1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Cadence CDNSP DRD Driver. 4 * 5 * Copyright (C) 2020 Cadence. 6 * 7 * Author: Pawel Laszczak <pawell@cadence.com> 8 * 9 */ 10 11 #include <linux/moduleparam.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/module.h> 14 #include <linux/iopoll.h> 15 #include <linux/delay.h> 16 #include <linux/log2.h> 17 #include <linux/slab.h> 18 #include <linux/pci.h> 19 #include <linux/irq.h> 20 #include <linux/dmi.h> 21 22 #include "core.h" 23 #include "gadget-export.h" 24 #include "drd.h" 25 #include "cdnsp-gadget.h" 26 #include "cdnsp-trace.h" 27 28 unsigned int cdnsp_port_speed(unsigned int port_status) 29 { 30 /*Detect gadget speed based on PORTSC register*/ 31 if (DEV_SUPERSPEEDPLUS(port_status)) 32 return USB_SPEED_SUPER_PLUS; 33 else if (DEV_SUPERSPEED(port_status)) 34 return USB_SPEED_SUPER; 35 else if (DEV_HIGHSPEED(port_status)) 36 return USB_SPEED_HIGH; 37 else if (DEV_FULLSPEED(port_status)) 38 return USB_SPEED_FULL; 39 40 /* If device is detached then speed will be USB_SPEED_UNKNOWN.*/ 41 return USB_SPEED_UNKNOWN; 42 } 43 44 /* 45 * Given a port state, this function returns a value that would result in the 46 * port being in the same state, if the value was written to the port status 47 * control register. 48 * Save Read Only (RO) bits and save read/write bits where 49 * writing a 0 clears the bit and writing a 1 sets the bit (RWS). 50 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect. 51 */ 52 u32 cdnsp_port_state_to_neutral(u32 state) 53 { 54 /* Save read-only status and port state. */ 55 return (state & CDNSP_PORT_RO) | (state & CDNSP_PORT_RWS); 56 } 57 58 /** 59 * cdnsp_find_next_ext_cap - Find the offset of the extended capabilities 60 * with capability ID id. 61 * @base: PCI MMIO registers base address. 62 * @start: Address at which to start looking, (0 or HCC_PARAMS to start at 63 * beginning of list) 64 * @id: Extended capability ID to search for. 65 * 66 * Returns the offset of the next matching extended capability structure. 67 * Some capabilities can occur several times, 68 * e.g., the EXT_CAPS_PROTOCOL, and this provides a way to find them all. 69 */ 70 int cdnsp_find_next_ext_cap(void __iomem *base, u32 start, int id) 71 { 72 u32 offset = start; 73 u32 next; 74 u32 val; 75 76 if (!start || start == HCC_PARAMS_OFFSET) { 77 val = readl(base + HCC_PARAMS_OFFSET); 78 if (val == ~0) 79 return 0; 80 81 offset = HCC_EXT_CAPS(val) << 2; 82 if (!offset) 83 return 0; 84 } 85 86 do { 87 val = readl(base + offset); 88 if (val == ~0) 89 return 0; 90 91 if (EXT_CAPS_ID(val) == id && offset != start) 92 return offset; 93 94 next = EXT_CAPS_NEXT(val); 95 offset += next << 2; 96 } while (next); 97 98 return 0; 99 } 100 101 void cdnsp_set_link_state(struct cdnsp_device *pdev, 102 __le32 __iomem *port_regs, 103 u32 link_state) 104 { 105 int port_num = 0xFF; 106 u32 temp; 107 108 temp = readl(port_regs); 109 temp = cdnsp_port_state_to_neutral(temp); 110 temp |= PORT_WKCONN_E | PORT_WKDISC_E; 111 writel(temp, port_regs); 112 113 temp &= ~PORT_PLS_MASK; 114 temp |= PORT_LINK_STROBE | link_state; 115 116 if (pdev->active_port) 117 port_num = pdev->active_port->port_num; 118 119 trace_cdnsp_handle_port_status(port_num, readl(port_regs)); 120 writel(temp, port_regs); 121 trace_cdnsp_link_state_changed(port_num, readl(port_regs)); 122 } 123 124 static void cdnsp_disable_port(struct cdnsp_device *pdev, 125 __le32 __iomem *port_regs) 126 { 127 u32 temp = cdnsp_port_state_to_neutral(readl(port_regs)); 128 129 writel(temp | PORT_PED, port_regs); 130 } 131 132 static void cdnsp_clear_port_change_bit(struct cdnsp_device *pdev, 133 __le32 __iomem *port_regs) 134 { 135 u32 portsc = readl(port_regs); 136 137 writel(cdnsp_port_state_to_neutral(portsc) | 138 (portsc & PORT_CHANGE_BITS), port_regs); 139 } 140 141 static void cdnsp_set_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 142 { 143 __le32 __iomem *reg; 144 void __iomem *base; 145 u32 offset = 0; 146 147 base = &pdev->cap_regs->hc_capbase; 148 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 149 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 150 151 bit = readl(reg) | bit; 152 writel(bit, reg); 153 } 154 155 static void cdnsp_clear_chicken_bits_2(struct cdnsp_device *pdev, u32 bit) 156 { 157 __le32 __iomem *reg; 158 void __iomem *base; 159 u32 offset = 0; 160 161 base = &pdev->cap_regs->hc_capbase; 162 offset = cdnsp_find_next_ext_cap(base, offset, D_XEC_PRE_REGS_CAP); 163 reg = base + offset + REG_CHICKEN_BITS_2_OFFSET; 164 165 bit = readl(reg) & ~bit; 166 writel(bit, reg); 167 } 168 169 /* 170 * Disable interrupts and begin the controller halting process. 171 */ 172 static void cdnsp_quiesce(struct cdnsp_device *pdev) 173 { 174 u32 halted; 175 u32 mask; 176 u32 cmd; 177 178 mask = ~(u32)(CDNSP_IRQS); 179 180 halted = readl(&pdev->op_regs->status) & STS_HALT; 181 if (!halted) 182 mask &= ~(CMD_R_S | CMD_DEVEN); 183 184 cmd = readl(&pdev->op_regs->command); 185 cmd &= mask; 186 writel(cmd, &pdev->op_regs->command); 187 } 188 189 /* 190 * Force controller into halt state. 191 * 192 * Disable any IRQs and clear the run/stop bit. 193 * Controller will complete any current and actively pipelined transactions, and 194 * should halt within 16 ms of the run/stop bit being cleared. 195 * Read controller Halted bit in the status register to see when the 196 * controller is finished. 197 */ 198 int cdnsp_halt(struct cdnsp_device *pdev) 199 { 200 int ret; 201 u32 val; 202 203 cdnsp_quiesce(pdev); 204 205 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, val, 206 val & STS_HALT, 1, 207 CDNSP_MAX_HALT_USEC); 208 if (ret) { 209 dev_err(pdev->dev, "ERROR: Device halt failed\n"); 210 return ret; 211 } 212 213 pdev->cdnsp_state |= CDNSP_STATE_HALTED; 214 215 return 0; 216 } 217 218 /* 219 * device controller died, register read returns 0xffffffff, or command never 220 * ends. 221 */ 222 void cdnsp_died(struct cdnsp_device *pdev) 223 { 224 dev_err(pdev->dev, "ERROR: CDNSP controller not responding\n"); 225 pdev->cdnsp_state |= CDNSP_STATE_DYING; 226 cdnsp_halt(pdev); 227 } 228 229 /* 230 * Set the run bit and wait for the device to be running. 231 */ 232 static int cdnsp_start(struct cdnsp_device *pdev) 233 { 234 u32 temp; 235 int ret; 236 237 temp = readl(&pdev->op_regs->command); 238 temp |= (CMD_R_S | CMD_DEVEN); 239 writel(temp, &pdev->op_regs->command); 240 241 pdev->cdnsp_state = 0; 242 243 /* 244 * Wait for the STS_HALT Status bit to be 0 to indicate the device is 245 * running. 246 */ 247 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 248 !(temp & STS_HALT), 1, 249 CDNSP_MAX_HALT_USEC); 250 if (ret) { 251 pdev->cdnsp_state = CDNSP_STATE_DYING; 252 dev_err(pdev->dev, "ERROR: Controller run failed\n"); 253 } 254 255 return ret; 256 } 257 258 /* 259 * Reset a halted controller. 260 * 261 * This resets pipelines, timers, counters, state machines, etc. 262 * Transactions will be terminated immediately, and operational registers 263 * will be set to their defaults. 264 */ 265 int cdnsp_reset(struct cdnsp_device *pdev) 266 { 267 u32 command; 268 u32 temp; 269 int ret; 270 271 temp = readl(&pdev->op_regs->status); 272 273 if (temp == ~(u32)0) { 274 dev_err(pdev->dev, "Device not accessible, reset failed.\n"); 275 return -ENODEV; 276 } 277 278 if ((temp & STS_HALT) == 0) { 279 dev_err(pdev->dev, "Controller not halted, aborting reset.\n"); 280 return -EINVAL; 281 } 282 283 command = readl(&pdev->op_regs->command); 284 command |= CMD_RESET; 285 writel(command, &pdev->op_regs->command); 286 287 ret = readl_poll_timeout_atomic(&pdev->op_regs->command, temp, 288 !(temp & CMD_RESET), 1, 289 10 * 1000); 290 if (ret) { 291 dev_err(pdev->dev, "ERROR: Controller reset failed\n"); 292 return ret; 293 } 294 295 /* 296 * CDNSP cannot write any doorbells or operational registers other 297 * than status until the "Controller Not Ready" flag is cleared. 298 */ 299 ret = readl_poll_timeout_atomic(&pdev->op_regs->status, temp, 300 !(temp & STS_CNR), 1, 301 10 * 1000); 302 303 if (ret) { 304 dev_err(pdev->dev, "ERROR: Controller not ready to work\n"); 305 return ret; 306 } 307 308 dev_dbg(pdev->dev, "Controller ready to work"); 309 310 return ret; 311 } 312 313 /* 314 * cdnsp_get_endpoint_index - Find the index for an endpoint given its 315 * descriptor.Use the return value to right shift 1 for the bitmask. 316 * 317 * Index = (epnum * 2) + direction - 1, 318 * where direction = 0 for OUT, 1 for IN. 319 * For control endpoints, the IN index is used (OUT index is unused), so 320 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2) 321 */ 322 static unsigned int 323 cdnsp_get_endpoint_index(const struct usb_endpoint_descriptor *desc) 324 { 325 unsigned int index = (unsigned int)usb_endpoint_num(desc); 326 327 if (usb_endpoint_xfer_control(desc)) 328 return index * 2; 329 330 return (index * 2) + (usb_endpoint_dir_in(desc) ? 1 : 0) - 1; 331 } 332 333 /* 334 * Find the flag for this endpoint (for use in the control context). Use the 335 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is 336 * bit 1, etc. 337 */ 338 static unsigned int 339 cdnsp_get_endpoint_flag(const struct usb_endpoint_descriptor *desc) 340 { 341 return 1 << (cdnsp_get_endpoint_index(desc) + 1); 342 } 343 344 int cdnsp_ep_enqueue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 345 { 346 struct cdnsp_device *pdev = pep->pdev; 347 struct usb_request *request; 348 int ret; 349 350 if (preq->epnum == 0 && !list_empty(&pep->pending_list)) { 351 trace_cdnsp_request_enqueue_busy(preq); 352 return -EBUSY; 353 } 354 355 request = &preq->request; 356 request->actual = 0; 357 request->status = -EINPROGRESS; 358 preq->direction = pep->direction; 359 preq->epnum = pep->number; 360 preq->td.drbl = 0; 361 362 ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->direction); 363 if (ret) { 364 trace_cdnsp_request_enqueue_error(preq); 365 return ret; 366 } 367 368 list_add_tail(&preq->list, &pep->pending_list); 369 370 trace_cdnsp_request_enqueue(preq); 371 372 switch (usb_endpoint_type(pep->endpoint.desc)) { 373 case USB_ENDPOINT_XFER_CONTROL: 374 ret = cdnsp_queue_ctrl_tx(pdev, preq); 375 break; 376 case USB_ENDPOINT_XFER_BULK: 377 case USB_ENDPOINT_XFER_INT: 378 ret = cdnsp_queue_bulk_tx(pdev, preq); 379 break; 380 case USB_ENDPOINT_XFER_ISOC: 381 ret = cdnsp_queue_isoc_tx_prepare(pdev, preq); 382 } 383 384 if (ret) 385 goto unmap; 386 387 return 0; 388 389 unmap: 390 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 391 pep->direction); 392 list_del(&preq->list); 393 trace_cdnsp_request_enqueue_error(preq); 394 395 return ret; 396 } 397 398 /* 399 * Remove the request's TD from the endpoint ring. This may cause the 400 * controller to stop USB transfers, potentially stopping in the middle of a 401 * TRB buffer. The controller should pick up where it left off in the TD, 402 * unless a Set Transfer Ring Dequeue Pointer is issued. 403 * 404 * The TRBs that make up the buffers for the canceled request will be "removed" 405 * from the ring. Since the ring is a contiguous structure, they can't be 406 * physically removed. Instead, there are two options: 407 * 408 * 1) If the controller is in the middle of processing the request to be 409 * canceled, we simply move the ring's dequeue pointer past those TRBs 410 * using the Set Transfer Ring Dequeue Pointer command. This will be 411 * the common case, when drivers timeout on the last submitted request 412 * and attempt to cancel. 413 * 414 * 2) If the controller is in the middle of a different TD, we turn the TRBs 415 * into a series of 1-TRB transfer no-op TDs. No-ops shouldn't be chained. 416 * The controller will need to invalidate the any TRBs it has cached after 417 * the stop endpoint command. 418 * 419 * 3) The TD may have completed by the time the Stop Endpoint Command 420 * completes, so software needs to handle that case too. 421 * 422 */ 423 int cdnsp_ep_dequeue(struct cdnsp_ep *pep, struct cdnsp_request *preq) 424 { 425 struct cdnsp_device *pdev = pep->pdev; 426 int ret_stop = 0; 427 int ret_rem; 428 429 trace_cdnsp_request_dequeue(preq); 430 431 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_RUNNING) 432 ret_stop = cdnsp_cmd_stop_ep(pdev, pep); 433 434 ret_rem = cdnsp_remove_request(pdev, preq, pep); 435 436 return ret_rem ? ret_rem : ret_stop; 437 } 438 439 static void cdnsp_zero_in_ctx(struct cdnsp_device *pdev) 440 { 441 struct cdnsp_input_control_ctx *ctrl_ctx; 442 struct cdnsp_slot_ctx *slot_ctx; 443 struct cdnsp_ep_ctx *ep_ctx; 444 int i; 445 446 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 447 448 /* 449 * When a device's add flag and drop flag are zero, any subsequent 450 * configure endpoint command will leave that endpoint's state 451 * untouched. Make sure we don't leave any old state in the input 452 * endpoint contexts. 453 */ 454 ctrl_ctx->drop_flags = 0; 455 ctrl_ctx->add_flags = 0; 456 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 457 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 458 459 /* Endpoint 0 is always valid */ 460 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1)); 461 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) { 462 ep_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, i); 463 ep_ctx->ep_info = 0; 464 ep_ctx->ep_info2 = 0; 465 ep_ctx->deq = 0; 466 ep_ctx->tx_info = 0; 467 } 468 } 469 470 /* Issue a configure endpoint command and wait for it to finish. */ 471 static int cdnsp_configure_endpoint(struct cdnsp_device *pdev) 472 { 473 int ret; 474 475 cdnsp_queue_configure_endpoint(pdev, pdev->cmd.in_ctx->dma); 476 cdnsp_ring_cmd_db(pdev); 477 ret = cdnsp_wait_for_cmd_compl(pdev); 478 if (ret) { 479 dev_err(pdev->dev, 480 "ERR: unexpected command completion code 0x%x.\n", ret); 481 return -EINVAL; 482 } 483 484 return ret; 485 } 486 487 static void cdnsp_invalidate_ep_events(struct cdnsp_device *pdev, 488 struct cdnsp_ep *pep) 489 { 490 struct cdnsp_segment *segment; 491 union cdnsp_trb *event; 492 u32 cycle_state; 493 u32 data; 494 495 event = pdev->event_ring->dequeue; 496 segment = pdev->event_ring->deq_seg; 497 cycle_state = pdev->event_ring->cycle_state; 498 499 while (1) { 500 data = le32_to_cpu(event->trans_event.flags); 501 502 /* Check the owner of the TRB. */ 503 if ((data & TRB_CYCLE) != cycle_state) 504 break; 505 506 if (TRB_FIELD_TO_TYPE(data) == TRB_TRANSFER && 507 TRB_TO_EP_ID(data) == (pep->idx + 1)) { 508 data |= TRB_EVENT_INVALIDATE; 509 event->trans_event.flags = cpu_to_le32(data); 510 } 511 512 if (cdnsp_last_trb_on_seg(segment, event)) { 513 cycle_state ^= 1; 514 segment = pdev->event_ring->deq_seg->next; 515 event = segment->trbs; 516 } else { 517 event++; 518 } 519 } 520 } 521 522 int cdnsp_wait_for_cmd_compl(struct cdnsp_device *pdev) 523 { 524 struct cdnsp_segment *event_deq_seg; 525 union cdnsp_trb *cmd_trb; 526 dma_addr_t cmd_deq_dma; 527 union cdnsp_trb *event; 528 u32 cycle_state; 529 int ret, val; 530 u64 cmd_dma; 531 u32 flags; 532 533 cmd_trb = pdev->cmd.command_trb; 534 pdev->cmd.status = 0; 535 536 trace_cdnsp_cmd_wait_for_compl(pdev->cmd_ring, &cmd_trb->generic); 537 538 ret = readl_poll_timeout_atomic(&pdev->op_regs->cmd_ring, val, 539 !CMD_RING_BUSY(val), 1, 540 CDNSP_CMD_TIMEOUT); 541 if (ret) { 542 dev_err(pdev->dev, "ERR: Timeout while waiting for command\n"); 543 trace_cdnsp_cmd_timeout(pdev->cmd_ring, &cmd_trb->generic); 544 pdev->cdnsp_state = CDNSP_STATE_DYING; 545 return -ETIMEDOUT; 546 } 547 548 event = pdev->event_ring->dequeue; 549 event_deq_seg = pdev->event_ring->deq_seg; 550 cycle_state = pdev->event_ring->cycle_state; 551 552 cmd_deq_dma = cdnsp_trb_virt_to_dma(pdev->cmd_ring->deq_seg, cmd_trb); 553 if (!cmd_deq_dma) 554 return -EINVAL; 555 556 while (1) { 557 flags = le32_to_cpu(event->event_cmd.flags); 558 559 /* Check the owner of the TRB. */ 560 if ((flags & TRB_CYCLE) != cycle_state) 561 return -EINVAL; 562 563 cmd_dma = le64_to_cpu(event->event_cmd.cmd_trb); 564 565 /* 566 * Check whether the completion event is for last queued 567 * command. 568 */ 569 if (TRB_FIELD_TO_TYPE(flags) != TRB_COMPLETION || 570 cmd_dma != (u64)cmd_deq_dma) { 571 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 572 event++; 573 continue; 574 } 575 576 if (cdnsp_last_trb_on_ring(pdev->event_ring, 577 event_deq_seg, event)) 578 cycle_state ^= 1; 579 580 event_deq_seg = event_deq_seg->next; 581 event = event_deq_seg->trbs; 582 continue; 583 } 584 585 trace_cdnsp_handle_command(pdev->cmd_ring, &cmd_trb->generic); 586 587 pdev->cmd.status = GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)); 588 if (pdev->cmd.status == COMP_SUCCESS) 589 return 0; 590 591 return -pdev->cmd.status; 592 } 593 } 594 595 int cdnsp_halt_endpoint(struct cdnsp_device *pdev, 596 struct cdnsp_ep *pep, 597 int value) 598 { 599 int ret; 600 601 trace_cdnsp_ep_halt(value ? "Set" : "Clear"); 602 603 if (value) { 604 ret = cdnsp_cmd_stop_ep(pdev, pep); 605 if (ret) 606 return ret; 607 608 if (GET_EP_CTX_STATE(pep->out_ctx) == EP_STATE_STOPPED) { 609 cdnsp_queue_halt_endpoint(pdev, pep->idx); 610 cdnsp_ring_cmd_db(pdev); 611 ret = cdnsp_wait_for_cmd_compl(pdev); 612 } 613 614 pep->ep_state |= EP_HALTED; 615 } else { 616 /* 617 * In device mode driver can call reset endpoint command 618 * from any endpoint state. 619 */ 620 cdnsp_queue_reset_ep(pdev, pep->idx); 621 cdnsp_ring_cmd_db(pdev); 622 ret = cdnsp_wait_for_cmd_compl(pdev); 623 trace_cdnsp_handle_cmd_reset_ep(pep->out_ctx); 624 625 if (ret) 626 return ret; 627 628 pep->ep_state &= ~EP_HALTED; 629 630 if (pep->idx != 0 && !(pep->ep_state & EP_WEDGE)) 631 cdnsp_ring_doorbell_for_active_rings(pdev, pep); 632 633 pep->ep_state &= ~EP_WEDGE; 634 } 635 636 return 0; 637 } 638 639 static int cdnsp_update_eps_configuration(struct cdnsp_device *pdev, 640 struct cdnsp_ep *pep) 641 { 642 struct cdnsp_input_control_ctx *ctrl_ctx; 643 struct cdnsp_slot_ctx *slot_ctx; 644 int ret = 0; 645 u32 ep_sts; 646 int i; 647 648 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 649 650 /* Don't issue the command if there's no endpoints to update. */ 651 if (ctrl_ctx->add_flags == 0 && ctrl_ctx->drop_flags == 0) 652 return 0; 653 654 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG); 655 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG); 656 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG)); 657 658 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */ 659 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 660 for (i = CDNSP_ENDPOINTS_NUM; i >= 1; i--) { 661 __le32 le32 = cpu_to_le32(BIT(i)); 662 663 if ((pdev->eps[i - 1].ring && !(ctrl_ctx->drop_flags & le32)) || 664 (ctrl_ctx->add_flags & le32) || i == 1) { 665 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK); 666 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i)); 667 break; 668 } 669 } 670 671 ep_sts = GET_EP_CTX_STATE(pep->out_ctx); 672 673 if ((ctrl_ctx->add_flags != cpu_to_le32(SLOT_FLAG) && 674 ep_sts == EP_STATE_DISABLED) || 675 (ep_sts != EP_STATE_DISABLED && ctrl_ctx->drop_flags)) 676 ret = cdnsp_configure_endpoint(pdev); 677 678 trace_cdnsp_configure_endpoint(cdnsp_get_slot_ctx(&pdev->out_ctx)); 679 trace_cdnsp_handle_cmd_config_ep(pep->out_ctx); 680 681 cdnsp_zero_in_ctx(pdev); 682 683 return ret; 684 } 685 686 /* 687 * This submits a Reset Device Command, which will set the device state to 0, 688 * set the device address to 0, and disable all the endpoints except the default 689 * control endpoint. The USB core should come back and call 690 * cdnsp_setup_device(), and then re-set up the configuration. 691 */ 692 int cdnsp_reset_device(struct cdnsp_device *pdev) 693 { 694 struct cdnsp_slot_ctx *slot_ctx; 695 int slot_state; 696 int ret, i; 697 698 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 699 slot_ctx->dev_info = 0; 700 pdev->device_address = 0; 701 702 /* If device is not setup, there is no point in resetting it. */ 703 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 704 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 705 trace_cdnsp_reset_device(slot_ctx); 706 707 if (slot_state <= SLOT_STATE_DEFAULT && 708 pdev->eps[0].ep_state & EP_HALTED) { 709 cdnsp_halt_endpoint(pdev, &pdev->eps[0], 0); 710 } 711 712 /* 713 * During Reset Device command controller shall transition the 714 * endpoint ep0 to the Running State. 715 */ 716 pdev->eps[0].ep_state &= ~(EP_STOPPED | EP_HALTED); 717 pdev->eps[0].ep_state |= EP_ENABLED; 718 719 if (slot_state <= SLOT_STATE_DEFAULT) 720 return 0; 721 722 cdnsp_queue_reset_device(pdev); 723 cdnsp_ring_cmd_db(pdev); 724 ret = cdnsp_wait_for_cmd_compl(pdev); 725 726 /* 727 * After Reset Device command all not default endpoints 728 * are in Disabled state. 729 */ 730 for (i = 1; i < CDNSP_ENDPOINTS_NUM; ++i) 731 pdev->eps[i].ep_state |= EP_STOPPED | EP_UNCONFIGURED; 732 733 trace_cdnsp_handle_cmd_reset_dev(slot_ctx); 734 735 if (ret) 736 dev_err(pdev->dev, "Reset device failed with error code %d", 737 ret); 738 739 return ret; 740 } 741 742 /* 743 * Sets the MaxPStreams field and the Linear Stream Array field. 744 * Sets the dequeue pointer to the stream context array. 745 */ 746 static void cdnsp_setup_streams_ep_input_ctx(struct cdnsp_device *pdev, 747 struct cdnsp_ep_ctx *ep_ctx, 748 struct cdnsp_stream_info *stream_info) 749 { 750 u32 max_primary_streams; 751 752 /* MaxPStreams is the number of stream context array entries, not the 753 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 754 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 755 */ 756 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 757 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 758 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 759 | EP_HAS_LSA); 760 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 761 } 762 763 /* 764 * The drivers use this function to prepare a bulk endpoints to use streams. 765 * 766 * Don't allow the call to succeed if endpoint only supports one stream 767 * (which means it doesn't support streams at all). 768 */ 769 int cdnsp_alloc_streams(struct cdnsp_device *pdev, struct cdnsp_ep *pep) 770 { 771 unsigned int num_streams = usb_ss_max_streams(pep->endpoint.comp_desc); 772 unsigned int num_stream_ctxs; 773 int ret; 774 775 if (num_streams == 0) 776 return 0; 777 778 if (num_streams > STREAM_NUM_STREAMS) 779 return -EINVAL; 780 781 /* 782 * Add two to the number of streams requested to account for 783 * stream 0 that is reserved for controller usage and one additional 784 * for TASK SET FULL response. 785 */ 786 num_streams += 2; 787 788 /* The stream context array size must be a power of two */ 789 num_stream_ctxs = roundup_pow_of_two(num_streams); 790 791 trace_cdnsp_stream_number(pep, num_stream_ctxs, num_streams); 792 793 ret = cdnsp_alloc_stream_info(pdev, pep, num_stream_ctxs, num_streams); 794 if (ret) 795 return ret; 796 797 cdnsp_setup_streams_ep_input_ctx(pdev, pep->in_ctx, &pep->stream_info); 798 799 pep->ep_state |= EP_HAS_STREAMS; 800 pep->stream_info.td_count = 0; 801 pep->stream_info.first_prime_det = 0; 802 803 /* Subtract 1 for stream 0, which drivers can't use. */ 804 return num_streams - 1; 805 } 806 807 int cdnsp_disable_slot(struct cdnsp_device *pdev) 808 { 809 int ret; 810 811 cdnsp_queue_slot_control(pdev, TRB_DISABLE_SLOT); 812 cdnsp_ring_cmd_db(pdev); 813 ret = cdnsp_wait_for_cmd_compl(pdev); 814 815 pdev->slot_id = 0; 816 pdev->active_port = NULL; 817 818 trace_cdnsp_handle_cmd_disable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 819 820 memset(pdev->in_ctx.bytes, 0, CDNSP_CTX_SIZE); 821 memset(pdev->out_ctx.bytes, 0, CDNSP_CTX_SIZE); 822 823 return ret; 824 } 825 826 int cdnsp_enable_slot(struct cdnsp_device *pdev) 827 { 828 struct cdnsp_slot_ctx *slot_ctx; 829 int slot_state; 830 int ret; 831 832 /* If device is not setup, there is no point in resetting it */ 833 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 834 slot_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 835 836 if (slot_state != SLOT_STATE_DISABLED) 837 return 0; 838 839 cdnsp_queue_slot_control(pdev, TRB_ENABLE_SLOT); 840 cdnsp_ring_cmd_db(pdev); 841 ret = cdnsp_wait_for_cmd_compl(pdev); 842 if (ret) 843 goto show_trace; 844 845 pdev->slot_id = 1; 846 847 show_trace: 848 trace_cdnsp_handle_cmd_enable_slot(cdnsp_get_slot_ctx(&pdev->out_ctx)); 849 850 return ret; 851 } 852 853 /* 854 * Issue an Address Device command with BSR=0 if setup is SETUP_CONTEXT_ONLY 855 * or with BSR = 1 if set_address is SETUP_CONTEXT_ADDRESS. 856 */ 857 int cdnsp_setup_device(struct cdnsp_device *pdev, enum cdnsp_setup_dev setup) 858 { 859 struct cdnsp_input_control_ctx *ctrl_ctx; 860 struct cdnsp_slot_ctx *slot_ctx; 861 int dev_state = 0; 862 int ret; 863 864 if (!pdev->slot_id) { 865 trace_cdnsp_slot_id("incorrect"); 866 return -EINVAL; 867 } 868 869 if (!pdev->active_port->port_num) 870 return -EINVAL; 871 872 slot_ctx = cdnsp_get_slot_ctx(&pdev->out_ctx); 873 dev_state = GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)); 874 875 if (setup == SETUP_CONTEXT_ONLY && dev_state == SLOT_STATE_DEFAULT) { 876 trace_cdnsp_slot_already_in_default(slot_ctx); 877 return 0; 878 } 879 880 slot_ctx = cdnsp_get_slot_ctx(&pdev->in_ctx); 881 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 882 883 if (!slot_ctx->dev_info || dev_state == SLOT_STATE_DEFAULT) { 884 ret = cdnsp_setup_addressable_priv_dev(pdev); 885 if (ret) 886 return ret; 887 } 888 889 cdnsp_copy_ep0_dequeue_into_input_ctx(pdev); 890 891 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG); 892 ctrl_ctx->drop_flags = 0; 893 894 trace_cdnsp_setup_device_slot(slot_ctx); 895 896 cdnsp_queue_address_device(pdev, pdev->in_ctx.dma, setup); 897 cdnsp_ring_cmd_db(pdev); 898 ret = cdnsp_wait_for_cmd_compl(pdev); 899 900 trace_cdnsp_handle_cmd_addr_dev(cdnsp_get_slot_ctx(&pdev->out_ctx)); 901 902 /* Zero the input context control for later use. */ 903 ctrl_ctx->add_flags = 0; 904 ctrl_ctx->drop_flags = 0; 905 906 return ret; 907 } 908 909 void cdnsp_set_usb2_hardware_lpm(struct cdnsp_device *pdev, 910 struct usb_request *req, 911 int enable) 912 { 913 if (pdev->active_port != &pdev->usb2_port || !pdev->gadget.lpm_capable) 914 return; 915 916 trace_cdnsp_lpm(enable); 917 918 if (enable) 919 writel(PORT_BESL(CDNSP_DEFAULT_BESL) | PORT_L1S_NYET | PORT_HLE, 920 &pdev->active_port->regs->portpmsc); 921 else 922 writel(PORT_L1S_NYET, &pdev->active_port->regs->portpmsc); 923 } 924 925 static int cdnsp_get_frame(struct cdnsp_device *pdev) 926 { 927 return readl(&pdev->run_regs->microframe_index) >> 3; 928 } 929 930 static int cdnsp_gadget_ep_enable(struct usb_ep *ep, 931 const struct usb_endpoint_descriptor *desc) 932 { 933 struct cdnsp_input_control_ctx *ctrl_ctx; 934 struct cdnsp_device *pdev; 935 struct cdnsp_ep *pep; 936 unsigned long flags; 937 u32 added_ctxs; 938 int ret; 939 940 if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || 941 !desc->wMaxPacketSize) 942 return -EINVAL; 943 944 pep = to_cdnsp_ep(ep); 945 pdev = pep->pdev; 946 pep->ep_state &= ~EP_UNCONFIGURED; 947 948 if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED, 949 "%s is already enabled\n", pep->name)) 950 return 0; 951 952 spin_lock_irqsave(&pdev->lock, flags); 953 954 added_ctxs = cdnsp_get_endpoint_flag(desc); 955 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) { 956 dev_err(pdev->dev, "ERROR: Bad endpoint number\n"); 957 ret = -EINVAL; 958 goto unlock; 959 } 960 961 pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; 962 963 if (pdev->gadget.speed == USB_SPEED_FULL) { 964 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_INT) 965 pep->interval = desc->bInterval << 3; 966 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) 967 pep->interval = BIT(desc->bInterval - 1) << 3; 968 } 969 970 if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) { 971 if (pep->interval > BIT(12)) { 972 dev_err(pdev->dev, "bInterval %d not supported\n", 973 desc->bInterval); 974 ret = -EINVAL; 975 goto unlock; 976 } 977 cdnsp_set_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 978 } 979 980 ret = cdnsp_endpoint_init(pdev, pep, GFP_ATOMIC); 981 if (ret) 982 goto unlock; 983 984 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 985 ctrl_ctx->add_flags = cpu_to_le32(added_ctxs); 986 ctrl_ctx->drop_flags = 0; 987 988 ret = cdnsp_update_eps_configuration(pdev, pep); 989 if (ret) { 990 cdnsp_free_endpoint_rings(pdev, pep); 991 goto unlock; 992 } 993 994 pep->ep_state |= EP_ENABLED; 995 pep->ep_state &= ~EP_STOPPED; 996 997 unlock: 998 trace_cdnsp_ep_enable_end(pep, 0); 999 spin_unlock_irqrestore(&pdev->lock, flags); 1000 1001 return ret; 1002 } 1003 1004 static int cdnsp_gadget_ep_disable(struct usb_ep *ep) 1005 { 1006 struct cdnsp_input_control_ctx *ctrl_ctx; 1007 struct cdnsp_request *preq; 1008 struct cdnsp_device *pdev; 1009 struct cdnsp_ep *pep; 1010 unsigned long flags; 1011 u32 drop_flag; 1012 int ret = 0; 1013 1014 if (!ep) 1015 return -EINVAL; 1016 1017 pep = to_cdnsp_ep(ep); 1018 pdev = pep->pdev; 1019 1020 spin_lock_irqsave(&pdev->lock, flags); 1021 1022 if (!(pep->ep_state & EP_ENABLED)) { 1023 dev_err(pdev->dev, "%s is already disabled\n", pep->name); 1024 ret = -EINVAL; 1025 goto finish; 1026 } 1027 1028 pep->ep_state |= EP_DIS_IN_RROGRESS; 1029 1030 /* Endpoint was unconfigured by Reset Device command. */ 1031 if (!(pep->ep_state & EP_UNCONFIGURED)) { 1032 cdnsp_cmd_stop_ep(pdev, pep); 1033 cdnsp_cmd_flush_ep(pdev, pep); 1034 } 1035 1036 /* Remove all queued USB requests. */ 1037 while (!list_empty(&pep->pending_list)) { 1038 preq = next_request(&pep->pending_list); 1039 cdnsp_ep_dequeue(pep, preq); 1040 } 1041 1042 cdnsp_invalidate_ep_events(pdev, pep); 1043 1044 pep->ep_state &= ~EP_DIS_IN_RROGRESS; 1045 drop_flag = cdnsp_get_endpoint_flag(pep->endpoint.desc); 1046 ctrl_ctx = cdnsp_get_input_control_ctx(&pdev->in_ctx); 1047 ctrl_ctx->drop_flags = cpu_to_le32(drop_flag); 1048 ctrl_ctx->add_flags = 0; 1049 1050 cdnsp_endpoint_zero(pdev, pep); 1051 1052 if (!(pep->ep_state & EP_UNCONFIGURED)) 1053 ret = cdnsp_update_eps_configuration(pdev, pep); 1054 1055 cdnsp_free_endpoint_rings(pdev, pep); 1056 1057 pep->ep_state &= ~(EP_ENABLED | EP_UNCONFIGURED); 1058 pep->ep_state |= EP_STOPPED; 1059 1060 finish: 1061 trace_cdnsp_ep_disable_end(pep, 0); 1062 spin_unlock_irqrestore(&pdev->lock, flags); 1063 1064 return ret; 1065 } 1066 1067 static struct usb_request *cdnsp_gadget_ep_alloc_request(struct usb_ep *ep, 1068 gfp_t gfp_flags) 1069 { 1070 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1071 struct cdnsp_request *preq; 1072 1073 preq = kzalloc(sizeof(*preq), gfp_flags); 1074 if (!preq) 1075 return NULL; 1076 1077 preq->epnum = pep->number; 1078 preq->pep = pep; 1079 1080 trace_cdnsp_alloc_request(preq); 1081 1082 return &preq->request; 1083 } 1084 1085 static void cdnsp_gadget_ep_free_request(struct usb_ep *ep, 1086 struct usb_request *request) 1087 { 1088 struct cdnsp_request *preq = to_cdnsp_request(request); 1089 1090 trace_cdnsp_free_request(preq); 1091 kfree(preq); 1092 } 1093 1094 static int cdnsp_gadget_ep_queue(struct usb_ep *ep, 1095 struct usb_request *request, 1096 gfp_t gfp_flags) 1097 { 1098 struct cdnsp_request *preq; 1099 struct cdnsp_device *pdev; 1100 struct cdnsp_ep *pep; 1101 unsigned long flags; 1102 int ret; 1103 1104 if (!request || !ep) 1105 return -EINVAL; 1106 1107 pep = to_cdnsp_ep(ep); 1108 pdev = pep->pdev; 1109 1110 if (!(pep->ep_state & EP_ENABLED)) { 1111 dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n", 1112 pep->name); 1113 return -EINVAL; 1114 } 1115 1116 preq = to_cdnsp_request(request); 1117 spin_lock_irqsave(&pdev->lock, flags); 1118 ret = cdnsp_ep_enqueue(pep, preq); 1119 spin_unlock_irqrestore(&pdev->lock, flags); 1120 1121 return ret; 1122 } 1123 1124 static int cdnsp_gadget_ep_dequeue(struct usb_ep *ep, 1125 struct usb_request *request) 1126 { 1127 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1128 struct cdnsp_device *pdev = pep->pdev; 1129 unsigned long flags; 1130 int ret; 1131 1132 if (!pep->endpoint.desc) { 1133 dev_err(pdev->dev, 1134 "%s: can't dequeue to disabled endpoint\n", 1135 pep->name); 1136 return -ESHUTDOWN; 1137 } 1138 1139 /* Requests has been dequeued during disabling endpoint. */ 1140 if (!(pep->ep_state & EP_ENABLED)) 1141 return 0; 1142 1143 spin_lock_irqsave(&pdev->lock, flags); 1144 ret = cdnsp_ep_dequeue(pep, to_cdnsp_request(request)); 1145 spin_unlock_irqrestore(&pdev->lock, flags); 1146 1147 return ret; 1148 } 1149 1150 static int cdnsp_gadget_ep_set_halt(struct usb_ep *ep, int value) 1151 { 1152 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1153 struct cdnsp_device *pdev = pep->pdev; 1154 struct cdnsp_request *preq; 1155 unsigned long flags; 1156 int ret; 1157 1158 spin_lock_irqsave(&pdev->lock, flags); 1159 1160 preq = next_request(&pep->pending_list); 1161 if (value) { 1162 if (preq) { 1163 trace_cdnsp_ep_busy_try_halt_again(pep, 0); 1164 ret = -EAGAIN; 1165 goto done; 1166 } 1167 } 1168 1169 ret = cdnsp_halt_endpoint(pdev, pep, value); 1170 1171 done: 1172 spin_unlock_irqrestore(&pdev->lock, flags); 1173 return ret; 1174 } 1175 1176 static int cdnsp_gadget_ep_set_wedge(struct usb_ep *ep) 1177 { 1178 struct cdnsp_ep *pep = to_cdnsp_ep(ep); 1179 struct cdnsp_device *pdev = pep->pdev; 1180 unsigned long flags; 1181 int ret; 1182 1183 spin_lock_irqsave(&pdev->lock, flags); 1184 pep->ep_state |= EP_WEDGE; 1185 ret = cdnsp_halt_endpoint(pdev, pep, 1); 1186 spin_unlock_irqrestore(&pdev->lock, flags); 1187 1188 return ret; 1189 } 1190 1191 static const struct usb_ep_ops cdnsp_gadget_ep0_ops = { 1192 .enable = cdnsp_gadget_ep_enable, 1193 .disable = cdnsp_gadget_ep_disable, 1194 .alloc_request = cdnsp_gadget_ep_alloc_request, 1195 .free_request = cdnsp_gadget_ep_free_request, 1196 .queue = cdnsp_gadget_ep_queue, 1197 .dequeue = cdnsp_gadget_ep_dequeue, 1198 .set_halt = cdnsp_gadget_ep_set_halt, 1199 .set_wedge = cdnsp_gadget_ep_set_wedge, 1200 }; 1201 1202 static const struct usb_ep_ops cdnsp_gadget_ep_ops = { 1203 .enable = cdnsp_gadget_ep_enable, 1204 .disable = cdnsp_gadget_ep_disable, 1205 .alloc_request = cdnsp_gadget_ep_alloc_request, 1206 .free_request = cdnsp_gadget_ep_free_request, 1207 .queue = cdnsp_gadget_ep_queue, 1208 .dequeue = cdnsp_gadget_ep_dequeue, 1209 .set_halt = cdnsp_gadget_ep_set_halt, 1210 .set_wedge = cdnsp_gadget_ep_set_wedge, 1211 }; 1212 1213 void cdnsp_gadget_giveback(struct cdnsp_ep *pep, 1214 struct cdnsp_request *preq, 1215 int status) 1216 { 1217 struct cdnsp_device *pdev = pep->pdev; 1218 1219 list_del(&preq->list); 1220 1221 if (preq->request.status == -EINPROGRESS) 1222 preq->request.status = status; 1223 1224 usb_gadget_unmap_request_by_dev(pdev->dev, &preq->request, 1225 preq->direction); 1226 1227 trace_cdnsp_request_giveback(preq); 1228 1229 if (preq != &pdev->ep0_preq) { 1230 spin_unlock(&pdev->lock); 1231 usb_gadget_giveback_request(&pep->endpoint, &preq->request); 1232 spin_lock(&pdev->lock); 1233 } 1234 } 1235 1236 static struct usb_endpoint_descriptor cdnsp_gadget_ep0_desc = { 1237 .bLength = USB_DT_ENDPOINT_SIZE, 1238 .bDescriptorType = USB_DT_ENDPOINT, 1239 .bmAttributes = USB_ENDPOINT_XFER_CONTROL, 1240 }; 1241 1242 static int cdnsp_run(struct cdnsp_device *pdev, 1243 enum usb_device_speed speed) 1244 { 1245 u32 fs_speed = 0; 1246 u64 temp_64; 1247 u32 temp; 1248 int ret; 1249 1250 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue); 1251 temp_64 &= ~ERST_PTR_MASK; 1252 temp = readl(&pdev->ir_set->irq_control); 1253 temp &= ~IMOD_INTERVAL_MASK; 1254 temp |= ((IMOD_DEFAULT_INTERVAL / 250) & IMOD_INTERVAL_MASK); 1255 writel(temp, &pdev->ir_set->irq_control); 1256 1257 temp = readl(&pdev->port3x_regs->mode_addr); 1258 1259 switch (speed) { 1260 case USB_SPEED_SUPER_PLUS: 1261 temp |= CFG_3XPORT_SSP_SUPPORT; 1262 break; 1263 case USB_SPEED_SUPER: 1264 temp &= ~CFG_3XPORT_SSP_SUPPORT; 1265 break; 1266 case USB_SPEED_HIGH: 1267 break; 1268 case USB_SPEED_FULL: 1269 fs_speed = PORT_REG6_FORCE_FS; 1270 break; 1271 default: 1272 dev_err(pdev->dev, "invalid maximum_speed parameter %d\n", 1273 speed); 1274 fallthrough; 1275 case USB_SPEED_UNKNOWN: 1276 /* Default to superspeed. */ 1277 speed = USB_SPEED_SUPER; 1278 break; 1279 } 1280 1281 if (speed >= USB_SPEED_SUPER) { 1282 writel(temp, &pdev->port3x_regs->mode_addr); 1283 cdnsp_set_link_state(pdev, &pdev->usb3_port.regs->portsc, 1284 XDEV_RXDETECT); 1285 } else { 1286 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1287 } 1288 1289 cdnsp_set_link_state(pdev, &pdev->usb2_port.regs->portsc, 1290 XDEV_RXDETECT); 1291 1292 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1293 1294 writel(PORT_REG6_L1_L0_HW_EN | fs_speed, &pdev->port20_regs->port_reg6); 1295 1296 ret = cdnsp_start(pdev); 1297 if (ret) { 1298 ret = -ENODEV; 1299 goto err; 1300 } 1301 1302 temp = readl(&pdev->op_regs->command); 1303 temp |= (CMD_INTE); 1304 writel(temp, &pdev->op_regs->command); 1305 1306 temp = readl(&pdev->ir_set->irq_pending); 1307 writel(IMAN_IE_SET(temp), &pdev->ir_set->irq_pending); 1308 1309 trace_cdnsp_init("Controller ready to work"); 1310 return 0; 1311 err: 1312 cdnsp_halt(pdev); 1313 return ret; 1314 } 1315 1316 static int cdnsp_gadget_udc_start(struct usb_gadget *g, 1317 struct usb_gadget_driver *driver) 1318 { 1319 enum usb_device_speed max_speed = driver->max_speed; 1320 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1321 unsigned long flags; 1322 int ret; 1323 1324 spin_lock_irqsave(&pdev->lock, flags); 1325 pdev->gadget_driver = driver; 1326 1327 /* limit speed if necessary */ 1328 max_speed = min(driver->max_speed, g->max_speed); 1329 ret = cdnsp_run(pdev, max_speed); 1330 1331 spin_unlock_irqrestore(&pdev->lock, flags); 1332 1333 return ret; 1334 } 1335 1336 /* 1337 * Update Event Ring Dequeue Pointer: 1338 * - When all events have finished 1339 * - To avoid "Event Ring Full Error" condition 1340 */ 1341 void cdnsp_update_erst_dequeue(struct cdnsp_device *pdev, 1342 union cdnsp_trb *event_ring_deq, 1343 u8 clear_ehb) 1344 { 1345 u64 temp_64; 1346 dma_addr_t deq; 1347 1348 temp_64 = cdnsp_read_64(&pdev->ir_set->erst_dequeue); 1349 1350 /* If necessary, update the HW's version of the event ring deq ptr. */ 1351 if (event_ring_deq != pdev->event_ring->dequeue) { 1352 deq = cdnsp_trb_virt_to_dma(pdev->event_ring->deq_seg, 1353 pdev->event_ring->dequeue); 1354 temp_64 &= ERST_PTR_MASK; 1355 temp_64 |= ((u64)deq & (u64)~ERST_PTR_MASK); 1356 } 1357 1358 /* Clear the event handler busy flag (RW1C). */ 1359 if (clear_ehb) 1360 temp_64 |= ERST_EHB; 1361 else 1362 temp_64 &= ~ERST_EHB; 1363 1364 cdnsp_write_64(temp_64, &pdev->ir_set->erst_dequeue); 1365 } 1366 1367 static void cdnsp_clear_cmd_ring(struct cdnsp_device *pdev) 1368 { 1369 struct cdnsp_segment *seg; 1370 u64 val_64; 1371 int i; 1372 1373 cdnsp_initialize_ring_info(pdev->cmd_ring); 1374 1375 seg = pdev->cmd_ring->first_seg; 1376 for (i = 0; i < pdev->cmd_ring->num_segs; i++) { 1377 memset(seg->trbs, 0, 1378 sizeof(union cdnsp_trb) * (TRBS_PER_SEGMENT - 1)); 1379 seg = seg->next; 1380 } 1381 1382 /* Set the address in the Command Ring Control register. */ 1383 val_64 = cdnsp_read_64(&pdev->op_regs->cmd_ring); 1384 val_64 = (val_64 & (u64)CMD_RING_RSVD_BITS) | 1385 (pdev->cmd_ring->first_seg->dma & (u64)~CMD_RING_RSVD_BITS) | 1386 pdev->cmd_ring->cycle_state; 1387 cdnsp_write_64(val_64, &pdev->op_regs->cmd_ring); 1388 } 1389 1390 static void cdnsp_consume_all_events(struct cdnsp_device *pdev) 1391 { 1392 struct cdnsp_segment *event_deq_seg; 1393 union cdnsp_trb *event_ring_deq; 1394 union cdnsp_trb *event; 1395 u32 cycle_bit; 1396 1397 event_ring_deq = pdev->event_ring->dequeue; 1398 event_deq_seg = pdev->event_ring->deq_seg; 1399 event = pdev->event_ring->dequeue; 1400 1401 /* Update ring dequeue pointer. */ 1402 while (1) { 1403 cycle_bit = (le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE); 1404 1405 /* Does the controller or driver own the TRB? */ 1406 if (cycle_bit != pdev->event_ring->cycle_state) 1407 break; 1408 1409 cdnsp_inc_deq(pdev, pdev->event_ring); 1410 1411 if (!cdnsp_last_trb_on_seg(event_deq_seg, event)) { 1412 event++; 1413 continue; 1414 } 1415 1416 if (cdnsp_last_trb_on_ring(pdev->event_ring, event_deq_seg, 1417 event)) 1418 cycle_bit ^= 1; 1419 1420 event_deq_seg = event_deq_seg->next; 1421 event = event_deq_seg->trbs; 1422 } 1423 1424 cdnsp_update_erst_dequeue(pdev, event_ring_deq, 1); 1425 } 1426 1427 static void cdnsp_stop(struct cdnsp_device *pdev) 1428 { 1429 u32 temp; 1430 1431 cdnsp_cmd_flush_ep(pdev, &pdev->eps[0]); 1432 1433 /* Remove internally queued request for ep0. */ 1434 if (!list_empty(&pdev->eps[0].pending_list)) { 1435 struct cdnsp_request *req; 1436 1437 req = next_request(&pdev->eps[0].pending_list); 1438 if (req == &pdev->ep0_preq) 1439 cdnsp_ep_dequeue(&pdev->eps[0], req); 1440 } 1441 1442 cdnsp_disable_port(pdev, &pdev->usb2_port.regs->portsc); 1443 cdnsp_disable_port(pdev, &pdev->usb3_port.regs->portsc); 1444 cdnsp_disable_slot(pdev); 1445 cdnsp_halt(pdev); 1446 1447 temp = readl(&pdev->op_regs->status); 1448 writel((temp & ~0x1fff) | STS_EINT, &pdev->op_regs->status); 1449 temp = readl(&pdev->ir_set->irq_pending); 1450 writel(IMAN_IE_CLEAR(temp), &pdev->ir_set->irq_pending); 1451 1452 cdnsp_clear_port_change_bit(pdev, &pdev->usb2_port.regs->portsc); 1453 cdnsp_clear_port_change_bit(pdev, &pdev->usb3_port.regs->portsc); 1454 1455 /* Clear interrupt line */ 1456 temp = readl(&pdev->ir_set->irq_pending); 1457 temp |= IMAN_IP; 1458 writel(temp, &pdev->ir_set->irq_pending); 1459 1460 cdnsp_consume_all_events(pdev); 1461 cdnsp_clear_cmd_ring(pdev); 1462 1463 trace_cdnsp_exit("Controller stopped."); 1464 } 1465 1466 /* 1467 * Stop controller. 1468 * This function is called by the gadget core when the driver is removed. 1469 * Disable slot, disable IRQs, and quiesce the controller. 1470 */ 1471 static int cdnsp_gadget_udc_stop(struct usb_gadget *g) 1472 { 1473 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1474 unsigned long flags; 1475 1476 spin_lock_irqsave(&pdev->lock, flags); 1477 cdnsp_stop(pdev); 1478 pdev->gadget_driver = NULL; 1479 spin_unlock_irqrestore(&pdev->lock, flags); 1480 1481 return 0; 1482 } 1483 1484 static int cdnsp_gadget_get_frame(struct usb_gadget *g) 1485 { 1486 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1487 1488 return cdnsp_get_frame(pdev); 1489 } 1490 1491 static void __cdnsp_gadget_wakeup(struct cdnsp_device *pdev) 1492 { 1493 struct cdnsp_port_regs __iomem *port_regs; 1494 u32 portpm, portsc; 1495 1496 port_regs = pdev->active_port->regs; 1497 portsc = readl(&port_regs->portsc) & PORT_PLS_MASK; 1498 1499 /* Remote wakeup feature is not enabled by host. */ 1500 if (pdev->gadget.speed < USB_SPEED_SUPER && portsc == XDEV_U2) { 1501 portpm = readl(&port_regs->portpmsc); 1502 1503 if (!(portpm & PORT_RWE)) 1504 return; 1505 } 1506 1507 if (portsc == XDEV_U3 && !pdev->may_wakeup) 1508 return; 1509 1510 cdnsp_set_link_state(pdev, &port_regs->portsc, XDEV_U0); 1511 1512 pdev->cdnsp_state |= CDNSP_WAKEUP_PENDING; 1513 } 1514 1515 static int cdnsp_gadget_wakeup(struct usb_gadget *g) 1516 { 1517 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1518 unsigned long flags; 1519 1520 spin_lock_irqsave(&pdev->lock, flags); 1521 __cdnsp_gadget_wakeup(pdev); 1522 spin_unlock_irqrestore(&pdev->lock, flags); 1523 1524 return 0; 1525 } 1526 1527 static int cdnsp_gadget_set_selfpowered(struct usb_gadget *g, 1528 int is_selfpowered) 1529 { 1530 struct cdnsp_device *pdev = gadget_to_cdnsp(g); 1531 unsigned long flags; 1532 1533 spin_lock_irqsave(&pdev->lock, flags); 1534 g->is_selfpowered = !!is_selfpowered; 1535 spin_unlock_irqrestore(&pdev->lock, flags); 1536 1537 return 0; 1538 } 1539 1540 static int cdnsp_gadget_pullup(struct usb_gadget *gadget, int is_on) 1541 { 1542 struct cdnsp_device *pdev = gadget_to_cdnsp(gadget); 1543 struct cdns *cdns = dev_get_drvdata(pdev->dev); 1544 unsigned long flags; 1545 1546 trace_cdnsp_pullup(is_on); 1547 1548 /* 1549 * Disable events handling while controller is being 1550 * enabled/disabled. 1551 */ 1552 disable_irq(cdns->dev_irq); 1553 spin_lock_irqsave(&pdev->lock, flags); 1554 1555 if (!is_on) { 1556 cdnsp_reset_device(pdev); 1557 cdns_clear_vbus(cdns); 1558 } else { 1559 cdns_set_vbus(cdns); 1560 } 1561 1562 spin_unlock_irqrestore(&pdev->lock, flags); 1563 enable_irq(cdns->dev_irq); 1564 1565 return 0; 1566 } 1567 1568 static const struct usb_gadget_ops cdnsp_gadget_ops = { 1569 .get_frame = cdnsp_gadget_get_frame, 1570 .wakeup = cdnsp_gadget_wakeup, 1571 .set_selfpowered = cdnsp_gadget_set_selfpowered, 1572 .pullup = cdnsp_gadget_pullup, 1573 .udc_start = cdnsp_gadget_udc_start, 1574 .udc_stop = cdnsp_gadget_udc_stop, 1575 }; 1576 1577 static void cdnsp_get_ep_buffering(struct cdnsp_device *pdev, 1578 struct cdnsp_ep *pep) 1579 { 1580 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1581 int endpoints; 1582 1583 reg += cdnsp_find_next_ext_cap(reg, 0, XBUF_CAP_ID); 1584 1585 if (!pep->direction) { 1586 pep->buffering = readl(reg + XBUF_RX_TAG_MASK_0_OFFSET); 1587 pep->buffering_period = readl(reg + XBUF_RX_TAG_MASK_1_OFFSET); 1588 pep->buffering = (pep->buffering + 1) / 2; 1589 pep->buffering_period = (pep->buffering_period + 1) / 2; 1590 return; 1591 } 1592 1593 endpoints = HCS_ENDPOINTS(pdev->hcs_params1) / 2; 1594 1595 /* Set to XBUF_TX_TAG_MASK_0 register. */ 1596 reg += XBUF_TX_CMD_OFFSET + (endpoints * 2 + 2) * sizeof(u32); 1597 /* Set reg to XBUF_TX_TAG_MASK_N related with this endpoint. */ 1598 reg += pep->number * sizeof(u32) * 2; 1599 1600 pep->buffering = (readl(reg) + 1) / 2; 1601 pep->buffering_period = pep->buffering; 1602 } 1603 1604 static int cdnsp_gadget_init_endpoints(struct cdnsp_device *pdev) 1605 { 1606 int max_streams = HCC_MAX_PSA(pdev->hcc_params); 1607 struct cdnsp_ep *pep; 1608 int i; 1609 1610 INIT_LIST_HEAD(&pdev->gadget.ep_list); 1611 1612 if (max_streams < STREAM_LOG_STREAMS) { 1613 dev_err(pdev->dev, "Stream size %d not supported\n", 1614 max_streams); 1615 return -EINVAL; 1616 } 1617 1618 max_streams = STREAM_LOG_STREAMS; 1619 1620 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1621 bool direction = !(i & 1); /* Start from OUT endpoint. */ 1622 u8 epnum = ((i + 1) >> 1); 1623 1624 if (!CDNSP_IF_EP_EXIST(pdev, epnum, direction)) 1625 continue; 1626 1627 pep = &pdev->eps[i]; 1628 pep->pdev = pdev; 1629 pep->number = epnum; 1630 pep->direction = direction; /* 0 for OUT, 1 for IN. */ 1631 1632 /* 1633 * Ep0 is bidirectional, so ep0in and ep0out are represented by 1634 * pdev->eps[0] 1635 */ 1636 if (epnum == 0) { 1637 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1638 epnum, "BiDir"); 1639 1640 pep->idx = 0; 1641 usb_ep_set_maxpacket_limit(&pep->endpoint, 512); 1642 pep->endpoint.maxburst = 1; 1643 pep->endpoint.ops = &cdnsp_gadget_ep0_ops; 1644 pep->endpoint.desc = &cdnsp_gadget_ep0_desc; 1645 pep->endpoint.comp_desc = NULL; 1646 pep->endpoint.caps.type_control = true; 1647 pep->endpoint.caps.dir_in = true; 1648 pep->endpoint.caps.dir_out = true; 1649 1650 pdev->ep0_preq.epnum = pep->number; 1651 pdev->ep0_preq.pep = pep; 1652 pdev->gadget.ep0 = &pep->endpoint; 1653 } else { 1654 snprintf(pep->name, sizeof(pep->name), "ep%d%s", 1655 epnum, (pep->direction) ? "in" : "out"); 1656 1657 pep->idx = (epnum * 2 + (direction ? 1 : 0)) - 1; 1658 usb_ep_set_maxpacket_limit(&pep->endpoint, 1024); 1659 1660 pep->endpoint.max_streams = max_streams; 1661 pep->endpoint.ops = &cdnsp_gadget_ep_ops; 1662 list_add_tail(&pep->endpoint.ep_list, 1663 &pdev->gadget.ep_list); 1664 1665 pep->endpoint.caps.type_iso = true; 1666 pep->endpoint.caps.type_bulk = true; 1667 pep->endpoint.caps.type_int = true; 1668 1669 pep->endpoint.caps.dir_in = direction; 1670 pep->endpoint.caps.dir_out = !direction; 1671 } 1672 1673 pep->endpoint.name = pep->name; 1674 pep->in_ctx = cdnsp_get_ep_ctx(&pdev->in_ctx, pep->idx); 1675 pep->out_ctx = cdnsp_get_ep_ctx(&pdev->out_ctx, pep->idx); 1676 cdnsp_get_ep_buffering(pdev, pep); 1677 1678 dev_dbg(pdev->dev, "Init %s, MPS: %04x SupType: " 1679 "CTRL: %s, INT: %s, BULK: %s, ISOC %s, " 1680 "SupDir IN: %s, OUT: %s\n", 1681 pep->name, 1024, 1682 (pep->endpoint.caps.type_control) ? "yes" : "no", 1683 (pep->endpoint.caps.type_int) ? "yes" : "no", 1684 (pep->endpoint.caps.type_bulk) ? "yes" : "no", 1685 (pep->endpoint.caps.type_iso) ? "yes" : "no", 1686 (pep->endpoint.caps.dir_in) ? "yes" : "no", 1687 (pep->endpoint.caps.dir_out) ? "yes" : "no"); 1688 1689 INIT_LIST_HEAD(&pep->pending_list); 1690 } 1691 1692 return 0; 1693 } 1694 1695 static void cdnsp_gadget_free_endpoints(struct cdnsp_device *pdev) 1696 { 1697 struct cdnsp_ep *pep; 1698 int i; 1699 1700 for (i = 0; i < CDNSP_ENDPOINTS_NUM; i++) { 1701 pep = &pdev->eps[i]; 1702 if (pep->number != 0 && pep->out_ctx) 1703 list_del(&pep->endpoint.ep_list); 1704 } 1705 } 1706 1707 void cdnsp_disconnect_gadget(struct cdnsp_device *pdev) 1708 { 1709 pdev->cdnsp_state |= CDNSP_STATE_DISCONNECT_PENDING; 1710 1711 if (pdev->gadget_driver && pdev->gadget_driver->disconnect) { 1712 spin_unlock(&pdev->lock); 1713 pdev->gadget_driver->disconnect(&pdev->gadget); 1714 spin_lock(&pdev->lock); 1715 } 1716 1717 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1718 usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED); 1719 1720 pdev->cdnsp_state &= ~CDNSP_STATE_DISCONNECT_PENDING; 1721 } 1722 1723 void cdnsp_suspend_gadget(struct cdnsp_device *pdev) 1724 { 1725 if (pdev->gadget_driver && pdev->gadget_driver->suspend) { 1726 spin_unlock(&pdev->lock); 1727 pdev->gadget_driver->suspend(&pdev->gadget); 1728 spin_lock(&pdev->lock); 1729 } 1730 } 1731 1732 void cdnsp_resume_gadget(struct cdnsp_device *pdev) 1733 { 1734 if (pdev->gadget_driver && pdev->gadget_driver->resume) { 1735 spin_unlock(&pdev->lock); 1736 pdev->gadget_driver->resume(&pdev->gadget); 1737 spin_lock(&pdev->lock); 1738 } 1739 } 1740 1741 void cdnsp_irq_reset(struct cdnsp_device *pdev) 1742 { 1743 struct cdnsp_port_regs __iomem *port_regs; 1744 1745 cdnsp_reset_device(pdev); 1746 1747 port_regs = pdev->active_port->regs; 1748 pdev->gadget.speed = cdnsp_port_speed(readl(port_regs)); 1749 1750 spin_unlock(&pdev->lock); 1751 usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver); 1752 spin_lock(&pdev->lock); 1753 1754 switch (pdev->gadget.speed) { 1755 case USB_SPEED_SUPER_PLUS: 1756 case USB_SPEED_SUPER: 1757 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(512); 1758 pdev->gadget.ep0->maxpacket = 512; 1759 break; 1760 case USB_SPEED_HIGH: 1761 case USB_SPEED_FULL: 1762 cdnsp_gadget_ep0_desc.wMaxPacketSize = cpu_to_le16(64); 1763 pdev->gadget.ep0->maxpacket = 64; 1764 break; 1765 default: 1766 /* Low speed is not supported. */ 1767 dev_err(pdev->dev, "Unknown device speed\n"); 1768 break; 1769 } 1770 1771 cdnsp_clear_chicken_bits_2(pdev, CHICKEN_XDMA_2_TP_CACHE_DIS); 1772 cdnsp_setup_device(pdev, SETUP_CONTEXT_ONLY); 1773 usb_gadget_set_state(&pdev->gadget, USB_STATE_DEFAULT); 1774 } 1775 1776 static void cdnsp_get_rev_cap(struct cdnsp_device *pdev) 1777 { 1778 void __iomem *reg = &pdev->cap_regs->hc_capbase; 1779 1780 reg += cdnsp_find_next_ext_cap(reg, 0, RTL_REV_CAP); 1781 pdev->rev_cap = reg; 1782 1783 dev_info(pdev->dev, "Rev: %08x/%08x, eps: %08x, buff: %08x/%08x\n", 1784 readl(&pdev->rev_cap->ctrl_revision), 1785 readl(&pdev->rev_cap->rtl_revision), 1786 readl(&pdev->rev_cap->ep_supported), 1787 readl(&pdev->rev_cap->rx_buff_size), 1788 readl(&pdev->rev_cap->tx_buff_size)); 1789 } 1790 1791 static int cdnsp_gen_setup(struct cdnsp_device *pdev) 1792 { 1793 int ret; 1794 u32 reg; 1795 1796 pdev->cap_regs = pdev->regs; 1797 pdev->op_regs = pdev->regs + 1798 HC_LENGTH(readl(&pdev->cap_regs->hc_capbase)); 1799 pdev->run_regs = pdev->regs + 1800 (readl(&pdev->cap_regs->run_regs_off) & RTSOFF_MASK); 1801 1802 /* Cache read-only capability registers */ 1803 pdev->hcs_params1 = readl(&pdev->cap_regs->hcs_params1); 1804 pdev->hcc_params = readl(&pdev->cap_regs->hc_capbase); 1805 pdev->hci_version = HC_VERSION(pdev->hcc_params); 1806 pdev->hcc_params = readl(&pdev->cap_regs->hcc_params); 1807 1808 cdnsp_get_rev_cap(pdev); 1809 1810 /* Make sure the Device Controller is halted. */ 1811 ret = cdnsp_halt(pdev); 1812 if (ret) 1813 return ret; 1814 1815 /* Reset the internal controller memory state and registers. */ 1816 ret = cdnsp_reset(pdev); 1817 if (ret) 1818 return ret; 1819 1820 /* 1821 * Set dma_mask and coherent_dma_mask to 64-bits, 1822 * if controller supports 64-bit addressing. 1823 */ 1824 if (HCC_64BIT_ADDR(pdev->hcc_params) && 1825 !dma_set_mask(pdev->dev, DMA_BIT_MASK(64))) { 1826 dev_dbg(pdev->dev, "Enabling 64-bit DMA addresses.\n"); 1827 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(64)); 1828 } else { 1829 /* 1830 * This is to avoid error in cases where a 32-bit USB 1831 * controller is used on a 64-bit capable system. 1832 */ 1833 ret = dma_set_mask(pdev->dev, DMA_BIT_MASK(32)); 1834 if (ret) 1835 return ret; 1836 1837 dev_dbg(pdev->dev, "Enabling 32-bit DMA addresses.\n"); 1838 dma_set_coherent_mask(pdev->dev, DMA_BIT_MASK(32)); 1839 } 1840 1841 spin_lock_init(&pdev->lock); 1842 1843 ret = cdnsp_mem_init(pdev); 1844 if (ret) 1845 return ret; 1846 1847 /* 1848 * Software workaround for U1: after transition 1849 * to U1 the controller starts gating clock, and in some cases, 1850 * it causes that controller stack. 1851 */ 1852 reg = readl(&pdev->port3x_regs->mode_2); 1853 reg &= ~CFG_3XPORT_U1_PIPE_CLK_GATE_EN; 1854 writel(reg, &pdev->port3x_regs->mode_2); 1855 1856 return 0; 1857 } 1858 1859 static int __cdnsp_gadget_init(struct cdns *cdns) 1860 { 1861 struct cdnsp_device *pdev; 1862 u32 max_speed; 1863 int ret = -ENOMEM; 1864 1865 cdns_drd_gadget_on(cdns); 1866 1867 pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 1868 if (!pdev) 1869 return -ENOMEM; 1870 1871 pm_runtime_get_sync(cdns->dev); 1872 1873 cdns->gadget_dev = pdev; 1874 pdev->dev = cdns->dev; 1875 pdev->regs = cdns->dev_regs; 1876 max_speed = usb_get_maximum_speed(cdns->dev); 1877 1878 switch (max_speed) { 1879 case USB_SPEED_FULL: 1880 case USB_SPEED_HIGH: 1881 case USB_SPEED_SUPER: 1882 case USB_SPEED_SUPER_PLUS: 1883 break; 1884 default: 1885 dev_err(cdns->dev, "invalid speed parameter %d\n", max_speed); 1886 fallthrough; 1887 case USB_SPEED_UNKNOWN: 1888 /* Default to SSP */ 1889 max_speed = USB_SPEED_SUPER_PLUS; 1890 break; 1891 } 1892 1893 pdev->gadget.ops = &cdnsp_gadget_ops; 1894 pdev->gadget.name = "cdnsp-gadget"; 1895 pdev->gadget.speed = USB_SPEED_UNKNOWN; 1896 pdev->gadget.sg_supported = 1; 1897 pdev->gadget.max_speed = max_speed; 1898 pdev->gadget.lpm_capable = 1; 1899 1900 pdev->setup_buf = kzalloc(CDNSP_EP0_SETUP_SIZE, GFP_KERNEL); 1901 if (!pdev->setup_buf) 1902 goto free_pdev; 1903 1904 /* 1905 * Controller supports not aligned buffer but it should improve 1906 * performance. 1907 */ 1908 pdev->gadget.quirk_ep_out_aligned_size = true; 1909 1910 ret = cdnsp_gen_setup(pdev); 1911 if (ret) { 1912 dev_err(pdev->dev, "Generic initialization failed %d\n", ret); 1913 goto free_setup; 1914 } 1915 1916 ret = cdnsp_gadget_init_endpoints(pdev); 1917 if (ret) { 1918 dev_err(pdev->dev, "failed to initialize endpoints\n"); 1919 goto halt_pdev; 1920 } 1921 1922 ret = usb_add_gadget_udc(pdev->dev, &pdev->gadget); 1923 if (ret) { 1924 dev_err(pdev->dev, "failed to register udc\n"); 1925 goto free_endpoints; 1926 } 1927 1928 ret = devm_request_threaded_irq(pdev->dev, cdns->dev_irq, 1929 cdnsp_irq_handler, 1930 cdnsp_thread_irq_handler, IRQF_SHARED, 1931 dev_name(pdev->dev), pdev); 1932 if (ret) 1933 goto del_gadget; 1934 1935 return 0; 1936 1937 del_gadget: 1938 usb_del_gadget_udc(&pdev->gadget); 1939 free_endpoints: 1940 cdnsp_gadget_free_endpoints(pdev); 1941 halt_pdev: 1942 cdnsp_halt(pdev); 1943 cdnsp_reset(pdev); 1944 cdnsp_mem_cleanup(pdev); 1945 free_setup: 1946 kfree(pdev->setup_buf); 1947 free_pdev: 1948 kfree(pdev); 1949 1950 return ret; 1951 } 1952 1953 static void cdnsp_gadget_exit(struct cdns *cdns) 1954 { 1955 struct cdnsp_device *pdev = cdns->gadget_dev; 1956 1957 devm_free_irq(pdev->dev, cdns->dev_irq, pdev); 1958 pm_runtime_mark_last_busy(cdns->dev); 1959 pm_runtime_put_autosuspend(cdns->dev); 1960 usb_del_gadget_udc(&pdev->gadget); 1961 cdnsp_gadget_free_endpoints(pdev); 1962 cdnsp_mem_cleanup(pdev); 1963 kfree(pdev); 1964 cdns->gadget_dev = NULL; 1965 cdns_drd_gadget_off(cdns); 1966 } 1967 1968 static int cdnsp_gadget_suspend(struct cdns *cdns, bool do_wakeup) 1969 { 1970 struct cdnsp_device *pdev = cdns->gadget_dev; 1971 unsigned long flags; 1972 1973 if (pdev->link_state == XDEV_U3) 1974 return 0; 1975 1976 spin_lock_irqsave(&pdev->lock, flags); 1977 cdnsp_disconnect_gadget(pdev); 1978 cdnsp_stop(pdev); 1979 spin_unlock_irqrestore(&pdev->lock, flags); 1980 1981 return 0; 1982 } 1983 1984 static int cdnsp_gadget_resume(struct cdns *cdns, bool hibernated) 1985 { 1986 struct cdnsp_device *pdev = cdns->gadget_dev; 1987 enum usb_device_speed max_speed; 1988 unsigned long flags; 1989 int ret; 1990 1991 if (!pdev->gadget_driver) 1992 return 0; 1993 1994 spin_lock_irqsave(&pdev->lock, flags); 1995 max_speed = pdev->gadget_driver->max_speed; 1996 1997 /* Limit speed if necessary. */ 1998 max_speed = min(max_speed, pdev->gadget.max_speed); 1999 2000 ret = cdnsp_run(pdev, max_speed); 2001 2002 if (pdev->link_state == XDEV_U3) 2003 __cdnsp_gadget_wakeup(pdev); 2004 2005 spin_unlock_irqrestore(&pdev->lock, flags); 2006 2007 return ret; 2008 } 2009 2010 /** 2011 * cdnsp_gadget_init - initialize device structure 2012 * @cdns: cdnsp instance 2013 * 2014 * This function initializes the gadget. 2015 */ 2016 int cdnsp_gadget_init(struct cdns *cdns) 2017 { 2018 struct cdns_role_driver *rdrv; 2019 2020 rdrv = devm_kzalloc(cdns->dev, sizeof(*rdrv), GFP_KERNEL); 2021 if (!rdrv) 2022 return -ENOMEM; 2023 2024 rdrv->start = __cdnsp_gadget_init; 2025 rdrv->stop = cdnsp_gadget_exit; 2026 rdrv->suspend = cdnsp_gadget_suspend; 2027 rdrv->resume = cdnsp_gadget_resume; 2028 rdrv->state = CDNS_ROLE_STATE_INACTIVE; 2029 rdrv->name = "gadget"; 2030 cdns->roles[USB_ROLE_DEVICE] = rdrv; 2031 2032 return 0; 2033 } 2034