xref: /openbmc/linux/drivers/usb/cdns3/cdnsp-gadget.c (revision 2cf1c348)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cadence CDNSP DRD Driver.
4  *
5  * Copyright (C) 2020 Cadence.
6  *
7  * Author: Pawel Laszczak <pawell@cadence.com>
8  *
9  */
10 
11 #include <linux/moduleparam.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/module.h>
14 #include <linux/iopoll.h>
15 #include <linux/delay.h>
16 #include <linux/log2.h>
17 #include <linux/slab.h>
18 #include <linux/pci.h>
19 #include <linux/irq.h>
20 #include <linux/dmi.h>
21 
22 #include "core.h"
23 #include "gadget-export.h"
24 #include "drd.h"
25 #include "cdnsp-gadget.h"
26 #include "cdnsp-trace.h"
27 
28 unsigned int cdnsp_port_speed(unsigned int port_status)
29 {
30 	/*Detect gadget speed based on PORTSC register*/
31 	if (DEV_SUPERSPEEDPLUS(port_status))
32 		return USB_SPEED_SUPER_PLUS;
33 	else if (DEV_SUPERSPEED(port_status))
34 		return USB_SPEED_SUPER;
35 	else if (DEV_HIGHSPEED(port_status))
36 		return USB_SPEED_HIGH;
37 	else if (DEV_FULLSPEED(port_status))
38 		return USB_SPEED_FULL;
39 
40 	/* If device is detached then speed will be USB_SPEED_UNKNOWN.*/
41 	return USB_SPEED_UNKNOWN;
42 }
43 
44 /*
45  * Given a port state, this function returns a value that would result in the
46  * port being in the same state, if the value was written to the port status
47  * control register.
48  * Save Read Only (RO) bits and save read/write bits where
49  * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
50  * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
51  */
52 u32 cdnsp_port_state_to_neutral(u32 state)
53 {
54 	/* Save read-only status and port state. */
55 	return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS);
56 }
57 
58 /**
59  * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities
60  *                           with capability ID id.
61  * @base: PCI MMIO registers base address.
62  * @start: Address at which to start looking, (0 or HCC_PARAMS to start at
63  *         beginning of list)
64  * @id: Extended capability ID to search for.
65  *
66  * Returns the offset of the next matching extended capability structure.
67  * Some capabilities can occur several times,
68  * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all.
69  */
70 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id)
71 {
72 	u32 offset = start;
73 	u32 next;
74 	u32 val;
75 
76 	if (!start || start == HCC_PARAMS_OFFSET) {
77 		val = readl(base + HCC_PARAMS_OFFSET);
78 		if (val == ~0)
79 			return 0;
80 
81 		offset = HCC_EXT_CAPS(val) << 2;
82 		if (!offset)
83 			return 0;
84 	}
85 
86 	do {
87 		val = readl(base + offset);
88 		if (val == ~0)
89 			return 0;
90 
91 		if (EXT_CAPS_ID(val) == id && offset != start)
92 			return offset;
93 
94 		next = EXT_CAPS_NEXT(val);
95 		offset += next << 2;
96 	} while (next);
97 
98 	return 0;
99 }
100 
101 void cdnsp_set_link_state(struct cdnsp_device *pdev,
102 			  __le32 __iomem *port_regs,
103 			  u32 link_state)
104 {
105 	int port_num = 0xFF;
106 	u32 temp;
107 
108 	temp = readl(port_regs);
109 	temp = cdnsp_port_state_to_neutral(temp);
110 	temp |= PORT_WKCONN_E | PORT_WKDISC_E;
111 	writel(temp, port_regs);
112 
113 	temp &= ~PORT_PLS_MASK;
114 	temp |= PORT_LINK_STROBE | link_state;
115 
116 	if (pdev->active_port)
117 		port_num = pdev->active_port->port_num;
118 
119 	trace_cdnsp_handle_port_status(port_num, readl(port_regs));
120 	writel(temp, port_regs);
121 	trace_cdnsp_link_state_changed(port_num, readl(port_regs));
122 }
123 
124 static void cdnsp_disable_port(struct cdnsp_device *pdev,
125 			       __le32 __iomem *port_regs)
126 {
127 	u32 temp = cdnsp_port_state_to_neutral(readl(port_regs));
128 
129 	writel(temp | PORT_PED, port_regs);
130 }
131 
132 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev,
133 					__le32 __iomem *port_regs)
134 {
135 	u32 portsc = readl(port_regs);
136 
137 	writel(cdnsp_port_state_to_neutral(portsc) |
138 	       (portsc & PORT_CHANGE_BITS), port_regs);
139 }
140 
141 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
142 {
143 	__le32 __iomem *reg;
144 	void __iomem *base;
145 	u32 offset = 0;
146 
147 	base = &pdev->cap_regs->hc_capbase;
148 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
149 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
150 
151 	bit = readl(reg) | bit;
152 	writel(bit, reg);
153 }
154 
155 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit)
156 {
157 	__le32 __iomem *reg;
158 	void __iomem *base;
159 	u32 offset = 0;
160 
161 	base = &pdev->cap_regs->hc_capbase;
162 	offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP);
163 	reg = base + offset + REG_CHICKEN_BITS_2_OFFSET;
164 
165 	bit = readl(reg) & ~bit;
166 	writel(bit, reg);
167 }
168 
169 /*
170  * Disable interrupts and begin the controller halting process.
171  */
172 static void cdnsp_quiesce(struct cdnsp_device *pdev)
173 {
174 	u32 halted;
175 	u32 mask;
176 	u32 cmd;
177 
178 	mask = ~(u32)(CDNSP_IRQS);
179 
180 	halted = readl(&pdev->op_regs->status) & STS_HALT;
181 	if (!halted)
182 		mask &= ~(CMD_R_S | CMD_DEVEN);
183 
184 	cmd = readl(&pdev->op_regs->command);
185 	cmd &= mask;
186 	writel(cmd, &pdev->op_regs->command);
187 }
188 
189 /*
190  * Force controller into halt state.
191  *
192  * Disable any IRQs and clear the run/stop bit.
193  * Controller will complete any current and actively pipelined transactions, and
194  * should halt within 16 ms of the run/stop bit being cleared.
195  * Read controller Halted bit in the status register to see when the
196  * controller is finished.
197  */
198 int cdnsp_halt(struct cdnsp_device *pdev)
199 {
200 	int ret;
201 	u32 val;
202 
203 	cdnsp_quiesce(pdev);
204 
205 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val,
206 					val & STS_HALT, 1,
207 					CDNSP_MAX_HALT_USEC);
208 	if (ret) {
209 		dev_err(pdev->dev, "ERROR: Device halt failed\n");
210 		return ret;
211 	}
212 
213 	pdev->cdnsp_state |= CDNSP_STATE_HALTED;
214 
215 	return 0;
216 }
217 
218 /*
219  * device controller died, register read returns 0xffffffff, or command never
220  * ends.
221  */
222 void cdnsp_died(struct cdnsp_device *pdev)
223 {
224 	dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n");
225 	pdev->cdnsp_state |= CDNSP_STATE_DYING;
226 	cdnsp_halt(pdev);
227 }
228 
229 /*
230  * Set the run bit and wait for the device to be running.
231  */
232 static int cdnsp_start(struct cdnsp_device *pdev)
233 {
234 	u32 temp;
235 	int ret;
236 
237 	temp = readl(&pdev->op_regs->command);
238 	temp |= (CMD_R_S | CMD_DEVEN);
239 	writel(temp, &pdev->op_regs->command);
240 
241 	pdev->cdnsp_state = 0;
242 
243 	/*
244 	 * Wait for the STS_HALT Status bit to be 0 to indicate the device is
245 	 * running.
246 	 */
247 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
248 					!(temp & STS_HALT), 1,
249 					CDNSP_MAX_HALT_USEC);
250 	if (ret) {
251 		pdev->cdnsp_state = CDNSP_STATE_DYING;
252 		dev_err(pdev->dev, "ERROR: Controller run failed\n");
253 	}
254 
255 	return ret;
256 }
257 
258 /*
259  * Reset a halted controller.
260  *
261  * This resets pipelines, timers, counters, state machines, etc.
262  * Transactions will be terminated immediately, and operational registers
263  * will be set to their defaults.
264  */
265 int cdnsp_reset(struct cdnsp_device *pdev)
266 {
267 	u32 command;
268 	u32 temp;
269 	int ret;
270 
271 	temp = readl(&pdev->op_regs->status);
272 
273 	if (temp == ~(u32)0) {
274 		dev_err(pdev->dev, "Device not accessible, reset failed.\n");
275 		return -ENODEV;
276 	}
277 
278 	if ((temp & STS_HALT) == 0) {
279 		dev_err(pdev->dev, "Controller not halted, aborting reset.\n");
280 		return -EINVAL;
281 	}
282 
283 	command = readl(&pdev->op_regs->command);
284 	command |= CMD_RESET;
285 	writel(command, &pdev->op_regs->command);
286 
287 	ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp,
288 					!(temp & CMD_RESET), 1,
289 					10 * 1000);
290 	if (ret) {
291 		dev_err(pdev->dev, "ERROR: Controller reset failed\n");
292 		return ret;
293 	}
294 
295 	/*
296 	 * CDNSP cannot write any doorbells or operational registers other
297 	 * than status until the "Controller Not Ready" flag is cleared.
298 	 */
299 	ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp,
300 					!(temp & STS_CNR), 1,
301 					10 * 1000);
302 
303 	if (ret) {
304 		dev_err(pdev->dev, "ERROR: Controller not ready to work\n");
305 		return ret;
306 	}
307 
308 	dev_dbg(pdev->dev, "Controller ready to work");
309 
310 	return ret;
311 }
312 
313 /*
314  * cdnsp_get_endpoint_index - Find the index for an endpoint given its
315  * descriptor.Use the return value to right shift 1 for the bitmask.
316  *
317  * Index = (epnum * 2) + direction - 1,
318  * where direction = 0 for OUT, 1 for IN.
319  * For control endpoints, the IN index is used (OUT index is unused), so
320  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
321  */
322 static unsigned int
323 	cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc)
324 {
325 	unsigned int index = (unsigned int)usb_endpoint_num(desc);
326 
327 	if (usb_endpoint_xfer_control(desc))
328 		return index * 2;
329 
330 	return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
331 }
332 
333 /*
334  * Find the flag for this endpoint (for use in the control context). Use the
335  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
336  * bit 1, etc.
337  */
338 static unsigned int
339 	cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc)
340 {
341 	return 1 << (cdnsp_get_endpoint_index(desc) + 1);
342 }
343 
344 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
345 {
346 	struct cdnsp_device *pdev = pep->pdev;
347 	struct usb_request *request;
348 	int ret;
349 
350 	if (preq->epnum == 0 && !list_empty(&pep->pending_list)) {
351 		trace_cdnsp_request_enqueue_busy(preq);
352 		return -EBUSY;
353 	}
354 
355 	request = &preq->request;
356 	request->actual = 0;
357 	request->status = -EINPROGRESS;
358 	preq->direction = pep->direction;
359 	preq->epnum = pep->number;
360 	preq->td.drbl = 0;
361 
362 	ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction);
363 	if (ret) {
364 		trace_cdnsp_request_enqueue_error(preq);
365 		return ret;
366 	}
367 
368 	list_add_tail(&preq->list, &pep->pending_list);
369 
370 	trace_cdnsp_request_enqueue(preq);
371 
372 	switch (usb_endpoint_type(pep->endpoint.desc)) {
373 	case USB_ENDPOINT_XFER_CONTROL:
374 		ret = cdnsp_queue_ctrl_tx(pdev, preq);
375 		break;
376 	case USB_ENDPOINT_XFER_BULK:
377 	case USB_ENDPOINT_XFER_INT:
378 		ret = cdnsp_queue_bulk_tx(pdev, preq);
379 		break;
380 	case USB_ENDPOINT_XFER_ISOC:
381 		ret = cdnsp_queue_isoc_tx_prepare(pdev, preq);
382 	}
383 
384 	if (ret)
385 		goto unmap;
386 
387 	return 0;
388 
389 unmap:
390 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
391 					pep->direction);
392 	list_del(&preq->list);
393 	trace_cdnsp_request_enqueue_error(preq);
394 
395 	return ret;
396 }
397 
398 /*
399  * Remove the request's TD from the endpoint ring. This may cause the
400  * controller to stop USB transfers, potentially stopping in the middle of a
401  * TRB buffer. The controller should pick up where it left off in the TD,
402  * unless a Set Transfer Ring Dequeue Pointer is issued.
403  *
404  * The TRBs that make up the buffers for the canceled request will be "removed"
405  * from the ring. Since the ring is a contiguous structure, they can't be
406  * physically removed. Instead, there are two options:
407  *
408  *  1) If the controller is in the middle of processing the request to be
409  *     canceled, we simply move the ring's dequeue pointer past those TRBs
410  *     using the Set Transfer Ring Dequeue Pointer command. This will be
411  *     the common case, when drivers timeout on the last submitted request
412  *     and attempt to cancel.
413  *
414  *  2) If the controller is in the middle of a different TD, we turn the TRBs
415  *     into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained.
416  *     The controller will need to invalidate the any TRBs it has cached after
417  *     the stop endpoint command.
418  *
419  *  3) The TD may have completed by the time the Stop Endpoint Command
420  *     completes, so software needs to handle that case too.
421  *
422  */
423 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq)
424 {
425 	struct cdnsp_device *pdev = pep->pdev;
426 	int ret_stop = 0;
427 	int ret_rem;
428 
429 	trace_cdnsp_request_dequeue(preq);
430 
431 	if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING)
432 		ret_stop = cdnsp_cmd_stop_ep(pdev, pep);
433 
434 	ret_rem = cdnsp_remove_request(pdev, preq, pep);
435 
436 	return ret_rem ? ret_rem : ret_stop;
437 }
438 
439 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev)
440 {
441 	struct cdnsp_input_control_ctx *ctrl_ctx;
442 	struct cdnsp_slot_ctx *slot_ctx;
443 	struct cdnsp_ep_ctx *ep_ctx;
444 	int i;
445 
446 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
447 
448 	/*
449 	 * When a device's add flag and drop flag are zero, any subsequent
450 	 * configure endpoint command will leave that endpoint's state
451 	 * untouched. Make sure we don't leave any old state in the input
452 	 * endpoint contexts.
453 	 */
454 	ctrl_ctx->drop_flags = 0;
455 	ctrl_ctx->add_flags = 0;
456 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
457 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
458 
459 	/* Endpoint 0 is always valid */
460 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
461 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) {
462 		ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i);
463 		ep_ctx->ep_info = 0;
464 		ep_ctx->ep_info2 = 0;
465 		ep_ctx->deq = 0;
466 		ep_ctx->tx_info = 0;
467 	}
468 }
469 
470 /* Issue a configure endpoint command and wait for it to finish. */
471 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev)
472 {
473 	int ret;
474 
475 	cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma);
476 	cdnsp_ring_cmd_db(pdev);
477 	ret = cdnsp_wait_for_cmd_compl(pdev);
478 	if (ret) {
479 		dev_err(pdev->dev,
480 			"ERR: unexpected command completion code 0x%x.\n", ret);
481 		return -EINVAL;
482 	}
483 
484 	return ret;
485 }
486 
487 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev,
488 				       struct cdnsp_ep *pep)
489 {
490 	struct cdnsp_segment *segment;
491 	union cdnsp_trb *event;
492 	u32 cycle_state;
493 	u32  data;
494 
495 	event = pdev->event_ring->dequeue;
496 	segment = pdev->event_ring->deq_seg;
497 	cycle_state = pdev->event_ring->cycle_state;
498 
499 	while (1) {
500 		data = le32_to_cpu(event->trans_event.flags);
501 
502 		/* Check the owner of the TRB. */
503 		if ((data & TRB_CYCLE) != cycle_state)
504 			break;
505 
506 		if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER &&
507 		    TRB_TO_EP_ID(data) == (pep->idx + 1)) {
508 			data |= TRB_EVENT_INVALIDATE;
509 			event->trans_event.flags = cpu_to_le32(data);
510 		}
511 
512 		if (cdnsp_last_trb_on_seg(segment, event)) {
513 			cycle_state ^= 1;
514 			segment = pdev->event_ring->deq_seg->next;
515 			event = segment->trbs;
516 		} else {
517 			event++;
518 		}
519 	}
520 }
521 
522 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev)
523 {
524 	struct cdnsp_segment *event_deq_seg;
525 	union cdnsp_trb *cmd_trb;
526 	dma_addr_t cmd_deq_dma;
527 	union cdnsp_trb *event;
528 	u32 cycle_state;
529 	int ret, val;
530 	u64 cmd_dma;
531 	u32  flags;
532 
533 	cmd_trb = pdev->cmd.command_trb;
534 	pdev->cmd.status = 0;
535 
536 	trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic);
537 
538 	ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val,
539 					!CMD_RING_BUSY(val), 1,
540 					CDNSP_CMD_TIMEOUT);
541 	if (ret) {
542 		dev_err(pdev->dev, "ERR: Timeout while waiting for command\n");
543 		trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic);
544 		pdev->cdnsp_state = CDNSP_STATE_DYING;
545 		return -ETIMEDOUT;
546 	}
547 
548 	event = pdev->event_ring->dequeue;
549 	event_deq_seg = pdev->event_ring->deq_seg;
550 	cycle_state = pdev->event_ring->cycle_state;
551 
552 	cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb);
553 	if (!cmd_deq_dma)
554 		return -EINVAL;
555 
556 	while (1) {
557 		flags = le32_to_cpu(event->event_cmd.flags);
558 
559 		/* Check the owner of the TRB. */
560 		if ((flags & TRB_CYCLE) != cycle_state)
561 			return -EINVAL;
562 
563 		cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb);
564 
565 		/*
566 		 * Check whether the completion event is for last queued
567 		 * command.
568 		 */
569 		if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION ||
570 		    cmd_dma != (u64)cmd_deq_dma) {
571 			if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
572 				event++;
573 				continue;
574 			}
575 
576 			if (cdnsp_last_trb_on_ring(pdev->event_ring,
577 						   event_deq_seg, event))
578 				cycle_state ^= 1;
579 
580 			event_deq_seg = event_deq_seg->next;
581 			event = event_deq_seg->trbs;
582 			continue;
583 		}
584 
585 		trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic);
586 
587 		pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status));
588 		if (pdev->cmd.status == COMP_SUCCESS)
589 			return 0;
590 
591 		return -pdev->cmd.status;
592 	}
593 }
594 
595 int cdnsp_halt_endpoint(struct cdnsp_device *pdev,
596 			struct cdnsp_ep *pep,
597 			int value)
598 {
599 	int ret;
600 
601 	trace_cdnsp_ep_halt(value ? "Set" : "Clear");
602 
603 	if (value) {
604 		ret = cdnsp_cmd_stop_ep(pdev, pep);
605 		if (ret)
606 			return ret;
607 
608 		if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) {
609 			cdnsp_queue_halt_endpoint(pdev, pep->idx);
610 			cdnsp_ring_cmd_db(pdev);
611 			ret = cdnsp_wait_for_cmd_compl(pdev);
612 		}
613 
614 		pep->ep_state |= EP_HALTED;
615 	} else {
616 		/*
617 		 * In device mode driver can call reset endpoint command
618 		 * from any endpoint state.
619 		 */
620 		cdnsp_queue_reset_ep(pdev, pep->idx);
621 		cdnsp_ring_cmd_db(pdev);
622 		ret = cdnsp_wait_for_cmd_compl(pdev);
623 		trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx);
624 
625 		if (ret)
626 			return ret;
627 
628 		pep->ep_state &= ~EP_HALTED;
629 
630 		if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE))
631 			cdnsp_ring_doorbell_for_active_rings(pdev, pep);
632 
633 		pep->ep_state &= ~EP_WEDGE;
634 	}
635 
636 	return 0;
637 }
638 
639 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev,
640 					  struct cdnsp_ep *pep)
641 {
642 	struct cdnsp_input_control_ctx *ctrl_ctx;
643 	struct cdnsp_slot_ctx *slot_ctx;
644 	int ret = 0;
645 	u32 ep_sts;
646 	int i;
647 
648 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
649 
650 	/* Don't issue the command if there's no endpoints to update. */
651 	if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0)
652 		return 0;
653 
654 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
655 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
656 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
657 
658 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
659 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
660 	for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) {
661 		__le32 le32 = cpu_to_le32(BIT(i));
662 
663 		if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) ||
664 		    (ctrl_ctx->add_flags & le32) || i == 1) {
665 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
666 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
667 			break;
668 		}
669 	}
670 
671 	ep_sts = GET_EP_CTX_STATE(pep->out_ctx);
672 
673 	if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) &&
674 	     ep_sts == EP_STATE_DISABLED) ||
675 	    (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags))
676 		ret = cdnsp_configure_endpoint(pdev);
677 
678 	trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx));
679 	trace_cdnsp_handle_cmd_config_ep(pep->out_ctx);
680 
681 	cdnsp_zero_in_ctx(pdev);
682 
683 	return ret;
684 }
685 
686 /*
687  * This submits a Reset Device Command, which will set the device state to 0,
688  * set the device address to 0, and disable all the endpoints except the default
689  * control endpoint. The USB core should come back and call
690  * cdnsp_setup_device(), and then re-set up the configuration.
691  */
692 int cdnsp_reset_device(struct cdnsp_device *pdev)
693 {
694 	struct cdnsp_slot_ctx *slot_ctx;
695 	int slot_state;
696 	int ret, i;
697 
698 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
699 	slot_ctx->dev_info = 0;
700 	pdev->device_address = 0;
701 
702 	/* If device is not setup, there is no point in resetting it. */
703 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
704 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
705 	trace_cdnsp_reset_device(slot_ctx);
706 
707 	if (slot_state <= SLOT_STATE_DEFAULT &&
708 	    pdev->eps[0].ep_state & EP_HALTED) {
709 		cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0);
710 	}
711 
712 	/*
713 	 * During Reset Device command controller shall transition the
714 	 * endpoint ep0 to the Running State.
715 	 */
716 	pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED);
717 	pdev->eps[0].ep_state |= EP_ENABLED;
718 
719 	if (slot_state <= SLOT_STATE_DEFAULT)
720 		return 0;
721 
722 	cdnsp_queue_reset_device(pdev);
723 	cdnsp_ring_cmd_db(pdev);
724 	ret = cdnsp_wait_for_cmd_compl(pdev);
725 
726 	/*
727 	 * After Reset Device command all not default endpoints
728 	 * are in Disabled state.
729 	 */
730 	for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i)
731 		pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED;
732 
733 	trace_cdnsp_handle_cmd_reset_dev(slot_ctx);
734 
735 	if (ret)
736 		dev_err(pdev->dev, "Reset device failed with error code %d",
737 			ret);
738 
739 	return ret;
740 }
741 
742 /*
743  * Sets the MaxPStreams field and the Linear Stream Array field.
744  * Sets the dequeue pointer to the stream context array.
745  */
746 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev,
747 					     struct cdnsp_ep_ctx *ep_ctx,
748 					     struct cdnsp_stream_info *stream_info)
749 {
750 	u32 max_primary_streams;
751 
752 	/* MaxPStreams is the number of stream context array entries, not the
753 	 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
754 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
755 	 */
756 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
757 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
758 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
759 				       | EP_HAS_LSA);
760 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
761 }
762 
763 /*
764  * The drivers use this function to prepare a bulk endpoints to use streams.
765  *
766  * Don't allow the call to succeed if endpoint only supports one stream
767  * (which means it doesn't support streams at all).
768  */
769 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep)
770 {
771 	unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc);
772 	unsigned int num_stream_ctxs;
773 	int ret;
774 
775 	if (num_streams ==  0)
776 		return 0;
777 
778 	if (num_streams > STREAM_NUM_STREAMS)
779 		return -EINVAL;
780 
781 	/*
782 	 * Add two to the number of streams requested to account for
783 	 * stream 0 that is reserved for controller usage and one additional
784 	 * for TASK SET FULL response.
785 	 */
786 	num_streams += 2;
787 
788 	/* The stream context array size must be a power of two */
789 	num_stream_ctxs = roundup_pow_of_two(num_streams);
790 
791 	trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams);
792 
793 	ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams);
794 	if (ret)
795 		return ret;
796 
797 	cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info);
798 
799 	pep->ep_state |= EP_HAS_STREAMS;
800 	pep->stream_info.td_count = 0;
801 	pep->stream_info.first_prime_det = 0;
802 
803 	/* Subtract 1 for stream 0, which drivers can't use. */
804 	return num_streams - 1;
805 }
806 
807 int cdnsp_disable_slot(struct cdnsp_device *pdev)
808 {
809 	int ret;
810 
811 	cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT);
812 	cdnsp_ring_cmd_db(pdev);
813 	ret = cdnsp_wait_for_cmd_compl(pdev);
814 
815 	pdev->slot_id = 0;
816 	pdev->active_port = NULL;
817 
818 	trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
819 
820 	memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE);
821 	memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE);
822 
823 	return ret;
824 }
825 
826 int cdnsp_enable_slot(struct cdnsp_device *pdev)
827 {
828 	struct cdnsp_slot_ctx *slot_ctx;
829 	int slot_state;
830 	int ret;
831 
832 	/* If device is not setup, there is no point in resetting it */
833 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
834 	slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
835 
836 	if (slot_state != SLOT_STATE_DISABLED)
837 		return 0;
838 
839 	cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT);
840 	cdnsp_ring_cmd_db(pdev);
841 	ret = cdnsp_wait_for_cmd_compl(pdev);
842 	if (ret)
843 		goto show_trace;
844 
845 	pdev->slot_id = 1;
846 
847 show_trace:
848 	trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx));
849 
850 	return ret;
851 }
852 
853 /*
854  * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY
855  * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS.
856  */
857 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup)
858 {
859 	struct cdnsp_input_control_ctx *ctrl_ctx;
860 	struct cdnsp_slot_ctx *slot_ctx;
861 	int dev_state = 0;
862 	int ret;
863 
864 	if (!pdev->slot_id) {
865 		trace_cdnsp_slot_id("incorrect");
866 		return -EINVAL;
867 	}
868 
869 	if (!pdev->active_port->port_num)
870 		return -EINVAL;
871 
872 	slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx);
873 	dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state));
874 
875 	if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) {
876 		trace_cdnsp_slot_already_in_default(slot_ctx);
877 		return 0;
878 	}
879 
880 	slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx);
881 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
882 
883 	if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) {
884 		ret = cdnsp_setup_addressable_priv_dev(pdev);
885 		if (ret)
886 			return ret;
887 	}
888 
889 	cdnsp_copy_ep0_dequeue_into_input_ctx(pdev);
890 
891 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
892 	ctrl_ctx->drop_flags = 0;
893 
894 	trace_cdnsp_setup_device_slot(slot_ctx);
895 
896 	cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup);
897 	cdnsp_ring_cmd_db(pdev);
898 	ret = cdnsp_wait_for_cmd_compl(pdev);
899 
900 	trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx));
901 
902 	/* Zero the input context control for later use. */
903 	ctrl_ctx->add_flags = 0;
904 	ctrl_ctx->drop_flags = 0;
905 
906 	return ret;
907 }
908 
909 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev,
910 				 struct usb_request *req,
911 				 int enable)
912 {
913 	if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable)
914 		return;
915 
916 	trace_cdnsp_lpm(enable);
917 
918 	if (enable)
919 		writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE,
920 		       &pdev->active_port->regs->portpmsc);
921 	else
922 		writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc);
923 }
924 
925 static int cdnsp_get_frame(struct cdnsp_device *pdev)
926 {
927 	return readl(&pdev->run_regs->microframe_index) >> 3;
928 }
929 
930 static int cdnsp_gadget_ep_enable(struct usb_ep *ep,
931 				  const struct usb_endpoint_descriptor *desc)
932 {
933 	struct cdnsp_input_control_ctx *ctrl_ctx;
934 	struct cdnsp_device *pdev;
935 	struct cdnsp_ep *pep;
936 	unsigned long flags;
937 	u32 added_ctxs;
938 	int ret;
939 
940 	if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT ||
941 	    !desc->wMaxPacketSize)
942 		return -EINVAL;
943 
944 	pep = to_cdnsp_ep(ep);
945 	pdev = pep->pdev;
946 	pep->ep_state &= ~EP_UNCONFIGURED;
947 
948 	if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED,
949 			  "%s is already enabled\n", pep->name))
950 		return 0;
951 
952 	spin_lock_irqsave(&pdev->lock, flags);
953 
954 	added_ctxs = cdnsp_get_endpoint_flag(desc);
955 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
956 		dev_err(pdev->dev, "ERROR: Bad endpoint number\n");
957 		ret = -EINVAL;
958 		goto unlock;
959 	}
960 
961 	pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0;
962 
963 	if (pdev->gadget.speed == USB_SPEED_FULL) {
964 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT)
965 			pep->interval = desc->bInterval << 3;
966 		if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC)
967 			pep->interval = BIT(desc->bInterval - 1) << 3;
968 	}
969 
970 	if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) {
971 		if (pep->interval > BIT(12)) {
972 			dev_err(pdev->dev, "bInterval %d not supported\n",
973 				desc->bInterval);
974 			ret = -EINVAL;
975 			goto unlock;
976 		}
977 		cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
978 	}
979 
980 	ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC);
981 	if (ret)
982 		goto unlock;
983 
984 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
985 	ctrl_ctx->add_flags = cpu_to_le32(added_ctxs);
986 	ctrl_ctx->drop_flags = 0;
987 
988 	ret = cdnsp_update_eps_configuration(pdev, pep);
989 	if (ret) {
990 		cdnsp_free_endpoint_rings(pdev, pep);
991 		goto unlock;
992 	}
993 
994 	pep->ep_state |= EP_ENABLED;
995 	pep->ep_state &= ~EP_STOPPED;
996 
997 unlock:
998 	trace_cdnsp_ep_enable_end(pep, 0);
999 	spin_unlock_irqrestore(&pdev->lock, flags);
1000 
1001 	return ret;
1002 }
1003 
1004 static int cdnsp_gadget_ep_disable(struct usb_ep *ep)
1005 {
1006 	struct cdnsp_input_control_ctx *ctrl_ctx;
1007 	struct cdnsp_request *preq;
1008 	struct cdnsp_device *pdev;
1009 	struct cdnsp_ep *pep;
1010 	unsigned long flags;
1011 	u32 drop_flag;
1012 	int ret = 0;
1013 
1014 	if (!ep)
1015 		return -EINVAL;
1016 
1017 	pep = to_cdnsp_ep(ep);
1018 	pdev = pep->pdev;
1019 
1020 	spin_lock_irqsave(&pdev->lock, flags);
1021 
1022 	if (!(pep->ep_state & EP_ENABLED)) {
1023 		dev_err(pdev->dev, "%s is already disabled\n", pep->name);
1024 		ret = -EINVAL;
1025 		goto finish;
1026 	}
1027 
1028 	pep->ep_state |= EP_DIS_IN_RROGRESS;
1029 
1030 	/* Endpoint was unconfigured by Reset Device command. */
1031 	if (!(pep->ep_state & EP_UNCONFIGURED)) {
1032 		cdnsp_cmd_stop_ep(pdev, pep);
1033 		cdnsp_cmd_flush_ep(pdev, pep);
1034 	}
1035 
1036 	/* Remove all queued USB requests. */
1037 	while (!list_empty(&pep->pending_list)) {
1038 		preq = next_request(&pep->pending_list);
1039 		cdnsp_ep_dequeue(pep, preq);
1040 	}
1041 
1042 	cdnsp_invalidate_ep_events(pdev, pep);
1043 
1044 	pep->ep_state &= ~EP_DIS_IN_RROGRESS;
1045 	drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc);
1046 	ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx);
1047 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flag);
1048 	ctrl_ctx->add_flags = 0;
1049 
1050 	cdnsp_endpoint_zero(pdev, pep);
1051 
1052 	if (!(pep->ep_state & EP_UNCONFIGURED))
1053 		ret = cdnsp_update_eps_configuration(pdev, pep);
1054 
1055 	cdnsp_free_endpoint_rings(pdev, pep);
1056 
1057 	pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED);
1058 	pep->ep_state |= EP_STOPPED;
1059 
1060 finish:
1061 	trace_cdnsp_ep_disable_end(pep, 0);
1062 	spin_unlock_irqrestore(&pdev->lock, flags);
1063 
1064 	return ret;
1065 }
1066 
1067 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep,
1068 							 gfp_t gfp_flags)
1069 {
1070 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1071 	struct cdnsp_request *preq;
1072 
1073 	preq = kzalloc(sizeof(*preq), gfp_flags);
1074 	if (!preq)
1075 		return NULL;
1076 
1077 	preq->epnum = pep->number;
1078 	preq->pep = pep;
1079 
1080 	trace_cdnsp_alloc_request(preq);
1081 
1082 	return &preq->request;
1083 }
1084 
1085 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep,
1086 					 struct usb_request *request)
1087 {
1088 	struct cdnsp_request *preq = to_cdnsp_request(request);
1089 
1090 	trace_cdnsp_free_request(preq);
1091 	kfree(preq);
1092 }
1093 
1094 static int cdnsp_gadget_ep_queue(struct usb_ep *ep,
1095 				 struct usb_request *request,
1096 				 gfp_t gfp_flags)
1097 {
1098 	struct cdnsp_request *preq;
1099 	struct cdnsp_device *pdev;
1100 	struct cdnsp_ep *pep;
1101 	unsigned long flags;
1102 	int ret;
1103 
1104 	if (!request || !ep)
1105 		return -EINVAL;
1106 
1107 	pep = to_cdnsp_ep(ep);
1108 	pdev = pep->pdev;
1109 
1110 	if (!(pep->ep_state & EP_ENABLED)) {
1111 		dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n",
1112 			pep->name);
1113 		return -EINVAL;
1114 	}
1115 
1116 	preq = to_cdnsp_request(request);
1117 	spin_lock_irqsave(&pdev->lock, flags);
1118 	ret = cdnsp_ep_enqueue(pep, preq);
1119 	spin_unlock_irqrestore(&pdev->lock, flags);
1120 
1121 	return ret;
1122 }
1123 
1124 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep,
1125 				   struct usb_request *request)
1126 {
1127 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1128 	struct cdnsp_device *pdev = pep->pdev;
1129 	unsigned long flags;
1130 	int ret;
1131 
1132 	if (!pep->endpoint.desc) {
1133 		dev_err(pdev->dev,
1134 			"%s: can't dequeue to disabled endpoint\n",
1135 			pep->name);
1136 		return -ESHUTDOWN;
1137 	}
1138 
1139 	/* Requests has been dequeued during disabling endpoint. */
1140 	if (!(pep->ep_state & EP_ENABLED))
1141 		return 0;
1142 
1143 	spin_lock_irqsave(&pdev->lock, flags);
1144 	ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request));
1145 	spin_unlock_irqrestore(&pdev->lock, flags);
1146 
1147 	return ret;
1148 }
1149 
1150 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value)
1151 {
1152 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1153 	struct cdnsp_device *pdev = pep->pdev;
1154 	struct cdnsp_request *preq;
1155 	unsigned long flags;
1156 	int ret;
1157 
1158 	spin_lock_irqsave(&pdev->lock, flags);
1159 
1160 	preq = next_request(&pep->pending_list);
1161 	if (value) {
1162 		if (preq) {
1163 			trace_cdnsp_ep_busy_try_halt_again(pep, 0);
1164 			ret = -EAGAIN;
1165 			goto done;
1166 		}
1167 	}
1168 
1169 	ret = cdnsp_halt_endpoint(pdev, pep, value);
1170 
1171 done:
1172 	spin_unlock_irqrestore(&pdev->lock, flags);
1173 	return ret;
1174 }
1175 
1176 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep)
1177 {
1178 	struct cdnsp_ep *pep = to_cdnsp_ep(ep);
1179 	struct cdnsp_device *pdev = pep->pdev;
1180 	unsigned long flags;
1181 	int ret;
1182 
1183 	spin_lock_irqsave(&pdev->lock, flags);
1184 	pep->ep_state |= EP_WEDGE;
1185 	ret = cdnsp_halt_endpoint(pdev, pep, 1);
1186 	spin_unlock_irqrestore(&pdev->lock, flags);
1187 
1188 	return ret;
1189 }
1190 
1191 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = {
1192 	.enable		= cdnsp_gadget_ep_enable,
1193 	.disable	= cdnsp_gadget_ep_disable,
1194 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1195 	.free_request	= cdnsp_gadget_ep_free_request,
1196 	.queue		= cdnsp_gadget_ep_queue,
1197 	.dequeue	= cdnsp_gadget_ep_dequeue,
1198 	.set_halt	= cdnsp_gadget_ep_set_halt,
1199 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1200 };
1201 
1202 static const struct usb_ep_ops cdnsp_gadget_ep_ops = {
1203 	.enable		= cdnsp_gadget_ep_enable,
1204 	.disable	= cdnsp_gadget_ep_disable,
1205 	.alloc_request	= cdnsp_gadget_ep_alloc_request,
1206 	.free_request	= cdnsp_gadget_ep_free_request,
1207 	.queue		= cdnsp_gadget_ep_queue,
1208 	.dequeue	= cdnsp_gadget_ep_dequeue,
1209 	.set_halt	= cdnsp_gadget_ep_set_halt,
1210 	.set_wedge	= cdnsp_gadget_ep_set_wedge,
1211 };
1212 
1213 void cdnsp_gadget_giveback(struct cdnsp_ep *pep,
1214 			   struct cdnsp_request *preq,
1215 			   int status)
1216 {
1217 	struct cdnsp_device *pdev = pep->pdev;
1218 
1219 	list_del(&preq->list);
1220 
1221 	if (preq->request.status == -EINPROGRESS)
1222 		preq->request.status = status;
1223 
1224 	usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request,
1225 					preq->direction);
1226 
1227 	trace_cdnsp_request_giveback(preq);
1228 
1229 	if (preq != &pdev->ep0_preq) {
1230 		spin_unlock(&pdev->lock);
1231 		usb_gadget_giveback_request(&pep->endpoint, &preq->request);
1232 		spin_lock(&pdev->lock);
1233 	}
1234 }
1235 
1236 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = {
1237 	.bLength =		USB_DT_ENDPOINT_SIZE,
1238 	.bDescriptorType =	USB_DT_ENDPOINT,
1239 	.bmAttributes =		USB_ENDPOINT_XFER_CONTROL,
1240 };
1241 
1242 static int cdnsp_run(struct cdnsp_device *pdev,
1243 		     enum usb_device_speed speed)
1244 {
1245 	u32 fs_speed = 0;
1246 	u64 temp_64;
1247 	u32 temp;
1248 	int ret;
1249 
1250 	temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1251 	temp_64 &= ~ERST_PTR_MASK;
1252 	temp = readl(&pdev->ir_set->irq_control);
1253 	temp &= ~IMOD_INTERVAL_MASK;
1254 	temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK);
1255 	writel(temp, &pdev->ir_set->irq_control);
1256 
1257 	temp = readl(&pdev->port3x_regs->mode_addr);
1258 
1259 	switch (speed) {
1260 	case USB_SPEED_SUPER_PLUS:
1261 		temp |= CFG_3XPORT_SSP_SUPPORT;
1262 		break;
1263 	case USB_SPEED_SUPER:
1264 		temp &= ~CFG_3XPORT_SSP_SUPPORT;
1265 		break;
1266 	case USB_SPEED_HIGH:
1267 		break;
1268 	case USB_SPEED_FULL:
1269 		fs_speed = PORT_REG6_FORCE_FS;
1270 		break;
1271 	default:
1272 		dev_err(pdev->dev, "invalid maximum_speed parameter %d\n",
1273 			speed);
1274 		fallthrough;
1275 	case USB_SPEED_UNKNOWN:
1276 		/* Default to superspeed. */
1277 		speed = USB_SPEED_SUPER;
1278 		break;
1279 	}
1280 
1281 	if (speed >= USB_SPEED_SUPER) {
1282 		writel(temp, &pdev->port3x_regs->mode_addr);
1283 		cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc,
1284 				     XDEV_RXDETECT);
1285 	} else {
1286 		cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1287 	}
1288 
1289 	cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc,
1290 			     XDEV_RXDETECT);
1291 
1292 	cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1293 
1294 	writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6);
1295 
1296 	ret = cdnsp_start(pdev);
1297 	if (ret) {
1298 		ret = -ENODEV;
1299 		goto err;
1300 	}
1301 
1302 	temp = readl(&pdev->op_regs->command);
1303 	temp |= (CMD_INTE);
1304 	writel(temp, &pdev->op_regs->command);
1305 
1306 	temp = readl(&pdev->ir_set->irq_pending);
1307 	writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending);
1308 
1309 	trace_cdnsp_init("Controller ready to work");
1310 	return 0;
1311 err:
1312 	cdnsp_halt(pdev);
1313 	return ret;
1314 }
1315 
1316 static int cdnsp_gadget_udc_start(struct usb_gadget *g,
1317 				  struct usb_gadget_driver *driver)
1318 {
1319 	enum usb_device_speed max_speed = driver->max_speed;
1320 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1321 	unsigned long flags;
1322 	int ret;
1323 
1324 	spin_lock_irqsave(&pdev->lock, flags);
1325 	pdev->gadget_driver = driver;
1326 
1327 	/* limit speed if necessary */
1328 	max_speed = min(driver->max_speed, g->max_speed);
1329 	ret = cdnsp_run(pdev, max_speed);
1330 
1331 	spin_unlock_irqrestore(&pdev->lock, flags);
1332 
1333 	return ret;
1334 }
1335 
1336 /*
1337  * Update Event Ring Dequeue Pointer:
1338  * - When all events have finished
1339  * - To avoid "Event Ring Full Error" condition
1340  */
1341 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev,
1342 			       union cdnsp_trb *event_ring_deq,
1343 			       u8 clear_ehb)
1344 {
1345 	u64 temp_64;
1346 	dma_addr_t deq;
1347 
1348 	temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue);
1349 
1350 	/* If necessary, update the HW's version of the event ring deq ptr. */
1351 	if (event_ring_deq != pdev->event_ring->dequeue) {
1352 		deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg,
1353 					    pdev->event_ring->dequeue);
1354 		temp_64 &= ERST_PTR_MASK;
1355 		temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK);
1356 	}
1357 
1358 	/* Clear the event handler busy flag (RW1C). */
1359 	if (clear_ehb)
1360 		temp_64 |= ERST_EHB;
1361 	else
1362 		temp_64 &= ~ERST_EHB;
1363 
1364 	cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue);
1365 }
1366 
1367 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev)
1368 {
1369 	struct cdnsp_segment *seg;
1370 	u64 val_64;
1371 	int i;
1372 
1373 	cdnsp_initialize_ring_info(pdev->cmd_ring);
1374 
1375 	seg = pdev->cmd_ring->first_seg;
1376 	for (i = 0; i < pdev->cmd_ring->num_segs; i++) {
1377 		memset(seg->trbs, 0,
1378 		       sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1));
1379 		seg = seg->next;
1380 	}
1381 
1382 	/* Set the address in the Command Ring Control register. */
1383 	val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring);
1384 	val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) |
1385 		 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) |
1386 		 pdev->cmd_ring->cycle_state;
1387 	cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring);
1388 }
1389 
1390 static void cdnsp_consume_all_events(struct cdnsp_device *pdev)
1391 {
1392 	struct cdnsp_segment *event_deq_seg;
1393 	union cdnsp_trb *event_ring_deq;
1394 	union cdnsp_trb *event;
1395 	u32 cycle_bit;
1396 
1397 	event_ring_deq = pdev->event_ring->dequeue;
1398 	event_deq_seg = pdev->event_ring->deq_seg;
1399 	event = pdev->event_ring->dequeue;
1400 
1401 	/* Update ring dequeue pointer. */
1402 	while (1) {
1403 		cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE);
1404 
1405 		/* Does the controller or driver own the TRB? */
1406 		if (cycle_bit != pdev->event_ring->cycle_state)
1407 			break;
1408 
1409 		cdnsp_inc_deq(pdev, pdev->event_ring);
1410 
1411 		if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) {
1412 			event++;
1413 			continue;
1414 		}
1415 
1416 		if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg,
1417 					   event))
1418 			cycle_bit ^= 1;
1419 
1420 		event_deq_seg = event_deq_seg->next;
1421 		event = event_deq_seg->trbs;
1422 	}
1423 
1424 	cdnsp_update_erst_dequeue(pdev,  event_ring_deq, 1);
1425 }
1426 
1427 static void cdnsp_stop(struct cdnsp_device *pdev)
1428 {
1429 	u32 temp;
1430 
1431 	cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]);
1432 
1433 	/* Remove internally queued request for ep0. */
1434 	if (!list_empty(&pdev->eps[0].pending_list)) {
1435 		struct cdnsp_request *req;
1436 
1437 		req = next_request(&pdev->eps[0].pending_list);
1438 		if (req == &pdev->ep0_preq)
1439 			cdnsp_ep_dequeue(&pdev->eps[0], req);
1440 	}
1441 
1442 	cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc);
1443 	cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc);
1444 	cdnsp_disable_slot(pdev);
1445 	cdnsp_halt(pdev);
1446 
1447 	temp = readl(&pdev->op_regs->status);
1448 	writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status);
1449 	temp = readl(&pdev->ir_set->irq_pending);
1450 	writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending);
1451 
1452 	cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc);
1453 	cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc);
1454 
1455 	/* Clear interrupt line */
1456 	temp = readl(&pdev->ir_set->irq_pending);
1457 	temp |= IMAN_IP;
1458 	writel(temp, &pdev->ir_set->irq_pending);
1459 
1460 	cdnsp_consume_all_events(pdev);
1461 	cdnsp_clear_cmd_ring(pdev);
1462 
1463 	trace_cdnsp_exit("Controller stopped.");
1464 }
1465 
1466 /*
1467  * Stop controller.
1468  * This function is called by the gadget core when the driver is removed.
1469  * Disable slot, disable IRQs, and quiesce the controller.
1470  */
1471 static int cdnsp_gadget_udc_stop(struct usb_gadget *g)
1472 {
1473 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1474 	unsigned long flags;
1475 
1476 	spin_lock_irqsave(&pdev->lock, flags);
1477 	cdnsp_stop(pdev);
1478 	pdev->gadget_driver = NULL;
1479 	spin_unlock_irqrestore(&pdev->lock, flags);
1480 
1481 	return 0;
1482 }
1483 
1484 static int cdnsp_gadget_get_frame(struct usb_gadget *g)
1485 {
1486 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1487 
1488 	return cdnsp_get_frame(pdev);
1489 }
1490 
1491 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev)
1492 {
1493 	struct cdnsp_port_regs __iomem *port_regs;
1494 	u32 portpm, portsc;
1495 
1496 	port_regs = pdev->active_port->regs;
1497 	portsc = readl(&port_regs->portsc) & PORT_PLS_MASK;
1498 
1499 	/* Remote wakeup feature is not enabled by host. */
1500 	if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) {
1501 		portpm = readl(&port_regs->portpmsc);
1502 
1503 		if (!(portpm & PORT_RWE))
1504 			return;
1505 	}
1506 
1507 	if (portsc == XDEV_U3 && !pdev->may_wakeup)
1508 		return;
1509 
1510 	cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0);
1511 
1512 	pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING;
1513 }
1514 
1515 static int cdnsp_gadget_wakeup(struct usb_gadget *g)
1516 {
1517 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1518 	unsigned long flags;
1519 
1520 	spin_lock_irqsave(&pdev->lock, flags);
1521 	__cdnsp_gadget_wakeup(pdev);
1522 	spin_unlock_irqrestore(&pdev->lock, flags);
1523 
1524 	return 0;
1525 }
1526 
1527 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g,
1528 					int is_selfpowered)
1529 {
1530 	struct cdnsp_device *pdev = gadget_to_cdnsp(g);
1531 	unsigned long flags;
1532 
1533 	spin_lock_irqsave(&pdev->lock, flags);
1534 	g->is_selfpowered = !!is_selfpowered;
1535 	spin_unlock_irqrestore(&pdev->lock, flags);
1536 
1537 	return 0;
1538 }
1539 
1540 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on)
1541 {
1542 	struct cdnsp_device *pdev = gadget_to_cdnsp(gadget);
1543 	struct cdns *cdns = dev_get_drvdata(pdev->dev);
1544 	unsigned long flags;
1545 
1546 	trace_cdnsp_pullup(is_on);
1547 
1548 	/*
1549 	 * Disable events handling while controller is being
1550 	 * enabled/disabled.
1551 	 */
1552 	disable_irq(cdns->dev_irq);
1553 	spin_lock_irqsave(&pdev->lock, flags);
1554 
1555 	if (!is_on) {
1556 		cdnsp_reset_device(pdev);
1557 		cdns_clear_vbus(cdns);
1558 	} else {
1559 		cdns_set_vbus(cdns);
1560 	}
1561 
1562 	spin_unlock_irqrestore(&pdev->lock, flags);
1563 	enable_irq(cdns->dev_irq);
1564 
1565 	return 0;
1566 }
1567 
1568 static const struct usb_gadget_ops cdnsp_gadget_ops = {
1569 	.get_frame		= cdnsp_gadget_get_frame,
1570 	.wakeup			= cdnsp_gadget_wakeup,
1571 	.set_selfpowered	= cdnsp_gadget_set_selfpowered,
1572 	.pullup			= cdnsp_gadget_pullup,
1573 	.udc_start		= cdnsp_gadget_udc_start,
1574 	.udc_stop		= cdnsp_gadget_udc_stop,
1575 };
1576 
1577 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev,
1578 				   struct cdnsp_ep *pep)
1579 {
1580 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1581 	int endpoints;
1582 
1583 	reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID);
1584 
1585 	if (!pep->direction) {
1586 		pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET);
1587 		pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET);
1588 		pep->buffering = (pep->buffering + 1) / 2;
1589 		pep->buffering_period = (pep->buffering_period + 1) / 2;
1590 		return;
1591 	}
1592 
1593 	endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2;
1594 
1595 	/* Set to XBUF_TX_TAG_MASK_0 register. */
1596 	reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32);
1597 	/* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */
1598 	reg += pep->number * sizeof(u32) * 2;
1599 
1600 	pep->buffering = (readl(reg) + 1) / 2;
1601 	pep->buffering_period = pep->buffering;
1602 }
1603 
1604 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev)
1605 {
1606 	int max_streams = HCC_MAX_PSA(pdev->hcc_params);
1607 	struct cdnsp_ep *pep;
1608 	int i;
1609 
1610 	INIT_LIST_HEAD(&pdev->gadget.ep_list);
1611 
1612 	if (max_streams < STREAM_LOG_STREAMS) {
1613 		dev_err(pdev->dev, "Stream size %d not supported\n",
1614 			max_streams);
1615 		return -EINVAL;
1616 	}
1617 
1618 	max_streams = STREAM_LOG_STREAMS;
1619 
1620 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1621 		bool direction = !(i & 1); /* Start from OUT endpoint. */
1622 		u8 epnum = ((i + 1) >> 1);
1623 
1624 		if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction))
1625 			continue;
1626 
1627 		pep = &pdev->eps[i];
1628 		pep->pdev = pdev;
1629 		pep->number = epnum;
1630 		pep->direction = direction; /* 0 for OUT, 1 for IN. */
1631 
1632 		/*
1633 		 * Ep0 is bidirectional, so ep0in and ep0out are represented by
1634 		 * pdev->eps[0]
1635 		 */
1636 		if (epnum == 0) {
1637 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1638 				 epnum, "BiDir");
1639 
1640 			pep->idx = 0;
1641 			usb_ep_set_maxpacket_limit(&pep->endpoint, 512);
1642 			pep->endpoint.maxburst = 1;
1643 			pep->endpoint.ops = &cdnsp_gadget_ep0_ops;
1644 			pep->endpoint.desc = &cdnsp_gadget_ep0_desc;
1645 			pep->endpoint.comp_desc = NULL;
1646 			pep->endpoint.caps.type_control = true;
1647 			pep->endpoint.caps.dir_in = true;
1648 			pep->endpoint.caps.dir_out = true;
1649 
1650 			pdev->ep0_preq.epnum = pep->number;
1651 			pdev->ep0_preq.pep = pep;
1652 			pdev->gadget.ep0 = &pep->endpoint;
1653 		} else {
1654 			snprintf(pep->name, sizeof(pep->name), "ep%d%s",
1655 				 epnum, (pep->direction) ? "in" : "out");
1656 
1657 			pep->idx =  (epnum * 2 + (direction ? 1 : 0)) - 1;
1658 			usb_ep_set_maxpacket_limit(&pep->endpoint, 1024);
1659 
1660 			pep->endpoint.max_streams = max_streams;
1661 			pep->endpoint.ops = &cdnsp_gadget_ep_ops;
1662 			list_add_tail(&pep->endpoint.ep_list,
1663 				      &pdev->gadget.ep_list);
1664 
1665 			pep->endpoint.caps.type_iso = true;
1666 			pep->endpoint.caps.type_bulk = true;
1667 			pep->endpoint.caps.type_int = true;
1668 
1669 			pep->endpoint.caps.dir_in = direction;
1670 			pep->endpoint.caps.dir_out = !direction;
1671 		}
1672 
1673 		pep->endpoint.name = pep->name;
1674 		pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx);
1675 		pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx);
1676 		cdnsp_get_ep_buffering(pdev, pep);
1677 
1678 		dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: "
1679 			"CTRL: %s, INT: %s, BULK: %s, ISOC %s, "
1680 			"SupDir IN: %s, OUT: %s\n",
1681 			pep->name, 1024,
1682 			(pep->endpoint.caps.type_control) ? "yes" : "no",
1683 			(pep->endpoint.caps.type_int) ? "yes" : "no",
1684 			(pep->endpoint.caps.type_bulk) ? "yes" : "no",
1685 			(pep->endpoint.caps.type_iso) ? "yes" : "no",
1686 			(pep->endpoint.caps.dir_in) ? "yes" : "no",
1687 			(pep->endpoint.caps.dir_out) ? "yes" : "no");
1688 
1689 		INIT_LIST_HEAD(&pep->pending_list);
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev)
1696 {
1697 	struct cdnsp_ep *pep;
1698 	int i;
1699 
1700 	for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) {
1701 		pep = &pdev->eps[i];
1702 		if (pep->number != 0 && pep->out_ctx)
1703 			list_del(&pep->endpoint.ep_list);
1704 	}
1705 }
1706 
1707 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev)
1708 {
1709 	pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING;
1710 
1711 	if (pdev->gadget_driver && pdev->gadget_driver->disconnect) {
1712 		spin_unlock(&pdev->lock);
1713 		pdev->gadget_driver->disconnect(&pdev->gadget);
1714 		spin_lock(&pdev->lock);
1715 	}
1716 
1717 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1718 	usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED);
1719 
1720 	pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING;
1721 }
1722 
1723 void cdnsp_suspend_gadget(struct cdnsp_device *pdev)
1724 {
1725 	if (pdev->gadget_driver && pdev->gadget_driver->suspend) {
1726 		spin_unlock(&pdev->lock);
1727 		pdev->gadget_driver->suspend(&pdev->gadget);
1728 		spin_lock(&pdev->lock);
1729 	}
1730 }
1731 
1732 void cdnsp_resume_gadget(struct cdnsp_device *pdev)
1733 {
1734 	if (pdev->gadget_driver && pdev->gadget_driver->resume) {
1735 		spin_unlock(&pdev->lock);
1736 		pdev->gadget_driver->resume(&pdev->gadget);
1737 		spin_lock(&pdev->lock);
1738 	}
1739 }
1740 
1741 void cdnsp_irq_reset(struct cdnsp_device *pdev)
1742 {
1743 	struct cdnsp_port_regs __iomem *port_regs;
1744 
1745 	cdnsp_reset_device(pdev);
1746 
1747 	port_regs = pdev->active_port->regs;
1748 	pdev->gadget.speed = cdnsp_port_speed(readl(port_regs));
1749 
1750 	spin_unlock(&pdev->lock);
1751 	usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver);
1752 	spin_lock(&pdev->lock);
1753 
1754 	switch (pdev->gadget.speed) {
1755 	case USB_SPEED_SUPER_PLUS:
1756 	case USB_SPEED_SUPER:
1757 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512);
1758 		pdev->gadget.ep0->maxpacket = 512;
1759 		break;
1760 	case USB_SPEED_HIGH:
1761 	case USB_SPEED_FULL:
1762 		cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64);
1763 		pdev->gadget.ep0->maxpacket = 64;
1764 		break;
1765 	default:
1766 		/* Low speed is not supported. */
1767 		dev_err(pdev->dev, "Unknown device speed\n");
1768 		break;
1769 	}
1770 
1771 	cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS);
1772 	cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY);
1773 	usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT);
1774 }
1775 
1776 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev)
1777 {
1778 	void __iomem *reg = &pdev->cap_regs->hc_capbase;
1779 
1780 	reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP);
1781 	pdev->rev_cap  = reg;
1782 
1783 	dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n",
1784 		 readl(&pdev->rev_cap->ctrl_revision),
1785 		 readl(&pdev->rev_cap->rtl_revision),
1786 		 readl(&pdev->rev_cap->ep_supported),
1787 		 readl(&pdev->rev_cap->rx_buff_size),
1788 		 readl(&pdev->rev_cap->tx_buff_size));
1789 }
1790 
1791 static int cdnsp_gen_setup(struct cdnsp_device *pdev)
1792 {
1793 	int ret;
1794 	u32 reg;
1795 
1796 	pdev->cap_regs = pdev->regs;
1797 	pdev->op_regs = pdev->regs +
1798 		HC_LENGTH(readl(&pdev->cap_regs->hc_capbase));
1799 	pdev->run_regs = pdev->regs +
1800 		(readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK);
1801 
1802 	/* Cache read-only capability registers */
1803 	pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1);
1804 	pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase);
1805 	pdev->hci_version = HC_VERSION(pdev->hcc_params);
1806 	pdev->hcc_params = readl(&pdev->cap_regs->hcc_params);
1807 
1808 	cdnsp_get_rev_cap(pdev);
1809 
1810 	/* Make sure the Device Controller is halted. */
1811 	ret = cdnsp_halt(pdev);
1812 	if (ret)
1813 		return ret;
1814 
1815 	/* Reset the internal controller memory state and registers. */
1816 	ret = cdnsp_reset(pdev);
1817 	if (ret)
1818 		return ret;
1819 
1820 	/*
1821 	 * Set dma_mask and coherent_dma_mask to 64-bits,
1822 	 * if controller supports 64-bit addressing.
1823 	 */
1824 	if (HCC_64BIT_ADDR(pdev->hcc_params) &&
1825 	    !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) {
1826 		dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n");
1827 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64));
1828 	} else {
1829 		/*
1830 		 * This is to avoid error in cases where a 32-bit USB
1831 		 * controller is used on a 64-bit capable system.
1832 		 */
1833 		ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32));
1834 		if (ret)
1835 			return ret;
1836 
1837 		dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n");
1838 		dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32));
1839 	}
1840 
1841 	spin_lock_init(&pdev->lock);
1842 
1843 	ret = cdnsp_mem_init(pdev);
1844 	if (ret)
1845 		return ret;
1846 
1847 	/*
1848 	 * Software workaround for U1: after transition
1849 	 * to U1 the controller starts gating clock, and in some cases,
1850 	 * it causes that controller stack.
1851 	 */
1852 	reg = readl(&pdev->port3x_regs->mode_2);
1853 	reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN;
1854 	writel(reg, &pdev->port3x_regs->mode_2);
1855 
1856 	return 0;
1857 }
1858 
1859 static int __cdnsp_gadget_init(struct cdns *cdns)
1860 {
1861 	struct cdnsp_device *pdev;
1862 	u32 max_speed;
1863 	int ret = -ENOMEM;
1864 
1865 	cdns_drd_gadget_on(cdns);
1866 
1867 	pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
1868 	if (!pdev)
1869 		return -ENOMEM;
1870 
1871 	pm_runtime_get_sync(cdns->dev);
1872 
1873 	cdns->gadget_dev = pdev;
1874 	pdev->dev = cdns->dev;
1875 	pdev->regs = cdns->dev_regs;
1876 	max_speed = usb_get_maximum_speed(cdns->dev);
1877 
1878 	switch (max_speed) {
1879 	case USB_SPEED_FULL:
1880 	case USB_SPEED_HIGH:
1881 	case USB_SPEED_SUPER:
1882 	case USB_SPEED_SUPER_PLUS:
1883 		break;
1884 	default:
1885 		dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed);
1886 		fallthrough;
1887 	case USB_SPEED_UNKNOWN:
1888 		/* Default to SSP */
1889 		max_speed = USB_SPEED_SUPER_PLUS;
1890 		break;
1891 	}
1892 
1893 	pdev->gadget.ops = &cdnsp_gadget_ops;
1894 	pdev->gadget.name = "cdnsp-gadget";
1895 	pdev->gadget.speed = USB_SPEED_UNKNOWN;
1896 	pdev->gadget.sg_supported = 1;
1897 	pdev->gadget.max_speed = max_speed;
1898 	pdev->gadget.lpm_capable = 1;
1899 
1900 	pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL);
1901 	if (!pdev->setup_buf)
1902 		goto free_pdev;
1903 
1904 	/*
1905 	 * Controller supports not aligned buffer but it should improve
1906 	 * performance.
1907 	 */
1908 	pdev->gadget.quirk_ep_out_aligned_size = true;
1909 
1910 	ret = cdnsp_gen_setup(pdev);
1911 	if (ret) {
1912 		dev_err(pdev->dev, "Generic initialization failed %d\n", ret);
1913 		goto free_setup;
1914 	}
1915 
1916 	ret = cdnsp_gadget_init_endpoints(pdev);
1917 	if (ret) {
1918 		dev_err(pdev->dev, "failed to initialize endpoints\n");
1919 		goto halt_pdev;
1920 	}
1921 
1922 	ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget);
1923 	if (ret) {
1924 		dev_err(pdev->dev, "failed to register udc\n");
1925 		goto free_endpoints;
1926 	}
1927 
1928 	ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq,
1929 					cdnsp_irq_handler,
1930 					cdnsp_thread_irq_handler, IRQF_SHARED,
1931 					dev_name(pdev->dev), pdev);
1932 	if (ret)
1933 		goto del_gadget;
1934 
1935 	return 0;
1936 
1937 del_gadget:
1938 	usb_del_gadget_udc(&pdev->gadget);
1939 free_endpoints:
1940 	cdnsp_gadget_free_endpoints(pdev);
1941 halt_pdev:
1942 	cdnsp_halt(pdev);
1943 	cdnsp_reset(pdev);
1944 	cdnsp_mem_cleanup(pdev);
1945 free_setup:
1946 	kfree(pdev->setup_buf);
1947 free_pdev:
1948 	kfree(pdev);
1949 
1950 	return ret;
1951 }
1952 
1953 static void cdnsp_gadget_exit(struct cdns *cdns)
1954 {
1955 	struct cdnsp_device *pdev = cdns->gadget_dev;
1956 
1957 	devm_free_irq(pdev->dev, cdns->dev_irq, pdev);
1958 	pm_runtime_mark_last_busy(cdns->dev);
1959 	pm_runtime_put_autosuspend(cdns->dev);
1960 	usb_del_gadget_udc(&pdev->gadget);
1961 	cdnsp_gadget_free_endpoints(pdev);
1962 	cdnsp_mem_cleanup(pdev);
1963 	kfree(pdev);
1964 	cdns->gadget_dev = NULL;
1965 	cdns_drd_gadget_off(cdns);
1966 }
1967 
1968 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup)
1969 {
1970 	struct cdnsp_device *pdev = cdns->gadget_dev;
1971 	unsigned long flags;
1972 
1973 	if (pdev->link_state == XDEV_U3)
1974 		return 0;
1975 
1976 	spin_lock_irqsave(&pdev->lock, flags);
1977 	cdnsp_disconnect_gadget(pdev);
1978 	cdnsp_stop(pdev);
1979 	spin_unlock_irqrestore(&pdev->lock, flags);
1980 
1981 	return 0;
1982 }
1983 
1984 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated)
1985 {
1986 	struct cdnsp_device *pdev = cdns->gadget_dev;
1987 	enum usb_device_speed max_speed;
1988 	unsigned long flags;
1989 	int ret;
1990 
1991 	if (!pdev->gadget_driver)
1992 		return 0;
1993 
1994 	spin_lock_irqsave(&pdev->lock, flags);
1995 	max_speed = pdev->gadget_driver->max_speed;
1996 
1997 	/* Limit speed if necessary. */
1998 	max_speed = min(max_speed, pdev->gadget.max_speed);
1999 
2000 	ret = cdnsp_run(pdev, max_speed);
2001 
2002 	if (pdev->link_state == XDEV_U3)
2003 		__cdnsp_gadget_wakeup(pdev);
2004 
2005 	spin_unlock_irqrestore(&pdev->lock, flags);
2006 
2007 	return ret;
2008 }
2009 
2010 /**
2011  * cdnsp_gadget_init - initialize device structure
2012  * @cdns: cdnsp instance
2013  *
2014  * This function initializes the gadget.
2015  */
2016 int cdnsp_gadget_init(struct cdns *cdns)
2017 {
2018 	struct cdns_role_driver *rdrv;
2019 
2020 	rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL);
2021 	if (!rdrv)
2022 		return -ENOMEM;
2023 
2024 	rdrv->start	= __cdnsp_gadget_init;
2025 	rdrv->stop	= cdnsp_gadget_exit;
2026 	rdrv->suspend	= cdnsp_gadget_suspend;
2027 	rdrv->resume	= cdnsp_gadget_resume;
2028 	rdrv->state	= CDNS_ROLE_STATE_INACTIVE;
2029 	rdrv->name	= "gadget";
2030 	cdns->roles[USB_ROLE_DEVICE] = rdrv;
2031 
2032 	return 0;
2033 }
2034