xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision f762326b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
242 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
243 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
244 	  .model = UFS_ANY_MODEL,
245 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
246 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
247 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
248 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
249 	  .model = UFS_ANY_MODEL,
250 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
251 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
252 	  .model = "hB8aL1" /*H28U62301AMR*/,
253 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
254 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
255 	  .model = UFS_ANY_MODEL,
256 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
257 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
258 	  .model = "THGLF2G9C8KBADG",
259 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
260 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
261 	  .model = "THGLF2G9D8KBADG",
262 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
263 	{}
264 };
265 
266 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
267 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
268 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
269 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
270 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
271 static void ufshcd_hba_exit(struct ufs_hba *hba);
272 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
273 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
274 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
275 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
276 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
277 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
279 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
280 static irqreturn_t ufshcd_intr(int irq, void *__hba);
281 static int ufshcd_change_power_mode(struct ufs_hba *hba,
282 			     struct ufs_pa_layer_attr *pwr_mode);
283 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
284 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
285 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
286 					 struct ufs_vreg *vreg);
287 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
288 						 bool enable);
289 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
290 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
291 
292 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
293 {
294 	if (!hba->is_irq_enabled) {
295 		enable_irq(hba->irq);
296 		hba->is_irq_enabled = true;
297 	}
298 }
299 
300 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
301 {
302 	if (hba->is_irq_enabled) {
303 		disable_irq(hba->irq);
304 		hba->is_irq_enabled = false;
305 	}
306 }
307 
308 static void ufshcd_configure_wb(struct ufs_hba *hba)
309 {
310 	if (!ufshcd_is_wb_allowed(hba))
311 		return;
312 
313 	ufshcd_wb_toggle(hba, true);
314 
315 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
316 
317 	if (ufshcd_is_wb_buf_flush_allowed(hba))
318 		ufshcd_wb_toggle_buf_flush(hba, true);
319 }
320 
321 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
322 {
323 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
324 		scsi_unblock_requests(hba->host);
325 }
326 
327 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
328 {
329 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
330 		scsi_block_requests(hba->host);
331 }
332 
333 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
334 				      enum ufs_trace_str_t str_t)
335 {
336 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
337 	struct utp_upiu_header *header;
338 
339 	if (!trace_ufshcd_upiu_enabled())
340 		return;
341 
342 	if (str_t == UFS_CMD_SEND)
343 		header = &rq->header;
344 	else
345 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
346 
347 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
348 			  UFS_TSF_CDB);
349 }
350 
351 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
352 					enum ufs_trace_str_t str_t,
353 					struct utp_upiu_req *rq_rsp)
354 {
355 	if (!trace_ufshcd_upiu_enabled())
356 		return;
357 
358 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
359 			  &rq_rsp->qr, UFS_TSF_OSF);
360 }
361 
362 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
363 				     enum ufs_trace_str_t str_t)
364 {
365 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
366 
367 	if (!trace_ufshcd_upiu_enabled())
368 		return;
369 
370 	if (str_t == UFS_TM_SEND)
371 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
372 				  &descp->upiu_req.req_header,
373 				  &descp->upiu_req.input_param1,
374 				  UFS_TSF_TM_INPUT);
375 	else
376 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
377 				  &descp->upiu_rsp.rsp_header,
378 				  &descp->upiu_rsp.output_param1,
379 				  UFS_TSF_TM_OUTPUT);
380 }
381 
382 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
383 					 const struct uic_command *ucmd,
384 					 enum ufs_trace_str_t str_t)
385 {
386 	u32 cmd;
387 
388 	if (!trace_ufshcd_uic_command_enabled())
389 		return;
390 
391 	if (str_t == UFS_CMD_SEND)
392 		cmd = ucmd->command;
393 	else
394 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
395 
396 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
399 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
400 }
401 
402 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
403 				     enum ufs_trace_str_t str_t)
404 {
405 	u64 lba = 0;
406 	u8 opcode = 0, group_id = 0;
407 	u32 doorbell = 0;
408 	u32 intr;
409 	int hwq_id = -1;
410 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
411 	struct scsi_cmnd *cmd = lrbp->cmd;
412 	struct request *rq = scsi_cmd_to_rq(cmd);
413 	int transfer_len = -1;
414 
415 	if (!cmd)
416 		return;
417 
418 	/* trace UPIU also */
419 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
420 	if (!trace_ufshcd_command_enabled())
421 		return;
422 
423 	opcode = cmd->cmnd[0];
424 
425 	if (opcode == READ_10 || opcode == WRITE_10) {
426 		/*
427 		 * Currently we only fully trace read(10) and write(10) commands
428 		 */
429 		transfer_len =
430 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
431 		lba = scsi_get_lba(cmd);
432 		if (opcode == WRITE_10)
433 			group_id = lrbp->cmd->cmnd[6];
434 	} else if (opcode == UNMAP) {
435 		/*
436 		 * The number of Bytes to be unmapped beginning with the lba.
437 		 */
438 		transfer_len = blk_rq_bytes(rq);
439 		lba = scsi_get_lba(cmd);
440 	}
441 
442 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
443 
444 	if (is_mcq_enabled(hba)) {
445 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
446 
447 		hwq_id = hwq->id;
448 	} else {
449 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
450 	}
451 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
452 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
453 }
454 
455 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
456 {
457 	struct ufs_clk_info *clki;
458 	struct list_head *head = &hba->clk_list_head;
459 
460 	if (list_empty(head))
461 		return;
462 
463 	list_for_each_entry(clki, head, list) {
464 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
465 				clki->max_freq)
466 			dev_err(hba->dev, "clk: %s, rate: %u\n",
467 					clki->name, clki->curr_freq);
468 	}
469 }
470 
471 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
472 			     const char *err_name)
473 {
474 	int i;
475 	bool found = false;
476 	const struct ufs_event_hist *e;
477 
478 	if (id >= UFS_EVT_CNT)
479 		return;
480 
481 	e = &hba->ufs_stats.event[id];
482 
483 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
484 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
485 
486 		if (e->tstamp[p] == 0)
487 			continue;
488 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
489 			e->val[p], div_u64(e->tstamp[p], 1000));
490 		found = true;
491 	}
492 
493 	if (!found)
494 		dev_err(hba->dev, "No record of %s\n", err_name);
495 	else
496 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
497 }
498 
499 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
500 {
501 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
502 
503 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
504 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
507 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
508 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
509 			 "auto_hibern8_err");
510 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
511 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
512 			 "link_startup_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
514 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
515 			 "suspend_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
517 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
518 			 "wlun suspend_fail");
519 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
521 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
522 
523 	ufshcd_vops_dbg_register_dump(hba);
524 }
525 
526 static
527 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
528 {
529 	const struct ufshcd_lrb *lrbp;
530 	int prdt_length;
531 
532 	lrbp = &hba->lrb[tag];
533 
534 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
535 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
536 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
537 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
538 	dev_err(hba->dev,
539 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
540 		tag, (u64)lrbp->utrd_dma_addr);
541 
542 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
543 			sizeof(struct utp_transfer_req_desc));
544 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
545 		(u64)lrbp->ucd_req_dma_addr);
546 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
547 			sizeof(struct utp_upiu_req));
548 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
549 		(u64)lrbp->ucd_rsp_dma_addr);
550 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
551 			sizeof(struct utp_upiu_rsp));
552 
553 	prdt_length = le16_to_cpu(
554 		lrbp->utr_descriptor_ptr->prd_table_length);
555 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
556 		prdt_length /= ufshcd_sg_entry_size(hba);
557 
558 	dev_err(hba->dev,
559 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
560 		tag, prdt_length,
561 		(u64)lrbp->ucd_prdt_dma_addr);
562 
563 	if (pr_prdt)
564 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
565 			ufshcd_sg_entry_size(hba) * prdt_length);
566 }
567 
568 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
569 {
570 	struct scsi_device *sdev = req->q->queuedata;
571 	struct Scsi_Host *shost = sdev->host;
572 	struct ufs_hba *hba = shost_priv(shost);
573 
574 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
575 
576 	return true;
577 }
578 
579 /**
580  * ufshcd_print_trs_all - print trs for all started requests.
581  * @hba: per-adapter instance.
582  * @pr_prdt: need to print prdt or not.
583  */
584 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
585 {
586 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
587 }
588 
589 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
590 {
591 	int tag;
592 
593 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
594 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
595 
596 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
597 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
598 	}
599 }
600 
601 static void ufshcd_print_host_state(struct ufs_hba *hba)
602 {
603 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
604 
605 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
606 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
607 		hba->outstanding_reqs, hba->outstanding_tasks);
608 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
609 		hba->saved_err, hba->saved_uic_err);
610 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
611 		hba->curr_dev_pwr_mode, hba->uic_link_state);
612 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
613 		hba->pm_op_in_progress, hba->is_sys_suspended);
614 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
615 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
616 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
617 	dev_err(hba->dev,
618 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
619 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
620 		hba->ufs_stats.hibern8_exit_cnt);
621 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
622 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
623 		hba->ufs_stats.last_intr_status);
624 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
625 		hba->eh_flags, hba->req_abort_count);
626 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
627 		hba->ufs_version, hba->capabilities, hba->caps);
628 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
629 		hba->dev_quirks);
630 	if (sdev_ufs)
631 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
632 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
633 
634 	ufshcd_print_clk_freqs(hba);
635 }
636 
637 /**
638  * ufshcd_print_pwr_info - print power params as saved in hba
639  * power info
640  * @hba: per-adapter instance
641  */
642 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
643 {
644 	static const char * const names[] = {
645 		"INVALID MODE",
646 		"FAST MODE",
647 		"SLOW_MODE",
648 		"INVALID MODE",
649 		"FASTAUTO_MODE",
650 		"SLOWAUTO_MODE",
651 		"INVALID MODE",
652 	};
653 
654 	/*
655 	 * Using dev_dbg to avoid messages during runtime PM to avoid
656 	 * never-ending cycles of messages written back to storage by user space
657 	 * causing runtime resume, causing more messages and so on.
658 	 */
659 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
660 		 __func__,
661 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
662 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
663 		 names[hba->pwr_info.pwr_rx],
664 		 names[hba->pwr_info.pwr_tx],
665 		 hba->pwr_info.hs_rate);
666 }
667 
668 static void ufshcd_device_reset(struct ufs_hba *hba)
669 {
670 	int err;
671 
672 	err = ufshcd_vops_device_reset(hba);
673 
674 	if (!err) {
675 		ufshcd_set_ufs_dev_active(hba);
676 		if (ufshcd_is_wb_allowed(hba)) {
677 			hba->dev_info.wb_enabled = false;
678 			hba->dev_info.wb_buf_flush_enabled = false;
679 		}
680 	}
681 	if (err != -EOPNOTSUPP)
682 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
683 }
684 
685 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
686 {
687 	if (!us)
688 		return;
689 
690 	if (us < 10)
691 		udelay(us);
692 	else
693 		usleep_range(us, us + tolerance);
694 }
695 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
696 
697 /**
698  * ufshcd_wait_for_register - wait for register value to change
699  * @hba: per-adapter interface
700  * @reg: mmio register offset
701  * @mask: mask to apply to the read register value
702  * @val: value to wait for
703  * @interval_us: polling interval in microseconds
704  * @timeout_ms: timeout in milliseconds
705  *
706  * Return:
707  * -ETIMEDOUT on error, zero on success.
708  */
709 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
710 				u32 val, unsigned long interval_us,
711 				unsigned long timeout_ms)
712 {
713 	int err = 0;
714 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
715 
716 	/* ignore bits that we don't intend to wait on */
717 	val = val & mask;
718 
719 	while ((ufshcd_readl(hba, reg) & mask) != val) {
720 		usleep_range(interval_us, interval_us + 50);
721 		if (time_after(jiffies, timeout)) {
722 			if ((ufshcd_readl(hba, reg) & mask) != val)
723 				err = -ETIMEDOUT;
724 			break;
725 		}
726 	}
727 
728 	return err;
729 }
730 
731 /**
732  * ufshcd_get_intr_mask - Get the interrupt bit mask
733  * @hba: Pointer to adapter instance
734  *
735  * Returns interrupt bit mask per version
736  */
737 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
738 {
739 	if (hba->ufs_version == ufshci_version(1, 0))
740 		return INTERRUPT_MASK_ALL_VER_10;
741 	if (hba->ufs_version <= ufshci_version(2, 0))
742 		return INTERRUPT_MASK_ALL_VER_11;
743 
744 	return INTERRUPT_MASK_ALL_VER_21;
745 }
746 
747 /**
748  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
749  * @hba: Pointer to adapter instance
750  *
751  * Returns UFSHCI version supported by the controller
752  */
753 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
754 {
755 	u32 ufshci_ver;
756 
757 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
758 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
759 	else
760 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
761 
762 	/*
763 	 * UFSHCI v1.x uses a different version scheme, in order
764 	 * to allow the use of comparisons with the ufshci_version
765 	 * function, we convert it to the same scheme as ufs 2.0+.
766 	 */
767 	if (ufshci_ver & 0x00010000)
768 		return ufshci_version(1, ufshci_ver & 0x00000100);
769 
770 	return ufshci_ver;
771 }
772 
773 /**
774  * ufshcd_is_device_present - Check if any device connected to
775  *			      the host controller
776  * @hba: pointer to adapter instance
777  *
778  * Returns true if device present, false if no device detected
779  */
780 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
781 {
782 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
783 }
784 
785 /**
786  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
787  * @lrbp: pointer to local command reference block
788  * @cqe: pointer to the completion queue entry
789  *
790  * This function is used to get the OCS field from UTRD
791  * Returns the OCS field in the UTRD
792  */
793 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
794 				      struct cq_entry *cqe)
795 {
796 	if (cqe)
797 		return le32_to_cpu(cqe->status) & MASK_OCS;
798 
799 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
800 }
801 
802 /**
803  * ufshcd_utrl_clear() - Clear requests from the controller request list.
804  * @hba: per adapter instance
805  * @mask: mask with one bit set for each request to be cleared
806  */
807 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
808 {
809 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
810 		mask = ~mask;
811 	/*
812 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
813 	 * Register (UTRLCLR): This field is bit significant. Each bit
814 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
815 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
816 	 * by host software to indicate to the host controller that a transfer
817 	 * request slot is cleared. The host controller
818 	 * shall free up any resources associated to the request slot
819 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
820 	 * host software indicates no change to request slots by setting the
821 	 * associated bits in this field to ‘1’. Bits in this field shall only
822 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
823 	 */
824 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
825 }
826 
827 /**
828  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
829  * @hba: per adapter instance
830  * @pos: position of the bit to be cleared
831  */
832 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
833 {
834 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
835 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
836 	else
837 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
838 }
839 
840 /**
841  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
842  * @reg: Register value of host controller status
843  *
844  * Returns integer, 0 on Success and positive value if failed
845  */
846 static inline int ufshcd_get_lists_status(u32 reg)
847 {
848 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
849 }
850 
851 /**
852  * ufshcd_get_uic_cmd_result - Get the UIC command result
853  * @hba: Pointer to adapter instance
854  *
855  * This function gets the result of UIC command completion
856  * Returns 0 on success, non zero value on error
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  * Returns 0 on success, non zero value on error
870  */
871 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
872 {
873 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
874 }
875 
876 /**
877  * ufshcd_get_req_rsp - returns the TR response transaction type
878  * @ucd_rsp_ptr: pointer to response UPIU
879  */
880 static inline int
881 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
882 {
883 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
884 }
885 
886 /**
887  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
888  * @ucd_rsp_ptr: pointer to response UPIU
889  *
890  * This function gets the response status and scsi_status from response UPIU
891  * Returns the response result code.
892  */
893 static inline int
894 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
895 {
896 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
897 }
898 
899 /*
900  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
901  *				from response UPIU
902  * @ucd_rsp_ptr: pointer to response UPIU
903  *
904  * Return the data segment length.
905  */
906 static inline unsigned int
907 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
908 {
909 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
910 		MASK_RSP_UPIU_DATA_SEG_LEN;
911 }
912 
913 /**
914  * ufshcd_is_exception_event - Check if the device raised an exception event
915  * @ucd_rsp_ptr: pointer to response UPIU
916  *
917  * The function checks if the device raised an exception event indicated in
918  * the Device Information field of response UPIU.
919  *
920  * Returns true if exception is raised, false otherwise.
921  */
922 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
923 {
924 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
925 			MASK_RSP_EXCEPTION_EVENT;
926 }
927 
928 /**
929  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
930  * @hba: per adapter instance
931  */
932 static inline void
933 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
934 {
935 	ufshcd_writel(hba, INT_AGGR_ENABLE |
936 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
937 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
938 }
939 
940 /**
941  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
942  * @hba: per adapter instance
943  * @cnt: Interrupt aggregation counter threshold
944  * @tmout: Interrupt aggregation timeout value
945  */
946 static inline void
947 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
948 {
949 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
950 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
951 		      INT_AGGR_TIMEOUT_VAL(tmout),
952 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954 
955 /**
956  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
957  * @hba: per adapter instance
958  */
959 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
960 {
961 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
962 }
963 
964 /**
965  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
966  *			When run-stop registers are set to 1, it indicates the
967  *			host controller that it can process the requests
968  * @hba: per adapter instance
969  */
970 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
971 {
972 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
973 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
974 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
975 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
976 }
977 
978 /**
979  * ufshcd_hba_start - Start controller initialization sequence
980  * @hba: per adapter instance
981  */
982 static inline void ufshcd_hba_start(struct ufs_hba *hba)
983 {
984 	u32 val = CONTROLLER_ENABLE;
985 
986 	if (ufshcd_crypto_enable(hba))
987 		val |= CRYPTO_GENERAL_ENABLE;
988 
989 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
990 }
991 
992 /**
993  * ufshcd_is_hba_active - Get controller state
994  * @hba: per adapter instance
995  *
996  * Returns true if and only if the controller is active.
997  */
998 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
999 {
1000 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1001 }
1002 
1003 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
1004 {
1005 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
1006 	if (hba->ufs_version <= ufshci_version(1, 1))
1007 		return UFS_UNIPRO_VER_1_41;
1008 	else
1009 		return UFS_UNIPRO_VER_1_6;
1010 }
1011 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1012 
1013 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1014 {
1015 	/*
1016 	 * If both host and device support UniPro ver1.6 or later, PA layer
1017 	 * parameters tuning happens during link startup itself.
1018 	 *
1019 	 * We can manually tune PA layer parameters if either host or device
1020 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1021 	 * logic simple, we will only do manual tuning if local unipro version
1022 	 * doesn't support ver1.6 or later.
1023 	 */
1024 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1025 }
1026 
1027 /**
1028  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1029  * @hba: per adapter instance
1030  * @scale_up: If True, set max possible frequency othewise set low frequency
1031  *
1032  * Returns 0 if successful
1033  * Returns < 0 for any other errors
1034  */
1035 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1036 {
1037 	int ret = 0;
1038 	struct ufs_clk_info *clki;
1039 	struct list_head *head = &hba->clk_list_head;
1040 
1041 	if (list_empty(head))
1042 		goto out;
1043 
1044 	list_for_each_entry(clki, head, list) {
1045 		if (!IS_ERR_OR_NULL(clki->clk)) {
1046 			if (scale_up && clki->max_freq) {
1047 				if (clki->curr_freq == clki->max_freq)
1048 					continue;
1049 
1050 				ret = clk_set_rate(clki->clk, clki->max_freq);
1051 				if (ret) {
1052 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1053 						__func__, clki->name,
1054 						clki->max_freq, ret);
1055 					break;
1056 				}
1057 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1058 						"scaled up", clki->name,
1059 						clki->curr_freq,
1060 						clki->max_freq);
1061 
1062 				clki->curr_freq = clki->max_freq;
1063 
1064 			} else if (!scale_up && clki->min_freq) {
1065 				if (clki->curr_freq == clki->min_freq)
1066 					continue;
1067 
1068 				ret = clk_set_rate(clki->clk, clki->min_freq);
1069 				if (ret) {
1070 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1071 						__func__, clki->name,
1072 						clki->min_freq, ret);
1073 					break;
1074 				}
1075 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1076 						"scaled down", clki->name,
1077 						clki->curr_freq,
1078 						clki->min_freq);
1079 				clki->curr_freq = clki->min_freq;
1080 			}
1081 		}
1082 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1083 				clki->name, clk_get_rate(clki->clk));
1084 	}
1085 
1086 out:
1087 	return ret;
1088 }
1089 
1090 /**
1091  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1092  * @hba: per adapter instance
1093  * @scale_up: True if scaling up and false if scaling down
1094  *
1095  * Returns 0 if successful
1096  * Returns < 0 for any other errors
1097  */
1098 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1099 {
1100 	int ret = 0;
1101 	ktime_t start = ktime_get();
1102 
1103 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1104 	if (ret)
1105 		goto out;
1106 
1107 	ret = ufshcd_set_clk_freq(hba, scale_up);
1108 	if (ret)
1109 		goto out;
1110 
1111 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1112 	if (ret)
1113 		ufshcd_set_clk_freq(hba, !scale_up);
1114 
1115 out:
1116 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1117 			(scale_up ? "up" : "down"),
1118 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1119 	return ret;
1120 }
1121 
1122 /**
1123  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1124  * @hba: per adapter instance
1125  * @scale_up: True if scaling up and false if scaling down
1126  *
1127  * Returns true if scaling is required, false otherwise.
1128  */
1129 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1130 					       bool scale_up)
1131 {
1132 	struct ufs_clk_info *clki;
1133 	struct list_head *head = &hba->clk_list_head;
1134 
1135 	if (list_empty(head))
1136 		return false;
1137 
1138 	list_for_each_entry(clki, head, list) {
1139 		if (!IS_ERR_OR_NULL(clki->clk)) {
1140 			if (scale_up && clki->max_freq) {
1141 				if (clki->curr_freq == clki->max_freq)
1142 					continue;
1143 				return true;
1144 			} else if (!scale_up && clki->min_freq) {
1145 				if (clki->curr_freq == clki->min_freq)
1146 					continue;
1147 				return true;
1148 			}
1149 		}
1150 	}
1151 
1152 	return false;
1153 }
1154 
1155 /*
1156  * Determine the number of pending commands by counting the bits in the SCSI
1157  * device budget maps. This approach has been selected because a bit is set in
1158  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1159  * flag. The host_self_blocked flag can be modified by calling
1160  * scsi_block_requests() or scsi_unblock_requests().
1161  */
1162 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1163 {
1164 	const struct scsi_device *sdev;
1165 	u32 pending = 0;
1166 
1167 	lockdep_assert_held(hba->host->host_lock);
1168 	__shost_for_each_device(sdev, hba->host)
1169 		pending += sbitmap_weight(&sdev->budget_map);
1170 
1171 	return pending;
1172 }
1173 
1174 /*
1175  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1176  * has expired.
1177  *
1178  * Return: 0 upon success; -EBUSY upon timeout.
1179  */
1180 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1181 					u64 wait_timeout_us)
1182 {
1183 	unsigned long flags;
1184 	int ret = 0;
1185 	u32 tm_doorbell;
1186 	u32 tr_pending;
1187 	bool timeout = false, do_last_check = false;
1188 	ktime_t start;
1189 
1190 	ufshcd_hold(hba);
1191 	spin_lock_irqsave(hba->host->host_lock, flags);
1192 	/*
1193 	 * Wait for all the outstanding tasks/transfer requests.
1194 	 * Verify by checking the doorbell registers are clear.
1195 	 */
1196 	start = ktime_get();
1197 	do {
1198 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1199 			ret = -EBUSY;
1200 			goto out;
1201 		}
1202 
1203 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1204 		tr_pending = ufshcd_pending_cmds(hba);
1205 		if (!tm_doorbell && !tr_pending) {
1206 			timeout = false;
1207 			break;
1208 		} else if (do_last_check) {
1209 			break;
1210 		}
1211 
1212 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1213 		io_schedule_timeout(msecs_to_jiffies(20));
1214 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1215 		    wait_timeout_us) {
1216 			timeout = true;
1217 			/*
1218 			 * We might have scheduled out for long time so make
1219 			 * sure to check if doorbells are cleared by this time
1220 			 * or not.
1221 			 */
1222 			do_last_check = true;
1223 		}
1224 		spin_lock_irqsave(hba->host->host_lock, flags);
1225 	} while (tm_doorbell || tr_pending);
1226 
1227 	if (timeout) {
1228 		dev_err(hba->dev,
1229 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1230 			__func__, tm_doorbell, tr_pending);
1231 		ret = -EBUSY;
1232 	}
1233 out:
1234 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1235 	ufshcd_release(hba);
1236 	return ret;
1237 }
1238 
1239 /**
1240  * ufshcd_scale_gear - scale up/down UFS gear
1241  * @hba: per adapter instance
1242  * @scale_up: True for scaling up gear and false for scaling down
1243  *
1244  * Returns 0 for success,
1245  * Returns -EBUSY if scaling can't happen at this time
1246  * Returns non-zero for any other errors
1247  */
1248 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1249 {
1250 	int ret = 0;
1251 	struct ufs_pa_layer_attr new_pwr_info;
1252 
1253 	if (scale_up) {
1254 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1255 		       sizeof(struct ufs_pa_layer_attr));
1256 	} else {
1257 		memcpy(&new_pwr_info, &hba->pwr_info,
1258 		       sizeof(struct ufs_pa_layer_attr));
1259 
1260 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1261 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1262 			/* save the current power mode */
1263 			memcpy(&hba->clk_scaling.saved_pwr_info,
1264 				&hba->pwr_info,
1265 				sizeof(struct ufs_pa_layer_attr));
1266 
1267 			/* scale down gear */
1268 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1269 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1270 		}
1271 	}
1272 
1273 	/* check if the power mode needs to be changed or not? */
1274 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1275 	if (ret)
1276 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1277 			__func__, ret,
1278 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1279 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1280 
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1286  * has expired.
1287  *
1288  * Return: 0 upon success; -EBUSY upon timeout.
1289  */
1290 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1291 {
1292 	int ret = 0;
1293 	/*
1294 	 * make sure that there are no outstanding requests when
1295 	 * clock scaling is in progress
1296 	 */
1297 	ufshcd_scsi_block_requests(hba);
1298 	mutex_lock(&hba->wb_mutex);
1299 	down_write(&hba->clk_scaling_lock);
1300 
1301 	if (!hba->clk_scaling.is_allowed ||
1302 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1303 		ret = -EBUSY;
1304 		up_write(&hba->clk_scaling_lock);
1305 		mutex_unlock(&hba->wb_mutex);
1306 		ufshcd_scsi_unblock_requests(hba);
1307 		goto out;
1308 	}
1309 
1310 	/* let's not get into low power until clock scaling is completed */
1311 	ufshcd_hold(hba);
1312 
1313 out:
1314 	return ret;
1315 }
1316 
1317 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1318 {
1319 	up_write(&hba->clk_scaling_lock);
1320 
1321 	/* Enable Write Booster if we have scaled up else disable it */
1322 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1323 		ufshcd_wb_toggle(hba, scale_up);
1324 
1325 	mutex_unlock(&hba->wb_mutex);
1326 
1327 	ufshcd_scsi_unblock_requests(hba);
1328 	ufshcd_release(hba);
1329 }
1330 
1331 /**
1332  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1333  * @hba: per adapter instance
1334  * @scale_up: True for scaling up and false for scalin down
1335  *
1336  * Returns 0 for success,
1337  * Returns -EBUSY if scaling can't happen at this time
1338  * Returns non-zero for any other errors
1339  */
1340 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1341 {
1342 	int ret = 0;
1343 
1344 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1345 	if (ret)
1346 		return ret;
1347 
1348 	/* scale down the gear before scaling down clocks */
1349 	if (!scale_up) {
1350 		ret = ufshcd_scale_gear(hba, false);
1351 		if (ret)
1352 			goto out_unprepare;
1353 	}
1354 
1355 	ret = ufshcd_scale_clks(hba, scale_up);
1356 	if (ret) {
1357 		if (!scale_up)
1358 			ufshcd_scale_gear(hba, true);
1359 		goto out_unprepare;
1360 	}
1361 
1362 	/* scale up the gear after scaling up clocks */
1363 	if (scale_up) {
1364 		ret = ufshcd_scale_gear(hba, true);
1365 		if (ret) {
1366 			ufshcd_scale_clks(hba, false);
1367 			goto out_unprepare;
1368 		}
1369 	}
1370 
1371 out_unprepare:
1372 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1373 	return ret;
1374 }
1375 
1376 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1377 {
1378 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1379 					   clk_scaling.suspend_work);
1380 	unsigned long irq_flags;
1381 
1382 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1383 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1384 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1385 		return;
1386 	}
1387 	hba->clk_scaling.is_suspended = true;
1388 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1389 
1390 	__ufshcd_suspend_clkscaling(hba);
1391 }
1392 
1393 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1394 {
1395 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1396 					   clk_scaling.resume_work);
1397 	unsigned long irq_flags;
1398 
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (!hba->clk_scaling.is_suspended) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return;
1403 	}
1404 	hba->clk_scaling.is_suspended = false;
1405 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1406 
1407 	devfreq_resume_device(hba->devfreq);
1408 }
1409 
1410 static int ufshcd_devfreq_target(struct device *dev,
1411 				unsigned long *freq, u32 flags)
1412 {
1413 	int ret = 0;
1414 	struct ufs_hba *hba = dev_get_drvdata(dev);
1415 	ktime_t start;
1416 	bool scale_up, sched_clk_scaling_suspend_work = false;
1417 	struct list_head *clk_list = &hba->clk_list_head;
1418 	struct ufs_clk_info *clki;
1419 	unsigned long irq_flags;
1420 
1421 	if (!ufshcd_is_clkscaling_supported(hba))
1422 		return -EINVAL;
1423 
1424 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1425 	/* Override with the closest supported frequency */
1426 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1427 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1428 	if (ufshcd_eh_in_progress(hba)) {
1429 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1430 		return 0;
1431 	}
1432 
1433 	if (!hba->clk_scaling.active_reqs)
1434 		sched_clk_scaling_suspend_work = true;
1435 
1436 	if (list_empty(clk_list)) {
1437 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1438 		goto out;
1439 	}
1440 
1441 	/* Decide based on the rounded-off frequency and update */
1442 	scale_up = *freq == clki->max_freq;
1443 	if (!scale_up)
1444 		*freq = clki->min_freq;
1445 	/* Update the frequency */
1446 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1447 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1448 		ret = 0;
1449 		goto out; /* no state change required */
1450 	}
1451 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1452 
1453 	start = ktime_get();
1454 	ret = ufshcd_devfreq_scale(hba, scale_up);
1455 
1456 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1457 		(scale_up ? "up" : "down"),
1458 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1459 
1460 out:
1461 	if (sched_clk_scaling_suspend_work)
1462 		queue_work(hba->clk_scaling.workq,
1463 			   &hba->clk_scaling.suspend_work);
1464 
1465 	return ret;
1466 }
1467 
1468 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1469 		struct devfreq_dev_status *stat)
1470 {
1471 	struct ufs_hba *hba = dev_get_drvdata(dev);
1472 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1473 	unsigned long flags;
1474 	struct list_head *clk_list = &hba->clk_list_head;
1475 	struct ufs_clk_info *clki;
1476 	ktime_t curr_t;
1477 
1478 	if (!ufshcd_is_clkscaling_supported(hba))
1479 		return -EINVAL;
1480 
1481 	memset(stat, 0, sizeof(*stat));
1482 
1483 	spin_lock_irqsave(hba->host->host_lock, flags);
1484 	curr_t = ktime_get();
1485 	if (!scaling->window_start_t)
1486 		goto start_window;
1487 
1488 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1489 	/*
1490 	 * If current frequency is 0, then the ondemand governor considers
1491 	 * there's no initial frequency set. And it always requests to set
1492 	 * to max. frequency.
1493 	 */
1494 	stat->current_frequency = clki->curr_freq;
1495 	if (scaling->is_busy_started)
1496 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1497 				scaling->busy_start_t);
1498 
1499 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1500 	stat->busy_time = scaling->tot_busy_t;
1501 start_window:
1502 	scaling->window_start_t = curr_t;
1503 	scaling->tot_busy_t = 0;
1504 
1505 	if (scaling->active_reqs) {
1506 		scaling->busy_start_t = curr_t;
1507 		scaling->is_busy_started = true;
1508 	} else {
1509 		scaling->busy_start_t = 0;
1510 		scaling->is_busy_started = false;
1511 	}
1512 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1513 	return 0;
1514 }
1515 
1516 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1517 {
1518 	struct list_head *clk_list = &hba->clk_list_head;
1519 	struct ufs_clk_info *clki;
1520 	struct devfreq *devfreq;
1521 	int ret;
1522 
1523 	/* Skip devfreq if we don't have any clocks in the list */
1524 	if (list_empty(clk_list))
1525 		return 0;
1526 
1527 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1528 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1529 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1530 
1531 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1532 					 &hba->vps->ondemand_data);
1533 	devfreq = devfreq_add_device(hba->dev,
1534 			&hba->vps->devfreq_profile,
1535 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1536 			&hba->vps->ondemand_data);
1537 	if (IS_ERR(devfreq)) {
1538 		ret = PTR_ERR(devfreq);
1539 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1540 
1541 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1542 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1543 		return ret;
1544 	}
1545 
1546 	hba->devfreq = devfreq;
1547 
1548 	return 0;
1549 }
1550 
1551 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1552 {
1553 	struct list_head *clk_list = &hba->clk_list_head;
1554 	struct ufs_clk_info *clki;
1555 
1556 	if (!hba->devfreq)
1557 		return;
1558 
1559 	devfreq_remove_device(hba->devfreq);
1560 	hba->devfreq = NULL;
1561 
1562 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1563 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1564 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1565 }
1566 
1567 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1568 {
1569 	unsigned long flags;
1570 
1571 	devfreq_suspend_device(hba->devfreq);
1572 	spin_lock_irqsave(hba->host->host_lock, flags);
1573 	hba->clk_scaling.window_start_t = 0;
1574 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1575 }
1576 
1577 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1578 {
1579 	unsigned long flags;
1580 	bool suspend = false;
1581 
1582 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1583 	cancel_work_sync(&hba->clk_scaling.resume_work);
1584 
1585 	spin_lock_irqsave(hba->host->host_lock, flags);
1586 	if (!hba->clk_scaling.is_suspended) {
1587 		suspend = true;
1588 		hba->clk_scaling.is_suspended = true;
1589 	}
1590 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1591 
1592 	if (suspend)
1593 		__ufshcd_suspend_clkscaling(hba);
1594 }
1595 
1596 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1597 {
1598 	unsigned long flags;
1599 	bool resume = false;
1600 
1601 	spin_lock_irqsave(hba->host->host_lock, flags);
1602 	if (hba->clk_scaling.is_suspended) {
1603 		resume = true;
1604 		hba->clk_scaling.is_suspended = false;
1605 	}
1606 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1607 
1608 	if (resume)
1609 		devfreq_resume_device(hba->devfreq);
1610 }
1611 
1612 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1613 		struct device_attribute *attr, char *buf)
1614 {
1615 	struct ufs_hba *hba = dev_get_drvdata(dev);
1616 
1617 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1618 }
1619 
1620 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1621 		struct device_attribute *attr, const char *buf, size_t count)
1622 {
1623 	struct ufs_hba *hba = dev_get_drvdata(dev);
1624 	u32 value;
1625 	int err = 0;
1626 
1627 	if (kstrtou32(buf, 0, &value))
1628 		return -EINVAL;
1629 
1630 	down(&hba->host_sem);
1631 	if (!ufshcd_is_user_access_allowed(hba)) {
1632 		err = -EBUSY;
1633 		goto out;
1634 	}
1635 
1636 	value = !!value;
1637 	if (value == hba->clk_scaling.is_enabled)
1638 		goto out;
1639 
1640 	ufshcd_rpm_get_sync(hba);
1641 	ufshcd_hold(hba);
1642 
1643 	hba->clk_scaling.is_enabled = value;
1644 
1645 	if (value) {
1646 		ufshcd_resume_clkscaling(hba);
1647 	} else {
1648 		ufshcd_suspend_clkscaling(hba);
1649 		err = ufshcd_devfreq_scale(hba, true);
1650 		if (err)
1651 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1652 					__func__, err);
1653 	}
1654 
1655 	ufshcd_release(hba);
1656 	ufshcd_rpm_put_sync(hba);
1657 out:
1658 	up(&hba->host_sem);
1659 	return err ? err : count;
1660 }
1661 
1662 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1663 {
1664 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1665 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1666 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1667 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1668 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1669 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1670 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1671 }
1672 
1673 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1674 {
1675 	if (hba->clk_scaling.enable_attr.attr.name)
1676 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1677 }
1678 
1679 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1680 {
1681 	char wq_name[sizeof("ufs_clkscaling_00")];
1682 
1683 	if (!ufshcd_is_clkscaling_supported(hba))
1684 		return;
1685 
1686 	if (!hba->clk_scaling.min_gear)
1687 		hba->clk_scaling.min_gear = UFS_HS_G1;
1688 
1689 	INIT_WORK(&hba->clk_scaling.suspend_work,
1690 		  ufshcd_clk_scaling_suspend_work);
1691 	INIT_WORK(&hba->clk_scaling.resume_work,
1692 		  ufshcd_clk_scaling_resume_work);
1693 
1694 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1695 		 hba->host->host_no);
1696 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1697 
1698 	hba->clk_scaling.is_initialized = true;
1699 }
1700 
1701 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1702 {
1703 	if (!hba->clk_scaling.is_initialized)
1704 		return;
1705 
1706 	ufshcd_remove_clk_scaling_sysfs(hba);
1707 	destroy_workqueue(hba->clk_scaling.workq);
1708 	ufshcd_devfreq_remove(hba);
1709 	hba->clk_scaling.is_initialized = false;
1710 }
1711 
1712 static void ufshcd_ungate_work(struct work_struct *work)
1713 {
1714 	int ret;
1715 	unsigned long flags;
1716 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1717 			clk_gating.ungate_work);
1718 
1719 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1720 
1721 	spin_lock_irqsave(hba->host->host_lock, flags);
1722 	if (hba->clk_gating.state == CLKS_ON) {
1723 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1724 		return;
1725 	}
1726 
1727 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1728 	ufshcd_hba_vreg_set_hpm(hba);
1729 	ufshcd_setup_clocks(hba, true);
1730 
1731 	ufshcd_enable_irq(hba);
1732 
1733 	/* Exit from hibern8 */
1734 	if (ufshcd_can_hibern8_during_gating(hba)) {
1735 		/* Prevent gating in this path */
1736 		hba->clk_gating.is_suspended = true;
1737 		if (ufshcd_is_link_hibern8(hba)) {
1738 			ret = ufshcd_uic_hibern8_exit(hba);
1739 			if (ret)
1740 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1741 					__func__, ret);
1742 			else
1743 				ufshcd_set_link_active(hba);
1744 		}
1745 		hba->clk_gating.is_suspended = false;
1746 	}
1747 }
1748 
1749 /**
1750  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1751  * Also, exit from hibern8 mode and set the link as active.
1752  * @hba: per adapter instance
1753  */
1754 void ufshcd_hold(struct ufs_hba *hba)
1755 {
1756 	bool flush_result;
1757 	unsigned long flags;
1758 
1759 	if (!ufshcd_is_clkgating_allowed(hba) ||
1760 	    !hba->clk_gating.is_initialized)
1761 		return;
1762 	spin_lock_irqsave(hba->host->host_lock, flags);
1763 	hba->clk_gating.active_reqs++;
1764 
1765 start:
1766 	switch (hba->clk_gating.state) {
1767 	case CLKS_ON:
1768 		/*
1769 		 * Wait for the ungate work to complete if in progress.
1770 		 * Though the clocks may be in ON state, the link could
1771 		 * still be in hibner8 state if hibern8 is allowed
1772 		 * during clock gating.
1773 		 * Make sure we exit hibern8 state also in addition to
1774 		 * clocks being ON.
1775 		 */
1776 		if (ufshcd_can_hibern8_during_gating(hba) &&
1777 		    ufshcd_is_link_hibern8(hba)) {
1778 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1779 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1780 			if (hba->clk_gating.is_suspended && !flush_result)
1781 				return;
1782 			spin_lock_irqsave(hba->host->host_lock, flags);
1783 			goto start;
1784 		}
1785 		break;
1786 	case REQ_CLKS_OFF:
1787 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1788 			hba->clk_gating.state = CLKS_ON;
1789 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1790 						hba->clk_gating.state);
1791 			break;
1792 		}
1793 		/*
1794 		 * If we are here, it means gating work is either done or
1795 		 * currently running. Hence, fall through to cancel gating
1796 		 * work and to enable clocks.
1797 		 */
1798 		fallthrough;
1799 	case CLKS_OFF:
1800 		hba->clk_gating.state = REQ_CLKS_ON;
1801 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1802 					hba->clk_gating.state);
1803 		queue_work(hba->clk_gating.clk_gating_workq,
1804 			   &hba->clk_gating.ungate_work);
1805 		/*
1806 		 * fall through to check if we should wait for this
1807 		 * work to be done or not.
1808 		 */
1809 		fallthrough;
1810 	case REQ_CLKS_ON:
1811 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1812 		flush_work(&hba->clk_gating.ungate_work);
1813 		/* Make sure state is CLKS_ON before returning */
1814 		spin_lock_irqsave(hba->host->host_lock, flags);
1815 		goto start;
1816 	default:
1817 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1818 				__func__, hba->clk_gating.state);
1819 		break;
1820 	}
1821 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1822 }
1823 EXPORT_SYMBOL_GPL(ufshcd_hold);
1824 
1825 static void ufshcd_gate_work(struct work_struct *work)
1826 {
1827 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1828 			clk_gating.gate_work.work);
1829 	unsigned long flags;
1830 	int ret;
1831 
1832 	spin_lock_irqsave(hba->host->host_lock, flags);
1833 	/*
1834 	 * In case you are here to cancel this work the gating state
1835 	 * would be marked as REQ_CLKS_ON. In this case save time by
1836 	 * skipping the gating work and exit after changing the clock
1837 	 * state to CLKS_ON.
1838 	 */
1839 	if (hba->clk_gating.is_suspended ||
1840 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1841 		hba->clk_gating.state = CLKS_ON;
1842 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1843 					hba->clk_gating.state);
1844 		goto rel_lock;
1845 	}
1846 
1847 	if (hba->clk_gating.active_reqs
1848 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1849 		|| hba->outstanding_reqs || hba->outstanding_tasks
1850 		|| hba->active_uic_cmd || hba->uic_async_done)
1851 		goto rel_lock;
1852 
1853 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1854 
1855 	/* put the link into hibern8 mode before turning off clocks */
1856 	if (ufshcd_can_hibern8_during_gating(hba)) {
1857 		ret = ufshcd_uic_hibern8_enter(hba);
1858 		if (ret) {
1859 			hba->clk_gating.state = CLKS_ON;
1860 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1861 					__func__, ret);
1862 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1863 						hba->clk_gating.state);
1864 			goto out;
1865 		}
1866 		ufshcd_set_link_hibern8(hba);
1867 	}
1868 
1869 	ufshcd_disable_irq(hba);
1870 
1871 	ufshcd_setup_clocks(hba, false);
1872 
1873 	/* Put the host controller in low power mode if possible */
1874 	ufshcd_hba_vreg_set_lpm(hba);
1875 	/*
1876 	 * In case you are here to cancel this work the gating state
1877 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1878 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1879 	 * and a request to turn them on is pending. By doing this way,
1880 	 * we keep the state machine in tact and this would ultimately
1881 	 * prevent from doing cancel work multiple times when there are
1882 	 * new requests arriving before the current cancel work is done.
1883 	 */
1884 	spin_lock_irqsave(hba->host->host_lock, flags);
1885 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1886 		hba->clk_gating.state = CLKS_OFF;
1887 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1888 					hba->clk_gating.state);
1889 	}
1890 rel_lock:
1891 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1892 out:
1893 	return;
1894 }
1895 
1896 /* host lock must be held before calling this variant */
1897 static void __ufshcd_release(struct ufs_hba *hba)
1898 {
1899 	if (!ufshcd_is_clkgating_allowed(hba))
1900 		return;
1901 
1902 	hba->clk_gating.active_reqs--;
1903 
1904 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1905 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1906 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1907 	    hba->active_uic_cmd || hba->uic_async_done ||
1908 	    hba->clk_gating.state == CLKS_OFF)
1909 		return;
1910 
1911 	hba->clk_gating.state = REQ_CLKS_OFF;
1912 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1913 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1914 			   &hba->clk_gating.gate_work,
1915 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1916 }
1917 
1918 void ufshcd_release(struct ufs_hba *hba)
1919 {
1920 	unsigned long flags;
1921 
1922 	spin_lock_irqsave(hba->host->host_lock, flags);
1923 	__ufshcd_release(hba);
1924 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1925 }
1926 EXPORT_SYMBOL_GPL(ufshcd_release);
1927 
1928 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1929 		struct device_attribute *attr, char *buf)
1930 {
1931 	struct ufs_hba *hba = dev_get_drvdata(dev);
1932 
1933 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1934 }
1935 
1936 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1937 {
1938 	struct ufs_hba *hba = dev_get_drvdata(dev);
1939 	unsigned long flags;
1940 
1941 	spin_lock_irqsave(hba->host->host_lock, flags);
1942 	hba->clk_gating.delay_ms = value;
1943 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1944 }
1945 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1946 
1947 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1948 		struct device_attribute *attr, const char *buf, size_t count)
1949 {
1950 	unsigned long value;
1951 
1952 	if (kstrtoul(buf, 0, &value))
1953 		return -EINVAL;
1954 
1955 	ufshcd_clkgate_delay_set(dev, value);
1956 	return count;
1957 }
1958 
1959 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1960 		struct device_attribute *attr, char *buf)
1961 {
1962 	struct ufs_hba *hba = dev_get_drvdata(dev);
1963 
1964 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1965 }
1966 
1967 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1968 		struct device_attribute *attr, const char *buf, size_t count)
1969 {
1970 	struct ufs_hba *hba = dev_get_drvdata(dev);
1971 	unsigned long flags;
1972 	u32 value;
1973 
1974 	if (kstrtou32(buf, 0, &value))
1975 		return -EINVAL;
1976 
1977 	value = !!value;
1978 
1979 	spin_lock_irqsave(hba->host->host_lock, flags);
1980 	if (value == hba->clk_gating.is_enabled)
1981 		goto out;
1982 
1983 	if (value)
1984 		__ufshcd_release(hba);
1985 	else
1986 		hba->clk_gating.active_reqs++;
1987 
1988 	hba->clk_gating.is_enabled = value;
1989 out:
1990 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1991 	return count;
1992 }
1993 
1994 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1995 {
1996 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1997 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1998 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1999 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2000 	hba->clk_gating.delay_attr.attr.mode = 0644;
2001 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2002 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2003 
2004 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2005 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2006 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2007 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2008 	hba->clk_gating.enable_attr.attr.mode = 0644;
2009 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2010 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2011 }
2012 
2013 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2014 {
2015 	if (hba->clk_gating.delay_attr.attr.name)
2016 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2017 	if (hba->clk_gating.enable_attr.attr.name)
2018 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2019 }
2020 
2021 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2022 {
2023 	char wq_name[sizeof("ufs_clk_gating_00")];
2024 
2025 	if (!ufshcd_is_clkgating_allowed(hba))
2026 		return;
2027 
2028 	hba->clk_gating.state = CLKS_ON;
2029 
2030 	hba->clk_gating.delay_ms = 150;
2031 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2032 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2033 
2034 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2035 		 hba->host->host_no);
2036 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2037 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2038 
2039 	ufshcd_init_clk_gating_sysfs(hba);
2040 
2041 	hba->clk_gating.is_enabled = true;
2042 	hba->clk_gating.is_initialized = true;
2043 }
2044 
2045 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2046 {
2047 	if (!hba->clk_gating.is_initialized)
2048 		return;
2049 
2050 	ufshcd_remove_clk_gating_sysfs(hba);
2051 
2052 	/* Ungate the clock if necessary. */
2053 	ufshcd_hold(hba);
2054 	hba->clk_gating.is_initialized = false;
2055 	ufshcd_release(hba);
2056 
2057 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2058 }
2059 
2060 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2061 {
2062 	bool queue_resume_work = false;
2063 	ktime_t curr_t = ktime_get();
2064 	unsigned long flags;
2065 
2066 	if (!ufshcd_is_clkscaling_supported(hba))
2067 		return;
2068 
2069 	spin_lock_irqsave(hba->host->host_lock, flags);
2070 	if (!hba->clk_scaling.active_reqs++)
2071 		queue_resume_work = true;
2072 
2073 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2074 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2075 		return;
2076 	}
2077 
2078 	if (queue_resume_work)
2079 		queue_work(hba->clk_scaling.workq,
2080 			   &hba->clk_scaling.resume_work);
2081 
2082 	if (!hba->clk_scaling.window_start_t) {
2083 		hba->clk_scaling.window_start_t = curr_t;
2084 		hba->clk_scaling.tot_busy_t = 0;
2085 		hba->clk_scaling.is_busy_started = false;
2086 	}
2087 
2088 	if (!hba->clk_scaling.is_busy_started) {
2089 		hba->clk_scaling.busy_start_t = curr_t;
2090 		hba->clk_scaling.is_busy_started = true;
2091 	}
2092 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2093 }
2094 
2095 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2096 {
2097 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2098 	unsigned long flags;
2099 
2100 	if (!ufshcd_is_clkscaling_supported(hba))
2101 		return;
2102 
2103 	spin_lock_irqsave(hba->host->host_lock, flags);
2104 	hba->clk_scaling.active_reqs--;
2105 	if (!scaling->active_reqs && scaling->is_busy_started) {
2106 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2107 					scaling->busy_start_t));
2108 		scaling->busy_start_t = 0;
2109 		scaling->is_busy_started = false;
2110 	}
2111 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2112 }
2113 
2114 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2115 {
2116 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2117 		return READ;
2118 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2119 		return WRITE;
2120 	else
2121 		return -EINVAL;
2122 }
2123 
2124 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2125 						struct ufshcd_lrb *lrbp)
2126 {
2127 	const struct ufs_hba_monitor *m = &hba->monitor;
2128 
2129 	return (m->enabled && lrbp && lrbp->cmd &&
2130 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2131 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2132 }
2133 
2134 static void ufshcd_start_monitor(struct ufs_hba *hba,
2135 				 const struct ufshcd_lrb *lrbp)
2136 {
2137 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2138 	unsigned long flags;
2139 
2140 	spin_lock_irqsave(hba->host->host_lock, flags);
2141 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2142 		hba->monitor.busy_start_ts[dir] = ktime_get();
2143 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2144 }
2145 
2146 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2147 {
2148 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2149 	unsigned long flags;
2150 
2151 	spin_lock_irqsave(hba->host->host_lock, flags);
2152 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2153 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2154 		struct ufs_hba_monitor *m = &hba->monitor;
2155 		ktime_t now, inc, lat;
2156 
2157 		now = lrbp->compl_time_stamp;
2158 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2159 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2160 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2161 
2162 		/* Update latencies */
2163 		m->nr_req[dir]++;
2164 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2165 		m->lat_sum[dir] += lat;
2166 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2167 			m->lat_max[dir] = lat;
2168 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2169 			m->lat_min[dir] = lat;
2170 
2171 		m->nr_queued[dir]--;
2172 		/* Push forward the busy start of monitor */
2173 		m->busy_start_ts[dir] = now;
2174 	}
2175 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2176 }
2177 
2178 /**
2179  * ufshcd_send_command - Send SCSI or device management commands
2180  * @hba: per adapter instance
2181  * @task_tag: Task tag of the command
2182  * @hwq: pointer to hardware queue instance
2183  */
2184 static inline
2185 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2186 			 struct ufs_hw_queue *hwq)
2187 {
2188 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2189 	unsigned long flags;
2190 
2191 	lrbp->issue_time_stamp = ktime_get();
2192 	lrbp->issue_time_stamp_local_clock = local_clock();
2193 	lrbp->compl_time_stamp = ktime_set(0, 0);
2194 	lrbp->compl_time_stamp_local_clock = 0;
2195 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2196 	ufshcd_clk_scaling_start_busy(hba);
2197 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2198 		ufshcd_start_monitor(hba, lrbp);
2199 
2200 	if (is_mcq_enabled(hba)) {
2201 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2202 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2203 		struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2204 
2205 		spin_lock(&hwq->sq_lock);
2206 		memcpy(dest, src, utrd_size);
2207 		ufshcd_inc_sq_tail(hwq);
2208 		spin_unlock(&hwq->sq_lock);
2209 	} else {
2210 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2211 		if (hba->vops && hba->vops->setup_xfer_req)
2212 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2213 						  !!lrbp->cmd);
2214 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2215 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2216 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2217 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2218 	}
2219 }
2220 
2221 /**
2222  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2223  * @lrbp: pointer to local reference block
2224  */
2225 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2226 {
2227 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2228 	int len;
2229 
2230 	if (sense_buffer &&
2231 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2232 		int len_to_copy;
2233 
2234 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2235 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2236 
2237 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2238 		       len_to_copy);
2239 	}
2240 }
2241 
2242 /**
2243  * ufshcd_copy_query_response() - Copy the Query Response and the data
2244  * descriptor
2245  * @hba: per adapter instance
2246  * @lrbp: pointer to local reference block
2247  */
2248 static
2249 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2250 {
2251 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2252 
2253 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2254 
2255 	/* Get the descriptor */
2256 	if (hba->dev_cmd.query.descriptor &&
2257 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2258 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2259 				GENERAL_UPIU_REQUEST_SIZE;
2260 		u16 resp_len;
2261 		u16 buf_len;
2262 
2263 		/* data segment length */
2264 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2265 						MASK_QUERY_DATA_SEG_LEN;
2266 		buf_len = be16_to_cpu(
2267 				hba->dev_cmd.query.request.upiu_req.length);
2268 		if (likely(buf_len >= resp_len)) {
2269 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2270 		} else {
2271 			dev_warn(hba->dev,
2272 				 "%s: rsp size %d is bigger than buffer size %d",
2273 				 __func__, resp_len, buf_len);
2274 			return -EINVAL;
2275 		}
2276 	}
2277 
2278 	return 0;
2279 }
2280 
2281 /**
2282  * ufshcd_hba_capabilities - Read controller capabilities
2283  * @hba: per adapter instance
2284  *
2285  * Return: 0 on success, negative on error.
2286  */
2287 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2288 {
2289 	int err;
2290 
2291 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2292 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2293 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2294 
2295 	/* nutrs and nutmrs are 0 based values */
2296 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2297 	hba->nutmrs =
2298 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2299 	hba->reserved_slot = hba->nutrs - 1;
2300 
2301 	/* Read crypto capabilities */
2302 	err = ufshcd_hba_init_crypto_capabilities(hba);
2303 	if (err) {
2304 		dev_err(hba->dev, "crypto setup failed\n");
2305 		return err;
2306 	}
2307 
2308 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2309 	if (!hba->mcq_sup)
2310 		return 0;
2311 
2312 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2313 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2314 				     hba->mcq_capabilities);
2315 
2316 	return 0;
2317 }
2318 
2319 /**
2320  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2321  *                            to accept UIC commands
2322  * @hba: per adapter instance
2323  * Return true on success, else false
2324  */
2325 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2326 {
2327 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2328 }
2329 
2330 /**
2331  * ufshcd_get_upmcrs - Get the power mode change request status
2332  * @hba: Pointer to adapter instance
2333  *
2334  * This function gets the UPMCRS field of HCS register
2335  * Returns value of UPMCRS field
2336  */
2337 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2338 {
2339 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2340 }
2341 
2342 /**
2343  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2344  * @hba: per adapter instance
2345  * @uic_cmd: UIC command
2346  */
2347 static inline void
2348 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2349 {
2350 	lockdep_assert_held(&hba->uic_cmd_mutex);
2351 
2352 	WARN_ON(hba->active_uic_cmd);
2353 
2354 	hba->active_uic_cmd = uic_cmd;
2355 
2356 	/* Write Args */
2357 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2358 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2359 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2360 
2361 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2362 
2363 	/* Write UIC Cmd */
2364 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2365 		      REG_UIC_COMMAND);
2366 }
2367 
2368 /**
2369  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2370  * @hba: per adapter instance
2371  * @uic_cmd: UIC command
2372  *
2373  * Returns 0 only if success.
2374  */
2375 static int
2376 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2377 {
2378 	int ret;
2379 	unsigned long flags;
2380 
2381 	lockdep_assert_held(&hba->uic_cmd_mutex);
2382 
2383 	if (wait_for_completion_timeout(&uic_cmd->done,
2384 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2385 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2386 	} else {
2387 		ret = -ETIMEDOUT;
2388 		dev_err(hba->dev,
2389 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2390 			uic_cmd->command, uic_cmd->argument3);
2391 
2392 		if (!uic_cmd->cmd_active) {
2393 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2394 				__func__);
2395 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2396 		}
2397 	}
2398 
2399 	spin_lock_irqsave(hba->host->host_lock, flags);
2400 	hba->active_uic_cmd = NULL;
2401 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2402 
2403 	return ret;
2404 }
2405 
2406 /**
2407  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2408  * @hba: per adapter instance
2409  * @uic_cmd: UIC command
2410  * @completion: initialize the completion only if this is set to true
2411  *
2412  * Returns 0 only if success.
2413  */
2414 static int
2415 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2416 		      bool completion)
2417 {
2418 	lockdep_assert_held(&hba->uic_cmd_mutex);
2419 	lockdep_assert_held(hba->host->host_lock);
2420 
2421 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2422 		dev_err(hba->dev,
2423 			"Controller not ready to accept UIC commands\n");
2424 		return -EIO;
2425 	}
2426 
2427 	if (completion)
2428 		init_completion(&uic_cmd->done);
2429 
2430 	uic_cmd->cmd_active = 1;
2431 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2432 
2433 	return 0;
2434 }
2435 
2436 /**
2437  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2438  * @hba: per adapter instance
2439  * @uic_cmd: UIC command
2440  *
2441  * Returns 0 only if success.
2442  */
2443 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2444 {
2445 	int ret;
2446 	unsigned long flags;
2447 
2448 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2449 		return 0;
2450 
2451 	ufshcd_hold(hba);
2452 	mutex_lock(&hba->uic_cmd_mutex);
2453 	ufshcd_add_delay_before_dme_cmd(hba);
2454 
2455 	spin_lock_irqsave(hba->host->host_lock, flags);
2456 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2457 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2458 	if (!ret)
2459 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2460 
2461 	mutex_unlock(&hba->uic_cmd_mutex);
2462 
2463 	ufshcd_release(hba);
2464 	return ret;
2465 }
2466 
2467 /**
2468  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2469  * @hba:	per-adapter instance
2470  * @lrbp:	pointer to local reference block
2471  * @sg_entries:	The number of sg lists actually used
2472  * @sg_list:	Pointer to SG list
2473  */
2474 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2475 			       struct scatterlist *sg_list)
2476 {
2477 	struct ufshcd_sg_entry *prd;
2478 	struct scatterlist *sg;
2479 	int i;
2480 
2481 	if (sg_entries) {
2482 
2483 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2484 			lrbp->utr_descriptor_ptr->prd_table_length =
2485 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2486 		else
2487 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2488 
2489 		prd = lrbp->ucd_prdt_ptr;
2490 
2491 		for_each_sg(sg_list, sg, sg_entries, i) {
2492 			const unsigned int len = sg_dma_len(sg);
2493 
2494 			/*
2495 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2496 			 * based value that indicates the length, in bytes, of
2497 			 * the data block. A maximum of length of 256KB may
2498 			 * exist for any entry. Bits 1:0 of this field shall be
2499 			 * 11b to indicate Dword granularity. A value of '3'
2500 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2501 			 */
2502 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2503 			prd->size = cpu_to_le32(len - 1);
2504 			prd->addr = cpu_to_le64(sg->dma_address);
2505 			prd->reserved = 0;
2506 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2507 		}
2508 	} else {
2509 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2510 	}
2511 }
2512 
2513 /**
2514  * ufshcd_map_sg - Map scatter-gather list to prdt
2515  * @hba: per adapter instance
2516  * @lrbp: pointer to local reference block
2517  *
2518  * Returns 0 in case of success, non-zero value in case of failure
2519  */
2520 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2521 {
2522 	struct scsi_cmnd *cmd = lrbp->cmd;
2523 	int sg_segments = scsi_dma_map(cmd);
2524 
2525 	if (sg_segments < 0)
2526 		return sg_segments;
2527 
2528 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2529 
2530 	return 0;
2531 }
2532 
2533 /**
2534  * ufshcd_enable_intr - enable interrupts
2535  * @hba: per adapter instance
2536  * @intrs: interrupt bits
2537  */
2538 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2539 {
2540 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2541 
2542 	if (hba->ufs_version == ufshci_version(1, 0)) {
2543 		u32 rw;
2544 		rw = set & INTERRUPT_MASK_RW_VER_10;
2545 		set = rw | ((set ^ intrs) & intrs);
2546 	} else {
2547 		set |= intrs;
2548 	}
2549 
2550 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2551 }
2552 
2553 /**
2554  * ufshcd_disable_intr - disable interrupts
2555  * @hba: per adapter instance
2556  * @intrs: interrupt bits
2557  */
2558 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2559 {
2560 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2561 
2562 	if (hba->ufs_version == ufshci_version(1, 0)) {
2563 		u32 rw;
2564 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2565 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2566 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2567 
2568 	} else {
2569 		set &= ~intrs;
2570 	}
2571 
2572 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2573 }
2574 
2575 /**
2576  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2577  * descriptor according to request
2578  * @lrbp: pointer to local reference block
2579  * @upiu_flags: flags required in the header
2580  * @cmd_dir: requests data direction
2581  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2582  */
2583 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2584 					enum dma_data_direction cmd_dir, int ehs_length)
2585 {
2586 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2587 	u32 data_direction;
2588 	u32 dword_0;
2589 	u32 dword_1 = 0;
2590 	u32 dword_3 = 0;
2591 
2592 	if (cmd_dir == DMA_FROM_DEVICE) {
2593 		data_direction = UTP_DEVICE_TO_HOST;
2594 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2595 	} else if (cmd_dir == DMA_TO_DEVICE) {
2596 		data_direction = UTP_HOST_TO_DEVICE;
2597 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2598 	} else {
2599 		data_direction = UTP_NO_DATA_TRANSFER;
2600 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2601 	}
2602 
2603 	dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET) |
2604 		ehs_length << 8;
2605 	if (lrbp->intr_cmd)
2606 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2607 
2608 	/* Prepare crypto related dwords */
2609 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2610 
2611 	/* Transfer request descriptor header fields */
2612 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2613 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2614 	/*
2615 	 * assigning invalid value for command status. Controller
2616 	 * updates OCS on command completion, with the command
2617 	 * status
2618 	 */
2619 	req_desc->header.dword_2 =
2620 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2621 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2622 
2623 	req_desc->prd_table_length = 0;
2624 }
2625 
2626 /**
2627  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2628  * for scsi commands
2629  * @lrbp: local reference block pointer
2630  * @upiu_flags: flags
2631  */
2632 static
2633 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2634 {
2635 	struct scsi_cmnd *cmd = lrbp->cmd;
2636 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2637 	unsigned short cdb_len;
2638 
2639 	/* command descriptor fields */
2640 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2641 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2642 				lrbp->lun, lrbp->task_tag);
2643 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2644 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2645 
2646 	/* Total EHS length and Data segment length will be zero */
2647 	ucd_req_ptr->header.dword_2 = 0;
2648 
2649 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2650 
2651 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2652 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2653 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2654 
2655 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2656 }
2657 
2658 /**
2659  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2660  * @hba: UFS hba
2661  * @lrbp: local reference block pointer
2662  * @upiu_flags: flags
2663  */
2664 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2665 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2666 {
2667 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2668 	struct ufs_query *query = &hba->dev_cmd.query;
2669 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2670 
2671 	/* Query request header */
2672 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2673 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2674 			lrbp->lun, lrbp->task_tag);
2675 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2676 			0, query->request.query_func, 0, 0);
2677 
2678 	/* Data segment length only need for WRITE_DESC */
2679 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2680 		ucd_req_ptr->header.dword_2 =
2681 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2682 	else
2683 		ucd_req_ptr->header.dword_2 = 0;
2684 
2685 	/* Copy the Query Request buffer as is */
2686 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2687 			QUERY_OSF_SIZE);
2688 
2689 	/* Copy the Descriptor */
2690 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2691 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2692 
2693 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2694 }
2695 
2696 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2697 {
2698 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2699 
2700 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2701 
2702 	/* command descriptor fields */
2703 	ucd_req_ptr->header.dword_0 =
2704 		UPIU_HEADER_DWORD(
2705 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2706 	/* clear rest of the fields of basic header */
2707 	ucd_req_ptr->header.dword_1 = 0;
2708 	ucd_req_ptr->header.dword_2 = 0;
2709 
2710 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2711 }
2712 
2713 /**
2714  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2715  *			     for Device Management Purposes
2716  * @hba: per adapter instance
2717  * @lrbp: pointer to local reference block
2718  */
2719 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2720 				      struct ufshcd_lrb *lrbp)
2721 {
2722 	u8 upiu_flags;
2723 	int ret = 0;
2724 
2725 	if (hba->ufs_version <= ufshci_version(1, 1))
2726 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2727 	else
2728 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2729 
2730 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2731 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2732 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2733 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2734 		ufshcd_prepare_utp_nop_upiu(lrbp);
2735 	else
2736 		ret = -EINVAL;
2737 
2738 	return ret;
2739 }
2740 
2741 /**
2742  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2743  *			   for SCSI Purposes
2744  * @hba: per adapter instance
2745  * @lrbp: pointer to local reference block
2746  */
2747 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2748 {
2749 	u8 upiu_flags;
2750 	int ret = 0;
2751 
2752 	if (hba->ufs_version <= ufshci_version(1, 1))
2753 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2754 	else
2755 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2756 
2757 	if (likely(lrbp->cmd)) {
2758 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2759 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2760 	} else {
2761 		ret = -EINVAL;
2762 	}
2763 
2764 	return ret;
2765 }
2766 
2767 /**
2768  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2769  * @upiu_wlun_id: UPIU W-LUN id
2770  *
2771  * Returns SCSI W-LUN id
2772  */
2773 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2774 {
2775 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2776 }
2777 
2778 static inline bool is_device_wlun(struct scsi_device *sdev)
2779 {
2780 	return sdev->lun ==
2781 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2782 }
2783 
2784 /*
2785  * Associate the UFS controller queue with the default and poll HCTX types.
2786  * Initialize the mq_map[] arrays.
2787  */
2788 static void ufshcd_map_queues(struct Scsi_Host *shost)
2789 {
2790 	struct ufs_hba *hba = shost_priv(shost);
2791 	int i, queue_offset = 0;
2792 
2793 	if (!is_mcq_supported(hba)) {
2794 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2795 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2796 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2797 		hba->nr_hw_queues = 1;
2798 	}
2799 
2800 	for (i = 0; i < shost->nr_maps; i++) {
2801 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2802 
2803 		map->nr_queues = hba->nr_queues[i];
2804 		if (!map->nr_queues)
2805 			continue;
2806 		map->queue_offset = queue_offset;
2807 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2808 			map->queue_offset = 0;
2809 
2810 		blk_mq_map_queues(map);
2811 		queue_offset += map->nr_queues;
2812 	}
2813 }
2814 
2815 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2816 {
2817 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2818 		i * sizeof_utp_transfer_cmd_desc(hba);
2819 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2820 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2821 		i * sizeof_utp_transfer_cmd_desc(hba);
2822 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2823 				       response_upiu);
2824 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2825 
2826 	lrb->utr_descriptor_ptr = utrdlp + i;
2827 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2828 		i * sizeof(struct utp_transfer_req_desc);
2829 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2830 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2831 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2832 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2833 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2834 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2835 }
2836 
2837 /**
2838  * ufshcd_queuecommand - main entry point for SCSI requests
2839  * @host: SCSI host pointer
2840  * @cmd: command from SCSI Midlayer
2841  *
2842  * Returns 0 for success, non-zero in case of failure
2843  */
2844 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2845 {
2846 	struct ufs_hba *hba = shost_priv(host);
2847 	int tag = scsi_cmd_to_rq(cmd)->tag;
2848 	struct ufshcd_lrb *lrbp;
2849 	int err = 0;
2850 	struct ufs_hw_queue *hwq = NULL;
2851 
2852 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2853 
2854 	switch (hba->ufshcd_state) {
2855 	case UFSHCD_STATE_OPERATIONAL:
2856 		break;
2857 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2858 		/*
2859 		 * SCSI error handler can call ->queuecommand() while UFS error
2860 		 * handler is in progress. Error interrupts could change the
2861 		 * state from UFSHCD_STATE_RESET to
2862 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2863 		 * being issued in that case.
2864 		 */
2865 		if (ufshcd_eh_in_progress(hba)) {
2866 			err = SCSI_MLQUEUE_HOST_BUSY;
2867 			goto out;
2868 		}
2869 		break;
2870 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2871 		/*
2872 		 * pm_runtime_get_sync() is used at error handling preparation
2873 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2874 		 * PM ops, it can never be finished if we let SCSI layer keep
2875 		 * retrying it, which gets err handler stuck forever. Neither
2876 		 * can we let the scsi cmd pass through, because UFS is in bad
2877 		 * state, the scsi cmd may eventually time out, which will get
2878 		 * err handler blocked for too long. So, just fail the scsi cmd
2879 		 * sent from PM ops, err handler can recover PM error anyways.
2880 		 */
2881 		if (hba->pm_op_in_progress) {
2882 			hba->force_reset = true;
2883 			set_host_byte(cmd, DID_BAD_TARGET);
2884 			scsi_done(cmd);
2885 			goto out;
2886 		}
2887 		fallthrough;
2888 	case UFSHCD_STATE_RESET:
2889 		err = SCSI_MLQUEUE_HOST_BUSY;
2890 		goto out;
2891 	case UFSHCD_STATE_ERROR:
2892 		set_host_byte(cmd, DID_ERROR);
2893 		scsi_done(cmd);
2894 		goto out;
2895 	}
2896 
2897 	hba->req_abort_count = 0;
2898 
2899 	ufshcd_hold(hba);
2900 
2901 	lrbp = &hba->lrb[tag];
2902 	WARN_ON(lrbp->cmd);
2903 	lrbp->cmd = cmd;
2904 	lrbp->task_tag = tag;
2905 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2906 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2907 
2908 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2909 
2910 	lrbp->req_abort_skip = false;
2911 
2912 	ufshpb_prep(hba, lrbp);
2913 
2914 	ufshcd_comp_scsi_upiu(hba, lrbp);
2915 
2916 	err = ufshcd_map_sg(hba, lrbp);
2917 	if (err) {
2918 		lrbp->cmd = NULL;
2919 		ufshcd_release(hba);
2920 		goto out;
2921 	}
2922 
2923 	if (is_mcq_enabled(hba))
2924 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2925 
2926 	ufshcd_send_command(hba, tag, hwq);
2927 
2928 out:
2929 	if (ufs_trigger_eh()) {
2930 		unsigned long flags;
2931 
2932 		spin_lock_irqsave(hba->host->host_lock, flags);
2933 		ufshcd_schedule_eh_work(hba);
2934 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2935 	}
2936 
2937 	return err;
2938 }
2939 
2940 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2941 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2942 {
2943 	lrbp->cmd = NULL;
2944 	lrbp->task_tag = tag;
2945 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2946 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2947 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2948 	hba->dev_cmd.type = cmd_type;
2949 
2950 	return ufshcd_compose_devman_upiu(hba, lrbp);
2951 }
2952 
2953 /*
2954  * Check with the block layer if the command is inflight
2955  * @cmd: command to check.
2956  *
2957  * Returns true if command is inflight; false if not.
2958  */
2959 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2960 {
2961 	struct request *rq;
2962 
2963 	if (!cmd)
2964 		return false;
2965 
2966 	rq = scsi_cmd_to_rq(cmd);
2967 	if (!blk_mq_request_started(rq))
2968 		return false;
2969 
2970 	return true;
2971 }
2972 
2973 /*
2974  * Clear the pending command in the controller and wait until
2975  * the controller confirms that the command has been cleared.
2976  * @hba: per adapter instance
2977  * @task_tag: The tag number of the command to be cleared.
2978  */
2979 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2980 {
2981 	u32 mask = 1U << task_tag;
2982 	unsigned long flags;
2983 	int err;
2984 
2985 	if (is_mcq_enabled(hba)) {
2986 		/*
2987 		 * MCQ mode. Clean up the MCQ resources similar to
2988 		 * what the ufshcd_utrl_clear() does for SDB mode.
2989 		 */
2990 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2991 		if (err) {
2992 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2993 				__func__, task_tag, err);
2994 			return err;
2995 		}
2996 		return 0;
2997 	}
2998 
2999 	/* clear outstanding transaction before retry */
3000 	spin_lock_irqsave(hba->host->host_lock, flags);
3001 	ufshcd_utrl_clear(hba, mask);
3002 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3003 
3004 	/*
3005 	 * wait for h/w to clear corresponding bit in door-bell.
3006 	 * max. wait is 1 sec.
3007 	 */
3008 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3009 					mask, ~mask, 1000, 1000);
3010 }
3011 
3012 static int
3013 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3014 {
3015 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
3016 
3017 	/* Get the UPIU response */
3018 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
3019 				UPIU_RSP_CODE_OFFSET;
3020 	return query_res->response;
3021 }
3022 
3023 /**
3024  * ufshcd_dev_cmd_completion() - handles device management command responses
3025  * @hba: per adapter instance
3026  * @lrbp: pointer to local reference block
3027  */
3028 static int
3029 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3030 {
3031 	int resp;
3032 	int err = 0;
3033 
3034 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3035 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3036 
3037 	switch (resp) {
3038 	case UPIU_TRANSACTION_NOP_IN:
3039 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3040 			err = -EINVAL;
3041 			dev_err(hba->dev, "%s: unexpected response %x\n",
3042 					__func__, resp);
3043 		}
3044 		break;
3045 	case UPIU_TRANSACTION_QUERY_RSP:
3046 		err = ufshcd_check_query_response(hba, lrbp);
3047 		if (!err)
3048 			err = ufshcd_copy_query_response(hba, lrbp);
3049 		break;
3050 	case UPIU_TRANSACTION_REJECT_UPIU:
3051 		/* TODO: handle Reject UPIU Response */
3052 		err = -EPERM;
3053 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3054 				__func__);
3055 		break;
3056 	case UPIU_TRANSACTION_RESPONSE:
3057 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3058 			err = -EINVAL;
3059 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3060 		}
3061 		break;
3062 	default:
3063 		err = -EINVAL;
3064 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3065 				__func__, resp);
3066 		break;
3067 	}
3068 
3069 	return err;
3070 }
3071 
3072 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3073 		struct ufshcd_lrb *lrbp, int max_timeout)
3074 {
3075 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3076 	unsigned long flags;
3077 	bool pending;
3078 	int err;
3079 
3080 retry:
3081 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3082 						time_left);
3083 
3084 	if (likely(time_left)) {
3085 		/*
3086 		 * The completion handler called complete() and the caller of
3087 		 * this function still owns the @lrbp tag so the code below does
3088 		 * not trigger any race conditions.
3089 		 */
3090 		hba->dev_cmd.complete = NULL;
3091 		err = ufshcd_get_tr_ocs(lrbp, hba->dev_cmd.cqe);
3092 		if (!err)
3093 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3094 	} else {
3095 		err = -ETIMEDOUT;
3096 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3097 			__func__, lrbp->task_tag);
3098 
3099 		/* MCQ mode */
3100 		if (is_mcq_enabled(hba)) {
3101 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3102 			hba->dev_cmd.complete = NULL;
3103 			return err;
3104 		}
3105 
3106 		/* SDB mode */
3107 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3108 			/* successfully cleared the command, retry if needed */
3109 			err = -EAGAIN;
3110 			/*
3111 			 * Since clearing the command succeeded we also need to
3112 			 * clear the task tag bit from the outstanding_reqs
3113 			 * variable.
3114 			 */
3115 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3116 			pending = test_bit(lrbp->task_tag,
3117 					   &hba->outstanding_reqs);
3118 			if (pending) {
3119 				hba->dev_cmd.complete = NULL;
3120 				__clear_bit(lrbp->task_tag,
3121 					    &hba->outstanding_reqs);
3122 			}
3123 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3124 
3125 			if (!pending) {
3126 				/*
3127 				 * The completion handler ran while we tried to
3128 				 * clear the command.
3129 				 */
3130 				time_left = 1;
3131 				goto retry;
3132 			}
3133 		} else {
3134 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3135 				__func__, lrbp->task_tag);
3136 
3137 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3138 			pending = test_bit(lrbp->task_tag,
3139 					   &hba->outstanding_reqs);
3140 			if (pending)
3141 				hba->dev_cmd.complete = NULL;
3142 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3143 
3144 			if (!pending) {
3145 				/*
3146 				 * The completion handler ran while we tried to
3147 				 * clear the command.
3148 				 */
3149 				time_left = 1;
3150 				goto retry;
3151 			}
3152 		}
3153 	}
3154 
3155 	return err;
3156 }
3157 
3158 /**
3159  * ufshcd_exec_dev_cmd - API for sending device management requests
3160  * @hba: UFS hba
3161  * @cmd_type: specifies the type (NOP, Query...)
3162  * @timeout: timeout in milliseconds
3163  *
3164  * NOTE: Since there is only one available tag for device management commands,
3165  * it is expected you hold the hba->dev_cmd.lock mutex.
3166  */
3167 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3168 		enum dev_cmd_type cmd_type, int timeout)
3169 {
3170 	DECLARE_COMPLETION_ONSTACK(wait);
3171 	const u32 tag = hba->reserved_slot;
3172 	struct ufshcd_lrb *lrbp;
3173 	int err;
3174 
3175 	/* Protects use of hba->reserved_slot. */
3176 	lockdep_assert_held(&hba->dev_cmd.lock);
3177 
3178 	down_read(&hba->clk_scaling_lock);
3179 
3180 	lrbp = &hba->lrb[tag];
3181 	WARN_ON(lrbp->cmd);
3182 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3183 	if (unlikely(err))
3184 		goto out;
3185 
3186 	hba->dev_cmd.complete = &wait;
3187 	hba->dev_cmd.cqe = NULL;
3188 
3189 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3190 
3191 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3192 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3193 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3194 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3195 
3196 out:
3197 	up_read(&hba->clk_scaling_lock);
3198 	return err;
3199 }
3200 
3201 /**
3202  * ufshcd_init_query() - init the query response and request parameters
3203  * @hba: per-adapter instance
3204  * @request: address of the request pointer to be initialized
3205  * @response: address of the response pointer to be initialized
3206  * @opcode: operation to perform
3207  * @idn: flag idn to access
3208  * @index: LU number to access
3209  * @selector: query/flag/descriptor further identification
3210  */
3211 static inline void ufshcd_init_query(struct ufs_hba *hba,
3212 		struct ufs_query_req **request, struct ufs_query_res **response,
3213 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3214 {
3215 	*request = &hba->dev_cmd.query.request;
3216 	*response = &hba->dev_cmd.query.response;
3217 	memset(*request, 0, sizeof(struct ufs_query_req));
3218 	memset(*response, 0, sizeof(struct ufs_query_res));
3219 	(*request)->upiu_req.opcode = opcode;
3220 	(*request)->upiu_req.idn = idn;
3221 	(*request)->upiu_req.index = index;
3222 	(*request)->upiu_req.selector = selector;
3223 }
3224 
3225 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3226 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3227 {
3228 	int ret;
3229 	int retries;
3230 
3231 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3232 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3233 		if (ret)
3234 			dev_dbg(hba->dev,
3235 				"%s: failed with error %d, retries %d\n",
3236 				__func__, ret, retries);
3237 		else
3238 			break;
3239 	}
3240 
3241 	if (ret)
3242 		dev_err(hba->dev,
3243 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3244 			__func__, opcode, idn, ret, retries);
3245 	return ret;
3246 }
3247 
3248 /**
3249  * ufshcd_query_flag() - API function for sending flag query requests
3250  * @hba: per-adapter instance
3251  * @opcode: flag query to perform
3252  * @idn: flag idn to access
3253  * @index: flag index to access
3254  * @flag_res: the flag value after the query request completes
3255  *
3256  * Returns 0 for success, non-zero in case of failure
3257  */
3258 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3259 			enum flag_idn idn, u8 index, bool *flag_res)
3260 {
3261 	struct ufs_query_req *request = NULL;
3262 	struct ufs_query_res *response = NULL;
3263 	int err, selector = 0;
3264 	int timeout = QUERY_REQ_TIMEOUT;
3265 
3266 	BUG_ON(!hba);
3267 
3268 	ufshcd_hold(hba);
3269 	mutex_lock(&hba->dev_cmd.lock);
3270 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3271 			selector);
3272 
3273 	switch (opcode) {
3274 	case UPIU_QUERY_OPCODE_SET_FLAG:
3275 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3276 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3277 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3278 		break;
3279 	case UPIU_QUERY_OPCODE_READ_FLAG:
3280 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3281 		if (!flag_res) {
3282 			/* No dummy reads */
3283 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3284 					__func__);
3285 			err = -EINVAL;
3286 			goto out_unlock;
3287 		}
3288 		break;
3289 	default:
3290 		dev_err(hba->dev,
3291 			"%s: Expected query flag opcode but got = %d\n",
3292 			__func__, opcode);
3293 		err = -EINVAL;
3294 		goto out_unlock;
3295 	}
3296 
3297 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3298 
3299 	if (err) {
3300 		dev_err(hba->dev,
3301 			"%s: Sending flag query for idn %d failed, err = %d\n",
3302 			__func__, idn, err);
3303 		goto out_unlock;
3304 	}
3305 
3306 	if (flag_res)
3307 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3308 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3309 
3310 out_unlock:
3311 	mutex_unlock(&hba->dev_cmd.lock);
3312 	ufshcd_release(hba);
3313 	return err;
3314 }
3315 
3316 /**
3317  * ufshcd_query_attr - API function for sending attribute requests
3318  * @hba: per-adapter instance
3319  * @opcode: attribute opcode
3320  * @idn: attribute idn to access
3321  * @index: index field
3322  * @selector: selector field
3323  * @attr_val: the attribute value after the query request completes
3324  *
3325  * Returns 0 for success, non-zero in case of failure
3326 */
3327 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3328 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3329 {
3330 	struct ufs_query_req *request = NULL;
3331 	struct ufs_query_res *response = NULL;
3332 	int err;
3333 
3334 	BUG_ON(!hba);
3335 
3336 	if (!attr_val) {
3337 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3338 				__func__, opcode);
3339 		return -EINVAL;
3340 	}
3341 
3342 	ufshcd_hold(hba);
3343 
3344 	mutex_lock(&hba->dev_cmd.lock);
3345 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3346 			selector);
3347 
3348 	switch (opcode) {
3349 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3350 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3351 		request->upiu_req.value = cpu_to_be32(*attr_val);
3352 		break;
3353 	case UPIU_QUERY_OPCODE_READ_ATTR:
3354 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3355 		break;
3356 	default:
3357 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3358 				__func__, opcode);
3359 		err = -EINVAL;
3360 		goto out_unlock;
3361 	}
3362 
3363 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3364 
3365 	if (err) {
3366 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3367 				__func__, opcode, idn, index, err);
3368 		goto out_unlock;
3369 	}
3370 
3371 	*attr_val = be32_to_cpu(response->upiu_res.value);
3372 
3373 out_unlock:
3374 	mutex_unlock(&hba->dev_cmd.lock);
3375 	ufshcd_release(hba);
3376 	return err;
3377 }
3378 
3379 /**
3380  * ufshcd_query_attr_retry() - API function for sending query
3381  * attribute with retries
3382  * @hba: per-adapter instance
3383  * @opcode: attribute opcode
3384  * @idn: attribute idn to access
3385  * @index: index field
3386  * @selector: selector field
3387  * @attr_val: the attribute value after the query request
3388  * completes
3389  *
3390  * Returns 0 for success, non-zero in case of failure
3391 */
3392 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3393 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3394 	u32 *attr_val)
3395 {
3396 	int ret = 0;
3397 	u32 retries;
3398 
3399 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3400 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3401 						selector, attr_val);
3402 		if (ret)
3403 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3404 				__func__, ret, retries);
3405 		else
3406 			break;
3407 	}
3408 
3409 	if (ret)
3410 		dev_err(hba->dev,
3411 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3412 			__func__, idn, ret, QUERY_REQ_RETRIES);
3413 	return ret;
3414 }
3415 
3416 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3417 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3418 			u8 selector, u8 *desc_buf, int *buf_len)
3419 {
3420 	struct ufs_query_req *request = NULL;
3421 	struct ufs_query_res *response = NULL;
3422 	int err;
3423 
3424 	BUG_ON(!hba);
3425 
3426 	if (!desc_buf) {
3427 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3428 				__func__, opcode);
3429 		return -EINVAL;
3430 	}
3431 
3432 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3433 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3434 				__func__, *buf_len);
3435 		return -EINVAL;
3436 	}
3437 
3438 	ufshcd_hold(hba);
3439 
3440 	mutex_lock(&hba->dev_cmd.lock);
3441 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3442 			selector);
3443 	hba->dev_cmd.query.descriptor = desc_buf;
3444 	request->upiu_req.length = cpu_to_be16(*buf_len);
3445 
3446 	switch (opcode) {
3447 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3448 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3449 		break;
3450 	case UPIU_QUERY_OPCODE_READ_DESC:
3451 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3452 		break;
3453 	default:
3454 		dev_err(hba->dev,
3455 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3456 				__func__, opcode);
3457 		err = -EINVAL;
3458 		goto out_unlock;
3459 	}
3460 
3461 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3462 
3463 	if (err) {
3464 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3465 				__func__, opcode, idn, index, err);
3466 		goto out_unlock;
3467 	}
3468 
3469 	*buf_len = be16_to_cpu(response->upiu_res.length);
3470 
3471 out_unlock:
3472 	hba->dev_cmd.query.descriptor = NULL;
3473 	mutex_unlock(&hba->dev_cmd.lock);
3474 	ufshcd_release(hba);
3475 	return err;
3476 }
3477 
3478 /**
3479  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3480  * @hba: per-adapter instance
3481  * @opcode: attribute opcode
3482  * @idn: attribute idn to access
3483  * @index: index field
3484  * @selector: selector field
3485  * @desc_buf: the buffer that contains the descriptor
3486  * @buf_len: length parameter passed to the device
3487  *
3488  * Returns 0 for success, non-zero in case of failure.
3489  * The buf_len parameter will contain, on return, the length parameter
3490  * received on the response.
3491  */
3492 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3493 				  enum query_opcode opcode,
3494 				  enum desc_idn idn, u8 index,
3495 				  u8 selector,
3496 				  u8 *desc_buf, int *buf_len)
3497 {
3498 	int err;
3499 	int retries;
3500 
3501 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3502 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3503 						selector, desc_buf, buf_len);
3504 		if (!err || err == -EINVAL)
3505 			break;
3506 	}
3507 
3508 	return err;
3509 }
3510 
3511 /**
3512  * ufshcd_read_desc_param - read the specified descriptor parameter
3513  * @hba: Pointer to adapter instance
3514  * @desc_id: descriptor idn value
3515  * @desc_index: descriptor index
3516  * @param_offset: offset of the parameter to read
3517  * @param_read_buf: pointer to buffer where parameter would be read
3518  * @param_size: sizeof(param_read_buf)
3519  *
3520  * Return 0 in case of success, non-zero otherwise
3521  */
3522 int ufshcd_read_desc_param(struct ufs_hba *hba,
3523 			   enum desc_idn desc_id,
3524 			   int desc_index,
3525 			   u8 param_offset,
3526 			   u8 *param_read_buf,
3527 			   u8 param_size)
3528 {
3529 	int ret;
3530 	u8 *desc_buf;
3531 	int buff_len = QUERY_DESC_MAX_SIZE;
3532 	bool is_kmalloc = true;
3533 
3534 	/* Safety check */
3535 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3536 		return -EINVAL;
3537 
3538 	/* Check whether we need temp memory */
3539 	if (param_offset != 0 || param_size < buff_len) {
3540 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3541 		if (!desc_buf)
3542 			return -ENOMEM;
3543 	} else {
3544 		desc_buf = param_read_buf;
3545 		is_kmalloc = false;
3546 	}
3547 
3548 	/* Request for full descriptor */
3549 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3550 					    desc_id, desc_index, 0,
3551 					    desc_buf, &buff_len);
3552 	if (ret) {
3553 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3554 			__func__, desc_id, desc_index, param_offset, ret);
3555 		goto out;
3556 	}
3557 
3558 	/* Update descriptor length */
3559 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3560 
3561 	if (param_offset >= buff_len) {
3562 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3563 			__func__, param_offset, desc_id, buff_len);
3564 		ret = -EINVAL;
3565 		goto out;
3566 	}
3567 
3568 	/* Sanity check */
3569 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3570 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3571 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3572 		ret = -EINVAL;
3573 		goto out;
3574 	}
3575 
3576 	if (is_kmalloc) {
3577 		/* Make sure we don't copy more data than available */
3578 		if (param_offset >= buff_len)
3579 			ret = -EINVAL;
3580 		else
3581 			memcpy(param_read_buf, &desc_buf[param_offset],
3582 			       min_t(u32, param_size, buff_len - param_offset));
3583 	}
3584 out:
3585 	if (is_kmalloc)
3586 		kfree(desc_buf);
3587 	return ret;
3588 }
3589 
3590 /**
3591  * struct uc_string_id - unicode string
3592  *
3593  * @len: size of this descriptor inclusive
3594  * @type: descriptor type
3595  * @uc: unicode string character
3596  */
3597 struct uc_string_id {
3598 	u8 len;
3599 	u8 type;
3600 	wchar_t uc[];
3601 } __packed;
3602 
3603 /* replace non-printable or non-ASCII characters with spaces */
3604 static inline char ufshcd_remove_non_printable(u8 ch)
3605 {
3606 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3607 }
3608 
3609 /**
3610  * ufshcd_read_string_desc - read string descriptor
3611  * @hba: pointer to adapter instance
3612  * @desc_index: descriptor index
3613  * @buf: pointer to buffer where descriptor would be read,
3614  *       the caller should free the memory.
3615  * @ascii: if true convert from unicode to ascii characters
3616  *         null terminated string.
3617  *
3618  * Return:
3619  * *      string size on success.
3620  * *      -ENOMEM: on allocation failure
3621  * *      -EINVAL: on a wrong parameter
3622  */
3623 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3624 			    u8 **buf, bool ascii)
3625 {
3626 	struct uc_string_id *uc_str;
3627 	u8 *str;
3628 	int ret;
3629 
3630 	if (!buf)
3631 		return -EINVAL;
3632 
3633 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3634 	if (!uc_str)
3635 		return -ENOMEM;
3636 
3637 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3638 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3639 	if (ret < 0) {
3640 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3641 			QUERY_REQ_RETRIES, ret);
3642 		str = NULL;
3643 		goto out;
3644 	}
3645 
3646 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3647 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3648 		str = NULL;
3649 		ret = 0;
3650 		goto out;
3651 	}
3652 
3653 	if (ascii) {
3654 		ssize_t ascii_len;
3655 		int i;
3656 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3657 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3658 		str = kzalloc(ascii_len, GFP_KERNEL);
3659 		if (!str) {
3660 			ret = -ENOMEM;
3661 			goto out;
3662 		}
3663 
3664 		/*
3665 		 * the descriptor contains string in UTF16 format
3666 		 * we need to convert to utf-8 so it can be displayed
3667 		 */
3668 		ret = utf16s_to_utf8s(uc_str->uc,
3669 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3670 				      UTF16_BIG_ENDIAN, str, ascii_len);
3671 
3672 		/* replace non-printable or non-ASCII characters with spaces */
3673 		for (i = 0; i < ret; i++)
3674 			str[i] = ufshcd_remove_non_printable(str[i]);
3675 
3676 		str[ret++] = '\0';
3677 
3678 	} else {
3679 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3680 		if (!str) {
3681 			ret = -ENOMEM;
3682 			goto out;
3683 		}
3684 		ret = uc_str->len;
3685 	}
3686 out:
3687 	*buf = str;
3688 	kfree(uc_str);
3689 	return ret;
3690 }
3691 
3692 /**
3693  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3694  * @hba: Pointer to adapter instance
3695  * @lun: lun id
3696  * @param_offset: offset of the parameter to read
3697  * @param_read_buf: pointer to buffer where parameter would be read
3698  * @param_size: sizeof(param_read_buf)
3699  *
3700  * Return 0 in case of success, non-zero otherwise
3701  */
3702 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3703 					      int lun,
3704 					      enum unit_desc_param param_offset,
3705 					      u8 *param_read_buf,
3706 					      u32 param_size)
3707 {
3708 	/*
3709 	 * Unit descriptors are only available for general purpose LUs (LUN id
3710 	 * from 0 to 7) and RPMB Well known LU.
3711 	 */
3712 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3713 		return -EOPNOTSUPP;
3714 
3715 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3716 				      param_offset, param_read_buf, param_size);
3717 }
3718 
3719 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3720 {
3721 	int err = 0;
3722 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3723 
3724 	if (hba->dev_info.wspecversion >= 0x300) {
3725 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3726 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3727 				&gating_wait);
3728 		if (err)
3729 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3730 					 err, gating_wait);
3731 
3732 		if (gating_wait == 0) {
3733 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3734 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3735 					 gating_wait);
3736 		}
3737 
3738 		hba->dev_info.clk_gating_wait_us = gating_wait;
3739 	}
3740 
3741 	return err;
3742 }
3743 
3744 /**
3745  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3746  * @hba: per adapter instance
3747  *
3748  * 1. Allocate DMA memory for Command Descriptor array
3749  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3750  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3751  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3752  *	(UTMRDL)
3753  * 4. Allocate memory for local reference block(lrb).
3754  *
3755  * Returns 0 for success, non-zero in case of failure
3756  */
3757 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3758 {
3759 	size_t utmrdl_size, utrdl_size, ucdl_size;
3760 
3761 	/* Allocate memory for UTP command descriptors */
3762 	ucdl_size = sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs;
3763 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3764 						  ucdl_size,
3765 						  &hba->ucdl_dma_addr,
3766 						  GFP_KERNEL);
3767 
3768 	/*
3769 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3770 	 */
3771 	if (!hba->ucdl_base_addr ||
3772 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3773 		dev_err(hba->dev,
3774 			"Command Descriptor Memory allocation failed\n");
3775 		goto out;
3776 	}
3777 
3778 	/*
3779 	 * Allocate memory for UTP Transfer descriptors
3780 	 * UFSHCI requires 1KB alignment of UTRD
3781 	 */
3782 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3783 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3784 						   utrdl_size,
3785 						   &hba->utrdl_dma_addr,
3786 						   GFP_KERNEL);
3787 	if (!hba->utrdl_base_addr ||
3788 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3789 		dev_err(hba->dev,
3790 			"Transfer Descriptor Memory allocation failed\n");
3791 		goto out;
3792 	}
3793 
3794 	/*
3795 	 * Skip utmrdl allocation; it may have been
3796 	 * allocated during first pass and not released during
3797 	 * MCQ memory allocation.
3798 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3799 	 */
3800 	if (hba->utmrdl_base_addr)
3801 		goto skip_utmrdl;
3802 	/*
3803 	 * Allocate memory for UTP Task Management descriptors
3804 	 * UFSHCI requires 1KB alignment of UTMRD
3805 	 */
3806 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3807 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3808 						    utmrdl_size,
3809 						    &hba->utmrdl_dma_addr,
3810 						    GFP_KERNEL);
3811 	if (!hba->utmrdl_base_addr ||
3812 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3813 		dev_err(hba->dev,
3814 		"Task Management Descriptor Memory allocation failed\n");
3815 		goto out;
3816 	}
3817 
3818 skip_utmrdl:
3819 	/* Allocate memory for local reference block */
3820 	hba->lrb = devm_kcalloc(hba->dev,
3821 				hba->nutrs, sizeof(struct ufshcd_lrb),
3822 				GFP_KERNEL);
3823 	if (!hba->lrb) {
3824 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3825 		goto out;
3826 	}
3827 	return 0;
3828 out:
3829 	return -ENOMEM;
3830 }
3831 
3832 /**
3833  * ufshcd_host_memory_configure - configure local reference block with
3834  *				memory offsets
3835  * @hba: per adapter instance
3836  *
3837  * Configure Host memory space
3838  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3839  * address.
3840  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3841  * and PRDT offset.
3842  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3843  * into local reference block.
3844  */
3845 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3846 {
3847 	struct utp_transfer_req_desc *utrdlp;
3848 	dma_addr_t cmd_desc_dma_addr;
3849 	dma_addr_t cmd_desc_element_addr;
3850 	u16 response_offset;
3851 	u16 prdt_offset;
3852 	int cmd_desc_size;
3853 	int i;
3854 
3855 	utrdlp = hba->utrdl_base_addr;
3856 
3857 	response_offset =
3858 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3859 	prdt_offset =
3860 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3861 
3862 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3863 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3864 
3865 	for (i = 0; i < hba->nutrs; i++) {
3866 		/* Configure UTRD with command descriptor base address */
3867 		cmd_desc_element_addr =
3868 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3869 		utrdlp[i].command_desc_base_addr =
3870 				cpu_to_le64(cmd_desc_element_addr);
3871 
3872 		/* Response upiu and prdt offset should be in double words */
3873 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3874 			utrdlp[i].response_upiu_offset =
3875 				cpu_to_le16(response_offset);
3876 			utrdlp[i].prd_table_offset =
3877 				cpu_to_le16(prdt_offset);
3878 			utrdlp[i].response_upiu_length =
3879 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3880 		} else {
3881 			utrdlp[i].response_upiu_offset =
3882 				cpu_to_le16(response_offset >> 2);
3883 			utrdlp[i].prd_table_offset =
3884 				cpu_to_le16(prdt_offset >> 2);
3885 			utrdlp[i].response_upiu_length =
3886 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3887 		}
3888 
3889 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3890 	}
3891 }
3892 
3893 /**
3894  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3895  * @hba: per adapter instance
3896  *
3897  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3898  * in order to initialize the Unipro link startup procedure.
3899  * Once the Unipro links are up, the device connected to the controller
3900  * is detected.
3901  *
3902  * Returns 0 on success, non-zero value on failure
3903  */
3904 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3905 {
3906 	struct uic_command uic_cmd = {0};
3907 	int ret;
3908 
3909 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3910 
3911 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3912 	if (ret)
3913 		dev_dbg(hba->dev,
3914 			"dme-link-startup: error code %d\n", ret);
3915 	return ret;
3916 }
3917 /**
3918  * ufshcd_dme_reset - UIC command for DME_RESET
3919  * @hba: per adapter instance
3920  *
3921  * DME_RESET command is issued in order to reset UniPro stack.
3922  * This function now deals with cold reset.
3923  *
3924  * Returns 0 on success, non-zero value on failure
3925  */
3926 static int ufshcd_dme_reset(struct ufs_hba *hba)
3927 {
3928 	struct uic_command uic_cmd = {0};
3929 	int ret;
3930 
3931 	uic_cmd.command = UIC_CMD_DME_RESET;
3932 
3933 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3934 	if (ret)
3935 		dev_err(hba->dev,
3936 			"dme-reset: error code %d\n", ret);
3937 
3938 	return ret;
3939 }
3940 
3941 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3942 			       int agreed_gear,
3943 			       int adapt_val)
3944 {
3945 	int ret;
3946 
3947 	if (agreed_gear < UFS_HS_G4)
3948 		adapt_val = PA_NO_ADAPT;
3949 
3950 	ret = ufshcd_dme_set(hba,
3951 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3952 			     adapt_val);
3953 	return ret;
3954 }
3955 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3956 
3957 /**
3958  * ufshcd_dme_enable - UIC command for DME_ENABLE
3959  * @hba: per adapter instance
3960  *
3961  * DME_ENABLE command is issued in order to enable UniPro stack.
3962  *
3963  * Returns 0 on success, non-zero value on failure
3964  */
3965 static int ufshcd_dme_enable(struct ufs_hba *hba)
3966 {
3967 	struct uic_command uic_cmd = {0};
3968 	int ret;
3969 
3970 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3971 
3972 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3973 	if (ret)
3974 		dev_err(hba->dev,
3975 			"dme-enable: error code %d\n", ret);
3976 
3977 	return ret;
3978 }
3979 
3980 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3981 {
3982 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3983 	unsigned long min_sleep_time_us;
3984 
3985 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3986 		return;
3987 
3988 	/*
3989 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3990 	 * this function
3991 	 */
3992 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3993 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3994 	} else {
3995 		unsigned long delta =
3996 			(unsigned long) ktime_to_us(
3997 				ktime_sub(ktime_get(),
3998 				hba->last_dme_cmd_tstamp));
3999 
4000 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4001 			min_sleep_time_us =
4002 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4003 		else
4004 			return; /* no more delay required */
4005 	}
4006 
4007 	/* allow sleep for extra 50us if needed */
4008 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4009 }
4010 
4011 /**
4012  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4013  * @hba: per adapter instance
4014  * @attr_sel: uic command argument1
4015  * @attr_set: attribute set type as uic command argument2
4016  * @mib_val: setting value as uic command argument3
4017  * @peer: indicate whether peer or local
4018  *
4019  * Returns 0 on success, non-zero value on failure
4020  */
4021 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4022 			u8 attr_set, u32 mib_val, u8 peer)
4023 {
4024 	struct uic_command uic_cmd = {0};
4025 	static const char *const action[] = {
4026 		"dme-set",
4027 		"dme-peer-set"
4028 	};
4029 	const char *set = action[!!peer];
4030 	int ret;
4031 	int retries = UFS_UIC_COMMAND_RETRIES;
4032 
4033 	uic_cmd.command = peer ?
4034 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4035 	uic_cmd.argument1 = attr_sel;
4036 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4037 	uic_cmd.argument3 = mib_val;
4038 
4039 	do {
4040 		/* for peer attributes we retry upon failure */
4041 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4042 		if (ret)
4043 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4044 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4045 	} while (ret && peer && --retries);
4046 
4047 	if (ret)
4048 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4049 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4050 			UFS_UIC_COMMAND_RETRIES - retries);
4051 
4052 	return ret;
4053 }
4054 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4055 
4056 /**
4057  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4058  * @hba: per adapter instance
4059  * @attr_sel: uic command argument1
4060  * @mib_val: the value of the attribute as returned by the UIC command
4061  * @peer: indicate whether peer or local
4062  *
4063  * Returns 0 on success, non-zero value on failure
4064  */
4065 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4066 			u32 *mib_val, u8 peer)
4067 {
4068 	struct uic_command uic_cmd = {0};
4069 	static const char *const action[] = {
4070 		"dme-get",
4071 		"dme-peer-get"
4072 	};
4073 	const char *get = action[!!peer];
4074 	int ret;
4075 	int retries = UFS_UIC_COMMAND_RETRIES;
4076 	struct ufs_pa_layer_attr orig_pwr_info;
4077 	struct ufs_pa_layer_attr temp_pwr_info;
4078 	bool pwr_mode_change = false;
4079 
4080 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4081 		orig_pwr_info = hba->pwr_info;
4082 		temp_pwr_info = orig_pwr_info;
4083 
4084 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4085 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4086 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4087 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4088 			pwr_mode_change = true;
4089 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4090 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4091 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4092 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4093 			pwr_mode_change = true;
4094 		}
4095 		if (pwr_mode_change) {
4096 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4097 			if (ret)
4098 				goto out;
4099 		}
4100 	}
4101 
4102 	uic_cmd.command = peer ?
4103 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4104 	uic_cmd.argument1 = attr_sel;
4105 
4106 	do {
4107 		/* for peer attributes we retry upon failure */
4108 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4109 		if (ret)
4110 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4111 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4112 	} while (ret && peer && --retries);
4113 
4114 	if (ret)
4115 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4116 			get, UIC_GET_ATTR_ID(attr_sel),
4117 			UFS_UIC_COMMAND_RETRIES - retries);
4118 
4119 	if (mib_val && !ret)
4120 		*mib_val = uic_cmd.argument3;
4121 
4122 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4123 	    && pwr_mode_change)
4124 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4125 out:
4126 	return ret;
4127 }
4128 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4129 
4130 /**
4131  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4132  * state) and waits for it to take effect.
4133  *
4134  * @hba: per adapter instance
4135  * @cmd: UIC command to execute
4136  *
4137  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4138  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4139  * and device UniPro link and hence it's final completion would be indicated by
4140  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4141  * addition to normal UIC command completion Status (UCCS). This function only
4142  * returns after the relevant status bits indicate the completion.
4143  *
4144  * Returns 0 on success, non-zero value on failure
4145  */
4146 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4147 {
4148 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4149 	unsigned long flags;
4150 	u8 status;
4151 	int ret;
4152 	bool reenable_intr = false;
4153 
4154 	mutex_lock(&hba->uic_cmd_mutex);
4155 	ufshcd_add_delay_before_dme_cmd(hba);
4156 
4157 	spin_lock_irqsave(hba->host->host_lock, flags);
4158 	if (ufshcd_is_link_broken(hba)) {
4159 		ret = -ENOLINK;
4160 		goto out_unlock;
4161 	}
4162 	hba->uic_async_done = &uic_async_done;
4163 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4164 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4165 		/*
4166 		 * Make sure UIC command completion interrupt is disabled before
4167 		 * issuing UIC command.
4168 		 */
4169 		wmb();
4170 		reenable_intr = true;
4171 	}
4172 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4173 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4174 	if (ret) {
4175 		dev_err(hba->dev,
4176 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4177 			cmd->command, cmd->argument3, ret);
4178 		goto out;
4179 	}
4180 
4181 	if (!wait_for_completion_timeout(hba->uic_async_done,
4182 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4183 		dev_err(hba->dev,
4184 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4185 			cmd->command, cmd->argument3);
4186 
4187 		if (!cmd->cmd_active) {
4188 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4189 				__func__);
4190 			goto check_upmcrs;
4191 		}
4192 
4193 		ret = -ETIMEDOUT;
4194 		goto out;
4195 	}
4196 
4197 check_upmcrs:
4198 	status = ufshcd_get_upmcrs(hba);
4199 	if (status != PWR_LOCAL) {
4200 		dev_err(hba->dev,
4201 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4202 			cmd->command, status);
4203 		ret = (status != PWR_OK) ? status : -1;
4204 	}
4205 out:
4206 	if (ret) {
4207 		ufshcd_print_host_state(hba);
4208 		ufshcd_print_pwr_info(hba);
4209 		ufshcd_print_evt_hist(hba);
4210 	}
4211 
4212 	spin_lock_irqsave(hba->host->host_lock, flags);
4213 	hba->active_uic_cmd = NULL;
4214 	hba->uic_async_done = NULL;
4215 	if (reenable_intr)
4216 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4217 	if (ret) {
4218 		ufshcd_set_link_broken(hba);
4219 		ufshcd_schedule_eh_work(hba);
4220 	}
4221 out_unlock:
4222 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4223 	mutex_unlock(&hba->uic_cmd_mutex);
4224 
4225 	return ret;
4226 }
4227 
4228 /**
4229  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4230  *				using DME_SET primitives.
4231  * @hba: per adapter instance
4232  * @mode: powr mode value
4233  *
4234  * Returns 0 on success, non-zero value on failure
4235  */
4236 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4237 {
4238 	struct uic_command uic_cmd = {0};
4239 	int ret;
4240 
4241 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4242 		ret = ufshcd_dme_set(hba,
4243 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4244 		if (ret) {
4245 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4246 						__func__, ret);
4247 			goto out;
4248 		}
4249 	}
4250 
4251 	uic_cmd.command = UIC_CMD_DME_SET;
4252 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4253 	uic_cmd.argument3 = mode;
4254 	ufshcd_hold(hba);
4255 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4256 	ufshcd_release(hba);
4257 
4258 out:
4259 	return ret;
4260 }
4261 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4262 
4263 int ufshcd_link_recovery(struct ufs_hba *hba)
4264 {
4265 	int ret;
4266 	unsigned long flags;
4267 
4268 	spin_lock_irqsave(hba->host->host_lock, flags);
4269 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4270 	ufshcd_set_eh_in_progress(hba);
4271 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4272 
4273 	/* Reset the attached device */
4274 	ufshcd_device_reset(hba);
4275 
4276 	ret = ufshcd_host_reset_and_restore(hba);
4277 
4278 	spin_lock_irqsave(hba->host->host_lock, flags);
4279 	if (ret)
4280 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4281 	ufshcd_clear_eh_in_progress(hba);
4282 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4283 
4284 	if (ret)
4285 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4286 			__func__, ret);
4287 
4288 	return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4291 
4292 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4293 {
4294 	int ret;
4295 	struct uic_command uic_cmd = {0};
4296 	ktime_t start = ktime_get();
4297 
4298 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4299 
4300 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4301 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4302 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4303 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4304 
4305 	if (ret)
4306 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4307 			__func__, ret);
4308 	else
4309 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4310 								POST_CHANGE);
4311 
4312 	return ret;
4313 }
4314 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4315 
4316 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4317 {
4318 	struct uic_command uic_cmd = {0};
4319 	int ret;
4320 	ktime_t start = ktime_get();
4321 
4322 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4323 
4324 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4325 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4326 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4327 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4328 
4329 	if (ret) {
4330 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4331 			__func__, ret);
4332 	} else {
4333 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4334 								POST_CHANGE);
4335 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4336 		hba->ufs_stats.hibern8_exit_cnt++;
4337 	}
4338 
4339 	return ret;
4340 }
4341 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4342 
4343 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4344 {
4345 	unsigned long flags;
4346 	bool update = false;
4347 
4348 	if (!ufshcd_is_auto_hibern8_supported(hba))
4349 		return;
4350 
4351 	spin_lock_irqsave(hba->host->host_lock, flags);
4352 	if (hba->ahit != ahit) {
4353 		hba->ahit = ahit;
4354 		update = true;
4355 	}
4356 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4357 
4358 	if (update &&
4359 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4360 		ufshcd_rpm_get_sync(hba);
4361 		ufshcd_hold(hba);
4362 		ufshcd_auto_hibern8_enable(hba);
4363 		ufshcd_release(hba);
4364 		ufshcd_rpm_put_sync(hba);
4365 	}
4366 }
4367 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4368 
4369 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4370 {
4371 	if (!ufshcd_is_auto_hibern8_supported(hba))
4372 		return;
4373 
4374 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4375 }
4376 
4377  /**
4378  * ufshcd_init_pwr_info - setting the POR (power on reset)
4379  * values in hba power info
4380  * @hba: per-adapter instance
4381  */
4382 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4383 {
4384 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4385 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4386 	hba->pwr_info.lane_rx = 1;
4387 	hba->pwr_info.lane_tx = 1;
4388 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4389 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4390 	hba->pwr_info.hs_rate = 0;
4391 }
4392 
4393 /**
4394  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4395  * @hba: per-adapter instance
4396  */
4397 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4398 {
4399 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4400 
4401 	if (hba->max_pwr_info.is_valid)
4402 		return 0;
4403 
4404 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4405 		pwr_info->pwr_tx = FASTAUTO_MODE;
4406 		pwr_info->pwr_rx = FASTAUTO_MODE;
4407 	} else {
4408 		pwr_info->pwr_tx = FAST_MODE;
4409 		pwr_info->pwr_rx = FAST_MODE;
4410 	}
4411 	pwr_info->hs_rate = PA_HS_MODE_B;
4412 
4413 	/* Get the connected lane count */
4414 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4415 			&pwr_info->lane_rx);
4416 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4417 			&pwr_info->lane_tx);
4418 
4419 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4420 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4421 				__func__,
4422 				pwr_info->lane_rx,
4423 				pwr_info->lane_tx);
4424 		return -EINVAL;
4425 	}
4426 
4427 	/*
4428 	 * First, get the maximum gears of HS speed.
4429 	 * If a zero value, it means there is no HSGEAR capability.
4430 	 * Then, get the maximum gears of PWM speed.
4431 	 */
4432 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4433 	if (!pwr_info->gear_rx) {
4434 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4435 				&pwr_info->gear_rx);
4436 		if (!pwr_info->gear_rx) {
4437 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4438 				__func__, pwr_info->gear_rx);
4439 			return -EINVAL;
4440 		}
4441 		pwr_info->pwr_rx = SLOW_MODE;
4442 	}
4443 
4444 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4445 			&pwr_info->gear_tx);
4446 	if (!pwr_info->gear_tx) {
4447 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4448 				&pwr_info->gear_tx);
4449 		if (!pwr_info->gear_tx) {
4450 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4451 				__func__, pwr_info->gear_tx);
4452 			return -EINVAL;
4453 		}
4454 		pwr_info->pwr_tx = SLOW_MODE;
4455 	}
4456 
4457 	hba->max_pwr_info.is_valid = true;
4458 	return 0;
4459 }
4460 
4461 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4462 			     struct ufs_pa_layer_attr *pwr_mode)
4463 {
4464 	int ret;
4465 
4466 	/* if already configured to the requested pwr_mode */
4467 	if (!hba->force_pmc &&
4468 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4469 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4470 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4471 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4472 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4473 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4474 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4475 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4476 		return 0;
4477 	}
4478 
4479 	/*
4480 	 * Configure attributes for power mode change with below.
4481 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4482 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4483 	 * - PA_HSSERIES
4484 	 */
4485 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4486 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4487 			pwr_mode->lane_rx);
4488 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4489 			pwr_mode->pwr_rx == FAST_MODE)
4490 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4491 	else
4492 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4493 
4494 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4495 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4496 			pwr_mode->lane_tx);
4497 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4498 			pwr_mode->pwr_tx == FAST_MODE)
4499 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4500 	else
4501 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4502 
4503 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4504 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4505 	    pwr_mode->pwr_rx == FAST_MODE ||
4506 	    pwr_mode->pwr_tx == FAST_MODE)
4507 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4508 						pwr_mode->hs_rate);
4509 
4510 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4511 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4512 				DL_FC0ProtectionTimeOutVal_Default);
4513 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4514 				DL_TC0ReplayTimeOutVal_Default);
4515 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4516 				DL_AFC0ReqTimeOutVal_Default);
4517 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4518 				DL_FC1ProtectionTimeOutVal_Default);
4519 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4520 				DL_TC1ReplayTimeOutVal_Default);
4521 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4522 				DL_AFC1ReqTimeOutVal_Default);
4523 
4524 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4525 				DL_FC0ProtectionTimeOutVal_Default);
4526 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4527 				DL_TC0ReplayTimeOutVal_Default);
4528 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4529 				DL_AFC0ReqTimeOutVal_Default);
4530 	}
4531 
4532 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4533 			| pwr_mode->pwr_tx);
4534 
4535 	if (ret) {
4536 		dev_err(hba->dev,
4537 			"%s: power mode change failed %d\n", __func__, ret);
4538 	} else {
4539 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4540 								pwr_mode);
4541 
4542 		memcpy(&hba->pwr_info, pwr_mode,
4543 			sizeof(struct ufs_pa_layer_attr));
4544 	}
4545 
4546 	return ret;
4547 }
4548 
4549 /**
4550  * ufshcd_config_pwr_mode - configure a new power mode
4551  * @hba: per-adapter instance
4552  * @desired_pwr_mode: desired power configuration
4553  */
4554 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4555 		struct ufs_pa_layer_attr *desired_pwr_mode)
4556 {
4557 	struct ufs_pa_layer_attr final_params = { 0 };
4558 	int ret;
4559 
4560 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4561 					desired_pwr_mode, &final_params);
4562 
4563 	if (ret)
4564 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4565 
4566 	ret = ufshcd_change_power_mode(hba, &final_params);
4567 
4568 	return ret;
4569 }
4570 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4571 
4572 /**
4573  * ufshcd_complete_dev_init() - checks device readiness
4574  * @hba: per-adapter instance
4575  *
4576  * Set fDeviceInit flag and poll until device toggles it.
4577  */
4578 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4579 {
4580 	int err;
4581 	bool flag_res = true;
4582 	ktime_t timeout;
4583 
4584 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4585 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4586 	if (err) {
4587 		dev_err(hba->dev,
4588 			"%s: setting fDeviceInit flag failed with error %d\n",
4589 			__func__, err);
4590 		goto out;
4591 	}
4592 
4593 	/* Poll fDeviceInit flag to be cleared */
4594 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4595 	do {
4596 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4597 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4598 		if (!flag_res)
4599 			break;
4600 		usleep_range(500, 1000);
4601 	} while (ktime_before(ktime_get(), timeout));
4602 
4603 	if (err) {
4604 		dev_err(hba->dev,
4605 				"%s: reading fDeviceInit flag failed with error %d\n",
4606 				__func__, err);
4607 	} else if (flag_res) {
4608 		dev_err(hba->dev,
4609 				"%s: fDeviceInit was not cleared by the device\n",
4610 				__func__);
4611 		err = -EBUSY;
4612 	}
4613 out:
4614 	return err;
4615 }
4616 
4617 /**
4618  * ufshcd_make_hba_operational - Make UFS controller operational
4619  * @hba: per adapter instance
4620  *
4621  * To bring UFS host controller to operational state,
4622  * 1. Enable required interrupts
4623  * 2. Configure interrupt aggregation
4624  * 3. Program UTRL and UTMRL base address
4625  * 4. Configure run-stop-registers
4626  *
4627  * Returns 0 on success, non-zero value on failure
4628  */
4629 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4630 {
4631 	int err = 0;
4632 	u32 reg;
4633 
4634 	/* Enable required interrupts */
4635 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4636 
4637 	/* Configure interrupt aggregation */
4638 	if (ufshcd_is_intr_aggr_allowed(hba))
4639 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4640 	else
4641 		ufshcd_disable_intr_aggr(hba);
4642 
4643 	/* Configure UTRL and UTMRL base address registers */
4644 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4645 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4646 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4647 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4648 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4649 			REG_UTP_TASK_REQ_LIST_BASE_L);
4650 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4651 			REG_UTP_TASK_REQ_LIST_BASE_H);
4652 
4653 	/*
4654 	 * Make sure base address and interrupt setup are updated before
4655 	 * enabling the run/stop registers below.
4656 	 */
4657 	wmb();
4658 
4659 	/*
4660 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4661 	 */
4662 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4663 	if (!(ufshcd_get_lists_status(reg))) {
4664 		ufshcd_enable_run_stop_reg(hba);
4665 	} else {
4666 		dev_err(hba->dev,
4667 			"Host controller not ready to process requests");
4668 		err = -EIO;
4669 	}
4670 
4671 	return err;
4672 }
4673 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4674 
4675 /**
4676  * ufshcd_hba_stop - Send controller to reset state
4677  * @hba: per adapter instance
4678  */
4679 void ufshcd_hba_stop(struct ufs_hba *hba)
4680 {
4681 	unsigned long flags;
4682 	int err;
4683 
4684 	/*
4685 	 * Obtain the host lock to prevent that the controller is disabled
4686 	 * while the UFS interrupt handler is active on another CPU.
4687 	 */
4688 	spin_lock_irqsave(hba->host->host_lock, flags);
4689 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4690 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4691 
4692 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4693 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4694 					10, 1);
4695 	if (err)
4696 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4697 }
4698 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4699 
4700 /**
4701  * ufshcd_hba_execute_hce - initialize the controller
4702  * @hba: per adapter instance
4703  *
4704  * The controller resets itself and controller firmware initialization
4705  * sequence kicks off. When controller is ready it will set
4706  * the Host Controller Enable bit to 1.
4707  *
4708  * Returns 0 on success, non-zero value on failure
4709  */
4710 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4711 {
4712 	int retry_outer = 3;
4713 	int retry_inner;
4714 
4715 start:
4716 	if (ufshcd_is_hba_active(hba))
4717 		/* change controller state to "reset state" */
4718 		ufshcd_hba_stop(hba);
4719 
4720 	/* UniPro link is disabled at this point */
4721 	ufshcd_set_link_off(hba);
4722 
4723 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4724 
4725 	/* start controller initialization sequence */
4726 	ufshcd_hba_start(hba);
4727 
4728 	/*
4729 	 * To initialize a UFS host controller HCE bit must be set to 1.
4730 	 * During initialization the HCE bit value changes from 1->0->1.
4731 	 * When the host controller completes initialization sequence
4732 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4733 	 * to check if the controller has completed initialization sequence.
4734 	 * So without this delay the value HCE = 1, set in the previous
4735 	 * instruction might be read back.
4736 	 * This delay can be changed based on the controller.
4737 	 */
4738 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4739 
4740 	/* wait for the host controller to complete initialization */
4741 	retry_inner = 50;
4742 	while (!ufshcd_is_hba_active(hba)) {
4743 		if (retry_inner) {
4744 			retry_inner--;
4745 		} else {
4746 			dev_err(hba->dev,
4747 				"Controller enable failed\n");
4748 			if (retry_outer) {
4749 				retry_outer--;
4750 				goto start;
4751 			}
4752 			return -EIO;
4753 		}
4754 		usleep_range(1000, 1100);
4755 	}
4756 
4757 	/* enable UIC related interrupts */
4758 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4759 
4760 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4761 
4762 	return 0;
4763 }
4764 
4765 int ufshcd_hba_enable(struct ufs_hba *hba)
4766 {
4767 	int ret;
4768 
4769 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4770 		ufshcd_set_link_off(hba);
4771 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4772 
4773 		/* enable UIC related interrupts */
4774 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4775 		ret = ufshcd_dme_reset(hba);
4776 		if (ret) {
4777 			dev_err(hba->dev, "DME_RESET failed\n");
4778 			return ret;
4779 		}
4780 
4781 		ret = ufshcd_dme_enable(hba);
4782 		if (ret) {
4783 			dev_err(hba->dev, "Enabling DME failed\n");
4784 			return ret;
4785 		}
4786 
4787 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4788 	} else {
4789 		ret = ufshcd_hba_execute_hce(hba);
4790 	}
4791 
4792 	return ret;
4793 }
4794 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4795 
4796 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4797 {
4798 	int tx_lanes = 0, i, err = 0;
4799 
4800 	if (!peer)
4801 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4802 			       &tx_lanes);
4803 	else
4804 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4805 				    &tx_lanes);
4806 	for (i = 0; i < tx_lanes; i++) {
4807 		if (!peer)
4808 			err = ufshcd_dme_set(hba,
4809 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4810 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4811 					0);
4812 		else
4813 			err = ufshcd_dme_peer_set(hba,
4814 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4815 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4816 					0);
4817 		if (err) {
4818 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4819 				__func__, peer, i, err);
4820 			break;
4821 		}
4822 	}
4823 
4824 	return err;
4825 }
4826 
4827 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4828 {
4829 	return ufshcd_disable_tx_lcc(hba, true);
4830 }
4831 
4832 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4833 {
4834 	struct ufs_event_hist *e;
4835 
4836 	if (id >= UFS_EVT_CNT)
4837 		return;
4838 
4839 	e = &hba->ufs_stats.event[id];
4840 	e->val[e->pos] = val;
4841 	e->tstamp[e->pos] = local_clock();
4842 	e->cnt += 1;
4843 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4844 
4845 	ufshcd_vops_event_notify(hba, id, &val);
4846 }
4847 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4848 
4849 /**
4850  * ufshcd_link_startup - Initialize unipro link startup
4851  * @hba: per adapter instance
4852  *
4853  * Returns 0 for success, non-zero in case of failure
4854  */
4855 static int ufshcd_link_startup(struct ufs_hba *hba)
4856 {
4857 	int ret;
4858 	int retries = DME_LINKSTARTUP_RETRIES;
4859 	bool link_startup_again = false;
4860 
4861 	/*
4862 	 * If UFS device isn't active then we will have to issue link startup
4863 	 * 2 times to make sure the device state move to active.
4864 	 */
4865 	if (!ufshcd_is_ufs_dev_active(hba))
4866 		link_startup_again = true;
4867 
4868 link_startup:
4869 	do {
4870 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4871 
4872 		ret = ufshcd_dme_link_startup(hba);
4873 
4874 		/* check if device is detected by inter-connect layer */
4875 		if (!ret && !ufshcd_is_device_present(hba)) {
4876 			ufshcd_update_evt_hist(hba,
4877 					       UFS_EVT_LINK_STARTUP_FAIL,
4878 					       0);
4879 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4880 			ret = -ENXIO;
4881 			goto out;
4882 		}
4883 
4884 		/*
4885 		 * DME link lost indication is only received when link is up,
4886 		 * but we can't be sure if the link is up until link startup
4887 		 * succeeds. So reset the local Uni-Pro and try again.
4888 		 */
4889 		if (ret && retries && ufshcd_hba_enable(hba)) {
4890 			ufshcd_update_evt_hist(hba,
4891 					       UFS_EVT_LINK_STARTUP_FAIL,
4892 					       (u32)ret);
4893 			goto out;
4894 		}
4895 	} while (ret && retries--);
4896 
4897 	if (ret) {
4898 		/* failed to get the link up... retire */
4899 		ufshcd_update_evt_hist(hba,
4900 				       UFS_EVT_LINK_STARTUP_FAIL,
4901 				       (u32)ret);
4902 		goto out;
4903 	}
4904 
4905 	if (link_startup_again) {
4906 		link_startup_again = false;
4907 		retries = DME_LINKSTARTUP_RETRIES;
4908 		goto link_startup;
4909 	}
4910 
4911 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4912 	ufshcd_init_pwr_info(hba);
4913 	ufshcd_print_pwr_info(hba);
4914 
4915 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4916 		ret = ufshcd_disable_device_tx_lcc(hba);
4917 		if (ret)
4918 			goto out;
4919 	}
4920 
4921 	/* Include any host controller configuration via UIC commands */
4922 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4923 	if (ret)
4924 		goto out;
4925 
4926 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4927 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4928 	ret = ufshcd_make_hba_operational(hba);
4929 out:
4930 	if (ret) {
4931 		dev_err(hba->dev, "link startup failed %d\n", ret);
4932 		ufshcd_print_host_state(hba);
4933 		ufshcd_print_pwr_info(hba);
4934 		ufshcd_print_evt_hist(hba);
4935 	}
4936 	return ret;
4937 }
4938 
4939 /**
4940  * ufshcd_verify_dev_init() - Verify device initialization
4941  * @hba: per-adapter instance
4942  *
4943  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4944  * device Transport Protocol (UTP) layer is ready after a reset.
4945  * If the UTP layer at the device side is not initialized, it may
4946  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4947  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4948  */
4949 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4950 {
4951 	int err = 0;
4952 	int retries;
4953 
4954 	ufshcd_hold(hba);
4955 	mutex_lock(&hba->dev_cmd.lock);
4956 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4957 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4958 					  hba->nop_out_timeout);
4959 
4960 		if (!err || err == -ETIMEDOUT)
4961 			break;
4962 
4963 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4964 	}
4965 	mutex_unlock(&hba->dev_cmd.lock);
4966 	ufshcd_release(hba);
4967 
4968 	if (err)
4969 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4970 	return err;
4971 }
4972 
4973 /**
4974  * ufshcd_setup_links - associate link b/w device wlun and other luns
4975  * @sdev: pointer to SCSI device
4976  * @hba: pointer to ufs hba
4977  */
4978 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4979 {
4980 	struct device_link *link;
4981 
4982 	/*
4983 	 * Device wlun is the supplier & rest of the luns are consumers.
4984 	 * This ensures that device wlun suspends after all other luns.
4985 	 */
4986 	if (hba->ufs_device_wlun) {
4987 		link = device_link_add(&sdev->sdev_gendev,
4988 				       &hba->ufs_device_wlun->sdev_gendev,
4989 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4990 		if (!link) {
4991 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4992 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4993 			return;
4994 		}
4995 		hba->luns_avail--;
4996 		/* Ignore REPORT_LUN wlun probing */
4997 		if (hba->luns_avail == 1) {
4998 			ufshcd_rpm_put(hba);
4999 			return;
5000 		}
5001 	} else {
5002 		/*
5003 		 * Device wlun is probed. The assumption is that WLUNs are
5004 		 * scanned before other LUNs.
5005 		 */
5006 		hba->luns_avail--;
5007 	}
5008 }
5009 
5010 /**
5011  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5012  * @hba: per-adapter instance
5013  * @sdev: pointer to SCSI device
5014  */
5015 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5016 {
5017 	int len = QUERY_DESC_MAX_SIZE;
5018 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5019 	u8 lun_qdepth = hba->nutrs;
5020 	u8 *desc_buf;
5021 	int ret;
5022 
5023 	desc_buf = kzalloc(len, GFP_KERNEL);
5024 	if (!desc_buf)
5025 		goto set_qdepth;
5026 
5027 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5028 	if (ret < 0) {
5029 		if (ret == -EOPNOTSUPP)
5030 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5031 			lun_qdepth = 1;
5032 		kfree(desc_buf);
5033 		goto set_qdepth;
5034 	}
5035 
5036 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5037 		/*
5038 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5039 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5040 		 */
5041 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5042 	}
5043 	/*
5044 	 * According to UFS device specification, the write protection mode is only supported by
5045 	 * normal LU, not supported by WLUN.
5046 	 */
5047 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5048 	    !hba->dev_info.is_lu_power_on_wp &&
5049 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5050 		hba->dev_info.is_lu_power_on_wp = true;
5051 
5052 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5053 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5054 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5055 		hba->dev_info.b_advanced_rpmb_en = true;
5056 
5057 
5058 	kfree(desc_buf);
5059 set_qdepth:
5060 	/*
5061 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5062 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5063 	 */
5064 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5065 	scsi_change_queue_depth(sdev, lun_qdepth);
5066 }
5067 
5068 /**
5069  * ufshcd_slave_alloc - handle initial SCSI device configurations
5070  * @sdev: pointer to SCSI device
5071  *
5072  * Returns success
5073  */
5074 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5075 {
5076 	struct ufs_hba *hba;
5077 
5078 	hba = shost_priv(sdev->host);
5079 
5080 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5081 	sdev->use_10_for_ms = 1;
5082 
5083 	/* DBD field should be set to 1 in mode sense(10) */
5084 	sdev->set_dbd_for_ms = 1;
5085 
5086 	/* allow SCSI layer to restart the device in case of errors */
5087 	sdev->allow_restart = 1;
5088 
5089 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5090 	sdev->no_report_opcodes = 1;
5091 
5092 	/* WRITE_SAME command is not supported */
5093 	sdev->no_write_same = 1;
5094 
5095 	ufshcd_lu_init(hba, sdev);
5096 
5097 	ufshcd_setup_links(hba, sdev);
5098 
5099 	return 0;
5100 }
5101 
5102 /**
5103  * ufshcd_change_queue_depth - change queue depth
5104  * @sdev: pointer to SCSI device
5105  * @depth: required depth to set
5106  *
5107  * Change queue depth and make sure the max. limits are not crossed.
5108  */
5109 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5110 {
5111 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5112 }
5113 
5114 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5115 {
5116 	/* skip well-known LU */
5117 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5118 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5119 		return;
5120 
5121 	ufshpb_destroy_lu(hba, sdev);
5122 }
5123 
5124 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5125 {
5126 	/* skip well-known LU */
5127 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5128 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5129 		return;
5130 
5131 	ufshpb_init_hpb_lu(hba, sdev);
5132 }
5133 
5134 /**
5135  * ufshcd_slave_configure - adjust SCSI device configurations
5136  * @sdev: pointer to SCSI device
5137  */
5138 static int ufshcd_slave_configure(struct scsi_device *sdev)
5139 {
5140 	struct ufs_hba *hba = shost_priv(sdev->host);
5141 	struct request_queue *q = sdev->request_queue;
5142 
5143 	ufshcd_hpb_configure(hba, sdev);
5144 
5145 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5146 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5147 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5148 	/*
5149 	 * Block runtime-pm until all consumers are added.
5150 	 * Refer ufshcd_setup_links().
5151 	 */
5152 	if (is_device_wlun(sdev))
5153 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5154 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5155 		sdev->rpm_autosuspend = 1;
5156 	/*
5157 	 * Do not print messages during runtime PM to avoid never-ending cycles
5158 	 * of messages written back to storage by user space causing runtime
5159 	 * resume, causing more messages and so on.
5160 	 */
5161 	sdev->silence_suspend = 1;
5162 
5163 	ufshcd_crypto_register(hba, q);
5164 
5165 	return 0;
5166 }
5167 
5168 /**
5169  * ufshcd_slave_destroy - remove SCSI device configurations
5170  * @sdev: pointer to SCSI device
5171  */
5172 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5173 {
5174 	struct ufs_hba *hba;
5175 	unsigned long flags;
5176 
5177 	hba = shost_priv(sdev->host);
5178 
5179 	ufshcd_hpb_destroy(hba, sdev);
5180 
5181 	/* Drop the reference as it won't be needed anymore */
5182 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5183 		spin_lock_irqsave(hba->host->host_lock, flags);
5184 		hba->ufs_device_wlun = NULL;
5185 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5186 	} else if (hba->ufs_device_wlun) {
5187 		struct device *supplier = NULL;
5188 
5189 		/* Ensure UFS Device WLUN exists and does not disappear */
5190 		spin_lock_irqsave(hba->host->host_lock, flags);
5191 		if (hba->ufs_device_wlun) {
5192 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5193 			get_device(supplier);
5194 		}
5195 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5196 
5197 		if (supplier) {
5198 			/*
5199 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5200 			 * device will not have been registered but can still
5201 			 * have a device link holding a reference to the device.
5202 			 */
5203 			device_link_remove(&sdev->sdev_gendev, supplier);
5204 			put_device(supplier);
5205 		}
5206 	}
5207 }
5208 
5209 /**
5210  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5211  * @lrbp: pointer to local reference block of completed command
5212  * @scsi_status: SCSI command status
5213  *
5214  * Returns value base on SCSI command status
5215  */
5216 static inline int
5217 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5218 {
5219 	int result = 0;
5220 
5221 	switch (scsi_status) {
5222 	case SAM_STAT_CHECK_CONDITION:
5223 		ufshcd_copy_sense_data(lrbp);
5224 		fallthrough;
5225 	case SAM_STAT_GOOD:
5226 		result |= DID_OK << 16 | scsi_status;
5227 		break;
5228 	case SAM_STAT_TASK_SET_FULL:
5229 	case SAM_STAT_BUSY:
5230 	case SAM_STAT_TASK_ABORTED:
5231 		ufshcd_copy_sense_data(lrbp);
5232 		result |= scsi_status;
5233 		break;
5234 	default:
5235 		result |= DID_ERROR << 16;
5236 		break;
5237 	} /* end of switch */
5238 
5239 	return result;
5240 }
5241 
5242 /**
5243  * ufshcd_transfer_rsp_status - Get overall status of the response
5244  * @hba: per adapter instance
5245  * @lrbp: pointer to local reference block of completed command
5246  * @cqe: pointer to the completion queue entry
5247  *
5248  * Returns result of the command to notify SCSI midlayer
5249  */
5250 static inline int
5251 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5252 			   struct cq_entry *cqe)
5253 {
5254 	int result = 0;
5255 	int scsi_status;
5256 	enum utp_ocs ocs;
5257 
5258 	scsi_set_resid(lrbp->cmd,
5259 		be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count));
5260 
5261 	/* overall command status of utrd */
5262 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5263 
5264 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5265 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5266 					MASK_RSP_UPIU_RESULT)
5267 			ocs = OCS_SUCCESS;
5268 	}
5269 
5270 	switch (ocs) {
5271 	case OCS_SUCCESS:
5272 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5273 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5274 		switch (result) {
5275 		case UPIU_TRANSACTION_RESPONSE:
5276 			/*
5277 			 * get the response UPIU result to extract
5278 			 * the SCSI command status
5279 			 */
5280 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5281 
5282 			/*
5283 			 * get the result based on SCSI status response
5284 			 * to notify the SCSI midlayer of the command status
5285 			 */
5286 			scsi_status = result & MASK_SCSI_STATUS;
5287 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5288 
5289 			/*
5290 			 * Currently we are only supporting BKOPs exception
5291 			 * events hence we can ignore BKOPs exception event
5292 			 * during power management callbacks. BKOPs exception
5293 			 * event is not expected to be raised in runtime suspend
5294 			 * callback as it allows the urgent bkops.
5295 			 * During system suspend, we are anyway forcefully
5296 			 * disabling the bkops and if urgent bkops is needed
5297 			 * it will be enabled on system resume. Long term
5298 			 * solution could be to abort the system suspend if
5299 			 * UFS device needs urgent BKOPs.
5300 			 */
5301 			if (!hba->pm_op_in_progress &&
5302 			    !ufshcd_eh_in_progress(hba) &&
5303 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5304 				/* Flushed in suspend */
5305 				schedule_work(&hba->eeh_work);
5306 
5307 			if (scsi_status == SAM_STAT_GOOD)
5308 				ufshpb_rsp_upiu(hba, lrbp);
5309 			break;
5310 		case UPIU_TRANSACTION_REJECT_UPIU:
5311 			/* TODO: handle Reject UPIU Response */
5312 			result = DID_ERROR << 16;
5313 			dev_err(hba->dev,
5314 				"Reject UPIU not fully implemented\n");
5315 			break;
5316 		default:
5317 			dev_err(hba->dev,
5318 				"Unexpected request response code = %x\n",
5319 				result);
5320 			result = DID_ERROR << 16;
5321 			break;
5322 		}
5323 		break;
5324 	case OCS_ABORTED:
5325 		result |= DID_ABORT << 16;
5326 		break;
5327 	case OCS_INVALID_COMMAND_STATUS:
5328 		result |= DID_REQUEUE << 16;
5329 		break;
5330 	case OCS_INVALID_CMD_TABLE_ATTR:
5331 	case OCS_INVALID_PRDT_ATTR:
5332 	case OCS_MISMATCH_DATA_BUF_SIZE:
5333 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5334 	case OCS_PEER_COMM_FAILURE:
5335 	case OCS_FATAL_ERROR:
5336 	case OCS_DEVICE_FATAL_ERROR:
5337 	case OCS_INVALID_CRYPTO_CONFIG:
5338 	case OCS_GENERAL_CRYPTO_ERROR:
5339 	default:
5340 		result |= DID_ERROR << 16;
5341 		dev_err(hba->dev,
5342 				"OCS error from controller = %x for tag %d\n",
5343 				ocs, lrbp->task_tag);
5344 		ufshcd_print_evt_hist(hba);
5345 		ufshcd_print_host_state(hba);
5346 		break;
5347 	} /* end of switch */
5348 
5349 	if ((host_byte(result) != DID_OK) &&
5350 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5351 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5352 	return result;
5353 }
5354 
5355 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5356 					 u32 intr_mask)
5357 {
5358 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5359 	    !ufshcd_is_auto_hibern8_enabled(hba))
5360 		return false;
5361 
5362 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5363 		return false;
5364 
5365 	if (hba->active_uic_cmd &&
5366 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5367 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5368 		return false;
5369 
5370 	return true;
5371 }
5372 
5373 /**
5374  * ufshcd_uic_cmd_compl - handle completion of uic command
5375  * @hba: per adapter instance
5376  * @intr_status: interrupt status generated by the controller
5377  *
5378  * Returns
5379  *  IRQ_HANDLED - If interrupt is valid
5380  *  IRQ_NONE    - If invalid interrupt
5381  */
5382 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5383 {
5384 	irqreturn_t retval = IRQ_NONE;
5385 
5386 	spin_lock(hba->host->host_lock);
5387 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5388 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5389 
5390 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5391 		hba->active_uic_cmd->argument2 |=
5392 			ufshcd_get_uic_cmd_result(hba);
5393 		hba->active_uic_cmd->argument3 =
5394 			ufshcd_get_dme_attr_val(hba);
5395 		if (!hba->uic_async_done)
5396 			hba->active_uic_cmd->cmd_active = 0;
5397 		complete(&hba->active_uic_cmd->done);
5398 		retval = IRQ_HANDLED;
5399 	}
5400 
5401 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5402 		hba->active_uic_cmd->cmd_active = 0;
5403 		complete(hba->uic_async_done);
5404 		retval = IRQ_HANDLED;
5405 	}
5406 
5407 	if (retval == IRQ_HANDLED)
5408 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5409 					     UFS_CMD_COMP);
5410 	spin_unlock(hba->host->host_lock);
5411 	return retval;
5412 }
5413 
5414 /* Release the resources allocated for processing a SCSI command. */
5415 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5416 			     struct ufshcd_lrb *lrbp)
5417 {
5418 	struct scsi_cmnd *cmd = lrbp->cmd;
5419 
5420 	scsi_dma_unmap(cmd);
5421 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5422 	ufshcd_release(hba);
5423 	ufshcd_clk_scaling_update_busy(hba);
5424 }
5425 
5426 /**
5427  * ufshcd_compl_one_cqe - handle a completion queue entry
5428  * @hba: per adapter instance
5429  * @task_tag: the task tag of the request to be completed
5430  * @cqe: pointer to the completion queue entry
5431  */
5432 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5433 			  struct cq_entry *cqe)
5434 {
5435 	struct ufshcd_lrb *lrbp;
5436 	struct scsi_cmnd *cmd;
5437 
5438 	lrbp = &hba->lrb[task_tag];
5439 	lrbp->compl_time_stamp = ktime_get();
5440 	cmd = lrbp->cmd;
5441 	if (cmd) {
5442 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5443 			ufshcd_update_monitor(hba, lrbp);
5444 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5445 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5446 		ufshcd_release_scsi_cmd(hba, lrbp);
5447 		/* Do not touch lrbp after scsi done */
5448 		scsi_done(cmd);
5449 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5450 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5451 		if (hba->dev_cmd.complete) {
5452 			hba->dev_cmd.cqe = cqe;
5453 			ufshcd_add_command_trace(hba, task_tag, UFS_DEV_COMP);
5454 			complete(hba->dev_cmd.complete);
5455 			ufshcd_clk_scaling_update_busy(hba);
5456 		}
5457 	}
5458 }
5459 
5460 /**
5461  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5462  * @hba: per adapter instance
5463  * @completed_reqs: bitmask that indicates which requests to complete
5464  */
5465 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5466 					unsigned long completed_reqs)
5467 {
5468 	int tag;
5469 
5470 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5471 		ufshcd_compl_one_cqe(hba, tag, NULL);
5472 }
5473 
5474 /* Any value that is not an existing queue number is fine for this constant. */
5475 enum {
5476 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5477 };
5478 
5479 static void ufshcd_clear_polled(struct ufs_hba *hba,
5480 				unsigned long *completed_reqs)
5481 {
5482 	int tag;
5483 
5484 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5485 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5486 
5487 		if (!cmd)
5488 			continue;
5489 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5490 			__clear_bit(tag, completed_reqs);
5491 	}
5492 }
5493 
5494 /*
5495  * Returns > 0 if one or more commands have been completed or 0 if no
5496  * requests have been completed.
5497  */
5498 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5499 {
5500 	struct ufs_hba *hba = shost_priv(shost);
5501 	unsigned long completed_reqs, flags;
5502 	u32 tr_doorbell;
5503 	struct ufs_hw_queue *hwq;
5504 
5505 	if (is_mcq_enabled(hba)) {
5506 		hwq = &hba->uhq[queue_num + UFSHCD_MCQ_IO_QUEUE_OFFSET];
5507 
5508 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5509 	}
5510 
5511 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5512 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5513 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5514 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5515 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5516 		  hba->outstanding_reqs);
5517 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5518 		/* Do not complete polled requests from interrupt context. */
5519 		ufshcd_clear_polled(hba, &completed_reqs);
5520 	}
5521 	hba->outstanding_reqs &= ~completed_reqs;
5522 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5523 
5524 	if (completed_reqs)
5525 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5526 
5527 	return completed_reqs != 0;
5528 }
5529 
5530 /**
5531  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5532  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5533  * to complete the pending transfers and free the resources associated with
5534  * the scsi command.
5535  *
5536  * @hba: per adapter instance
5537  * @force_compl: This flag is set to true when invoked
5538  * from ufshcd_host_reset_and_restore() in which case it requires special
5539  * handling because the host controller has been reset by ufshcd_hba_stop().
5540  */
5541 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5542 					      bool force_compl)
5543 {
5544 	struct ufs_hw_queue *hwq;
5545 	struct ufshcd_lrb *lrbp;
5546 	struct scsi_cmnd *cmd;
5547 	unsigned long flags;
5548 	u32 hwq_num, utag;
5549 	int tag;
5550 
5551 	for (tag = 0; tag < hba->nutrs; tag++) {
5552 		lrbp = &hba->lrb[tag];
5553 		cmd = lrbp->cmd;
5554 		if (!ufshcd_cmd_inflight(cmd) ||
5555 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5556 			continue;
5557 
5558 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5559 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5560 		hwq = &hba->uhq[hwq_num + UFSHCD_MCQ_IO_QUEUE_OFFSET];
5561 
5562 		if (force_compl) {
5563 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5564 			/*
5565 			 * For those cmds of which the cqes are not present
5566 			 * in the cq, complete them explicitly.
5567 			 */
5568 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5569 				spin_lock_irqsave(&hwq->cq_lock, flags);
5570 				set_host_byte(cmd, DID_REQUEUE);
5571 				ufshcd_release_scsi_cmd(hba, lrbp);
5572 				scsi_done(cmd);
5573 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5574 			}
5575 		} else {
5576 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5577 		}
5578 	}
5579 }
5580 
5581 /**
5582  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5583  * @hba: per adapter instance
5584  *
5585  * Returns
5586  *  IRQ_HANDLED - If interrupt is valid
5587  *  IRQ_NONE    - If invalid interrupt
5588  */
5589 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5590 {
5591 	/* Resetting interrupt aggregation counters first and reading the
5592 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5593 	 * In order to prevent other interrupts starvation the DB is read once
5594 	 * after reset. The down side of this solution is the possibility of
5595 	 * false interrupt if device completes another request after resetting
5596 	 * aggregation and before reading the DB.
5597 	 */
5598 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5599 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5600 		ufshcd_reset_intr_aggr(hba);
5601 
5602 	if (ufs_fail_completion())
5603 		return IRQ_HANDLED;
5604 
5605 	/*
5606 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5607 	 * do not want polling to trigger spurious interrupt complaints.
5608 	 */
5609 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5610 
5611 	return IRQ_HANDLED;
5612 }
5613 
5614 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5615 {
5616 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5617 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5618 				       &ee_ctrl_mask);
5619 }
5620 
5621 int ufshcd_write_ee_control(struct ufs_hba *hba)
5622 {
5623 	int err;
5624 
5625 	mutex_lock(&hba->ee_ctrl_mutex);
5626 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5627 	mutex_unlock(&hba->ee_ctrl_mutex);
5628 	if (err)
5629 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5630 			__func__, err);
5631 	return err;
5632 }
5633 
5634 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5635 			     const u16 *other_mask, u16 set, u16 clr)
5636 {
5637 	u16 new_mask, ee_ctrl_mask;
5638 	int err = 0;
5639 
5640 	mutex_lock(&hba->ee_ctrl_mutex);
5641 	new_mask = (*mask & ~clr) | set;
5642 	ee_ctrl_mask = new_mask | *other_mask;
5643 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5644 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5645 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5646 	if (!err) {
5647 		hba->ee_ctrl_mask = ee_ctrl_mask;
5648 		*mask = new_mask;
5649 	}
5650 	mutex_unlock(&hba->ee_ctrl_mutex);
5651 	return err;
5652 }
5653 
5654 /**
5655  * ufshcd_disable_ee - disable exception event
5656  * @hba: per-adapter instance
5657  * @mask: exception event to disable
5658  *
5659  * Disables exception event in the device so that the EVENT_ALERT
5660  * bit is not set.
5661  *
5662  * Returns zero on success, non-zero error value on failure.
5663  */
5664 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5665 {
5666 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5667 }
5668 
5669 /**
5670  * ufshcd_enable_ee - enable exception event
5671  * @hba: per-adapter instance
5672  * @mask: exception event to enable
5673  *
5674  * Enable corresponding exception event in the device to allow
5675  * device to alert host in critical scenarios.
5676  *
5677  * Returns zero on success, non-zero error value on failure.
5678  */
5679 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5680 {
5681 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5682 }
5683 
5684 /**
5685  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5686  * @hba: per-adapter instance
5687  *
5688  * Allow device to manage background operations on its own. Enabling
5689  * this might lead to inconsistent latencies during normal data transfers
5690  * as the device is allowed to manage its own way of handling background
5691  * operations.
5692  *
5693  * Returns zero on success, non-zero on failure.
5694  */
5695 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5696 {
5697 	int err = 0;
5698 
5699 	if (hba->auto_bkops_enabled)
5700 		goto out;
5701 
5702 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5703 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5704 	if (err) {
5705 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5706 				__func__, err);
5707 		goto out;
5708 	}
5709 
5710 	hba->auto_bkops_enabled = true;
5711 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5712 
5713 	/* No need of URGENT_BKOPS exception from the device */
5714 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5715 	if (err)
5716 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5717 				__func__, err);
5718 out:
5719 	return err;
5720 }
5721 
5722 /**
5723  * ufshcd_disable_auto_bkops - block device in doing background operations
5724  * @hba: per-adapter instance
5725  *
5726  * Disabling background operations improves command response latency but
5727  * has drawback of device moving into critical state where the device is
5728  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5729  * host is idle so that BKOPS are managed effectively without any negative
5730  * impacts.
5731  *
5732  * Returns zero on success, non-zero on failure.
5733  */
5734 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5735 {
5736 	int err = 0;
5737 
5738 	if (!hba->auto_bkops_enabled)
5739 		goto out;
5740 
5741 	/*
5742 	 * If host assisted BKOPs is to be enabled, make sure
5743 	 * urgent bkops exception is allowed.
5744 	 */
5745 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5746 	if (err) {
5747 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5748 				__func__, err);
5749 		goto out;
5750 	}
5751 
5752 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5753 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5754 	if (err) {
5755 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5756 				__func__, err);
5757 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5758 		goto out;
5759 	}
5760 
5761 	hba->auto_bkops_enabled = false;
5762 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5763 	hba->is_urgent_bkops_lvl_checked = false;
5764 out:
5765 	return err;
5766 }
5767 
5768 /**
5769  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5770  * @hba: per adapter instance
5771  *
5772  * After a device reset the device may toggle the BKOPS_EN flag
5773  * to default value. The s/w tracking variables should be updated
5774  * as well. This function would change the auto-bkops state based on
5775  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5776  */
5777 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5778 {
5779 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5780 		hba->auto_bkops_enabled = false;
5781 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5782 		ufshcd_enable_auto_bkops(hba);
5783 	} else {
5784 		hba->auto_bkops_enabled = true;
5785 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5786 		ufshcd_disable_auto_bkops(hba);
5787 	}
5788 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5789 	hba->is_urgent_bkops_lvl_checked = false;
5790 }
5791 
5792 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5793 {
5794 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5795 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5796 }
5797 
5798 /**
5799  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5800  * @hba: per-adapter instance
5801  * @status: bkops_status value
5802  *
5803  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5804  * flag in the device to permit background operations if the device
5805  * bkops_status is greater than or equal to "status" argument passed to
5806  * this function, disable otherwise.
5807  *
5808  * Returns 0 for success, non-zero in case of failure.
5809  *
5810  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5811  * to know whether auto bkops is enabled or disabled after this function
5812  * returns control to it.
5813  */
5814 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5815 			     enum bkops_status status)
5816 {
5817 	int err;
5818 	u32 curr_status = 0;
5819 
5820 	err = ufshcd_get_bkops_status(hba, &curr_status);
5821 	if (err) {
5822 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5823 				__func__, err);
5824 		goto out;
5825 	} else if (curr_status > BKOPS_STATUS_MAX) {
5826 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5827 				__func__, curr_status);
5828 		err = -EINVAL;
5829 		goto out;
5830 	}
5831 
5832 	if (curr_status >= status)
5833 		err = ufshcd_enable_auto_bkops(hba);
5834 	else
5835 		err = ufshcd_disable_auto_bkops(hba);
5836 out:
5837 	return err;
5838 }
5839 
5840 /**
5841  * ufshcd_urgent_bkops - handle urgent bkops exception event
5842  * @hba: per-adapter instance
5843  *
5844  * Enable fBackgroundOpsEn flag in the device to permit background
5845  * operations.
5846  *
5847  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5848  * and negative error value for any other failure.
5849  */
5850 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5851 {
5852 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5853 }
5854 
5855 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5856 {
5857 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5858 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5859 }
5860 
5861 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5862 {
5863 	int err;
5864 	u32 curr_status = 0;
5865 
5866 	if (hba->is_urgent_bkops_lvl_checked)
5867 		goto enable_auto_bkops;
5868 
5869 	err = ufshcd_get_bkops_status(hba, &curr_status);
5870 	if (err) {
5871 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5872 				__func__, err);
5873 		goto out;
5874 	}
5875 
5876 	/*
5877 	 * We are seeing that some devices are raising the urgent bkops
5878 	 * exception events even when BKOPS status doesn't indicate performace
5879 	 * impacted or critical. Handle these device by determining their urgent
5880 	 * bkops status at runtime.
5881 	 */
5882 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5883 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5884 				__func__, curr_status);
5885 		/* update the current status as the urgent bkops level */
5886 		hba->urgent_bkops_lvl = curr_status;
5887 		hba->is_urgent_bkops_lvl_checked = true;
5888 	}
5889 
5890 enable_auto_bkops:
5891 	err = ufshcd_enable_auto_bkops(hba);
5892 out:
5893 	if (err < 0)
5894 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5895 				__func__, err);
5896 }
5897 
5898 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5899 {
5900 	u32 value;
5901 
5902 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5903 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5904 		return;
5905 
5906 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5907 
5908 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5909 
5910 	/*
5911 	 * A placeholder for the platform vendors to add whatever additional
5912 	 * steps required
5913 	 */
5914 }
5915 
5916 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5917 {
5918 	u8 index;
5919 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5920 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5921 
5922 	index = ufshcd_wb_get_query_index(hba);
5923 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5924 }
5925 
5926 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5927 {
5928 	int ret;
5929 
5930 	if (!ufshcd_is_wb_allowed(hba) ||
5931 	    hba->dev_info.wb_enabled == enable)
5932 		return 0;
5933 
5934 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5935 	if (ret) {
5936 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5937 			__func__, enable ? "enabling" : "disabling", ret);
5938 		return ret;
5939 	}
5940 
5941 	hba->dev_info.wb_enabled = enable;
5942 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5943 			__func__, enable ? "enabled" : "disabled");
5944 
5945 	return ret;
5946 }
5947 
5948 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5949 						 bool enable)
5950 {
5951 	int ret;
5952 
5953 	ret = __ufshcd_wb_toggle(hba, enable,
5954 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5955 	if (ret) {
5956 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5957 			__func__, enable ? "enabling" : "disabling", ret);
5958 		return;
5959 	}
5960 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5961 			__func__, enable ? "enabled" : "disabled");
5962 }
5963 
5964 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5965 {
5966 	int ret;
5967 
5968 	if (!ufshcd_is_wb_allowed(hba) ||
5969 	    hba->dev_info.wb_buf_flush_enabled == enable)
5970 		return 0;
5971 
5972 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5973 	if (ret) {
5974 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5975 			__func__, enable ? "enabling" : "disabling", ret);
5976 		return ret;
5977 	}
5978 
5979 	hba->dev_info.wb_buf_flush_enabled = enable;
5980 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5981 			__func__, enable ? "enabled" : "disabled");
5982 
5983 	return ret;
5984 }
5985 
5986 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5987 						u32 avail_buf)
5988 {
5989 	u32 cur_buf;
5990 	int ret;
5991 	u8 index;
5992 
5993 	index = ufshcd_wb_get_query_index(hba);
5994 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5995 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5996 					      index, 0, &cur_buf);
5997 	if (ret) {
5998 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5999 			__func__, ret);
6000 		return false;
6001 	}
6002 
6003 	if (!cur_buf) {
6004 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6005 			 cur_buf);
6006 		return false;
6007 	}
6008 	/* Let it continue to flush when available buffer exceeds threshold */
6009 	return avail_buf < hba->vps->wb_flush_threshold;
6010 }
6011 
6012 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6013 {
6014 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6015 		ufshcd_wb_toggle_buf_flush(hba, false);
6016 
6017 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6018 	ufshcd_wb_toggle(hba, false);
6019 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6020 
6021 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6022 }
6023 
6024 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6025 {
6026 	u32 lifetime;
6027 	int ret;
6028 	u8 index;
6029 
6030 	index = ufshcd_wb_get_query_index(hba);
6031 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6032 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6033 				      index, 0, &lifetime);
6034 	if (ret) {
6035 		dev_err(hba->dev,
6036 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6037 			__func__, ret);
6038 		return false;
6039 	}
6040 
6041 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6042 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6043 			__func__, lifetime);
6044 		return false;
6045 	}
6046 
6047 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6048 		__func__, lifetime);
6049 
6050 	return true;
6051 }
6052 
6053 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6054 {
6055 	int ret;
6056 	u32 avail_buf;
6057 	u8 index;
6058 
6059 	if (!ufshcd_is_wb_allowed(hba))
6060 		return false;
6061 
6062 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6063 		ufshcd_wb_force_disable(hba);
6064 		return false;
6065 	}
6066 
6067 	/*
6068 	 * The ufs device needs the vcc to be ON to flush.
6069 	 * With user-space reduction enabled, it's enough to enable flush
6070 	 * by checking only the available buffer. The threshold
6071 	 * defined here is > 90% full.
6072 	 * With user-space preserved enabled, the current-buffer
6073 	 * should be checked too because the wb buffer size can reduce
6074 	 * when disk tends to be full. This info is provided by current
6075 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6076 	 * keeping vcc on when current buffer is empty.
6077 	 */
6078 	index = ufshcd_wb_get_query_index(hba);
6079 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6080 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6081 				      index, 0, &avail_buf);
6082 	if (ret) {
6083 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6084 			 __func__, ret);
6085 		return false;
6086 	}
6087 
6088 	if (!hba->dev_info.b_presrv_uspc_en)
6089 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6090 
6091 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6092 }
6093 
6094 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6095 {
6096 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6097 					   struct ufs_hba,
6098 					   rpm_dev_flush_recheck_work);
6099 	/*
6100 	 * To prevent unnecessary VCC power drain after device finishes
6101 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6102 	 * after a certain delay to recheck the threshold by next runtime
6103 	 * suspend.
6104 	 */
6105 	ufshcd_rpm_get_sync(hba);
6106 	ufshcd_rpm_put_sync(hba);
6107 }
6108 
6109 /**
6110  * ufshcd_exception_event_handler - handle exceptions raised by device
6111  * @work: pointer to work data
6112  *
6113  * Read bExceptionEventStatus attribute from the device and handle the
6114  * exception event accordingly.
6115  */
6116 static void ufshcd_exception_event_handler(struct work_struct *work)
6117 {
6118 	struct ufs_hba *hba;
6119 	int err;
6120 	u32 status = 0;
6121 	hba = container_of(work, struct ufs_hba, eeh_work);
6122 
6123 	ufshcd_scsi_block_requests(hba);
6124 	err = ufshcd_get_ee_status(hba, &status);
6125 	if (err) {
6126 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6127 				__func__, err);
6128 		goto out;
6129 	}
6130 
6131 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6132 
6133 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6134 		ufshcd_bkops_exception_event_handler(hba);
6135 
6136 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6137 		ufshcd_temp_exception_event_handler(hba, status);
6138 
6139 	ufs_debugfs_exception_event(hba, status);
6140 out:
6141 	ufshcd_scsi_unblock_requests(hba);
6142 }
6143 
6144 /* Complete requests that have door-bell cleared */
6145 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6146 {
6147 	if (is_mcq_enabled(hba))
6148 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6149 	else
6150 		ufshcd_transfer_req_compl(hba);
6151 
6152 	ufshcd_tmc_handler(hba);
6153 }
6154 
6155 /**
6156  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6157  *				to recover from the DL NAC errors or not.
6158  * @hba: per-adapter instance
6159  *
6160  * Returns true if error handling is required, false otherwise
6161  */
6162 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6163 {
6164 	unsigned long flags;
6165 	bool err_handling = true;
6166 
6167 	spin_lock_irqsave(hba->host->host_lock, flags);
6168 	/*
6169 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6170 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6171 	 */
6172 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6173 		goto out;
6174 
6175 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6176 	    ((hba->saved_err & UIC_ERROR) &&
6177 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6178 		goto out;
6179 
6180 	if ((hba->saved_err & UIC_ERROR) &&
6181 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6182 		int err;
6183 		/*
6184 		 * wait for 50ms to see if we can get any other errors or not.
6185 		 */
6186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6187 		msleep(50);
6188 		spin_lock_irqsave(hba->host->host_lock, flags);
6189 
6190 		/*
6191 		 * now check if we have got any other severe errors other than
6192 		 * DL NAC error?
6193 		 */
6194 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6195 		    ((hba->saved_err & UIC_ERROR) &&
6196 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6197 			goto out;
6198 
6199 		/*
6200 		 * As DL NAC is the only error received so far, send out NOP
6201 		 * command to confirm if link is still active or not.
6202 		 *   - If we don't get any response then do error recovery.
6203 		 *   - If we get response then clear the DL NAC error bit.
6204 		 */
6205 
6206 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6207 		err = ufshcd_verify_dev_init(hba);
6208 		spin_lock_irqsave(hba->host->host_lock, flags);
6209 
6210 		if (err)
6211 			goto out;
6212 
6213 		/* Link seems to be alive hence ignore the DL NAC errors */
6214 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6215 			hba->saved_err &= ~UIC_ERROR;
6216 		/* clear NAC error */
6217 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6218 		if (!hba->saved_uic_err)
6219 			err_handling = false;
6220 	}
6221 out:
6222 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6223 	return err_handling;
6224 }
6225 
6226 /* host lock must be held before calling this func */
6227 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6228 {
6229 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6230 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6231 }
6232 
6233 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6234 {
6235 	lockdep_assert_held(hba->host->host_lock);
6236 
6237 	/* handle fatal errors only when link is not in error state */
6238 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6239 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6240 		    ufshcd_is_saved_err_fatal(hba))
6241 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6242 		else
6243 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6244 		queue_work(hba->eh_wq, &hba->eh_work);
6245 	}
6246 }
6247 
6248 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6249 {
6250 	spin_lock_irq(hba->host->host_lock);
6251 	hba->force_reset = true;
6252 	ufshcd_schedule_eh_work(hba);
6253 	spin_unlock_irq(hba->host->host_lock);
6254 }
6255 
6256 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6257 {
6258 	mutex_lock(&hba->wb_mutex);
6259 	down_write(&hba->clk_scaling_lock);
6260 	hba->clk_scaling.is_allowed = allow;
6261 	up_write(&hba->clk_scaling_lock);
6262 	mutex_unlock(&hba->wb_mutex);
6263 }
6264 
6265 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6266 {
6267 	if (suspend) {
6268 		if (hba->clk_scaling.is_enabled)
6269 			ufshcd_suspend_clkscaling(hba);
6270 		ufshcd_clk_scaling_allow(hba, false);
6271 	} else {
6272 		ufshcd_clk_scaling_allow(hba, true);
6273 		if (hba->clk_scaling.is_enabled)
6274 			ufshcd_resume_clkscaling(hba);
6275 	}
6276 }
6277 
6278 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6279 {
6280 	ufshcd_rpm_get_sync(hba);
6281 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6282 	    hba->is_sys_suspended) {
6283 		enum ufs_pm_op pm_op;
6284 
6285 		/*
6286 		 * Don't assume anything of resume, if
6287 		 * resume fails, irq and clocks can be OFF, and powers
6288 		 * can be OFF or in LPM.
6289 		 */
6290 		ufshcd_setup_hba_vreg(hba, true);
6291 		ufshcd_enable_irq(hba);
6292 		ufshcd_setup_vreg(hba, true);
6293 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6294 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6295 		ufshcd_hold(hba);
6296 		if (!ufshcd_is_clkgating_allowed(hba))
6297 			ufshcd_setup_clocks(hba, true);
6298 		ufshcd_release(hba);
6299 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6300 		ufshcd_vops_resume(hba, pm_op);
6301 	} else {
6302 		ufshcd_hold(hba);
6303 		if (ufshcd_is_clkscaling_supported(hba) &&
6304 		    hba->clk_scaling.is_enabled)
6305 			ufshcd_suspend_clkscaling(hba);
6306 		ufshcd_clk_scaling_allow(hba, false);
6307 	}
6308 	ufshcd_scsi_block_requests(hba);
6309 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6310 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6311 	cancel_work_sync(&hba->eeh_work);
6312 }
6313 
6314 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6315 {
6316 	ufshcd_scsi_unblock_requests(hba);
6317 	ufshcd_release(hba);
6318 	if (ufshcd_is_clkscaling_supported(hba))
6319 		ufshcd_clk_scaling_suspend(hba, false);
6320 	ufshcd_rpm_put(hba);
6321 }
6322 
6323 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6324 {
6325 	return (!hba->is_powered || hba->shutting_down ||
6326 		!hba->ufs_device_wlun ||
6327 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6328 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6329 		   ufshcd_is_link_broken(hba))));
6330 }
6331 
6332 #ifdef CONFIG_PM
6333 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6334 {
6335 	struct Scsi_Host *shost = hba->host;
6336 	struct scsi_device *sdev;
6337 	struct request_queue *q;
6338 	int ret;
6339 
6340 	hba->is_sys_suspended = false;
6341 	/*
6342 	 * Set RPM status of wlun device to RPM_ACTIVE,
6343 	 * this also clears its runtime error.
6344 	 */
6345 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6346 
6347 	/* hba device might have a runtime error otherwise */
6348 	if (ret)
6349 		ret = pm_runtime_set_active(hba->dev);
6350 	/*
6351 	 * If wlun device had runtime error, we also need to resume those
6352 	 * consumer scsi devices in case any of them has failed to be
6353 	 * resumed due to supplier runtime resume failure. This is to unblock
6354 	 * blk_queue_enter in case there are bios waiting inside it.
6355 	 */
6356 	if (!ret) {
6357 		shost_for_each_device(sdev, shost) {
6358 			q = sdev->request_queue;
6359 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6360 				       q->rpm_status == RPM_SUSPENDING))
6361 				pm_request_resume(q->dev);
6362 		}
6363 	}
6364 }
6365 #else
6366 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6367 {
6368 }
6369 #endif
6370 
6371 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6372 {
6373 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6374 	u32 mode;
6375 
6376 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6377 
6378 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6379 		return true;
6380 
6381 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6382 		return true;
6383 
6384 	return false;
6385 }
6386 
6387 static bool ufshcd_abort_all(struct ufs_hba *hba)
6388 {
6389 	bool needs_reset = false;
6390 	int tag, ret;
6391 
6392 	if (is_mcq_enabled(hba)) {
6393 		struct ufshcd_lrb *lrbp;
6394 		int tag;
6395 
6396 		for (tag = 0; tag < hba->nutrs; tag++) {
6397 			lrbp = &hba->lrb[tag];
6398 			if (!ufshcd_cmd_inflight(lrbp->cmd))
6399 				continue;
6400 			ret = ufshcd_try_to_abort_task(hba, tag);
6401 			dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6402 				hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6403 				ret ? "failed" : "succeeded");
6404 			if (ret) {
6405 				needs_reset = true;
6406 				goto out;
6407 			}
6408 		}
6409 	} else {
6410 		/* Clear pending transfer requests */
6411 		for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6412 			ret = ufshcd_try_to_abort_task(hba, tag);
6413 			dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6414 				hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6415 				ret ? "failed" : "succeeded");
6416 			if (ret) {
6417 				needs_reset = true;
6418 				goto out;
6419 			}
6420 		}
6421 	}
6422 	/* Clear pending task management requests */
6423 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6424 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6425 			needs_reset = true;
6426 			goto out;
6427 		}
6428 	}
6429 
6430 out:
6431 	/* Complete the requests that are cleared by s/w */
6432 	ufshcd_complete_requests(hba, false);
6433 
6434 	return needs_reset;
6435 }
6436 
6437 /**
6438  * ufshcd_err_handler - handle UFS errors that require s/w attention
6439  * @work: pointer to work structure
6440  */
6441 static void ufshcd_err_handler(struct work_struct *work)
6442 {
6443 	int retries = MAX_ERR_HANDLER_RETRIES;
6444 	struct ufs_hba *hba;
6445 	unsigned long flags;
6446 	bool needs_restore;
6447 	bool needs_reset;
6448 	int pmc_err;
6449 
6450 	hba = container_of(work, struct ufs_hba, eh_work);
6451 
6452 	dev_info(hba->dev,
6453 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6454 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6455 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6456 		 hba->saved_uic_err, hba->force_reset,
6457 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6458 
6459 	down(&hba->host_sem);
6460 	spin_lock_irqsave(hba->host->host_lock, flags);
6461 	if (ufshcd_err_handling_should_stop(hba)) {
6462 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6463 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6464 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6465 		up(&hba->host_sem);
6466 		return;
6467 	}
6468 	ufshcd_set_eh_in_progress(hba);
6469 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6470 	ufshcd_err_handling_prepare(hba);
6471 	/* Complete requests that have door-bell cleared by h/w */
6472 	ufshcd_complete_requests(hba, false);
6473 	spin_lock_irqsave(hba->host->host_lock, flags);
6474 again:
6475 	needs_restore = false;
6476 	needs_reset = false;
6477 
6478 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6479 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6480 	/*
6481 	 * A full reset and restore might have happened after preparation
6482 	 * is finished, double check whether we should stop.
6483 	 */
6484 	if (ufshcd_err_handling_should_stop(hba))
6485 		goto skip_err_handling;
6486 
6487 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6488 		bool ret;
6489 
6490 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6491 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6492 		ret = ufshcd_quirk_dl_nac_errors(hba);
6493 		spin_lock_irqsave(hba->host->host_lock, flags);
6494 		if (!ret && ufshcd_err_handling_should_stop(hba))
6495 			goto skip_err_handling;
6496 	}
6497 
6498 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6499 	    (hba->saved_uic_err &&
6500 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6501 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6502 
6503 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6504 		ufshcd_print_host_state(hba);
6505 		ufshcd_print_pwr_info(hba);
6506 		ufshcd_print_evt_hist(hba);
6507 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6508 		ufshcd_print_trs_all(hba, pr_prdt);
6509 		spin_lock_irqsave(hba->host->host_lock, flags);
6510 	}
6511 
6512 	/*
6513 	 * if host reset is required then skip clearing the pending
6514 	 * transfers forcefully because they will get cleared during
6515 	 * host reset and restore
6516 	 */
6517 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6518 	    ufshcd_is_saved_err_fatal(hba) ||
6519 	    ((hba->saved_err & UIC_ERROR) &&
6520 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6521 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6522 		needs_reset = true;
6523 		goto do_reset;
6524 	}
6525 
6526 	/*
6527 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6528 	 * check if power mode restore is needed.
6529 	 */
6530 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6531 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6532 		if (!hba->saved_uic_err)
6533 			hba->saved_err &= ~UIC_ERROR;
6534 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6535 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6536 			needs_restore = true;
6537 		spin_lock_irqsave(hba->host->host_lock, flags);
6538 		if (!hba->saved_err && !needs_restore)
6539 			goto skip_err_handling;
6540 	}
6541 
6542 	hba->silence_err_logs = true;
6543 	/* release lock as clear command might sleep */
6544 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6545 
6546 	needs_reset = ufshcd_abort_all(hba);
6547 
6548 	spin_lock_irqsave(hba->host->host_lock, flags);
6549 	hba->silence_err_logs = false;
6550 	if (needs_reset)
6551 		goto do_reset;
6552 
6553 	/*
6554 	 * After all reqs and tasks are cleared from doorbell,
6555 	 * now it is safe to retore power mode.
6556 	 */
6557 	if (needs_restore) {
6558 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6559 		/*
6560 		 * Hold the scaling lock just in case dev cmds
6561 		 * are sent via bsg and/or sysfs.
6562 		 */
6563 		down_write(&hba->clk_scaling_lock);
6564 		hba->force_pmc = true;
6565 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6566 		if (pmc_err) {
6567 			needs_reset = true;
6568 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6569 					__func__, pmc_err);
6570 		}
6571 		hba->force_pmc = false;
6572 		ufshcd_print_pwr_info(hba);
6573 		up_write(&hba->clk_scaling_lock);
6574 		spin_lock_irqsave(hba->host->host_lock, flags);
6575 	}
6576 
6577 do_reset:
6578 	/* Fatal errors need reset */
6579 	if (needs_reset) {
6580 		int err;
6581 
6582 		hba->force_reset = false;
6583 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6584 		err = ufshcd_reset_and_restore(hba);
6585 		if (err)
6586 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6587 					__func__, err);
6588 		else
6589 			ufshcd_recover_pm_error(hba);
6590 		spin_lock_irqsave(hba->host->host_lock, flags);
6591 	}
6592 
6593 skip_err_handling:
6594 	if (!needs_reset) {
6595 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6596 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6597 		if (hba->saved_err || hba->saved_uic_err)
6598 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6599 			    __func__, hba->saved_err, hba->saved_uic_err);
6600 	}
6601 	/* Exit in an operational state or dead */
6602 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6603 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6604 		if (--retries)
6605 			goto again;
6606 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6607 	}
6608 	ufshcd_clear_eh_in_progress(hba);
6609 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6610 	ufshcd_err_handling_unprepare(hba);
6611 	up(&hba->host_sem);
6612 
6613 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6614 		 ufshcd_state_name[hba->ufshcd_state]);
6615 }
6616 
6617 /**
6618  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6619  * @hba: per-adapter instance
6620  *
6621  * Returns
6622  *  IRQ_HANDLED - If interrupt is valid
6623  *  IRQ_NONE    - If invalid interrupt
6624  */
6625 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6626 {
6627 	u32 reg;
6628 	irqreturn_t retval = IRQ_NONE;
6629 
6630 	/* PHY layer error */
6631 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6632 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6633 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6634 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6635 		/*
6636 		 * To know whether this error is fatal or not, DB timeout
6637 		 * must be checked but this error is handled separately.
6638 		 */
6639 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6640 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6641 					__func__);
6642 
6643 		/* Got a LINERESET indication. */
6644 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6645 			struct uic_command *cmd = NULL;
6646 
6647 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6648 			if (hba->uic_async_done && hba->active_uic_cmd)
6649 				cmd = hba->active_uic_cmd;
6650 			/*
6651 			 * Ignore the LINERESET during power mode change
6652 			 * operation via DME_SET command.
6653 			 */
6654 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6655 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6656 		}
6657 		retval |= IRQ_HANDLED;
6658 	}
6659 
6660 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6661 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6662 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6663 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6664 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6665 
6666 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6667 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6668 		else if (hba->dev_quirks &
6669 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6670 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6671 				hba->uic_error |=
6672 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6673 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6674 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6675 		}
6676 		retval |= IRQ_HANDLED;
6677 	}
6678 
6679 	/* UIC NL/TL/DME errors needs software retry */
6680 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6681 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6682 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6683 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6684 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6685 		retval |= IRQ_HANDLED;
6686 	}
6687 
6688 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6689 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6690 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6691 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6692 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6693 		retval |= IRQ_HANDLED;
6694 	}
6695 
6696 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6697 	if ((reg & UIC_DME_ERROR) &&
6698 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6699 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6700 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6701 		retval |= IRQ_HANDLED;
6702 	}
6703 
6704 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6705 			__func__, hba->uic_error);
6706 	return retval;
6707 }
6708 
6709 /**
6710  * ufshcd_check_errors - Check for errors that need s/w attention
6711  * @hba: per-adapter instance
6712  * @intr_status: interrupt status generated by the controller
6713  *
6714  * Returns
6715  *  IRQ_HANDLED - If interrupt is valid
6716  *  IRQ_NONE    - If invalid interrupt
6717  */
6718 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6719 {
6720 	bool queue_eh_work = false;
6721 	irqreturn_t retval = IRQ_NONE;
6722 
6723 	spin_lock(hba->host->host_lock);
6724 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6725 
6726 	if (hba->errors & INT_FATAL_ERRORS) {
6727 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6728 				       hba->errors);
6729 		queue_eh_work = true;
6730 	}
6731 
6732 	if (hba->errors & UIC_ERROR) {
6733 		hba->uic_error = 0;
6734 		retval = ufshcd_update_uic_error(hba);
6735 		if (hba->uic_error)
6736 			queue_eh_work = true;
6737 	}
6738 
6739 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6740 		dev_err(hba->dev,
6741 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6742 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6743 			"Enter" : "Exit",
6744 			hba->errors, ufshcd_get_upmcrs(hba));
6745 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6746 				       hba->errors);
6747 		ufshcd_set_link_broken(hba);
6748 		queue_eh_work = true;
6749 	}
6750 
6751 	if (queue_eh_work) {
6752 		/*
6753 		 * update the transfer error masks to sticky bits, let's do this
6754 		 * irrespective of current ufshcd_state.
6755 		 */
6756 		hba->saved_err |= hba->errors;
6757 		hba->saved_uic_err |= hba->uic_error;
6758 
6759 		/* dump controller state before resetting */
6760 		if ((hba->saved_err &
6761 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6762 		    (hba->saved_uic_err &&
6763 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6764 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6765 					__func__, hba->saved_err,
6766 					hba->saved_uic_err);
6767 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6768 					 "host_regs: ");
6769 			ufshcd_print_pwr_info(hba);
6770 		}
6771 		ufshcd_schedule_eh_work(hba);
6772 		retval |= IRQ_HANDLED;
6773 	}
6774 	/*
6775 	 * if (!queue_eh_work) -
6776 	 * Other errors are either non-fatal where host recovers
6777 	 * itself without s/w intervention or errors that will be
6778 	 * handled by the SCSI core layer.
6779 	 */
6780 	hba->errors = 0;
6781 	hba->uic_error = 0;
6782 	spin_unlock(hba->host->host_lock);
6783 	return retval;
6784 }
6785 
6786 /**
6787  * ufshcd_tmc_handler - handle task management function completion
6788  * @hba: per adapter instance
6789  *
6790  * Returns
6791  *  IRQ_HANDLED - If interrupt is valid
6792  *  IRQ_NONE    - If invalid interrupt
6793  */
6794 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6795 {
6796 	unsigned long flags, pending, issued;
6797 	irqreturn_t ret = IRQ_NONE;
6798 	int tag;
6799 
6800 	spin_lock_irqsave(hba->host->host_lock, flags);
6801 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6802 	issued = hba->outstanding_tasks & ~pending;
6803 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6804 		struct request *req = hba->tmf_rqs[tag];
6805 		struct completion *c = req->end_io_data;
6806 
6807 		complete(c);
6808 		ret = IRQ_HANDLED;
6809 	}
6810 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6811 
6812 	return ret;
6813 }
6814 
6815 /**
6816  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6817  * @hba: per adapter instance
6818  *
6819  * Returns IRQ_HANDLED if interrupt is handled
6820  */
6821 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6822 {
6823 	struct ufs_hw_queue *hwq;
6824 	unsigned long outstanding_cqs;
6825 	unsigned int nr_queues;
6826 	int i, ret;
6827 	u32 events;
6828 
6829 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6830 	if (ret)
6831 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6832 
6833 	/* Exclude the poll queues */
6834 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6835 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6836 		hwq = &hba->uhq[i];
6837 
6838 		events = ufshcd_mcq_read_cqis(hba, i);
6839 		if (events)
6840 			ufshcd_mcq_write_cqis(hba, events, i);
6841 
6842 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6843 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6844 	}
6845 
6846 	return IRQ_HANDLED;
6847 }
6848 
6849 /**
6850  * ufshcd_sl_intr - Interrupt service routine
6851  * @hba: per adapter instance
6852  * @intr_status: contains interrupts generated by the controller
6853  *
6854  * Returns
6855  *  IRQ_HANDLED - If interrupt is valid
6856  *  IRQ_NONE    - If invalid interrupt
6857  */
6858 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6859 {
6860 	irqreturn_t retval = IRQ_NONE;
6861 
6862 	if (intr_status & UFSHCD_UIC_MASK)
6863 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6864 
6865 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6866 		retval |= ufshcd_check_errors(hba, intr_status);
6867 
6868 	if (intr_status & UTP_TASK_REQ_COMPL)
6869 		retval |= ufshcd_tmc_handler(hba);
6870 
6871 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6872 		retval |= ufshcd_transfer_req_compl(hba);
6873 
6874 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6875 		retval |= ufshcd_handle_mcq_cq_events(hba);
6876 
6877 	return retval;
6878 }
6879 
6880 /**
6881  * ufshcd_intr - Main interrupt service routine
6882  * @irq: irq number
6883  * @__hba: pointer to adapter instance
6884  *
6885  * Returns
6886  *  IRQ_HANDLED - If interrupt is valid
6887  *  IRQ_NONE    - If invalid interrupt
6888  */
6889 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6890 {
6891 	u32 intr_status, enabled_intr_status = 0;
6892 	irqreturn_t retval = IRQ_NONE;
6893 	struct ufs_hba *hba = __hba;
6894 	int retries = hba->nutrs;
6895 
6896 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6897 	hba->ufs_stats.last_intr_status = intr_status;
6898 	hba->ufs_stats.last_intr_ts = local_clock();
6899 
6900 	/*
6901 	 * There could be max of hba->nutrs reqs in flight and in worst case
6902 	 * if the reqs get finished 1 by 1 after the interrupt status is
6903 	 * read, make sure we handle them by checking the interrupt status
6904 	 * again in a loop until we process all of the reqs before returning.
6905 	 */
6906 	while (intr_status && retries--) {
6907 		enabled_intr_status =
6908 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6909 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6910 		if (enabled_intr_status)
6911 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6912 
6913 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6914 	}
6915 
6916 	if (enabled_intr_status && retval == IRQ_NONE &&
6917 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6918 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6919 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6920 					__func__,
6921 					intr_status,
6922 					hba->ufs_stats.last_intr_status,
6923 					enabled_intr_status);
6924 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6925 	}
6926 
6927 	return retval;
6928 }
6929 
6930 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6931 {
6932 	int err = 0;
6933 	u32 mask = 1 << tag;
6934 	unsigned long flags;
6935 
6936 	if (!test_bit(tag, &hba->outstanding_tasks))
6937 		goto out;
6938 
6939 	spin_lock_irqsave(hba->host->host_lock, flags);
6940 	ufshcd_utmrl_clear(hba, tag);
6941 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6942 
6943 	/* poll for max. 1 sec to clear door bell register by h/w */
6944 	err = ufshcd_wait_for_register(hba,
6945 			REG_UTP_TASK_REQ_DOOR_BELL,
6946 			mask, 0, 1000, 1000);
6947 
6948 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6949 		tag, err ? "succeeded" : "failed");
6950 
6951 out:
6952 	return err;
6953 }
6954 
6955 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6956 		struct utp_task_req_desc *treq, u8 tm_function)
6957 {
6958 	struct request_queue *q = hba->tmf_queue;
6959 	struct Scsi_Host *host = hba->host;
6960 	DECLARE_COMPLETION_ONSTACK(wait);
6961 	struct request *req;
6962 	unsigned long flags;
6963 	int task_tag, err;
6964 
6965 	/*
6966 	 * blk_mq_alloc_request() is used here only to get a free tag.
6967 	 */
6968 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6969 	if (IS_ERR(req))
6970 		return PTR_ERR(req);
6971 
6972 	req->end_io_data = &wait;
6973 	ufshcd_hold(hba);
6974 
6975 	spin_lock_irqsave(host->host_lock, flags);
6976 
6977 	task_tag = req->tag;
6978 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6979 		  task_tag);
6980 	hba->tmf_rqs[req->tag] = req;
6981 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6982 
6983 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6984 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6985 
6986 	/* send command to the controller */
6987 	__set_bit(task_tag, &hba->outstanding_tasks);
6988 
6989 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6990 	/* Make sure that doorbell is committed immediately */
6991 	wmb();
6992 
6993 	spin_unlock_irqrestore(host->host_lock, flags);
6994 
6995 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6996 
6997 	/* wait until the task management command is completed */
6998 	err = wait_for_completion_io_timeout(&wait,
6999 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7000 	if (!err) {
7001 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7002 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7003 				__func__, tm_function);
7004 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7005 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7006 					__func__, task_tag);
7007 		err = -ETIMEDOUT;
7008 	} else {
7009 		err = 0;
7010 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7011 
7012 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7013 	}
7014 
7015 	spin_lock_irqsave(hba->host->host_lock, flags);
7016 	hba->tmf_rqs[req->tag] = NULL;
7017 	__clear_bit(task_tag, &hba->outstanding_tasks);
7018 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7019 
7020 	ufshcd_release(hba);
7021 	blk_mq_free_request(req);
7022 
7023 	return err;
7024 }
7025 
7026 /**
7027  * ufshcd_issue_tm_cmd - issues task management commands to controller
7028  * @hba: per adapter instance
7029  * @lun_id: LUN ID to which TM command is sent
7030  * @task_id: task ID to which the TM command is applicable
7031  * @tm_function: task management function opcode
7032  * @tm_response: task management service response return value
7033  *
7034  * Returns non-zero value on error, zero on success.
7035  */
7036 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7037 		u8 tm_function, u8 *tm_response)
7038 {
7039 	struct utp_task_req_desc treq = { { 0 }, };
7040 	enum utp_ocs ocs_value;
7041 	int err;
7042 
7043 	/* Configure task request descriptor */
7044 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7045 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7046 
7047 	/* Configure task request UPIU */
7048 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
7049 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
7050 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
7051 
7052 	/*
7053 	 * The host shall provide the same value for LUN field in the basic
7054 	 * header and for Input Parameter.
7055 	 */
7056 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7057 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7058 
7059 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7060 	if (err == -ETIMEDOUT)
7061 		return err;
7062 
7063 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7064 	if (ocs_value != OCS_SUCCESS)
7065 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7066 				__func__, ocs_value);
7067 	else if (tm_response)
7068 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7069 				MASK_TM_SERVICE_RESP;
7070 	return err;
7071 }
7072 
7073 /**
7074  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7075  * @hba:	per-adapter instance
7076  * @req_upiu:	upiu request
7077  * @rsp_upiu:	upiu reply
7078  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7079  * @buff_len:	descriptor size, 0 if NA
7080  * @cmd_type:	specifies the type (NOP, Query...)
7081  * @desc_op:	descriptor operation
7082  *
7083  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7084  * Therefore, it "rides" the device management infrastructure: uses its tag and
7085  * tasks work queues.
7086  *
7087  * Since there is only one available tag for device management commands,
7088  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7089  */
7090 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7091 					struct utp_upiu_req *req_upiu,
7092 					struct utp_upiu_req *rsp_upiu,
7093 					u8 *desc_buff, int *buff_len,
7094 					enum dev_cmd_type cmd_type,
7095 					enum query_opcode desc_op)
7096 {
7097 	DECLARE_COMPLETION_ONSTACK(wait);
7098 	const u32 tag = hba->reserved_slot;
7099 	struct ufshcd_lrb *lrbp;
7100 	int err = 0;
7101 	u8 upiu_flags;
7102 
7103 	/* Protects use of hba->reserved_slot. */
7104 	lockdep_assert_held(&hba->dev_cmd.lock);
7105 
7106 	down_read(&hba->clk_scaling_lock);
7107 
7108 	lrbp = &hba->lrb[tag];
7109 	WARN_ON(lrbp->cmd);
7110 	lrbp->cmd = NULL;
7111 	lrbp->task_tag = tag;
7112 	lrbp->lun = 0;
7113 	lrbp->intr_cmd = true;
7114 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7115 	hba->dev_cmd.type = cmd_type;
7116 
7117 	if (hba->ufs_version <= ufshci_version(1, 1))
7118 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7119 	else
7120 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7121 
7122 	/* update the task tag in the request upiu */
7123 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
7124 
7125 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7126 
7127 	/* just copy the upiu request as it is */
7128 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7129 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7130 		/* The Data Segment Area is optional depending upon the query
7131 		 * function value. for WRITE DESCRIPTOR, the data segment
7132 		 * follows right after the tsf.
7133 		 */
7134 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7135 		*buff_len = 0;
7136 	}
7137 
7138 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7139 
7140 	hba->dev_cmd.complete = &wait;
7141 
7142 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7143 
7144 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7145 	/*
7146 	 * ignore the returning value here - ufshcd_check_query_response is
7147 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7148 	 * read the response directly ignoring all errors.
7149 	 */
7150 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7151 
7152 	/* just copy the upiu response as it is */
7153 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7154 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7155 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7156 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
7157 			       MASK_QUERY_DATA_SEG_LEN;
7158 
7159 		if (*buff_len >= resp_len) {
7160 			memcpy(desc_buff, descp, resp_len);
7161 			*buff_len = resp_len;
7162 		} else {
7163 			dev_warn(hba->dev,
7164 				 "%s: rsp size %d is bigger than buffer size %d",
7165 				 __func__, resp_len, *buff_len);
7166 			*buff_len = 0;
7167 			err = -EINVAL;
7168 		}
7169 	}
7170 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7171 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7172 
7173 	up_read(&hba->clk_scaling_lock);
7174 	return err;
7175 }
7176 
7177 /**
7178  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7179  * @hba:	per-adapter instance
7180  * @req_upiu:	upiu request
7181  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7182  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7183  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7184  * @buff_len:	descriptor size, 0 if NA
7185  * @desc_op:	descriptor operation
7186  *
7187  * Supports UTP Transfer requests (nop and query), and UTP Task
7188  * Management requests.
7189  * It is up to the caller to fill the upiu conent properly, as it will
7190  * be copied without any further input validations.
7191  */
7192 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7193 			     struct utp_upiu_req *req_upiu,
7194 			     struct utp_upiu_req *rsp_upiu,
7195 			     int msgcode,
7196 			     u8 *desc_buff, int *buff_len,
7197 			     enum query_opcode desc_op)
7198 {
7199 	int err;
7200 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7201 	struct utp_task_req_desc treq = { { 0 }, };
7202 	enum utp_ocs ocs_value;
7203 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
7204 
7205 	switch (msgcode) {
7206 	case UPIU_TRANSACTION_NOP_OUT:
7207 		cmd_type = DEV_CMD_TYPE_NOP;
7208 		fallthrough;
7209 	case UPIU_TRANSACTION_QUERY_REQ:
7210 		ufshcd_hold(hba);
7211 		mutex_lock(&hba->dev_cmd.lock);
7212 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7213 						   desc_buff, buff_len,
7214 						   cmd_type, desc_op);
7215 		mutex_unlock(&hba->dev_cmd.lock);
7216 		ufshcd_release(hba);
7217 
7218 		break;
7219 	case UPIU_TRANSACTION_TASK_REQ:
7220 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7221 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7222 
7223 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7224 
7225 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7226 		if (err == -ETIMEDOUT)
7227 			break;
7228 
7229 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7230 		if (ocs_value != OCS_SUCCESS) {
7231 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7232 				ocs_value);
7233 			break;
7234 		}
7235 
7236 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7237 
7238 		break;
7239 	default:
7240 		err = -EINVAL;
7241 
7242 		break;
7243 	}
7244 
7245 	return err;
7246 }
7247 
7248 /**
7249  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7250  * @hba:	per adapter instance
7251  * @req_upiu:	upiu request
7252  * @rsp_upiu:	upiu reply
7253  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7254  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7255  * @sg_cnt:	The number of sg lists actually used
7256  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7257  * @dir:	DMA direction
7258  *
7259  * Returns zero on success, non-zero on failure
7260  */
7261 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7262 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7263 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7264 			 enum dma_data_direction dir)
7265 {
7266 	DECLARE_COMPLETION_ONSTACK(wait);
7267 	const u32 tag = hba->reserved_slot;
7268 	struct ufshcd_lrb *lrbp;
7269 	int err = 0;
7270 	int result;
7271 	u8 upiu_flags;
7272 	u8 *ehs_data;
7273 	u16 ehs_len;
7274 
7275 	/* Protects use of hba->reserved_slot. */
7276 	ufshcd_hold(hba);
7277 	mutex_lock(&hba->dev_cmd.lock);
7278 	down_read(&hba->clk_scaling_lock);
7279 
7280 	lrbp = &hba->lrb[tag];
7281 	WARN_ON(lrbp->cmd);
7282 	lrbp->cmd = NULL;
7283 	lrbp->task_tag = tag;
7284 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7285 
7286 	lrbp->intr_cmd = true;
7287 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7288 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7289 
7290 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7291 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7292 
7293 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7294 
7295 	/* update the task tag and LUN in the request upiu */
7296 	req_upiu->header.dword_0 |= cpu_to_be32(upiu_flags << 16 | UFS_UPIU_RPMB_WLUN << 8 | tag);
7297 
7298 	/* copy the UPIU(contains CDB) request as it is */
7299 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7300 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7301 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7302 
7303 	if (dir != DMA_NONE && sg_list)
7304 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7305 
7306 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7307 
7308 	hba->dev_cmd.complete = &wait;
7309 
7310 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7311 
7312 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7313 
7314 	if (!err) {
7315 		/* Just copy the upiu response as it is */
7316 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7317 		/* Get the response UPIU result */
7318 		result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
7319 
7320 		ehs_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) >> 24;
7321 		/*
7322 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7323 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7324 		 * Message is 02h
7325 		 */
7326 		if (ehs_len == 2 && rsp_ehs) {
7327 			/*
7328 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7329 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7330 			 */
7331 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7332 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7333 		}
7334 	}
7335 
7336 	up_read(&hba->clk_scaling_lock);
7337 	mutex_unlock(&hba->dev_cmd.lock);
7338 	ufshcd_release(hba);
7339 	return err ? : result;
7340 }
7341 
7342 /**
7343  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7344  * @cmd: SCSI command pointer
7345  *
7346  * Returns SUCCESS/FAILED
7347  */
7348 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7349 {
7350 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7351 	struct Scsi_Host *host;
7352 	struct ufs_hba *hba;
7353 	struct ufs_hw_queue *hwq;
7354 	struct ufshcd_lrb *lrbp;
7355 	u32 pos, not_cleared_mask = 0;
7356 	int err;
7357 	u8 resp = 0xF, lun;
7358 
7359 	host = cmd->device->host;
7360 	hba = shost_priv(host);
7361 
7362 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7363 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7364 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7365 		if (!err)
7366 			err = resp;
7367 		goto out;
7368 	}
7369 
7370 	if (is_mcq_enabled(hba)) {
7371 		for (pos = 0; pos < hba->nutrs; pos++) {
7372 			lrbp = &hba->lrb[pos];
7373 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7374 			    lrbp->lun == lun) {
7375 				ufshcd_clear_cmd(hba, pos);
7376 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7377 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7378 			}
7379 		}
7380 		err = 0;
7381 		goto out;
7382 	}
7383 
7384 	/* clear the commands that were pending for corresponding LUN */
7385 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7386 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7387 		if (hba->lrb[pos].lun == lun)
7388 			__set_bit(pos, &pending_reqs);
7389 	hba->outstanding_reqs &= ~pending_reqs;
7390 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7391 
7392 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7393 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7394 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7395 			not_cleared = 1U << pos &
7396 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7397 			hba->outstanding_reqs |= not_cleared;
7398 			not_cleared_mask |= not_cleared;
7399 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7400 
7401 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7402 				__func__, pos);
7403 		}
7404 	}
7405 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7406 
7407 out:
7408 	hba->req_abort_count = 0;
7409 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7410 	if (!err) {
7411 		err = SUCCESS;
7412 	} else {
7413 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7414 		err = FAILED;
7415 	}
7416 	return err;
7417 }
7418 
7419 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7420 {
7421 	struct ufshcd_lrb *lrbp;
7422 	int tag;
7423 
7424 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7425 		lrbp = &hba->lrb[tag];
7426 		lrbp->req_abort_skip = true;
7427 	}
7428 }
7429 
7430 /**
7431  * ufshcd_try_to_abort_task - abort a specific task
7432  * @hba: Pointer to adapter instance
7433  * @tag: Task tag/index to be aborted
7434  *
7435  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7436  * command, and in host controller by clearing the door-bell register. There can
7437  * be race between controller sending the command to the device while abort is
7438  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7439  * really issued and then try to abort it.
7440  *
7441  * Returns zero on success, non-zero on failure
7442  */
7443 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7444 {
7445 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7446 	int err = 0;
7447 	int poll_cnt;
7448 	u8 resp = 0xF;
7449 	u32 reg;
7450 
7451 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7452 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7453 				UFS_QUERY_TASK, &resp);
7454 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7455 			/* cmd pending in the device */
7456 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7457 				__func__, tag);
7458 			break;
7459 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7460 			/*
7461 			 * cmd not pending in the device, check if it is
7462 			 * in transition.
7463 			 */
7464 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7465 				__func__, tag);
7466 			if (is_mcq_enabled(hba)) {
7467 				/* MCQ mode */
7468 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7469 					/* sleep for max. 200us same delay as in SDB mode */
7470 					usleep_range(100, 200);
7471 					continue;
7472 				}
7473 				/* command completed already */
7474 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7475 					__func__, tag);
7476 				goto out;
7477 			}
7478 
7479 			/* Single Doorbell Mode */
7480 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7481 			if (reg & (1 << tag)) {
7482 				/* sleep for max. 200us to stabilize */
7483 				usleep_range(100, 200);
7484 				continue;
7485 			}
7486 			/* command completed already */
7487 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7488 				__func__, tag);
7489 			goto out;
7490 		} else {
7491 			dev_err(hba->dev,
7492 				"%s: no response from device. tag = %d, err %d\n",
7493 				__func__, tag, err);
7494 			if (!err)
7495 				err = resp; /* service response error */
7496 			goto out;
7497 		}
7498 	}
7499 
7500 	if (!poll_cnt) {
7501 		err = -EBUSY;
7502 		goto out;
7503 	}
7504 
7505 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7506 			UFS_ABORT_TASK, &resp);
7507 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7508 		if (!err) {
7509 			err = resp; /* service response error */
7510 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7511 				__func__, tag, err);
7512 		}
7513 		goto out;
7514 	}
7515 
7516 	err = ufshcd_clear_cmd(hba, tag);
7517 	if (err)
7518 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7519 			__func__, tag, err);
7520 
7521 out:
7522 	return err;
7523 }
7524 
7525 /**
7526  * ufshcd_abort - scsi host template eh_abort_handler callback
7527  * @cmd: SCSI command pointer
7528  *
7529  * Returns SUCCESS/FAILED
7530  */
7531 static int ufshcd_abort(struct scsi_cmnd *cmd)
7532 {
7533 	struct Scsi_Host *host = cmd->device->host;
7534 	struct ufs_hba *hba = shost_priv(host);
7535 	int tag = scsi_cmd_to_rq(cmd)->tag;
7536 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7537 	unsigned long flags;
7538 	int err = FAILED;
7539 	bool outstanding;
7540 	u32 reg;
7541 
7542 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7543 
7544 	ufshcd_hold(hba);
7545 
7546 	if (!is_mcq_enabled(hba)) {
7547 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7548 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7549 			/* If command is already aborted/completed, return FAILED. */
7550 			dev_err(hba->dev,
7551 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7552 				__func__, tag, hba->outstanding_reqs, reg);
7553 			goto release;
7554 		}
7555 	}
7556 
7557 	/* Print Transfer Request of aborted task */
7558 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7559 
7560 	/*
7561 	 * Print detailed info about aborted request.
7562 	 * As more than one request might get aborted at the same time,
7563 	 * print full information only for the first aborted request in order
7564 	 * to reduce repeated printouts. For other aborted requests only print
7565 	 * basic details.
7566 	 */
7567 	scsi_print_command(cmd);
7568 	if (!hba->req_abort_count) {
7569 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7570 		ufshcd_print_evt_hist(hba);
7571 		ufshcd_print_host_state(hba);
7572 		ufshcd_print_pwr_info(hba);
7573 		ufshcd_print_tr(hba, tag, true);
7574 	} else {
7575 		ufshcd_print_tr(hba, tag, false);
7576 	}
7577 	hba->req_abort_count++;
7578 
7579 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7580 		/* only execute this code in single doorbell mode */
7581 		dev_err(hba->dev,
7582 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7583 		__func__, tag);
7584 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7585 		goto release;
7586 	}
7587 
7588 	/*
7589 	 * Task abort to the device W-LUN is illegal. When this command
7590 	 * will fail, due to spec violation, scsi err handling next step
7591 	 * will be to send LU reset which, again, is a spec violation.
7592 	 * To avoid these unnecessary/illegal steps, first we clean up
7593 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7594 	 * then queue the eh_work and bail.
7595 	 */
7596 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7597 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7598 
7599 		spin_lock_irqsave(host->host_lock, flags);
7600 		hba->force_reset = true;
7601 		ufshcd_schedule_eh_work(hba);
7602 		spin_unlock_irqrestore(host->host_lock, flags);
7603 		goto release;
7604 	}
7605 
7606 	if (is_mcq_enabled(hba)) {
7607 		/* MCQ mode. Branch off to handle abort for mcq mode */
7608 		err = ufshcd_mcq_abort(cmd);
7609 		goto release;
7610 	}
7611 
7612 	/* Skip task abort in case previous aborts failed and report failure */
7613 	if (lrbp->req_abort_skip) {
7614 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7615 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7616 		goto release;
7617 	}
7618 
7619 	err = ufshcd_try_to_abort_task(hba, tag);
7620 	if (err) {
7621 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7622 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7623 		err = FAILED;
7624 		goto release;
7625 	}
7626 
7627 	/*
7628 	 * Clear the corresponding bit from outstanding_reqs since the command
7629 	 * has been aborted successfully.
7630 	 */
7631 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7632 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7633 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7634 
7635 	if (outstanding)
7636 		ufshcd_release_scsi_cmd(hba, lrbp);
7637 
7638 	err = SUCCESS;
7639 
7640 release:
7641 	/* Matches the ufshcd_hold() call at the start of this function. */
7642 	ufshcd_release(hba);
7643 	return err;
7644 }
7645 
7646 /**
7647  * ufshcd_host_reset_and_restore - reset and restore host controller
7648  * @hba: per-adapter instance
7649  *
7650  * Note that host controller reset may issue DME_RESET to
7651  * local and remote (device) Uni-Pro stack and the attributes
7652  * are reset to default state.
7653  *
7654  * Returns zero on success, non-zero on failure
7655  */
7656 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7657 {
7658 	int err;
7659 
7660 	/*
7661 	 * Stop the host controller and complete the requests
7662 	 * cleared by h/w
7663 	 */
7664 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7665 	ufshcd_hba_stop(hba);
7666 	hba->silence_err_logs = true;
7667 	ufshcd_complete_requests(hba, true);
7668 	hba->silence_err_logs = false;
7669 
7670 	/* scale up clocks to max frequency before full reinitialization */
7671 	ufshcd_scale_clks(hba, true);
7672 
7673 	err = ufshcd_hba_enable(hba);
7674 
7675 	/* Establish the link again and restore the device */
7676 	if (!err)
7677 		err = ufshcd_probe_hba(hba, false);
7678 
7679 	if (err)
7680 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7681 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7682 	return err;
7683 }
7684 
7685 /**
7686  * ufshcd_reset_and_restore - reset and re-initialize host/device
7687  * @hba: per-adapter instance
7688  *
7689  * Reset and recover device, host and re-establish link. This
7690  * is helpful to recover the communication in fatal error conditions.
7691  *
7692  * Returns zero on success, non-zero on failure
7693  */
7694 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7695 {
7696 	u32 saved_err = 0;
7697 	u32 saved_uic_err = 0;
7698 	int err = 0;
7699 	unsigned long flags;
7700 	int retries = MAX_HOST_RESET_RETRIES;
7701 
7702 	spin_lock_irqsave(hba->host->host_lock, flags);
7703 	do {
7704 		/*
7705 		 * This is a fresh start, cache and clear saved error first,
7706 		 * in case new error generated during reset and restore.
7707 		 */
7708 		saved_err |= hba->saved_err;
7709 		saved_uic_err |= hba->saved_uic_err;
7710 		hba->saved_err = 0;
7711 		hba->saved_uic_err = 0;
7712 		hba->force_reset = false;
7713 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7714 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7715 
7716 		/* Reset the attached device */
7717 		ufshcd_device_reset(hba);
7718 
7719 		err = ufshcd_host_reset_and_restore(hba);
7720 
7721 		spin_lock_irqsave(hba->host->host_lock, flags);
7722 		if (err)
7723 			continue;
7724 		/* Do not exit unless operational or dead */
7725 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7726 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7727 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7728 			err = -EAGAIN;
7729 	} while (err && --retries);
7730 
7731 	/*
7732 	 * Inform scsi mid-layer that we did reset and allow to handle
7733 	 * Unit Attention properly.
7734 	 */
7735 	scsi_report_bus_reset(hba->host, 0);
7736 	if (err) {
7737 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7738 		hba->saved_err |= saved_err;
7739 		hba->saved_uic_err |= saved_uic_err;
7740 	}
7741 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7742 
7743 	return err;
7744 }
7745 
7746 /**
7747  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7748  * @cmd: SCSI command pointer
7749  *
7750  * Returns SUCCESS/FAILED
7751  */
7752 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7753 {
7754 	int err = SUCCESS;
7755 	unsigned long flags;
7756 	struct ufs_hba *hba;
7757 
7758 	hba = shost_priv(cmd->device->host);
7759 
7760 	spin_lock_irqsave(hba->host->host_lock, flags);
7761 	hba->force_reset = true;
7762 	ufshcd_schedule_eh_work(hba);
7763 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7764 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7765 
7766 	flush_work(&hba->eh_work);
7767 
7768 	spin_lock_irqsave(hba->host->host_lock, flags);
7769 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7770 		err = FAILED;
7771 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7772 
7773 	return err;
7774 }
7775 
7776 /**
7777  * ufshcd_get_max_icc_level - calculate the ICC level
7778  * @sup_curr_uA: max. current supported by the regulator
7779  * @start_scan: row at the desc table to start scan from
7780  * @buff: power descriptor buffer
7781  *
7782  * Returns calculated max ICC level for specific regulator
7783  */
7784 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7785 				    const char *buff)
7786 {
7787 	int i;
7788 	int curr_uA;
7789 	u16 data;
7790 	u16 unit;
7791 
7792 	for (i = start_scan; i >= 0; i--) {
7793 		data = get_unaligned_be16(&buff[2 * i]);
7794 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7795 						ATTR_ICC_LVL_UNIT_OFFSET;
7796 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7797 		switch (unit) {
7798 		case UFSHCD_NANO_AMP:
7799 			curr_uA = curr_uA / 1000;
7800 			break;
7801 		case UFSHCD_MILI_AMP:
7802 			curr_uA = curr_uA * 1000;
7803 			break;
7804 		case UFSHCD_AMP:
7805 			curr_uA = curr_uA * 1000 * 1000;
7806 			break;
7807 		case UFSHCD_MICRO_AMP:
7808 		default:
7809 			break;
7810 		}
7811 		if (sup_curr_uA >= curr_uA)
7812 			break;
7813 	}
7814 	if (i < 0) {
7815 		i = 0;
7816 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7817 	}
7818 
7819 	return (u32)i;
7820 }
7821 
7822 /**
7823  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7824  * In case regulators are not initialized we'll return 0
7825  * @hba: per-adapter instance
7826  * @desc_buf: power descriptor buffer to extract ICC levels from.
7827  *
7828  * Returns calculated ICC level
7829  */
7830 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7831 						const u8 *desc_buf)
7832 {
7833 	u32 icc_level = 0;
7834 
7835 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7836 						!hba->vreg_info.vccq2) {
7837 		/*
7838 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7839 		 * never-ending cycles of messages written back to storage by
7840 		 * user space causing runtime resume, causing more messages and
7841 		 * so on.
7842 		 */
7843 		dev_dbg(hba->dev,
7844 			"%s: Regulator capability was not set, actvIccLevel=%d",
7845 							__func__, icc_level);
7846 		goto out;
7847 	}
7848 
7849 	if (hba->vreg_info.vcc->max_uA)
7850 		icc_level = ufshcd_get_max_icc_level(
7851 				hba->vreg_info.vcc->max_uA,
7852 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7853 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7854 
7855 	if (hba->vreg_info.vccq->max_uA)
7856 		icc_level = ufshcd_get_max_icc_level(
7857 				hba->vreg_info.vccq->max_uA,
7858 				icc_level,
7859 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7860 
7861 	if (hba->vreg_info.vccq2->max_uA)
7862 		icc_level = ufshcd_get_max_icc_level(
7863 				hba->vreg_info.vccq2->max_uA,
7864 				icc_level,
7865 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7866 out:
7867 	return icc_level;
7868 }
7869 
7870 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7871 {
7872 	int ret;
7873 	u8 *desc_buf;
7874 	u32 icc_level;
7875 
7876 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7877 	if (!desc_buf)
7878 		return;
7879 
7880 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7881 				     desc_buf, QUERY_DESC_MAX_SIZE);
7882 	if (ret) {
7883 		dev_err(hba->dev,
7884 			"%s: Failed reading power descriptor ret = %d",
7885 			__func__, ret);
7886 		goto out;
7887 	}
7888 
7889 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7890 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7891 
7892 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7893 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7894 
7895 	if (ret)
7896 		dev_err(hba->dev,
7897 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7898 			__func__, icc_level, ret);
7899 
7900 out:
7901 	kfree(desc_buf);
7902 }
7903 
7904 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7905 {
7906 	scsi_autopm_get_device(sdev);
7907 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7908 	if (sdev->rpm_autosuspend)
7909 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7910 						 RPM_AUTOSUSPEND_DELAY_MS);
7911 	scsi_autopm_put_device(sdev);
7912 }
7913 
7914 /**
7915  * ufshcd_scsi_add_wlus - Adds required W-LUs
7916  * @hba: per-adapter instance
7917  *
7918  * UFS device specification requires the UFS devices to support 4 well known
7919  * logical units:
7920  *	"REPORT_LUNS" (address: 01h)
7921  *	"UFS Device" (address: 50h)
7922  *	"RPMB" (address: 44h)
7923  *	"BOOT" (address: 30h)
7924  * UFS device's power management needs to be controlled by "POWER CONDITION"
7925  * field of SSU (START STOP UNIT) command. But this "power condition" field
7926  * will take effect only when its sent to "UFS device" well known logical unit
7927  * hence we require the scsi_device instance to represent this logical unit in
7928  * order for the UFS host driver to send the SSU command for power management.
7929  *
7930  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7931  * Block) LU so user space process can control this LU. User space may also
7932  * want to have access to BOOT LU.
7933  *
7934  * This function adds scsi device instances for each of all well known LUs
7935  * (except "REPORT LUNS" LU).
7936  *
7937  * Returns zero on success (all required W-LUs are added successfully),
7938  * non-zero error value on failure (if failed to add any of the required W-LU).
7939  */
7940 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7941 {
7942 	int ret = 0;
7943 	struct scsi_device *sdev_boot, *sdev_rpmb;
7944 
7945 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7946 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7947 	if (IS_ERR(hba->ufs_device_wlun)) {
7948 		ret = PTR_ERR(hba->ufs_device_wlun);
7949 		hba->ufs_device_wlun = NULL;
7950 		goto out;
7951 	}
7952 	scsi_device_put(hba->ufs_device_wlun);
7953 
7954 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7955 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7956 	if (IS_ERR(sdev_rpmb)) {
7957 		ret = PTR_ERR(sdev_rpmb);
7958 		goto remove_ufs_device_wlun;
7959 	}
7960 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7961 	scsi_device_put(sdev_rpmb);
7962 
7963 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7964 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7965 	if (IS_ERR(sdev_boot)) {
7966 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7967 	} else {
7968 		ufshcd_blk_pm_runtime_init(sdev_boot);
7969 		scsi_device_put(sdev_boot);
7970 	}
7971 	goto out;
7972 
7973 remove_ufs_device_wlun:
7974 	scsi_remove_device(hba->ufs_device_wlun);
7975 out:
7976 	return ret;
7977 }
7978 
7979 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7980 {
7981 	struct ufs_dev_info *dev_info = &hba->dev_info;
7982 	u8 lun;
7983 	u32 d_lu_wb_buf_alloc;
7984 	u32 ext_ufs_feature;
7985 
7986 	if (!ufshcd_is_wb_allowed(hba))
7987 		return;
7988 
7989 	/*
7990 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7991 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7992 	 * enabled
7993 	 */
7994 	if (!(dev_info->wspecversion >= 0x310 ||
7995 	      dev_info->wspecversion == 0x220 ||
7996 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7997 		goto wb_disabled;
7998 
7999 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8000 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8001 
8002 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8003 		goto wb_disabled;
8004 
8005 	/*
8006 	 * WB may be supported but not configured while provisioning. The spec
8007 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8008 	 * buffer configured.
8009 	 */
8010 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8011 
8012 	dev_info->b_presrv_uspc_en =
8013 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8014 
8015 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8016 		if (!get_unaligned_be32(desc_buf +
8017 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8018 			goto wb_disabled;
8019 	} else {
8020 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8021 			d_lu_wb_buf_alloc = 0;
8022 			ufshcd_read_unit_desc_param(hba,
8023 					lun,
8024 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8025 					(u8 *)&d_lu_wb_buf_alloc,
8026 					sizeof(d_lu_wb_buf_alloc));
8027 			if (d_lu_wb_buf_alloc) {
8028 				dev_info->wb_dedicated_lu = lun;
8029 				break;
8030 			}
8031 		}
8032 
8033 		if (!d_lu_wb_buf_alloc)
8034 			goto wb_disabled;
8035 	}
8036 
8037 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8038 		goto wb_disabled;
8039 
8040 	return;
8041 
8042 wb_disabled:
8043 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8044 }
8045 
8046 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8047 {
8048 	struct ufs_dev_info *dev_info = &hba->dev_info;
8049 	u32 ext_ufs_feature;
8050 	u8 mask = 0;
8051 
8052 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8053 		return;
8054 
8055 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8056 
8057 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8058 		mask |= MASK_EE_TOO_LOW_TEMP;
8059 
8060 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8061 		mask |= MASK_EE_TOO_HIGH_TEMP;
8062 
8063 	if (mask) {
8064 		ufshcd_enable_ee(hba, mask);
8065 		ufs_hwmon_probe(hba, mask);
8066 	}
8067 }
8068 
8069 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8070 {
8071 	struct ufs_dev_info *dev_info = &hba->dev_info;
8072 	u32 ext_ufs_feature;
8073 	u32 ext_iid_en = 0;
8074 	int err;
8075 
8076 	/* Only UFS-4.0 and above may support EXT_IID */
8077 	if (dev_info->wspecversion < 0x400)
8078 		goto out;
8079 
8080 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8081 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8082 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8083 		goto out;
8084 
8085 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8086 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8087 	if (err)
8088 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8089 
8090 out:
8091 	dev_info->b_ext_iid_en = ext_iid_en;
8092 }
8093 
8094 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8095 			     const struct ufs_dev_quirk *fixups)
8096 {
8097 	const struct ufs_dev_quirk *f;
8098 	struct ufs_dev_info *dev_info = &hba->dev_info;
8099 
8100 	if (!fixups)
8101 		return;
8102 
8103 	for (f = fixups; f->quirk; f++) {
8104 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8105 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8106 		     ((dev_info->model &&
8107 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8108 		      !strcmp(f->model, UFS_ANY_MODEL)))
8109 			hba->dev_quirks |= f->quirk;
8110 	}
8111 }
8112 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8113 
8114 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8115 {
8116 	/* fix by general quirk table */
8117 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8118 
8119 	/* allow vendors to fix quirks */
8120 	ufshcd_vops_fixup_dev_quirks(hba);
8121 }
8122 
8123 static int ufs_get_device_desc(struct ufs_hba *hba)
8124 {
8125 	int err;
8126 	u8 model_index;
8127 	u8 b_ufs_feature_sup;
8128 	u8 *desc_buf;
8129 	struct ufs_dev_info *dev_info = &hba->dev_info;
8130 
8131 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8132 	if (!desc_buf) {
8133 		err = -ENOMEM;
8134 		goto out;
8135 	}
8136 
8137 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8138 				     QUERY_DESC_MAX_SIZE);
8139 	if (err) {
8140 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8141 			__func__, err);
8142 		goto out;
8143 	}
8144 
8145 	/*
8146 	 * getting vendor (manufacturerID) and Bank Index in big endian
8147 	 * format
8148 	 */
8149 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8150 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8151 
8152 	/* getting Specification Version in big endian format */
8153 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8154 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8155 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8156 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
8157 
8158 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8159 
8160 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
8161 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
8162 		bool hpb_en = false;
8163 
8164 		ufshpb_get_dev_info(hba, desc_buf);
8165 
8166 		if (!ufshpb_is_legacy(hba))
8167 			err = ufshcd_query_flag_retry(hba,
8168 						      UPIU_QUERY_OPCODE_READ_FLAG,
8169 						      QUERY_FLAG_IDN_HPB_EN, 0,
8170 						      &hpb_en);
8171 
8172 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
8173 			dev_info->hpb_enabled = true;
8174 	}
8175 
8176 	err = ufshcd_read_string_desc(hba, model_index,
8177 				      &dev_info->model, SD_ASCII_STD);
8178 	if (err < 0) {
8179 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8180 			__func__, err);
8181 		goto out;
8182 	}
8183 
8184 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8185 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8186 
8187 	ufs_fixup_device_setup(hba);
8188 
8189 	ufshcd_wb_probe(hba, desc_buf);
8190 
8191 	ufshcd_temp_notif_probe(hba, desc_buf);
8192 
8193 	if (hba->ext_iid_sup)
8194 		ufshcd_ext_iid_probe(hba, desc_buf);
8195 
8196 	/*
8197 	 * ufshcd_read_string_desc returns size of the string
8198 	 * reset the error value
8199 	 */
8200 	err = 0;
8201 
8202 out:
8203 	kfree(desc_buf);
8204 	return err;
8205 }
8206 
8207 static void ufs_put_device_desc(struct ufs_hba *hba)
8208 {
8209 	struct ufs_dev_info *dev_info = &hba->dev_info;
8210 
8211 	kfree(dev_info->model);
8212 	dev_info->model = NULL;
8213 }
8214 
8215 /**
8216  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8217  * @hba: per-adapter instance
8218  *
8219  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8220  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8221  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8222  * the hibern8 exit latency.
8223  *
8224  * Returns zero on success, non-zero error value on failure.
8225  */
8226 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8227 {
8228 	int ret = 0;
8229 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8230 
8231 	ret = ufshcd_dme_peer_get(hba,
8232 				  UIC_ARG_MIB_SEL(
8233 					RX_MIN_ACTIVATETIME_CAPABILITY,
8234 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8235 				  &peer_rx_min_activatetime);
8236 	if (ret)
8237 		goto out;
8238 
8239 	/* make sure proper unit conversion is applied */
8240 	tuned_pa_tactivate =
8241 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8242 		 / PA_TACTIVATE_TIME_UNIT_US);
8243 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8244 			     tuned_pa_tactivate);
8245 
8246 out:
8247 	return ret;
8248 }
8249 
8250 /**
8251  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8252  * @hba: per-adapter instance
8253  *
8254  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8255  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8256  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8257  * This optimal value can help reduce the hibern8 exit latency.
8258  *
8259  * Returns zero on success, non-zero error value on failure.
8260  */
8261 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8262 {
8263 	int ret = 0;
8264 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8265 	u32 max_hibern8_time, tuned_pa_hibern8time;
8266 
8267 	ret = ufshcd_dme_get(hba,
8268 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8269 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8270 				  &local_tx_hibern8_time_cap);
8271 	if (ret)
8272 		goto out;
8273 
8274 	ret = ufshcd_dme_peer_get(hba,
8275 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8276 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8277 				  &peer_rx_hibern8_time_cap);
8278 	if (ret)
8279 		goto out;
8280 
8281 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8282 			       peer_rx_hibern8_time_cap);
8283 	/* make sure proper unit conversion is applied */
8284 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8285 				/ PA_HIBERN8_TIME_UNIT_US);
8286 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8287 			     tuned_pa_hibern8time);
8288 out:
8289 	return ret;
8290 }
8291 
8292 /**
8293  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8294  * less than device PA_TACTIVATE time.
8295  * @hba: per-adapter instance
8296  *
8297  * Some UFS devices require host PA_TACTIVATE to be lower than device
8298  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8299  * for such devices.
8300  *
8301  * Returns zero on success, non-zero error value on failure.
8302  */
8303 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8304 {
8305 	int ret = 0;
8306 	u32 granularity, peer_granularity;
8307 	u32 pa_tactivate, peer_pa_tactivate;
8308 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8309 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8310 
8311 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8312 				  &granularity);
8313 	if (ret)
8314 		goto out;
8315 
8316 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8317 				  &peer_granularity);
8318 	if (ret)
8319 		goto out;
8320 
8321 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8322 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8323 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8324 			__func__, granularity);
8325 		return -EINVAL;
8326 	}
8327 
8328 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8329 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8330 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8331 			__func__, peer_granularity);
8332 		return -EINVAL;
8333 	}
8334 
8335 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8336 	if (ret)
8337 		goto out;
8338 
8339 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8340 				  &peer_pa_tactivate);
8341 	if (ret)
8342 		goto out;
8343 
8344 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8345 	peer_pa_tactivate_us = peer_pa_tactivate *
8346 			     gran_to_us_table[peer_granularity - 1];
8347 
8348 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8349 		u32 new_peer_pa_tactivate;
8350 
8351 		new_peer_pa_tactivate = pa_tactivate_us /
8352 				      gran_to_us_table[peer_granularity - 1];
8353 		new_peer_pa_tactivate++;
8354 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8355 					  new_peer_pa_tactivate);
8356 	}
8357 
8358 out:
8359 	return ret;
8360 }
8361 
8362 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8363 {
8364 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8365 		ufshcd_tune_pa_tactivate(hba);
8366 		ufshcd_tune_pa_hibern8time(hba);
8367 	}
8368 
8369 	ufshcd_vops_apply_dev_quirks(hba);
8370 
8371 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8372 		/* set 1ms timeout for PA_TACTIVATE */
8373 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8374 
8375 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8376 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8377 }
8378 
8379 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8380 {
8381 	hba->ufs_stats.hibern8_exit_cnt = 0;
8382 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8383 	hba->req_abort_count = 0;
8384 }
8385 
8386 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8387 {
8388 	int err;
8389 	u8 *desc_buf;
8390 
8391 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8392 	if (!desc_buf) {
8393 		err = -ENOMEM;
8394 		goto out;
8395 	}
8396 
8397 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8398 				     desc_buf, QUERY_DESC_MAX_SIZE);
8399 	if (err) {
8400 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8401 				__func__, err);
8402 		goto out;
8403 	}
8404 
8405 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8406 		hba->dev_info.max_lu_supported = 32;
8407 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8408 		hba->dev_info.max_lu_supported = 8;
8409 
8410 	if (desc_buf[QUERY_DESC_LENGTH_OFFSET] >=
8411 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8412 		ufshpb_get_geo_info(hba, desc_buf);
8413 
8414 out:
8415 	kfree(desc_buf);
8416 	return err;
8417 }
8418 
8419 struct ufs_ref_clk {
8420 	unsigned long freq_hz;
8421 	enum ufs_ref_clk_freq val;
8422 };
8423 
8424 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8425 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8426 	{26000000, REF_CLK_FREQ_26_MHZ},
8427 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8428 	{52000000, REF_CLK_FREQ_52_MHZ},
8429 	{0, REF_CLK_FREQ_INVAL},
8430 };
8431 
8432 static enum ufs_ref_clk_freq
8433 ufs_get_bref_clk_from_hz(unsigned long freq)
8434 {
8435 	int i;
8436 
8437 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8438 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8439 			return ufs_ref_clk_freqs[i].val;
8440 
8441 	return REF_CLK_FREQ_INVAL;
8442 }
8443 
8444 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8445 {
8446 	unsigned long freq;
8447 
8448 	freq = clk_get_rate(refclk);
8449 
8450 	hba->dev_ref_clk_freq =
8451 		ufs_get_bref_clk_from_hz(freq);
8452 
8453 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8454 		dev_err(hba->dev,
8455 		"invalid ref_clk setting = %ld\n", freq);
8456 }
8457 
8458 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8459 {
8460 	int err;
8461 	u32 ref_clk;
8462 	u32 freq = hba->dev_ref_clk_freq;
8463 
8464 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8465 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8466 
8467 	if (err) {
8468 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8469 			err);
8470 		goto out;
8471 	}
8472 
8473 	if (ref_clk == freq)
8474 		goto out; /* nothing to update */
8475 
8476 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8477 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8478 
8479 	if (err) {
8480 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8481 			ufs_ref_clk_freqs[freq].freq_hz);
8482 		goto out;
8483 	}
8484 
8485 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8486 			ufs_ref_clk_freqs[freq].freq_hz);
8487 
8488 out:
8489 	return err;
8490 }
8491 
8492 static int ufshcd_device_params_init(struct ufs_hba *hba)
8493 {
8494 	bool flag;
8495 	int ret;
8496 
8497 	/* Init UFS geometry descriptor related parameters */
8498 	ret = ufshcd_device_geo_params_init(hba);
8499 	if (ret)
8500 		goto out;
8501 
8502 	/* Check and apply UFS device quirks */
8503 	ret = ufs_get_device_desc(hba);
8504 	if (ret) {
8505 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8506 			__func__, ret);
8507 		goto out;
8508 	}
8509 
8510 	ufshcd_get_ref_clk_gating_wait(hba);
8511 
8512 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8513 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8514 		hba->dev_info.f_power_on_wp_en = flag;
8515 
8516 	/* Probe maximum power mode co-supported by both UFS host and device */
8517 	if (ufshcd_get_max_pwr_mode(hba))
8518 		dev_err(hba->dev,
8519 			"%s: Failed getting max supported power mode\n",
8520 			__func__);
8521 out:
8522 	return ret;
8523 }
8524 
8525 /**
8526  * ufshcd_add_lus - probe and add UFS logical units
8527  * @hba: per-adapter instance
8528  */
8529 static int ufshcd_add_lus(struct ufs_hba *hba)
8530 {
8531 	int ret;
8532 
8533 	/* Add required well known logical units to scsi mid layer */
8534 	ret = ufshcd_scsi_add_wlus(hba);
8535 	if (ret)
8536 		goto out;
8537 
8538 	/* Initialize devfreq after UFS device is detected */
8539 	if (ufshcd_is_clkscaling_supported(hba)) {
8540 		memcpy(&hba->clk_scaling.saved_pwr_info,
8541 			&hba->pwr_info,
8542 			sizeof(struct ufs_pa_layer_attr));
8543 		hba->clk_scaling.is_allowed = true;
8544 
8545 		ret = ufshcd_devfreq_init(hba);
8546 		if (ret)
8547 			goto out;
8548 
8549 		hba->clk_scaling.is_enabled = true;
8550 		ufshcd_init_clk_scaling_sysfs(hba);
8551 	}
8552 
8553 	ufs_bsg_probe(hba);
8554 	ufshpb_init(hba);
8555 	scsi_scan_host(hba->host);
8556 	pm_runtime_put_sync(hba->dev);
8557 
8558 out:
8559 	return ret;
8560 }
8561 
8562 /* SDB - Single Doorbell */
8563 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8564 {
8565 	size_t ucdl_size, utrdl_size;
8566 
8567 	ucdl_size = sizeof(struct utp_transfer_cmd_desc) * nutrs;
8568 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8569 			   hba->ucdl_dma_addr);
8570 
8571 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8572 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8573 			   hba->utrdl_dma_addr);
8574 
8575 	devm_kfree(hba->dev, hba->lrb);
8576 }
8577 
8578 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8579 {
8580 	int ret;
8581 	int old_nutrs = hba->nutrs;
8582 
8583 	ret = ufshcd_mcq_decide_queue_depth(hba);
8584 	if (ret < 0)
8585 		return ret;
8586 
8587 	hba->nutrs = ret;
8588 	ret = ufshcd_mcq_init(hba);
8589 	if (ret)
8590 		goto err;
8591 
8592 	/*
8593 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8594 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8595 	 */
8596 	if (hba->nutrs != old_nutrs) {
8597 		ufshcd_release_sdb_queue(hba, old_nutrs);
8598 		ret = ufshcd_memory_alloc(hba);
8599 		if (ret)
8600 			goto err;
8601 		ufshcd_host_memory_configure(hba);
8602 	}
8603 
8604 	ret = ufshcd_mcq_memory_alloc(hba);
8605 	if (ret)
8606 		goto err;
8607 
8608 	return 0;
8609 err:
8610 	hba->nutrs = old_nutrs;
8611 	return ret;
8612 }
8613 
8614 static void ufshcd_config_mcq(struct ufs_hba *hba)
8615 {
8616 	int ret;
8617 
8618 	ret = ufshcd_mcq_vops_config_esi(hba);
8619 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8620 
8621 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_MCQ_INTRS);
8622 	ufshcd_mcq_make_queues_operational(hba);
8623 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8624 
8625 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8626 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8627 
8628 	/* Select MCQ mode */
8629 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8630 		      REG_UFS_MEM_CFG);
8631 	hba->mcq_enabled = true;
8632 
8633 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8634 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8635 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8636 		 hba->nutrs);
8637 }
8638 
8639 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8640 {
8641 	int ret;
8642 	struct Scsi_Host *host = hba->host;
8643 
8644 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8645 
8646 	ret = ufshcd_link_startup(hba);
8647 	if (ret)
8648 		return ret;
8649 
8650 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8651 		return ret;
8652 
8653 	/* Debug counters initialization */
8654 	ufshcd_clear_dbg_ufs_stats(hba);
8655 
8656 	/* UniPro link is active now */
8657 	ufshcd_set_link_active(hba);
8658 
8659 	/* Reconfigure MCQ upon reset */
8660 	if (is_mcq_enabled(hba) && !init_dev_params)
8661 		ufshcd_config_mcq(hba);
8662 
8663 	/* Verify device initialization by sending NOP OUT UPIU */
8664 	ret = ufshcd_verify_dev_init(hba);
8665 	if (ret)
8666 		return ret;
8667 
8668 	/* Initiate UFS initialization, and waiting until completion */
8669 	ret = ufshcd_complete_dev_init(hba);
8670 	if (ret)
8671 		return ret;
8672 
8673 	/*
8674 	 * Initialize UFS device parameters used by driver, these
8675 	 * parameters are associated with UFS descriptors.
8676 	 */
8677 	if (init_dev_params) {
8678 		ret = ufshcd_device_params_init(hba);
8679 		if (ret)
8680 			return ret;
8681 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8682 			ret = ufshcd_alloc_mcq(hba);
8683 			if (!ret) {
8684 				ufshcd_config_mcq(hba);
8685 			} else {
8686 				/* Continue with SDB mode */
8687 				use_mcq_mode = false;
8688 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8689 					 ret);
8690 			}
8691 			ret = scsi_add_host(host, hba->dev);
8692 			if (ret) {
8693 				dev_err(hba->dev, "scsi_add_host failed\n");
8694 				return ret;
8695 			}
8696 			hba->scsi_host_added = true;
8697 		} else if (is_mcq_supported(hba)) {
8698 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8699 			ufshcd_config_mcq(hba);
8700 		}
8701 	}
8702 
8703 	ufshcd_tune_unipro_params(hba);
8704 
8705 	/* UFS device is also active now */
8706 	ufshcd_set_ufs_dev_active(hba);
8707 	ufshcd_force_reset_auto_bkops(hba);
8708 
8709 	/* Gear up to HS gear if supported */
8710 	if (hba->max_pwr_info.is_valid) {
8711 		/*
8712 		 * Set the right value to bRefClkFreq before attempting to
8713 		 * switch to HS gears.
8714 		 */
8715 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8716 			ufshcd_set_dev_ref_clk(hba);
8717 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8718 		if (ret) {
8719 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8720 					__func__, ret);
8721 			return ret;
8722 		}
8723 	}
8724 
8725 	return 0;
8726 }
8727 
8728 /**
8729  * ufshcd_probe_hba - probe hba to detect device and initialize it
8730  * @hba: per-adapter instance
8731  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8732  *
8733  * Execute link-startup and verify device initialization
8734  */
8735 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8736 {
8737 	ktime_t start = ktime_get();
8738 	unsigned long flags;
8739 	int ret;
8740 
8741 	ret = ufshcd_device_init(hba, init_dev_params);
8742 	if (ret)
8743 		goto out;
8744 
8745 	if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8746 		/* Reset the device and controller before doing reinit */
8747 		ufshcd_device_reset(hba);
8748 		ufshcd_hba_stop(hba);
8749 		ufshcd_vops_reinit_notify(hba);
8750 		ret = ufshcd_hba_enable(hba);
8751 		if (ret) {
8752 			dev_err(hba->dev, "Host controller enable failed\n");
8753 			ufshcd_print_evt_hist(hba);
8754 			ufshcd_print_host_state(hba);
8755 			goto out;
8756 		}
8757 
8758 		/* Reinit the device */
8759 		ret = ufshcd_device_init(hba, init_dev_params);
8760 		if (ret)
8761 			goto out;
8762 	}
8763 
8764 	ufshcd_print_pwr_info(hba);
8765 
8766 	/*
8767 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8768 	 * and for removable UFS card as well, hence always set the parameter.
8769 	 * Note: Error handler may issue the device reset hence resetting
8770 	 * bActiveICCLevel as well so it is always safe to set this here.
8771 	 */
8772 	ufshcd_set_active_icc_lvl(hba);
8773 
8774 	/* Enable UFS Write Booster if supported */
8775 	ufshcd_configure_wb(hba);
8776 
8777 	if (hba->ee_usr_mask)
8778 		ufshcd_write_ee_control(hba);
8779 	/* Enable Auto-Hibernate if configured */
8780 	ufshcd_auto_hibern8_enable(hba);
8781 
8782 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8783 out:
8784 	spin_lock_irqsave(hba->host->host_lock, flags);
8785 	if (ret)
8786 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8787 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8788 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8789 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8790 
8791 	trace_ufshcd_init(dev_name(hba->dev), ret,
8792 		ktime_to_us(ktime_sub(ktime_get(), start)),
8793 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8794 	return ret;
8795 }
8796 
8797 /**
8798  * ufshcd_async_scan - asynchronous execution for probing hba
8799  * @data: data pointer to pass to this function
8800  * @cookie: cookie data
8801  */
8802 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8803 {
8804 	struct ufs_hba *hba = (struct ufs_hba *)data;
8805 	int ret;
8806 
8807 	down(&hba->host_sem);
8808 	/* Initialize hba, detect and initialize UFS device */
8809 	ret = ufshcd_probe_hba(hba, true);
8810 	up(&hba->host_sem);
8811 	if (ret)
8812 		goto out;
8813 
8814 	/* Probe and add UFS logical units  */
8815 	ret = ufshcd_add_lus(hba);
8816 out:
8817 	/*
8818 	 * If we failed to initialize the device or the device is not
8819 	 * present, turn off the power/clocks etc.
8820 	 */
8821 	if (ret) {
8822 		pm_runtime_put_sync(hba->dev);
8823 		ufshcd_hba_exit(hba);
8824 	}
8825 }
8826 
8827 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8828 {
8829 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8830 
8831 	if (!hba->system_suspending) {
8832 		/* Activate the error handler in the SCSI core. */
8833 		return SCSI_EH_NOT_HANDLED;
8834 	}
8835 
8836 	/*
8837 	 * If we get here we know that no TMFs are outstanding and also that
8838 	 * the only pending command is a START STOP UNIT command. Handle the
8839 	 * timeout of that command directly to prevent a deadlock between
8840 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8841 	 */
8842 	ufshcd_link_recovery(hba);
8843 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8844 		 __func__, hba->outstanding_tasks);
8845 
8846 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8847 }
8848 
8849 static const struct attribute_group *ufshcd_driver_groups[] = {
8850 	&ufs_sysfs_unit_descriptor_group,
8851 	&ufs_sysfs_lun_attributes_group,
8852 #ifdef CONFIG_SCSI_UFS_HPB
8853 	&ufs_sysfs_hpb_stat_group,
8854 	&ufs_sysfs_hpb_param_group,
8855 #endif
8856 	NULL,
8857 };
8858 
8859 static struct ufs_hba_variant_params ufs_hba_vps = {
8860 	.hba_enable_delay_us		= 1000,
8861 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8862 	.devfreq_profile.polling_ms	= 100,
8863 	.devfreq_profile.target		= ufshcd_devfreq_target,
8864 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8865 	.ondemand_data.upthreshold	= 70,
8866 	.ondemand_data.downdifferential	= 5,
8867 };
8868 
8869 static const struct scsi_host_template ufshcd_driver_template = {
8870 	.module			= THIS_MODULE,
8871 	.name			= UFSHCD,
8872 	.proc_name		= UFSHCD,
8873 	.map_queues		= ufshcd_map_queues,
8874 	.queuecommand		= ufshcd_queuecommand,
8875 	.mq_poll		= ufshcd_poll,
8876 	.slave_alloc		= ufshcd_slave_alloc,
8877 	.slave_configure	= ufshcd_slave_configure,
8878 	.slave_destroy		= ufshcd_slave_destroy,
8879 	.change_queue_depth	= ufshcd_change_queue_depth,
8880 	.eh_abort_handler	= ufshcd_abort,
8881 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8882 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8883 	.eh_timed_out		= ufshcd_eh_timed_out,
8884 	.this_id		= -1,
8885 	.sg_tablesize		= SG_ALL,
8886 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8887 	.can_queue		= UFSHCD_CAN_QUEUE,
8888 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8889 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8890 	.max_host_blocked	= 1,
8891 	.track_queue_depth	= 1,
8892 	.skip_settle_delay	= 1,
8893 	.sdev_groups		= ufshcd_driver_groups,
8894 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8895 };
8896 
8897 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8898 				   int ua)
8899 {
8900 	int ret;
8901 
8902 	if (!vreg)
8903 		return 0;
8904 
8905 	/*
8906 	 * "set_load" operation shall be required on those regulators
8907 	 * which specifically configured current limitation. Otherwise
8908 	 * zero max_uA may cause unexpected behavior when regulator is
8909 	 * enabled or set as high power mode.
8910 	 */
8911 	if (!vreg->max_uA)
8912 		return 0;
8913 
8914 	ret = regulator_set_load(vreg->reg, ua);
8915 	if (ret < 0) {
8916 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8917 				__func__, vreg->name, ua, ret);
8918 	}
8919 
8920 	return ret;
8921 }
8922 
8923 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8924 					 struct ufs_vreg *vreg)
8925 {
8926 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8927 }
8928 
8929 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8930 					 struct ufs_vreg *vreg)
8931 {
8932 	if (!vreg)
8933 		return 0;
8934 
8935 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8936 }
8937 
8938 static int ufshcd_config_vreg(struct device *dev,
8939 		struct ufs_vreg *vreg, bool on)
8940 {
8941 	if (regulator_count_voltages(vreg->reg) <= 0)
8942 		return 0;
8943 
8944 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8945 }
8946 
8947 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8948 {
8949 	int ret = 0;
8950 
8951 	if (!vreg || vreg->enabled)
8952 		goto out;
8953 
8954 	ret = ufshcd_config_vreg(dev, vreg, true);
8955 	if (!ret)
8956 		ret = regulator_enable(vreg->reg);
8957 
8958 	if (!ret)
8959 		vreg->enabled = true;
8960 	else
8961 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8962 				__func__, vreg->name, ret);
8963 out:
8964 	return ret;
8965 }
8966 
8967 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8968 {
8969 	int ret = 0;
8970 
8971 	if (!vreg || !vreg->enabled || vreg->always_on)
8972 		goto out;
8973 
8974 	ret = regulator_disable(vreg->reg);
8975 
8976 	if (!ret) {
8977 		/* ignore errors on applying disable config */
8978 		ufshcd_config_vreg(dev, vreg, false);
8979 		vreg->enabled = false;
8980 	} else {
8981 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8982 				__func__, vreg->name, ret);
8983 	}
8984 out:
8985 	return ret;
8986 }
8987 
8988 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8989 {
8990 	int ret = 0;
8991 	struct device *dev = hba->dev;
8992 	struct ufs_vreg_info *info = &hba->vreg_info;
8993 
8994 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8995 	if (ret)
8996 		goto out;
8997 
8998 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8999 	if (ret)
9000 		goto out;
9001 
9002 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9003 
9004 out:
9005 	if (ret) {
9006 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9007 		ufshcd_toggle_vreg(dev, info->vccq, false);
9008 		ufshcd_toggle_vreg(dev, info->vcc, false);
9009 	}
9010 	return ret;
9011 }
9012 
9013 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9014 {
9015 	struct ufs_vreg_info *info = &hba->vreg_info;
9016 
9017 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9018 }
9019 
9020 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9021 {
9022 	int ret = 0;
9023 
9024 	if (!vreg)
9025 		goto out;
9026 
9027 	vreg->reg = devm_regulator_get(dev, vreg->name);
9028 	if (IS_ERR(vreg->reg)) {
9029 		ret = PTR_ERR(vreg->reg);
9030 		dev_err(dev, "%s: %s get failed, err=%d\n",
9031 				__func__, vreg->name, ret);
9032 	}
9033 out:
9034 	return ret;
9035 }
9036 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9037 
9038 static int ufshcd_init_vreg(struct ufs_hba *hba)
9039 {
9040 	int ret = 0;
9041 	struct device *dev = hba->dev;
9042 	struct ufs_vreg_info *info = &hba->vreg_info;
9043 
9044 	ret = ufshcd_get_vreg(dev, info->vcc);
9045 	if (ret)
9046 		goto out;
9047 
9048 	ret = ufshcd_get_vreg(dev, info->vccq);
9049 	if (!ret)
9050 		ret = ufshcd_get_vreg(dev, info->vccq2);
9051 out:
9052 	return ret;
9053 }
9054 
9055 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9056 {
9057 	struct ufs_vreg_info *info = &hba->vreg_info;
9058 
9059 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9060 }
9061 
9062 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9063 {
9064 	int ret = 0;
9065 	struct ufs_clk_info *clki;
9066 	struct list_head *head = &hba->clk_list_head;
9067 	unsigned long flags;
9068 	ktime_t start = ktime_get();
9069 	bool clk_state_changed = false;
9070 
9071 	if (list_empty(head))
9072 		goto out;
9073 
9074 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9075 	if (ret)
9076 		return ret;
9077 
9078 	list_for_each_entry(clki, head, list) {
9079 		if (!IS_ERR_OR_NULL(clki->clk)) {
9080 			/*
9081 			 * Don't disable clocks which are needed
9082 			 * to keep the link active.
9083 			 */
9084 			if (ufshcd_is_link_active(hba) &&
9085 			    clki->keep_link_active)
9086 				continue;
9087 
9088 			clk_state_changed = on ^ clki->enabled;
9089 			if (on && !clki->enabled) {
9090 				ret = clk_prepare_enable(clki->clk);
9091 				if (ret) {
9092 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9093 						__func__, clki->name, ret);
9094 					goto out;
9095 				}
9096 			} else if (!on && clki->enabled) {
9097 				clk_disable_unprepare(clki->clk);
9098 			}
9099 			clki->enabled = on;
9100 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9101 					clki->name, on ? "en" : "dis");
9102 		}
9103 	}
9104 
9105 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9106 	if (ret)
9107 		return ret;
9108 
9109 out:
9110 	if (ret) {
9111 		list_for_each_entry(clki, head, list) {
9112 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9113 				clk_disable_unprepare(clki->clk);
9114 		}
9115 	} else if (!ret && on) {
9116 		spin_lock_irqsave(hba->host->host_lock, flags);
9117 		hba->clk_gating.state = CLKS_ON;
9118 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9119 					hba->clk_gating.state);
9120 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9121 	}
9122 
9123 	if (clk_state_changed)
9124 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9125 			(on ? "on" : "off"),
9126 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9127 	return ret;
9128 }
9129 
9130 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9131 {
9132 	u32 freq;
9133 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9134 
9135 	if (ret) {
9136 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9137 		return REF_CLK_FREQ_INVAL;
9138 	}
9139 
9140 	return ufs_get_bref_clk_from_hz(freq);
9141 }
9142 
9143 static int ufshcd_init_clocks(struct ufs_hba *hba)
9144 {
9145 	int ret = 0;
9146 	struct ufs_clk_info *clki;
9147 	struct device *dev = hba->dev;
9148 	struct list_head *head = &hba->clk_list_head;
9149 
9150 	if (list_empty(head))
9151 		goto out;
9152 
9153 	list_for_each_entry(clki, head, list) {
9154 		if (!clki->name)
9155 			continue;
9156 
9157 		clki->clk = devm_clk_get(dev, clki->name);
9158 		if (IS_ERR(clki->clk)) {
9159 			ret = PTR_ERR(clki->clk);
9160 			dev_err(dev, "%s: %s clk get failed, %d\n",
9161 					__func__, clki->name, ret);
9162 			goto out;
9163 		}
9164 
9165 		/*
9166 		 * Parse device ref clk freq as per device tree "ref_clk".
9167 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9168 		 * in ufshcd_alloc_host().
9169 		 */
9170 		if (!strcmp(clki->name, "ref_clk"))
9171 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9172 
9173 		if (clki->max_freq) {
9174 			ret = clk_set_rate(clki->clk, clki->max_freq);
9175 			if (ret) {
9176 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9177 					__func__, clki->name,
9178 					clki->max_freq, ret);
9179 				goto out;
9180 			}
9181 			clki->curr_freq = clki->max_freq;
9182 		}
9183 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9184 				clki->name, clk_get_rate(clki->clk));
9185 	}
9186 out:
9187 	return ret;
9188 }
9189 
9190 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9191 {
9192 	int err = 0;
9193 
9194 	if (!hba->vops)
9195 		goto out;
9196 
9197 	err = ufshcd_vops_init(hba);
9198 	if (err)
9199 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
9200 			__func__, ufshcd_get_var_name(hba), err);
9201 out:
9202 	return err;
9203 }
9204 
9205 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9206 {
9207 	if (!hba->vops)
9208 		return;
9209 
9210 	ufshcd_vops_exit(hba);
9211 }
9212 
9213 static int ufshcd_hba_init(struct ufs_hba *hba)
9214 {
9215 	int err;
9216 
9217 	/*
9218 	 * Handle host controller power separately from the UFS device power
9219 	 * rails as it will help controlling the UFS host controller power
9220 	 * collapse easily which is different than UFS device power collapse.
9221 	 * Also, enable the host controller power before we go ahead with rest
9222 	 * of the initialization here.
9223 	 */
9224 	err = ufshcd_init_hba_vreg(hba);
9225 	if (err)
9226 		goto out;
9227 
9228 	err = ufshcd_setup_hba_vreg(hba, true);
9229 	if (err)
9230 		goto out;
9231 
9232 	err = ufshcd_init_clocks(hba);
9233 	if (err)
9234 		goto out_disable_hba_vreg;
9235 
9236 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9237 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9238 
9239 	err = ufshcd_setup_clocks(hba, true);
9240 	if (err)
9241 		goto out_disable_hba_vreg;
9242 
9243 	err = ufshcd_init_vreg(hba);
9244 	if (err)
9245 		goto out_disable_clks;
9246 
9247 	err = ufshcd_setup_vreg(hba, true);
9248 	if (err)
9249 		goto out_disable_clks;
9250 
9251 	err = ufshcd_variant_hba_init(hba);
9252 	if (err)
9253 		goto out_disable_vreg;
9254 
9255 	ufs_debugfs_hba_init(hba);
9256 
9257 	hba->is_powered = true;
9258 	goto out;
9259 
9260 out_disable_vreg:
9261 	ufshcd_setup_vreg(hba, false);
9262 out_disable_clks:
9263 	ufshcd_setup_clocks(hba, false);
9264 out_disable_hba_vreg:
9265 	ufshcd_setup_hba_vreg(hba, false);
9266 out:
9267 	return err;
9268 }
9269 
9270 static void ufshcd_hba_exit(struct ufs_hba *hba)
9271 {
9272 	if (hba->is_powered) {
9273 		ufshcd_exit_clk_scaling(hba);
9274 		ufshcd_exit_clk_gating(hba);
9275 		if (hba->eh_wq)
9276 			destroy_workqueue(hba->eh_wq);
9277 		ufs_debugfs_hba_exit(hba);
9278 		ufshcd_variant_hba_exit(hba);
9279 		ufshcd_setup_vreg(hba, false);
9280 		ufshcd_setup_clocks(hba, false);
9281 		ufshcd_setup_hba_vreg(hba, false);
9282 		hba->is_powered = false;
9283 		ufs_put_device_desc(hba);
9284 	}
9285 }
9286 
9287 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9288 				     enum ufs_dev_pwr_mode pwr_mode,
9289 				     struct scsi_sense_hdr *sshdr)
9290 {
9291 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9292 	const struct scsi_exec_args args = {
9293 		.sshdr = sshdr,
9294 		.req_flags = BLK_MQ_REQ_PM,
9295 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9296 	};
9297 
9298 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9299 			/*bufflen=*/0, /*timeout=*/HZ, /*retries=*/0, &args);
9300 }
9301 
9302 /**
9303  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9304  *			     power mode
9305  * @hba: per adapter instance
9306  * @pwr_mode: device power mode to set
9307  *
9308  * Returns 0 if requested power mode is set successfully
9309  * Returns < 0 if failed to set the requested power mode
9310  */
9311 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9312 				     enum ufs_dev_pwr_mode pwr_mode)
9313 {
9314 	struct scsi_sense_hdr sshdr;
9315 	struct scsi_device *sdp;
9316 	unsigned long flags;
9317 	int ret, retries;
9318 
9319 	spin_lock_irqsave(hba->host->host_lock, flags);
9320 	sdp = hba->ufs_device_wlun;
9321 	if (sdp && scsi_device_online(sdp))
9322 		ret = scsi_device_get(sdp);
9323 	else
9324 		ret = -ENODEV;
9325 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9326 
9327 	if (ret)
9328 		return ret;
9329 
9330 	/*
9331 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9332 	 * handling, which would wait for host to be resumed. Since we know
9333 	 * we are functional while we are here, skip host resume in error
9334 	 * handling context.
9335 	 */
9336 	hba->host->eh_noresume = 1;
9337 
9338 	/*
9339 	 * Current function would be generally called from the power management
9340 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9341 	 * already suspended childs.
9342 	 */
9343 	for (retries = 3; retries > 0; --retries) {
9344 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9345 		/*
9346 		 * scsi_execute() only returns a negative value if the request
9347 		 * queue is dying.
9348 		 */
9349 		if (ret <= 0)
9350 			break;
9351 	}
9352 	if (ret) {
9353 		sdev_printk(KERN_WARNING, sdp,
9354 			    "START_STOP failed for power mode: %d, result %x\n",
9355 			    pwr_mode, ret);
9356 		if (ret > 0) {
9357 			if (scsi_sense_valid(&sshdr))
9358 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9359 			ret = -EIO;
9360 		}
9361 	} else {
9362 		hba->curr_dev_pwr_mode = pwr_mode;
9363 	}
9364 
9365 	scsi_device_put(sdp);
9366 	hba->host->eh_noresume = 0;
9367 	return ret;
9368 }
9369 
9370 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9371 					enum uic_link_state req_link_state,
9372 					bool check_for_bkops)
9373 {
9374 	int ret = 0;
9375 
9376 	if (req_link_state == hba->uic_link_state)
9377 		return 0;
9378 
9379 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9380 		ret = ufshcd_uic_hibern8_enter(hba);
9381 		if (!ret) {
9382 			ufshcd_set_link_hibern8(hba);
9383 		} else {
9384 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9385 					__func__, ret);
9386 			goto out;
9387 		}
9388 	}
9389 	/*
9390 	 * If autobkops is enabled, link can't be turned off because
9391 	 * turning off the link would also turn off the device, except in the
9392 	 * case of DeepSleep where the device is expected to remain powered.
9393 	 */
9394 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9395 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9396 		/*
9397 		 * Let's make sure that link is in low power mode, we are doing
9398 		 * this currently by putting the link in Hibern8. Otherway to
9399 		 * put the link in low power mode is to send the DME end point
9400 		 * to device and then send the DME reset command to local
9401 		 * unipro. But putting the link in hibern8 is much faster.
9402 		 *
9403 		 * Note also that putting the link in Hibern8 is a requirement
9404 		 * for entering DeepSleep.
9405 		 */
9406 		ret = ufshcd_uic_hibern8_enter(hba);
9407 		if (ret) {
9408 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9409 					__func__, ret);
9410 			goto out;
9411 		}
9412 		/*
9413 		 * Change controller state to "reset state" which
9414 		 * should also put the link in off/reset state
9415 		 */
9416 		ufshcd_hba_stop(hba);
9417 		/*
9418 		 * TODO: Check if we need any delay to make sure that
9419 		 * controller is reset
9420 		 */
9421 		ufshcd_set_link_off(hba);
9422 	}
9423 
9424 out:
9425 	return ret;
9426 }
9427 
9428 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9429 {
9430 	bool vcc_off = false;
9431 
9432 	/*
9433 	 * It seems some UFS devices may keep drawing more than sleep current
9434 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9435 	 * To avoid this situation, add 2ms delay before putting these UFS
9436 	 * rails in LPM mode.
9437 	 */
9438 	if (!ufshcd_is_link_active(hba) &&
9439 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9440 		usleep_range(2000, 2100);
9441 
9442 	/*
9443 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9444 	 * power.
9445 	 *
9446 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9447 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9448 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9449 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9450 	 *
9451 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9452 	 * in low power state which would save some power.
9453 	 *
9454 	 * If Write Booster is enabled and the device needs to flush the WB
9455 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9456 	 */
9457 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9458 	    !hba->dev_info.is_lu_power_on_wp) {
9459 		ufshcd_setup_vreg(hba, false);
9460 		vcc_off = true;
9461 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9462 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9463 		vcc_off = true;
9464 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9465 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9466 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9467 		}
9468 	}
9469 
9470 	/*
9471 	 * Some UFS devices require delay after VCC power rail is turned-off.
9472 	 */
9473 	if (vcc_off && hba->vreg_info.vcc &&
9474 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9475 		usleep_range(5000, 5100);
9476 }
9477 
9478 #ifdef CONFIG_PM
9479 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9480 {
9481 	int ret = 0;
9482 
9483 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9484 	    !hba->dev_info.is_lu_power_on_wp) {
9485 		ret = ufshcd_setup_vreg(hba, true);
9486 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9487 		if (!ufshcd_is_link_active(hba)) {
9488 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9489 			if (ret)
9490 				goto vcc_disable;
9491 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9492 			if (ret)
9493 				goto vccq_lpm;
9494 		}
9495 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9496 	}
9497 	goto out;
9498 
9499 vccq_lpm:
9500 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9501 vcc_disable:
9502 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9503 out:
9504 	return ret;
9505 }
9506 #endif /* CONFIG_PM */
9507 
9508 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9509 {
9510 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9511 		ufshcd_setup_hba_vreg(hba, false);
9512 }
9513 
9514 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9515 {
9516 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9517 		ufshcd_setup_hba_vreg(hba, true);
9518 }
9519 
9520 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9521 {
9522 	int ret = 0;
9523 	bool check_for_bkops;
9524 	enum ufs_pm_level pm_lvl;
9525 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9526 	enum uic_link_state req_link_state;
9527 
9528 	hba->pm_op_in_progress = true;
9529 	if (pm_op != UFS_SHUTDOWN_PM) {
9530 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9531 			 hba->rpm_lvl : hba->spm_lvl;
9532 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9533 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9534 	} else {
9535 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9536 		req_link_state = UIC_LINK_OFF_STATE;
9537 	}
9538 
9539 	ufshpb_suspend(hba);
9540 
9541 	/*
9542 	 * If we can't transition into any of the low power modes
9543 	 * just gate the clocks.
9544 	 */
9545 	ufshcd_hold(hba);
9546 	hba->clk_gating.is_suspended = true;
9547 
9548 	if (ufshcd_is_clkscaling_supported(hba))
9549 		ufshcd_clk_scaling_suspend(hba, true);
9550 
9551 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9552 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9553 		goto vops_suspend;
9554 	}
9555 
9556 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9557 	    (req_link_state == hba->uic_link_state))
9558 		goto enable_scaling;
9559 
9560 	/* UFS device & link must be active before we enter in this function */
9561 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9562 		ret = -EINVAL;
9563 		goto enable_scaling;
9564 	}
9565 
9566 	if (pm_op == UFS_RUNTIME_PM) {
9567 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9568 			/*
9569 			 * The device is idle with no requests in the queue,
9570 			 * allow background operations if bkops status shows
9571 			 * that performance might be impacted.
9572 			 */
9573 			ret = ufshcd_urgent_bkops(hba);
9574 			if (ret)
9575 				goto enable_scaling;
9576 		} else {
9577 			/* make sure that auto bkops is disabled */
9578 			ufshcd_disable_auto_bkops(hba);
9579 		}
9580 		/*
9581 		 * If device needs to do BKOP or WB buffer flush during
9582 		 * Hibern8, keep device power mode as "active power mode"
9583 		 * and VCC supply.
9584 		 */
9585 		hba->dev_info.b_rpm_dev_flush_capable =
9586 			hba->auto_bkops_enabled ||
9587 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9588 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9589 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9590 			ufshcd_wb_need_flush(hba));
9591 	}
9592 
9593 	flush_work(&hba->eeh_work);
9594 
9595 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9596 	if (ret)
9597 		goto enable_scaling;
9598 
9599 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9600 		if (pm_op != UFS_RUNTIME_PM)
9601 			/* ensure that bkops is disabled */
9602 			ufshcd_disable_auto_bkops(hba);
9603 
9604 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9605 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9606 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9607 				/*
9608 				 * If return err in suspend flow, IO will hang.
9609 				 * Trigger error handler and break suspend for
9610 				 * error recovery.
9611 				 */
9612 				ufshcd_force_error_recovery(hba);
9613 				ret = -EBUSY;
9614 			}
9615 			if (ret)
9616 				goto enable_scaling;
9617 		}
9618 	}
9619 
9620 	/*
9621 	 * In the case of DeepSleep, the device is expected to remain powered
9622 	 * with the link off, so do not check for bkops.
9623 	 */
9624 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9625 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9626 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9627 		/*
9628 		 * If return err in suspend flow, IO will hang.
9629 		 * Trigger error handler and break suspend for
9630 		 * error recovery.
9631 		 */
9632 		ufshcd_force_error_recovery(hba);
9633 		ret = -EBUSY;
9634 	}
9635 	if (ret)
9636 		goto set_dev_active;
9637 
9638 vops_suspend:
9639 	/*
9640 	 * Call vendor specific suspend callback. As these callbacks may access
9641 	 * vendor specific host controller register space call them before the
9642 	 * host clocks are ON.
9643 	 */
9644 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9645 	if (ret)
9646 		goto set_link_active;
9647 	goto out;
9648 
9649 set_link_active:
9650 	/*
9651 	 * Device hardware reset is required to exit DeepSleep. Also, for
9652 	 * DeepSleep, the link is off so host reset and restore will be done
9653 	 * further below.
9654 	 */
9655 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9656 		ufshcd_device_reset(hba);
9657 		WARN_ON(!ufshcd_is_link_off(hba));
9658 	}
9659 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9660 		ufshcd_set_link_active(hba);
9661 	else if (ufshcd_is_link_off(hba))
9662 		ufshcd_host_reset_and_restore(hba);
9663 set_dev_active:
9664 	/* Can also get here needing to exit DeepSleep */
9665 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9666 		ufshcd_device_reset(hba);
9667 		ufshcd_host_reset_and_restore(hba);
9668 	}
9669 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9670 		ufshcd_disable_auto_bkops(hba);
9671 enable_scaling:
9672 	if (ufshcd_is_clkscaling_supported(hba))
9673 		ufshcd_clk_scaling_suspend(hba, false);
9674 
9675 	hba->dev_info.b_rpm_dev_flush_capable = false;
9676 out:
9677 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9678 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9679 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9680 	}
9681 
9682 	if (ret) {
9683 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9684 		hba->clk_gating.is_suspended = false;
9685 		ufshcd_release(hba);
9686 		ufshpb_resume(hba);
9687 	}
9688 	hba->pm_op_in_progress = false;
9689 	return ret;
9690 }
9691 
9692 #ifdef CONFIG_PM
9693 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9694 {
9695 	int ret;
9696 	enum uic_link_state old_link_state = hba->uic_link_state;
9697 
9698 	hba->pm_op_in_progress = true;
9699 
9700 	/*
9701 	 * Call vendor specific resume callback. As these callbacks may access
9702 	 * vendor specific host controller register space call them when the
9703 	 * host clocks are ON.
9704 	 */
9705 	ret = ufshcd_vops_resume(hba, pm_op);
9706 	if (ret)
9707 		goto out;
9708 
9709 	/* For DeepSleep, the only supported option is to have the link off */
9710 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9711 
9712 	if (ufshcd_is_link_hibern8(hba)) {
9713 		ret = ufshcd_uic_hibern8_exit(hba);
9714 		if (!ret) {
9715 			ufshcd_set_link_active(hba);
9716 		} else {
9717 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9718 					__func__, ret);
9719 			goto vendor_suspend;
9720 		}
9721 	} else if (ufshcd_is_link_off(hba)) {
9722 		/*
9723 		 * A full initialization of the host and the device is
9724 		 * required since the link was put to off during suspend.
9725 		 * Note, in the case of DeepSleep, the device will exit
9726 		 * DeepSleep due to device reset.
9727 		 */
9728 		ret = ufshcd_reset_and_restore(hba);
9729 		/*
9730 		 * ufshcd_reset_and_restore() should have already
9731 		 * set the link state as active
9732 		 */
9733 		if (ret || !ufshcd_is_link_active(hba))
9734 			goto vendor_suspend;
9735 	}
9736 
9737 	if (!ufshcd_is_ufs_dev_active(hba)) {
9738 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9739 		if (ret)
9740 			goto set_old_link_state;
9741 	}
9742 
9743 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9744 		ufshcd_enable_auto_bkops(hba);
9745 	else
9746 		/*
9747 		 * If BKOPs operations are urgently needed at this moment then
9748 		 * keep auto-bkops enabled or else disable it.
9749 		 */
9750 		ufshcd_urgent_bkops(hba);
9751 
9752 	if (hba->ee_usr_mask)
9753 		ufshcd_write_ee_control(hba);
9754 
9755 	if (ufshcd_is_clkscaling_supported(hba))
9756 		ufshcd_clk_scaling_suspend(hba, false);
9757 
9758 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9759 		hba->dev_info.b_rpm_dev_flush_capable = false;
9760 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9761 	}
9762 
9763 	/* Enable Auto-Hibernate if configured */
9764 	ufshcd_auto_hibern8_enable(hba);
9765 
9766 	ufshpb_resume(hba);
9767 	goto out;
9768 
9769 set_old_link_state:
9770 	ufshcd_link_state_transition(hba, old_link_state, 0);
9771 vendor_suspend:
9772 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9773 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9774 out:
9775 	if (ret)
9776 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9777 	hba->clk_gating.is_suspended = false;
9778 	ufshcd_release(hba);
9779 	hba->pm_op_in_progress = false;
9780 	return ret;
9781 }
9782 
9783 static int ufshcd_wl_runtime_suspend(struct device *dev)
9784 {
9785 	struct scsi_device *sdev = to_scsi_device(dev);
9786 	struct ufs_hba *hba;
9787 	int ret;
9788 	ktime_t start = ktime_get();
9789 
9790 	hba = shost_priv(sdev->host);
9791 
9792 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9793 	if (ret)
9794 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9795 
9796 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9797 		ktime_to_us(ktime_sub(ktime_get(), start)),
9798 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9799 
9800 	return ret;
9801 }
9802 
9803 static int ufshcd_wl_runtime_resume(struct device *dev)
9804 {
9805 	struct scsi_device *sdev = to_scsi_device(dev);
9806 	struct ufs_hba *hba;
9807 	int ret = 0;
9808 	ktime_t start = ktime_get();
9809 
9810 	hba = shost_priv(sdev->host);
9811 
9812 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9813 	if (ret)
9814 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9815 
9816 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9817 		ktime_to_us(ktime_sub(ktime_get(), start)),
9818 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9819 
9820 	return ret;
9821 }
9822 #endif
9823 
9824 #ifdef CONFIG_PM_SLEEP
9825 static int ufshcd_wl_suspend(struct device *dev)
9826 {
9827 	struct scsi_device *sdev = to_scsi_device(dev);
9828 	struct ufs_hba *hba;
9829 	int ret = 0;
9830 	ktime_t start = ktime_get();
9831 
9832 	hba = shost_priv(sdev->host);
9833 	down(&hba->host_sem);
9834 	hba->system_suspending = true;
9835 
9836 	if (pm_runtime_suspended(dev))
9837 		goto out;
9838 
9839 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9840 	if (ret) {
9841 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9842 		up(&hba->host_sem);
9843 	}
9844 
9845 out:
9846 	if (!ret)
9847 		hba->is_sys_suspended = true;
9848 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9849 		ktime_to_us(ktime_sub(ktime_get(), start)),
9850 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9851 
9852 	return ret;
9853 }
9854 
9855 static int ufshcd_wl_resume(struct device *dev)
9856 {
9857 	struct scsi_device *sdev = to_scsi_device(dev);
9858 	struct ufs_hba *hba;
9859 	int ret = 0;
9860 	ktime_t start = ktime_get();
9861 
9862 	hba = shost_priv(sdev->host);
9863 
9864 	if (pm_runtime_suspended(dev))
9865 		goto out;
9866 
9867 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9868 	if (ret)
9869 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9870 out:
9871 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9872 		ktime_to_us(ktime_sub(ktime_get(), start)),
9873 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9874 	if (!ret)
9875 		hba->is_sys_suspended = false;
9876 	hba->system_suspending = false;
9877 	up(&hba->host_sem);
9878 	return ret;
9879 }
9880 #endif
9881 
9882 static void ufshcd_wl_shutdown(struct device *dev)
9883 {
9884 	struct scsi_device *sdev = to_scsi_device(dev);
9885 	struct ufs_hba *hba;
9886 
9887 	hba = shost_priv(sdev->host);
9888 
9889 	down(&hba->host_sem);
9890 	hba->shutting_down = true;
9891 	up(&hba->host_sem);
9892 
9893 	/* Turn on everything while shutting down */
9894 	ufshcd_rpm_get_sync(hba);
9895 	scsi_device_quiesce(sdev);
9896 	shost_for_each_device(sdev, hba->host) {
9897 		if (sdev == hba->ufs_device_wlun)
9898 			continue;
9899 		scsi_device_quiesce(sdev);
9900 	}
9901 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9902 }
9903 
9904 /**
9905  * ufshcd_suspend - helper function for suspend operations
9906  * @hba: per adapter instance
9907  *
9908  * This function will put disable irqs, turn off clocks
9909  * and set vreg and hba-vreg in lpm mode.
9910  */
9911 static int ufshcd_suspend(struct ufs_hba *hba)
9912 {
9913 	int ret;
9914 
9915 	if (!hba->is_powered)
9916 		return 0;
9917 	/*
9918 	 * Disable the host irq as host controller as there won't be any
9919 	 * host controller transaction expected till resume.
9920 	 */
9921 	ufshcd_disable_irq(hba);
9922 	ret = ufshcd_setup_clocks(hba, false);
9923 	if (ret) {
9924 		ufshcd_enable_irq(hba);
9925 		return ret;
9926 	}
9927 	if (ufshcd_is_clkgating_allowed(hba)) {
9928 		hba->clk_gating.state = CLKS_OFF;
9929 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9930 					hba->clk_gating.state);
9931 	}
9932 
9933 	ufshcd_vreg_set_lpm(hba);
9934 	/* Put the host controller in low power mode if possible */
9935 	ufshcd_hba_vreg_set_lpm(hba);
9936 	return ret;
9937 }
9938 
9939 #ifdef CONFIG_PM
9940 /**
9941  * ufshcd_resume - helper function for resume operations
9942  * @hba: per adapter instance
9943  *
9944  * This function basically turns on the regulators, clocks and
9945  * irqs of the hba.
9946  *
9947  * Returns 0 for success and non-zero for failure
9948  */
9949 static int ufshcd_resume(struct ufs_hba *hba)
9950 {
9951 	int ret;
9952 
9953 	if (!hba->is_powered)
9954 		return 0;
9955 
9956 	ufshcd_hba_vreg_set_hpm(hba);
9957 	ret = ufshcd_vreg_set_hpm(hba);
9958 	if (ret)
9959 		goto out;
9960 
9961 	/* Make sure clocks are enabled before accessing controller */
9962 	ret = ufshcd_setup_clocks(hba, true);
9963 	if (ret)
9964 		goto disable_vreg;
9965 
9966 	/* enable the host irq as host controller would be active soon */
9967 	ufshcd_enable_irq(hba);
9968 
9969 	goto out;
9970 
9971 disable_vreg:
9972 	ufshcd_vreg_set_lpm(hba);
9973 out:
9974 	if (ret)
9975 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9976 	return ret;
9977 }
9978 #endif /* CONFIG_PM */
9979 
9980 #ifdef CONFIG_PM_SLEEP
9981 /**
9982  * ufshcd_system_suspend - system suspend callback
9983  * @dev: Device associated with the UFS controller.
9984  *
9985  * Executed before putting the system into a sleep state in which the contents
9986  * of main memory are preserved.
9987  *
9988  * Returns 0 for success and non-zero for failure
9989  */
9990 int ufshcd_system_suspend(struct device *dev)
9991 {
9992 	struct ufs_hba *hba = dev_get_drvdata(dev);
9993 	int ret = 0;
9994 	ktime_t start = ktime_get();
9995 
9996 	if (pm_runtime_suspended(hba->dev))
9997 		goto out;
9998 
9999 	ret = ufshcd_suspend(hba);
10000 out:
10001 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10002 		ktime_to_us(ktime_sub(ktime_get(), start)),
10003 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10004 	return ret;
10005 }
10006 EXPORT_SYMBOL(ufshcd_system_suspend);
10007 
10008 /**
10009  * ufshcd_system_resume - system resume callback
10010  * @dev: Device associated with the UFS controller.
10011  *
10012  * Executed after waking the system up from a sleep state in which the contents
10013  * of main memory were preserved.
10014  *
10015  * Returns 0 for success and non-zero for failure
10016  */
10017 int ufshcd_system_resume(struct device *dev)
10018 {
10019 	struct ufs_hba *hba = dev_get_drvdata(dev);
10020 	ktime_t start = ktime_get();
10021 	int ret = 0;
10022 
10023 	if (pm_runtime_suspended(hba->dev))
10024 		goto out;
10025 
10026 	ret = ufshcd_resume(hba);
10027 
10028 out:
10029 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10030 		ktime_to_us(ktime_sub(ktime_get(), start)),
10031 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10032 
10033 	return ret;
10034 }
10035 EXPORT_SYMBOL(ufshcd_system_resume);
10036 #endif /* CONFIG_PM_SLEEP */
10037 
10038 #ifdef CONFIG_PM
10039 /**
10040  * ufshcd_runtime_suspend - runtime suspend callback
10041  * @dev: Device associated with the UFS controller.
10042  *
10043  * Check the description of ufshcd_suspend() function for more details.
10044  *
10045  * Returns 0 for success and non-zero for failure
10046  */
10047 int ufshcd_runtime_suspend(struct device *dev)
10048 {
10049 	struct ufs_hba *hba = dev_get_drvdata(dev);
10050 	int ret;
10051 	ktime_t start = ktime_get();
10052 
10053 	ret = ufshcd_suspend(hba);
10054 
10055 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10056 		ktime_to_us(ktime_sub(ktime_get(), start)),
10057 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10058 	return ret;
10059 }
10060 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10061 
10062 /**
10063  * ufshcd_runtime_resume - runtime resume routine
10064  * @dev: Device associated with the UFS controller.
10065  *
10066  * This function basically brings controller
10067  * to active state. Following operations are done in this function:
10068  *
10069  * 1. Turn on all the controller related clocks
10070  * 2. Turn ON VCC rail
10071  */
10072 int ufshcd_runtime_resume(struct device *dev)
10073 {
10074 	struct ufs_hba *hba = dev_get_drvdata(dev);
10075 	int ret;
10076 	ktime_t start = ktime_get();
10077 
10078 	ret = ufshcd_resume(hba);
10079 
10080 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10081 		ktime_to_us(ktime_sub(ktime_get(), start)),
10082 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10083 	return ret;
10084 }
10085 EXPORT_SYMBOL(ufshcd_runtime_resume);
10086 #endif /* CONFIG_PM */
10087 
10088 /**
10089  * ufshcd_shutdown - shutdown routine
10090  * @hba: per adapter instance
10091  *
10092  * This function would turn off both UFS device and UFS hba
10093  * regulators. It would also disable clocks.
10094  *
10095  * Returns 0 always to allow force shutdown even in case of errors.
10096  */
10097 int ufshcd_shutdown(struct ufs_hba *hba)
10098 {
10099 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10100 		ufshcd_suspend(hba);
10101 
10102 	hba->is_powered = false;
10103 	/* allow force shutdown even in case of errors */
10104 	return 0;
10105 }
10106 EXPORT_SYMBOL(ufshcd_shutdown);
10107 
10108 /**
10109  * ufshcd_remove - de-allocate SCSI host and host memory space
10110  *		data structure memory
10111  * @hba: per adapter instance
10112  */
10113 void ufshcd_remove(struct ufs_hba *hba)
10114 {
10115 	if (hba->ufs_device_wlun)
10116 		ufshcd_rpm_get_sync(hba);
10117 	ufs_hwmon_remove(hba);
10118 	ufs_bsg_remove(hba);
10119 	ufshpb_remove(hba);
10120 	ufs_sysfs_remove_nodes(hba->dev);
10121 	blk_mq_destroy_queue(hba->tmf_queue);
10122 	blk_put_queue(hba->tmf_queue);
10123 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10124 	scsi_remove_host(hba->host);
10125 	/* disable interrupts */
10126 	ufshcd_disable_intr(hba, hba->intr_mask);
10127 	ufshcd_hba_stop(hba);
10128 	ufshcd_hba_exit(hba);
10129 }
10130 EXPORT_SYMBOL_GPL(ufshcd_remove);
10131 
10132 #ifdef CONFIG_PM_SLEEP
10133 int ufshcd_system_freeze(struct device *dev)
10134 {
10135 
10136 	return ufshcd_system_suspend(dev);
10137 
10138 }
10139 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10140 
10141 int ufshcd_system_restore(struct device *dev)
10142 {
10143 
10144 	struct ufs_hba *hba = dev_get_drvdata(dev);
10145 	int ret;
10146 
10147 	ret = ufshcd_system_resume(dev);
10148 	if (ret)
10149 		return ret;
10150 
10151 	/* Configure UTRL and UTMRL base address registers */
10152 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10153 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10154 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10155 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10156 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10157 			REG_UTP_TASK_REQ_LIST_BASE_L);
10158 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10159 			REG_UTP_TASK_REQ_LIST_BASE_H);
10160 	/*
10161 	 * Make sure that UTRL and UTMRL base address registers
10162 	 * are updated with the latest queue addresses. Only after
10163 	 * updating these addresses, we can queue the new commands.
10164 	 */
10165 	mb();
10166 
10167 	/* Resuming from hibernate, assume that link was OFF */
10168 	ufshcd_set_link_off(hba);
10169 
10170 	return 0;
10171 
10172 }
10173 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10174 
10175 int ufshcd_system_thaw(struct device *dev)
10176 {
10177 	return ufshcd_system_resume(dev);
10178 }
10179 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10180 #endif /* CONFIG_PM_SLEEP  */
10181 
10182 /**
10183  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10184  * @hba: pointer to Host Bus Adapter (HBA)
10185  */
10186 void ufshcd_dealloc_host(struct ufs_hba *hba)
10187 {
10188 	scsi_host_put(hba->host);
10189 }
10190 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10191 
10192 /**
10193  * ufshcd_set_dma_mask - Set dma mask based on the controller
10194  *			 addressing capability
10195  * @hba: per adapter instance
10196  *
10197  * Returns 0 for success, non-zero for failure
10198  */
10199 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10200 {
10201 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10202 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10203 			return 0;
10204 	}
10205 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10206 }
10207 
10208 /**
10209  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10210  * @dev: pointer to device handle
10211  * @hba_handle: driver private handle
10212  * Returns 0 on success, non-zero value on failure
10213  */
10214 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10215 {
10216 	struct Scsi_Host *host;
10217 	struct ufs_hba *hba;
10218 	int err = 0;
10219 
10220 	if (!dev) {
10221 		dev_err(dev,
10222 		"Invalid memory reference for dev is NULL\n");
10223 		err = -ENODEV;
10224 		goto out_error;
10225 	}
10226 
10227 	host = scsi_host_alloc(&ufshcd_driver_template,
10228 				sizeof(struct ufs_hba));
10229 	if (!host) {
10230 		dev_err(dev, "scsi_host_alloc failed\n");
10231 		err = -ENOMEM;
10232 		goto out_error;
10233 	}
10234 	host->nr_maps = HCTX_TYPE_POLL + 1;
10235 	hba = shost_priv(host);
10236 	hba->host = host;
10237 	hba->dev = dev;
10238 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10239 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10240 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10241 	INIT_LIST_HEAD(&hba->clk_list_head);
10242 	spin_lock_init(&hba->outstanding_lock);
10243 
10244 	*hba_handle = hba;
10245 
10246 out_error:
10247 	return err;
10248 }
10249 EXPORT_SYMBOL(ufshcd_alloc_host);
10250 
10251 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10252 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10253 				     const struct blk_mq_queue_data *qd)
10254 {
10255 	WARN_ON_ONCE(true);
10256 	return BLK_STS_NOTSUPP;
10257 }
10258 
10259 static const struct blk_mq_ops ufshcd_tmf_ops = {
10260 	.queue_rq = ufshcd_queue_tmf,
10261 };
10262 
10263 /**
10264  * ufshcd_init - Driver initialization routine
10265  * @hba: per-adapter instance
10266  * @mmio_base: base register address
10267  * @irq: Interrupt line of device
10268  * Returns 0 on success, non-zero value on failure
10269  */
10270 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10271 {
10272 	int err;
10273 	struct Scsi_Host *host = hba->host;
10274 	struct device *dev = hba->dev;
10275 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10276 
10277 	/*
10278 	 * dev_set_drvdata() must be called before any callbacks are registered
10279 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10280 	 * sysfs).
10281 	 */
10282 	dev_set_drvdata(dev, hba);
10283 
10284 	if (!mmio_base) {
10285 		dev_err(hba->dev,
10286 		"Invalid memory reference for mmio_base is NULL\n");
10287 		err = -ENODEV;
10288 		goto out_error;
10289 	}
10290 
10291 	hba->mmio_base = mmio_base;
10292 	hba->irq = irq;
10293 	hba->vps = &ufs_hba_vps;
10294 
10295 	err = ufshcd_hba_init(hba);
10296 	if (err)
10297 		goto out_error;
10298 
10299 	/* Read capabilities registers */
10300 	err = ufshcd_hba_capabilities(hba);
10301 	if (err)
10302 		goto out_disable;
10303 
10304 	/* Get UFS version supported by the controller */
10305 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10306 
10307 	/* Get Interrupt bit mask per version */
10308 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10309 
10310 	err = ufshcd_set_dma_mask(hba);
10311 	if (err) {
10312 		dev_err(hba->dev, "set dma mask failed\n");
10313 		goto out_disable;
10314 	}
10315 
10316 	/* Allocate memory for host memory space */
10317 	err = ufshcd_memory_alloc(hba);
10318 	if (err) {
10319 		dev_err(hba->dev, "Memory allocation failed\n");
10320 		goto out_disable;
10321 	}
10322 
10323 	/* Configure LRB */
10324 	ufshcd_host_memory_configure(hba);
10325 
10326 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10327 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10328 	host->max_id = UFSHCD_MAX_ID;
10329 	host->max_lun = UFS_MAX_LUNS;
10330 	host->max_channel = UFSHCD_MAX_CHANNEL;
10331 	host->unique_id = host->host_no;
10332 	host->max_cmd_len = UFS_CDB_SIZE;
10333 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10334 
10335 	hba->max_pwr_info.is_valid = false;
10336 
10337 	/* Initialize work queues */
10338 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10339 		 hba->host->host_no);
10340 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10341 	if (!hba->eh_wq) {
10342 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10343 			__func__);
10344 		err = -ENOMEM;
10345 		goto out_disable;
10346 	}
10347 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10348 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10349 
10350 	sema_init(&hba->host_sem, 1);
10351 
10352 	/* Initialize UIC command mutex */
10353 	mutex_init(&hba->uic_cmd_mutex);
10354 
10355 	/* Initialize mutex for device management commands */
10356 	mutex_init(&hba->dev_cmd.lock);
10357 
10358 	/* Initialize mutex for exception event control */
10359 	mutex_init(&hba->ee_ctrl_mutex);
10360 
10361 	mutex_init(&hba->wb_mutex);
10362 	init_rwsem(&hba->clk_scaling_lock);
10363 
10364 	ufshcd_init_clk_gating(hba);
10365 
10366 	ufshcd_init_clk_scaling(hba);
10367 
10368 	/*
10369 	 * In order to avoid any spurious interrupt immediately after
10370 	 * registering UFS controller interrupt handler, clear any pending UFS
10371 	 * interrupt status and disable all the UFS interrupts.
10372 	 */
10373 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10374 		      REG_INTERRUPT_STATUS);
10375 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10376 	/*
10377 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10378 	 * status is cleared before registering UFS interrupt handler.
10379 	 */
10380 	mb();
10381 
10382 	/* IRQ registration */
10383 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10384 	if (err) {
10385 		dev_err(hba->dev, "request irq failed\n");
10386 		goto out_disable;
10387 	} else {
10388 		hba->is_irq_enabled = true;
10389 	}
10390 
10391 	if (!is_mcq_supported(hba)) {
10392 		err = scsi_add_host(host, hba->dev);
10393 		if (err) {
10394 			dev_err(hba->dev, "scsi_add_host failed\n");
10395 			goto out_disable;
10396 		}
10397 	}
10398 
10399 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10400 		.nr_hw_queues	= 1,
10401 		.queue_depth	= hba->nutmrs,
10402 		.ops		= &ufshcd_tmf_ops,
10403 		.flags		= BLK_MQ_F_NO_SCHED,
10404 	};
10405 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10406 	if (err < 0)
10407 		goto out_remove_scsi_host;
10408 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10409 	if (IS_ERR(hba->tmf_queue)) {
10410 		err = PTR_ERR(hba->tmf_queue);
10411 		goto free_tmf_tag_set;
10412 	}
10413 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10414 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10415 	if (!hba->tmf_rqs) {
10416 		err = -ENOMEM;
10417 		goto free_tmf_queue;
10418 	}
10419 
10420 	/* Reset the attached device */
10421 	ufshcd_device_reset(hba);
10422 
10423 	ufshcd_init_crypto(hba);
10424 
10425 	/* Host controller enable */
10426 	err = ufshcd_hba_enable(hba);
10427 	if (err) {
10428 		dev_err(hba->dev, "Host controller enable failed\n");
10429 		ufshcd_print_evt_hist(hba);
10430 		ufshcd_print_host_state(hba);
10431 		goto free_tmf_queue;
10432 	}
10433 
10434 	/*
10435 	 * Set the default power management level for runtime and system PM.
10436 	 * Default power saving mode is to keep UFS link in Hibern8 state
10437 	 * and UFS device in sleep state.
10438 	 */
10439 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10440 						UFS_SLEEP_PWR_MODE,
10441 						UIC_LINK_HIBERN8_STATE);
10442 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10443 						UFS_SLEEP_PWR_MODE,
10444 						UIC_LINK_HIBERN8_STATE);
10445 
10446 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10447 			  ufshcd_rpm_dev_flush_recheck_work);
10448 
10449 	/* Set the default auto-hiberate idle timer value to 150 ms */
10450 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10451 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10452 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10453 	}
10454 
10455 	/* Hold auto suspend until async scan completes */
10456 	pm_runtime_get_sync(dev);
10457 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10458 	/*
10459 	 * We are assuming that device wasn't put in sleep/power-down
10460 	 * state exclusively during the boot stage before kernel.
10461 	 * This assumption helps avoid doing link startup twice during
10462 	 * ufshcd_probe_hba().
10463 	 */
10464 	ufshcd_set_ufs_dev_active(hba);
10465 
10466 	async_schedule(ufshcd_async_scan, hba);
10467 	ufs_sysfs_add_nodes(hba->dev);
10468 
10469 	device_enable_async_suspend(dev);
10470 	return 0;
10471 
10472 free_tmf_queue:
10473 	blk_mq_destroy_queue(hba->tmf_queue);
10474 	blk_put_queue(hba->tmf_queue);
10475 free_tmf_tag_set:
10476 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10477 out_remove_scsi_host:
10478 	scsi_remove_host(hba->host);
10479 out_disable:
10480 	hba->is_irq_enabled = false;
10481 	ufshcd_hba_exit(hba);
10482 out_error:
10483 	return err;
10484 }
10485 EXPORT_SYMBOL_GPL(ufshcd_init);
10486 
10487 void ufshcd_resume_complete(struct device *dev)
10488 {
10489 	struct ufs_hba *hba = dev_get_drvdata(dev);
10490 
10491 	if (hba->complete_put) {
10492 		ufshcd_rpm_put(hba);
10493 		hba->complete_put = false;
10494 	}
10495 }
10496 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10497 
10498 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10499 {
10500 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10501 	enum ufs_dev_pwr_mode dev_pwr_mode;
10502 	enum uic_link_state link_state;
10503 	unsigned long flags;
10504 	bool res;
10505 
10506 	spin_lock_irqsave(&dev->power.lock, flags);
10507 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10508 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10509 	res = pm_runtime_suspended(dev) &&
10510 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10511 	      hba->uic_link_state == link_state &&
10512 	      !hba->dev_info.b_rpm_dev_flush_capable;
10513 	spin_unlock_irqrestore(&dev->power.lock, flags);
10514 
10515 	return res;
10516 }
10517 
10518 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10519 {
10520 	struct ufs_hba *hba = dev_get_drvdata(dev);
10521 	int ret;
10522 
10523 	/*
10524 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10525 	 * are same. And it doesn't wake up the device for system-suspend
10526 	 * if it's runtime suspended. But ufs doesn't follow that.
10527 	 * Refer ufshcd_resume_complete()
10528 	 */
10529 	if (hba->ufs_device_wlun) {
10530 		/* Prevent runtime suspend */
10531 		ufshcd_rpm_get_noresume(hba);
10532 		/*
10533 		 * Check if already runtime suspended in same state as system
10534 		 * suspend would be.
10535 		 */
10536 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10537 			/* RPM state is not ok for SPM, so runtime resume */
10538 			ret = ufshcd_rpm_resume(hba);
10539 			if (ret < 0 && ret != -EACCES) {
10540 				ufshcd_rpm_put(hba);
10541 				return ret;
10542 			}
10543 		}
10544 		hba->complete_put = true;
10545 	}
10546 	return 0;
10547 }
10548 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10549 
10550 int ufshcd_suspend_prepare(struct device *dev)
10551 {
10552 	return __ufshcd_suspend_prepare(dev, true);
10553 }
10554 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10555 
10556 #ifdef CONFIG_PM_SLEEP
10557 static int ufshcd_wl_poweroff(struct device *dev)
10558 {
10559 	struct scsi_device *sdev = to_scsi_device(dev);
10560 	struct ufs_hba *hba = shost_priv(sdev->host);
10561 
10562 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10563 	return 0;
10564 }
10565 #endif
10566 
10567 static int ufshcd_wl_probe(struct device *dev)
10568 {
10569 	struct scsi_device *sdev = to_scsi_device(dev);
10570 
10571 	if (!is_device_wlun(sdev))
10572 		return -ENODEV;
10573 
10574 	blk_pm_runtime_init(sdev->request_queue, dev);
10575 	pm_runtime_set_autosuspend_delay(dev, 0);
10576 	pm_runtime_allow(dev);
10577 
10578 	return  0;
10579 }
10580 
10581 static int ufshcd_wl_remove(struct device *dev)
10582 {
10583 	pm_runtime_forbid(dev);
10584 	return 0;
10585 }
10586 
10587 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10588 #ifdef CONFIG_PM_SLEEP
10589 	.suspend = ufshcd_wl_suspend,
10590 	.resume = ufshcd_wl_resume,
10591 	.freeze = ufshcd_wl_suspend,
10592 	.thaw = ufshcd_wl_resume,
10593 	.poweroff = ufshcd_wl_poweroff,
10594 	.restore = ufshcd_wl_resume,
10595 #endif
10596 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10597 };
10598 
10599 /*
10600  * ufs_dev_wlun_template - describes ufs device wlun
10601  * ufs-device wlun - used to send pm commands
10602  * All luns are consumers of ufs-device wlun.
10603  *
10604  * Currently, no sd driver is present for wluns.
10605  * Hence the no specific pm operations are performed.
10606  * With ufs design, SSU should be sent to ufs-device wlun.
10607  * Hence register a scsi driver for ufs wluns only.
10608  */
10609 static struct scsi_driver ufs_dev_wlun_template = {
10610 	.gendrv = {
10611 		.name = "ufs_device_wlun",
10612 		.owner = THIS_MODULE,
10613 		.probe = ufshcd_wl_probe,
10614 		.remove = ufshcd_wl_remove,
10615 		.pm = &ufshcd_wl_pm_ops,
10616 		.shutdown = ufshcd_wl_shutdown,
10617 	},
10618 };
10619 
10620 static int __init ufshcd_core_init(void)
10621 {
10622 	int ret;
10623 
10624 	ufs_debugfs_init();
10625 
10626 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10627 	if (ret)
10628 		ufs_debugfs_exit();
10629 	return ret;
10630 }
10631 
10632 static void __exit ufshcd_core_exit(void)
10633 {
10634 	ufs_debugfs_exit();
10635 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10636 }
10637 
10638 module_init(ufshcd_core_init);
10639 module_exit(ufshcd_core_exit);
10640 
10641 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10642 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10643 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10644 MODULE_SOFTDEP("pre: governor_simpleondemand");
10645 MODULE_LICENSE("GPL");
10646