xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include "ufshcd-priv.h"
29 #include <ufs/ufs_quirks.h>
30 #include <ufs/unipro.h>
31 #include "ufs-sysfs.h"
32 #include "ufs-debugfs.h"
33 #include "ufs-fault-injection.h"
34 #include "ufs_bsg.h"
35 #include "ufshcd-crypto.h"
36 #include "ufshpb.h"
37 #include <asm/unaligned.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/ufs.h>
41 
42 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
43 				 UTP_TASK_REQ_COMPL |\
44 				 UFSHCD_ERROR_MASK)
45 /* UIC command timeout, unit: ms */
46 #define UIC_CMD_TIMEOUT	500
47 
48 /* NOP OUT retries waiting for NOP IN response */
49 #define NOP_OUT_RETRIES    10
50 /* Timeout after 50 msecs if NOP OUT hangs without response */
51 #define NOP_OUT_TIMEOUT    50 /* msecs */
52 
53 /* Query request retries */
54 #define QUERY_REQ_RETRIES 3
55 /* Query request timeout */
56 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
57 
58 /* Task management command timeout */
59 #define TM_CMD_TIMEOUT	100 /* msecs */
60 
61 /* maximum number of retries for a general UIC command  */
62 #define UFS_UIC_COMMAND_RETRIES 3
63 
64 /* maximum number of link-startup retries */
65 #define DME_LINKSTARTUP_RETRIES 3
66 
67 /* Maximum retries for Hibern8 enter */
68 #define UIC_HIBERN8_ENTER_RETRIES 3
69 
70 /* maximum number of reset retries before giving up */
71 #define MAX_HOST_RESET_RETRIES 5
72 
73 /* Maximum number of error handler retries before giving up */
74 #define MAX_ERR_HANDLER_RETRIES 5
75 
76 /* Expose the flag value from utp_upiu_query.value */
77 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
78 
79 /* Interrupt aggregation default timeout, unit: 40us */
80 #define INT_AGGR_DEF_TO	0x02
81 
82 /* default delay of autosuspend: 2000 ms */
83 #define RPM_AUTOSUSPEND_DELAY_MS 2000
84 
85 /* Default delay of RPM device flush delayed work */
86 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
87 
88 /* Default value of wait time before gating device ref clock */
89 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
90 
91 /* Polling time to wait for fDeviceInit */
92 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
93 
94 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
95 	({                                                              \
96 		int _ret;                                               \
97 		if (_on)                                                \
98 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
99 		else                                                    \
100 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
101 		_ret;                                                   \
102 	})
103 
104 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
105 	size_t __len = (len);                                            \
106 	print_hex_dump(KERN_ERR, prefix_str,                             \
107 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
108 		       16, 4, buf, __len, false);                        \
109 } while (0)
110 
111 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
112 		     const char *prefix)
113 {
114 	u32 *regs;
115 	size_t pos;
116 
117 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
118 		return -EINVAL;
119 
120 	regs = kzalloc(len, GFP_ATOMIC);
121 	if (!regs)
122 		return -ENOMEM;
123 
124 	for (pos = 0; pos < len; pos += 4) {
125 		if (offset == 0 &&
126 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
127 		    pos <= REG_UIC_ERROR_CODE_DME)
128 			continue;
129 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
130 	}
131 
132 	ufshcd_hex_dump(prefix, regs, len);
133 	kfree(regs);
134 
135 	return 0;
136 }
137 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
138 
139 enum {
140 	UFSHCD_MAX_CHANNEL	= 0,
141 	UFSHCD_MAX_ID		= 1,
142 	UFSHCD_NUM_RESERVED	= 1,
143 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
144 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
145 };
146 
147 static const char *const ufshcd_state_name[] = {
148 	[UFSHCD_STATE_RESET]			= "reset",
149 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
150 	[UFSHCD_STATE_ERROR]			= "error",
151 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
152 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
153 };
154 
155 /* UFSHCD error handling flags */
156 enum {
157 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
158 };
159 
160 /* UFSHCD UIC layer error flags */
161 enum {
162 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
163 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
164 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
165 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
166 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
167 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
168 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
169 };
170 
171 #define ufshcd_set_eh_in_progress(h) \
172 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
173 #define ufshcd_eh_in_progress(h) \
174 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
175 #define ufshcd_clear_eh_in_progress(h) \
176 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
177 
178 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
179 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
180 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
181 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
182 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
183 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
184 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
185 	/*
186 	 * For DeepSleep, the link is first put in hibern8 and then off.
187 	 * Leaving the link in hibern8 is not supported.
188 	 */
189 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
190 };
191 
192 static inline enum ufs_dev_pwr_mode
193 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
194 {
195 	return ufs_pm_lvl_states[lvl].dev_state;
196 }
197 
198 static inline enum uic_link_state
199 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
200 {
201 	return ufs_pm_lvl_states[lvl].link_state;
202 }
203 
204 static inline enum ufs_pm_level
205 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
206 					enum uic_link_state link_state)
207 {
208 	enum ufs_pm_level lvl;
209 
210 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
211 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
212 			(ufs_pm_lvl_states[lvl].link_state == link_state))
213 			return lvl;
214 	}
215 
216 	/* if no match found, return the level 0 */
217 	return UFS_PM_LVL_0;
218 }
219 
220 static const struct ufs_dev_quirk ufs_fixups[] = {
221 	/* UFS cards deviations table */
222 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
223 	  .model = UFS_ANY_MODEL,
224 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
225 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
226 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
227 	  .model = UFS_ANY_MODEL,
228 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
229 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
230 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
231 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
232 	  .model = UFS_ANY_MODEL,
233 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
234 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
235 	  .model = "hB8aL1" /*H28U62301AMR*/,
236 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
237 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
238 	  .model = UFS_ANY_MODEL,
239 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
240 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
241 	  .model = "THGLF2G9C8KBADG",
242 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
243 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
244 	  .model = "THGLF2G9D8KBADG",
245 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
246 	{}
247 };
248 
249 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
250 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
251 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
252 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
253 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
254 static void ufshcd_hba_exit(struct ufs_hba *hba);
255 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
256 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
257 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
258 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
259 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
260 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
261 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
262 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
263 static irqreturn_t ufshcd_intr(int irq, void *__hba);
264 static int ufshcd_change_power_mode(struct ufs_hba *hba,
265 			     struct ufs_pa_layer_attr *pwr_mode);
266 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
267 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
268 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
269 					 struct ufs_vreg *vreg);
270 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
271 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
272 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
273 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
274 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
275 
276 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
277 {
278 	if (!hba->is_irq_enabled) {
279 		enable_irq(hba->irq);
280 		hba->is_irq_enabled = true;
281 	}
282 }
283 
284 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
285 {
286 	if (hba->is_irq_enabled) {
287 		disable_irq(hba->irq);
288 		hba->is_irq_enabled = false;
289 	}
290 }
291 
292 static inline void ufshcd_wb_config(struct ufs_hba *hba)
293 {
294 	if (!ufshcd_is_wb_allowed(hba))
295 		return;
296 
297 	ufshcd_wb_toggle(hba, true);
298 
299 	ufshcd_wb_toggle_flush_during_h8(hba, true);
300 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
301 		ufshcd_wb_toggle_flush(hba, true);
302 }
303 
304 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
305 {
306 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
307 		scsi_unblock_requests(hba->host);
308 }
309 
310 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
311 {
312 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
313 		scsi_block_requests(hba->host);
314 }
315 
316 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
317 				      enum ufs_trace_str_t str_t)
318 {
319 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
320 	struct utp_upiu_header *header;
321 
322 	if (!trace_ufshcd_upiu_enabled())
323 		return;
324 
325 	if (str_t == UFS_CMD_SEND)
326 		header = &rq->header;
327 	else
328 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
329 
330 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
331 			  UFS_TSF_CDB);
332 }
333 
334 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
335 					enum ufs_trace_str_t str_t,
336 					struct utp_upiu_req *rq_rsp)
337 {
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
342 			  &rq_rsp->qr, UFS_TSF_OSF);
343 }
344 
345 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
346 				     enum ufs_trace_str_t str_t)
347 {
348 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
349 
350 	if (!trace_ufshcd_upiu_enabled())
351 		return;
352 
353 	if (str_t == UFS_TM_SEND)
354 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
355 				  &descp->upiu_req.req_header,
356 				  &descp->upiu_req.input_param1,
357 				  UFS_TSF_TM_INPUT);
358 	else
359 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
360 				  &descp->upiu_rsp.rsp_header,
361 				  &descp->upiu_rsp.output_param1,
362 				  UFS_TSF_TM_OUTPUT);
363 }
364 
365 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
366 					 struct uic_command *ucmd,
367 					 enum ufs_trace_str_t str_t)
368 {
369 	u32 cmd;
370 
371 	if (!trace_ufshcd_uic_command_enabled())
372 		return;
373 
374 	if (str_t == UFS_CMD_SEND)
375 		cmd = ucmd->command;
376 	else
377 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
378 
379 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
380 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
381 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
382 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
383 }
384 
385 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
386 				     enum ufs_trace_str_t str_t)
387 {
388 	u64 lba = 0;
389 	u8 opcode = 0, group_id = 0;
390 	u32 intr, doorbell;
391 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
392 	struct scsi_cmnd *cmd = lrbp->cmd;
393 	struct request *rq = scsi_cmd_to_rq(cmd);
394 	int transfer_len = -1;
395 
396 	if (!cmd)
397 		return;
398 
399 	/* trace UPIU also */
400 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
401 	if (!trace_ufshcd_command_enabled())
402 		return;
403 
404 	opcode = cmd->cmnd[0];
405 
406 	if (opcode == READ_10 || opcode == WRITE_10) {
407 		/*
408 		 * Currently we only fully trace read(10) and write(10) commands
409 		 */
410 		transfer_len =
411 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
412 		lba = scsi_get_lba(cmd);
413 		if (opcode == WRITE_10)
414 			group_id = lrbp->cmd->cmnd[6];
415 	} else if (opcode == UNMAP) {
416 		/*
417 		 * The number of Bytes to be unmapped beginning with the lba.
418 		 */
419 		transfer_len = blk_rq_bytes(rq);
420 		lba = scsi_get_lba(cmd);
421 	}
422 
423 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
424 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
425 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
426 			doorbell, transfer_len, intr, lba, opcode, group_id);
427 }
428 
429 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
430 {
431 	struct ufs_clk_info *clki;
432 	struct list_head *head = &hba->clk_list_head;
433 
434 	if (list_empty(head))
435 		return;
436 
437 	list_for_each_entry(clki, head, list) {
438 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
439 				clki->max_freq)
440 			dev_err(hba->dev, "clk: %s, rate: %u\n",
441 					clki->name, clki->curr_freq);
442 	}
443 }
444 
445 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
446 			     char *err_name)
447 {
448 	int i;
449 	bool found = false;
450 	struct ufs_event_hist *e;
451 
452 	if (id >= UFS_EVT_CNT)
453 		return;
454 
455 	e = &hba->ufs_stats.event[id];
456 
457 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
458 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
459 
460 		if (e->tstamp[p] == 0)
461 			continue;
462 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
463 			e->val[p], ktime_to_us(e->tstamp[p]));
464 		found = true;
465 	}
466 
467 	if (!found)
468 		dev_err(hba->dev, "No record of %s\n", err_name);
469 	else
470 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
471 }
472 
473 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
474 {
475 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
476 
477 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
478 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
479 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
480 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
481 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
482 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
483 			 "auto_hibern8_err");
484 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
485 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
486 			 "link_startup_fail");
487 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
488 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
489 			 "suspend_fail");
490 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
491 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
492 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
493 
494 	ufshcd_vops_dbg_register_dump(hba);
495 }
496 
497 static
498 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
499 {
500 	struct ufshcd_lrb *lrbp;
501 	int prdt_length;
502 	int tag;
503 
504 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
505 		lrbp = &hba->lrb[tag];
506 
507 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
508 				tag, ktime_to_us(lrbp->issue_time_stamp));
509 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
510 				tag, ktime_to_us(lrbp->compl_time_stamp));
511 		dev_err(hba->dev,
512 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
513 			tag, (u64)lrbp->utrd_dma_addr);
514 
515 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
516 				sizeof(struct utp_transfer_req_desc));
517 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
518 			(u64)lrbp->ucd_req_dma_addr);
519 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
520 				sizeof(struct utp_upiu_req));
521 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
522 			(u64)lrbp->ucd_rsp_dma_addr);
523 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
524 				sizeof(struct utp_upiu_rsp));
525 
526 		prdt_length = le16_to_cpu(
527 			lrbp->utr_descriptor_ptr->prd_table_length);
528 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
529 			prdt_length /= sizeof(struct ufshcd_sg_entry);
530 
531 		dev_err(hba->dev,
532 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
533 			tag, prdt_length,
534 			(u64)lrbp->ucd_prdt_dma_addr);
535 
536 		if (pr_prdt)
537 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
538 				sizeof(struct ufshcd_sg_entry) * prdt_length);
539 	}
540 }
541 
542 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
543 {
544 	int tag;
545 
546 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
547 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
548 
549 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
550 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
551 	}
552 }
553 
554 static void ufshcd_print_host_state(struct ufs_hba *hba)
555 {
556 	struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
557 
558 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
559 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
560 		hba->outstanding_reqs, hba->outstanding_tasks);
561 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
562 		hba->saved_err, hba->saved_uic_err);
563 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
564 		hba->curr_dev_pwr_mode, hba->uic_link_state);
565 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
566 		hba->pm_op_in_progress, hba->is_sys_suspended);
567 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
568 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
569 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
570 	dev_err(hba->dev,
571 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
572 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
573 		hba->ufs_stats.hibern8_exit_cnt);
574 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
575 		ktime_to_us(hba->ufs_stats.last_intr_ts),
576 		hba->ufs_stats.last_intr_status);
577 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
578 		hba->eh_flags, hba->req_abort_count);
579 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
580 		hba->ufs_version, hba->capabilities, hba->caps);
581 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
582 		hba->dev_quirks);
583 	if (sdev_ufs)
584 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
585 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
586 
587 	ufshcd_print_clk_freqs(hba);
588 }
589 
590 /**
591  * ufshcd_print_pwr_info - print power params as saved in hba
592  * power info
593  * @hba: per-adapter instance
594  */
595 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
596 {
597 	static const char * const names[] = {
598 		"INVALID MODE",
599 		"FAST MODE",
600 		"SLOW_MODE",
601 		"INVALID MODE",
602 		"FASTAUTO_MODE",
603 		"SLOWAUTO_MODE",
604 		"INVALID MODE",
605 	};
606 
607 	/*
608 	 * Using dev_dbg to avoid messages during runtime PM to avoid
609 	 * never-ending cycles of messages written back to storage by user space
610 	 * causing runtime resume, causing more messages and so on.
611 	 */
612 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
613 		 __func__,
614 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
615 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
616 		 names[hba->pwr_info.pwr_rx],
617 		 names[hba->pwr_info.pwr_tx],
618 		 hba->pwr_info.hs_rate);
619 }
620 
621 static void ufshcd_device_reset(struct ufs_hba *hba)
622 {
623 	int err;
624 
625 	err = ufshcd_vops_device_reset(hba);
626 
627 	if (!err) {
628 		ufshcd_set_ufs_dev_active(hba);
629 		if (ufshcd_is_wb_allowed(hba)) {
630 			hba->dev_info.wb_enabled = false;
631 			hba->dev_info.wb_buf_flush_enabled = false;
632 		}
633 	}
634 	if (err != -EOPNOTSUPP)
635 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
636 }
637 
638 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
639 {
640 	if (!us)
641 		return;
642 
643 	if (us < 10)
644 		udelay(us);
645 	else
646 		usleep_range(us, us + tolerance);
647 }
648 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
649 
650 /**
651  * ufshcd_wait_for_register - wait for register value to change
652  * @hba: per-adapter interface
653  * @reg: mmio register offset
654  * @mask: mask to apply to the read register value
655  * @val: value to wait for
656  * @interval_us: polling interval in microseconds
657  * @timeout_ms: timeout in milliseconds
658  *
659  * Return:
660  * -ETIMEDOUT on error, zero on success.
661  */
662 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
663 				u32 val, unsigned long interval_us,
664 				unsigned long timeout_ms)
665 {
666 	int err = 0;
667 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
668 
669 	/* ignore bits that we don't intend to wait on */
670 	val = val & mask;
671 
672 	while ((ufshcd_readl(hba, reg) & mask) != val) {
673 		usleep_range(interval_us, interval_us + 50);
674 		if (time_after(jiffies, timeout)) {
675 			if ((ufshcd_readl(hba, reg) & mask) != val)
676 				err = -ETIMEDOUT;
677 			break;
678 		}
679 	}
680 
681 	return err;
682 }
683 
684 /**
685  * ufshcd_get_intr_mask - Get the interrupt bit mask
686  * @hba: Pointer to adapter instance
687  *
688  * Returns interrupt bit mask per version
689  */
690 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
691 {
692 	if (hba->ufs_version == ufshci_version(1, 0))
693 		return INTERRUPT_MASK_ALL_VER_10;
694 	if (hba->ufs_version <= ufshci_version(2, 0))
695 		return INTERRUPT_MASK_ALL_VER_11;
696 
697 	return INTERRUPT_MASK_ALL_VER_21;
698 }
699 
700 /**
701  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
702  * @hba: Pointer to adapter instance
703  *
704  * Returns UFSHCI version supported by the controller
705  */
706 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
707 {
708 	u32 ufshci_ver;
709 
710 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
711 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
712 	else
713 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
714 
715 	/*
716 	 * UFSHCI v1.x uses a different version scheme, in order
717 	 * to allow the use of comparisons with the ufshci_version
718 	 * function, we convert it to the same scheme as ufs 2.0+.
719 	 */
720 	if (ufshci_ver & 0x00010000)
721 		return ufshci_version(1, ufshci_ver & 0x00000100);
722 
723 	return ufshci_ver;
724 }
725 
726 /**
727  * ufshcd_is_device_present - Check if any device connected to
728  *			      the host controller
729  * @hba: pointer to adapter instance
730  *
731  * Returns true if device present, false if no device detected
732  */
733 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
734 {
735 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
736 }
737 
738 /**
739  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
740  * @lrbp: pointer to local command reference block
741  *
742  * This function is used to get the OCS field from UTRD
743  * Returns the OCS field in the UTRD
744  */
745 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
746 {
747 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
748 }
749 
750 /**
751  * ufshcd_utrl_clear() - Clear requests from the controller request list.
752  * @hba: per adapter instance
753  * @mask: mask with one bit set for each request to be cleared
754  */
755 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
756 {
757 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
758 		mask = ~mask;
759 	/*
760 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
761 	 * Register (UTRLCLR): This field is bit significant. Each bit
762 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
763 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
764 	 * by host software to indicate to the host controller that a transfer
765 	 * request slot is cleared. The host controller
766 	 * shall free up any resources associated to the request slot
767 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
768 	 * host software indicates no change to request slots by setting the
769 	 * associated bits in this field to ‘1’. Bits in this field shall only
770 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
771 	 */
772 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
773 }
774 
775 /**
776  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
777  * @hba: per adapter instance
778  * @pos: position of the bit to be cleared
779  */
780 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
781 {
782 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
783 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
784 	else
785 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
786 }
787 
788 /**
789  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
790  * @reg: Register value of host controller status
791  *
792  * Returns integer, 0 on Success and positive value if failed
793  */
794 static inline int ufshcd_get_lists_status(u32 reg)
795 {
796 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
797 }
798 
799 /**
800  * ufshcd_get_uic_cmd_result - Get the UIC command result
801  * @hba: Pointer to adapter instance
802  *
803  * This function gets the result of UIC command completion
804  * Returns 0 on success, non zero value on error
805  */
806 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
807 {
808 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
809 	       MASK_UIC_COMMAND_RESULT;
810 }
811 
812 /**
813  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
814  * @hba: Pointer to adapter instance
815  *
816  * This function gets UIC command argument3
817  * Returns 0 on success, non zero value on error
818  */
819 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
820 {
821 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
822 }
823 
824 /**
825  * ufshcd_get_req_rsp - returns the TR response transaction type
826  * @ucd_rsp_ptr: pointer to response UPIU
827  */
828 static inline int
829 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
830 {
831 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
832 }
833 
834 /**
835  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
836  * @ucd_rsp_ptr: pointer to response UPIU
837  *
838  * This function gets the response status and scsi_status from response UPIU
839  * Returns the response result code.
840  */
841 static inline int
842 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
843 {
844 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
845 }
846 
847 /*
848  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
849  *				from response UPIU
850  * @ucd_rsp_ptr: pointer to response UPIU
851  *
852  * Return the data segment length.
853  */
854 static inline unsigned int
855 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
856 {
857 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
858 		MASK_RSP_UPIU_DATA_SEG_LEN;
859 }
860 
861 /**
862  * ufshcd_is_exception_event - Check if the device raised an exception event
863  * @ucd_rsp_ptr: pointer to response UPIU
864  *
865  * The function checks if the device raised an exception event indicated in
866  * the Device Information field of response UPIU.
867  *
868  * Returns true if exception is raised, false otherwise.
869  */
870 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
871 {
872 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
873 			MASK_RSP_EXCEPTION_EVENT;
874 }
875 
876 /**
877  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
878  * @hba: per adapter instance
879  */
880 static inline void
881 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
882 {
883 	ufshcd_writel(hba, INT_AGGR_ENABLE |
884 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
885 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
886 }
887 
888 /**
889  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
890  * @hba: per adapter instance
891  * @cnt: Interrupt aggregation counter threshold
892  * @tmout: Interrupt aggregation timeout value
893  */
894 static inline void
895 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
896 {
897 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
898 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
899 		      INT_AGGR_TIMEOUT_VAL(tmout),
900 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
901 }
902 
903 /**
904  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
905  * @hba: per adapter instance
906  */
907 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
908 {
909 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
910 }
911 
912 /**
913  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
914  *			When run-stop registers are set to 1, it indicates the
915  *			host controller that it can process the requests
916  * @hba: per adapter instance
917  */
918 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
919 {
920 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
921 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
922 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
923 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
924 }
925 
926 /**
927  * ufshcd_hba_start - Start controller initialization sequence
928  * @hba: per adapter instance
929  */
930 static inline void ufshcd_hba_start(struct ufs_hba *hba)
931 {
932 	u32 val = CONTROLLER_ENABLE;
933 
934 	if (ufshcd_crypto_enable(hba))
935 		val |= CRYPTO_GENERAL_ENABLE;
936 
937 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
938 }
939 
940 /**
941  * ufshcd_is_hba_active - Get controller state
942  * @hba: per adapter instance
943  *
944  * Returns true if and only if the controller is active.
945  */
946 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
947 {
948 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
949 }
950 
951 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
952 {
953 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
954 	if (hba->ufs_version <= ufshci_version(1, 1))
955 		return UFS_UNIPRO_VER_1_41;
956 	else
957 		return UFS_UNIPRO_VER_1_6;
958 }
959 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
960 
961 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
962 {
963 	/*
964 	 * If both host and device support UniPro ver1.6 or later, PA layer
965 	 * parameters tuning happens during link startup itself.
966 	 *
967 	 * We can manually tune PA layer parameters if either host or device
968 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
969 	 * logic simple, we will only do manual tuning if local unipro version
970 	 * doesn't support ver1.6 or later.
971 	 */
972 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
973 }
974 
975 /**
976  * ufshcd_set_clk_freq - set UFS controller clock frequencies
977  * @hba: per adapter instance
978  * @scale_up: If True, set max possible frequency othewise set low frequency
979  *
980  * Returns 0 if successful
981  * Returns < 0 for any other errors
982  */
983 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
984 {
985 	int ret = 0;
986 	struct ufs_clk_info *clki;
987 	struct list_head *head = &hba->clk_list_head;
988 
989 	if (list_empty(head))
990 		goto out;
991 
992 	list_for_each_entry(clki, head, list) {
993 		if (!IS_ERR_OR_NULL(clki->clk)) {
994 			if (scale_up && clki->max_freq) {
995 				if (clki->curr_freq == clki->max_freq)
996 					continue;
997 
998 				ret = clk_set_rate(clki->clk, clki->max_freq);
999 				if (ret) {
1000 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1001 						__func__, clki->name,
1002 						clki->max_freq, ret);
1003 					break;
1004 				}
1005 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1006 						"scaled up", clki->name,
1007 						clki->curr_freq,
1008 						clki->max_freq);
1009 
1010 				clki->curr_freq = clki->max_freq;
1011 
1012 			} else if (!scale_up && clki->min_freq) {
1013 				if (clki->curr_freq == clki->min_freq)
1014 					continue;
1015 
1016 				ret = clk_set_rate(clki->clk, clki->min_freq);
1017 				if (ret) {
1018 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1019 						__func__, clki->name,
1020 						clki->min_freq, ret);
1021 					break;
1022 				}
1023 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1024 						"scaled down", clki->name,
1025 						clki->curr_freq,
1026 						clki->min_freq);
1027 				clki->curr_freq = clki->min_freq;
1028 			}
1029 		}
1030 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1031 				clki->name, clk_get_rate(clki->clk));
1032 	}
1033 
1034 out:
1035 	return ret;
1036 }
1037 
1038 /**
1039  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1040  * @hba: per adapter instance
1041  * @scale_up: True if scaling up and false if scaling down
1042  *
1043  * Returns 0 if successful
1044  * Returns < 0 for any other errors
1045  */
1046 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1047 {
1048 	int ret = 0;
1049 	ktime_t start = ktime_get();
1050 
1051 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1052 	if (ret)
1053 		goto out;
1054 
1055 	ret = ufshcd_set_clk_freq(hba, scale_up);
1056 	if (ret)
1057 		goto out;
1058 
1059 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1060 	if (ret)
1061 		ufshcd_set_clk_freq(hba, !scale_up);
1062 
1063 out:
1064 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1065 			(scale_up ? "up" : "down"),
1066 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1067 	return ret;
1068 }
1069 
1070 /**
1071  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1072  * @hba: per adapter instance
1073  * @scale_up: True if scaling up and false if scaling down
1074  *
1075  * Returns true if scaling is required, false otherwise.
1076  */
1077 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1078 					       bool scale_up)
1079 {
1080 	struct ufs_clk_info *clki;
1081 	struct list_head *head = &hba->clk_list_head;
1082 
1083 	if (list_empty(head))
1084 		return false;
1085 
1086 	list_for_each_entry(clki, head, list) {
1087 		if (!IS_ERR_OR_NULL(clki->clk)) {
1088 			if (scale_up && clki->max_freq) {
1089 				if (clki->curr_freq == clki->max_freq)
1090 					continue;
1091 				return true;
1092 			} else if (!scale_up && clki->min_freq) {
1093 				if (clki->curr_freq == clki->min_freq)
1094 					continue;
1095 				return true;
1096 			}
1097 		}
1098 	}
1099 
1100 	return false;
1101 }
1102 
1103 /*
1104  * Determine the number of pending commands by counting the bits in the SCSI
1105  * device budget maps. This approach has been selected because a bit is set in
1106  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1107  * flag. The host_self_blocked flag can be modified by calling
1108  * scsi_block_requests() or scsi_unblock_requests().
1109  */
1110 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1111 {
1112 	struct scsi_device *sdev;
1113 	u32 pending = 0;
1114 
1115 	lockdep_assert_held(hba->host->host_lock);
1116 	__shost_for_each_device(sdev, hba->host)
1117 		pending += sbitmap_weight(&sdev->budget_map);
1118 
1119 	return pending;
1120 }
1121 
1122 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1123 					u64 wait_timeout_us)
1124 {
1125 	unsigned long flags;
1126 	int ret = 0;
1127 	u32 tm_doorbell;
1128 	u32 tr_pending;
1129 	bool timeout = false, do_last_check = false;
1130 	ktime_t start;
1131 
1132 	ufshcd_hold(hba, false);
1133 	spin_lock_irqsave(hba->host->host_lock, flags);
1134 	/*
1135 	 * Wait for all the outstanding tasks/transfer requests.
1136 	 * Verify by checking the doorbell registers are clear.
1137 	 */
1138 	start = ktime_get();
1139 	do {
1140 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1141 			ret = -EBUSY;
1142 			goto out;
1143 		}
1144 
1145 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1146 		tr_pending = ufshcd_pending_cmds(hba);
1147 		if (!tm_doorbell && !tr_pending) {
1148 			timeout = false;
1149 			break;
1150 		} else if (do_last_check) {
1151 			break;
1152 		}
1153 
1154 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1155 		schedule();
1156 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1157 		    wait_timeout_us) {
1158 			timeout = true;
1159 			/*
1160 			 * We might have scheduled out for long time so make
1161 			 * sure to check if doorbells are cleared by this time
1162 			 * or not.
1163 			 */
1164 			do_last_check = true;
1165 		}
1166 		spin_lock_irqsave(hba->host->host_lock, flags);
1167 	} while (tm_doorbell || tr_pending);
1168 
1169 	if (timeout) {
1170 		dev_err(hba->dev,
1171 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1172 			__func__, tm_doorbell, tr_pending);
1173 		ret = -EBUSY;
1174 	}
1175 out:
1176 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1177 	ufshcd_release(hba);
1178 	return ret;
1179 }
1180 
1181 /**
1182  * ufshcd_scale_gear - scale up/down UFS gear
1183  * @hba: per adapter instance
1184  * @scale_up: True for scaling up gear and false for scaling down
1185  *
1186  * Returns 0 for success,
1187  * Returns -EBUSY if scaling can't happen at this time
1188  * Returns non-zero for any other errors
1189  */
1190 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1191 {
1192 	int ret = 0;
1193 	struct ufs_pa_layer_attr new_pwr_info;
1194 
1195 	if (scale_up) {
1196 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1197 		       sizeof(struct ufs_pa_layer_attr));
1198 	} else {
1199 		memcpy(&new_pwr_info, &hba->pwr_info,
1200 		       sizeof(struct ufs_pa_layer_attr));
1201 
1202 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1203 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1204 			/* save the current power mode */
1205 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1206 				&hba->pwr_info,
1207 				sizeof(struct ufs_pa_layer_attr));
1208 
1209 			/* scale down gear */
1210 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1211 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1212 		}
1213 	}
1214 
1215 	/* check if the power mode needs to be changed or not? */
1216 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1217 	if (ret)
1218 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1219 			__func__, ret,
1220 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1221 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1222 
1223 	return ret;
1224 }
1225 
1226 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1227 {
1228 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1229 	int ret = 0;
1230 	/*
1231 	 * make sure that there are no outstanding requests when
1232 	 * clock scaling is in progress
1233 	 */
1234 	ufshcd_scsi_block_requests(hba);
1235 	down_write(&hba->clk_scaling_lock);
1236 
1237 	if (!hba->clk_scaling.is_allowed ||
1238 	    ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1239 		ret = -EBUSY;
1240 		up_write(&hba->clk_scaling_lock);
1241 		ufshcd_scsi_unblock_requests(hba);
1242 		goto out;
1243 	}
1244 
1245 	/* let's not get into low power until clock scaling is completed */
1246 	ufshcd_hold(hba, false);
1247 
1248 out:
1249 	return ret;
1250 }
1251 
1252 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1253 {
1254 	if (writelock)
1255 		up_write(&hba->clk_scaling_lock);
1256 	else
1257 		up_read(&hba->clk_scaling_lock);
1258 	ufshcd_scsi_unblock_requests(hba);
1259 	ufshcd_release(hba);
1260 }
1261 
1262 /**
1263  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1264  * @hba: per adapter instance
1265  * @scale_up: True for scaling up and false for scalin down
1266  *
1267  * Returns 0 for success,
1268  * Returns -EBUSY if scaling can't happen at this time
1269  * Returns non-zero for any other errors
1270  */
1271 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1272 {
1273 	int ret = 0;
1274 	bool is_writelock = true;
1275 
1276 	ret = ufshcd_clock_scaling_prepare(hba);
1277 	if (ret)
1278 		return ret;
1279 
1280 	/* scale down the gear before scaling down clocks */
1281 	if (!scale_up) {
1282 		ret = ufshcd_scale_gear(hba, false);
1283 		if (ret)
1284 			goto out_unprepare;
1285 	}
1286 
1287 	ret = ufshcd_scale_clks(hba, scale_up);
1288 	if (ret) {
1289 		if (!scale_up)
1290 			ufshcd_scale_gear(hba, true);
1291 		goto out_unprepare;
1292 	}
1293 
1294 	/* scale up the gear after scaling up clocks */
1295 	if (scale_up) {
1296 		ret = ufshcd_scale_gear(hba, true);
1297 		if (ret) {
1298 			ufshcd_scale_clks(hba, false);
1299 			goto out_unprepare;
1300 		}
1301 	}
1302 
1303 	/* Enable Write Booster if we have scaled up else disable it */
1304 	downgrade_write(&hba->clk_scaling_lock);
1305 	is_writelock = false;
1306 	ufshcd_wb_toggle(hba, scale_up);
1307 
1308 out_unprepare:
1309 	ufshcd_clock_scaling_unprepare(hba, is_writelock);
1310 	return ret;
1311 }
1312 
1313 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1314 {
1315 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1316 					   clk_scaling.suspend_work);
1317 	unsigned long irq_flags;
1318 
1319 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1320 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1321 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1322 		return;
1323 	}
1324 	hba->clk_scaling.is_suspended = true;
1325 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1326 
1327 	__ufshcd_suspend_clkscaling(hba);
1328 }
1329 
1330 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1331 {
1332 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1333 					   clk_scaling.resume_work);
1334 	unsigned long irq_flags;
1335 
1336 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1337 	if (!hba->clk_scaling.is_suspended) {
1338 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1339 		return;
1340 	}
1341 	hba->clk_scaling.is_suspended = false;
1342 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1343 
1344 	devfreq_resume_device(hba->devfreq);
1345 }
1346 
1347 static int ufshcd_devfreq_target(struct device *dev,
1348 				unsigned long *freq, u32 flags)
1349 {
1350 	int ret = 0;
1351 	struct ufs_hba *hba = dev_get_drvdata(dev);
1352 	ktime_t start;
1353 	bool scale_up, sched_clk_scaling_suspend_work = false;
1354 	struct list_head *clk_list = &hba->clk_list_head;
1355 	struct ufs_clk_info *clki;
1356 	unsigned long irq_flags;
1357 
1358 	if (!ufshcd_is_clkscaling_supported(hba))
1359 		return -EINVAL;
1360 
1361 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1362 	/* Override with the closest supported frequency */
1363 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1364 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1365 	if (ufshcd_eh_in_progress(hba)) {
1366 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1367 		return 0;
1368 	}
1369 
1370 	if (!hba->clk_scaling.active_reqs)
1371 		sched_clk_scaling_suspend_work = true;
1372 
1373 	if (list_empty(clk_list)) {
1374 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1375 		goto out;
1376 	}
1377 
1378 	/* Decide based on the rounded-off frequency and update */
1379 	scale_up = *freq == clki->max_freq;
1380 	if (!scale_up)
1381 		*freq = clki->min_freq;
1382 	/* Update the frequency */
1383 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1384 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1385 		ret = 0;
1386 		goto out; /* no state change required */
1387 	}
1388 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1389 
1390 	start = ktime_get();
1391 	ret = ufshcd_devfreq_scale(hba, scale_up);
1392 
1393 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1394 		(scale_up ? "up" : "down"),
1395 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1396 
1397 out:
1398 	if (sched_clk_scaling_suspend_work)
1399 		queue_work(hba->clk_scaling.workq,
1400 			   &hba->clk_scaling.suspend_work);
1401 
1402 	return ret;
1403 }
1404 
1405 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1406 		struct devfreq_dev_status *stat)
1407 {
1408 	struct ufs_hba *hba = dev_get_drvdata(dev);
1409 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1410 	unsigned long flags;
1411 	struct list_head *clk_list = &hba->clk_list_head;
1412 	struct ufs_clk_info *clki;
1413 	ktime_t curr_t;
1414 
1415 	if (!ufshcd_is_clkscaling_supported(hba))
1416 		return -EINVAL;
1417 
1418 	memset(stat, 0, sizeof(*stat));
1419 
1420 	spin_lock_irqsave(hba->host->host_lock, flags);
1421 	curr_t = ktime_get();
1422 	if (!scaling->window_start_t)
1423 		goto start_window;
1424 
1425 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1426 	/*
1427 	 * If current frequency is 0, then the ondemand governor considers
1428 	 * there's no initial frequency set. And it always requests to set
1429 	 * to max. frequency.
1430 	 */
1431 	stat->current_frequency = clki->curr_freq;
1432 	if (scaling->is_busy_started)
1433 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1434 				scaling->busy_start_t);
1435 
1436 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1437 	stat->busy_time = scaling->tot_busy_t;
1438 start_window:
1439 	scaling->window_start_t = curr_t;
1440 	scaling->tot_busy_t = 0;
1441 
1442 	if (hba->outstanding_reqs) {
1443 		scaling->busy_start_t = curr_t;
1444 		scaling->is_busy_started = true;
1445 	} else {
1446 		scaling->busy_start_t = 0;
1447 		scaling->is_busy_started = false;
1448 	}
1449 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1450 	return 0;
1451 }
1452 
1453 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1454 {
1455 	struct list_head *clk_list = &hba->clk_list_head;
1456 	struct ufs_clk_info *clki;
1457 	struct devfreq *devfreq;
1458 	int ret;
1459 
1460 	/* Skip devfreq if we don't have any clocks in the list */
1461 	if (list_empty(clk_list))
1462 		return 0;
1463 
1464 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1465 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1466 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1467 
1468 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1469 					 &hba->vps->ondemand_data);
1470 	devfreq = devfreq_add_device(hba->dev,
1471 			&hba->vps->devfreq_profile,
1472 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1473 			&hba->vps->ondemand_data);
1474 	if (IS_ERR(devfreq)) {
1475 		ret = PTR_ERR(devfreq);
1476 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1477 
1478 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1479 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1480 		return ret;
1481 	}
1482 
1483 	hba->devfreq = devfreq;
1484 
1485 	return 0;
1486 }
1487 
1488 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 
1493 	if (!hba->devfreq)
1494 		return;
1495 
1496 	devfreq_remove_device(hba->devfreq);
1497 	hba->devfreq = NULL;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1501 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1502 }
1503 
1504 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1505 {
1506 	unsigned long flags;
1507 
1508 	devfreq_suspend_device(hba->devfreq);
1509 	spin_lock_irqsave(hba->host->host_lock, flags);
1510 	hba->clk_scaling.window_start_t = 0;
1511 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1512 }
1513 
1514 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1515 {
1516 	unsigned long flags;
1517 	bool suspend = false;
1518 
1519 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1520 	cancel_work_sync(&hba->clk_scaling.resume_work);
1521 
1522 	spin_lock_irqsave(hba->host->host_lock, flags);
1523 	if (!hba->clk_scaling.is_suspended) {
1524 		suspend = true;
1525 		hba->clk_scaling.is_suspended = true;
1526 	}
1527 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1528 
1529 	if (suspend)
1530 		__ufshcd_suspend_clkscaling(hba);
1531 }
1532 
1533 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1534 {
1535 	unsigned long flags;
1536 	bool resume = false;
1537 
1538 	spin_lock_irqsave(hba->host->host_lock, flags);
1539 	if (hba->clk_scaling.is_suspended) {
1540 		resume = true;
1541 		hba->clk_scaling.is_suspended = false;
1542 	}
1543 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1544 
1545 	if (resume)
1546 		devfreq_resume_device(hba->devfreq);
1547 }
1548 
1549 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1550 		struct device_attribute *attr, char *buf)
1551 {
1552 	struct ufs_hba *hba = dev_get_drvdata(dev);
1553 
1554 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1555 }
1556 
1557 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1558 		struct device_attribute *attr, const char *buf, size_t count)
1559 {
1560 	struct ufs_hba *hba = dev_get_drvdata(dev);
1561 	u32 value;
1562 	int err = 0;
1563 
1564 	if (kstrtou32(buf, 0, &value))
1565 		return -EINVAL;
1566 
1567 	down(&hba->host_sem);
1568 	if (!ufshcd_is_user_access_allowed(hba)) {
1569 		err = -EBUSY;
1570 		goto out;
1571 	}
1572 
1573 	value = !!value;
1574 	if (value == hba->clk_scaling.is_enabled)
1575 		goto out;
1576 
1577 	ufshcd_rpm_get_sync(hba);
1578 	ufshcd_hold(hba, false);
1579 
1580 	hba->clk_scaling.is_enabled = value;
1581 
1582 	if (value) {
1583 		ufshcd_resume_clkscaling(hba);
1584 	} else {
1585 		ufshcd_suspend_clkscaling(hba);
1586 		err = ufshcd_devfreq_scale(hba, true);
1587 		if (err)
1588 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1589 					__func__, err);
1590 	}
1591 
1592 	ufshcd_release(hba);
1593 	ufshcd_rpm_put_sync(hba);
1594 out:
1595 	up(&hba->host_sem);
1596 	return err ? err : count;
1597 }
1598 
1599 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1600 {
1601 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1602 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1603 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1604 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1605 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1606 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1607 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1608 }
1609 
1610 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1611 {
1612 	if (hba->clk_scaling.enable_attr.attr.name)
1613 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1614 }
1615 
1616 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1617 {
1618 	char wq_name[sizeof("ufs_clkscaling_00")];
1619 
1620 	if (!ufshcd_is_clkscaling_supported(hba))
1621 		return;
1622 
1623 	if (!hba->clk_scaling.min_gear)
1624 		hba->clk_scaling.min_gear = UFS_HS_G1;
1625 
1626 	INIT_WORK(&hba->clk_scaling.suspend_work,
1627 		  ufshcd_clk_scaling_suspend_work);
1628 	INIT_WORK(&hba->clk_scaling.resume_work,
1629 		  ufshcd_clk_scaling_resume_work);
1630 
1631 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1632 		 hba->host->host_no);
1633 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1634 
1635 	hba->clk_scaling.is_initialized = true;
1636 }
1637 
1638 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1639 {
1640 	if (!hba->clk_scaling.is_initialized)
1641 		return;
1642 
1643 	ufshcd_remove_clk_scaling_sysfs(hba);
1644 	destroy_workqueue(hba->clk_scaling.workq);
1645 	ufshcd_devfreq_remove(hba);
1646 	hba->clk_scaling.is_initialized = false;
1647 }
1648 
1649 static void ufshcd_ungate_work(struct work_struct *work)
1650 {
1651 	int ret;
1652 	unsigned long flags;
1653 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1654 			clk_gating.ungate_work);
1655 
1656 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1657 
1658 	spin_lock_irqsave(hba->host->host_lock, flags);
1659 	if (hba->clk_gating.state == CLKS_ON) {
1660 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1661 		goto unblock_reqs;
1662 	}
1663 
1664 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1665 	ufshcd_hba_vreg_set_hpm(hba);
1666 	ufshcd_setup_clocks(hba, true);
1667 
1668 	ufshcd_enable_irq(hba);
1669 
1670 	/* Exit from hibern8 */
1671 	if (ufshcd_can_hibern8_during_gating(hba)) {
1672 		/* Prevent gating in this path */
1673 		hba->clk_gating.is_suspended = true;
1674 		if (ufshcd_is_link_hibern8(hba)) {
1675 			ret = ufshcd_uic_hibern8_exit(hba);
1676 			if (ret)
1677 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1678 					__func__, ret);
1679 			else
1680 				ufshcd_set_link_active(hba);
1681 		}
1682 		hba->clk_gating.is_suspended = false;
1683 	}
1684 unblock_reqs:
1685 	ufshcd_scsi_unblock_requests(hba);
1686 }
1687 
1688 /**
1689  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1690  * Also, exit from hibern8 mode and set the link as active.
1691  * @hba: per adapter instance
1692  * @async: This indicates whether caller should ungate clocks asynchronously.
1693  */
1694 int ufshcd_hold(struct ufs_hba *hba, bool async)
1695 {
1696 	int rc = 0;
1697 	bool flush_result;
1698 	unsigned long flags;
1699 
1700 	if (!ufshcd_is_clkgating_allowed(hba) ||
1701 	    !hba->clk_gating.is_initialized)
1702 		goto out;
1703 	spin_lock_irqsave(hba->host->host_lock, flags);
1704 	hba->clk_gating.active_reqs++;
1705 
1706 start:
1707 	switch (hba->clk_gating.state) {
1708 	case CLKS_ON:
1709 		/*
1710 		 * Wait for the ungate work to complete if in progress.
1711 		 * Though the clocks may be in ON state, the link could
1712 		 * still be in hibner8 state if hibern8 is allowed
1713 		 * during clock gating.
1714 		 * Make sure we exit hibern8 state also in addition to
1715 		 * clocks being ON.
1716 		 */
1717 		if (ufshcd_can_hibern8_during_gating(hba) &&
1718 		    ufshcd_is_link_hibern8(hba)) {
1719 			if (async) {
1720 				rc = -EAGAIN;
1721 				hba->clk_gating.active_reqs--;
1722 				break;
1723 			}
1724 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1725 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1726 			if (hba->clk_gating.is_suspended && !flush_result)
1727 				goto out;
1728 			spin_lock_irqsave(hba->host->host_lock, flags);
1729 			goto start;
1730 		}
1731 		break;
1732 	case REQ_CLKS_OFF:
1733 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1734 			hba->clk_gating.state = CLKS_ON;
1735 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1736 						hba->clk_gating.state);
1737 			break;
1738 		}
1739 		/*
1740 		 * If we are here, it means gating work is either done or
1741 		 * currently running. Hence, fall through to cancel gating
1742 		 * work and to enable clocks.
1743 		 */
1744 		fallthrough;
1745 	case CLKS_OFF:
1746 		hba->clk_gating.state = REQ_CLKS_ON;
1747 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1748 					hba->clk_gating.state);
1749 		if (queue_work(hba->clk_gating.clk_gating_workq,
1750 			       &hba->clk_gating.ungate_work))
1751 			ufshcd_scsi_block_requests(hba);
1752 		/*
1753 		 * fall through to check if we should wait for this
1754 		 * work to be done or not.
1755 		 */
1756 		fallthrough;
1757 	case REQ_CLKS_ON:
1758 		if (async) {
1759 			rc = -EAGAIN;
1760 			hba->clk_gating.active_reqs--;
1761 			break;
1762 		}
1763 
1764 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1765 		flush_work(&hba->clk_gating.ungate_work);
1766 		/* Make sure state is CLKS_ON before returning */
1767 		spin_lock_irqsave(hba->host->host_lock, flags);
1768 		goto start;
1769 	default:
1770 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1771 				__func__, hba->clk_gating.state);
1772 		break;
1773 	}
1774 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1775 out:
1776 	return rc;
1777 }
1778 EXPORT_SYMBOL_GPL(ufshcd_hold);
1779 
1780 static void ufshcd_gate_work(struct work_struct *work)
1781 {
1782 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1783 			clk_gating.gate_work.work);
1784 	unsigned long flags;
1785 	int ret;
1786 
1787 	spin_lock_irqsave(hba->host->host_lock, flags);
1788 	/*
1789 	 * In case you are here to cancel this work the gating state
1790 	 * would be marked as REQ_CLKS_ON. In this case save time by
1791 	 * skipping the gating work and exit after changing the clock
1792 	 * state to CLKS_ON.
1793 	 */
1794 	if (hba->clk_gating.is_suspended ||
1795 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1796 		hba->clk_gating.state = CLKS_ON;
1797 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1798 					hba->clk_gating.state);
1799 		goto rel_lock;
1800 	}
1801 
1802 	if (hba->clk_gating.active_reqs
1803 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1804 		|| hba->outstanding_reqs || hba->outstanding_tasks
1805 		|| hba->active_uic_cmd || hba->uic_async_done)
1806 		goto rel_lock;
1807 
1808 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1809 
1810 	/* put the link into hibern8 mode before turning off clocks */
1811 	if (ufshcd_can_hibern8_during_gating(hba)) {
1812 		ret = ufshcd_uic_hibern8_enter(hba);
1813 		if (ret) {
1814 			hba->clk_gating.state = CLKS_ON;
1815 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1816 					__func__, ret);
1817 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1818 						hba->clk_gating.state);
1819 			goto out;
1820 		}
1821 		ufshcd_set_link_hibern8(hba);
1822 	}
1823 
1824 	ufshcd_disable_irq(hba);
1825 
1826 	ufshcd_setup_clocks(hba, false);
1827 
1828 	/* Put the host controller in low power mode if possible */
1829 	ufshcd_hba_vreg_set_lpm(hba);
1830 	/*
1831 	 * In case you are here to cancel this work the gating state
1832 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1833 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1834 	 * and a request to turn them on is pending. By doing this way,
1835 	 * we keep the state machine in tact and this would ultimately
1836 	 * prevent from doing cancel work multiple times when there are
1837 	 * new requests arriving before the current cancel work is done.
1838 	 */
1839 	spin_lock_irqsave(hba->host->host_lock, flags);
1840 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1841 		hba->clk_gating.state = CLKS_OFF;
1842 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1843 					hba->clk_gating.state);
1844 	}
1845 rel_lock:
1846 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1847 out:
1848 	return;
1849 }
1850 
1851 /* host lock must be held before calling this variant */
1852 static void __ufshcd_release(struct ufs_hba *hba)
1853 {
1854 	if (!ufshcd_is_clkgating_allowed(hba))
1855 		return;
1856 
1857 	hba->clk_gating.active_reqs--;
1858 
1859 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1860 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1861 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1862 	    hba->active_uic_cmd || hba->uic_async_done ||
1863 	    hba->clk_gating.state == CLKS_OFF)
1864 		return;
1865 
1866 	hba->clk_gating.state = REQ_CLKS_OFF;
1867 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1868 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1869 			   &hba->clk_gating.gate_work,
1870 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1871 }
1872 
1873 void ufshcd_release(struct ufs_hba *hba)
1874 {
1875 	unsigned long flags;
1876 
1877 	spin_lock_irqsave(hba->host->host_lock, flags);
1878 	__ufshcd_release(hba);
1879 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1880 }
1881 EXPORT_SYMBOL_GPL(ufshcd_release);
1882 
1883 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1884 		struct device_attribute *attr, char *buf)
1885 {
1886 	struct ufs_hba *hba = dev_get_drvdata(dev);
1887 
1888 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1889 }
1890 
1891 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1892 {
1893 	struct ufs_hba *hba = dev_get_drvdata(dev);
1894 	unsigned long flags;
1895 
1896 	spin_lock_irqsave(hba->host->host_lock, flags);
1897 	hba->clk_gating.delay_ms = value;
1898 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1899 }
1900 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1901 
1902 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1903 		struct device_attribute *attr, const char *buf, size_t count)
1904 {
1905 	unsigned long value;
1906 
1907 	if (kstrtoul(buf, 0, &value))
1908 		return -EINVAL;
1909 
1910 	ufshcd_clkgate_delay_set(dev, value);
1911 	return count;
1912 }
1913 
1914 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1915 		struct device_attribute *attr, char *buf)
1916 {
1917 	struct ufs_hba *hba = dev_get_drvdata(dev);
1918 
1919 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1920 }
1921 
1922 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1923 		struct device_attribute *attr, const char *buf, size_t count)
1924 {
1925 	struct ufs_hba *hba = dev_get_drvdata(dev);
1926 	unsigned long flags;
1927 	u32 value;
1928 
1929 	if (kstrtou32(buf, 0, &value))
1930 		return -EINVAL;
1931 
1932 	value = !!value;
1933 
1934 	spin_lock_irqsave(hba->host->host_lock, flags);
1935 	if (value == hba->clk_gating.is_enabled)
1936 		goto out;
1937 
1938 	if (value)
1939 		__ufshcd_release(hba);
1940 	else
1941 		hba->clk_gating.active_reqs++;
1942 
1943 	hba->clk_gating.is_enabled = value;
1944 out:
1945 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1946 	return count;
1947 }
1948 
1949 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1950 {
1951 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1952 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1953 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1954 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1955 	hba->clk_gating.delay_attr.attr.mode = 0644;
1956 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1957 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1958 
1959 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1960 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1961 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1962 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1963 	hba->clk_gating.enable_attr.attr.mode = 0644;
1964 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1965 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1966 }
1967 
1968 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1969 {
1970 	if (hba->clk_gating.delay_attr.attr.name)
1971 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1972 	if (hba->clk_gating.enable_attr.attr.name)
1973 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1974 }
1975 
1976 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1977 {
1978 	char wq_name[sizeof("ufs_clk_gating_00")];
1979 
1980 	if (!ufshcd_is_clkgating_allowed(hba))
1981 		return;
1982 
1983 	hba->clk_gating.state = CLKS_ON;
1984 
1985 	hba->clk_gating.delay_ms = 150;
1986 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1987 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1988 
1989 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1990 		 hba->host->host_no);
1991 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1992 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
1993 
1994 	ufshcd_init_clk_gating_sysfs(hba);
1995 
1996 	hba->clk_gating.is_enabled = true;
1997 	hba->clk_gating.is_initialized = true;
1998 }
1999 
2000 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2001 {
2002 	if (!hba->clk_gating.is_initialized)
2003 		return;
2004 
2005 	ufshcd_remove_clk_gating_sysfs(hba);
2006 
2007 	/* Ungate the clock if necessary. */
2008 	ufshcd_hold(hba, false);
2009 	hba->clk_gating.is_initialized = false;
2010 	ufshcd_release(hba);
2011 
2012 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2013 }
2014 
2015 /* Must be called with host lock acquired */
2016 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2017 {
2018 	bool queue_resume_work = false;
2019 	ktime_t curr_t = ktime_get();
2020 	unsigned long flags;
2021 
2022 	if (!ufshcd_is_clkscaling_supported(hba))
2023 		return;
2024 
2025 	spin_lock_irqsave(hba->host->host_lock, flags);
2026 	if (!hba->clk_scaling.active_reqs++)
2027 		queue_resume_work = true;
2028 
2029 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2030 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2031 		return;
2032 	}
2033 
2034 	if (queue_resume_work)
2035 		queue_work(hba->clk_scaling.workq,
2036 			   &hba->clk_scaling.resume_work);
2037 
2038 	if (!hba->clk_scaling.window_start_t) {
2039 		hba->clk_scaling.window_start_t = curr_t;
2040 		hba->clk_scaling.tot_busy_t = 0;
2041 		hba->clk_scaling.is_busy_started = false;
2042 	}
2043 
2044 	if (!hba->clk_scaling.is_busy_started) {
2045 		hba->clk_scaling.busy_start_t = curr_t;
2046 		hba->clk_scaling.is_busy_started = true;
2047 	}
2048 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2049 }
2050 
2051 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2052 {
2053 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2054 	unsigned long flags;
2055 
2056 	if (!ufshcd_is_clkscaling_supported(hba))
2057 		return;
2058 
2059 	spin_lock_irqsave(hba->host->host_lock, flags);
2060 	hba->clk_scaling.active_reqs--;
2061 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
2062 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2063 					scaling->busy_start_t));
2064 		scaling->busy_start_t = 0;
2065 		scaling->is_busy_started = false;
2066 	}
2067 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2068 }
2069 
2070 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2071 {
2072 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2073 		return READ;
2074 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2075 		return WRITE;
2076 	else
2077 		return -EINVAL;
2078 }
2079 
2080 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2081 						struct ufshcd_lrb *lrbp)
2082 {
2083 	struct ufs_hba_monitor *m = &hba->monitor;
2084 
2085 	return (m->enabled && lrbp && lrbp->cmd &&
2086 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2087 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2088 }
2089 
2090 static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2091 {
2092 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2093 	unsigned long flags;
2094 
2095 	spin_lock_irqsave(hba->host->host_lock, flags);
2096 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2097 		hba->monitor.busy_start_ts[dir] = ktime_get();
2098 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2099 }
2100 
2101 static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2102 {
2103 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2104 	unsigned long flags;
2105 
2106 	spin_lock_irqsave(hba->host->host_lock, flags);
2107 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2108 		struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2109 		struct ufs_hba_monitor *m = &hba->monitor;
2110 		ktime_t now, inc, lat;
2111 
2112 		now = lrbp->compl_time_stamp;
2113 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2114 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2115 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2116 
2117 		/* Update latencies */
2118 		m->nr_req[dir]++;
2119 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2120 		m->lat_sum[dir] += lat;
2121 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2122 			m->lat_max[dir] = lat;
2123 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2124 			m->lat_min[dir] = lat;
2125 
2126 		m->nr_queued[dir]--;
2127 		/* Push forward the busy start of monitor */
2128 		m->busy_start_ts[dir] = now;
2129 	}
2130 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2131 }
2132 
2133 /**
2134  * ufshcd_send_command - Send SCSI or device management commands
2135  * @hba: per adapter instance
2136  * @task_tag: Task tag of the command
2137  */
2138 static inline
2139 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2140 {
2141 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2142 	unsigned long flags;
2143 
2144 	lrbp->issue_time_stamp = ktime_get();
2145 	lrbp->compl_time_stamp = ktime_set(0, 0);
2146 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2147 	ufshcd_clk_scaling_start_busy(hba);
2148 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2149 		ufshcd_start_monitor(hba, lrbp);
2150 
2151 	spin_lock_irqsave(&hba->outstanding_lock, flags);
2152 	if (hba->vops && hba->vops->setup_xfer_req)
2153 		hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2154 	__set_bit(task_tag, &hba->outstanding_reqs);
2155 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2156 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2157 }
2158 
2159 /**
2160  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2161  * @lrbp: pointer to local reference block
2162  */
2163 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2164 {
2165 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2166 	int len;
2167 
2168 	if (sense_buffer &&
2169 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2170 		int len_to_copy;
2171 
2172 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2173 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2174 
2175 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2176 		       len_to_copy);
2177 	}
2178 }
2179 
2180 /**
2181  * ufshcd_copy_query_response() - Copy the Query Response and the data
2182  * descriptor
2183  * @hba: per adapter instance
2184  * @lrbp: pointer to local reference block
2185  */
2186 static
2187 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2188 {
2189 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2190 
2191 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2192 
2193 	/* Get the descriptor */
2194 	if (hba->dev_cmd.query.descriptor &&
2195 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2196 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2197 				GENERAL_UPIU_REQUEST_SIZE;
2198 		u16 resp_len;
2199 		u16 buf_len;
2200 
2201 		/* data segment length */
2202 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2203 						MASK_QUERY_DATA_SEG_LEN;
2204 		buf_len = be16_to_cpu(
2205 				hba->dev_cmd.query.request.upiu_req.length);
2206 		if (likely(buf_len >= resp_len)) {
2207 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2208 		} else {
2209 			dev_warn(hba->dev,
2210 				 "%s: rsp size %d is bigger than buffer size %d",
2211 				 __func__, resp_len, buf_len);
2212 			return -EINVAL;
2213 		}
2214 	}
2215 
2216 	return 0;
2217 }
2218 
2219 /**
2220  * ufshcd_hba_capabilities - Read controller capabilities
2221  * @hba: per adapter instance
2222  *
2223  * Return: 0 on success, negative on error.
2224  */
2225 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2226 {
2227 	int err;
2228 
2229 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2230 
2231 	/* nutrs and nutmrs are 0 based values */
2232 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2233 	hba->nutmrs =
2234 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2235 	hba->reserved_slot = hba->nutrs - 1;
2236 
2237 	/* Read crypto capabilities */
2238 	err = ufshcd_hba_init_crypto_capabilities(hba);
2239 	if (err)
2240 		dev_err(hba->dev, "crypto setup failed\n");
2241 
2242 	return err;
2243 }
2244 
2245 /**
2246  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2247  *                            to accept UIC commands
2248  * @hba: per adapter instance
2249  * Return true on success, else false
2250  */
2251 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2252 {
2253 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2254 }
2255 
2256 /**
2257  * ufshcd_get_upmcrs - Get the power mode change request status
2258  * @hba: Pointer to adapter instance
2259  *
2260  * This function gets the UPMCRS field of HCS register
2261  * Returns value of UPMCRS field
2262  */
2263 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2264 {
2265 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2266 }
2267 
2268 /**
2269  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2270  * @hba: per adapter instance
2271  * @uic_cmd: UIC command
2272  */
2273 static inline void
2274 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2275 {
2276 	lockdep_assert_held(&hba->uic_cmd_mutex);
2277 
2278 	WARN_ON(hba->active_uic_cmd);
2279 
2280 	hba->active_uic_cmd = uic_cmd;
2281 
2282 	/* Write Args */
2283 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2284 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2285 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2286 
2287 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2288 
2289 	/* Write UIC Cmd */
2290 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2291 		      REG_UIC_COMMAND);
2292 }
2293 
2294 /**
2295  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2296  * @hba: per adapter instance
2297  * @uic_cmd: UIC command
2298  *
2299  * Returns 0 only if success.
2300  */
2301 static int
2302 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2303 {
2304 	int ret;
2305 	unsigned long flags;
2306 
2307 	lockdep_assert_held(&hba->uic_cmd_mutex);
2308 
2309 	if (wait_for_completion_timeout(&uic_cmd->done,
2310 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2311 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2312 	} else {
2313 		ret = -ETIMEDOUT;
2314 		dev_err(hba->dev,
2315 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2316 			uic_cmd->command, uic_cmd->argument3);
2317 
2318 		if (!uic_cmd->cmd_active) {
2319 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2320 				__func__);
2321 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2322 		}
2323 	}
2324 
2325 	spin_lock_irqsave(hba->host->host_lock, flags);
2326 	hba->active_uic_cmd = NULL;
2327 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2328 
2329 	return ret;
2330 }
2331 
2332 /**
2333  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2334  * @hba: per adapter instance
2335  * @uic_cmd: UIC command
2336  * @completion: initialize the completion only if this is set to true
2337  *
2338  * Returns 0 only if success.
2339  */
2340 static int
2341 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2342 		      bool completion)
2343 {
2344 	lockdep_assert_held(&hba->uic_cmd_mutex);
2345 	lockdep_assert_held(hba->host->host_lock);
2346 
2347 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2348 		dev_err(hba->dev,
2349 			"Controller not ready to accept UIC commands\n");
2350 		return -EIO;
2351 	}
2352 
2353 	if (completion)
2354 		init_completion(&uic_cmd->done);
2355 
2356 	uic_cmd->cmd_active = 1;
2357 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2358 
2359 	return 0;
2360 }
2361 
2362 /**
2363  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2364  * @hba: per adapter instance
2365  * @uic_cmd: UIC command
2366  *
2367  * Returns 0 only if success.
2368  */
2369 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2370 {
2371 	int ret;
2372 	unsigned long flags;
2373 
2374 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2375 		return 0;
2376 
2377 	ufshcd_hold(hba, false);
2378 	mutex_lock(&hba->uic_cmd_mutex);
2379 	ufshcd_add_delay_before_dme_cmd(hba);
2380 
2381 	spin_lock_irqsave(hba->host->host_lock, flags);
2382 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2383 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2384 	if (!ret)
2385 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2386 
2387 	mutex_unlock(&hba->uic_cmd_mutex);
2388 
2389 	ufshcd_release(hba);
2390 	return ret;
2391 }
2392 
2393 /**
2394  * ufshcd_map_sg - Map scatter-gather list to prdt
2395  * @hba: per adapter instance
2396  * @lrbp: pointer to local reference block
2397  *
2398  * Returns 0 in case of success, non-zero value in case of failure
2399  */
2400 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2401 {
2402 	struct ufshcd_sg_entry *prd_table;
2403 	struct scatterlist *sg;
2404 	struct scsi_cmnd *cmd;
2405 	int sg_segments;
2406 	int i;
2407 
2408 	cmd = lrbp->cmd;
2409 	sg_segments = scsi_dma_map(cmd);
2410 	if (sg_segments < 0)
2411 		return sg_segments;
2412 
2413 	if (sg_segments) {
2414 
2415 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2416 			lrbp->utr_descriptor_ptr->prd_table_length =
2417 				cpu_to_le16((sg_segments *
2418 					sizeof(struct ufshcd_sg_entry)));
2419 		else
2420 			lrbp->utr_descriptor_ptr->prd_table_length =
2421 				cpu_to_le16(sg_segments);
2422 
2423 		prd_table = lrbp->ucd_prdt_ptr;
2424 
2425 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2426 			const unsigned int len = sg_dma_len(sg);
2427 
2428 			/*
2429 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2430 			 * based value that indicates the length, in bytes, of
2431 			 * the data block. A maximum of length of 256KB may
2432 			 * exist for any entry. Bits 1:0 of this field shall be
2433 			 * 11b to indicate Dword granularity. A value of '3'
2434 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2435 			 */
2436 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2437 			prd_table[i].size = cpu_to_le32(len - 1);
2438 			prd_table[i].addr = cpu_to_le64(sg->dma_address);
2439 			prd_table[i].reserved = 0;
2440 		}
2441 	} else {
2442 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * ufshcd_enable_intr - enable interrupts
2450  * @hba: per adapter instance
2451  * @intrs: interrupt bits
2452  */
2453 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2454 {
2455 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2456 
2457 	if (hba->ufs_version == ufshci_version(1, 0)) {
2458 		u32 rw;
2459 		rw = set & INTERRUPT_MASK_RW_VER_10;
2460 		set = rw | ((set ^ intrs) & intrs);
2461 	} else {
2462 		set |= intrs;
2463 	}
2464 
2465 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2466 }
2467 
2468 /**
2469  * ufshcd_disable_intr - disable interrupts
2470  * @hba: per adapter instance
2471  * @intrs: interrupt bits
2472  */
2473 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2474 {
2475 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2476 
2477 	if (hba->ufs_version == ufshci_version(1, 0)) {
2478 		u32 rw;
2479 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2480 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2481 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2482 
2483 	} else {
2484 		set &= ~intrs;
2485 	}
2486 
2487 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2488 }
2489 
2490 /**
2491  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2492  * descriptor according to request
2493  * @lrbp: pointer to local reference block
2494  * @upiu_flags: flags required in the header
2495  * @cmd_dir: requests data direction
2496  */
2497 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2498 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2499 {
2500 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2501 	u32 data_direction;
2502 	u32 dword_0;
2503 	u32 dword_1 = 0;
2504 	u32 dword_3 = 0;
2505 
2506 	if (cmd_dir == DMA_FROM_DEVICE) {
2507 		data_direction = UTP_DEVICE_TO_HOST;
2508 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2509 	} else if (cmd_dir == DMA_TO_DEVICE) {
2510 		data_direction = UTP_HOST_TO_DEVICE;
2511 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2512 	} else {
2513 		data_direction = UTP_NO_DATA_TRANSFER;
2514 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2515 	}
2516 
2517 	dword_0 = data_direction | (lrbp->command_type
2518 				<< UPIU_COMMAND_TYPE_OFFSET);
2519 	if (lrbp->intr_cmd)
2520 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2521 
2522 	/* Prepare crypto related dwords */
2523 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2524 
2525 	/* Transfer request descriptor header fields */
2526 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2527 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2528 	/*
2529 	 * assigning invalid value for command status. Controller
2530 	 * updates OCS on command completion, with the command
2531 	 * status
2532 	 */
2533 	req_desc->header.dword_2 =
2534 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2535 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2536 
2537 	req_desc->prd_table_length = 0;
2538 }
2539 
2540 /**
2541  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2542  * for scsi commands
2543  * @lrbp: local reference block pointer
2544  * @upiu_flags: flags
2545  */
2546 static
2547 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2548 {
2549 	struct scsi_cmnd *cmd = lrbp->cmd;
2550 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2551 	unsigned short cdb_len;
2552 
2553 	/* command descriptor fields */
2554 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2555 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2556 				lrbp->lun, lrbp->task_tag);
2557 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2558 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2559 
2560 	/* Total EHS length and Data segment length will be zero */
2561 	ucd_req_ptr->header.dword_2 = 0;
2562 
2563 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2564 
2565 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2566 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2567 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2568 
2569 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2570 }
2571 
2572 /**
2573  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2574  * for query requsts
2575  * @hba: UFS hba
2576  * @lrbp: local reference block pointer
2577  * @upiu_flags: flags
2578  */
2579 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2580 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2581 {
2582 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2583 	struct ufs_query *query = &hba->dev_cmd.query;
2584 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2585 
2586 	/* Query request header */
2587 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2588 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2589 			lrbp->lun, lrbp->task_tag);
2590 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2591 			0, query->request.query_func, 0, 0);
2592 
2593 	/* Data segment length only need for WRITE_DESC */
2594 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2595 		ucd_req_ptr->header.dword_2 =
2596 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2597 	else
2598 		ucd_req_ptr->header.dword_2 = 0;
2599 
2600 	/* Copy the Query Request buffer as is */
2601 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2602 			QUERY_OSF_SIZE);
2603 
2604 	/* Copy the Descriptor */
2605 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2606 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2607 
2608 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2609 }
2610 
2611 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2612 {
2613 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2614 
2615 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2616 
2617 	/* command descriptor fields */
2618 	ucd_req_ptr->header.dword_0 =
2619 		UPIU_HEADER_DWORD(
2620 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2621 	/* clear rest of the fields of basic header */
2622 	ucd_req_ptr->header.dword_1 = 0;
2623 	ucd_req_ptr->header.dword_2 = 0;
2624 
2625 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2626 }
2627 
2628 /**
2629  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2630  *			     for Device Management Purposes
2631  * @hba: per adapter instance
2632  * @lrbp: pointer to local reference block
2633  */
2634 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2635 				      struct ufshcd_lrb *lrbp)
2636 {
2637 	u8 upiu_flags;
2638 	int ret = 0;
2639 
2640 	if (hba->ufs_version <= ufshci_version(1, 1))
2641 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2642 	else
2643 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2644 
2645 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2646 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2647 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2648 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2649 		ufshcd_prepare_utp_nop_upiu(lrbp);
2650 	else
2651 		ret = -EINVAL;
2652 
2653 	return ret;
2654 }
2655 
2656 /**
2657  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2658  *			   for SCSI Purposes
2659  * @hba: per adapter instance
2660  * @lrbp: pointer to local reference block
2661  */
2662 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2663 {
2664 	u8 upiu_flags;
2665 	int ret = 0;
2666 
2667 	if (hba->ufs_version <= ufshci_version(1, 1))
2668 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2669 	else
2670 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2671 
2672 	if (likely(lrbp->cmd)) {
2673 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2674 						lrbp->cmd->sc_data_direction);
2675 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2676 	} else {
2677 		ret = -EINVAL;
2678 	}
2679 
2680 	return ret;
2681 }
2682 
2683 /**
2684  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2685  * @upiu_wlun_id: UPIU W-LUN id
2686  *
2687  * Returns SCSI W-LUN id
2688  */
2689 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2690 {
2691 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2692 }
2693 
2694 static inline bool is_device_wlun(struct scsi_device *sdev)
2695 {
2696 	return sdev->lun ==
2697 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2698 }
2699 
2700 /*
2701  * Associate the UFS controller queue with the default and poll HCTX types.
2702  * Initialize the mq_map[] arrays.
2703  */
2704 static int ufshcd_map_queues(struct Scsi_Host *shost)
2705 {
2706 	int i, ret;
2707 
2708 	for (i = 0; i < shost->nr_maps; i++) {
2709 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2710 
2711 		switch (i) {
2712 		case HCTX_TYPE_DEFAULT:
2713 		case HCTX_TYPE_POLL:
2714 			map->nr_queues = 1;
2715 			break;
2716 		case HCTX_TYPE_READ:
2717 			map->nr_queues = 0;
2718 			continue;
2719 		default:
2720 			WARN_ON_ONCE(true);
2721 		}
2722 		map->queue_offset = 0;
2723 		ret = blk_mq_map_queues(map);
2724 		WARN_ON_ONCE(ret);
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2731 {
2732 	struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2733 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2734 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2735 		i * sizeof(struct utp_transfer_cmd_desc);
2736 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2737 				       response_upiu);
2738 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2739 
2740 	lrb->utr_descriptor_ptr = utrdlp + i;
2741 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2742 		i * sizeof(struct utp_transfer_req_desc);
2743 	lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2744 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2745 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2746 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2747 	lrb->ucd_prdt_ptr = cmd_descp[i].prd_table;
2748 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2749 }
2750 
2751 /**
2752  * ufshcd_queuecommand - main entry point for SCSI requests
2753  * @host: SCSI host pointer
2754  * @cmd: command from SCSI Midlayer
2755  *
2756  * Returns 0 for success, non-zero in case of failure
2757  */
2758 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2759 {
2760 	struct ufs_hba *hba = shost_priv(host);
2761 	int tag = scsi_cmd_to_rq(cmd)->tag;
2762 	struct ufshcd_lrb *lrbp;
2763 	int err = 0;
2764 
2765 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2766 
2767 	/*
2768 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2769 	 * calls.
2770 	 */
2771 	rcu_read_lock();
2772 
2773 	switch (hba->ufshcd_state) {
2774 	case UFSHCD_STATE_OPERATIONAL:
2775 		break;
2776 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2777 		/*
2778 		 * SCSI error handler can call ->queuecommand() while UFS error
2779 		 * handler is in progress. Error interrupts could change the
2780 		 * state from UFSHCD_STATE_RESET to
2781 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2782 		 * being issued in that case.
2783 		 */
2784 		if (ufshcd_eh_in_progress(hba)) {
2785 			err = SCSI_MLQUEUE_HOST_BUSY;
2786 			goto out;
2787 		}
2788 		break;
2789 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2790 		/*
2791 		 * pm_runtime_get_sync() is used at error handling preparation
2792 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2793 		 * PM ops, it can never be finished if we let SCSI layer keep
2794 		 * retrying it, which gets err handler stuck forever. Neither
2795 		 * can we let the scsi cmd pass through, because UFS is in bad
2796 		 * state, the scsi cmd may eventually time out, which will get
2797 		 * err handler blocked for too long. So, just fail the scsi cmd
2798 		 * sent from PM ops, err handler can recover PM error anyways.
2799 		 */
2800 		if (hba->pm_op_in_progress) {
2801 			hba->force_reset = true;
2802 			set_host_byte(cmd, DID_BAD_TARGET);
2803 			scsi_done(cmd);
2804 			goto out;
2805 		}
2806 		fallthrough;
2807 	case UFSHCD_STATE_RESET:
2808 		err = SCSI_MLQUEUE_HOST_BUSY;
2809 		goto out;
2810 	case UFSHCD_STATE_ERROR:
2811 		set_host_byte(cmd, DID_ERROR);
2812 		scsi_done(cmd);
2813 		goto out;
2814 	}
2815 
2816 	hba->req_abort_count = 0;
2817 
2818 	err = ufshcd_hold(hba, true);
2819 	if (err) {
2820 		err = SCSI_MLQUEUE_HOST_BUSY;
2821 		goto out;
2822 	}
2823 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2824 		(hba->clk_gating.state != CLKS_ON));
2825 
2826 	lrbp = &hba->lrb[tag];
2827 	WARN_ON(lrbp->cmd);
2828 	lrbp->cmd = cmd;
2829 	lrbp->task_tag = tag;
2830 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2831 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2832 
2833 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2834 
2835 	lrbp->req_abort_skip = false;
2836 
2837 	ufshpb_prep(hba, lrbp);
2838 
2839 	ufshcd_comp_scsi_upiu(hba, lrbp);
2840 
2841 	err = ufshcd_map_sg(hba, lrbp);
2842 	if (err) {
2843 		lrbp->cmd = NULL;
2844 		ufshcd_release(hba);
2845 		goto out;
2846 	}
2847 
2848 	ufshcd_send_command(hba, tag);
2849 
2850 out:
2851 	rcu_read_unlock();
2852 
2853 	if (ufs_trigger_eh()) {
2854 		unsigned long flags;
2855 
2856 		spin_lock_irqsave(hba->host->host_lock, flags);
2857 		ufshcd_schedule_eh_work(hba);
2858 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2859 	}
2860 
2861 	return err;
2862 }
2863 
2864 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2865 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2866 {
2867 	lrbp->cmd = NULL;
2868 	lrbp->task_tag = tag;
2869 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2870 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2871 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2872 	hba->dev_cmd.type = cmd_type;
2873 
2874 	return ufshcd_compose_devman_upiu(hba, lrbp);
2875 }
2876 
2877 /*
2878  * Clear all the requests from the controller for which a bit has been set in
2879  * @mask and wait until the controller confirms that these requests have been
2880  * cleared.
2881  */
2882 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2883 {
2884 	unsigned long flags;
2885 
2886 	/* clear outstanding transaction before retry */
2887 	spin_lock_irqsave(hba->host->host_lock, flags);
2888 	ufshcd_utrl_clear(hba, mask);
2889 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2890 
2891 	/*
2892 	 * wait for h/w to clear corresponding bit in door-bell.
2893 	 * max. wait is 1 sec.
2894 	 */
2895 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2896 					mask, ~mask, 1000, 1000);
2897 }
2898 
2899 static int
2900 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2901 {
2902 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2903 
2904 	/* Get the UPIU response */
2905 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2906 				UPIU_RSP_CODE_OFFSET;
2907 	return query_res->response;
2908 }
2909 
2910 /**
2911  * ufshcd_dev_cmd_completion() - handles device management command responses
2912  * @hba: per adapter instance
2913  * @lrbp: pointer to local reference block
2914  */
2915 static int
2916 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2917 {
2918 	int resp;
2919 	int err = 0;
2920 
2921 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2922 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2923 
2924 	switch (resp) {
2925 	case UPIU_TRANSACTION_NOP_IN:
2926 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2927 			err = -EINVAL;
2928 			dev_err(hba->dev, "%s: unexpected response %x\n",
2929 					__func__, resp);
2930 		}
2931 		break;
2932 	case UPIU_TRANSACTION_QUERY_RSP:
2933 		err = ufshcd_check_query_response(hba, lrbp);
2934 		if (!err)
2935 			err = ufshcd_copy_query_response(hba, lrbp);
2936 		break;
2937 	case UPIU_TRANSACTION_REJECT_UPIU:
2938 		/* TODO: handle Reject UPIU Response */
2939 		err = -EPERM;
2940 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2941 				__func__);
2942 		break;
2943 	default:
2944 		err = -EINVAL;
2945 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2946 				__func__, resp);
2947 		break;
2948 	}
2949 
2950 	return err;
2951 }
2952 
2953 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2954 		struct ufshcd_lrb *lrbp, int max_timeout)
2955 {
2956 	unsigned long time_left = msecs_to_jiffies(max_timeout);
2957 	unsigned long flags;
2958 	bool pending;
2959 	int err;
2960 
2961 retry:
2962 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2963 						time_left);
2964 
2965 	if (likely(time_left)) {
2966 		/*
2967 		 * The completion handler called complete() and the caller of
2968 		 * this function still owns the @lrbp tag so the code below does
2969 		 * not trigger any race conditions.
2970 		 */
2971 		hba->dev_cmd.complete = NULL;
2972 		err = ufshcd_get_tr_ocs(lrbp);
2973 		if (!err)
2974 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2975 	} else {
2976 		err = -ETIMEDOUT;
2977 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2978 			__func__, lrbp->task_tag);
2979 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
2980 			/* successfully cleared the command, retry if needed */
2981 			err = -EAGAIN;
2982 			/*
2983 			 * Since clearing the command succeeded we also need to
2984 			 * clear the task tag bit from the outstanding_reqs
2985 			 * variable.
2986 			 */
2987 			spin_lock_irqsave(&hba->outstanding_lock, flags);
2988 			pending = test_bit(lrbp->task_tag,
2989 					   &hba->outstanding_reqs);
2990 			if (pending) {
2991 				hba->dev_cmd.complete = NULL;
2992 				__clear_bit(lrbp->task_tag,
2993 					    &hba->outstanding_reqs);
2994 			}
2995 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2996 
2997 			if (!pending) {
2998 				/*
2999 				 * The completion handler ran while we tried to
3000 				 * clear the command.
3001 				 */
3002 				time_left = 1;
3003 				goto retry;
3004 			}
3005 		} else {
3006 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3007 				__func__, lrbp->task_tag);
3008 		}
3009 	}
3010 
3011 	return err;
3012 }
3013 
3014 /**
3015  * ufshcd_exec_dev_cmd - API for sending device management requests
3016  * @hba: UFS hba
3017  * @cmd_type: specifies the type (NOP, Query...)
3018  * @timeout: timeout in milliseconds
3019  *
3020  * NOTE: Since there is only one available tag for device management commands,
3021  * it is expected you hold the hba->dev_cmd.lock mutex.
3022  */
3023 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3024 		enum dev_cmd_type cmd_type, int timeout)
3025 {
3026 	DECLARE_COMPLETION_ONSTACK(wait);
3027 	const u32 tag = hba->reserved_slot;
3028 	struct ufshcd_lrb *lrbp;
3029 	int err;
3030 
3031 	/* Protects use of hba->reserved_slot. */
3032 	lockdep_assert_held(&hba->dev_cmd.lock);
3033 
3034 	down_read(&hba->clk_scaling_lock);
3035 
3036 	lrbp = &hba->lrb[tag];
3037 	WARN_ON(lrbp->cmd);
3038 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3039 	if (unlikely(err))
3040 		goto out;
3041 
3042 	hba->dev_cmd.complete = &wait;
3043 
3044 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3045 
3046 	ufshcd_send_command(hba, tag);
3047 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3048 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3049 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3050 
3051 out:
3052 	up_read(&hba->clk_scaling_lock);
3053 	return err;
3054 }
3055 
3056 /**
3057  * ufshcd_init_query() - init the query response and request parameters
3058  * @hba: per-adapter instance
3059  * @request: address of the request pointer to be initialized
3060  * @response: address of the response pointer to be initialized
3061  * @opcode: operation to perform
3062  * @idn: flag idn to access
3063  * @index: LU number to access
3064  * @selector: query/flag/descriptor further identification
3065  */
3066 static inline void ufshcd_init_query(struct ufs_hba *hba,
3067 		struct ufs_query_req **request, struct ufs_query_res **response,
3068 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3069 {
3070 	*request = &hba->dev_cmd.query.request;
3071 	*response = &hba->dev_cmd.query.response;
3072 	memset(*request, 0, sizeof(struct ufs_query_req));
3073 	memset(*response, 0, sizeof(struct ufs_query_res));
3074 	(*request)->upiu_req.opcode = opcode;
3075 	(*request)->upiu_req.idn = idn;
3076 	(*request)->upiu_req.index = index;
3077 	(*request)->upiu_req.selector = selector;
3078 }
3079 
3080 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3081 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3082 {
3083 	int ret;
3084 	int retries;
3085 
3086 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3087 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3088 		if (ret)
3089 			dev_dbg(hba->dev,
3090 				"%s: failed with error %d, retries %d\n",
3091 				__func__, ret, retries);
3092 		else
3093 			break;
3094 	}
3095 
3096 	if (ret)
3097 		dev_err(hba->dev,
3098 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
3099 			__func__, opcode, idn, ret, retries);
3100 	return ret;
3101 }
3102 
3103 /**
3104  * ufshcd_query_flag() - API function for sending flag query requests
3105  * @hba: per-adapter instance
3106  * @opcode: flag query to perform
3107  * @idn: flag idn to access
3108  * @index: flag index to access
3109  * @flag_res: the flag value after the query request completes
3110  *
3111  * Returns 0 for success, non-zero in case of failure
3112  */
3113 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3114 			enum flag_idn idn, u8 index, bool *flag_res)
3115 {
3116 	struct ufs_query_req *request = NULL;
3117 	struct ufs_query_res *response = NULL;
3118 	int err, selector = 0;
3119 	int timeout = QUERY_REQ_TIMEOUT;
3120 
3121 	BUG_ON(!hba);
3122 
3123 	ufshcd_hold(hba, false);
3124 	mutex_lock(&hba->dev_cmd.lock);
3125 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3126 			selector);
3127 
3128 	switch (opcode) {
3129 	case UPIU_QUERY_OPCODE_SET_FLAG:
3130 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3131 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3132 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3133 		break;
3134 	case UPIU_QUERY_OPCODE_READ_FLAG:
3135 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3136 		if (!flag_res) {
3137 			/* No dummy reads */
3138 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3139 					__func__);
3140 			err = -EINVAL;
3141 			goto out_unlock;
3142 		}
3143 		break;
3144 	default:
3145 		dev_err(hba->dev,
3146 			"%s: Expected query flag opcode but got = %d\n",
3147 			__func__, opcode);
3148 		err = -EINVAL;
3149 		goto out_unlock;
3150 	}
3151 
3152 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3153 
3154 	if (err) {
3155 		dev_err(hba->dev,
3156 			"%s: Sending flag query for idn %d failed, err = %d\n",
3157 			__func__, idn, err);
3158 		goto out_unlock;
3159 	}
3160 
3161 	if (flag_res)
3162 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3163 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3164 
3165 out_unlock:
3166 	mutex_unlock(&hba->dev_cmd.lock);
3167 	ufshcd_release(hba);
3168 	return err;
3169 }
3170 
3171 /**
3172  * ufshcd_query_attr - API function for sending attribute requests
3173  * @hba: per-adapter instance
3174  * @opcode: attribute opcode
3175  * @idn: attribute idn to access
3176  * @index: index field
3177  * @selector: selector field
3178  * @attr_val: the attribute value after the query request completes
3179  *
3180  * Returns 0 for success, non-zero in case of failure
3181 */
3182 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3183 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3184 {
3185 	struct ufs_query_req *request = NULL;
3186 	struct ufs_query_res *response = NULL;
3187 	int err;
3188 
3189 	BUG_ON(!hba);
3190 
3191 	if (!attr_val) {
3192 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3193 				__func__, opcode);
3194 		return -EINVAL;
3195 	}
3196 
3197 	ufshcd_hold(hba, false);
3198 
3199 	mutex_lock(&hba->dev_cmd.lock);
3200 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3201 			selector);
3202 
3203 	switch (opcode) {
3204 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3205 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3206 		request->upiu_req.value = cpu_to_be32(*attr_val);
3207 		break;
3208 	case UPIU_QUERY_OPCODE_READ_ATTR:
3209 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3210 		break;
3211 	default:
3212 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3213 				__func__, opcode);
3214 		err = -EINVAL;
3215 		goto out_unlock;
3216 	}
3217 
3218 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3219 
3220 	if (err) {
3221 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3222 				__func__, opcode, idn, index, err);
3223 		goto out_unlock;
3224 	}
3225 
3226 	*attr_val = be32_to_cpu(response->upiu_res.value);
3227 
3228 out_unlock:
3229 	mutex_unlock(&hba->dev_cmd.lock);
3230 	ufshcd_release(hba);
3231 	return err;
3232 }
3233 
3234 /**
3235  * ufshcd_query_attr_retry() - API function for sending query
3236  * attribute with retries
3237  * @hba: per-adapter instance
3238  * @opcode: attribute opcode
3239  * @idn: attribute idn to access
3240  * @index: index field
3241  * @selector: selector field
3242  * @attr_val: the attribute value after the query request
3243  * completes
3244  *
3245  * Returns 0 for success, non-zero in case of failure
3246 */
3247 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3248 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3249 	u32 *attr_val)
3250 {
3251 	int ret = 0;
3252 	u32 retries;
3253 
3254 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3255 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3256 						selector, attr_val);
3257 		if (ret)
3258 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3259 				__func__, ret, retries);
3260 		else
3261 			break;
3262 	}
3263 
3264 	if (ret)
3265 		dev_err(hba->dev,
3266 			"%s: query attribute, idn %d, failed with error %d after %d retires\n",
3267 			__func__, idn, ret, QUERY_REQ_RETRIES);
3268 	return ret;
3269 }
3270 
3271 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3272 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3273 			u8 selector, u8 *desc_buf, int *buf_len)
3274 {
3275 	struct ufs_query_req *request = NULL;
3276 	struct ufs_query_res *response = NULL;
3277 	int err;
3278 
3279 	BUG_ON(!hba);
3280 
3281 	if (!desc_buf) {
3282 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3283 				__func__, opcode);
3284 		return -EINVAL;
3285 	}
3286 
3287 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3288 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3289 				__func__, *buf_len);
3290 		return -EINVAL;
3291 	}
3292 
3293 	ufshcd_hold(hba, false);
3294 
3295 	mutex_lock(&hba->dev_cmd.lock);
3296 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3297 			selector);
3298 	hba->dev_cmd.query.descriptor = desc_buf;
3299 	request->upiu_req.length = cpu_to_be16(*buf_len);
3300 
3301 	switch (opcode) {
3302 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3303 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3304 		break;
3305 	case UPIU_QUERY_OPCODE_READ_DESC:
3306 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3307 		break;
3308 	default:
3309 		dev_err(hba->dev,
3310 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3311 				__func__, opcode);
3312 		err = -EINVAL;
3313 		goto out_unlock;
3314 	}
3315 
3316 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3317 
3318 	if (err) {
3319 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3320 				__func__, opcode, idn, index, err);
3321 		goto out_unlock;
3322 	}
3323 
3324 	*buf_len = be16_to_cpu(response->upiu_res.length);
3325 
3326 out_unlock:
3327 	hba->dev_cmd.query.descriptor = NULL;
3328 	mutex_unlock(&hba->dev_cmd.lock);
3329 	ufshcd_release(hba);
3330 	return err;
3331 }
3332 
3333 /**
3334  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3335  * @hba: per-adapter instance
3336  * @opcode: attribute opcode
3337  * @idn: attribute idn to access
3338  * @index: index field
3339  * @selector: selector field
3340  * @desc_buf: the buffer that contains the descriptor
3341  * @buf_len: length parameter passed to the device
3342  *
3343  * Returns 0 for success, non-zero in case of failure.
3344  * The buf_len parameter will contain, on return, the length parameter
3345  * received on the response.
3346  */
3347 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3348 				  enum query_opcode opcode,
3349 				  enum desc_idn idn, u8 index,
3350 				  u8 selector,
3351 				  u8 *desc_buf, int *buf_len)
3352 {
3353 	int err;
3354 	int retries;
3355 
3356 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3357 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3358 						selector, desc_buf, buf_len);
3359 		if (!err || err == -EINVAL)
3360 			break;
3361 	}
3362 
3363 	return err;
3364 }
3365 
3366 /**
3367  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3368  * @hba: Pointer to adapter instance
3369  * @desc_id: descriptor idn value
3370  * @desc_len: mapped desc length (out)
3371  */
3372 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3373 				  int *desc_len)
3374 {
3375 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3376 	    desc_id == QUERY_DESC_IDN_RFU_1)
3377 		*desc_len = 0;
3378 	else
3379 		*desc_len = hba->desc_size[desc_id];
3380 }
3381 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3382 
3383 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3384 				      enum desc_idn desc_id, int desc_index,
3385 				      unsigned char desc_len)
3386 {
3387 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3388 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3389 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3390 		 * than the RPMB unit, however, both descriptors share the same
3391 		 * desc_idn, to cover both unit descriptors with one length, we
3392 		 * choose the normal unit descriptor length by desc_index.
3393 		 */
3394 		hba->desc_size[desc_id] = desc_len;
3395 }
3396 
3397 /**
3398  * ufshcd_read_desc_param - read the specified descriptor parameter
3399  * @hba: Pointer to adapter instance
3400  * @desc_id: descriptor idn value
3401  * @desc_index: descriptor index
3402  * @param_offset: offset of the parameter to read
3403  * @param_read_buf: pointer to buffer where parameter would be read
3404  * @param_size: sizeof(param_read_buf)
3405  *
3406  * Return 0 in case of success, non-zero otherwise
3407  */
3408 int ufshcd_read_desc_param(struct ufs_hba *hba,
3409 			   enum desc_idn desc_id,
3410 			   int desc_index,
3411 			   u8 param_offset,
3412 			   u8 *param_read_buf,
3413 			   u8 param_size)
3414 {
3415 	int ret;
3416 	u8 *desc_buf;
3417 	int buff_len;
3418 	bool is_kmalloc = true;
3419 
3420 	/* Safety check */
3421 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3422 		return -EINVAL;
3423 
3424 	/* Get the length of descriptor */
3425 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3426 	if (!buff_len) {
3427 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3428 		return -EINVAL;
3429 	}
3430 
3431 	if (param_offset >= buff_len) {
3432 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3433 			__func__, param_offset, desc_id, buff_len);
3434 		return -EINVAL;
3435 	}
3436 
3437 	/* Check whether we need temp memory */
3438 	if (param_offset != 0 || param_size < buff_len) {
3439 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3440 		if (!desc_buf)
3441 			return -ENOMEM;
3442 	} else {
3443 		desc_buf = param_read_buf;
3444 		is_kmalloc = false;
3445 	}
3446 
3447 	/* Request for full descriptor */
3448 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3449 					desc_id, desc_index, 0,
3450 					desc_buf, &buff_len);
3451 
3452 	if (ret) {
3453 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3454 			__func__, desc_id, desc_index, param_offset, ret);
3455 		goto out;
3456 	}
3457 
3458 	/* Sanity check */
3459 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3460 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3461 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3462 		ret = -EINVAL;
3463 		goto out;
3464 	}
3465 
3466 	/* Update descriptor length */
3467 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3468 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3469 
3470 	if (is_kmalloc) {
3471 		/* Make sure we don't copy more data than available */
3472 		if (param_offset >= buff_len)
3473 			ret = -EINVAL;
3474 		else
3475 			memcpy(param_read_buf, &desc_buf[param_offset],
3476 			       min_t(u32, param_size, buff_len - param_offset));
3477 	}
3478 out:
3479 	if (is_kmalloc)
3480 		kfree(desc_buf);
3481 	return ret;
3482 }
3483 
3484 /**
3485  * struct uc_string_id - unicode string
3486  *
3487  * @len: size of this descriptor inclusive
3488  * @type: descriptor type
3489  * @uc: unicode string character
3490  */
3491 struct uc_string_id {
3492 	u8 len;
3493 	u8 type;
3494 	wchar_t uc[];
3495 } __packed;
3496 
3497 /* replace non-printable or non-ASCII characters with spaces */
3498 static inline char ufshcd_remove_non_printable(u8 ch)
3499 {
3500 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3501 }
3502 
3503 /**
3504  * ufshcd_read_string_desc - read string descriptor
3505  * @hba: pointer to adapter instance
3506  * @desc_index: descriptor index
3507  * @buf: pointer to buffer where descriptor would be read,
3508  *       the caller should free the memory.
3509  * @ascii: if true convert from unicode to ascii characters
3510  *         null terminated string.
3511  *
3512  * Return:
3513  * *      string size on success.
3514  * *      -ENOMEM: on allocation failure
3515  * *      -EINVAL: on a wrong parameter
3516  */
3517 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3518 			    u8 **buf, bool ascii)
3519 {
3520 	struct uc_string_id *uc_str;
3521 	u8 *str;
3522 	int ret;
3523 
3524 	if (!buf)
3525 		return -EINVAL;
3526 
3527 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3528 	if (!uc_str)
3529 		return -ENOMEM;
3530 
3531 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3532 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3533 	if (ret < 0) {
3534 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3535 			QUERY_REQ_RETRIES, ret);
3536 		str = NULL;
3537 		goto out;
3538 	}
3539 
3540 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3541 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3542 		str = NULL;
3543 		ret = 0;
3544 		goto out;
3545 	}
3546 
3547 	if (ascii) {
3548 		ssize_t ascii_len;
3549 		int i;
3550 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3551 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3552 		str = kzalloc(ascii_len, GFP_KERNEL);
3553 		if (!str) {
3554 			ret = -ENOMEM;
3555 			goto out;
3556 		}
3557 
3558 		/*
3559 		 * the descriptor contains string in UTF16 format
3560 		 * we need to convert to utf-8 so it can be displayed
3561 		 */
3562 		ret = utf16s_to_utf8s(uc_str->uc,
3563 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3564 				      UTF16_BIG_ENDIAN, str, ascii_len);
3565 
3566 		/* replace non-printable or non-ASCII characters with spaces */
3567 		for (i = 0; i < ret; i++)
3568 			str[i] = ufshcd_remove_non_printable(str[i]);
3569 
3570 		str[ret++] = '\0';
3571 
3572 	} else {
3573 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3574 		if (!str) {
3575 			ret = -ENOMEM;
3576 			goto out;
3577 		}
3578 		ret = uc_str->len;
3579 	}
3580 out:
3581 	*buf = str;
3582 	kfree(uc_str);
3583 	return ret;
3584 }
3585 
3586 /**
3587  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3588  * @hba: Pointer to adapter instance
3589  * @lun: lun id
3590  * @param_offset: offset of the parameter to read
3591  * @param_read_buf: pointer to buffer where parameter would be read
3592  * @param_size: sizeof(param_read_buf)
3593  *
3594  * Return 0 in case of success, non-zero otherwise
3595  */
3596 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3597 					      int lun,
3598 					      enum unit_desc_param param_offset,
3599 					      u8 *param_read_buf,
3600 					      u32 param_size)
3601 {
3602 	/*
3603 	 * Unit descriptors are only available for general purpose LUs (LUN id
3604 	 * from 0 to 7) and RPMB Well known LU.
3605 	 */
3606 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3607 		return -EOPNOTSUPP;
3608 
3609 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3610 				      param_offset, param_read_buf, param_size);
3611 }
3612 
3613 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3614 {
3615 	int err = 0;
3616 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3617 
3618 	if (hba->dev_info.wspecversion >= 0x300) {
3619 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3620 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3621 				&gating_wait);
3622 		if (err)
3623 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3624 					 err, gating_wait);
3625 
3626 		if (gating_wait == 0) {
3627 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3628 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3629 					 gating_wait);
3630 		}
3631 
3632 		hba->dev_info.clk_gating_wait_us = gating_wait;
3633 	}
3634 
3635 	return err;
3636 }
3637 
3638 /**
3639  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3640  * @hba: per adapter instance
3641  *
3642  * 1. Allocate DMA memory for Command Descriptor array
3643  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3644  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3645  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3646  *	(UTMRDL)
3647  * 4. Allocate memory for local reference block(lrb).
3648  *
3649  * Returns 0 for success, non-zero in case of failure
3650  */
3651 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3652 {
3653 	size_t utmrdl_size, utrdl_size, ucdl_size;
3654 
3655 	/* Allocate memory for UTP command descriptors */
3656 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3657 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3658 						  ucdl_size,
3659 						  &hba->ucdl_dma_addr,
3660 						  GFP_KERNEL);
3661 
3662 	/*
3663 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3664 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3665 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3666 	 * be aligned to 128 bytes as well
3667 	 */
3668 	if (!hba->ucdl_base_addr ||
3669 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3670 		dev_err(hba->dev,
3671 			"Command Descriptor Memory allocation failed\n");
3672 		goto out;
3673 	}
3674 
3675 	/*
3676 	 * Allocate memory for UTP Transfer descriptors
3677 	 * UFSHCI requires 1024 byte alignment of UTRD
3678 	 */
3679 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3680 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3681 						   utrdl_size,
3682 						   &hba->utrdl_dma_addr,
3683 						   GFP_KERNEL);
3684 	if (!hba->utrdl_base_addr ||
3685 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3686 		dev_err(hba->dev,
3687 			"Transfer Descriptor Memory allocation failed\n");
3688 		goto out;
3689 	}
3690 
3691 	/*
3692 	 * Allocate memory for UTP Task Management descriptors
3693 	 * UFSHCI requires 1024 byte alignment of UTMRD
3694 	 */
3695 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3696 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3697 						    utmrdl_size,
3698 						    &hba->utmrdl_dma_addr,
3699 						    GFP_KERNEL);
3700 	if (!hba->utmrdl_base_addr ||
3701 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3702 		dev_err(hba->dev,
3703 		"Task Management Descriptor Memory allocation failed\n");
3704 		goto out;
3705 	}
3706 
3707 	/* Allocate memory for local reference block */
3708 	hba->lrb = devm_kcalloc(hba->dev,
3709 				hba->nutrs, sizeof(struct ufshcd_lrb),
3710 				GFP_KERNEL);
3711 	if (!hba->lrb) {
3712 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3713 		goto out;
3714 	}
3715 	return 0;
3716 out:
3717 	return -ENOMEM;
3718 }
3719 
3720 /**
3721  * ufshcd_host_memory_configure - configure local reference block with
3722  *				memory offsets
3723  * @hba: per adapter instance
3724  *
3725  * Configure Host memory space
3726  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3727  * address.
3728  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3729  * and PRDT offset.
3730  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3731  * into local reference block.
3732  */
3733 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3734 {
3735 	struct utp_transfer_req_desc *utrdlp;
3736 	dma_addr_t cmd_desc_dma_addr;
3737 	dma_addr_t cmd_desc_element_addr;
3738 	u16 response_offset;
3739 	u16 prdt_offset;
3740 	int cmd_desc_size;
3741 	int i;
3742 
3743 	utrdlp = hba->utrdl_base_addr;
3744 
3745 	response_offset =
3746 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3747 	prdt_offset =
3748 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3749 
3750 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3751 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3752 
3753 	for (i = 0; i < hba->nutrs; i++) {
3754 		/* Configure UTRD with command descriptor base address */
3755 		cmd_desc_element_addr =
3756 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3757 		utrdlp[i].command_desc_base_addr_lo =
3758 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3759 		utrdlp[i].command_desc_base_addr_hi =
3760 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3761 
3762 		/* Response upiu and prdt offset should be in double words */
3763 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3764 			utrdlp[i].response_upiu_offset =
3765 				cpu_to_le16(response_offset);
3766 			utrdlp[i].prd_table_offset =
3767 				cpu_to_le16(prdt_offset);
3768 			utrdlp[i].response_upiu_length =
3769 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3770 		} else {
3771 			utrdlp[i].response_upiu_offset =
3772 				cpu_to_le16(response_offset >> 2);
3773 			utrdlp[i].prd_table_offset =
3774 				cpu_to_le16(prdt_offset >> 2);
3775 			utrdlp[i].response_upiu_length =
3776 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3777 		}
3778 
3779 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3780 	}
3781 }
3782 
3783 /**
3784  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3785  * @hba: per adapter instance
3786  *
3787  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3788  * in order to initialize the Unipro link startup procedure.
3789  * Once the Unipro links are up, the device connected to the controller
3790  * is detected.
3791  *
3792  * Returns 0 on success, non-zero value on failure
3793  */
3794 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3795 {
3796 	struct uic_command uic_cmd = {0};
3797 	int ret;
3798 
3799 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3800 
3801 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3802 	if (ret)
3803 		dev_dbg(hba->dev,
3804 			"dme-link-startup: error code %d\n", ret);
3805 	return ret;
3806 }
3807 /**
3808  * ufshcd_dme_reset - UIC command for DME_RESET
3809  * @hba: per adapter instance
3810  *
3811  * DME_RESET command is issued in order to reset UniPro stack.
3812  * This function now deals with cold reset.
3813  *
3814  * Returns 0 on success, non-zero value on failure
3815  */
3816 static int ufshcd_dme_reset(struct ufs_hba *hba)
3817 {
3818 	struct uic_command uic_cmd = {0};
3819 	int ret;
3820 
3821 	uic_cmd.command = UIC_CMD_DME_RESET;
3822 
3823 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3824 	if (ret)
3825 		dev_err(hba->dev,
3826 			"dme-reset: error code %d\n", ret);
3827 
3828 	return ret;
3829 }
3830 
3831 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3832 			       int agreed_gear,
3833 			       int adapt_val)
3834 {
3835 	int ret;
3836 
3837 	if (agreed_gear != UFS_HS_G4)
3838 		adapt_val = PA_NO_ADAPT;
3839 
3840 	ret = ufshcd_dme_set(hba,
3841 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3842 			     adapt_val);
3843 	return ret;
3844 }
3845 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3846 
3847 /**
3848  * ufshcd_dme_enable - UIC command for DME_ENABLE
3849  * @hba: per adapter instance
3850  *
3851  * DME_ENABLE command is issued in order to enable UniPro stack.
3852  *
3853  * Returns 0 on success, non-zero value on failure
3854  */
3855 static int ufshcd_dme_enable(struct ufs_hba *hba)
3856 {
3857 	struct uic_command uic_cmd = {0};
3858 	int ret;
3859 
3860 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3861 
3862 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3863 	if (ret)
3864 		dev_err(hba->dev,
3865 			"dme-enable: error code %d\n", ret);
3866 
3867 	return ret;
3868 }
3869 
3870 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3871 {
3872 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3873 	unsigned long min_sleep_time_us;
3874 
3875 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3876 		return;
3877 
3878 	/*
3879 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3880 	 * this function
3881 	 */
3882 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3883 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3884 	} else {
3885 		unsigned long delta =
3886 			(unsigned long) ktime_to_us(
3887 				ktime_sub(ktime_get(),
3888 				hba->last_dme_cmd_tstamp));
3889 
3890 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3891 			min_sleep_time_us =
3892 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3893 		else
3894 			return; /* no more delay required */
3895 	}
3896 
3897 	/* allow sleep for extra 50us if needed */
3898 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3899 }
3900 
3901 /**
3902  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3903  * @hba: per adapter instance
3904  * @attr_sel: uic command argument1
3905  * @attr_set: attribute set type as uic command argument2
3906  * @mib_val: setting value as uic command argument3
3907  * @peer: indicate whether peer or local
3908  *
3909  * Returns 0 on success, non-zero value on failure
3910  */
3911 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3912 			u8 attr_set, u32 mib_val, u8 peer)
3913 {
3914 	struct uic_command uic_cmd = {0};
3915 	static const char *const action[] = {
3916 		"dme-set",
3917 		"dme-peer-set"
3918 	};
3919 	const char *set = action[!!peer];
3920 	int ret;
3921 	int retries = UFS_UIC_COMMAND_RETRIES;
3922 
3923 	uic_cmd.command = peer ?
3924 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3925 	uic_cmd.argument1 = attr_sel;
3926 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3927 	uic_cmd.argument3 = mib_val;
3928 
3929 	do {
3930 		/* for peer attributes we retry upon failure */
3931 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3932 		if (ret)
3933 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3934 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3935 	} while (ret && peer && --retries);
3936 
3937 	if (ret)
3938 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3939 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3940 			UFS_UIC_COMMAND_RETRIES - retries);
3941 
3942 	return ret;
3943 }
3944 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3945 
3946 /**
3947  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3948  * @hba: per adapter instance
3949  * @attr_sel: uic command argument1
3950  * @mib_val: the value of the attribute as returned by the UIC command
3951  * @peer: indicate whether peer or local
3952  *
3953  * Returns 0 on success, non-zero value on failure
3954  */
3955 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3956 			u32 *mib_val, u8 peer)
3957 {
3958 	struct uic_command uic_cmd = {0};
3959 	static const char *const action[] = {
3960 		"dme-get",
3961 		"dme-peer-get"
3962 	};
3963 	const char *get = action[!!peer];
3964 	int ret;
3965 	int retries = UFS_UIC_COMMAND_RETRIES;
3966 	struct ufs_pa_layer_attr orig_pwr_info;
3967 	struct ufs_pa_layer_attr temp_pwr_info;
3968 	bool pwr_mode_change = false;
3969 
3970 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3971 		orig_pwr_info = hba->pwr_info;
3972 		temp_pwr_info = orig_pwr_info;
3973 
3974 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3975 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3976 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3977 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3978 			pwr_mode_change = true;
3979 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3980 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3981 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3982 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3983 			pwr_mode_change = true;
3984 		}
3985 		if (pwr_mode_change) {
3986 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3987 			if (ret)
3988 				goto out;
3989 		}
3990 	}
3991 
3992 	uic_cmd.command = peer ?
3993 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3994 	uic_cmd.argument1 = attr_sel;
3995 
3996 	do {
3997 		/* for peer attributes we retry upon failure */
3998 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3999 		if (ret)
4000 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4001 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4002 	} while (ret && peer && --retries);
4003 
4004 	if (ret)
4005 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4006 			get, UIC_GET_ATTR_ID(attr_sel),
4007 			UFS_UIC_COMMAND_RETRIES - retries);
4008 
4009 	if (mib_val && !ret)
4010 		*mib_val = uic_cmd.argument3;
4011 
4012 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4013 	    && pwr_mode_change)
4014 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4015 out:
4016 	return ret;
4017 }
4018 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4019 
4020 /**
4021  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4022  * state) and waits for it to take effect.
4023  *
4024  * @hba: per adapter instance
4025  * @cmd: UIC command to execute
4026  *
4027  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4028  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4029  * and device UniPro link and hence it's final completion would be indicated by
4030  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4031  * addition to normal UIC command completion Status (UCCS). This function only
4032  * returns after the relevant status bits indicate the completion.
4033  *
4034  * Returns 0 on success, non-zero value on failure
4035  */
4036 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4037 {
4038 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4039 	unsigned long flags;
4040 	u8 status;
4041 	int ret;
4042 	bool reenable_intr = false;
4043 
4044 	mutex_lock(&hba->uic_cmd_mutex);
4045 	ufshcd_add_delay_before_dme_cmd(hba);
4046 
4047 	spin_lock_irqsave(hba->host->host_lock, flags);
4048 	if (ufshcd_is_link_broken(hba)) {
4049 		ret = -ENOLINK;
4050 		goto out_unlock;
4051 	}
4052 	hba->uic_async_done = &uic_async_done;
4053 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4054 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4055 		/*
4056 		 * Make sure UIC command completion interrupt is disabled before
4057 		 * issuing UIC command.
4058 		 */
4059 		wmb();
4060 		reenable_intr = true;
4061 	}
4062 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4063 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4064 	if (ret) {
4065 		dev_err(hba->dev,
4066 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4067 			cmd->command, cmd->argument3, ret);
4068 		goto out;
4069 	}
4070 
4071 	if (!wait_for_completion_timeout(hba->uic_async_done,
4072 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4073 		dev_err(hba->dev,
4074 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4075 			cmd->command, cmd->argument3);
4076 
4077 		if (!cmd->cmd_active) {
4078 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4079 				__func__);
4080 			goto check_upmcrs;
4081 		}
4082 
4083 		ret = -ETIMEDOUT;
4084 		goto out;
4085 	}
4086 
4087 check_upmcrs:
4088 	status = ufshcd_get_upmcrs(hba);
4089 	if (status != PWR_LOCAL) {
4090 		dev_err(hba->dev,
4091 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4092 			cmd->command, status);
4093 		ret = (status != PWR_OK) ? status : -1;
4094 	}
4095 out:
4096 	if (ret) {
4097 		ufshcd_print_host_state(hba);
4098 		ufshcd_print_pwr_info(hba);
4099 		ufshcd_print_evt_hist(hba);
4100 	}
4101 
4102 	spin_lock_irqsave(hba->host->host_lock, flags);
4103 	hba->active_uic_cmd = NULL;
4104 	hba->uic_async_done = NULL;
4105 	if (reenable_intr)
4106 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4107 	if (ret) {
4108 		ufshcd_set_link_broken(hba);
4109 		ufshcd_schedule_eh_work(hba);
4110 	}
4111 out_unlock:
4112 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4113 	mutex_unlock(&hba->uic_cmd_mutex);
4114 
4115 	return ret;
4116 }
4117 
4118 /**
4119  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4120  *				using DME_SET primitives.
4121  * @hba: per adapter instance
4122  * @mode: powr mode value
4123  *
4124  * Returns 0 on success, non-zero value on failure
4125  */
4126 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4127 {
4128 	struct uic_command uic_cmd = {0};
4129 	int ret;
4130 
4131 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4132 		ret = ufshcd_dme_set(hba,
4133 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4134 		if (ret) {
4135 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4136 						__func__, ret);
4137 			goto out;
4138 		}
4139 	}
4140 
4141 	uic_cmd.command = UIC_CMD_DME_SET;
4142 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4143 	uic_cmd.argument3 = mode;
4144 	ufshcd_hold(hba, false);
4145 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4146 	ufshcd_release(hba);
4147 
4148 out:
4149 	return ret;
4150 }
4151 
4152 int ufshcd_link_recovery(struct ufs_hba *hba)
4153 {
4154 	int ret;
4155 	unsigned long flags;
4156 
4157 	spin_lock_irqsave(hba->host->host_lock, flags);
4158 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4159 	ufshcd_set_eh_in_progress(hba);
4160 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4161 
4162 	/* Reset the attached device */
4163 	ufshcd_device_reset(hba);
4164 
4165 	ret = ufshcd_host_reset_and_restore(hba);
4166 
4167 	spin_lock_irqsave(hba->host->host_lock, flags);
4168 	if (ret)
4169 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4170 	ufshcd_clear_eh_in_progress(hba);
4171 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4172 
4173 	if (ret)
4174 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4175 			__func__, ret);
4176 
4177 	return ret;
4178 }
4179 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4180 
4181 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4182 {
4183 	int ret;
4184 	struct uic_command uic_cmd = {0};
4185 	ktime_t start = ktime_get();
4186 
4187 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4188 
4189 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4190 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4191 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4192 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4193 
4194 	if (ret)
4195 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4196 			__func__, ret);
4197 	else
4198 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4199 								POST_CHANGE);
4200 
4201 	return ret;
4202 }
4203 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4204 
4205 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4206 {
4207 	struct uic_command uic_cmd = {0};
4208 	int ret;
4209 	ktime_t start = ktime_get();
4210 
4211 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4212 
4213 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4214 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4215 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4216 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4217 
4218 	if (ret) {
4219 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4220 			__func__, ret);
4221 	} else {
4222 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4223 								POST_CHANGE);
4224 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4225 		hba->ufs_stats.hibern8_exit_cnt++;
4226 	}
4227 
4228 	return ret;
4229 }
4230 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4231 
4232 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4233 {
4234 	unsigned long flags;
4235 	bool update = false;
4236 
4237 	if (!ufshcd_is_auto_hibern8_supported(hba))
4238 		return;
4239 
4240 	spin_lock_irqsave(hba->host->host_lock, flags);
4241 	if (hba->ahit != ahit) {
4242 		hba->ahit = ahit;
4243 		update = true;
4244 	}
4245 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4246 
4247 	if (update &&
4248 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4249 		ufshcd_rpm_get_sync(hba);
4250 		ufshcd_hold(hba, false);
4251 		ufshcd_auto_hibern8_enable(hba);
4252 		ufshcd_release(hba);
4253 		ufshcd_rpm_put_sync(hba);
4254 	}
4255 }
4256 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4257 
4258 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4259 {
4260 	if (!ufshcd_is_auto_hibern8_supported(hba))
4261 		return;
4262 
4263 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4264 }
4265 
4266  /**
4267  * ufshcd_init_pwr_info - setting the POR (power on reset)
4268  * values in hba power info
4269  * @hba: per-adapter instance
4270  */
4271 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4272 {
4273 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4274 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4275 	hba->pwr_info.lane_rx = 1;
4276 	hba->pwr_info.lane_tx = 1;
4277 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4278 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4279 	hba->pwr_info.hs_rate = 0;
4280 }
4281 
4282 /**
4283  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4284  * @hba: per-adapter instance
4285  */
4286 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4287 {
4288 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4289 
4290 	if (hba->max_pwr_info.is_valid)
4291 		return 0;
4292 
4293 	pwr_info->pwr_tx = FAST_MODE;
4294 	pwr_info->pwr_rx = FAST_MODE;
4295 	pwr_info->hs_rate = PA_HS_MODE_B;
4296 
4297 	/* Get the connected lane count */
4298 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4299 			&pwr_info->lane_rx);
4300 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4301 			&pwr_info->lane_tx);
4302 
4303 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4304 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4305 				__func__,
4306 				pwr_info->lane_rx,
4307 				pwr_info->lane_tx);
4308 		return -EINVAL;
4309 	}
4310 
4311 	/*
4312 	 * First, get the maximum gears of HS speed.
4313 	 * If a zero value, it means there is no HSGEAR capability.
4314 	 * Then, get the maximum gears of PWM speed.
4315 	 */
4316 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4317 	if (!pwr_info->gear_rx) {
4318 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4319 				&pwr_info->gear_rx);
4320 		if (!pwr_info->gear_rx) {
4321 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4322 				__func__, pwr_info->gear_rx);
4323 			return -EINVAL;
4324 		}
4325 		pwr_info->pwr_rx = SLOW_MODE;
4326 	}
4327 
4328 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4329 			&pwr_info->gear_tx);
4330 	if (!pwr_info->gear_tx) {
4331 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4332 				&pwr_info->gear_tx);
4333 		if (!pwr_info->gear_tx) {
4334 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4335 				__func__, pwr_info->gear_tx);
4336 			return -EINVAL;
4337 		}
4338 		pwr_info->pwr_tx = SLOW_MODE;
4339 	}
4340 
4341 	hba->max_pwr_info.is_valid = true;
4342 	return 0;
4343 }
4344 
4345 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4346 			     struct ufs_pa_layer_attr *pwr_mode)
4347 {
4348 	int ret;
4349 
4350 	/* if already configured to the requested pwr_mode */
4351 	if (!hba->force_pmc &&
4352 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4353 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4354 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4355 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4356 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4357 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4358 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4359 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4360 		return 0;
4361 	}
4362 
4363 	/*
4364 	 * Configure attributes for power mode change with below.
4365 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4366 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4367 	 * - PA_HSSERIES
4368 	 */
4369 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4370 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4371 			pwr_mode->lane_rx);
4372 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4373 			pwr_mode->pwr_rx == FAST_MODE)
4374 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4375 	else
4376 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4377 
4378 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4379 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4380 			pwr_mode->lane_tx);
4381 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4382 			pwr_mode->pwr_tx == FAST_MODE)
4383 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4384 	else
4385 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4386 
4387 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4388 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4389 	    pwr_mode->pwr_rx == FAST_MODE ||
4390 	    pwr_mode->pwr_tx == FAST_MODE)
4391 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4392 						pwr_mode->hs_rate);
4393 
4394 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4395 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4396 				DL_FC0ProtectionTimeOutVal_Default);
4397 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4398 				DL_TC0ReplayTimeOutVal_Default);
4399 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4400 				DL_AFC0ReqTimeOutVal_Default);
4401 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4402 				DL_FC1ProtectionTimeOutVal_Default);
4403 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4404 				DL_TC1ReplayTimeOutVal_Default);
4405 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4406 				DL_AFC1ReqTimeOutVal_Default);
4407 
4408 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4409 				DL_FC0ProtectionTimeOutVal_Default);
4410 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4411 				DL_TC0ReplayTimeOutVal_Default);
4412 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4413 				DL_AFC0ReqTimeOutVal_Default);
4414 	}
4415 
4416 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4417 			| pwr_mode->pwr_tx);
4418 
4419 	if (ret) {
4420 		dev_err(hba->dev,
4421 			"%s: power mode change failed %d\n", __func__, ret);
4422 	} else {
4423 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4424 								pwr_mode);
4425 
4426 		memcpy(&hba->pwr_info, pwr_mode,
4427 			sizeof(struct ufs_pa_layer_attr));
4428 	}
4429 
4430 	return ret;
4431 }
4432 
4433 /**
4434  * ufshcd_config_pwr_mode - configure a new power mode
4435  * @hba: per-adapter instance
4436  * @desired_pwr_mode: desired power configuration
4437  */
4438 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4439 		struct ufs_pa_layer_attr *desired_pwr_mode)
4440 {
4441 	struct ufs_pa_layer_attr final_params = { 0 };
4442 	int ret;
4443 
4444 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4445 					desired_pwr_mode, &final_params);
4446 
4447 	if (ret)
4448 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4449 
4450 	ret = ufshcd_change_power_mode(hba, &final_params);
4451 
4452 	return ret;
4453 }
4454 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4455 
4456 /**
4457  * ufshcd_complete_dev_init() - checks device readiness
4458  * @hba: per-adapter instance
4459  *
4460  * Set fDeviceInit flag and poll until device toggles it.
4461  */
4462 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4463 {
4464 	int err;
4465 	bool flag_res = true;
4466 	ktime_t timeout;
4467 
4468 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4469 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4470 	if (err) {
4471 		dev_err(hba->dev,
4472 			"%s setting fDeviceInit flag failed with error %d\n",
4473 			__func__, err);
4474 		goto out;
4475 	}
4476 
4477 	/* Poll fDeviceInit flag to be cleared */
4478 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4479 	do {
4480 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4481 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4482 		if (!flag_res)
4483 			break;
4484 		usleep_range(500, 1000);
4485 	} while (ktime_before(ktime_get(), timeout));
4486 
4487 	if (err) {
4488 		dev_err(hba->dev,
4489 				"%s reading fDeviceInit flag failed with error %d\n",
4490 				__func__, err);
4491 	} else if (flag_res) {
4492 		dev_err(hba->dev,
4493 				"%s fDeviceInit was not cleared by the device\n",
4494 				__func__);
4495 		err = -EBUSY;
4496 	}
4497 out:
4498 	return err;
4499 }
4500 
4501 /**
4502  * ufshcd_make_hba_operational - Make UFS controller operational
4503  * @hba: per adapter instance
4504  *
4505  * To bring UFS host controller to operational state,
4506  * 1. Enable required interrupts
4507  * 2. Configure interrupt aggregation
4508  * 3. Program UTRL and UTMRL base address
4509  * 4. Configure run-stop-registers
4510  *
4511  * Returns 0 on success, non-zero value on failure
4512  */
4513 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4514 {
4515 	int err = 0;
4516 	u32 reg;
4517 
4518 	/* Enable required interrupts */
4519 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4520 
4521 	/* Configure interrupt aggregation */
4522 	if (ufshcd_is_intr_aggr_allowed(hba))
4523 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4524 	else
4525 		ufshcd_disable_intr_aggr(hba);
4526 
4527 	/* Configure UTRL and UTMRL base address registers */
4528 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4529 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4530 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4531 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4532 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4533 			REG_UTP_TASK_REQ_LIST_BASE_L);
4534 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4535 			REG_UTP_TASK_REQ_LIST_BASE_H);
4536 
4537 	/*
4538 	 * Make sure base address and interrupt setup are updated before
4539 	 * enabling the run/stop registers below.
4540 	 */
4541 	wmb();
4542 
4543 	/*
4544 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4545 	 */
4546 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4547 	if (!(ufshcd_get_lists_status(reg))) {
4548 		ufshcd_enable_run_stop_reg(hba);
4549 	} else {
4550 		dev_err(hba->dev,
4551 			"Host controller not ready to process requests");
4552 		err = -EIO;
4553 	}
4554 
4555 	return err;
4556 }
4557 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4558 
4559 /**
4560  * ufshcd_hba_stop - Send controller to reset state
4561  * @hba: per adapter instance
4562  */
4563 void ufshcd_hba_stop(struct ufs_hba *hba)
4564 {
4565 	unsigned long flags;
4566 	int err;
4567 
4568 	/*
4569 	 * Obtain the host lock to prevent that the controller is disabled
4570 	 * while the UFS interrupt handler is active on another CPU.
4571 	 */
4572 	spin_lock_irqsave(hba->host->host_lock, flags);
4573 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4574 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4575 
4576 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4577 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4578 					10, 1);
4579 	if (err)
4580 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4581 }
4582 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4583 
4584 /**
4585  * ufshcd_hba_execute_hce - initialize the controller
4586  * @hba: per adapter instance
4587  *
4588  * The controller resets itself and controller firmware initialization
4589  * sequence kicks off. When controller is ready it will set
4590  * the Host Controller Enable bit to 1.
4591  *
4592  * Returns 0 on success, non-zero value on failure
4593  */
4594 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4595 {
4596 	int retry_outer = 3;
4597 	int retry_inner;
4598 
4599 start:
4600 	if (ufshcd_is_hba_active(hba))
4601 		/* change controller state to "reset state" */
4602 		ufshcd_hba_stop(hba);
4603 
4604 	/* UniPro link is disabled at this point */
4605 	ufshcd_set_link_off(hba);
4606 
4607 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4608 
4609 	/* start controller initialization sequence */
4610 	ufshcd_hba_start(hba);
4611 
4612 	/*
4613 	 * To initialize a UFS host controller HCE bit must be set to 1.
4614 	 * During initialization the HCE bit value changes from 1->0->1.
4615 	 * When the host controller completes initialization sequence
4616 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4617 	 * to check if the controller has completed initialization sequence.
4618 	 * So without this delay the value HCE = 1, set in the previous
4619 	 * instruction might be read back.
4620 	 * This delay can be changed based on the controller.
4621 	 */
4622 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4623 
4624 	/* wait for the host controller to complete initialization */
4625 	retry_inner = 50;
4626 	while (!ufshcd_is_hba_active(hba)) {
4627 		if (retry_inner) {
4628 			retry_inner--;
4629 		} else {
4630 			dev_err(hba->dev,
4631 				"Controller enable failed\n");
4632 			if (retry_outer) {
4633 				retry_outer--;
4634 				goto start;
4635 			}
4636 			return -EIO;
4637 		}
4638 		usleep_range(1000, 1100);
4639 	}
4640 
4641 	/* enable UIC related interrupts */
4642 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4643 
4644 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4645 
4646 	return 0;
4647 }
4648 
4649 int ufshcd_hba_enable(struct ufs_hba *hba)
4650 {
4651 	int ret;
4652 
4653 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4654 		ufshcd_set_link_off(hba);
4655 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4656 
4657 		/* enable UIC related interrupts */
4658 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4659 		ret = ufshcd_dme_reset(hba);
4660 		if (!ret) {
4661 			ret = ufshcd_dme_enable(hba);
4662 			if (!ret)
4663 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4664 			if (ret)
4665 				dev_err(hba->dev,
4666 					"Host controller enable failed with non-hce\n");
4667 		}
4668 	} else {
4669 		ret = ufshcd_hba_execute_hce(hba);
4670 	}
4671 
4672 	return ret;
4673 }
4674 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4675 
4676 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4677 {
4678 	int tx_lanes = 0, i, err = 0;
4679 
4680 	if (!peer)
4681 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4682 			       &tx_lanes);
4683 	else
4684 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4685 				    &tx_lanes);
4686 	for (i = 0; i < tx_lanes; i++) {
4687 		if (!peer)
4688 			err = ufshcd_dme_set(hba,
4689 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4690 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4691 					0);
4692 		else
4693 			err = ufshcd_dme_peer_set(hba,
4694 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4695 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4696 					0);
4697 		if (err) {
4698 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4699 				__func__, peer, i, err);
4700 			break;
4701 		}
4702 	}
4703 
4704 	return err;
4705 }
4706 
4707 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4708 {
4709 	return ufshcd_disable_tx_lcc(hba, true);
4710 }
4711 
4712 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4713 {
4714 	struct ufs_event_hist *e;
4715 
4716 	if (id >= UFS_EVT_CNT)
4717 		return;
4718 
4719 	e = &hba->ufs_stats.event[id];
4720 	e->val[e->pos] = val;
4721 	e->tstamp[e->pos] = ktime_get();
4722 	e->cnt += 1;
4723 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4724 
4725 	ufshcd_vops_event_notify(hba, id, &val);
4726 }
4727 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4728 
4729 /**
4730  * ufshcd_link_startup - Initialize unipro link startup
4731  * @hba: per adapter instance
4732  *
4733  * Returns 0 for success, non-zero in case of failure
4734  */
4735 static int ufshcd_link_startup(struct ufs_hba *hba)
4736 {
4737 	int ret;
4738 	int retries = DME_LINKSTARTUP_RETRIES;
4739 	bool link_startup_again = false;
4740 
4741 	/*
4742 	 * If UFS device isn't active then we will have to issue link startup
4743 	 * 2 times to make sure the device state move to active.
4744 	 */
4745 	if (!ufshcd_is_ufs_dev_active(hba))
4746 		link_startup_again = true;
4747 
4748 link_startup:
4749 	do {
4750 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4751 
4752 		ret = ufshcd_dme_link_startup(hba);
4753 
4754 		/* check if device is detected by inter-connect layer */
4755 		if (!ret && !ufshcd_is_device_present(hba)) {
4756 			ufshcd_update_evt_hist(hba,
4757 					       UFS_EVT_LINK_STARTUP_FAIL,
4758 					       0);
4759 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4760 			ret = -ENXIO;
4761 			goto out;
4762 		}
4763 
4764 		/*
4765 		 * DME link lost indication is only received when link is up,
4766 		 * but we can't be sure if the link is up until link startup
4767 		 * succeeds. So reset the local Uni-Pro and try again.
4768 		 */
4769 		if (ret && ufshcd_hba_enable(hba)) {
4770 			ufshcd_update_evt_hist(hba,
4771 					       UFS_EVT_LINK_STARTUP_FAIL,
4772 					       (u32)ret);
4773 			goto out;
4774 		}
4775 	} while (ret && retries--);
4776 
4777 	if (ret) {
4778 		/* failed to get the link up... retire */
4779 		ufshcd_update_evt_hist(hba,
4780 				       UFS_EVT_LINK_STARTUP_FAIL,
4781 				       (u32)ret);
4782 		goto out;
4783 	}
4784 
4785 	if (link_startup_again) {
4786 		link_startup_again = false;
4787 		retries = DME_LINKSTARTUP_RETRIES;
4788 		goto link_startup;
4789 	}
4790 
4791 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4792 	ufshcd_init_pwr_info(hba);
4793 	ufshcd_print_pwr_info(hba);
4794 
4795 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4796 		ret = ufshcd_disable_device_tx_lcc(hba);
4797 		if (ret)
4798 			goto out;
4799 	}
4800 
4801 	/* Include any host controller configuration via UIC commands */
4802 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4803 	if (ret)
4804 		goto out;
4805 
4806 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4807 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4808 	ret = ufshcd_make_hba_operational(hba);
4809 out:
4810 	if (ret) {
4811 		dev_err(hba->dev, "link startup failed %d\n", ret);
4812 		ufshcd_print_host_state(hba);
4813 		ufshcd_print_pwr_info(hba);
4814 		ufshcd_print_evt_hist(hba);
4815 	}
4816 	return ret;
4817 }
4818 
4819 /**
4820  * ufshcd_verify_dev_init() - Verify device initialization
4821  * @hba: per-adapter instance
4822  *
4823  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4824  * device Transport Protocol (UTP) layer is ready after a reset.
4825  * If the UTP layer at the device side is not initialized, it may
4826  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4827  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4828  */
4829 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4830 {
4831 	int err = 0;
4832 	int retries;
4833 
4834 	ufshcd_hold(hba, false);
4835 	mutex_lock(&hba->dev_cmd.lock);
4836 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4837 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4838 					  hba->nop_out_timeout);
4839 
4840 		if (!err || err == -ETIMEDOUT)
4841 			break;
4842 
4843 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4844 	}
4845 	mutex_unlock(&hba->dev_cmd.lock);
4846 	ufshcd_release(hba);
4847 
4848 	if (err)
4849 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4850 	return err;
4851 }
4852 
4853 /**
4854  * ufshcd_set_queue_depth - set lun queue depth
4855  * @sdev: pointer to SCSI device
4856  *
4857  * Read bLUQueueDepth value and activate scsi tagged command
4858  * queueing. For WLUN, queue depth is set to 1. For best-effort
4859  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4860  * value that host can queue.
4861  */
4862 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4863 {
4864 	int ret = 0;
4865 	u8 lun_qdepth;
4866 	struct ufs_hba *hba;
4867 
4868 	hba = shost_priv(sdev->host);
4869 
4870 	lun_qdepth = hba->nutrs;
4871 	ret = ufshcd_read_unit_desc_param(hba,
4872 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4873 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4874 					  &lun_qdepth,
4875 					  sizeof(lun_qdepth));
4876 
4877 	/* Some WLUN doesn't support unit descriptor */
4878 	if (ret == -EOPNOTSUPP)
4879 		lun_qdepth = 1;
4880 	else if (!lun_qdepth)
4881 		/* eventually, we can figure out the real queue depth */
4882 		lun_qdepth = hba->nutrs;
4883 	else
4884 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4885 
4886 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4887 			__func__, lun_qdepth);
4888 	scsi_change_queue_depth(sdev, lun_qdepth);
4889 }
4890 
4891 /*
4892  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4893  * @hba: per-adapter instance
4894  * @lun: UFS device lun id
4895  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4896  *
4897  * Returns 0 in case of success and b_lu_write_protect status would be returned
4898  * @b_lu_write_protect parameter.
4899  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4900  * Returns -EINVAL in case of invalid parameters passed to this function.
4901  */
4902 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4903 			    u8 lun,
4904 			    u8 *b_lu_write_protect)
4905 {
4906 	int ret;
4907 
4908 	if (!b_lu_write_protect)
4909 		ret = -EINVAL;
4910 	/*
4911 	 * According to UFS device spec, RPMB LU can't be write
4912 	 * protected so skip reading bLUWriteProtect parameter for
4913 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4914 	 */
4915 	else if (lun >= hba->dev_info.max_lu_supported)
4916 		ret = -ENOTSUPP;
4917 	else
4918 		ret = ufshcd_read_unit_desc_param(hba,
4919 					  lun,
4920 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4921 					  b_lu_write_protect,
4922 					  sizeof(*b_lu_write_protect));
4923 	return ret;
4924 }
4925 
4926 /**
4927  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4928  * status
4929  * @hba: per-adapter instance
4930  * @sdev: pointer to SCSI device
4931  *
4932  */
4933 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4934 						    struct scsi_device *sdev)
4935 {
4936 	if (hba->dev_info.f_power_on_wp_en &&
4937 	    !hba->dev_info.is_lu_power_on_wp) {
4938 		u8 b_lu_write_protect;
4939 
4940 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4941 				      &b_lu_write_protect) &&
4942 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4943 			hba->dev_info.is_lu_power_on_wp = true;
4944 	}
4945 }
4946 
4947 /**
4948  * ufshcd_setup_links - associate link b/w device wlun and other luns
4949  * @sdev: pointer to SCSI device
4950  * @hba: pointer to ufs hba
4951  */
4952 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4953 {
4954 	struct device_link *link;
4955 
4956 	/*
4957 	 * Device wlun is the supplier & rest of the luns are consumers.
4958 	 * This ensures that device wlun suspends after all other luns.
4959 	 */
4960 	if (hba->ufs_device_wlun) {
4961 		link = device_link_add(&sdev->sdev_gendev,
4962 				       &hba->ufs_device_wlun->sdev_gendev,
4963 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4964 		if (!link) {
4965 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4966 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4967 			return;
4968 		}
4969 		hba->luns_avail--;
4970 		/* Ignore REPORT_LUN wlun probing */
4971 		if (hba->luns_avail == 1) {
4972 			ufshcd_rpm_put(hba);
4973 			return;
4974 		}
4975 	} else {
4976 		/*
4977 		 * Device wlun is probed. The assumption is that WLUNs are
4978 		 * scanned before other LUNs.
4979 		 */
4980 		hba->luns_avail--;
4981 	}
4982 }
4983 
4984 /**
4985  * ufshcd_slave_alloc - handle initial SCSI device configurations
4986  * @sdev: pointer to SCSI device
4987  *
4988  * Returns success
4989  */
4990 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4991 {
4992 	struct ufs_hba *hba;
4993 
4994 	hba = shost_priv(sdev->host);
4995 
4996 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
4997 	sdev->use_10_for_ms = 1;
4998 
4999 	/* DBD field should be set to 1 in mode sense(10) */
5000 	sdev->set_dbd_for_ms = 1;
5001 
5002 	/* allow SCSI layer to restart the device in case of errors */
5003 	sdev->allow_restart = 1;
5004 
5005 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5006 	sdev->no_report_opcodes = 1;
5007 
5008 	/* WRITE_SAME command is not supported */
5009 	sdev->no_write_same = 1;
5010 
5011 	ufshcd_set_queue_depth(sdev);
5012 
5013 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
5014 
5015 	ufshcd_setup_links(hba, sdev);
5016 
5017 	return 0;
5018 }
5019 
5020 /**
5021  * ufshcd_change_queue_depth - change queue depth
5022  * @sdev: pointer to SCSI device
5023  * @depth: required depth to set
5024  *
5025  * Change queue depth and make sure the max. limits are not crossed.
5026  */
5027 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5028 {
5029 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5030 }
5031 
5032 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5033 {
5034 	/* skip well-known LU */
5035 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5036 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5037 		return;
5038 
5039 	ufshpb_destroy_lu(hba, sdev);
5040 }
5041 
5042 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5043 {
5044 	/* skip well-known LU */
5045 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5046 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5047 		return;
5048 
5049 	ufshpb_init_hpb_lu(hba, sdev);
5050 }
5051 
5052 /**
5053  * ufshcd_slave_configure - adjust SCSI device configurations
5054  * @sdev: pointer to SCSI device
5055  */
5056 static int ufshcd_slave_configure(struct scsi_device *sdev)
5057 {
5058 	struct ufs_hba *hba = shost_priv(sdev->host);
5059 	struct request_queue *q = sdev->request_queue;
5060 
5061 	ufshcd_hpb_configure(hba, sdev);
5062 
5063 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5064 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
5065 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
5066 	/*
5067 	 * Block runtime-pm until all consumers are added.
5068 	 * Refer ufshcd_setup_links().
5069 	 */
5070 	if (is_device_wlun(sdev))
5071 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5072 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5073 		sdev->rpm_autosuspend = 1;
5074 	/*
5075 	 * Do not print messages during runtime PM to avoid never-ending cycles
5076 	 * of messages written back to storage by user space causing runtime
5077 	 * resume, causing more messages and so on.
5078 	 */
5079 	sdev->silence_suspend = 1;
5080 
5081 	ufshcd_crypto_register(hba, q);
5082 
5083 	return 0;
5084 }
5085 
5086 /**
5087  * ufshcd_slave_destroy - remove SCSI device configurations
5088  * @sdev: pointer to SCSI device
5089  */
5090 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5091 {
5092 	struct ufs_hba *hba;
5093 	unsigned long flags;
5094 
5095 	hba = shost_priv(sdev->host);
5096 
5097 	ufshcd_hpb_destroy(hba, sdev);
5098 
5099 	/* Drop the reference as it won't be needed anymore */
5100 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5101 		spin_lock_irqsave(hba->host->host_lock, flags);
5102 		hba->ufs_device_wlun = NULL;
5103 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5104 	} else if (hba->ufs_device_wlun) {
5105 		struct device *supplier = NULL;
5106 
5107 		/* Ensure UFS Device WLUN exists and does not disappear */
5108 		spin_lock_irqsave(hba->host->host_lock, flags);
5109 		if (hba->ufs_device_wlun) {
5110 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5111 			get_device(supplier);
5112 		}
5113 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5114 
5115 		if (supplier) {
5116 			/*
5117 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5118 			 * device will not have been registered but can still
5119 			 * have a device link holding a reference to the device.
5120 			 */
5121 			device_link_remove(&sdev->sdev_gendev, supplier);
5122 			put_device(supplier);
5123 		}
5124 	}
5125 }
5126 
5127 /**
5128  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5129  * @lrbp: pointer to local reference block of completed command
5130  * @scsi_status: SCSI command status
5131  *
5132  * Returns value base on SCSI command status
5133  */
5134 static inline int
5135 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5136 {
5137 	int result = 0;
5138 
5139 	switch (scsi_status) {
5140 	case SAM_STAT_CHECK_CONDITION:
5141 		ufshcd_copy_sense_data(lrbp);
5142 		fallthrough;
5143 	case SAM_STAT_GOOD:
5144 		result |= DID_OK << 16 | scsi_status;
5145 		break;
5146 	case SAM_STAT_TASK_SET_FULL:
5147 	case SAM_STAT_BUSY:
5148 	case SAM_STAT_TASK_ABORTED:
5149 		ufshcd_copy_sense_data(lrbp);
5150 		result |= scsi_status;
5151 		break;
5152 	default:
5153 		result |= DID_ERROR << 16;
5154 		break;
5155 	} /* end of switch */
5156 
5157 	return result;
5158 }
5159 
5160 /**
5161  * ufshcd_transfer_rsp_status - Get overall status of the response
5162  * @hba: per adapter instance
5163  * @lrbp: pointer to local reference block of completed command
5164  *
5165  * Returns result of the command to notify SCSI midlayer
5166  */
5167 static inline int
5168 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5169 {
5170 	int result = 0;
5171 	int scsi_status;
5172 	enum utp_ocs ocs;
5173 
5174 	/* overall command status of utrd */
5175 	ocs = ufshcd_get_tr_ocs(lrbp);
5176 
5177 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5178 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5179 					MASK_RSP_UPIU_RESULT)
5180 			ocs = OCS_SUCCESS;
5181 	}
5182 
5183 	switch (ocs) {
5184 	case OCS_SUCCESS:
5185 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5186 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5187 		switch (result) {
5188 		case UPIU_TRANSACTION_RESPONSE:
5189 			/*
5190 			 * get the response UPIU result to extract
5191 			 * the SCSI command status
5192 			 */
5193 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5194 
5195 			/*
5196 			 * get the result based on SCSI status response
5197 			 * to notify the SCSI midlayer of the command status
5198 			 */
5199 			scsi_status = result & MASK_SCSI_STATUS;
5200 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5201 
5202 			/*
5203 			 * Currently we are only supporting BKOPs exception
5204 			 * events hence we can ignore BKOPs exception event
5205 			 * during power management callbacks. BKOPs exception
5206 			 * event is not expected to be raised in runtime suspend
5207 			 * callback as it allows the urgent bkops.
5208 			 * During system suspend, we are anyway forcefully
5209 			 * disabling the bkops and if urgent bkops is needed
5210 			 * it will be enabled on system resume. Long term
5211 			 * solution could be to abort the system suspend if
5212 			 * UFS device needs urgent BKOPs.
5213 			 */
5214 			if (!hba->pm_op_in_progress &&
5215 			    !ufshcd_eh_in_progress(hba) &&
5216 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5217 				/* Flushed in suspend */
5218 				schedule_work(&hba->eeh_work);
5219 
5220 			if (scsi_status == SAM_STAT_GOOD)
5221 				ufshpb_rsp_upiu(hba, lrbp);
5222 			break;
5223 		case UPIU_TRANSACTION_REJECT_UPIU:
5224 			/* TODO: handle Reject UPIU Response */
5225 			result = DID_ERROR << 16;
5226 			dev_err(hba->dev,
5227 				"Reject UPIU not fully implemented\n");
5228 			break;
5229 		default:
5230 			dev_err(hba->dev,
5231 				"Unexpected request response code = %x\n",
5232 				result);
5233 			result = DID_ERROR << 16;
5234 			break;
5235 		}
5236 		break;
5237 	case OCS_ABORTED:
5238 		result |= DID_ABORT << 16;
5239 		break;
5240 	case OCS_INVALID_COMMAND_STATUS:
5241 		result |= DID_REQUEUE << 16;
5242 		break;
5243 	case OCS_INVALID_CMD_TABLE_ATTR:
5244 	case OCS_INVALID_PRDT_ATTR:
5245 	case OCS_MISMATCH_DATA_BUF_SIZE:
5246 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5247 	case OCS_PEER_COMM_FAILURE:
5248 	case OCS_FATAL_ERROR:
5249 	case OCS_DEVICE_FATAL_ERROR:
5250 	case OCS_INVALID_CRYPTO_CONFIG:
5251 	case OCS_GENERAL_CRYPTO_ERROR:
5252 	default:
5253 		result |= DID_ERROR << 16;
5254 		dev_err(hba->dev,
5255 				"OCS error from controller = %x for tag %d\n",
5256 				ocs, lrbp->task_tag);
5257 		ufshcd_print_evt_hist(hba);
5258 		ufshcd_print_host_state(hba);
5259 		break;
5260 	} /* end of switch */
5261 
5262 	if ((host_byte(result) != DID_OK) &&
5263 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5264 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5265 	return result;
5266 }
5267 
5268 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5269 					 u32 intr_mask)
5270 {
5271 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5272 	    !ufshcd_is_auto_hibern8_enabled(hba))
5273 		return false;
5274 
5275 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5276 		return false;
5277 
5278 	if (hba->active_uic_cmd &&
5279 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5280 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5281 		return false;
5282 
5283 	return true;
5284 }
5285 
5286 /**
5287  * ufshcd_uic_cmd_compl - handle completion of uic command
5288  * @hba: per adapter instance
5289  * @intr_status: interrupt status generated by the controller
5290  *
5291  * Returns
5292  *  IRQ_HANDLED - If interrupt is valid
5293  *  IRQ_NONE    - If invalid interrupt
5294  */
5295 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5296 {
5297 	irqreturn_t retval = IRQ_NONE;
5298 
5299 	spin_lock(hba->host->host_lock);
5300 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5301 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5302 
5303 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5304 		hba->active_uic_cmd->argument2 |=
5305 			ufshcd_get_uic_cmd_result(hba);
5306 		hba->active_uic_cmd->argument3 =
5307 			ufshcd_get_dme_attr_val(hba);
5308 		if (!hba->uic_async_done)
5309 			hba->active_uic_cmd->cmd_active = 0;
5310 		complete(&hba->active_uic_cmd->done);
5311 		retval = IRQ_HANDLED;
5312 	}
5313 
5314 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5315 		hba->active_uic_cmd->cmd_active = 0;
5316 		complete(hba->uic_async_done);
5317 		retval = IRQ_HANDLED;
5318 	}
5319 
5320 	if (retval == IRQ_HANDLED)
5321 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5322 					     UFS_CMD_COMP);
5323 	spin_unlock(hba->host->host_lock);
5324 	return retval;
5325 }
5326 
5327 /* Release the resources allocated for processing a SCSI command. */
5328 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5329 				    struct ufshcd_lrb *lrbp)
5330 {
5331 	struct scsi_cmnd *cmd = lrbp->cmd;
5332 
5333 	scsi_dma_unmap(cmd);
5334 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5335 	ufshcd_release(hba);
5336 	ufshcd_clk_scaling_update_busy(hba);
5337 }
5338 
5339 /**
5340  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5341  * @hba: per adapter instance
5342  * @completed_reqs: bitmask that indicates which requests to complete
5343  */
5344 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5345 					unsigned long completed_reqs)
5346 {
5347 	struct ufshcd_lrb *lrbp;
5348 	struct scsi_cmnd *cmd;
5349 	int index;
5350 
5351 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5352 		lrbp = &hba->lrb[index];
5353 		lrbp->compl_time_stamp = ktime_get();
5354 		cmd = lrbp->cmd;
5355 		if (cmd) {
5356 			if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5357 				ufshcd_update_monitor(hba, lrbp);
5358 			ufshcd_add_command_trace(hba, index, UFS_CMD_COMP);
5359 			cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5360 			ufshcd_release_scsi_cmd(hba, lrbp);
5361 			/* Do not touch lrbp after scsi done */
5362 			scsi_done(cmd);
5363 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5364 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5365 			if (hba->dev_cmd.complete) {
5366 				ufshcd_add_command_trace(hba, index,
5367 							 UFS_DEV_COMP);
5368 				complete(hba->dev_cmd.complete);
5369 				ufshcd_clk_scaling_update_busy(hba);
5370 			}
5371 		}
5372 	}
5373 }
5374 
5375 /*
5376  * Returns > 0 if one or more commands have been completed or 0 if no
5377  * requests have been completed.
5378  */
5379 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5380 {
5381 	struct ufs_hba *hba = shost_priv(shost);
5382 	unsigned long completed_reqs, flags;
5383 	u32 tr_doorbell;
5384 
5385 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5386 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5387 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5388 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5389 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5390 		  hba->outstanding_reqs);
5391 	hba->outstanding_reqs &= ~completed_reqs;
5392 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5393 
5394 	if (completed_reqs)
5395 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5396 
5397 	return completed_reqs;
5398 }
5399 
5400 /**
5401  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5402  * @hba: per adapter instance
5403  *
5404  * Returns
5405  *  IRQ_HANDLED - If interrupt is valid
5406  *  IRQ_NONE    - If invalid interrupt
5407  */
5408 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5409 {
5410 	/* Resetting interrupt aggregation counters first and reading the
5411 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5412 	 * In order to prevent other interrupts starvation the DB is read once
5413 	 * after reset. The down side of this solution is the possibility of
5414 	 * false interrupt if device completes another request after resetting
5415 	 * aggregation and before reading the DB.
5416 	 */
5417 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5418 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5419 		ufshcd_reset_intr_aggr(hba);
5420 
5421 	if (ufs_fail_completion())
5422 		return IRQ_HANDLED;
5423 
5424 	/*
5425 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5426 	 * do not want polling to trigger spurious interrupt complaints.
5427 	 */
5428 	ufshcd_poll(hba->host, 0);
5429 
5430 	return IRQ_HANDLED;
5431 }
5432 
5433 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5434 {
5435 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5436 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5437 				       &ee_ctrl_mask);
5438 }
5439 
5440 int ufshcd_write_ee_control(struct ufs_hba *hba)
5441 {
5442 	int err;
5443 
5444 	mutex_lock(&hba->ee_ctrl_mutex);
5445 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5446 	mutex_unlock(&hba->ee_ctrl_mutex);
5447 	if (err)
5448 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5449 			__func__, err);
5450 	return err;
5451 }
5452 
5453 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, u16 *other_mask,
5454 			     u16 set, u16 clr)
5455 {
5456 	u16 new_mask, ee_ctrl_mask;
5457 	int err = 0;
5458 
5459 	mutex_lock(&hba->ee_ctrl_mutex);
5460 	new_mask = (*mask & ~clr) | set;
5461 	ee_ctrl_mask = new_mask | *other_mask;
5462 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5463 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5464 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5465 	if (!err) {
5466 		hba->ee_ctrl_mask = ee_ctrl_mask;
5467 		*mask = new_mask;
5468 	}
5469 	mutex_unlock(&hba->ee_ctrl_mutex);
5470 	return err;
5471 }
5472 
5473 /**
5474  * ufshcd_disable_ee - disable exception event
5475  * @hba: per-adapter instance
5476  * @mask: exception event to disable
5477  *
5478  * Disables exception event in the device so that the EVENT_ALERT
5479  * bit is not set.
5480  *
5481  * Returns zero on success, non-zero error value on failure.
5482  */
5483 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5484 {
5485 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5486 }
5487 
5488 /**
5489  * ufshcd_enable_ee - enable exception event
5490  * @hba: per-adapter instance
5491  * @mask: exception event to enable
5492  *
5493  * Enable corresponding exception event in the device to allow
5494  * device to alert host in critical scenarios.
5495  *
5496  * Returns zero on success, non-zero error value on failure.
5497  */
5498 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5499 {
5500 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5501 }
5502 
5503 /**
5504  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5505  * @hba: per-adapter instance
5506  *
5507  * Allow device to manage background operations on its own. Enabling
5508  * this might lead to inconsistent latencies during normal data transfers
5509  * as the device is allowed to manage its own way of handling background
5510  * operations.
5511  *
5512  * Returns zero on success, non-zero on failure.
5513  */
5514 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5515 {
5516 	int err = 0;
5517 
5518 	if (hba->auto_bkops_enabled)
5519 		goto out;
5520 
5521 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5522 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5523 	if (err) {
5524 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5525 				__func__, err);
5526 		goto out;
5527 	}
5528 
5529 	hba->auto_bkops_enabled = true;
5530 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5531 
5532 	/* No need of URGENT_BKOPS exception from the device */
5533 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5534 	if (err)
5535 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5536 				__func__, err);
5537 out:
5538 	return err;
5539 }
5540 
5541 /**
5542  * ufshcd_disable_auto_bkops - block device in doing background operations
5543  * @hba: per-adapter instance
5544  *
5545  * Disabling background operations improves command response latency but
5546  * has drawback of device moving into critical state where the device is
5547  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5548  * host is idle so that BKOPS are managed effectively without any negative
5549  * impacts.
5550  *
5551  * Returns zero on success, non-zero on failure.
5552  */
5553 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5554 {
5555 	int err = 0;
5556 
5557 	if (!hba->auto_bkops_enabled)
5558 		goto out;
5559 
5560 	/*
5561 	 * If host assisted BKOPs is to be enabled, make sure
5562 	 * urgent bkops exception is allowed.
5563 	 */
5564 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5565 	if (err) {
5566 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5567 				__func__, err);
5568 		goto out;
5569 	}
5570 
5571 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5572 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5573 	if (err) {
5574 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5575 				__func__, err);
5576 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5577 		goto out;
5578 	}
5579 
5580 	hba->auto_bkops_enabled = false;
5581 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5582 	hba->is_urgent_bkops_lvl_checked = false;
5583 out:
5584 	return err;
5585 }
5586 
5587 /**
5588  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5589  * @hba: per adapter instance
5590  *
5591  * After a device reset the device may toggle the BKOPS_EN flag
5592  * to default value. The s/w tracking variables should be updated
5593  * as well. This function would change the auto-bkops state based on
5594  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5595  */
5596 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5597 {
5598 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5599 		hba->auto_bkops_enabled = false;
5600 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5601 		ufshcd_enable_auto_bkops(hba);
5602 	} else {
5603 		hba->auto_bkops_enabled = true;
5604 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5605 		ufshcd_disable_auto_bkops(hba);
5606 	}
5607 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5608 	hba->is_urgent_bkops_lvl_checked = false;
5609 }
5610 
5611 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5612 {
5613 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5614 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5615 }
5616 
5617 /**
5618  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5619  * @hba: per-adapter instance
5620  * @status: bkops_status value
5621  *
5622  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5623  * flag in the device to permit background operations if the device
5624  * bkops_status is greater than or equal to "status" argument passed to
5625  * this function, disable otherwise.
5626  *
5627  * Returns 0 for success, non-zero in case of failure.
5628  *
5629  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5630  * to know whether auto bkops is enabled or disabled after this function
5631  * returns control to it.
5632  */
5633 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5634 			     enum bkops_status status)
5635 {
5636 	int err;
5637 	u32 curr_status = 0;
5638 
5639 	err = ufshcd_get_bkops_status(hba, &curr_status);
5640 	if (err) {
5641 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5642 				__func__, err);
5643 		goto out;
5644 	} else if (curr_status > BKOPS_STATUS_MAX) {
5645 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5646 				__func__, curr_status);
5647 		err = -EINVAL;
5648 		goto out;
5649 	}
5650 
5651 	if (curr_status >= status)
5652 		err = ufshcd_enable_auto_bkops(hba);
5653 	else
5654 		err = ufshcd_disable_auto_bkops(hba);
5655 out:
5656 	return err;
5657 }
5658 
5659 /**
5660  * ufshcd_urgent_bkops - handle urgent bkops exception event
5661  * @hba: per-adapter instance
5662  *
5663  * Enable fBackgroundOpsEn flag in the device to permit background
5664  * operations.
5665  *
5666  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5667  * and negative error value for any other failure.
5668  */
5669 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5670 {
5671 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5672 }
5673 
5674 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5675 {
5676 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5677 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5678 }
5679 
5680 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5681 {
5682 	int err;
5683 	u32 curr_status = 0;
5684 
5685 	if (hba->is_urgent_bkops_lvl_checked)
5686 		goto enable_auto_bkops;
5687 
5688 	err = ufshcd_get_bkops_status(hba, &curr_status);
5689 	if (err) {
5690 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5691 				__func__, err);
5692 		goto out;
5693 	}
5694 
5695 	/*
5696 	 * We are seeing that some devices are raising the urgent bkops
5697 	 * exception events even when BKOPS status doesn't indicate performace
5698 	 * impacted or critical. Handle these device by determining their urgent
5699 	 * bkops status at runtime.
5700 	 */
5701 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5702 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5703 				__func__, curr_status);
5704 		/* update the current status as the urgent bkops level */
5705 		hba->urgent_bkops_lvl = curr_status;
5706 		hba->is_urgent_bkops_lvl_checked = true;
5707 	}
5708 
5709 enable_auto_bkops:
5710 	err = ufshcd_enable_auto_bkops(hba);
5711 out:
5712 	if (err < 0)
5713 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5714 				__func__, err);
5715 }
5716 
5717 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5718 {
5719 	u32 value;
5720 
5721 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5722 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5723 		return;
5724 
5725 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5726 
5727 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5728 
5729 	/*
5730 	 * A placeholder for the platform vendors to add whatever additional
5731 	 * steps required
5732 	 */
5733 }
5734 
5735 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5736 {
5737 	u8 index;
5738 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5739 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5740 
5741 	index = ufshcd_wb_get_query_index(hba);
5742 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5743 }
5744 
5745 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5746 {
5747 	int ret;
5748 
5749 	if (!ufshcd_is_wb_allowed(hba))
5750 		return 0;
5751 
5752 	if (!(enable ^ hba->dev_info.wb_enabled))
5753 		return 0;
5754 
5755 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5756 	if (ret) {
5757 		dev_err(hba->dev, "%s Write Booster %s failed %d\n",
5758 			__func__, enable ? "enable" : "disable", ret);
5759 		return ret;
5760 	}
5761 
5762 	hba->dev_info.wb_enabled = enable;
5763 	dev_dbg(hba->dev, "%s Write Booster %s\n",
5764 			__func__, enable ? "enabled" : "disabled");
5765 
5766 	return ret;
5767 }
5768 
5769 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5770 {
5771 	int ret;
5772 
5773 	ret = __ufshcd_wb_toggle(hba, set,
5774 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5775 	if (ret) {
5776 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed: %d\n",
5777 			__func__, set ? "enable" : "disable", ret);
5778 		return;
5779 	}
5780 	dev_dbg(hba->dev, "%s WB-Buf Flush during H8 %s\n",
5781 			__func__, set ? "enabled" : "disabled");
5782 }
5783 
5784 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5785 {
5786 	int ret;
5787 
5788 	if (!ufshcd_is_wb_allowed(hba) ||
5789 	    hba->dev_info.wb_buf_flush_enabled == enable)
5790 		return;
5791 
5792 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5793 	if (ret) {
5794 		dev_err(hba->dev, "%s WB-Buf Flush %s failed %d\n", __func__,
5795 			enable ? "enable" : "disable", ret);
5796 		return;
5797 	}
5798 
5799 	hba->dev_info.wb_buf_flush_enabled = enable;
5800 
5801 	dev_dbg(hba->dev, "%s WB-Buf Flush %s\n",
5802 			__func__, enable ? "enabled" : "disabled");
5803 }
5804 
5805 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5806 						u32 avail_buf)
5807 {
5808 	u32 cur_buf;
5809 	int ret;
5810 	u8 index;
5811 
5812 	index = ufshcd_wb_get_query_index(hba);
5813 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5814 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5815 					      index, 0, &cur_buf);
5816 	if (ret) {
5817 		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5818 			__func__, ret);
5819 		return false;
5820 	}
5821 
5822 	if (!cur_buf) {
5823 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5824 			 cur_buf);
5825 		return false;
5826 	}
5827 	/* Let it continue to flush when available buffer exceeds threshold */
5828 	return avail_buf < hba->vps->wb_flush_threshold;
5829 }
5830 
5831 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5832 {
5833 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
5834 		ufshcd_wb_toggle_flush(hba, false);
5835 
5836 	ufshcd_wb_toggle_flush_during_h8(hba, false);
5837 	ufshcd_wb_toggle(hba, false);
5838 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5839 
5840 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5841 }
5842 
5843 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5844 {
5845 	u32 lifetime;
5846 	int ret;
5847 	u8 index;
5848 
5849 	index = ufshcd_wb_get_query_index(hba);
5850 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5851 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5852 				      index, 0, &lifetime);
5853 	if (ret) {
5854 		dev_err(hba->dev,
5855 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5856 			__func__, ret);
5857 		return false;
5858 	}
5859 
5860 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5861 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5862 			__func__, lifetime);
5863 		return false;
5864 	}
5865 
5866 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5867 		__func__, lifetime);
5868 
5869 	return true;
5870 }
5871 
5872 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5873 {
5874 	int ret;
5875 	u32 avail_buf;
5876 	u8 index;
5877 
5878 	if (!ufshcd_is_wb_allowed(hba))
5879 		return false;
5880 
5881 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5882 		ufshcd_wb_force_disable(hba);
5883 		return false;
5884 	}
5885 
5886 	/*
5887 	 * The ufs device needs the vcc to be ON to flush.
5888 	 * With user-space reduction enabled, it's enough to enable flush
5889 	 * by checking only the available buffer. The threshold
5890 	 * defined here is > 90% full.
5891 	 * With user-space preserved enabled, the current-buffer
5892 	 * should be checked too because the wb buffer size can reduce
5893 	 * when disk tends to be full. This info is provided by current
5894 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5895 	 * keeping vcc on when current buffer is empty.
5896 	 */
5897 	index = ufshcd_wb_get_query_index(hba);
5898 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5899 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5900 				      index, 0, &avail_buf);
5901 	if (ret) {
5902 		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5903 			 __func__, ret);
5904 		return false;
5905 	}
5906 
5907 	if (!hba->dev_info.b_presrv_uspc_en)
5908 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
5909 
5910 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5911 }
5912 
5913 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5914 {
5915 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5916 					   struct ufs_hba,
5917 					   rpm_dev_flush_recheck_work);
5918 	/*
5919 	 * To prevent unnecessary VCC power drain after device finishes
5920 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5921 	 * after a certain delay to recheck the threshold by next runtime
5922 	 * suspend.
5923 	 */
5924 	ufshcd_rpm_get_sync(hba);
5925 	ufshcd_rpm_put_sync(hba);
5926 }
5927 
5928 /**
5929  * ufshcd_exception_event_handler - handle exceptions raised by device
5930  * @work: pointer to work data
5931  *
5932  * Read bExceptionEventStatus attribute from the device and handle the
5933  * exception event accordingly.
5934  */
5935 static void ufshcd_exception_event_handler(struct work_struct *work)
5936 {
5937 	struct ufs_hba *hba;
5938 	int err;
5939 	u32 status = 0;
5940 	hba = container_of(work, struct ufs_hba, eeh_work);
5941 
5942 	ufshcd_scsi_block_requests(hba);
5943 	err = ufshcd_get_ee_status(hba, &status);
5944 	if (err) {
5945 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5946 				__func__, err);
5947 		goto out;
5948 	}
5949 
5950 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
5951 
5952 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
5953 		ufshcd_bkops_exception_event_handler(hba);
5954 
5955 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
5956 		ufshcd_temp_exception_event_handler(hba, status);
5957 
5958 	ufs_debugfs_exception_event(hba, status);
5959 out:
5960 	ufshcd_scsi_unblock_requests(hba);
5961 }
5962 
5963 /* Complete requests that have door-bell cleared */
5964 static void ufshcd_complete_requests(struct ufs_hba *hba)
5965 {
5966 	ufshcd_transfer_req_compl(hba);
5967 	ufshcd_tmc_handler(hba);
5968 }
5969 
5970 /**
5971  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5972  *				to recover from the DL NAC errors or not.
5973  * @hba: per-adapter instance
5974  *
5975  * Returns true if error handling is required, false otherwise
5976  */
5977 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5978 {
5979 	unsigned long flags;
5980 	bool err_handling = true;
5981 
5982 	spin_lock_irqsave(hba->host->host_lock, flags);
5983 	/*
5984 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5985 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5986 	 */
5987 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5988 		goto out;
5989 
5990 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5991 	    ((hba->saved_err & UIC_ERROR) &&
5992 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5993 		goto out;
5994 
5995 	if ((hba->saved_err & UIC_ERROR) &&
5996 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5997 		int err;
5998 		/*
5999 		 * wait for 50ms to see if we can get any other errors or not.
6000 		 */
6001 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6002 		msleep(50);
6003 		spin_lock_irqsave(hba->host->host_lock, flags);
6004 
6005 		/*
6006 		 * now check if we have got any other severe errors other than
6007 		 * DL NAC error?
6008 		 */
6009 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6010 		    ((hba->saved_err & UIC_ERROR) &&
6011 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6012 			goto out;
6013 
6014 		/*
6015 		 * As DL NAC is the only error received so far, send out NOP
6016 		 * command to confirm if link is still active or not.
6017 		 *   - If we don't get any response then do error recovery.
6018 		 *   - If we get response then clear the DL NAC error bit.
6019 		 */
6020 
6021 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6022 		err = ufshcd_verify_dev_init(hba);
6023 		spin_lock_irqsave(hba->host->host_lock, flags);
6024 
6025 		if (err)
6026 			goto out;
6027 
6028 		/* Link seems to be alive hence ignore the DL NAC errors */
6029 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6030 			hba->saved_err &= ~UIC_ERROR;
6031 		/* clear NAC error */
6032 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6033 		if (!hba->saved_uic_err)
6034 			err_handling = false;
6035 	}
6036 out:
6037 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6038 	return err_handling;
6039 }
6040 
6041 /* host lock must be held before calling this func */
6042 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6043 {
6044 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6045 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6046 }
6047 
6048 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6049 {
6050 	lockdep_assert_held(hba->host->host_lock);
6051 
6052 	/* handle fatal errors only when link is not in error state */
6053 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6054 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6055 		    ufshcd_is_saved_err_fatal(hba))
6056 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6057 		else
6058 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6059 		queue_work(hba->eh_wq, &hba->eh_work);
6060 	}
6061 }
6062 
6063 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6064 {
6065 	down_write(&hba->clk_scaling_lock);
6066 	hba->clk_scaling.is_allowed = allow;
6067 	up_write(&hba->clk_scaling_lock);
6068 }
6069 
6070 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6071 {
6072 	if (suspend) {
6073 		if (hba->clk_scaling.is_enabled)
6074 			ufshcd_suspend_clkscaling(hba);
6075 		ufshcd_clk_scaling_allow(hba, false);
6076 	} else {
6077 		ufshcd_clk_scaling_allow(hba, true);
6078 		if (hba->clk_scaling.is_enabled)
6079 			ufshcd_resume_clkscaling(hba);
6080 	}
6081 }
6082 
6083 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6084 {
6085 	ufshcd_rpm_get_sync(hba);
6086 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6087 	    hba->is_sys_suspended) {
6088 		enum ufs_pm_op pm_op;
6089 
6090 		/*
6091 		 * Don't assume anything of resume, if
6092 		 * resume fails, irq and clocks can be OFF, and powers
6093 		 * can be OFF or in LPM.
6094 		 */
6095 		ufshcd_setup_hba_vreg(hba, true);
6096 		ufshcd_enable_irq(hba);
6097 		ufshcd_setup_vreg(hba, true);
6098 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6099 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6100 		ufshcd_hold(hba, false);
6101 		if (!ufshcd_is_clkgating_allowed(hba))
6102 			ufshcd_setup_clocks(hba, true);
6103 		ufshcd_release(hba);
6104 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6105 		ufshcd_vops_resume(hba, pm_op);
6106 	} else {
6107 		ufshcd_hold(hba, false);
6108 		if (ufshcd_is_clkscaling_supported(hba) &&
6109 		    hba->clk_scaling.is_enabled)
6110 			ufshcd_suspend_clkscaling(hba);
6111 		ufshcd_clk_scaling_allow(hba, false);
6112 	}
6113 	ufshcd_scsi_block_requests(hba);
6114 	/* Drain ufshcd_queuecommand() */
6115 	synchronize_rcu();
6116 	cancel_work_sync(&hba->eeh_work);
6117 }
6118 
6119 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6120 {
6121 	ufshcd_scsi_unblock_requests(hba);
6122 	ufshcd_release(hba);
6123 	if (ufshcd_is_clkscaling_supported(hba))
6124 		ufshcd_clk_scaling_suspend(hba, false);
6125 	ufshcd_rpm_put(hba);
6126 }
6127 
6128 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6129 {
6130 	return (!hba->is_powered || hba->shutting_down ||
6131 		!hba->ufs_device_wlun ||
6132 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6133 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6134 		   ufshcd_is_link_broken(hba))));
6135 }
6136 
6137 #ifdef CONFIG_PM
6138 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6139 {
6140 	struct Scsi_Host *shost = hba->host;
6141 	struct scsi_device *sdev;
6142 	struct request_queue *q;
6143 	int ret;
6144 
6145 	hba->is_sys_suspended = false;
6146 	/*
6147 	 * Set RPM status of wlun device to RPM_ACTIVE,
6148 	 * this also clears its runtime error.
6149 	 */
6150 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6151 
6152 	/* hba device might have a runtime error otherwise */
6153 	if (ret)
6154 		ret = pm_runtime_set_active(hba->dev);
6155 	/*
6156 	 * If wlun device had runtime error, we also need to resume those
6157 	 * consumer scsi devices in case any of them has failed to be
6158 	 * resumed due to supplier runtime resume failure. This is to unblock
6159 	 * blk_queue_enter in case there are bios waiting inside it.
6160 	 */
6161 	if (!ret) {
6162 		shost_for_each_device(sdev, shost) {
6163 			q = sdev->request_queue;
6164 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6165 				       q->rpm_status == RPM_SUSPENDING))
6166 				pm_request_resume(q->dev);
6167 		}
6168 	}
6169 }
6170 #else
6171 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6172 {
6173 }
6174 #endif
6175 
6176 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6177 {
6178 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6179 	u32 mode;
6180 
6181 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6182 
6183 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6184 		return true;
6185 
6186 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6187 		return true;
6188 
6189 	return false;
6190 }
6191 
6192 /**
6193  * ufshcd_err_handler - handle UFS errors that require s/w attention
6194  * @work: pointer to work structure
6195  */
6196 static void ufshcd_err_handler(struct work_struct *work)
6197 {
6198 	int retries = MAX_ERR_HANDLER_RETRIES;
6199 	struct ufs_hba *hba;
6200 	unsigned long flags;
6201 	bool needs_restore;
6202 	bool needs_reset;
6203 	bool err_xfer;
6204 	bool err_tm;
6205 	int pmc_err;
6206 	int tag;
6207 
6208 	hba = container_of(work, struct ufs_hba, eh_work);
6209 
6210 	dev_info(hba->dev,
6211 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6212 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6213 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6214 		 hba->saved_uic_err, hba->force_reset,
6215 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6216 
6217 	down(&hba->host_sem);
6218 	spin_lock_irqsave(hba->host->host_lock, flags);
6219 	if (ufshcd_err_handling_should_stop(hba)) {
6220 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6221 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6222 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6223 		up(&hba->host_sem);
6224 		return;
6225 	}
6226 	ufshcd_set_eh_in_progress(hba);
6227 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6228 	ufshcd_err_handling_prepare(hba);
6229 	/* Complete requests that have door-bell cleared by h/w */
6230 	ufshcd_complete_requests(hba);
6231 	spin_lock_irqsave(hba->host->host_lock, flags);
6232 again:
6233 	needs_restore = false;
6234 	needs_reset = false;
6235 	err_xfer = false;
6236 	err_tm = false;
6237 
6238 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6239 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6240 	/*
6241 	 * A full reset and restore might have happened after preparation
6242 	 * is finished, double check whether we should stop.
6243 	 */
6244 	if (ufshcd_err_handling_should_stop(hba))
6245 		goto skip_err_handling;
6246 
6247 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6248 		bool ret;
6249 
6250 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6251 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6252 		ret = ufshcd_quirk_dl_nac_errors(hba);
6253 		spin_lock_irqsave(hba->host->host_lock, flags);
6254 		if (!ret && ufshcd_err_handling_should_stop(hba))
6255 			goto skip_err_handling;
6256 	}
6257 
6258 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6259 	    (hba->saved_uic_err &&
6260 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6261 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6262 
6263 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6264 		ufshcd_print_host_state(hba);
6265 		ufshcd_print_pwr_info(hba);
6266 		ufshcd_print_evt_hist(hba);
6267 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6268 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6269 		spin_lock_irqsave(hba->host->host_lock, flags);
6270 	}
6271 
6272 	/*
6273 	 * if host reset is required then skip clearing the pending
6274 	 * transfers forcefully because they will get cleared during
6275 	 * host reset and restore
6276 	 */
6277 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6278 	    ufshcd_is_saved_err_fatal(hba) ||
6279 	    ((hba->saved_err & UIC_ERROR) &&
6280 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6281 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6282 		needs_reset = true;
6283 		goto do_reset;
6284 	}
6285 
6286 	/*
6287 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6288 	 * check if power mode restore is needed.
6289 	 */
6290 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6291 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6292 		if (!hba->saved_uic_err)
6293 			hba->saved_err &= ~UIC_ERROR;
6294 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6295 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6296 			needs_restore = true;
6297 		spin_lock_irqsave(hba->host->host_lock, flags);
6298 		if (!hba->saved_err && !needs_restore)
6299 			goto skip_err_handling;
6300 	}
6301 
6302 	hba->silence_err_logs = true;
6303 	/* release lock as clear command might sleep */
6304 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6305 	/* Clear pending transfer requests */
6306 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6307 		if (ufshcd_try_to_abort_task(hba, tag)) {
6308 			err_xfer = true;
6309 			goto lock_skip_pending_xfer_clear;
6310 		}
6311 		dev_err(hba->dev, "Aborted tag %d / CDB %#02x\n", tag,
6312 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1);
6313 	}
6314 
6315 	/* Clear pending task management requests */
6316 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6317 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6318 			err_tm = true;
6319 			goto lock_skip_pending_xfer_clear;
6320 		}
6321 	}
6322 
6323 lock_skip_pending_xfer_clear:
6324 	/* Complete the requests that are cleared by s/w */
6325 	ufshcd_complete_requests(hba);
6326 
6327 	spin_lock_irqsave(hba->host->host_lock, flags);
6328 	hba->silence_err_logs = false;
6329 	if (err_xfer || err_tm) {
6330 		needs_reset = true;
6331 		goto do_reset;
6332 	}
6333 
6334 	/*
6335 	 * After all reqs and tasks are cleared from doorbell,
6336 	 * now it is safe to retore power mode.
6337 	 */
6338 	if (needs_restore) {
6339 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6340 		/*
6341 		 * Hold the scaling lock just in case dev cmds
6342 		 * are sent via bsg and/or sysfs.
6343 		 */
6344 		down_write(&hba->clk_scaling_lock);
6345 		hba->force_pmc = true;
6346 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6347 		if (pmc_err) {
6348 			needs_reset = true;
6349 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6350 					__func__, pmc_err);
6351 		}
6352 		hba->force_pmc = false;
6353 		ufshcd_print_pwr_info(hba);
6354 		up_write(&hba->clk_scaling_lock);
6355 		spin_lock_irqsave(hba->host->host_lock, flags);
6356 	}
6357 
6358 do_reset:
6359 	/* Fatal errors need reset */
6360 	if (needs_reset) {
6361 		int err;
6362 
6363 		hba->force_reset = false;
6364 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6365 		err = ufshcd_reset_and_restore(hba);
6366 		if (err)
6367 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6368 					__func__, err);
6369 		else
6370 			ufshcd_recover_pm_error(hba);
6371 		spin_lock_irqsave(hba->host->host_lock, flags);
6372 	}
6373 
6374 skip_err_handling:
6375 	if (!needs_reset) {
6376 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6377 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6378 		if (hba->saved_err || hba->saved_uic_err)
6379 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6380 			    __func__, hba->saved_err, hba->saved_uic_err);
6381 	}
6382 	/* Exit in an operational state or dead */
6383 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6384 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6385 		if (--retries)
6386 			goto again;
6387 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6388 	}
6389 	ufshcd_clear_eh_in_progress(hba);
6390 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6391 	ufshcd_err_handling_unprepare(hba);
6392 	up(&hba->host_sem);
6393 
6394 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6395 		 ufshcd_state_name[hba->ufshcd_state]);
6396 }
6397 
6398 /**
6399  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6400  * @hba: per-adapter instance
6401  *
6402  * Returns
6403  *  IRQ_HANDLED - If interrupt is valid
6404  *  IRQ_NONE    - If invalid interrupt
6405  */
6406 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6407 {
6408 	u32 reg;
6409 	irqreturn_t retval = IRQ_NONE;
6410 
6411 	/* PHY layer error */
6412 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6413 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6414 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6415 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6416 		/*
6417 		 * To know whether this error is fatal or not, DB timeout
6418 		 * must be checked but this error is handled separately.
6419 		 */
6420 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6421 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6422 					__func__);
6423 
6424 		/* Got a LINERESET indication. */
6425 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6426 			struct uic_command *cmd = NULL;
6427 
6428 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6429 			if (hba->uic_async_done && hba->active_uic_cmd)
6430 				cmd = hba->active_uic_cmd;
6431 			/*
6432 			 * Ignore the LINERESET during power mode change
6433 			 * operation via DME_SET command.
6434 			 */
6435 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6436 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6437 		}
6438 		retval |= IRQ_HANDLED;
6439 	}
6440 
6441 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6442 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6443 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6444 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6445 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6446 
6447 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6448 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6449 		else if (hba->dev_quirks &
6450 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6451 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6452 				hba->uic_error |=
6453 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6454 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6455 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6456 		}
6457 		retval |= IRQ_HANDLED;
6458 	}
6459 
6460 	/* UIC NL/TL/DME errors needs software retry */
6461 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6462 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6463 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6464 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6465 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6466 		retval |= IRQ_HANDLED;
6467 	}
6468 
6469 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6470 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6471 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6472 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6473 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6474 		retval |= IRQ_HANDLED;
6475 	}
6476 
6477 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6478 	if ((reg & UIC_DME_ERROR) &&
6479 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6480 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6481 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6482 		retval |= IRQ_HANDLED;
6483 	}
6484 
6485 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6486 			__func__, hba->uic_error);
6487 	return retval;
6488 }
6489 
6490 /**
6491  * ufshcd_check_errors - Check for errors that need s/w attention
6492  * @hba: per-adapter instance
6493  * @intr_status: interrupt status generated by the controller
6494  *
6495  * Returns
6496  *  IRQ_HANDLED - If interrupt is valid
6497  *  IRQ_NONE    - If invalid interrupt
6498  */
6499 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6500 {
6501 	bool queue_eh_work = false;
6502 	irqreturn_t retval = IRQ_NONE;
6503 
6504 	spin_lock(hba->host->host_lock);
6505 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6506 
6507 	if (hba->errors & INT_FATAL_ERRORS) {
6508 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6509 				       hba->errors);
6510 		queue_eh_work = true;
6511 	}
6512 
6513 	if (hba->errors & UIC_ERROR) {
6514 		hba->uic_error = 0;
6515 		retval = ufshcd_update_uic_error(hba);
6516 		if (hba->uic_error)
6517 			queue_eh_work = true;
6518 	}
6519 
6520 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6521 		dev_err(hba->dev,
6522 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6523 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6524 			"Enter" : "Exit",
6525 			hba->errors, ufshcd_get_upmcrs(hba));
6526 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6527 				       hba->errors);
6528 		ufshcd_set_link_broken(hba);
6529 		queue_eh_work = true;
6530 	}
6531 
6532 	if (queue_eh_work) {
6533 		/*
6534 		 * update the transfer error masks to sticky bits, let's do this
6535 		 * irrespective of current ufshcd_state.
6536 		 */
6537 		hba->saved_err |= hba->errors;
6538 		hba->saved_uic_err |= hba->uic_error;
6539 
6540 		/* dump controller state before resetting */
6541 		if ((hba->saved_err &
6542 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6543 		    (hba->saved_uic_err &&
6544 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6545 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6546 					__func__, hba->saved_err,
6547 					hba->saved_uic_err);
6548 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6549 					 "host_regs: ");
6550 			ufshcd_print_pwr_info(hba);
6551 		}
6552 		ufshcd_schedule_eh_work(hba);
6553 		retval |= IRQ_HANDLED;
6554 	}
6555 	/*
6556 	 * if (!queue_eh_work) -
6557 	 * Other errors are either non-fatal where host recovers
6558 	 * itself without s/w intervention or errors that will be
6559 	 * handled by the SCSI core layer.
6560 	 */
6561 	hba->errors = 0;
6562 	hba->uic_error = 0;
6563 	spin_unlock(hba->host->host_lock);
6564 	return retval;
6565 }
6566 
6567 /**
6568  * ufshcd_tmc_handler - handle task management function completion
6569  * @hba: per adapter instance
6570  *
6571  * Returns
6572  *  IRQ_HANDLED - If interrupt is valid
6573  *  IRQ_NONE    - If invalid interrupt
6574  */
6575 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6576 {
6577 	unsigned long flags, pending, issued;
6578 	irqreturn_t ret = IRQ_NONE;
6579 	int tag;
6580 
6581 	spin_lock_irqsave(hba->host->host_lock, flags);
6582 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6583 	issued = hba->outstanding_tasks & ~pending;
6584 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6585 		struct request *req = hba->tmf_rqs[tag];
6586 		struct completion *c = req->end_io_data;
6587 
6588 		complete(c);
6589 		ret = IRQ_HANDLED;
6590 	}
6591 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6592 
6593 	return ret;
6594 }
6595 
6596 /**
6597  * ufshcd_sl_intr - Interrupt service routine
6598  * @hba: per adapter instance
6599  * @intr_status: contains interrupts generated by the controller
6600  *
6601  * Returns
6602  *  IRQ_HANDLED - If interrupt is valid
6603  *  IRQ_NONE    - If invalid interrupt
6604  */
6605 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6606 {
6607 	irqreturn_t retval = IRQ_NONE;
6608 
6609 	if (intr_status & UFSHCD_UIC_MASK)
6610 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6611 
6612 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6613 		retval |= ufshcd_check_errors(hba, intr_status);
6614 
6615 	if (intr_status & UTP_TASK_REQ_COMPL)
6616 		retval |= ufshcd_tmc_handler(hba);
6617 
6618 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6619 		retval |= ufshcd_transfer_req_compl(hba);
6620 
6621 	return retval;
6622 }
6623 
6624 /**
6625  * ufshcd_intr - Main interrupt service routine
6626  * @irq: irq number
6627  * @__hba: pointer to adapter instance
6628  *
6629  * Returns
6630  *  IRQ_HANDLED - If interrupt is valid
6631  *  IRQ_NONE    - If invalid interrupt
6632  */
6633 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6634 {
6635 	u32 intr_status, enabled_intr_status = 0;
6636 	irqreturn_t retval = IRQ_NONE;
6637 	struct ufs_hba *hba = __hba;
6638 	int retries = hba->nutrs;
6639 
6640 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6641 	hba->ufs_stats.last_intr_status = intr_status;
6642 	hba->ufs_stats.last_intr_ts = ktime_get();
6643 
6644 	/*
6645 	 * There could be max of hba->nutrs reqs in flight and in worst case
6646 	 * if the reqs get finished 1 by 1 after the interrupt status is
6647 	 * read, make sure we handle them by checking the interrupt status
6648 	 * again in a loop until we process all of the reqs before returning.
6649 	 */
6650 	while (intr_status && retries--) {
6651 		enabled_intr_status =
6652 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6653 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6654 		if (enabled_intr_status)
6655 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6656 
6657 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6658 	}
6659 
6660 	if (enabled_intr_status && retval == IRQ_NONE &&
6661 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6662 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6663 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6664 					__func__,
6665 					intr_status,
6666 					hba->ufs_stats.last_intr_status,
6667 					enabled_intr_status);
6668 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6669 	}
6670 
6671 	return retval;
6672 }
6673 
6674 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6675 {
6676 	int err = 0;
6677 	u32 mask = 1 << tag;
6678 	unsigned long flags;
6679 
6680 	if (!test_bit(tag, &hba->outstanding_tasks))
6681 		goto out;
6682 
6683 	spin_lock_irqsave(hba->host->host_lock, flags);
6684 	ufshcd_utmrl_clear(hba, tag);
6685 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6686 
6687 	/* poll for max. 1 sec to clear door bell register by h/w */
6688 	err = ufshcd_wait_for_register(hba,
6689 			REG_UTP_TASK_REQ_DOOR_BELL,
6690 			mask, 0, 1000, 1000);
6691 
6692 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6693 		tag, err ? "succeeded" : "failed");
6694 
6695 out:
6696 	return err;
6697 }
6698 
6699 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6700 		struct utp_task_req_desc *treq, u8 tm_function)
6701 {
6702 	struct request_queue *q = hba->tmf_queue;
6703 	struct Scsi_Host *host = hba->host;
6704 	DECLARE_COMPLETION_ONSTACK(wait);
6705 	struct request *req;
6706 	unsigned long flags;
6707 	int task_tag, err;
6708 
6709 	/*
6710 	 * blk_mq_alloc_request() is used here only to get a free tag.
6711 	 */
6712 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6713 	if (IS_ERR(req))
6714 		return PTR_ERR(req);
6715 
6716 	req->end_io_data = &wait;
6717 	ufshcd_hold(hba, false);
6718 
6719 	spin_lock_irqsave(host->host_lock, flags);
6720 
6721 	task_tag = req->tag;
6722 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6723 		  task_tag);
6724 	hba->tmf_rqs[req->tag] = req;
6725 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6726 
6727 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6728 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6729 
6730 	/* send command to the controller */
6731 	__set_bit(task_tag, &hba->outstanding_tasks);
6732 
6733 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6734 	/* Make sure that doorbell is committed immediately */
6735 	wmb();
6736 
6737 	spin_unlock_irqrestore(host->host_lock, flags);
6738 
6739 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6740 
6741 	/* wait until the task management command is completed */
6742 	err = wait_for_completion_io_timeout(&wait,
6743 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6744 	if (!err) {
6745 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6746 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6747 				__func__, tm_function);
6748 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6749 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6750 					__func__, task_tag);
6751 		err = -ETIMEDOUT;
6752 	} else {
6753 		err = 0;
6754 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6755 
6756 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6757 	}
6758 
6759 	spin_lock_irqsave(hba->host->host_lock, flags);
6760 	hba->tmf_rqs[req->tag] = NULL;
6761 	__clear_bit(task_tag, &hba->outstanding_tasks);
6762 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6763 
6764 	ufshcd_release(hba);
6765 	blk_mq_free_request(req);
6766 
6767 	return err;
6768 }
6769 
6770 /**
6771  * ufshcd_issue_tm_cmd - issues task management commands to controller
6772  * @hba: per adapter instance
6773  * @lun_id: LUN ID to which TM command is sent
6774  * @task_id: task ID to which the TM command is applicable
6775  * @tm_function: task management function opcode
6776  * @tm_response: task management service response return value
6777  *
6778  * Returns non-zero value on error, zero on success.
6779  */
6780 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6781 		u8 tm_function, u8 *tm_response)
6782 {
6783 	struct utp_task_req_desc treq = { { 0 }, };
6784 	enum utp_ocs ocs_value;
6785 	int err;
6786 
6787 	/* Configure task request descriptor */
6788 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6789 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6790 
6791 	/* Configure task request UPIU */
6792 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6793 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6794 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6795 
6796 	/*
6797 	 * The host shall provide the same value for LUN field in the basic
6798 	 * header and for Input Parameter.
6799 	 */
6800 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6801 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6802 
6803 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6804 	if (err == -ETIMEDOUT)
6805 		return err;
6806 
6807 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6808 	if (ocs_value != OCS_SUCCESS)
6809 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6810 				__func__, ocs_value);
6811 	else if (tm_response)
6812 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6813 				MASK_TM_SERVICE_RESP;
6814 	return err;
6815 }
6816 
6817 /**
6818  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6819  * @hba:	per-adapter instance
6820  * @req_upiu:	upiu request
6821  * @rsp_upiu:	upiu reply
6822  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6823  * @buff_len:	descriptor size, 0 if NA
6824  * @cmd_type:	specifies the type (NOP, Query...)
6825  * @desc_op:	descriptor operation
6826  *
6827  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6828  * Therefore, it "rides" the device management infrastructure: uses its tag and
6829  * tasks work queues.
6830  *
6831  * Since there is only one available tag for device management commands,
6832  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6833  */
6834 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6835 					struct utp_upiu_req *req_upiu,
6836 					struct utp_upiu_req *rsp_upiu,
6837 					u8 *desc_buff, int *buff_len,
6838 					enum dev_cmd_type cmd_type,
6839 					enum query_opcode desc_op)
6840 {
6841 	DECLARE_COMPLETION_ONSTACK(wait);
6842 	const u32 tag = hba->reserved_slot;
6843 	struct ufshcd_lrb *lrbp;
6844 	int err = 0;
6845 	u8 upiu_flags;
6846 
6847 	/* Protects use of hba->reserved_slot. */
6848 	lockdep_assert_held(&hba->dev_cmd.lock);
6849 
6850 	down_read(&hba->clk_scaling_lock);
6851 
6852 	lrbp = &hba->lrb[tag];
6853 	WARN_ON(lrbp->cmd);
6854 	lrbp->cmd = NULL;
6855 	lrbp->task_tag = tag;
6856 	lrbp->lun = 0;
6857 	lrbp->intr_cmd = true;
6858 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6859 	hba->dev_cmd.type = cmd_type;
6860 
6861 	if (hba->ufs_version <= ufshci_version(1, 1))
6862 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6863 	else
6864 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6865 
6866 	/* update the task tag in the request upiu */
6867 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6868 
6869 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6870 
6871 	/* just copy the upiu request as it is */
6872 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6873 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6874 		/* The Data Segment Area is optional depending upon the query
6875 		 * function value. for WRITE DESCRIPTOR, the data segment
6876 		 * follows right after the tsf.
6877 		 */
6878 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6879 		*buff_len = 0;
6880 	}
6881 
6882 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6883 
6884 	hba->dev_cmd.complete = &wait;
6885 
6886 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
6887 
6888 	ufshcd_send_command(hba, tag);
6889 	/*
6890 	 * ignore the returning value here - ufshcd_check_query_response is
6891 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6892 	 * read the response directly ignoring all errors.
6893 	 */
6894 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6895 
6896 	/* just copy the upiu response as it is */
6897 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6898 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6899 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6900 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6901 			       MASK_QUERY_DATA_SEG_LEN;
6902 
6903 		if (*buff_len >= resp_len) {
6904 			memcpy(desc_buff, descp, resp_len);
6905 			*buff_len = resp_len;
6906 		} else {
6907 			dev_warn(hba->dev,
6908 				 "%s: rsp size %d is bigger than buffer size %d",
6909 				 __func__, resp_len, *buff_len);
6910 			*buff_len = 0;
6911 			err = -EINVAL;
6912 		}
6913 	}
6914 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
6915 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
6916 
6917 	up_read(&hba->clk_scaling_lock);
6918 	return err;
6919 }
6920 
6921 /**
6922  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6923  * @hba:	per-adapter instance
6924  * @req_upiu:	upiu request
6925  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6926  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6927  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6928  * @buff_len:	descriptor size, 0 if NA
6929  * @desc_op:	descriptor operation
6930  *
6931  * Supports UTP Transfer requests (nop and query), and UTP Task
6932  * Management requests.
6933  * It is up to the caller to fill the upiu conent properly, as it will
6934  * be copied without any further input validations.
6935  */
6936 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6937 			     struct utp_upiu_req *req_upiu,
6938 			     struct utp_upiu_req *rsp_upiu,
6939 			     int msgcode,
6940 			     u8 *desc_buff, int *buff_len,
6941 			     enum query_opcode desc_op)
6942 {
6943 	int err;
6944 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6945 	struct utp_task_req_desc treq = { { 0 }, };
6946 	enum utp_ocs ocs_value;
6947 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6948 
6949 	switch (msgcode) {
6950 	case UPIU_TRANSACTION_NOP_OUT:
6951 		cmd_type = DEV_CMD_TYPE_NOP;
6952 		fallthrough;
6953 	case UPIU_TRANSACTION_QUERY_REQ:
6954 		ufshcd_hold(hba, false);
6955 		mutex_lock(&hba->dev_cmd.lock);
6956 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6957 						   desc_buff, buff_len,
6958 						   cmd_type, desc_op);
6959 		mutex_unlock(&hba->dev_cmd.lock);
6960 		ufshcd_release(hba);
6961 
6962 		break;
6963 	case UPIU_TRANSACTION_TASK_REQ:
6964 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6965 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6966 
6967 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
6968 
6969 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6970 		if (err == -ETIMEDOUT)
6971 			break;
6972 
6973 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6974 		if (ocs_value != OCS_SUCCESS) {
6975 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6976 				ocs_value);
6977 			break;
6978 		}
6979 
6980 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
6981 
6982 		break;
6983 	default:
6984 		err = -EINVAL;
6985 
6986 		break;
6987 	}
6988 
6989 	return err;
6990 }
6991 
6992 /**
6993  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
6994  * @cmd: SCSI command pointer
6995  *
6996  * Returns SUCCESS/FAILED
6997  */
6998 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6999 {
7000 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7001 	struct Scsi_Host *host;
7002 	struct ufs_hba *hba;
7003 	u32 pos;
7004 	int err;
7005 	u8 resp = 0xF, lun;
7006 
7007 	host = cmd->device->host;
7008 	hba = shost_priv(host);
7009 
7010 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7011 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7012 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7013 		if (!err)
7014 			err = resp;
7015 		goto out;
7016 	}
7017 
7018 	/* clear the commands that were pending for corresponding LUN */
7019 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7020 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7021 		if (hba->lrb[pos].lun == lun)
7022 			__set_bit(pos, &pending_reqs);
7023 	hba->outstanding_reqs &= ~pending_reqs;
7024 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7025 
7026 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7027 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7028 		not_cleared = pending_reqs &
7029 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7030 		hba->outstanding_reqs |= not_cleared;
7031 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7032 
7033 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7034 			__func__, not_cleared);
7035 	}
7036 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7037 
7038 out:
7039 	hba->req_abort_count = 0;
7040 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7041 	if (!err) {
7042 		err = SUCCESS;
7043 	} else {
7044 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7045 		err = FAILED;
7046 	}
7047 	return err;
7048 }
7049 
7050 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7051 {
7052 	struct ufshcd_lrb *lrbp;
7053 	int tag;
7054 
7055 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7056 		lrbp = &hba->lrb[tag];
7057 		lrbp->req_abort_skip = true;
7058 	}
7059 }
7060 
7061 /**
7062  * ufshcd_try_to_abort_task - abort a specific task
7063  * @hba: Pointer to adapter instance
7064  * @tag: Task tag/index to be aborted
7065  *
7066  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7067  * command, and in host controller by clearing the door-bell register. There can
7068  * be race between controller sending the command to the device while abort is
7069  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7070  * really issued and then try to abort it.
7071  *
7072  * Returns zero on success, non-zero on failure
7073  */
7074 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7075 {
7076 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7077 	int err = 0;
7078 	int poll_cnt;
7079 	u8 resp = 0xF;
7080 	u32 reg;
7081 
7082 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7083 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7084 				UFS_QUERY_TASK, &resp);
7085 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7086 			/* cmd pending in the device */
7087 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7088 				__func__, tag);
7089 			break;
7090 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7091 			/*
7092 			 * cmd not pending in the device, check if it is
7093 			 * in transition.
7094 			 */
7095 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7096 				__func__, tag);
7097 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7098 			if (reg & (1 << tag)) {
7099 				/* sleep for max. 200us to stabilize */
7100 				usleep_range(100, 200);
7101 				continue;
7102 			}
7103 			/* command completed already */
7104 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7105 				__func__, tag);
7106 			goto out;
7107 		} else {
7108 			dev_err(hba->dev,
7109 				"%s: no response from device. tag = %d, err %d\n",
7110 				__func__, tag, err);
7111 			if (!err)
7112 				err = resp; /* service response error */
7113 			goto out;
7114 		}
7115 	}
7116 
7117 	if (!poll_cnt) {
7118 		err = -EBUSY;
7119 		goto out;
7120 	}
7121 
7122 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7123 			UFS_ABORT_TASK, &resp);
7124 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7125 		if (!err) {
7126 			err = resp; /* service response error */
7127 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7128 				__func__, tag, err);
7129 		}
7130 		goto out;
7131 	}
7132 
7133 	err = ufshcd_clear_cmds(hba, 1U << tag);
7134 	if (err)
7135 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7136 			__func__, tag, err);
7137 
7138 out:
7139 	return err;
7140 }
7141 
7142 /**
7143  * ufshcd_abort - scsi host template eh_abort_handler callback
7144  * @cmd: SCSI command pointer
7145  *
7146  * Returns SUCCESS/FAILED
7147  */
7148 static int ufshcd_abort(struct scsi_cmnd *cmd)
7149 {
7150 	struct Scsi_Host *host = cmd->device->host;
7151 	struct ufs_hba *hba = shost_priv(host);
7152 	int tag = scsi_cmd_to_rq(cmd)->tag;
7153 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7154 	unsigned long flags;
7155 	int err = FAILED;
7156 	bool outstanding;
7157 	u32 reg;
7158 
7159 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7160 
7161 	ufshcd_hold(hba, false);
7162 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7163 	/* If command is already aborted/completed, return FAILED. */
7164 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7165 		dev_err(hba->dev,
7166 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7167 			__func__, tag, hba->outstanding_reqs, reg);
7168 		goto release;
7169 	}
7170 
7171 	/* Print Transfer Request of aborted task */
7172 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7173 
7174 	/*
7175 	 * Print detailed info about aborted request.
7176 	 * As more than one request might get aborted at the same time,
7177 	 * print full information only for the first aborted request in order
7178 	 * to reduce repeated printouts. For other aborted requests only print
7179 	 * basic details.
7180 	 */
7181 	scsi_print_command(cmd);
7182 	if (!hba->req_abort_count) {
7183 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7184 		ufshcd_print_evt_hist(hba);
7185 		ufshcd_print_host_state(hba);
7186 		ufshcd_print_pwr_info(hba);
7187 		ufshcd_print_trs(hba, 1 << tag, true);
7188 	} else {
7189 		ufshcd_print_trs(hba, 1 << tag, false);
7190 	}
7191 	hba->req_abort_count++;
7192 
7193 	if (!(reg & (1 << tag))) {
7194 		dev_err(hba->dev,
7195 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7196 		__func__, tag);
7197 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7198 		goto release;
7199 	}
7200 
7201 	/*
7202 	 * Task abort to the device W-LUN is illegal. When this command
7203 	 * will fail, due to spec violation, scsi err handling next step
7204 	 * will be to send LU reset which, again, is a spec violation.
7205 	 * To avoid these unnecessary/illegal steps, first we clean up
7206 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7207 	 * then queue the eh_work and bail.
7208 	 */
7209 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7210 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7211 
7212 		spin_lock_irqsave(host->host_lock, flags);
7213 		hba->force_reset = true;
7214 		ufshcd_schedule_eh_work(hba);
7215 		spin_unlock_irqrestore(host->host_lock, flags);
7216 		goto release;
7217 	}
7218 
7219 	/* Skip task abort in case previous aborts failed and report failure */
7220 	if (lrbp->req_abort_skip) {
7221 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7222 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7223 		goto release;
7224 	}
7225 
7226 	err = ufshcd_try_to_abort_task(hba, tag);
7227 	if (err) {
7228 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7229 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7230 		err = FAILED;
7231 		goto release;
7232 	}
7233 
7234 	/*
7235 	 * Clear the corresponding bit from outstanding_reqs since the command
7236 	 * has been aborted successfully.
7237 	 */
7238 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7239 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7240 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7241 
7242 	if (outstanding)
7243 		ufshcd_release_scsi_cmd(hba, lrbp);
7244 
7245 	err = SUCCESS;
7246 
7247 release:
7248 	/* Matches the ufshcd_hold() call at the start of this function. */
7249 	ufshcd_release(hba);
7250 	return err;
7251 }
7252 
7253 /**
7254  * ufshcd_host_reset_and_restore - reset and restore host controller
7255  * @hba: per-adapter instance
7256  *
7257  * Note that host controller reset may issue DME_RESET to
7258  * local and remote (device) Uni-Pro stack and the attributes
7259  * are reset to default state.
7260  *
7261  * Returns zero on success, non-zero on failure
7262  */
7263 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7264 {
7265 	int err;
7266 
7267 	/*
7268 	 * Stop the host controller and complete the requests
7269 	 * cleared by h/w
7270 	 */
7271 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7272 	ufshcd_hba_stop(hba);
7273 	hba->silence_err_logs = true;
7274 	ufshcd_complete_requests(hba);
7275 	hba->silence_err_logs = false;
7276 
7277 	/* scale up clocks to max frequency before full reinitialization */
7278 	ufshcd_scale_clks(hba, true);
7279 
7280 	err = ufshcd_hba_enable(hba);
7281 
7282 	/* Establish the link again and restore the device */
7283 	if (!err)
7284 		err = ufshcd_probe_hba(hba, false);
7285 
7286 	if (err)
7287 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7288 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7289 	return err;
7290 }
7291 
7292 /**
7293  * ufshcd_reset_and_restore - reset and re-initialize host/device
7294  * @hba: per-adapter instance
7295  *
7296  * Reset and recover device, host and re-establish link. This
7297  * is helpful to recover the communication in fatal error conditions.
7298  *
7299  * Returns zero on success, non-zero on failure
7300  */
7301 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7302 {
7303 	u32 saved_err = 0;
7304 	u32 saved_uic_err = 0;
7305 	int err = 0;
7306 	unsigned long flags;
7307 	int retries = MAX_HOST_RESET_RETRIES;
7308 
7309 	spin_lock_irqsave(hba->host->host_lock, flags);
7310 	do {
7311 		/*
7312 		 * This is a fresh start, cache and clear saved error first,
7313 		 * in case new error generated during reset and restore.
7314 		 */
7315 		saved_err |= hba->saved_err;
7316 		saved_uic_err |= hba->saved_uic_err;
7317 		hba->saved_err = 0;
7318 		hba->saved_uic_err = 0;
7319 		hba->force_reset = false;
7320 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7321 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7322 
7323 		/* Reset the attached device */
7324 		ufshcd_device_reset(hba);
7325 
7326 		err = ufshcd_host_reset_and_restore(hba);
7327 
7328 		spin_lock_irqsave(hba->host->host_lock, flags);
7329 		if (err)
7330 			continue;
7331 		/* Do not exit unless operational or dead */
7332 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7333 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7334 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7335 			err = -EAGAIN;
7336 	} while (err && --retries);
7337 
7338 	/*
7339 	 * Inform scsi mid-layer that we did reset and allow to handle
7340 	 * Unit Attention properly.
7341 	 */
7342 	scsi_report_bus_reset(hba->host, 0);
7343 	if (err) {
7344 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7345 		hba->saved_err |= saved_err;
7346 		hba->saved_uic_err |= saved_uic_err;
7347 	}
7348 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7349 
7350 	return err;
7351 }
7352 
7353 /**
7354  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7355  * @cmd: SCSI command pointer
7356  *
7357  * Returns SUCCESS/FAILED
7358  */
7359 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7360 {
7361 	int err = SUCCESS;
7362 	unsigned long flags;
7363 	struct ufs_hba *hba;
7364 
7365 	hba = shost_priv(cmd->device->host);
7366 
7367 	spin_lock_irqsave(hba->host->host_lock, flags);
7368 	hba->force_reset = true;
7369 	ufshcd_schedule_eh_work(hba);
7370 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7371 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7372 
7373 	flush_work(&hba->eh_work);
7374 
7375 	spin_lock_irqsave(hba->host->host_lock, flags);
7376 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7377 		err = FAILED;
7378 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7379 
7380 	return err;
7381 }
7382 
7383 /**
7384  * ufshcd_get_max_icc_level - calculate the ICC level
7385  * @sup_curr_uA: max. current supported by the regulator
7386  * @start_scan: row at the desc table to start scan from
7387  * @buff: power descriptor buffer
7388  *
7389  * Returns calculated max ICC level for specific regulator
7390  */
7391 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
7392 {
7393 	int i;
7394 	int curr_uA;
7395 	u16 data;
7396 	u16 unit;
7397 
7398 	for (i = start_scan; i >= 0; i--) {
7399 		data = get_unaligned_be16(&buff[2 * i]);
7400 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7401 						ATTR_ICC_LVL_UNIT_OFFSET;
7402 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7403 		switch (unit) {
7404 		case UFSHCD_NANO_AMP:
7405 			curr_uA = curr_uA / 1000;
7406 			break;
7407 		case UFSHCD_MILI_AMP:
7408 			curr_uA = curr_uA * 1000;
7409 			break;
7410 		case UFSHCD_AMP:
7411 			curr_uA = curr_uA * 1000 * 1000;
7412 			break;
7413 		case UFSHCD_MICRO_AMP:
7414 		default:
7415 			break;
7416 		}
7417 		if (sup_curr_uA >= curr_uA)
7418 			break;
7419 	}
7420 	if (i < 0) {
7421 		i = 0;
7422 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7423 	}
7424 
7425 	return (u32)i;
7426 }
7427 
7428 /**
7429  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7430  * In case regulators are not initialized we'll return 0
7431  * @hba: per-adapter instance
7432  * @desc_buf: power descriptor buffer to extract ICC levels from.
7433  * @len: length of desc_buff
7434  *
7435  * Returns calculated ICC level
7436  */
7437 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7438 							u8 *desc_buf, int len)
7439 {
7440 	u32 icc_level = 0;
7441 
7442 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7443 						!hba->vreg_info.vccq2) {
7444 		/*
7445 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7446 		 * never-ending cycles of messages written back to storage by
7447 		 * user space causing runtime resume, causing more messages and
7448 		 * so on.
7449 		 */
7450 		dev_dbg(hba->dev,
7451 			"%s: Regulator capability was not set, actvIccLevel=%d",
7452 							__func__, icc_level);
7453 		goto out;
7454 	}
7455 
7456 	if (hba->vreg_info.vcc->max_uA)
7457 		icc_level = ufshcd_get_max_icc_level(
7458 				hba->vreg_info.vcc->max_uA,
7459 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7460 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7461 
7462 	if (hba->vreg_info.vccq->max_uA)
7463 		icc_level = ufshcd_get_max_icc_level(
7464 				hba->vreg_info.vccq->max_uA,
7465 				icc_level,
7466 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7467 
7468 	if (hba->vreg_info.vccq2->max_uA)
7469 		icc_level = ufshcd_get_max_icc_level(
7470 				hba->vreg_info.vccq2->max_uA,
7471 				icc_level,
7472 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7473 out:
7474 	return icc_level;
7475 }
7476 
7477 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7478 {
7479 	int ret;
7480 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7481 	u8 *desc_buf;
7482 	u32 icc_level;
7483 
7484 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7485 	if (!desc_buf)
7486 		return;
7487 
7488 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7489 				     desc_buf, buff_len);
7490 	if (ret) {
7491 		dev_err(hba->dev,
7492 			"%s: Failed reading power descriptor.len = %d ret = %d",
7493 			__func__, buff_len, ret);
7494 		goto out;
7495 	}
7496 
7497 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7498 							 buff_len);
7499 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7500 
7501 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7502 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7503 
7504 	if (ret)
7505 		dev_err(hba->dev,
7506 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7507 			__func__, icc_level, ret);
7508 
7509 out:
7510 	kfree(desc_buf);
7511 }
7512 
7513 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7514 {
7515 	scsi_autopm_get_device(sdev);
7516 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7517 	if (sdev->rpm_autosuspend)
7518 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7519 						 RPM_AUTOSUSPEND_DELAY_MS);
7520 	scsi_autopm_put_device(sdev);
7521 }
7522 
7523 /**
7524  * ufshcd_scsi_add_wlus - Adds required W-LUs
7525  * @hba: per-adapter instance
7526  *
7527  * UFS device specification requires the UFS devices to support 4 well known
7528  * logical units:
7529  *	"REPORT_LUNS" (address: 01h)
7530  *	"UFS Device" (address: 50h)
7531  *	"RPMB" (address: 44h)
7532  *	"BOOT" (address: 30h)
7533  * UFS device's power management needs to be controlled by "POWER CONDITION"
7534  * field of SSU (START STOP UNIT) command. But this "power condition" field
7535  * will take effect only when its sent to "UFS device" well known logical unit
7536  * hence we require the scsi_device instance to represent this logical unit in
7537  * order for the UFS host driver to send the SSU command for power management.
7538  *
7539  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7540  * Block) LU so user space process can control this LU. User space may also
7541  * want to have access to BOOT LU.
7542  *
7543  * This function adds scsi device instances for each of all well known LUs
7544  * (except "REPORT LUNS" LU).
7545  *
7546  * Returns zero on success (all required W-LUs are added successfully),
7547  * non-zero error value on failure (if failed to add any of the required W-LU).
7548  */
7549 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7550 {
7551 	int ret = 0;
7552 	struct scsi_device *sdev_boot, *sdev_rpmb;
7553 
7554 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7555 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7556 	if (IS_ERR(hba->ufs_device_wlun)) {
7557 		ret = PTR_ERR(hba->ufs_device_wlun);
7558 		hba->ufs_device_wlun = NULL;
7559 		goto out;
7560 	}
7561 	scsi_device_put(hba->ufs_device_wlun);
7562 
7563 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7564 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7565 	if (IS_ERR(sdev_rpmb)) {
7566 		ret = PTR_ERR(sdev_rpmb);
7567 		goto remove_ufs_device_wlun;
7568 	}
7569 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7570 	scsi_device_put(sdev_rpmb);
7571 
7572 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7573 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7574 	if (IS_ERR(sdev_boot)) {
7575 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7576 	} else {
7577 		ufshcd_blk_pm_runtime_init(sdev_boot);
7578 		scsi_device_put(sdev_boot);
7579 	}
7580 	goto out;
7581 
7582 remove_ufs_device_wlun:
7583 	scsi_remove_device(hba->ufs_device_wlun);
7584 out:
7585 	return ret;
7586 }
7587 
7588 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7589 {
7590 	struct ufs_dev_info *dev_info = &hba->dev_info;
7591 	u8 lun;
7592 	u32 d_lu_wb_buf_alloc;
7593 	u32 ext_ufs_feature;
7594 
7595 	if (!ufshcd_is_wb_allowed(hba))
7596 		return;
7597 
7598 	/*
7599 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7600 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7601 	 * enabled
7602 	 */
7603 	if (!(dev_info->wspecversion >= 0x310 ||
7604 	      dev_info->wspecversion == 0x220 ||
7605 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7606 		goto wb_disabled;
7607 
7608 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7609 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7610 		goto wb_disabled;
7611 
7612 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7613 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7614 
7615 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7616 		goto wb_disabled;
7617 
7618 	/*
7619 	 * WB may be supported but not configured while provisioning. The spec
7620 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7621 	 * buffer configured.
7622 	 */
7623 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7624 
7625 	dev_info->b_presrv_uspc_en =
7626 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7627 
7628 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7629 		if (!get_unaligned_be32(desc_buf +
7630 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7631 			goto wb_disabled;
7632 	} else {
7633 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7634 			d_lu_wb_buf_alloc = 0;
7635 			ufshcd_read_unit_desc_param(hba,
7636 					lun,
7637 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7638 					(u8 *)&d_lu_wb_buf_alloc,
7639 					sizeof(d_lu_wb_buf_alloc));
7640 			if (d_lu_wb_buf_alloc) {
7641 				dev_info->wb_dedicated_lu = lun;
7642 				break;
7643 			}
7644 		}
7645 
7646 		if (!d_lu_wb_buf_alloc)
7647 			goto wb_disabled;
7648 	}
7649 
7650 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7651 		goto wb_disabled;
7652 
7653 	return;
7654 
7655 wb_disabled:
7656 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7657 }
7658 
7659 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, u8 *desc_buf)
7660 {
7661 	struct ufs_dev_info *dev_info = &hba->dev_info;
7662 	u32 ext_ufs_feature;
7663 	u8 mask = 0;
7664 
7665 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7666 		return;
7667 
7668 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7669 
7670 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7671 		mask |= MASK_EE_TOO_LOW_TEMP;
7672 
7673 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7674 		mask |= MASK_EE_TOO_HIGH_TEMP;
7675 
7676 	if (mask) {
7677 		ufshcd_enable_ee(hba, mask);
7678 		ufs_hwmon_probe(hba, mask);
7679 	}
7680 }
7681 
7682 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7683 			     const struct ufs_dev_quirk *fixups)
7684 {
7685 	const struct ufs_dev_quirk *f;
7686 	struct ufs_dev_info *dev_info = &hba->dev_info;
7687 
7688 	if (!fixups)
7689 		return;
7690 
7691 	for (f = fixups; f->quirk; f++) {
7692 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7693 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7694 		     ((dev_info->model &&
7695 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7696 		      !strcmp(f->model, UFS_ANY_MODEL)))
7697 			hba->dev_quirks |= f->quirk;
7698 	}
7699 }
7700 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7701 
7702 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7703 {
7704 	/* fix by general quirk table */
7705 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7706 
7707 	/* allow vendors to fix quirks */
7708 	ufshcd_vops_fixup_dev_quirks(hba);
7709 }
7710 
7711 static int ufs_get_device_desc(struct ufs_hba *hba)
7712 {
7713 	int err;
7714 	u8 model_index;
7715 	u8 b_ufs_feature_sup;
7716 	u8 *desc_buf;
7717 	struct ufs_dev_info *dev_info = &hba->dev_info;
7718 
7719 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7720 	if (!desc_buf) {
7721 		err = -ENOMEM;
7722 		goto out;
7723 	}
7724 
7725 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7726 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7727 	if (err) {
7728 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7729 			__func__, err);
7730 		goto out;
7731 	}
7732 
7733 	/*
7734 	 * getting vendor (manufacturerID) and Bank Index in big endian
7735 	 * format
7736 	 */
7737 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7738 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7739 
7740 	/* getting Specification Version in big endian format */
7741 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7742 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7743 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7744 
7745 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7746 
7747 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7748 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7749 		bool hpb_en = false;
7750 
7751 		ufshpb_get_dev_info(hba, desc_buf);
7752 
7753 		if (!ufshpb_is_legacy(hba))
7754 			err = ufshcd_query_flag_retry(hba,
7755 						      UPIU_QUERY_OPCODE_READ_FLAG,
7756 						      QUERY_FLAG_IDN_HPB_EN, 0,
7757 						      &hpb_en);
7758 
7759 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7760 			dev_info->hpb_enabled = true;
7761 	}
7762 
7763 	err = ufshcd_read_string_desc(hba, model_index,
7764 				      &dev_info->model, SD_ASCII_STD);
7765 	if (err < 0) {
7766 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7767 			__func__, err);
7768 		goto out;
7769 	}
7770 
7771 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
7772 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
7773 
7774 	ufs_fixup_device_setup(hba);
7775 
7776 	ufshcd_wb_probe(hba, desc_buf);
7777 
7778 	ufshcd_temp_notif_probe(hba, desc_buf);
7779 
7780 	/*
7781 	 * ufshcd_read_string_desc returns size of the string
7782 	 * reset the error value
7783 	 */
7784 	err = 0;
7785 
7786 out:
7787 	kfree(desc_buf);
7788 	return err;
7789 }
7790 
7791 static void ufs_put_device_desc(struct ufs_hba *hba)
7792 {
7793 	struct ufs_dev_info *dev_info = &hba->dev_info;
7794 
7795 	kfree(dev_info->model);
7796 	dev_info->model = NULL;
7797 }
7798 
7799 /**
7800  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7801  * @hba: per-adapter instance
7802  *
7803  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7804  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7805  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7806  * the hibern8 exit latency.
7807  *
7808  * Returns zero on success, non-zero error value on failure.
7809  */
7810 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7811 {
7812 	int ret = 0;
7813 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7814 
7815 	ret = ufshcd_dme_peer_get(hba,
7816 				  UIC_ARG_MIB_SEL(
7817 					RX_MIN_ACTIVATETIME_CAPABILITY,
7818 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7819 				  &peer_rx_min_activatetime);
7820 	if (ret)
7821 		goto out;
7822 
7823 	/* make sure proper unit conversion is applied */
7824 	tuned_pa_tactivate =
7825 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7826 		 / PA_TACTIVATE_TIME_UNIT_US);
7827 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7828 			     tuned_pa_tactivate);
7829 
7830 out:
7831 	return ret;
7832 }
7833 
7834 /**
7835  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7836  * @hba: per-adapter instance
7837  *
7838  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7839  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7840  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7841  * This optimal value can help reduce the hibern8 exit latency.
7842  *
7843  * Returns zero on success, non-zero error value on failure.
7844  */
7845 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7846 {
7847 	int ret = 0;
7848 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7849 	u32 max_hibern8_time, tuned_pa_hibern8time;
7850 
7851 	ret = ufshcd_dme_get(hba,
7852 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7853 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7854 				  &local_tx_hibern8_time_cap);
7855 	if (ret)
7856 		goto out;
7857 
7858 	ret = ufshcd_dme_peer_get(hba,
7859 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7860 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7861 				  &peer_rx_hibern8_time_cap);
7862 	if (ret)
7863 		goto out;
7864 
7865 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7866 			       peer_rx_hibern8_time_cap);
7867 	/* make sure proper unit conversion is applied */
7868 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7869 				/ PA_HIBERN8_TIME_UNIT_US);
7870 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7871 			     tuned_pa_hibern8time);
7872 out:
7873 	return ret;
7874 }
7875 
7876 /**
7877  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7878  * less than device PA_TACTIVATE time.
7879  * @hba: per-adapter instance
7880  *
7881  * Some UFS devices require host PA_TACTIVATE to be lower than device
7882  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7883  * for such devices.
7884  *
7885  * Returns zero on success, non-zero error value on failure.
7886  */
7887 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7888 {
7889 	int ret = 0;
7890 	u32 granularity, peer_granularity;
7891 	u32 pa_tactivate, peer_pa_tactivate;
7892 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7893 	u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7894 
7895 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7896 				  &granularity);
7897 	if (ret)
7898 		goto out;
7899 
7900 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7901 				  &peer_granularity);
7902 	if (ret)
7903 		goto out;
7904 
7905 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7906 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7907 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7908 			__func__, granularity);
7909 		return -EINVAL;
7910 	}
7911 
7912 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7913 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7914 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7915 			__func__, peer_granularity);
7916 		return -EINVAL;
7917 	}
7918 
7919 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7920 	if (ret)
7921 		goto out;
7922 
7923 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7924 				  &peer_pa_tactivate);
7925 	if (ret)
7926 		goto out;
7927 
7928 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7929 	peer_pa_tactivate_us = peer_pa_tactivate *
7930 			     gran_to_us_table[peer_granularity - 1];
7931 
7932 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
7933 		u32 new_peer_pa_tactivate;
7934 
7935 		new_peer_pa_tactivate = pa_tactivate_us /
7936 				      gran_to_us_table[peer_granularity - 1];
7937 		new_peer_pa_tactivate++;
7938 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7939 					  new_peer_pa_tactivate);
7940 	}
7941 
7942 out:
7943 	return ret;
7944 }
7945 
7946 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7947 {
7948 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7949 		ufshcd_tune_pa_tactivate(hba);
7950 		ufshcd_tune_pa_hibern8time(hba);
7951 	}
7952 
7953 	ufshcd_vops_apply_dev_quirks(hba);
7954 
7955 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7956 		/* set 1ms timeout for PA_TACTIVATE */
7957 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7958 
7959 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7960 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7961 }
7962 
7963 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7964 {
7965 	hba->ufs_stats.hibern8_exit_cnt = 0;
7966 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7967 	hba->req_abort_count = 0;
7968 }
7969 
7970 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7971 {
7972 	int err;
7973 	size_t buff_len;
7974 	u8 *desc_buf;
7975 
7976 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7977 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7978 	if (!desc_buf) {
7979 		err = -ENOMEM;
7980 		goto out;
7981 	}
7982 
7983 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7984 				     desc_buf, buff_len);
7985 	if (err) {
7986 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7987 				__func__, err);
7988 		goto out;
7989 	}
7990 
7991 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7992 		hba->dev_info.max_lu_supported = 32;
7993 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7994 		hba->dev_info.max_lu_supported = 8;
7995 
7996 	if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
7997 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
7998 		ufshpb_get_geo_info(hba, desc_buf);
7999 
8000 out:
8001 	kfree(desc_buf);
8002 	return err;
8003 }
8004 
8005 struct ufs_ref_clk {
8006 	unsigned long freq_hz;
8007 	enum ufs_ref_clk_freq val;
8008 };
8009 
8010 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8011 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8012 	{26000000, REF_CLK_FREQ_26_MHZ},
8013 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8014 	{52000000, REF_CLK_FREQ_52_MHZ},
8015 	{0, REF_CLK_FREQ_INVAL},
8016 };
8017 
8018 static enum ufs_ref_clk_freq
8019 ufs_get_bref_clk_from_hz(unsigned long freq)
8020 {
8021 	int i;
8022 
8023 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8024 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8025 			return ufs_ref_clk_freqs[i].val;
8026 
8027 	return REF_CLK_FREQ_INVAL;
8028 }
8029 
8030 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8031 {
8032 	unsigned long freq;
8033 
8034 	freq = clk_get_rate(refclk);
8035 
8036 	hba->dev_ref_clk_freq =
8037 		ufs_get_bref_clk_from_hz(freq);
8038 
8039 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8040 		dev_err(hba->dev,
8041 		"invalid ref_clk setting = %ld\n", freq);
8042 }
8043 
8044 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8045 {
8046 	int err;
8047 	u32 ref_clk;
8048 	u32 freq = hba->dev_ref_clk_freq;
8049 
8050 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8051 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8052 
8053 	if (err) {
8054 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8055 			err);
8056 		goto out;
8057 	}
8058 
8059 	if (ref_clk == freq)
8060 		goto out; /* nothing to update */
8061 
8062 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8063 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8064 
8065 	if (err) {
8066 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8067 			ufs_ref_clk_freqs[freq].freq_hz);
8068 		goto out;
8069 	}
8070 
8071 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8072 			ufs_ref_clk_freqs[freq].freq_hz);
8073 
8074 out:
8075 	return err;
8076 }
8077 
8078 static int ufshcd_device_params_init(struct ufs_hba *hba)
8079 {
8080 	bool flag;
8081 	int ret, i;
8082 
8083 	 /* Init device descriptor sizes */
8084 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
8085 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
8086 
8087 	/* Init UFS geometry descriptor related parameters */
8088 	ret = ufshcd_device_geo_params_init(hba);
8089 	if (ret)
8090 		goto out;
8091 
8092 	/* Check and apply UFS device quirks */
8093 	ret = ufs_get_device_desc(hba);
8094 	if (ret) {
8095 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8096 			__func__, ret);
8097 		goto out;
8098 	}
8099 
8100 	ufshcd_get_ref_clk_gating_wait(hba);
8101 
8102 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8103 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8104 		hba->dev_info.f_power_on_wp_en = flag;
8105 
8106 	/* Probe maximum power mode co-supported by both UFS host and device */
8107 	if (ufshcd_get_max_pwr_mode(hba))
8108 		dev_err(hba->dev,
8109 			"%s: Failed getting max supported power mode\n",
8110 			__func__);
8111 out:
8112 	return ret;
8113 }
8114 
8115 /**
8116  * ufshcd_add_lus - probe and add UFS logical units
8117  * @hba: per-adapter instance
8118  */
8119 static int ufshcd_add_lus(struct ufs_hba *hba)
8120 {
8121 	int ret;
8122 
8123 	/* Add required well known logical units to scsi mid layer */
8124 	ret = ufshcd_scsi_add_wlus(hba);
8125 	if (ret)
8126 		goto out;
8127 
8128 	/* Initialize devfreq after UFS device is detected */
8129 	if (ufshcd_is_clkscaling_supported(hba)) {
8130 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
8131 			&hba->pwr_info,
8132 			sizeof(struct ufs_pa_layer_attr));
8133 		hba->clk_scaling.saved_pwr_info.is_valid = true;
8134 		hba->clk_scaling.is_allowed = true;
8135 
8136 		ret = ufshcd_devfreq_init(hba);
8137 		if (ret)
8138 			goto out;
8139 
8140 		hba->clk_scaling.is_enabled = true;
8141 		ufshcd_init_clk_scaling_sysfs(hba);
8142 	}
8143 
8144 	ufs_bsg_probe(hba);
8145 	ufshpb_init(hba);
8146 	scsi_scan_host(hba->host);
8147 	pm_runtime_put_sync(hba->dev);
8148 
8149 out:
8150 	return ret;
8151 }
8152 
8153 /**
8154  * ufshcd_probe_hba - probe hba to detect device and initialize it
8155  * @hba: per-adapter instance
8156  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8157  *
8158  * Execute link-startup and verify device initialization
8159  */
8160 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8161 {
8162 	int ret;
8163 	unsigned long flags;
8164 	ktime_t start = ktime_get();
8165 
8166 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8167 
8168 	ret = ufshcd_link_startup(hba);
8169 	if (ret)
8170 		goto out;
8171 
8172 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8173 		goto out;
8174 
8175 	/* Debug counters initialization */
8176 	ufshcd_clear_dbg_ufs_stats(hba);
8177 
8178 	/* UniPro link is active now */
8179 	ufshcd_set_link_active(hba);
8180 
8181 	/* Verify device initialization by sending NOP OUT UPIU */
8182 	ret = ufshcd_verify_dev_init(hba);
8183 	if (ret)
8184 		goto out;
8185 
8186 	/* Initiate UFS initialization, and waiting until completion */
8187 	ret = ufshcd_complete_dev_init(hba);
8188 	if (ret)
8189 		goto out;
8190 
8191 	/*
8192 	 * Initialize UFS device parameters used by driver, these
8193 	 * parameters are associated with UFS descriptors.
8194 	 */
8195 	if (init_dev_params) {
8196 		ret = ufshcd_device_params_init(hba);
8197 		if (ret)
8198 			goto out;
8199 	}
8200 
8201 	ufshcd_tune_unipro_params(hba);
8202 
8203 	/* UFS device is also active now */
8204 	ufshcd_set_ufs_dev_active(hba);
8205 	ufshcd_force_reset_auto_bkops(hba);
8206 
8207 	/* Gear up to HS gear if supported */
8208 	if (hba->max_pwr_info.is_valid) {
8209 		/*
8210 		 * Set the right value to bRefClkFreq before attempting to
8211 		 * switch to HS gears.
8212 		 */
8213 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8214 			ufshcd_set_dev_ref_clk(hba);
8215 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8216 		if (ret) {
8217 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8218 					__func__, ret);
8219 			goto out;
8220 		}
8221 		ufshcd_print_pwr_info(hba);
8222 	}
8223 
8224 	/*
8225 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8226 	 * and for removable UFS card as well, hence always set the parameter.
8227 	 * Note: Error handler may issue the device reset hence resetting
8228 	 * bActiveICCLevel as well so it is always safe to set this here.
8229 	 */
8230 	ufshcd_set_active_icc_lvl(hba);
8231 
8232 	ufshcd_wb_config(hba);
8233 	if (hba->ee_usr_mask)
8234 		ufshcd_write_ee_control(hba);
8235 	/* Enable Auto-Hibernate if configured */
8236 	ufshcd_auto_hibern8_enable(hba);
8237 
8238 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8239 out:
8240 	spin_lock_irqsave(hba->host->host_lock, flags);
8241 	if (ret)
8242 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8243 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8244 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8245 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8246 
8247 	trace_ufshcd_init(dev_name(hba->dev), ret,
8248 		ktime_to_us(ktime_sub(ktime_get(), start)),
8249 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8250 	return ret;
8251 }
8252 
8253 /**
8254  * ufshcd_async_scan - asynchronous execution for probing hba
8255  * @data: data pointer to pass to this function
8256  * @cookie: cookie data
8257  */
8258 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8259 {
8260 	struct ufs_hba *hba = (struct ufs_hba *)data;
8261 	int ret;
8262 
8263 	down(&hba->host_sem);
8264 	/* Initialize hba, detect and initialize UFS device */
8265 	ret = ufshcd_probe_hba(hba, true);
8266 	up(&hba->host_sem);
8267 	if (ret)
8268 		goto out;
8269 
8270 	/* Probe and add UFS logical units  */
8271 	ret = ufshcd_add_lus(hba);
8272 out:
8273 	/*
8274 	 * If we failed to initialize the device or the device is not
8275 	 * present, turn off the power/clocks etc.
8276 	 */
8277 	if (ret) {
8278 		pm_runtime_put_sync(hba->dev);
8279 		ufshcd_hba_exit(hba);
8280 	}
8281 }
8282 
8283 static const struct attribute_group *ufshcd_driver_groups[] = {
8284 	&ufs_sysfs_unit_descriptor_group,
8285 	&ufs_sysfs_lun_attributes_group,
8286 #ifdef CONFIG_SCSI_UFS_HPB
8287 	&ufs_sysfs_hpb_stat_group,
8288 	&ufs_sysfs_hpb_param_group,
8289 #endif
8290 	NULL,
8291 };
8292 
8293 static struct ufs_hba_variant_params ufs_hba_vps = {
8294 	.hba_enable_delay_us		= 1000,
8295 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8296 	.devfreq_profile.polling_ms	= 100,
8297 	.devfreq_profile.target		= ufshcd_devfreq_target,
8298 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8299 	.ondemand_data.upthreshold	= 70,
8300 	.ondemand_data.downdifferential	= 5,
8301 };
8302 
8303 static struct scsi_host_template ufshcd_driver_template = {
8304 	.module			= THIS_MODULE,
8305 	.name			= UFSHCD,
8306 	.proc_name		= UFSHCD,
8307 	.map_queues		= ufshcd_map_queues,
8308 	.queuecommand		= ufshcd_queuecommand,
8309 	.mq_poll		= ufshcd_poll,
8310 	.slave_alloc		= ufshcd_slave_alloc,
8311 	.slave_configure	= ufshcd_slave_configure,
8312 	.slave_destroy		= ufshcd_slave_destroy,
8313 	.change_queue_depth	= ufshcd_change_queue_depth,
8314 	.eh_abort_handler	= ufshcd_abort,
8315 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8316 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8317 	.this_id		= -1,
8318 	.sg_tablesize		= SG_ALL,
8319 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8320 	.can_queue		= UFSHCD_CAN_QUEUE,
8321 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8322 	.max_host_blocked	= 1,
8323 	.track_queue_depth	= 1,
8324 	.sdev_groups		= ufshcd_driver_groups,
8325 	.dma_boundary		= PAGE_SIZE - 1,
8326 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8327 };
8328 
8329 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8330 				   int ua)
8331 {
8332 	int ret;
8333 
8334 	if (!vreg)
8335 		return 0;
8336 
8337 	/*
8338 	 * "set_load" operation shall be required on those regulators
8339 	 * which specifically configured current limitation. Otherwise
8340 	 * zero max_uA may cause unexpected behavior when regulator is
8341 	 * enabled or set as high power mode.
8342 	 */
8343 	if (!vreg->max_uA)
8344 		return 0;
8345 
8346 	ret = regulator_set_load(vreg->reg, ua);
8347 	if (ret < 0) {
8348 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8349 				__func__, vreg->name, ua, ret);
8350 	}
8351 
8352 	return ret;
8353 }
8354 
8355 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8356 					 struct ufs_vreg *vreg)
8357 {
8358 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8359 }
8360 
8361 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8362 					 struct ufs_vreg *vreg)
8363 {
8364 	if (!vreg)
8365 		return 0;
8366 
8367 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8368 }
8369 
8370 static int ufshcd_config_vreg(struct device *dev,
8371 		struct ufs_vreg *vreg, bool on)
8372 {
8373 	if (regulator_count_voltages(vreg->reg) <= 0)
8374 		return 0;
8375 
8376 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8377 }
8378 
8379 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8380 {
8381 	int ret = 0;
8382 
8383 	if (!vreg || vreg->enabled)
8384 		goto out;
8385 
8386 	ret = ufshcd_config_vreg(dev, vreg, true);
8387 	if (!ret)
8388 		ret = regulator_enable(vreg->reg);
8389 
8390 	if (!ret)
8391 		vreg->enabled = true;
8392 	else
8393 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8394 				__func__, vreg->name, ret);
8395 out:
8396 	return ret;
8397 }
8398 
8399 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8400 {
8401 	int ret = 0;
8402 
8403 	if (!vreg || !vreg->enabled || vreg->always_on)
8404 		goto out;
8405 
8406 	ret = regulator_disable(vreg->reg);
8407 
8408 	if (!ret) {
8409 		/* ignore errors on applying disable config */
8410 		ufshcd_config_vreg(dev, vreg, false);
8411 		vreg->enabled = false;
8412 	} else {
8413 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8414 				__func__, vreg->name, ret);
8415 	}
8416 out:
8417 	return ret;
8418 }
8419 
8420 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8421 {
8422 	int ret = 0;
8423 	struct device *dev = hba->dev;
8424 	struct ufs_vreg_info *info = &hba->vreg_info;
8425 
8426 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8427 	if (ret)
8428 		goto out;
8429 
8430 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8431 	if (ret)
8432 		goto out;
8433 
8434 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8435 
8436 out:
8437 	if (ret) {
8438 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8439 		ufshcd_toggle_vreg(dev, info->vccq, false);
8440 		ufshcd_toggle_vreg(dev, info->vcc, false);
8441 	}
8442 	return ret;
8443 }
8444 
8445 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8446 {
8447 	struct ufs_vreg_info *info = &hba->vreg_info;
8448 
8449 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8450 }
8451 
8452 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8453 {
8454 	int ret = 0;
8455 
8456 	if (!vreg)
8457 		goto out;
8458 
8459 	vreg->reg = devm_regulator_get(dev, vreg->name);
8460 	if (IS_ERR(vreg->reg)) {
8461 		ret = PTR_ERR(vreg->reg);
8462 		dev_err(dev, "%s: %s get failed, err=%d\n",
8463 				__func__, vreg->name, ret);
8464 	}
8465 out:
8466 	return ret;
8467 }
8468 
8469 static int ufshcd_init_vreg(struct ufs_hba *hba)
8470 {
8471 	int ret = 0;
8472 	struct device *dev = hba->dev;
8473 	struct ufs_vreg_info *info = &hba->vreg_info;
8474 
8475 	ret = ufshcd_get_vreg(dev, info->vcc);
8476 	if (ret)
8477 		goto out;
8478 
8479 	ret = ufshcd_get_vreg(dev, info->vccq);
8480 	if (!ret)
8481 		ret = ufshcd_get_vreg(dev, info->vccq2);
8482 out:
8483 	return ret;
8484 }
8485 
8486 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8487 {
8488 	struct ufs_vreg_info *info = &hba->vreg_info;
8489 
8490 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8491 }
8492 
8493 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8494 {
8495 	int ret = 0;
8496 	struct ufs_clk_info *clki;
8497 	struct list_head *head = &hba->clk_list_head;
8498 	unsigned long flags;
8499 	ktime_t start = ktime_get();
8500 	bool clk_state_changed = false;
8501 
8502 	if (list_empty(head))
8503 		goto out;
8504 
8505 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8506 	if (ret)
8507 		return ret;
8508 
8509 	list_for_each_entry(clki, head, list) {
8510 		if (!IS_ERR_OR_NULL(clki->clk)) {
8511 			/*
8512 			 * Don't disable clocks which are needed
8513 			 * to keep the link active.
8514 			 */
8515 			if (ufshcd_is_link_active(hba) &&
8516 			    clki->keep_link_active)
8517 				continue;
8518 
8519 			clk_state_changed = on ^ clki->enabled;
8520 			if (on && !clki->enabled) {
8521 				ret = clk_prepare_enable(clki->clk);
8522 				if (ret) {
8523 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8524 						__func__, clki->name, ret);
8525 					goto out;
8526 				}
8527 			} else if (!on && clki->enabled) {
8528 				clk_disable_unprepare(clki->clk);
8529 			}
8530 			clki->enabled = on;
8531 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8532 					clki->name, on ? "en" : "dis");
8533 		}
8534 	}
8535 
8536 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8537 	if (ret)
8538 		return ret;
8539 
8540 out:
8541 	if (ret) {
8542 		list_for_each_entry(clki, head, list) {
8543 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8544 				clk_disable_unprepare(clki->clk);
8545 		}
8546 	} else if (!ret && on) {
8547 		spin_lock_irqsave(hba->host->host_lock, flags);
8548 		hba->clk_gating.state = CLKS_ON;
8549 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8550 					hba->clk_gating.state);
8551 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8552 	}
8553 
8554 	if (clk_state_changed)
8555 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8556 			(on ? "on" : "off"),
8557 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8558 	return ret;
8559 }
8560 
8561 static int ufshcd_init_clocks(struct ufs_hba *hba)
8562 {
8563 	int ret = 0;
8564 	struct ufs_clk_info *clki;
8565 	struct device *dev = hba->dev;
8566 	struct list_head *head = &hba->clk_list_head;
8567 
8568 	if (list_empty(head))
8569 		goto out;
8570 
8571 	list_for_each_entry(clki, head, list) {
8572 		if (!clki->name)
8573 			continue;
8574 
8575 		clki->clk = devm_clk_get(dev, clki->name);
8576 		if (IS_ERR(clki->clk)) {
8577 			ret = PTR_ERR(clki->clk);
8578 			dev_err(dev, "%s: %s clk get failed, %d\n",
8579 					__func__, clki->name, ret);
8580 			goto out;
8581 		}
8582 
8583 		/*
8584 		 * Parse device ref clk freq as per device tree "ref_clk".
8585 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8586 		 * in ufshcd_alloc_host().
8587 		 */
8588 		if (!strcmp(clki->name, "ref_clk"))
8589 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8590 
8591 		if (clki->max_freq) {
8592 			ret = clk_set_rate(clki->clk, clki->max_freq);
8593 			if (ret) {
8594 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8595 					__func__, clki->name,
8596 					clki->max_freq, ret);
8597 				goto out;
8598 			}
8599 			clki->curr_freq = clki->max_freq;
8600 		}
8601 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8602 				clki->name, clk_get_rate(clki->clk));
8603 	}
8604 out:
8605 	return ret;
8606 }
8607 
8608 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8609 {
8610 	int err = 0;
8611 
8612 	if (!hba->vops)
8613 		goto out;
8614 
8615 	err = ufshcd_vops_init(hba);
8616 	if (err)
8617 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8618 			__func__, ufshcd_get_var_name(hba), err);
8619 out:
8620 	return err;
8621 }
8622 
8623 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8624 {
8625 	if (!hba->vops)
8626 		return;
8627 
8628 	ufshcd_vops_exit(hba);
8629 }
8630 
8631 static int ufshcd_hba_init(struct ufs_hba *hba)
8632 {
8633 	int err;
8634 
8635 	/*
8636 	 * Handle host controller power separately from the UFS device power
8637 	 * rails as it will help controlling the UFS host controller power
8638 	 * collapse easily which is different than UFS device power collapse.
8639 	 * Also, enable the host controller power before we go ahead with rest
8640 	 * of the initialization here.
8641 	 */
8642 	err = ufshcd_init_hba_vreg(hba);
8643 	if (err)
8644 		goto out;
8645 
8646 	err = ufshcd_setup_hba_vreg(hba, true);
8647 	if (err)
8648 		goto out;
8649 
8650 	err = ufshcd_init_clocks(hba);
8651 	if (err)
8652 		goto out_disable_hba_vreg;
8653 
8654 	err = ufshcd_setup_clocks(hba, true);
8655 	if (err)
8656 		goto out_disable_hba_vreg;
8657 
8658 	err = ufshcd_init_vreg(hba);
8659 	if (err)
8660 		goto out_disable_clks;
8661 
8662 	err = ufshcd_setup_vreg(hba, true);
8663 	if (err)
8664 		goto out_disable_clks;
8665 
8666 	err = ufshcd_variant_hba_init(hba);
8667 	if (err)
8668 		goto out_disable_vreg;
8669 
8670 	ufs_debugfs_hba_init(hba);
8671 
8672 	hba->is_powered = true;
8673 	goto out;
8674 
8675 out_disable_vreg:
8676 	ufshcd_setup_vreg(hba, false);
8677 out_disable_clks:
8678 	ufshcd_setup_clocks(hba, false);
8679 out_disable_hba_vreg:
8680 	ufshcd_setup_hba_vreg(hba, false);
8681 out:
8682 	return err;
8683 }
8684 
8685 static void ufshcd_hba_exit(struct ufs_hba *hba)
8686 {
8687 	if (hba->is_powered) {
8688 		ufshcd_exit_clk_scaling(hba);
8689 		ufshcd_exit_clk_gating(hba);
8690 		if (hba->eh_wq)
8691 			destroy_workqueue(hba->eh_wq);
8692 		ufs_debugfs_hba_exit(hba);
8693 		ufshcd_variant_hba_exit(hba);
8694 		ufshcd_setup_vreg(hba, false);
8695 		ufshcd_setup_clocks(hba, false);
8696 		ufshcd_setup_hba_vreg(hba, false);
8697 		hba->is_powered = false;
8698 		ufs_put_device_desc(hba);
8699 	}
8700 }
8701 
8702 /**
8703  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8704  *			     power mode
8705  * @hba: per adapter instance
8706  * @pwr_mode: device power mode to set
8707  *
8708  * Returns 0 if requested power mode is set successfully
8709  * Returns < 0 if failed to set the requested power mode
8710  */
8711 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8712 				     enum ufs_dev_pwr_mode pwr_mode)
8713 {
8714 	unsigned char cmd[6] = { START_STOP };
8715 	struct scsi_sense_hdr sshdr;
8716 	struct scsi_device *sdp;
8717 	unsigned long flags;
8718 	int ret, retries;
8719 
8720 	spin_lock_irqsave(hba->host->host_lock, flags);
8721 	sdp = hba->ufs_device_wlun;
8722 	if (sdp) {
8723 		ret = scsi_device_get(sdp);
8724 		if (!ret && !scsi_device_online(sdp)) {
8725 			ret = -ENODEV;
8726 			scsi_device_put(sdp);
8727 		}
8728 	} else {
8729 		ret = -ENODEV;
8730 	}
8731 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8732 
8733 	if (ret)
8734 		return ret;
8735 
8736 	/*
8737 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8738 	 * handling, which would wait for host to be resumed. Since we know
8739 	 * we are functional while we are here, skip host resume in error
8740 	 * handling context.
8741 	 */
8742 	hba->host->eh_noresume = 1;
8743 
8744 	cmd[4] = pwr_mode << 4;
8745 
8746 	/*
8747 	 * Current function would be generally called from the power management
8748 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8749 	 * already suspended childs.
8750 	 */
8751 	for (retries = 3; retries > 0; --retries) {
8752 		ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8753 				START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8754 		if (!scsi_status_is_check_condition(ret) ||
8755 				!scsi_sense_valid(&sshdr) ||
8756 				sshdr.sense_key != UNIT_ATTENTION)
8757 			break;
8758 	}
8759 	if (ret) {
8760 		sdev_printk(KERN_WARNING, sdp,
8761 			    "START_STOP failed for power mode: %d, result %x\n",
8762 			    pwr_mode, ret);
8763 		if (ret > 0) {
8764 			if (scsi_sense_valid(&sshdr))
8765 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
8766 			ret = -EIO;
8767 		}
8768 	}
8769 
8770 	if (!ret)
8771 		hba->curr_dev_pwr_mode = pwr_mode;
8772 
8773 	scsi_device_put(sdp);
8774 	hba->host->eh_noresume = 0;
8775 	return ret;
8776 }
8777 
8778 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8779 					enum uic_link_state req_link_state,
8780 					int check_for_bkops)
8781 {
8782 	int ret = 0;
8783 
8784 	if (req_link_state == hba->uic_link_state)
8785 		return 0;
8786 
8787 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8788 		ret = ufshcd_uic_hibern8_enter(hba);
8789 		if (!ret) {
8790 			ufshcd_set_link_hibern8(hba);
8791 		} else {
8792 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8793 					__func__, ret);
8794 			goto out;
8795 		}
8796 	}
8797 	/*
8798 	 * If autobkops is enabled, link can't be turned off because
8799 	 * turning off the link would also turn off the device, except in the
8800 	 * case of DeepSleep where the device is expected to remain powered.
8801 	 */
8802 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8803 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8804 		/*
8805 		 * Let's make sure that link is in low power mode, we are doing
8806 		 * this currently by putting the link in Hibern8. Otherway to
8807 		 * put the link in low power mode is to send the DME end point
8808 		 * to device and then send the DME reset command to local
8809 		 * unipro. But putting the link in hibern8 is much faster.
8810 		 *
8811 		 * Note also that putting the link in Hibern8 is a requirement
8812 		 * for entering DeepSleep.
8813 		 */
8814 		ret = ufshcd_uic_hibern8_enter(hba);
8815 		if (ret) {
8816 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8817 					__func__, ret);
8818 			goto out;
8819 		}
8820 		/*
8821 		 * Change controller state to "reset state" which
8822 		 * should also put the link in off/reset state
8823 		 */
8824 		ufshcd_hba_stop(hba);
8825 		/*
8826 		 * TODO: Check if we need any delay to make sure that
8827 		 * controller is reset
8828 		 */
8829 		ufshcd_set_link_off(hba);
8830 	}
8831 
8832 out:
8833 	return ret;
8834 }
8835 
8836 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8837 {
8838 	bool vcc_off = false;
8839 
8840 	/*
8841 	 * It seems some UFS devices may keep drawing more than sleep current
8842 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8843 	 * To avoid this situation, add 2ms delay before putting these UFS
8844 	 * rails in LPM mode.
8845 	 */
8846 	if (!ufshcd_is_link_active(hba) &&
8847 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8848 		usleep_range(2000, 2100);
8849 
8850 	/*
8851 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8852 	 * power.
8853 	 *
8854 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8855 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8856 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8857 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8858 	 *
8859 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8860 	 * in low power state which would save some power.
8861 	 *
8862 	 * If Write Booster is enabled and the device needs to flush the WB
8863 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8864 	 */
8865 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8866 	    !hba->dev_info.is_lu_power_on_wp) {
8867 		ufshcd_setup_vreg(hba, false);
8868 		vcc_off = true;
8869 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8870 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8871 		vcc_off = true;
8872 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8873 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8874 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8875 		}
8876 	}
8877 
8878 	/*
8879 	 * Some UFS devices require delay after VCC power rail is turned-off.
8880 	 */
8881 	if (vcc_off && hba->vreg_info.vcc &&
8882 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8883 		usleep_range(5000, 5100);
8884 }
8885 
8886 #ifdef CONFIG_PM
8887 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8888 {
8889 	int ret = 0;
8890 
8891 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8892 	    !hba->dev_info.is_lu_power_on_wp) {
8893 		ret = ufshcd_setup_vreg(hba, true);
8894 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8895 		if (!ufshcd_is_link_active(hba)) {
8896 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8897 			if (ret)
8898 				goto vcc_disable;
8899 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8900 			if (ret)
8901 				goto vccq_lpm;
8902 		}
8903 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8904 	}
8905 	goto out;
8906 
8907 vccq_lpm:
8908 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8909 vcc_disable:
8910 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8911 out:
8912 	return ret;
8913 }
8914 #endif /* CONFIG_PM */
8915 
8916 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8917 {
8918 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8919 		ufshcd_setup_hba_vreg(hba, false);
8920 }
8921 
8922 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8923 {
8924 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8925 		ufshcd_setup_hba_vreg(hba, true);
8926 }
8927 
8928 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8929 {
8930 	int ret = 0;
8931 	int check_for_bkops;
8932 	enum ufs_pm_level pm_lvl;
8933 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8934 	enum uic_link_state req_link_state;
8935 
8936 	hba->pm_op_in_progress = true;
8937 	if (pm_op != UFS_SHUTDOWN_PM) {
8938 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
8939 			 hba->rpm_lvl : hba->spm_lvl;
8940 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8941 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8942 	} else {
8943 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8944 		req_link_state = UIC_LINK_OFF_STATE;
8945 	}
8946 
8947 	ufshpb_suspend(hba);
8948 
8949 	/*
8950 	 * If we can't transition into any of the low power modes
8951 	 * just gate the clocks.
8952 	 */
8953 	ufshcd_hold(hba, false);
8954 	hba->clk_gating.is_suspended = true;
8955 
8956 	if (ufshcd_is_clkscaling_supported(hba))
8957 		ufshcd_clk_scaling_suspend(hba, true);
8958 
8959 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8960 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8961 		goto vops_suspend;
8962 	}
8963 
8964 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8965 	    (req_link_state == hba->uic_link_state))
8966 		goto enable_scaling;
8967 
8968 	/* UFS device & link must be active before we enter in this function */
8969 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8970 		ret = -EINVAL;
8971 		goto enable_scaling;
8972 	}
8973 
8974 	if (pm_op == UFS_RUNTIME_PM) {
8975 		if (ufshcd_can_autobkops_during_suspend(hba)) {
8976 			/*
8977 			 * The device is idle with no requests in the queue,
8978 			 * allow background operations if bkops status shows
8979 			 * that performance might be impacted.
8980 			 */
8981 			ret = ufshcd_urgent_bkops(hba);
8982 			if (ret)
8983 				goto enable_scaling;
8984 		} else {
8985 			/* make sure that auto bkops is disabled */
8986 			ufshcd_disable_auto_bkops(hba);
8987 		}
8988 		/*
8989 		 * If device needs to do BKOP or WB buffer flush during
8990 		 * Hibern8, keep device power mode as "active power mode"
8991 		 * and VCC supply.
8992 		 */
8993 		hba->dev_info.b_rpm_dev_flush_capable =
8994 			hba->auto_bkops_enabled ||
8995 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8996 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8997 			ufshcd_is_auto_hibern8_enabled(hba))) &&
8998 			ufshcd_wb_need_flush(hba));
8999 	}
9000 
9001 	flush_work(&hba->eeh_work);
9002 
9003 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9004 	if (ret)
9005 		goto enable_scaling;
9006 
9007 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9008 		if (pm_op != UFS_RUNTIME_PM)
9009 			/* ensure that bkops is disabled */
9010 			ufshcd_disable_auto_bkops(hba);
9011 
9012 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9013 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9014 			if (ret)
9015 				goto enable_scaling;
9016 		}
9017 	}
9018 
9019 	/*
9020 	 * In the case of DeepSleep, the device is expected to remain powered
9021 	 * with the link off, so do not check for bkops.
9022 	 */
9023 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9024 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9025 	if (ret)
9026 		goto set_dev_active;
9027 
9028 vops_suspend:
9029 	/*
9030 	 * Call vendor specific suspend callback. As these callbacks may access
9031 	 * vendor specific host controller register space call them before the
9032 	 * host clocks are ON.
9033 	 */
9034 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9035 	if (ret)
9036 		goto set_link_active;
9037 	goto out;
9038 
9039 set_link_active:
9040 	/*
9041 	 * Device hardware reset is required to exit DeepSleep. Also, for
9042 	 * DeepSleep, the link is off so host reset and restore will be done
9043 	 * further below.
9044 	 */
9045 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9046 		ufshcd_device_reset(hba);
9047 		WARN_ON(!ufshcd_is_link_off(hba));
9048 	}
9049 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9050 		ufshcd_set_link_active(hba);
9051 	else if (ufshcd_is_link_off(hba))
9052 		ufshcd_host_reset_and_restore(hba);
9053 set_dev_active:
9054 	/* Can also get here needing to exit DeepSleep */
9055 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9056 		ufshcd_device_reset(hba);
9057 		ufshcd_host_reset_and_restore(hba);
9058 	}
9059 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9060 		ufshcd_disable_auto_bkops(hba);
9061 enable_scaling:
9062 	if (ufshcd_is_clkscaling_supported(hba))
9063 		ufshcd_clk_scaling_suspend(hba, false);
9064 
9065 	hba->dev_info.b_rpm_dev_flush_capable = false;
9066 out:
9067 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9068 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9069 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9070 	}
9071 
9072 	if (ret) {
9073 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9074 		hba->clk_gating.is_suspended = false;
9075 		ufshcd_release(hba);
9076 		ufshpb_resume(hba);
9077 	}
9078 	hba->pm_op_in_progress = false;
9079 	return ret;
9080 }
9081 
9082 #ifdef CONFIG_PM
9083 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9084 {
9085 	int ret;
9086 	enum uic_link_state old_link_state = hba->uic_link_state;
9087 
9088 	hba->pm_op_in_progress = true;
9089 
9090 	/*
9091 	 * Call vendor specific resume callback. As these callbacks may access
9092 	 * vendor specific host controller register space call them when the
9093 	 * host clocks are ON.
9094 	 */
9095 	ret = ufshcd_vops_resume(hba, pm_op);
9096 	if (ret)
9097 		goto out;
9098 
9099 	/* For DeepSleep, the only supported option is to have the link off */
9100 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9101 
9102 	if (ufshcd_is_link_hibern8(hba)) {
9103 		ret = ufshcd_uic_hibern8_exit(hba);
9104 		if (!ret) {
9105 			ufshcd_set_link_active(hba);
9106 		} else {
9107 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9108 					__func__, ret);
9109 			goto vendor_suspend;
9110 		}
9111 	} else if (ufshcd_is_link_off(hba)) {
9112 		/*
9113 		 * A full initialization of the host and the device is
9114 		 * required since the link was put to off during suspend.
9115 		 * Note, in the case of DeepSleep, the device will exit
9116 		 * DeepSleep due to device reset.
9117 		 */
9118 		ret = ufshcd_reset_and_restore(hba);
9119 		/*
9120 		 * ufshcd_reset_and_restore() should have already
9121 		 * set the link state as active
9122 		 */
9123 		if (ret || !ufshcd_is_link_active(hba))
9124 			goto vendor_suspend;
9125 	}
9126 
9127 	if (!ufshcd_is_ufs_dev_active(hba)) {
9128 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9129 		if (ret)
9130 			goto set_old_link_state;
9131 	}
9132 
9133 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9134 		ufshcd_enable_auto_bkops(hba);
9135 	else
9136 		/*
9137 		 * If BKOPs operations are urgently needed at this moment then
9138 		 * keep auto-bkops enabled or else disable it.
9139 		 */
9140 		ufshcd_urgent_bkops(hba);
9141 
9142 	if (hba->ee_usr_mask)
9143 		ufshcd_write_ee_control(hba);
9144 
9145 	if (ufshcd_is_clkscaling_supported(hba))
9146 		ufshcd_clk_scaling_suspend(hba, false);
9147 
9148 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9149 		hba->dev_info.b_rpm_dev_flush_capable = false;
9150 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9151 	}
9152 
9153 	/* Enable Auto-Hibernate if configured */
9154 	ufshcd_auto_hibern8_enable(hba);
9155 
9156 	ufshpb_resume(hba);
9157 	goto out;
9158 
9159 set_old_link_state:
9160 	ufshcd_link_state_transition(hba, old_link_state, 0);
9161 vendor_suspend:
9162 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9163 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9164 out:
9165 	if (ret)
9166 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9167 	hba->clk_gating.is_suspended = false;
9168 	ufshcd_release(hba);
9169 	hba->pm_op_in_progress = false;
9170 	return ret;
9171 }
9172 
9173 static int ufshcd_wl_runtime_suspend(struct device *dev)
9174 {
9175 	struct scsi_device *sdev = to_scsi_device(dev);
9176 	struct ufs_hba *hba;
9177 	int ret;
9178 	ktime_t start = ktime_get();
9179 
9180 	hba = shost_priv(sdev->host);
9181 
9182 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9183 	if (ret)
9184 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9185 
9186 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9187 		ktime_to_us(ktime_sub(ktime_get(), start)),
9188 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9189 
9190 	return ret;
9191 }
9192 
9193 static int ufshcd_wl_runtime_resume(struct device *dev)
9194 {
9195 	struct scsi_device *sdev = to_scsi_device(dev);
9196 	struct ufs_hba *hba;
9197 	int ret = 0;
9198 	ktime_t start = ktime_get();
9199 
9200 	hba = shost_priv(sdev->host);
9201 
9202 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9203 	if (ret)
9204 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9205 
9206 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9207 		ktime_to_us(ktime_sub(ktime_get(), start)),
9208 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9209 
9210 	return ret;
9211 }
9212 #endif
9213 
9214 #ifdef CONFIG_PM_SLEEP
9215 static int ufshcd_wl_suspend(struct device *dev)
9216 {
9217 	struct scsi_device *sdev = to_scsi_device(dev);
9218 	struct ufs_hba *hba;
9219 	int ret = 0;
9220 	ktime_t start = ktime_get();
9221 
9222 	hba = shost_priv(sdev->host);
9223 	down(&hba->host_sem);
9224 
9225 	if (pm_runtime_suspended(dev))
9226 		goto out;
9227 
9228 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9229 	if (ret) {
9230 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9231 		up(&hba->host_sem);
9232 	}
9233 
9234 out:
9235 	if (!ret)
9236 		hba->is_sys_suspended = true;
9237 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9238 		ktime_to_us(ktime_sub(ktime_get(), start)),
9239 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9240 
9241 	return ret;
9242 }
9243 
9244 static int ufshcd_wl_resume(struct device *dev)
9245 {
9246 	struct scsi_device *sdev = to_scsi_device(dev);
9247 	struct ufs_hba *hba;
9248 	int ret = 0;
9249 	ktime_t start = ktime_get();
9250 
9251 	hba = shost_priv(sdev->host);
9252 
9253 	if (pm_runtime_suspended(dev))
9254 		goto out;
9255 
9256 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9257 	if (ret)
9258 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9259 out:
9260 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9261 		ktime_to_us(ktime_sub(ktime_get(), start)),
9262 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9263 	if (!ret)
9264 		hba->is_sys_suspended = false;
9265 	up(&hba->host_sem);
9266 	return ret;
9267 }
9268 #endif
9269 
9270 static void ufshcd_wl_shutdown(struct device *dev)
9271 {
9272 	struct scsi_device *sdev = to_scsi_device(dev);
9273 	struct ufs_hba *hba;
9274 
9275 	hba = shost_priv(sdev->host);
9276 
9277 	down(&hba->host_sem);
9278 	hba->shutting_down = true;
9279 	up(&hba->host_sem);
9280 
9281 	/* Turn on everything while shutting down */
9282 	ufshcd_rpm_get_sync(hba);
9283 	scsi_device_quiesce(sdev);
9284 	shost_for_each_device(sdev, hba->host) {
9285 		if (sdev == hba->ufs_device_wlun)
9286 			continue;
9287 		scsi_device_quiesce(sdev);
9288 	}
9289 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9290 }
9291 
9292 /**
9293  * ufshcd_suspend - helper function for suspend operations
9294  * @hba: per adapter instance
9295  *
9296  * This function will put disable irqs, turn off clocks
9297  * and set vreg and hba-vreg in lpm mode.
9298  */
9299 static int ufshcd_suspend(struct ufs_hba *hba)
9300 {
9301 	int ret;
9302 
9303 	if (!hba->is_powered)
9304 		return 0;
9305 	/*
9306 	 * Disable the host irq as host controller as there won't be any
9307 	 * host controller transaction expected till resume.
9308 	 */
9309 	ufshcd_disable_irq(hba);
9310 	ret = ufshcd_setup_clocks(hba, false);
9311 	if (ret) {
9312 		ufshcd_enable_irq(hba);
9313 		return ret;
9314 	}
9315 	if (ufshcd_is_clkgating_allowed(hba)) {
9316 		hba->clk_gating.state = CLKS_OFF;
9317 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9318 					hba->clk_gating.state);
9319 	}
9320 
9321 	ufshcd_vreg_set_lpm(hba);
9322 	/* Put the host controller in low power mode if possible */
9323 	ufshcd_hba_vreg_set_lpm(hba);
9324 	return ret;
9325 }
9326 
9327 #ifdef CONFIG_PM
9328 /**
9329  * ufshcd_resume - helper function for resume operations
9330  * @hba: per adapter instance
9331  *
9332  * This function basically turns on the regulators, clocks and
9333  * irqs of the hba.
9334  *
9335  * Returns 0 for success and non-zero for failure
9336  */
9337 static int ufshcd_resume(struct ufs_hba *hba)
9338 {
9339 	int ret;
9340 
9341 	if (!hba->is_powered)
9342 		return 0;
9343 
9344 	ufshcd_hba_vreg_set_hpm(hba);
9345 	ret = ufshcd_vreg_set_hpm(hba);
9346 	if (ret)
9347 		goto out;
9348 
9349 	/* Make sure clocks are enabled before accessing controller */
9350 	ret = ufshcd_setup_clocks(hba, true);
9351 	if (ret)
9352 		goto disable_vreg;
9353 
9354 	/* enable the host irq as host controller would be active soon */
9355 	ufshcd_enable_irq(hba);
9356 	goto out;
9357 
9358 disable_vreg:
9359 	ufshcd_vreg_set_lpm(hba);
9360 out:
9361 	if (ret)
9362 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9363 	return ret;
9364 }
9365 #endif /* CONFIG_PM */
9366 
9367 #ifdef CONFIG_PM_SLEEP
9368 /**
9369  * ufshcd_system_suspend - system suspend callback
9370  * @dev: Device associated with the UFS controller.
9371  *
9372  * Executed before putting the system into a sleep state in which the contents
9373  * of main memory are preserved.
9374  *
9375  * Returns 0 for success and non-zero for failure
9376  */
9377 int ufshcd_system_suspend(struct device *dev)
9378 {
9379 	struct ufs_hba *hba = dev_get_drvdata(dev);
9380 	int ret = 0;
9381 	ktime_t start = ktime_get();
9382 
9383 	if (pm_runtime_suspended(hba->dev))
9384 		goto out;
9385 
9386 	ret = ufshcd_suspend(hba);
9387 out:
9388 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9389 		ktime_to_us(ktime_sub(ktime_get(), start)),
9390 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9391 	return ret;
9392 }
9393 EXPORT_SYMBOL(ufshcd_system_suspend);
9394 
9395 /**
9396  * ufshcd_system_resume - system resume callback
9397  * @dev: Device associated with the UFS controller.
9398  *
9399  * Executed after waking the system up from a sleep state in which the contents
9400  * of main memory were preserved.
9401  *
9402  * Returns 0 for success and non-zero for failure
9403  */
9404 int ufshcd_system_resume(struct device *dev)
9405 {
9406 	struct ufs_hba *hba = dev_get_drvdata(dev);
9407 	ktime_t start = ktime_get();
9408 	int ret = 0;
9409 
9410 	if (pm_runtime_suspended(hba->dev))
9411 		goto out;
9412 
9413 	ret = ufshcd_resume(hba);
9414 
9415 out:
9416 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9417 		ktime_to_us(ktime_sub(ktime_get(), start)),
9418 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9419 
9420 	return ret;
9421 }
9422 EXPORT_SYMBOL(ufshcd_system_resume);
9423 #endif /* CONFIG_PM_SLEEP */
9424 
9425 #ifdef CONFIG_PM
9426 /**
9427  * ufshcd_runtime_suspend - runtime suspend callback
9428  * @dev: Device associated with the UFS controller.
9429  *
9430  * Check the description of ufshcd_suspend() function for more details.
9431  *
9432  * Returns 0 for success and non-zero for failure
9433  */
9434 int ufshcd_runtime_suspend(struct device *dev)
9435 {
9436 	struct ufs_hba *hba = dev_get_drvdata(dev);
9437 	int ret;
9438 	ktime_t start = ktime_get();
9439 
9440 	ret = ufshcd_suspend(hba);
9441 
9442 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9443 		ktime_to_us(ktime_sub(ktime_get(), start)),
9444 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9445 	return ret;
9446 }
9447 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9448 
9449 /**
9450  * ufshcd_runtime_resume - runtime resume routine
9451  * @dev: Device associated with the UFS controller.
9452  *
9453  * This function basically brings controller
9454  * to active state. Following operations are done in this function:
9455  *
9456  * 1. Turn on all the controller related clocks
9457  * 2. Turn ON VCC rail
9458  */
9459 int ufshcd_runtime_resume(struct device *dev)
9460 {
9461 	struct ufs_hba *hba = dev_get_drvdata(dev);
9462 	int ret;
9463 	ktime_t start = ktime_get();
9464 
9465 	ret = ufshcd_resume(hba);
9466 
9467 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9468 		ktime_to_us(ktime_sub(ktime_get(), start)),
9469 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9470 	return ret;
9471 }
9472 EXPORT_SYMBOL(ufshcd_runtime_resume);
9473 #endif /* CONFIG_PM */
9474 
9475 /**
9476  * ufshcd_shutdown - shutdown routine
9477  * @hba: per adapter instance
9478  *
9479  * This function would turn off both UFS device and UFS hba
9480  * regulators. It would also disable clocks.
9481  *
9482  * Returns 0 always to allow force shutdown even in case of errors.
9483  */
9484 int ufshcd_shutdown(struct ufs_hba *hba)
9485 {
9486 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9487 		goto out;
9488 
9489 	pm_runtime_get_sync(hba->dev);
9490 
9491 	ufshcd_suspend(hba);
9492 out:
9493 	hba->is_powered = false;
9494 	/* allow force shutdown even in case of errors */
9495 	return 0;
9496 }
9497 EXPORT_SYMBOL(ufshcd_shutdown);
9498 
9499 /**
9500  * ufshcd_remove - de-allocate SCSI host and host memory space
9501  *		data structure memory
9502  * @hba: per adapter instance
9503  */
9504 void ufshcd_remove(struct ufs_hba *hba)
9505 {
9506 	if (hba->ufs_device_wlun)
9507 		ufshcd_rpm_get_sync(hba);
9508 	ufs_hwmon_remove(hba);
9509 	ufs_bsg_remove(hba);
9510 	ufshpb_remove(hba);
9511 	ufs_sysfs_remove_nodes(hba->dev);
9512 	blk_cleanup_queue(hba->tmf_queue);
9513 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9514 	scsi_remove_host(hba->host);
9515 	/* disable interrupts */
9516 	ufshcd_disable_intr(hba, hba->intr_mask);
9517 	ufshcd_hba_stop(hba);
9518 	ufshcd_hba_exit(hba);
9519 }
9520 EXPORT_SYMBOL_GPL(ufshcd_remove);
9521 
9522 /**
9523  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9524  * @hba: pointer to Host Bus Adapter (HBA)
9525  */
9526 void ufshcd_dealloc_host(struct ufs_hba *hba)
9527 {
9528 	scsi_host_put(hba->host);
9529 }
9530 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9531 
9532 /**
9533  * ufshcd_set_dma_mask - Set dma mask based on the controller
9534  *			 addressing capability
9535  * @hba: per adapter instance
9536  *
9537  * Returns 0 for success, non-zero for failure
9538  */
9539 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9540 {
9541 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9542 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9543 			return 0;
9544 	}
9545 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9546 }
9547 
9548 /**
9549  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9550  * @dev: pointer to device handle
9551  * @hba_handle: driver private handle
9552  * Returns 0 on success, non-zero value on failure
9553  */
9554 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9555 {
9556 	struct Scsi_Host *host;
9557 	struct ufs_hba *hba;
9558 	int err = 0;
9559 
9560 	if (!dev) {
9561 		dev_err(dev,
9562 		"Invalid memory reference for dev is NULL\n");
9563 		err = -ENODEV;
9564 		goto out_error;
9565 	}
9566 
9567 	host = scsi_host_alloc(&ufshcd_driver_template,
9568 				sizeof(struct ufs_hba));
9569 	if (!host) {
9570 		dev_err(dev, "scsi_host_alloc failed\n");
9571 		err = -ENOMEM;
9572 		goto out_error;
9573 	}
9574 	host->nr_maps = HCTX_TYPE_POLL + 1;
9575 	hba = shost_priv(host);
9576 	hba->host = host;
9577 	hba->dev = dev;
9578 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9579 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
9580 	INIT_LIST_HEAD(&hba->clk_list_head);
9581 	spin_lock_init(&hba->outstanding_lock);
9582 
9583 	*hba_handle = hba;
9584 
9585 out_error:
9586 	return err;
9587 }
9588 EXPORT_SYMBOL(ufshcd_alloc_host);
9589 
9590 /* This function exists because blk_mq_alloc_tag_set() requires this. */
9591 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9592 				     const struct blk_mq_queue_data *qd)
9593 {
9594 	WARN_ON_ONCE(true);
9595 	return BLK_STS_NOTSUPP;
9596 }
9597 
9598 static const struct blk_mq_ops ufshcd_tmf_ops = {
9599 	.queue_rq = ufshcd_queue_tmf,
9600 };
9601 
9602 /**
9603  * ufshcd_init - Driver initialization routine
9604  * @hba: per-adapter instance
9605  * @mmio_base: base register address
9606  * @irq: Interrupt line of device
9607  * Returns 0 on success, non-zero value on failure
9608  */
9609 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9610 {
9611 	int err;
9612 	struct Scsi_Host *host = hba->host;
9613 	struct device *dev = hba->dev;
9614 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9615 
9616 	/*
9617 	 * dev_set_drvdata() must be called before any callbacks are registered
9618 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9619 	 * sysfs).
9620 	 */
9621 	dev_set_drvdata(dev, hba);
9622 
9623 	if (!mmio_base) {
9624 		dev_err(hba->dev,
9625 		"Invalid memory reference for mmio_base is NULL\n");
9626 		err = -ENODEV;
9627 		goto out_error;
9628 	}
9629 
9630 	hba->mmio_base = mmio_base;
9631 	hba->irq = irq;
9632 	hba->vps = &ufs_hba_vps;
9633 
9634 	err = ufshcd_hba_init(hba);
9635 	if (err)
9636 		goto out_error;
9637 
9638 	/* Read capabilities registers */
9639 	err = ufshcd_hba_capabilities(hba);
9640 	if (err)
9641 		goto out_disable;
9642 
9643 	/* Get UFS version supported by the controller */
9644 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9645 
9646 	/* Get Interrupt bit mask per version */
9647 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9648 
9649 	err = ufshcd_set_dma_mask(hba);
9650 	if (err) {
9651 		dev_err(hba->dev, "set dma mask failed\n");
9652 		goto out_disable;
9653 	}
9654 
9655 	/* Allocate memory for host memory space */
9656 	err = ufshcd_memory_alloc(hba);
9657 	if (err) {
9658 		dev_err(hba->dev, "Memory allocation failed\n");
9659 		goto out_disable;
9660 	}
9661 
9662 	/* Configure LRB */
9663 	ufshcd_host_memory_configure(hba);
9664 
9665 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9666 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9667 	host->max_id = UFSHCD_MAX_ID;
9668 	host->max_lun = UFS_MAX_LUNS;
9669 	host->max_channel = UFSHCD_MAX_CHANNEL;
9670 	host->unique_id = host->host_no;
9671 	host->max_cmd_len = UFS_CDB_SIZE;
9672 
9673 	hba->max_pwr_info.is_valid = false;
9674 
9675 	/* Initialize work queues */
9676 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9677 		 hba->host->host_no);
9678 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9679 	if (!hba->eh_wq) {
9680 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9681 			__func__);
9682 		err = -ENOMEM;
9683 		goto out_disable;
9684 	}
9685 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9686 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9687 
9688 	sema_init(&hba->host_sem, 1);
9689 
9690 	/* Initialize UIC command mutex */
9691 	mutex_init(&hba->uic_cmd_mutex);
9692 
9693 	/* Initialize mutex for device management commands */
9694 	mutex_init(&hba->dev_cmd.lock);
9695 
9696 	/* Initialize mutex for exception event control */
9697 	mutex_init(&hba->ee_ctrl_mutex);
9698 
9699 	init_rwsem(&hba->clk_scaling_lock);
9700 
9701 	ufshcd_init_clk_gating(hba);
9702 
9703 	ufshcd_init_clk_scaling(hba);
9704 
9705 	/*
9706 	 * In order to avoid any spurious interrupt immediately after
9707 	 * registering UFS controller interrupt handler, clear any pending UFS
9708 	 * interrupt status and disable all the UFS interrupts.
9709 	 */
9710 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9711 		      REG_INTERRUPT_STATUS);
9712 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9713 	/*
9714 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9715 	 * status is cleared before registering UFS interrupt handler.
9716 	 */
9717 	mb();
9718 
9719 	/* IRQ registration */
9720 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9721 	if (err) {
9722 		dev_err(hba->dev, "request irq failed\n");
9723 		goto out_disable;
9724 	} else {
9725 		hba->is_irq_enabled = true;
9726 	}
9727 
9728 	err = scsi_add_host(host, hba->dev);
9729 	if (err) {
9730 		dev_err(hba->dev, "scsi_add_host failed\n");
9731 		goto out_disable;
9732 	}
9733 
9734 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9735 		.nr_hw_queues	= 1,
9736 		.queue_depth	= hba->nutmrs,
9737 		.ops		= &ufshcd_tmf_ops,
9738 		.flags		= BLK_MQ_F_NO_SCHED,
9739 	};
9740 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9741 	if (err < 0)
9742 		goto out_remove_scsi_host;
9743 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9744 	if (IS_ERR(hba->tmf_queue)) {
9745 		err = PTR_ERR(hba->tmf_queue);
9746 		goto free_tmf_tag_set;
9747 	}
9748 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9749 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
9750 	if (!hba->tmf_rqs) {
9751 		err = -ENOMEM;
9752 		goto free_tmf_queue;
9753 	}
9754 
9755 	/* Reset the attached device */
9756 	ufshcd_device_reset(hba);
9757 
9758 	ufshcd_init_crypto(hba);
9759 
9760 	/* Host controller enable */
9761 	err = ufshcd_hba_enable(hba);
9762 	if (err) {
9763 		dev_err(hba->dev, "Host controller enable failed\n");
9764 		ufshcd_print_evt_hist(hba);
9765 		ufshcd_print_host_state(hba);
9766 		goto free_tmf_queue;
9767 	}
9768 
9769 	/*
9770 	 * Set the default power management level for runtime and system PM.
9771 	 * Default power saving mode is to keep UFS link in Hibern8 state
9772 	 * and UFS device in sleep state.
9773 	 */
9774 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9775 						UFS_SLEEP_PWR_MODE,
9776 						UIC_LINK_HIBERN8_STATE);
9777 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9778 						UFS_SLEEP_PWR_MODE,
9779 						UIC_LINK_HIBERN8_STATE);
9780 
9781 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9782 			  ufshcd_rpm_dev_flush_recheck_work);
9783 
9784 	/* Set the default auto-hiberate idle timer value to 150 ms */
9785 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9786 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9787 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9788 	}
9789 
9790 	/* Hold auto suspend until async scan completes */
9791 	pm_runtime_get_sync(dev);
9792 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9793 	/*
9794 	 * We are assuming that device wasn't put in sleep/power-down
9795 	 * state exclusively during the boot stage before kernel.
9796 	 * This assumption helps avoid doing link startup twice during
9797 	 * ufshcd_probe_hba().
9798 	 */
9799 	ufshcd_set_ufs_dev_active(hba);
9800 
9801 	async_schedule(ufshcd_async_scan, hba);
9802 	ufs_sysfs_add_nodes(hba->dev);
9803 
9804 	device_enable_async_suspend(dev);
9805 	return 0;
9806 
9807 free_tmf_queue:
9808 	blk_cleanup_queue(hba->tmf_queue);
9809 free_tmf_tag_set:
9810 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9811 out_remove_scsi_host:
9812 	scsi_remove_host(hba->host);
9813 out_disable:
9814 	hba->is_irq_enabled = false;
9815 	ufshcd_hba_exit(hba);
9816 out_error:
9817 	return err;
9818 }
9819 EXPORT_SYMBOL_GPL(ufshcd_init);
9820 
9821 void ufshcd_resume_complete(struct device *dev)
9822 {
9823 	struct ufs_hba *hba = dev_get_drvdata(dev);
9824 
9825 	if (hba->complete_put) {
9826 		ufshcd_rpm_put(hba);
9827 		hba->complete_put = false;
9828 	}
9829 }
9830 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
9831 
9832 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
9833 {
9834 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
9835 	enum ufs_dev_pwr_mode dev_pwr_mode;
9836 	enum uic_link_state link_state;
9837 	unsigned long flags;
9838 	bool res;
9839 
9840 	spin_lock_irqsave(&dev->power.lock, flags);
9841 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
9842 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
9843 	res = pm_runtime_suspended(dev) &&
9844 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
9845 	      hba->uic_link_state == link_state &&
9846 	      !hba->dev_info.b_rpm_dev_flush_capable;
9847 	spin_unlock_irqrestore(&dev->power.lock, flags);
9848 
9849 	return res;
9850 }
9851 
9852 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
9853 {
9854 	struct ufs_hba *hba = dev_get_drvdata(dev);
9855 	int ret;
9856 
9857 	/*
9858 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
9859 	 * are same. And it doesn't wake up the device for system-suspend
9860 	 * if it's runtime suspended. But ufs doesn't follow that.
9861 	 * Refer ufshcd_resume_complete()
9862 	 */
9863 	if (hba->ufs_device_wlun) {
9864 		/* Prevent runtime suspend */
9865 		ufshcd_rpm_get_noresume(hba);
9866 		/*
9867 		 * Check if already runtime suspended in same state as system
9868 		 * suspend would be.
9869 		 */
9870 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
9871 			/* RPM state is not ok for SPM, so runtime resume */
9872 			ret = ufshcd_rpm_resume(hba);
9873 			if (ret < 0 && ret != -EACCES) {
9874 				ufshcd_rpm_put(hba);
9875 				return ret;
9876 			}
9877 		}
9878 		hba->complete_put = true;
9879 	}
9880 	return 0;
9881 }
9882 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
9883 
9884 int ufshcd_suspend_prepare(struct device *dev)
9885 {
9886 	return __ufshcd_suspend_prepare(dev, true);
9887 }
9888 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
9889 
9890 #ifdef CONFIG_PM_SLEEP
9891 static int ufshcd_wl_poweroff(struct device *dev)
9892 {
9893 	struct scsi_device *sdev = to_scsi_device(dev);
9894 	struct ufs_hba *hba = shost_priv(sdev->host);
9895 
9896 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9897 	return 0;
9898 }
9899 #endif
9900 
9901 static int ufshcd_wl_probe(struct device *dev)
9902 {
9903 	struct scsi_device *sdev = to_scsi_device(dev);
9904 
9905 	if (!is_device_wlun(sdev))
9906 		return -ENODEV;
9907 
9908 	blk_pm_runtime_init(sdev->request_queue, dev);
9909 	pm_runtime_set_autosuspend_delay(dev, 0);
9910 	pm_runtime_allow(dev);
9911 
9912 	return  0;
9913 }
9914 
9915 static int ufshcd_wl_remove(struct device *dev)
9916 {
9917 	pm_runtime_forbid(dev);
9918 	return 0;
9919 }
9920 
9921 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
9922 #ifdef CONFIG_PM_SLEEP
9923 	.suspend = ufshcd_wl_suspend,
9924 	.resume = ufshcd_wl_resume,
9925 	.freeze = ufshcd_wl_suspend,
9926 	.thaw = ufshcd_wl_resume,
9927 	.poweroff = ufshcd_wl_poweroff,
9928 	.restore = ufshcd_wl_resume,
9929 #endif
9930 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
9931 };
9932 
9933 /*
9934  * ufs_dev_wlun_template - describes ufs device wlun
9935  * ufs-device wlun - used to send pm commands
9936  * All luns are consumers of ufs-device wlun.
9937  *
9938  * Currently, no sd driver is present for wluns.
9939  * Hence the no specific pm operations are performed.
9940  * With ufs design, SSU should be sent to ufs-device wlun.
9941  * Hence register a scsi driver for ufs wluns only.
9942  */
9943 static struct scsi_driver ufs_dev_wlun_template = {
9944 	.gendrv = {
9945 		.name = "ufs_device_wlun",
9946 		.owner = THIS_MODULE,
9947 		.probe = ufshcd_wl_probe,
9948 		.remove = ufshcd_wl_remove,
9949 		.pm = &ufshcd_wl_pm_ops,
9950 		.shutdown = ufshcd_wl_shutdown,
9951 	},
9952 };
9953 
9954 static int __init ufshcd_core_init(void)
9955 {
9956 	int ret;
9957 
9958 	/* Verify that there are no gaps in struct utp_transfer_cmd_desc. */
9959 	static_assert(sizeof(struct utp_transfer_cmd_desc) ==
9960 		      2 * ALIGNED_UPIU_SIZE +
9961 			      SG_ALL * sizeof(struct ufshcd_sg_entry));
9962 
9963 	ufs_debugfs_init();
9964 
9965 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
9966 	if (ret)
9967 		ufs_debugfs_exit();
9968 	return ret;
9969 }
9970 
9971 static void __exit ufshcd_core_exit(void)
9972 {
9973 	ufs_debugfs_exit();
9974 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
9975 }
9976 
9977 module_init(ufshcd_core_init);
9978 module_exit(ufshcd_core_exit);
9979 
9980 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
9981 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
9982 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
9983 MODULE_LICENSE("GPL");
9984