xref: /openbmc/linux/drivers/usb/cdns3/cdnsp-ring.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  * Code based on Linux XHCI driver.
10  * Origin: Copyright (C) 2008 Intel Corp
11  */
12 
13 /*
14  * Ring initialization rules:
15  * 1. Each segment is initialized to zero, except for link TRBs.
16  * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
17  *    Consumer Cycle State (CCS), depending on ring function.
18  * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
19  *
20  * Ring behavior rules:
21  * 1. A ring is empty if enqueue == dequeue. This means there will always be at
22  *    least one free TRB in the ring. This is useful if you want to turn that
23  *    into a link TRB and expand the ring.
24  * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
25  *    link TRB, then load the pointer with the address in the link TRB. If the
26  *    link TRB had its toggle bit set, you may need to update the ring cycle
27  *    state (see cycle bit rules). You may have to do this multiple times
28  *    until you reach a non-link TRB.
29  * 3. A ring is full if enqueue++ (for the definition of increment above)
30  *    equals the dequeue pointer.
31  *
32  * Cycle bit rules:
33  * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
34  *    in a link TRB, it must toggle the ring cycle state.
35  * 2. When a producer increments an enqueue pointer and encounters a toggle bit
36  *    in a link TRB, it must toggle the ring cycle state.
37  *
38  * Producer rules:
39  * 1. Check if ring is full before you enqueue.
40  * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
41  *    Update enqueue pointer between each write (which may update the ring
42  *    cycle state).
43  * 3. Notify consumer. If SW is producer, it rings the doorbell for command
44  *    and endpoint rings. If controller is the producer for the event ring,
45  *    and it generates an interrupt according to interrupt modulation rules.
46  *
47  * Consumer rules:
48  * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
49  *    the TRB is owned by the consumer.
50  * 2. Update dequeue pointer (which may update the ring cycle state) and
51  *    continue processing TRBs until you reach a TRB which is not owned by you.
52  * 3. Notify the producer. SW is the consumer for the event ring, and it
53  *    updates event ring dequeue pointer. Controller is the consumer for the
54  *    command and endpoint rings; it generates events on the event ring
55  *    for these.
56  */
57 
58 #include <linux/scatterlist.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/delay.h>
61 #include <linux/slab.h>
62 #include <linux/irq.h>
63 
64 #include "cdnsp-trace.h"
65 #include "cdnsp-gadget.h"
66 
67 /*
68  * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
69  * address of the TRB.
70  */
71 dma_addr_t cdnsp_trb_virt_to_dma(struct cdnsp_segment *seg,
72 				 union cdnsp_trb *trb)
73 {
74 	unsigned long segment_offset = trb - seg->trbs;
75 
76 	if (trb < seg->trbs || segment_offset >= TRBS_PER_SEGMENT)
77 		return 0;
78 
79 	return seg->dma + (segment_offset * sizeof(*trb));
80 }
81 
82 static bool cdnsp_trb_is_noop(union cdnsp_trb *trb)
83 {
84 	return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
85 }
86 
87 static bool cdnsp_trb_is_link(union cdnsp_trb *trb)
88 {
89 	return TRB_TYPE_LINK_LE32(trb->link.control);
90 }
91 
92 bool cdnsp_last_trb_on_seg(struct cdnsp_segment *seg, union cdnsp_trb *trb)
93 {
94 	return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
95 }
96 
97 bool cdnsp_last_trb_on_ring(struct cdnsp_ring *ring,
98 			    struct cdnsp_segment *seg,
99 			    union cdnsp_trb *trb)
100 {
101 	return cdnsp_last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
102 }
103 
104 static bool cdnsp_link_trb_toggles_cycle(union cdnsp_trb *trb)
105 {
106 	return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 }
108 
109 static void cdnsp_trb_to_noop(union cdnsp_trb *trb, u32 noop_type)
110 {
111 	if (cdnsp_trb_is_link(trb)) {
112 		/* Unchain chained link TRBs. */
113 		trb->link.control &= cpu_to_le32(~TRB_CHAIN);
114 	} else {
115 		trb->generic.field[0] = 0;
116 		trb->generic.field[1] = 0;
117 		trb->generic.field[2] = 0;
118 		/* Preserve only the cycle bit of this TRB. */
119 		trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
120 		trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
121 	}
122 }
123 
124 /*
125  * Updates trb to point to the next TRB in the ring, and updates seg if the next
126  * TRB is in a new segment. This does not skip over link TRBs, and it does not
127  * effect the ring dequeue or enqueue pointers.
128  */
129 static void cdnsp_next_trb(struct cdnsp_device *pdev,
130 			   struct cdnsp_ring *ring,
131 			   struct cdnsp_segment **seg,
132 			   union cdnsp_trb **trb)
133 {
134 	if (cdnsp_trb_is_link(*trb)) {
135 		*seg = (*seg)->next;
136 		*trb = ((*seg)->trbs);
137 	} else {
138 		(*trb)++;
139 	}
140 }
141 
142 /*
143  * See Cycle bit rules. SW is the consumer for the event ring only.
144  * Don't make a ring full of link TRBs. That would be dumb and this would loop.
145  */
146 void cdnsp_inc_deq(struct cdnsp_device *pdev, struct cdnsp_ring *ring)
147 {
148 	/* event ring doesn't have link trbs, check for last trb. */
149 	if (ring->type == TYPE_EVENT) {
150 		if (!cdnsp_last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
151 			ring->dequeue++;
152 			goto out;
153 		}
154 
155 		if (cdnsp_last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
156 			ring->cycle_state ^= 1;
157 
158 		ring->deq_seg = ring->deq_seg->next;
159 		ring->dequeue = ring->deq_seg->trbs;
160 		goto out;
161 	}
162 
163 	/* All other rings have link trbs. */
164 	if (!cdnsp_trb_is_link(ring->dequeue)) {
165 		ring->dequeue++;
166 		ring->num_trbs_free++;
167 	}
168 	while (cdnsp_trb_is_link(ring->dequeue)) {
169 		ring->deq_seg = ring->deq_seg->next;
170 		ring->dequeue = ring->deq_seg->trbs;
171 	}
172 out:
173 	trace_cdnsp_inc_deq(ring);
174 }
175 
176 /*
177  * See Cycle bit rules. SW is the consumer for the event ring only.
178  * Don't make a ring full of link TRBs. That would be dumb and this would loop.
179  *
180  * If we've just enqueued a TRB that is in the middle of a TD (meaning the
181  * chain bit is set), then set the chain bit in all the following link TRBs.
182  * If we've enqueued the last TRB in a TD, make sure the following link TRBs
183  * have their chain bit cleared (so that each Link TRB is a separate TD).
184  *
185  * @more_trbs_coming:	Will you enqueue more TRBs before ringing the doorbell.
186  */
187 static void cdnsp_inc_enq(struct cdnsp_device *pdev,
188 			  struct cdnsp_ring *ring,
189 			  bool more_trbs_coming)
190 {
191 	union cdnsp_trb *next;
192 	u32 chain;
193 
194 	chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
195 
196 	/* If this is not event ring, there is one less usable TRB. */
197 	if (!cdnsp_trb_is_link(ring->enqueue))
198 		ring->num_trbs_free--;
199 	next = ++(ring->enqueue);
200 
201 	/* Update the dequeue pointer further if that was a link TRB */
202 	while (cdnsp_trb_is_link(next)) {
203 		/*
204 		 * If the caller doesn't plan on enqueuing more TDs before
205 		 * ringing the doorbell, then we don't want to give the link TRB
206 		 * to the hardware just yet. We'll give the link TRB back in
207 		 * cdnsp_prepare_ring() just before we enqueue the TD at the
208 		 * top of the ring.
209 		 */
210 		if (!chain && !more_trbs_coming)
211 			break;
212 
213 		next->link.control &= cpu_to_le32(~TRB_CHAIN);
214 		next->link.control |= cpu_to_le32(chain);
215 
216 		/* Give this link TRB to the hardware */
217 		wmb();
218 		next->link.control ^= cpu_to_le32(TRB_CYCLE);
219 
220 		/* Toggle the cycle bit after the last ring segment. */
221 		if (cdnsp_link_trb_toggles_cycle(next))
222 			ring->cycle_state ^= 1;
223 
224 		ring->enq_seg = ring->enq_seg->next;
225 		ring->enqueue = ring->enq_seg->trbs;
226 		next = ring->enqueue;
227 	}
228 
229 	trace_cdnsp_inc_enq(ring);
230 }
231 
232 /*
233  * Check to see if there's room to enqueue num_trbs on the ring and make sure
234  * enqueue pointer will not advance into dequeue segment.
235  */
236 static bool cdnsp_room_on_ring(struct cdnsp_device *pdev,
237 			       struct cdnsp_ring *ring,
238 			       unsigned int num_trbs)
239 {
240 	int num_trbs_in_deq_seg;
241 
242 	if (ring->num_trbs_free < num_trbs)
243 		return false;
244 
245 	if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
246 		num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
247 
248 		if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
249 			return false;
250 	}
251 
252 	return true;
253 }
254 
255 /*
256  * Workaround for L1: controller has issue with resuming from L1 after
257  * setting doorbell for endpoint during L1 state. This function forces
258  * resume signal in such case.
259  */
260 static void cdnsp_force_l0_go(struct cdnsp_device *pdev)
261 {
262 	if (pdev->active_port == &pdev->usb2_port && pdev->gadget.lpm_capable)
263 		cdnsp_set_link_state(pdev, &pdev->active_port->regs->portsc, XDEV_U0);
264 }
265 
266 /* Ring the doorbell after placing a command on the ring. */
267 void cdnsp_ring_cmd_db(struct cdnsp_device *pdev)
268 {
269 	writel(DB_VALUE_CMD, &pdev->dba->cmd_db);
270 }
271 
272 /*
273  * Ring the doorbell after placing a transfer on the ring.
274  * Returns true if doorbell was set, otherwise false.
275  */
276 static bool cdnsp_ring_ep_doorbell(struct cdnsp_device *pdev,
277 				   struct cdnsp_ep *pep,
278 				   unsigned int stream_id)
279 {
280 	__le32 __iomem *reg_addr = &pdev->dba->ep_db;
281 	unsigned int ep_state = pep->ep_state;
282 	unsigned int db_value;
283 
284 	/*
285 	 * Don't ring the doorbell for this endpoint if endpoint is halted or
286 	 * disabled.
287 	 */
288 	if (ep_state & EP_HALTED || !(ep_state & EP_ENABLED))
289 		return false;
290 
291 	/* For stream capable endpoints driver can ring doorbell only twice. */
292 	if (pep->ep_state & EP_HAS_STREAMS) {
293 		if (pep->stream_info.drbls_count >= 2)
294 			return false;
295 
296 		pep->stream_info.drbls_count++;
297 	}
298 
299 	pep->ep_state &= ~EP_STOPPED;
300 
301 	if (pep->idx == 0 && pdev->ep0_stage == CDNSP_DATA_STAGE &&
302 	    !pdev->ep0_expect_in)
303 		db_value = DB_VALUE_EP0_OUT(pep->idx, stream_id);
304 	else
305 		db_value = DB_VALUE(pep->idx, stream_id);
306 
307 	trace_cdnsp_tr_drbl(pep, stream_id);
308 
309 	writel(db_value, reg_addr);
310 
311 	cdnsp_force_l0_go(pdev);
312 
313 	/* Doorbell was set. */
314 	return true;
315 }
316 
317 /*
318  * Get the right ring for the given pep and stream_id.
319  * If the endpoint supports streams, boundary check the USB request's stream ID.
320  * If the endpoint doesn't support streams, return the singular endpoint ring.
321  */
322 static struct cdnsp_ring *cdnsp_get_transfer_ring(struct cdnsp_device *pdev,
323 						  struct cdnsp_ep *pep,
324 						  unsigned int stream_id)
325 {
326 	if (!(pep->ep_state & EP_HAS_STREAMS))
327 		return pep->ring;
328 
329 	if (stream_id == 0 || stream_id >= pep->stream_info.num_streams) {
330 		dev_err(pdev->dev, "ERR: %s ring doesn't exist for SID: %d.\n",
331 			pep->name, stream_id);
332 		return NULL;
333 	}
334 
335 	return pep->stream_info.stream_rings[stream_id];
336 }
337 
338 static struct cdnsp_ring *
339 	cdnsp_request_to_transfer_ring(struct cdnsp_device *pdev,
340 				       struct cdnsp_request *preq)
341 {
342 	return cdnsp_get_transfer_ring(pdev, preq->pep,
343 				       preq->request.stream_id);
344 }
345 
346 /* Ring the doorbell for any rings with pending requests. */
347 void cdnsp_ring_doorbell_for_active_rings(struct cdnsp_device *pdev,
348 					  struct cdnsp_ep *pep)
349 {
350 	struct cdnsp_stream_info *stream_info;
351 	unsigned int stream_id;
352 	int ret;
353 
354 	if (pep->ep_state & EP_DIS_IN_RROGRESS)
355 		return;
356 
357 	/* A ring has pending Request if its TD list is not empty. */
358 	if (!(pep->ep_state & EP_HAS_STREAMS) && pep->number) {
359 		if (pep->ring && !list_empty(&pep->ring->td_list))
360 			cdnsp_ring_ep_doorbell(pdev, pep, 0);
361 		return;
362 	}
363 
364 	stream_info = &pep->stream_info;
365 
366 	for (stream_id = 1; stream_id < stream_info->num_streams; stream_id++) {
367 		struct cdnsp_td *td, *td_temp;
368 		struct cdnsp_ring *ep_ring;
369 
370 		if (stream_info->drbls_count >= 2)
371 			return;
372 
373 		ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
374 		if (!ep_ring)
375 			continue;
376 
377 		if (!ep_ring->stream_active || ep_ring->stream_rejected)
378 			continue;
379 
380 		list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
381 					 td_list) {
382 			if (td->drbl)
383 				continue;
384 
385 			ret = cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
386 			if (ret)
387 				td->drbl = 1;
388 		}
389 	}
390 }
391 
392 /*
393  * Get the hw dequeue pointer controller stopped on, either directly from the
394  * endpoint context, or if streams are in use from the stream context.
395  * The returned hw_dequeue contains the lowest four bits with cycle state
396  * and possible stream context type.
397  */
398 static u64 cdnsp_get_hw_deq(struct cdnsp_device *pdev,
399 			    unsigned int ep_index,
400 			    unsigned int stream_id)
401 {
402 	struct cdnsp_stream_ctx *st_ctx;
403 	struct cdnsp_ep *pep;
404 
405 	pep = &pdev->eps[ep_index];
406 
407 	if (pep->ep_state & EP_HAS_STREAMS) {
408 		st_ctx = &pep->stream_info.stream_ctx_array[stream_id];
409 		return le64_to_cpu(st_ctx->stream_ring);
410 	}
411 
412 	return le64_to_cpu(pep->out_ctx->deq);
413 }
414 
415 /*
416  * Move the controller endpoint ring dequeue pointer past cur_td.
417  * Record the new state of the controller endpoint ring dequeue segment,
418  * dequeue pointer, and new consumer cycle state in state.
419  * Update internal representation of the ring's dequeue pointer.
420  *
421  * We do this in three jumps:
422  *  - First we update our new ring state to be the same as when the
423  *    controller stopped.
424  *  - Then we traverse the ring to find the segment that contains
425  *    the last TRB in the TD. We toggle the controller new cycle state
426  *    when we pass any link TRBs with the toggle cycle bit set.
427  *  - Finally we move the dequeue state one TRB further, toggling the cycle bit
428  *    if we've moved it past a link TRB with the toggle cycle bit set.
429  */
430 static void cdnsp_find_new_dequeue_state(struct cdnsp_device *pdev,
431 					 struct cdnsp_ep *pep,
432 					 unsigned int stream_id,
433 					 struct cdnsp_td *cur_td,
434 					 struct cdnsp_dequeue_state *state)
435 {
436 	bool td_last_trb_found = false;
437 	struct cdnsp_segment *new_seg;
438 	struct cdnsp_ring *ep_ring;
439 	union cdnsp_trb *new_deq;
440 	bool cycle_found = false;
441 	u64 hw_dequeue;
442 
443 	ep_ring = cdnsp_get_transfer_ring(pdev, pep, stream_id);
444 	if (!ep_ring)
445 		return;
446 
447 	/*
448 	 * Dig out the cycle state saved by the controller during the
449 	 * stop endpoint command.
450 	 */
451 	hw_dequeue = cdnsp_get_hw_deq(pdev, pep->idx, stream_id);
452 	new_seg = ep_ring->deq_seg;
453 	new_deq = ep_ring->dequeue;
454 	state->new_cycle_state = hw_dequeue & 0x1;
455 	state->stream_id = stream_id;
456 
457 	/*
458 	 * We want to find the pointer, segment and cycle state of the new trb
459 	 * (the one after current TD's last_trb). We know the cycle state at
460 	 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
461 	 * found.
462 	 */
463 	do {
464 		if (!cycle_found && cdnsp_trb_virt_to_dma(new_seg, new_deq)
465 		    == (dma_addr_t)(hw_dequeue & ~0xf)) {
466 			cycle_found = true;
467 
468 			if (td_last_trb_found)
469 				break;
470 		}
471 
472 		if (new_deq == cur_td->last_trb)
473 			td_last_trb_found = true;
474 
475 		if (cycle_found && cdnsp_trb_is_link(new_deq) &&
476 		    cdnsp_link_trb_toggles_cycle(new_deq))
477 			state->new_cycle_state ^= 0x1;
478 
479 		cdnsp_next_trb(pdev, ep_ring, &new_seg, &new_deq);
480 
481 		/* Search wrapped around, bail out. */
482 		if (new_deq == pep->ring->dequeue) {
483 			dev_err(pdev->dev,
484 				"Error: Failed finding new dequeue state\n");
485 			state->new_deq_seg = NULL;
486 			state->new_deq_ptr = NULL;
487 			return;
488 		}
489 
490 	} while (!cycle_found || !td_last_trb_found);
491 
492 	state->new_deq_seg = new_seg;
493 	state->new_deq_ptr = new_deq;
494 
495 	trace_cdnsp_new_deq_state(state);
496 }
497 
498 /*
499  * flip_cycle means flip the cycle bit of all but the first and last TRB.
500  * (The last TRB actually points to the ring enqueue pointer, which is not part
501  * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
502  */
503 static void cdnsp_td_to_noop(struct cdnsp_device *pdev,
504 			     struct cdnsp_ring *ep_ring,
505 			     struct cdnsp_td *td,
506 			     bool flip_cycle)
507 {
508 	struct cdnsp_segment *seg = td->start_seg;
509 	union cdnsp_trb *trb = td->first_trb;
510 
511 	while (1) {
512 		cdnsp_trb_to_noop(trb, TRB_TR_NOOP);
513 
514 		/* flip cycle if asked to */
515 		if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
516 			trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
517 
518 		if (trb == td->last_trb)
519 			break;
520 
521 		cdnsp_next_trb(pdev, ep_ring, &seg, &trb);
522 	}
523 }
524 
525 /*
526  * This TD is defined by the TRBs starting at start_trb in start_seg and ending
527  * at end_trb, which may be in another segment. If the suspect DMA address is a
528  * TRB in this TD, this function returns that TRB's segment. Otherwise it
529  * returns 0.
530  */
531 static struct cdnsp_segment *cdnsp_trb_in_td(struct cdnsp_device *pdev,
532 					     struct cdnsp_segment *start_seg,
533 					     union cdnsp_trb *start_trb,
534 					     union cdnsp_trb *end_trb,
535 					     dma_addr_t suspect_dma)
536 {
537 	struct cdnsp_segment *cur_seg;
538 	union cdnsp_trb *temp_trb;
539 	dma_addr_t end_seg_dma;
540 	dma_addr_t end_trb_dma;
541 	dma_addr_t start_dma;
542 
543 	start_dma = cdnsp_trb_virt_to_dma(start_seg, start_trb);
544 	cur_seg = start_seg;
545 
546 	do {
547 		if (start_dma == 0)
548 			return NULL;
549 
550 		temp_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1];
551 		/* We may get an event for a Link TRB in the middle of a TD */
552 		end_seg_dma = cdnsp_trb_virt_to_dma(cur_seg, temp_trb);
553 		/* If the end TRB isn't in this segment, this is set to 0 */
554 		end_trb_dma = cdnsp_trb_virt_to_dma(cur_seg, end_trb);
555 
556 		trace_cdnsp_looking_trb_in_td(suspect_dma, start_dma,
557 					      end_trb_dma, cur_seg->dma,
558 					      end_seg_dma);
559 
560 		if (end_trb_dma > 0) {
561 			/*
562 			 * The end TRB is in this segment, so suspect should
563 			 * be here
564 			 */
565 			if (start_dma <= end_trb_dma) {
566 				if (suspect_dma >= start_dma &&
567 				    suspect_dma <= end_trb_dma) {
568 					return cur_seg;
569 				}
570 			} else {
571 				/*
572 				 * Case for one segment with a
573 				 * TD wrapped around to the top
574 				 */
575 				if ((suspect_dma >= start_dma &&
576 				     suspect_dma <= end_seg_dma) ||
577 				    (suspect_dma >= cur_seg->dma &&
578 				     suspect_dma <= end_trb_dma)) {
579 					return cur_seg;
580 				}
581 			}
582 
583 			return NULL;
584 		}
585 
586 		/* Might still be somewhere in this segment */
587 		if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
588 			return cur_seg;
589 
590 		cur_seg = cur_seg->next;
591 		start_dma = cdnsp_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
592 	} while (cur_seg != start_seg);
593 
594 	return NULL;
595 }
596 
597 static void cdnsp_unmap_td_bounce_buffer(struct cdnsp_device *pdev,
598 					 struct cdnsp_ring *ring,
599 					 struct cdnsp_td *td)
600 {
601 	struct cdnsp_segment *seg = td->bounce_seg;
602 	struct cdnsp_request *preq;
603 	size_t len;
604 
605 	if (!seg)
606 		return;
607 
608 	preq = td->preq;
609 
610 	trace_cdnsp_bounce_unmap(td->preq, seg->bounce_len, seg->bounce_offs,
611 				 seg->bounce_dma, 0);
612 
613 	if (!preq->direction) {
614 		dma_unmap_single(pdev->dev, seg->bounce_dma,
615 				 ring->bounce_buf_len,  DMA_TO_DEVICE);
616 		return;
617 	}
618 
619 	dma_unmap_single(pdev->dev, seg->bounce_dma, ring->bounce_buf_len,
620 			 DMA_FROM_DEVICE);
621 
622 	/* For in transfers we need to copy the data from bounce to sg */
623 	len = sg_pcopy_from_buffer(preq->request.sg, preq->request.num_sgs,
624 				   seg->bounce_buf, seg->bounce_len,
625 				   seg->bounce_offs);
626 	if (len != seg->bounce_len)
627 		dev_warn(pdev->dev, "WARN Wrong bounce buffer read length: %zu != %d\n",
628 			 len, seg->bounce_len);
629 
630 	seg->bounce_len = 0;
631 	seg->bounce_offs = 0;
632 }
633 
634 static int cdnsp_cmd_set_deq(struct cdnsp_device *pdev,
635 			     struct cdnsp_ep *pep,
636 			     struct cdnsp_dequeue_state *deq_state)
637 {
638 	struct cdnsp_ring *ep_ring;
639 	int ret;
640 
641 	if (!deq_state->new_deq_ptr || !deq_state->new_deq_seg) {
642 		cdnsp_ring_doorbell_for_active_rings(pdev, pep);
643 		return 0;
644 	}
645 
646 	cdnsp_queue_new_dequeue_state(pdev, pep, deq_state);
647 	cdnsp_ring_cmd_db(pdev);
648 	ret = cdnsp_wait_for_cmd_compl(pdev);
649 
650 	trace_cdnsp_handle_cmd_set_deq(cdnsp_get_slot_ctx(&pdev->out_ctx));
651 	trace_cdnsp_handle_cmd_set_deq_ep(pep->out_ctx);
652 
653 	/*
654 	 * Update the ring's dequeue segment and dequeue pointer
655 	 * to reflect the new position.
656 	 */
657 	ep_ring = cdnsp_get_transfer_ring(pdev, pep, deq_state->stream_id);
658 
659 	if (cdnsp_trb_is_link(ep_ring->dequeue)) {
660 		ep_ring->deq_seg = ep_ring->deq_seg->next;
661 		ep_ring->dequeue = ep_ring->deq_seg->trbs;
662 	}
663 
664 	while (ep_ring->dequeue != deq_state->new_deq_ptr) {
665 		ep_ring->num_trbs_free++;
666 		ep_ring->dequeue++;
667 
668 		if (cdnsp_trb_is_link(ep_ring->dequeue)) {
669 			if (ep_ring->dequeue == deq_state->new_deq_ptr)
670 				break;
671 
672 			ep_ring->deq_seg = ep_ring->deq_seg->next;
673 			ep_ring->dequeue = ep_ring->deq_seg->trbs;
674 		}
675 	}
676 
677 	/*
678 	 * Probably there was TIMEOUT during handling Set Dequeue Pointer
679 	 * command. It's critical error and controller will be stopped.
680 	 */
681 	if (ret)
682 		return -ESHUTDOWN;
683 
684 	/* Restart any rings with pending requests */
685 	cdnsp_ring_doorbell_for_active_rings(pdev, pep);
686 
687 	return 0;
688 }
689 
690 int cdnsp_remove_request(struct cdnsp_device *pdev,
691 			 struct cdnsp_request *preq,
692 			 struct cdnsp_ep *pep)
693 {
694 	struct cdnsp_dequeue_state deq_state;
695 	struct cdnsp_td *cur_td = NULL;
696 	struct cdnsp_ring *ep_ring;
697 	struct cdnsp_segment *seg;
698 	int status = -ECONNRESET;
699 	int ret = 0;
700 	u64 hw_deq;
701 
702 	memset(&deq_state, 0, sizeof(deq_state));
703 
704 	trace_cdnsp_remove_request(pep->out_ctx);
705 	trace_cdnsp_remove_request_td(preq);
706 
707 	cur_td = &preq->td;
708 	ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
709 
710 	/*
711 	 * If we stopped on the TD we need to cancel, then we have to
712 	 * move the controller endpoint ring dequeue pointer past
713 	 * this TD.
714 	 */
715 	hw_deq = cdnsp_get_hw_deq(pdev, pep->idx, preq->request.stream_id);
716 	hw_deq &= ~0xf;
717 
718 	seg = cdnsp_trb_in_td(pdev, cur_td->start_seg, cur_td->first_trb,
719 			      cur_td->last_trb, hw_deq);
720 
721 	if (seg && (pep->ep_state & EP_ENABLED) &&
722 	    !(pep->ep_state & EP_DIS_IN_RROGRESS))
723 		cdnsp_find_new_dequeue_state(pdev, pep, preq->request.stream_id,
724 					     cur_td, &deq_state);
725 	else
726 		cdnsp_td_to_noop(pdev, ep_ring, cur_td, false);
727 
728 	/*
729 	 * The event handler won't see a completion for this TD anymore,
730 	 * so remove it from the endpoint ring's TD list.
731 	 */
732 	list_del_init(&cur_td->td_list);
733 	ep_ring->num_tds--;
734 	pep->stream_info.td_count--;
735 
736 	/*
737 	 * During disconnecting all endpoint will be disabled so we don't
738 	 * have to worry about updating dequeue pointer.
739 	 */
740 	if (pdev->cdnsp_state & CDNSP_STATE_DISCONNECT_PENDING ||
741 	    pep->ep_state & EP_DIS_IN_RROGRESS) {
742 		status = -ESHUTDOWN;
743 		ret = cdnsp_cmd_set_deq(pdev, pep, &deq_state);
744 	}
745 
746 	cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, cur_td);
747 	cdnsp_gadget_giveback(pep, cur_td->preq, status);
748 
749 	return ret;
750 }
751 
752 static int cdnsp_update_port_id(struct cdnsp_device *pdev, u32 port_id)
753 {
754 	struct cdnsp_port *port = pdev->active_port;
755 	u8 old_port = 0;
756 
757 	if (port && port->port_num == port_id)
758 		return 0;
759 
760 	if (port)
761 		old_port = port->port_num;
762 
763 	if (port_id == pdev->usb2_port.port_num) {
764 		port = &pdev->usb2_port;
765 	} else if (port_id == pdev->usb3_port.port_num) {
766 		port  = &pdev->usb3_port;
767 	} else {
768 		dev_err(pdev->dev, "Port event with invalid port ID %d\n",
769 			port_id);
770 		return -EINVAL;
771 	}
772 
773 	if (port_id != old_port) {
774 		cdnsp_disable_slot(pdev);
775 		pdev->active_port = port;
776 		cdnsp_enable_slot(pdev);
777 	}
778 
779 	if (port_id == pdev->usb2_port.port_num)
780 		cdnsp_set_usb2_hardware_lpm(pdev, NULL, 1);
781 	else
782 		writel(PORT_U1_TIMEOUT(1) | PORT_U2_TIMEOUT(1),
783 		       &pdev->usb3_port.regs->portpmsc);
784 
785 	return 0;
786 }
787 
788 static void cdnsp_handle_port_status(struct cdnsp_device *pdev,
789 				     union cdnsp_trb *event)
790 {
791 	struct cdnsp_port_regs __iomem *port_regs;
792 	u32 portsc, cmd_regs;
793 	bool port2 = false;
794 	u32 link_state;
795 	u32 port_id;
796 
797 	/* Port status change events always have a successful completion code */
798 	if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
799 		dev_err(pdev->dev, "ERR: incorrect PSC event\n");
800 
801 	port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
802 
803 	if (cdnsp_update_port_id(pdev, port_id))
804 		goto cleanup;
805 
806 	port_regs = pdev->active_port->regs;
807 
808 	if (port_id == pdev->usb2_port.port_num)
809 		port2 = true;
810 
811 new_event:
812 	portsc = readl(&port_regs->portsc);
813 	writel(cdnsp_port_state_to_neutral(portsc) |
814 	       (portsc & PORT_CHANGE_BITS), &port_regs->portsc);
815 
816 	trace_cdnsp_handle_port_status(pdev->active_port->port_num, portsc);
817 
818 	pdev->gadget.speed = cdnsp_port_speed(portsc);
819 	link_state = portsc & PORT_PLS_MASK;
820 
821 	/* Port Link State change detected. */
822 	if ((portsc & PORT_PLC)) {
823 		if (!(pdev->cdnsp_state & CDNSP_WAKEUP_PENDING)  &&
824 		    link_state == XDEV_RESUME) {
825 			cmd_regs = readl(&pdev->op_regs->command);
826 			if (!(cmd_regs & CMD_R_S))
827 				goto cleanup;
828 
829 			if (DEV_SUPERSPEED_ANY(portsc)) {
830 				cdnsp_set_link_state(pdev, &port_regs->portsc,
831 						     XDEV_U0);
832 
833 				cdnsp_resume_gadget(pdev);
834 			}
835 		}
836 
837 		if ((pdev->cdnsp_state & CDNSP_WAKEUP_PENDING) &&
838 		    link_state == XDEV_U0) {
839 			pdev->cdnsp_state &= ~CDNSP_WAKEUP_PENDING;
840 
841 			cdnsp_force_header_wakeup(pdev, 1);
842 			cdnsp_ring_cmd_db(pdev);
843 			cdnsp_wait_for_cmd_compl(pdev);
844 		}
845 
846 		if (link_state == XDEV_U0 && pdev->link_state == XDEV_U3 &&
847 		    !DEV_SUPERSPEED_ANY(portsc))
848 			cdnsp_resume_gadget(pdev);
849 
850 		if (link_state == XDEV_U3 &&  pdev->link_state != XDEV_U3)
851 			cdnsp_suspend_gadget(pdev);
852 
853 		pdev->link_state = link_state;
854 	}
855 
856 	if (portsc & PORT_CSC) {
857 		/* Detach device. */
858 		if (pdev->gadget.connected && !(portsc & PORT_CONNECT))
859 			cdnsp_disconnect_gadget(pdev);
860 
861 		/* Attach device. */
862 		if (portsc & PORT_CONNECT) {
863 			if (!port2)
864 				cdnsp_irq_reset(pdev);
865 
866 			usb_gadget_set_state(&pdev->gadget, USB_STATE_ATTACHED);
867 		}
868 	}
869 
870 	/* Port reset. */
871 	if ((portsc & (PORT_RC | PORT_WRC)) && (portsc & PORT_CONNECT)) {
872 		cdnsp_irq_reset(pdev);
873 		pdev->u1_allowed = 0;
874 		pdev->u2_allowed = 0;
875 		pdev->may_wakeup = 0;
876 	}
877 
878 	if (portsc & PORT_CEC)
879 		dev_err(pdev->dev, "Port Over Current detected\n");
880 
881 	if (portsc & PORT_CEC)
882 		dev_err(pdev->dev, "Port Configure Error detected\n");
883 
884 	if (readl(&port_regs->portsc) & PORT_CHANGE_BITS)
885 		goto new_event;
886 
887 cleanup:
888 	cdnsp_inc_deq(pdev, pdev->event_ring);
889 }
890 
891 static void cdnsp_td_cleanup(struct cdnsp_device *pdev,
892 			     struct cdnsp_td *td,
893 			     struct cdnsp_ring *ep_ring,
894 			     int *status)
895 {
896 	struct cdnsp_request *preq = td->preq;
897 
898 	/* if a bounce buffer was used to align this td then unmap it */
899 	cdnsp_unmap_td_bounce_buffer(pdev, ep_ring, td);
900 
901 	/*
902 	 * If the controller said we transferred more data than the buffer
903 	 * length, Play it safe and say we didn't transfer anything.
904 	 */
905 	if (preq->request.actual > preq->request.length) {
906 		preq->request.actual = 0;
907 		*status = 0;
908 	}
909 
910 	list_del_init(&td->td_list);
911 	ep_ring->num_tds--;
912 	preq->pep->stream_info.td_count--;
913 
914 	cdnsp_gadget_giveback(preq->pep, preq, *status);
915 }
916 
917 static void cdnsp_finish_td(struct cdnsp_device *pdev,
918 			    struct cdnsp_td *td,
919 			    struct cdnsp_transfer_event *event,
920 			    struct cdnsp_ep *ep,
921 			    int *status)
922 {
923 	struct cdnsp_ring *ep_ring;
924 	u32 trb_comp_code;
925 
926 	ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
927 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
928 
929 	if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
930 	    trb_comp_code == COMP_STOPPED ||
931 	    trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
932 		/*
933 		 * The Endpoint Stop Command completion will take care of any
934 		 * stopped TDs. A stopped TD may be restarted, so don't update
935 		 * the ring dequeue pointer or take this TD off any lists yet.
936 		 */
937 		return;
938 	}
939 
940 	/* Update ring dequeue pointer */
941 	while (ep_ring->dequeue != td->last_trb)
942 		cdnsp_inc_deq(pdev, ep_ring);
943 
944 	cdnsp_inc_deq(pdev, ep_ring);
945 
946 	cdnsp_td_cleanup(pdev, td, ep_ring, status);
947 }
948 
949 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
950 static int cdnsp_sum_trb_lengths(struct cdnsp_device *pdev,
951 				 struct cdnsp_ring *ring,
952 				 union cdnsp_trb *stop_trb)
953 {
954 	struct cdnsp_segment *seg = ring->deq_seg;
955 	union cdnsp_trb *trb = ring->dequeue;
956 	u32 sum;
957 
958 	for (sum = 0; trb != stop_trb; cdnsp_next_trb(pdev, ring, &seg, &trb)) {
959 		if (!cdnsp_trb_is_noop(trb) && !cdnsp_trb_is_link(trb))
960 			sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
961 	}
962 	return sum;
963 }
964 
965 static int cdnsp_giveback_first_trb(struct cdnsp_device *pdev,
966 				    struct cdnsp_ep *pep,
967 				    unsigned int stream_id,
968 				    int start_cycle,
969 				    struct cdnsp_generic_trb *start_trb)
970 {
971 	/*
972 	 * Pass all the TRBs to the hardware at once and make sure this write
973 	 * isn't reordered.
974 	 */
975 	wmb();
976 
977 	if (start_cycle)
978 		start_trb->field[3] |= cpu_to_le32(start_cycle);
979 	else
980 		start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
981 
982 	if ((pep->ep_state & EP_HAS_STREAMS) &&
983 	    !pep->stream_info.first_prime_det) {
984 		trace_cdnsp_wait_for_prime(pep, stream_id);
985 		return 0;
986 	}
987 
988 	return cdnsp_ring_ep_doorbell(pdev, pep, stream_id);
989 }
990 
991 /*
992  * Process control tds, update USB request status and actual_length.
993  */
994 static void cdnsp_process_ctrl_td(struct cdnsp_device *pdev,
995 				  struct cdnsp_td *td,
996 				  union cdnsp_trb *event_trb,
997 				  struct cdnsp_transfer_event *event,
998 				  struct cdnsp_ep *pep,
999 				  int *status)
1000 {
1001 	struct cdnsp_ring *ep_ring;
1002 	u32 remaining;
1003 	u32 trb_type;
1004 
1005 	trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event_trb->generic.field[3]));
1006 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1007 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1008 
1009 	/*
1010 	 * if on data stage then update the actual_length of the USB
1011 	 * request and flag it as set, so it won't be overwritten in the event
1012 	 * for the last TRB.
1013 	 */
1014 	if (trb_type == TRB_DATA) {
1015 		td->request_length_set = true;
1016 		td->preq->request.actual = td->preq->request.length - remaining;
1017 	}
1018 
1019 	/* at status stage */
1020 	if (!td->request_length_set)
1021 		td->preq->request.actual = td->preq->request.length;
1022 
1023 	if (pdev->ep0_stage == CDNSP_DATA_STAGE && pep->number == 0 &&
1024 	    pdev->three_stage_setup) {
1025 		td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1026 				td_list);
1027 		pdev->ep0_stage = CDNSP_STATUS_STAGE;
1028 
1029 		cdnsp_giveback_first_trb(pdev, pep, 0, ep_ring->cycle_state,
1030 					 &td->last_trb->generic);
1031 		return;
1032 	}
1033 
1034 	*status = 0;
1035 
1036 	cdnsp_finish_td(pdev, td, event, pep, status);
1037 }
1038 
1039 /*
1040  * Process isochronous tds, update usb request status and actual_length.
1041  */
1042 static void cdnsp_process_isoc_td(struct cdnsp_device *pdev,
1043 				  struct cdnsp_td *td,
1044 				  union cdnsp_trb *ep_trb,
1045 				  struct cdnsp_transfer_event *event,
1046 				  struct cdnsp_ep *pep,
1047 				  int status)
1048 {
1049 	struct cdnsp_request *preq = td->preq;
1050 	u32 remaining, requested, ep_trb_len;
1051 	bool sum_trbs_for_length = false;
1052 	struct cdnsp_ring *ep_ring;
1053 	u32 trb_comp_code;
1054 	u32 td_length;
1055 
1056 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1057 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1058 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1059 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1060 
1061 	requested = preq->request.length;
1062 
1063 	/* handle completion code */
1064 	switch (trb_comp_code) {
1065 	case COMP_SUCCESS:
1066 		preq->request.status = 0;
1067 		break;
1068 	case COMP_SHORT_PACKET:
1069 		preq->request.status = 0;
1070 		sum_trbs_for_length = true;
1071 		break;
1072 	case COMP_ISOCH_BUFFER_OVERRUN:
1073 	case COMP_BABBLE_DETECTED_ERROR:
1074 		preq->request.status = -EOVERFLOW;
1075 		break;
1076 	case COMP_STOPPED:
1077 		sum_trbs_for_length = true;
1078 		break;
1079 	case COMP_STOPPED_SHORT_PACKET:
1080 		/* field normally containing residue now contains transferred */
1081 		preq->request.status  = 0;
1082 		requested = remaining;
1083 		break;
1084 	case COMP_STOPPED_LENGTH_INVALID:
1085 		requested = 0;
1086 		remaining = 0;
1087 		break;
1088 	default:
1089 		sum_trbs_for_length = true;
1090 		preq->request.status = -1;
1091 		break;
1092 	}
1093 
1094 	if (sum_trbs_for_length) {
1095 		td_length = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb);
1096 		td_length += ep_trb_len - remaining;
1097 	} else {
1098 		td_length = requested;
1099 	}
1100 
1101 	td->preq->request.actual += td_length;
1102 
1103 	cdnsp_finish_td(pdev, td, event, pep, &status);
1104 }
1105 
1106 static void cdnsp_skip_isoc_td(struct cdnsp_device *pdev,
1107 			       struct cdnsp_td *td,
1108 			       struct cdnsp_transfer_event *event,
1109 			       struct cdnsp_ep *pep,
1110 			       int status)
1111 {
1112 	struct cdnsp_ring *ep_ring;
1113 
1114 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1115 	td->preq->request.status = -EXDEV;
1116 	td->preq->request.actual = 0;
1117 
1118 	/* Update ring dequeue pointer */
1119 	while (ep_ring->dequeue != td->last_trb)
1120 		cdnsp_inc_deq(pdev, ep_ring);
1121 
1122 	cdnsp_inc_deq(pdev, ep_ring);
1123 
1124 	cdnsp_td_cleanup(pdev, td, ep_ring, &status);
1125 }
1126 
1127 /*
1128  * Process bulk and interrupt tds, update usb request status and actual_length.
1129  */
1130 static void cdnsp_process_bulk_intr_td(struct cdnsp_device *pdev,
1131 				       struct cdnsp_td *td,
1132 				       union cdnsp_trb *ep_trb,
1133 				       struct cdnsp_transfer_event *event,
1134 				       struct cdnsp_ep *ep,
1135 				       int *status)
1136 {
1137 	u32 remaining, requested, ep_trb_len;
1138 	struct cdnsp_ring *ep_ring;
1139 	u32 trb_comp_code;
1140 
1141 	ep_ring = cdnsp_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1142 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1143 	remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
1144 	ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
1145 	requested = td->preq->request.length;
1146 
1147 	switch (trb_comp_code) {
1148 	case COMP_SUCCESS:
1149 	case COMP_SHORT_PACKET:
1150 		*status = 0;
1151 		break;
1152 	case COMP_STOPPED_SHORT_PACKET:
1153 		td->preq->request.actual = remaining;
1154 		goto finish_td;
1155 	case COMP_STOPPED_LENGTH_INVALID:
1156 		/* Stopped on ep trb with invalid length, exclude it. */
1157 		ep_trb_len = 0;
1158 		remaining = 0;
1159 		break;
1160 	}
1161 
1162 	if (ep_trb == td->last_trb)
1163 		ep_trb_len = requested - remaining;
1164 	else
1165 		ep_trb_len = cdnsp_sum_trb_lengths(pdev, ep_ring, ep_trb) +
1166 						   ep_trb_len - remaining;
1167 	td->preq->request.actual = ep_trb_len;
1168 
1169 finish_td:
1170 	ep->stream_info.drbls_count--;
1171 
1172 	cdnsp_finish_td(pdev, td, event, ep, status);
1173 }
1174 
1175 static void cdnsp_handle_tx_nrdy(struct cdnsp_device *pdev,
1176 				 struct cdnsp_transfer_event *event)
1177 {
1178 	struct cdnsp_generic_trb *generic;
1179 	struct cdnsp_ring *ep_ring;
1180 	struct cdnsp_ep *pep;
1181 	int cur_stream;
1182 	int ep_index;
1183 	int host_sid;
1184 	int dev_sid;
1185 
1186 	generic = (struct cdnsp_generic_trb *)event;
1187 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1188 	dev_sid = TRB_TO_DEV_STREAM(le32_to_cpu(generic->field[0]));
1189 	host_sid = TRB_TO_HOST_STREAM(le32_to_cpu(generic->field[2]));
1190 
1191 	pep = &pdev->eps[ep_index];
1192 
1193 	if (!(pep->ep_state & EP_HAS_STREAMS))
1194 		return;
1195 
1196 	if (host_sid == STREAM_PRIME_ACK) {
1197 		pep->stream_info.first_prime_det = 1;
1198 		for (cur_stream = 1; cur_stream < pep->stream_info.num_streams;
1199 		    cur_stream++) {
1200 			ep_ring = pep->stream_info.stream_rings[cur_stream];
1201 			ep_ring->stream_active = 1;
1202 			ep_ring->stream_rejected = 0;
1203 		}
1204 	}
1205 
1206 	if (host_sid == STREAM_REJECTED) {
1207 		struct cdnsp_td *td, *td_temp;
1208 
1209 		pep->stream_info.drbls_count--;
1210 		ep_ring = pep->stream_info.stream_rings[dev_sid];
1211 		ep_ring->stream_active = 0;
1212 		ep_ring->stream_rejected = 1;
1213 
1214 		list_for_each_entry_safe(td, td_temp, &ep_ring->td_list,
1215 					 td_list) {
1216 			td->drbl = 0;
1217 		}
1218 	}
1219 
1220 	cdnsp_ring_doorbell_for_active_rings(pdev, pep);
1221 }
1222 
1223 /*
1224  * If this function returns an error condition, it means it got a Transfer
1225  * event with a corrupted TRB DMA address or endpoint is disabled.
1226  */
1227 static int cdnsp_handle_tx_event(struct cdnsp_device *pdev,
1228 				 struct cdnsp_transfer_event *event)
1229 {
1230 	const struct usb_endpoint_descriptor *desc;
1231 	bool handling_skipped_tds = false;
1232 	struct cdnsp_segment *ep_seg;
1233 	struct cdnsp_ring *ep_ring;
1234 	int status = -EINPROGRESS;
1235 	union cdnsp_trb *ep_trb;
1236 	dma_addr_t ep_trb_dma;
1237 	struct cdnsp_ep *pep;
1238 	struct cdnsp_td *td;
1239 	u32 trb_comp_code;
1240 	int invalidate;
1241 	int ep_index;
1242 
1243 	invalidate = le32_to_cpu(event->flags) & TRB_EVENT_INVALIDATE;
1244 	ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1245 	trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1246 	ep_trb_dma = le64_to_cpu(event->buffer);
1247 
1248 	pep = &pdev->eps[ep_index];
1249 	ep_ring = cdnsp_dma_to_transfer_ring(pep, le64_to_cpu(event->buffer));
1250 
1251 	/*
1252 	 * If device is disconnect then all requests will be dequeued
1253 	 * by upper layers as part of disconnect sequence.
1254 	 * We don't want handle such event to avoid racing.
1255 	 */
1256 	if (invalidate || !pdev->gadget.connected)
1257 		goto cleanup;
1258 
1259 	if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_DISABLED) {
1260 		trace_cdnsp_ep_disabled(pep->out_ctx);
1261 		goto err_out;
1262 	}
1263 
1264 	/* Some transfer events don't always point to a trb*/
1265 	if (!ep_ring) {
1266 		switch (trb_comp_code) {
1267 		case COMP_INVALID_STREAM_TYPE_ERROR:
1268 		case COMP_INVALID_STREAM_ID_ERROR:
1269 		case COMP_RING_UNDERRUN:
1270 		case COMP_RING_OVERRUN:
1271 			goto cleanup;
1272 		default:
1273 			dev_err(pdev->dev, "ERROR: %s event for unknown ring\n",
1274 				pep->name);
1275 			goto err_out;
1276 		}
1277 	}
1278 
1279 	/* Look for some error cases that need special treatment. */
1280 	switch (trb_comp_code) {
1281 	case COMP_BABBLE_DETECTED_ERROR:
1282 		status = -EOVERFLOW;
1283 		break;
1284 	case COMP_RING_UNDERRUN:
1285 	case COMP_RING_OVERRUN:
1286 		/*
1287 		 * When the Isoch ring is empty, the controller will generate
1288 		 * a Ring Overrun Event for IN Isoch endpoint or Ring
1289 		 * Underrun Event for OUT Isoch endpoint.
1290 		 */
1291 		goto cleanup;
1292 	case COMP_MISSED_SERVICE_ERROR:
1293 		/*
1294 		 * When encounter missed service error, one or more isoc tds
1295 		 * may be missed by controller.
1296 		 * Set skip flag of the ep_ring; Complete the missed tds as
1297 		 * short transfer when process the ep_ring next time.
1298 		 */
1299 		pep->skip = true;
1300 		break;
1301 	}
1302 
1303 	do {
1304 		/*
1305 		 * This TRB should be in the TD at the head of this ring's TD
1306 		 * list.
1307 		 */
1308 		if (list_empty(&ep_ring->td_list)) {
1309 			/*
1310 			 * Don't print warnings if it's due to a stopped
1311 			 * endpoint generating an extra completion event, or
1312 			 * a event for the last TRB of a short TD we already
1313 			 * got a short event for.
1314 			 * The short TD is already removed from the TD list.
1315 			 */
1316 			if (!(trb_comp_code == COMP_STOPPED ||
1317 			      trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1318 			      ep_ring->last_td_was_short))
1319 				trace_cdnsp_trb_without_td(ep_ring,
1320 					(struct cdnsp_generic_trb *)event);
1321 
1322 			if (pep->skip) {
1323 				pep->skip = false;
1324 				trace_cdnsp_ep_list_empty_with_skip(pep, 0);
1325 			}
1326 
1327 			goto cleanup;
1328 		}
1329 
1330 		td = list_entry(ep_ring->td_list.next, struct cdnsp_td,
1331 				td_list);
1332 
1333 		/* Is this a TRB in the currently executing TD? */
1334 		ep_seg = cdnsp_trb_in_td(pdev, ep_ring->deq_seg,
1335 					 ep_ring->dequeue, td->last_trb,
1336 					 ep_trb_dma);
1337 
1338 		desc = td->preq->pep->endpoint.desc;
1339 
1340 		if (ep_seg) {
1341 			ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma)
1342 					       / sizeof(*ep_trb)];
1343 
1344 			trace_cdnsp_handle_transfer(ep_ring,
1345 					(struct cdnsp_generic_trb *)ep_trb);
1346 
1347 			if (pep->skip && usb_endpoint_xfer_isoc(desc) &&
1348 			    td->last_trb != ep_trb)
1349 				return -EAGAIN;
1350 		}
1351 
1352 		/*
1353 		 * Skip the Force Stopped Event. The event_trb(ep_trb_dma)
1354 		 * of FSE is not in the current TD pointed by ep_ring->dequeue
1355 		 * because that the hardware dequeue pointer still at the
1356 		 * previous TRB of the current TD. The previous TRB maybe a
1357 		 * Link TD or the last TRB of the previous TD. The command
1358 		 * completion handle will take care the rest.
1359 		 */
1360 		if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
1361 				trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
1362 			pep->skip = false;
1363 			goto cleanup;
1364 		}
1365 
1366 		if (!ep_seg) {
1367 			if (!pep->skip || !usb_endpoint_xfer_isoc(desc)) {
1368 				/* Something is busted, give up! */
1369 				dev_err(pdev->dev,
1370 					"ERROR Transfer event TRB DMA ptr not "
1371 					"part of current TD ep_index %d "
1372 					"comp_code %u\n", ep_index,
1373 					trb_comp_code);
1374 				return -EINVAL;
1375 			}
1376 
1377 			cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1378 			goto cleanup;
1379 		}
1380 
1381 		if (trb_comp_code == COMP_SHORT_PACKET)
1382 			ep_ring->last_td_was_short = true;
1383 		else
1384 			ep_ring->last_td_was_short = false;
1385 
1386 		if (pep->skip) {
1387 			pep->skip = false;
1388 			cdnsp_skip_isoc_td(pdev, td, event, pep, status);
1389 			goto cleanup;
1390 		}
1391 
1392 		if (cdnsp_trb_is_noop(ep_trb))
1393 			goto cleanup;
1394 
1395 		if (usb_endpoint_xfer_control(desc))
1396 			cdnsp_process_ctrl_td(pdev, td, ep_trb, event, pep,
1397 					      &status);
1398 		else if (usb_endpoint_xfer_isoc(desc))
1399 			cdnsp_process_isoc_td(pdev, td, ep_trb, event, pep,
1400 					      status);
1401 		else
1402 			cdnsp_process_bulk_intr_td(pdev, td, ep_trb, event, pep,
1403 						   &status);
1404 cleanup:
1405 		handling_skipped_tds = pep->skip;
1406 
1407 		/*
1408 		 * Do not update event ring dequeue pointer if we're in a loop
1409 		 * processing missed tds.
1410 		 */
1411 		if (!handling_skipped_tds)
1412 			cdnsp_inc_deq(pdev, pdev->event_ring);
1413 
1414 	/*
1415 	 * If ep->skip is set, it means there are missed tds on the
1416 	 * endpoint ring need to take care of.
1417 	 * Process them as short transfer until reach the td pointed by
1418 	 * the event.
1419 	 */
1420 	} while (handling_skipped_tds);
1421 	return 0;
1422 
1423 err_out:
1424 	dev_err(pdev->dev, "@%016llx %08x %08x %08x %08x\n",
1425 		(unsigned long long)
1426 		cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1427 				      pdev->event_ring->dequeue),
1428 		 lower_32_bits(le64_to_cpu(event->buffer)),
1429 		 upper_32_bits(le64_to_cpu(event->buffer)),
1430 		 le32_to_cpu(event->transfer_len),
1431 		 le32_to_cpu(event->flags));
1432 	return -EINVAL;
1433 }
1434 
1435 /*
1436  * This function handles all events on the event ring.
1437  * Returns true for "possibly more events to process" (caller should call
1438  * again), otherwise false if done.
1439  */
1440 static bool cdnsp_handle_event(struct cdnsp_device *pdev)
1441 {
1442 	unsigned int comp_code;
1443 	union cdnsp_trb *event;
1444 	bool update_ptrs = true;
1445 	u32 cycle_bit;
1446 	int ret = 0;
1447 	u32 flags;
1448 
1449 	event = pdev->event_ring->dequeue;
1450 	flags = le32_to_cpu(event->event_cmd.flags);
1451 	cycle_bit = (flags & TRB_CYCLE);
1452 
1453 	/* Does the controller or driver own the TRB? */
1454 	if (cycle_bit != pdev->event_ring->cycle_state)
1455 		return false;
1456 
1457 	trace_cdnsp_handle_event(pdev->event_ring, &event->generic);
1458 
1459 	/*
1460 	 * Barrier between reading the TRB_CYCLE (valid) flag above and any
1461 	 * reads of the event's flags/data below.
1462 	 */
1463 	rmb();
1464 
1465 	switch (flags & TRB_TYPE_BITMASK) {
1466 	case TRB_TYPE(TRB_COMPLETION):
1467 		/*
1468 		 * Command can't be handled in interrupt context so just
1469 		 * increment command ring dequeue pointer.
1470 		 */
1471 		cdnsp_inc_deq(pdev, pdev->cmd_ring);
1472 		break;
1473 	case TRB_TYPE(TRB_PORT_STATUS):
1474 		cdnsp_handle_port_status(pdev, event);
1475 		update_ptrs = false;
1476 		break;
1477 	case TRB_TYPE(TRB_TRANSFER):
1478 		ret = cdnsp_handle_tx_event(pdev, &event->trans_event);
1479 		if (ret >= 0)
1480 			update_ptrs = false;
1481 		break;
1482 	case TRB_TYPE(TRB_SETUP):
1483 		pdev->ep0_stage = CDNSP_SETUP_STAGE;
1484 		pdev->setup_id = TRB_SETUPID_TO_TYPE(flags);
1485 		pdev->setup_speed = TRB_SETUP_SPEEDID(flags);
1486 		pdev->setup = *((struct usb_ctrlrequest *)
1487 				&event->trans_event.buffer);
1488 
1489 		cdnsp_setup_analyze(pdev);
1490 		break;
1491 	case TRB_TYPE(TRB_ENDPOINT_NRDY):
1492 		cdnsp_handle_tx_nrdy(pdev, &event->trans_event);
1493 		break;
1494 	case TRB_TYPE(TRB_HC_EVENT): {
1495 		comp_code = GET_COMP_CODE(le32_to_cpu(event->generic.field[2]));
1496 
1497 		switch (comp_code) {
1498 		case COMP_EVENT_RING_FULL_ERROR:
1499 			dev_err(pdev->dev, "Event Ring Full\n");
1500 			break;
1501 		default:
1502 			dev_err(pdev->dev, "Controller error code 0x%02x\n",
1503 				comp_code);
1504 		}
1505 
1506 		break;
1507 	}
1508 	case TRB_TYPE(TRB_MFINDEX_WRAP):
1509 	case TRB_TYPE(TRB_DRB_OVERFLOW):
1510 		break;
1511 	default:
1512 		dev_warn(pdev->dev, "ERROR unknown event type %ld\n",
1513 			 TRB_FIELD_TO_TYPE(flags));
1514 	}
1515 
1516 	if (update_ptrs)
1517 		/* Update SW event ring dequeue pointer. */
1518 		cdnsp_inc_deq(pdev, pdev->event_ring);
1519 
1520 	/*
1521 	 * Caller will call us again to check if there are more items
1522 	 * on the event ring.
1523 	 */
1524 	return true;
1525 }
1526 
1527 irqreturn_t cdnsp_thread_irq_handler(int irq, void *data)
1528 {
1529 	struct cdnsp_device *pdev = (struct cdnsp_device *)data;
1530 	union cdnsp_trb *event_ring_deq;
1531 	unsigned long flags;
1532 	int counter = 0;
1533 
1534 	local_bh_disable();
1535 	spin_lock_irqsave(&pdev->lock, flags);
1536 
1537 	if (pdev->cdnsp_state & (CDNSP_STATE_HALTED | CDNSP_STATE_DYING)) {
1538 		/*
1539 		 * While removing or stopping driver there may still be deferred
1540 		 * not handled interrupt which should not be treated as error.
1541 		 * Driver should simply ignore it.
1542 		 */
1543 		if (pdev->gadget_driver)
1544 			cdnsp_died(pdev);
1545 
1546 		spin_unlock_irqrestore(&pdev->lock, flags);
1547 		local_bh_enable();
1548 		return IRQ_HANDLED;
1549 	}
1550 
1551 	event_ring_deq = pdev->event_ring->dequeue;
1552 
1553 	while (cdnsp_handle_event(pdev)) {
1554 		if (++counter >= TRBS_PER_EV_DEQ_UPDATE) {
1555 			cdnsp_update_erst_dequeue(pdev, event_ring_deq, 0);
1556 			event_ring_deq = pdev->event_ring->dequeue;
1557 			counter = 0;
1558 		}
1559 	}
1560 
1561 	cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1);
1562 
1563 	spin_unlock_irqrestore(&pdev->lock, flags);
1564 	local_bh_enable();
1565 
1566 	return IRQ_HANDLED;
1567 }
1568 
1569 irqreturn_t cdnsp_irq_handler(int irq, void *priv)
1570 {
1571 	struct cdnsp_device *pdev = (struct cdnsp_device *)priv;
1572 	u32 irq_pending;
1573 	u32 status;
1574 
1575 	status = readl(&pdev->op_regs->status);
1576 
1577 	if (status == ~(u32)0) {
1578 		cdnsp_died(pdev);
1579 		return IRQ_HANDLED;
1580 	}
1581 
1582 	if (!(status & STS_EINT))
1583 		return IRQ_NONE;
1584 
1585 	writel(status | STS_EINT, &pdev->op_regs->status);
1586 	irq_pending = readl(&pdev->ir_set->irq_pending);
1587 	irq_pending |= IMAN_IP;
1588 	writel(irq_pending, &pdev->ir_set->irq_pending);
1589 
1590 	if (status & STS_FATAL) {
1591 		cdnsp_died(pdev);
1592 		return IRQ_HANDLED;
1593 	}
1594 
1595 	return IRQ_WAKE_THREAD;
1596 }
1597 
1598 /*
1599  * Generic function for queuing a TRB on a ring.
1600  * The caller must have checked to make sure there's room on the ring.
1601  *
1602  * @more_trbs_coming:	Will you enqueue more TRBs before setting doorbell?
1603  */
1604 static void cdnsp_queue_trb(struct cdnsp_device *pdev, struct cdnsp_ring *ring,
1605 			    bool more_trbs_coming, u32 field1, u32 field2,
1606 			    u32 field3, u32 field4)
1607 {
1608 	struct cdnsp_generic_trb *trb;
1609 
1610 	trb = &ring->enqueue->generic;
1611 
1612 	trb->field[0] = cpu_to_le32(field1);
1613 	trb->field[1] = cpu_to_le32(field2);
1614 	trb->field[2] = cpu_to_le32(field3);
1615 	trb->field[3] = cpu_to_le32(field4);
1616 
1617 	trace_cdnsp_queue_trb(ring, trb);
1618 	cdnsp_inc_enq(pdev, ring, more_trbs_coming);
1619 }
1620 
1621 /*
1622  * Does various checks on the endpoint ring, and makes it ready to
1623  * queue num_trbs.
1624  */
1625 static int cdnsp_prepare_ring(struct cdnsp_device *pdev,
1626 			      struct cdnsp_ring *ep_ring,
1627 			      u32 ep_state, unsigned
1628 			      int num_trbs,
1629 			      gfp_t mem_flags)
1630 {
1631 	unsigned int num_trbs_needed;
1632 
1633 	/* Make sure the endpoint has been added to controller schedule. */
1634 	switch (ep_state) {
1635 	case EP_STATE_STOPPED:
1636 	case EP_STATE_RUNNING:
1637 	case EP_STATE_HALTED:
1638 		break;
1639 	default:
1640 		dev_err(pdev->dev, "ERROR: incorrect endpoint state\n");
1641 		return -EINVAL;
1642 	}
1643 
1644 	while (1) {
1645 		if (cdnsp_room_on_ring(pdev, ep_ring, num_trbs))
1646 			break;
1647 
1648 		trace_cdnsp_no_room_on_ring("try ring expansion");
1649 
1650 		num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
1651 		if (cdnsp_ring_expansion(pdev, ep_ring, num_trbs_needed,
1652 					 mem_flags)) {
1653 			dev_err(pdev->dev, "Ring expansion failed\n");
1654 			return -ENOMEM;
1655 		}
1656 	}
1657 
1658 	while (cdnsp_trb_is_link(ep_ring->enqueue)) {
1659 		ep_ring->enqueue->link.control |= cpu_to_le32(TRB_CHAIN);
1660 		/* The cycle bit must be set as the last operation. */
1661 		wmb();
1662 		ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
1663 
1664 		/* Toggle the cycle bit after the last ring segment. */
1665 		if (cdnsp_link_trb_toggles_cycle(ep_ring->enqueue))
1666 			ep_ring->cycle_state ^= 1;
1667 		ep_ring->enq_seg = ep_ring->enq_seg->next;
1668 		ep_ring->enqueue = ep_ring->enq_seg->trbs;
1669 	}
1670 	return 0;
1671 }
1672 
1673 static int cdnsp_prepare_transfer(struct cdnsp_device *pdev,
1674 				  struct cdnsp_request *preq,
1675 				  unsigned int num_trbs)
1676 {
1677 	struct cdnsp_ring *ep_ring;
1678 	int ret;
1679 
1680 	ep_ring = cdnsp_get_transfer_ring(pdev, preq->pep,
1681 					  preq->request.stream_id);
1682 	if (!ep_ring)
1683 		return -EINVAL;
1684 
1685 	ret = cdnsp_prepare_ring(pdev, ep_ring,
1686 				 GET_EP_CTX_STATE(preq->pep->out_ctx),
1687 				 num_trbs, GFP_ATOMIC);
1688 	if (ret)
1689 		return ret;
1690 
1691 	INIT_LIST_HEAD(&preq->td.td_list);
1692 	preq->td.preq = preq;
1693 
1694 	/* Add this TD to the tail of the endpoint ring's TD list. */
1695 	list_add_tail(&preq->td.td_list, &ep_ring->td_list);
1696 	ep_ring->num_tds++;
1697 	preq->pep->stream_info.td_count++;
1698 
1699 	preq->td.start_seg = ep_ring->enq_seg;
1700 	preq->td.first_trb = ep_ring->enqueue;
1701 
1702 	return 0;
1703 }
1704 
1705 static unsigned int cdnsp_count_trbs(u64 addr, u64 len)
1706 {
1707 	unsigned int num_trbs;
1708 
1709 	num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
1710 				TRB_MAX_BUFF_SIZE);
1711 	if (num_trbs == 0)
1712 		num_trbs++;
1713 
1714 	return num_trbs;
1715 }
1716 
1717 static unsigned int count_trbs_needed(struct cdnsp_request *preq)
1718 {
1719 	return cdnsp_count_trbs(preq->request.dma, preq->request.length);
1720 }
1721 
1722 static unsigned int count_sg_trbs_needed(struct cdnsp_request *preq)
1723 {
1724 	unsigned int i, len, full_len, num_trbs = 0;
1725 	struct scatterlist *sg;
1726 
1727 	full_len = preq->request.length;
1728 
1729 	for_each_sg(preq->request.sg, sg, preq->request.num_sgs, i) {
1730 		len = sg_dma_len(sg);
1731 		num_trbs += cdnsp_count_trbs(sg_dma_address(sg), len);
1732 		len = min(len, full_len);
1733 		full_len -= len;
1734 		if (full_len == 0)
1735 			break;
1736 	}
1737 
1738 	return num_trbs;
1739 }
1740 
1741 static void cdnsp_check_trb_math(struct cdnsp_request *preq, int running_total)
1742 {
1743 	if (running_total != preq->request.length)
1744 		dev_err(preq->pep->pdev->dev,
1745 			"%s - Miscalculated tx length, "
1746 			"queued %#x, asked for %#x (%d)\n",
1747 			preq->pep->name, running_total,
1748 			preq->request.length, preq->request.actual);
1749 }
1750 
1751 /*
1752  * TD size is the number of max packet sized packets remaining in the TD
1753  * (*not* including this TRB).
1754  *
1755  * Total TD packet count = total_packet_count =
1756  *     DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
1757  *
1758  * Packets transferred up to and including this TRB = packets_transferred =
1759  *     rounddown(total bytes transferred including this TRB / wMaxPacketSize)
1760  *
1761  * TD size = total_packet_count - packets_transferred
1762  *
1763  * It must fit in bits 21:17, so it can't be bigger than 31.
1764  * This is taken care of in the TRB_TD_SIZE() macro
1765  *
1766  * The last TRB in a TD must have the TD size set to zero.
1767  */
1768 static u32 cdnsp_td_remainder(struct cdnsp_device *pdev,
1769 			      int transferred,
1770 			      int trb_buff_len,
1771 			      unsigned int td_total_len,
1772 			      struct cdnsp_request *preq,
1773 			      bool more_trbs_coming,
1774 			      bool zlp)
1775 {
1776 	u32 maxp, total_packet_count;
1777 
1778 	/* Before ZLP driver needs set TD_SIZE = 1. */
1779 	if (zlp)
1780 		return 1;
1781 
1782 	/* One TRB with a zero-length data packet. */
1783 	if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
1784 	    trb_buff_len == td_total_len)
1785 		return 0;
1786 
1787 	maxp = usb_endpoint_maxp(preq->pep->endpoint.desc);
1788 	total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
1789 
1790 	/* Queuing functions don't count the current TRB into transferred. */
1791 	return (total_packet_count - ((transferred + trb_buff_len) / maxp));
1792 }
1793 
1794 static int cdnsp_align_td(struct cdnsp_device *pdev,
1795 			  struct cdnsp_request *preq, u32 enqd_len,
1796 			  u32 *trb_buff_len, struct cdnsp_segment *seg)
1797 {
1798 	struct device *dev = pdev->dev;
1799 	unsigned int unalign;
1800 	unsigned int max_pkt;
1801 	u32 new_buff_len;
1802 
1803 	max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
1804 	unalign = (enqd_len + *trb_buff_len) % max_pkt;
1805 
1806 	/* We got lucky, last normal TRB data on segment is packet aligned. */
1807 	if (unalign == 0)
1808 		return 0;
1809 
1810 	/* Is the last nornal TRB alignable by splitting it. */
1811 	if (*trb_buff_len > unalign) {
1812 		*trb_buff_len -= unalign;
1813 		trace_cdnsp_bounce_align_td_split(preq, *trb_buff_len,
1814 						  enqd_len, 0, unalign);
1815 		return 0;
1816 	}
1817 
1818 	/*
1819 	 * We want enqd_len + trb_buff_len to sum up to a number aligned to
1820 	 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
1821 	 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
1822 	 */
1823 	new_buff_len = max_pkt - (enqd_len % max_pkt);
1824 
1825 	if (new_buff_len > (preq->request.length - enqd_len))
1826 		new_buff_len = (preq->request.length - enqd_len);
1827 
1828 	/* Create a max max_pkt sized bounce buffer pointed to by last trb. */
1829 	if (preq->direction) {
1830 		sg_pcopy_to_buffer(preq->request.sg,
1831 				   preq->request.num_mapped_sgs,
1832 				   seg->bounce_buf, new_buff_len, enqd_len);
1833 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1834 						 max_pkt, DMA_TO_DEVICE);
1835 	} else {
1836 		seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
1837 						 max_pkt, DMA_FROM_DEVICE);
1838 	}
1839 
1840 	if (dma_mapping_error(dev, seg->bounce_dma)) {
1841 		/* Try without aligning.*/
1842 		dev_warn(pdev->dev,
1843 			 "Failed mapping bounce buffer, not aligning\n");
1844 		return 0;
1845 	}
1846 
1847 	*trb_buff_len = new_buff_len;
1848 	seg->bounce_len = new_buff_len;
1849 	seg->bounce_offs = enqd_len;
1850 
1851 	trace_cdnsp_bounce_map(preq, new_buff_len, enqd_len, seg->bounce_dma,
1852 			       unalign);
1853 
1854 	/*
1855 	 * Bounce buffer successful aligned and seg->bounce_dma will be used
1856 	 * in transfer TRB as new transfer buffer address.
1857 	 */
1858 	return 1;
1859 }
1860 
1861 int cdnsp_queue_bulk_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
1862 {
1863 	unsigned int enqd_len, block_len, trb_buff_len, full_len;
1864 	unsigned int start_cycle, num_sgs = 0;
1865 	struct cdnsp_generic_trb *start_trb;
1866 	u32 field, length_field, remainder;
1867 	struct scatterlist *sg = NULL;
1868 	bool more_trbs_coming = true;
1869 	bool need_zero_pkt = false;
1870 	bool zero_len_trb = false;
1871 	struct cdnsp_ring *ring;
1872 	bool first_trb = true;
1873 	unsigned int num_trbs;
1874 	struct cdnsp_ep *pep;
1875 	u64 addr, send_addr;
1876 	int sent_len, ret;
1877 
1878 	ring = cdnsp_request_to_transfer_ring(pdev, preq);
1879 	if (!ring)
1880 		return -EINVAL;
1881 
1882 	full_len = preq->request.length;
1883 
1884 	if (preq->request.num_sgs) {
1885 		num_sgs = preq->request.num_sgs;
1886 		sg = preq->request.sg;
1887 		addr = (u64)sg_dma_address(sg);
1888 		block_len = sg_dma_len(sg);
1889 		num_trbs = count_sg_trbs_needed(preq);
1890 	} else {
1891 		num_trbs = count_trbs_needed(preq);
1892 		addr = (u64)preq->request.dma;
1893 		block_len = full_len;
1894 	}
1895 
1896 	pep = preq->pep;
1897 
1898 	/* Deal with request.zero - need one more td/trb. */
1899 	if (preq->request.zero && preq->request.length &&
1900 	    IS_ALIGNED(full_len, usb_endpoint_maxp(pep->endpoint.desc))) {
1901 		need_zero_pkt = true;
1902 		num_trbs++;
1903 	}
1904 
1905 	ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
1906 	if (ret)
1907 		return ret;
1908 
1909 	/*
1910 	 * workaround 1: STOP EP command on LINK TRB with TC bit set to 1
1911 	 * causes that internal cycle bit can have incorrect state after
1912 	 * command complete. In consequence empty transfer ring can be
1913 	 * incorrectly detected when EP is resumed.
1914 	 * NOP TRB before LINK TRB avoid such scenario. STOP EP command is
1915 	 * then on NOP TRB and internal cycle bit is not changed and have
1916 	 * correct value.
1917 	 */
1918 	if (pep->wa1_nop_trb) {
1919 		field = le32_to_cpu(pep->wa1_nop_trb->trans_event.flags);
1920 		field ^= TRB_CYCLE;
1921 
1922 		pep->wa1_nop_trb->trans_event.flags = cpu_to_le32(field);
1923 		pep->wa1_nop_trb = NULL;
1924 	}
1925 
1926 	/*
1927 	 * Don't give the first TRB to the hardware (by toggling the cycle bit)
1928 	 * until we've finished creating all the other TRBs. The ring's cycle
1929 	 * state may change as we enqueue the other TRBs, so save it too.
1930 	 */
1931 	start_trb = &ring->enqueue->generic;
1932 	start_cycle = ring->cycle_state;
1933 	send_addr = addr;
1934 
1935 	/* Queue the TRBs, even if they are zero-length */
1936 	for (enqd_len = 0; zero_len_trb || first_trb || enqd_len < full_len;
1937 	     enqd_len += trb_buff_len) {
1938 		field = TRB_TYPE(TRB_NORMAL);
1939 
1940 		/* TRB buffer should not cross 64KB boundaries */
1941 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
1942 		trb_buff_len = min(trb_buff_len, block_len);
1943 		if (enqd_len + trb_buff_len > full_len)
1944 			trb_buff_len = full_len - enqd_len;
1945 
1946 		/* Don't change the cycle bit of the first TRB until later */
1947 		if (first_trb) {
1948 			first_trb = false;
1949 			if (start_cycle == 0)
1950 				field |= TRB_CYCLE;
1951 		} else {
1952 			field |= ring->cycle_state;
1953 		}
1954 
1955 		/*
1956 		 * Chain all the TRBs together; clear the chain bit in the last
1957 		 * TRB to indicate it's the last TRB in the chain.
1958 		 */
1959 		if (enqd_len + trb_buff_len < full_len || need_zero_pkt) {
1960 			field |= TRB_CHAIN;
1961 			if (cdnsp_trb_is_link(ring->enqueue + 1)) {
1962 				if (cdnsp_align_td(pdev, preq, enqd_len,
1963 						   &trb_buff_len,
1964 						   ring->enq_seg)) {
1965 					send_addr = ring->enq_seg->bounce_dma;
1966 					/* Assuming TD won't span 2 segs */
1967 					preq->td.bounce_seg = ring->enq_seg;
1968 				}
1969 			}
1970 		}
1971 
1972 		if (enqd_len + trb_buff_len >= full_len) {
1973 			if (need_zero_pkt && !zero_len_trb) {
1974 				zero_len_trb = true;
1975 			} else {
1976 				zero_len_trb = false;
1977 				field &= ~TRB_CHAIN;
1978 				field |= TRB_IOC;
1979 				more_trbs_coming = false;
1980 				need_zero_pkt = false;
1981 				preq->td.last_trb = ring->enqueue;
1982 			}
1983 		}
1984 
1985 		/* Only set interrupt on short packet for OUT endpoints. */
1986 		if (!preq->direction)
1987 			field |= TRB_ISP;
1988 
1989 		/* Set the TRB length, TD size, and interrupter fields. */
1990 		remainder = cdnsp_td_remainder(pdev, enqd_len, trb_buff_len,
1991 					       full_len, preq,
1992 					       more_trbs_coming,
1993 					       zero_len_trb);
1994 
1995 		length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
1996 			TRB_INTR_TARGET(0);
1997 
1998 		cdnsp_queue_trb(pdev, ring, more_trbs_coming,
1999 				lower_32_bits(send_addr),
2000 				upper_32_bits(send_addr),
2001 				length_field,
2002 				field);
2003 
2004 		addr += trb_buff_len;
2005 		sent_len = trb_buff_len;
2006 		while (sg && sent_len >= block_len) {
2007 			/* New sg entry */
2008 			--num_sgs;
2009 			sent_len -= block_len;
2010 			if (num_sgs != 0) {
2011 				sg = sg_next(sg);
2012 				block_len = sg_dma_len(sg);
2013 				addr = (u64)sg_dma_address(sg);
2014 				addr += sent_len;
2015 			}
2016 		}
2017 		block_len -= sent_len;
2018 		send_addr = addr;
2019 	}
2020 
2021 	if (cdnsp_trb_is_link(ring->enqueue + 1)) {
2022 		field = TRB_TYPE(TRB_TR_NOOP) | TRB_IOC;
2023 		if (!ring->cycle_state)
2024 			field |= TRB_CYCLE;
2025 
2026 		pep->wa1_nop_trb = ring->enqueue;
2027 
2028 		cdnsp_queue_trb(pdev, ring, 0, 0x0, 0x0,
2029 				TRB_INTR_TARGET(0), field);
2030 	}
2031 
2032 	cdnsp_check_trb_math(preq, enqd_len);
2033 	ret = cdnsp_giveback_first_trb(pdev, pep, preq->request.stream_id,
2034 				       start_cycle, start_trb);
2035 
2036 	if (ret)
2037 		preq->td.drbl = 1;
2038 
2039 	return 0;
2040 }
2041 
2042 int cdnsp_queue_ctrl_tx(struct cdnsp_device *pdev, struct cdnsp_request *preq)
2043 {
2044 	u32 field, length_field, zlp = 0;
2045 	struct cdnsp_ep *pep = preq->pep;
2046 	struct cdnsp_ring *ep_ring;
2047 	int num_trbs;
2048 	u32 maxp;
2049 	int ret;
2050 
2051 	ep_ring = cdnsp_request_to_transfer_ring(pdev, preq);
2052 	if (!ep_ring)
2053 		return -EINVAL;
2054 
2055 	/* 1 TRB for data, 1 for status */
2056 	num_trbs = (pdev->three_stage_setup) ? 2 : 1;
2057 
2058 	maxp = usb_endpoint_maxp(pep->endpoint.desc);
2059 
2060 	if (preq->request.zero && preq->request.length &&
2061 	    (preq->request.length % maxp == 0)) {
2062 		num_trbs++;
2063 		zlp = 1;
2064 	}
2065 
2066 	ret = cdnsp_prepare_transfer(pdev, preq, num_trbs);
2067 	if (ret)
2068 		return ret;
2069 
2070 	/* If there's data, queue data TRBs */
2071 	if (preq->request.length > 0) {
2072 		field = TRB_TYPE(TRB_DATA);
2073 
2074 		if (zlp)
2075 			field |= TRB_CHAIN;
2076 		else
2077 			field |= TRB_IOC | (pdev->ep0_expect_in ? 0 : TRB_ISP);
2078 
2079 		if (pdev->ep0_expect_in)
2080 			field |= TRB_DIR_IN;
2081 
2082 		length_field = TRB_LEN(preq->request.length) |
2083 			       TRB_TD_SIZE(zlp) | TRB_INTR_TARGET(0);
2084 
2085 		cdnsp_queue_trb(pdev, ep_ring, true,
2086 				lower_32_bits(preq->request.dma),
2087 				upper_32_bits(preq->request.dma), length_field,
2088 				field | ep_ring->cycle_state |
2089 				TRB_SETUPID(pdev->setup_id) |
2090 				pdev->setup_speed);
2091 
2092 		if (zlp) {
2093 			field = TRB_TYPE(TRB_NORMAL) | TRB_IOC;
2094 
2095 			if (!pdev->ep0_expect_in)
2096 				field = TRB_ISP;
2097 
2098 			cdnsp_queue_trb(pdev, ep_ring, true,
2099 					lower_32_bits(preq->request.dma),
2100 					upper_32_bits(preq->request.dma), 0,
2101 					field | ep_ring->cycle_state |
2102 					TRB_SETUPID(pdev->setup_id) |
2103 					pdev->setup_speed);
2104 		}
2105 
2106 		pdev->ep0_stage = CDNSP_DATA_STAGE;
2107 	}
2108 
2109 	/* Save the DMA address of the last TRB in the TD. */
2110 	preq->td.last_trb = ep_ring->enqueue;
2111 
2112 	/* Queue status TRB. */
2113 	if (preq->request.length == 0)
2114 		field = ep_ring->cycle_state;
2115 	else
2116 		field = (ep_ring->cycle_state ^ 1);
2117 
2118 	if (preq->request.length > 0 && pdev->ep0_expect_in)
2119 		field |= TRB_DIR_IN;
2120 
2121 	if (pep->ep_state & EP0_HALTED_STATUS) {
2122 		pep->ep_state &= ~EP0_HALTED_STATUS;
2123 		field |= TRB_SETUPSTAT(TRB_SETUPSTAT_STALL);
2124 	} else {
2125 		field |= TRB_SETUPSTAT(TRB_SETUPSTAT_ACK);
2126 	}
2127 
2128 	cdnsp_queue_trb(pdev, ep_ring, false, 0, 0, TRB_INTR_TARGET(0),
2129 			field | TRB_IOC | TRB_SETUPID(pdev->setup_id) |
2130 			TRB_TYPE(TRB_STATUS) | pdev->setup_speed);
2131 
2132 	cdnsp_ring_ep_doorbell(pdev, pep, preq->request.stream_id);
2133 
2134 	return 0;
2135 }
2136 
2137 int cdnsp_cmd_stop_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
2138 {
2139 	u32 ep_state = GET_EP_CTX_STATE(pep->out_ctx);
2140 	int ret = 0;
2141 
2142 	if (ep_state == EP_STATE_STOPPED || ep_state == EP_STATE_DISABLED ||
2143 	    ep_state == EP_STATE_HALTED) {
2144 		trace_cdnsp_ep_stopped_or_disabled(pep->out_ctx);
2145 		goto ep_stopped;
2146 	}
2147 
2148 	cdnsp_queue_stop_endpoint(pdev, pep->idx);
2149 	cdnsp_ring_cmd_db(pdev);
2150 	ret = cdnsp_wait_for_cmd_compl(pdev);
2151 
2152 	trace_cdnsp_handle_cmd_stop_ep(pep->out_ctx);
2153 
2154 ep_stopped:
2155 	pep->ep_state |= EP_STOPPED;
2156 	return ret;
2157 }
2158 
2159 int cdnsp_cmd_flush_ep(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
2160 {
2161 	int ret;
2162 
2163 	cdnsp_queue_flush_endpoint(pdev, pep->idx);
2164 	cdnsp_ring_cmd_db(pdev);
2165 	ret = cdnsp_wait_for_cmd_compl(pdev);
2166 
2167 	trace_cdnsp_handle_cmd_flush_ep(pep->out_ctx);
2168 
2169 	return ret;
2170 }
2171 
2172 /*
2173  * The transfer burst count field of the isochronous TRB defines the number of
2174  * bursts that are required to move all packets in this TD. Only SuperSpeed
2175  * devices can burst up to bMaxBurst number of packets per service interval.
2176  * This field is zero based, meaning a value of zero in the field means one
2177  * burst. Basically, for everything but SuperSpeed devices, this field will be
2178  * zero.
2179  */
2180 static unsigned int cdnsp_get_burst_count(struct cdnsp_device *pdev,
2181 					  struct cdnsp_request *preq,
2182 					  unsigned int total_packet_count)
2183 {
2184 	unsigned int max_burst;
2185 
2186 	if (pdev->gadget.speed < USB_SPEED_SUPER)
2187 		return 0;
2188 
2189 	max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2190 	return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
2191 }
2192 
2193 /*
2194  * Returns the number of packets in the last "burst" of packets. This field is
2195  * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
2196  * the last burst packet count is equal to the total number of packets in the
2197  * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
2198  * must contain (bMaxBurst + 1) number of packets, but the last burst can
2199  * contain 1 to (bMaxBurst + 1) packets.
2200  */
2201 static unsigned int
2202 	cdnsp_get_last_burst_packet_count(struct cdnsp_device *pdev,
2203 					  struct cdnsp_request *preq,
2204 					  unsigned int total_packet_count)
2205 {
2206 	unsigned int max_burst;
2207 	unsigned int residue;
2208 
2209 	if (pdev->gadget.speed >= USB_SPEED_SUPER) {
2210 		/* bMaxBurst is zero based: 0 means 1 packet per burst. */
2211 		max_burst = preq->pep->endpoint.comp_desc->bMaxBurst;
2212 		residue = total_packet_count % (max_burst + 1);
2213 
2214 		/*
2215 		 * If residue is zero, the last burst contains (max_burst + 1)
2216 		 * number of packets, but the TLBPC field is zero-based.
2217 		 */
2218 		if (residue == 0)
2219 			return max_burst;
2220 
2221 		return residue - 1;
2222 	}
2223 	if (total_packet_count == 0)
2224 		return 0;
2225 
2226 	return total_packet_count - 1;
2227 }
2228 
2229 /* Queue function isoc transfer */
2230 int cdnsp_queue_isoc_tx(struct cdnsp_device *pdev,
2231 			struct cdnsp_request *preq)
2232 {
2233 	unsigned int trb_buff_len, td_len, td_remain_len, block_len;
2234 	unsigned int burst_count, last_burst_pkt;
2235 	unsigned int total_pkt_count, max_pkt;
2236 	struct cdnsp_generic_trb *start_trb;
2237 	struct scatterlist *sg = NULL;
2238 	bool more_trbs_coming = true;
2239 	struct cdnsp_ring *ep_ring;
2240 	unsigned int num_sgs = 0;
2241 	int running_total = 0;
2242 	u32 field, length_field;
2243 	u64 addr, send_addr;
2244 	int start_cycle;
2245 	int trbs_per_td;
2246 	int i, sent_len, ret;
2247 
2248 	ep_ring = preq->pep->ring;
2249 
2250 	td_len = preq->request.length;
2251 
2252 	if (preq->request.num_sgs) {
2253 		num_sgs = preq->request.num_sgs;
2254 		sg = preq->request.sg;
2255 		addr = (u64)sg_dma_address(sg);
2256 		block_len = sg_dma_len(sg);
2257 		trbs_per_td = count_sg_trbs_needed(preq);
2258 	} else {
2259 		addr = (u64)preq->request.dma;
2260 		block_len = td_len;
2261 		trbs_per_td = count_trbs_needed(preq);
2262 	}
2263 
2264 	ret = cdnsp_prepare_transfer(pdev, preq, trbs_per_td);
2265 	if (ret)
2266 		return ret;
2267 
2268 	start_trb = &ep_ring->enqueue->generic;
2269 	start_cycle = ep_ring->cycle_state;
2270 	td_remain_len = td_len;
2271 	send_addr = addr;
2272 
2273 	max_pkt = usb_endpoint_maxp(preq->pep->endpoint.desc);
2274 	total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
2275 
2276 	/* A zero-length transfer still involves at least one packet. */
2277 	if (total_pkt_count == 0)
2278 		total_pkt_count++;
2279 
2280 	burst_count = cdnsp_get_burst_count(pdev, preq, total_pkt_count);
2281 	last_burst_pkt = cdnsp_get_last_burst_packet_count(pdev, preq,
2282 							   total_pkt_count);
2283 
2284 	/*
2285 	 * Set isoc specific data for the first TRB in a TD.
2286 	 * Prevent HW from getting the TRBs by keeping the cycle state
2287 	 * inverted in the first TDs isoc TRB.
2288 	 */
2289 	field = TRB_TYPE(TRB_ISOC) | TRB_TLBPC(last_burst_pkt) |
2290 		TRB_SIA | TRB_TBC(burst_count);
2291 
2292 	if (!start_cycle)
2293 		field |= TRB_CYCLE;
2294 
2295 	/* Fill the rest of the TRB fields, and remaining normal TRBs. */
2296 	for (i = 0; i < trbs_per_td; i++) {
2297 		u32 remainder;
2298 
2299 		/* Calculate TRB length. */
2300 		trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
2301 		trb_buff_len = min(trb_buff_len, block_len);
2302 		if (trb_buff_len > td_remain_len)
2303 			trb_buff_len = td_remain_len;
2304 
2305 		/* Set the TRB length, TD size, & interrupter fields. */
2306 		remainder = cdnsp_td_remainder(pdev, running_total,
2307 					       trb_buff_len, td_len, preq,
2308 					       more_trbs_coming, 0);
2309 
2310 		length_field = TRB_LEN(trb_buff_len) | TRB_TD_SIZE(remainder) |
2311 			TRB_INTR_TARGET(0);
2312 
2313 		/* Only first TRB is isoc, overwrite otherwise. */
2314 		if (i) {
2315 			field = TRB_TYPE(TRB_NORMAL) | ep_ring->cycle_state;
2316 			length_field |= TRB_TD_SIZE(remainder);
2317 		} else {
2318 			length_field |= TRB_TD_SIZE_TBC(burst_count);
2319 		}
2320 
2321 		/* Only set interrupt on short packet for OUT EPs. */
2322 		if (usb_endpoint_dir_out(preq->pep->endpoint.desc))
2323 			field |= TRB_ISP;
2324 
2325 		/* Set the chain bit for all except the last TRB. */
2326 		if (i < trbs_per_td - 1) {
2327 			more_trbs_coming = true;
2328 			field |= TRB_CHAIN;
2329 		} else {
2330 			more_trbs_coming = false;
2331 			preq->td.last_trb = ep_ring->enqueue;
2332 			field |= TRB_IOC;
2333 		}
2334 
2335 		cdnsp_queue_trb(pdev, ep_ring, more_trbs_coming,
2336 				lower_32_bits(send_addr), upper_32_bits(send_addr),
2337 				length_field, field);
2338 
2339 		running_total += trb_buff_len;
2340 		addr += trb_buff_len;
2341 		td_remain_len -= trb_buff_len;
2342 
2343 		sent_len = trb_buff_len;
2344 		while (sg && sent_len >= block_len) {
2345 			/* New sg entry */
2346 			--num_sgs;
2347 			sent_len -= block_len;
2348 			if (num_sgs != 0) {
2349 				sg = sg_next(sg);
2350 				block_len = sg_dma_len(sg);
2351 				addr = (u64)sg_dma_address(sg);
2352 				addr += sent_len;
2353 			}
2354 		}
2355 		block_len -= sent_len;
2356 		send_addr = addr;
2357 	}
2358 
2359 	/* Check TD length */
2360 	if (running_total != td_len) {
2361 		dev_err(pdev->dev, "ISOC TD length unmatch\n");
2362 		ret = -EINVAL;
2363 		goto cleanup;
2364 	}
2365 
2366 	cdnsp_giveback_first_trb(pdev, preq->pep, preq->request.stream_id,
2367 				 start_cycle, start_trb);
2368 
2369 	return 0;
2370 
2371 cleanup:
2372 	/* Clean up a partially enqueued isoc transfer. */
2373 	list_del_init(&preq->td.td_list);
2374 	ep_ring->num_tds--;
2375 
2376 	/*
2377 	 * Use the first TD as a temporary variable to turn the TDs we've
2378 	 * queued into No-ops with a software-owned cycle bit.
2379 	 * That way the hardware won't accidentally start executing bogus TDs
2380 	 * when we partially overwrite them.
2381 	 * td->first_trb and td->start_seg are already set.
2382 	 */
2383 	preq->td.last_trb = ep_ring->enqueue;
2384 	/* Every TRB except the first & last will have its cycle bit flipped. */
2385 	cdnsp_td_to_noop(pdev, ep_ring, &preq->td, true);
2386 
2387 	/* Reset the ring enqueue back to the first TRB and its cycle bit. */
2388 	ep_ring->enqueue = preq->td.first_trb;
2389 	ep_ring->enq_seg = preq->td.start_seg;
2390 	ep_ring->cycle_state = start_cycle;
2391 	return ret;
2392 }
2393 
2394 /****		Command Ring Operations		****/
2395 /*
2396  * Generic function for queuing a command TRB on the command ring.
2397  * Driver queue only one command to ring in the moment.
2398  */
2399 static void cdnsp_queue_command(struct cdnsp_device *pdev,
2400 				u32 field1,
2401 				u32 field2,
2402 				u32 field3,
2403 				u32 field4)
2404 {
2405 	cdnsp_prepare_ring(pdev, pdev->cmd_ring, EP_STATE_RUNNING, 1,
2406 			   GFP_ATOMIC);
2407 
2408 	pdev->cmd.command_trb = pdev->cmd_ring->enqueue;
2409 
2410 	cdnsp_queue_trb(pdev, pdev->cmd_ring, false, field1, field2,
2411 			field3, field4 | pdev->cmd_ring->cycle_state);
2412 }
2413 
2414 /* Queue a slot enable or disable request on the command ring */
2415 void cdnsp_queue_slot_control(struct cdnsp_device *pdev, u32 trb_type)
2416 {
2417 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(trb_type) |
2418 			    SLOT_ID_FOR_TRB(pdev->slot_id));
2419 }
2420 
2421 /* Queue an address device command TRB */
2422 void cdnsp_queue_address_device(struct cdnsp_device *pdev,
2423 				dma_addr_t in_ctx_ptr,
2424 				enum cdnsp_setup_dev setup)
2425 {
2426 	cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2427 			    upper_32_bits(in_ctx_ptr), 0,
2428 			    TRB_TYPE(TRB_ADDR_DEV) |
2429 			    SLOT_ID_FOR_TRB(pdev->slot_id) |
2430 			    (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0));
2431 }
2432 
2433 /* Queue a reset device command TRB */
2434 void cdnsp_queue_reset_device(struct cdnsp_device *pdev)
2435 {
2436 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_RESET_DEV) |
2437 			    SLOT_ID_FOR_TRB(pdev->slot_id));
2438 }
2439 
2440 /* Queue a configure endpoint command TRB */
2441 void cdnsp_queue_configure_endpoint(struct cdnsp_device *pdev,
2442 				    dma_addr_t in_ctx_ptr)
2443 {
2444 	cdnsp_queue_command(pdev, lower_32_bits(in_ctx_ptr),
2445 			    upper_32_bits(in_ctx_ptr), 0,
2446 			    TRB_TYPE(TRB_CONFIG_EP) |
2447 			    SLOT_ID_FOR_TRB(pdev->slot_id));
2448 }
2449 
2450 /*
2451  * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
2452  * activity on an endpoint that is about to be suspended.
2453  */
2454 void cdnsp_queue_stop_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2455 {
2456 	cdnsp_queue_command(pdev, 0, 0, 0, SLOT_ID_FOR_TRB(pdev->slot_id) |
2457 			    EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_STOP_RING));
2458 }
2459 
2460 /* Set Transfer Ring Dequeue Pointer command. */
2461 void cdnsp_queue_new_dequeue_state(struct cdnsp_device *pdev,
2462 				   struct cdnsp_ep *pep,
2463 				   struct cdnsp_dequeue_state *deq_state)
2464 {
2465 	u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
2466 	u32 trb_slot_id = SLOT_ID_FOR_TRB(pdev->slot_id);
2467 	u32 type = TRB_TYPE(TRB_SET_DEQ);
2468 	u32 trb_sct = 0;
2469 	dma_addr_t addr;
2470 
2471 	addr = cdnsp_trb_virt_to_dma(deq_state->new_deq_seg,
2472 				     deq_state->new_deq_ptr);
2473 
2474 	if (deq_state->stream_id)
2475 		trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
2476 
2477 	cdnsp_queue_command(pdev, lower_32_bits(addr) | trb_sct |
2478 			    deq_state->new_cycle_state, upper_32_bits(addr),
2479 			    trb_stream_id, trb_slot_id |
2480 			    EP_ID_FOR_TRB(pep->idx) | type);
2481 }
2482 
2483 void cdnsp_queue_reset_ep(struct cdnsp_device *pdev, unsigned int ep_index)
2484 {
2485 	return cdnsp_queue_command(pdev, 0, 0, 0,
2486 				   SLOT_ID_FOR_TRB(pdev->slot_id) |
2487 				   EP_ID_FOR_TRB(ep_index) |
2488 				   TRB_TYPE(TRB_RESET_EP));
2489 }
2490 
2491 /*
2492  * Queue a halt endpoint request on the command ring.
2493  */
2494 void cdnsp_queue_halt_endpoint(struct cdnsp_device *pdev, unsigned int ep_index)
2495 {
2496 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_HALT_ENDPOINT) |
2497 			    SLOT_ID_FOR_TRB(pdev->slot_id) |
2498 			    EP_ID_FOR_TRB(ep_index));
2499 }
2500 
2501 /*
2502  * Queue a flush endpoint request on the command ring.
2503  */
2504 void  cdnsp_queue_flush_endpoint(struct cdnsp_device *pdev,
2505 				 unsigned int ep_index)
2506 {
2507 	cdnsp_queue_command(pdev, 0, 0, 0, TRB_TYPE(TRB_FLUSH_ENDPOINT) |
2508 			    SLOT_ID_FOR_TRB(pdev->slot_id) |
2509 			    EP_ID_FOR_TRB(ep_index));
2510 }
2511 
2512 void cdnsp_force_header_wakeup(struct cdnsp_device *pdev, int intf_num)
2513 {
2514 	u32 lo, mid;
2515 
2516 	lo = TRB_FH_TO_PACKET_TYPE(TRB_FH_TR_PACKET) |
2517 	     TRB_FH_TO_DEVICE_ADDRESS(pdev->device_address);
2518 	mid = TRB_FH_TR_PACKET_DEV_NOT |
2519 	      TRB_FH_TO_NOT_TYPE(TRB_FH_TR_PACKET_FUNCTION_WAKE) |
2520 	      TRB_FH_TO_INTERFACE(intf_num);
2521 
2522 	cdnsp_queue_command(pdev, lo, mid, 0,
2523 			    TRB_TYPE(TRB_FORCE_HEADER) | SET_PORT_ID(2));
2524 }
2525