pdev, pdev->cmd_ring);
1461 		break;
1462 	case TRB_TYPE(TRB_PORT_STATUS):
1463 		cdnsp_handle_port_status(pdev, event);
1464 		update_ptrs = false;
1465 		break;
1466 	case TRB_TYPE(TRB_TRANSFER):
1467 		ret = cdnsp_handle_tx_event(pdev, &event->trans_event);
1468 		if (ret >= 0)
1469 			update_ptrs = false;
1470 		break;
1471 	case TRB_TYPE(TRB_SETUP):
1472 		pdev->ep0_stage = CDNSP_SETUP_STAGE;
1473 		pdev->setup_id = TRB_SETUPID_TO_TYPE(flags);
1474 		pdev->setup_speed = TRB_SETUP_SPEEDID(flags);
1475 		pdev->setup = *((struct usb_ctrlrequest *)
1476 				&event->trans_event.buffer);
1477 
1478 		cdnsp_setup_analyze(pdev);
1479 		break;
1480 	case TRB_TYPE(TRB_ENDPOINT_NRDY):
1481 		cdnsp_handle_tx_nrdy(pdev, &event->trans_event);
1482 		break;
1483 	case TRB_TYPE(TRB_HC_EVENT): {
1484 		comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
1485 
1486 		switch (comp_code) {
1487 		case COMP_EVENT_RING_FULL_ERROR:
1488 			dev_err(pdev->dev, "Event Ring Full\n");
1489 			break;
1490 		default:
1491 			dev_err(pdev->dev, "Controller error code 0x%02x\n",
1492 				comp_code);
1493 		}
1494 
1495 		break;
1496 	}
1497 	case TRB_TYPE(TRB_MFINDEX_WRAP):
1498 	case TRB_TYPE(TRB_DRB_OVERFLOW):
1499 		break;
1500 	default:
1501 		dev_warn(pdev->dev, "ERROR unknown event type %ld\n",
1502 			 TRB_FIELD_TO_TYPE(flags));
1503 	}
1504 
1505 	if (update_ptrs)
1506 		/* Update SW event ring dequeue pointer. */
1507 		cdnsp_inc_deq(pdev, pdev->event_ring);
1508 
1509 	/*
1510 	 * Caller will call us again to check if there are more items
1511 	 * on the event ring.
1512 	 */
1513 	return true;
1514 }
1515 
1516 irqreturn_t cdnsp_thread_irq_handler(int irq, void *data)
1517 {
1518 	struct cdnsp_device *pdev = (struct cdnsp_device *)data;
1519 	union cdnsp_trb *event_ring_deq;
1520 	int counter = 0;
1521 
1522 	spin_lock(&pdev->lock);
1523 
1524 	if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) {
1525 		cdnsp_died(pdev);
1526 		spin_unlock(&pdev->lock);
1527 		return IRQ_HANDLED;
1528 	}
1529 
1530 	event_ring_deq = pdev->event_ring->dequeue;
1531 
1532 	while (cdnsp_handle_event(pdev)) {
1533 		if (++counter >= TRBS_PER_EV_DEQ_UPDATE) {
1534 			cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0);
1535 			event_ring_deq = pdev->event_ring->dequeue;
1536 			counter = 0;
1537 		}
1538 	}
1539 
1540 	cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
1541 
1542 	spin_unlock(&pdev->lock);
1543 
1544 	return IRQ_HANDLED;
1545 }
1546 
1547 irqreturn_t cdnsp_irq_handler(int irq, void *priv)
1548 {
1549 	struct cdnsp_device *pdev = (struct cdnsp_device *)priv;
1550 	u32 irq_pending;
1551 	u32 status;
1552 
1553 	status = readl(&pdev->op_regs->status);
1554 
1555 	if (status == ~(u32)0) {
1556 		cdnsp_died(pdev);
1557 		return IRQ_HANDLED;
1558 	}
1559 
1560 	if (!(status & STS_EINT))
1561 		return IRQ_NONE;
1562 
1563 	writel(status | STS_EINT, &pdev->op_regs->status);
1564 	irq_pending = readl(&pdev->ir_set->irq_pending);
1565 	irq_pending |= IMAN_IP;
1566 	writel(irq_pending, &pdev->ir_set->irq_pending);
1567 
1568 	if (status & STS_FATAL) {
1569 		cdnsp_died(pdev);
1570 		return IRQ_HANDLED;
1571 	}
1572 
1573 	return IRQ_WAKE_THREAD;
1574 }
1575 
1576 /*
1577  * Generic function for queuing a TRB on a ring.
1578  * The caller must have checked to make sure there's room on the ring.
1579  *
1580  * @more_trbs_coming:	Will you enqueue more TRBs before setting doorbell?
1581  */
1582 static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring,
1583 			    bool more_trbs_coming, u32 field1, u32 field2,
1584 			    u32 field3, u32 field4)
1585 {
1586 	struct cdnsp_generic_trb *trb;
1587 
1588 	trb = &ring->enqueue->generic;
1589 
1590 	trb->field[0] = cpu_to_le32(field1);
1591 	trb->field[1] = cpu_to_le32(field2);
1592 	trb->field[2] = cpu_to_le32(field3);
1593 	trb->field[3] = cpu_to_le32(field4);
1594 
1595 	trace_cdnsp_queue_trb(ring, trb);
1596 	cdnsp_inc_enq(pdev, ring, more_trbs_coming);
1597 }
1598 
1599 /*
1600  * Does various checks on the endpoint ring, and makes it ready to
1601  * queue num_trbs.
1602  */
1603 static int cdnsp_prepare_ring(struct cdnsp_device *pdev,
1604 			      struct cdnsp_ring *ep_ring,
1605 			      u32 ep_state, unsigned
1606 			      int num_trbs,
1607 			      gfp_t mem_flags)
1608 {
1609 	unsigned int num_trbs_needed;
1610 
1611 	/* Make sure the endpoint has been added to controller schedule. */
1612 	switch (ep_state) {
1613 	case EP_STATE_STOPPED:
1614 	case EP_STATE_RUNNING:
1615 	case EP_STATE_HALTED:
1616 		break;
1617 	default:
1618 		dev_err(pdev->dev, "ERROR: incorrect endpoint state\n");
1619 		return -EINVAL;
1620 	}
1621 
1622 	while (1) {
1623 		if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs))
1624 			break;
1625 
1626 		trace_cdnsp_no_room_on_ring("try ring expansion");
1627 
1628 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
1629 		if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed,
1630 					 mem_flags)) {
1631 			dev_err(pdev->dev, "Ring expansion failed\n");
1632 			return -ENOMEM;
1633 		}
1634 	}
1635 
1636 	while (cdnsp_trb_is_link(ep_ring->enqueue)) {
1637 		ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN);
1638 		/* The cycle bit must be set as the last operation. */
1639 		wmb();
1640 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
1641 
1642 		/* Toggle the cycle bit after the last ring segment. */
1643 		if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue))
1644 			ep_ring->cycle_state ^= 1;
1645 		ep_ring->enq_seg = ep_ring->enq_seg->next;
1646 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
1647 	}
1648 	return 0;
1649 }
1650 
1651 static int cdnsp_prepare_transfer(struct cdnsp_device *pdev,
1652 				  struct cdnsp_request *preq,
1653 				  unsigned int num_trbs)
1654 {
1655 	struct cdnsp_ring *ep_ring;
1656 	int ret;
1657 
1658 	ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep,
1659 					  preq->request.stream_id);
1660 	if (!ep_ring)
1661 		return -EINVAL;
1662 
1663 	ret = cdnsp_prepare_ring(pdev, ep_ring,
1664 				 GET_EP_CTX_STATE(preq->pep->out_ctx),
1665 				 num_trbs, GFP_ATOMIC);
1666 	if (ret)
1667 		return ret;
1668 
1669 	INIT_LIST_HEAD(&preq->td.td_list);
1670 	preq->td.preq = preq;
1671 
1672 	/* Add this TD to the tail of the endpoint ring's TD list. */
1673 	list_add_tail(&preq->td.td_list, &ep_ring->td_list);
1674 	ep_ring->num_tds++;
1675 	preq->pep->stream_info.td_count++;
1676 
1677 	preq->td.start_seg = ep_ring->enq_seg;
1678 	preq->td.first_trb = ep_ring->enqueue;
1679 
1680 	return 0;
1681 }
1682 
1683 static unsigned int cdnsp_count_trbs(u64 addr, u64 len)
1684 {
1685 	unsigned int num_trbs;
1686 
1687 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
1688 				TRB_MAX_BUFF_SIZE);
1689 	if (num_trbs == 0)
1690 		num_trbs++;
1691 
1692 	return num_trbs;
1693 }
1694 
1695 static unsigned int count_trbs_needed(struct cdnsp_request *preq)
1696 {
1697 	return cdnsp_count_trbs(preq->request.dma, preq->request.length);
1698 }
1699 
1700 static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq)
1701 {
1702 	unsigned int i, len, full_len, num_trbs = 0;
1703 	struct scatterlist *sg;
1704 
1705 	full_len = preq->request.length;
1706 
1707 	for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) {
1708 		len = sg_dma_len(sg);
1709 		num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len);
1710 		len = min(len, full_len);
1711 		full_len -= len;
1712 		if (full_len == 0)
1713 			break;
1714 	}
1715 
1716 	return num_trbs;
1717 }
1718 
1719 static unsigned int count_isoc_trbs_needed(struct cdnsp_request *preq)
1720 {
1721 	return cdnsp_count_trbs(preq->request.dma, preq->request.length);
1722 }
1723 
1724 static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total)
1725 {
1726 	if (running_total != preq->request.length)
1727 		dev_err(preq->pep->pdev->dev,
1728 			"%s - Miscalculated tx length, "
1729 			"queued %#x, asked for %#x (%d)\n",
1730 			preq->pep->name, running_total,
1731 			preq->request.length, preq->request.actual);
1732 }
1733 
1734 /*
1735  * TD size is the number of max packet sized packets remaining in the TD
1736  * (*not* including this TRB).
1737  *
1738  * Total TD packet count = total_packet_count =
1739  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
1740  *
1741  * Packets transferred up to and including this TRB = packets_transferred =
1742  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
1743  *
1744  * TD size = total_packet_count - packets_transferred
1745  *
1746  * It must fit in bits 21:17, so it can't be bigger than 31.
1747  * This is taken care of in the TRB_TD_SIZE() macro
1748  *
1749  * The last TRB in a TD must have the TD size set to zero.
1750  */
1751 static u32 cdnsp_td_remainder(struct cdnsp_device *pdev,
1752 			      int transferred,
1753 			      int trb_buff_len,
1754 			      unsigned int td_total_len,
1755 			      struct cdnsp_request *preq,
1756 			      bool more_trbs_coming)
1757 {
1758 	u32 maxp, total_packet_count;
1759 
1760 	/* One TRB with a zero-length data packet. */
1761 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
1762 	    trb_buff_len == td_total_len)
1763 		return 0;
1764 
1765 	maxp = usb_endpoint_maxp(preq->pep->endpoint.desc);
1766 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
1767 
1768 	/* Queuing functions don't count the current TRB into transferred. */
1769 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
1770 }
1771 
1772 static int cdnsp_align_td(struct cdnsp_device *pdev,
1773 			  struct cdnsp_request *preq, u32 enqd_len,
1774 			  u32 *trb_buff_len, struct cdnsp_segment *seg)
1775 {
1776 	struct device *dev = pdev->dev;
1777 	unsigned int unalign;
1778 	unsigned int max_pkt;
1779 	u32 new_buff_len;
1780 
1781 	max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
1782 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
1783 
1784 	/* We got lucky, last normal TRB data on segment is packet aligned. */
1785 	if (unalign == 0)
1786 		return 0;
1787 
1788 	/* Is the last nornal TRB alignable by splitting it. */
1789 	if (*trb_buff_len > unalign) {
1790 		*trb_buff_len -= unalign;
1791 		trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len,
1792 						  enqd_len, 0, unalign);
1793 		return 0;
1794 	}
1795 
1796 	/*
1797 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
1798 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
1799 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
1800 	 */
1801 	new_buff_len = max_pkt - (enqd_len % max_pkt);
1802 
1803 	if (new_buff_len > (preq->request.length - enqd_len))
1804 		new_buff_len = (preq->request.length - enqd_len);
1805 
1806 	/* Create a max max_pkt sized bounce buffer pointed to by last trb. */
1807 	if (preq->direction) {
1808 		sg_pcopy_to_buffer(preq->request.sg,
1809 				   preq->request.num_mapped_sgs,
1810 				   seg->bounce_buf, new_buff_len, enqd_len);
1811 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1812 						 max_pkt, DMA_TO_DEVICE);
1813 	} else {
1814 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1815 						 max_pkt, DMA_FROM_DEVICE);
1816 	}
1817 
1818 	if (dma_mapping_error(dev, seg->bounce_dma)) {
1819 		/* Try without aligning.*/
1820 		dev_warn(pdev->dev,
1821 			 "Failed mapping bounce buffer, not aligning\n");
1822 		return 0;
1823 	}
1824 
1825 	*trb_buff_len = new_buff_len;
1826 	seg->bounce_len = new_buff_len;
1827 	seg->bounce_offs = enqd_len;
1828 
1829 	trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma,
1830 			       unalign);
1831 
1832 	/*
1833 	 * Bounce buffer successful aligned and seg->bounce_dma will be used
1834 	 * in transfer TRB as new transfer buffer address.
1835 	 */
1836 	return 1;
1837 }
1838 
1839 int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
1840 {
1841 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
1842 	unsigned int start_cycle, num_sgs = 0;
1843 	struct cdnsp_generic_trb *start_trb;
1844 	u32 field, length_field, remainder;
1845 	struct scatterlist *sg = NULL;
1846 	bool more_trbs_coming = true;
1847 	bool need_zero_pkt = false;
1848 	bool zero_len_trb = false;
1849 	struct cdnsp_ring *ring;
1850 	bool first_trb = true;
1851 	unsigned int num_trbs;
1852 	struct cdnsp_ep *pep;
1853 	u64 addr, send_addr;
1854 	int sent_len, ret;
1855 
1856 	ring = cdnsp_request_to_transfer_ring(pdev, preq);
1857 	if (!ring)
1858 		return -EINVAL;
1859 
1860 	full_len = preq->request.length;
1861 
1862 	if (preq->request.num_sgs) {
1863 		num_sgs = preq->request.num_sgs;
1864 		sg = preq->request.sg;
1865 		addr = (u64)sg_dma_address(sg);
1866 		block_len = sg_dma_len(sg);
1867 		num_trbs = count_sg_trbs_needed(preq);
1868 	} else {
1869 		num_trbs = count_trbs_needed(preq);
1870 		addr = (u64)preq->request.dma;
1871 		block_len = full_len;
1872 	}
1873 
1874 	pep = preq->pep;
1875 
1876 	/* Deal with request.zero - need one more td/trb. */
1877 	if (preq->request.zero && preq->request.length &&
1878 	    IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) {
1879 		need_zero_pkt = true;
1880 		num_trbs++;
1881 	}
1882 
1883 	ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
1884 	if (ret)
1885 		return ret;
1886 
1887 	/*
1888 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
1889 	 * until we've finished creating all the other TRBs. The ring's cycle
1890 	 * state may change as we enqueue the other TRBs, so save it too.
1891 	 */
1892 	start_trb = &ring->enqueue->generic;
1893 	start_cycle = ring->cycle_state;
1894 	send_addr = addr;
1895 
1896 	/* Queue the TRBs, even if they are zero-length */
1897 	for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len;
1898 	     enqd_len += trb_buff_len) {
1899 		field = TRB_TYPE(TRB_NORMAL);
1900 
1901 		/* TRB buffer should not cross 64KB boundaries */
1902 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
1903 		trb_buff_len = min(trb_buff_len, block_len);
1904 		if (enqd_len + trb_buff_len > full_len)
1905 			trb_buff_len = full_len - enqd_len;
1906 
1907 		/* Don't change the cycle bit of the first TRB until later */
1908 		if (first_trb) {
1909 			first_trb = false;
1910 			if (start_cycle == 0)
1911 				field |= TRB_CYCLE;
1912 		} else {
1913 			field |= ring->cycle_state;
1914 		}
1915 
1916 		/*
1917 		 * Chain all the TRBs together; clear the chain bit in the last
1918 		 * TRB to indicate it's the last TRB in the chain.
1919 		 */
1920 		if (enqd_len + trb_buff_len < full_len || need_zero_pkt) {
1921 			field |= TRB_CHAIN;
1922 			if (cdnsp_trb_is_link(ring->enqueue + 1)) {
1923 				if (cdnsp_align_td(pdev, preq, enqd_len,
1924 						   &trb_buff_len,
1925 						   ring->enq_seg)) {
1926 					send_addr = ring->enq_seg->bounce_dma;
1927 					/* Assuming TD won't span 2 segs */
1928 					preq->td.bounce_seg = ring->enq_seg;
1929 				}
1930 			}
1931 		}
1932 
1933 		if (enqd_len + trb_buff_len >= full_len) {
1934 			if (need_zero_pkt && zero_len_trb) {
1935 				zero_len_trb = true;
1936 			} else {
1937 				field &= ~TRB_CHAIN;
1938 				field |= TRB_IOC;
1939 				more_trbs_coming = false;
1940 				need_zero_pkt = false;
1941 				preq->td.last_trb = ring->enqueue;
1942 			}
1943 		}
1944 
1945 		/* Only set interrupt on short packet for OUT endpoints. */
1946 		if (!preq->direction)
1947 			field |= TRB_ISP;
1948 
1949 		/* Set the TRB length, TD size, and interrupter fields. */
1950 		remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len,
1951 					       full_len, preq,
1952 					       more_trbs_coming);
1953 
1954 		length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
1955 			TRB_INTR_TARGET(0);
1956 
1957 		cdnsp_queue_trb(pdev, ring, more_trbs_coming | need_zero_pkt,
1958 				lower_32_bits(send_addr),
1959 				upper_32_bits(send_addr),
1960 				length_field,
1961 				field);
1962 
1963 		addr += trb_buff_len;
1964 		sent_len = trb_buff_len;
1965 		while (sg && sent_len >= block_len) {
1966 			/* New sg entry */
1967 			--num_sgs;
1968 			sent_len -= block_len;
1969 			if (num_sgs != 0) {
1970 				sg = sg_next(sg);
1971 				block_len = sg_dma_len(sg);
1972 				addr = (u64)sg_dma_address(sg);
1973 				addr += sent_len;
1974 			}
1975 		}
1976 		block_len -= sent_len;
1977 		send_addr = addr;
1978 	}
1979 
1980 	cdnsp_check_trb_math(preq, enqd_len);
1981 	ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id,
1982 				       start_cycle, start_trb);
1983 
1984 	if (ret)
1985 		preq->td.drbl = 1;
1986 
1987 	return 0;
1988 }
1989 
1990 int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
1991 {
1992 	u32 field, length_field, remainder;
1993 	struct cdnsp_ep *pep = preq->pep;
1994 	struct cdnsp_ring *ep_ring;
1995 	int num_trbs;
1996 	int ret;
1997 
1998 	ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
1999 	if (!ep_ring)
2000 		return -EINVAL;
2001 
2002 	/* 1 TRB for data, 1 for status */
2003 	num_trbs = (pdev->three_stage_setup) ? 2 : 1;
2004 
2005 	ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
2006 	if (ret)
2007 		return ret;
2008 
2009 	/* If there's data, queue data TRBs */
2010 	if (pdev->ep0_expect_in)
2011 		field = TRB_TYPE(TRB_DATA) | TRB_IOC;
2012 	else
2013 		field = TRB_ISP | TRB_TYPE(TRB_DATA) | TRB_IOC;
2014 
2015 	if (preq->request.length > 0) {
2016 		remainder = cdnsp_td_remainder(pdev, 0, preq->request.length,
2017 					       preq->request.length, preq, 1);
2018 
2019 		length_field = TRB_LEN(preq->request.length) |
2020 				TRB_TD_SIZE(remainder) | TRB_INTR_TARGET(0);
2021 
2022 		if (pdev->ep0_expect_in)
2023 			field |= TRB_DIR_IN;
2024 
2025 		cdnsp_queue_trb(pdev, ep_ring, true,
2026 				lower_32_bits(preq->request.dma),
2027 				upper_32_bits(preq->request.dma), length_field,
2028 				field | ep_ring->cycle_state |
2029 				TRB_SETUPID(pdev->setup_id) |
2030 				pdev->setup_speed);
2031 
2032 		pdev->ep0_stage = CDNSP_DATA_STAGE;
2033 	}
2034 
2035 	/* Save the DMA address of the last TRB in the TD. */
2036 	preq->td.last_trb = ep_ring->enqueue;
2037 
2038 	/* Queue status TRB. */
2039 	if (preq->request.length == 0)
2040 		field = ep_ring->cycle_state;
2041 	else
2042 		field = (ep_ring->cycle_state ^ 1);
2043 
2044 	if (preq->request.length > 0 && pdev->ep0_expect_in)
2045 		field |= TRB_DIR_IN;
2046 
2047 	if (pep->ep_state & EP0_HALTED_STATUS) {
2048 		pep->ep_state &= ~EP0_HALTED_STATUS;
2049 		field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL);
2050 	} else {
2051 		field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK);
2052 	}
2053 
2054 	cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0),
2055 			field | TRB_IOC | TRB_SETUPID(pdev->setup_id) |
2056 			TRB_TYPE(TRB_STATUS) | pdev->setup_speed);
2057 
2058 	cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id);
2059 
2060 	return 0;
2061 }
2062 
2063 int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
2064 {
2065 	u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx);
2066 	int ret = 0;
2067 
2068 	if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED) {
2069 		trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx);
2070 		goto ep_stopped;
2071 	}
2072 
2073 	cdnsp_queue_stop_endpoint(pdev, pep->idx);
2074 	cdnsp_ring_cmd_db(pdev);
2075 	ret = cdnsp_wait_for_cmd_compl(pdev);
2076 
2077 	trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx);
2078 
2079 ep_stopped:
2080 	pep->ep_state |= EP_STOPPED;
2081 	return ret;
2082 }
2083 
2084 int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
2085 {
2086 	int ret;
2087 
2088 	cdnsp_queue_flush_endpoint(pdev, pep->idx);
2089 	cdnsp_ring_cmd_db(pdev);
2090 	ret = cdnsp_wait_for_cmd_compl(pdev);
2091 
2092 	trace_cdnsp_handle_cmd_flush_ep(pep->out_ctx);
2093 
2094 	return ret;
2095 }
2096 
2097 /*
2098  * The transfer burst count field of the isochronous TRB defines the number of
2099  * bursts that are required to move all packets in this TD. Only SuperSpeed
2100  * devices can burst up to bMaxBurst number of packets per service interval.
2101  * This field is zero based, meaning a value of zero in the field means one
2102  * burst. Basically, for everything but SuperSpeed devices, this field will be
2103  * zero.
2104  */
2105 static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev,
2106 					  struct cdnsp_request *preq,
2107 					  unsigned int total_packet_count)
2108 {
2109 	unsigned int max_burst;
2110 
2111 	if (pdev->gadget.speed < USB_SPEED_SUPER)
2112 		return 0;
2113 
2114 	max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2115 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
2116 }
2117 
2118 /*
2119  * Returns the number of packets in the last "burst" of packets. This field is
2120  * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
2121  * the last burst packet count is equal to the total number of packets in the
2122  * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
2123  * must contain (bMaxBurst + 1) number of packets, but the last burst can
2124  * contain 1 to (bMaxBurst + 1) packets.
2125  */
2126 static unsigned int
2127 	cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev,
2128 					  struct cdnsp_request *preq,
2129 					  unsigned int total_packet_count)
2130 {
2131 	unsigned int max_burst;
2132 	unsigned int residue;
2133 
2134 	if (pdev->gadget.speed >= USB_SPEED_SUPER) {
2135 		/* bMaxBurst is zero based: 0 means 1 packet per burst. */
2136 		max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2137 		residue = total_packet_count % (max_burst + 1);
2138 
2139 		/*
2140 		 * If residue is zero, the last burst contains (max_burst + 1)
2141 		 * number of packets, but the TLBPC field is zero-based.
2142 		 */
2143 		if (residue == 0)
2144 			return max_burst;
2145 
2146 		return residue - 1;
2147 	}
2148 	if (total_packet_count == 0)
2149 		return 0;
2150 
2151 	return total_packet_count - 1;
2152 }
2153 
2154 /* Queue function isoc transfer */
2155 static int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev,
2156 			       struct cdnsp_request *preq)
2157 {
2158 	int trb_buff_len, td_len, td_remain_len, ret;
2159 	unsigned int burst_count, last_burst_pkt;
2160 	unsigned int total_pkt_count, max_pkt;
2161 	struct cdnsp_generic_trb *start_trb;
2162 	bool more_trbs_coming = true;
2163 	struct cdnsp_ring *ep_ring;
2164 	int running_total = 0;
2165 	u32 field, length_field;
2166 	int start_cycle;
2167 	int trbs_per_td;
2168 	u64 addr;
2169 	int i;
2170 
2171 	ep_ring = preq->pep->ring;
2172 	start_trb = &ep_ring->enqueue->generic;
2173 	start_cycle = ep_ring->cycle_state;
2174 	td_len = preq->request.length;
2175 	addr = (u64)preq->request.dma;
2176 	td_remain_len = td_len;
2177 
2178 	max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
2179 	total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
2180 
2181 	/* A zero-length transfer still involves at least one packet. */
2182 	if (total_pkt_count == 0)
2183 		total_pkt_count++;
2184 
2185 	burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count);
2186 	last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq,
2187 							   total_pkt_count);
2188 	trbs_per_td = count_isoc_trbs_needed(preq);
2189 
2190 	ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td);
2191 	if (ret)
2192 		goto cleanup;
2193 
2194 	/*
2195 	 * Set isoc specific data for the first TRB in a TD.
2196 	 * Prevent HW from getting the TRBs by keeping the cycle state
2197 	 * inverted in the first TDs isoc TRB.
2198 	 */
2199 	field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) |
2200 		TRB_SIA | TRB_TBC(burst_count);
2201 
2202 	if (!start_cycle)
2203 		field |= TRB_CYCLE;
2204 
2205 	/* Fill the rest of the TRB fields, and remaining normal TRBs. */
2206 	for (i = 0; i < trbs_per_td; i++) {
2207 		u32 remainder;
2208 
2209 		/* Calculate TRB length. */
2210 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
2211 		if (trb_buff_len > td_remain_len)
2212 			trb_buff_len = td_remain_len;
2213 
2214 		/* Set the TRB length, TD size, & interrupter fields. */
2215 		remainder = cdnsp_td_remainder(pdev, running_total,
2216 					       trb_buff_len, td_len, preq,
2217 					       more_trbs_coming);
2218 
2219 		length_field = TRB_LEN(trb_buff_len) | TRB_INTR_TARGET(0);
2220 
2221 		/* Only first TRB is isoc, overwrite otherwise. */
2222 		if (i) {
2223 			field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state;
2224 			length_field |= TRB_TD_SIZE(remainder);
2225 		} else {
2226 			length_field |= TRB_TD_SIZE_TBC(burst_count);
2227 		}
2228 
2229 		/* Only set interrupt on short packet for OUT EPs. */
2230 		if (usb_endpoint_dir_out(preq->pep->endpoint.desc))
2231 			field |= TRB_ISP;
2232 
2233 		/* Set the chain bit for all except the last TRB. */
2234 		if (i < trbs_per_td - 1) {
2235 			more_trbs_coming = true;
2236 			field |= TRB_CHAIN;
2237 		} else {
2238 			more_trbs_coming = false;
2239 			preq->td.last_trb = ep_ring->enqueue;
2240 			field |= TRB_IOC;
2241 		}
2242 
2243 		cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming,
2244 				lower_32_bits(addr), upper_32_bits(addr),
2245 				length_field, field);
2246 
2247 		running_total += trb_buff_len;
2248 		addr += trb_buff_len;
2249 		td_remain_len -= trb_buff_len;
2250 	}
2251 
2252 	/* Check TD length */
2253 	if (running_total != td_len) {
2254 		dev_err(pdev->dev, "ISOC TD length unmatch\n");
2255 		ret = -EINVAL;
2256 		goto cleanup;
2257 	}
2258 
2259 	cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id,
2260 				 start_cycle, start_trb);
2261 
2262 	return 0;
2263 
2264 cleanup:
2265 	/* Clean up a partially enqueued isoc transfer. */
2266 	list_del_init(&preq->td.td_list);
2267 	ep_ring->num_tds--;
2268 
2269 	/*
2270 	 * Use the first TD as a temporary variable to turn the TDs we've
2271 	 * queued into No-ops with a software-owned cycle bit.
2272 	 * That way the hardware won't accidentally start executing bogus TDs
2273 	 * when we partially overwrite them.
2274 	 * td->first_trb and td->start_seg are already set.
2275 	 */
2276 	preq->td.last_trb = ep_ring->enqueue;
2277 	/* Every TRB except the first & last will have its cycle bit flipped. */
2278 	cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true);
2279 
2280 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
2281 	ep_ring->enqueue = preq->td.first_trb;
2282 	ep_ring->enq_seg = preq->td.start_seg;
2283 	ep_ring->cycle_state = start_cycle;
2284 	return ret;
2285 }
2286 
2287 int cdnsp_queue_isoc_tx_prepare(struct cdnsp_device *pdev,
2288 				struct cdnsp_request *preq)
2289 {
2290 	struct cdnsp_ring *ep_ring;
2291 	u32 ep_state;
2292 	int num_trbs;
2293 	int ret;
2294 
2295 	ep_ring = preq->pep->ring;
2296 	ep_state = GET_EP_CTX_STATE(preq->pep->out_ctx);
2297 	num_trbs = count_isoc_trbs_needed(preq);
2298 
2299 	/*
2300 	 * Check the ring to guarantee there is enough room for the whole
2301 	 * request. Do not insert any td of the USB Request to the ring if the
2302 	 * check failed.
2303 	 */
2304 	ret = cdnsp_prepare_ring(pdev, ep_ring, ep_state, num_trbs, GFP_ATOMIC);
2305 	if (ret)
2306 		return ret;
2307 
2308 	return cdnsp_queue_isoc_tx(pdev, preq);
2309 }
2310 
2311 /****		Command Ring Operations		****/
2312 /*
2313  * Generic function for queuing a command TRB on the command ring.
2314  * Driver queue only one command to ring in the moment.
2315  */
2316 static void cdnsp_queue_command(struct cdnsp_device *pdev,
2317 				u32 field1,
2318 				u32 field2,
2319 				u32 field3,
2320 				u32 field4)
2321 {
2322 	cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1,
2323 			   GFP_ATOMIC);
2324 
2325 	pdev->cmd.command_trb = pdev->cmd_ring->enqueue;
2326 
2327 	cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2,
2328 			field3, field4 | pdev->cmd_ring->cycle_state);
2329 }
2330 
2331 /* Queue a slot enable or disable request on the command ring */
2332 void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type)
2333 {
2334 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) |
2335 			    SLOT_ID_FOR_TRB(pdev->slot_id));
2336 }
2337 
2338 /* Queue an address device command TRB */
2339 void cdnsp_queue_address_device(struct cdnsp_device *pdev,
2340 				dma_addr_t in_ctx_ptr,
2341 				enum cdnsp_setup_dev setup)
2342 {
2343 	cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2344 			    upper_32_bits(in_ctx_ptr), 0,
2345 			    TRB_TYPE(TRB_ADDR_DEV) |
2346 			    SLOT_ID_FOR_TRB(pdev->slot_id) |
2347 			    (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0));
2348 }
2349 
2350 /* Queue a reset device command TRB */
2351 void cdnsp_queue_reset_device(struct cdnsp_device *pdev)
2352 {
2353 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) |
2354 			    SLOT_ID_FOR_TRB(pdev->slot_id));
2355 }
2356 
2357 /* Queue a configure endpoint command TRB */
2358 void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev,
2359 				    dma_addr_t in_ctx_ptr)
2360 {
2361 	cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2362 			    upper_32_bits(in_ctx_ptr), 0,
2363 			    TRB_TYPE(TRB_CONFIG_EP) |
2364 			    SLOT_ID_FOR_TRB(pdev->slot_id));
2365 }
2366 
2367 /*
2368  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
2369  * activity on an endpoint that is about to be suspended.
2370  */
2371 void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2372 {
2373 	cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) |
2374 			    EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING));
2375 }
2376 
2377 /* Set Transfer Ring Dequeue Pointer command. */
2378 void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev,
2379 				   struct cdnsp_ep *pep,
2380 				   struct cdnsp_dequeue_state *deq_state)
2381 {
2382 	u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
2383 	u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id);
2384 	u32 type = TRB_TYPE(TRB_SET_DEQ);
2385 	u32 trb_sct = 0;
2386 	dma_addr_t addr;
2387 
2388 	addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg,
2389 				     deq_state->new_deq_ptr);
2390 
2391 	if (deq_state->stream_id)
2392 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
2393 
2394 	cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct |
2395 			    deq_state->new_cycle_state, upper_32_bits(addr),
2396 			    trb_stream_id, trb_slot_id |
2397 			    EP_ID_FOR_TRB(pep->idx) | type);
2398 }
2399 
2400 void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index)
2401 {
2402 	return cdnsp_queue_command(pdev, 0, 0, 0,
2403 				   SLOT_ID_FOR_TRB(pdev->slot_id) |
2404 				   EP_ID_FOR_TRB(ep_index) |
2405 				   TRB_TYPE(TRB_RESET_EP));
2406 }
2407 
2408 /*
2409  * Queue a halt endpoint request on the command ring.
2410  */
2411 void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2412 {
2413 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) |
2414 			    SLOT_ID_FOR_TRB(pdev->slot_id) |
2415 			    EP_ID_FOR_TRB(ep_index));
2416 }
2417 
2418 /*
2419  * Queue a flush endpoint request on the command ring.
2420  */
2421 void  cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev,
2422 				 unsigned int ep_index)
2423 {
2424 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) |
2425 			    SLOT_ID_FOR_TRB(pdev->slot_id) |
2426 			    EP_ID_FOR_TRB(ep_index));
2427 }
2428 
2429 void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num)
2430 {
2431 	u32 lo, mid;
2432 
2433 	lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) |
2434 	     TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address);
2435 	mid = TRB_FH_TR_PACKET_DEV_NOT |
2436 	      TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) |
2437 	      TRB_FH_TO_INTERFACE(intf_num);
2438 
2439 	cdnsp_queue_command(pdev, lo, mid, 0,
2440 			    TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2));
2441 }
2442