xref: /openbmc/linux/drivers/usb/cdns3/cdnsp-gadget.c (revision 73c9a3f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  */
10 
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/pci.h>
19 #include <linux/irq.h>
20 #include <linux/dmi.h>
21 
22 #include "core.h"
23 #include "gadget-export.h"
24 #include "drd.h"
25 #include "cdnsp-gadget.h"
26 #include "cdnsp-trace.h"
27 
28 unsigned int cdnsp_port_speed(unsigned int port_status)
29 {
30 	/*Detect gadget speed based on PORTSC register*/
31 	if (DEV_SUPERSPEEDPLUS(port_status))
32 		return USB_SPEED_SUPER_PLUS;
33 	else if (DEV_SUPERSPEED(port_status))
34 		return USB_SPEED_SUPER;
35 	else if (DEV_HIGHSPEED(port_status))
36 		return USB_SPEED_HIGH;
37 	else if (DEV_FULLSPEED(port_status))
38 		return USB_SPEED_FULL;
39 
40 	/* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
41 	return USB_SPEED_UNKNOWN;
42 }
43 
44 /*
45  * Given a port state, this function returns a value that would result in the
46  * port being in the same state, if the value was written to the port status
47  * control register.
48  * Save Read Only (RO) bits and save read/write bits where
49  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
50  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
51  */
52 u32 cdnsp_port_state_to_neutral(u32 state)
53 {
54 	/* Save read-only status and port state. */
55 	return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
56 }
57 
58 /**
59  * Find the offset of the extended capabilities with capability ID id.
60  * @base: PCI MMIO registers base address.
61  * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
62  *         beginning of list)
63  * @id: Extended capability ID to search for.
64  *
65  * Returns the offset of the next matching extended capability structure.
66  * Some capabilities can occur several times,
67  * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
68  */
69 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
70 {
71 	u32 offset = start;
72 	u32 next;
73 	u32 val;
74 
75 	if (!start || start == HCC_PARAMS_OFFSET) {
76 		val = readl(base + HCC_PARAMS_OFFSET);
77 		if (val == ~0)
78 			return 0;
79 
80 		offset = HCC_EXT_CAPS(val) << 2;
81 		if (!offset)
82 			return 0;
83 	};
84 
85 	do {
86 		val = readl(base + offset);
87 		if (val == ~0)
88 			return 0;
89 
90 		if (EXT_CAPS_ID(val) == id && offset != start)
91 			return offset;
92 
93 		next = EXT_CAPS_NEXT(val);
94 		offset += next << 2;
95 	} while (next);
96 
97 	return 0;
98 }
99 
100 void cdnsp_set_link_state(struct cdnsp_device *pdev,
101 			  __le32 __iomem *port_regs,
102 			  u32 link_state)
103 {
104 	int port_num = 0xFF;
105 	u32 temp;
106 
107 	temp = readl(port_regs);
108 	temp = cdnsp_port_state_to_neutral(temp);
109 	temp |= PORT_WKCONN_E | PORT_WKDISC_E;
110 	writel(temp, port_regs);
111 
112 	temp &= ~PORT_PLS_MASK;
113 	temp |= PORT_LINK_STROBE | link_state;
114 
115 	if (pdev->active_port)
116 		port_num = pdev->active_port->port_num;
117 
118 	trace_cdnsp_handle_port_status(port_num, readl(port_regs));
119 	writel(temp, port_regs);
120 	trace_cdnsp_link_state_changed(port_num, readl(port_regs));
121 }
122 
123 static void cdnsp_disable_port(struct cdnsp_device *pdev,
124 			       __le32 __iomem *port_regs)
125 {
126 	u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
127 
128 	writel(temp | PORT_PED, port_regs);
129 }
130 
131 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
132 					__le32 __iomem *port_regs)
133 {
134 	u32 portsc = readl(port_regs);
135 
136 	writel(cdnsp_port_state_to_neutral(portsc) |
137 	       (portsc & PORT_CHANGE_BITS), port_regs);
138 }
139 
140 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
141 {
142 	__le32 __iomem *reg;
143 	void __iomem *base;
144 	u32 offset = 0;
145 
146 	base = &pdev->cap_regs->hc_capbase;
147 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
148 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
149 
150 	bit = readl(reg) | bit;
151 	writel(bit, reg);
152 }
153 
154 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
155 {
156 	__le32 __iomem *reg;
157 	void __iomem *base;
158 	u32 offset = 0;
159 
160 	base = &pdev->cap_regs->hc_capbase;
161 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
162 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
163 
164 	bit = readl(reg) & ~bit;
165 	writel(bit, reg);
166 }
167 
168 /*
169  * Disable interrupts and begin the controller halting process.
170  */
171 static void cdnsp_quiesce(struct cdnsp_device *pdev)
172 {
173 	u32 halted;
174 	u32 mask;
175 	u32 cmd;
176 
177 	mask = ~(u32)(CDNSP_IRQS);
178 
179 	halted = readl(&pdev->op_regs->status) & STS_HALT;
180 	if (!halted)
181 		mask &= ~(CMD_R_S | CMD_DEVEN);
182 
183 	cmd = readl(&pdev->op_regs->command);
184 	cmd &= mask;
185 	writel(cmd, &pdev->op_regs->command);
186 }
187 
188 /*
189  * Force controller into halt state.
190  *
191  * Disable any IRQs and clear the run/stop bit.
192  * Controller will complete any current and actively pipelined transactions, and
193  * should halt within 16 ms of the run/stop bit being cleared.
194  * Read controller Halted bit in the status register to see when the
195  * controller is finished.
196  */
197 int cdnsp_halt(struct cdnsp_device *pdev)
198 {
199 	int ret;
200 	u32 val;
201 
202 	cdnsp_quiesce(pdev);
203 
204 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
205 					val & STS_HALT, 1,
206 					CDNSP_MAX_HALT_USEC);
207 	if (ret) {
208 		dev_err(pdev->dev, "ERROR: Device halt failed\n");
209 		return ret;
210 	}
211 
212 	pdev->cdnsp_state |= CDNSP_STATE_HALTED;
213 
214 	return 0;
215 }
216 
217 /*
218  * device controller died, register read returns 0xffffffff, or command never
219  * ends.
220  */
221 void cdnsp_died(struct cdnsp_device *pdev)
222 {
223 	dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
224 	pdev->cdnsp_state |= CDNSP_STATE_DYING;
225 	cdnsp_halt(pdev);
226 }
227 
228 /*
229  * Set the run bit and wait for the device to be running.
230  */
231 static int cdnsp_start(struct cdnsp_device *pdev)
232 {
233 	u32 temp;
234 	int ret;
235 
236 	temp = readl(&pdev->op_regs->command);
237 	temp |= (CMD_R_S | CMD_DEVEN);
238 	writel(temp, &pdev->op_regs->command);
239 
240 	pdev->cdnsp_state = 0;
241 
242 	/*
243 	 * Wait for the STS_HALT Status bit to be 0 to indicate the device is
244 	 * running.
245 	 */
246 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
247 					!(temp & STS_HALT), 1,
248 					CDNSP_MAX_HALT_USEC);
249 	if (ret) {
250 		pdev->cdnsp_state = CDNSP_STATE_DYING;
251 		dev_err(pdev->dev, "ERROR: Controller run failed\n");
252 	}
253 
254 	return ret;
255 }
256 
257 /*
258  * Reset a halted controller.
259  *
260  * This resets pipelines, timers, counters, state machines, etc.
261  * Transactions will be terminated immediately, and operational registers
262  * will be set to their defaults.
263  */
264 int cdnsp_reset(struct cdnsp_device *pdev)
265 {
266 	u32 command;
267 	u32 temp;
268 	int ret;
269 
270 	temp = readl(&pdev->op_regs->status);
271 
272 	if (temp == ~(u32)0) {
273 		dev_err(pdev->dev, "Device not accessible, reset failed.\n");
274 		return -ENODEV;
275 	}
276 
277 	if ((temp & STS_HALT) == 0) {
278 		dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
279 		return -EINVAL;
280 	}
281 
282 	command = readl(&pdev->op_regs->command);
283 	command |= CMD_RESET;
284 	writel(command, &pdev->op_regs->command);
285 
286 	ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
287 					!(temp & CMD_RESET), 1,
288 					10 * 1000);
289 	if (ret) {
290 		dev_err(pdev->dev, "ERROR: Controller reset failed\n");
291 		return ret;
292 	}
293 
294 	/*
295 	 * CDNSP cannot write any doorbells or operational registers other
296 	 * than status until the "Controller Not Ready" flag is cleared.
297 	 */
298 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
299 					!(temp & STS_CNR), 1,
300 					10 * 1000);
301 
302 	if (ret) {
303 		dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
304 		return ret;
305 	}
306 
307 	dev_dbg(pdev->dev, "Controller ready to work");
308 
309 	return ret;
310 }
311 
312 /*
313  * cdnsp_get_endpoint_index - Find the index for an endpoint given its
314  * descriptor.Use the return value to right shift 1 for the bitmask.
315  *
316  * Index = (epnum * 2) + direction - 1,
317  * where direction = 0 for OUT, 1 for IN.
318  * For control endpoints, the IN index is used (OUT index is unused), so
319  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
320  */
321 static unsigned int
322 	cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
323 {
324 	unsigned int index = (unsigned int)usb_endpoint_num(desc);
325 
326 	if (usb_endpoint_xfer_control(desc))
327 		return index * 2;
328 
329 	return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
330 }
331 
332 /*
333  * Find the flag for this endpoint (for use in the control context). Use the
334  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
335  * bit 1, etc.
336  */
337 static unsigned int
338 	cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
339 {
340 	return 1 << (cdnsp_get_endpoint_index(desc) + 1);
341 }
342 
343 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
344 {
345 	struct cdnsp_device *pdev = pep->pdev;
346 	struct usb_request *request;
347 	int ret;
348 
349 	if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
350 		trace_cdnsp_request_enqueue_busy(preq);
351 		return -EBUSY;
352 	}
353 
354 	request = &preq->request;
355 	request->actual = 0;
356 	request->status = -EINPROGRESS;
357 	preq->direction = pep->direction;
358 	preq->epnum = pep->number;
359 	preq->td.drbl = 0;
360 
361 	ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
362 	if (ret) {
363 		trace_cdnsp_request_enqueue_error(preq);
364 		return ret;
365 	}
366 
367 	list_add_tail(&preq->list, &pep->pending_list);
368 
369 	trace_cdnsp_request_enqueue(preq);
370 
371 	switch (usb_endpoint_type(pep->endpoint.desc)) {
372 	case USB_ENDPOINT_XFER_CONTROL:
373 		ret = cdnsp_queue_ctrl_tx(pdev, preq);
374 		break;
375 	case USB_ENDPOINT_XFER_BULK:
376 	case USB_ENDPOINT_XFER_INT:
377 		ret = cdnsp_queue_bulk_tx(pdev, preq);
378 		break;
379 	case USB_ENDPOINT_XFER_ISOC:
380 		ret = cdnsp_queue_isoc_tx_prepare(pdev, preq);
381 	}
382 
383 	if (ret)
384 		goto unmap;
385 
386 	return 0;
387 
388 unmap:
389 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
390 					pep->direction);
391 	list_del(&preq->list);
392 	trace_cdnsp_request_enqueue_error(preq);
393 
394 	return ret;
395 }
396 
397 /*
398  * Remove the request's TD from the endpoint ring. This may cause the
399  * controller to stop USB transfers, potentially stopping in the middle of a
400  * TRB buffer. The controller should pick up where it left off in the TD,
401  * unless a Set Transfer Ring Dequeue Pointer is issued.
402  *
403  * The TRBs that make up the buffers for the canceled request will be "removed"
404  * from the ring. Since the ring is a contiguous structure, they can't be
405  * physically removed. Instead, there are two options:
406  *
407  *  1) If the controller is in the middle of processing the request to be
408  *     canceled, we simply move the ring's dequeue pointer past those TRBs
409  *     using the Set Transfer Ring Dequeue Pointer command. This will be
410  *     the common case, when drivers timeout on the last submitted request
411  *     and attempt to cancel.
412  *
413  *  2) If the controller is in the middle of a different TD, we turn the TRBs
414  *     into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
415  *     The controller will need to invalidate the any TRBs it has cached after
416  *     the stop endpoint command.
417  *
418  *  3) The TD may have completed by the time the Stop Endpoint Command
419  *     completes, so software needs to handle that case too.
420  *
421  */
422 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
423 {
424 	struct cdnsp_device *pdev = pep->pdev;
425 	int ret;
426 
427 	trace_cdnsp_request_dequeue(preq);
428 
429 	if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING) {
430 		ret = cdnsp_cmd_stop_ep(pdev, pep);
431 		if (ret)
432 			return ret;
433 	}
434 
435 	return cdnsp_remove_request(pdev, preq, pep);
436 }
437 
438 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
439 {
440 	struct cdnsp_input_control_ctx *ctrl_ctx;
441 	struct cdnsp_slot_ctx *slot_ctx;
442 	struct cdnsp_ep_ctx *ep_ctx;
443 	int i;
444 
445 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
446 
447 	/*
448 	 * When a device's add flag and drop flag are zero, any subsequent
449 	 * configure endpoint command will leave that endpoint's state
450 	 * untouched. Make sure we don't leave any old state in the input
451 	 * endpoint contexts.
452 	 */
453 	ctrl_ctx->drop_flags = 0;
454 	ctrl_ctx->add_flags = 0;
455 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
456 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
457 
458 	/* Endpoint 0 is always valid */
459 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
460 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
461 		ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
462 		ep_ctx->ep_info = 0;
463 		ep_ctx->ep_info2 = 0;
464 		ep_ctx->deq = 0;
465 		ep_ctx->tx_info = 0;
466 	}
467 }
468 
469 /* Issue a configure endpoint command and wait for it to finish. */
470 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
471 {
472 	int ret;
473 
474 	cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
475 	cdnsp_ring_cmd_db(pdev);
476 	ret = cdnsp_wait_for_cmd_compl(pdev);
477 	if (ret) {
478 		dev_err(pdev->dev,
479 			"ERR: unexpected command completion code 0x%x.\n", ret);
480 		return -EINVAL;
481 	}
482 
483 	return ret;
484 }
485 
486 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
487 				       struct cdnsp_ep *pep)
488 {
489 	struct cdnsp_segment *segment;
490 	union cdnsp_trb *event;
491 	u32 cycle_state;
492 	u32  data;
493 
494 	event = pdev->event_ring->dequeue;
495 	segment = pdev->event_ring->deq_seg;
496 	cycle_state = pdev->event_ring->cycle_state;
497 
498 	while (1) {
499 		data = le32_to_cpu(event->trans_event.flags);
500 
501 		/* Check the owner of the TRB. */
502 		if ((data & TRB_CYCLE) != cycle_state)
503 			break;
504 
505 		if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
506 		    TRB_TO_EP_ID(data) == (pep->idx + 1)) {
507 			data |= TRB_EVENT_INVALIDATE;
508 			event->trans_event.flags = cpu_to_le32(data);
509 		}
510 
511 		if (cdnsp_last_trb_on_seg(segment, event)) {
512 			cycle_state ^= 1;
513 			segment = pdev->event_ring->deq_seg->next;
514 			event = segment->trbs;
515 		} else {
516 			event++;
517 		}
518 	}
519 }
520 
521 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
522 {
523 	struct cdnsp_segment *event_deq_seg;
524 	union cdnsp_trb *cmd_trb;
525 	dma_addr_t cmd_deq_dma;
526 	union cdnsp_trb *event;
527 	u32 cycle_state;
528 	int ret, val;
529 	u64 cmd_dma;
530 	u32  flags;
531 
532 	cmd_trb = pdev->cmd.command_trb;
533 	pdev->cmd.status = 0;
534 
535 	trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
536 
537 	ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
538 					!CMD_RING_BUSY(val), 1,
539 					CDNSP_CMD_TIMEOUT);
540 	if (ret) {
541 		dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
542 		trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
543 		pdev->cdnsp_state = CDNSP_STATE_DYING;
544 		return -ETIMEDOUT;
545 	}
546 
547 	event = pdev->event_ring->dequeue;
548 	event_deq_seg = pdev->event_ring->deq_seg;
549 	cycle_state = pdev->event_ring->cycle_state;
550 
551 	cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
552 	if (!cmd_deq_dma)
553 		return -EINVAL;
554 
555 	while (1) {
556 		flags = le32_to_cpu(event->event_cmd.flags);
557 
558 		/* Check the owner of the TRB. */
559 		if ((flags & TRB_CYCLE) != cycle_state)
560 			return -EINVAL;
561 
562 		cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
563 
564 		/*
565 		 * Check whether the completion event is for last queued
566 		 * command.
567 		 */
568 		if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
569 		    cmd_dma != (u64)cmd_deq_dma) {
570 			if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
571 				event++;
572 				continue;
573 			}
574 
575 			if (cdnsp_last_trb_on_ring(pdev->event_ring,
576 						   event_deq_seg, event))
577 				cycle_state ^= 1;
578 
579 			event_deq_seg = event_deq_seg->next;
580 			event = event_deq_seg->trbs;
581 			continue;
582 		}
583 
584 		trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
585 
586 		pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
587 		if (pdev->cmd.status == COMP_SUCCESS)
588 			return 0;
589 
590 		return -pdev->cmd.status;
591 	}
592 }
593 
594 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
595 			struct cdnsp_ep *pep,
596 			int value)
597 {
598 	int ret;
599 
600 	trace_cdnsp_ep_halt(value ? "Set" : "Clear");
601 
602 	if (value) {
603 		ret = cdnsp_cmd_stop_ep(pdev, pep);
604 		if (ret)
605 			return ret;
606 
607 		if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
608 			cdnsp_queue_halt_endpoint(pdev, pep->idx);
609 			cdnsp_ring_cmd_db(pdev);
610 			ret = cdnsp_wait_for_cmd_compl(pdev);
611 		}
612 
613 		pep->ep_state |= EP_HALTED;
614 	} else {
615 		/*
616 		 * In device mode driver can call reset endpoint command
617 		 * from any endpoint state.
618 		 */
619 		cdnsp_queue_reset_ep(pdev, pep->idx);
620 		cdnsp_ring_cmd_db(pdev);
621 		ret = cdnsp_wait_for_cmd_compl(pdev);
622 		trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
623 
624 		if (ret)
625 			return ret;
626 
627 		pep->ep_state &= ~EP_HALTED;
628 
629 		if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
630 			cdnsp_ring_doorbell_for_active_rings(pdev, pep);
631 
632 		pep->ep_state &= ~EP_WEDGE;
633 	}
634 
635 	return 0;
636 }
637 
638 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
639 					  struct cdnsp_ep *pep)
640 {
641 	struct cdnsp_input_control_ctx *ctrl_ctx;
642 	struct cdnsp_slot_ctx *slot_ctx;
643 	int ret = 0;
644 	u32 ep_sts;
645 	int i;
646 
647 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
648 
649 	/* Don't issue the command if there's no endpoints to update. */
650 	if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
651 		return 0;
652 
653 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
654 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
655 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
656 
657 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
658 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
659 	for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
660 		__le32 le32 = cpu_to_le32(BIT(i));
661 
662 		if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
663 		    (ctrl_ctx->add_flags & le32) || i == 1) {
664 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
665 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
666 			break;
667 		}
668 	}
669 
670 	ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
671 
672 	if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
673 	     ep_sts == EP_STATE_DISABLED) ||
674 	    (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
675 		ret = cdnsp_configure_endpoint(pdev);
676 
677 	trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
678 	trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
679 
680 	cdnsp_zero_in_ctx(pdev);
681 
682 	return ret;
683 }
684 
685 /*
686  * This submits a Reset Device Command, which will set the device state to 0,
687  * set the device address to 0, and disable all the endpoints except the default
688  * control endpoint. The USB core should come back and call
689  * cdnsp_setup_device(), and then re-set up the configuration.
690  */
691 int cdnsp_reset_device(struct cdnsp_device *pdev)
692 {
693 	struct cdnsp_slot_ctx *slot_ctx;
694 	int slot_state;
695 	int ret, i;
696 
697 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
698 	slot_ctx->dev_info = 0;
699 	pdev->device_address = 0;
700 
701 	/* If device is not setup, there is no point in resetting it. */
702 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
703 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
704 	trace_cdnsp_reset_device(slot_ctx);
705 
706 	if (slot_state <= SLOT_STATE_DEFAULT &&
707 	    pdev->eps[0].ep_state & EP_HALTED) {
708 		cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
709 	}
710 
711 	/*
712 	 * During Reset Device command controller shall transition the
713 	 * endpoint ep0 to the Running State.
714 	 */
715 	pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
716 	pdev->eps[0].ep_state |= EP_ENABLED;
717 
718 	if (slot_state <= SLOT_STATE_DEFAULT)
719 		return 0;
720 
721 	cdnsp_queue_reset_device(pdev);
722 	cdnsp_ring_cmd_db(pdev);
723 	ret = cdnsp_wait_for_cmd_compl(pdev);
724 
725 	/*
726 	 * After Reset Device command all not default endpoints
727 	 * are in Disabled state.
728 	 */
729 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
730 		pdev->eps[i].ep_state |= EP_STOPPED;
731 
732 	trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
733 
734 	if (ret)
735 		dev_err(pdev->dev, "Reset device failed with error code %d",
736 			ret);
737 
738 	return ret;
739 }
740 
741 /*
742  * Sets the MaxPStreams field and the Linear Stream Array field.
743  * Sets the dequeue pointer to the stream context array.
744  */
745 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
746 					     struct cdnsp_ep_ctx *ep_ctx,
747 					     struct cdnsp_stream_info *stream_info)
748 {
749 	u32 max_primary_streams;
750 
751 	/* MaxPStreams is the number of stream context array entries, not the
752 	 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
753 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
754 	 */
755 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
756 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
757 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
758 				       | EP_HAS_LSA);
759 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
760 }
761 
762 /*
763  * The drivers use this function to prepare a bulk endpoints to use streams.
764  *
765  * Don't allow the call to succeed if endpoint only supports one stream
766  * (which means it doesn't support streams at all).
767  */
768 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
769 {
770 	unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
771 	unsigned int num_stream_ctxs;
772 	int ret;
773 
774 	if (num_streams ==  0)
775 		return 0;
776 
777 	if (num_streams > STREAM_NUM_STREAMS)
778 		return -EINVAL;
779 
780 	/*
781 	 * Add two to the number of streams requested to account for
782 	 * stream 0 that is reserved for controller usage and one additional
783 	 * for TASK SET FULL response.
784 	 */
785 	num_streams += 2;
786 
787 	/* The stream context array size must be a power of two */
788 	num_stream_ctxs = roundup_pow_of_two(num_streams);
789 
790 	trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
791 
792 	ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
793 	if (ret)
794 		return ret;
795 
796 	cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
797 
798 	pep->ep_state |= EP_HAS_STREAMS;
799 	pep->stream_info.td_count = 0;
800 	pep->stream_info.first_prime_det = 0;
801 
802 	/* Subtract 1 for stream 0, which drivers can't use. */
803 	return num_streams - 1;
804 }
805 
806 int cdnsp_disable_slot(struct cdnsp_device *pdev)
807 {
808 	int ret;
809 
810 	cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
811 	cdnsp_ring_cmd_db(pdev);
812 	ret = cdnsp_wait_for_cmd_compl(pdev);
813 
814 	pdev->slot_id = 0;
815 	pdev->active_port = NULL;
816 
817 	trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
818 
819 	memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
820 	memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
821 
822 	return ret;
823 }
824 
825 int cdnsp_enable_slot(struct cdnsp_device *pdev)
826 {
827 	struct cdnsp_slot_ctx *slot_ctx;
828 	int slot_state;
829 	int ret;
830 
831 	/* If device is not setup, there is no point in resetting it */
832 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
833 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
834 
835 	if (slot_state != SLOT_STATE_DISABLED)
836 		return 0;
837 
838 	cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
839 	cdnsp_ring_cmd_db(pdev);
840 	ret = cdnsp_wait_for_cmd_compl(pdev);
841 	if (ret)
842 		goto show_trace;
843 
844 	pdev->slot_id = 1;
845 
846 show_trace:
847 	trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
848 
849 	return ret;
850 }
851 
852 /*
853  * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
854  * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
855  */
856 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
857 {
858 	struct cdnsp_input_control_ctx *ctrl_ctx;
859 	struct cdnsp_slot_ctx *slot_ctx;
860 	int dev_state = 0;
861 	int ret;
862 
863 	if (!pdev->slot_id) {
864 		trace_cdnsp_slot_id("incorrect");
865 		return -EINVAL;
866 	}
867 
868 	if (!pdev->active_port->port_num)
869 		return -EINVAL;
870 
871 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
872 	dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
873 
874 	if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
875 		trace_cdnsp_slot_already_in_default(slot_ctx);
876 		return 0;
877 	}
878 
879 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
880 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
881 
882 	if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
883 		ret = cdnsp_setup_addressable_priv_dev(pdev);
884 		if (ret)
885 			return ret;
886 	}
887 
888 	cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
889 
890 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
891 	ctrl_ctx->drop_flags = 0;
892 
893 	trace_cdnsp_setup_device_slot(slot_ctx);
894 
895 	cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
896 	cdnsp_ring_cmd_db(pdev);
897 	ret = cdnsp_wait_for_cmd_compl(pdev);
898 
899 	trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
900 
901 	/* Zero the input context control for later use. */
902 	ctrl_ctx->add_flags = 0;
903 	ctrl_ctx->drop_flags = 0;
904 
905 	return ret;
906 }
907 
908 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
909 				 struct usb_request *req,
910 				 int enable)
911 {
912 	if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
913 		return;
914 
915 	trace_cdnsp_lpm(enable);
916 
917 	if (enable)
918 		writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
919 		       &pdev->active_port->regs->portpmsc);
920 	else
921 		writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
922 }
923 
924 static int cdnsp_get_frame(struct cdnsp_device *pdev)
925 {
926 	return readl(&pdev->run_regs->microframe_index) >> 3;
927 }
928 
929 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
930 				  const struct usb_endpoint_descriptor *desc)
931 {
932 	struct cdnsp_input_control_ctx *ctrl_ctx;
933 	struct cdnsp_device *pdev;
934 	struct cdnsp_ep *pep;
935 	unsigned long flags;
936 	u32 added_ctxs;
937 	int ret;
938 
939 	if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
940 	    !desc->wMaxPacketSize)
941 		return -EINVAL;
942 
943 	pep = to_cdnsp_ep(ep);
944 	pdev = pep->pdev;
945 
946 	if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
947 			  "%s is already enabled\n", pep->name))
948 		return 0;
949 
950 	spin_lock_irqsave(&pdev->lock, flags);
951 
952 	added_ctxs = cdnsp_get_endpoint_flag(desc);
953 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
954 		dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
955 		ret = -EINVAL;
956 		goto unlock;
957 	}
958 
959 	pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
960 
961 	if (pdev->gadget.speed == USB_SPEED_FULL) {
962 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
963 			pep->interval = desc->bInterval << 3;
964 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
965 			pep->interval = BIT(desc->bInterval - 1) << 3;
966 	}
967 
968 	if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
969 		if (pep->interval > BIT(12)) {
970 			dev_err(pdev->dev, "bInterval %d not supported\n",
971 				desc->bInterval);
972 			ret = -EINVAL;
973 			goto unlock;
974 		}
975 		cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
976 	}
977 
978 	ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
979 	if (ret)
980 		goto unlock;
981 
982 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
983 	ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
984 	ctrl_ctx->drop_flags = 0;
985 
986 	ret = cdnsp_update_eps_configuration(pdev, pep);
987 	if (ret) {
988 		cdnsp_free_endpoint_rings(pdev, pep);
989 		goto unlock;
990 	}
991 
992 	pep->ep_state |= EP_ENABLED;
993 	pep->ep_state &= ~EP_STOPPED;
994 
995 unlock:
996 	trace_cdnsp_ep_enable_end(pep, 0);
997 	spin_unlock_irqrestore(&pdev->lock, flags);
998 
999 	return ret;
1000 }
1001 
1002 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1003 {
1004 	struct cdnsp_input_control_ctx *ctrl_ctx;
1005 	struct cdnsp_request *preq;
1006 	struct cdnsp_device *pdev;
1007 	struct cdnsp_ep *pep;
1008 	unsigned long flags;
1009 	u32 drop_flag;
1010 	int ret = 0;
1011 
1012 	if (!ep)
1013 		return -EINVAL;
1014 
1015 	pep = to_cdnsp_ep(ep);
1016 	pdev = pep->pdev;
1017 
1018 	spin_lock_irqsave(&pdev->lock, flags);
1019 
1020 	if (!(pep->ep_state & EP_ENABLED)) {
1021 		dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1022 		ret = -EINVAL;
1023 		goto finish;
1024 	}
1025 
1026 	cdnsp_cmd_stop_ep(pdev, pep);
1027 	pep->ep_state |= EP_DIS_IN_RROGRESS;
1028 	cdnsp_cmd_flush_ep(pdev, pep);
1029 
1030 	/* Remove all queued USB requests. */
1031 	while (!list_empty(&pep->pending_list)) {
1032 		preq = next_request(&pep->pending_list);
1033 		cdnsp_ep_dequeue(pep, preq);
1034 	}
1035 
1036 	cdnsp_invalidate_ep_events(pdev, pep);
1037 
1038 	pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1039 	drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1040 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1041 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1042 	ctrl_ctx->add_flags = 0;
1043 
1044 	cdnsp_endpoint_zero(pdev, pep);
1045 
1046 	ret = cdnsp_update_eps_configuration(pdev, pep);
1047 	cdnsp_free_endpoint_rings(pdev, pep);
1048 
1049 	pep->ep_state &= ~EP_ENABLED;
1050 	pep->ep_state |= EP_STOPPED;
1051 
1052 finish:
1053 	trace_cdnsp_ep_disable_end(pep, 0);
1054 	spin_unlock_irqrestore(&pdev->lock, flags);
1055 
1056 	return ret;
1057 }
1058 
1059 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1060 							 gfp_t gfp_flags)
1061 {
1062 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1063 	struct cdnsp_request *preq;
1064 
1065 	preq = kzalloc(sizeof(*preq), gfp_flags);
1066 	if (!preq)
1067 		return NULL;
1068 
1069 	preq->epnum = pep->number;
1070 	preq->pep = pep;
1071 
1072 	trace_cdnsp_alloc_request(preq);
1073 
1074 	return &preq->request;
1075 }
1076 
1077 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1078 					 struct usb_request *request)
1079 {
1080 	struct cdnsp_request *preq = to_cdnsp_request(request);
1081 
1082 	trace_cdnsp_free_request(preq);
1083 	kfree(preq);
1084 }
1085 
1086 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1087 				 struct usb_request *request,
1088 				 gfp_t gfp_flags)
1089 {
1090 	struct cdnsp_request *preq;
1091 	struct cdnsp_device *pdev;
1092 	struct cdnsp_ep *pep;
1093 	unsigned long flags;
1094 	int ret;
1095 
1096 	if (!request || !ep)
1097 		return -EINVAL;
1098 
1099 	pep = to_cdnsp_ep(ep);
1100 	pdev = pep->pdev;
1101 
1102 	if (!(pep->ep_state & EP_ENABLED)) {
1103 		dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1104 			pep->name);
1105 		return -EINVAL;
1106 	}
1107 
1108 	preq = to_cdnsp_request(request);
1109 	spin_lock_irqsave(&pdev->lock, flags);
1110 	ret = cdnsp_ep_enqueue(pep, preq);
1111 	spin_unlock_irqrestore(&pdev->lock, flags);
1112 
1113 	return ret;
1114 }
1115 
1116 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1117 				   struct usb_request *request)
1118 {
1119 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1120 	struct cdnsp_device *pdev = pep->pdev;
1121 	unsigned long flags;
1122 	int ret;
1123 
1124 	if (!pep->endpoint.desc) {
1125 		dev_err(pdev->dev,
1126 			"%s: can't dequeue to disabled endpoint\n",
1127 			pep->name);
1128 		return -ESHUTDOWN;
1129 	}
1130 
1131 	spin_lock_irqsave(&pdev->lock, flags);
1132 	ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1133 	spin_unlock_irqrestore(&pdev->lock, flags);
1134 
1135 	return ret;
1136 }
1137 
1138 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1139 {
1140 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1141 	struct cdnsp_device *pdev = pep->pdev;
1142 	struct cdnsp_request *preq;
1143 	unsigned long flags = 0;
1144 	int ret;
1145 
1146 	spin_lock_irqsave(&pdev->lock, flags);
1147 
1148 	preq = next_request(&pep->pending_list);
1149 	if (value) {
1150 		if (preq) {
1151 			trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1152 			ret = -EAGAIN;
1153 			goto done;
1154 		}
1155 	}
1156 
1157 	ret = cdnsp_halt_endpoint(pdev, pep, value);
1158 
1159 done:
1160 	spin_unlock_irqrestore(&pdev->lock, flags);
1161 	return ret;
1162 }
1163 
1164 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1165 {
1166 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1167 	struct cdnsp_device *pdev = pep->pdev;
1168 	unsigned long flags = 0;
1169 	int ret;
1170 
1171 	spin_lock_irqsave(&pdev->lock, flags);
1172 	pep->ep_state |= EP_WEDGE;
1173 	ret = cdnsp_halt_endpoint(pdev, pep, 1);
1174 	spin_unlock_irqrestore(&pdev->lock, flags);
1175 
1176 	return ret;
1177 }
1178 
1179 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1180 	.enable		= cdnsp_gadget_ep_enable,
1181 	.disable	= cdnsp_gadget_ep_disable,
1182 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1183 	.free_request	= cdnsp_gadget_ep_free_request,
1184 	.queue		= cdnsp_gadget_ep_queue,
1185 	.dequeue	= cdnsp_gadget_ep_dequeue,
1186 	.set_halt	= cdnsp_gadget_ep_set_halt,
1187 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1188 };
1189 
1190 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1191 	.enable		= cdnsp_gadget_ep_enable,
1192 	.disable	= cdnsp_gadget_ep_disable,
1193 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1194 	.free_request	= cdnsp_gadget_ep_free_request,
1195 	.queue		= cdnsp_gadget_ep_queue,
1196 	.dequeue	= cdnsp_gadget_ep_dequeue,
1197 	.set_halt	= cdnsp_gadget_ep_set_halt,
1198 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1199 };
1200 
1201 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1202 			   struct cdnsp_request *preq,
1203 			   int status)
1204 {
1205 	struct cdnsp_device *pdev = pep->pdev;
1206 
1207 	list_del(&preq->list);
1208 
1209 	if (preq->request.status == -EINPROGRESS)
1210 		preq->request.status = status;
1211 
1212 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1213 					preq->direction);
1214 
1215 	trace_cdnsp_request_giveback(preq);
1216 
1217 	if (preq != &pdev->ep0_preq) {
1218 		spin_unlock(&pdev->lock);
1219 		usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1220 		spin_lock(&pdev->lock);
1221 	}
1222 }
1223 
1224 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1225 	.bLength =		USB_DT_ENDPOINT_SIZE,
1226 	.bDescriptorType =	USB_DT_ENDPOINT,
1227 	.bmAttributes =		USB_ENDPOINT_XFER_CONTROL,
1228 };
1229 
1230 static int cdnsp_run(struct cdnsp_device *pdev,
1231 		     enum usb_device_speed speed)
1232 {
1233 	u32 fs_speed = 0;
1234 	u64 temp_64;
1235 	u32 temp;
1236 	int ret;
1237 
1238 	temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1239 	temp_64 &= ~ERST_PTR_MASK;
1240 	temp = readl(&pdev->ir_set->irq_control);
1241 	temp &= ~IMOD_INTERVAL_MASK;
1242 	temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1243 	writel(temp, &pdev->ir_set->irq_control);
1244 
1245 	temp = readl(&pdev->port3x_regs->mode_addr);
1246 
1247 	switch (speed) {
1248 	case USB_SPEED_SUPER_PLUS:
1249 		temp |= CFG_3XPORT_SSP_SUPPORT;
1250 		break;
1251 	case USB_SPEED_SUPER:
1252 		temp &= ~CFG_3XPORT_SSP_SUPPORT;
1253 		break;
1254 	case USB_SPEED_HIGH:
1255 		break;
1256 	case USB_SPEED_FULL:
1257 		fs_speed = PORT_REG6_FORCE_FS;
1258 		break;
1259 	default:
1260 		dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1261 			speed);
1262 		fallthrough;
1263 	case USB_SPEED_UNKNOWN:
1264 		/* Default to superspeed. */
1265 		speed = USB_SPEED_SUPER;
1266 		break;
1267 	}
1268 
1269 	if (speed >= USB_SPEED_SUPER) {
1270 		writel(temp, &pdev->port3x_regs->mode_addr);
1271 		cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1272 				     XDEV_RXDETECT);
1273 	} else {
1274 		cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1275 	}
1276 
1277 	cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1278 			     XDEV_RXDETECT);
1279 
1280 	cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1281 
1282 	writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1283 
1284 	ret = cdnsp_start(pdev);
1285 	if (ret) {
1286 		ret = -ENODEV;
1287 		goto err;
1288 	}
1289 
1290 	temp = readl(&pdev->op_regs->command);
1291 	temp |= (CMD_INTE);
1292 	writel(temp, &pdev->op_regs->command);
1293 
1294 	temp = readl(&pdev->ir_set->irq_pending);
1295 	writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1296 
1297 	trace_cdnsp_init("Controller ready to work");
1298 	return 0;
1299 err:
1300 	cdnsp_halt(pdev);
1301 	return ret;
1302 }
1303 
1304 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1305 				  struct usb_gadget_driver *driver)
1306 {
1307 	enum usb_device_speed max_speed = driver->max_speed;
1308 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1309 	unsigned long flags;
1310 	int ret;
1311 
1312 	spin_lock_irqsave(&pdev->lock, flags);
1313 	pdev->gadget_driver = driver;
1314 
1315 	/* limit speed if necessary */
1316 	max_speed = min(driver->max_speed, g->max_speed);
1317 	ret = cdnsp_run(pdev, max_speed);
1318 
1319 	spin_unlock_irqrestore(&pdev->lock, flags);
1320 
1321 	return ret;
1322 }
1323 
1324 /*
1325  * Update Event Ring Dequeue Pointer:
1326  * - When all events have finished
1327  * - To avoid "Event Ring Full Error" condition
1328  */
1329 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1330 			       union cdnsp_trb *event_ring_deq,
1331 			       u8 clear_ehb)
1332 {
1333 	u64 temp_64;
1334 	dma_addr_t deq;
1335 
1336 	temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1337 
1338 	/* If necessary, update the HW's version of the event ring deq ptr. */
1339 	if (event_ring_deq != pdev->event_ring->dequeue) {
1340 		deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1341 					    pdev->event_ring->dequeue);
1342 		temp_64 &= ERST_PTR_MASK;
1343 		temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1344 	}
1345 
1346 	/* Clear the event handler busy flag (RW1C). */
1347 	if (clear_ehb)
1348 		temp_64 |= ERST_EHB;
1349 	else
1350 		temp_64 &= ~ERST_EHB;
1351 
1352 	cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1353 }
1354 
1355 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1356 {
1357 	struct cdnsp_segment *seg;
1358 	u64 val_64;
1359 	int i;
1360 
1361 	cdnsp_initialize_ring_info(pdev->cmd_ring);
1362 
1363 	seg = pdev->cmd_ring->first_seg;
1364 	for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1365 		memset(seg->trbs, 0,
1366 		       sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1367 		seg = seg->next;
1368 	}
1369 
1370 	/* Set the address in the Command Ring Control register. */
1371 	val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1372 	val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1373 		 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1374 		 pdev->cmd_ring->cycle_state;
1375 	cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1376 }
1377 
1378 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1379 {
1380 	struct cdnsp_segment *event_deq_seg;
1381 	union cdnsp_trb *event_ring_deq;
1382 	union cdnsp_trb *event;
1383 	u32 cycle_bit;
1384 
1385 	event_ring_deq = pdev->event_ring->dequeue;
1386 	event_deq_seg = pdev->event_ring->deq_seg;
1387 	event = pdev->event_ring->dequeue;
1388 
1389 	/* Update ring dequeue pointer. */
1390 	while (1) {
1391 		cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1392 
1393 		/* Does the controller or driver own the TRB? */
1394 		if (cycle_bit != pdev->event_ring->cycle_state)
1395 			break;
1396 
1397 		cdnsp_inc_deq(pdev, pdev->event_ring);
1398 
1399 		if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1400 			event++;
1401 			continue;
1402 		}
1403 
1404 		if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1405 					   event))
1406 			cycle_bit ^= 1;
1407 
1408 		event_deq_seg = event_deq_seg->next;
1409 		event = event_deq_seg->trbs;
1410 	}
1411 
1412 	cdnsp_update_erst_dequeue(pdev,  event_ring_deq, 1);
1413 }
1414 
1415 static void cdnsp_stop(struct cdnsp_device *pdev)
1416 {
1417 	u32 temp;
1418 
1419 	cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]);
1420 
1421 	/* Remove internally queued request for ep0. */
1422 	if (!list_empty(&pdev->eps[0].pending_list)) {
1423 		struct cdnsp_request *req;
1424 
1425 		req = next_request(&pdev->eps[0].pending_list);
1426 		if (req == &pdev->ep0_preq)
1427 			cdnsp_ep_dequeue(&pdev->eps[0], req);
1428 	}
1429 
1430 	cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1431 	cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1432 	cdnsp_disable_slot(pdev);
1433 	cdnsp_halt(pdev);
1434 
1435 	temp = readl(&pdev->op_regs->status);
1436 	writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1437 	temp = readl(&pdev->ir_set->irq_pending);
1438 	writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1439 
1440 	cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1441 	cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1442 
1443 	/* Clear interrupt line */
1444 	temp = readl(&pdev->ir_set->irq_pending);
1445 	temp |= IMAN_IP;
1446 	writel(temp, &pdev->ir_set->irq_pending);
1447 
1448 	cdnsp_consume_all_events(pdev);
1449 	cdnsp_clear_cmd_ring(pdev);
1450 
1451 	trace_cdnsp_exit("Controller stopped.");
1452 }
1453 
1454 /*
1455  * Stop controller.
1456  * This function is called by the gadget core when the driver is removed.
1457  * Disable slot, disable IRQs, and quiesce the controller.
1458  */
1459 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1460 {
1461 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1462 	unsigned long flags;
1463 
1464 	spin_lock_irqsave(&pdev->lock, flags);
1465 	cdnsp_stop(pdev);
1466 	pdev->gadget_driver = NULL;
1467 	spin_unlock_irqrestore(&pdev->lock, flags);
1468 
1469 	return 0;
1470 }
1471 
1472 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1473 {
1474 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1475 
1476 	return cdnsp_get_frame(pdev);
1477 }
1478 
1479 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1480 {
1481 	struct cdnsp_port_regs __iomem *port_regs;
1482 	u32 portpm, portsc;
1483 
1484 	port_regs = pdev->active_port->regs;
1485 	portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1486 
1487 	/* Remote wakeup feature is not enabled by host. */
1488 	if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1489 		portpm = readl(&port_regs->portpmsc);
1490 
1491 		if (!(portpm & PORT_RWE))
1492 			return;
1493 	}
1494 
1495 	if (portsc == XDEV_U3 && !pdev->may_wakeup)
1496 		return;
1497 
1498 	cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1499 
1500 	pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1501 }
1502 
1503 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1504 {
1505 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1506 	unsigned long flags;
1507 
1508 	spin_lock_irqsave(&pdev->lock, flags);
1509 	__cdnsp_gadget_wakeup(pdev);
1510 	spin_unlock_irqrestore(&pdev->lock, flags);
1511 
1512 	return 0;
1513 }
1514 
1515 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1516 					int is_selfpowered)
1517 {
1518 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1519 	unsigned long flags;
1520 
1521 	spin_lock_irqsave(&pdev->lock, flags);
1522 	g->is_selfpowered = !!is_selfpowered;
1523 	spin_unlock_irqrestore(&pdev->lock, flags);
1524 
1525 	return 0;
1526 }
1527 
1528 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1529 {
1530 	struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1531 	struct cdns *cdns = dev_get_drvdata(pdev->dev);
1532 
1533 	trace_cdnsp_pullup(is_on);
1534 
1535 	if (!is_on) {
1536 		cdnsp_reset_device(pdev);
1537 		cdns_clear_vbus(cdns);
1538 	} else {
1539 		cdns_set_vbus(cdns);
1540 	}
1541 	return 0;
1542 }
1543 
1544 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1545 	.get_frame		= cdnsp_gadget_get_frame,
1546 	.wakeup			= cdnsp_gadget_wakeup,
1547 	.set_selfpowered	= cdnsp_gadget_set_selfpowered,
1548 	.pullup			= cdnsp_gadget_pullup,
1549 	.udc_start		= cdnsp_gadget_udc_start,
1550 	.udc_stop		= cdnsp_gadget_udc_stop,
1551 };
1552 
1553 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1554 				   struct cdnsp_ep *pep)
1555 {
1556 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1557 	int endpoints;
1558 
1559 	reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1560 
1561 	if (!pep->direction) {
1562 		pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1563 		pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1564 		pep->buffering = (pep->buffering + 1) / 2;
1565 		pep->buffering_period = (pep->buffering_period + 1) / 2;
1566 		return;
1567 	}
1568 
1569 	endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1570 
1571 	/* Set to XBUF_TX_TAG_MASK_0 register. */
1572 	reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1573 	/* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1574 	reg += pep->number * sizeof(u32) * 2;
1575 
1576 	pep->buffering = (readl(reg) + 1) / 2;
1577 	pep->buffering_period = pep->buffering;
1578 }
1579 
1580 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1581 {
1582 	int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1583 	struct cdnsp_ep *pep;
1584 	int i;
1585 
1586 	INIT_LIST_HEAD(&pdev->gadget.ep_list);
1587 
1588 	if (max_streams < STREAM_LOG_STREAMS) {
1589 		dev_err(pdev->dev, "Stream size %d not supported\n",
1590 			max_streams);
1591 		return -EINVAL;
1592 	}
1593 
1594 	max_streams = STREAM_LOG_STREAMS;
1595 
1596 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1597 		bool direction = !(i & 1); /* Start from OUT endpoint. */
1598 		u8 epnum = ((i + 1) >> 1);
1599 
1600 		if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1601 			continue;
1602 
1603 		pep = &pdev->eps[i];
1604 		pep->pdev = pdev;
1605 		pep->number = epnum;
1606 		pep->direction = direction; /* 0 for OUT, 1 for IN. */
1607 
1608 		/*
1609 		 * Ep0 is bidirectional, so ep0in and ep0out are represented by
1610 		 * pdev->eps[0]
1611 		 */
1612 		if (epnum == 0) {
1613 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1614 				 epnum, "BiDir");
1615 
1616 			pep->idx = 0;
1617 			usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1618 			pep->endpoint.maxburst = 1;
1619 			pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1620 			pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1621 			pep->endpoint.comp_desc = NULL;
1622 			pep->endpoint.caps.type_control = true;
1623 			pep->endpoint.caps.dir_in = true;
1624 			pep->endpoint.caps.dir_out = true;
1625 
1626 			pdev->ep0_preq.epnum = pep->number;
1627 			pdev->ep0_preq.pep = pep;
1628 			pdev->gadget.ep0 = &pep->endpoint;
1629 		} else {
1630 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1631 				 epnum, (pep->direction) ? "in" : "out");
1632 
1633 			pep->idx =  (epnum * 2 + (direction ? 1 : 0)) - 1;
1634 			usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1635 
1636 			pep->endpoint.max_streams = max_streams;
1637 			pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1638 			list_add_tail(&pep->endpoint.ep_list,
1639 				      &pdev->gadget.ep_list);
1640 
1641 			pep->endpoint.caps.type_iso = true;
1642 			pep->endpoint.caps.type_bulk = true;
1643 			pep->endpoint.caps.type_int = true;
1644 
1645 			pep->endpoint.caps.dir_in = direction;
1646 			pep->endpoint.caps.dir_out = !direction;
1647 		}
1648 
1649 		pep->endpoint.name = pep->name;
1650 		pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1651 		pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1652 		cdnsp_get_ep_buffering(pdev, pep);
1653 
1654 		dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1655 			"CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1656 			"SupDir IN: %s, OUT: %s\n",
1657 			pep->name, 1024,
1658 			(pep->endpoint.caps.type_control) ? "yes" : "no",
1659 			(pep->endpoint.caps.type_int) ? "yes" : "no",
1660 			(pep->endpoint.caps.type_bulk) ? "yes" : "no",
1661 			(pep->endpoint.caps.type_iso) ? "yes" : "no",
1662 			(pep->endpoint.caps.dir_in) ? "yes" : "no",
1663 			(pep->endpoint.caps.dir_out) ? "yes" : "no");
1664 
1665 		INIT_LIST_HEAD(&pep->pending_list);
1666 	}
1667 
1668 	return 0;
1669 }
1670 
1671 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1672 {
1673 	struct cdnsp_ep *pep;
1674 	int i;
1675 
1676 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1677 		pep = &pdev->eps[i];
1678 		if (pep->number != 0 && pep->out_ctx)
1679 			list_del(&pep->endpoint.ep_list);
1680 	}
1681 }
1682 
1683 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1684 {
1685 	pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1686 
1687 	if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1688 		spin_unlock(&pdev->lock);
1689 		pdev->gadget_driver->disconnect(&pdev->gadget);
1690 		spin_lock(&pdev->lock);
1691 	}
1692 
1693 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1694 	usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1695 
1696 	pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1697 }
1698 
1699 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1700 {
1701 	if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1702 		spin_unlock(&pdev->lock);
1703 		pdev->gadget_driver->suspend(&pdev->gadget);
1704 		spin_lock(&pdev->lock);
1705 	}
1706 }
1707 
1708 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1709 {
1710 	if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1711 		spin_unlock(&pdev->lock);
1712 		pdev->gadget_driver->resume(&pdev->gadget);
1713 		spin_lock(&pdev->lock);
1714 	}
1715 }
1716 
1717 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1718 {
1719 	struct cdnsp_port_regs __iomem *port_regs;
1720 
1721 	cdnsp_reset_device(pdev);
1722 
1723 	port_regs = pdev->active_port->regs;
1724 	pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1725 
1726 	spin_unlock(&pdev->lock);
1727 	usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1728 	spin_lock(&pdev->lock);
1729 
1730 	switch (pdev->gadget.speed) {
1731 	case USB_SPEED_SUPER_PLUS:
1732 	case USB_SPEED_SUPER:
1733 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1734 		pdev->gadget.ep0->maxpacket = 512;
1735 		break;
1736 	case USB_SPEED_HIGH:
1737 	case USB_SPEED_FULL:
1738 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1739 		pdev->gadget.ep0->maxpacket = 64;
1740 		break;
1741 	default:
1742 		/* Low speed is not supported. */
1743 		dev_err(pdev->dev, "Unknown device speed\n");
1744 		break;
1745 	}
1746 
1747 	cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1748 	cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1749 	usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1750 }
1751 
1752 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1753 {
1754 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1755 
1756 	reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1757 	pdev->rev_cap  = reg;
1758 
1759 	dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1760 		 readl(&pdev->rev_cap->ctrl_revision),
1761 		 readl(&pdev->rev_cap->rtl_revision),
1762 		 readl(&pdev->rev_cap->ep_supported),
1763 		 readl(&pdev->rev_cap->rx_buff_size),
1764 		 readl(&pdev->rev_cap->tx_buff_size));
1765 }
1766 
1767 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1768 {
1769 	int ret;
1770 	u32 reg;
1771 
1772 	pdev->cap_regs = pdev->regs;
1773 	pdev->op_regs = pdev->regs +
1774 		HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1775 	pdev->run_regs = pdev->regs +
1776 		(readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1777 
1778 	/* Cache read-only capability registers */
1779 	pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1780 	pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1781 	pdev->hci_version = HC_VERSION(pdev->hcc_params);
1782 	pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1783 
1784 	cdnsp_get_rev_cap(pdev);
1785 
1786 	/* Make sure the Device Controller is halted. */
1787 	ret = cdnsp_halt(pdev);
1788 	if (ret)
1789 		return ret;
1790 
1791 	/* Reset the internal controller memory state and registers. */
1792 	ret = cdnsp_reset(pdev);
1793 	if (ret)
1794 		return ret;
1795 
1796 	/*
1797 	 * Set dma_mask and coherent_dma_mask to 64-bits,
1798 	 * if controller supports 64-bit addressing.
1799 	 */
1800 	if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1801 	    !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1802 		dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1803 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1804 	} else {
1805 		/*
1806 		 * This is to avoid error in cases where a 32-bit USB
1807 		 * controller is used on a 64-bit capable system.
1808 		 */
1809 		ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1810 		if (ret)
1811 			return ret;
1812 
1813 		dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1814 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1815 	}
1816 
1817 	spin_lock_init(&pdev->lock);
1818 
1819 	ret = cdnsp_mem_init(pdev);
1820 	if (ret)
1821 		return ret;
1822 
1823 	/*
1824 	 * Software workaround for U1: after transition
1825 	 * to U1 the controller starts gating clock, and in some cases,
1826 	 * it causes that controller stack.
1827 	 */
1828 	reg = readl(&pdev->port3x_regs->mode_2);
1829 	reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1830 	writel(reg, &pdev->port3x_regs->mode_2);
1831 
1832 	return 0;
1833 }
1834 
1835 static int __cdnsp_gadget_init(struct cdns *cdns)
1836 {
1837 	struct cdnsp_device *pdev;
1838 	u32 max_speed;
1839 	int ret = -ENOMEM;
1840 
1841 	cdns_drd_gadget_on(cdns);
1842 
1843 	pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1844 	if (!pdev)
1845 		return -ENOMEM;
1846 
1847 	pm_runtime_get_sync(cdns->dev);
1848 
1849 	cdns->gadget_dev = pdev;
1850 	pdev->dev = cdns->dev;
1851 	pdev->regs = cdns->dev_regs;
1852 	max_speed = usb_get_maximum_speed(cdns->dev);
1853 
1854 	switch (max_speed) {
1855 	case USB_SPEED_FULL:
1856 	case USB_SPEED_HIGH:
1857 	case USB_SPEED_SUPER:
1858 	case USB_SPEED_SUPER_PLUS:
1859 		break;
1860 	default:
1861 		dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1862 		fallthrough;
1863 	case USB_SPEED_UNKNOWN:
1864 		/* Default to SSP */
1865 		max_speed = USB_SPEED_SUPER_PLUS;
1866 		break;
1867 	}
1868 
1869 	pdev->gadget.ops = &cdnsp_gadget_ops;
1870 	pdev->gadget.name = "cdnsp-gadget";
1871 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1872 	pdev->gadget.sg_supported = 1;
1873 	pdev->gadget.max_speed = USB_SPEED_SUPER_PLUS;
1874 	pdev->gadget.lpm_capable = 1;
1875 
1876 	pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1877 	if (!pdev->setup_buf)
1878 		goto free_pdev;
1879 
1880 	/*
1881 	 * Controller supports not aligned buffer but it should improve
1882 	 * performance.
1883 	 */
1884 	pdev->gadget.quirk_ep_out_aligned_size = true;
1885 
1886 	ret = cdnsp_gen_setup(pdev);
1887 	if (ret) {
1888 		dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1889 		goto free_setup;
1890 	}
1891 
1892 	ret = cdnsp_gadget_init_endpoints(pdev);
1893 	if (ret) {
1894 		dev_err(pdev->dev, "failed to initialize endpoints\n");
1895 		goto halt_pdev;
1896 	}
1897 
1898 	ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1899 	if (ret) {
1900 		dev_err(pdev->dev, "failed to register udc\n");
1901 		goto free_endpoints;
1902 	}
1903 
1904 	ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1905 					cdnsp_irq_handler,
1906 					cdnsp_thread_irq_handler, IRQF_SHARED,
1907 					dev_name(pdev->dev), pdev);
1908 	if (ret)
1909 		goto del_gadget;
1910 
1911 	return 0;
1912 
1913 del_gadget:
1914 	usb_del_gadget_udc(&pdev->gadget);
1915 free_endpoints:
1916 	cdnsp_gadget_free_endpoints(pdev);
1917 halt_pdev:
1918 	cdnsp_halt(pdev);
1919 	cdnsp_reset(pdev);
1920 	cdnsp_mem_cleanup(pdev);
1921 free_setup:
1922 	kfree(pdev->setup_buf);
1923 free_pdev:
1924 	kfree(pdev);
1925 
1926 	return ret;
1927 }
1928 
1929 static void cdnsp_gadget_exit(struct cdns *cdns)
1930 {
1931 	struct cdnsp_device *pdev = cdns->gadget_dev;
1932 
1933 	devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1934 	pm_runtime_mark_last_busy(cdns->dev);
1935 	pm_runtime_put_autosuspend(cdns->dev);
1936 	usb_del_gadget_udc(&pdev->gadget);
1937 	cdnsp_gadget_free_endpoints(pdev);
1938 	cdnsp_mem_cleanup(pdev);
1939 	kfree(pdev);
1940 	cdns->gadget_dev = NULL;
1941 	cdns_drd_gadget_off(cdns);
1942 }
1943 
1944 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
1945 {
1946 	struct cdnsp_device *pdev = cdns->gadget_dev;
1947 	unsigned long flags;
1948 
1949 	if (pdev->link_state == XDEV_U3)
1950 		return 0;
1951 
1952 	spin_lock_irqsave(&pdev->lock, flags);
1953 	cdnsp_disconnect_gadget(pdev);
1954 	cdnsp_stop(pdev);
1955 	spin_unlock_irqrestore(&pdev->lock, flags);
1956 
1957 	return 0;
1958 }
1959 
1960 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated)
1961 {
1962 	struct cdnsp_device *pdev = cdns->gadget_dev;
1963 	enum usb_device_speed max_speed;
1964 	unsigned long flags;
1965 	int ret;
1966 
1967 	if (!pdev->gadget_driver)
1968 		return 0;
1969 
1970 	spin_lock_irqsave(&pdev->lock, flags);
1971 	max_speed = pdev->gadget_driver->max_speed;
1972 
1973 	/* Limit speed if necessary. */
1974 	max_speed = min(max_speed, pdev->gadget.max_speed);
1975 
1976 	ret = cdnsp_run(pdev, max_speed);
1977 
1978 	if (pdev->link_state == XDEV_U3)
1979 		__cdnsp_gadget_wakeup(pdev);
1980 
1981 	spin_unlock_irqrestore(&pdev->lock, flags);
1982 
1983 	return ret;
1984 }
1985 
1986 /**
1987  * cdnsp_gadget_init - initialize device structure
1988  * @cdns: cdnsp instance
1989  *
1990  * This function initializes the gadget.
1991  */
1992 int cdnsp_gadget_init(struct cdns *cdns)
1993 {
1994 	struct cdns_role_driver *rdrv;
1995 
1996 	rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
1997 	if (!rdrv)
1998 		return -ENOMEM;
1999 
2000 	rdrv->start	= __cdnsp_gadget_init;
2001 	rdrv->stop	= cdnsp_gadget_exit;
2002 	rdrv->suspend	= cdnsp_gadget_suspend;
2003 	rdrv->resume	= cdnsp_gadget_resume;
2004 	rdrv->state	= CDNS_ROLE_STATE_INACTIVE;
2005 	rdrv->name	= "gadget";
2006 	cdns->roles[USB_ROLE_DEVICE] = rdrv;
2007 
2008 	return 0;
2009 }
2010