1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/regulator/consumer.h> 24 #include <scsi/scsi_cmnd.h> 25 #include <scsi/scsi_dbg.h> 26 #include <scsi/scsi_driver.h> 27 #include <scsi/scsi_eh.h> 28 #include "ufshcd-priv.h" 29 #include <ufs/ufs_quirks.h> 30 #include <ufs/unipro.h> 31 #include "ufs-sysfs.h" 32 #include "ufs-debugfs.h" 33 #include "ufs-fault-injection.h" 34 #include "ufs_bsg.h" 35 #include "ufshcd-crypto.h" 36 #include "ufshpb.h" 37 #include <asm/unaligned.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/ufs.h> 41 42 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 43 UTP_TASK_REQ_COMPL |\ 44 UFSHCD_ERROR_MASK) 45 /* UIC command timeout, unit: ms */ 46 #define UIC_CMD_TIMEOUT 500 47 48 /* NOP OUT retries waiting for NOP IN response */ 49 #define NOP_OUT_RETRIES 10 50 /* Timeout after 50 msecs if NOP OUT hangs without response */ 51 #define NOP_OUT_TIMEOUT 50 /* msecs */ 52 53 /* Query request retries */ 54 #define QUERY_REQ_RETRIES 3 55 /* Query request timeout */ 56 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 57 58 /* Task management command timeout */ 59 #define TM_CMD_TIMEOUT 100 /* msecs */ 60 61 /* maximum number of retries for a general UIC command */ 62 #define UFS_UIC_COMMAND_RETRIES 3 63 64 /* maximum number of link-startup retries */ 65 #define DME_LINKSTARTUP_RETRIES 3 66 67 /* Maximum retries for Hibern8 enter */ 68 #define UIC_HIBERN8_ENTER_RETRIES 3 69 70 /* maximum number of reset retries before giving up */ 71 #define MAX_HOST_RESET_RETRIES 5 72 73 /* Maximum number of error handler retries before giving up */ 74 #define MAX_ERR_HANDLER_RETRIES 5 75 76 /* Expose the flag value from utp_upiu_query.value */ 77 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 78 79 /* Interrupt aggregation default timeout, unit: 40us */ 80 #define INT_AGGR_DEF_TO 0x02 81 82 /* default delay of autosuspend: 2000 ms */ 83 #define RPM_AUTOSUSPEND_DELAY_MS 2000 84 85 /* Default delay of RPM device flush delayed work */ 86 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 87 88 /* Default value of wait time before gating device ref clock */ 89 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 90 91 /* Polling time to wait for fDeviceInit */ 92 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 93 94 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 95 ({ \ 96 int _ret; \ 97 if (_on) \ 98 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 99 else \ 100 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 101 _ret; \ 102 }) 103 104 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 105 size_t __len = (len); \ 106 print_hex_dump(KERN_ERR, prefix_str, \ 107 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 108 16, 4, buf, __len, false); \ 109 } while (0) 110 111 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 112 const char *prefix) 113 { 114 u32 *regs; 115 size_t pos; 116 117 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 118 return -EINVAL; 119 120 regs = kzalloc(len, GFP_ATOMIC); 121 if (!regs) 122 return -ENOMEM; 123 124 for (pos = 0; pos < len; pos += 4) { 125 if (offset == 0 && 126 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 127 pos <= REG_UIC_ERROR_CODE_DME) 128 continue; 129 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 130 } 131 132 ufshcd_hex_dump(prefix, regs, len); 133 kfree(regs); 134 135 return 0; 136 } 137 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 138 139 enum { 140 UFSHCD_MAX_CHANNEL = 0, 141 UFSHCD_MAX_ID = 1, 142 UFSHCD_NUM_RESERVED = 1, 143 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, 144 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, 145 }; 146 147 static const char *const ufshcd_state_name[] = { 148 [UFSHCD_STATE_RESET] = "reset", 149 [UFSHCD_STATE_OPERATIONAL] = "operational", 150 [UFSHCD_STATE_ERROR] = "error", 151 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 152 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 153 }; 154 155 /* UFSHCD error handling flags */ 156 enum { 157 UFSHCD_EH_IN_PROGRESS = (1 << 0), 158 }; 159 160 /* UFSHCD UIC layer error flags */ 161 enum { 162 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 163 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 164 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 165 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 166 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 167 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 168 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 169 }; 170 171 #define ufshcd_set_eh_in_progress(h) \ 172 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 173 #define ufshcd_eh_in_progress(h) \ 174 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 175 #define ufshcd_clear_eh_in_progress(h) \ 176 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 177 178 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 179 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 180 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 181 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 182 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 183 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 184 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 185 /* 186 * For DeepSleep, the link is first put in hibern8 and then off. 187 * Leaving the link in hibern8 is not supported. 188 */ 189 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 190 }; 191 192 static inline enum ufs_dev_pwr_mode 193 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 194 { 195 return ufs_pm_lvl_states[lvl].dev_state; 196 } 197 198 static inline enum uic_link_state 199 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 200 { 201 return ufs_pm_lvl_states[lvl].link_state; 202 } 203 204 static inline enum ufs_pm_level 205 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 206 enum uic_link_state link_state) 207 { 208 enum ufs_pm_level lvl; 209 210 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 211 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 212 (ufs_pm_lvl_states[lvl].link_state == link_state)) 213 return lvl; 214 } 215 216 /* if no match found, return the level 0 */ 217 return UFS_PM_LVL_0; 218 } 219 220 static const struct ufs_dev_quirk ufs_fixups[] = { 221 /* UFS cards deviations table */ 222 { .wmanufacturerid = UFS_VENDOR_MICRON, 223 .model = UFS_ANY_MODEL, 224 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 225 UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ }, 226 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 227 .model = UFS_ANY_MODEL, 228 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 229 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 230 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 231 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 232 .model = UFS_ANY_MODEL, 233 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 234 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 235 .model = "hB8aL1" /*H28U62301AMR*/, 236 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 237 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 238 .model = UFS_ANY_MODEL, 239 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 240 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 241 .model = "THGLF2G9C8KBADG", 242 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 243 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 244 .model = "THGLF2G9D8KBADG", 245 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 246 {} 247 }; 248 249 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 250 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 251 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 252 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 253 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 254 static void ufshcd_hba_exit(struct ufs_hba *hba); 255 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 256 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 257 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 258 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 259 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 260 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 261 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 262 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 263 static irqreturn_t ufshcd_intr(int irq, void *__hba); 264 static int ufshcd_change_power_mode(struct ufs_hba *hba, 265 struct ufs_pa_layer_attr *pwr_mode); 266 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 267 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 268 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 269 struct ufs_vreg *vreg); 270 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag); 271 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set); 272 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable); 273 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 274 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 275 276 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 277 { 278 if (!hba->is_irq_enabled) { 279 enable_irq(hba->irq); 280 hba->is_irq_enabled = true; 281 } 282 } 283 284 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 285 { 286 if (hba->is_irq_enabled) { 287 disable_irq(hba->irq); 288 hba->is_irq_enabled = false; 289 } 290 } 291 292 static inline void ufshcd_wb_config(struct ufs_hba *hba) 293 { 294 if (!ufshcd_is_wb_allowed(hba)) 295 return; 296 297 ufshcd_wb_toggle(hba, true); 298 299 ufshcd_wb_toggle_flush_during_h8(hba, true); 300 if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL)) 301 ufshcd_wb_toggle_flush(hba, true); 302 } 303 304 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 305 { 306 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 307 scsi_unblock_requests(hba->host); 308 } 309 310 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 311 { 312 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 313 scsi_block_requests(hba->host); 314 } 315 316 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 317 enum ufs_trace_str_t str_t) 318 { 319 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 320 struct utp_upiu_header *header; 321 322 if (!trace_ufshcd_upiu_enabled()) 323 return; 324 325 if (str_t == UFS_CMD_SEND) 326 header = &rq->header; 327 else 328 header = &hba->lrb[tag].ucd_rsp_ptr->header; 329 330 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 331 UFS_TSF_CDB); 332 } 333 334 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 335 enum ufs_trace_str_t str_t, 336 struct utp_upiu_req *rq_rsp) 337 { 338 if (!trace_ufshcd_upiu_enabled()) 339 return; 340 341 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 342 &rq_rsp->qr, UFS_TSF_OSF); 343 } 344 345 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 346 enum ufs_trace_str_t str_t) 347 { 348 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 349 350 if (!trace_ufshcd_upiu_enabled()) 351 return; 352 353 if (str_t == UFS_TM_SEND) 354 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 355 &descp->upiu_req.req_header, 356 &descp->upiu_req.input_param1, 357 UFS_TSF_TM_INPUT); 358 else 359 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 360 &descp->upiu_rsp.rsp_header, 361 &descp->upiu_rsp.output_param1, 362 UFS_TSF_TM_OUTPUT); 363 } 364 365 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 366 struct uic_command *ucmd, 367 enum ufs_trace_str_t str_t) 368 { 369 u32 cmd; 370 371 if (!trace_ufshcd_uic_command_enabled()) 372 return; 373 374 if (str_t == UFS_CMD_SEND) 375 cmd = ucmd->command; 376 else 377 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 378 379 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 380 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 381 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 382 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 383 } 384 385 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 386 enum ufs_trace_str_t str_t) 387 { 388 u64 lba = 0; 389 u8 opcode = 0, group_id = 0; 390 u32 intr, doorbell; 391 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 392 struct scsi_cmnd *cmd = lrbp->cmd; 393 struct request *rq = scsi_cmd_to_rq(cmd); 394 int transfer_len = -1; 395 396 if (!cmd) 397 return; 398 399 /* trace UPIU also */ 400 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 401 if (!trace_ufshcd_command_enabled()) 402 return; 403 404 opcode = cmd->cmnd[0]; 405 406 if (opcode == READ_10 || opcode == WRITE_10) { 407 /* 408 * Currently we only fully trace read(10) and write(10) commands 409 */ 410 transfer_len = 411 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 412 lba = scsi_get_lba(cmd); 413 if (opcode == WRITE_10) 414 group_id = lrbp->cmd->cmnd[6]; 415 } else if (opcode == UNMAP) { 416 /* 417 * The number of Bytes to be unmapped beginning with the lba. 418 */ 419 transfer_len = blk_rq_bytes(rq); 420 lba = scsi_get_lba(cmd); 421 } 422 423 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 424 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 425 trace_ufshcd_command(dev_name(hba->dev), str_t, tag, 426 doorbell, transfer_len, intr, lba, opcode, group_id); 427 } 428 429 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 430 { 431 struct ufs_clk_info *clki; 432 struct list_head *head = &hba->clk_list_head; 433 434 if (list_empty(head)) 435 return; 436 437 list_for_each_entry(clki, head, list) { 438 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 439 clki->max_freq) 440 dev_err(hba->dev, "clk: %s, rate: %u\n", 441 clki->name, clki->curr_freq); 442 } 443 } 444 445 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 446 char *err_name) 447 { 448 int i; 449 bool found = false; 450 struct ufs_event_hist *e; 451 452 if (id >= UFS_EVT_CNT) 453 return; 454 455 e = &hba->ufs_stats.event[id]; 456 457 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 458 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 459 460 if (e->tstamp[p] == 0) 461 continue; 462 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 463 e->val[p], ktime_to_us(e->tstamp[p])); 464 found = true; 465 } 466 467 if (!found) 468 dev_err(hba->dev, "No record of %s\n", err_name); 469 else 470 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 471 } 472 473 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 474 { 475 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 476 477 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 478 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 479 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 480 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 481 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 482 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 483 "auto_hibern8_err"); 484 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 485 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 486 "link_startup_fail"); 487 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 488 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 489 "suspend_fail"); 490 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 491 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 492 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 493 494 ufshcd_vops_dbg_register_dump(hba); 495 } 496 497 static 498 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt) 499 { 500 struct ufshcd_lrb *lrbp; 501 int prdt_length; 502 int tag; 503 504 for_each_set_bit(tag, &bitmap, hba->nutrs) { 505 lrbp = &hba->lrb[tag]; 506 507 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 508 tag, ktime_to_us(lrbp->issue_time_stamp)); 509 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 510 tag, ktime_to_us(lrbp->compl_time_stamp)); 511 dev_err(hba->dev, 512 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 513 tag, (u64)lrbp->utrd_dma_addr); 514 515 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 516 sizeof(struct utp_transfer_req_desc)); 517 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 518 (u64)lrbp->ucd_req_dma_addr); 519 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 520 sizeof(struct utp_upiu_req)); 521 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 522 (u64)lrbp->ucd_rsp_dma_addr); 523 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 524 sizeof(struct utp_upiu_rsp)); 525 526 prdt_length = le16_to_cpu( 527 lrbp->utr_descriptor_ptr->prd_table_length); 528 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 529 prdt_length /= sizeof(struct ufshcd_sg_entry); 530 531 dev_err(hba->dev, 532 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 533 tag, prdt_length, 534 (u64)lrbp->ucd_prdt_dma_addr); 535 536 if (pr_prdt) 537 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 538 sizeof(struct ufshcd_sg_entry) * prdt_length); 539 } 540 } 541 542 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 543 { 544 int tag; 545 546 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 547 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 548 549 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 550 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 551 } 552 } 553 554 static void ufshcd_print_host_state(struct ufs_hba *hba) 555 { 556 struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 557 558 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 559 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 560 hba->outstanding_reqs, hba->outstanding_tasks); 561 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 562 hba->saved_err, hba->saved_uic_err); 563 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 564 hba->curr_dev_pwr_mode, hba->uic_link_state); 565 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 566 hba->pm_op_in_progress, hba->is_sys_suspended); 567 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 568 hba->auto_bkops_enabled, hba->host->host_self_blocked); 569 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 570 dev_err(hba->dev, 571 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 572 ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp), 573 hba->ufs_stats.hibern8_exit_cnt); 574 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 575 ktime_to_us(hba->ufs_stats.last_intr_ts), 576 hba->ufs_stats.last_intr_status); 577 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 578 hba->eh_flags, hba->req_abort_count); 579 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 580 hba->ufs_version, hba->capabilities, hba->caps); 581 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 582 hba->dev_quirks); 583 if (sdev_ufs) 584 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 585 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 586 587 ufshcd_print_clk_freqs(hba); 588 } 589 590 /** 591 * ufshcd_print_pwr_info - print power params as saved in hba 592 * power info 593 * @hba: per-adapter instance 594 */ 595 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 596 { 597 static const char * const names[] = { 598 "INVALID MODE", 599 "FAST MODE", 600 "SLOW_MODE", 601 "INVALID MODE", 602 "FASTAUTO_MODE", 603 "SLOWAUTO_MODE", 604 "INVALID MODE", 605 }; 606 607 /* 608 * Using dev_dbg to avoid messages during runtime PM to avoid 609 * never-ending cycles of messages written back to storage by user space 610 * causing runtime resume, causing more messages and so on. 611 */ 612 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 613 __func__, 614 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 615 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 616 names[hba->pwr_info.pwr_rx], 617 names[hba->pwr_info.pwr_tx], 618 hba->pwr_info.hs_rate); 619 } 620 621 static void ufshcd_device_reset(struct ufs_hba *hba) 622 { 623 int err; 624 625 err = ufshcd_vops_device_reset(hba); 626 627 if (!err) { 628 ufshcd_set_ufs_dev_active(hba); 629 if (ufshcd_is_wb_allowed(hba)) { 630 hba->dev_info.wb_enabled = false; 631 hba->dev_info.wb_buf_flush_enabled = false; 632 } 633 } 634 if (err != -EOPNOTSUPP) 635 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 636 } 637 638 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 639 { 640 if (!us) 641 return; 642 643 if (us < 10) 644 udelay(us); 645 else 646 usleep_range(us, us + tolerance); 647 } 648 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 649 650 /** 651 * ufshcd_wait_for_register - wait for register value to change 652 * @hba: per-adapter interface 653 * @reg: mmio register offset 654 * @mask: mask to apply to the read register value 655 * @val: value to wait for 656 * @interval_us: polling interval in microseconds 657 * @timeout_ms: timeout in milliseconds 658 * 659 * Return: 660 * -ETIMEDOUT on error, zero on success. 661 */ 662 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 663 u32 val, unsigned long interval_us, 664 unsigned long timeout_ms) 665 { 666 int err = 0; 667 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 668 669 /* ignore bits that we don't intend to wait on */ 670 val = val & mask; 671 672 while ((ufshcd_readl(hba, reg) & mask) != val) { 673 usleep_range(interval_us, interval_us + 50); 674 if (time_after(jiffies, timeout)) { 675 if ((ufshcd_readl(hba, reg) & mask) != val) 676 err = -ETIMEDOUT; 677 break; 678 } 679 } 680 681 return err; 682 } 683 684 /** 685 * ufshcd_get_intr_mask - Get the interrupt bit mask 686 * @hba: Pointer to adapter instance 687 * 688 * Returns interrupt bit mask per version 689 */ 690 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 691 { 692 if (hba->ufs_version == ufshci_version(1, 0)) 693 return INTERRUPT_MASK_ALL_VER_10; 694 if (hba->ufs_version <= ufshci_version(2, 0)) 695 return INTERRUPT_MASK_ALL_VER_11; 696 697 return INTERRUPT_MASK_ALL_VER_21; 698 } 699 700 /** 701 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 702 * @hba: Pointer to adapter instance 703 * 704 * Returns UFSHCI version supported by the controller 705 */ 706 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 707 { 708 u32 ufshci_ver; 709 710 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 711 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 712 else 713 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 714 715 /* 716 * UFSHCI v1.x uses a different version scheme, in order 717 * to allow the use of comparisons with the ufshci_version 718 * function, we convert it to the same scheme as ufs 2.0+. 719 */ 720 if (ufshci_ver & 0x00010000) 721 return ufshci_version(1, ufshci_ver & 0x00000100); 722 723 return ufshci_ver; 724 } 725 726 /** 727 * ufshcd_is_device_present - Check if any device connected to 728 * the host controller 729 * @hba: pointer to adapter instance 730 * 731 * Returns true if device present, false if no device detected 732 */ 733 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 734 { 735 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 736 } 737 738 /** 739 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 740 * @lrbp: pointer to local command reference block 741 * 742 * This function is used to get the OCS field from UTRD 743 * Returns the OCS field in the UTRD 744 */ 745 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp) 746 { 747 return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS; 748 } 749 750 /** 751 * ufshcd_utrl_clear() - Clear requests from the controller request list. 752 * @hba: per adapter instance 753 * @mask: mask with one bit set for each request to be cleared 754 */ 755 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 756 { 757 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 758 mask = ~mask; 759 /* 760 * From the UFSHCI specification: "UTP Transfer Request List CLear 761 * Register (UTRLCLR): This field is bit significant. Each bit 762 * corresponds to a slot in the UTP Transfer Request List, where bit 0 763 * corresponds to request slot 0. A bit in this field is set to ‘0’ 764 * by host software to indicate to the host controller that a transfer 765 * request slot is cleared. The host controller 766 * shall free up any resources associated to the request slot 767 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 768 * host software indicates no change to request slots by setting the 769 * associated bits in this field to ‘1’. Bits in this field shall only 770 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 771 */ 772 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 773 } 774 775 /** 776 * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register 777 * @hba: per adapter instance 778 * @pos: position of the bit to be cleared 779 */ 780 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 781 { 782 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 783 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 784 else 785 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 786 } 787 788 /** 789 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 790 * @reg: Register value of host controller status 791 * 792 * Returns integer, 0 on Success and positive value if failed 793 */ 794 static inline int ufshcd_get_lists_status(u32 reg) 795 { 796 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 797 } 798 799 /** 800 * ufshcd_get_uic_cmd_result - Get the UIC command result 801 * @hba: Pointer to adapter instance 802 * 803 * This function gets the result of UIC command completion 804 * Returns 0 on success, non zero value on error 805 */ 806 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 807 { 808 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 809 MASK_UIC_COMMAND_RESULT; 810 } 811 812 /** 813 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 814 * @hba: Pointer to adapter instance 815 * 816 * This function gets UIC command argument3 817 * Returns 0 on success, non zero value on error 818 */ 819 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 820 { 821 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 822 } 823 824 /** 825 * ufshcd_get_req_rsp - returns the TR response transaction type 826 * @ucd_rsp_ptr: pointer to response UPIU 827 */ 828 static inline int 829 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 830 { 831 return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24; 832 } 833 834 /** 835 * ufshcd_get_rsp_upiu_result - Get the result from response UPIU 836 * @ucd_rsp_ptr: pointer to response UPIU 837 * 838 * This function gets the response status and scsi_status from response UPIU 839 * Returns the response result code. 840 */ 841 static inline int 842 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr) 843 { 844 return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT; 845 } 846 847 /* 848 * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length 849 * from response UPIU 850 * @ucd_rsp_ptr: pointer to response UPIU 851 * 852 * Return the data segment length. 853 */ 854 static inline unsigned int 855 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr) 856 { 857 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & 858 MASK_RSP_UPIU_DATA_SEG_LEN; 859 } 860 861 /** 862 * ufshcd_is_exception_event - Check if the device raised an exception event 863 * @ucd_rsp_ptr: pointer to response UPIU 864 * 865 * The function checks if the device raised an exception event indicated in 866 * the Device Information field of response UPIU. 867 * 868 * Returns true if exception is raised, false otherwise. 869 */ 870 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 871 { 872 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & 873 MASK_RSP_EXCEPTION_EVENT; 874 } 875 876 /** 877 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 878 * @hba: per adapter instance 879 */ 880 static inline void 881 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 882 { 883 ufshcd_writel(hba, INT_AGGR_ENABLE | 884 INT_AGGR_COUNTER_AND_TIMER_RESET, 885 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 886 } 887 888 /** 889 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 890 * @hba: per adapter instance 891 * @cnt: Interrupt aggregation counter threshold 892 * @tmout: Interrupt aggregation timeout value 893 */ 894 static inline void 895 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 896 { 897 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 898 INT_AGGR_COUNTER_THLD_VAL(cnt) | 899 INT_AGGR_TIMEOUT_VAL(tmout), 900 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 901 } 902 903 /** 904 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 905 * @hba: per adapter instance 906 */ 907 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 908 { 909 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 910 } 911 912 /** 913 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 914 * When run-stop registers are set to 1, it indicates the 915 * host controller that it can process the requests 916 * @hba: per adapter instance 917 */ 918 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 919 { 920 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 921 REG_UTP_TASK_REQ_LIST_RUN_STOP); 922 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 923 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 924 } 925 926 /** 927 * ufshcd_hba_start - Start controller initialization sequence 928 * @hba: per adapter instance 929 */ 930 static inline void ufshcd_hba_start(struct ufs_hba *hba) 931 { 932 u32 val = CONTROLLER_ENABLE; 933 934 if (ufshcd_crypto_enable(hba)) 935 val |= CRYPTO_GENERAL_ENABLE; 936 937 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 938 } 939 940 /** 941 * ufshcd_is_hba_active - Get controller state 942 * @hba: per adapter instance 943 * 944 * Returns true if and only if the controller is active. 945 */ 946 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba) 947 { 948 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 949 } 950 951 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 952 { 953 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 954 if (hba->ufs_version <= ufshci_version(1, 1)) 955 return UFS_UNIPRO_VER_1_41; 956 else 957 return UFS_UNIPRO_VER_1_6; 958 } 959 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 960 961 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 962 { 963 /* 964 * If both host and device support UniPro ver1.6 or later, PA layer 965 * parameters tuning happens during link startup itself. 966 * 967 * We can manually tune PA layer parameters if either host or device 968 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 969 * logic simple, we will only do manual tuning if local unipro version 970 * doesn't support ver1.6 or later. 971 */ 972 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; 973 } 974 975 /** 976 * ufshcd_set_clk_freq - set UFS controller clock frequencies 977 * @hba: per adapter instance 978 * @scale_up: If True, set max possible frequency othewise set low frequency 979 * 980 * Returns 0 if successful 981 * Returns < 0 for any other errors 982 */ 983 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 984 { 985 int ret = 0; 986 struct ufs_clk_info *clki; 987 struct list_head *head = &hba->clk_list_head; 988 989 if (list_empty(head)) 990 goto out; 991 992 list_for_each_entry(clki, head, list) { 993 if (!IS_ERR_OR_NULL(clki->clk)) { 994 if (scale_up && clki->max_freq) { 995 if (clki->curr_freq == clki->max_freq) 996 continue; 997 998 ret = clk_set_rate(clki->clk, clki->max_freq); 999 if (ret) { 1000 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1001 __func__, clki->name, 1002 clki->max_freq, ret); 1003 break; 1004 } 1005 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1006 "scaled up", clki->name, 1007 clki->curr_freq, 1008 clki->max_freq); 1009 1010 clki->curr_freq = clki->max_freq; 1011 1012 } else if (!scale_up && clki->min_freq) { 1013 if (clki->curr_freq == clki->min_freq) 1014 continue; 1015 1016 ret = clk_set_rate(clki->clk, clki->min_freq); 1017 if (ret) { 1018 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1019 __func__, clki->name, 1020 clki->min_freq, ret); 1021 break; 1022 } 1023 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1024 "scaled down", clki->name, 1025 clki->curr_freq, 1026 clki->min_freq); 1027 clki->curr_freq = clki->min_freq; 1028 } 1029 } 1030 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1031 clki->name, clk_get_rate(clki->clk)); 1032 } 1033 1034 out: 1035 return ret; 1036 } 1037 1038 /** 1039 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1040 * @hba: per adapter instance 1041 * @scale_up: True if scaling up and false if scaling down 1042 * 1043 * Returns 0 if successful 1044 * Returns < 0 for any other errors 1045 */ 1046 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 1047 { 1048 int ret = 0; 1049 ktime_t start = ktime_get(); 1050 1051 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1052 if (ret) 1053 goto out; 1054 1055 ret = ufshcd_set_clk_freq(hba, scale_up); 1056 if (ret) 1057 goto out; 1058 1059 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1060 if (ret) 1061 ufshcd_set_clk_freq(hba, !scale_up); 1062 1063 out: 1064 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1065 (scale_up ? "up" : "down"), 1066 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1067 return ret; 1068 } 1069 1070 /** 1071 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1072 * @hba: per adapter instance 1073 * @scale_up: True if scaling up and false if scaling down 1074 * 1075 * Returns true if scaling is required, false otherwise. 1076 */ 1077 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1078 bool scale_up) 1079 { 1080 struct ufs_clk_info *clki; 1081 struct list_head *head = &hba->clk_list_head; 1082 1083 if (list_empty(head)) 1084 return false; 1085 1086 list_for_each_entry(clki, head, list) { 1087 if (!IS_ERR_OR_NULL(clki->clk)) { 1088 if (scale_up && clki->max_freq) { 1089 if (clki->curr_freq == clki->max_freq) 1090 continue; 1091 return true; 1092 } else if (!scale_up && clki->min_freq) { 1093 if (clki->curr_freq == clki->min_freq) 1094 continue; 1095 return true; 1096 } 1097 } 1098 } 1099 1100 return false; 1101 } 1102 1103 /* 1104 * Determine the number of pending commands by counting the bits in the SCSI 1105 * device budget maps. This approach has been selected because a bit is set in 1106 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1107 * flag. The host_self_blocked flag can be modified by calling 1108 * scsi_block_requests() or scsi_unblock_requests(). 1109 */ 1110 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1111 { 1112 struct scsi_device *sdev; 1113 u32 pending = 0; 1114 1115 lockdep_assert_held(hba->host->host_lock); 1116 __shost_for_each_device(sdev, hba->host) 1117 pending += sbitmap_weight(&sdev->budget_map); 1118 1119 return pending; 1120 } 1121 1122 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1123 u64 wait_timeout_us) 1124 { 1125 unsigned long flags; 1126 int ret = 0; 1127 u32 tm_doorbell; 1128 u32 tr_pending; 1129 bool timeout = false, do_last_check = false; 1130 ktime_t start; 1131 1132 ufshcd_hold(hba, false); 1133 spin_lock_irqsave(hba->host->host_lock, flags); 1134 /* 1135 * Wait for all the outstanding tasks/transfer requests. 1136 * Verify by checking the doorbell registers are clear. 1137 */ 1138 start = ktime_get(); 1139 do { 1140 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1141 ret = -EBUSY; 1142 goto out; 1143 } 1144 1145 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1146 tr_pending = ufshcd_pending_cmds(hba); 1147 if (!tm_doorbell && !tr_pending) { 1148 timeout = false; 1149 break; 1150 } else if (do_last_check) { 1151 break; 1152 } 1153 1154 spin_unlock_irqrestore(hba->host->host_lock, flags); 1155 schedule(); 1156 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1157 wait_timeout_us) { 1158 timeout = true; 1159 /* 1160 * We might have scheduled out for long time so make 1161 * sure to check if doorbells are cleared by this time 1162 * or not. 1163 */ 1164 do_last_check = true; 1165 } 1166 spin_lock_irqsave(hba->host->host_lock, flags); 1167 } while (tm_doorbell || tr_pending); 1168 1169 if (timeout) { 1170 dev_err(hba->dev, 1171 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1172 __func__, tm_doorbell, tr_pending); 1173 ret = -EBUSY; 1174 } 1175 out: 1176 spin_unlock_irqrestore(hba->host->host_lock, flags); 1177 ufshcd_release(hba); 1178 return ret; 1179 } 1180 1181 /** 1182 * ufshcd_scale_gear - scale up/down UFS gear 1183 * @hba: per adapter instance 1184 * @scale_up: True for scaling up gear and false for scaling down 1185 * 1186 * Returns 0 for success, 1187 * Returns -EBUSY if scaling can't happen at this time 1188 * Returns non-zero for any other errors 1189 */ 1190 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1191 { 1192 int ret = 0; 1193 struct ufs_pa_layer_attr new_pwr_info; 1194 1195 if (scale_up) { 1196 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info, 1197 sizeof(struct ufs_pa_layer_attr)); 1198 } else { 1199 memcpy(&new_pwr_info, &hba->pwr_info, 1200 sizeof(struct ufs_pa_layer_attr)); 1201 1202 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1203 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1204 /* save the current power mode */ 1205 memcpy(&hba->clk_scaling.saved_pwr_info.info, 1206 &hba->pwr_info, 1207 sizeof(struct ufs_pa_layer_attr)); 1208 1209 /* scale down gear */ 1210 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1211 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1212 } 1213 } 1214 1215 /* check if the power mode needs to be changed or not? */ 1216 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1217 if (ret) 1218 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1219 __func__, ret, 1220 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1221 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1222 1223 return ret; 1224 } 1225 1226 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba) 1227 { 1228 #define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */ 1229 int ret = 0; 1230 /* 1231 * make sure that there are no outstanding requests when 1232 * clock scaling is in progress 1233 */ 1234 ufshcd_scsi_block_requests(hba); 1235 down_write(&hba->clk_scaling_lock); 1236 1237 if (!hba->clk_scaling.is_allowed || 1238 ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) { 1239 ret = -EBUSY; 1240 up_write(&hba->clk_scaling_lock); 1241 ufshcd_scsi_unblock_requests(hba); 1242 goto out; 1243 } 1244 1245 /* let's not get into low power until clock scaling is completed */ 1246 ufshcd_hold(hba, false); 1247 1248 out: 1249 return ret; 1250 } 1251 1252 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock) 1253 { 1254 if (writelock) 1255 up_write(&hba->clk_scaling_lock); 1256 else 1257 up_read(&hba->clk_scaling_lock); 1258 ufshcd_scsi_unblock_requests(hba); 1259 ufshcd_release(hba); 1260 } 1261 1262 /** 1263 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1264 * @hba: per adapter instance 1265 * @scale_up: True for scaling up and false for scalin down 1266 * 1267 * Returns 0 for success, 1268 * Returns -EBUSY if scaling can't happen at this time 1269 * Returns non-zero for any other errors 1270 */ 1271 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1272 { 1273 int ret = 0; 1274 bool is_writelock = true; 1275 1276 ret = ufshcd_clock_scaling_prepare(hba); 1277 if (ret) 1278 return ret; 1279 1280 /* scale down the gear before scaling down clocks */ 1281 if (!scale_up) { 1282 ret = ufshcd_scale_gear(hba, false); 1283 if (ret) 1284 goto out_unprepare; 1285 } 1286 1287 ret = ufshcd_scale_clks(hba, scale_up); 1288 if (ret) { 1289 if (!scale_up) 1290 ufshcd_scale_gear(hba, true); 1291 goto out_unprepare; 1292 } 1293 1294 /* scale up the gear after scaling up clocks */ 1295 if (scale_up) { 1296 ret = ufshcd_scale_gear(hba, true); 1297 if (ret) { 1298 ufshcd_scale_clks(hba, false); 1299 goto out_unprepare; 1300 } 1301 } 1302 1303 /* Enable Write Booster if we have scaled up else disable it */ 1304 downgrade_write(&hba->clk_scaling_lock); 1305 is_writelock = false; 1306 ufshcd_wb_toggle(hba, scale_up); 1307 1308 out_unprepare: 1309 ufshcd_clock_scaling_unprepare(hba, is_writelock); 1310 return ret; 1311 } 1312 1313 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1314 { 1315 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1316 clk_scaling.suspend_work); 1317 unsigned long irq_flags; 1318 1319 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1320 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1321 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1322 return; 1323 } 1324 hba->clk_scaling.is_suspended = true; 1325 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1326 1327 __ufshcd_suspend_clkscaling(hba); 1328 } 1329 1330 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1331 { 1332 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1333 clk_scaling.resume_work); 1334 unsigned long irq_flags; 1335 1336 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1337 if (!hba->clk_scaling.is_suspended) { 1338 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1339 return; 1340 } 1341 hba->clk_scaling.is_suspended = false; 1342 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1343 1344 devfreq_resume_device(hba->devfreq); 1345 } 1346 1347 static int ufshcd_devfreq_target(struct device *dev, 1348 unsigned long *freq, u32 flags) 1349 { 1350 int ret = 0; 1351 struct ufs_hba *hba = dev_get_drvdata(dev); 1352 ktime_t start; 1353 bool scale_up, sched_clk_scaling_suspend_work = false; 1354 struct list_head *clk_list = &hba->clk_list_head; 1355 struct ufs_clk_info *clki; 1356 unsigned long irq_flags; 1357 1358 if (!ufshcd_is_clkscaling_supported(hba)) 1359 return -EINVAL; 1360 1361 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1362 /* Override with the closest supported frequency */ 1363 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1364 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1365 if (ufshcd_eh_in_progress(hba)) { 1366 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1367 return 0; 1368 } 1369 1370 if (!hba->clk_scaling.active_reqs) 1371 sched_clk_scaling_suspend_work = true; 1372 1373 if (list_empty(clk_list)) { 1374 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1375 goto out; 1376 } 1377 1378 /* Decide based on the rounded-off frequency and update */ 1379 scale_up = *freq == clki->max_freq; 1380 if (!scale_up) 1381 *freq = clki->min_freq; 1382 /* Update the frequency */ 1383 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1384 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1385 ret = 0; 1386 goto out; /* no state change required */ 1387 } 1388 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1389 1390 start = ktime_get(); 1391 ret = ufshcd_devfreq_scale(hba, scale_up); 1392 1393 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1394 (scale_up ? "up" : "down"), 1395 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1396 1397 out: 1398 if (sched_clk_scaling_suspend_work) 1399 queue_work(hba->clk_scaling.workq, 1400 &hba->clk_scaling.suspend_work); 1401 1402 return ret; 1403 } 1404 1405 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1406 struct devfreq_dev_status *stat) 1407 { 1408 struct ufs_hba *hba = dev_get_drvdata(dev); 1409 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1410 unsigned long flags; 1411 struct list_head *clk_list = &hba->clk_list_head; 1412 struct ufs_clk_info *clki; 1413 ktime_t curr_t; 1414 1415 if (!ufshcd_is_clkscaling_supported(hba)) 1416 return -EINVAL; 1417 1418 memset(stat, 0, sizeof(*stat)); 1419 1420 spin_lock_irqsave(hba->host->host_lock, flags); 1421 curr_t = ktime_get(); 1422 if (!scaling->window_start_t) 1423 goto start_window; 1424 1425 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1426 /* 1427 * If current frequency is 0, then the ondemand governor considers 1428 * there's no initial frequency set. And it always requests to set 1429 * to max. frequency. 1430 */ 1431 stat->current_frequency = clki->curr_freq; 1432 if (scaling->is_busy_started) 1433 scaling->tot_busy_t += ktime_us_delta(curr_t, 1434 scaling->busy_start_t); 1435 1436 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1437 stat->busy_time = scaling->tot_busy_t; 1438 start_window: 1439 scaling->window_start_t = curr_t; 1440 scaling->tot_busy_t = 0; 1441 1442 if (hba->outstanding_reqs) { 1443 scaling->busy_start_t = curr_t; 1444 scaling->is_busy_started = true; 1445 } else { 1446 scaling->busy_start_t = 0; 1447 scaling->is_busy_started = false; 1448 } 1449 spin_unlock_irqrestore(hba->host->host_lock, flags); 1450 return 0; 1451 } 1452 1453 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1454 { 1455 struct list_head *clk_list = &hba->clk_list_head; 1456 struct ufs_clk_info *clki; 1457 struct devfreq *devfreq; 1458 int ret; 1459 1460 /* Skip devfreq if we don't have any clocks in the list */ 1461 if (list_empty(clk_list)) 1462 return 0; 1463 1464 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1465 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1466 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1467 1468 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1469 &hba->vps->ondemand_data); 1470 devfreq = devfreq_add_device(hba->dev, 1471 &hba->vps->devfreq_profile, 1472 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1473 &hba->vps->ondemand_data); 1474 if (IS_ERR(devfreq)) { 1475 ret = PTR_ERR(devfreq); 1476 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1477 1478 dev_pm_opp_remove(hba->dev, clki->min_freq); 1479 dev_pm_opp_remove(hba->dev, clki->max_freq); 1480 return ret; 1481 } 1482 1483 hba->devfreq = devfreq; 1484 1485 return 0; 1486 } 1487 1488 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1489 { 1490 struct list_head *clk_list = &hba->clk_list_head; 1491 struct ufs_clk_info *clki; 1492 1493 if (!hba->devfreq) 1494 return; 1495 1496 devfreq_remove_device(hba->devfreq); 1497 hba->devfreq = NULL; 1498 1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1500 dev_pm_opp_remove(hba->dev, clki->min_freq); 1501 dev_pm_opp_remove(hba->dev, clki->max_freq); 1502 } 1503 1504 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1505 { 1506 unsigned long flags; 1507 1508 devfreq_suspend_device(hba->devfreq); 1509 spin_lock_irqsave(hba->host->host_lock, flags); 1510 hba->clk_scaling.window_start_t = 0; 1511 spin_unlock_irqrestore(hba->host->host_lock, flags); 1512 } 1513 1514 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1515 { 1516 unsigned long flags; 1517 bool suspend = false; 1518 1519 cancel_work_sync(&hba->clk_scaling.suspend_work); 1520 cancel_work_sync(&hba->clk_scaling.resume_work); 1521 1522 spin_lock_irqsave(hba->host->host_lock, flags); 1523 if (!hba->clk_scaling.is_suspended) { 1524 suspend = true; 1525 hba->clk_scaling.is_suspended = true; 1526 } 1527 spin_unlock_irqrestore(hba->host->host_lock, flags); 1528 1529 if (suspend) 1530 __ufshcd_suspend_clkscaling(hba); 1531 } 1532 1533 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1534 { 1535 unsigned long flags; 1536 bool resume = false; 1537 1538 spin_lock_irqsave(hba->host->host_lock, flags); 1539 if (hba->clk_scaling.is_suspended) { 1540 resume = true; 1541 hba->clk_scaling.is_suspended = false; 1542 } 1543 spin_unlock_irqrestore(hba->host->host_lock, flags); 1544 1545 if (resume) 1546 devfreq_resume_device(hba->devfreq); 1547 } 1548 1549 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1550 struct device_attribute *attr, char *buf) 1551 { 1552 struct ufs_hba *hba = dev_get_drvdata(dev); 1553 1554 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1555 } 1556 1557 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1558 struct device_attribute *attr, const char *buf, size_t count) 1559 { 1560 struct ufs_hba *hba = dev_get_drvdata(dev); 1561 u32 value; 1562 int err = 0; 1563 1564 if (kstrtou32(buf, 0, &value)) 1565 return -EINVAL; 1566 1567 down(&hba->host_sem); 1568 if (!ufshcd_is_user_access_allowed(hba)) { 1569 err = -EBUSY; 1570 goto out; 1571 } 1572 1573 value = !!value; 1574 if (value == hba->clk_scaling.is_enabled) 1575 goto out; 1576 1577 ufshcd_rpm_get_sync(hba); 1578 ufshcd_hold(hba, false); 1579 1580 hba->clk_scaling.is_enabled = value; 1581 1582 if (value) { 1583 ufshcd_resume_clkscaling(hba); 1584 } else { 1585 ufshcd_suspend_clkscaling(hba); 1586 err = ufshcd_devfreq_scale(hba, true); 1587 if (err) 1588 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1589 __func__, err); 1590 } 1591 1592 ufshcd_release(hba); 1593 ufshcd_rpm_put_sync(hba); 1594 out: 1595 up(&hba->host_sem); 1596 return err ? err : count; 1597 } 1598 1599 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1600 { 1601 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1602 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1603 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1604 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1605 hba->clk_scaling.enable_attr.attr.mode = 0644; 1606 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1607 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1608 } 1609 1610 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1611 { 1612 if (hba->clk_scaling.enable_attr.attr.name) 1613 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1614 } 1615 1616 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1617 { 1618 char wq_name[sizeof("ufs_clkscaling_00")]; 1619 1620 if (!ufshcd_is_clkscaling_supported(hba)) 1621 return; 1622 1623 if (!hba->clk_scaling.min_gear) 1624 hba->clk_scaling.min_gear = UFS_HS_G1; 1625 1626 INIT_WORK(&hba->clk_scaling.suspend_work, 1627 ufshcd_clk_scaling_suspend_work); 1628 INIT_WORK(&hba->clk_scaling.resume_work, 1629 ufshcd_clk_scaling_resume_work); 1630 1631 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1632 hba->host->host_no); 1633 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1634 1635 hba->clk_scaling.is_initialized = true; 1636 } 1637 1638 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1639 { 1640 if (!hba->clk_scaling.is_initialized) 1641 return; 1642 1643 ufshcd_remove_clk_scaling_sysfs(hba); 1644 destroy_workqueue(hba->clk_scaling.workq); 1645 ufshcd_devfreq_remove(hba); 1646 hba->clk_scaling.is_initialized = false; 1647 } 1648 1649 static void ufshcd_ungate_work(struct work_struct *work) 1650 { 1651 int ret; 1652 unsigned long flags; 1653 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1654 clk_gating.ungate_work); 1655 1656 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1657 1658 spin_lock_irqsave(hba->host->host_lock, flags); 1659 if (hba->clk_gating.state == CLKS_ON) { 1660 spin_unlock_irqrestore(hba->host->host_lock, flags); 1661 goto unblock_reqs; 1662 } 1663 1664 spin_unlock_irqrestore(hba->host->host_lock, flags); 1665 ufshcd_hba_vreg_set_hpm(hba); 1666 ufshcd_setup_clocks(hba, true); 1667 1668 ufshcd_enable_irq(hba); 1669 1670 /* Exit from hibern8 */ 1671 if (ufshcd_can_hibern8_during_gating(hba)) { 1672 /* Prevent gating in this path */ 1673 hba->clk_gating.is_suspended = true; 1674 if (ufshcd_is_link_hibern8(hba)) { 1675 ret = ufshcd_uic_hibern8_exit(hba); 1676 if (ret) 1677 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1678 __func__, ret); 1679 else 1680 ufshcd_set_link_active(hba); 1681 } 1682 hba->clk_gating.is_suspended = false; 1683 } 1684 unblock_reqs: 1685 ufshcd_scsi_unblock_requests(hba); 1686 } 1687 1688 /** 1689 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1690 * Also, exit from hibern8 mode and set the link as active. 1691 * @hba: per adapter instance 1692 * @async: This indicates whether caller should ungate clocks asynchronously. 1693 */ 1694 int ufshcd_hold(struct ufs_hba *hba, bool async) 1695 { 1696 int rc = 0; 1697 bool flush_result; 1698 unsigned long flags; 1699 1700 if (!ufshcd_is_clkgating_allowed(hba) || 1701 !hba->clk_gating.is_initialized) 1702 goto out; 1703 spin_lock_irqsave(hba->host->host_lock, flags); 1704 hba->clk_gating.active_reqs++; 1705 1706 start: 1707 switch (hba->clk_gating.state) { 1708 case CLKS_ON: 1709 /* 1710 * Wait for the ungate work to complete if in progress. 1711 * Though the clocks may be in ON state, the link could 1712 * still be in hibner8 state if hibern8 is allowed 1713 * during clock gating. 1714 * Make sure we exit hibern8 state also in addition to 1715 * clocks being ON. 1716 */ 1717 if (ufshcd_can_hibern8_during_gating(hba) && 1718 ufshcd_is_link_hibern8(hba)) { 1719 if (async) { 1720 rc = -EAGAIN; 1721 hba->clk_gating.active_reqs--; 1722 break; 1723 } 1724 spin_unlock_irqrestore(hba->host->host_lock, flags); 1725 flush_result = flush_work(&hba->clk_gating.ungate_work); 1726 if (hba->clk_gating.is_suspended && !flush_result) 1727 goto out; 1728 spin_lock_irqsave(hba->host->host_lock, flags); 1729 goto start; 1730 } 1731 break; 1732 case REQ_CLKS_OFF: 1733 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1734 hba->clk_gating.state = CLKS_ON; 1735 trace_ufshcd_clk_gating(dev_name(hba->dev), 1736 hba->clk_gating.state); 1737 break; 1738 } 1739 /* 1740 * If we are here, it means gating work is either done or 1741 * currently running. Hence, fall through to cancel gating 1742 * work and to enable clocks. 1743 */ 1744 fallthrough; 1745 case CLKS_OFF: 1746 hba->clk_gating.state = REQ_CLKS_ON; 1747 trace_ufshcd_clk_gating(dev_name(hba->dev), 1748 hba->clk_gating.state); 1749 if (queue_work(hba->clk_gating.clk_gating_workq, 1750 &hba->clk_gating.ungate_work)) 1751 ufshcd_scsi_block_requests(hba); 1752 /* 1753 * fall through to check if we should wait for this 1754 * work to be done or not. 1755 */ 1756 fallthrough; 1757 case REQ_CLKS_ON: 1758 if (async) { 1759 rc = -EAGAIN; 1760 hba->clk_gating.active_reqs--; 1761 break; 1762 } 1763 1764 spin_unlock_irqrestore(hba->host->host_lock, flags); 1765 flush_work(&hba->clk_gating.ungate_work); 1766 /* Make sure state is CLKS_ON before returning */ 1767 spin_lock_irqsave(hba->host->host_lock, flags); 1768 goto start; 1769 default: 1770 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1771 __func__, hba->clk_gating.state); 1772 break; 1773 } 1774 spin_unlock_irqrestore(hba->host->host_lock, flags); 1775 out: 1776 return rc; 1777 } 1778 EXPORT_SYMBOL_GPL(ufshcd_hold); 1779 1780 static void ufshcd_gate_work(struct work_struct *work) 1781 { 1782 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1783 clk_gating.gate_work.work); 1784 unsigned long flags; 1785 int ret; 1786 1787 spin_lock_irqsave(hba->host->host_lock, flags); 1788 /* 1789 * In case you are here to cancel this work the gating state 1790 * would be marked as REQ_CLKS_ON. In this case save time by 1791 * skipping the gating work and exit after changing the clock 1792 * state to CLKS_ON. 1793 */ 1794 if (hba->clk_gating.is_suspended || 1795 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1796 hba->clk_gating.state = CLKS_ON; 1797 trace_ufshcd_clk_gating(dev_name(hba->dev), 1798 hba->clk_gating.state); 1799 goto rel_lock; 1800 } 1801 1802 if (hba->clk_gating.active_reqs 1803 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1804 || hba->outstanding_reqs || hba->outstanding_tasks 1805 || hba->active_uic_cmd || hba->uic_async_done) 1806 goto rel_lock; 1807 1808 spin_unlock_irqrestore(hba->host->host_lock, flags); 1809 1810 /* put the link into hibern8 mode before turning off clocks */ 1811 if (ufshcd_can_hibern8_during_gating(hba)) { 1812 ret = ufshcd_uic_hibern8_enter(hba); 1813 if (ret) { 1814 hba->clk_gating.state = CLKS_ON; 1815 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1816 __func__, ret); 1817 trace_ufshcd_clk_gating(dev_name(hba->dev), 1818 hba->clk_gating.state); 1819 goto out; 1820 } 1821 ufshcd_set_link_hibern8(hba); 1822 } 1823 1824 ufshcd_disable_irq(hba); 1825 1826 ufshcd_setup_clocks(hba, false); 1827 1828 /* Put the host controller in low power mode if possible */ 1829 ufshcd_hba_vreg_set_lpm(hba); 1830 /* 1831 * In case you are here to cancel this work the gating state 1832 * would be marked as REQ_CLKS_ON. In this case keep the state 1833 * as REQ_CLKS_ON which would anyway imply that clocks are off 1834 * and a request to turn them on is pending. By doing this way, 1835 * we keep the state machine in tact and this would ultimately 1836 * prevent from doing cancel work multiple times when there are 1837 * new requests arriving before the current cancel work is done. 1838 */ 1839 spin_lock_irqsave(hba->host->host_lock, flags); 1840 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1841 hba->clk_gating.state = CLKS_OFF; 1842 trace_ufshcd_clk_gating(dev_name(hba->dev), 1843 hba->clk_gating.state); 1844 } 1845 rel_lock: 1846 spin_unlock_irqrestore(hba->host->host_lock, flags); 1847 out: 1848 return; 1849 } 1850 1851 /* host lock must be held before calling this variant */ 1852 static void __ufshcd_release(struct ufs_hba *hba) 1853 { 1854 if (!ufshcd_is_clkgating_allowed(hba)) 1855 return; 1856 1857 hba->clk_gating.active_reqs--; 1858 1859 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1860 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1861 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 1862 hba->active_uic_cmd || hba->uic_async_done || 1863 hba->clk_gating.state == CLKS_OFF) 1864 return; 1865 1866 hba->clk_gating.state = REQ_CLKS_OFF; 1867 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1868 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1869 &hba->clk_gating.gate_work, 1870 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1871 } 1872 1873 void ufshcd_release(struct ufs_hba *hba) 1874 { 1875 unsigned long flags; 1876 1877 spin_lock_irqsave(hba->host->host_lock, flags); 1878 __ufshcd_release(hba); 1879 spin_unlock_irqrestore(hba->host->host_lock, flags); 1880 } 1881 EXPORT_SYMBOL_GPL(ufshcd_release); 1882 1883 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1884 struct device_attribute *attr, char *buf) 1885 { 1886 struct ufs_hba *hba = dev_get_drvdata(dev); 1887 1888 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 1889 } 1890 1891 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 1892 { 1893 struct ufs_hba *hba = dev_get_drvdata(dev); 1894 unsigned long flags; 1895 1896 spin_lock_irqsave(hba->host->host_lock, flags); 1897 hba->clk_gating.delay_ms = value; 1898 spin_unlock_irqrestore(hba->host->host_lock, flags); 1899 } 1900 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 1901 1902 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1903 struct device_attribute *attr, const char *buf, size_t count) 1904 { 1905 unsigned long value; 1906 1907 if (kstrtoul(buf, 0, &value)) 1908 return -EINVAL; 1909 1910 ufshcd_clkgate_delay_set(dev, value); 1911 return count; 1912 } 1913 1914 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1915 struct device_attribute *attr, char *buf) 1916 { 1917 struct ufs_hba *hba = dev_get_drvdata(dev); 1918 1919 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 1920 } 1921 1922 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1923 struct device_attribute *attr, const char *buf, size_t count) 1924 { 1925 struct ufs_hba *hba = dev_get_drvdata(dev); 1926 unsigned long flags; 1927 u32 value; 1928 1929 if (kstrtou32(buf, 0, &value)) 1930 return -EINVAL; 1931 1932 value = !!value; 1933 1934 spin_lock_irqsave(hba->host->host_lock, flags); 1935 if (value == hba->clk_gating.is_enabled) 1936 goto out; 1937 1938 if (value) 1939 __ufshcd_release(hba); 1940 else 1941 hba->clk_gating.active_reqs++; 1942 1943 hba->clk_gating.is_enabled = value; 1944 out: 1945 spin_unlock_irqrestore(hba->host->host_lock, flags); 1946 return count; 1947 } 1948 1949 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 1950 { 1951 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1952 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1953 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1954 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 1955 hba->clk_gating.delay_attr.attr.mode = 0644; 1956 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 1957 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 1958 1959 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 1960 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 1961 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 1962 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 1963 hba->clk_gating.enable_attr.attr.mode = 0644; 1964 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 1965 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 1966 } 1967 1968 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 1969 { 1970 if (hba->clk_gating.delay_attr.attr.name) 1971 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 1972 if (hba->clk_gating.enable_attr.attr.name) 1973 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 1974 } 1975 1976 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 1977 { 1978 char wq_name[sizeof("ufs_clk_gating_00")]; 1979 1980 if (!ufshcd_is_clkgating_allowed(hba)) 1981 return; 1982 1983 hba->clk_gating.state = CLKS_ON; 1984 1985 hba->clk_gating.delay_ms = 150; 1986 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 1987 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 1988 1989 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 1990 hba->host->host_no); 1991 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 1992 WQ_MEM_RECLAIM | WQ_HIGHPRI); 1993 1994 ufshcd_init_clk_gating_sysfs(hba); 1995 1996 hba->clk_gating.is_enabled = true; 1997 hba->clk_gating.is_initialized = true; 1998 } 1999 2000 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2001 { 2002 if (!hba->clk_gating.is_initialized) 2003 return; 2004 2005 ufshcd_remove_clk_gating_sysfs(hba); 2006 2007 /* Ungate the clock if necessary. */ 2008 ufshcd_hold(hba, false); 2009 hba->clk_gating.is_initialized = false; 2010 ufshcd_release(hba); 2011 2012 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2013 } 2014 2015 /* Must be called with host lock acquired */ 2016 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2017 { 2018 bool queue_resume_work = false; 2019 ktime_t curr_t = ktime_get(); 2020 unsigned long flags; 2021 2022 if (!ufshcd_is_clkscaling_supported(hba)) 2023 return; 2024 2025 spin_lock_irqsave(hba->host->host_lock, flags); 2026 if (!hba->clk_scaling.active_reqs++) 2027 queue_resume_work = true; 2028 2029 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2030 spin_unlock_irqrestore(hba->host->host_lock, flags); 2031 return; 2032 } 2033 2034 if (queue_resume_work) 2035 queue_work(hba->clk_scaling.workq, 2036 &hba->clk_scaling.resume_work); 2037 2038 if (!hba->clk_scaling.window_start_t) { 2039 hba->clk_scaling.window_start_t = curr_t; 2040 hba->clk_scaling.tot_busy_t = 0; 2041 hba->clk_scaling.is_busy_started = false; 2042 } 2043 2044 if (!hba->clk_scaling.is_busy_started) { 2045 hba->clk_scaling.busy_start_t = curr_t; 2046 hba->clk_scaling.is_busy_started = true; 2047 } 2048 spin_unlock_irqrestore(hba->host->host_lock, flags); 2049 } 2050 2051 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2052 { 2053 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2054 unsigned long flags; 2055 2056 if (!ufshcd_is_clkscaling_supported(hba)) 2057 return; 2058 2059 spin_lock_irqsave(hba->host->host_lock, flags); 2060 hba->clk_scaling.active_reqs--; 2061 if (!hba->outstanding_reqs && scaling->is_busy_started) { 2062 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2063 scaling->busy_start_t)); 2064 scaling->busy_start_t = 0; 2065 scaling->is_busy_started = false; 2066 } 2067 spin_unlock_irqrestore(hba->host->host_lock, flags); 2068 } 2069 2070 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2071 { 2072 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2073 return READ; 2074 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2075 return WRITE; 2076 else 2077 return -EINVAL; 2078 } 2079 2080 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2081 struct ufshcd_lrb *lrbp) 2082 { 2083 struct ufs_hba_monitor *m = &hba->monitor; 2084 2085 return (m->enabled && lrbp && lrbp->cmd && 2086 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2087 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2088 } 2089 2090 static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2091 { 2092 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2093 unsigned long flags; 2094 2095 spin_lock_irqsave(hba->host->host_lock, flags); 2096 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2097 hba->monitor.busy_start_ts[dir] = ktime_get(); 2098 spin_unlock_irqrestore(hba->host->host_lock, flags); 2099 } 2100 2101 static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2102 { 2103 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2104 unsigned long flags; 2105 2106 spin_lock_irqsave(hba->host->host_lock, flags); 2107 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2108 struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2109 struct ufs_hba_monitor *m = &hba->monitor; 2110 ktime_t now, inc, lat; 2111 2112 now = lrbp->compl_time_stamp; 2113 inc = ktime_sub(now, m->busy_start_ts[dir]); 2114 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2115 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2116 2117 /* Update latencies */ 2118 m->nr_req[dir]++; 2119 lat = ktime_sub(now, lrbp->issue_time_stamp); 2120 m->lat_sum[dir] += lat; 2121 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2122 m->lat_max[dir] = lat; 2123 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2124 m->lat_min[dir] = lat; 2125 2126 m->nr_queued[dir]--; 2127 /* Push forward the busy start of monitor */ 2128 m->busy_start_ts[dir] = now; 2129 } 2130 spin_unlock_irqrestore(hba->host->host_lock, flags); 2131 } 2132 2133 /** 2134 * ufshcd_send_command - Send SCSI or device management commands 2135 * @hba: per adapter instance 2136 * @task_tag: Task tag of the command 2137 */ 2138 static inline 2139 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag) 2140 { 2141 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2142 unsigned long flags; 2143 2144 lrbp->issue_time_stamp = ktime_get(); 2145 lrbp->compl_time_stamp = ktime_set(0, 0); 2146 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2147 ufshcd_clk_scaling_start_busy(hba); 2148 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2149 ufshcd_start_monitor(hba, lrbp); 2150 2151 spin_lock_irqsave(&hba->outstanding_lock, flags); 2152 if (hba->vops && hba->vops->setup_xfer_req) 2153 hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd); 2154 __set_bit(task_tag, &hba->outstanding_reqs); 2155 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL); 2156 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2157 } 2158 2159 /** 2160 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2161 * @lrbp: pointer to local reference block 2162 */ 2163 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2164 { 2165 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2166 int len; 2167 2168 if (sense_buffer && 2169 ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) { 2170 int len_to_copy; 2171 2172 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2173 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2174 2175 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2176 len_to_copy); 2177 } 2178 } 2179 2180 /** 2181 * ufshcd_copy_query_response() - Copy the Query Response and the data 2182 * descriptor 2183 * @hba: per adapter instance 2184 * @lrbp: pointer to local reference block 2185 */ 2186 static 2187 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2188 { 2189 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2190 2191 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2192 2193 /* Get the descriptor */ 2194 if (hba->dev_cmd.query.descriptor && 2195 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2196 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2197 GENERAL_UPIU_REQUEST_SIZE; 2198 u16 resp_len; 2199 u16 buf_len; 2200 2201 /* data segment length */ 2202 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & 2203 MASK_QUERY_DATA_SEG_LEN; 2204 buf_len = be16_to_cpu( 2205 hba->dev_cmd.query.request.upiu_req.length); 2206 if (likely(buf_len >= resp_len)) { 2207 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2208 } else { 2209 dev_warn(hba->dev, 2210 "%s: rsp size %d is bigger than buffer size %d", 2211 __func__, resp_len, buf_len); 2212 return -EINVAL; 2213 } 2214 } 2215 2216 return 0; 2217 } 2218 2219 /** 2220 * ufshcd_hba_capabilities - Read controller capabilities 2221 * @hba: per adapter instance 2222 * 2223 * Return: 0 on success, negative on error. 2224 */ 2225 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2226 { 2227 int err; 2228 2229 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2230 2231 /* nutrs and nutmrs are 0 based values */ 2232 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2233 hba->nutmrs = 2234 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2235 hba->reserved_slot = hba->nutrs - 1; 2236 2237 /* Read crypto capabilities */ 2238 err = ufshcd_hba_init_crypto_capabilities(hba); 2239 if (err) 2240 dev_err(hba->dev, "crypto setup failed\n"); 2241 2242 return err; 2243 } 2244 2245 /** 2246 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2247 * to accept UIC commands 2248 * @hba: per adapter instance 2249 * Return true on success, else false 2250 */ 2251 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2252 { 2253 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY; 2254 } 2255 2256 /** 2257 * ufshcd_get_upmcrs - Get the power mode change request status 2258 * @hba: Pointer to adapter instance 2259 * 2260 * This function gets the UPMCRS field of HCS register 2261 * Returns value of UPMCRS field 2262 */ 2263 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2264 { 2265 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2266 } 2267 2268 /** 2269 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2270 * @hba: per adapter instance 2271 * @uic_cmd: UIC command 2272 */ 2273 static inline void 2274 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2275 { 2276 lockdep_assert_held(&hba->uic_cmd_mutex); 2277 2278 WARN_ON(hba->active_uic_cmd); 2279 2280 hba->active_uic_cmd = uic_cmd; 2281 2282 /* Write Args */ 2283 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2284 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2285 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2286 2287 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2288 2289 /* Write UIC Cmd */ 2290 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2291 REG_UIC_COMMAND); 2292 } 2293 2294 /** 2295 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2296 * @hba: per adapter instance 2297 * @uic_cmd: UIC command 2298 * 2299 * Returns 0 only if success. 2300 */ 2301 static int 2302 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2303 { 2304 int ret; 2305 unsigned long flags; 2306 2307 lockdep_assert_held(&hba->uic_cmd_mutex); 2308 2309 if (wait_for_completion_timeout(&uic_cmd->done, 2310 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2311 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2312 } else { 2313 ret = -ETIMEDOUT; 2314 dev_err(hba->dev, 2315 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2316 uic_cmd->command, uic_cmd->argument3); 2317 2318 if (!uic_cmd->cmd_active) { 2319 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2320 __func__); 2321 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2322 } 2323 } 2324 2325 spin_lock_irqsave(hba->host->host_lock, flags); 2326 hba->active_uic_cmd = NULL; 2327 spin_unlock_irqrestore(hba->host->host_lock, flags); 2328 2329 return ret; 2330 } 2331 2332 /** 2333 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2334 * @hba: per adapter instance 2335 * @uic_cmd: UIC command 2336 * @completion: initialize the completion only if this is set to true 2337 * 2338 * Returns 0 only if success. 2339 */ 2340 static int 2341 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, 2342 bool completion) 2343 { 2344 lockdep_assert_held(&hba->uic_cmd_mutex); 2345 lockdep_assert_held(hba->host->host_lock); 2346 2347 if (!ufshcd_ready_for_uic_cmd(hba)) { 2348 dev_err(hba->dev, 2349 "Controller not ready to accept UIC commands\n"); 2350 return -EIO; 2351 } 2352 2353 if (completion) 2354 init_completion(&uic_cmd->done); 2355 2356 uic_cmd->cmd_active = 1; 2357 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2358 2359 return 0; 2360 } 2361 2362 /** 2363 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2364 * @hba: per adapter instance 2365 * @uic_cmd: UIC command 2366 * 2367 * Returns 0 only if success. 2368 */ 2369 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2370 { 2371 int ret; 2372 unsigned long flags; 2373 2374 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2375 return 0; 2376 2377 ufshcd_hold(hba, false); 2378 mutex_lock(&hba->uic_cmd_mutex); 2379 ufshcd_add_delay_before_dme_cmd(hba); 2380 2381 spin_lock_irqsave(hba->host->host_lock, flags); 2382 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); 2383 spin_unlock_irqrestore(hba->host->host_lock, flags); 2384 if (!ret) 2385 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2386 2387 mutex_unlock(&hba->uic_cmd_mutex); 2388 2389 ufshcd_release(hba); 2390 return ret; 2391 } 2392 2393 /** 2394 * ufshcd_map_sg - Map scatter-gather list to prdt 2395 * @hba: per adapter instance 2396 * @lrbp: pointer to local reference block 2397 * 2398 * Returns 0 in case of success, non-zero value in case of failure 2399 */ 2400 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2401 { 2402 struct ufshcd_sg_entry *prd_table; 2403 struct scatterlist *sg; 2404 struct scsi_cmnd *cmd; 2405 int sg_segments; 2406 int i; 2407 2408 cmd = lrbp->cmd; 2409 sg_segments = scsi_dma_map(cmd); 2410 if (sg_segments < 0) 2411 return sg_segments; 2412 2413 if (sg_segments) { 2414 2415 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2416 lrbp->utr_descriptor_ptr->prd_table_length = 2417 cpu_to_le16((sg_segments * 2418 sizeof(struct ufshcd_sg_entry))); 2419 else 2420 lrbp->utr_descriptor_ptr->prd_table_length = 2421 cpu_to_le16(sg_segments); 2422 2423 prd_table = lrbp->ucd_prdt_ptr; 2424 2425 scsi_for_each_sg(cmd, sg, sg_segments, i) { 2426 const unsigned int len = sg_dma_len(sg); 2427 2428 /* 2429 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2430 * based value that indicates the length, in bytes, of 2431 * the data block. A maximum of length of 256KB may 2432 * exist for any entry. Bits 1:0 of this field shall be 2433 * 11b to indicate Dword granularity. A value of '3' 2434 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2435 */ 2436 WARN_ONCE(len > 256 * 1024, "len = %#x\n", len); 2437 prd_table[i].size = cpu_to_le32(len - 1); 2438 prd_table[i].addr = cpu_to_le64(sg->dma_address); 2439 prd_table[i].reserved = 0; 2440 } 2441 } else { 2442 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2443 } 2444 2445 return 0; 2446 } 2447 2448 /** 2449 * ufshcd_enable_intr - enable interrupts 2450 * @hba: per adapter instance 2451 * @intrs: interrupt bits 2452 */ 2453 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2454 { 2455 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2456 2457 if (hba->ufs_version == ufshci_version(1, 0)) { 2458 u32 rw; 2459 rw = set & INTERRUPT_MASK_RW_VER_10; 2460 set = rw | ((set ^ intrs) & intrs); 2461 } else { 2462 set |= intrs; 2463 } 2464 2465 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2466 } 2467 2468 /** 2469 * ufshcd_disable_intr - disable interrupts 2470 * @hba: per adapter instance 2471 * @intrs: interrupt bits 2472 */ 2473 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2474 { 2475 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2476 2477 if (hba->ufs_version == ufshci_version(1, 0)) { 2478 u32 rw; 2479 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2480 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2481 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2482 2483 } else { 2484 set &= ~intrs; 2485 } 2486 2487 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2488 } 2489 2490 /** 2491 * ufshcd_prepare_req_desc_hdr() - Fills the requests header 2492 * descriptor according to request 2493 * @lrbp: pointer to local reference block 2494 * @upiu_flags: flags required in the header 2495 * @cmd_dir: requests data direction 2496 */ 2497 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, 2498 u8 *upiu_flags, enum dma_data_direction cmd_dir) 2499 { 2500 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2501 u32 data_direction; 2502 u32 dword_0; 2503 u32 dword_1 = 0; 2504 u32 dword_3 = 0; 2505 2506 if (cmd_dir == DMA_FROM_DEVICE) { 2507 data_direction = UTP_DEVICE_TO_HOST; 2508 *upiu_flags = UPIU_CMD_FLAGS_READ; 2509 } else if (cmd_dir == DMA_TO_DEVICE) { 2510 data_direction = UTP_HOST_TO_DEVICE; 2511 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2512 } else { 2513 data_direction = UTP_NO_DATA_TRANSFER; 2514 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2515 } 2516 2517 dword_0 = data_direction | (lrbp->command_type 2518 << UPIU_COMMAND_TYPE_OFFSET); 2519 if (lrbp->intr_cmd) 2520 dword_0 |= UTP_REQ_DESC_INT_CMD; 2521 2522 /* Prepare crypto related dwords */ 2523 ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3); 2524 2525 /* Transfer request descriptor header fields */ 2526 req_desc->header.dword_0 = cpu_to_le32(dword_0); 2527 req_desc->header.dword_1 = cpu_to_le32(dword_1); 2528 /* 2529 * assigning invalid value for command status. Controller 2530 * updates OCS on command completion, with the command 2531 * status 2532 */ 2533 req_desc->header.dword_2 = 2534 cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 2535 req_desc->header.dword_3 = cpu_to_le32(dword_3); 2536 2537 req_desc->prd_table_length = 0; 2538 } 2539 2540 /** 2541 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2542 * for scsi commands 2543 * @lrbp: local reference block pointer 2544 * @upiu_flags: flags 2545 */ 2546 static 2547 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2548 { 2549 struct scsi_cmnd *cmd = lrbp->cmd; 2550 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2551 unsigned short cdb_len; 2552 2553 /* command descriptor fields */ 2554 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( 2555 UPIU_TRANSACTION_COMMAND, upiu_flags, 2556 lrbp->lun, lrbp->task_tag); 2557 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 2558 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0); 2559 2560 /* Total EHS length and Data segment length will be zero */ 2561 ucd_req_ptr->header.dword_2 = 0; 2562 2563 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2564 2565 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2566 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2567 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2568 2569 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2570 } 2571 2572 /** 2573 * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc, 2574 * for query requsts 2575 * @hba: UFS hba 2576 * @lrbp: local reference block pointer 2577 * @upiu_flags: flags 2578 */ 2579 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2580 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2581 { 2582 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2583 struct ufs_query *query = &hba->dev_cmd.query; 2584 u16 len = be16_to_cpu(query->request.upiu_req.length); 2585 2586 /* Query request header */ 2587 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( 2588 UPIU_TRANSACTION_QUERY_REQ, upiu_flags, 2589 lrbp->lun, lrbp->task_tag); 2590 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 2591 0, query->request.query_func, 0, 0); 2592 2593 /* Data segment length only need for WRITE_DESC */ 2594 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2595 ucd_req_ptr->header.dword_2 = 2596 UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len); 2597 else 2598 ucd_req_ptr->header.dword_2 = 0; 2599 2600 /* Copy the Query Request buffer as is */ 2601 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2602 QUERY_OSF_SIZE); 2603 2604 /* Copy the Descriptor */ 2605 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2606 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2607 2608 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2609 } 2610 2611 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2612 { 2613 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2614 2615 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2616 2617 /* command descriptor fields */ 2618 ucd_req_ptr->header.dword_0 = 2619 UPIU_HEADER_DWORD( 2620 UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag); 2621 /* clear rest of the fields of basic header */ 2622 ucd_req_ptr->header.dword_1 = 0; 2623 ucd_req_ptr->header.dword_2 = 0; 2624 2625 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2626 } 2627 2628 /** 2629 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2630 * for Device Management Purposes 2631 * @hba: per adapter instance 2632 * @lrbp: pointer to local reference block 2633 */ 2634 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2635 struct ufshcd_lrb *lrbp) 2636 { 2637 u8 upiu_flags; 2638 int ret = 0; 2639 2640 if (hba->ufs_version <= ufshci_version(1, 1)) 2641 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2642 else 2643 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2644 2645 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE); 2646 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2647 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2648 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2649 ufshcd_prepare_utp_nop_upiu(lrbp); 2650 else 2651 ret = -EINVAL; 2652 2653 return ret; 2654 } 2655 2656 /** 2657 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2658 * for SCSI Purposes 2659 * @hba: per adapter instance 2660 * @lrbp: pointer to local reference block 2661 */ 2662 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2663 { 2664 u8 upiu_flags; 2665 int ret = 0; 2666 2667 if (hba->ufs_version <= ufshci_version(1, 1)) 2668 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2669 else 2670 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2671 2672 if (likely(lrbp->cmd)) { 2673 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, 2674 lrbp->cmd->sc_data_direction); 2675 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2676 } else { 2677 ret = -EINVAL; 2678 } 2679 2680 return ret; 2681 } 2682 2683 /** 2684 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2685 * @upiu_wlun_id: UPIU W-LUN id 2686 * 2687 * Returns SCSI W-LUN id 2688 */ 2689 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2690 { 2691 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2692 } 2693 2694 static inline bool is_device_wlun(struct scsi_device *sdev) 2695 { 2696 return sdev->lun == 2697 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2698 } 2699 2700 /* 2701 * Associate the UFS controller queue with the default and poll HCTX types. 2702 * Initialize the mq_map[] arrays. 2703 */ 2704 static int ufshcd_map_queues(struct Scsi_Host *shost) 2705 { 2706 int i, ret; 2707 2708 for (i = 0; i < shost->nr_maps; i++) { 2709 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2710 2711 switch (i) { 2712 case HCTX_TYPE_DEFAULT: 2713 case HCTX_TYPE_POLL: 2714 map->nr_queues = 1; 2715 break; 2716 case HCTX_TYPE_READ: 2717 map->nr_queues = 0; 2718 continue; 2719 default: 2720 WARN_ON_ONCE(true); 2721 } 2722 map->queue_offset = 0; 2723 ret = blk_mq_map_queues(map); 2724 WARN_ON_ONCE(ret); 2725 } 2726 2727 return 0; 2728 } 2729 2730 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2731 { 2732 struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr; 2733 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2734 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2735 i * sizeof(struct utp_transfer_cmd_desc); 2736 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2737 response_upiu); 2738 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2739 2740 lrb->utr_descriptor_ptr = utrdlp + i; 2741 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2742 i * sizeof(struct utp_transfer_req_desc); 2743 lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i); 2744 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2745 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu; 2746 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2747 lrb->ucd_prdt_ptr = cmd_descp[i].prd_table; 2748 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2749 } 2750 2751 /** 2752 * ufshcd_queuecommand - main entry point for SCSI requests 2753 * @host: SCSI host pointer 2754 * @cmd: command from SCSI Midlayer 2755 * 2756 * Returns 0 for success, non-zero in case of failure 2757 */ 2758 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2759 { 2760 struct ufs_hba *hba = shost_priv(host); 2761 int tag = scsi_cmd_to_rq(cmd)->tag; 2762 struct ufshcd_lrb *lrbp; 2763 int err = 0; 2764 2765 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); 2766 2767 /* 2768 * Allows the UFS error handler to wait for prior ufshcd_queuecommand() 2769 * calls. 2770 */ 2771 rcu_read_lock(); 2772 2773 switch (hba->ufshcd_state) { 2774 case UFSHCD_STATE_OPERATIONAL: 2775 break; 2776 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2777 /* 2778 * SCSI error handler can call ->queuecommand() while UFS error 2779 * handler is in progress. Error interrupts could change the 2780 * state from UFSHCD_STATE_RESET to 2781 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2782 * being issued in that case. 2783 */ 2784 if (ufshcd_eh_in_progress(hba)) { 2785 err = SCSI_MLQUEUE_HOST_BUSY; 2786 goto out; 2787 } 2788 break; 2789 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2790 /* 2791 * pm_runtime_get_sync() is used at error handling preparation 2792 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2793 * PM ops, it can never be finished if we let SCSI layer keep 2794 * retrying it, which gets err handler stuck forever. Neither 2795 * can we let the scsi cmd pass through, because UFS is in bad 2796 * state, the scsi cmd may eventually time out, which will get 2797 * err handler blocked for too long. So, just fail the scsi cmd 2798 * sent from PM ops, err handler can recover PM error anyways. 2799 */ 2800 if (hba->pm_op_in_progress) { 2801 hba->force_reset = true; 2802 set_host_byte(cmd, DID_BAD_TARGET); 2803 scsi_done(cmd); 2804 goto out; 2805 } 2806 fallthrough; 2807 case UFSHCD_STATE_RESET: 2808 err = SCSI_MLQUEUE_HOST_BUSY; 2809 goto out; 2810 case UFSHCD_STATE_ERROR: 2811 set_host_byte(cmd, DID_ERROR); 2812 scsi_done(cmd); 2813 goto out; 2814 } 2815 2816 hba->req_abort_count = 0; 2817 2818 err = ufshcd_hold(hba, true); 2819 if (err) { 2820 err = SCSI_MLQUEUE_HOST_BUSY; 2821 goto out; 2822 } 2823 WARN_ON(ufshcd_is_clkgating_allowed(hba) && 2824 (hba->clk_gating.state != CLKS_ON)); 2825 2826 lrbp = &hba->lrb[tag]; 2827 WARN_ON(lrbp->cmd); 2828 lrbp->cmd = cmd; 2829 lrbp->task_tag = tag; 2830 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2831 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2832 2833 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 2834 2835 lrbp->req_abort_skip = false; 2836 2837 ufshpb_prep(hba, lrbp); 2838 2839 ufshcd_comp_scsi_upiu(hba, lrbp); 2840 2841 err = ufshcd_map_sg(hba, lrbp); 2842 if (err) { 2843 lrbp->cmd = NULL; 2844 ufshcd_release(hba); 2845 goto out; 2846 } 2847 2848 ufshcd_send_command(hba, tag); 2849 2850 out: 2851 rcu_read_unlock(); 2852 2853 if (ufs_trigger_eh()) { 2854 unsigned long flags; 2855 2856 spin_lock_irqsave(hba->host->host_lock, flags); 2857 ufshcd_schedule_eh_work(hba); 2858 spin_unlock_irqrestore(hba->host->host_lock, flags); 2859 } 2860 2861 return err; 2862 } 2863 2864 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2865 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2866 { 2867 lrbp->cmd = NULL; 2868 lrbp->task_tag = tag; 2869 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2870 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2871 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2872 hba->dev_cmd.type = cmd_type; 2873 2874 return ufshcd_compose_devman_upiu(hba, lrbp); 2875 } 2876 2877 /* 2878 * Clear all the requests from the controller for which a bit has been set in 2879 * @mask and wait until the controller confirms that these requests have been 2880 * cleared. 2881 */ 2882 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask) 2883 { 2884 unsigned long flags; 2885 2886 /* clear outstanding transaction before retry */ 2887 spin_lock_irqsave(hba->host->host_lock, flags); 2888 ufshcd_utrl_clear(hba, mask); 2889 spin_unlock_irqrestore(hba->host->host_lock, flags); 2890 2891 /* 2892 * wait for h/w to clear corresponding bit in door-bell. 2893 * max. wait is 1 sec. 2894 */ 2895 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 2896 mask, ~mask, 1000, 1000); 2897 } 2898 2899 static int 2900 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2901 { 2902 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2903 2904 /* Get the UPIU response */ 2905 query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >> 2906 UPIU_RSP_CODE_OFFSET; 2907 return query_res->response; 2908 } 2909 2910 /** 2911 * ufshcd_dev_cmd_completion() - handles device management command responses 2912 * @hba: per adapter instance 2913 * @lrbp: pointer to local reference block 2914 */ 2915 static int 2916 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2917 { 2918 int resp; 2919 int err = 0; 2920 2921 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 2922 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 2923 2924 switch (resp) { 2925 case UPIU_TRANSACTION_NOP_IN: 2926 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 2927 err = -EINVAL; 2928 dev_err(hba->dev, "%s: unexpected response %x\n", 2929 __func__, resp); 2930 } 2931 break; 2932 case UPIU_TRANSACTION_QUERY_RSP: 2933 err = ufshcd_check_query_response(hba, lrbp); 2934 if (!err) 2935 err = ufshcd_copy_query_response(hba, lrbp); 2936 break; 2937 case UPIU_TRANSACTION_REJECT_UPIU: 2938 /* TODO: handle Reject UPIU Response */ 2939 err = -EPERM; 2940 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 2941 __func__); 2942 break; 2943 default: 2944 err = -EINVAL; 2945 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 2946 __func__, resp); 2947 break; 2948 } 2949 2950 return err; 2951 } 2952 2953 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 2954 struct ufshcd_lrb *lrbp, int max_timeout) 2955 { 2956 int err = 0; 2957 unsigned long time_left; 2958 unsigned long flags; 2959 2960 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 2961 msecs_to_jiffies(max_timeout)); 2962 2963 spin_lock_irqsave(hba->host->host_lock, flags); 2964 hba->dev_cmd.complete = NULL; 2965 if (likely(time_left)) { 2966 err = ufshcd_get_tr_ocs(lrbp); 2967 if (!err) 2968 err = ufshcd_dev_cmd_completion(hba, lrbp); 2969 } 2970 spin_unlock_irqrestore(hba->host->host_lock, flags); 2971 2972 if (!time_left) { 2973 err = -ETIMEDOUT; 2974 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 2975 __func__, lrbp->task_tag); 2976 if (!ufshcd_clear_cmds(hba, 1U << lrbp->task_tag)) 2977 /* successfully cleared the command, retry if needed */ 2978 err = -EAGAIN; 2979 /* 2980 * in case of an error, after clearing the doorbell, 2981 * we also need to clear the outstanding_request 2982 * field in hba 2983 */ 2984 spin_lock_irqsave(&hba->outstanding_lock, flags); 2985 __clear_bit(lrbp->task_tag, &hba->outstanding_reqs); 2986 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2987 } 2988 2989 return err; 2990 } 2991 2992 /** 2993 * ufshcd_exec_dev_cmd - API for sending device management requests 2994 * @hba: UFS hba 2995 * @cmd_type: specifies the type (NOP, Query...) 2996 * @timeout: timeout in milliseconds 2997 * 2998 * NOTE: Since there is only one available tag for device management commands, 2999 * it is expected you hold the hba->dev_cmd.lock mutex. 3000 */ 3001 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3002 enum dev_cmd_type cmd_type, int timeout) 3003 { 3004 DECLARE_COMPLETION_ONSTACK(wait); 3005 const u32 tag = hba->reserved_slot; 3006 struct ufshcd_lrb *lrbp; 3007 int err; 3008 3009 /* Protects use of hba->reserved_slot. */ 3010 lockdep_assert_held(&hba->dev_cmd.lock); 3011 3012 down_read(&hba->clk_scaling_lock); 3013 3014 lrbp = &hba->lrb[tag]; 3015 WARN_ON(lrbp->cmd); 3016 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3017 if (unlikely(err)) 3018 goto out; 3019 3020 hba->dev_cmd.complete = &wait; 3021 3022 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3023 3024 ufshcd_send_command(hba, tag); 3025 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3026 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3027 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3028 3029 out: 3030 up_read(&hba->clk_scaling_lock); 3031 return err; 3032 } 3033 3034 /** 3035 * ufshcd_init_query() - init the query response and request parameters 3036 * @hba: per-adapter instance 3037 * @request: address of the request pointer to be initialized 3038 * @response: address of the response pointer to be initialized 3039 * @opcode: operation to perform 3040 * @idn: flag idn to access 3041 * @index: LU number to access 3042 * @selector: query/flag/descriptor further identification 3043 */ 3044 static inline void ufshcd_init_query(struct ufs_hba *hba, 3045 struct ufs_query_req **request, struct ufs_query_res **response, 3046 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3047 { 3048 *request = &hba->dev_cmd.query.request; 3049 *response = &hba->dev_cmd.query.response; 3050 memset(*request, 0, sizeof(struct ufs_query_req)); 3051 memset(*response, 0, sizeof(struct ufs_query_res)); 3052 (*request)->upiu_req.opcode = opcode; 3053 (*request)->upiu_req.idn = idn; 3054 (*request)->upiu_req.index = index; 3055 (*request)->upiu_req.selector = selector; 3056 } 3057 3058 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3059 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3060 { 3061 int ret; 3062 int retries; 3063 3064 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3065 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3066 if (ret) 3067 dev_dbg(hba->dev, 3068 "%s: failed with error %d, retries %d\n", 3069 __func__, ret, retries); 3070 else 3071 break; 3072 } 3073 3074 if (ret) 3075 dev_err(hba->dev, 3076 "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n", 3077 __func__, opcode, idn, ret, retries); 3078 return ret; 3079 } 3080 3081 /** 3082 * ufshcd_query_flag() - API function for sending flag query requests 3083 * @hba: per-adapter instance 3084 * @opcode: flag query to perform 3085 * @idn: flag idn to access 3086 * @index: flag index to access 3087 * @flag_res: the flag value after the query request completes 3088 * 3089 * Returns 0 for success, non-zero in case of failure 3090 */ 3091 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3092 enum flag_idn idn, u8 index, bool *flag_res) 3093 { 3094 struct ufs_query_req *request = NULL; 3095 struct ufs_query_res *response = NULL; 3096 int err, selector = 0; 3097 int timeout = QUERY_REQ_TIMEOUT; 3098 3099 BUG_ON(!hba); 3100 3101 ufshcd_hold(hba, false); 3102 mutex_lock(&hba->dev_cmd.lock); 3103 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3104 selector); 3105 3106 switch (opcode) { 3107 case UPIU_QUERY_OPCODE_SET_FLAG: 3108 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3109 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3110 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3111 break; 3112 case UPIU_QUERY_OPCODE_READ_FLAG: 3113 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3114 if (!flag_res) { 3115 /* No dummy reads */ 3116 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3117 __func__); 3118 err = -EINVAL; 3119 goto out_unlock; 3120 } 3121 break; 3122 default: 3123 dev_err(hba->dev, 3124 "%s: Expected query flag opcode but got = %d\n", 3125 __func__, opcode); 3126 err = -EINVAL; 3127 goto out_unlock; 3128 } 3129 3130 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3131 3132 if (err) { 3133 dev_err(hba->dev, 3134 "%s: Sending flag query for idn %d failed, err = %d\n", 3135 __func__, idn, err); 3136 goto out_unlock; 3137 } 3138 3139 if (flag_res) 3140 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3141 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3142 3143 out_unlock: 3144 mutex_unlock(&hba->dev_cmd.lock); 3145 ufshcd_release(hba); 3146 return err; 3147 } 3148 3149 /** 3150 * ufshcd_query_attr - API function for sending attribute requests 3151 * @hba: per-adapter instance 3152 * @opcode: attribute opcode 3153 * @idn: attribute idn to access 3154 * @index: index field 3155 * @selector: selector field 3156 * @attr_val: the attribute value after the query request completes 3157 * 3158 * Returns 0 for success, non-zero in case of failure 3159 */ 3160 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3161 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3162 { 3163 struct ufs_query_req *request = NULL; 3164 struct ufs_query_res *response = NULL; 3165 int err; 3166 3167 BUG_ON(!hba); 3168 3169 if (!attr_val) { 3170 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3171 __func__, opcode); 3172 return -EINVAL; 3173 } 3174 3175 ufshcd_hold(hba, false); 3176 3177 mutex_lock(&hba->dev_cmd.lock); 3178 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3179 selector); 3180 3181 switch (opcode) { 3182 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3183 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3184 request->upiu_req.value = cpu_to_be32(*attr_val); 3185 break; 3186 case UPIU_QUERY_OPCODE_READ_ATTR: 3187 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3188 break; 3189 default: 3190 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3191 __func__, opcode); 3192 err = -EINVAL; 3193 goto out_unlock; 3194 } 3195 3196 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3197 3198 if (err) { 3199 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3200 __func__, opcode, idn, index, err); 3201 goto out_unlock; 3202 } 3203 3204 *attr_val = be32_to_cpu(response->upiu_res.value); 3205 3206 out_unlock: 3207 mutex_unlock(&hba->dev_cmd.lock); 3208 ufshcd_release(hba); 3209 return err; 3210 } 3211 3212 /** 3213 * ufshcd_query_attr_retry() - API function for sending query 3214 * attribute with retries 3215 * @hba: per-adapter instance 3216 * @opcode: attribute opcode 3217 * @idn: attribute idn to access 3218 * @index: index field 3219 * @selector: selector field 3220 * @attr_val: the attribute value after the query request 3221 * completes 3222 * 3223 * Returns 0 for success, non-zero in case of failure 3224 */ 3225 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3226 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3227 u32 *attr_val) 3228 { 3229 int ret = 0; 3230 u32 retries; 3231 3232 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3233 ret = ufshcd_query_attr(hba, opcode, idn, index, 3234 selector, attr_val); 3235 if (ret) 3236 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3237 __func__, ret, retries); 3238 else 3239 break; 3240 } 3241 3242 if (ret) 3243 dev_err(hba->dev, 3244 "%s: query attribute, idn %d, failed with error %d after %d retires\n", 3245 __func__, idn, ret, QUERY_REQ_RETRIES); 3246 return ret; 3247 } 3248 3249 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3250 enum query_opcode opcode, enum desc_idn idn, u8 index, 3251 u8 selector, u8 *desc_buf, int *buf_len) 3252 { 3253 struct ufs_query_req *request = NULL; 3254 struct ufs_query_res *response = NULL; 3255 int err; 3256 3257 BUG_ON(!hba); 3258 3259 if (!desc_buf) { 3260 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3261 __func__, opcode); 3262 return -EINVAL; 3263 } 3264 3265 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3266 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3267 __func__, *buf_len); 3268 return -EINVAL; 3269 } 3270 3271 ufshcd_hold(hba, false); 3272 3273 mutex_lock(&hba->dev_cmd.lock); 3274 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3275 selector); 3276 hba->dev_cmd.query.descriptor = desc_buf; 3277 request->upiu_req.length = cpu_to_be16(*buf_len); 3278 3279 switch (opcode) { 3280 case UPIU_QUERY_OPCODE_WRITE_DESC: 3281 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3282 break; 3283 case UPIU_QUERY_OPCODE_READ_DESC: 3284 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3285 break; 3286 default: 3287 dev_err(hba->dev, 3288 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3289 __func__, opcode); 3290 err = -EINVAL; 3291 goto out_unlock; 3292 } 3293 3294 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3295 3296 if (err) { 3297 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3298 __func__, opcode, idn, index, err); 3299 goto out_unlock; 3300 } 3301 3302 *buf_len = be16_to_cpu(response->upiu_res.length); 3303 3304 out_unlock: 3305 hba->dev_cmd.query.descriptor = NULL; 3306 mutex_unlock(&hba->dev_cmd.lock); 3307 ufshcd_release(hba); 3308 return err; 3309 } 3310 3311 /** 3312 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3313 * @hba: per-adapter instance 3314 * @opcode: attribute opcode 3315 * @idn: attribute idn to access 3316 * @index: index field 3317 * @selector: selector field 3318 * @desc_buf: the buffer that contains the descriptor 3319 * @buf_len: length parameter passed to the device 3320 * 3321 * Returns 0 for success, non-zero in case of failure. 3322 * The buf_len parameter will contain, on return, the length parameter 3323 * received on the response. 3324 */ 3325 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3326 enum query_opcode opcode, 3327 enum desc_idn idn, u8 index, 3328 u8 selector, 3329 u8 *desc_buf, int *buf_len) 3330 { 3331 int err; 3332 int retries; 3333 3334 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3335 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3336 selector, desc_buf, buf_len); 3337 if (!err || err == -EINVAL) 3338 break; 3339 } 3340 3341 return err; 3342 } 3343 3344 /** 3345 * ufshcd_map_desc_id_to_length - map descriptor IDN to its length 3346 * @hba: Pointer to adapter instance 3347 * @desc_id: descriptor idn value 3348 * @desc_len: mapped desc length (out) 3349 */ 3350 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id, 3351 int *desc_len) 3352 { 3353 if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 || 3354 desc_id == QUERY_DESC_IDN_RFU_1) 3355 *desc_len = 0; 3356 else 3357 *desc_len = hba->desc_size[desc_id]; 3358 } 3359 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length); 3360 3361 static void ufshcd_update_desc_length(struct ufs_hba *hba, 3362 enum desc_idn desc_id, int desc_index, 3363 unsigned char desc_len) 3364 { 3365 if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE && 3366 desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT) 3367 /* For UFS 3.1, the normal unit descriptor is 10 bytes larger 3368 * than the RPMB unit, however, both descriptors share the same 3369 * desc_idn, to cover both unit descriptors with one length, we 3370 * choose the normal unit descriptor length by desc_index. 3371 */ 3372 hba->desc_size[desc_id] = desc_len; 3373 } 3374 3375 /** 3376 * ufshcd_read_desc_param - read the specified descriptor parameter 3377 * @hba: Pointer to adapter instance 3378 * @desc_id: descriptor idn value 3379 * @desc_index: descriptor index 3380 * @param_offset: offset of the parameter to read 3381 * @param_read_buf: pointer to buffer where parameter would be read 3382 * @param_size: sizeof(param_read_buf) 3383 * 3384 * Return 0 in case of success, non-zero otherwise 3385 */ 3386 int ufshcd_read_desc_param(struct ufs_hba *hba, 3387 enum desc_idn desc_id, 3388 int desc_index, 3389 u8 param_offset, 3390 u8 *param_read_buf, 3391 u8 param_size) 3392 { 3393 int ret; 3394 u8 *desc_buf; 3395 int buff_len; 3396 bool is_kmalloc = true; 3397 3398 /* Safety check */ 3399 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3400 return -EINVAL; 3401 3402 /* Get the length of descriptor */ 3403 ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len); 3404 if (!buff_len) { 3405 dev_err(hba->dev, "%s: Failed to get desc length\n", __func__); 3406 return -EINVAL; 3407 } 3408 3409 if (param_offset >= buff_len) { 3410 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3411 __func__, param_offset, desc_id, buff_len); 3412 return -EINVAL; 3413 } 3414 3415 /* Check whether we need temp memory */ 3416 if (param_offset != 0 || param_size < buff_len) { 3417 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3418 if (!desc_buf) 3419 return -ENOMEM; 3420 } else { 3421 desc_buf = param_read_buf; 3422 is_kmalloc = false; 3423 } 3424 3425 /* Request for full descriptor */ 3426 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3427 desc_id, desc_index, 0, 3428 desc_buf, &buff_len); 3429 3430 if (ret) { 3431 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3432 __func__, desc_id, desc_index, param_offset, ret); 3433 goto out; 3434 } 3435 3436 /* Sanity check */ 3437 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3438 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3439 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3440 ret = -EINVAL; 3441 goto out; 3442 } 3443 3444 /* Update descriptor length */ 3445 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3446 ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len); 3447 3448 if (is_kmalloc) { 3449 /* Make sure we don't copy more data than available */ 3450 if (param_offset >= buff_len) 3451 ret = -EINVAL; 3452 else 3453 memcpy(param_read_buf, &desc_buf[param_offset], 3454 min_t(u32, param_size, buff_len - param_offset)); 3455 } 3456 out: 3457 if (is_kmalloc) 3458 kfree(desc_buf); 3459 return ret; 3460 } 3461 3462 /** 3463 * struct uc_string_id - unicode string 3464 * 3465 * @len: size of this descriptor inclusive 3466 * @type: descriptor type 3467 * @uc: unicode string character 3468 */ 3469 struct uc_string_id { 3470 u8 len; 3471 u8 type; 3472 wchar_t uc[]; 3473 } __packed; 3474 3475 /* replace non-printable or non-ASCII characters with spaces */ 3476 static inline char ufshcd_remove_non_printable(u8 ch) 3477 { 3478 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3479 } 3480 3481 /** 3482 * ufshcd_read_string_desc - read string descriptor 3483 * @hba: pointer to adapter instance 3484 * @desc_index: descriptor index 3485 * @buf: pointer to buffer where descriptor would be read, 3486 * the caller should free the memory. 3487 * @ascii: if true convert from unicode to ascii characters 3488 * null terminated string. 3489 * 3490 * Return: 3491 * * string size on success. 3492 * * -ENOMEM: on allocation failure 3493 * * -EINVAL: on a wrong parameter 3494 */ 3495 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3496 u8 **buf, bool ascii) 3497 { 3498 struct uc_string_id *uc_str; 3499 u8 *str; 3500 int ret; 3501 3502 if (!buf) 3503 return -EINVAL; 3504 3505 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3506 if (!uc_str) 3507 return -ENOMEM; 3508 3509 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3510 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3511 if (ret < 0) { 3512 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3513 QUERY_REQ_RETRIES, ret); 3514 str = NULL; 3515 goto out; 3516 } 3517 3518 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3519 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3520 str = NULL; 3521 ret = 0; 3522 goto out; 3523 } 3524 3525 if (ascii) { 3526 ssize_t ascii_len; 3527 int i; 3528 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3529 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3530 str = kzalloc(ascii_len, GFP_KERNEL); 3531 if (!str) { 3532 ret = -ENOMEM; 3533 goto out; 3534 } 3535 3536 /* 3537 * the descriptor contains string in UTF16 format 3538 * we need to convert to utf-8 so it can be displayed 3539 */ 3540 ret = utf16s_to_utf8s(uc_str->uc, 3541 uc_str->len - QUERY_DESC_HDR_SIZE, 3542 UTF16_BIG_ENDIAN, str, ascii_len); 3543 3544 /* replace non-printable or non-ASCII characters with spaces */ 3545 for (i = 0; i < ret; i++) 3546 str[i] = ufshcd_remove_non_printable(str[i]); 3547 3548 str[ret++] = '\0'; 3549 3550 } else { 3551 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3552 if (!str) { 3553 ret = -ENOMEM; 3554 goto out; 3555 } 3556 ret = uc_str->len; 3557 } 3558 out: 3559 *buf = str; 3560 kfree(uc_str); 3561 return ret; 3562 } 3563 3564 /** 3565 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3566 * @hba: Pointer to adapter instance 3567 * @lun: lun id 3568 * @param_offset: offset of the parameter to read 3569 * @param_read_buf: pointer to buffer where parameter would be read 3570 * @param_size: sizeof(param_read_buf) 3571 * 3572 * Return 0 in case of success, non-zero otherwise 3573 */ 3574 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3575 int lun, 3576 enum unit_desc_param param_offset, 3577 u8 *param_read_buf, 3578 u32 param_size) 3579 { 3580 /* 3581 * Unit descriptors are only available for general purpose LUs (LUN id 3582 * from 0 to 7) and RPMB Well known LU. 3583 */ 3584 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset)) 3585 return -EOPNOTSUPP; 3586 3587 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3588 param_offset, param_read_buf, param_size); 3589 } 3590 3591 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3592 { 3593 int err = 0; 3594 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3595 3596 if (hba->dev_info.wspecversion >= 0x300) { 3597 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3598 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3599 &gating_wait); 3600 if (err) 3601 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3602 err, gating_wait); 3603 3604 if (gating_wait == 0) { 3605 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3606 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3607 gating_wait); 3608 } 3609 3610 hba->dev_info.clk_gating_wait_us = gating_wait; 3611 } 3612 3613 return err; 3614 } 3615 3616 /** 3617 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3618 * @hba: per adapter instance 3619 * 3620 * 1. Allocate DMA memory for Command Descriptor array 3621 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3622 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3623 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3624 * (UTMRDL) 3625 * 4. Allocate memory for local reference block(lrb). 3626 * 3627 * Returns 0 for success, non-zero in case of failure 3628 */ 3629 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3630 { 3631 size_t utmrdl_size, utrdl_size, ucdl_size; 3632 3633 /* Allocate memory for UTP command descriptors */ 3634 ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs); 3635 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3636 ucdl_size, 3637 &hba->ucdl_dma_addr, 3638 GFP_KERNEL); 3639 3640 /* 3641 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3642 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE 3643 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will 3644 * be aligned to 128 bytes as well 3645 */ 3646 if (!hba->ucdl_base_addr || 3647 WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) { 3648 dev_err(hba->dev, 3649 "Command Descriptor Memory allocation failed\n"); 3650 goto out; 3651 } 3652 3653 /* 3654 * Allocate memory for UTP Transfer descriptors 3655 * UFSHCI requires 1024 byte alignment of UTRD 3656 */ 3657 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3658 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3659 utrdl_size, 3660 &hba->utrdl_dma_addr, 3661 GFP_KERNEL); 3662 if (!hba->utrdl_base_addr || 3663 WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) { 3664 dev_err(hba->dev, 3665 "Transfer Descriptor Memory allocation failed\n"); 3666 goto out; 3667 } 3668 3669 /* 3670 * Allocate memory for UTP Task Management descriptors 3671 * UFSHCI requires 1024 byte alignment of UTMRD 3672 */ 3673 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3674 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3675 utmrdl_size, 3676 &hba->utmrdl_dma_addr, 3677 GFP_KERNEL); 3678 if (!hba->utmrdl_base_addr || 3679 WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) { 3680 dev_err(hba->dev, 3681 "Task Management Descriptor Memory allocation failed\n"); 3682 goto out; 3683 } 3684 3685 /* Allocate memory for local reference block */ 3686 hba->lrb = devm_kcalloc(hba->dev, 3687 hba->nutrs, sizeof(struct ufshcd_lrb), 3688 GFP_KERNEL); 3689 if (!hba->lrb) { 3690 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3691 goto out; 3692 } 3693 return 0; 3694 out: 3695 return -ENOMEM; 3696 } 3697 3698 /** 3699 * ufshcd_host_memory_configure - configure local reference block with 3700 * memory offsets 3701 * @hba: per adapter instance 3702 * 3703 * Configure Host memory space 3704 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3705 * address. 3706 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3707 * and PRDT offset. 3708 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3709 * into local reference block. 3710 */ 3711 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3712 { 3713 struct utp_transfer_req_desc *utrdlp; 3714 dma_addr_t cmd_desc_dma_addr; 3715 dma_addr_t cmd_desc_element_addr; 3716 u16 response_offset; 3717 u16 prdt_offset; 3718 int cmd_desc_size; 3719 int i; 3720 3721 utrdlp = hba->utrdl_base_addr; 3722 3723 response_offset = 3724 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3725 prdt_offset = 3726 offsetof(struct utp_transfer_cmd_desc, prd_table); 3727 3728 cmd_desc_size = sizeof(struct utp_transfer_cmd_desc); 3729 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3730 3731 for (i = 0; i < hba->nutrs; i++) { 3732 /* Configure UTRD with command descriptor base address */ 3733 cmd_desc_element_addr = 3734 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3735 utrdlp[i].command_desc_base_addr_lo = 3736 cpu_to_le32(lower_32_bits(cmd_desc_element_addr)); 3737 utrdlp[i].command_desc_base_addr_hi = 3738 cpu_to_le32(upper_32_bits(cmd_desc_element_addr)); 3739 3740 /* Response upiu and prdt offset should be in double words */ 3741 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3742 utrdlp[i].response_upiu_offset = 3743 cpu_to_le16(response_offset); 3744 utrdlp[i].prd_table_offset = 3745 cpu_to_le16(prdt_offset); 3746 utrdlp[i].response_upiu_length = 3747 cpu_to_le16(ALIGNED_UPIU_SIZE); 3748 } else { 3749 utrdlp[i].response_upiu_offset = 3750 cpu_to_le16(response_offset >> 2); 3751 utrdlp[i].prd_table_offset = 3752 cpu_to_le16(prdt_offset >> 2); 3753 utrdlp[i].response_upiu_length = 3754 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3755 } 3756 3757 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3758 } 3759 } 3760 3761 /** 3762 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3763 * @hba: per adapter instance 3764 * 3765 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3766 * in order to initialize the Unipro link startup procedure. 3767 * Once the Unipro links are up, the device connected to the controller 3768 * is detected. 3769 * 3770 * Returns 0 on success, non-zero value on failure 3771 */ 3772 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3773 { 3774 struct uic_command uic_cmd = {0}; 3775 int ret; 3776 3777 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3778 3779 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3780 if (ret) 3781 dev_dbg(hba->dev, 3782 "dme-link-startup: error code %d\n", ret); 3783 return ret; 3784 } 3785 /** 3786 * ufshcd_dme_reset - UIC command for DME_RESET 3787 * @hba: per adapter instance 3788 * 3789 * DME_RESET command is issued in order to reset UniPro stack. 3790 * This function now deals with cold reset. 3791 * 3792 * Returns 0 on success, non-zero value on failure 3793 */ 3794 static int ufshcd_dme_reset(struct ufs_hba *hba) 3795 { 3796 struct uic_command uic_cmd = {0}; 3797 int ret; 3798 3799 uic_cmd.command = UIC_CMD_DME_RESET; 3800 3801 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3802 if (ret) 3803 dev_err(hba->dev, 3804 "dme-reset: error code %d\n", ret); 3805 3806 return ret; 3807 } 3808 3809 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 3810 int agreed_gear, 3811 int adapt_val) 3812 { 3813 int ret; 3814 3815 if (agreed_gear != UFS_HS_G4) 3816 adapt_val = PA_NO_ADAPT; 3817 3818 ret = ufshcd_dme_set(hba, 3819 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 3820 adapt_val); 3821 return ret; 3822 } 3823 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 3824 3825 /** 3826 * ufshcd_dme_enable - UIC command for DME_ENABLE 3827 * @hba: per adapter instance 3828 * 3829 * DME_ENABLE command is issued in order to enable UniPro stack. 3830 * 3831 * Returns 0 on success, non-zero value on failure 3832 */ 3833 static int ufshcd_dme_enable(struct ufs_hba *hba) 3834 { 3835 struct uic_command uic_cmd = {0}; 3836 int ret; 3837 3838 uic_cmd.command = UIC_CMD_DME_ENABLE; 3839 3840 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3841 if (ret) 3842 dev_err(hba->dev, 3843 "dme-enable: error code %d\n", ret); 3844 3845 return ret; 3846 } 3847 3848 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3849 { 3850 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3851 unsigned long min_sleep_time_us; 3852 3853 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3854 return; 3855 3856 /* 3857 * last_dme_cmd_tstamp will be 0 only for 1st call to 3858 * this function 3859 */ 3860 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3861 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3862 } else { 3863 unsigned long delta = 3864 (unsigned long) ktime_to_us( 3865 ktime_sub(ktime_get(), 3866 hba->last_dme_cmd_tstamp)); 3867 3868 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3869 min_sleep_time_us = 3870 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 3871 else 3872 return; /* no more delay required */ 3873 } 3874 3875 /* allow sleep for extra 50us if needed */ 3876 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 3877 } 3878 3879 /** 3880 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 3881 * @hba: per adapter instance 3882 * @attr_sel: uic command argument1 3883 * @attr_set: attribute set type as uic command argument2 3884 * @mib_val: setting value as uic command argument3 3885 * @peer: indicate whether peer or local 3886 * 3887 * Returns 0 on success, non-zero value on failure 3888 */ 3889 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 3890 u8 attr_set, u32 mib_val, u8 peer) 3891 { 3892 struct uic_command uic_cmd = {0}; 3893 static const char *const action[] = { 3894 "dme-set", 3895 "dme-peer-set" 3896 }; 3897 const char *set = action[!!peer]; 3898 int ret; 3899 int retries = UFS_UIC_COMMAND_RETRIES; 3900 3901 uic_cmd.command = peer ? 3902 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 3903 uic_cmd.argument1 = attr_sel; 3904 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 3905 uic_cmd.argument3 = mib_val; 3906 3907 do { 3908 /* for peer attributes we retry upon failure */ 3909 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3910 if (ret) 3911 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 3912 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 3913 } while (ret && peer && --retries); 3914 3915 if (ret) 3916 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 3917 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 3918 UFS_UIC_COMMAND_RETRIES - retries); 3919 3920 return ret; 3921 } 3922 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 3923 3924 /** 3925 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 3926 * @hba: per adapter instance 3927 * @attr_sel: uic command argument1 3928 * @mib_val: the value of the attribute as returned by the UIC command 3929 * @peer: indicate whether peer or local 3930 * 3931 * Returns 0 on success, non-zero value on failure 3932 */ 3933 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 3934 u32 *mib_val, u8 peer) 3935 { 3936 struct uic_command uic_cmd = {0}; 3937 static const char *const action[] = { 3938 "dme-get", 3939 "dme-peer-get" 3940 }; 3941 const char *get = action[!!peer]; 3942 int ret; 3943 int retries = UFS_UIC_COMMAND_RETRIES; 3944 struct ufs_pa_layer_attr orig_pwr_info; 3945 struct ufs_pa_layer_attr temp_pwr_info; 3946 bool pwr_mode_change = false; 3947 3948 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 3949 orig_pwr_info = hba->pwr_info; 3950 temp_pwr_info = orig_pwr_info; 3951 3952 if (orig_pwr_info.pwr_tx == FAST_MODE || 3953 orig_pwr_info.pwr_rx == FAST_MODE) { 3954 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 3955 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 3956 pwr_mode_change = true; 3957 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 3958 orig_pwr_info.pwr_rx == SLOW_MODE) { 3959 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 3960 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 3961 pwr_mode_change = true; 3962 } 3963 if (pwr_mode_change) { 3964 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 3965 if (ret) 3966 goto out; 3967 } 3968 } 3969 3970 uic_cmd.command = peer ? 3971 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 3972 uic_cmd.argument1 = attr_sel; 3973 3974 do { 3975 /* for peer attributes we retry upon failure */ 3976 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3977 if (ret) 3978 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 3979 get, UIC_GET_ATTR_ID(attr_sel), ret); 3980 } while (ret && peer && --retries); 3981 3982 if (ret) 3983 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 3984 get, UIC_GET_ATTR_ID(attr_sel), 3985 UFS_UIC_COMMAND_RETRIES - retries); 3986 3987 if (mib_val && !ret) 3988 *mib_val = uic_cmd.argument3; 3989 3990 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 3991 && pwr_mode_change) 3992 ufshcd_change_power_mode(hba, &orig_pwr_info); 3993 out: 3994 return ret; 3995 } 3996 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 3997 3998 /** 3999 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4000 * state) and waits for it to take effect. 4001 * 4002 * @hba: per adapter instance 4003 * @cmd: UIC command to execute 4004 * 4005 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4006 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4007 * and device UniPro link and hence it's final completion would be indicated by 4008 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4009 * addition to normal UIC command completion Status (UCCS). This function only 4010 * returns after the relevant status bits indicate the completion. 4011 * 4012 * Returns 0 on success, non-zero value on failure 4013 */ 4014 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4015 { 4016 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4017 unsigned long flags; 4018 u8 status; 4019 int ret; 4020 bool reenable_intr = false; 4021 4022 mutex_lock(&hba->uic_cmd_mutex); 4023 ufshcd_add_delay_before_dme_cmd(hba); 4024 4025 spin_lock_irqsave(hba->host->host_lock, flags); 4026 if (ufshcd_is_link_broken(hba)) { 4027 ret = -ENOLINK; 4028 goto out_unlock; 4029 } 4030 hba->uic_async_done = &uic_async_done; 4031 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4032 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4033 /* 4034 * Make sure UIC command completion interrupt is disabled before 4035 * issuing UIC command. 4036 */ 4037 wmb(); 4038 reenable_intr = true; 4039 } 4040 ret = __ufshcd_send_uic_cmd(hba, cmd, false); 4041 spin_unlock_irqrestore(hba->host->host_lock, flags); 4042 if (ret) { 4043 dev_err(hba->dev, 4044 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4045 cmd->command, cmd->argument3, ret); 4046 goto out; 4047 } 4048 4049 if (!wait_for_completion_timeout(hba->uic_async_done, 4050 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4051 dev_err(hba->dev, 4052 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4053 cmd->command, cmd->argument3); 4054 4055 if (!cmd->cmd_active) { 4056 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4057 __func__); 4058 goto check_upmcrs; 4059 } 4060 4061 ret = -ETIMEDOUT; 4062 goto out; 4063 } 4064 4065 check_upmcrs: 4066 status = ufshcd_get_upmcrs(hba); 4067 if (status != PWR_LOCAL) { 4068 dev_err(hba->dev, 4069 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4070 cmd->command, status); 4071 ret = (status != PWR_OK) ? status : -1; 4072 } 4073 out: 4074 if (ret) { 4075 ufshcd_print_host_state(hba); 4076 ufshcd_print_pwr_info(hba); 4077 ufshcd_print_evt_hist(hba); 4078 } 4079 4080 spin_lock_irqsave(hba->host->host_lock, flags); 4081 hba->active_uic_cmd = NULL; 4082 hba->uic_async_done = NULL; 4083 if (reenable_intr) 4084 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4085 if (ret) { 4086 ufshcd_set_link_broken(hba); 4087 ufshcd_schedule_eh_work(hba); 4088 } 4089 out_unlock: 4090 spin_unlock_irqrestore(hba->host->host_lock, flags); 4091 mutex_unlock(&hba->uic_cmd_mutex); 4092 4093 return ret; 4094 } 4095 4096 /** 4097 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4098 * using DME_SET primitives. 4099 * @hba: per adapter instance 4100 * @mode: powr mode value 4101 * 4102 * Returns 0 on success, non-zero value on failure 4103 */ 4104 static int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4105 { 4106 struct uic_command uic_cmd = {0}; 4107 int ret; 4108 4109 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4110 ret = ufshcd_dme_set(hba, 4111 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4112 if (ret) { 4113 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4114 __func__, ret); 4115 goto out; 4116 } 4117 } 4118 4119 uic_cmd.command = UIC_CMD_DME_SET; 4120 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 4121 uic_cmd.argument3 = mode; 4122 ufshcd_hold(hba, false); 4123 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4124 ufshcd_release(hba); 4125 4126 out: 4127 return ret; 4128 } 4129 4130 int ufshcd_link_recovery(struct ufs_hba *hba) 4131 { 4132 int ret; 4133 unsigned long flags; 4134 4135 spin_lock_irqsave(hba->host->host_lock, flags); 4136 hba->ufshcd_state = UFSHCD_STATE_RESET; 4137 ufshcd_set_eh_in_progress(hba); 4138 spin_unlock_irqrestore(hba->host->host_lock, flags); 4139 4140 /* Reset the attached device */ 4141 ufshcd_device_reset(hba); 4142 4143 ret = ufshcd_host_reset_and_restore(hba); 4144 4145 spin_lock_irqsave(hba->host->host_lock, flags); 4146 if (ret) 4147 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4148 ufshcd_clear_eh_in_progress(hba); 4149 spin_unlock_irqrestore(hba->host->host_lock, flags); 4150 4151 if (ret) 4152 dev_err(hba->dev, "%s: link recovery failed, err %d", 4153 __func__, ret); 4154 4155 return ret; 4156 } 4157 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4158 4159 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4160 { 4161 int ret; 4162 struct uic_command uic_cmd = {0}; 4163 ktime_t start = ktime_get(); 4164 4165 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4166 4167 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 4168 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4169 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4170 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4171 4172 if (ret) 4173 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4174 __func__, ret); 4175 else 4176 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4177 POST_CHANGE); 4178 4179 return ret; 4180 } 4181 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4182 4183 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4184 { 4185 struct uic_command uic_cmd = {0}; 4186 int ret; 4187 ktime_t start = ktime_get(); 4188 4189 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4190 4191 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 4192 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4193 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4194 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4195 4196 if (ret) { 4197 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4198 __func__, ret); 4199 } else { 4200 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4201 POST_CHANGE); 4202 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get(); 4203 hba->ufs_stats.hibern8_exit_cnt++; 4204 } 4205 4206 return ret; 4207 } 4208 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4209 4210 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4211 { 4212 unsigned long flags; 4213 bool update = false; 4214 4215 if (!ufshcd_is_auto_hibern8_supported(hba)) 4216 return; 4217 4218 spin_lock_irqsave(hba->host->host_lock, flags); 4219 if (hba->ahit != ahit) { 4220 hba->ahit = ahit; 4221 update = true; 4222 } 4223 spin_unlock_irqrestore(hba->host->host_lock, flags); 4224 4225 if (update && 4226 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4227 ufshcd_rpm_get_sync(hba); 4228 ufshcd_hold(hba, false); 4229 ufshcd_auto_hibern8_enable(hba); 4230 ufshcd_release(hba); 4231 ufshcd_rpm_put_sync(hba); 4232 } 4233 } 4234 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4235 4236 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4237 { 4238 if (!ufshcd_is_auto_hibern8_supported(hba)) 4239 return; 4240 4241 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4242 } 4243 4244 /** 4245 * ufshcd_init_pwr_info - setting the POR (power on reset) 4246 * values in hba power info 4247 * @hba: per-adapter instance 4248 */ 4249 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4250 { 4251 hba->pwr_info.gear_rx = UFS_PWM_G1; 4252 hba->pwr_info.gear_tx = UFS_PWM_G1; 4253 hba->pwr_info.lane_rx = 1; 4254 hba->pwr_info.lane_tx = 1; 4255 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4256 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4257 hba->pwr_info.hs_rate = 0; 4258 } 4259 4260 /** 4261 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4262 * @hba: per-adapter instance 4263 */ 4264 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4265 { 4266 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4267 4268 if (hba->max_pwr_info.is_valid) 4269 return 0; 4270 4271 pwr_info->pwr_tx = FAST_MODE; 4272 pwr_info->pwr_rx = FAST_MODE; 4273 pwr_info->hs_rate = PA_HS_MODE_B; 4274 4275 /* Get the connected lane count */ 4276 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4277 &pwr_info->lane_rx); 4278 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4279 &pwr_info->lane_tx); 4280 4281 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4282 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4283 __func__, 4284 pwr_info->lane_rx, 4285 pwr_info->lane_tx); 4286 return -EINVAL; 4287 } 4288 4289 /* 4290 * First, get the maximum gears of HS speed. 4291 * If a zero value, it means there is no HSGEAR capability. 4292 * Then, get the maximum gears of PWM speed. 4293 */ 4294 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4295 if (!pwr_info->gear_rx) { 4296 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4297 &pwr_info->gear_rx); 4298 if (!pwr_info->gear_rx) { 4299 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4300 __func__, pwr_info->gear_rx); 4301 return -EINVAL; 4302 } 4303 pwr_info->pwr_rx = SLOW_MODE; 4304 } 4305 4306 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4307 &pwr_info->gear_tx); 4308 if (!pwr_info->gear_tx) { 4309 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4310 &pwr_info->gear_tx); 4311 if (!pwr_info->gear_tx) { 4312 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4313 __func__, pwr_info->gear_tx); 4314 return -EINVAL; 4315 } 4316 pwr_info->pwr_tx = SLOW_MODE; 4317 } 4318 4319 hba->max_pwr_info.is_valid = true; 4320 return 0; 4321 } 4322 4323 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4324 struct ufs_pa_layer_attr *pwr_mode) 4325 { 4326 int ret; 4327 4328 /* if already configured to the requested pwr_mode */ 4329 if (!hba->force_pmc && 4330 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4331 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4332 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4333 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4334 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4335 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4336 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4337 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4338 return 0; 4339 } 4340 4341 /* 4342 * Configure attributes for power mode change with below. 4343 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4344 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4345 * - PA_HSSERIES 4346 */ 4347 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4348 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4349 pwr_mode->lane_rx); 4350 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4351 pwr_mode->pwr_rx == FAST_MODE) 4352 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4353 else 4354 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4355 4356 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4357 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4358 pwr_mode->lane_tx); 4359 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4360 pwr_mode->pwr_tx == FAST_MODE) 4361 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4362 else 4363 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4364 4365 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4366 pwr_mode->pwr_tx == FASTAUTO_MODE || 4367 pwr_mode->pwr_rx == FAST_MODE || 4368 pwr_mode->pwr_tx == FAST_MODE) 4369 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4370 pwr_mode->hs_rate); 4371 4372 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4373 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4374 DL_FC0ProtectionTimeOutVal_Default); 4375 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4376 DL_TC0ReplayTimeOutVal_Default); 4377 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4378 DL_AFC0ReqTimeOutVal_Default); 4379 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4380 DL_FC1ProtectionTimeOutVal_Default); 4381 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4382 DL_TC1ReplayTimeOutVal_Default); 4383 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4384 DL_AFC1ReqTimeOutVal_Default); 4385 4386 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4387 DL_FC0ProtectionTimeOutVal_Default); 4388 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4389 DL_TC0ReplayTimeOutVal_Default); 4390 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4391 DL_AFC0ReqTimeOutVal_Default); 4392 } 4393 4394 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4395 | pwr_mode->pwr_tx); 4396 4397 if (ret) { 4398 dev_err(hba->dev, 4399 "%s: power mode change failed %d\n", __func__, ret); 4400 } else { 4401 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4402 pwr_mode); 4403 4404 memcpy(&hba->pwr_info, pwr_mode, 4405 sizeof(struct ufs_pa_layer_attr)); 4406 } 4407 4408 return ret; 4409 } 4410 4411 /** 4412 * ufshcd_config_pwr_mode - configure a new power mode 4413 * @hba: per-adapter instance 4414 * @desired_pwr_mode: desired power configuration 4415 */ 4416 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4417 struct ufs_pa_layer_attr *desired_pwr_mode) 4418 { 4419 struct ufs_pa_layer_attr final_params = { 0 }; 4420 int ret; 4421 4422 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4423 desired_pwr_mode, &final_params); 4424 4425 if (ret) 4426 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4427 4428 ret = ufshcd_change_power_mode(hba, &final_params); 4429 4430 return ret; 4431 } 4432 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4433 4434 /** 4435 * ufshcd_complete_dev_init() - checks device readiness 4436 * @hba: per-adapter instance 4437 * 4438 * Set fDeviceInit flag and poll until device toggles it. 4439 */ 4440 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4441 { 4442 int err; 4443 bool flag_res = true; 4444 ktime_t timeout; 4445 4446 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4447 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4448 if (err) { 4449 dev_err(hba->dev, 4450 "%s setting fDeviceInit flag failed with error %d\n", 4451 __func__, err); 4452 goto out; 4453 } 4454 4455 /* Poll fDeviceInit flag to be cleared */ 4456 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4457 do { 4458 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4459 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4460 if (!flag_res) 4461 break; 4462 usleep_range(500, 1000); 4463 } while (ktime_before(ktime_get(), timeout)); 4464 4465 if (err) { 4466 dev_err(hba->dev, 4467 "%s reading fDeviceInit flag failed with error %d\n", 4468 __func__, err); 4469 } else if (flag_res) { 4470 dev_err(hba->dev, 4471 "%s fDeviceInit was not cleared by the device\n", 4472 __func__); 4473 err = -EBUSY; 4474 } 4475 out: 4476 return err; 4477 } 4478 4479 /** 4480 * ufshcd_make_hba_operational - Make UFS controller operational 4481 * @hba: per adapter instance 4482 * 4483 * To bring UFS host controller to operational state, 4484 * 1. Enable required interrupts 4485 * 2. Configure interrupt aggregation 4486 * 3. Program UTRL and UTMRL base address 4487 * 4. Configure run-stop-registers 4488 * 4489 * Returns 0 on success, non-zero value on failure 4490 */ 4491 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4492 { 4493 int err = 0; 4494 u32 reg; 4495 4496 /* Enable required interrupts */ 4497 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4498 4499 /* Configure interrupt aggregation */ 4500 if (ufshcd_is_intr_aggr_allowed(hba)) 4501 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4502 else 4503 ufshcd_disable_intr_aggr(hba); 4504 4505 /* Configure UTRL and UTMRL base address registers */ 4506 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4507 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4508 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4509 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4510 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4511 REG_UTP_TASK_REQ_LIST_BASE_L); 4512 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4513 REG_UTP_TASK_REQ_LIST_BASE_H); 4514 4515 /* 4516 * Make sure base address and interrupt setup are updated before 4517 * enabling the run/stop registers below. 4518 */ 4519 wmb(); 4520 4521 /* 4522 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4523 */ 4524 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4525 if (!(ufshcd_get_lists_status(reg))) { 4526 ufshcd_enable_run_stop_reg(hba); 4527 } else { 4528 dev_err(hba->dev, 4529 "Host controller not ready to process requests"); 4530 err = -EIO; 4531 } 4532 4533 return err; 4534 } 4535 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4536 4537 /** 4538 * ufshcd_hba_stop - Send controller to reset state 4539 * @hba: per adapter instance 4540 */ 4541 void ufshcd_hba_stop(struct ufs_hba *hba) 4542 { 4543 unsigned long flags; 4544 int err; 4545 4546 /* 4547 * Obtain the host lock to prevent that the controller is disabled 4548 * while the UFS interrupt handler is active on another CPU. 4549 */ 4550 spin_lock_irqsave(hba->host->host_lock, flags); 4551 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4552 spin_unlock_irqrestore(hba->host->host_lock, flags); 4553 4554 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4555 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4556 10, 1); 4557 if (err) 4558 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4559 } 4560 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4561 4562 /** 4563 * ufshcd_hba_execute_hce - initialize the controller 4564 * @hba: per adapter instance 4565 * 4566 * The controller resets itself and controller firmware initialization 4567 * sequence kicks off. When controller is ready it will set 4568 * the Host Controller Enable bit to 1. 4569 * 4570 * Returns 0 on success, non-zero value on failure 4571 */ 4572 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4573 { 4574 int retry_outer = 3; 4575 int retry_inner; 4576 4577 start: 4578 if (ufshcd_is_hba_active(hba)) 4579 /* change controller state to "reset state" */ 4580 ufshcd_hba_stop(hba); 4581 4582 /* UniPro link is disabled at this point */ 4583 ufshcd_set_link_off(hba); 4584 4585 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4586 4587 /* start controller initialization sequence */ 4588 ufshcd_hba_start(hba); 4589 4590 /* 4591 * To initialize a UFS host controller HCE bit must be set to 1. 4592 * During initialization the HCE bit value changes from 1->0->1. 4593 * When the host controller completes initialization sequence 4594 * it sets the value of HCE bit to 1. The same HCE bit is read back 4595 * to check if the controller has completed initialization sequence. 4596 * So without this delay the value HCE = 1, set in the previous 4597 * instruction might be read back. 4598 * This delay can be changed based on the controller. 4599 */ 4600 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4601 4602 /* wait for the host controller to complete initialization */ 4603 retry_inner = 50; 4604 while (!ufshcd_is_hba_active(hba)) { 4605 if (retry_inner) { 4606 retry_inner--; 4607 } else { 4608 dev_err(hba->dev, 4609 "Controller enable failed\n"); 4610 if (retry_outer) { 4611 retry_outer--; 4612 goto start; 4613 } 4614 return -EIO; 4615 } 4616 usleep_range(1000, 1100); 4617 } 4618 4619 /* enable UIC related interrupts */ 4620 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4621 4622 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4623 4624 return 0; 4625 } 4626 4627 int ufshcd_hba_enable(struct ufs_hba *hba) 4628 { 4629 int ret; 4630 4631 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4632 ufshcd_set_link_off(hba); 4633 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4634 4635 /* enable UIC related interrupts */ 4636 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4637 ret = ufshcd_dme_reset(hba); 4638 if (!ret) { 4639 ret = ufshcd_dme_enable(hba); 4640 if (!ret) 4641 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4642 if (ret) 4643 dev_err(hba->dev, 4644 "Host controller enable failed with non-hce\n"); 4645 } 4646 } else { 4647 ret = ufshcd_hba_execute_hce(hba); 4648 } 4649 4650 return ret; 4651 } 4652 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4653 4654 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4655 { 4656 int tx_lanes = 0, i, err = 0; 4657 4658 if (!peer) 4659 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4660 &tx_lanes); 4661 else 4662 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4663 &tx_lanes); 4664 for (i = 0; i < tx_lanes; i++) { 4665 if (!peer) 4666 err = ufshcd_dme_set(hba, 4667 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4668 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4669 0); 4670 else 4671 err = ufshcd_dme_peer_set(hba, 4672 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4673 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4674 0); 4675 if (err) { 4676 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4677 __func__, peer, i, err); 4678 break; 4679 } 4680 } 4681 4682 return err; 4683 } 4684 4685 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4686 { 4687 return ufshcd_disable_tx_lcc(hba, true); 4688 } 4689 4690 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4691 { 4692 struct ufs_event_hist *e; 4693 4694 if (id >= UFS_EVT_CNT) 4695 return; 4696 4697 e = &hba->ufs_stats.event[id]; 4698 e->val[e->pos] = val; 4699 e->tstamp[e->pos] = ktime_get(); 4700 e->cnt += 1; 4701 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4702 4703 ufshcd_vops_event_notify(hba, id, &val); 4704 } 4705 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4706 4707 /** 4708 * ufshcd_link_startup - Initialize unipro link startup 4709 * @hba: per adapter instance 4710 * 4711 * Returns 0 for success, non-zero in case of failure 4712 */ 4713 static int ufshcd_link_startup(struct ufs_hba *hba) 4714 { 4715 int ret; 4716 int retries = DME_LINKSTARTUP_RETRIES; 4717 bool link_startup_again = false; 4718 4719 /* 4720 * If UFS device isn't active then we will have to issue link startup 4721 * 2 times to make sure the device state move to active. 4722 */ 4723 if (!ufshcd_is_ufs_dev_active(hba)) 4724 link_startup_again = true; 4725 4726 link_startup: 4727 do { 4728 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4729 4730 ret = ufshcd_dme_link_startup(hba); 4731 4732 /* check if device is detected by inter-connect layer */ 4733 if (!ret && !ufshcd_is_device_present(hba)) { 4734 ufshcd_update_evt_hist(hba, 4735 UFS_EVT_LINK_STARTUP_FAIL, 4736 0); 4737 dev_err(hba->dev, "%s: Device not present\n", __func__); 4738 ret = -ENXIO; 4739 goto out; 4740 } 4741 4742 /* 4743 * DME link lost indication is only received when link is up, 4744 * but we can't be sure if the link is up until link startup 4745 * succeeds. So reset the local Uni-Pro and try again. 4746 */ 4747 if (ret && ufshcd_hba_enable(hba)) { 4748 ufshcd_update_evt_hist(hba, 4749 UFS_EVT_LINK_STARTUP_FAIL, 4750 (u32)ret); 4751 goto out; 4752 } 4753 } while (ret && retries--); 4754 4755 if (ret) { 4756 /* failed to get the link up... retire */ 4757 ufshcd_update_evt_hist(hba, 4758 UFS_EVT_LINK_STARTUP_FAIL, 4759 (u32)ret); 4760 goto out; 4761 } 4762 4763 if (link_startup_again) { 4764 link_startup_again = false; 4765 retries = DME_LINKSTARTUP_RETRIES; 4766 goto link_startup; 4767 } 4768 4769 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4770 ufshcd_init_pwr_info(hba); 4771 ufshcd_print_pwr_info(hba); 4772 4773 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4774 ret = ufshcd_disable_device_tx_lcc(hba); 4775 if (ret) 4776 goto out; 4777 } 4778 4779 /* Include any host controller configuration via UIC commands */ 4780 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4781 if (ret) 4782 goto out; 4783 4784 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4785 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4786 ret = ufshcd_make_hba_operational(hba); 4787 out: 4788 if (ret) { 4789 dev_err(hba->dev, "link startup failed %d\n", ret); 4790 ufshcd_print_host_state(hba); 4791 ufshcd_print_pwr_info(hba); 4792 ufshcd_print_evt_hist(hba); 4793 } 4794 return ret; 4795 } 4796 4797 /** 4798 * ufshcd_verify_dev_init() - Verify device initialization 4799 * @hba: per-adapter instance 4800 * 4801 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4802 * device Transport Protocol (UTP) layer is ready after a reset. 4803 * If the UTP layer at the device side is not initialized, it may 4804 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4805 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4806 */ 4807 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4808 { 4809 int err = 0; 4810 int retries; 4811 4812 ufshcd_hold(hba, false); 4813 mutex_lock(&hba->dev_cmd.lock); 4814 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4815 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4816 hba->nop_out_timeout); 4817 4818 if (!err || err == -ETIMEDOUT) 4819 break; 4820 4821 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4822 } 4823 mutex_unlock(&hba->dev_cmd.lock); 4824 ufshcd_release(hba); 4825 4826 if (err) 4827 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4828 return err; 4829 } 4830 4831 /** 4832 * ufshcd_set_queue_depth - set lun queue depth 4833 * @sdev: pointer to SCSI device 4834 * 4835 * Read bLUQueueDepth value and activate scsi tagged command 4836 * queueing. For WLUN, queue depth is set to 1. For best-effort 4837 * cases (bLUQueueDepth = 0) the queue depth is set to a maximum 4838 * value that host can queue. 4839 */ 4840 static void ufshcd_set_queue_depth(struct scsi_device *sdev) 4841 { 4842 int ret = 0; 4843 u8 lun_qdepth; 4844 struct ufs_hba *hba; 4845 4846 hba = shost_priv(sdev->host); 4847 4848 lun_qdepth = hba->nutrs; 4849 ret = ufshcd_read_unit_desc_param(hba, 4850 ufshcd_scsi_to_upiu_lun(sdev->lun), 4851 UNIT_DESC_PARAM_LU_Q_DEPTH, 4852 &lun_qdepth, 4853 sizeof(lun_qdepth)); 4854 4855 /* Some WLUN doesn't support unit descriptor */ 4856 if (ret == -EOPNOTSUPP) 4857 lun_qdepth = 1; 4858 else if (!lun_qdepth) 4859 /* eventually, we can figure out the real queue depth */ 4860 lun_qdepth = hba->nutrs; 4861 else 4862 lun_qdepth = min_t(int, lun_qdepth, hba->nutrs); 4863 4864 dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n", 4865 __func__, lun_qdepth); 4866 scsi_change_queue_depth(sdev, lun_qdepth); 4867 } 4868 4869 /* 4870 * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR 4871 * @hba: per-adapter instance 4872 * @lun: UFS device lun id 4873 * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info 4874 * 4875 * Returns 0 in case of success and b_lu_write_protect status would be returned 4876 * @b_lu_write_protect parameter. 4877 * Returns -ENOTSUPP if reading b_lu_write_protect is not supported. 4878 * Returns -EINVAL in case of invalid parameters passed to this function. 4879 */ 4880 static int ufshcd_get_lu_wp(struct ufs_hba *hba, 4881 u8 lun, 4882 u8 *b_lu_write_protect) 4883 { 4884 int ret; 4885 4886 if (!b_lu_write_protect) 4887 ret = -EINVAL; 4888 /* 4889 * According to UFS device spec, RPMB LU can't be write 4890 * protected so skip reading bLUWriteProtect parameter for 4891 * it. For other W-LUs, UNIT DESCRIPTOR is not available. 4892 */ 4893 else if (lun >= hba->dev_info.max_lu_supported) 4894 ret = -ENOTSUPP; 4895 else 4896 ret = ufshcd_read_unit_desc_param(hba, 4897 lun, 4898 UNIT_DESC_PARAM_LU_WR_PROTECT, 4899 b_lu_write_protect, 4900 sizeof(*b_lu_write_protect)); 4901 return ret; 4902 } 4903 4904 /** 4905 * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect 4906 * status 4907 * @hba: per-adapter instance 4908 * @sdev: pointer to SCSI device 4909 * 4910 */ 4911 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba, 4912 struct scsi_device *sdev) 4913 { 4914 if (hba->dev_info.f_power_on_wp_en && 4915 !hba->dev_info.is_lu_power_on_wp) { 4916 u8 b_lu_write_protect; 4917 4918 if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun), 4919 &b_lu_write_protect) && 4920 (b_lu_write_protect == UFS_LU_POWER_ON_WP)) 4921 hba->dev_info.is_lu_power_on_wp = true; 4922 } 4923 } 4924 4925 /** 4926 * ufshcd_setup_links - associate link b/w device wlun and other luns 4927 * @sdev: pointer to SCSI device 4928 * @hba: pointer to ufs hba 4929 */ 4930 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 4931 { 4932 struct device_link *link; 4933 4934 /* 4935 * Device wlun is the supplier & rest of the luns are consumers. 4936 * This ensures that device wlun suspends after all other luns. 4937 */ 4938 if (hba->ufs_device_wlun) { 4939 link = device_link_add(&sdev->sdev_gendev, 4940 &hba->ufs_device_wlun->sdev_gendev, 4941 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 4942 if (!link) { 4943 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 4944 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 4945 return; 4946 } 4947 hba->luns_avail--; 4948 /* Ignore REPORT_LUN wlun probing */ 4949 if (hba->luns_avail == 1) { 4950 ufshcd_rpm_put(hba); 4951 return; 4952 } 4953 } else { 4954 /* 4955 * Device wlun is probed. The assumption is that WLUNs are 4956 * scanned before other LUNs. 4957 */ 4958 hba->luns_avail--; 4959 } 4960 } 4961 4962 /** 4963 * ufshcd_slave_alloc - handle initial SCSI device configurations 4964 * @sdev: pointer to SCSI device 4965 * 4966 * Returns success 4967 */ 4968 static int ufshcd_slave_alloc(struct scsi_device *sdev) 4969 { 4970 struct ufs_hba *hba; 4971 4972 hba = shost_priv(sdev->host); 4973 4974 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 4975 sdev->use_10_for_ms = 1; 4976 4977 /* DBD field should be set to 1 in mode sense(10) */ 4978 sdev->set_dbd_for_ms = 1; 4979 4980 /* allow SCSI layer to restart the device in case of errors */ 4981 sdev->allow_restart = 1; 4982 4983 /* REPORT SUPPORTED OPERATION CODES is not supported */ 4984 sdev->no_report_opcodes = 1; 4985 4986 /* WRITE_SAME command is not supported */ 4987 sdev->no_write_same = 1; 4988 4989 ufshcd_set_queue_depth(sdev); 4990 4991 ufshcd_get_lu_power_on_wp_status(hba, sdev); 4992 4993 ufshcd_setup_links(hba, sdev); 4994 4995 return 0; 4996 } 4997 4998 /** 4999 * ufshcd_change_queue_depth - change queue depth 5000 * @sdev: pointer to SCSI device 5001 * @depth: required depth to set 5002 * 5003 * Change queue depth and make sure the max. limits are not crossed. 5004 */ 5005 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5006 { 5007 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5008 } 5009 5010 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev) 5011 { 5012 /* skip well-known LU */ 5013 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) || 5014 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba)) 5015 return; 5016 5017 ufshpb_destroy_lu(hba, sdev); 5018 } 5019 5020 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev) 5021 { 5022 /* skip well-known LU */ 5023 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) || 5024 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba)) 5025 return; 5026 5027 ufshpb_init_hpb_lu(hba, sdev); 5028 } 5029 5030 /** 5031 * ufshcd_slave_configure - adjust SCSI device configurations 5032 * @sdev: pointer to SCSI device 5033 */ 5034 static int ufshcd_slave_configure(struct scsi_device *sdev) 5035 { 5036 struct ufs_hba *hba = shost_priv(sdev->host); 5037 struct request_queue *q = sdev->request_queue; 5038 5039 ufshcd_hpb_configure(hba, sdev); 5040 5041 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 5042 if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE) 5043 blk_queue_update_dma_alignment(q, PAGE_SIZE - 1); 5044 /* 5045 * Block runtime-pm until all consumers are added. 5046 * Refer ufshcd_setup_links(). 5047 */ 5048 if (is_device_wlun(sdev)) 5049 pm_runtime_get_noresume(&sdev->sdev_gendev); 5050 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5051 sdev->rpm_autosuspend = 1; 5052 /* 5053 * Do not print messages during runtime PM to avoid never-ending cycles 5054 * of messages written back to storage by user space causing runtime 5055 * resume, causing more messages and so on. 5056 */ 5057 sdev->silence_suspend = 1; 5058 5059 ufshcd_crypto_register(hba, q); 5060 5061 return 0; 5062 } 5063 5064 /** 5065 * ufshcd_slave_destroy - remove SCSI device configurations 5066 * @sdev: pointer to SCSI device 5067 */ 5068 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5069 { 5070 struct ufs_hba *hba; 5071 unsigned long flags; 5072 5073 hba = shost_priv(sdev->host); 5074 5075 ufshcd_hpb_destroy(hba, sdev); 5076 5077 /* Drop the reference as it won't be needed anymore */ 5078 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5079 spin_lock_irqsave(hba->host->host_lock, flags); 5080 hba->ufs_device_wlun = NULL; 5081 spin_unlock_irqrestore(hba->host->host_lock, flags); 5082 } else if (hba->ufs_device_wlun) { 5083 struct device *supplier = NULL; 5084 5085 /* Ensure UFS Device WLUN exists and does not disappear */ 5086 spin_lock_irqsave(hba->host->host_lock, flags); 5087 if (hba->ufs_device_wlun) { 5088 supplier = &hba->ufs_device_wlun->sdev_gendev; 5089 get_device(supplier); 5090 } 5091 spin_unlock_irqrestore(hba->host->host_lock, flags); 5092 5093 if (supplier) { 5094 /* 5095 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5096 * device will not have been registered but can still 5097 * have a device link holding a reference to the device. 5098 */ 5099 device_link_remove(&sdev->sdev_gendev, supplier); 5100 put_device(supplier); 5101 } 5102 } 5103 } 5104 5105 /** 5106 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5107 * @lrbp: pointer to local reference block of completed command 5108 * @scsi_status: SCSI command status 5109 * 5110 * Returns value base on SCSI command status 5111 */ 5112 static inline int 5113 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5114 { 5115 int result = 0; 5116 5117 switch (scsi_status) { 5118 case SAM_STAT_CHECK_CONDITION: 5119 ufshcd_copy_sense_data(lrbp); 5120 fallthrough; 5121 case SAM_STAT_GOOD: 5122 result |= DID_OK << 16 | scsi_status; 5123 break; 5124 case SAM_STAT_TASK_SET_FULL: 5125 case SAM_STAT_BUSY: 5126 case SAM_STAT_TASK_ABORTED: 5127 ufshcd_copy_sense_data(lrbp); 5128 result |= scsi_status; 5129 break; 5130 default: 5131 result |= DID_ERROR << 16; 5132 break; 5133 } /* end of switch */ 5134 5135 return result; 5136 } 5137 5138 /** 5139 * ufshcd_transfer_rsp_status - Get overall status of the response 5140 * @hba: per adapter instance 5141 * @lrbp: pointer to local reference block of completed command 5142 * 5143 * Returns result of the command to notify SCSI midlayer 5144 */ 5145 static inline int 5146 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 5147 { 5148 int result = 0; 5149 int scsi_status; 5150 enum utp_ocs ocs; 5151 5152 /* overall command status of utrd */ 5153 ocs = ufshcd_get_tr_ocs(lrbp); 5154 5155 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5156 if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) & 5157 MASK_RSP_UPIU_RESULT) 5158 ocs = OCS_SUCCESS; 5159 } 5160 5161 switch (ocs) { 5162 case OCS_SUCCESS: 5163 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 5164 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5165 switch (result) { 5166 case UPIU_TRANSACTION_RESPONSE: 5167 /* 5168 * get the response UPIU result to extract 5169 * the SCSI command status 5170 */ 5171 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr); 5172 5173 /* 5174 * get the result based on SCSI status response 5175 * to notify the SCSI midlayer of the command status 5176 */ 5177 scsi_status = result & MASK_SCSI_STATUS; 5178 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5179 5180 /* 5181 * Currently we are only supporting BKOPs exception 5182 * events hence we can ignore BKOPs exception event 5183 * during power management callbacks. BKOPs exception 5184 * event is not expected to be raised in runtime suspend 5185 * callback as it allows the urgent bkops. 5186 * During system suspend, we are anyway forcefully 5187 * disabling the bkops and if urgent bkops is needed 5188 * it will be enabled on system resume. Long term 5189 * solution could be to abort the system suspend if 5190 * UFS device needs urgent BKOPs. 5191 */ 5192 if (!hba->pm_op_in_progress && 5193 !ufshcd_eh_in_progress(hba) && 5194 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5195 /* Flushed in suspend */ 5196 schedule_work(&hba->eeh_work); 5197 5198 if (scsi_status == SAM_STAT_GOOD) 5199 ufshpb_rsp_upiu(hba, lrbp); 5200 break; 5201 case UPIU_TRANSACTION_REJECT_UPIU: 5202 /* TODO: handle Reject UPIU Response */ 5203 result = DID_ERROR << 16; 5204 dev_err(hba->dev, 5205 "Reject UPIU not fully implemented\n"); 5206 break; 5207 default: 5208 dev_err(hba->dev, 5209 "Unexpected request response code = %x\n", 5210 result); 5211 result = DID_ERROR << 16; 5212 break; 5213 } 5214 break; 5215 case OCS_ABORTED: 5216 result |= DID_ABORT << 16; 5217 break; 5218 case OCS_INVALID_COMMAND_STATUS: 5219 result |= DID_REQUEUE << 16; 5220 break; 5221 case OCS_INVALID_CMD_TABLE_ATTR: 5222 case OCS_INVALID_PRDT_ATTR: 5223 case OCS_MISMATCH_DATA_BUF_SIZE: 5224 case OCS_MISMATCH_RESP_UPIU_SIZE: 5225 case OCS_PEER_COMM_FAILURE: 5226 case OCS_FATAL_ERROR: 5227 case OCS_DEVICE_FATAL_ERROR: 5228 case OCS_INVALID_CRYPTO_CONFIG: 5229 case OCS_GENERAL_CRYPTO_ERROR: 5230 default: 5231 result |= DID_ERROR << 16; 5232 dev_err(hba->dev, 5233 "OCS error from controller = %x for tag %d\n", 5234 ocs, lrbp->task_tag); 5235 ufshcd_print_evt_hist(hba); 5236 ufshcd_print_host_state(hba); 5237 break; 5238 } /* end of switch */ 5239 5240 if ((host_byte(result) != DID_OK) && 5241 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5242 ufshcd_print_trs(hba, 1 << lrbp->task_tag, true); 5243 return result; 5244 } 5245 5246 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5247 u32 intr_mask) 5248 { 5249 if (!ufshcd_is_auto_hibern8_supported(hba) || 5250 !ufshcd_is_auto_hibern8_enabled(hba)) 5251 return false; 5252 5253 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5254 return false; 5255 5256 if (hba->active_uic_cmd && 5257 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5258 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5259 return false; 5260 5261 return true; 5262 } 5263 5264 /** 5265 * ufshcd_uic_cmd_compl - handle completion of uic command 5266 * @hba: per adapter instance 5267 * @intr_status: interrupt status generated by the controller 5268 * 5269 * Returns 5270 * IRQ_HANDLED - If interrupt is valid 5271 * IRQ_NONE - If invalid interrupt 5272 */ 5273 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5274 { 5275 irqreturn_t retval = IRQ_NONE; 5276 5277 spin_lock(hba->host->host_lock); 5278 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5279 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5280 5281 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5282 hba->active_uic_cmd->argument2 |= 5283 ufshcd_get_uic_cmd_result(hba); 5284 hba->active_uic_cmd->argument3 = 5285 ufshcd_get_dme_attr_val(hba); 5286 if (!hba->uic_async_done) 5287 hba->active_uic_cmd->cmd_active = 0; 5288 complete(&hba->active_uic_cmd->done); 5289 retval = IRQ_HANDLED; 5290 } 5291 5292 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5293 hba->active_uic_cmd->cmd_active = 0; 5294 complete(hba->uic_async_done); 5295 retval = IRQ_HANDLED; 5296 } 5297 5298 if (retval == IRQ_HANDLED) 5299 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5300 UFS_CMD_COMP); 5301 spin_unlock(hba->host->host_lock); 5302 return retval; 5303 } 5304 5305 /* Release the resources allocated for processing a SCSI command. */ 5306 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5307 struct ufshcd_lrb *lrbp) 5308 { 5309 struct scsi_cmnd *cmd = lrbp->cmd; 5310 5311 scsi_dma_unmap(cmd); 5312 lrbp->cmd = NULL; /* Mark the command as completed. */ 5313 ufshcd_release(hba); 5314 ufshcd_clk_scaling_update_busy(hba); 5315 } 5316 5317 /** 5318 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5319 * @hba: per adapter instance 5320 * @completed_reqs: bitmask that indicates which requests to complete 5321 */ 5322 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5323 unsigned long completed_reqs) 5324 { 5325 struct ufshcd_lrb *lrbp; 5326 struct scsi_cmnd *cmd; 5327 int index; 5328 5329 for_each_set_bit(index, &completed_reqs, hba->nutrs) { 5330 lrbp = &hba->lrb[index]; 5331 lrbp->compl_time_stamp = ktime_get(); 5332 cmd = lrbp->cmd; 5333 if (cmd) { 5334 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5335 ufshcd_update_monitor(hba, lrbp); 5336 ufshcd_add_command_trace(hba, index, UFS_CMD_COMP); 5337 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp); 5338 ufshcd_release_scsi_cmd(hba, lrbp); 5339 /* Do not touch lrbp after scsi done */ 5340 scsi_done(cmd); 5341 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 5342 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 5343 if (hba->dev_cmd.complete) { 5344 ufshcd_add_command_trace(hba, index, 5345 UFS_DEV_COMP); 5346 complete(hba->dev_cmd.complete); 5347 ufshcd_clk_scaling_update_busy(hba); 5348 } 5349 } 5350 } 5351 } 5352 5353 /* 5354 * Returns > 0 if one or more commands have been completed or 0 if no 5355 * requests have been completed. 5356 */ 5357 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5358 { 5359 struct ufs_hba *hba = shost_priv(shost); 5360 unsigned long completed_reqs, flags; 5361 u32 tr_doorbell; 5362 5363 spin_lock_irqsave(&hba->outstanding_lock, flags); 5364 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5365 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5366 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5367 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5368 hba->outstanding_reqs); 5369 hba->outstanding_reqs &= ~completed_reqs; 5370 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5371 5372 if (completed_reqs) 5373 __ufshcd_transfer_req_compl(hba, completed_reqs); 5374 5375 return completed_reqs; 5376 } 5377 5378 /** 5379 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5380 * @hba: per adapter instance 5381 * 5382 * Returns 5383 * IRQ_HANDLED - If interrupt is valid 5384 * IRQ_NONE - If invalid interrupt 5385 */ 5386 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5387 { 5388 /* Resetting interrupt aggregation counters first and reading the 5389 * DOOR_BELL afterward allows us to handle all the completed requests. 5390 * In order to prevent other interrupts starvation the DB is read once 5391 * after reset. The down side of this solution is the possibility of 5392 * false interrupt if device completes another request after resetting 5393 * aggregation and before reading the DB. 5394 */ 5395 if (ufshcd_is_intr_aggr_allowed(hba) && 5396 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5397 ufshcd_reset_intr_aggr(hba); 5398 5399 if (ufs_fail_completion()) 5400 return IRQ_HANDLED; 5401 5402 /* 5403 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5404 * do not want polling to trigger spurious interrupt complaints. 5405 */ 5406 ufshcd_poll(hba->host, 0); 5407 5408 return IRQ_HANDLED; 5409 } 5410 5411 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5412 { 5413 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5414 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5415 &ee_ctrl_mask); 5416 } 5417 5418 int ufshcd_write_ee_control(struct ufs_hba *hba) 5419 { 5420 int err; 5421 5422 mutex_lock(&hba->ee_ctrl_mutex); 5423 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5424 mutex_unlock(&hba->ee_ctrl_mutex); 5425 if (err) 5426 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5427 __func__, err); 5428 return err; 5429 } 5430 5431 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, u16 *other_mask, 5432 u16 set, u16 clr) 5433 { 5434 u16 new_mask, ee_ctrl_mask; 5435 int err = 0; 5436 5437 mutex_lock(&hba->ee_ctrl_mutex); 5438 new_mask = (*mask & ~clr) | set; 5439 ee_ctrl_mask = new_mask | *other_mask; 5440 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5441 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5442 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5443 if (!err) { 5444 hba->ee_ctrl_mask = ee_ctrl_mask; 5445 *mask = new_mask; 5446 } 5447 mutex_unlock(&hba->ee_ctrl_mutex); 5448 return err; 5449 } 5450 5451 /** 5452 * ufshcd_disable_ee - disable exception event 5453 * @hba: per-adapter instance 5454 * @mask: exception event to disable 5455 * 5456 * Disables exception event in the device so that the EVENT_ALERT 5457 * bit is not set. 5458 * 5459 * Returns zero on success, non-zero error value on failure. 5460 */ 5461 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5462 { 5463 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5464 } 5465 5466 /** 5467 * ufshcd_enable_ee - enable exception event 5468 * @hba: per-adapter instance 5469 * @mask: exception event to enable 5470 * 5471 * Enable corresponding exception event in the device to allow 5472 * device to alert host in critical scenarios. 5473 * 5474 * Returns zero on success, non-zero error value on failure. 5475 */ 5476 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5477 { 5478 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5479 } 5480 5481 /** 5482 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5483 * @hba: per-adapter instance 5484 * 5485 * Allow device to manage background operations on its own. Enabling 5486 * this might lead to inconsistent latencies during normal data transfers 5487 * as the device is allowed to manage its own way of handling background 5488 * operations. 5489 * 5490 * Returns zero on success, non-zero on failure. 5491 */ 5492 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5493 { 5494 int err = 0; 5495 5496 if (hba->auto_bkops_enabled) 5497 goto out; 5498 5499 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5500 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5501 if (err) { 5502 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5503 __func__, err); 5504 goto out; 5505 } 5506 5507 hba->auto_bkops_enabled = true; 5508 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5509 5510 /* No need of URGENT_BKOPS exception from the device */ 5511 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5512 if (err) 5513 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5514 __func__, err); 5515 out: 5516 return err; 5517 } 5518 5519 /** 5520 * ufshcd_disable_auto_bkops - block device in doing background operations 5521 * @hba: per-adapter instance 5522 * 5523 * Disabling background operations improves command response latency but 5524 * has drawback of device moving into critical state where the device is 5525 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5526 * host is idle so that BKOPS are managed effectively without any negative 5527 * impacts. 5528 * 5529 * Returns zero on success, non-zero on failure. 5530 */ 5531 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5532 { 5533 int err = 0; 5534 5535 if (!hba->auto_bkops_enabled) 5536 goto out; 5537 5538 /* 5539 * If host assisted BKOPs is to be enabled, make sure 5540 * urgent bkops exception is allowed. 5541 */ 5542 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5543 if (err) { 5544 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5545 __func__, err); 5546 goto out; 5547 } 5548 5549 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5550 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5551 if (err) { 5552 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5553 __func__, err); 5554 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5555 goto out; 5556 } 5557 5558 hba->auto_bkops_enabled = false; 5559 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5560 hba->is_urgent_bkops_lvl_checked = false; 5561 out: 5562 return err; 5563 } 5564 5565 /** 5566 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5567 * @hba: per adapter instance 5568 * 5569 * After a device reset the device may toggle the BKOPS_EN flag 5570 * to default value. The s/w tracking variables should be updated 5571 * as well. This function would change the auto-bkops state based on 5572 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5573 */ 5574 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5575 { 5576 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5577 hba->auto_bkops_enabled = false; 5578 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5579 ufshcd_enable_auto_bkops(hba); 5580 } else { 5581 hba->auto_bkops_enabled = true; 5582 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5583 ufshcd_disable_auto_bkops(hba); 5584 } 5585 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5586 hba->is_urgent_bkops_lvl_checked = false; 5587 } 5588 5589 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5590 { 5591 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5592 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5593 } 5594 5595 /** 5596 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5597 * @hba: per-adapter instance 5598 * @status: bkops_status value 5599 * 5600 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5601 * flag in the device to permit background operations if the device 5602 * bkops_status is greater than or equal to "status" argument passed to 5603 * this function, disable otherwise. 5604 * 5605 * Returns 0 for success, non-zero in case of failure. 5606 * 5607 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5608 * to know whether auto bkops is enabled or disabled after this function 5609 * returns control to it. 5610 */ 5611 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5612 enum bkops_status status) 5613 { 5614 int err; 5615 u32 curr_status = 0; 5616 5617 err = ufshcd_get_bkops_status(hba, &curr_status); 5618 if (err) { 5619 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5620 __func__, err); 5621 goto out; 5622 } else if (curr_status > BKOPS_STATUS_MAX) { 5623 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5624 __func__, curr_status); 5625 err = -EINVAL; 5626 goto out; 5627 } 5628 5629 if (curr_status >= status) 5630 err = ufshcd_enable_auto_bkops(hba); 5631 else 5632 err = ufshcd_disable_auto_bkops(hba); 5633 out: 5634 return err; 5635 } 5636 5637 /** 5638 * ufshcd_urgent_bkops - handle urgent bkops exception event 5639 * @hba: per-adapter instance 5640 * 5641 * Enable fBackgroundOpsEn flag in the device to permit background 5642 * operations. 5643 * 5644 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5645 * and negative error value for any other failure. 5646 */ 5647 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5648 { 5649 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5650 } 5651 5652 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5653 { 5654 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5655 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5656 } 5657 5658 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5659 { 5660 int err; 5661 u32 curr_status = 0; 5662 5663 if (hba->is_urgent_bkops_lvl_checked) 5664 goto enable_auto_bkops; 5665 5666 err = ufshcd_get_bkops_status(hba, &curr_status); 5667 if (err) { 5668 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5669 __func__, err); 5670 goto out; 5671 } 5672 5673 /* 5674 * We are seeing that some devices are raising the urgent bkops 5675 * exception events even when BKOPS status doesn't indicate performace 5676 * impacted or critical. Handle these device by determining their urgent 5677 * bkops status at runtime. 5678 */ 5679 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5680 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5681 __func__, curr_status); 5682 /* update the current status as the urgent bkops level */ 5683 hba->urgent_bkops_lvl = curr_status; 5684 hba->is_urgent_bkops_lvl_checked = true; 5685 } 5686 5687 enable_auto_bkops: 5688 err = ufshcd_enable_auto_bkops(hba); 5689 out: 5690 if (err < 0) 5691 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5692 __func__, err); 5693 } 5694 5695 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5696 { 5697 u32 value; 5698 5699 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5700 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5701 return; 5702 5703 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5704 5705 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5706 5707 /* 5708 * A placeholder for the platform vendors to add whatever additional 5709 * steps required 5710 */ 5711 } 5712 5713 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5714 { 5715 u8 index; 5716 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5717 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5718 5719 index = ufshcd_wb_get_query_index(hba); 5720 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5721 } 5722 5723 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5724 { 5725 int ret; 5726 5727 if (!ufshcd_is_wb_allowed(hba)) 5728 return 0; 5729 5730 if (!(enable ^ hba->dev_info.wb_enabled)) 5731 return 0; 5732 5733 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5734 if (ret) { 5735 dev_err(hba->dev, "%s Write Booster %s failed %d\n", 5736 __func__, enable ? "enable" : "disable", ret); 5737 return ret; 5738 } 5739 5740 hba->dev_info.wb_enabled = enable; 5741 dev_dbg(hba->dev, "%s Write Booster %s\n", 5742 __func__, enable ? "enabled" : "disabled"); 5743 5744 return ret; 5745 } 5746 5747 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set) 5748 { 5749 int ret; 5750 5751 ret = __ufshcd_wb_toggle(hba, set, 5752 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 5753 if (ret) { 5754 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed: %d\n", 5755 __func__, set ? "enable" : "disable", ret); 5756 return; 5757 } 5758 dev_dbg(hba->dev, "%s WB-Buf Flush during H8 %s\n", 5759 __func__, set ? "enabled" : "disabled"); 5760 } 5761 5762 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable) 5763 { 5764 int ret; 5765 5766 if (!ufshcd_is_wb_allowed(hba) || 5767 hba->dev_info.wb_buf_flush_enabled == enable) 5768 return; 5769 5770 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 5771 if (ret) { 5772 dev_err(hba->dev, "%s WB-Buf Flush %s failed %d\n", __func__, 5773 enable ? "enable" : "disable", ret); 5774 return; 5775 } 5776 5777 hba->dev_info.wb_buf_flush_enabled = enable; 5778 5779 dev_dbg(hba->dev, "%s WB-Buf Flush %s\n", 5780 __func__, enable ? "enabled" : "disabled"); 5781 } 5782 5783 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5784 u32 avail_buf) 5785 { 5786 u32 cur_buf; 5787 int ret; 5788 u8 index; 5789 5790 index = ufshcd_wb_get_query_index(hba); 5791 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5792 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 5793 index, 0, &cur_buf); 5794 if (ret) { 5795 dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n", 5796 __func__, ret); 5797 return false; 5798 } 5799 5800 if (!cur_buf) { 5801 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 5802 cur_buf); 5803 return false; 5804 } 5805 /* Let it continue to flush when available buffer exceeds threshold */ 5806 return avail_buf < hba->vps->wb_flush_threshold; 5807 } 5808 5809 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 5810 { 5811 if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL)) 5812 ufshcd_wb_toggle_flush(hba, false); 5813 5814 ufshcd_wb_toggle_flush_during_h8(hba, false); 5815 ufshcd_wb_toggle(hba, false); 5816 hba->caps &= ~UFSHCD_CAP_WB_EN; 5817 5818 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 5819 } 5820 5821 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 5822 { 5823 u32 lifetime; 5824 int ret; 5825 u8 index; 5826 5827 index = ufshcd_wb_get_query_index(hba); 5828 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5829 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 5830 index, 0, &lifetime); 5831 if (ret) { 5832 dev_err(hba->dev, 5833 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 5834 __func__, ret); 5835 return false; 5836 } 5837 5838 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 5839 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 5840 __func__, lifetime); 5841 return false; 5842 } 5843 5844 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 5845 __func__, lifetime); 5846 5847 return true; 5848 } 5849 5850 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 5851 { 5852 int ret; 5853 u32 avail_buf; 5854 u8 index; 5855 5856 if (!ufshcd_is_wb_allowed(hba)) 5857 return false; 5858 5859 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 5860 ufshcd_wb_force_disable(hba); 5861 return false; 5862 } 5863 5864 /* 5865 * The ufs device needs the vcc to be ON to flush. 5866 * With user-space reduction enabled, it's enough to enable flush 5867 * by checking only the available buffer. The threshold 5868 * defined here is > 90% full. 5869 * With user-space preserved enabled, the current-buffer 5870 * should be checked too because the wb buffer size can reduce 5871 * when disk tends to be full. This info is provided by current 5872 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 5873 * keeping vcc on when current buffer is empty. 5874 */ 5875 index = ufshcd_wb_get_query_index(hba); 5876 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5877 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 5878 index, 0, &avail_buf); 5879 if (ret) { 5880 dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n", 5881 __func__, ret); 5882 return false; 5883 } 5884 5885 if (!hba->dev_info.b_presrv_uspc_en) 5886 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 5887 5888 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 5889 } 5890 5891 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 5892 { 5893 struct ufs_hba *hba = container_of(to_delayed_work(work), 5894 struct ufs_hba, 5895 rpm_dev_flush_recheck_work); 5896 /* 5897 * To prevent unnecessary VCC power drain after device finishes 5898 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 5899 * after a certain delay to recheck the threshold by next runtime 5900 * suspend. 5901 */ 5902 ufshcd_rpm_get_sync(hba); 5903 ufshcd_rpm_put_sync(hba); 5904 } 5905 5906 /** 5907 * ufshcd_exception_event_handler - handle exceptions raised by device 5908 * @work: pointer to work data 5909 * 5910 * Read bExceptionEventStatus attribute from the device and handle the 5911 * exception event accordingly. 5912 */ 5913 static void ufshcd_exception_event_handler(struct work_struct *work) 5914 { 5915 struct ufs_hba *hba; 5916 int err; 5917 u32 status = 0; 5918 hba = container_of(work, struct ufs_hba, eeh_work); 5919 5920 ufshcd_scsi_block_requests(hba); 5921 err = ufshcd_get_ee_status(hba, &status); 5922 if (err) { 5923 dev_err(hba->dev, "%s: failed to get exception status %d\n", 5924 __func__, err); 5925 goto out; 5926 } 5927 5928 trace_ufshcd_exception_event(dev_name(hba->dev), status); 5929 5930 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 5931 ufshcd_bkops_exception_event_handler(hba); 5932 5933 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 5934 ufshcd_temp_exception_event_handler(hba, status); 5935 5936 ufs_debugfs_exception_event(hba, status); 5937 out: 5938 ufshcd_scsi_unblock_requests(hba); 5939 } 5940 5941 /* Complete requests that have door-bell cleared */ 5942 static void ufshcd_complete_requests(struct ufs_hba *hba) 5943 { 5944 ufshcd_transfer_req_compl(hba); 5945 ufshcd_tmc_handler(hba); 5946 } 5947 5948 /** 5949 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 5950 * to recover from the DL NAC errors or not. 5951 * @hba: per-adapter instance 5952 * 5953 * Returns true if error handling is required, false otherwise 5954 */ 5955 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 5956 { 5957 unsigned long flags; 5958 bool err_handling = true; 5959 5960 spin_lock_irqsave(hba->host->host_lock, flags); 5961 /* 5962 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 5963 * device fatal error and/or DL NAC & REPLAY timeout errors. 5964 */ 5965 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 5966 goto out; 5967 5968 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 5969 ((hba->saved_err & UIC_ERROR) && 5970 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 5971 goto out; 5972 5973 if ((hba->saved_err & UIC_ERROR) && 5974 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 5975 int err; 5976 /* 5977 * wait for 50ms to see if we can get any other errors or not. 5978 */ 5979 spin_unlock_irqrestore(hba->host->host_lock, flags); 5980 msleep(50); 5981 spin_lock_irqsave(hba->host->host_lock, flags); 5982 5983 /* 5984 * now check if we have got any other severe errors other than 5985 * DL NAC error? 5986 */ 5987 if ((hba->saved_err & INT_FATAL_ERRORS) || 5988 ((hba->saved_err & UIC_ERROR) && 5989 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 5990 goto out; 5991 5992 /* 5993 * As DL NAC is the only error received so far, send out NOP 5994 * command to confirm if link is still active or not. 5995 * - If we don't get any response then do error recovery. 5996 * - If we get response then clear the DL NAC error bit. 5997 */ 5998 5999 spin_unlock_irqrestore(hba->host->host_lock, flags); 6000 err = ufshcd_verify_dev_init(hba); 6001 spin_lock_irqsave(hba->host->host_lock, flags); 6002 6003 if (err) 6004 goto out; 6005 6006 /* Link seems to be alive hence ignore the DL NAC errors */ 6007 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6008 hba->saved_err &= ~UIC_ERROR; 6009 /* clear NAC error */ 6010 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6011 if (!hba->saved_uic_err) 6012 err_handling = false; 6013 } 6014 out: 6015 spin_unlock_irqrestore(hba->host->host_lock, flags); 6016 return err_handling; 6017 } 6018 6019 /* host lock must be held before calling this func */ 6020 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6021 { 6022 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6023 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6024 } 6025 6026 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6027 { 6028 lockdep_assert_held(hba->host->host_lock); 6029 6030 /* handle fatal errors only when link is not in error state */ 6031 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6032 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6033 ufshcd_is_saved_err_fatal(hba)) 6034 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6035 else 6036 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6037 queue_work(hba->eh_wq, &hba->eh_work); 6038 } 6039 } 6040 6041 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6042 { 6043 down_write(&hba->clk_scaling_lock); 6044 hba->clk_scaling.is_allowed = allow; 6045 up_write(&hba->clk_scaling_lock); 6046 } 6047 6048 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6049 { 6050 if (suspend) { 6051 if (hba->clk_scaling.is_enabled) 6052 ufshcd_suspend_clkscaling(hba); 6053 ufshcd_clk_scaling_allow(hba, false); 6054 } else { 6055 ufshcd_clk_scaling_allow(hba, true); 6056 if (hba->clk_scaling.is_enabled) 6057 ufshcd_resume_clkscaling(hba); 6058 } 6059 } 6060 6061 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6062 { 6063 ufshcd_rpm_get_sync(hba); 6064 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6065 hba->is_sys_suspended) { 6066 enum ufs_pm_op pm_op; 6067 6068 /* 6069 * Don't assume anything of resume, if 6070 * resume fails, irq and clocks can be OFF, and powers 6071 * can be OFF or in LPM. 6072 */ 6073 ufshcd_setup_hba_vreg(hba, true); 6074 ufshcd_enable_irq(hba); 6075 ufshcd_setup_vreg(hba, true); 6076 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6077 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6078 ufshcd_hold(hba, false); 6079 if (!ufshcd_is_clkgating_allowed(hba)) 6080 ufshcd_setup_clocks(hba, true); 6081 ufshcd_release(hba); 6082 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6083 ufshcd_vops_resume(hba, pm_op); 6084 } else { 6085 ufshcd_hold(hba, false); 6086 if (ufshcd_is_clkscaling_supported(hba) && 6087 hba->clk_scaling.is_enabled) 6088 ufshcd_suspend_clkscaling(hba); 6089 ufshcd_clk_scaling_allow(hba, false); 6090 } 6091 ufshcd_scsi_block_requests(hba); 6092 /* Drain ufshcd_queuecommand() */ 6093 synchronize_rcu(); 6094 cancel_work_sync(&hba->eeh_work); 6095 } 6096 6097 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6098 { 6099 ufshcd_scsi_unblock_requests(hba); 6100 ufshcd_release(hba); 6101 if (ufshcd_is_clkscaling_supported(hba)) 6102 ufshcd_clk_scaling_suspend(hba, false); 6103 ufshcd_rpm_put(hba); 6104 } 6105 6106 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6107 { 6108 return (!hba->is_powered || hba->shutting_down || 6109 !hba->ufs_device_wlun || 6110 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6111 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6112 ufshcd_is_link_broken(hba)))); 6113 } 6114 6115 #ifdef CONFIG_PM 6116 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6117 { 6118 struct Scsi_Host *shost = hba->host; 6119 struct scsi_device *sdev; 6120 struct request_queue *q; 6121 int ret; 6122 6123 hba->is_sys_suspended = false; 6124 /* 6125 * Set RPM status of wlun device to RPM_ACTIVE, 6126 * this also clears its runtime error. 6127 */ 6128 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6129 6130 /* hba device might have a runtime error otherwise */ 6131 if (ret) 6132 ret = pm_runtime_set_active(hba->dev); 6133 /* 6134 * If wlun device had runtime error, we also need to resume those 6135 * consumer scsi devices in case any of them has failed to be 6136 * resumed due to supplier runtime resume failure. This is to unblock 6137 * blk_queue_enter in case there are bios waiting inside it. 6138 */ 6139 if (!ret) { 6140 shost_for_each_device(sdev, shost) { 6141 q = sdev->request_queue; 6142 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6143 q->rpm_status == RPM_SUSPENDING)) 6144 pm_request_resume(q->dev); 6145 } 6146 } 6147 } 6148 #else 6149 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6150 { 6151 } 6152 #endif 6153 6154 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6155 { 6156 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6157 u32 mode; 6158 6159 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6160 6161 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6162 return true; 6163 6164 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6165 return true; 6166 6167 return false; 6168 } 6169 6170 /** 6171 * ufshcd_err_handler - handle UFS errors that require s/w attention 6172 * @work: pointer to work structure 6173 */ 6174 static void ufshcd_err_handler(struct work_struct *work) 6175 { 6176 int retries = MAX_ERR_HANDLER_RETRIES; 6177 struct ufs_hba *hba; 6178 unsigned long flags; 6179 bool needs_restore; 6180 bool needs_reset; 6181 bool err_xfer; 6182 bool err_tm; 6183 int pmc_err; 6184 int tag; 6185 6186 hba = container_of(work, struct ufs_hba, eh_work); 6187 6188 dev_info(hba->dev, 6189 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6190 __func__, ufshcd_state_name[hba->ufshcd_state], 6191 hba->is_powered, hba->shutting_down, hba->saved_err, 6192 hba->saved_uic_err, hba->force_reset, 6193 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6194 6195 down(&hba->host_sem); 6196 spin_lock_irqsave(hba->host->host_lock, flags); 6197 if (ufshcd_err_handling_should_stop(hba)) { 6198 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6199 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6200 spin_unlock_irqrestore(hba->host->host_lock, flags); 6201 up(&hba->host_sem); 6202 return; 6203 } 6204 ufshcd_set_eh_in_progress(hba); 6205 spin_unlock_irqrestore(hba->host->host_lock, flags); 6206 ufshcd_err_handling_prepare(hba); 6207 /* Complete requests that have door-bell cleared by h/w */ 6208 ufshcd_complete_requests(hba); 6209 spin_lock_irqsave(hba->host->host_lock, flags); 6210 again: 6211 needs_restore = false; 6212 needs_reset = false; 6213 err_xfer = false; 6214 err_tm = false; 6215 6216 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6217 hba->ufshcd_state = UFSHCD_STATE_RESET; 6218 /* 6219 * A full reset and restore might have happened after preparation 6220 * is finished, double check whether we should stop. 6221 */ 6222 if (ufshcd_err_handling_should_stop(hba)) 6223 goto skip_err_handling; 6224 6225 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6226 bool ret; 6227 6228 spin_unlock_irqrestore(hba->host->host_lock, flags); 6229 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6230 ret = ufshcd_quirk_dl_nac_errors(hba); 6231 spin_lock_irqsave(hba->host->host_lock, flags); 6232 if (!ret && ufshcd_err_handling_should_stop(hba)) 6233 goto skip_err_handling; 6234 } 6235 6236 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6237 (hba->saved_uic_err && 6238 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6239 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6240 6241 spin_unlock_irqrestore(hba->host->host_lock, flags); 6242 ufshcd_print_host_state(hba); 6243 ufshcd_print_pwr_info(hba); 6244 ufshcd_print_evt_hist(hba); 6245 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6246 ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt); 6247 spin_lock_irqsave(hba->host->host_lock, flags); 6248 } 6249 6250 /* 6251 * if host reset is required then skip clearing the pending 6252 * transfers forcefully because they will get cleared during 6253 * host reset and restore 6254 */ 6255 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6256 ufshcd_is_saved_err_fatal(hba) || 6257 ((hba->saved_err & UIC_ERROR) && 6258 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6259 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6260 needs_reset = true; 6261 goto do_reset; 6262 } 6263 6264 /* 6265 * If LINERESET was caught, UFS might have been put to PWM mode, 6266 * check if power mode restore is needed. 6267 */ 6268 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6269 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6270 if (!hba->saved_uic_err) 6271 hba->saved_err &= ~UIC_ERROR; 6272 spin_unlock_irqrestore(hba->host->host_lock, flags); 6273 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6274 needs_restore = true; 6275 spin_lock_irqsave(hba->host->host_lock, flags); 6276 if (!hba->saved_err && !needs_restore) 6277 goto skip_err_handling; 6278 } 6279 6280 hba->silence_err_logs = true; 6281 /* release lock as clear command might sleep */ 6282 spin_unlock_irqrestore(hba->host->host_lock, flags); 6283 /* Clear pending transfer requests */ 6284 for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) { 6285 if (ufshcd_try_to_abort_task(hba, tag)) { 6286 err_xfer = true; 6287 goto lock_skip_pending_xfer_clear; 6288 } 6289 dev_err(hba->dev, "Aborted tag %d / CDB %#02x\n", tag, 6290 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1); 6291 } 6292 6293 /* Clear pending task management requests */ 6294 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6295 if (ufshcd_clear_tm_cmd(hba, tag)) { 6296 err_tm = true; 6297 goto lock_skip_pending_xfer_clear; 6298 } 6299 } 6300 6301 lock_skip_pending_xfer_clear: 6302 /* Complete the requests that are cleared by s/w */ 6303 ufshcd_complete_requests(hba); 6304 6305 spin_lock_irqsave(hba->host->host_lock, flags); 6306 hba->silence_err_logs = false; 6307 if (err_xfer || err_tm) { 6308 needs_reset = true; 6309 goto do_reset; 6310 } 6311 6312 /* 6313 * After all reqs and tasks are cleared from doorbell, 6314 * now it is safe to retore power mode. 6315 */ 6316 if (needs_restore) { 6317 spin_unlock_irqrestore(hba->host->host_lock, flags); 6318 /* 6319 * Hold the scaling lock just in case dev cmds 6320 * are sent via bsg and/or sysfs. 6321 */ 6322 down_write(&hba->clk_scaling_lock); 6323 hba->force_pmc = true; 6324 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6325 if (pmc_err) { 6326 needs_reset = true; 6327 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6328 __func__, pmc_err); 6329 } 6330 hba->force_pmc = false; 6331 ufshcd_print_pwr_info(hba); 6332 up_write(&hba->clk_scaling_lock); 6333 spin_lock_irqsave(hba->host->host_lock, flags); 6334 } 6335 6336 do_reset: 6337 /* Fatal errors need reset */ 6338 if (needs_reset) { 6339 int err; 6340 6341 hba->force_reset = false; 6342 spin_unlock_irqrestore(hba->host->host_lock, flags); 6343 err = ufshcd_reset_and_restore(hba); 6344 if (err) 6345 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6346 __func__, err); 6347 else 6348 ufshcd_recover_pm_error(hba); 6349 spin_lock_irqsave(hba->host->host_lock, flags); 6350 } 6351 6352 skip_err_handling: 6353 if (!needs_reset) { 6354 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6355 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6356 if (hba->saved_err || hba->saved_uic_err) 6357 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6358 __func__, hba->saved_err, hba->saved_uic_err); 6359 } 6360 /* Exit in an operational state or dead */ 6361 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6362 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6363 if (--retries) 6364 goto again; 6365 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6366 } 6367 ufshcd_clear_eh_in_progress(hba); 6368 spin_unlock_irqrestore(hba->host->host_lock, flags); 6369 ufshcd_err_handling_unprepare(hba); 6370 up(&hba->host_sem); 6371 6372 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6373 ufshcd_state_name[hba->ufshcd_state]); 6374 } 6375 6376 /** 6377 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6378 * @hba: per-adapter instance 6379 * 6380 * Returns 6381 * IRQ_HANDLED - If interrupt is valid 6382 * IRQ_NONE - If invalid interrupt 6383 */ 6384 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6385 { 6386 u32 reg; 6387 irqreturn_t retval = IRQ_NONE; 6388 6389 /* PHY layer error */ 6390 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6391 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6392 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6393 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6394 /* 6395 * To know whether this error is fatal or not, DB timeout 6396 * must be checked but this error is handled separately. 6397 */ 6398 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6399 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6400 __func__); 6401 6402 /* Got a LINERESET indication. */ 6403 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6404 struct uic_command *cmd = NULL; 6405 6406 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6407 if (hba->uic_async_done && hba->active_uic_cmd) 6408 cmd = hba->active_uic_cmd; 6409 /* 6410 * Ignore the LINERESET during power mode change 6411 * operation via DME_SET command. 6412 */ 6413 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6414 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6415 } 6416 retval |= IRQ_HANDLED; 6417 } 6418 6419 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6420 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6421 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6422 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6423 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6424 6425 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6426 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6427 else if (hba->dev_quirks & 6428 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6429 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6430 hba->uic_error |= 6431 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6432 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6433 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6434 } 6435 retval |= IRQ_HANDLED; 6436 } 6437 6438 /* UIC NL/TL/DME errors needs software retry */ 6439 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6440 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6441 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6442 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6443 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6444 retval |= IRQ_HANDLED; 6445 } 6446 6447 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6448 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6449 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6450 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6451 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6452 retval |= IRQ_HANDLED; 6453 } 6454 6455 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6456 if ((reg & UIC_DME_ERROR) && 6457 (reg & UIC_DME_ERROR_CODE_MASK)) { 6458 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6459 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6460 retval |= IRQ_HANDLED; 6461 } 6462 6463 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6464 __func__, hba->uic_error); 6465 return retval; 6466 } 6467 6468 /** 6469 * ufshcd_check_errors - Check for errors that need s/w attention 6470 * @hba: per-adapter instance 6471 * @intr_status: interrupt status generated by the controller 6472 * 6473 * Returns 6474 * IRQ_HANDLED - If interrupt is valid 6475 * IRQ_NONE - If invalid interrupt 6476 */ 6477 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6478 { 6479 bool queue_eh_work = false; 6480 irqreturn_t retval = IRQ_NONE; 6481 6482 spin_lock(hba->host->host_lock); 6483 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6484 6485 if (hba->errors & INT_FATAL_ERRORS) { 6486 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6487 hba->errors); 6488 queue_eh_work = true; 6489 } 6490 6491 if (hba->errors & UIC_ERROR) { 6492 hba->uic_error = 0; 6493 retval = ufshcd_update_uic_error(hba); 6494 if (hba->uic_error) 6495 queue_eh_work = true; 6496 } 6497 6498 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6499 dev_err(hba->dev, 6500 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6501 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6502 "Enter" : "Exit", 6503 hba->errors, ufshcd_get_upmcrs(hba)); 6504 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6505 hba->errors); 6506 ufshcd_set_link_broken(hba); 6507 queue_eh_work = true; 6508 } 6509 6510 if (queue_eh_work) { 6511 /* 6512 * update the transfer error masks to sticky bits, let's do this 6513 * irrespective of current ufshcd_state. 6514 */ 6515 hba->saved_err |= hba->errors; 6516 hba->saved_uic_err |= hba->uic_error; 6517 6518 /* dump controller state before resetting */ 6519 if ((hba->saved_err & 6520 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6521 (hba->saved_uic_err && 6522 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6523 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6524 __func__, hba->saved_err, 6525 hba->saved_uic_err); 6526 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6527 "host_regs: "); 6528 ufshcd_print_pwr_info(hba); 6529 } 6530 ufshcd_schedule_eh_work(hba); 6531 retval |= IRQ_HANDLED; 6532 } 6533 /* 6534 * if (!queue_eh_work) - 6535 * Other errors are either non-fatal where host recovers 6536 * itself without s/w intervention or errors that will be 6537 * handled by the SCSI core layer. 6538 */ 6539 hba->errors = 0; 6540 hba->uic_error = 0; 6541 spin_unlock(hba->host->host_lock); 6542 return retval; 6543 } 6544 6545 /** 6546 * ufshcd_tmc_handler - handle task management function completion 6547 * @hba: per adapter instance 6548 * 6549 * Returns 6550 * IRQ_HANDLED - If interrupt is valid 6551 * IRQ_NONE - If invalid interrupt 6552 */ 6553 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6554 { 6555 unsigned long flags, pending, issued; 6556 irqreturn_t ret = IRQ_NONE; 6557 int tag; 6558 6559 spin_lock_irqsave(hba->host->host_lock, flags); 6560 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6561 issued = hba->outstanding_tasks & ~pending; 6562 for_each_set_bit(tag, &issued, hba->nutmrs) { 6563 struct request *req = hba->tmf_rqs[tag]; 6564 struct completion *c = req->end_io_data; 6565 6566 complete(c); 6567 ret = IRQ_HANDLED; 6568 } 6569 spin_unlock_irqrestore(hba->host->host_lock, flags); 6570 6571 return ret; 6572 } 6573 6574 /** 6575 * ufshcd_sl_intr - Interrupt service routine 6576 * @hba: per adapter instance 6577 * @intr_status: contains interrupts generated by the controller 6578 * 6579 * Returns 6580 * IRQ_HANDLED - If interrupt is valid 6581 * IRQ_NONE - If invalid interrupt 6582 */ 6583 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6584 { 6585 irqreturn_t retval = IRQ_NONE; 6586 6587 if (intr_status & UFSHCD_UIC_MASK) 6588 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6589 6590 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6591 retval |= ufshcd_check_errors(hba, intr_status); 6592 6593 if (intr_status & UTP_TASK_REQ_COMPL) 6594 retval |= ufshcd_tmc_handler(hba); 6595 6596 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6597 retval |= ufshcd_transfer_req_compl(hba); 6598 6599 return retval; 6600 } 6601 6602 /** 6603 * ufshcd_intr - Main interrupt service routine 6604 * @irq: irq number 6605 * @__hba: pointer to adapter instance 6606 * 6607 * Returns 6608 * IRQ_HANDLED - If interrupt is valid 6609 * IRQ_NONE - If invalid interrupt 6610 */ 6611 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6612 { 6613 u32 intr_status, enabled_intr_status = 0; 6614 irqreturn_t retval = IRQ_NONE; 6615 struct ufs_hba *hba = __hba; 6616 int retries = hba->nutrs; 6617 6618 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6619 hba->ufs_stats.last_intr_status = intr_status; 6620 hba->ufs_stats.last_intr_ts = ktime_get(); 6621 6622 /* 6623 * There could be max of hba->nutrs reqs in flight and in worst case 6624 * if the reqs get finished 1 by 1 after the interrupt status is 6625 * read, make sure we handle them by checking the interrupt status 6626 * again in a loop until we process all of the reqs before returning. 6627 */ 6628 while (intr_status && retries--) { 6629 enabled_intr_status = 6630 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6631 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6632 if (enabled_intr_status) 6633 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6634 6635 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6636 } 6637 6638 if (enabled_intr_status && retval == IRQ_NONE && 6639 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6640 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6641 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6642 __func__, 6643 intr_status, 6644 hba->ufs_stats.last_intr_status, 6645 enabled_intr_status); 6646 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6647 } 6648 6649 return retval; 6650 } 6651 6652 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6653 { 6654 int err = 0; 6655 u32 mask = 1 << tag; 6656 unsigned long flags; 6657 6658 if (!test_bit(tag, &hba->outstanding_tasks)) 6659 goto out; 6660 6661 spin_lock_irqsave(hba->host->host_lock, flags); 6662 ufshcd_utmrl_clear(hba, tag); 6663 spin_unlock_irqrestore(hba->host->host_lock, flags); 6664 6665 /* poll for max. 1 sec to clear door bell register by h/w */ 6666 err = ufshcd_wait_for_register(hba, 6667 REG_UTP_TASK_REQ_DOOR_BELL, 6668 mask, 0, 1000, 1000); 6669 6670 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6671 tag, err ? "succeeded" : "failed"); 6672 6673 out: 6674 return err; 6675 } 6676 6677 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6678 struct utp_task_req_desc *treq, u8 tm_function) 6679 { 6680 struct request_queue *q = hba->tmf_queue; 6681 struct Scsi_Host *host = hba->host; 6682 DECLARE_COMPLETION_ONSTACK(wait); 6683 struct request *req; 6684 unsigned long flags; 6685 int task_tag, err; 6686 6687 /* 6688 * blk_mq_alloc_request() is used here only to get a free tag. 6689 */ 6690 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 6691 if (IS_ERR(req)) 6692 return PTR_ERR(req); 6693 6694 req->end_io_data = &wait; 6695 ufshcd_hold(hba, false); 6696 6697 spin_lock_irqsave(host->host_lock, flags); 6698 6699 task_tag = req->tag; 6700 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", 6701 task_tag); 6702 hba->tmf_rqs[req->tag] = req; 6703 treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag); 6704 6705 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 6706 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 6707 6708 /* send command to the controller */ 6709 __set_bit(task_tag, &hba->outstanding_tasks); 6710 6711 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 6712 /* Make sure that doorbell is committed immediately */ 6713 wmb(); 6714 6715 spin_unlock_irqrestore(host->host_lock, flags); 6716 6717 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 6718 6719 /* wait until the task management command is completed */ 6720 err = wait_for_completion_io_timeout(&wait, 6721 msecs_to_jiffies(TM_CMD_TIMEOUT)); 6722 if (!err) { 6723 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 6724 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 6725 __func__, tm_function); 6726 if (ufshcd_clear_tm_cmd(hba, task_tag)) 6727 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 6728 __func__, task_tag); 6729 err = -ETIMEDOUT; 6730 } else { 6731 err = 0; 6732 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 6733 6734 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 6735 } 6736 6737 spin_lock_irqsave(hba->host->host_lock, flags); 6738 hba->tmf_rqs[req->tag] = NULL; 6739 __clear_bit(task_tag, &hba->outstanding_tasks); 6740 spin_unlock_irqrestore(hba->host->host_lock, flags); 6741 6742 ufshcd_release(hba); 6743 blk_mq_free_request(req); 6744 6745 return err; 6746 } 6747 6748 /** 6749 * ufshcd_issue_tm_cmd - issues task management commands to controller 6750 * @hba: per adapter instance 6751 * @lun_id: LUN ID to which TM command is sent 6752 * @task_id: task ID to which the TM command is applicable 6753 * @tm_function: task management function opcode 6754 * @tm_response: task management service response return value 6755 * 6756 * Returns non-zero value on error, zero on success. 6757 */ 6758 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 6759 u8 tm_function, u8 *tm_response) 6760 { 6761 struct utp_task_req_desc treq = { { 0 }, }; 6762 enum utp_ocs ocs_value; 6763 int err; 6764 6765 /* Configure task request descriptor */ 6766 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); 6767 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 6768 6769 /* Configure task request UPIU */ 6770 treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) | 6771 cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24); 6772 treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16); 6773 6774 /* 6775 * The host shall provide the same value for LUN field in the basic 6776 * header and for Input Parameter. 6777 */ 6778 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 6779 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 6780 6781 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 6782 if (err == -ETIMEDOUT) 6783 return err; 6784 6785 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS; 6786 if (ocs_value != OCS_SUCCESS) 6787 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 6788 __func__, ocs_value); 6789 else if (tm_response) 6790 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 6791 MASK_TM_SERVICE_RESP; 6792 return err; 6793 } 6794 6795 /** 6796 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 6797 * @hba: per-adapter instance 6798 * @req_upiu: upiu request 6799 * @rsp_upiu: upiu reply 6800 * @desc_buff: pointer to descriptor buffer, NULL if NA 6801 * @buff_len: descriptor size, 0 if NA 6802 * @cmd_type: specifies the type (NOP, Query...) 6803 * @desc_op: descriptor operation 6804 * 6805 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 6806 * Therefore, it "rides" the device management infrastructure: uses its tag and 6807 * tasks work queues. 6808 * 6809 * Since there is only one available tag for device management commands, 6810 * the caller is expected to hold the hba->dev_cmd.lock mutex. 6811 */ 6812 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 6813 struct utp_upiu_req *req_upiu, 6814 struct utp_upiu_req *rsp_upiu, 6815 u8 *desc_buff, int *buff_len, 6816 enum dev_cmd_type cmd_type, 6817 enum query_opcode desc_op) 6818 { 6819 DECLARE_COMPLETION_ONSTACK(wait); 6820 const u32 tag = hba->reserved_slot; 6821 struct ufshcd_lrb *lrbp; 6822 int err = 0; 6823 u8 upiu_flags; 6824 6825 /* Protects use of hba->reserved_slot. */ 6826 lockdep_assert_held(&hba->dev_cmd.lock); 6827 6828 down_read(&hba->clk_scaling_lock); 6829 6830 lrbp = &hba->lrb[tag]; 6831 WARN_ON(lrbp->cmd); 6832 lrbp->cmd = NULL; 6833 lrbp->task_tag = tag; 6834 lrbp->lun = 0; 6835 lrbp->intr_cmd = true; 6836 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 6837 hba->dev_cmd.type = cmd_type; 6838 6839 if (hba->ufs_version <= ufshci_version(1, 1)) 6840 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 6841 else 6842 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 6843 6844 /* update the task tag in the request upiu */ 6845 req_upiu->header.dword_0 |= cpu_to_be32(tag); 6846 6847 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE); 6848 6849 /* just copy the upiu request as it is */ 6850 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 6851 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 6852 /* The Data Segment Area is optional depending upon the query 6853 * function value. for WRITE DESCRIPTOR, the data segment 6854 * follows right after the tsf. 6855 */ 6856 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 6857 *buff_len = 0; 6858 } 6859 6860 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 6861 6862 hba->dev_cmd.complete = &wait; 6863 6864 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 6865 6866 ufshcd_send_command(hba, tag); 6867 /* 6868 * ignore the returning value here - ufshcd_check_query_response is 6869 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 6870 * read the response directly ignoring all errors. 6871 */ 6872 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 6873 6874 /* just copy the upiu response as it is */ 6875 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 6876 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 6877 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 6878 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & 6879 MASK_QUERY_DATA_SEG_LEN; 6880 6881 if (*buff_len >= resp_len) { 6882 memcpy(desc_buff, descp, resp_len); 6883 *buff_len = resp_len; 6884 } else { 6885 dev_warn(hba->dev, 6886 "%s: rsp size %d is bigger than buffer size %d", 6887 __func__, resp_len, *buff_len); 6888 *buff_len = 0; 6889 err = -EINVAL; 6890 } 6891 } 6892 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 6893 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 6894 6895 up_read(&hba->clk_scaling_lock); 6896 return err; 6897 } 6898 6899 /** 6900 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 6901 * @hba: per-adapter instance 6902 * @req_upiu: upiu request 6903 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 6904 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 6905 * @desc_buff: pointer to descriptor buffer, NULL if NA 6906 * @buff_len: descriptor size, 0 if NA 6907 * @desc_op: descriptor operation 6908 * 6909 * Supports UTP Transfer requests (nop and query), and UTP Task 6910 * Management requests. 6911 * It is up to the caller to fill the upiu conent properly, as it will 6912 * be copied without any further input validations. 6913 */ 6914 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 6915 struct utp_upiu_req *req_upiu, 6916 struct utp_upiu_req *rsp_upiu, 6917 int msgcode, 6918 u8 *desc_buff, int *buff_len, 6919 enum query_opcode desc_op) 6920 { 6921 int err; 6922 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 6923 struct utp_task_req_desc treq = { { 0 }, }; 6924 enum utp_ocs ocs_value; 6925 u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC; 6926 6927 switch (msgcode) { 6928 case UPIU_TRANSACTION_NOP_OUT: 6929 cmd_type = DEV_CMD_TYPE_NOP; 6930 fallthrough; 6931 case UPIU_TRANSACTION_QUERY_REQ: 6932 ufshcd_hold(hba, false); 6933 mutex_lock(&hba->dev_cmd.lock); 6934 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 6935 desc_buff, buff_len, 6936 cmd_type, desc_op); 6937 mutex_unlock(&hba->dev_cmd.lock); 6938 ufshcd_release(hba); 6939 6940 break; 6941 case UPIU_TRANSACTION_TASK_REQ: 6942 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); 6943 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 6944 6945 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 6946 6947 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 6948 if (err == -ETIMEDOUT) 6949 break; 6950 6951 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS; 6952 if (ocs_value != OCS_SUCCESS) { 6953 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 6954 ocs_value); 6955 break; 6956 } 6957 6958 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 6959 6960 break; 6961 default: 6962 err = -EINVAL; 6963 6964 break; 6965 } 6966 6967 return err; 6968 } 6969 6970 /** 6971 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 6972 * @cmd: SCSI command pointer 6973 * 6974 * Returns SUCCESS/FAILED 6975 */ 6976 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 6977 { 6978 unsigned long flags, pending_reqs = 0, not_cleared = 0; 6979 struct Scsi_Host *host; 6980 struct ufs_hba *hba; 6981 u32 pos; 6982 int err; 6983 u8 resp = 0xF, lun; 6984 6985 host = cmd->device->host; 6986 hba = shost_priv(host); 6987 6988 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 6989 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 6990 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 6991 if (!err) 6992 err = resp; 6993 goto out; 6994 } 6995 6996 /* clear the commands that were pending for corresponding LUN */ 6997 spin_lock_irqsave(&hba->outstanding_lock, flags); 6998 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 6999 if (hba->lrb[pos].lun == lun) 7000 __set_bit(pos, &pending_reqs); 7001 hba->outstanding_reqs &= ~pending_reqs; 7002 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7003 7004 if (ufshcd_clear_cmds(hba, pending_reqs) < 0) { 7005 spin_lock_irqsave(&hba->outstanding_lock, flags); 7006 not_cleared = pending_reqs & 7007 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7008 hba->outstanding_reqs |= not_cleared; 7009 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7010 7011 dev_err(hba->dev, "%s: failed to clear requests %#lx\n", 7012 __func__, not_cleared); 7013 } 7014 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared); 7015 7016 out: 7017 hba->req_abort_count = 0; 7018 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7019 if (!err) { 7020 err = SUCCESS; 7021 } else { 7022 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7023 err = FAILED; 7024 } 7025 return err; 7026 } 7027 7028 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7029 { 7030 struct ufshcd_lrb *lrbp; 7031 int tag; 7032 7033 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7034 lrbp = &hba->lrb[tag]; 7035 lrbp->req_abort_skip = true; 7036 } 7037 } 7038 7039 /** 7040 * ufshcd_try_to_abort_task - abort a specific task 7041 * @hba: Pointer to adapter instance 7042 * @tag: Task tag/index to be aborted 7043 * 7044 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7045 * command, and in host controller by clearing the door-bell register. There can 7046 * be race between controller sending the command to the device while abort is 7047 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7048 * really issued and then try to abort it. 7049 * 7050 * Returns zero on success, non-zero on failure 7051 */ 7052 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7053 { 7054 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7055 int err = 0; 7056 int poll_cnt; 7057 u8 resp = 0xF; 7058 u32 reg; 7059 7060 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7061 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7062 UFS_QUERY_TASK, &resp); 7063 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7064 /* cmd pending in the device */ 7065 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7066 __func__, tag); 7067 break; 7068 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7069 /* 7070 * cmd not pending in the device, check if it is 7071 * in transition. 7072 */ 7073 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7074 __func__, tag); 7075 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7076 if (reg & (1 << tag)) { 7077 /* sleep for max. 200us to stabilize */ 7078 usleep_range(100, 200); 7079 continue; 7080 } 7081 /* command completed already */ 7082 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7083 __func__, tag); 7084 goto out; 7085 } else { 7086 dev_err(hba->dev, 7087 "%s: no response from device. tag = %d, err %d\n", 7088 __func__, tag, err); 7089 if (!err) 7090 err = resp; /* service response error */ 7091 goto out; 7092 } 7093 } 7094 7095 if (!poll_cnt) { 7096 err = -EBUSY; 7097 goto out; 7098 } 7099 7100 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7101 UFS_ABORT_TASK, &resp); 7102 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7103 if (!err) { 7104 err = resp; /* service response error */ 7105 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7106 __func__, tag, err); 7107 } 7108 goto out; 7109 } 7110 7111 err = ufshcd_clear_cmds(hba, 1U << tag); 7112 if (err) 7113 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7114 __func__, tag, err); 7115 7116 out: 7117 return err; 7118 } 7119 7120 /** 7121 * ufshcd_abort - scsi host template eh_abort_handler callback 7122 * @cmd: SCSI command pointer 7123 * 7124 * Returns SUCCESS/FAILED 7125 */ 7126 static int ufshcd_abort(struct scsi_cmnd *cmd) 7127 { 7128 struct Scsi_Host *host = cmd->device->host; 7129 struct ufs_hba *hba = shost_priv(host); 7130 int tag = scsi_cmd_to_rq(cmd)->tag; 7131 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7132 unsigned long flags; 7133 int err = FAILED; 7134 bool outstanding; 7135 u32 reg; 7136 7137 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); 7138 7139 ufshcd_hold(hba, false); 7140 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7141 /* If command is already aborted/completed, return FAILED. */ 7142 if (!(test_bit(tag, &hba->outstanding_reqs))) { 7143 dev_err(hba->dev, 7144 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7145 __func__, tag, hba->outstanding_reqs, reg); 7146 goto release; 7147 } 7148 7149 /* Print Transfer Request of aborted task */ 7150 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7151 7152 /* 7153 * Print detailed info about aborted request. 7154 * As more than one request might get aborted at the same time, 7155 * print full information only for the first aborted request in order 7156 * to reduce repeated printouts. For other aborted requests only print 7157 * basic details. 7158 */ 7159 scsi_print_command(cmd); 7160 if (!hba->req_abort_count) { 7161 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7162 ufshcd_print_evt_hist(hba); 7163 ufshcd_print_host_state(hba); 7164 ufshcd_print_pwr_info(hba); 7165 ufshcd_print_trs(hba, 1 << tag, true); 7166 } else { 7167 ufshcd_print_trs(hba, 1 << tag, false); 7168 } 7169 hba->req_abort_count++; 7170 7171 if (!(reg & (1 << tag))) { 7172 dev_err(hba->dev, 7173 "%s: cmd was completed, but without a notifying intr, tag = %d", 7174 __func__, tag); 7175 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7176 goto release; 7177 } 7178 7179 /* 7180 * Task abort to the device W-LUN is illegal. When this command 7181 * will fail, due to spec violation, scsi err handling next step 7182 * will be to send LU reset which, again, is a spec violation. 7183 * To avoid these unnecessary/illegal steps, first we clean up 7184 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7185 * then queue the eh_work and bail. 7186 */ 7187 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7188 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7189 7190 spin_lock_irqsave(host->host_lock, flags); 7191 hba->force_reset = true; 7192 ufshcd_schedule_eh_work(hba); 7193 spin_unlock_irqrestore(host->host_lock, flags); 7194 goto release; 7195 } 7196 7197 /* Skip task abort in case previous aborts failed and report failure */ 7198 if (lrbp->req_abort_skip) { 7199 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7200 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7201 goto release; 7202 } 7203 7204 err = ufshcd_try_to_abort_task(hba, tag); 7205 if (err) { 7206 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7207 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7208 err = FAILED; 7209 goto release; 7210 } 7211 7212 /* 7213 * Clear the corresponding bit from outstanding_reqs since the command 7214 * has been aborted successfully. 7215 */ 7216 spin_lock_irqsave(&hba->outstanding_lock, flags); 7217 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7218 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7219 7220 if (outstanding) 7221 ufshcd_release_scsi_cmd(hba, lrbp); 7222 7223 err = SUCCESS; 7224 7225 release: 7226 /* Matches the ufshcd_hold() call at the start of this function. */ 7227 ufshcd_release(hba); 7228 return err; 7229 } 7230 7231 /** 7232 * ufshcd_host_reset_and_restore - reset and restore host controller 7233 * @hba: per-adapter instance 7234 * 7235 * Note that host controller reset may issue DME_RESET to 7236 * local and remote (device) Uni-Pro stack and the attributes 7237 * are reset to default state. 7238 * 7239 * Returns zero on success, non-zero on failure 7240 */ 7241 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7242 { 7243 int err; 7244 7245 /* 7246 * Stop the host controller and complete the requests 7247 * cleared by h/w 7248 */ 7249 ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET); 7250 ufshcd_hba_stop(hba); 7251 hba->silence_err_logs = true; 7252 ufshcd_complete_requests(hba); 7253 hba->silence_err_logs = false; 7254 7255 /* scale up clocks to max frequency before full reinitialization */ 7256 ufshcd_scale_clks(hba, true); 7257 7258 err = ufshcd_hba_enable(hba); 7259 7260 /* Establish the link again and restore the device */ 7261 if (!err) 7262 err = ufshcd_probe_hba(hba, false); 7263 7264 if (err) 7265 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7266 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7267 return err; 7268 } 7269 7270 /** 7271 * ufshcd_reset_and_restore - reset and re-initialize host/device 7272 * @hba: per-adapter instance 7273 * 7274 * Reset and recover device, host and re-establish link. This 7275 * is helpful to recover the communication in fatal error conditions. 7276 * 7277 * Returns zero on success, non-zero on failure 7278 */ 7279 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7280 { 7281 u32 saved_err = 0; 7282 u32 saved_uic_err = 0; 7283 int err = 0; 7284 unsigned long flags; 7285 int retries = MAX_HOST_RESET_RETRIES; 7286 7287 spin_lock_irqsave(hba->host->host_lock, flags); 7288 do { 7289 /* 7290 * This is a fresh start, cache and clear saved error first, 7291 * in case new error generated during reset and restore. 7292 */ 7293 saved_err |= hba->saved_err; 7294 saved_uic_err |= hba->saved_uic_err; 7295 hba->saved_err = 0; 7296 hba->saved_uic_err = 0; 7297 hba->force_reset = false; 7298 hba->ufshcd_state = UFSHCD_STATE_RESET; 7299 spin_unlock_irqrestore(hba->host->host_lock, flags); 7300 7301 /* Reset the attached device */ 7302 ufshcd_device_reset(hba); 7303 7304 err = ufshcd_host_reset_and_restore(hba); 7305 7306 spin_lock_irqsave(hba->host->host_lock, flags); 7307 if (err) 7308 continue; 7309 /* Do not exit unless operational or dead */ 7310 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7311 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7312 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7313 err = -EAGAIN; 7314 } while (err && --retries); 7315 7316 /* 7317 * Inform scsi mid-layer that we did reset and allow to handle 7318 * Unit Attention properly. 7319 */ 7320 scsi_report_bus_reset(hba->host, 0); 7321 if (err) { 7322 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7323 hba->saved_err |= saved_err; 7324 hba->saved_uic_err |= saved_uic_err; 7325 } 7326 spin_unlock_irqrestore(hba->host->host_lock, flags); 7327 7328 return err; 7329 } 7330 7331 /** 7332 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7333 * @cmd: SCSI command pointer 7334 * 7335 * Returns SUCCESS/FAILED 7336 */ 7337 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7338 { 7339 int err = SUCCESS; 7340 unsigned long flags; 7341 struct ufs_hba *hba; 7342 7343 hba = shost_priv(cmd->device->host); 7344 7345 spin_lock_irqsave(hba->host->host_lock, flags); 7346 hba->force_reset = true; 7347 ufshcd_schedule_eh_work(hba); 7348 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7349 spin_unlock_irqrestore(hba->host->host_lock, flags); 7350 7351 flush_work(&hba->eh_work); 7352 7353 spin_lock_irqsave(hba->host->host_lock, flags); 7354 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7355 err = FAILED; 7356 spin_unlock_irqrestore(hba->host->host_lock, flags); 7357 7358 return err; 7359 } 7360 7361 /** 7362 * ufshcd_get_max_icc_level - calculate the ICC level 7363 * @sup_curr_uA: max. current supported by the regulator 7364 * @start_scan: row at the desc table to start scan from 7365 * @buff: power descriptor buffer 7366 * 7367 * Returns calculated max ICC level for specific regulator 7368 */ 7369 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff) 7370 { 7371 int i; 7372 int curr_uA; 7373 u16 data; 7374 u16 unit; 7375 7376 for (i = start_scan; i >= 0; i--) { 7377 data = get_unaligned_be16(&buff[2 * i]); 7378 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7379 ATTR_ICC_LVL_UNIT_OFFSET; 7380 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7381 switch (unit) { 7382 case UFSHCD_NANO_AMP: 7383 curr_uA = curr_uA / 1000; 7384 break; 7385 case UFSHCD_MILI_AMP: 7386 curr_uA = curr_uA * 1000; 7387 break; 7388 case UFSHCD_AMP: 7389 curr_uA = curr_uA * 1000 * 1000; 7390 break; 7391 case UFSHCD_MICRO_AMP: 7392 default: 7393 break; 7394 } 7395 if (sup_curr_uA >= curr_uA) 7396 break; 7397 } 7398 if (i < 0) { 7399 i = 0; 7400 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7401 } 7402 7403 return (u32)i; 7404 } 7405 7406 /** 7407 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7408 * In case regulators are not initialized we'll return 0 7409 * @hba: per-adapter instance 7410 * @desc_buf: power descriptor buffer to extract ICC levels from. 7411 * @len: length of desc_buff 7412 * 7413 * Returns calculated ICC level 7414 */ 7415 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7416 u8 *desc_buf, int len) 7417 { 7418 u32 icc_level = 0; 7419 7420 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7421 !hba->vreg_info.vccq2) { 7422 /* 7423 * Using dev_dbg to avoid messages during runtime PM to avoid 7424 * never-ending cycles of messages written back to storage by 7425 * user space causing runtime resume, causing more messages and 7426 * so on. 7427 */ 7428 dev_dbg(hba->dev, 7429 "%s: Regulator capability was not set, actvIccLevel=%d", 7430 __func__, icc_level); 7431 goto out; 7432 } 7433 7434 if (hba->vreg_info.vcc->max_uA) 7435 icc_level = ufshcd_get_max_icc_level( 7436 hba->vreg_info.vcc->max_uA, 7437 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7438 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7439 7440 if (hba->vreg_info.vccq->max_uA) 7441 icc_level = ufshcd_get_max_icc_level( 7442 hba->vreg_info.vccq->max_uA, 7443 icc_level, 7444 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7445 7446 if (hba->vreg_info.vccq2->max_uA) 7447 icc_level = ufshcd_get_max_icc_level( 7448 hba->vreg_info.vccq2->max_uA, 7449 icc_level, 7450 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7451 out: 7452 return icc_level; 7453 } 7454 7455 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7456 { 7457 int ret; 7458 int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER]; 7459 u8 *desc_buf; 7460 u32 icc_level; 7461 7462 desc_buf = kmalloc(buff_len, GFP_KERNEL); 7463 if (!desc_buf) 7464 return; 7465 7466 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7467 desc_buf, buff_len); 7468 if (ret) { 7469 dev_err(hba->dev, 7470 "%s: Failed reading power descriptor.len = %d ret = %d", 7471 __func__, buff_len, ret); 7472 goto out; 7473 } 7474 7475 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf, 7476 buff_len); 7477 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7478 7479 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7480 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7481 7482 if (ret) 7483 dev_err(hba->dev, 7484 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7485 __func__, icc_level, ret); 7486 7487 out: 7488 kfree(desc_buf); 7489 } 7490 7491 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7492 { 7493 scsi_autopm_get_device(sdev); 7494 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7495 if (sdev->rpm_autosuspend) 7496 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7497 RPM_AUTOSUSPEND_DELAY_MS); 7498 scsi_autopm_put_device(sdev); 7499 } 7500 7501 /** 7502 * ufshcd_scsi_add_wlus - Adds required W-LUs 7503 * @hba: per-adapter instance 7504 * 7505 * UFS device specification requires the UFS devices to support 4 well known 7506 * logical units: 7507 * "REPORT_LUNS" (address: 01h) 7508 * "UFS Device" (address: 50h) 7509 * "RPMB" (address: 44h) 7510 * "BOOT" (address: 30h) 7511 * UFS device's power management needs to be controlled by "POWER CONDITION" 7512 * field of SSU (START STOP UNIT) command. But this "power condition" field 7513 * will take effect only when its sent to "UFS device" well known logical unit 7514 * hence we require the scsi_device instance to represent this logical unit in 7515 * order for the UFS host driver to send the SSU command for power management. 7516 * 7517 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7518 * Block) LU so user space process can control this LU. User space may also 7519 * want to have access to BOOT LU. 7520 * 7521 * This function adds scsi device instances for each of all well known LUs 7522 * (except "REPORT LUNS" LU). 7523 * 7524 * Returns zero on success (all required W-LUs are added successfully), 7525 * non-zero error value on failure (if failed to add any of the required W-LU). 7526 */ 7527 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7528 { 7529 int ret = 0; 7530 struct scsi_device *sdev_boot, *sdev_rpmb; 7531 7532 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7533 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7534 if (IS_ERR(hba->ufs_device_wlun)) { 7535 ret = PTR_ERR(hba->ufs_device_wlun); 7536 hba->ufs_device_wlun = NULL; 7537 goto out; 7538 } 7539 scsi_device_put(hba->ufs_device_wlun); 7540 7541 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7542 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7543 if (IS_ERR(sdev_rpmb)) { 7544 ret = PTR_ERR(sdev_rpmb); 7545 goto remove_ufs_device_wlun; 7546 } 7547 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7548 scsi_device_put(sdev_rpmb); 7549 7550 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7551 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7552 if (IS_ERR(sdev_boot)) { 7553 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7554 } else { 7555 ufshcd_blk_pm_runtime_init(sdev_boot); 7556 scsi_device_put(sdev_boot); 7557 } 7558 goto out; 7559 7560 remove_ufs_device_wlun: 7561 scsi_remove_device(hba->ufs_device_wlun); 7562 out: 7563 return ret; 7564 } 7565 7566 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf) 7567 { 7568 struct ufs_dev_info *dev_info = &hba->dev_info; 7569 u8 lun; 7570 u32 d_lu_wb_buf_alloc; 7571 u32 ext_ufs_feature; 7572 7573 if (!ufshcd_is_wb_allowed(hba)) 7574 return; 7575 7576 /* 7577 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 7578 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 7579 * enabled 7580 */ 7581 if (!(dev_info->wspecversion >= 0x310 || 7582 dev_info->wspecversion == 0x220 || 7583 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 7584 goto wb_disabled; 7585 7586 if (hba->desc_size[QUERY_DESC_IDN_DEVICE] < 7587 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4) 7588 goto wb_disabled; 7589 7590 ext_ufs_feature = get_unaligned_be32(desc_buf + 7591 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 7592 7593 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 7594 goto wb_disabled; 7595 7596 /* 7597 * WB may be supported but not configured while provisioning. The spec 7598 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 7599 * buffer configured. 7600 */ 7601 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 7602 7603 dev_info->b_presrv_uspc_en = 7604 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 7605 7606 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 7607 if (!get_unaligned_be32(desc_buf + 7608 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 7609 goto wb_disabled; 7610 } else { 7611 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 7612 d_lu_wb_buf_alloc = 0; 7613 ufshcd_read_unit_desc_param(hba, 7614 lun, 7615 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 7616 (u8 *)&d_lu_wb_buf_alloc, 7617 sizeof(d_lu_wb_buf_alloc)); 7618 if (d_lu_wb_buf_alloc) { 7619 dev_info->wb_dedicated_lu = lun; 7620 break; 7621 } 7622 } 7623 7624 if (!d_lu_wb_buf_alloc) 7625 goto wb_disabled; 7626 } 7627 7628 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 7629 goto wb_disabled; 7630 7631 return; 7632 7633 wb_disabled: 7634 hba->caps &= ~UFSHCD_CAP_WB_EN; 7635 } 7636 7637 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, u8 *desc_buf) 7638 { 7639 struct ufs_dev_info *dev_info = &hba->dev_info; 7640 u32 ext_ufs_feature; 7641 u8 mask = 0; 7642 7643 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 7644 return; 7645 7646 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 7647 7648 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 7649 mask |= MASK_EE_TOO_LOW_TEMP; 7650 7651 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 7652 mask |= MASK_EE_TOO_HIGH_TEMP; 7653 7654 if (mask) { 7655 ufshcd_enable_ee(hba, mask); 7656 ufs_hwmon_probe(hba, mask); 7657 } 7658 } 7659 7660 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 7661 const struct ufs_dev_quirk *fixups) 7662 { 7663 const struct ufs_dev_quirk *f; 7664 struct ufs_dev_info *dev_info = &hba->dev_info; 7665 7666 if (!fixups) 7667 return; 7668 7669 for (f = fixups; f->quirk; f++) { 7670 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 7671 f->wmanufacturerid == UFS_ANY_VENDOR) && 7672 ((dev_info->model && 7673 STR_PRFX_EQUAL(f->model, dev_info->model)) || 7674 !strcmp(f->model, UFS_ANY_MODEL))) 7675 hba->dev_quirks |= f->quirk; 7676 } 7677 } 7678 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 7679 7680 static void ufs_fixup_device_setup(struct ufs_hba *hba) 7681 { 7682 /* fix by general quirk table */ 7683 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 7684 7685 /* allow vendors to fix quirks */ 7686 ufshcd_vops_fixup_dev_quirks(hba); 7687 } 7688 7689 static int ufs_get_device_desc(struct ufs_hba *hba) 7690 { 7691 int err; 7692 u8 model_index; 7693 u8 b_ufs_feature_sup; 7694 u8 *desc_buf; 7695 struct ufs_dev_info *dev_info = &hba->dev_info; 7696 7697 desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7698 if (!desc_buf) { 7699 err = -ENOMEM; 7700 goto out; 7701 } 7702 7703 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 7704 hba->desc_size[QUERY_DESC_IDN_DEVICE]); 7705 if (err) { 7706 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 7707 __func__, err); 7708 goto out; 7709 } 7710 7711 /* 7712 * getting vendor (manufacturerID) and Bank Index in big endian 7713 * format 7714 */ 7715 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 7716 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 7717 7718 /* getting Specification Version in big endian format */ 7719 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 7720 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 7721 b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT]; 7722 7723 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 7724 7725 if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION && 7726 (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) { 7727 bool hpb_en = false; 7728 7729 ufshpb_get_dev_info(hba, desc_buf); 7730 7731 if (!ufshpb_is_legacy(hba)) 7732 err = ufshcd_query_flag_retry(hba, 7733 UPIU_QUERY_OPCODE_READ_FLAG, 7734 QUERY_FLAG_IDN_HPB_EN, 0, 7735 &hpb_en); 7736 7737 if (ufshpb_is_legacy(hba) || (!err && hpb_en)) 7738 dev_info->hpb_enabled = true; 7739 } 7740 7741 err = ufshcd_read_string_desc(hba, model_index, 7742 &dev_info->model, SD_ASCII_STD); 7743 if (err < 0) { 7744 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 7745 __func__, err); 7746 goto out; 7747 } 7748 7749 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 7750 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 7751 7752 ufs_fixup_device_setup(hba); 7753 7754 ufshcd_wb_probe(hba, desc_buf); 7755 7756 ufshcd_temp_notif_probe(hba, desc_buf); 7757 7758 /* 7759 * ufshcd_read_string_desc returns size of the string 7760 * reset the error value 7761 */ 7762 err = 0; 7763 7764 out: 7765 kfree(desc_buf); 7766 return err; 7767 } 7768 7769 static void ufs_put_device_desc(struct ufs_hba *hba) 7770 { 7771 struct ufs_dev_info *dev_info = &hba->dev_info; 7772 7773 kfree(dev_info->model); 7774 dev_info->model = NULL; 7775 } 7776 7777 /** 7778 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 7779 * @hba: per-adapter instance 7780 * 7781 * PA_TActivate parameter can be tuned manually if UniPro version is less than 7782 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 7783 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 7784 * the hibern8 exit latency. 7785 * 7786 * Returns zero on success, non-zero error value on failure. 7787 */ 7788 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 7789 { 7790 int ret = 0; 7791 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 7792 7793 ret = ufshcd_dme_peer_get(hba, 7794 UIC_ARG_MIB_SEL( 7795 RX_MIN_ACTIVATETIME_CAPABILITY, 7796 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 7797 &peer_rx_min_activatetime); 7798 if (ret) 7799 goto out; 7800 7801 /* make sure proper unit conversion is applied */ 7802 tuned_pa_tactivate = 7803 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 7804 / PA_TACTIVATE_TIME_UNIT_US); 7805 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 7806 tuned_pa_tactivate); 7807 7808 out: 7809 return ret; 7810 } 7811 7812 /** 7813 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 7814 * @hba: per-adapter instance 7815 * 7816 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 7817 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 7818 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 7819 * This optimal value can help reduce the hibern8 exit latency. 7820 * 7821 * Returns zero on success, non-zero error value on failure. 7822 */ 7823 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 7824 { 7825 int ret = 0; 7826 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 7827 u32 max_hibern8_time, tuned_pa_hibern8time; 7828 7829 ret = ufshcd_dme_get(hba, 7830 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 7831 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 7832 &local_tx_hibern8_time_cap); 7833 if (ret) 7834 goto out; 7835 7836 ret = ufshcd_dme_peer_get(hba, 7837 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 7838 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 7839 &peer_rx_hibern8_time_cap); 7840 if (ret) 7841 goto out; 7842 7843 max_hibern8_time = max(local_tx_hibern8_time_cap, 7844 peer_rx_hibern8_time_cap); 7845 /* make sure proper unit conversion is applied */ 7846 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 7847 / PA_HIBERN8_TIME_UNIT_US); 7848 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 7849 tuned_pa_hibern8time); 7850 out: 7851 return ret; 7852 } 7853 7854 /** 7855 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 7856 * less than device PA_TACTIVATE time. 7857 * @hba: per-adapter instance 7858 * 7859 * Some UFS devices require host PA_TACTIVATE to be lower than device 7860 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 7861 * for such devices. 7862 * 7863 * Returns zero on success, non-zero error value on failure. 7864 */ 7865 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 7866 { 7867 int ret = 0; 7868 u32 granularity, peer_granularity; 7869 u32 pa_tactivate, peer_pa_tactivate; 7870 u32 pa_tactivate_us, peer_pa_tactivate_us; 7871 u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 7872 7873 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 7874 &granularity); 7875 if (ret) 7876 goto out; 7877 7878 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 7879 &peer_granularity); 7880 if (ret) 7881 goto out; 7882 7883 if ((granularity < PA_GRANULARITY_MIN_VAL) || 7884 (granularity > PA_GRANULARITY_MAX_VAL)) { 7885 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 7886 __func__, granularity); 7887 return -EINVAL; 7888 } 7889 7890 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 7891 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 7892 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 7893 __func__, peer_granularity); 7894 return -EINVAL; 7895 } 7896 7897 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 7898 if (ret) 7899 goto out; 7900 7901 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 7902 &peer_pa_tactivate); 7903 if (ret) 7904 goto out; 7905 7906 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 7907 peer_pa_tactivate_us = peer_pa_tactivate * 7908 gran_to_us_table[peer_granularity - 1]; 7909 7910 if (pa_tactivate_us >= peer_pa_tactivate_us) { 7911 u32 new_peer_pa_tactivate; 7912 7913 new_peer_pa_tactivate = pa_tactivate_us / 7914 gran_to_us_table[peer_granularity - 1]; 7915 new_peer_pa_tactivate++; 7916 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 7917 new_peer_pa_tactivate); 7918 } 7919 7920 out: 7921 return ret; 7922 } 7923 7924 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 7925 { 7926 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 7927 ufshcd_tune_pa_tactivate(hba); 7928 ufshcd_tune_pa_hibern8time(hba); 7929 } 7930 7931 ufshcd_vops_apply_dev_quirks(hba); 7932 7933 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 7934 /* set 1ms timeout for PA_TACTIVATE */ 7935 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 7936 7937 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 7938 ufshcd_quirk_tune_host_pa_tactivate(hba); 7939 } 7940 7941 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 7942 { 7943 hba->ufs_stats.hibern8_exit_cnt = 0; 7944 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 7945 hba->req_abort_count = 0; 7946 } 7947 7948 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 7949 { 7950 int err; 7951 size_t buff_len; 7952 u8 *desc_buf; 7953 7954 buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY]; 7955 desc_buf = kmalloc(buff_len, GFP_KERNEL); 7956 if (!desc_buf) { 7957 err = -ENOMEM; 7958 goto out; 7959 } 7960 7961 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 7962 desc_buf, buff_len); 7963 if (err) { 7964 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 7965 __func__, err); 7966 goto out; 7967 } 7968 7969 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 7970 hba->dev_info.max_lu_supported = 32; 7971 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 7972 hba->dev_info.max_lu_supported = 8; 7973 7974 if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >= 7975 GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS) 7976 ufshpb_get_geo_info(hba, desc_buf); 7977 7978 out: 7979 kfree(desc_buf); 7980 return err; 7981 } 7982 7983 struct ufs_ref_clk { 7984 unsigned long freq_hz; 7985 enum ufs_ref_clk_freq val; 7986 }; 7987 7988 static struct ufs_ref_clk ufs_ref_clk_freqs[] = { 7989 {19200000, REF_CLK_FREQ_19_2_MHZ}, 7990 {26000000, REF_CLK_FREQ_26_MHZ}, 7991 {38400000, REF_CLK_FREQ_38_4_MHZ}, 7992 {52000000, REF_CLK_FREQ_52_MHZ}, 7993 {0, REF_CLK_FREQ_INVAL}, 7994 }; 7995 7996 static enum ufs_ref_clk_freq 7997 ufs_get_bref_clk_from_hz(unsigned long freq) 7998 { 7999 int i; 8000 8001 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8002 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8003 return ufs_ref_clk_freqs[i].val; 8004 8005 return REF_CLK_FREQ_INVAL; 8006 } 8007 8008 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8009 { 8010 unsigned long freq; 8011 8012 freq = clk_get_rate(refclk); 8013 8014 hba->dev_ref_clk_freq = 8015 ufs_get_bref_clk_from_hz(freq); 8016 8017 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8018 dev_err(hba->dev, 8019 "invalid ref_clk setting = %ld\n", freq); 8020 } 8021 8022 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8023 { 8024 int err; 8025 u32 ref_clk; 8026 u32 freq = hba->dev_ref_clk_freq; 8027 8028 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8029 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8030 8031 if (err) { 8032 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8033 err); 8034 goto out; 8035 } 8036 8037 if (ref_clk == freq) 8038 goto out; /* nothing to update */ 8039 8040 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8041 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8042 8043 if (err) { 8044 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8045 ufs_ref_clk_freqs[freq].freq_hz); 8046 goto out; 8047 } 8048 8049 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8050 ufs_ref_clk_freqs[freq].freq_hz); 8051 8052 out: 8053 return err; 8054 } 8055 8056 static int ufshcd_device_params_init(struct ufs_hba *hba) 8057 { 8058 bool flag; 8059 int ret, i; 8060 8061 /* Init device descriptor sizes */ 8062 for (i = 0; i < QUERY_DESC_IDN_MAX; i++) 8063 hba->desc_size[i] = QUERY_DESC_MAX_SIZE; 8064 8065 /* Init UFS geometry descriptor related parameters */ 8066 ret = ufshcd_device_geo_params_init(hba); 8067 if (ret) 8068 goto out; 8069 8070 /* Check and apply UFS device quirks */ 8071 ret = ufs_get_device_desc(hba); 8072 if (ret) { 8073 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8074 __func__, ret); 8075 goto out; 8076 } 8077 8078 ufshcd_get_ref_clk_gating_wait(hba); 8079 8080 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8081 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8082 hba->dev_info.f_power_on_wp_en = flag; 8083 8084 /* Probe maximum power mode co-supported by both UFS host and device */ 8085 if (ufshcd_get_max_pwr_mode(hba)) 8086 dev_err(hba->dev, 8087 "%s: Failed getting max supported power mode\n", 8088 __func__); 8089 out: 8090 return ret; 8091 } 8092 8093 /** 8094 * ufshcd_add_lus - probe and add UFS logical units 8095 * @hba: per-adapter instance 8096 */ 8097 static int ufshcd_add_lus(struct ufs_hba *hba) 8098 { 8099 int ret; 8100 8101 /* Add required well known logical units to scsi mid layer */ 8102 ret = ufshcd_scsi_add_wlus(hba); 8103 if (ret) 8104 goto out; 8105 8106 /* Initialize devfreq after UFS device is detected */ 8107 if (ufshcd_is_clkscaling_supported(hba)) { 8108 memcpy(&hba->clk_scaling.saved_pwr_info.info, 8109 &hba->pwr_info, 8110 sizeof(struct ufs_pa_layer_attr)); 8111 hba->clk_scaling.saved_pwr_info.is_valid = true; 8112 hba->clk_scaling.is_allowed = true; 8113 8114 ret = ufshcd_devfreq_init(hba); 8115 if (ret) 8116 goto out; 8117 8118 hba->clk_scaling.is_enabled = true; 8119 ufshcd_init_clk_scaling_sysfs(hba); 8120 } 8121 8122 ufs_bsg_probe(hba); 8123 ufshpb_init(hba); 8124 scsi_scan_host(hba->host); 8125 pm_runtime_put_sync(hba->dev); 8126 8127 out: 8128 return ret; 8129 } 8130 8131 /** 8132 * ufshcd_probe_hba - probe hba to detect device and initialize it 8133 * @hba: per-adapter instance 8134 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8135 * 8136 * Execute link-startup and verify device initialization 8137 */ 8138 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8139 { 8140 int ret; 8141 unsigned long flags; 8142 ktime_t start = ktime_get(); 8143 8144 hba->ufshcd_state = UFSHCD_STATE_RESET; 8145 8146 ret = ufshcd_link_startup(hba); 8147 if (ret) 8148 goto out; 8149 8150 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8151 goto out; 8152 8153 /* Debug counters initialization */ 8154 ufshcd_clear_dbg_ufs_stats(hba); 8155 8156 /* UniPro link is active now */ 8157 ufshcd_set_link_active(hba); 8158 8159 /* Verify device initialization by sending NOP OUT UPIU */ 8160 ret = ufshcd_verify_dev_init(hba); 8161 if (ret) 8162 goto out; 8163 8164 /* Initiate UFS initialization, and waiting until completion */ 8165 ret = ufshcd_complete_dev_init(hba); 8166 if (ret) 8167 goto out; 8168 8169 /* 8170 * Initialize UFS device parameters used by driver, these 8171 * parameters are associated with UFS descriptors. 8172 */ 8173 if (init_dev_params) { 8174 ret = ufshcd_device_params_init(hba); 8175 if (ret) 8176 goto out; 8177 } 8178 8179 ufshcd_tune_unipro_params(hba); 8180 8181 /* UFS device is also active now */ 8182 ufshcd_set_ufs_dev_active(hba); 8183 ufshcd_force_reset_auto_bkops(hba); 8184 8185 /* Gear up to HS gear if supported */ 8186 if (hba->max_pwr_info.is_valid) { 8187 /* 8188 * Set the right value to bRefClkFreq before attempting to 8189 * switch to HS gears. 8190 */ 8191 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8192 ufshcd_set_dev_ref_clk(hba); 8193 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8194 if (ret) { 8195 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8196 __func__, ret); 8197 goto out; 8198 } 8199 ufshcd_print_pwr_info(hba); 8200 } 8201 8202 /* 8203 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8204 * and for removable UFS card as well, hence always set the parameter. 8205 * Note: Error handler may issue the device reset hence resetting 8206 * bActiveICCLevel as well so it is always safe to set this here. 8207 */ 8208 ufshcd_set_active_icc_lvl(hba); 8209 8210 ufshcd_wb_config(hba); 8211 if (hba->ee_usr_mask) 8212 ufshcd_write_ee_control(hba); 8213 /* Enable Auto-Hibernate if configured */ 8214 ufshcd_auto_hibern8_enable(hba); 8215 8216 ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT); 8217 out: 8218 spin_lock_irqsave(hba->host->host_lock, flags); 8219 if (ret) 8220 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8221 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8222 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8223 spin_unlock_irqrestore(hba->host->host_lock, flags); 8224 8225 trace_ufshcd_init(dev_name(hba->dev), ret, 8226 ktime_to_us(ktime_sub(ktime_get(), start)), 8227 hba->curr_dev_pwr_mode, hba->uic_link_state); 8228 return ret; 8229 } 8230 8231 /** 8232 * ufshcd_async_scan - asynchronous execution for probing hba 8233 * @data: data pointer to pass to this function 8234 * @cookie: cookie data 8235 */ 8236 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8237 { 8238 struct ufs_hba *hba = (struct ufs_hba *)data; 8239 int ret; 8240 8241 down(&hba->host_sem); 8242 /* Initialize hba, detect and initialize UFS device */ 8243 ret = ufshcd_probe_hba(hba, true); 8244 up(&hba->host_sem); 8245 if (ret) 8246 goto out; 8247 8248 /* Probe and add UFS logical units */ 8249 ret = ufshcd_add_lus(hba); 8250 out: 8251 /* 8252 * If we failed to initialize the device or the device is not 8253 * present, turn off the power/clocks etc. 8254 */ 8255 if (ret) { 8256 pm_runtime_put_sync(hba->dev); 8257 ufshcd_hba_exit(hba); 8258 } 8259 } 8260 8261 static const struct attribute_group *ufshcd_driver_groups[] = { 8262 &ufs_sysfs_unit_descriptor_group, 8263 &ufs_sysfs_lun_attributes_group, 8264 #ifdef CONFIG_SCSI_UFS_HPB 8265 &ufs_sysfs_hpb_stat_group, 8266 &ufs_sysfs_hpb_param_group, 8267 #endif 8268 NULL, 8269 }; 8270 8271 static struct ufs_hba_variant_params ufs_hba_vps = { 8272 .hba_enable_delay_us = 1000, 8273 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8274 .devfreq_profile.polling_ms = 100, 8275 .devfreq_profile.target = ufshcd_devfreq_target, 8276 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8277 .ondemand_data.upthreshold = 70, 8278 .ondemand_data.downdifferential = 5, 8279 }; 8280 8281 static struct scsi_host_template ufshcd_driver_template = { 8282 .module = THIS_MODULE, 8283 .name = UFSHCD, 8284 .proc_name = UFSHCD, 8285 .map_queues = ufshcd_map_queues, 8286 .queuecommand = ufshcd_queuecommand, 8287 .mq_poll = ufshcd_poll, 8288 .slave_alloc = ufshcd_slave_alloc, 8289 .slave_configure = ufshcd_slave_configure, 8290 .slave_destroy = ufshcd_slave_destroy, 8291 .change_queue_depth = ufshcd_change_queue_depth, 8292 .eh_abort_handler = ufshcd_abort, 8293 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8294 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8295 .this_id = -1, 8296 .sg_tablesize = SG_ALL, 8297 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 8298 .can_queue = UFSHCD_CAN_QUEUE, 8299 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8300 .max_host_blocked = 1, 8301 .track_queue_depth = 1, 8302 .sdev_groups = ufshcd_driver_groups, 8303 .dma_boundary = PAGE_SIZE - 1, 8304 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 8305 }; 8306 8307 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8308 int ua) 8309 { 8310 int ret; 8311 8312 if (!vreg) 8313 return 0; 8314 8315 /* 8316 * "set_load" operation shall be required on those regulators 8317 * which specifically configured current limitation. Otherwise 8318 * zero max_uA may cause unexpected behavior when regulator is 8319 * enabled or set as high power mode. 8320 */ 8321 if (!vreg->max_uA) 8322 return 0; 8323 8324 ret = regulator_set_load(vreg->reg, ua); 8325 if (ret < 0) { 8326 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8327 __func__, vreg->name, ua, ret); 8328 } 8329 8330 return ret; 8331 } 8332 8333 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8334 struct ufs_vreg *vreg) 8335 { 8336 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8337 } 8338 8339 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8340 struct ufs_vreg *vreg) 8341 { 8342 if (!vreg) 8343 return 0; 8344 8345 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8346 } 8347 8348 static int ufshcd_config_vreg(struct device *dev, 8349 struct ufs_vreg *vreg, bool on) 8350 { 8351 if (regulator_count_voltages(vreg->reg) <= 0) 8352 return 0; 8353 8354 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8355 } 8356 8357 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8358 { 8359 int ret = 0; 8360 8361 if (!vreg || vreg->enabled) 8362 goto out; 8363 8364 ret = ufshcd_config_vreg(dev, vreg, true); 8365 if (!ret) 8366 ret = regulator_enable(vreg->reg); 8367 8368 if (!ret) 8369 vreg->enabled = true; 8370 else 8371 dev_err(dev, "%s: %s enable failed, err=%d\n", 8372 __func__, vreg->name, ret); 8373 out: 8374 return ret; 8375 } 8376 8377 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 8378 { 8379 int ret = 0; 8380 8381 if (!vreg || !vreg->enabled || vreg->always_on) 8382 goto out; 8383 8384 ret = regulator_disable(vreg->reg); 8385 8386 if (!ret) { 8387 /* ignore errors on applying disable config */ 8388 ufshcd_config_vreg(dev, vreg, false); 8389 vreg->enabled = false; 8390 } else { 8391 dev_err(dev, "%s: %s disable failed, err=%d\n", 8392 __func__, vreg->name, ret); 8393 } 8394 out: 8395 return ret; 8396 } 8397 8398 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 8399 { 8400 int ret = 0; 8401 struct device *dev = hba->dev; 8402 struct ufs_vreg_info *info = &hba->vreg_info; 8403 8404 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 8405 if (ret) 8406 goto out; 8407 8408 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 8409 if (ret) 8410 goto out; 8411 8412 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 8413 8414 out: 8415 if (ret) { 8416 ufshcd_toggle_vreg(dev, info->vccq2, false); 8417 ufshcd_toggle_vreg(dev, info->vccq, false); 8418 ufshcd_toggle_vreg(dev, info->vcc, false); 8419 } 8420 return ret; 8421 } 8422 8423 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 8424 { 8425 struct ufs_vreg_info *info = &hba->vreg_info; 8426 8427 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 8428 } 8429 8430 static int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 8431 { 8432 int ret = 0; 8433 8434 if (!vreg) 8435 goto out; 8436 8437 vreg->reg = devm_regulator_get(dev, vreg->name); 8438 if (IS_ERR(vreg->reg)) { 8439 ret = PTR_ERR(vreg->reg); 8440 dev_err(dev, "%s: %s get failed, err=%d\n", 8441 __func__, vreg->name, ret); 8442 } 8443 out: 8444 return ret; 8445 } 8446 8447 static int ufshcd_init_vreg(struct ufs_hba *hba) 8448 { 8449 int ret = 0; 8450 struct device *dev = hba->dev; 8451 struct ufs_vreg_info *info = &hba->vreg_info; 8452 8453 ret = ufshcd_get_vreg(dev, info->vcc); 8454 if (ret) 8455 goto out; 8456 8457 ret = ufshcd_get_vreg(dev, info->vccq); 8458 if (!ret) 8459 ret = ufshcd_get_vreg(dev, info->vccq2); 8460 out: 8461 return ret; 8462 } 8463 8464 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 8465 { 8466 struct ufs_vreg_info *info = &hba->vreg_info; 8467 8468 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 8469 } 8470 8471 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 8472 { 8473 int ret = 0; 8474 struct ufs_clk_info *clki; 8475 struct list_head *head = &hba->clk_list_head; 8476 unsigned long flags; 8477 ktime_t start = ktime_get(); 8478 bool clk_state_changed = false; 8479 8480 if (list_empty(head)) 8481 goto out; 8482 8483 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 8484 if (ret) 8485 return ret; 8486 8487 list_for_each_entry(clki, head, list) { 8488 if (!IS_ERR_OR_NULL(clki->clk)) { 8489 /* 8490 * Don't disable clocks which are needed 8491 * to keep the link active. 8492 */ 8493 if (ufshcd_is_link_active(hba) && 8494 clki->keep_link_active) 8495 continue; 8496 8497 clk_state_changed = on ^ clki->enabled; 8498 if (on && !clki->enabled) { 8499 ret = clk_prepare_enable(clki->clk); 8500 if (ret) { 8501 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 8502 __func__, clki->name, ret); 8503 goto out; 8504 } 8505 } else if (!on && clki->enabled) { 8506 clk_disable_unprepare(clki->clk); 8507 } 8508 clki->enabled = on; 8509 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 8510 clki->name, on ? "en" : "dis"); 8511 } 8512 } 8513 8514 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 8515 if (ret) 8516 return ret; 8517 8518 out: 8519 if (ret) { 8520 list_for_each_entry(clki, head, list) { 8521 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 8522 clk_disable_unprepare(clki->clk); 8523 } 8524 } else if (!ret && on) { 8525 spin_lock_irqsave(hba->host->host_lock, flags); 8526 hba->clk_gating.state = CLKS_ON; 8527 trace_ufshcd_clk_gating(dev_name(hba->dev), 8528 hba->clk_gating.state); 8529 spin_unlock_irqrestore(hba->host->host_lock, flags); 8530 } 8531 8532 if (clk_state_changed) 8533 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 8534 (on ? "on" : "off"), 8535 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 8536 return ret; 8537 } 8538 8539 static int ufshcd_init_clocks(struct ufs_hba *hba) 8540 { 8541 int ret = 0; 8542 struct ufs_clk_info *clki; 8543 struct device *dev = hba->dev; 8544 struct list_head *head = &hba->clk_list_head; 8545 8546 if (list_empty(head)) 8547 goto out; 8548 8549 list_for_each_entry(clki, head, list) { 8550 if (!clki->name) 8551 continue; 8552 8553 clki->clk = devm_clk_get(dev, clki->name); 8554 if (IS_ERR(clki->clk)) { 8555 ret = PTR_ERR(clki->clk); 8556 dev_err(dev, "%s: %s clk get failed, %d\n", 8557 __func__, clki->name, ret); 8558 goto out; 8559 } 8560 8561 /* 8562 * Parse device ref clk freq as per device tree "ref_clk". 8563 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 8564 * in ufshcd_alloc_host(). 8565 */ 8566 if (!strcmp(clki->name, "ref_clk")) 8567 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 8568 8569 if (clki->max_freq) { 8570 ret = clk_set_rate(clki->clk, clki->max_freq); 8571 if (ret) { 8572 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 8573 __func__, clki->name, 8574 clki->max_freq, ret); 8575 goto out; 8576 } 8577 clki->curr_freq = clki->max_freq; 8578 } 8579 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 8580 clki->name, clk_get_rate(clki->clk)); 8581 } 8582 out: 8583 return ret; 8584 } 8585 8586 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 8587 { 8588 int err = 0; 8589 8590 if (!hba->vops) 8591 goto out; 8592 8593 err = ufshcd_vops_init(hba); 8594 if (err) 8595 dev_err(hba->dev, "%s: variant %s init failed err %d\n", 8596 __func__, ufshcd_get_var_name(hba), err); 8597 out: 8598 return err; 8599 } 8600 8601 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 8602 { 8603 if (!hba->vops) 8604 return; 8605 8606 ufshcd_vops_exit(hba); 8607 } 8608 8609 static int ufshcd_hba_init(struct ufs_hba *hba) 8610 { 8611 int err; 8612 8613 /* 8614 * Handle host controller power separately from the UFS device power 8615 * rails as it will help controlling the UFS host controller power 8616 * collapse easily which is different than UFS device power collapse. 8617 * Also, enable the host controller power before we go ahead with rest 8618 * of the initialization here. 8619 */ 8620 err = ufshcd_init_hba_vreg(hba); 8621 if (err) 8622 goto out; 8623 8624 err = ufshcd_setup_hba_vreg(hba, true); 8625 if (err) 8626 goto out; 8627 8628 err = ufshcd_init_clocks(hba); 8629 if (err) 8630 goto out_disable_hba_vreg; 8631 8632 err = ufshcd_setup_clocks(hba, true); 8633 if (err) 8634 goto out_disable_hba_vreg; 8635 8636 err = ufshcd_init_vreg(hba); 8637 if (err) 8638 goto out_disable_clks; 8639 8640 err = ufshcd_setup_vreg(hba, true); 8641 if (err) 8642 goto out_disable_clks; 8643 8644 err = ufshcd_variant_hba_init(hba); 8645 if (err) 8646 goto out_disable_vreg; 8647 8648 ufs_debugfs_hba_init(hba); 8649 8650 hba->is_powered = true; 8651 goto out; 8652 8653 out_disable_vreg: 8654 ufshcd_setup_vreg(hba, false); 8655 out_disable_clks: 8656 ufshcd_setup_clocks(hba, false); 8657 out_disable_hba_vreg: 8658 ufshcd_setup_hba_vreg(hba, false); 8659 out: 8660 return err; 8661 } 8662 8663 static void ufshcd_hba_exit(struct ufs_hba *hba) 8664 { 8665 if (hba->is_powered) { 8666 ufshcd_exit_clk_scaling(hba); 8667 ufshcd_exit_clk_gating(hba); 8668 if (hba->eh_wq) 8669 destroy_workqueue(hba->eh_wq); 8670 ufs_debugfs_hba_exit(hba); 8671 ufshcd_variant_hba_exit(hba); 8672 ufshcd_setup_vreg(hba, false); 8673 ufshcd_setup_clocks(hba, false); 8674 ufshcd_setup_hba_vreg(hba, false); 8675 hba->is_powered = false; 8676 ufs_put_device_desc(hba); 8677 } 8678 } 8679 8680 /** 8681 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 8682 * power mode 8683 * @hba: per adapter instance 8684 * @pwr_mode: device power mode to set 8685 * 8686 * Returns 0 if requested power mode is set successfully 8687 * Returns < 0 if failed to set the requested power mode 8688 */ 8689 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 8690 enum ufs_dev_pwr_mode pwr_mode) 8691 { 8692 unsigned char cmd[6] = { START_STOP }; 8693 struct scsi_sense_hdr sshdr; 8694 struct scsi_device *sdp; 8695 unsigned long flags; 8696 int ret, retries; 8697 8698 spin_lock_irqsave(hba->host->host_lock, flags); 8699 sdp = hba->ufs_device_wlun; 8700 if (sdp) { 8701 ret = scsi_device_get(sdp); 8702 if (!ret && !scsi_device_online(sdp)) { 8703 ret = -ENODEV; 8704 scsi_device_put(sdp); 8705 } 8706 } else { 8707 ret = -ENODEV; 8708 } 8709 spin_unlock_irqrestore(hba->host->host_lock, flags); 8710 8711 if (ret) 8712 return ret; 8713 8714 /* 8715 * If scsi commands fail, the scsi mid-layer schedules scsi error- 8716 * handling, which would wait for host to be resumed. Since we know 8717 * we are functional while we are here, skip host resume in error 8718 * handling context. 8719 */ 8720 hba->host->eh_noresume = 1; 8721 8722 cmd[4] = pwr_mode << 4; 8723 8724 /* 8725 * Current function would be generally called from the power management 8726 * callbacks hence set the RQF_PM flag so that it doesn't resume the 8727 * already suspended childs. 8728 */ 8729 for (retries = 3; retries > 0; --retries) { 8730 ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 8731 START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL); 8732 if (!scsi_status_is_check_condition(ret) || 8733 !scsi_sense_valid(&sshdr) || 8734 sshdr.sense_key != UNIT_ATTENTION) 8735 break; 8736 } 8737 if (ret) { 8738 sdev_printk(KERN_WARNING, sdp, 8739 "START_STOP failed for power mode: %d, result %x\n", 8740 pwr_mode, ret); 8741 if (ret > 0) { 8742 if (scsi_sense_valid(&sshdr)) 8743 scsi_print_sense_hdr(sdp, NULL, &sshdr); 8744 ret = -EIO; 8745 } 8746 } 8747 8748 if (!ret) 8749 hba->curr_dev_pwr_mode = pwr_mode; 8750 8751 scsi_device_put(sdp); 8752 hba->host->eh_noresume = 0; 8753 return ret; 8754 } 8755 8756 static int ufshcd_link_state_transition(struct ufs_hba *hba, 8757 enum uic_link_state req_link_state, 8758 int check_for_bkops) 8759 { 8760 int ret = 0; 8761 8762 if (req_link_state == hba->uic_link_state) 8763 return 0; 8764 8765 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 8766 ret = ufshcd_uic_hibern8_enter(hba); 8767 if (!ret) { 8768 ufshcd_set_link_hibern8(hba); 8769 } else { 8770 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 8771 __func__, ret); 8772 goto out; 8773 } 8774 } 8775 /* 8776 * If autobkops is enabled, link can't be turned off because 8777 * turning off the link would also turn off the device, except in the 8778 * case of DeepSleep where the device is expected to remain powered. 8779 */ 8780 else if ((req_link_state == UIC_LINK_OFF_STATE) && 8781 (!check_for_bkops || !hba->auto_bkops_enabled)) { 8782 /* 8783 * Let's make sure that link is in low power mode, we are doing 8784 * this currently by putting the link in Hibern8. Otherway to 8785 * put the link in low power mode is to send the DME end point 8786 * to device and then send the DME reset command to local 8787 * unipro. But putting the link in hibern8 is much faster. 8788 * 8789 * Note also that putting the link in Hibern8 is a requirement 8790 * for entering DeepSleep. 8791 */ 8792 ret = ufshcd_uic_hibern8_enter(hba); 8793 if (ret) { 8794 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 8795 __func__, ret); 8796 goto out; 8797 } 8798 /* 8799 * Change controller state to "reset state" which 8800 * should also put the link in off/reset state 8801 */ 8802 ufshcd_hba_stop(hba); 8803 /* 8804 * TODO: Check if we need any delay to make sure that 8805 * controller is reset 8806 */ 8807 ufshcd_set_link_off(hba); 8808 } 8809 8810 out: 8811 return ret; 8812 } 8813 8814 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 8815 { 8816 bool vcc_off = false; 8817 8818 /* 8819 * It seems some UFS devices may keep drawing more than sleep current 8820 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 8821 * To avoid this situation, add 2ms delay before putting these UFS 8822 * rails in LPM mode. 8823 */ 8824 if (!ufshcd_is_link_active(hba) && 8825 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 8826 usleep_range(2000, 2100); 8827 8828 /* 8829 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 8830 * power. 8831 * 8832 * If UFS device and link is in OFF state, all power supplies (VCC, 8833 * VCCQ, VCCQ2) can be turned off if power on write protect is not 8834 * required. If UFS link is inactive (Hibern8 or OFF state) and device 8835 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 8836 * 8837 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 8838 * in low power state which would save some power. 8839 * 8840 * If Write Booster is enabled and the device needs to flush the WB 8841 * buffer OR if bkops status is urgent for WB, keep Vcc on. 8842 */ 8843 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 8844 !hba->dev_info.is_lu_power_on_wp) { 8845 ufshcd_setup_vreg(hba, false); 8846 vcc_off = true; 8847 } else if (!ufshcd_is_ufs_dev_active(hba)) { 8848 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 8849 vcc_off = true; 8850 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 8851 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 8852 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 8853 } 8854 } 8855 8856 /* 8857 * Some UFS devices require delay after VCC power rail is turned-off. 8858 */ 8859 if (vcc_off && hba->vreg_info.vcc && 8860 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 8861 usleep_range(5000, 5100); 8862 } 8863 8864 #ifdef CONFIG_PM 8865 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 8866 { 8867 int ret = 0; 8868 8869 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 8870 !hba->dev_info.is_lu_power_on_wp) { 8871 ret = ufshcd_setup_vreg(hba, true); 8872 } else if (!ufshcd_is_ufs_dev_active(hba)) { 8873 if (!ufshcd_is_link_active(hba)) { 8874 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 8875 if (ret) 8876 goto vcc_disable; 8877 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 8878 if (ret) 8879 goto vccq_lpm; 8880 } 8881 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 8882 } 8883 goto out; 8884 8885 vccq_lpm: 8886 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 8887 vcc_disable: 8888 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 8889 out: 8890 return ret; 8891 } 8892 #endif /* CONFIG_PM */ 8893 8894 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 8895 { 8896 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 8897 ufshcd_setup_hba_vreg(hba, false); 8898 } 8899 8900 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 8901 { 8902 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 8903 ufshcd_setup_hba_vreg(hba, true); 8904 } 8905 8906 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 8907 { 8908 int ret = 0; 8909 int check_for_bkops; 8910 enum ufs_pm_level pm_lvl; 8911 enum ufs_dev_pwr_mode req_dev_pwr_mode; 8912 enum uic_link_state req_link_state; 8913 8914 hba->pm_op_in_progress = true; 8915 if (pm_op != UFS_SHUTDOWN_PM) { 8916 pm_lvl = pm_op == UFS_RUNTIME_PM ? 8917 hba->rpm_lvl : hba->spm_lvl; 8918 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 8919 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 8920 } else { 8921 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 8922 req_link_state = UIC_LINK_OFF_STATE; 8923 } 8924 8925 ufshpb_suspend(hba); 8926 8927 /* 8928 * If we can't transition into any of the low power modes 8929 * just gate the clocks. 8930 */ 8931 ufshcd_hold(hba, false); 8932 hba->clk_gating.is_suspended = true; 8933 8934 if (ufshcd_is_clkscaling_supported(hba)) 8935 ufshcd_clk_scaling_suspend(hba, true); 8936 8937 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 8938 req_link_state == UIC_LINK_ACTIVE_STATE) { 8939 goto vops_suspend; 8940 } 8941 8942 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 8943 (req_link_state == hba->uic_link_state)) 8944 goto enable_scaling; 8945 8946 /* UFS device & link must be active before we enter in this function */ 8947 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 8948 ret = -EINVAL; 8949 goto enable_scaling; 8950 } 8951 8952 if (pm_op == UFS_RUNTIME_PM) { 8953 if (ufshcd_can_autobkops_during_suspend(hba)) { 8954 /* 8955 * The device is idle with no requests in the queue, 8956 * allow background operations if bkops status shows 8957 * that performance might be impacted. 8958 */ 8959 ret = ufshcd_urgent_bkops(hba); 8960 if (ret) 8961 goto enable_scaling; 8962 } else { 8963 /* make sure that auto bkops is disabled */ 8964 ufshcd_disable_auto_bkops(hba); 8965 } 8966 /* 8967 * If device needs to do BKOP or WB buffer flush during 8968 * Hibern8, keep device power mode as "active power mode" 8969 * and VCC supply. 8970 */ 8971 hba->dev_info.b_rpm_dev_flush_capable = 8972 hba->auto_bkops_enabled || 8973 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 8974 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 8975 ufshcd_is_auto_hibern8_enabled(hba))) && 8976 ufshcd_wb_need_flush(hba)); 8977 } 8978 8979 flush_work(&hba->eeh_work); 8980 8981 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 8982 if (ret) 8983 goto enable_scaling; 8984 8985 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 8986 if (pm_op != UFS_RUNTIME_PM) 8987 /* ensure that bkops is disabled */ 8988 ufshcd_disable_auto_bkops(hba); 8989 8990 if (!hba->dev_info.b_rpm_dev_flush_capable) { 8991 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 8992 if (ret) 8993 goto enable_scaling; 8994 } 8995 } 8996 8997 /* 8998 * In the case of DeepSleep, the device is expected to remain powered 8999 * with the link off, so do not check for bkops. 9000 */ 9001 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9002 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9003 if (ret) 9004 goto set_dev_active; 9005 9006 vops_suspend: 9007 /* 9008 * Call vendor specific suspend callback. As these callbacks may access 9009 * vendor specific host controller register space call them before the 9010 * host clocks are ON. 9011 */ 9012 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9013 if (ret) 9014 goto set_link_active; 9015 goto out; 9016 9017 set_link_active: 9018 /* 9019 * Device hardware reset is required to exit DeepSleep. Also, for 9020 * DeepSleep, the link is off so host reset and restore will be done 9021 * further below. 9022 */ 9023 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9024 ufshcd_device_reset(hba); 9025 WARN_ON(!ufshcd_is_link_off(hba)); 9026 } 9027 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9028 ufshcd_set_link_active(hba); 9029 else if (ufshcd_is_link_off(hba)) 9030 ufshcd_host_reset_and_restore(hba); 9031 set_dev_active: 9032 /* Can also get here needing to exit DeepSleep */ 9033 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9034 ufshcd_device_reset(hba); 9035 ufshcd_host_reset_and_restore(hba); 9036 } 9037 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9038 ufshcd_disable_auto_bkops(hba); 9039 enable_scaling: 9040 if (ufshcd_is_clkscaling_supported(hba)) 9041 ufshcd_clk_scaling_suspend(hba, false); 9042 9043 hba->dev_info.b_rpm_dev_flush_capable = false; 9044 out: 9045 if (hba->dev_info.b_rpm_dev_flush_capable) { 9046 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9047 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9048 } 9049 9050 if (ret) { 9051 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9052 hba->clk_gating.is_suspended = false; 9053 ufshcd_release(hba); 9054 ufshpb_resume(hba); 9055 } 9056 hba->pm_op_in_progress = false; 9057 return ret; 9058 } 9059 9060 #ifdef CONFIG_PM 9061 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9062 { 9063 int ret; 9064 enum uic_link_state old_link_state = hba->uic_link_state; 9065 9066 hba->pm_op_in_progress = true; 9067 9068 /* 9069 * Call vendor specific resume callback. As these callbacks may access 9070 * vendor specific host controller register space call them when the 9071 * host clocks are ON. 9072 */ 9073 ret = ufshcd_vops_resume(hba, pm_op); 9074 if (ret) 9075 goto out; 9076 9077 /* For DeepSleep, the only supported option is to have the link off */ 9078 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9079 9080 if (ufshcd_is_link_hibern8(hba)) { 9081 ret = ufshcd_uic_hibern8_exit(hba); 9082 if (!ret) { 9083 ufshcd_set_link_active(hba); 9084 } else { 9085 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9086 __func__, ret); 9087 goto vendor_suspend; 9088 } 9089 } else if (ufshcd_is_link_off(hba)) { 9090 /* 9091 * A full initialization of the host and the device is 9092 * required since the link was put to off during suspend. 9093 * Note, in the case of DeepSleep, the device will exit 9094 * DeepSleep due to device reset. 9095 */ 9096 ret = ufshcd_reset_and_restore(hba); 9097 /* 9098 * ufshcd_reset_and_restore() should have already 9099 * set the link state as active 9100 */ 9101 if (ret || !ufshcd_is_link_active(hba)) 9102 goto vendor_suspend; 9103 } 9104 9105 if (!ufshcd_is_ufs_dev_active(hba)) { 9106 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9107 if (ret) 9108 goto set_old_link_state; 9109 } 9110 9111 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9112 ufshcd_enable_auto_bkops(hba); 9113 else 9114 /* 9115 * If BKOPs operations are urgently needed at this moment then 9116 * keep auto-bkops enabled or else disable it. 9117 */ 9118 ufshcd_urgent_bkops(hba); 9119 9120 if (hba->ee_usr_mask) 9121 ufshcd_write_ee_control(hba); 9122 9123 if (ufshcd_is_clkscaling_supported(hba)) 9124 ufshcd_clk_scaling_suspend(hba, false); 9125 9126 if (hba->dev_info.b_rpm_dev_flush_capable) { 9127 hba->dev_info.b_rpm_dev_flush_capable = false; 9128 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9129 } 9130 9131 /* Enable Auto-Hibernate if configured */ 9132 ufshcd_auto_hibern8_enable(hba); 9133 9134 ufshpb_resume(hba); 9135 goto out; 9136 9137 set_old_link_state: 9138 ufshcd_link_state_transition(hba, old_link_state, 0); 9139 vendor_suspend: 9140 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9141 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9142 out: 9143 if (ret) 9144 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9145 hba->clk_gating.is_suspended = false; 9146 ufshcd_release(hba); 9147 hba->pm_op_in_progress = false; 9148 return ret; 9149 } 9150 9151 static int ufshcd_wl_runtime_suspend(struct device *dev) 9152 { 9153 struct scsi_device *sdev = to_scsi_device(dev); 9154 struct ufs_hba *hba; 9155 int ret; 9156 ktime_t start = ktime_get(); 9157 9158 hba = shost_priv(sdev->host); 9159 9160 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9161 if (ret) 9162 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9163 9164 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9165 ktime_to_us(ktime_sub(ktime_get(), start)), 9166 hba->curr_dev_pwr_mode, hba->uic_link_state); 9167 9168 return ret; 9169 } 9170 9171 static int ufshcd_wl_runtime_resume(struct device *dev) 9172 { 9173 struct scsi_device *sdev = to_scsi_device(dev); 9174 struct ufs_hba *hba; 9175 int ret = 0; 9176 ktime_t start = ktime_get(); 9177 9178 hba = shost_priv(sdev->host); 9179 9180 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9181 if (ret) 9182 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9183 9184 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9185 ktime_to_us(ktime_sub(ktime_get(), start)), 9186 hba->curr_dev_pwr_mode, hba->uic_link_state); 9187 9188 return ret; 9189 } 9190 #endif 9191 9192 #ifdef CONFIG_PM_SLEEP 9193 static int ufshcd_wl_suspend(struct device *dev) 9194 { 9195 struct scsi_device *sdev = to_scsi_device(dev); 9196 struct ufs_hba *hba; 9197 int ret = 0; 9198 ktime_t start = ktime_get(); 9199 9200 hba = shost_priv(sdev->host); 9201 down(&hba->host_sem); 9202 9203 if (pm_runtime_suspended(dev)) 9204 goto out; 9205 9206 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9207 if (ret) { 9208 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9209 up(&hba->host_sem); 9210 } 9211 9212 out: 9213 if (!ret) 9214 hba->is_sys_suspended = true; 9215 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9216 ktime_to_us(ktime_sub(ktime_get(), start)), 9217 hba->curr_dev_pwr_mode, hba->uic_link_state); 9218 9219 return ret; 9220 } 9221 9222 static int ufshcd_wl_resume(struct device *dev) 9223 { 9224 struct scsi_device *sdev = to_scsi_device(dev); 9225 struct ufs_hba *hba; 9226 int ret = 0; 9227 ktime_t start = ktime_get(); 9228 9229 hba = shost_priv(sdev->host); 9230 9231 if (pm_runtime_suspended(dev)) 9232 goto out; 9233 9234 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9235 if (ret) 9236 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9237 out: 9238 trace_ufshcd_wl_resume(dev_name(dev), ret, 9239 ktime_to_us(ktime_sub(ktime_get(), start)), 9240 hba->curr_dev_pwr_mode, hba->uic_link_state); 9241 if (!ret) 9242 hba->is_sys_suspended = false; 9243 up(&hba->host_sem); 9244 return ret; 9245 } 9246 #endif 9247 9248 static void ufshcd_wl_shutdown(struct device *dev) 9249 { 9250 struct scsi_device *sdev = to_scsi_device(dev); 9251 struct ufs_hba *hba; 9252 9253 hba = shost_priv(sdev->host); 9254 9255 down(&hba->host_sem); 9256 hba->shutting_down = true; 9257 up(&hba->host_sem); 9258 9259 /* Turn on everything while shutting down */ 9260 ufshcd_rpm_get_sync(hba); 9261 scsi_device_quiesce(sdev); 9262 shost_for_each_device(sdev, hba->host) { 9263 if (sdev == hba->ufs_device_wlun) 9264 continue; 9265 scsi_device_quiesce(sdev); 9266 } 9267 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 9268 } 9269 9270 /** 9271 * ufshcd_suspend - helper function for suspend operations 9272 * @hba: per adapter instance 9273 * 9274 * This function will put disable irqs, turn off clocks 9275 * and set vreg and hba-vreg in lpm mode. 9276 */ 9277 static int ufshcd_suspend(struct ufs_hba *hba) 9278 { 9279 int ret; 9280 9281 if (!hba->is_powered) 9282 return 0; 9283 /* 9284 * Disable the host irq as host controller as there won't be any 9285 * host controller transaction expected till resume. 9286 */ 9287 ufshcd_disable_irq(hba); 9288 ret = ufshcd_setup_clocks(hba, false); 9289 if (ret) { 9290 ufshcd_enable_irq(hba); 9291 return ret; 9292 } 9293 if (ufshcd_is_clkgating_allowed(hba)) { 9294 hba->clk_gating.state = CLKS_OFF; 9295 trace_ufshcd_clk_gating(dev_name(hba->dev), 9296 hba->clk_gating.state); 9297 } 9298 9299 ufshcd_vreg_set_lpm(hba); 9300 /* Put the host controller in low power mode if possible */ 9301 ufshcd_hba_vreg_set_lpm(hba); 9302 return ret; 9303 } 9304 9305 #ifdef CONFIG_PM 9306 /** 9307 * ufshcd_resume - helper function for resume operations 9308 * @hba: per adapter instance 9309 * 9310 * This function basically turns on the regulators, clocks and 9311 * irqs of the hba. 9312 * 9313 * Returns 0 for success and non-zero for failure 9314 */ 9315 static int ufshcd_resume(struct ufs_hba *hba) 9316 { 9317 int ret; 9318 9319 if (!hba->is_powered) 9320 return 0; 9321 9322 ufshcd_hba_vreg_set_hpm(hba); 9323 ret = ufshcd_vreg_set_hpm(hba); 9324 if (ret) 9325 goto out; 9326 9327 /* Make sure clocks are enabled before accessing controller */ 9328 ret = ufshcd_setup_clocks(hba, true); 9329 if (ret) 9330 goto disable_vreg; 9331 9332 /* enable the host irq as host controller would be active soon */ 9333 ufshcd_enable_irq(hba); 9334 goto out; 9335 9336 disable_vreg: 9337 ufshcd_vreg_set_lpm(hba); 9338 out: 9339 if (ret) 9340 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 9341 return ret; 9342 } 9343 #endif /* CONFIG_PM */ 9344 9345 #ifdef CONFIG_PM_SLEEP 9346 /** 9347 * ufshcd_system_suspend - system suspend callback 9348 * @dev: Device associated with the UFS controller. 9349 * 9350 * Executed before putting the system into a sleep state in which the contents 9351 * of main memory are preserved. 9352 * 9353 * Returns 0 for success and non-zero for failure 9354 */ 9355 int ufshcd_system_suspend(struct device *dev) 9356 { 9357 struct ufs_hba *hba = dev_get_drvdata(dev); 9358 int ret = 0; 9359 ktime_t start = ktime_get(); 9360 9361 if (pm_runtime_suspended(hba->dev)) 9362 goto out; 9363 9364 ret = ufshcd_suspend(hba); 9365 out: 9366 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 9367 ktime_to_us(ktime_sub(ktime_get(), start)), 9368 hba->curr_dev_pwr_mode, hba->uic_link_state); 9369 return ret; 9370 } 9371 EXPORT_SYMBOL(ufshcd_system_suspend); 9372 9373 /** 9374 * ufshcd_system_resume - system resume callback 9375 * @dev: Device associated with the UFS controller. 9376 * 9377 * Executed after waking the system up from a sleep state in which the contents 9378 * of main memory were preserved. 9379 * 9380 * Returns 0 for success and non-zero for failure 9381 */ 9382 int ufshcd_system_resume(struct device *dev) 9383 { 9384 struct ufs_hba *hba = dev_get_drvdata(dev); 9385 ktime_t start = ktime_get(); 9386 int ret = 0; 9387 9388 if (pm_runtime_suspended(hba->dev)) 9389 goto out; 9390 9391 ret = ufshcd_resume(hba); 9392 9393 out: 9394 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 9395 ktime_to_us(ktime_sub(ktime_get(), start)), 9396 hba->curr_dev_pwr_mode, hba->uic_link_state); 9397 9398 return ret; 9399 } 9400 EXPORT_SYMBOL(ufshcd_system_resume); 9401 #endif /* CONFIG_PM_SLEEP */ 9402 9403 #ifdef CONFIG_PM 9404 /** 9405 * ufshcd_runtime_suspend - runtime suspend callback 9406 * @dev: Device associated with the UFS controller. 9407 * 9408 * Check the description of ufshcd_suspend() function for more details. 9409 * 9410 * Returns 0 for success and non-zero for failure 9411 */ 9412 int ufshcd_runtime_suspend(struct device *dev) 9413 { 9414 struct ufs_hba *hba = dev_get_drvdata(dev); 9415 int ret; 9416 ktime_t start = ktime_get(); 9417 9418 ret = ufshcd_suspend(hba); 9419 9420 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 9421 ktime_to_us(ktime_sub(ktime_get(), start)), 9422 hba->curr_dev_pwr_mode, hba->uic_link_state); 9423 return ret; 9424 } 9425 EXPORT_SYMBOL(ufshcd_runtime_suspend); 9426 9427 /** 9428 * ufshcd_runtime_resume - runtime resume routine 9429 * @dev: Device associated with the UFS controller. 9430 * 9431 * This function basically brings controller 9432 * to active state. Following operations are done in this function: 9433 * 9434 * 1. Turn on all the controller related clocks 9435 * 2. Turn ON VCC rail 9436 */ 9437 int ufshcd_runtime_resume(struct device *dev) 9438 { 9439 struct ufs_hba *hba = dev_get_drvdata(dev); 9440 int ret; 9441 ktime_t start = ktime_get(); 9442 9443 ret = ufshcd_resume(hba); 9444 9445 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 9446 ktime_to_us(ktime_sub(ktime_get(), start)), 9447 hba->curr_dev_pwr_mode, hba->uic_link_state); 9448 return ret; 9449 } 9450 EXPORT_SYMBOL(ufshcd_runtime_resume); 9451 #endif /* CONFIG_PM */ 9452 9453 /** 9454 * ufshcd_shutdown - shutdown routine 9455 * @hba: per adapter instance 9456 * 9457 * This function would turn off both UFS device and UFS hba 9458 * regulators. It would also disable clocks. 9459 * 9460 * Returns 0 always to allow force shutdown even in case of errors. 9461 */ 9462 int ufshcd_shutdown(struct ufs_hba *hba) 9463 { 9464 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 9465 goto out; 9466 9467 pm_runtime_get_sync(hba->dev); 9468 9469 ufshcd_suspend(hba); 9470 out: 9471 hba->is_powered = false; 9472 /* allow force shutdown even in case of errors */ 9473 return 0; 9474 } 9475 EXPORT_SYMBOL(ufshcd_shutdown); 9476 9477 /** 9478 * ufshcd_remove - de-allocate SCSI host and host memory space 9479 * data structure memory 9480 * @hba: per adapter instance 9481 */ 9482 void ufshcd_remove(struct ufs_hba *hba) 9483 { 9484 if (hba->ufs_device_wlun) 9485 ufshcd_rpm_get_sync(hba); 9486 ufs_hwmon_remove(hba); 9487 ufs_bsg_remove(hba); 9488 ufshpb_remove(hba); 9489 ufs_sysfs_remove_nodes(hba->dev); 9490 blk_cleanup_queue(hba->tmf_queue); 9491 blk_mq_free_tag_set(&hba->tmf_tag_set); 9492 scsi_remove_host(hba->host); 9493 /* disable interrupts */ 9494 ufshcd_disable_intr(hba, hba->intr_mask); 9495 ufshcd_hba_stop(hba); 9496 ufshcd_hba_exit(hba); 9497 } 9498 EXPORT_SYMBOL_GPL(ufshcd_remove); 9499 9500 /** 9501 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 9502 * @hba: pointer to Host Bus Adapter (HBA) 9503 */ 9504 void ufshcd_dealloc_host(struct ufs_hba *hba) 9505 { 9506 scsi_host_put(hba->host); 9507 } 9508 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 9509 9510 /** 9511 * ufshcd_set_dma_mask - Set dma mask based on the controller 9512 * addressing capability 9513 * @hba: per adapter instance 9514 * 9515 * Returns 0 for success, non-zero for failure 9516 */ 9517 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 9518 { 9519 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 9520 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 9521 return 0; 9522 } 9523 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 9524 } 9525 9526 /** 9527 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 9528 * @dev: pointer to device handle 9529 * @hba_handle: driver private handle 9530 * Returns 0 on success, non-zero value on failure 9531 */ 9532 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 9533 { 9534 struct Scsi_Host *host; 9535 struct ufs_hba *hba; 9536 int err = 0; 9537 9538 if (!dev) { 9539 dev_err(dev, 9540 "Invalid memory reference for dev is NULL\n"); 9541 err = -ENODEV; 9542 goto out_error; 9543 } 9544 9545 host = scsi_host_alloc(&ufshcd_driver_template, 9546 sizeof(struct ufs_hba)); 9547 if (!host) { 9548 dev_err(dev, "scsi_host_alloc failed\n"); 9549 err = -ENOMEM; 9550 goto out_error; 9551 } 9552 host->nr_maps = HCTX_TYPE_POLL + 1; 9553 hba = shost_priv(host); 9554 hba->host = host; 9555 hba->dev = dev; 9556 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 9557 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 9558 INIT_LIST_HEAD(&hba->clk_list_head); 9559 spin_lock_init(&hba->outstanding_lock); 9560 9561 *hba_handle = hba; 9562 9563 out_error: 9564 return err; 9565 } 9566 EXPORT_SYMBOL(ufshcd_alloc_host); 9567 9568 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 9569 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 9570 const struct blk_mq_queue_data *qd) 9571 { 9572 WARN_ON_ONCE(true); 9573 return BLK_STS_NOTSUPP; 9574 } 9575 9576 static const struct blk_mq_ops ufshcd_tmf_ops = { 9577 .queue_rq = ufshcd_queue_tmf, 9578 }; 9579 9580 /** 9581 * ufshcd_init - Driver initialization routine 9582 * @hba: per-adapter instance 9583 * @mmio_base: base register address 9584 * @irq: Interrupt line of device 9585 * Returns 0 on success, non-zero value on failure 9586 */ 9587 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 9588 { 9589 int err; 9590 struct Scsi_Host *host = hba->host; 9591 struct device *dev = hba->dev; 9592 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 9593 9594 /* 9595 * dev_set_drvdata() must be called before any callbacks are registered 9596 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 9597 * sysfs). 9598 */ 9599 dev_set_drvdata(dev, hba); 9600 9601 if (!mmio_base) { 9602 dev_err(hba->dev, 9603 "Invalid memory reference for mmio_base is NULL\n"); 9604 err = -ENODEV; 9605 goto out_error; 9606 } 9607 9608 hba->mmio_base = mmio_base; 9609 hba->irq = irq; 9610 hba->vps = &ufs_hba_vps; 9611 9612 err = ufshcd_hba_init(hba); 9613 if (err) 9614 goto out_error; 9615 9616 /* Read capabilities registers */ 9617 err = ufshcd_hba_capabilities(hba); 9618 if (err) 9619 goto out_disable; 9620 9621 /* Get UFS version supported by the controller */ 9622 hba->ufs_version = ufshcd_get_ufs_version(hba); 9623 9624 /* Get Interrupt bit mask per version */ 9625 hba->intr_mask = ufshcd_get_intr_mask(hba); 9626 9627 err = ufshcd_set_dma_mask(hba); 9628 if (err) { 9629 dev_err(hba->dev, "set dma mask failed\n"); 9630 goto out_disable; 9631 } 9632 9633 /* Allocate memory for host memory space */ 9634 err = ufshcd_memory_alloc(hba); 9635 if (err) { 9636 dev_err(hba->dev, "Memory allocation failed\n"); 9637 goto out_disable; 9638 } 9639 9640 /* Configure LRB */ 9641 ufshcd_host_memory_configure(hba); 9642 9643 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 9644 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 9645 host->max_id = UFSHCD_MAX_ID; 9646 host->max_lun = UFS_MAX_LUNS; 9647 host->max_channel = UFSHCD_MAX_CHANNEL; 9648 host->unique_id = host->host_no; 9649 host->max_cmd_len = UFS_CDB_SIZE; 9650 9651 hba->max_pwr_info.is_valid = false; 9652 9653 /* Initialize work queues */ 9654 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 9655 hba->host->host_no); 9656 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 9657 if (!hba->eh_wq) { 9658 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 9659 __func__); 9660 err = -ENOMEM; 9661 goto out_disable; 9662 } 9663 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 9664 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 9665 9666 sema_init(&hba->host_sem, 1); 9667 9668 /* Initialize UIC command mutex */ 9669 mutex_init(&hba->uic_cmd_mutex); 9670 9671 /* Initialize mutex for device management commands */ 9672 mutex_init(&hba->dev_cmd.lock); 9673 9674 /* Initialize mutex for exception event control */ 9675 mutex_init(&hba->ee_ctrl_mutex); 9676 9677 init_rwsem(&hba->clk_scaling_lock); 9678 9679 ufshcd_init_clk_gating(hba); 9680 9681 ufshcd_init_clk_scaling(hba); 9682 9683 /* 9684 * In order to avoid any spurious interrupt immediately after 9685 * registering UFS controller interrupt handler, clear any pending UFS 9686 * interrupt status and disable all the UFS interrupts. 9687 */ 9688 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 9689 REG_INTERRUPT_STATUS); 9690 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 9691 /* 9692 * Make sure that UFS interrupts are disabled and any pending interrupt 9693 * status is cleared before registering UFS interrupt handler. 9694 */ 9695 mb(); 9696 9697 /* IRQ registration */ 9698 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 9699 if (err) { 9700 dev_err(hba->dev, "request irq failed\n"); 9701 goto out_disable; 9702 } else { 9703 hba->is_irq_enabled = true; 9704 } 9705 9706 err = scsi_add_host(host, hba->dev); 9707 if (err) { 9708 dev_err(hba->dev, "scsi_add_host failed\n"); 9709 goto out_disable; 9710 } 9711 9712 hba->tmf_tag_set = (struct blk_mq_tag_set) { 9713 .nr_hw_queues = 1, 9714 .queue_depth = hba->nutmrs, 9715 .ops = &ufshcd_tmf_ops, 9716 .flags = BLK_MQ_F_NO_SCHED, 9717 }; 9718 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 9719 if (err < 0) 9720 goto out_remove_scsi_host; 9721 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 9722 if (IS_ERR(hba->tmf_queue)) { 9723 err = PTR_ERR(hba->tmf_queue); 9724 goto free_tmf_tag_set; 9725 } 9726 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 9727 sizeof(*hba->tmf_rqs), GFP_KERNEL); 9728 if (!hba->tmf_rqs) { 9729 err = -ENOMEM; 9730 goto free_tmf_queue; 9731 } 9732 9733 /* Reset the attached device */ 9734 ufshcd_device_reset(hba); 9735 9736 ufshcd_init_crypto(hba); 9737 9738 /* Host controller enable */ 9739 err = ufshcd_hba_enable(hba); 9740 if (err) { 9741 dev_err(hba->dev, "Host controller enable failed\n"); 9742 ufshcd_print_evt_hist(hba); 9743 ufshcd_print_host_state(hba); 9744 goto free_tmf_queue; 9745 } 9746 9747 /* 9748 * Set the default power management level for runtime and system PM. 9749 * Default power saving mode is to keep UFS link in Hibern8 state 9750 * and UFS device in sleep state. 9751 */ 9752 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 9753 UFS_SLEEP_PWR_MODE, 9754 UIC_LINK_HIBERN8_STATE); 9755 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 9756 UFS_SLEEP_PWR_MODE, 9757 UIC_LINK_HIBERN8_STATE); 9758 9759 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 9760 ufshcd_rpm_dev_flush_recheck_work); 9761 9762 /* Set the default auto-hiberate idle timer value to 150 ms */ 9763 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 9764 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 9765 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 9766 } 9767 9768 /* Hold auto suspend until async scan completes */ 9769 pm_runtime_get_sync(dev); 9770 atomic_set(&hba->scsi_block_reqs_cnt, 0); 9771 /* 9772 * We are assuming that device wasn't put in sleep/power-down 9773 * state exclusively during the boot stage before kernel. 9774 * This assumption helps avoid doing link startup twice during 9775 * ufshcd_probe_hba(). 9776 */ 9777 ufshcd_set_ufs_dev_active(hba); 9778 9779 async_schedule(ufshcd_async_scan, hba); 9780 ufs_sysfs_add_nodes(hba->dev); 9781 9782 device_enable_async_suspend(dev); 9783 return 0; 9784 9785 free_tmf_queue: 9786 blk_cleanup_queue(hba->tmf_queue); 9787 free_tmf_tag_set: 9788 blk_mq_free_tag_set(&hba->tmf_tag_set); 9789 out_remove_scsi_host: 9790 scsi_remove_host(hba->host); 9791 out_disable: 9792 hba->is_irq_enabled = false; 9793 ufshcd_hba_exit(hba); 9794 out_error: 9795 return err; 9796 } 9797 EXPORT_SYMBOL_GPL(ufshcd_init); 9798 9799 void ufshcd_resume_complete(struct device *dev) 9800 { 9801 struct ufs_hba *hba = dev_get_drvdata(dev); 9802 9803 if (hba->complete_put) { 9804 ufshcd_rpm_put(hba); 9805 hba->complete_put = false; 9806 } 9807 } 9808 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 9809 9810 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 9811 { 9812 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 9813 enum ufs_dev_pwr_mode dev_pwr_mode; 9814 enum uic_link_state link_state; 9815 unsigned long flags; 9816 bool res; 9817 9818 spin_lock_irqsave(&dev->power.lock, flags); 9819 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 9820 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 9821 res = pm_runtime_suspended(dev) && 9822 hba->curr_dev_pwr_mode == dev_pwr_mode && 9823 hba->uic_link_state == link_state && 9824 !hba->dev_info.b_rpm_dev_flush_capable; 9825 spin_unlock_irqrestore(&dev->power.lock, flags); 9826 9827 return res; 9828 } 9829 9830 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 9831 { 9832 struct ufs_hba *hba = dev_get_drvdata(dev); 9833 int ret; 9834 9835 /* 9836 * SCSI assumes that runtime-pm and system-pm for scsi drivers 9837 * are same. And it doesn't wake up the device for system-suspend 9838 * if it's runtime suspended. But ufs doesn't follow that. 9839 * Refer ufshcd_resume_complete() 9840 */ 9841 if (hba->ufs_device_wlun) { 9842 /* Prevent runtime suspend */ 9843 ufshcd_rpm_get_noresume(hba); 9844 /* 9845 * Check if already runtime suspended in same state as system 9846 * suspend would be. 9847 */ 9848 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 9849 /* RPM state is not ok for SPM, so runtime resume */ 9850 ret = ufshcd_rpm_resume(hba); 9851 if (ret < 0 && ret != -EACCES) { 9852 ufshcd_rpm_put(hba); 9853 return ret; 9854 } 9855 } 9856 hba->complete_put = true; 9857 } 9858 return 0; 9859 } 9860 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 9861 9862 int ufshcd_suspend_prepare(struct device *dev) 9863 { 9864 return __ufshcd_suspend_prepare(dev, true); 9865 } 9866 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 9867 9868 #ifdef CONFIG_PM_SLEEP 9869 static int ufshcd_wl_poweroff(struct device *dev) 9870 { 9871 struct scsi_device *sdev = to_scsi_device(dev); 9872 struct ufs_hba *hba = shost_priv(sdev->host); 9873 9874 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 9875 return 0; 9876 } 9877 #endif 9878 9879 static int ufshcd_wl_probe(struct device *dev) 9880 { 9881 struct scsi_device *sdev = to_scsi_device(dev); 9882 9883 if (!is_device_wlun(sdev)) 9884 return -ENODEV; 9885 9886 blk_pm_runtime_init(sdev->request_queue, dev); 9887 pm_runtime_set_autosuspend_delay(dev, 0); 9888 pm_runtime_allow(dev); 9889 9890 return 0; 9891 } 9892 9893 static int ufshcd_wl_remove(struct device *dev) 9894 { 9895 pm_runtime_forbid(dev); 9896 return 0; 9897 } 9898 9899 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 9900 #ifdef CONFIG_PM_SLEEP 9901 .suspend = ufshcd_wl_suspend, 9902 .resume = ufshcd_wl_resume, 9903 .freeze = ufshcd_wl_suspend, 9904 .thaw = ufshcd_wl_resume, 9905 .poweroff = ufshcd_wl_poweroff, 9906 .restore = ufshcd_wl_resume, 9907 #endif 9908 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 9909 }; 9910 9911 /* 9912 * ufs_dev_wlun_template - describes ufs device wlun 9913 * ufs-device wlun - used to send pm commands 9914 * All luns are consumers of ufs-device wlun. 9915 * 9916 * Currently, no sd driver is present for wluns. 9917 * Hence the no specific pm operations are performed. 9918 * With ufs design, SSU should be sent to ufs-device wlun. 9919 * Hence register a scsi driver for ufs wluns only. 9920 */ 9921 static struct scsi_driver ufs_dev_wlun_template = { 9922 .gendrv = { 9923 .name = "ufs_device_wlun", 9924 .owner = THIS_MODULE, 9925 .probe = ufshcd_wl_probe, 9926 .remove = ufshcd_wl_remove, 9927 .pm = &ufshcd_wl_pm_ops, 9928 .shutdown = ufshcd_wl_shutdown, 9929 }, 9930 }; 9931 9932 static int __init ufshcd_core_init(void) 9933 { 9934 int ret; 9935 9936 /* Verify that there are no gaps in struct utp_transfer_cmd_desc. */ 9937 static_assert(sizeof(struct utp_transfer_cmd_desc) == 9938 2 * ALIGNED_UPIU_SIZE + 9939 SG_ALL * sizeof(struct ufshcd_sg_entry)); 9940 9941 ufs_debugfs_init(); 9942 9943 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 9944 if (ret) 9945 ufs_debugfs_exit(); 9946 return ret; 9947 } 9948 9949 static void __exit ufshcd_core_exit(void) 9950 { 9951 ufs_debugfs_exit(); 9952 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 9953 } 9954 9955 module_init(ufshcd_core_init); 9956 module_exit(ufshcd_core_exit); 9957 9958 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 9959 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 9960 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 9961 MODULE_LICENSE("GPL"); 9962