xref: /openbmc/linux/drivers/uio/uio_pruss.c (revision 0edbfea5)
1 /*
2  * Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss)
3  *
4  * This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM,
5  * and DDR RAM to user space for applications interacting with PRUSS firmware
6  *
7  * Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation version 2.
12  *
13  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
14  * kind, whether express or implied; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  */
18 #include <linux/device.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/platform_device.h>
22 #include <linux/uio_driver.h>
23 #include <linux/platform_data/uio_pruss.h>
24 #include <linux/io.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/sizes.h>
28 #include <linux/slab.h>
29 #include <linux/genalloc.h>
30 
31 #define DRV_NAME "pruss_uio"
32 #define DRV_VERSION "1.0"
33 
34 static int sram_pool_sz = SZ_16K;
35 module_param(sram_pool_sz, int, 0);
36 MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate ");
37 
38 static int extram_pool_sz = SZ_256K;
39 module_param(extram_pool_sz, int, 0);
40 MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate");
41 
42 /*
43  * Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt
44  * events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS
45  * firmware and user space application, async notification from PRU firmware
46  * to user space application
47  * 3	PRU_EVTOUT0
48  * 4	PRU_EVTOUT1
49  * 5	PRU_EVTOUT2
50  * 6	PRU_EVTOUT3
51  * 7	PRU_EVTOUT4
52  * 8	PRU_EVTOUT5
53  * 9	PRU_EVTOUT6
54  * 10	PRU_EVTOUT7
55 */
56 #define MAX_PRUSS_EVT	8
57 
58 #define PINTC_HIDISR	0x0038
59 #define PINTC_HIPIR	0x0900
60 #define HIPIR_NOPEND	0x80000000
61 #define PINTC_HIER	0x1500
62 
63 struct uio_pruss_dev {
64 	struct uio_info *info;
65 	struct clk *pruss_clk;
66 	dma_addr_t sram_paddr;
67 	dma_addr_t ddr_paddr;
68 	void __iomem *prussio_vaddr;
69 	unsigned long sram_vaddr;
70 	void *ddr_vaddr;
71 	unsigned int hostirq_start;
72 	unsigned int pintc_base;
73 	struct gen_pool *sram_pool;
74 };
75 
76 static irqreturn_t pruss_handler(int irq, struct uio_info *info)
77 {
78 	struct uio_pruss_dev *gdev = info->priv;
79 	int intr_bit = (irq - gdev->hostirq_start + 2);
80 	int val, intr_mask = (1 << intr_bit);
81 	void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base;
82 	void __iomem *intren_reg = base + PINTC_HIER;
83 	void __iomem *intrdis_reg = base + PINTC_HIDISR;
84 	void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2);
85 
86 	val = ioread32(intren_reg);
87 	/* Is interrupt enabled and active ? */
88 	if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND))
89 		return IRQ_NONE;
90 	/* Disable interrupt */
91 	iowrite32(intr_bit, intrdis_reg);
92 	return IRQ_HANDLED;
93 }
94 
95 static void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev)
96 {
97 	int cnt;
98 	struct uio_info *p = gdev->info;
99 
100 	for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) {
101 		uio_unregister_device(p);
102 		kfree(p->name);
103 	}
104 	iounmap(gdev->prussio_vaddr);
105 	if (gdev->ddr_vaddr) {
106 		dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr,
107 			gdev->ddr_paddr);
108 	}
109 	if (gdev->sram_vaddr)
110 		gen_pool_free(gdev->sram_pool,
111 			      gdev->sram_vaddr,
112 			      sram_pool_sz);
113 	kfree(gdev->info);
114 	clk_put(gdev->pruss_clk);
115 	kfree(gdev);
116 }
117 
118 static int pruss_probe(struct platform_device *pdev)
119 {
120 	struct uio_info *p;
121 	struct uio_pruss_dev *gdev;
122 	struct resource *regs_prussio;
123 	struct device *dev = &pdev->dev;
124 	int ret = -ENODEV, cnt = 0, len;
125 	struct uio_pruss_pdata *pdata = dev_get_platdata(dev);
126 
127 	gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL);
128 	if (!gdev)
129 		return -ENOMEM;
130 
131 	gdev->info = kzalloc(sizeof(*p) * MAX_PRUSS_EVT, GFP_KERNEL);
132 	if (!gdev->info) {
133 		kfree(gdev);
134 		return -ENOMEM;
135 	}
136 
137 	/* Power on PRU in case its not done as part of boot-loader */
138 	gdev->pruss_clk = clk_get(dev, "pruss");
139 	if (IS_ERR(gdev->pruss_clk)) {
140 		dev_err(dev, "Failed to get clock\n");
141 		ret = PTR_ERR(gdev->pruss_clk);
142 		kfree(gdev->info);
143 		kfree(gdev);
144 		return ret;
145 	} else {
146 		clk_enable(gdev->pruss_clk);
147 	}
148 
149 	regs_prussio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
150 	if (!regs_prussio) {
151 		dev_err(dev, "No PRUSS I/O resource specified\n");
152 		goto out_free;
153 	}
154 
155 	if (!regs_prussio->start) {
156 		dev_err(dev, "Invalid memory resource\n");
157 		goto out_free;
158 	}
159 
160 	if (pdata->sram_pool) {
161 		gdev->sram_pool = pdata->sram_pool;
162 		gdev->sram_vaddr =
163 			(unsigned long)gen_pool_dma_alloc(gdev->sram_pool,
164 					sram_pool_sz, &gdev->sram_paddr);
165 		if (!gdev->sram_vaddr) {
166 			dev_err(dev, "Could not allocate SRAM pool\n");
167 			goto out_free;
168 		}
169 	}
170 
171 	gdev->ddr_vaddr = dma_alloc_coherent(dev, extram_pool_sz,
172 				&(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA);
173 	if (!gdev->ddr_vaddr) {
174 		dev_err(dev, "Could not allocate external memory\n");
175 		goto out_free;
176 	}
177 
178 	len = resource_size(regs_prussio);
179 	gdev->prussio_vaddr = ioremap(regs_prussio->start, len);
180 	if (!gdev->prussio_vaddr) {
181 		dev_err(dev, "Can't remap PRUSS I/O  address range\n");
182 		goto out_free;
183 	}
184 
185 	gdev->pintc_base = pdata->pintc_base;
186 	gdev->hostirq_start = platform_get_irq(pdev, 0);
187 
188 	for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) {
189 		p->mem[0].addr = regs_prussio->start;
190 		p->mem[0].size = resource_size(regs_prussio);
191 		p->mem[0].memtype = UIO_MEM_PHYS;
192 
193 		p->mem[1].addr = gdev->sram_paddr;
194 		p->mem[1].size = sram_pool_sz;
195 		p->mem[1].memtype = UIO_MEM_PHYS;
196 
197 		p->mem[2].addr = gdev->ddr_paddr;
198 		p->mem[2].size = extram_pool_sz;
199 		p->mem[2].memtype = UIO_MEM_PHYS;
200 
201 		p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt);
202 		p->version = DRV_VERSION;
203 
204 		/* Register PRUSS IRQ lines */
205 		p->irq = gdev->hostirq_start + cnt;
206 		p->handler = pruss_handler;
207 		p->priv = gdev;
208 
209 		ret = uio_register_device(dev, p);
210 		if (ret < 0)
211 			goto out_free;
212 	}
213 
214 	platform_set_drvdata(pdev, gdev);
215 	return 0;
216 
217 out_free:
218 	pruss_cleanup(dev, gdev);
219 	return ret;
220 }
221 
222 static int pruss_remove(struct platform_device *dev)
223 {
224 	struct uio_pruss_dev *gdev = platform_get_drvdata(dev);
225 
226 	pruss_cleanup(&dev->dev, gdev);
227 	return 0;
228 }
229 
230 static struct platform_driver pruss_driver = {
231 	.probe = pruss_probe,
232 	.remove = pruss_remove,
233 	.driver = {
234 		   .name = DRV_NAME,
235 		   },
236 };
237 
238 module_platform_driver(pruss_driver);
239 
240 MODULE_LICENSE("GPL v2");
241 MODULE_VERSION(DRV_VERSION);
242 MODULE_AUTHOR("Amit Chatterjee <amit.chatterjee@ti.com>");
243 MODULE_AUTHOR("Pratheesh Gangadhar <pratheesh@ti.com>");
244