1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Cadence CDNSP DRD Driver. 4 * 5 * Copyright (C) 2020 Cadence. 6 * 7 * Author: Pawel Laszczak <pawell@cadence.com> 8 * 9 */ 10 11 #include <linux/moduleparam.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/module.h> 14 #include <linux/iopoll.h> 15 #include <linux/delay.h> 16 #include <linux/log2.h> 17 #include <linux/slab.h> 18 #include <linux/pci.h> 19 #include <linux/irq.h> 20 #include <linux/dmi.h> 21 22 #include "core.h" 23 #include "gadget-export.h" 24 #include "drd.h" 25 #include "cdnsp-gadget.h" 26 #include "cdnsp-trace.h" 27 28 unsigned int cdnsp_port_speed(unsigned int port_status) 29 { 30 /*Detect gadget speed based on PORTSC register*/ 31 if (DEV_SUPERSPEEDPLUS(port_status)) 32 return USB_SPEED_SUPER_PLUS; 33 else if (DEV_SUPERSPEED(port_status)) 34 return USB_SPEED_SUPER; 35 else if (DEV_HIGHSPEED(port_status)) 36 return USB_SPEED_HIGH; 37 else if (DEV_FULLSPEED(port_status)) 38 return USB_SPEED_FULL; 39 40 /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/ 41 return USB_SPEED_UNKNOWN; 42 } 43 44 /* 45 * Given a port state, this function returns a value that would result in the 46 * port being in the same state, if the value was written to the port status 47 * control register. 48 * Save Read Only (RO) bits and save read/write bits where 49 * writing a 0 clears the bit and writing a 1 sets the bit (RWS). 50 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect. 51 */ 52 u32 cdnsp_port_state_to_neutral(u32 state) 53 { 54 /* Save read-only status and port state. */ 55 return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS); 56 } 57 58 /** 59 * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities 60 * with capability ID id. 61 * @base: PCI MMIO registers base address. 62 * @start: Address at which to start looking, (0 or HCC_PARAMS to start at 63 * beginning of list) 64 * @id: Extended capability ID to search for. 65 * 66 * Returns the offset of the next matching extended capability structure. 67 * Some capabilities can occur several times, 68 * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all. 69 */ 70 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id) 71 { 72 u32 offset = start; 73 u32 next; 74 u32 val; 75 76 if (!start || start == HCC_PARAMS_OFFSET) { 77 val = readl(base + HCC_PARAMS_OFFSET); 78 if (val == ~0) 79 return 0; 80 81 offset = HCC_EXT_CAPS(val) << 2; 82 if (!offset) 83 return 0; 84 } 85 86 do { 87 val = readl(base + offset); 88 if (val == ~0) 89 return 0; 90 91 if (EXT_CAPS_ID(val) == id && offset != start) 92 return offset; 93 94 next = EXT_CAPS_NEXT(val); 95 offset += next << 2; 96 } while (next); 97 98 return 0; 99 } 100 101 void cdnsp_set_link_state(struct cdnsp_device *pdev, 102 __le32 __iomem *port_regs, 103 u32 link_state) 104 { 105 int port_num = 0xFF; 106 u32 temp; 107 108 temp = readl(port_regs); 109 temp = cdnsp_port_state_to_neutral(temp); 110 temp |= PORT_WKCONN_E | PORT_WKDISC_E; 111 writel(temp, port_regs); 112 113 temp &= ~PORT_PLS_MASK; 114 temp |= PORT_LINK_STROBE | link_state; 115 116 if (pdev->active_port) 117 port_num = pdev->active_port->port_num; 118 119 trace_cdnsp_handle_port_status(port_num, readl(port_regs)); 120 writel(temp, port_regs); 121 trace_cdnsp_link_state_changed(port_num, readl(port_regs)); 122 } 123 124 static void cdnsp_disable_port(struct cdnsp_device *pdev, 125 __le32 __iomem *port_regs) 126 { 127 u32 temp = cdnsp_port_state_to_neutral(readl(port_regs)); 128 129 writel(temp | PORT_PED, port_regs); 130 } 131 132 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev, 133 __le32 __iomem *port_regs) 134 { 135 u32 portsc = readl(port_regs); 136 137 writel(cdnsp_port_state_to_neutral(portsc) | 138 (portsc & PORT_CHANGE_BITS), port_regs); 139 } 140 141 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 142 { 143 __le32 __iomem *reg; 144 void __iomem *base; 145 u32 offset = 0; 146 147 base = &pdev->cap_regs->hc_capbase; 148 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 149 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 150 151 bit = readl(reg) | bit; 152 writel(bit, reg); 153 } 154 155 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 156 { 157 __le32 __iomem *reg; 158 void __iomem *base; 159 u32 offset = 0; 160 161 base = &pdev->cap_regs->hc_capbase; 162 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 163 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 164 165 bit = readl(reg) & ~bit; 166 writel(bit, reg); 167 } 168 169 /* 170 * Disable interrupts and begin the controller halting process. 171 */ 172 static void cdnsp_quiesce(struct cdnsp_device *pdev) 173 { 174 u32 halted; 175 u32 mask; 176 u32 cmd; 177 178 mask = ~(u32)(CDNSP_IRQS); 179 180 halted = readl(&pdev->op_regs->status) & STS_HALT; 181 if (!halted) 182 mask &= ~(CMD_R_S | CMD_DEVEN); 183 184 cmd = readl(&pdev->op_regs->command); 185 cmd &= mask; 186 writel(cmd, &pdev->op_regs->command); 187 } 188 189 /* 190 * Force controller into halt state. 191 * 192 * Disable any IRQs and clear the run/stop bit. 193 * Controller will complete any current and actively pipelined transactions, and 194 * should halt within 16 ms of the run/stop bit being cleared. 195 * Read controller Halted bit in the status register to see when the 196 * controller is finished. 197 */ 198 int cdnsp_halt(struct cdnsp_device *pdev) 199 { 200 int ret; 201 u32 val; 202 203 cdnsp_quiesce(pdev); 204 205 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val, 206 val & STS_HALT, 1, 207 CDNSP_MAX_HALT_USEC); 208 if (ret) { 209 dev_err(pdev->dev, "ERROR: Device halt failed\n"); 210 return ret; 211 } 212 213 pdev->cdnsp_state |= CDNSP_STATE_HALTED; 214 215 return 0; 216 } 217 218 /* 219 * device controller died, register read returns 0xffffffff, or command never 220 * ends. 221 */ 222 void cdnsp_died(struct cdnsp_device *pdev) 223 { 224 dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n"); 225 pdev->cdnsp_state |= CDNSP_STATE_DYING; 226 cdnsp_halt(pdev); 227 } 228 229 /* 230 * Set the run bit and wait for the device to be running. 231 */ 232 static int cdnsp_start(struct cdnsp_device *pdev) 233 { 234 u32 temp; 235 int ret; 236 237 temp = readl(&pdev->op_regs->command); 238 temp |= (CMD_R_S | CMD_DEVEN); 239 writel(temp, &pdev->op_regs->command); 240 241 pdev->cdnsp_state = 0; 242 243 /* 244 * Wait for the STS_HALT Status bit to be 0 to indicate the device is 245 * running. 246 */ 247 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 248 !(temp & STS_HALT), 1, 249 CDNSP_MAX_HALT_USEC); 250 if (ret) { 251 pdev->cdnsp_state = CDNSP_STATE_DYING; 252 dev_err(pdev->dev, "ERROR: Controller run failed\n"); 253 } 254 255 return ret; 256 } 257 258 /* 259 * Reset a halted controller. 260 * 261 * This resets pipelines, timers, counters, state machines, etc. 262 * Transactions will be terminated immediately, and operational registers 263 * will be set to their defaults. 264 */ 265 int cdnsp_reset(struct cdnsp_device *pdev) 266 { 267 u32 command; 268 u32 temp; 269 int ret; 270 271 temp = readl(&pdev->op_regs->status); 272 273 if (temp == ~(u32)0) { 274 dev_err(pdev->dev, "Device not accessible, reset failed.\n"); 275 return -ENODEV; 276 } 277 278 if ((temp & STS_HALT) == 0) { 279 dev_err(pdev->dev, "Controller not halted, aborting reset.\n"); 280 return -EINVAL; 281 } 282 283 command = readl(&pdev->op_regs->command); 284 command |= CMD_RESET; 285 writel(command, &pdev->op_regs->command); 286 287 ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp, 288 !(temp & CMD_RESET), 1, 289 10 * 1000); 290 if (ret) { 291 dev_err(pdev->dev, "ERROR: Controller reset failed\n"); 292 return ret; 293 } 294 295 /* 296 * CDNSP cannot write any doorbells or operational registers other 297 * than status until the "Controller Not Ready" flag is cleared. 298 */ 299 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 300 !(temp & STS_CNR), 1, 301 10 * 1000); 302 303 if (ret) { 304 dev_err(pdev->dev, "ERROR: Controller not ready to work\n"); 305 return ret; 306 } 307 308 dev_dbg(pdev->dev, "Controller ready to work"); 309 310 return ret; 311 } 312 313 /* 314 * cdnsp_get_endpoint_index - Find the index for an endpoint given its 315 * descriptor.Use the return value to right shift 1 for the bitmask. 316 * 317 * Index = (epnum * 2) + direction - 1, 318 * where direction = 0 for OUT, 1 for IN. 319 * For control endpoints, the IN index is used (OUT index is unused), so 320 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 321 */ 322 static unsigned int 323 cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc) 324 { 325 unsigned int index = (unsigned int)usb_endpoint_num(desc); 326 327 if (usb_endpoint_xfer_control(desc)) 328 return index * 2; 329 330 return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 331 } 332 333 /* 334 * Find the flag for this endpoint (for use in the control context). Use the 335 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 336 * bit 1, etc. 337 */ 338 static unsigned int 339 cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc) 340 { 341 return 1 << (cdnsp_get_endpoint_index(desc) + 1); 342 } 343 344 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 345 { 346 struct cdnsp_device *pdev = pep->pdev; 347 struct usb_request *request; 348 int ret; 349 350 if (preq->epnum == 0 && !list_empty(&pep->pending_list)) { 351 trace_cdnsp_request_enqueue_busy(preq); 352 return -EBUSY; 353 } 354 355 request = &preq->request; 356 request->actual = 0; 357 request->status = -EINPROGRESS; 358 preq->direction = pep->direction; 359 preq->epnum = pep->number; 360 preq->td.drbl = 0; 361 362 ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction); 363 if (ret) { 364 trace_cdnsp_request_enqueue_error(preq); 365 return ret; 366 } 367 368 list_add_tail(&preq->list, &pep->pending_list); 369 370 trace_cdnsp_request_enqueue(preq); 371 372 switch (usb_endpoint_type(pep->endpoint.desc)) { 373 case USB_ENDPOINT_XFER_CONTROL: 374 ret = cdnsp_queue_ctrl_tx(pdev, preq); 375 break; 376 case USB_ENDPOINT_XFER_BULK: 377 case USB_ENDPOINT_XFER_INT: 378 ret = cdnsp_queue_bulk_tx(pdev, preq); 379 break; 380 case USB_ENDPOINT_XFER_ISOC: 381 ret = cdnsp_queue_isoc_tx(pdev, preq); 382 } 383 384 if (ret) 385 goto unmap; 386 387 return 0; 388 389 unmap: 390 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 391 pep->direction); 392 list_del(&preq->list); 393 trace_cdnsp_request_enqueue_error(preq); 394 395 return ret; 396 } 397 398 /* 399 * Remove the request's TD from the endpoint ring. This may cause the 400 * controller to stop USB transfers, potentially stopping in the middle of a 401 * TRB buffer. The controller should pick up where it left off in the TD, 402 * unless a Set Transfer Ring Dequeue Pointer is issued. 403 * 404 * The TRBs that make up the buffers for the canceled request will be "removed" 405 * from the ring. Since the ring is a contiguous structure, they can't be 406 * physically removed. Instead, there are two options: 407 * 408 * 1) If the controller is in the middle of processing the request to be 409 * canceled, we simply move the ring's dequeue pointer past those TRBs 410 * using the Set Transfer Ring Dequeue Pointer command. This will be 411 * the common case, when drivers timeout on the last submitted request 412 * and attempt to cancel. 413 * 414 * 2) If the controller is in the middle of a different TD, we turn the TRBs 415 * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained. 416 * The controller will need to invalidate the any TRBs it has cached after 417 * the stop endpoint command. 418 * 419 * 3) The TD may have completed by the time the Stop Endpoint Command 420 * completes, so software needs to handle that case too. 421 * 422 */ 423 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 424 { 425 struct cdnsp_device *pdev = pep->pdev; 426 int ret_stop = 0; 427 int ret_rem; 428 429 trace_cdnsp_request_dequeue(preq); 430 431 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING) 432 ret_stop = cdnsp_cmd_stop_ep(pdev, pep); 433 434 ret_rem = cdnsp_remove_request(pdev, preq, pep); 435 436 return ret_rem ? ret_rem : ret_stop; 437 } 438 439 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev) 440 { 441 struct cdnsp_input_control_ctx *ctrl_ctx; 442 struct cdnsp_slot_ctx *slot_ctx; 443 struct cdnsp_ep_ctx *ep_ctx; 444 int i; 445 446 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 447 448 /* 449 * When a device's add flag and drop flag are zero, any subsequent 450 * configure endpoint command will leave that endpoint's state 451 * untouched. Make sure we don't leave any old state in the input 452 * endpoint contexts. 453 */ 454 ctrl_ctx->drop_flags = 0; 455 ctrl_ctx->add_flags = 0; 456 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 457 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 458 459 /* Endpoint 0 is always valid */ 460 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 461 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) { 462 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i); 463 ep_ctx->ep_info = 0; 464 ep_ctx->ep_info2 = 0; 465 ep_ctx->deq = 0; 466 ep_ctx->tx_info = 0; 467 } 468 } 469 470 /* Issue a configure endpoint command and wait for it to finish. */ 471 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev) 472 { 473 int ret; 474 475 cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma); 476 cdnsp_ring_cmd_db(pdev); 477 ret = cdnsp_wait_for_cmd_compl(pdev); 478 if (ret) { 479 dev_err(pdev->dev, 480 "ERR: unexpected command completion code 0x%x.\n", ret); 481 return -EINVAL; 482 } 483 484 return ret; 485 } 486 487 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev, 488 struct cdnsp_ep *pep) 489 { 490 struct cdnsp_segment *segment; 491 union cdnsp_trb *event; 492 u32 cycle_state; 493 u32 data; 494 495 event = pdev->event_ring->dequeue; 496 segment = pdev->event_ring->deq_seg; 497 cycle_state = pdev->event_ring->cycle_state; 498 499 while (1) { 500 data = le32_to_cpu(event->trans_event.flags); 501 502 /* Check the owner of the TRB. */ 503 if ((data & TRB_CYCLE) != cycle_state) 504 break; 505 506 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER && 507 TRB_TO_EP_ID(data) == (pep->idx + 1)) { 508 data |= TRB_EVENT_INVALIDATE; 509 event->trans_event.flags = cpu_to_le32(data); 510 } 511 512 if (cdnsp_last_trb_on_seg(segment, event)) { 513 cycle_state ^= 1; 514 segment = pdev->event_ring->deq_seg->next; 515 event = segment->trbs; 516 } else { 517 event++; 518 } 519 } 520 } 521 522 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev) 523 { 524 struct cdnsp_segment *event_deq_seg; 525 union cdnsp_trb *cmd_trb; 526 dma_addr_t cmd_deq_dma; 527 union cdnsp_trb *event; 528 u32 cycle_state; 529 int ret, val; 530 u64 cmd_dma; 531 u32 flags; 532 533 cmd_trb = pdev->cmd.command_trb; 534 pdev->cmd.status = 0; 535 536 trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic); 537 538 ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val, 539 !CMD_RING_BUSY(val), 1, 540 CDNSP_CMD_TIMEOUT); 541 if (ret) { 542 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n"); 543 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic); 544 pdev->cdnsp_state = CDNSP_STATE_DYING; 545 return -ETIMEDOUT; 546 } 547 548 event = pdev->event_ring->dequeue; 549 event_deq_seg = pdev->event_ring->deq_seg; 550 cycle_state = pdev->event_ring->cycle_state; 551 552 cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb); 553 if (!cmd_deq_dma) 554 return -EINVAL; 555 556 while (1) { 557 flags = le32_to_cpu(event->event_cmd.flags); 558 559 /* Check the owner of the TRB. */ 560 if ((flags & TRB_CYCLE) != cycle_state) 561 return -EINVAL; 562 563 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb); 564 565 /* 566 * Check whether the completion event is for last queued 567 * command. 568 */ 569 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION || 570 cmd_dma != (u64)cmd_deq_dma) { 571 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 572 event++; 573 continue; 574 } 575 576 if (cdnsp_last_trb_on_ring(pdev->event_ring, 577 event_deq_seg, event)) 578 cycle_state ^= 1; 579 580 event_deq_seg = event_deq_seg->next; 581 event = event_deq_seg->trbs; 582 continue; 583 } 584 585 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic); 586 587 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)); 588 if (pdev->cmd.status == COMP_SUCCESS) 589 return 0; 590 591 return -pdev->cmd.status; 592 } 593 } 594 595 int cdnsp_halt_endpoint(struct cdnsp_device *pdev, 596 struct cdnsp_ep *pep, 597 int value) 598 { 599 int ret; 600 601 trace_cdnsp_ep_halt(value ? "Set" : "Clear"); 602 603 ret = cdnsp_cmd_stop_ep(pdev, pep); 604 if (ret) 605 return ret; 606 607 if (value) { 608 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) { 609 cdnsp_queue_halt_endpoint(pdev, pep->idx); 610 cdnsp_ring_cmd_db(pdev); 611 ret = cdnsp_wait_for_cmd_compl(pdev); 612 } 613 614 pep->ep_state |= EP_HALTED; 615 } else { 616 cdnsp_queue_reset_ep(pdev, pep->idx); 617 cdnsp_ring_cmd_db(pdev); 618 ret = cdnsp_wait_for_cmd_compl(pdev); 619 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx); 620 621 if (ret) 622 return ret; 623 624 pep->ep_state &= ~EP_HALTED; 625 626 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE)) 627 cdnsp_ring_doorbell_for_active_rings(pdev, pep); 628 629 pep->ep_state &= ~EP_WEDGE; 630 } 631 632 return 0; 633 } 634 635 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev, 636 struct cdnsp_ep *pep) 637 { 638 struct cdnsp_input_control_ctx *ctrl_ctx; 639 struct cdnsp_slot_ctx *slot_ctx; 640 int ret = 0; 641 u32 ep_sts; 642 int i; 643 644 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 645 646 /* Don't issue the command if there's no endpoints to update. */ 647 if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0) 648 return 0; 649 650 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 651 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 652 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 653 654 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 655 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 656 for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) { 657 __le32 le32 = cpu_to_le32(BIT(i)); 658 659 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) || 660 (ctrl_ctx->add_flags & le32) || i == 1) { 661 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 662 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 663 break; 664 } 665 } 666 667 ep_sts = GET_EP_CTX_STATE(pep->out_ctx); 668 669 if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) && 670 ep_sts == EP_STATE_DISABLED) || 671 (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags)) 672 ret = cdnsp_configure_endpoint(pdev); 673 674 trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx)); 675 trace_cdnsp_handle_cmd_config_ep(pep->out_ctx); 676 677 cdnsp_zero_in_ctx(pdev); 678 679 return ret; 680 } 681 682 /* 683 * This submits a Reset Device Command, which will set the device state to 0, 684 * set the device address to 0, and disable all the endpoints except the default 685 * control endpoint. The USB core should come back and call 686 * cdnsp_setup_device(), and then re-set up the configuration. 687 */ 688 int cdnsp_reset_device(struct cdnsp_device *pdev) 689 { 690 struct cdnsp_slot_ctx *slot_ctx; 691 int slot_state; 692 int ret, i; 693 694 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 695 slot_ctx->dev_info = 0; 696 pdev->device_address = 0; 697 698 /* If device is not setup, there is no point in resetting it. */ 699 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 700 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 701 trace_cdnsp_reset_device(slot_ctx); 702 703 if (slot_state <= SLOT_STATE_DEFAULT && 704 pdev->eps[0].ep_state & EP_HALTED) { 705 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0); 706 } 707 708 /* 709 * During Reset Device command controller shall transition the 710 * endpoint ep0 to the Running State. 711 */ 712 pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED); 713 pdev->eps[0].ep_state |= EP_ENABLED; 714 715 if (slot_state <= SLOT_STATE_DEFAULT) 716 return 0; 717 718 cdnsp_queue_reset_device(pdev); 719 cdnsp_ring_cmd_db(pdev); 720 ret = cdnsp_wait_for_cmd_compl(pdev); 721 722 /* 723 * After Reset Device command all not default endpoints 724 * are in Disabled state. 725 */ 726 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) 727 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED; 728 729 trace_cdnsp_handle_cmd_reset_dev(slot_ctx); 730 731 if (ret) 732 dev_err(pdev->dev, "Reset device failed with error code %d", 733 ret); 734 735 return ret; 736 } 737 738 /* 739 * Sets the MaxPStreams field and the Linear Stream Array field. 740 * Sets the dequeue pointer to the stream context array. 741 */ 742 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev, 743 struct cdnsp_ep_ctx *ep_ctx, 744 struct cdnsp_stream_info *stream_info) 745 { 746 u32 max_primary_streams; 747 748 /* MaxPStreams is the number of stream context array entries, not the 749 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 750 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 751 */ 752 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 753 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 754 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 755 | EP_HAS_LSA); 756 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 757 } 758 759 /* 760 * The drivers use this function to prepare a bulk endpoints to use streams. 761 * 762 * Don't allow the call to succeed if endpoint only supports one stream 763 * (which means it doesn't support streams at all). 764 */ 765 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep) 766 { 767 unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc); 768 unsigned int num_stream_ctxs; 769 int ret; 770 771 if (num_streams == 0) 772 return 0; 773 774 if (num_streams > STREAM_NUM_STREAMS) 775 return -EINVAL; 776 777 /* 778 * Add two to the number of streams requested to account for 779 * stream 0 that is reserved for controller usage and one additional 780 * for TASK SET FULL response. 781 */ 782 num_streams += 2; 783 784 /* The stream context array size must be a power of two */ 785 num_stream_ctxs = roundup_pow_of_two(num_streams); 786 787 trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams); 788 789 ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams); 790 if (ret) 791 return ret; 792 793 cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info); 794 795 pep->ep_state |= EP_HAS_STREAMS; 796 pep->stream_info.td_count = 0; 797 pep->stream_info.first_prime_det = 0; 798 799 /* Subtract 1 for stream 0, which drivers can't use. */ 800 return num_streams - 1; 801 } 802 803 int cdnsp_disable_slot(struct cdnsp_device *pdev) 804 { 805 int ret; 806 807 cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT); 808 cdnsp_ring_cmd_db(pdev); 809 ret = cdnsp_wait_for_cmd_compl(pdev); 810 811 pdev->slot_id = 0; 812 pdev->active_port = NULL; 813 814 trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 815 816 memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE); 817 memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE); 818 819 return ret; 820 } 821 822 int cdnsp_enable_slot(struct cdnsp_device *pdev) 823 { 824 struct cdnsp_slot_ctx *slot_ctx; 825 int slot_state; 826 int ret; 827 828 /* If device is not setup, there is no point in resetting it */ 829 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 830 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 831 832 if (slot_state != SLOT_STATE_DISABLED) 833 return 0; 834 835 cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT); 836 cdnsp_ring_cmd_db(pdev); 837 ret = cdnsp_wait_for_cmd_compl(pdev); 838 if (ret) 839 goto show_trace; 840 841 pdev->slot_id = 1; 842 843 show_trace: 844 trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 845 846 return ret; 847 } 848 849 /* 850 * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY 851 * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS. 852 */ 853 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup) 854 { 855 struct cdnsp_input_control_ctx *ctrl_ctx; 856 struct cdnsp_slot_ctx *slot_ctx; 857 int dev_state = 0; 858 int ret; 859 860 if (!pdev->slot_id) { 861 trace_cdnsp_slot_id("incorrect"); 862 return -EINVAL; 863 } 864 865 if (!pdev->active_port->port_num) 866 return -EINVAL; 867 868 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 869 dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 870 871 if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) { 872 trace_cdnsp_slot_already_in_default(slot_ctx); 873 return 0; 874 } 875 876 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 877 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 878 879 if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) { 880 ret = cdnsp_setup_addressable_priv_dev(pdev); 881 if (ret) 882 return ret; 883 } 884 885 cdnsp_copy_ep0_dequeue_into_input_ctx(pdev); 886 887 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 888 ctrl_ctx->drop_flags = 0; 889 890 trace_cdnsp_setup_device_slot(slot_ctx); 891 892 cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup); 893 cdnsp_ring_cmd_db(pdev); 894 ret = cdnsp_wait_for_cmd_compl(pdev); 895 896 trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx)); 897 898 /* Zero the input context control for later use. */ 899 ctrl_ctx->add_flags = 0; 900 ctrl_ctx->drop_flags = 0; 901 902 return ret; 903 } 904 905 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev, 906 struct usb_request *req, 907 int enable) 908 { 909 if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable) 910 return; 911 912 trace_cdnsp_lpm(enable); 913 914 if (enable) 915 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE, 916 &pdev->active_port->regs->portpmsc); 917 else 918 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc); 919 } 920 921 static int cdnsp_get_frame(struct cdnsp_device *pdev) 922 { 923 return readl(&pdev->run_regs->microframe_index) >> 3; 924 } 925 926 static int cdnsp_gadget_ep_enable(struct usb_ep *ep, 927 const struct usb_endpoint_descriptor *desc) 928 { 929 struct cdnsp_input_control_ctx *ctrl_ctx; 930 struct cdnsp_device *pdev; 931 struct cdnsp_ep *pep; 932 unsigned long flags; 933 u32 added_ctxs; 934 int ret; 935 936 if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || 937 !desc->wMaxPacketSize) 938 return -EINVAL; 939 940 pep = to_cdnsp_ep(ep); 941 pdev = pep->pdev; 942 pep->ep_state &= ~EP_UNCONFIGURED; 943 944 if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED, 945 "%s is already enabled\n", pep->name)) 946 return 0; 947 948 spin_lock_irqsave(&pdev->lock, flags); 949 950 added_ctxs = cdnsp_get_endpoint_flag(desc); 951 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 952 dev_err(pdev->dev, "ERROR: Bad endpoint number\n"); 953 ret = -EINVAL; 954 goto unlock; 955 } 956 957 pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; 958 959 if (pdev->gadget.speed == USB_SPEED_FULL) { 960 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT) 961 pep->interval = desc->bInterval << 3; 962 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) 963 pep->interval = BIT(desc->bInterval - 1) << 3; 964 } 965 966 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) { 967 if (pep->interval > BIT(12)) { 968 dev_err(pdev->dev, "bInterval %d not supported\n", 969 desc->bInterval); 970 ret = -EINVAL; 971 goto unlock; 972 } 973 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 974 } 975 976 ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC); 977 if (ret) 978 goto unlock; 979 980 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 981 ctrl_ctx->add_flags = cpu_to_le32(added_ctxs); 982 ctrl_ctx->drop_flags = 0; 983 984 ret = cdnsp_update_eps_configuration(pdev, pep); 985 if (ret) { 986 cdnsp_free_endpoint_rings(pdev, pep); 987 goto unlock; 988 } 989 990 pep->ep_state |= EP_ENABLED; 991 pep->ep_state &= ~EP_STOPPED; 992 993 unlock: 994 trace_cdnsp_ep_enable_end(pep, 0); 995 spin_unlock_irqrestore(&pdev->lock, flags); 996 997 return ret; 998 } 999 1000 static int cdnsp_gadget_ep_disable(struct usb_ep *ep) 1001 { 1002 struct cdnsp_input_control_ctx *ctrl_ctx; 1003 struct cdnsp_request *preq; 1004 struct cdnsp_device *pdev; 1005 struct cdnsp_ep *pep; 1006 unsigned long flags; 1007 u32 drop_flag; 1008 int ret = 0; 1009 1010 if (!ep) 1011 return -EINVAL; 1012 1013 pep = to_cdnsp_ep(ep); 1014 pdev = pep->pdev; 1015 1016 spin_lock_irqsave(&pdev->lock, flags); 1017 1018 if (!(pep->ep_state & EP_ENABLED)) { 1019 dev_err(pdev->dev, "%s is already disabled\n", pep->name); 1020 ret = -EINVAL; 1021 goto finish; 1022 } 1023 1024 pep->ep_state |= EP_DIS_IN_RROGRESS; 1025 1026 /* Endpoint was unconfigured by Reset Device command. */ 1027 if (!(pep->ep_state & EP_UNCONFIGURED)) { 1028 cdnsp_cmd_stop_ep(pdev, pep); 1029 cdnsp_cmd_flush_ep(pdev, pep); 1030 } 1031 1032 /* Remove all queued USB requests. */ 1033 while (!list_empty(&pep->pending_list)) { 1034 preq = next_request(&pep->pending_list); 1035 cdnsp_ep_dequeue(pep, preq); 1036 } 1037 1038 cdnsp_invalidate_ep_events(pdev, pep); 1039 1040 pep->ep_state &= ~EP_DIS_IN_RROGRESS; 1041 drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc); 1042 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 1043 ctrl_ctx->drop_flags = cpu_to_le32(drop_flag); 1044 ctrl_ctx->add_flags = 0; 1045 1046 cdnsp_endpoint_zero(pdev, pep); 1047 1048 if (!(pep->ep_state & EP_UNCONFIGURED)) 1049 ret = cdnsp_update_eps_configuration(pdev, pep); 1050 1051 cdnsp_free_endpoint_rings(pdev, pep); 1052 1053 pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED); 1054 pep->ep_state |= EP_STOPPED; 1055 1056 finish: 1057 trace_cdnsp_ep_disable_end(pep, 0); 1058 spin_unlock_irqrestore(&pdev->lock, flags); 1059 1060 return ret; 1061 } 1062 1063 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep, 1064 gfp_t gfp_flags) 1065 { 1066 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1067 struct cdnsp_request *preq; 1068 1069 preq = kzalloc(sizeof(*preq), gfp_flags); 1070 if (!preq) 1071 return NULL; 1072 1073 preq->epnum = pep->number; 1074 preq->pep = pep; 1075 1076 trace_cdnsp_alloc_request(preq); 1077 1078 return &preq->request; 1079 } 1080 1081 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep, 1082 struct usb_request *request) 1083 { 1084 struct cdnsp_request *preq = to_cdnsp_request(request); 1085 1086 trace_cdnsp_free_request(preq); 1087 kfree(preq); 1088 } 1089 1090 static int cdnsp_gadget_ep_queue(struct usb_ep *ep, 1091 struct usb_request *request, 1092 gfp_t gfp_flags) 1093 { 1094 struct cdnsp_request *preq; 1095 struct cdnsp_device *pdev; 1096 struct cdnsp_ep *pep; 1097 unsigned long flags; 1098 int ret; 1099 1100 if (!request || !ep) 1101 return -EINVAL; 1102 1103 pep = to_cdnsp_ep(ep); 1104 pdev = pep->pdev; 1105 1106 if (!(pep->ep_state & EP_ENABLED)) { 1107 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n", 1108 pep->name); 1109 return -EINVAL; 1110 } 1111 1112 preq = to_cdnsp_request(request); 1113 spin_lock_irqsave(&pdev->lock, flags); 1114 ret = cdnsp_ep_enqueue(pep, preq); 1115 spin_unlock_irqrestore(&pdev->lock, flags); 1116 1117 return ret; 1118 } 1119 1120 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep, 1121 struct usb_request *request) 1122 { 1123 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1124 struct cdnsp_device *pdev = pep->pdev; 1125 unsigned long flags; 1126 int ret; 1127 1128 if (request->status != -EINPROGRESS) 1129 return 0; 1130 1131 if (!pep->endpoint.desc) { 1132 dev_err(pdev->dev, 1133 "%s: can't dequeue to disabled endpoint\n", 1134 pep->name); 1135 return -ESHUTDOWN; 1136 } 1137 1138 /* Requests has been dequeued during disabling endpoint. */ 1139 if (!(pep->ep_state & EP_ENABLED)) 1140 return 0; 1141 1142 spin_lock_irqsave(&pdev->lock, flags); 1143 ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request)); 1144 spin_unlock_irqrestore(&pdev->lock, flags); 1145 1146 return ret; 1147 } 1148 1149 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value) 1150 { 1151 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1152 struct cdnsp_device *pdev = pep->pdev; 1153 struct cdnsp_request *preq; 1154 unsigned long flags; 1155 int ret; 1156 1157 spin_lock_irqsave(&pdev->lock, flags); 1158 1159 preq = next_request(&pep->pending_list); 1160 if (value) { 1161 if (preq) { 1162 trace_cdnsp_ep_busy_try_halt_again(pep, 0); 1163 ret = -EAGAIN; 1164 goto done; 1165 } 1166 } 1167 1168 ret = cdnsp_halt_endpoint(pdev, pep, value); 1169 1170 done: 1171 spin_unlock_irqrestore(&pdev->lock, flags); 1172 return ret; 1173 } 1174 1175 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep) 1176 { 1177 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1178 struct cdnsp_device *pdev = pep->pdev; 1179 unsigned long flags; 1180 int ret; 1181 1182 spin_lock_irqsave(&pdev->lock, flags); 1183 pep->ep_state |= EP_WEDGE; 1184 ret = cdnsp_halt_endpoint(pdev, pep, 1); 1185 spin_unlock_irqrestore(&pdev->lock, flags); 1186 1187 return ret; 1188 } 1189 1190 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = { 1191 .enable = cdnsp_gadget_ep_enable, 1192 .disable = cdnsp_gadget_ep_disable, 1193 .alloc_request = cdnsp_gadget_ep_alloc_request, 1194 .free_request = cdnsp_gadget_ep_free_request, 1195 .queue = cdnsp_gadget_ep_queue, 1196 .dequeue = cdnsp_gadget_ep_dequeue, 1197 .set_halt = cdnsp_gadget_ep_set_halt, 1198 .set_wedge = cdnsp_gadget_ep_set_wedge, 1199 }; 1200 1201 static const struct usb_ep_ops cdnsp_gadget_ep_ops = { 1202 .enable = cdnsp_gadget_ep_enable, 1203 .disable = cdnsp_gadget_ep_disable, 1204 .alloc_request = cdnsp_gadget_ep_alloc_request, 1205 .free_request = cdnsp_gadget_ep_free_request, 1206 .queue = cdnsp_gadget_ep_queue, 1207 .dequeue = cdnsp_gadget_ep_dequeue, 1208 .set_halt = cdnsp_gadget_ep_set_halt, 1209 .set_wedge = cdnsp_gadget_ep_set_wedge, 1210 }; 1211 1212 void cdnsp_gadget_giveback(struct cdnsp_ep *pep, 1213 struct cdnsp_request *preq, 1214 int status) 1215 { 1216 struct cdnsp_device *pdev = pep->pdev; 1217 1218 list_del(&preq->list); 1219 1220 if (preq->request.status == -EINPROGRESS) 1221 preq->request.status = status; 1222 1223 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 1224 preq->direction); 1225 1226 trace_cdnsp_request_giveback(preq); 1227 1228 if (preq != &pdev->ep0_preq) { 1229 spin_unlock(&pdev->lock); 1230 usb_gadget_giveback_request(&pep->endpoint, &preq->request); 1231 spin_lock(&pdev->lock); 1232 } 1233 } 1234 1235 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = { 1236 .bLength = USB_DT_ENDPOINT_SIZE, 1237 .bDescriptorType = USB_DT_ENDPOINT, 1238 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 1239 }; 1240 1241 static int cdnsp_run(struct cdnsp_device *pdev, 1242 enum usb_device_speed speed) 1243 { 1244 u32 fs_speed = 0; 1245 u32 temp; 1246 int ret; 1247 1248 temp = readl(&pdev->ir_set->irq_control); 1249 temp &= ~IMOD_INTERVAL_MASK; 1250 temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK); 1251 writel(temp, &pdev->ir_set->irq_control); 1252 1253 temp = readl(&pdev->port3x_regs->mode_addr); 1254 1255 switch (speed) { 1256 case USB_SPEED_SUPER_PLUS: 1257 temp |= CFG_3XPORT_SSP_SUPPORT; 1258 break; 1259 case USB_SPEED_SUPER: 1260 temp &= ~CFG_3XPORT_SSP_SUPPORT; 1261 break; 1262 case USB_SPEED_HIGH: 1263 break; 1264 case USB_SPEED_FULL: 1265 fs_speed = PORT_REG6_FORCE_FS; 1266 break; 1267 default: 1268 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n", 1269 speed); 1270 fallthrough; 1271 case USB_SPEED_UNKNOWN: 1272 /* Default to superspeed. */ 1273 speed = USB_SPEED_SUPER; 1274 break; 1275 } 1276 1277 if (speed >= USB_SPEED_SUPER) { 1278 writel(temp, &pdev->port3x_regs->mode_addr); 1279 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc, 1280 XDEV_RXDETECT); 1281 } else { 1282 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1283 } 1284 1285 cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc, 1286 XDEV_RXDETECT); 1287 1288 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1289 1290 writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6); 1291 1292 ret = cdnsp_start(pdev); 1293 if (ret) { 1294 ret = -ENODEV; 1295 goto err; 1296 } 1297 1298 temp = readl(&pdev->op_regs->command); 1299 temp |= (CMD_INTE); 1300 writel(temp, &pdev->op_regs->command); 1301 1302 temp = readl(&pdev->ir_set->irq_pending); 1303 writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending); 1304 1305 trace_cdnsp_init("Controller ready to work"); 1306 return 0; 1307 err: 1308 cdnsp_halt(pdev); 1309 return ret; 1310 } 1311 1312 static int cdnsp_gadget_udc_start(struct usb_gadget *g, 1313 struct usb_gadget_driver *driver) 1314 { 1315 enum usb_device_speed max_speed = driver->max_speed; 1316 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1317 unsigned long flags; 1318 int ret; 1319 1320 spin_lock_irqsave(&pdev->lock, flags); 1321 pdev->gadget_driver = driver; 1322 1323 /* limit speed if necessary */ 1324 max_speed = min(driver->max_speed, g->max_speed); 1325 ret = cdnsp_run(pdev, max_speed); 1326 1327 spin_unlock_irqrestore(&pdev->lock, flags); 1328 1329 return ret; 1330 } 1331 1332 /* 1333 * Update Event Ring Dequeue Pointer: 1334 * - When all events have finished 1335 * - To avoid "Event Ring Full Error" condition 1336 */ 1337 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev, 1338 union cdnsp_trb *event_ring_deq, 1339 u8 clear_ehb) 1340 { 1341 u64 temp_64; 1342 dma_addr_t deq; 1343 1344 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue); 1345 1346 /* If necessary, update the HW's version of the event ring deq ptr. */ 1347 if (event_ring_deq != pdev->event_ring->dequeue) { 1348 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, 1349 pdev->event_ring->dequeue); 1350 temp_64 &= ERST_PTR_MASK; 1351 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK); 1352 } 1353 1354 /* Clear the event handler busy flag (RW1C). */ 1355 if (clear_ehb) 1356 temp_64 |= ERST_EHB; 1357 else 1358 temp_64 &= ~ERST_EHB; 1359 1360 cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue); 1361 } 1362 1363 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev) 1364 { 1365 struct cdnsp_segment *seg; 1366 u64 val_64; 1367 int i; 1368 1369 cdnsp_initialize_ring_info(pdev->cmd_ring); 1370 1371 seg = pdev->cmd_ring->first_seg; 1372 for (i = 0; i < pdev->cmd_ring->num_segs; i++) { 1373 memset(seg->trbs, 0, 1374 sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1)); 1375 seg = seg->next; 1376 } 1377 1378 /* Set the address in the Command Ring Control register. */ 1379 val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); 1380 val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | 1381 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | 1382 pdev->cmd_ring->cycle_state; 1383 cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); 1384 } 1385 1386 static void cdnsp_consume_all_events(struct cdnsp_device *pdev) 1387 { 1388 struct cdnsp_segment *event_deq_seg; 1389 union cdnsp_trb *event_ring_deq; 1390 union cdnsp_trb *event; 1391 u32 cycle_bit; 1392 1393 event_ring_deq = pdev->event_ring->dequeue; 1394 event_deq_seg = pdev->event_ring->deq_seg; 1395 event = pdev->event_ring->dequeue; 1396 1397 /* Update ring dequeue pointer. */ 1398 while (1) { 1399 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE); 1400 1401 /* Does the controller or driver own the TRB? */ 1402 if (cycle_bit != pdev->event_ring->cycle_state) 1403 break; 1404 1405 cdnsp_inc_deq(pdev, pdev->event_ring); 1406 1407 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 1408 event++; 1409 continue; 1410 } 1411 1412 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg, 1413 event)) 1414 cycle_bit ^= 1; 1415 1416 event_deq_seg = event_deq_seg->next; 1417 event = event_deq_seg->trbs; 1418 } 1419 1420 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); 1421 } 1422 1423 static void cdnsp_stop(struct cdnsp_device *pdev) 1424 { 1425 u32 temp; 1426 1427 cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]); 1428 1429 /* Remove internally queued request for ep0. */ 1430 if (!list_empty(&pdev->eps[0].pending_list)) { 1431 struct cdnsp_request *req; 1432 1433 req = next_request(&pdev->eps[0].pending_list); 1434 if (req == &pdev->ep0_preq) 1435 cdnsp_ep_dequeue(&pdev->eps[0], req); 1436 } 1437 1438 cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc); 1439 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1440 cdnsp_disable_slot(pdev); 1441 cdnsp_halt(pdev); 1442 1443 temp = readl(&pdev->op_regs->status); 1444 writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status); 1445 temp = readl(&pdev->ir_set->irq_pending); 1446 writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending); 1447 1448 cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc); 1449 cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc); 1450 1451 /* Clear interrupt line */ 1452 temp = readl(&pdev->ir_set->irq_pending); 1453 temp |= IMAN_IP; 1454 writel(temp, &pdev->ir_set->irq_pending); 1455 1456 cdnsp_consume_all_events(pdev); 1457 cdnsp_clear_cmd_ring(pdev); 1458 1459 trace_cdnsp_exit("Controller stopped."); 1460 } 1461 1462 /* 1463 * Stop controller. 1464 * This function is called by the gadget core when the driver is removed. 1465 * Disable slot, disable IRQs, and quiesce the controller. 1466 */ 1467 static int cdnsp_gadget_udc_stop(struct usb_gadget *g) 1468 { 1469 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1470 unsigned long flags; 1471 1472 spin_lock_irqsave(&pdev->lock, flags); 1473 cdnsp_stop(pdev); 1474 pdev->gadget_driver = NULL; 1475 spin_unlock_irqrestore(&pdev->lock, flags); 1476 1477 return 0; 1478 } 1479 1480 static int cdnsp_gadget_get_frame(struct usb_gadget *g) 1481 { 1482 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1483 1484 return cdnsp_get_frame(pdev); 1485 } 1486 1487 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev) 1488 { 1489 struct cdnsp_port_regs __iomem *port_regs; 1490 u32 portpm, portsc; 1491 1492 port_regs = pdev->active_port->regs; 1493 portsc = readl(&port_regs->portsc) & PORT_PLS_MASK; 1494 1495 /* Remote wakeup feature is not enabled by host. */ 1496 if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) { 1497 portpm = readl(&port_regs->portpmsc); 1498 1499 if (!(portpm & PORT_RWE)) 1500 return; 1501 } 1502 1503 if (portsc == XDEV_U3 && !pdev->may_wakeup) 1504 return; 1505 1506 cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0); 1507 1508 pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING; 1509 } 1510 1511 static int cdnsp_gadget_wakeup(struct usb_gadget *g) 1512 { 1513 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1514 unsigned long flags; 1515 1516 spin_lock_irqsave(&pdev->lock, flags); 1517 __cdnsp_gadget_wakeup(pdev); 1518 spin_unlock_irqrestore(&pdev->lock, flags); 1519 1520 return 0; 1521 } 1522 1523 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g, 1524 int is_selfpowered) 1525 { 1526 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1527 unsigned long flags; 1528 1529 spin_lock_irqsave(&pdev->lock, flags); 1530 g->is_selfpowered = !!is_selfpowered; 1531 spin_unlock_irqrestore(&pdev->lock, flags); 1532 1533 return 0; 1534 } 1535 1536 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on) 1537 { 1538 struct cdnsp_device *pdev = gadget_to_cdnsp(gadget); 1539 struct cdns *cdns = dev_get_drvdata(pdev->dev); 1540 unsigned long flags; 1541 1542 trace_cdnsp_pullup(is_on); 1543 1544 /* 1545 * Disable events handling while controller is being 1546 * enabled/disabled. 1547 */ 1548 disable_irq(cdns->dev_irq); 1549 spin_lock_irqsave(&pdev->lock, flags); 1550 1551 if (!is_on) { 1552 cdnsp_reset_device(pdev); 1553 cdns_clear_vbus(cdns); 1554 } else { 1555 cdns_set_vbus(cdns); 1556 } 1557 1558 spin_unlock_irqrestore(&pdev->lock, flags); 1559 enable_irq(cdns->dev_irq); 1560 1561 return 0; 1562 } 1563 1564 static const struct usb_gadget_ops cdnsp_gadget_ops = { 1565 .get_frame = cdnsp_gadget_get_frame, 1566 .wakeup = cdnsp_gadget_wakeup, 1567 .set_selfpowered = cdnsp_gadget_set_selfpowered, 1568 .pullup = cdnsp_gadget_pullup, 1569 .udc_start = cdnsp_gadget_udc_start, 1570 .udc_stop = cdnsp_gadget_udc_stop, 1571 }; 1572 1573 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev, 1574 struct cdnsp_ep *pep) 1575 { 1576 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1577 int endpoints; 1578 1579 reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID); 1580 1581 if (!pep->direction) { 1582 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET); 1583 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET); 1584 pep->buffering = (pep->buffering + 1) / 2; 1585 pep->buffering_period = (pep->buffering_period + 1) / 2; 1586 return; 1587 } 1588 1589 endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2; 1590 1591 /* Set to XBUF_TX_TAG_MASK_0 register. */ 1592 reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32); 1593 /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */ 1594 reg += pep->number * sizeof(u32) * 2; 1595 1596 pep->buffering = (readl(reg) + 1) / 2; 1597 pep->buffering_period = pep->buffering; 1598 } 1599 1600 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev) 1601 { 1602 int max_streams = HCC_MAX_PSA(pdev->hcc_params); 1603 struct cdnsp_ep *pep; 1604 int i; 1605 1606 INIT_LIST_HEAD(&pdev->gadget.ep_list); 1607 1608 if (max_streams < STREAM_LOG_STREAMS) { 1609 dev_err(pdev->dev, "Stream size %d not supported\n", 1610 max_streams); 1611 return -EINVAL; 1612 } 1613 1614 max_streams = STREAM_LOG_STREAMS; 1615 1616 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1617 bool direction = !(i & 1); /* Start from OUT endpoint. */ 1618 u8 epnum = ((i + 1) >> 1); 1619 1620 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction)) 1621 continue; 1622 1623 pep = &pdev->eps[i]; 1624 pep->pdev = pdev; 1625 pep->number = epnum; 1626 pep->direction = direction; /* 0 for OUT, 1 for IN. */ 1627 1628 /* 1629 * Ep0 is bidirectional, so ep0in and ep0out are represented by 1630 * pdev->eps[0] 1631 */ 1632 if (epnum == 0) { 1633 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1634 epnum, "BiDir"); 1635 1636 pep->idx = 0; 1637 usb_ep_set_maxpacket_limit(&pep->endpoint, 512); 1638 pep->endpoint.maxburst = 1; 1639 pep->endpoint.ops = &cdnsp_gadget_ep0_ops; 1640 pep->endpoint.desc = &cdnsp_gadget_ep0_desc; 1641 pep->endpoint.comp_desc = NULL; 1642 pep->endpoint.caps.type_control = true; 1643 pep->endpoint.caps.dir_in = true; 1644 pep->endpoint.caps.dir_out = true; 1645 1646 pdev->ep0_preq.epnum = pep->number; 1647 pdev->ep0_preq.pep = pep; 1648 pdev->gadget.ep0 = &pep->endpoint; 1649 } else { 1650 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1651 epnum, (pep->direction) ? "in" : "out"); 1652 1653 pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1; 1654 usb_ep_set_maxpacket_limit(&pep->endpoint, 1024); 1655 1656 pep->endpoint.max_streams = max_streams; 1657 pep->endpoint.ops = &cdnsp_gadget_ep_ops; 1658 list_add_tail(&pep->endpoint.ep_list, 1659 &pdev->gadget.ep_list); 1660 1661 pep->endpoint.caps.type_iso = true; 1662 pep->endpoint.caps.type_bulk = true; 1663 pep->endpoint.caps.type_int = true; 1664 1665 pep->endpoint.caps.dir_in = direction; 1666 pep->endpoint.caps.dir_out = !direction; 1667 } 1668 1669 pep->endpoint.name = pep->name; 1670 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx); 1671 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx); 1672 cdnsp_get_ep_buffering(pdev, pep); 1673 1674 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: " 1675 "CTRL: %s, INT: %s, BULK: %s, ISOC %s, " 1676 "SupDir IN: %s, OUT: %s\n", 1677 pep->name, 1024, 1678 (pep->endpoint.caps.type_control) ? "yes" : "no", 1679 (pep->endpoint.caps.type_int) ? "yes" : "no", 1680 (pep->endpoint.caps.type_bulk) ? "yes" : "no", 1681 (pep->endpoint.caps.type_iso) ? "yes" : "no", 1682 (pep->endpoint.caps.dir_in) ? "yes" : "no", 1683 (pep->endpoint.caps.dir_out) ? "yes" : "no"); 1684 1685 INIT_LIST_HEAD(&pep->pending_list); 1686 } 1687 1688 return 0; 1689 } 1690 1691 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev) 1692 { 1693 struct cdnsp_ep *pep; 1694 int i; 1695 1696 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1697 pep = &pdev->eps[i]; 1698 if (pep->number != 0 && pep->out_ctx) 1699 list_del(&pep->endpoint.ep_list); 1700 } 1701 } 1702 1703 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev) 1704 { 1705 pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING; 1706 1707 if (pdev->gadget_driver && pdev->gadget_driver->disconnect) { 1708 spin_unlock(&pdev->lock); 1709 pdev->gadget_driver->disconnect(&pdev->gadget); 1710 spin_lock(&pdev->lock); 1711 } 1712 1713 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1714 usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED); 1715 1716 pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING; 1717 } 1718 1719 void cdnsp_suspend_gadget(struct cdnsp_device *pdev) 1720 { 1721 if (pdev->gadget_driver && pdev->gadget_driver->suspend) { 1722 spin_unlock(&pdev->lock); 1723 pdev->gadget_driver->suspend(&pdev->gadget); 1724 spin_lock(&pdev->lock); 1725 } 1726 } 1727 1728 void cdnsp_resume_gadget(struct cdnsp_device *pdev) 1729 { 1730 if (pdev->gadget_driver && pdev->gadget_driver->resume) { 1731 spin_unlock(&pdev->lock); 1732 pdev->gadget_driver->resume(&pdev->gadget); 1733 spin_lock(&pdev->lock); 1734 } 1735 } 1736 1737 void cdnsp_irq_reset(struct cdnsp_device *pdev) 1738 { 1739 struct cdnsp_port_regs __iomem *port_regs; 1740 1741 cdnsp_reset_device(pdev); 1742 1743 port_regs = pdev->active_port->regs; 1744 pdev->gadget.speed = cdnsp_port_speed(readl(port_regs)); 1745 1746 spin_unlock(&pdev->lock); 1747 usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver); 1748 spin_lock(&pdev->lock); 1749 1750 switch (pdev->gadget.speed) { 1751 case USB_SPEED_SUPER_PLUS: 1752 case USB_SPEED_SUPER: 1753 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1754 pdev->gadget.ep0->maxpacket = 512; 1755 break; 1756 case USB_SPEED_HIGH: 1757 case USB_SPEED_FULL: 1758 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64); 1759 pdev->gadget.ep0->maxpacket = 64; 1760 break; 1761 default: 1762 /* Low speed is not supported. */ 1763 dev_err(pdev->dev, "Unknown device speed\n"); 1764 break; 1765 } 1766 1767 cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 1768 cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY); 1769 usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT); 1770 } 1771 1772 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev) 1773 { 1774 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1775 1776 reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP); 1777 pdev->rev_cap = reg; 1778 1779 dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n", 1780 readl(&pdev->rev_cap->ctrl_revision), 1781 readl(&pdev->rev_cap->rtl_revision), 1782 readl(&pdev->rev_cap->ep_supported), 1783 readl(&pdev->rev_cap->rx_buff_size), 1784 readl(&pdev->rev_cap->tx_buff_size)); 1785 } 1786 1787 static int cdnsp_gen_setup(struct cdnsp_device *pdev) 1788 { 1789 int ret; 1790 u32 reg; 1791 1792 pdev->cap_regs = pdev->regs; 1793 pdev->op_regs = pdev->regs + 1794 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase)); 1795 pdev->run_regs = pdev->regs + 1796 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK); 1797 1798 /* Cache read-only capability registers */ 1799 pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1); 1800 pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase); 1801 pdev->hci_version = HC_VERSION(pdev->hcc_params); 1802 pdev->hcc_params = readl(&pdev->cap_regs->hcc_params); 1803 1804 cdnsp_get_rev_cap(pdev); 1805 1806 /* Make sure the Device Controller is halted. */ 1807 ret = cdnsp_halt(pdev); 1808 if (ret) 1809 return ret; 1810 1811 /* Reset the internal controller memory state and registers. */ 1812 ret = cdnsp_reset(pdev); 1813 if (ret) 1814 return ret; 1815 1816 /* 1817 * Set dma_mask and coherent_dma_mask to 64-bits, 1818 * if controller supports 64-bit addressing. 1819 */ 1820 if (HCC_64BIT_ADDR(pdev->hcc_params) && 1821 !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) { 1822 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n"); 1823 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64)); 1824 } else { 1825 /* 1826 * This is to avoid error in cases where a 32-bit USB 1827 * controller is used on a 64-bit capable system. 1828 */ 1829 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32)); 1830 if (ret) 1831 return ret; 1832 1833 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n"); 1834 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32)); 1835 } 1836 1837 spin_lock_init(&pdev->lock); 1838 1839 ret = cdnsp_mem_init(pdev); 1840 if (ret) 1841 return ret; 1842 1843 /* 1844 * Software workaround for U1: after transition 1845 * to U1 the controller starts gating clock, and in some cases, 1846 * it causes that controller stack. 1847 */ 1848 reg = readl(&pdev->port3x_regs->mode_2); 1849 reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN; 1850 writel(reg, &pdev->port3x_regs->mode_2); 1851 1852 return 0; 1853 } 1854 1855 static int __cdnsp_gadget_init(struct cdns *cdns) 1856 { 1857 struct cdnsp_device *pdev; 1858 u32 max_speed; 1859 int ret = -ENOMEM; 1860 1861 cdns_drd_gadget_on(cdns); 1862 1863 pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 1864 if (!pdev) 1865 return -ENOMEM; 1866 1867 pm_runtime_get_sync(cdns->dev); 1868 1869 cdns->gadget_dev = pdev; 1870 pdev->dev = cdns->dev; 1871 pdev->regs = cdns->dev_regs; 1872 max_speed = usb_get_maximum_speed(cdns->dev); 1873 1874 switch (max_speed) { 1875 case USB_SPEED_FULL: 1876 case USB_SPEED_HIGH: 1877 case USB_SPEED_SUPER: 1878 case USB_SPEED_SUPER_PLUS: 1879 break; 1880 default: 1881 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed); 1882 fallthrough; 1883 case USB_SPEED_UNKNOWN: 1884 /* Default to SSP */ 1885 max_speed = USB_SPEED_SUPER_PLUS; 1886 break; 1887 } 1888 1889 pdev->gadget.ops = &cdnsp_gadget_ops; 1890 pdev->gadget.name = "cdnsp-gadget"; 1891 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1892 pdev->gadget.sg_supported = 1; 1893 pdev->gadget.max_speed = max_speed; 1894 pdev->gadget.lpm_capable = 1; 1895 1896 pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL); 1897 if (!pdev->setup_buf) 1898 goto free_pdev; 1899 1900 /* 1901 * Controller supports not aligned buffer but it should improve 1902 * performance. 1903 */ 1904 pdev->gadget.quirk_ep_out_aligned_size = true; 1905 1906 ret = cdnsp_gen_setup(pdev); 1907 if (ret) { 1908 dev_err(pdev->dev, "Generic initialization failed %d\n", ret); 1909 goto free_setup; 1910 } 1911 1912 ret = cdnsp_gadget_init_endpoints(pdev); 1913 if (ret) { 1914 dev_err(pdev->dev, "failed to initialize endpoints\n"); 1915 goto halt_pdev; 1916 } 1917 1918 ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget); 1919 if (ret) { 1920 dev_err(pdev->dev, "failed to register udc\n"); 1921 goto free_endpoints; 1922 } 1923 1924 ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq, 1925 cdnsp_irq_handler, 1926 cdnsp_thread_irq_handler, IRQF_SHARED, 1927 dev_name(pdev->dev), pdev); 1928 if (ret) 1929 goto del_gadget; 1930 1931 return 0; 1932 1933 del_gadget: 1934 usb_del_gadget_udc(&pdev->gadget); 1935 free_endpoints: 1936 cdnsp_gadget_free_endpoints(pdev); 1937 halt_pdev: 1938 cdnsp_halt(pdev); 1939 cdnsp_reset(pdev); 1940 cdnsp_mem_cleanup(pdev); 1941 free_setup: 1942 kfree(pdev->setup_buf); 1943 free_pdev: 1944 kfree(pdev); 1945 1946 return ret; 1947 } 1948 1949 static void cdnsp_gadget_exit(struct cdns *cdns) 1950 { 1951 struct cdnsp_device *pdev = cdns->gadget_dev; 1952 1953 devm_free_irq(pdev->dev, cdns->dev_irq, pdev); 1954 pm_runtime_mark_last_busy(cdns->dev); 1955 pm_runtime_put_autosuspend(cdns->dev); 1956 usb_del_gadget_udc(&pdev->gadget); 1957 cdnsp_gadget_free_endpoints(pdev); 1958 cdnsp_mem_cleanup(pdev); 1959 kfree(pdev); 1960 cdns->gadget_dev = NULL; 1961 cdns_drd_gadget_off(cdns); 1962 } 1963 1964 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup) 1965 { 1966 struct cdnsp_device *pdev = cdns->gadget_dev; 1967 unsigned long flags; 1968 1969 if (pdev->link_state == XDEV_U3) 1970 return 0; 1971 1972 spin_lock_irqsave(&pdev->lock, flags); 1973 cdnsp_disconnect_gadget(pdev); 1974 cdnsp_stop(pdev); 1975 spin_unlock_irqrestore(&pdev->lock, flags); 1976 1977 return 0; 1978 } 1979 1980 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated) 1981 { 1982 struct cdnsp_device *pdev = cdns->gadget_dev; 1983 enum usb_device_speed max_speed; 1984 unsigned long flags; 1985 int ret; 1986 1987 if (!pdev->gadget_driver) 1988 return 0; 1989 1990 spin_lock_irqsave(&pdev->lock, flags); 1991 max_speed = pdev->gadget_driver->max_speed; 1992 1993 /* Limit speed if necessary. */ 1994 max_speed = min(max_speed, pdev->gadget.max_speed); 1995 1996 ret = cdnsp_run(pdev, max_speed); 1997 1998 if (pdev->link_state == XDEV_U3) 1999 __cdnsp_gadget_wakeup(pdev); 2000 2001 spin_unlock_irqrestore(&pdev->lock, flags); 2002 2003 return ret; 2004 } 2005 2006 /** 2007 * cdnsp_gadget_init - initialize device structure 2008 * @cdns: cdnsp instance 2009 * 2010 * This function initializes the gadget. 2011 */ 2012 int cdnsp_gadget_init(struct cdns *cdns) 2013 { 2014 struct cdns_role_driver *rdrv; 2015 2016 rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); 2017 if (!rdrv) 2018 return -ENOMEM; 2019 2020 rdrv->start = __cdnsp_gadget_init; 2021 rdrv->stop = cdnsp_gadget_exit; 2022 rdrv->suspend = cdnsp_gadget_suspend; 2023 rdrv->resume = cdnsp_gadget_resume; 2024 rdrv->state = CDNS_ROLE_STATE_INACTIVE; 2025 rdrv->name = "gadget"; 2026 cdns->roles[USB_ROLE_DEVICE] = rdrv; 2027 2028 return 0; 2029 } 2030