1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/sched/clock.h> 25 #include <linux/iopoll.h> 26 #include <scsi/scsi_cmnd.h> 27 #include <scsi/scsi_dbg.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include "ufshcd-priv.h" 31 #include <ufs/ufs_quirks.h> 32 #include <ufs/unipro.h> 33 #include "ufs-sysfs.h" 34 #include "ufs-debugfs.h" 35 #include "ufs-fault-injection.h" 36 #include "ufs_bsg.h" 37 #include "ufshcd-crypto.h" 38 #include <asm/unaligned.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/ufs.h> 42 43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 44 UTP_TASK_REQ_COMPL |\ 45 UFSHCD_ERROR_MASK) 46 47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 48 UFSHCD_ERROR_MASK |\ 49 MCQ_CQ_EVENT_STATUS) 50 51 52 /* UIC command timeout, unit: ms */ 53 #define UIC_CMD_TIMEOUT 500 54 55 /* NOP OUT retries waiting for NOP IN response */ 56 #define NOP_OUT_RETRIES 10 57 /* Timeout after 50 msecs if NOP OUT hangs without response */ 58 #define NOP_OUT_TIMEOUT 50 /* msecs */ 59 60 /* Query request retries */ 61 #define QUERY_REQ_RETRIES 3 62 /* Query request timeout */ 63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 64 65 /* Advanced RPMB request timeout */ 66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 67 68 /* Task management command timeout */ 69 #define TM_CMD_TIMEOUT 100 /* msecs */ 70 71 /* maximum number of retries for a general UIC command */ 72 #define UFS_UIC_COMMAND_RETRIES 3 73 74 /* maximum number of link-startup retries */ 75 #define DME_LINKSTARTUP_RETRIES 3 76 77 /* maximum number of reset retries before giving up */ 78 #define MAX_HOST_RESET_RETRIES 5 79 80 /* Maximum number of error handler retries before giving up */ 81 #define MAX_ERR_HANDLER_RETRIES 5 82 83 /* Expose the flag value from utp_upiu_query.value */ 84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 85 86 /* Interrupt aggregation default timeout, unit: 40us */ 87 #define INT_AGGR_DEF_TO 0x02 88 89 /* default delay of autosuspend: 2000 ms */ 90 #define RPM_AUTOSUSPEND_DELAY_MS 2000 91 92 /* Default delay of RPM device flush delayed work */ 93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 94 95 /* Default value of wait time before gating device ref clock */ 96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 97 98 /* Polling time to wait for fDeviceInit */ 99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 100 101 /* UFSHC 4.0 compliant HC support this mode. */ 102 static bool use_mcq_mode = true; 103 104 static bool is_mcq_supported(struct ufs_hba *hba) 105 { 106 return hba->mcq_sup && use_mcq_mode; 107 } 108 109 module_param(use_mcq_mode, bool, 0644); 110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 111 112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 113 ({ \ 114 int _ret; \ 115 if (_on) \ 116 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 117 else \ 118 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 119 _ret; \ 120 }) 121 122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 123 size_t __len = (len); \ 124 print_hex_dump(KERN_ERR, prefix_str, \ 125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 126 16, 4, buf, __len, false); \ 127 } while (0) 128 129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 130 const char *prefix) 131 { 132 u32 *regs; 133 size_t pos; 134 135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 136 return -EINVAL; 137 138 regs = kzalloc(len, GFP_ATOMIC); 139 if (!regs) 140 return -ENOMEM; 141 142 for (pos = 0; pos < len; pos += 4) { 143 if (offset == 0 && 144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 145 pos <= REG_UIC_ERROR_CODE_DME) 146 continue; 147 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 148 } 149 150 ufshcd_hex_dump(prefix, regs, len); 151 kfree(regs); 152 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 156 157 enum { 158 UFSHCD_MAX_CHANNEL = 0, 159 UFSHCD_MAX_ID = 1, 160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, 161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, 162 }; 163 164 static const char *const ufshcd_state_name[] = { 165 [UFSHCD_STATE_RESET] = "reset", 166 [UFSHCD_STATE_OPERATIONAL] = "operational", 167 [UFSHCD_STATE_ERROR] = "error", 168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 170 }; 171 172 /* UFSHCD error handling flags */ 173 enum { 174 UFSHCD_EH_IN_PROGRESS = (1 << 0), 175 }; 176 177 /* UFSHCD UIC layer error flags */ 178 enum { 179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 186 }; 187 188 #define ufshcd_set_eh_in_progress(h) \ 189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 190 #define ufshcd_eh_in_progress(h) \ 191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 192 #define ufshcd_clear_eh_in_progress(h) \ 193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 194 195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 202 /* 203 * For DeepSleep, the link is first put in hibern8 and then off. 204 * Leaving the link in hibern8 is not supported. 205 */ 206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 207 }; 208 209 static inline enum ufs_dev_pwr_mode 210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 211 { 212 return ufs_pm_lvl_states[lvl].dev_state; 213 } 214 215 static inline enum uic_link_state 216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 217 { 218 return ufs_pm_lvl_states[lvl].link_state; 219 } 220 221 static inline enum ufs_pm_level 222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 223 enum uic_link_state link_state) 224 { 225 enum ufs_pm_level lvl; 226 227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 229 (ufs_pm_lvl_states[lvl].link_state == link_state)) 230 return lvl; 231 } 232 233 /* if no match found, return the level 0 */ 234 return UFS_PM_LVL_0; 235 } 236 237 static const struct ufs_dev_quirk ufs_fixups[] = { 238 /* UFS cards deviations table */ 239 { .wmanufacturerid = UFS_VENDOR_MICRON, 240 .model = UFS_ANY_MODEL, 241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 243 .model = UFS_ANY_MODEL, 244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 248 .model = UFS_ANY_MODEL, 249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 251 .model = "hB8aL1" /*H28U62301AMR*/, 252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 254 .model = UFS_ANY_MODEL, 255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 257 .model = "THGLF2G9C8KBADG", 258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 260 .model = "THGLF2G9D8KBADG", 261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 262 {} 263 }; 264 265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 266 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 267 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 270 static void ufshcd_hba_exit(struct ufs_hba *hba); 271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 279 static irqreturn_t ufshcd_intr(int irq, void *__hba); 280 static int ufshcd_change_power_mode(struct ufs_hba *hba, 281 struct ufs_pa_layer_attr *pwr_mode); 282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 285 struct ufs_vreg *vreg); 286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 287 bool enable); 288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 290 291 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 292 { 293 if (!hba->is_irq_enabled) { 294 enable_irq(hba->irq); 295 hba->is_irq_enabled = true; 296 } 297 } 298 299 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 300 { 301 if (hba->is_irq_enabled) { 302 disable_irq(hba->irq); 303 hba->is_irq_enabled = false; 304 } 305 } 306 307 static void ufshcd_configure_wb(struct ufs_hba *hba) 308 { 309 if (!ufshcd_is_wb_allowed(hba)) 310 return; 311 312 ufshcd_wb_toggle(hba, true); 313 314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 315 316 if (ufshcd_is_wb_buf_flush_allowed(hba)) 317 ufshcd_wb_toggle_buf_flush(hba, true); 318 } 319 320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 321 { 322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 323 scsi_unblock_requests(hba->host); 324 } 325 326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 327 { 328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 329 scsi_block_requests(hba->host); 330 } 331 332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 333 enum ufs_trace_str_t str_t) 334 { 335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 336 struct utp_upiu_header *header; 337 338 if (!trace_ufshcd_upiu_enabled()) 339 return; 340 341 if (str_t == UFS_CMD_SEND) 342 header = &rq->header; 343 else 344 header = &hba->lrb[tag].ucd_rsp_ptr->header; 345 346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 347 UFS_TSF_CDB); 348 } 349 350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 351 enum ufs_trace_str_t str_t, 352 struct utp_upiu_req *rq_rsp) 353 { 354 if (!trace_ufshcd_upiu_enabled()) 355 return; 356 357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 358 &rq_rsp->qr, UFS_TSF_OSF); 359 } 360 361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 362 enum ufs_trace_str_t str_t) 363 { 364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 365 366 if (!trace_ufshcd_upiu_enabled()) 367 return; 368 369 if (str_t == UFS_TM_SEND) 370 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 371 &descp->upiu_req.req_header, 372 &descp->upiu_req.input_param1, 373 UFS_TSF_TM_INPUT); 374 else 375 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 376 &descp->upiu_rsp.rsp_header, 377 &descp->upiu_rsp.output_param1, 378 UFS_TSF_TM_OUTPUT); 379 } 380 381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 382 const struct uic_command *ucmd, 383 enum ufs_trace_str_t str_t) 384 { 385 u32 cmd; 386 387 if (!trace_ufshcd_uic_command_enabled()) 388 return; 389 390 if (str_t == UFS_CMD_SEND) 391 cmd = ucmd->command; 392 else 393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 394 395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 399 } 400 401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 402 enum ufs_trace_str_t str_t) 403 { 404 u64 lba = 0; 405 u8 opcode = 0, group_id = 0; 406 u32 doorbell = 0; 407 u32 intr; 408 int hwq_id = -1; 409 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 410 struct scsi_cmnd *cmd = lrbp->cmd; 411 struct request *rq = scsi_cmd_to_rq(cmd); 412 int transfer_len = -1; 413 414 if (!cmd) 415 return; 416 417 /* trace UPIU also */ 418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 419 if (!trace_ufshcd_command_enabled()) 420 return; 421 422 opcode = cmd->cmnd[0]; 423 424 if (opcode == READ_10 || opcode == WRITE_10) { 425 /* 426 * Currently we only fully trace read(10) and write(10) commands 427 */ 428 transfer_len = 429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 430 lba = scsi_get_lba(cmd); 431 if (opcode == WRITE_10) 432 group_id = lrbp->cmd->cmnd[6]; 433 } else if (opcode == UNMAP) { 434 /* 435 * The number of Bytes to be unmapped beginning with the lba. 436 */ 437 transfer_len = blk_rq_bytes(rq); 438 lba = scsi_get_lba(cmd); 439 } 440 441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 442 443 if (is_mcq_enabled(hba)) { 444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 445 446 hwq_id = hwq->id; 447 } else { 448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 449 } 450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag, 451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id); 452 } 453 454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 455 { 456 struct ufs_clk_info *clki; 457 struct list_head *head = &hba->clk_list_head; 458 459 if (list_empty(head)) 460 return; 461 462 list_for_each_entry(clki, head, list) { 463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 464 clki->max_freq) 465 dev_err(hba->dev, "clk: %s, rate: %u\n", 466 clki->name, clki->curr_freq); 467 } 468 } 469 470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 471 const char *err_name) 472 { 473 int i; 474 bool found = false; 475 const struct ufs_event_hist *e; 476 477 if (id >= UFS_EVT_CNT) 478 return; 479 480 e = &hba->ufs_stats.event[id]; 481 482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 484 485 if (e->tstamp[p] == 0) 486 continue; 487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 488 e->val[p], div_u64(e->tstamp[p], 1000)); 489 found = true; 490 } 491 492 if (!found) 493 dev_err(hba->dev, "No record of %s\n", err_name); 494 else 495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 496 } 497 498 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 499 { 500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 501 502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 508 "auto_hibern8_err"); 509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 511 "link_startup_fail"); 512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 514 "suspend_fail"); 515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 517 "wlun suspend_fail"); 518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 521 522 ufshcd_vops_dbg_register_dump(hba); 523 } 524 525 static 526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 527 { 528 const struct ufshcd_lrb *lrbp; 529 int prdt_length; 530 531 lrbp = &hba->lrb[tag]; 532 533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 537 dev_err(hba->dev, 538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 539 tag, (u64)lrbp->utrd_dma_addr); 540 541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 542 sizeof(struct utp_transfer_req_desc)); 543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 544 (u64)lrbp->ucd_req_dma_addr); 545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 546 sizeof(struct utp_upiu_req)); 547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 548 (u64)lrbp->ucd_rsp_dma_addr); 549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 550 sizeof(struct utp_upiu_rsp)); 551 552 prdt_length = le16_to_cpu( 553 lrbp->utr_descriptor_ptr->prd_table_length); 554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 555 prdt_length /= ufshcd_sg_entry_size(hba); 556 557 dev_err(hba->dev, 558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 559 tag, prdt_length, 560 (u64)lrbp->ucd_prdt_dma_addr); 561 562 if (pr_prdt) 563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 564 ufshcd_sg_entry_size(hba) * prdt_length); 565 } 566 567 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 568 { 569 struct scsi_device *sdev = req->q->queuedata; 570 struct Scsi_Host *shost = sdev->host; 571 struct ufs_hba *hba = shost_priv(shost); 572 573 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 574 575 return true; 576 } 577 578 /** 579 * ufshcd_print_trs_all - print trs for all started requests. 580 * @hba: per-adapter instance. 581 * @pr_prdt: need to print prdt or not. 582 */ 583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 584 { 585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 586 } 587 588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 589 { 590 int tag; 591 592 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 594 595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 597 } 598 } 599 600 static void ufshcd_print_host_state(struct ufs_hba *hba) 601 { 602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 603 604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 606 hba->outstanding_reqs, hba->outstanding_tasks); 607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 608 hba->saved_err, hba->saved_uic_err); 609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 610 hba->curr_dev_pwr_mode, hba->uic_link_state); 611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 612 hba->pm_op_in_progress, hba->is_sys_suspended); 613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 614 hba->auto_bkops_enabled, hba->host->host_self_blocked); 615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 616 dev_err(hba->dev, 617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 619 hba->ufs_stats.hibern8_exit_cnt); 620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 621 div_u64(hba->ufs_stats.last_intr_ts, 1000), 622 hba->ufs_stats.last_intr_status); 623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 624 hba->eh_flags, hba->req_abort_count); 625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 626 hba->ufs_version, hba->capabilities, hba->caps); 627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 628 hba->dev_quirks); 629 if (sdev_ufs) 630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 632 633 ufshcd_print_clk_freqs(hba); 634 } 635 636 /** 637 * ufshcd_print_pwr_info - print power params as saved in hba 638 * power info 639 * @hba: per-adapter instance 640 */ 641 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 642 { 643 static const char * const names[] = { 644 "INVALID MODE", 645 "FAST MODE", 646 "SLOW_MODE", 647 "INVALID MODE", 648 "FASTAUTO_MODE", 649 "SLOWAUTO_MODE", 650 "INVALID MODE", 651 }; 652 653 /* 654 * Using dev_dbg to avoid messages during runtime PM to avoid 655 * never-ending cycles of messages written back to storage by user space 656 * causing runtime resume, causing more messages and so on. 657 */ 658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 659 __func__, 660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 662 names[hba->pwr_info.pwr_rx], 663 names[hba->pwr_info.pwr_tx], 664 hba->pwr_info.hs_rate); 665 } 666 667 static void ufshcd_device_reset(struct ufs_hba *hba) 668 { 669 int err; 670 671 err = ufshcd_vops_device_reset(hba); 672 673 if (!err) { 674 ufshcd_set_ufs_dev_active(hba); 675 if (ufshcd_is_wb_allowed(hba)) { 676 hba->dev_info.wb_enabled = false; 677 hba->dev_info.wb_buf_flush_enabled = false; 678 } 679 } 680 if (err != -EOPNOTSUPP) 681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 682 } 683 684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 685 { 686 if (!us) 687 return; 688 689 if (us < 10) 690 udelay(us); 691 else 692 usleep_range(us, us + tolerance); 693 } 694 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 695 696 /** 697 * ufshcd_wait_for_register - wait for register value to change 698 * @hba: per-adapter interface 699 * @reg: mmio register offset 700 * @mask: mask to apply to the read register value 701 * @val: value to wait for 702 * @interval_us: polling interval in microseconds 703 * @timeout_ms: timeout in milliseconds 704 * 705 * Return: -ETIMEDOUT on error, zero on success. 706 */ 707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 708 u32 val, unsigned long interval_us, 709 unsigned long timeout_ms) 710 { 711 int err = 0; 712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 713 714 /* ignore bits that we don't intend to wait on */ 715 val = val & mask; 716 717 while ((ufshcd_readl(hba, reg) & mask) != val) { 718 usleep_range(interval_us, interval_us + 50); 719 if (time_after(jiffies, timeout)) { 720 if ((ufshcd_readl(hba, reg) & mask) != val) 721 err = -ETIMEDOUT; 722 break; 723 } 724 } 725 726 return err; 727 } 728 729 /** 730 * ufshcd_get_intr_mask - Get the interrupt bit mask 731 * @hba: Pointer to adapter instance 732 * 733 * Return: interrupt bit mask per version 734 */ 735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 736 { 737 if (hba->ufs_version == ufshci_version(1, 0)) 738 return INTERRUPT_MASK_ALL_VER_10; 739 if (hba->ufs_version <= ufshci_version(2, 0)) 740 return INTERRUPT_MASK_ALL_VER_11; 741 742 return INTERRUPT_MASK_ALL_VER_21; 743 } 744 745 /** 746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 747 * @hba: Pointer to adapter instance 748 * 749 * Return: UFSHCI version supported by the controller 750 */ 751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 752 { 753 u32 ufshci_ver; 754 755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 757 else 758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 759 760 /* 761 * UFSHCI v1.x uses a different version scheme, in order 762 * to allow the use of comparisons with the ufshci_version 763 * function, we convert it to the same scheme as ufs 2.0+. 764 */ 765 if (ufshci_ver & 0x00010000) 766 return ufshci_version(1, ufshci_ver & 0x00000100); 767 768 return ufshci_ver; 769 } 770 771 /** 772 * ufshcd_is_device_present - Check if any device connected to 773 * the host controller 774 * @hba: pointer to adapter instance 775 * 776 * Return: true if device present, false if no device detected 777 */ 778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 779 { 780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 781 } 782 783 /** 784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 785 * @lrbp: pointer to local command reference block 786 * @cqe: pointer to the completion queue entry 787 * 788 * This function is used to get the OCS field from UTRD 789 * 790 * Return: the OCS field in the UTRD. 791 */ 792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 793 struct cq_entry *cqe) 794 { 795 if (cqe) 796 return le32_to_cpu(cqe->status) & MASK_OCS; 797 798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 799 } 800 801 /** 802 * ufshcd_utrl_clear() - Clear requests from the controller request list. 803 * @hba: per adapter instance 804 * @mask: mask with one bit set for each request to be cleared 805 */ 806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 807 { 808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 809 mask = ~mask; 810 /* 811 * From the UFSHCI specification: "UTP Transfer Request List CLear 812 * Register (UTRLCLR): This field is bit significant. Each bit 813 * corresponds to a slot in the UTP Transfer Request List, where bit 0 814 * corresponds to request slot 0. A bit in this field is set to ‘0’ 815 * by host software to indicate to the host controller that a transfer 816 * request slot is cleared. The host controller 817 * shall free up any resources associated to the request slot 818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 819 * host software indicates no change to request slots by setting the 820 * associated bits in this field to ‘1’. Bits in this field shall only 821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 822 */ 823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 824 } 825 826 /** 827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 828 * @hba: per adapter instance 829 * @pos: position of the bit to be cleared 830 */ 831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 832 { 833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 835 else 836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 837 } 838 839 /** 840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 841 * @reg: Register value of host controller status 842 * 843 * Return: 0 on success; a positive value if failed. 844 */ 845 static inline int ufshcd_get_lists_status(u32 reg) 846 { 847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 848 } 849 850 /** 851 * ufshcd_get_uic_cmd_result - Get the UIC command result 852 * @hba: Pointer to adapter instance 853 * 854 * This function gets the result of UIC command completion 855 * 856 * Return: 0 on success; non-zero value on error. 857 */ 858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 859 { 860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 861 MASK_UIC_COMMAND_RESULT; 862 } 863 864 /** 865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 866 * @hba: Pointer to adapter instance 867 * 868 * This function gets UIC command argument3 869 * 870 * Return: 0 on success; non-zero value on error. 871 */ 872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 873 { 874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 875 } 876 877 /** 878 * ufshcd_get_req_rsp - returns the TR response transaction type 879 * @ucd_rsp_ptr: pointer to response UPIU 880 * 881 * Return: UPIU type. 882 */ 883 static inline enum upiu_response_transaction 884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 885 { 886 return ucd_rsp_ptr->header.transaction_code; 887 } 888 889 /** 890 * ufshcd_is_exception_event - Check if the device raised an exception event 891 * @ucd_rsp_ptr: pointer to response UPIU 892 * 893 * The function checks if the device raised an exception event indicated in 894 * the Device Information field of response UPIU. 895 * 896 * Return: true if exception is raised, false otherwise. 897 */ 898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 899 { 900 return ucd_rsp_ptr->header.device_information & 1; 901 } 902 903 /** 904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 905 * @hba: per adapter instance 906 */ 907 static inline void 908 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 909 { 910 ufshcd_writel(hba, INT_AGGR_ENABLE | 911 INT_AGGR_COUNTER_AND_TIMER_RESET, 912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 913 } 914 915 /** 916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 917 * @hba: per adapter instance 918 * @cnt: Interrupt aggregation counter threshold 919 * @tmout: Interrupt aggregation timeout value 920 */ 921 static inline void 922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 923 { 924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 925 INT_AGGR_COUNTER_THLD_VAL(cnt) | 926 INT_AGGR_TIMEOUT_VAL(tmout), 927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 928 } 929 930 /** 931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 932 * @hba: per adapter instance 933 */ 934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 935 { 936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 937 } 938 939 /** 940 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 941 * When run-stop registers are set to 1, it indicates the 942 * host controller that it can process the requests 943 * @hba: per adapter instance 944 */ 945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 946 { 947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 948 REG_UTP_TASK_REQ_LIST_RUN_STOP); 949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 951 } 952 953 /** 954 * ufshcd_hba_start - Start controller initialization sequence 955 * @hba: per adapter instance 956 */ 957 static inline void ufshcd_hba_start(struct ufs_hba *hba) 958 { 959 u32 val = CONTROLLER_ENABLE; 960 961 if (ufshcd_crypto_enable(hba)) 962 val |= CRYPTO_GENERAL_ENABLE; 963 964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 965 } 966 967 /** 968 * ufshcd_is_hba_active - Get controller state 969 * @hba: per adapter instance 970 * 971 * Return: true if and only if the controller is active. 972 */ 973 bool ufshcd_is_hba_active(struct ufs_hba *hba) 974 { 975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 976 } 977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 978 979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 980 { 981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 982 if (hba->ufs_version <= ufshci_version(1, 1)) 983 return UFS_UNIPRO_VER_1_41; 984 else 985 return UFS_UNIPRO_VER_1_6; 986 } 987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 988 989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 990 { 991 /* 992 * If both host and device support UniPro ver1.6 or later, PA layer 993 * parameters tuning happens during link startup itself. 994 * 995 * We can manually tune PA layer parameters if either host or device 996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 997 * logic simple, we will only do manual tuning if local unipro version 998 * doesn't support ver1.6 or later. 999 */ 1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; 1001 } 1002 1003 /** 1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1005 * @hba: per adapter instance 1006 * @scale_up: If True, set max possible frequency othewise set low frequency 1007 * 1008 * Return: 0 if successful; < 0 upon failure. 1009 */ 1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1011 { 1012 int ret = 0; 1013 struct ufs_clk_info *clki; 1014 struct list_head *head = &hba->clk_list_head; 1015 1016 if (list_empty(head)) 1017 goto out; 1018 1019 list_for_each_entry(clki, head, list) { 1020 if (!IS_ERR_OR_NULL(clki->clk)) { 1021 if (scale_up && clki->max_freq) { 1022 if (clki->curr_freq == clki->max_freq) 1023 continue; 1024 1025 ret = clk_set_rate(clki->clk, clki->max_freq); 1026 if (ret) { 1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1028 __func__, clki->name, 1029 clki->max_freq, ret); 1030 break; 1031 } 1032 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1033 "scaled up", clki->name, 1034 clki->curr_freq, 1035 clki->max_freq); 1036 1037 clki->curr_freq = clki->max_freq; 1038 1039 } else if (!scale_up && clki->min_freq) { 1040 if (clki->curr_freq == clki->min_freq) 1041 continue; 1042 1043 ret = clk_set_rate(clki->clk, clki->min_freq); 1044 if (ret) { 1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1046 __func__, clki->name, 1047 clki->min_freq, ret); 1048 break; 1049 } 1050 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1051 "scaled down", clki->name, 1052 clki->curr_freq, 1053 clki->min_freq); 1054 clki->curr_freq = clki->min_freq; 1055 } 1056 } 1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1058 clki->name, clk_get_rate(clki->clk)); 1059 } 1060 1061 out: 1062 return ret; 1063 } 1064 1065 /** 1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1067 * @hba: per adapter instance 1068 * @scale_up: True if scaling up and false if scaling down 1069 * 1070 * Return: 0 if successful; < 0 upon failure. 1071 */ 1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 1073 { 1074 int ret = 0; 1075 ktime_t start = ktime_get(); 1076 1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1078 if (ret) 1079 goto out; 1080 1081 ret = ufshcd_set_clk_freq(hba, scale_up); 1082 if (ret) 1083 goto out; 1084 1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1086 if (ret) 1087 ufshcd_set_clk_freq(hba, !scale_up); 1088 1089 out: 1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1091 (scale_up ? "up" : "down"), 1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1093 return ret; 1094 } 1095 1096 /** 1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1098 * @hba: per adapter instance 1099 * @scale_up: True if scaling up and false if scaling down 1100 * 1101 * Return: true if scaling is required, false otherwise. 1102 */ 1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1104 bool scale_up) 1105 { 1106 struct ufs_clk_info *clki; 1107 struct list_head *head = &hba->clk_list_head; 1108 1109 if (list_empty(head)) 1110 return false; 1111 1112 list_for_each_entry(clki, head, list) { 1113 if (!IS_ERR_OR_NULL(clki->clk)) { 1114 if (scale_up && clki->max_freq) { 1115 if (clki->curr_freq == clki->max_freq) 1116 continue; 1117 return true; 1118 } else if (!scale_up && clki->min_freq) { 1119 if (clki->curr_freq == clki->min_freq) 1120 continue; 1121 return true; 1122 } 1123 } 1124 } 1125 1126 return false; 1127 } 1128 1129 /* 1130 * Determine the number of pending commands by counting the bits in the SCSI 1131 * device budget maps. This approach has been selected because a bit is set in 1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1133 * flag. The host_self_blocked flag can be modified by calling 1134 * scsi_block_requests() or scsi_unblock_requests(). 1135 */ 1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1137 { 1138 const struct scsi_device *sdev; 1139 u32 pending = 0; 1140 1141 lockdep_assert_held(hba->host->host_lock); 1142 __shost_for_each_device(sdev, hba->host) 1143 pending += sbitmap_weight(&sdev->budget_map); 1144 1145 return pending; 1146 } 1147 1148 /* 1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1150 * has expired. 1151 * 1152 * Return: 0 upon success; -EBUSY upon timeout. 1153 */ 1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1155 u64 wait_timeout_us) 1156 { 1157 unsigned long flags; 1158 int ret = 0; 1159 u32 tm_doorbell; 1160 u32 tr_pending; 1161 bool timeout = false, do_last_check = false; 1162 ktime_t start; 1163 1164 ufshcd_hold(hba); 1165 spin_lock_irqsave(hba->host->host_lock, flags); 1166 /* 1167 * Wait for all the outstanding tasks/transfer requests. 1168 * Verify by checking the doorbell registers are clear. 1169 */ 1170 start = ktime_get(); 1171 do { 1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1173 ret = -EBUSY; 1174 goto out; 1175 } 1176 1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1178 tr_pending = ufshcd_pending_cmds(hba); 1179 if (!tm_doorbell && !tr_pending) { 1180 timeout = false; 1181 break; 1182 } else if (do_last_check) { 1183 break; 1184 } 1185 1186 spin_unlock_irqrestore(hba->host->host_lock, flags); 1187 io_schedule_timeout(msecs_to_jiffies(20)); 1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1189 wait_timeout_us) { 1190 timeout = true; 1191 /* 1192 * We might have scheduled out for long time so make 1193 * sure to check if doorbells are cleared by this time 1194 * or not. 1195 */ 1196 do_last_check = true; 1197 } 1198 spin_lock_irqsave(hba->host->host_lock, flags); 1199 } while (tm_doorbell || tr_pending); 1200 1201 if (timeout) { 1202 dev_err(hba->dev, 1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1204 __func__, tm_doorbell, tr_pending); 1205 ret = -EBUSY; 1206 } 1207 out: 1208 spin_unlock_irqrestore(hba->host->host_lock, flags); 1209 ufshcd_release(hba); 1210 return ret; 1211 } 1212 1213 /** 1214 * ufshcd_scale_gear - scale up/down UFS gear 1215 * @hba: per adapter instance 1216 * @scale_up: True for scaling up gear and false for scaling down 1217 * 1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1219 * non-zero for any other errors. 1220 */ 1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1222 { 1223 int ret = 0; 1224 struct ufs_pa_layer_attr new_pwr_info; 1225 1226 if (scale_up) { 1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1228 sizeof(struct ufs_pa_layer_attr)); 1229 } else { 1230 memcpy(&new_pwr_info, &hba->pwr_info, 1231 sizeof(struct ufs_pa_layer_attr)); 1232 1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1235 /* save the current power mode */ 1236 memcpy(&hba->clk_scaling.saved_pwr_info, 1237 &hba->pwr_info, 1238 sizeof(struct ufs_pa_layer_attr)); 1239 1240 /* scale down gear */ 1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1243 } 1244 } 1245 1246 /* check if the power mode needs to be changed or not? */ 1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1248 if (ret) 1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1250 __func__, ret, 1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1259 * has expired. 1260 * 1261 * Return: 0 upon success; -EBUSY upon timeout. 1262 */ 1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1264 { 1265 int ret = 0; 1266 /* 1267 * make sure that there are no outstanding requests when 1268 * clock scaling is in progress 1269 */ 1270 blk_mq_quiesce_tagset(&hba->host->tag_set); 1271 mutex_lock(&hba->wb_mutex); 1272 down_write(&hba->clk_scaling_lock); 1273 1274 if (!hba->clk_scaling.is_allowed || 1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1276 ret = -EBUSY; 1277 up_write(&hba->clk_scaling_lock); 1278 mutex_unlock(&hba->wb_mutex); 1279 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1280 goto out; 1281 } 1282 1283 /* let's not get into low power until clock scaling is completed */ 1284 ufshcd_hold(hba); 1285 1286 out: 1287 return ret; 1288 } 1289 1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1291 { 1292 up_write(&hba->clk_scaling_lock); 1293 1294 /* Enable Write Booster if we have scaled up else disable it */ 1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1296 ufshcd_wb_toggle(hba, scale_up); 1297 1298 mutex_unlock(&hba->wb_mutex); 1299 1300 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1301 ufshcd_release(hba); 1302 } 1303 1304 /** 1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1306 * @hba: per adapter instance 1307 * @scale_up: True for scaling up and false for scalin down 1308 * 1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1310 * for any other errors. 1311 */ 1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1313 { 1314 int ret = 0; 1315 1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1317 if (ret) 1318 return ret; 1319 1320 /* scale down the gear before scaling down clocks */ 1321 if (!scale_up) { 1322 ret = ufshcd_scale_gear(hba, false); 1323 if (ret) 1324 goto out_unprepare; 1325 } 1326 1327 ret = ufshcd_scale_clks(hba, scale_up); 1328 if (ret) { 1329 if (!scale_up) 1330 ufshcd_scale_gear(hba, true); 1331 goto out_unprepare; 1332 } 1333 1334 /* scale up the gear after scaling up clocks */ 1335 if (scale_up) { 1336 ret = ufshcd_scale_gear(hba, true); 1337 if (ret) { 1338 ufshcd_scale_clks(hba, false); 1339 goto out_unprepare; 1340 } 1341 } 1342 1343 out_unprepare: 1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1345 return ret; 1346 } 1347 1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1349 { 1350 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1351 clk_scaling.suspend_work); 1352 unsigned long irq_flags; 1353 1354 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1357 return; 1358 } 1359 hba->clk_scaling.is_suspended = true; 1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1361 1362 __ufshcd_suspend_clkscaling(hba); 1363 } 1364 1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1366 { 1367 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1368 clk_scaling.resume_work); 1369 unsigned long irq_flags; 1370 1371 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1372 if (!hba->clk_scaling.is_suspended) { 1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1374 return; 1375 } 1376 hba->clk_scaling.is_suspended = false; 1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1378 1379 devfreq_resume_device(hba->devfreq); 1380 } 1381 1382 static int ufshcd_devfreq_target(struct device *dev, 1383 unsigned long *freq, u32 flags) 1384 { 1385 int ret = 0; 1386 struct ufs_hba *hba = dev_get_drvdata(dev); 1387 ktime_t start; 1388 bool scale_up, sched_clk_scaling_suspend_work = false; 1389 struct list_head *clk_list = &hba->clk_list_head; 1390 struct ufs_clk_info *clki; 1391 unsigned long irq_flags; 1392 1393 if (!ufshcd_is_clkscaling_supported(hba)) 1394 return -EINVAL; 1395 1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1397 /* Override with the closest supported frequency */ 1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1399 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1400 if (ufshcd_eh_in_progress(hba)) { 1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1402 return 0; 1403 } 1404 1405 if (!hba->clk_scaling.active_reqs) 1406 sched_clk_scaling_suspend_work = true; 1407 1408 if (list_empty(clk_list)) { 1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1410 goto out; 1411 } 1412 1413 /* Decide based on the rounded-off frequency and update */ 1414 scale_up = *freq == clki->max_freq; 1415 if (!scale_up) 1416 *freq = clki->min_freq; 1417 /* Update the frequency */ 1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1420 ret = 0; 1421 goto out; /* no state change required */ 1422 } 1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1424 1425 start = ktime_get(); 1426 ret = ufshcd_devfreq_scale(hba, scale_up); 1427 1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1429 (scale_up ? "up" : "down"), 1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1431 1432 out: 1433 if (sched_clk_scaling_suspend_work) 1434 queue_work(hba->clk_scaling.workq, 1435 &hba->clk_scaling.suspend_work); 1436 1437 return ret; 1438 } 1439 1440 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1441 struct devfreq_dev_status *stat) 1442 { 1443 struct ufs_hba *hba = dev_get_drvdata(dev); 1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1445 unsigned long flags; 1446 struct list_head *clk_list = &hba->clk_list_head; 1447 struct ufs_clk_info *clki; 1448 ktime_t curr_t; 1449 1450 if (!ufshcd_is_clkscaling_supported(hba)) 1451 return -EINVAL; 1452 1453 memset(stat, 0, sizeof(*stat)); 1454 1455 spin_lock_irqsave(hba->host->host_lock, flags); 1456 curr_t = ktime_get(); 1457 if (!scaling->window_start_t) 1458 goto start_window; 1459 1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1461 /* 1462 * If current frequency is 0, then the ondemand governor considers 1463 * there's no initial frequency set. And it always requests to set 1464 * to max. frequency. 1465 */ 1466 stat->current_frequency = clki->curr_freq; 1467 if (scaling->is_busy_started) 1468 scaling->tot_busy_t += ktime_us_delta(curr_t, 1469 scaling->busy_start_t); 1470 1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1472 stat->busy_time = scaling->tot_busy_t; 1473 start_window: 1474 scaling->window_start_t = curr_t; 1475 scaling->tot_busy_t = 0; 1476 1477 if (scaling->active_reqs) { 1478 scaling->busy_start_t = curr_t; 1479 scaling->is_busy_started = true; 1480 } else { 1481 scaling->busy_start_t = 0; 1482 scaling->is_busy_started = false; 1483 } 1484 spin_unlock_irqrestore(hba->host->host_lock, flags); 1485 return 0; 1486 } 1487 1488 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1489 { 1490 struct list_head *clk_list = &hba->clk_list_head; 1491 struct ufs_clk_info *clki; 1492 struct devfreq *devfreq; 1493 int ret; 1494 1495 /* Skip devfreq if we don't have any clocks in the list */ 1496 if (list_empty(clk_list)) 1497 return 0; 1498 1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1502 1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1504 &hba->vps->ondemand_data); 1505 devfreq = devfreq_add_device(hba->dev, 1506 &hba->vps->devfreq_profile, 1507 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1508 &hba->vps->ondemand_data); 1509 if (IS_ERR(devfreq)) { 1510 ret = PTR_ERR(devfreq); 1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1512 1513 dev_pm_opp_remove(hba->dev, clki->min_freq); 1514 dev_pm_opp_remove(hba->dev, clki->max_freq); 1515 return ret; 1516 } 1517 1518 hba->devfreq = devfreq; 1519 1520 return 0; 1521 } 1522 1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1524 { 1525 struct list_head *clk_list = &hba->clk_list_head; 1526 struct ufs_clk_info *clki; 1527 1528 if (!hba->devfreq) 1529 return; 1530 1531 devfreq_remove_device(hba->devfreq); 1532 hba->devfreq = NULL; 1533 1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1535 dev_pm_opp_remove(hba->dev, clki->min_freq); 1536 dev_pm_opp_remove(hba->dev, clki->max_freq); 1537 } 1538 1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1540 { 1541 unsigned long flags; 1542 1543 devfreq_suspend_device(hba->devfreq); 1544 spin_lock_irqsave(hba->host->host_lock, flags); 1545 hba->clk_scaling.window_start_t = 0; 1546 spin_unlock_irqrestore(hba->host->host_lock, flags); 1547 } 1548 1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1550 { 1551 unsigned long flags; 1552 bool suspend = false; 1553 1554 cancel_work_sync(&hba->clk_scaling.suspend_work); 1555 cancel_work_sync(&hba->clk_scaling.resume_work); 1556 1557 spin_lock_irqsave(hba->host->host_lock, flags); 1558 if (!hba->clk_scaling.is_suspended) { 1559 suspend = true; 1560 hba->clk_scaling.is_suspended = true; 1561 } 1562 spin_unlock_irqrestore(hba->host->host_lock, flags); 1563 1564 if (suspend) 1565 __ufshcd_suspend_clkscaling(hba); 1566 } 1567 1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1569 { 1570 unsigned long flags; 1571 bool resume = false; 1572 1573 spin_lock_irqsave(hba->host->host_lock, flags); 1574 if (hba->clk_scaling.is_suspended) { 1575 resume = true; 1576 hba->clk_scaling.is_suspended = false; 1577 } 1578 spin_unlock_irqrestore(hba->host->host_lock, flags); 1579 1580 if (resume) 1581 devfreq_resume_device(hba->devfreq); 1582 } 1583 1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1585 struct device_attribute *attr, char *buf) 1586 { 1587 struct ufs_hba *hba = dev_get_drvdata(dev); 1588 1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1590 } 1591 1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1593 struct device_attribute *attr, const char *buf, size_t count) 1594 { 1595 struct ufs_hba *hba = dev_get_drvdata(dev); 1596 u32 value; 1597 int err = 0; 1598 1599 if (kstrtou32(buf, 0, &value)) 1600 return -EINVAL; 1601 1602 down(&hba->host_sem); 1603 if (!ufshcd_is_user_access_allowed(hba)) { 1604 err = -EBUSY; 1605 goto out; 1606 } 1607 1608 value = !!value; 1609 if (value == hba->clk_scaling.is_enabled) 1610 goto out; 1611 1612 ufshcd_rpm_get_sync(hba); 1613 ufshcd_hold(hba); 1614 1615 hba->clk_scaling.is_enabled = value; 1616 1617 if (value) { 1618 ufshcd_resume_clkscaling(hba); 1619 } else { 1620 ufshcd_suspend_clkscaling(hba); 1621 err = ufshcd_devfreq_scale(hba, true); 1622 if (err) 1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1624 __func__, err); 1625 } 1626 1627 ufshcd_release(hba); 1628 ufshcd_rpm_put_sync(hba); 1629 out: 1630 up(&hba->host_sem); 1631 return err ? err : count; 1632 } 1633 1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1635 { 1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1640 hba->clk_scaling.enable_attr.attr.mode = 0644; 1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1643 } 1644 1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1646 { 1647 if (hba->clk_scaling.enable_attr.attr.name) 1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1649 } 1650 1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1652 { 1653 char wq_name[sizeof("ufs_clkscaling_00")]; 1654 1655 if (!ufshcd_is_clkscaling_supported(hba)) 1656 return; 1657 1658 if (!hba->clk_scaling.min_gear) 1659 hba->clk_scaling.min_gear = UFS_HS_G1; 1660 1661 INIT_WORK(&hba->clk_scaling.suspend_work, 1662 ufshcd_clk_scaling_suspend_work); 1663 INIT_WORK(&hba->clk_scaling.resume_work, 1664 ufshcd_clk_scaling_resume_work); 1665 1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1667 hba->host->host_no); 1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1669 1670 hba->clk_scaling.is_initialized = true; 1671 } 1672 1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1674 { 1675 if (!hba->clk_scaling.is_initialized) 1676 return; 1677 1678 ufshcd_remove_clk_scaling_sysfs(hba); 1679 destroy_workqueue(hba->clk_scaling.workq); 1680 ufshcd_devfreq_remove(hba); 1681 hba->clk_scaling.is_initialized = false; 1682 } 1683 1684 static void ufshcd_ungate_work(struct work_struct *work) 1685 { 1686 int ret; 1687 unsigned long flags; 1688 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1689 clk_gating.ungate_work); 1690 1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1692 1693 spin_lock_irqsave(hba->host->host_lock, flags); 1694 if (hba->clk_gating.state == CLKS_ON) { 1695 spin_unlock_irqrestore(hba->host->host_lock, flags); 1696 return; 1697 } 1698 1699 spin_unlock_irqrestore(hba->host->host_lock, flags); 1700 ufshcd_hba_vreg_set_hpm(hba); 1701 ufshcd_setup_clocks(hba, true); 1702 1703 ufshcd_enable_irq(hba); 1704 1705 /* Exit from hibern8 */ 1706 if (ufshcd_can_hibern8_during_gating(hba)) { 1707 /* Prevent gating in this path */ 1708 hba->clk_gating.is_suspended = true; 1709 if (ufshcd_is_link_hibern8(hba)) { 1710 ret = ufshcd_uic_hibern8_exit(hba); 1711 if (ret) 1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1713 __func__, ret); 1714 else 1715 ufshcd_set_link_active(hba); 1716 } 1717 hba->clk_gating.is_suspended = false; 1718 } 1719 } 1720 1721 /** 1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1723 * Also, exit from hibern8 mode and set the link as active. 1724 * @hba: per adapter instance 1725 */ 1726 void ufshcd_hold(struct ufs_hba *hba) 1727 { 1728 bool flush_result; 1729 unsigned long flags; 1730 1731 if (!ufshcd_is_clkgating_allowed(hba) || 1732 !hba->clk_gating.is_initialized) 1733 return; 1734 spin_lock_irqsave(hba->host->host_lock, flags); 1735 hba->clk_gating.active_reqs++; 1736 1737 start: 1738 switch (hba->clk_gating.state) { 1739 case CLKS_ON: 1740 /* 1741 * Wait for the ungate work to complete if in progress. 1742 * Though the clocks may be in ON state, the link could 1743 * still be in hibner8 state if hibern8 is allowed 1744 * during clock gating. 1745 * Make sure we exit hibern8 state also in addition to 1746 * clocks being ON. 1747 */ 1748 if (ufshcd_can_hibern8_during_gating(hba) && 1749 ufshcd_is_link_hibern8(hba)) { 1750 spin_unlock_irqrestore(hba->host->host_lock, flags); 1751 flush_result = flush_work(&hba->clk_gating.ungate_work); 1752 if (hba->clk_gating.is_suspended && !flush_result) 1753 return; 1754 spin_lock_irqsave(hba->host->host_lock, flags); 1755 goto start; 1756 } 1757 break; 1758 case REQ_CLKS_OFF: 1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1760 hba->clk_gating.state = CLKS_ON; 1761 trace_ufshcd_clk_gating(dev_name(hba->dev), 1762 hba->clk_gating.state); 1763 break; 1764 } 1765 /* 1766 * If we are here, it means gating work is either done or 1767 * currently running. Hence, fall through to cancel gating 1768 * work and to enable clocks. 1769 */ 1770 fallthrough; 1771 case CLKS_OFF: 1772 hba->clk_gating.state = REQ_CLKS_ON; 1773 trace_ufshcd_clk_gating(dev_name(hba->dev), 1774 hba->clk_gating.state); 1775 queue_work(hba->clk_gating.clk_gating_workq, 1776 &hba->clk_gating.ungate_work); 1777 /* 1778 * fall through to check if we should wait for this 1779 * work to be done or not. 1780 */ 1781 fallthrough; 1782 case REQ_CLKS_ON: 1783 spin_unlock_irqrestore(hba->host->host_lock, flags); 1784 flush_work(&hba->clk_gating.ungate_work); 1785 /* Make sure state is CLKS_ON before returning */ 1786 spin_lock_irqsave(hba->host->host_lock, flags); 1787 goto start; 1788 default: 1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1790 __func__, hba->clk_gating.state); 1791 break; 1792 } 1793 spin_unlock_irqrestore(hba->host->host_lock, flags); 1794 } 1795 EXPORT_SYMBOL_GPL(ufshcd_hold); 1796 1797 static void ufshcd_gate_work(struct work_struct *work) 1798 { 1799 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1800 clk_gating.gate_work.work); 1801 unsigned long flags; 1802 int ret; 1803 1804 spin_lock_irqsave(hba->host->host_lock, flags); 1805 /* 1806 * In case you are here to cancel this work the gating state 1807 * would be marked as REQ_CLKS_ON. In this case save time by 1808 * skipping the gating work and exit after changing the clock 1809 * state to CLKS_ON. 1810 */ 1811 if (hba->clk_gating.is_suspended || 1812 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1813 hba->clk_gating.state = CLKS_ON; 1814 trace_ufshcd_clk_gating(dev_name(hba->dev), 1815 hba->clk_gating.state); 1816 goto rel_lock; 1817 } 1818 1819 if (hba->clk_gating.active_reqs 1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1821 || hba->outstanding_reqs || hba->outstanding_tasks 1822 || hba->active_uic_cmd || hba->uic_async_done) 1823 goto rel_lock; 1824 1825 spin_unlock_irqrestore(hba->host->host_lock, flags); 1826 1827 /* put the link into hibern8 mode before turning off clocks */ 1828 if (ufshcd_can_hibern8_during_gating(hba)) { 1829 ret = ufshcd_uic_hibern8_enter(hba); 1830 if (ret) { 1831 hba->clk_gating.state = CLKS_ON; 1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1833 __func__, ret); 1834 trace_ufshcd_clk_gating(dev_name(hba->dev), 1835 hba->clk_gating.state); 1836 goto out; 1837 } 1838 ufshcd_set_link_hibern8(hba); 1839 } 1840 1841 ufshcd_disable_irq(hba); 1842 1843 ufshcd_setup_clocks(hba, false); 1844 1845 /* Put the host controller in low power mode if possible */ 1846 ufshcd_hba_vreg_set_lpm(hba); 1847 /* 1848 * In case you are here to cancel this work the gating state 1849 * would be marked as REQ_CLKS_ON. In this case keep the state 1850 * as REQ_CLKS_ON which would anyway imply that clocks are off 1851 * and a request to turn them on is pending. By doing this way, 1852 * we keep the state machine in tact and this would ultimately 1853 * prevent from doing cancel work multiple times when there are 1854 * new requests arriving before the current cancel work is done. 1855 */ 1856 spin_lock_irqsave(hba->host->host_lock, flags); 1857 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1858 hba->clk_gating.state = CLKS_OFF; 1859 trace_ufshcd_clk_gating(dev_name(hba->dev), 1860 hba->clk_gating.state); 1861 } 1862 rel_lock: 1863 spin_unlock_irqrestore(hba->host->host_lock, flags); 1864 out: 1865 return; 1866 } 1867 1868 /* host lock must be held before calling this variant */ 1869 static void __ufshcd_release(struct ufs_hba *hba) 1870 { 1871 if (!ufshcd_is_clkgating_allowed(hba)) 1872 return; 1873 1874 hba->clk_gating.active_reqs--; 1875 1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 1879 hba->active_uic_cmd || hba->uic_async_done || 1880 hba->clk_gating.state == CLKS_OFF) 1881 return; 1882 1883 hba->clk_gating.state = REQ_CLKS_OFF; 1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1885 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1886 &hba->clk_gating.gate_work, 1887 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1888 } 1889 1890 void ufshcd_release(struct ufs_hba *hba) 1891 { 1892 unsigned long flags; 1893 1894 spin_lock_irqsave(hba->host->host_lock, flags); 1895 __ufshcd_release(hba); 1896 spin_unlock_irqrestore(hba->host->host_lock, flags); 1897 } 1898 EXPORT_SYMBOL_GPL(ufshcd_release); 1899 1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1901 struct device_attribute *attr, char *buf) 1902 { 1903 struct ufs_hba *hba = dev_get_drvdata(dev); 1904 1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 1906 } 1907 1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 1909 { 1910 struct ufs_hba *hba = dev_get_drvdata(dev); 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(hba->host->host_lock, flags); 1914 hba->clk_gating.delay_ms = value; 1915 spin_unlock_irqrestore(hba->host->host_lock, flags); 1916 } 1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 1918 1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1920 struct device_attribute *attr, const char *buf, size_t count) 1921 { 1922 unsigned long value; 1923 1924 if (kstrtoul(buf, 0, &value)) 1925 return -EINVAL; 1926 1927 ufshcd_clkgate_delay_set(dev, value); 1928 return count; 1929 } 1930 1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1932 struct device_attribute *attr, char *buf) 1933 { 1934 struct ufs_hba *hba = dev_get_drvdata(dev); 1935 1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 1937 } 1938 1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1940 struct device_attribute *attr, const char *buf, size_t count) 1941 { 1942 struct ufs_hba *hba = dev_get_drvdata(dev); 1943 unsigned long flags; 1944 u32 value; 1945 1946 if (kstrtou32(buf, 0, &value)) 1947 return -EINVAL; 1948 1949 value = !!value; 1950 1951 spin_lock_irqsave(hba->host->host_lock, flags); 1952 if (value == hba->clk_gating.is_enabled) 1953 goto out; 1954 1955 if (value) 1956 __ufshcd_release(hba); 1957 else 1958 hba->clk_gating.active_reqs++; 1959 1960 hba->clk_gating.is_enabled = value; 1961 out: 1962 spin_unlock_irqrestore(hba->host->host_lock, flags); 1963 return count; 1964 } 1965 1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 1967 { 1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 1972 hba->clk_gating.delay_attr.attr.mode = 0644; 1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 1975 1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 1980 hba->clk_gating.enable_attr.attr.mode = 0644; 1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 1983 } 1984 1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 1986 { 1987 if (hba->clk_gating.delay_attr.attr.name) 1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 1989 if (hba->clk_gating.enable_attr.attr.name) 1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 1991 } 1992 1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 1994 { 1995 char wq_name[sizeof("ufs_clk_gating_00")]; 1996 1997 if (!ufshcd_is_clkgating_allowed(hba)) 1998 return; 1999 2000 hba->clk_gating.state = CLKS_ON; 2001 2002 hba->clk_gating.delay_ms = 150; 2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2005 2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 2007 hba->host->host_no); 2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 2009 WQ_MEM_RECLAIM | WQ_HIGHPRI); 2010 2011 ufshcd_init_clk_gating_sysfs(hba); 2012 2013 hba->clk_gating.is_enabled = true; 2014 hba->clk_gating.is_initialized = true; 2015 } 2016 2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2018 { 2019 if (!hba->clk_gating.is_initialized) 2020 return; 2021 2022 ufshcd_remove_clk_gating_sysfs(hba); 2023 2024 /* Ungate the clock if necessary. */ 2025 ufshcd_hold(hba); 2026 hba->clk_gating.is_initialized = false; 2027 ufshcd_release(hba); 2028 2029 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2030 } 2031 2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2033 { 2034 bool queue_resume_work = false; 2035 ktime_t curr_t = ktime_get(); 2036 unsigned long flags; 2037 2038 if (!ufshcd_is_clkscaling_supported(hba)) 2039 return; 2040 2041 spin_lock_irqsave(hba->host->host_lock, flags); 2042 if (!hba->clk_scaling.active_reqs++) 2043 queue_resume_work = true; 2044 2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2046 spin_unlock_irqrestore(hba->host->host_lock, flags); 2047 return; 2048 } 2049 2050 if (queue_resume_work) 2051 queue_work(hba->clk_scaling.workq, 2052 &hba->clk_scaling.resume_work); 2053 2054 if (!hba->clk_scaling.window_start_t) { 2055 hba->clk_scaling.window_start_t = curr_t; 2056 hba->clk_scaling.tot_busy_t = 0; 2057 hba->clk_scaling.is_busy_started = false; 2058 } 2059 2060 if (!hba->clk_scaling.is_busy_started) { 2061 hba->clk_scaling.busy_start_t = curr_t; 2062 hba->clk_scaling.is_busy_started = true; 2063 } 2064 spin_unlock_irqrestore(hba->host->host_lock, flags); 2065 } 2066 2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2068 { 2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2070 unsigned long flags; 2071 2072 if (!ufshcd_is_clkscaling_supported(hba)) 2073 return; 2074 2075 spin_lock_irqsave(hba->host->host_lock, flags); 2076 hba->clk_scaling.active_reqs--; 2077 if (!scaling->active_reqs && scaling->is_busy_started) { 2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2079 scaling->busy_start_t)); 2080 scaling->busy_start_t = 0; 2081 scaling->is_busy_started = false; 2082 } 2083 spin_unlock_irqrestore(hba->host->host_lock, flags); 2084 } 2085 2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2087 { 2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2089 return READ; 2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2091 return WRITE; 2092 else 2093 return -EINVAL; 2094 } 2095 2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2097 struct ufshcd_lrb *lrbp) 2098 { 2099 const struct ufs_hba_monitor *m = &hba->monitor; 2100 2101 return (m->enabled && lrbp && lrbp->cmd && 2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2104 } 2105 2106 static void ufshcd_start_monitor(struct ufs_hba *hba, 2107 const struct ufshcd_lrb *lrbp) 2108 { 2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2110 unsigned long flags; 2111 2112 spin_lock_irqsave(hba->host->host_lock, flags); 2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2114 hba->monitor.busy_start_ts[dir] = ktime_get(); 2115 spin_unlock_irqrestore(hba->host->host_lock, flags); 2116 } 2117 2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2119 { 2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2121 unsigned long flags; 2122 2123 spin_lock_irqsave(hba->host->host_lock, flags); 2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2126 struct ufs_hba_monitor *m = &hba->monitor; 2127 ktime_t now, inc, lat; 2128 2129 now = lrbp->compl_time_stamp; 2130 inc = ktime_sub(now, m->busy_start_ts[dir]); 2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2132 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2133 2134 /* Update latencies */ 2135 m->nr_req[dir]++; 2136 lat = ktime_sub(now, lrbp->issue_time_stamp); 2137 m->lat_sum[dir] += lat; 2138 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2139 m->lat_max[dir] = lat; 2140 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2141 m->lat_min[dir] = lat; 2142 2143 m->nr_queued[dir]--; 2144 /* Push forward the busy start of monitor */ 2145 m->busy_start_ts[dir] = now; 2146 } 2147 spin_unlock_irqrestore(hba->host->host_lock, flags); 2148 } 2149 2150 /** 2151 * ufshcd_send_command - Send SCSI or device management commands 2152 * @hba: per adapter instance 2153 * @task_tag: Task tag of the command 2154 * @hwq: pointer to hardware queue instance 2155 */ 2156 static inline 2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2158 struct ufs_hw_queue *hwq) 2159 { 2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2161 unsigned long flags; 2162 2163 lrbp->issue_time_stamp = ktime_get(); 2164 lrbp->issue_time_stamp_local_clock = local_clock(); 2165 lrbp->compl_time_stamp = ktime_set(0, 0); 2166 lrbp->compl_time_stamp_local_clock = 0; 2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2168 ufshcd_clk_scaling_start_busy(hba); 2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2170 ufshcd_start_monitor(hba, lrbp); 2171 2172 if (is_mcq_enabled(hba)) { 2173 int utrd_size = sizeof(struct utp_transfer_req_desc); 2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2175 struct utp_transfer_req_desc *dest; 2176 2177 spin_lock(&hwq->sq_lock); 2178 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2179 memcpy(dest, src, utrd_size); 2180 ufshcd_inc_sq_tail(hwq); 2181 spin_unlock(&hwq->sq_lock); 2182 } else { 2183 spin_lock_irqsave(&hba->outstanding_lock, flags); 2184 if (hba->vops && hba->vops->setup_xfer_req) 2185 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2186 !!lrbp->cmd); 2187 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2188 ufshcd_writel(hba, 1 << lrbp->task_tag, 2189 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2190 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2191 } 2192 } 2193 2194 /** 2195 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2196 * @lrbp: pointer to local reference block 2197 */ 2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2199 { 2200 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2201 u16 resp_len; 2202 int len; 2203 2204 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2205 if (sense_buffer && resp_len) { 2206 int len_to_copy; 2207 2208 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2209 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2210 2211 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2212 len_to_copy); 2213 } 2214 } 2215 2216 /** 2217 * ufshcd_copy_query_response() - Copy the Query Response and the data 2218 * descriptor 2219 * @hba: per adapter instance 2220 * @lrbp: pointer to local reference block 2221 * 2222 * Return: 0 upon success; < 0 upon failure. 2223 */ 2224 static 2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2226 { 2227 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2228 2229 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2230 2231 /* Get the descriptor */ 2232 if (hba->dev_cmd.query.descriptor && 2233 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2234 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2235 GENERAL_UPIU_REQUEST_SIZE; 2236 u16 resp_len; 2237 u16 buf_len; 2238 2239 /* data segment length */ 2240 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2241 .data_segment_length); 2242 buf_len = be16_to_cpu( 2243 hba->dev_cmd.query.request.upiu_req.length); 2244 if (likely(buf_len >= resp_len)) { 2245 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2246 } else { 2247 dev_warn(hba->dev, 2248 "%s: rsp size %d is bigger than buffer size %d", 2249 __func__, resp_len, buf_len); 2250 return -EINVAL; 2251 } 2252 } 2253 2254 return 0; 2255 } 2256 2257 /** 2258 * ufshcd_hba_capabilities - Read controller capabilities 2259 * @hba: per adapter instance 2260 * 2261 * Return: 0 on success, negative on error. 2262 */ 2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2264 { 2265 int err; 2266 2267 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2268 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) 2269 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; 2270 2271 /* nutrs and nutmrs are 0 based values */ 2272 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2273 hba->nutmrs = 2274 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2275 hba->reserved_slot = hba->nutrs - 1; 2276 2277 /* Read crypto capabilities */ 2278 err = ufshcd_hba_init_crypto_capabilities(hba); 2279 if (err) { 2280 dev_err(hba->dev, "crypto setup failed\n"); 2281 return err; 2282 } 2283 2284 /* 2285 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2286 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2287 * means we can simply read values regardless of version. 2288 */ 2289 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2290 /* 2291 * 0h: legacy single doorbell support is available 2292 * 1h: indicate that legacy single doorbell support has been removed 2293 */ 2294 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2295 if (!hba->mcq_sup) 2296 return 0; 2297 2298 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2299 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2300 hba->mcq_capabilities); 2301 2302 return 0; 2303 } 2304 2305 /** 2306 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2307 * to accept UIC commands 2308 * @hba: per adapter instance 2309 * 2310 * Return: true on success, else false. 2311 */ 2312 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2313 { 2314 u32 val; 2315 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2316 500, UIC_CMD_TIMEOUT * 1000, false, hba, 2317 REG_CONTROLLER_STATUS); 2318 return ret == 0 ? true : false; 2319 } 2320 2321 /** 2322 * ufshcd_get_upmcrs - Get the power mode change request status 2323 * @hba: Pointer to adapter instance 2324 * 2325 * This function gets the UPMCRS field of HCS register 2326 * 2327 * Return: value of UPMCRS field. 2328 */ 2329 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2330 { 2331 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2332 } 2333 2334 /** 2335 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2336 * @hba: per adapter instance 2337 * @uic_cmd: UIC command 2338 */ 2339 static inline void 2340 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2341 { 2342 lockdep_assert_held(&hba->uic_cmd_mutex); 2343 2344 WARN_ON(hba->active_uic_cmd); 2345 2346 hba->active_uic_cmd = uic_cmd; 2347 2348 /* Write Args */ 2349 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2350 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2351 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2352 2353 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2354 2355 /* Write UIC Cmd */ 2356 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2357 REG_UIC_COMMAND); 2358 } 2359 2360 /** 2361 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2362 * @hba: per adapter instance 2363 * @uic_cmd: UIC command 2364 * 2365 * Return: 0 only if success. 2366 */ 2367 static int 2368 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2369 { 2370 int ret; 2371 unsigned long flags; 2372 2373 lockdep_assert_held(&hba->uic_cmd_mutex); 2374 2375 if (wait_for_completion_timeout(&uic_cmd->done, 2376 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2377 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2378 } else { 2379 ret = -ETIMEDOUT; 2380 dev_err(hba->dev, 2381 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2382 uic_cmd->command, uic_cmd->argument3); 2383 2384 if (!uic_cmd->cmd_active) { 2385 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2386 __func__); 2387 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2388 } 2389 } 2390 2391 spin_lock_irqsave(hba->host->host_lock, flags); 2392 hba->active_uic_cmd = NULL; 2393 spin_unlock_irqrestore(hba->host->host_lock, flags); 2394 2395 return ret; 2396 } 2397 2398 /** 2399 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2400 * @hba: per adapter instance 2401 * @uic_cmd: UIC command 2402 * 2403 * Return: 0 only if success. 2404 */ 2405 static int 2406 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2407 { 2408 lockdep_assert_held(&hba->uic_cmd_mutex); 2409 2410 if (!ufshcd_ready_for_uic_cmd(hba)) { 2411 dev_err(hba->dev, 2412 "Controller not ready to accept UIC commands\n"); 2413 return -EIO; 2414 } 2415 2416 init_completion(&uic_cmd->done); 2417 2418 uic_cmd->cmd_active = 1; 2419 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2420 2421 return 0; 2422 } 2423 2424 /** 2425 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2426 * @hba: per adapter instance 2427 * @uic_cmd: UIC command 2428 * 2429 * Return: 0 only if success. 2430 */ 2431 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2432 { 2433 int ret; 2434 2435 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2436 return 0; 2437 2438 ufshcd_hold(hba); 2439 mutex_lock(&hba->uic_cmd_mutex); 2440 ufshcd_add_delay_before_dme_cmd(hba); 2441 2442 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 2443 if (!ret) 2444 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2445 2446 mutex_unlock(&hba->uic_cmd_mutex); 2447 2448 ufshcd_release(hba); 2449 return ret; 2450 } 2451 2452 /** 2453 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2454 * @hba: per-adapter instance 2455 * @lrbp: pointer to local reference block 2456 * @sg_entries: The number of sg lists actually used 2457 * @sg_list: Pointer to SG list 2458 */ 2459 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2460 struct scatterlist *sg_list) 2461 { 2462 struct ufshcd_sg_entry *prd; 2463 struct scatterlist *sg; 2464 int i; 2465 2466 if (sg_entries) { 2467 2468 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2469 lrbp->utr_descriptor_ptr->prd_table_length = 2470 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2471 else 2472 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2473 2474 prd = lrbp->ucd_prdt_ptr; 2475 2476 for_each_sg(sg_list, sg, sg_entries, i) { 2477 const unsigned int len = sg_dma_len(sg); 2478 2479 /* 2480 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2481 * based value that indicates the length, in bytes, of 2482 * the data block. A maximum of length of 256KB may 2483 * exist for any entry. Bits 1:0 of this field shall be 2484 * 11b to indicate Dword granularity. A value of '3' 2485 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2486 */ 2487 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2488 prd->size = cpu_to_le32(len - 1); 2489 prd->addr = cpu_to_le64(sg->dma_address); 2490 prd->reserved = 0; 2491 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2492 } 2493 } else { 2494 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2495 } 2496 } 2497 2498 /** 2499 * ufshcd_map_sg - Map scatter-gather list to prdt 2500 * @hba: per adapter instance 2501 * @lrbp: pointer to local reference block 2502 * 2503 * Return: 0 in case of success, non-zero value in case of failure. 2504 */ 2505 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2506 { 2507 struct scsi_cmnd *cmd = lrbp->cmd; 2508 int sg_segments = scsi_dma_map(cmd); 2509 2510 if (sg_segments < 0) 2511 return sg_segments; 2512 2513 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2514 2515 return 0; 2516 } 2517 2518 /** 2519 * ufshcd_enable_intr - enable interrupts 2520 * @hba: per adapter instance 2521 * @intrs: interrupt bits 2522 */ 2523 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2524 { 2525 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2526 2527 if (hba->ufs_version == ufshci_version(1, 0)) { 2528 u32 rw; 2529 rw = set & INTERRUPT_MASK_RW_VER_10; 2530 set = rw | ((set ^ intrs) & intrs); 2531 } else { 2532 set |= intrs; 2533 } 2534 2535 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2536 } 2537 2538 /** 2539 * ufshcd_disable_intr - disable interrupts 2540 * @hba: per adapter instance 2541 * @intrs: interrupt bits 2542 */ 2543 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2544 { 2545 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2546 2547 if (hba->ufs_version == ufshci_version(1, 0)) { 2548 u32 rw; 2549 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2550 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2551 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2552 2553 } else { 2554 set &= ~intrs; 2555 } 2556 2557 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2558 } 2559 2560 /** 2561 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2562 * descriptor according to request 2563 * @lrbp: pointer to local reference block 2564 * @upiu_flags: flags required in the header 2565 * @cmd_dir: requests data direction 2566 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2567 */ 2568 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags, 2569 enum dma_data_direction cmd_dir, int ehs_length) 2570 { 2571 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2572 struct request_desc_header *h = &req_desc->header; 2573 enum utp_data_direction data_direction; 2574 2575 *h = (typeof(*h)){ }; 2576 2577 if (cmd_dir == DMA_FROM_DEVICE) { 2578 data_direction = UTP_DEVICE_TO_HOST; 2579 *upiu_flags = UPIU_CMD_FLAGS_READ; 2580 } else if (cmd_dir == DMA_TO_DEVICE) { 2581 data_direction = UTP_HOST_TO_DEVICE; 2582 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2583 } else { 2584 data_direction = UTP_NO_DATA_TRANSFER; 2585 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2586 } 2587 2588 h->command_type = lrbp->command_type; 2589 h->data_direction = data_direction; 2590 h->ehs_length = ehs_length; 2591 2592 if (lrbp->intr_cmd) 2593 h->interrupt = 1; 2594 2595 /* Prepare crypto related dwords */ 2596 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2597 2598 /* 2599 * assigning invalid value for command status. Controller 2600 * updates OCS on command completion, with the command 2601 * status 2602 */ 2603 h->ocs = OCS_INVALID_COMMAND_STATUS; 2604 2605 req_desc->prd_table_length = 0; 2606 } 2607 2608 /** 2609 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2610 * for scsi commands 2611 * @lrbp: local reference block pointer 2612 * @upiu_flags: flags 2613 */ 2614 static 2615 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2616 { 2617 struct scsi_cmnd *cmd = lrbp->cmd; 2618 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2619 unsigned short cdb_len; 2620 2621 ucd_req_ptr->header = (struct utp_upiu_header){ 2622 .transaction_code = UPIU_TRANSACTION_COMMAND, 2623 .flags = upiu_flags, 2624 .lun = lrbp->lun, 2625 .task_tag = lrbp->task_tag, 2626 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2627 }; 2628 2629 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2630 2631 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2632 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2633 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2634 2635 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2636 } 2637 2638 /** 2639 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2640 * @hba: UFS hba 2641 * @lrbp: local reference block pointer 2642 * @upiu_flags: flags 2643 */ 2644 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2645 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2646 { 2647 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2648 struct ufs_query *query = &hba->dev_cmd.query; 2649 u16 len = be16_to_cpu(query->request.upiu_req.length); 2650 2651 /* Query request header */ 2652 ucd_req_ptr->header = (struct utp_upiu_header){ 2653 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2654 .flags = upiu_flags, 2655 .lun = lrbp->lun, 2656 .task_tag = lrbp->task_tag, 2657 .query_function = query->request.query_func, 2658 /* Data segment length only need for WRITE_DESC */ 2659 .data_segment_length = 2660 query->request.upiu_req.opcode == 2661 UPIU_QUERY_OPCODE_WRITE_DESC ? 2662 cpu_to_be16(len) : 2663 0, 2664 }; 2665 2666 /* Copy the Query Request buffer as is */ 2667 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2668 QUERY_OSF_SIZE); 2669 2670 /* Copy the Descriptor */ 2671 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2672 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2673 2674 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2675 } 2676 2677 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2678 { 2679 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2680 2681 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2682 2683 ucd_req_ptr->header = (struct utp_upiu_header){ 2684 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2685 .task_tag = lrbp->task_tag, 2686 }; 2687 2688 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2689 } 2690 2691 /** 2692 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2693 * for Device Management Purposes 2694 * @hba: per adapter instance 2695 * @lrbp: pointer to local reference block 2696 * 2697 * Return: 0 upon success; < 0 upon failure. 2698 */ 2699 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2700 struct ufshcd_lrb *lrbp) 2701 { 2702 u8 upiu_flags; 2703 int ret = 0; 2704 2705 if (hba->ufs_version <= ufshci_version(1, 1)) 2706 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2707 else 2708 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2709 2710 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 2711 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2712 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2713 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2714 ufshcd_prepare_utp_nop_upiu(lrbp); 2715 else 2716 ret = -EINVAL; 2717 2718 return ret; 2719 } 2720 2721 /** 2722 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2723 * for SCSI Purposes 2724 * @hba: per adapter instance 2725 * @lrbp: pointer to local reference block 2726 * 2727 * Return: 0 upon success; < 0 upon failure. 2728 */ 2729 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2730 { 2731 u8 upiu_flags; 2732 int ret = 0; 2733 2734 if (hba->ufs_version <= ufshci_version(1, 1)) 2735 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2736 else 2737 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2738 2739 if (likely(lrbp->cmd)) { 2740 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2741 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2742 } else { 2743 ret = -EINVAL; 2744 } 2745 2746 return ret; 2747 } 2748 2749 /** 2750 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2751 * @upiu_wlun_id: UPIU W-LUN id 2752 * 2753 * Return: SCSI W-LUN id. 2754 */ 2755 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2756 { 2757 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2758 } 2759 2760 static inline bool is_device_wlun(struct scsi_device *sdev) 2761 { 2762 return sdev->lun == 2763 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2764 } 2765 2766 /* 2767 * Associate the UFS controller queue with the default and poll HCTX types. 2768 * Initialize the mq_map[] arrays. 2769 */ 2770 static void ufshcd_map_queues(struct Scsi_Host *shost) 2771 { 2772 struct ufs_hba *hba = shost_priv(shost); 2773 int i, queue_offset = 0; 2774 2775 if (!is_mcq_supported(hba)) { 2776 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2777 hba->nr_queues[HCTX_TYPE_READ] = 0; 2778 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2779 hba->nr_hw_queues = 1; 2780 } 2781 2782 for (i = 0; i < shost->nr_maps; i++) { 2783 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2784 2785 map->nr_queues = hba->nr_queues[i]; 2786 if (!map->nr_queues) 2787 continue; 2788 map->queue_offset = queue_offset; 2789 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2790 map->queue_offset = 0; 2791 2792 blk_mq_map_queues(map); 2793 queue_offset += map->nr_queues; 2794 } 2795 } 2796 2797 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2798 { 2799 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2800 i * ufshcd_get_ucd_size(hba); 2801 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2802 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2803 i * ufshcd_get_ucd_size(hba); 2804 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset); 2805 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset); 2806 2807 lrb->utr_descriptor_ptr = utrdlp + i; 2808 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2809 i * sizeof(struct utp_transfer_req_desc); 2810 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2811 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2812 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2813 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2814 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2815 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2816 } 2817 2818 /** 2819 * ufshcd_queuecommand - main entry point for SCSI requests 2820 * @host: SCSI host pointer 2821 * @cmd: command from SCSI Midlayer 2822 * 2823 * Return: 0 for success, non-zero in case of failure. 2824 */ 2825 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2826 { 2827 struct ufs_hba *hba = shost_priv(host); 2828 int tag = scsi_cmd_to_rq(cmd)->tag; 2829 struct ufshcd_lrb *lrbp; 2830 int err = 0; 2831 struct ufs_hw_queue *hwq = NULL; 2832 2833 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); 2834 2835 switch (hba->ufshcd_state) { 2836 case UFSHCD_STATE_OPERATIONAL: 2837 break; 2838 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2839 /* 2840 * SCSI error handler can call ->queuecommand() while UFS error 2841 * handler is in progress. Error interrupts could change the 2842 * state from UFSHCD_STATE_RESET to 2843 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2844 * being issued in that case. 2845 */ 2846 if (ufshcd_eh_in_progress(hba)) { 2847 err = SCSI_MLQUEUE_HOST_BUSY; 2848 goto out; 2849 } 2850 break; 2851 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2852 /* 2853 * pm_runtime_get_sync() is used at error handling preparation 2854 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2855 * PM ops, it can never be finished if we let SCSI layer keep 2856 * retrying it, which gets err handler stuck forever. Neither 2857 * can we let the scsi cmd pass through, because UFS is in bad 2858 * state, the scsi cmd may eventually time out, which will get 2859 * err handler blocked for too long. So, just fail the scsi cmd 2860 * sent from PM ops, err handler can recover PM error anyways. 2861 */ 2862 if (hba->pm_op_in_progress) { 2863 hba->force_reset = true; 2864 set_host_byte(cmd, DID_BAD_TARGET); 2865 scsi_done(cmd); 2866 goto out; 2867 } 2868 fallthrough; 2869 case UFSHCD_STATE_RESET: 2870 err = SCSI_MLQUEUE_HOST_BUSY; 2871 goto out; 2872 case UFSHCD_STATE_ERROR: 2873 set_host_byte(cmd, DID_ERROR); 2874 scsi_done(cmd); 2875 goto out; 2876 } 2877 2878 hba->req_abort_count = 0; 2879 2880 ufshcd_hold(hba); 2881 2882 lrbp = &hba->lrb[tag]; 2883 lrbp->cmd = cmd; 2884 lrbp->task_tag = tag; 2885 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2886 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2887 2888 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 2889 2890 lrbp->req_abort_skip = false; 2891 2892 ufshcd_comp_scsi_upiu(hba, lrbp); 2893 2894 err = ufshcd_map_sg(hba, lrbp); 2895 if (err) { 2896 ufshcd_release(hba); 2897 goto out; 2898 } 2899 2900 if (is_mcq_enabled(hba)) 2901 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 2902 2903 ufshcd_send_command(hba, tag, hwq); 2904 2905 out: 2906 if (ufs_trigger_eh()) { 2907 unsigned long flags; 2908 2909 spin_lock_irqsave(hba->host->host_lock, flags); 2910 ufshcd_schedule_eh_work(hba); 2911 spin_unlock_irqrestore(hba->host->host_lock, flags); 2912 } 2913 2914 return err; 2915 } 2916 2917 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2918 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2919 { 2920 lrbp->cmd = NULL; 2921 lrbp->task_tag = tag; 2922 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2923 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2924 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2925 hba->dev_cmd.type = cmd_type; 2926 2927 return ufshcd_compose_devman_upiu(hba, lrbp); 2928 } 2929 2930 /* 2931 * Check with the block layer if the command is inflight 2932 * @cmd: command to check. 2933 * 2934 * Return: true if command is inflight; false if not. 2935 */ 2936 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 2937 { 2938 struct request *rq; 2939 2940 if (!cmd) 2941 return false; 2942 2943 rq = scsi_cmd_to_rq(cmd); 2944 if (!blk_mq_request_started(rq)) 2945 return false; 2946 2947 return true; 2948 } 2949 2950 /* 2951 * Clear the pending command in the controller and wait until 2952 * the controller confirms that the command has been cleared. 2953 * @hba: per adapter instance 2954 * @task_tag: The tag number of the command to be cleared. 2955 */ 2956 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 2957 { 2958 u32 mask; 2959 unsigned long flags; 2960 int err; 2961 2962 if (is_mcq_enabled(hba)) { 2963 /* 2964 * MCQ mode. Clean up the MCQ resources similar to 2965 * what the ufshcd_utrl_clear() does for SDB mode. 2966 */ 2967 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 2968 if (err) { 2969 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 2970 __func__, task_tag, err); 2971 return err; 2972 } 2973 return 0; 2974 } 2975 2976 mask = 1U << task_tag; 2977 2978 /* clear outstanding transaction before retry */ 2979 spin_lock_irqsave(hba->host->host_lock, flags); 2980 ufshcd_utrl_clear(hba, mask); 2981 spin_unlock_irqrestore(hba->host->host_lock, flags); 2982 2983 /* 2984 * wait for h/w to clear corresponding bit in door-bell. 2985 * max. wait is 1 sec. 2986 */ 2987 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 2988 mask, ~mask, 1000, 1000); 2989 } 2990 2991 /** 2992 * ufshcd_dev_cmd_completion() - handles device management command responses 2993 * @hba: per adapter instance 2994 * @lrbp: pointer to local reference block 2995 * 2996 * Return: 0 upon success; < 0 upon failure. 2997 */ 2998 static int 2999 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3000 { 3001 enum upiu_response_transaction resp; 3002 int err = 0; 3003 3004 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3005 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3006 3007 switch (resp) { 3008 case UPIU_TRANSACTION_NOP_IN: 3009 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3010 err = -EINVAL; 3011 dev_err(hba->dev, "%s: unexpected response %x\n", 3012 __func__, resp); 3013 } 3014 break; 3015 case UPIU_TRANSACTION_QUERY_RSP: { 3016 u8 response = lrbp->ucd_rsp_ptr->header.response; 3017 3018 if (response == 0) 3019 err = ufshcd_copy_query_response(hba, lrbp); 3020 break; 3021 } 3022 case UPIU_TRANSACTION_REJECT_UPIU: 3023 /* TODO: handle Reject UPIU Response */ 3024 err = -EPERM; 3025 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3026 __func__); 3027 break; 3028 case UPIU_TRANSACTION_RESPONSE: 3029 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3030 err = -EINVAL; 3031 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3032 } 3033 break; 3034 default: 3035 err = -EINVAL; 3036 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3037 __func__, resp); 3038 break; 3039 } 3040 3041 return err; 3042 } 3043 3044 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3045 struct ufshcd_lrb *lrbp, int max_timeout) 3046 { 3047 unsigned long time_left = msecs_to_jiffies(max_timeout); 3048 unsigned long flags; 3049 bool pending; 3050 int err; 3051 3052 retry: 3053 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3054 time_left); 3055 3056 if (likely(time_left)) { 3057 /* 3058 * The completion handler called complete() and the caller of 3059 * this function still owns the @lrbp tag so the code below does 3060 * not trigger any race conditions. 3061 */ 3062 hba->dev_cmd.complete = NULL; 3063 err = ufshcd_get_tr_ocs(lrbp, NULL); 3064 if (!err) 3065 err = ufshcd_dev_cmd_completion(hba, lrbp); 3066 } else { 3067 err = -ETIMEDOUT; 3068 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3069 __func__, lrbp->task_tag); 3070 3071 /* MCQ mode */ 3072 if (is_mcq_enabled(hba)) { 3073 /* successfully cleared the command, retry if needed */ 3074 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) 3075 err = -EAGAIN; 3076 hba->dev_cmd.complete = NULL; 3077 return err; 3078 } 3079 3080 /* SDB mode */ 3081 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3082 /* successfully cleared the command, retry if needed */ 3083 err = -EAGAIN; 3084 /* 3085 * Since clearing the command succeeded we also need to 3086 * clear the task tag bit from the outstanding_reqs 3087 * variable. 3088 */ 3089 spin_lock_irqsave(&hba->outstanding_lock, flags); 3090 pending = test_bit(lrbp->task_tag, 3091 &hba->outstanding_reqs); 3092 if (pending) { 3093 hba->dev_cmd.complete = NULL; 3094 __clear_bit(lrbp->task_tag, 3095 &hba->outstanding_reqs); 3096 } 3097 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3098 3099 if (!pending) { 3100 /* 3101 * The completion handler ran while we tried to 3102 * clear the command. 3103 */ 3104 time_left = 1; 3105 goto retry; 3106 } 3107 } else { 3108 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3109 __func__, lrbp->task_tag); 3110 3111 spin_lock_irqsave(&hba->outstanding_lock, flags); 3112 pending = test_bit(lrbp->task_tag, 3113 &hba->outstanding_reqs); 3114 if (pending) 3115 hba->dev_cmd.complete = NULL; 3116 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3117 3118 if (!pending) { 3119 /* 3120 * The completion handler ran while we tried to 3121 * clear the command. 3122 */ 3123 time_left = 1; 3124 goto retry; 3125 } 3126 } 3127 } 3128 3129 return err; 3130 } 3131 3132 /** 3133 * ufshcd_exec_dev_cmd - API for sending device management requests 3134 * @hba: UFS hba 3135 * @cmd_type: specifies the type (NOP, Query...) 3136 * @timeout: timeout in milliseconds 3137 * 3138 * Return: 0 upon success; < 0 upon failure. 3139 * 3140 * NOTE: Since there is only one available tag for device management commands, 3141 * it is expected you hold the hba->dev_cmd.lock mutex. 3142 */ 3143 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3144 enum dev_cmd_type cmd_type, int timeout) 3145 { 3146 DECLARE_COMPLETION_ONSTACK(wait); 3147 const u32 tag = hba->reserved_slot; 3148 struct ufshcd_lrb *lrbp; 3149 int err; 3150 3151 /* Protects use of hba->reserved_slot. */ 3152 lockdep_assert_held(&hba->dev_cmd.lock); 3153 3154 down_read(&hba->clk_scaling_lock); 3155 3156 lrbp = &hba->lrb[tag]; 3157 lrbp->cmd = NULL; 3158 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3159 if (unlikely(err)) 3160 goto out; 3161 3162 hba->dev_cmd.complete = &wait; 3163 3164 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3165 3166 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3167 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3168 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3169 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3170 3171 out: 3172 up_read(&hba->clk_scaling_lock); 3173 return err; 3174 } 3175 3176 /** 3177 * ufshcd_init_query() - init the query response and request parameters 3178 * @hba: per-adapter instance 3179 * @request: address of the request pointer to be initialized 3180 * @response: address of the response pointer to be initialized 3181 * @opcode: operation to perform 3182 * @idn: flag idn to access 3183 * @index: LU number to access 3184 * @selector: query/flag/descriptor further identification 3185 */ 3186 static inline void ufshcd_init_query(struct ufs_hba *hba, 3187 struct ufs_query_req **request, struct ufs_query_res **response, 3188 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3189 { 3190 *request = &hba->dev_cmd.query.request; 3191 *response = &hba->dev_cmd.query.response; 3192 memset(*request, 0, sizeof(struct ufs_query_req)); 3193 memset(*response, 0, sizeof(struct ufs_query_res)); 3194 (*request)->upiu_req.opcode = opcode; 3195 (*request)->upiu_req.idn = idn; 3196 (*request)->upiu_req.index = index; 3197 (*request)->upiu_req.selector = selector; 3198 } 3199 3200 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3201 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3202 { 3203 int ret; 3204 int retries; 3205 3206 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3207 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3208 if (ret) 3209 dev_dbg(hba->dev, 3210 "%s: failed with error %d, retries %d\n", 3211 __func__, ret, retries); 3212 else 3213 break; 3214 } 3215 3216 if (ret) 3217 dev_err(hba->dev, 3218 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3219 __func__, opcode, idn, ret, retries); 3220 return ret; 3221 } 3222 3223 /** 3224 * ufshcd_query_flag() - API function for sending flag query requests 3225 * @hba: per-adapter instance 3226 * @opcode: flag query to perform 3227 * @idn: flag idn to access 3228 * @index: flag index to access 3229 * @flag_res: the flag value after the query request completes 3230 * 3231 * Return: 0 for success, non-zero in case of failure. 3232 */ 3233 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3234 enum flag_idn idn, u8 index, bool *flag_res) 3235 { 3236 struct ufs_query_req *request = NULL; 3237 struct ufs_query_res *response = NULL; 3238 int err, selector = 0; 3239 int timeout = QUERY_REQ_TIMEOUT; 3240 3241 BUG_ON(!hba); 3242 3243 ufshcd_hold(hba); 3244 mutex_lock(&hba->dev_cmd.lock); 3245 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3246 selector); 3247 3248 switch (opcode) { 3249 case UPIU_QUERY_OPCODE_SET_FLAG: 3250 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3251 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3252 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3253 break; 3254 case UPIU_QUERY_OPCODE_READ_FLAG: 3255 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3256 if (!flag_res) { 3257 /* No dummy reads */ 3258 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3259 __func__); 3260 err = -EINVAL; 3261 goto out_unlock; 3262 } 3263 break; 3264 default: 3265 dev_err(hba->dev, 3266 "%s: Expected query flag opcode but got = %d\n", 3267 __func__, opcode); 3268 err = -EINVAL; 3269 goto out_unlock; 3270 } 3271 3272 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3273 3274 if (err) { 3275 dev_err(hba->dev, 3276 "%s: Sending flag query for idn %d failed, err = %d\n", 3277 __func__, idn, err); 3278 goto out_unlock; 3279 } 3280 3281 if (flag_res) 3282 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3283 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3284 3285 out_unlock: 3286 mutex_unlock(&hba->dev_cmd.lock); 3287 ufshcd_release(hba); 3288 return err; 3289 } 3290 3291 /** 3292 * ufshcd_query_attr - API function for sending attribute requests 3293 * @hba: per-adapter instance 3294 * @opcode: attribute opcode 3295 * @idn: attribute idn to access 3296 * @index: index field 3297 * @selector: selector field 3298 * @attr_val: the attribute value after the query request completes 3299 * 3300 * Return: 0 for success, non-zero in case of failure. 3301 */ 3302 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3303 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3304 { 3305 struct ufs_query_req *request = NULL; 3306 struct ufs_query_res *response = NULL; 3307 int err; 3308 3309 BUG_ON(!hba); 3310 3311 if (!attr_val) { 3312 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3313 __func__, opcode); 3314 return -EINVAL; 3315 } 3316 3317 ufshcd_hold(hba); 3318 3319 mutex_lock(&hba->dev_cmd.lock); 3320 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3321 selector); 3322 3323 switch (opcode) { 3324 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3325 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3326 request->upiu_req.value = cpu_to_be32(*attr_val); 3327 break; 3328 case UPIU_QUERY_OPCODE_READ_ATTR: 3329 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3330 break; 3331 default: 3332 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3333 __func__, opcode); 3334 err = -EINVAL; 3335 goto out_unlock; 3336 } 3337 3338 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3339 3340 if (err) { 3341 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3342 __func__, opcode, idn, index, err); 3343 goto out_unlock; 3344 } 3345 3346 *attr_val = be32_to_cpu(response->upiu_res.value); 3347 3348 out_unlock: 3349 mutex_unlock(&hba->dev_cmd.lock); 3350 ufshcd_release(hba); 3351 return err; 3352 } 3353 3354 /** 3355 * ufshcd_query_attr_retry() - API function for sending query 3356 * attribute with retries 3357 * @hba: per-adapter instance 3358 * @opcode: attribute opcode 3359 * @idn: attribute idn to access 3360 * @index: index field 3361 * @selector: selector field 3362 * @attr_val: the attribute value after the query request 3363 * completes 3364 * 3365 * Return: 0 for success, non-zero in case of failure. 3366 */ 3367 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3368 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3369 u32 *attr_val) 3370 { 3371 int ret = 0; 3372 u32 retries; 3373 3374 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3375 ret = ufshcd_query_attr(hba, opcode, idn, index, 3376 selector, attr_val); 3377 if (ret) 3378 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3379 __func__, ret, retries); 3380 else 3381 break; 3382 } 3383 3384 if (ret) 3385 dev_err(hba->dev, 3386 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3387 __func__, idn, ret, QUERY_REQ_RETRIES); 3388 return ret; 3389 } 3390 3391 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3392 enum query_opcode opcode, enum desc_idn idn, u8 index, 3393 u8 selector, u8 *desc_buf, int *buf_len) 3394 { 3395 struct ufs_query_req *request = NULL; 3396 struct ufs_query_res *response = NULL; 3397 int err; 3398 3399 BUG_ON(!hba); 3400 3401 if (!desc_buf) { 3402 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3403 __func__, opcode); 3404 return -EINVAL; 3405 } 3406 3407 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3408 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3409 __func__, *buf_len); 3410 return -EINVAL; 3411 } 3412 3413 ufshcd_hold(hba); 3414 3415 mutex_lock(&hba->dev_cmd.lock); 3416 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3417 selector); 3418 hba->dev_cmd.query.descriptor = desc_buf; 3419 request->upiu_req.length = cpu_to_be16(*buf_len); 3420 3421 switch (opcode) { 3422 case UPIU_QUERY_OPCODE_WRITE_DESC: 3423 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3424 break; 3425 case UPIU_QUERY_OPCODE_READ_DESC: 3426 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3427 break; 3428 default: 3429 dev_err(hba->dev, 3430 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3431 __func__, opcode); 3432 err = -EINVAL; 3433 goto out_unlock; 3434 } 3435 3436 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3437 3438 if (err) { 3439 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3440 __func__, opcode, idn, index, err); 3441 goto out_unlock; 3442 } 3443 3444 *buf_len = be16_to_cpu(response->upiu_res.length); 3445 3446 out_unlock: 3447 hba->dev_cmd.query.descriptor = NULL; 3448 mutex_unlock(&hba->dev_cmd.lock); 3449 ufshcd_release(hba); 3450 return err; 3451 } 3452 3453 /** 3454 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3455 * @hba: per-adapter instance 3456 * @opcode: attribute opcode 3457 * @idn: attribute idn to access 3458 * @index: index field 3459 * @selector: selector field 3460 * @desc_buf: the buffer that contains the descriptor 3461 * @buf_len: length parameter passed to the device 3462 * 3463 * The buf_len parameter will contain, on return, the length parameter 3464 * received on the response. 3465 * 3466 * Return: 0 for success, non-zero in case of failure. 3467 */ 3468 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3469 enum query_opcode opcode, 3470 enum desc_idn idn, u8 index, 3471 u8 selector, 3472 u8 *desc_buf, int *buf_len) 3473 { 3474 int err; 3475 int retries; 3476 3477 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3478 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3479 selector, desc_buf, buf_len); 3480 if (!err || err == -EINVAL) 3481 break; 3482 } 3483 3484 return err; 3485 } 3486 3487 /** 3488 * ufshcd_read_desc_param - read the specified descriptor parameter 3489 * @hba: Pointer to adapter instance 3490 * @desc_id: descriptor idn value 3491 * @desc_index: descriptor index 3492 * @param_offset: offset of the parameter to read 3493 * @param_read_buf: pointer to buffer where parameter would be read 3494 * @param_size: sizeof(param_read_buf) 3495 * 3496 * Return: 0 in case of success, non-zero otherwise. 3497 */ 3498 int ufshcd_read_desc_param(struct ufs_hba *hba, 3499 enum desc_idn desc_id, 3500 int desc_index, 3501 u8 param_offset, 3502 u8 *param_read_buf, 3503 u8 param_size) 3504 { 3505 int ret; 3506 u8 *desc_buf; 3507 int buff_len = QUERY_DESC_MAX_SIZE; 3508 bool is_kmalloc = true; 3509 3510 /* Safety check */ 3511 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3512 return -EINVAL; 3513 3514 /* Check whether we need temp memory */ 3515 if (param_offset != 0 || param_size < buff_len) { 3516 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3517 if (!desc_buf) 3518 return -ENOMEM; 3519 } else { 3520 desc_buf = param_read_buf; 3521 is_kmalloc = false; 3522 } 3523 3524 /* Request for full descriptor */ 3525 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3526 desc_id, desc_index, 0, 3527 desc_buf, &buff_len); 3528 if (ret) { 3529 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3530 __func__, desc_id, desc_index, param_offset, ret); 3531 goto out; 3532 } 3533 3534 /* Update descriptor length */ 3535 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3536 3537 if (param_offset >= buff_len) { 3538 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3539 __func__, param_offset, desc_id, buff_len); 3540 ret = -EINVAL; 3541 goto out; 3542 } 3543 3544 /* Sanity check */ 3545 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3546 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3547 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3548 ret = -EINVAL; 3549 goto out; 3550 } 3551 3552 if (is_kmalloc) { 3553 /* Make sure we don't copy more data than available */ 3554 if (param_offset >= buff_len) 3555 ret = -EINVAL; 3556 else 3557 memcpy(param_read_buf, &desc_buf[param_offset], 3558 min_t(u32, param_size, buff_len - param_offset)); 3559 } 3560 out: 3561 if (is_kmalloc) 3562 kfree(desc_buf); 3563 return ret; 3564 } 3565 3566 /** 3567 * struct uc_string_id - unicode string 3568 * 3569 * @len: size of this descriptor inclusive 3570 * @type: descriptor type 3571 * @uc: unicode string character 3572 */ 3573 struct uc_string_id { 3574 u8 len; 3575 u8 type; 3576 wchar_t uc[]; 3577 } __packed; 3578 3579 /* replace non-printable or non-ASCII characters with spaces */ 3580 static inline char ufshcd_remove_non_printable(u8 ch) 3581 { 3582 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3583 } 3584 3585 /** 3586 * ufshcd_read_string_desc - read string descriptor 3587 * @hba: pointer to adapter instance 3588 * @desc_index: descriptor index 3589 * @buf: pointer to buffer where descriptor would be read, 3590 * the caller should free the memory. 3591 * @ascii: if true convert from unicode to ascii characters 3592 * null terminated string. 3593 * 3594 * Return: 3595 * * string size on success. 3596 * * -ENOMEM: on allocation failure 3597 * * -EINVAL: on a wrong parameter 3598 */ 3599 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3600 u8 **buf, bool ascii) 3601 { 3602 struct uc_string_id *uc_str; 3603 u8 *str; 3604 int ret; 3605 3606 if (!buf) 3607 return -EINVAL; 3608 3609 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3610 if (!uc_str) 3611 return -ENOMEM; 3612 3613 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3614 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3615 if (ret < 0) { 3616 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3617 QUERY_REQ_RETRIES, ret); 3618 str = NULL; 3619 goto out; 3620 } 3621 3622 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3623 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3624 str = NULL; 3625 ret = 0; 3626 goto out; 3627 } 3628 3629 if (ascii) { 3630 ssize_t ascii_len; 3631 int i; 3632 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3633 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3634 str = kzalloc(ascii_len, GFP_KERNEL); 3635 if (!str) { 3636 ret = -ENOMEM; 3637 goto out; 3638 } 3639 3640 /* 3641 * the descriptor contains string in UTF16 format 3642 * we need to convert to utf-8 so it can be displayed 3643 */ 3644 ret = utf16s_to_utf8s(uc_str->uc, 3645 uc_str->len - QUERY_DESC_HDR_SIZE, 3646 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3647 3648 /* replace non-printable or non-ASCII characters with spaces */ 3649 for (i = 0; i < ret; i++) 3650 str[i] = ufshcd_remove_non_printable(str[i]); 3651 3652 str[ret++] = '\0'; 3653 3654 } else { 3655 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3656 if (!str) { 3657 ret = -ENOMEM; 3658 goto out; 3659 } 3660 ret = uc_str->len; 3661 } 3662 out: 3663 *buf = str; 3664 kfree(uc_str); 3665 return ret; 3666 } 3667 3668 /** 3669 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3670 * @hba: Pointer to adapter instance 3671 * @lun: lun id 3672 * @param_offset: offset of the parameter to read 3673 * @param_read_buf: pointer to buffer where parameter would be read 3674 * @param_size: sizeof(param_read_buf) 3675 * 3676 * Return: 0 in case of success, non-zero otherwise. 3677 */ 3678 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3679 int lun, 3680 enum unit_desc_param param_offset, 3681 u8 *param_read_buf, 3682 u32 param_size) 3683 { 3684 /* 3685 * Unit descriptors are only available for general purpose LUs (LUN id 3686 * from 0 to 7) and RPMB Well known LU. 3687 */ 3688 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3689 return -EOPNOTSUPP; 3690 3691 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3692 param_offset, param_read_buf, param_size); 3693 } 3694 3695 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3696 { 3697 int err = 0; 3698 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3699 3700 if (hba->dev_info.wspecversion >= 0x300) { 3701 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3702 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3703 &gating_wait); 3704 if (err) 3705 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3706 err, gating_wait); 3707 3708 if (gating_wait == 0) { 3709 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3710 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3711 gating_wait); 3712 } 3713 3714 hba->dev_info.clk_gating_wait_us = gating_wait; 3715 } 3716 3717 return err; 3718 } 3719 3720 /** 3721 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3722 * @hba: per adapter instance 3723 * 3724 * 1. Allocate DMA memory for Command Descriptor array 3725 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3726 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3727 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3728 * (UTMRDL) 3729 * 4. Allocate memory for local reference block(lrb). 3730 * 3731 * Return: 0 for success, non-zero in case of failure. 3732 */ 3733 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3734 { 3735 size_t utmrdl_size, utrdl_size, ucdl_size; 3736 3737 /* Allocate memory for UTP command descriptors */ 3738 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3739 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3740 ucdl_size, 3741 &hba->ucdl_dma_addr, 3742 GFP_KERNEL); 3743 3744 /* 3745 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3746 */ 3747 if (!hba->ucdl_base_addr || 3748 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3749 dev_err(hba->dev, 3750 "Command Descriptor Memory allocation failed\n"); 3751 goto out; 3752 } 3753 3754 /* 3755 * Allocate memory for UTP Transfer descriptors 3756 * UFSHCI requires 1KB alignment of UTRD 3757 */ 3758 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3759 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3760 utrdl_size, 3761 &hba->utrdl_dma_addr, 3762 GFP_KERNEL); 3763 if (!hba->utrdl_base_addr || 3764 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3765 dev_err(hba->dev, 3766 "Transfer Descriptor Memory allocation failed\n"); 3767 goto out; 3768 } 3769 3770 /* 3771 * Skip utmrdl allocation; it may have been 3772 * allocated during first pass and not released during 3773 * MCQ memory allocation. 3774 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3775 */ 3776 if (hba->utmrdl_base_addr) 3777 goto skip_utmrdl; 3778 /* 3779 * Allocate memory for UTP Task Management descriptors 3780 * UFSHCI requires 1KB alignment of UTMRD 3781 */ 3782 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3783 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3784 utmrdl_size, 3785 &hba->utmrdl_dma_addr, 3786 GFP_KERNEL); 3787 if (!hba->utmrdl_base_addr || 3788 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3789 dev_err(hba->dev, 3790 "Task Management Descriptor Memory allocation failed\n"); 3791 goto out; 3792 } 3793 3794 skip_utmrdl: 3795 /* Allocate memory for local reference block */ 3796 hba->lrb = devm_kcalloc(hba->dev, 3797 hba->nutrs, sizeof(struct ufshcd_lrb), 3798 GFP_KERNEL); 3799 if (!hba->lrb) { 3800 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3801 goto out; 3802 } 3803 return 0; 3804 out: 3805 return -ENOMEM; 3806 } 3807 3808 /** 3809 * ufshcd_host_memory_configure - configure local reference block with 3810 * memory offsets 3811 * @hba: per adapter instance 3812 * 3813 * Configure Host memory space 3814 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3815 * address. 3816 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3817 * and PRDT offset. 3818 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3819 * into local reference block. 3820 */ 3821 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3822 { 3823 struct utp_transfer_req_desc *utrdlp; 3824 dma_addr_t cmd_desc_dma_addr; 3825 dma_addr_t cmd_desc_element_addr; 3826 u16 response_offset; 3827 u16 prdt_offset; 3828 int cmd_desc_size; 3829 int i; 3830 3831 utrdlp = hba->utrdl_base_addr; 3832 3833 response_offset = 3834 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3835 prdt_offset = 3836 offsetof(struct utp_transfer_cmd_desc, prd_table); 3837 3838 cmd_desc_size = ufshcd_get_ucd_size(hba); 3839 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3840 3841 for (i = 0; i < hba->nutrs; i++) { 3842 /* Configure UTRD with command descriptor base address */ 3843 cmd_desc_element_addr = 3844 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3845 utrdlp[i].command_desc_base_addr = 3846 cpu_to_le64(cmd_desc_element_addr); 3847 3848 /* Response upiu and prdt offset should be in double words */ 3849 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3850 utrdlp[i].response_upiu_offset = 3851 cpu_to_le16(response_offset); 3852 utrdlp[i].prd_table_offset = 3853 cpu_to_le16(prdt_offset); 3854 utrdlp[i].response_upiu_length = 3855 cpu_to_le16(ALIGNED_UPIU_SIZE); 3856 } else { 3857 utrdlp[i].response_upiu_offset = 3858 cpu_to_le16(response_offset >> 2); 3859 utrdlp[i].prd_table_offset = 3860 cpu_to_le16(prdt_offset >> 2); 3861 utrdlp[i].response_upiu_length = 3862 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3863 } 3864 3865 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3866 } 3867 } 3868 3869 /** 3870 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3871 * @hba: per adapter instance 3872 * 3873 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3874 * in order to initialize the Unipro link startup procedure. 3875 * Once the Unipro links are up, the device connected to the controller 3876 * is detected. 3877 * 3878 * Return: 0 on success, non-zero value on failure. 3879 */ 3880 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3881 { 3882 struct uic_command uic_cmd = {0}; 3883 int ret; 3884 3885 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3886 3887 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3888 if (ret) 3889 dev_dbg(hba->dev, 3890 "dme-link-startup: error code %d\n", ret); 3891 return ret; 3892 } 3893 /** 3894 * ufshcd_dme_reset - UIC command for DME_RESET 3895 * @hba: per adapter instance 3896 * 3897 * DME_RESET command is issued in order to reset UniPro stack. 3898 * This function now deals with cold reset. 3899 * 3900 * Return: 0 on success, non-zero value on failure. 3901 */ 3902 static int ufshcd_dme_reset(struct ufs_hba *hba) 3903 { 3904 struct uic_command uic_cmd = {0}; 3905 int ret; 3906 3907 uic_cmd.command = UIC_CMD_DME_RESET; 3908 3909 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3910 if (ret) 3911 dev_err(hba->dev, 3912 "dme-reset: error code %d\n", ret); 3913 3914 return ret; 3915 } 3916 3917 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 3918 int agreed_gear, 3919 int adapt_val) 3920 { 3921 int ret; 3922 3923 if (agreed_gear < UFS_HS_G4) 3924 adapt_val = PA_NO_ADAPT; 3925 3926 ret = ufshcd_dme_set(hba, 3927 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 3928 adapt_val); 3929 return ret; 3930 } 3931 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 3932 3933 /** 3934 * ufshcd_dme_enable - UIC command for DME_ENABLE 3935 * @hba: per adapter instance 3936 * 3937 * DME_ENABLE command is issued in order to enable UniPro stack. 3938 * 3939 * Return: 0 on success, non-zero value on failure. 3940 */ 3941 static int ufshcd_dme_enable(struct ufs_hba *hba) 3942 { 3943 struct uic_command uic_cmd = {0}; 3944 int ret; 3945 3946 uic_cmd.command = UIC_CMD_DME_ENABLE; 3947 3948 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3949 if (ret) 3950 dev_err(hba->dev, 3951 "dme-enable: error code %d\n", ret); 3952 3953 return ret; 3954 } 3955 3956 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3957 { 3958 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3959 unsigned long min_sleep_time_us; 3960 3961 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3962 return; 3963 3964 /* 3965 * last_dme_cmd_tstamp will be 0 only for 1st call to 3966 * this function 3967 */ 3968 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3969 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3970 } else { 3971 unsigned long delta = 3972 (unsigned long) ktime_to_us( 3973 ktime_sub(ktime_get(), 3974 hba->last_dme_cmd_tstamp)); 3975 3976 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3977 min_sleep_time_us = 3978 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 3979 else 3980 min_sleep_time_us = 0; /* no more delay required */ 3981 } 3982 3983 if (min_sleep_time_us > 0) { 3984 /* allow sleep for extra 50us if needed */ 3985 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 3986 } 3987 3988 /* update the last_dme_cmd_tstamp */ 3989 hba->last_dme_cmd_tstamp = ktime_get(); 3990 } 3991 3992 /** 3993 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 3994 * @hba: per adapter instance 3995 * @attr_sel: uic command argument1 3996 * @attr_set: attribute set type as uic command argument2 3997 * @mib_val: setting value as uic command argument3 3998 * @peer: indicate whether peer or local 3999 * 4000 * Return: 0 on success, non-zero value on failure. 4001 */ 4002 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4003 u8 attr_set, u32 mib_val, u8 peer) 4004 { 4005 struct uic_command uic_cmd = {0}; 4006 static const char *const action[] = { 4007 "dme-set", 4008 "dme-peer-set" 4009 }; 4010 const char *set = action[!!peer]; 4011 int ret; 4012 int retries = UFS_UIC_COMMAND_RETRIES; 4013 4014 uic_cmd.command = peer ? 4015 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 4016 uic_cmd.argument1 = attr_sel; 4017 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 4018 uic_cmd.argument3 = mib_val; 4019 4020 do { 4021 /* for peer attributes we retry upon failure */ 4022 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4023 if (ret) 4024 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4025 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4026 } while (ret && peer && --retries); 4027 4028 if (ret) 4029 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4030 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4031 UFS_UIC_COMMAND_RETRIES - retries); 4032 4033 return ret; 4034 } 4035 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4036 4037 /** 4038 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4039 * @hba: per adapter instance 4040 * @attr_sel: uic command argument1 4041 * @mib_val: the value of the attribute as returned by the UIC command 4042 * @peer: indicate whether peer or local 4043 * 4044 * Return: 0 on success, non-zero value on failure. 4045 */ 4046 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4047 u32 *mib_val, u8 peer) 4048 { 4049 struct uic_command uic_cmd = {0}; 4050 static const char *const action[] = { 4051 "dme-get", 4052 "dme-peer-get" 4053 }; 4054 const char *get = action[!!peer]; 4055 int ret; 4056 int retries = UFS_UIC_COMMAND_RETRIES; 4057 struct ufs_pa_layer_attr orig_pwr_info; 4058 struct ufs_pa_layer_attr temp_pwr_info; 4059 bool pwr_mode_change = false; 4060 4061 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4062 orig_pwr_info = hba->pwr_info; 4063 temp_pwr_info = orig_pwr_info; 4064 4065 if (orig_pwr_info.pwr_tx == FAST_MODE || 4066 orig_pwr_info.pwr_rx == FAST_MODE) { 4067 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4068 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4069 pwr_mode_change = true; 4070 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4071 orig_pwr_info.pwr_rx == SLOW_MODE) { 4072 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4073 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4074 pwr_mode_change = true; 4075 } 4076 if (pwr_mode_change) { 4077 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4078 if (ret) 4079 goto out; 4080 } 4081 } 4082 4083 uic_cmd.command = peer ? 4084 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 4085 uic_cmd.argument1 = attr_sel; 4086 4087 do { 4088 /* for peer attributes we retry upon failure */ 4089 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4090 if (ret) 4091 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4092 get, UIC_GET_ATTR_ID(attr_sel), ret); 4093 } while (ret && peer && --retries); 4094 4095 if (ret) 4096 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4097 get, UIC_GET_ATTR_ID(attr_sel), 4098 UFS_UIC_COMMAND_RETRIES - retries); 4099 4100 if (mib_val && !ret) 4101 *mib_val = uic_cmd.argument3; 4102 4103 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4104 && pwr_mode_change) 4105 ufshcd_change_power_mode(hba, &orig_pwr_info); 4106 out: 4107 return ret; 4108 } 4109 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4110 4111 /** 4112 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4113 * state) and waits for it to take effect. 4114 * 4115 * @hba: per adapter instance 4116 * @cmd: UIC command to execute 4117 * 4118 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4119 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4120 * and device UniPro link and hence it's final completion would be indicated by 4121 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4122 * addition to normal UIC command completion Status (UCCS). This function only 4123 * returns after the relevant status bits indicate the completion. 4124 * 4125 * Return: 0 on success, non-zero value on failure. 4126 */ 4127 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4128 { 4129 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4130 unsigned long flags; 4131 u8 status; 4132 int ret; 4133 bool reenable_intr = false; 4134 4135 mutex_lock(&hba->uic_cmd_mutex); 4136 ufshcd_add_delay_before_dme_cmd(hba); 4137 4138 spin_lock_irqsave(hba->host->host_lock, flags); 4139 if (ufshcd_is_link_broken(hba)) { 4140 ret = -ENOLINK; 4141 goto out_unlock; 4142 } 4143 hba->uic_async_done = &uic_async_done; 4144 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4145 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4146 /* 4147 * Make sure UIC command completion interrupt is disabled before 4148 * issuing UIC command. 4149 */ 4150 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 4151 reenable_intr = true; 4152 } 4153 spin_unlock_irqrestore(hba->host->host_lock, flags); 4154 ret = __ufshcd_send_uic_cmd(hba, cmd); 4155 if (ret) { 4156 dev_err(hba->dev, 4157 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4158 cmd->command, cmd->argument3, ret); 4159 goto out; 4160 } 4161 4162 if (!wait_for_completion_timeout(hba->uic_async_done, 4163 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4164 dev_err(hba->dev, 4165 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4166 cmd->command, cmd->argument3); 4167 4168 if (!cmd->cmd_active) { 4169 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4170 __func__); 4171 goto check_upmcrs; 4172 } 4173 4174 ret = -ETIMEDOUT; 4175 goto out; 4176 } 4177 4178 check_upmcrs: 4179 status = ufshcd_get_upmcrs(hba); 4180 if (status != PWR_LOCAL) { 4181 dev_err(hba->dev, 4182 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4183 cmd->command, status); 4184 ret = (status != PWR_OK) ? status : -1; 4185 } 4186 out: 4187 if (ret) { 4188 ufshcd_print_host_state(hba); 4189 ufshcd_print_pwr_info(hba); 4190 ufshcd_print_evt_hist(hba); 4191 } 4192 4193 spin_lock_irqsave(hba->host->host_lock, flags); 4194 hba->active_uic_cmd = NULL; 4195 hba->uic_async_done = NULL; 4196 if (reenable_intr) 4197 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4198 if (ret) { 4199 ufshcd_set_link_broken(hba); 4200 ufshcd_schedule_eh_work(hba); 4201 } 4202 out_unlock: 4203 spin_unlock_irqrestore(hba->host->host_lock, flags); 4204 mutex_unlock(&hba->uic_cmd_mutex); 4205 4206 return ret; 4207 } 4208 4209 /** 4210 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result 4211 * @hba: per adapter instance 4212 * @uic_cmd: UIC command 4213 * 4214 * Return: 0 only if success. 4215 */ 4216 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 4217 { 4218 int ret; 4219 4220 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 4221 return 0; 4222 4223 ufshcd_hold(hba); 4224 4225 if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) && 4226 uic_cmd->command == UIC_CMD_DME_SET) { 4227 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd); 4228 goto out; 4229 } 4230 4231 mutex_lock(&hba->uic_cmd_mutex); 4232 ufshcd_add_delay_before_dme_cmd(hba); 4233 4234 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 4235 if (!ret) 4236 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 4237 4238 mutex_unlock(&hba->uic_cmd_mutex); 4239 4240 out: 4241 ufshcd_release(hba); 4242 return ret; 4243 } 4244 4245 /** 4246 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4247 * using DME_SET primitives. 4248 * @hba: per adapter instance 4249 * @mode: powr mode value 4250 * 4251 * Return: 0 on success, non-zero value on failure. 4252 */ 4253 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4254 { 4255 struct uic_command uic_cmd = {0}; 4256 int ret; 4257 4258 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4259 ret = ufshcd_dme_set(hba, 4260 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4261 if (ret) { 4262 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4263 __func__, ret); 4264 goto out; 4265 } 4266 } 4267 4268 uic_cmd.command = UIC_CMD_DME_SET; 4269 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 4270 uic_cmd.argument3 = mode; 4271 ufshcd_hold(hba); 4272 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4273 ufshcd_release(hba); 4274 4275 out: 4276 return ret; 4277 } 4278 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4279 4280 int ufshcd_link_recovery(struct ufs_hba *hba) 4281 { 4282 int ret; 4283 unsigned long flags; 4284 4285 spin_lock_irqsave(hba->host->host_lock, flags); 4286 hba->ufshcd_state = UFSHCD_STATE_RESET; 4287 ufshcd_set_eh_in_progress(hba); 4288 spin_unlock_irqrestore(hba->host->host_lock, flags); 4289 4290 /* Reset the attached device */ 4291 ufshcd_device_reset(hba); 4292 4293 ret = ufshcd_host_reset_and_restore(hba); 4294 4295 spin_lock_irqsave(hba->host->host_lock, flags); 4296 if (ret) 4297 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4298 ufshcd_clear_eh_in_progress(hba); 4299 spin_unlock_irqrestore(hba->host->host_lock, flags); 4300 4301 if (ret) 4302 dev_err(hba->dev, "%s: link recovery failed, err %d", 4303 __func__, ret); 4304 4305 return ret; 4306 } 4307 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4308 4309 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4310 { 4311 int ret; 4312 struct uic_command uic_cmd = {0}; 4313 ktime_t start = ktime_get(); 4314 4315 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4316 4317 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 4318 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4319 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4320 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4321 4322 if (ret) 4323 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4324 __func__, ret); 4325 else 4326 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4327 POST_CHANGE); 4328 4329 return ret; 4330 } 4331 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4332 4333 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4334 { 4335 struct uic_command uic_cmd = {0}; 4336 int ret; 4337 ktime_t start = ktime_get(); 4338 4339 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4340 4341 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 4342 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4343 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4344 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4345 4346 if (ret) { 4347 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4348 __func__, ret); 4349 } else { 4350 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4351 POST_CHANGE); 4352 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4353 hba->ufs_stats.hibern8_exit_cnt++; 4354 } 4355 4356 return ret; 4357 } 4358 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4359 4360 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4361 { 4362 unsigned long flags; 4363 bool update = false; 4364 4365 if (!ufshcd_is_auto_hibern8_supported(hba)) 4366 return; 4367 4368 spin_lock_irqsave(hba->host->host_lock, flags); 4369 if (hba->ahit != ahit) { 4370 hba->ahit = ahit; 4371 update = true; 4372 } 4373 spin_unlock_irqrestore(hba->host->host_lock, flags); 4374 4375 if (update && 4376 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4377 ufshcd_rpm_get_sync(hba); 4378 ufshcd_hold(hba); 4379 ufshcd_auto_hibern8_enable(hba); 4380 ufshcd_release(hba); 4381 ufshcd_rpm_put_sync(hba); 4382 } 4383 } 4384 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4385 4386 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4387 { 4388 if (!ufshcd_is_auto_hibern8_supported(hba)) 4389 return; 4390 4391 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4392 } 4393 4394 /** 4395 * ufshcd_init_pwr_info - setting the POR (power on reset) 4396 * values in hba power info 4397 * @hba: per-adapter instance 4398 */ 4399 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4400 { 4401 hba->pwr_info.gear_rx = UFS_PWM_G1; 4402 hba->pwr_info.gear_tx = UFS_PWM_G1; 4403 hba->pwr_info.lane_rx = UFS_LANE_1; 4404 hba->pwr_info.lane_tx = UFS_LANE_1; 4405 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4406 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4407 hba->pwr_info.hs_rate = 0; 4408 } 4409 4410 /** 4411 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4412 * @hba: per-adapter instance 4413 * 4414 * Return: 0 upon success; < 0 upon failure. 4415 */ 4416 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4417 { 4418 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4419 4420 if (hba->max_pwr_info.is_valid) 4421 return 0; 4422 4423 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4424 pwr_info->pwr_tx = FASTAUTO_MODE; 4425 pwr_info->pwr_rx = FASTAUTO_MODE; 4426 } else { 4427 pwr_info->pwr_tx = FAST_MODE; 4428 pwr_info->pwr_rx = FAST_MODE; 4429 } 4430 pwr_info->hs_rate = PA_HS_MODE_B; 4431 4432 /* Get the connected lane count */ 4433 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4434 &pwr_info->lane_rx); 4435 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4436 &pwr_info->lane_tx); 4437 4438 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4439 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4440 __func__, 4441 pwr_info->lane_rx, 4442 pwr_info->lane_tx); 4443 return -EINVAL; 4444 } 4445 4446 /* 4447 * First, get the maximum gears of HS speed. 4448 * If a zero value, it means there is no HSGEAR capability. 4449 * Then, get the maximum gears of PWM speed. 4450 */ 4451 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4452 if (!pwr_info->gear_rx) { 4453 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4454 &pwr_info->gear_rx); 4455 if (!pwr_info->gear_rx) { 4456 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4457 __func__, pwr_info->gear_rx); 4458 return -EINVAL; 4459 } 4460 pwr_info->pwr_rx = SLOW_MODE; 4461 } 4462 4463 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4464 &pwr_info->gear_tx); 4465 if (!pwr_info->gear_tx) { 4466 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4467 &pwr_info->gear_tx); 4468 if (!pwr_info->gear_tx) { 4469 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4470 __func__, pwr_info->gear_tx); 4471 return -EINVAL; 4472 } 4473 pwr_info->pwr_tx = SLOW_MODE; 4474 } 4475 4476 hba->max_pwr_info.is_valid = true; 4477 return 0; 4478 } 4479 4480 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4481 struct ufs_pa_layer_attr *pwr_mode) 4482 { 4483 int ret; 4484 4485 /* if already configured to the requested pwr_mode */ 4486 if (!hba->force_pmc && 4487 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4488 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4489 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4490 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4491 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4492 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4493 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4494 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4495 return 0; 4496 } 4497 4498 /* 4499 * Configure attributes for power mode change with below. 4500 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4501 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4502 * - PA_HSSERIES 4503 */ 4504 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4505 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4506 pwr_mode->lane_rx); 4507 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4508 pwr_mode->pwr_rx == FAST_MODE) 4509 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4510 else 4511 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4512 4513 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4514 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4515 pwr_mode->lane_tx); 4516 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4517 pwr_mode->pwr_tx == FAST_MODE) 4518 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4519 else 4520 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4521 4522 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4523 pwr_mode->pwr_tx == FASTAUTO_MODE || 4524 pwr_mode->pwr_rx == FAST_MODE || 4525 pwr_mode->pwr_tx == FAST_MODE) 4526 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4527 pwr_mode->hs_rate); 4528 4529 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4530 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4531 DL_FC0ProtectionTimeOutVal_Default); 4532 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4533 DL_TC0ReplayTimeOutVal_Default); 4534 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4535 DL_AFC0ReqTimeOutVal_Default); 4536 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4537 DL_FC1ProtectionTimeOutVal_Default); 4538 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4539 DL_TC1ReplayTimeOutVal_Default); 4540 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4541 DL_AFC1ReqTimeOutVal_Default); 4542 4543 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4544 DL_FC0ProtectionTimeOutVal_Default); 4545 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4546 DL_TC0ReplayTimeOutVal_Default); 4547 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4548 DL_AFC0ReqTimeOutVal_Default); 4549 } 4550 4551 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4552 | pwr_mode->pwr_tx); 4553 4554 if (ret) { 4555 dev_err(hba->dev, 4556 "%s: power mode change failed %d\n", __func__, ret); 4557 } else { 4558 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4559 pwr_mode); 4560 4561 memcpy(&hba->pwr_info, pwr_mode, 4562 sizeof(struct ufs_pa_layer_attr)); 4563 } 4564 4565 return ret; 4566 } 4567 4568 /** 4569 * ufshcd_config_pwr_mode - configure a new power mode 4570 * @hba: per-adapter instance 4571 * @desired_pwr_mode: desired power configuration 4572 * 4573 * Return: 0 upon success; < 0 upon failure. 4574 */ 4575 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4576 struct ufs_pa_layer_attr *desired_pwr_mode) 4577 { 4578 struct ufs_pa_layer_attr final_params = { 0 }; 4579 int ret; 4580 4581 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4582 desired_pwr_mode, &final_params); 4583 4584 if (ret) 4585 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4586 4587 ret = ufshcd_change_power_mode(hba, &final_params); 4588 4589 return ret; 4590 } 4591 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4592 4593 /** 4594 * ufshcd_complete_dev_init() - checks device readiness 4595 * @hba: per-adapter instance 4596 * 4597 * Set fDeviceInit flag and poll until device toggles it. 4598 * 4599 * Return: 0 upon success; < 0 upon failure. 4600 */ 4601 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4602 { 4603 int err; 4604 bool flag_res = true; 4605 ktime_t timeout; 4606 4607 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4608 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4609 if (err) { 4610 dev_err(hba->dev, 4611 "%s: setting fDeviceInit flag failed with error %d\n", 4612 __func__, err); 4613 goto out; 4614 } 4615 4616 /* Poll fDeviceInit flag to be cleared */ 4617 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4618 do { 4619 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4620 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4621 if (!flag_res) 4622 break; 4623 usleep_range(500, 1000); 4624 } while (ktime_before(ktime_get(), timeout)); 4625 4626 if (err) { 4627 dev_err(hba->dev, 4628 "%s: reading fDeviceInit flag failed with error %d\n", 4629 __func__, err); 4630 } else if (flag_res) { 4631 dev_err(hba->dev, 4632 "%s: fDeviceInit was not cleared by the device\n", 4633 __func__); 4634 err = -EBUSY; 4635 } 4636 out: 4637 return err; 4638 } 4639 4640 /** 4641 * ufshcd_make_hba_operational - Make UFS controller operational 4642 * @hba: per adapter instance 4643 * 4644 * To bring UFS host controller to operational state, 4645 * 1. Enable required interrupts 4646 * 2. Configure interrupt aggregation 4647 * 3. Program UTRL and UTMRL base address 4648 * 4. Configure run-stop-registers 4649 * 4650 * Return: 0 on success, non-zero value on failure. 4651 */ 4652 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4653 { 4654 int err = 0; 4655 u32 reg; 4656 4657 /* Enable required interrupts */ 4658 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4659 4660 /* Configure interrupt aggregation */ 4661 if (ufshcd_is_intr_aggr_allowed(hba)) 4662 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4663 else 4664 ufshcd_disable_intr_aggr(hba); 4665 4666 /* Configure UTRL and UTMRL base address registers */ 4667 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4668 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4669 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4670 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4671 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4672 REG_UTP_TASK_REQ_LIST_BASE_L); 4673 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4674 REG_UTP_TASK_REQ_LIST_BASE_H); 4675 4676 /* 4677 * Make sure base address and interrupt setup are updated before 4678 * enabling the run/stop registers below. 4679 */ 4680 wmb(); 4681 4682 /* 4683 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4684 */ 4685 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4686 if (!(ufshcd_get_lists_status(reg))) { 4687 ufshcd_enable_run_stop_reg(hba); 4688 } else { 4689 dev_err(hba->dev, 4690 "Host controller not ready to process requests"); 4691 err = -EIO; 4692 } 4693 4694 return err; 4695 } 4696 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4697 4698 /** 4699 * ufshcd_hba_stop - Send controller to reset state 4700 * @hba: per adapter instance 4701 */ 4702 void ufshcd_hba_stop(struct ufs_hba *hba) 4703 { 4704 unsigned long flags; 4705 int err; 4706 4707 /* 4708 * Obtain the host lock to prevent that the controller is disabled 4709 * while the UFS interrupt handler is active on another CPU. 4710 */ 4711 spin_lock_irqsave(hba->host->host_lock, flags); 4712 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4713 spin_unlock_irqrestore(hba->host->host_lock, flags); 4714 4715 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4716 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4717 10, 1); 4718 if (err) 4719 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4720 } 4721 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4722 4723 /** 4724 * ufshcd_hba_execute_hce - initialize the controller 4725 * @hba: per adapter instance 4726 * 4727 * The controller resets itself and controller firmware initialization 4728 * sequence kicks off. When controller is ready it will set 4729 * the Host Controller Enable bit to 1. 4730 * 4731 * Return: 0 on success, non-zero value on failure. 4732 */ 4733 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4734 { 4735 int retry_outer = 3; 4736 int retry_inner; 4737 4738 start: 4739 if (ufshcd_is_hba_active(hba)) 4740 /* change controller state to "reset state" */ 4741 ufshcd_hba_stop(hba); 4742 4743 /* UniPro link is disabled at this point */ 4744 ufshcd_set_link_off(hba); 4745 4746 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4747 4748 /* start controller initialization sequence */ 4749 ufshcd_hba_start(hba); 4750 4751 /* 4752 * To initialize a UFS host controller HCE bit must be set to 1. 4753 * During initialization the HCE bit value changes from 1->0->1. 4754 * When the host controller completes initialization sequence 4755 * it sets the value of HCE bit to 1. The same HCE bit is read back 4756 * to check if the controller has completed initialization sequence. 4757 * So without this delay the value HCE = 1, set in the previous 4758 * instruction might be read back. 4759 * This delay can be changed based on the controller. 4760 */ 4761 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4762 4763 /* wait for the host controller to complete initialization */ 4764 retry_inner = 50; 4765 while (!ufshcd_is_hba_active(hba)) { 4766 if (retry_inner) { 4767 retry_inner--; 4768 } else { 4769 dev_err(hba->dev, 4770 "Controller enable failed\n"); 4771 if (retry_outer) { 4772 retry_outer--; 4773 goto start; 4774 } 4775 return -EIO; 4776 } 4777 usleep_range(1000, 1100); 4778 } 4779 4780 /* enable UIC related interrupts */ 4781 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4782 4783 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4784 4785 return 0; 4786 } 4787 4788 int ufshcd_hba_enable(struct ufs_hba *hba) 4789 { 4790 int ret; 4791 4792 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4793 ufshcd_set_link_off(hba); 4794 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4795 4796 /* enable UIC related interrupts */ 4797 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4798 ret = ufshcd_dme_reset(hba); 4799 if (ret) { 4800 dev_err(hba->dev, "DME_RESET failed\n"); 4801 return ret; 4802 } 4803 4804 ret = ufshcd_dme_enable(hba); 4805 if (ret) { 4806 dev_err(hba->dev, "Enabling DME failed\n"); 4807 return ret; 4808 } 4809 4810 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4811 } else { 4812 ret = ufshcd_hba_execute_hce(hba); 4813 } 4814 4815 return ret; 4816 } 4817 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4818 4819 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4820 { 4821 int tx_lanes = 0, i, err = 0; 4822 4823 if (!peer) 4824 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4825 &tx_lanes); 4826 else 4827 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4828 &tx_lanes); 4829 for (i = 0; i < tx_lanes; i++) { 4830 if (!peer) 4831 err = ufshcd_dme_set(hba, 4832 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4833 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4834 0); 4835 else 4836 err = ufshcd_dme_peer_set(hba, 4837 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4838 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4839 0); 4840 if (err) { 4841 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4842 __func__, peer, i, err); 4843 break; 4844 } 4845 } 4846 4847 return err; 4848 } 4849 4850 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4851 { 4852 return ufshcd_disable_tx_lcc(hba, true); 4853 } 4854 4855 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4856 { 4857 struct ufs_event_hist *e; 4858 4859 if (id >= UFS_EVT_CNT) 4860 return; 4861 4862 e = &hba->ufs_stats.event[id]; 4863 e->val[e->pos] = val; 4864 e->tstamp[e->pos] = local_clock(); 4865 e->cnt += 1; 4866 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4867 4868 ufshcd_vops_event_notify(hba, id, &val); 4869 } 4870 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4871 4872 /** 4873 * ufshcd_link_startup - Initialize unipro link startup 4874 * @hba: per adapter instance 4875 * 4876 * Return: 0 for success, non-zero in case of failure. 4877 */ 4878 static int ufshcd_link_startup(struct ufs_hba *hba) 4879 { 4880 int ret; 4881 int retries = DME_LINKSTARTUP_RETRIES; 4882 bool link_startup_again = false; 4883 4884 /* 4885 * If UFS device isn't active then we will have to issue link startup 4886 * 2 times to make sure the device state move to active. 4887 */ 4888 if (!ufshcd_is_ufs_dev_active(hba)) 4889 link_startup_again = true; 4890 4891 link_startup: 4892 do { 4893 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4894 4895 ret = ufshcd_dme_link_startup(hba); 4896 4897 /* check if device is detected by inter-connect layer */ 4898 if (!ret && !ufshcd_is_device_present(hba)) { 4899 ufshcd_update_evt_hist(hba, 4900 UFS_EVT_LINK_STARTUP_FAIL, 4901 0); 4902 dev_err(hba->dev, "%s: Device not present\n", __func__); 4903 ret = -ENXIO; 4904 goto out; 4905 } 4906 4907 /* 4908 * DME link lost indication is only received when link is up, 4909 * but we can't be sure if the link is up until link startup 4910 * succeeds. So reset the local Uni-Pro and try again. 4911 */ 4912 if (ret && retries && ufshcd_hba_enable(hba)) { 4913 ufshcd_update_evt_hist(hba, 4914 UFS_EVT_LINK_STARTUP_FAIL, 4915 (u32)ret); 4916 goto out; 4917 } 4918 } while (ret && retries--); 4919 4920 if (ret) { 4921 /* failed to get the link up... retire */ 4922 ufshcd_update_evt_hist(hba, 4923 UFS_EVT_LINK_STARTUP_FAIL, 4924 (u32)ret); 4925 goto out; 4926 } 4927 4928 if (link_startup_again) { 4929 link_startup_again = false; 4930 retries = DME_LINKSTARTUP_RETRIES; 4931 goto link_startup; 4932 } 4933 4934 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4935 ufshcd_init_pwr_info(hba); 4936 ufshcd_print_pwr_info(hba); 4937 4938 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4939 ret = ufshcd_disable_device_tx_lcc(hba); 4940 if (ret) 4941 goto out; 4942 } 4943 4944 /* Include any host controller configuration via UIC commands */ 4945 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4946 if (ret) 4947 goto out; 4948 4949 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4950 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4951 ret = ufshcd_make_hba_operational(hba); 4952 out: 4953 if (ret) { 4954 dev_err(hba->dev, "link startup failed %d\n", ret); 4955 ufshcd_print_host_state(hba); 4956 ufshcd_print_pwr_info(hba); 4957 ufshcd_print_evt_hist(hba); 4958 } 4959 return ret; 4960 } 4961 4962 /** 4963 * ufshcd_verify_dev_init() - Verify device initialization 4964 * @hba: per-adapter instance 4965 * 4966 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4967 * device Transport Protocol (UTP) layer is ready after a reset. 4968 * If the UTP layer at the device side is not initialized, it may 4969 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4970 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4971 * 4972 * Return: 0 upon success; < 0 upon failure. 4973 */ 4974 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4975 { 4976 int err = 0; 4977 int retries; 4978 4979 ufshcd_hold(hba); 4980 mutex_lock(&hba->dev_cmd.lock); 4981 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4982 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4983 hba->nop_out_timeout); 4984 4985 if (!err || err == -ETIMEDOUT) 4986 break; 4987 4988 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4989 } 4990 mutex_unlock(&hba->dev_cmd.lock); 4991 ufshcd_release(hba); 4992 4993 if (err) 4994 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4995 return err; 4996 } 4997 4998 /** 4999 * ufshcd_setup_links - associate link b/w device wlun and other luns 5000 * @sdev: pointer to SCSI device 5001 * @hba: pointer to ufs hba 5002 */ 5003 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 5004 { 5005 struct device_link *link; 5006 5007 /* 5008 * Device wlun is the supplier & rest of the luns are consumers. 5009 * This ensures that device wlun suspends after all other luns. 5010 */ 5011 if (hba->ufs_device_wlun) { 5012 link = device_link_add(&sdev->sdev_gendev, 5013 &hba->ufs_device_wlun->sdev_gendev, 5014 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 5015 if (!link) { 5016 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 5017 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 5018 return; 5019 } 5020 hba->luns_avail--; 5021 /* Ignore REPORT_LUN wlun probing */ 5022 if (hba->luns_avail == 1) { 5023 ufshcd_rpm_put(hba); 5024 return; 5025 } 5026 } else { 5027 /* 5028 * Device wlun is probed. The assumption is that WLUNs are 5029 * scanned before other LUNs. 5030 */ 5031 hba->luns_avail--; 5032 } 5033 } 5034 5035 /** 5036 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5037 * @hba: per-adapter instance 5038 * @sdev: pointer to SCSI device 5039 */ 5040 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5041 { 5042 int len = QUERY_DESC_MAX_SIZE; 5043 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5044 u8 lun_qdepth = hba->nutrs; 5045 u8 *desc_buf; 5046 int ret; 5047 5048 desc_buf = kzalloc(len, GFP_KERNEL); 5049 if (!desc_buf) 5050 goto set_qdepth; 5051 5052 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5053 if (ret < 0) { 5054 if (ret == -EOPNOTSUPP) 5055 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5056 lun_qdepth = 1; 5057 kfree(desc_buf); 5058 goto set_qdepth; 5059 } 5060 5061 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5062 /* 5063 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5064 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5065 */ 5066 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5067 } 5068 /* 5069 * According to UFS device specification, the write protection mode is only supported by 5070 * normal LU, not supported by WLUN. 5071 */ 5072 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5073 !hba->dev_info.is_lu_power_on_wp && 5074 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5075 hba->dev_info.is_lu_power_on_wp = true; 5076 5077 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5078 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5079 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5080 hba->dev_info.b_advanced_rpmb_en = true; 5081 5082 5083 kfree(desc_buf); 5084 set_qdepth: 5085 /* 5086 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5087 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5088 */ 5089 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5090 scsi_change_queue_depth(sdev, lun_qdepth); 5091 } 5092 5093 /** 5094 * ufshcd_slave_alloc - handle initial SCSI device configurations 5095 * @sdev: pointer to SCSI device 5096 * 5097 * Return: success. 5098 */ 5099 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5100 { 5101 struct ufs_hba *hba; 5102 5103 hba = shost_priv(sdev->host); 5104 5105 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5106 sdev->use_10_for_ms = 1; 5107 5108 /* DBD field should be set to 1 in mode sense(10) */ 5109 sdev->set_dbd_for_ms = 1; 5110 5111 /* allow SCSI layer to restart the device in case of errors */ 5112 sdev->allow_restart = 1; 5113 5114 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5115 sdev->no_report_opcodes = 1; 5116 5117 /* WRITE_SAME command is not supported */ 5118 sdev->no_write_same = 1; 5119 5120 ufshcd_lu_init(hba, sdev); 5121 5122 ufshcd_setup_links(hba, sdev); 5123 5124 return 0; 5125 } 5126 5127 /** 5128 * ufshcd_change_queue_depth - change queue depth 5129 * @sdev: pointer to SCSI device 5130 * @depth: required depth to set 5131 * 5132 * Change queue depth and make sure the max. limits are not crossed. 5133 * 5134 * Return: new queue depth. 5135 */ 5136 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5137 { 5138 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5139 } 5140 5141 /** 5142 * ufshcd_slave_configure - adjust SCSI device configurations 5143 * @sdev: pointer to SCSI device 5144 * 5145 * Return: 0 (success). 5146 */ 5147 static int ufshcd_slave_configure(struct scsi_device *sdev) 5148 { 5149 struct ufs_hba *hba = shost_priv(sdev->host); 5150 struct request_queue *q = sdev->request_queue; 5151 5152 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 5153 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT) 5154 blk_queue_update_dma_alignment(q, SZ_4K - 1); 5155 /* 5156 * Block runtime-pm until all consumers are added. 5157 * Refer ufshcd_setup_links(). 5158 */ 5159 if (is_device_wlun(sdev)) 5160 pm_runtime_get_noresume(&sdev->sdev_gendev); 5161 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5162 sdev->rpm_autosuspend = 1; 5163 /* 5164 * Do not print messages during runtime PM to avoid never-ending cycles 5165 * of messages written back to storage by user space causing runtime 5166 * resume, causing more messages and so on. 5167 */ 5168 sdev->silence_suspend = 1; 5169 5170 ufshcd_crypto_register(hba, q); 5171 5172 return 0; 5173 } 5174 5175 /** 5176 * ufshcd_slave_destroy - remove SCSI device configurations 5177 * @sdev: pointer to SCSI device 5178 */ 5179 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5180 { 5181 struct ufs_hba *hba; 5182 unsigned long flags; 5183 5184 hba = shost_priv(sdev->host); 5185 5186 /* Drop the reference as it won't be needed anymore */ 5187 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5188 spin_lock_irqsave(hba->host->host_lock, flags); 5189 hba->ufs_device_wlun = NULL; 5190 spin_unlock_irqrestore(hba->host->host_lock, flags); 5191 } else if (hba->ufs_device_wlun) { 5192 struct device *supplier = NULL; 5193 5194 /* Ensure UFS Device WLUN exists and does not disappear */ 5195 spin_lock_irqsave(hba->host->host_lock, flags); 5196 if (hba->ufs_device_wlun) { 5197 supplier = &hba->ufs_device_wlun->sdev_gendev; 5198 get_device(supplier); 5199 } 5200 spin_unlock_irqrestore(hba->host->host_lock, flags); 5201 5202 if (supplier) { 5203 /* 5204 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5205 * device will not have been registered but can still 5206 * have a device link holding a reference to the device. 5207 */ 5208 device_link_remove(&sdev->sdev_gendev, supplier); 5209 put_device(supplier); 5210 } 5211 } 5212 } 5213 5214 /** 5215 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5216 * @lrbp: pointer to local reference block of completed command 5217 * @scsi_status: SCSI command status 5218 * 5219 * Return: value base on SCSI command status. 5220 */ 5221 static inline int 5222 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5223 { 5224 int result = 0; 5225 5226 switch (scsi_status) { 5227 case SAM_STAT_CHECK_CONDITION: 5228 ufshcd_copy_sense_data(lrbp); 5229 fallthrough; 5230 case SAM_STAT_GOOD: 5231 result |= DID_OK << 16 | scsi_status; 5232 break; 5233 case SAM_STAT_TASK_SET_FULL: 5234 case SAM_STAT_BUSY: 5235 case SAM_STAT_TASK_ABORTED: 5236 ufshcd_copy_sense_data(lrbp); 5237 result |= scsi_status; 5238 break; 5239 default: 5240 result |= DID_ERROR << 16; 5241 break; 5242 } /* end of switch */ 5243 5244 return result; 5245 } 5246 5247 /** 5248 * ufshcd_transfer_rsp_status - Get overall status of the response 5249 * @hba: per adapter instance 5250 * @lrbp: pointer to local reference block of completed command 5251 * @cqe: pointer to the completion queue entry 5252 * 5253 * Return: result of the command to notify SCSI midlayer. 5254 */ 5255 static inline int 5256 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5257 struct cq_entry *cqe) 5258 { 5259 int result = 0; 5260 int scsi_status; 5261 enum utp_ocs ocs; 5262 u8 upiu_flags; 5263 u32 resid; 5264 5265 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5266 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5267 /* 5268 * Test !overflow instead of underflow to support UFS devices that do 5269 * not set either flag. 5270 */ 5271 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5272 scsi_set_resid(lrbp->cmd, resid); 5273 5274 /* overall command status of utrd */ 5275 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5276 5277 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5278 if (lrbp->ucd_rsp_ptr->header.response || 5279 lrbp->ucd_rsp_ptr->header.status) 5280 ocs = OCS_SUCCESS; 5281 } 5282 5283 switch (ocs) { 5284 case OCS_SUCCESS: 5285 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5286 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5287 case UPIU_TRANSACTION_RESPONSE: 5288 /* 5289 * get the result based on SCSI status response 5290 * to notify the SCSI midlayer of the command status 5291 */ 5292 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5293 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5294 5295 /* 5296 * Currently we are only supporting BKOPs exception 5297 * events hence we can ignore BKOPs exception event 5298 * during power management callbacks. BKOPs exception 5299 * event is not expected to be raised in runtime suspend 5300 * callback as it allows the urgent bkops. 5301 * During system suspend, we are anyway forcefully 5302 * disabling the bkops and if urgent bkops is needed 5303 * it will be enabled on system resume. Long term 5304 * solution could be to abort the system suspend if 5305 * UFS device needs urgent BKOPs. 5306 */ 5307 if (!hba->pm_op_in_progress && 5308 !ufshcd_eh_in_progress(hba) && 5309 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5310 /* Flushed in suspend */ 5311 schedule_work(&hba->eeh_work); 5312 break; 5313 case UPIU_TRANSACTION_REJECT_UPIU: 5314 /* TODO: handle Reject UPIU Response */ 5315 result = DID_ERROR << 16; 5316 dev_err(hba->dev, 5317 "Reject UPIU not fully implemented\n"); 5318 break; 5319 default: 5320 dev_err(hba->dev, 5321 "Unexpected request response code = %x\n", 5322 result); 5323 result = DID_ERROR << 16; 5324 break; 5325 } 5326 break; 5327 case OCS_ABORTED: 5328 result |= DID_ABORT << 16; 5329 break; 5330 case OCS_INVALID_COMMAND_STATUS: 5331 result |= DID_REQUEUE << 16; 5332 break; 5333 case OCS_INVALID_CMD_TABLE_ATTR: 5334 case OCS_INVALID_PRDT_ATTR: 5335 case OCS_MISMATCH_DATA_BUF_SIZE: 5336 case OCS_MISMATCH_RESP_UPIU_SIZE: 5337 case OCS_PEER_COMM_FAILURE: 5338 case OCS_FATAL_ERROR: 5339 case OCS_DEVICE_FATAL_ERROR: 5340 case OCS_INVALID_CRYPTO_CONFIG: 5341 case OCS_GENERAL_CRYPTO_ERROR: 5342 default: 5343 result |= DID_ERROR << 16; 5344 dev_err(hba->dev, 5345 "OCS error from controller = %x for tag %d\n", 5346 ocs, lrbp->task_tag); 5347 ufshcd_print_evt_hist(hba); 5348 ufshcd_print_host_state(hba); 5349 break; 5350 } /* end of switch */ 5351 5352 if ((host_byte(result) != DID_OK) && 5353 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5354 ufshcd_print_tr(hba, lrbp->task_tag, true); 5355 return result; 5356 } 5357 5358 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5359 u32 intr_mask) 5360 { 5361 if (!ufshcd_is_auto_hibern8_supported(hba) || 5362 !ufshcd_is_auto_hibern8_enabled(hba)) 5363 return false; 5364 5365 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5366 return false; 5367 5368 if (hba->active_uic_cmd && 5369 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5370 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5371 return false; 5372 5373 return true; 5374 } 5375 5376 /** 5377 * ufshcd_uic_cmd_compl - handle completion of uic command 5378 * @hba: per adapter instance 5379 * @intr_status: interrupt status generated by the controller 5380 * 5381 * Return: 5382 * IRQ_HANDLED - If interrupt is valid 5383 * IRQ_NONE - If invalid interrupt 5384 */ 5385 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5386 { 5387 irqreturn_t retval = IRQ_NONE; 5388 5389 spin_lock(hba->host->host_lock); 5390 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5391 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5392 5393 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5394 hba->active_uic_cmd->argument2 |= 5395 ufshcd_get_uic_cmd_result(hba); 5396 hba->active_uic_cmd->argument3 = 5397 ufshcd_get_dme_attr_val(hba); 5398 if (!hba->uic_async_done) 5399 hba->active_uic_cmd->cmd_active = 0; 5400 complete(&hba->active_uic_cmd->done); 5401 retval = IRQ_HANDLED; 5402 } 5403 5404 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5405 hba->active_uic_cmd->cmd_active = 0; 5406 complete(hba->uic_async_done); 5407 retval = IRQ_HANDLED; 5408 } 5409 5410 if (retval == IRQ_HANDLED) 5411 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5412 UFS_CMD_COMP); 5413 spin_unlock(hba->host->host_lock); 5414 return retval; 5415 } 5416 5417 /* Release the resources allocated for processing a SCSI command. */ 5418 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5419 struct ufshcd_lrb *lrbp) 5420 { 5421 struct scsi_cmnd *cmd = lrbp->cmd; 5422 5423 scsi_dma_unmap(cmd); 5424 ufshcd_release(hba); 5425 ufshcd_clk_scaling_update_busy(hba); 5426 } 5427 5428 /** 5429 * ufshcd_compl_one_cqe - handle a completion queue entry 5430 * @hba: per adapter instance 5431 * @task_tag: the task tag of the request to be completed 5432 * @cqe: pointer to the completion queue entry 5433 */ 5434 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5435 struct cq_entry *cqe) 5436 { 5437 struct ufshcd_lrb *lrbp; 5438 struct scsi_cmnd *cmd; 5439 enum utp_ocs ocs; 5440 5441 lrbp = &hba->lrb[task_tag]; 5442 lrbp->compl_time_stamp = ktime_get(); 5443 cmd = lrbp->cmd; 5444 if (cmd) { 5445 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5446 ufshcd_update_monitor(hba, lrbp); 5447 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5448 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5449 ufshcd_release_scsi_cmd(hba, lrbp); 5450 /* Do not touch lrbp after scsi done */ 5451 scsi_done(cmd); 5452 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 5453 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 5454 if (hba->dev_cmd.complete) { 5455 if (cqe) { 5456 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5457 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5458 } 5459 complete(hba->dev_cmd.complete); 5460 ufshcd_clk_scaling_update_busy(hba); 5461 } 5462 } 5463 } 5464 5465 /** 5466 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5467 * @hba: per adapter instance 5468 * @completed_reqs: bitmask that indicates which requests to complete 5469 */ 5470 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5471 unsigned long completed_reqs) 5472 { 5473 int tag; 5474 5475 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5476 ufshcd_compl_one_cqe(hba, tag, NULL); 5477 } 5478 5479 /* Any value that is not an existing queue number is fine for this constant. */ 5480 enum { 5481 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5482 }; 5483 5484 static void ufshcd_clear_polled(struct ufs_hba *hba, 5485 unsigned long *completed_reqs) 5486 { 5487 int tag; 5488 5489 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5490 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5491 5492 if (!cmd) 5493 continue; 5494 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5495 __clear_bit(tag, completed_reqs); 5496 } 5497 } 5498 5499 /* 5500 * Return: > 0 if one or more commands have been completed or 0 if no 5501 * requests have been completed. 5502 */ 5503 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5504 { 5505 struct ufs_hba *hba = shost_priv(shost); 5506 unsigned long completed_reqs, flags; 5507 u32 tr_doorbell; 5508 struct ufs_hw_queue *hwq; 5509 5510 if (is_mcq_enabled(hba)) { 5511 hwq = &hba->uhq[queue_num]; 5512 5513 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5514 } 5515 5516 spin_lock_irqsave(&hba->outstanding_lock, flags); 5517 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5518 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5519 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5520 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5521 hba->outstanding_reqs); 5522 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5523 /* Do not complete polled requests from interrupt context. */ 5524 ufshcd_clear_polled(hba, &completed_reqs); 5525 } 5526 hba->outstanding_reqs &= ~completed_reqs; 5527 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5528 5529 if (completed_reqs) 5530 __ufshcd_transfer_req_compl(hba, completed_reqs); 5531 5532 return completed_reqs != 0; 5533 } 5534 5535 /** 5536 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5537 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5538 * to complete the pending transfers and free the resources associated with 5539 * the scsi command. 5540 * 5541 * @hba: per adapter instance 5542 * @force_compl: This flag is set to true when invoked 5543 * from ufshcd_host_reset_and_restore() in which case it requires special 5544 * handling because the host controller has been reset by ufshcd_hba_stop(). 5545 */ 5546 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5547 bool force_compl) 5548 { 5549 struct ufs_hw_queue *hwq; 5550 struct ufshcd_lrb *lrbp; 5551 struct scsi_cmnd *cmd; 5552 unsigned long flags; 5553 u32 hwq_num, utag; 5554 int tag; 5555 5556 for (tag = 0; tag < hba->nutrs; tag++) { 5557 lrbp = &hba->lrb[tag]; 5558 cmd = lrbp->cmd; 5559 if (!ufshcd_cmd_inflight(cmd) || 5560 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5561 continue; 5562 5563 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd)); 5564 hwq_num = blk_mq_unique_tag_to_hwq(utag); 5565 hwq = &hba->uhq[hwq_num]; 5566 5567 if (force_compl) { 5568 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5569 /* 5570 * For those cmds of which the cqes are not present 5571 * in the cq, complete them explicitly. 5572 */ 5573 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5574 spin_lock_irqsave(&hwq->cq_lock, flags); 5575 set_host_byte(cmd, DID_REQUEUE); 5576 ufshcd_release_scsi_cmd(hba, lrbp); 5577 scsi_done(cmd); 5578 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5579 } 5580 } else { 5581 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5582 } 5583 } 5584 } 5585 5586 /** 5587 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5588 * @hba: per adapter instance 5589 * 5590 * Return: 5591 * IRQ_HANDLED - If interrupt is valid 5592 * IRQ_NONE - If invalid interrupt 5593 */ 5594 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5595 { 5596 /* Resetting interrupt aggregation counters first and reading the 5597 * DOOR_BELL afterward allows us to handle all the completed requests. 5598 * In order to prevent other interrupts starvation the DB is read once 5599 * after reset. The down side of this solution is the possibility of 5600 * false interrupt if device completes another request after resetting 5601 * aggregation and before reading the DB. 5602 */ 5603 if (ufshcd_is_intr_aggr_allowed(hba) && 5604 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5605 ufshcd_reset_intr_aggr(hba); 5606 5607 if (ufs_fail_completion()) 5608 return IRQ_HANDLED; 5609 5610 /* 5611 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5612 * do not want polling to trigger spurious interrupt complaints. 5613 */ 5614 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5615 5616 return IRQ_HANDLED; 5617 } 5618 5619 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5620 { 5621 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5622 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5623 &ee_ctrl_mask); 5624 } 5625 5626 int ufshcd_write_ee_control(struct ufs_hba *hba) 5627 { 5628 int err; 5629 5630 mutex_lock(&hba->ee_ctrl_mutex); 5631 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5632 mutex_unlock(&hba->ee_ctrl_mutex); 5633 if (err) 5634 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5635 __func__, err); 5636 return err; 5637 } 5638 5639 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5640 const u16 *other_mask, u16 set, u16 clr) 5641 { 5642 u16 new_mask, ee_ctrl_mask; 5643 int err = 0; 5644 5645 mutex_lock(&hba->ee_ctrl_mutex); 5646 new_mask = (*mask & ~clr) | set; 5647 ee_ctrl_mask = new_mask | *other_mask; 5648 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5649 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5650 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5651 if (!err) { 5652 hba->ee_ctrl_mask = ee_ctrl_mask; 5653 *mask = new_mask; 5654 } 5655 mutex_unlock(&hba->ee_ctrl_mutex); 5656 return err; 5657 } 5658 5659 /** 5660 * ufshcd_disable_ee - disable exception event 5661 * @hba: per-adapter instance 5662 * @mask: exception event to disable 5663 * 5664 * Disables exception event in the device so that the EVENT_ALERT 5665 * bit is not set. 5666 * 5667 * Return: zero on success, non-zero error value on failure. 5668 */ 5669 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5670 { 5671 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5672 } 5673 5674 /** 5675 * ufshcd_enable_ee - enable exception event 5676 * @hba: per-adapter instance 5677 * @mask: exception event to enable 5678 * 5679 * Enable corresponding exception event in the device to allow 5680 * device to alert host in critical scenarios. 5681 * 5682 * Return: zero on success, non-zero error value on failure. 5683 */ 5684 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5685 { 5686 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5687 } 5688 5689 /** 5690 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5691 * @hba: per-adapter instance 5692 * 5693 * Allow device to manage background operations on its own. Enabling 5694 * this might lead to inconsistent latencies during normal data transfers 5695 * as the device is allowed to manage its own way of handling background 5696 * operations. 5697 * 5698 * Return: zero on success, non-zero on failure. 5699 */ 5700 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5701 { 5702 int err = 0; 5703 5704 if (hba->auto_bkops_enabled) 5705 goto out; 5706 5707 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5708 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5709 if (err) { 5710 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5711 __func__, err); 5712 goto out; 5713 } 5714 5715 hba->auto_bkops_enabled = true; 5716 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5717 5718 /* No need of URGENT_BKOPS exception from the device */ 5719 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5720 if (err) 5721 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5722 __func__, err); 5723 out: 5724 return err; 5725 } 5726 5727 /** 5728 * ufshcd_disable_auto_bkops - block device in doing background operations 5729 * @hba: per-adapter instance 5730 * 5731 * Disabling background operations improves command response latency but 5732 * has drawback of device moving into critical state where the device is 5733 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5734 * host is idle so that BKOPS are managed effectively without any negative 5735 * impacts. 5736 * 5737 * Return: zero on success, non-zero on failure. 5738 */ 5739 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5740 { 5741 int err = 0; 5742 5743 if (!hba->auto_bkops_enabled) 5744 goto out; 5745 5746 /* 5747 * If host assisted BKOPs is to be enabled, make sure 5748 * urgent bkops exception is allowed. 5749 */ 5750 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5751 if (err) { 5752 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5753 __func__, err); 5754 goto out; 5755 } 5756 5757 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5758 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5759 if (err) { 5760 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5761 __func__, err); 5762 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5763 goto out; 5764 } 5765 5766 hba->auto_bkops_enabled = false; 5767 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5768 hba->is_urgent_bkops_lvl_checked = false; 5769 out: 5770 return err; 5771 } 5772 5773 /** 5774 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5775 * @hba: per adapter instance 5776 * 5777 * After a device reset the device may toggle the BKOPS_EN flag 5778 * to default value. The s/w tracking variables should be updated 5779 * as well. This function would change the auto-bkops state based on 5780 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5781 */ 5782 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5783 { 5784 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5785 hba->auto_bkops_enabled = false; 5786 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5787 ufshcd_enable_auto_bkops(hba); 5788 } else { 5789 hba->auto_bkops_enabled = true; 5790 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5791 ufshcd_disable_auto_bkops(hba); 5792 } 5793 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5794 hba->is_urgent_bkops_lvl_checked = false; 5795 } 5796 5797 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5798 { 5799 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5800 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5801 } 5802 5803 /** 5804 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5805 * @hba: per-adapter instance 5806 * @status: bkops_status value 5807 * 5808 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5809 * flag in the device to permit background operations if the device 5810 * bkops_status is greater than or equal to "status" argument passed to 5811 * this function, disable otherwise. 5812 * 5813 * Return: 0 for success, non-zero in case of failure. 5814 * 5815 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5816 * to know whether auto bkops is enabled or disabled after this function 5817 * returns control to it. 5818 */ 5819 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5820 enum bkops_status status) 5821 { 5822 int err; 5823 u32 curr_status = 0; 5824 5825 err = ufshcd_get_bkops_status(hba, &curr_status); 5826 if (err) { 5827 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5828 __func__, err); 5829 goto out; 5830 } else if (curr_status > BKOPS_STATUS_MAX) { 5831 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5832 __func__, curr_status); 5833 err = -EINVAL; 5834 goto out; 5835 } 5836 5837 if (curr_status >= status) 5838 err = ufshcd_enable_auto_bkops(hba); 5839 else 5840 err = ufshcd_disable_auto_bkops(hba); 5841 out: 5842 return err; 5843 } 5844 5845 /** 5846 * ufshcd_urgent_bkops - handle urgent bkops exception event 5847 * @hba: per-adapter instance 5848 * 5849 * Enable fBackgroundOpsEn flag in the device to permit background 5850 * operations. 5851 * 5852 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5853 * and negative error value for any other failure. 5854 * 5855 * Return: 0 upon success; < 0 upon failure. 5856 */ 5857 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5858 { 5859 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5860 } 5861 5862 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5863 { 5864 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5865 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5866 } 5867 5868 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5869 { 5870 int err; 5871 u32 curr_status = 0; 5872 5873 if (hba->is_urgent_bkops_lvl_checked) 5874 goto enable_auto_bkops; 5875 5876 err = ufshcd_get_bkops_status(hba, &curr_status); 5877 if (err) { 5878 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5879 __func__, err); 5880 goto out; 5881 } 5882 5883 /* 5884 * We are seeing that some devices are raising the urgent bkops 5885 * exception events even when BKOPS status doesn't indicate performace 5886 * impacted or critical. Handle these device by determining their urgent 5887 * bkops status at runtime. 5888 */ 5889 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5890 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5891 __func__, curr_status); 5892 /* update the current status as the urgent bkops level */ 5893 hba->urgent_bkops_lvl = curr_status; 5894 hba->is_urgent_bkops_lvl_checked = true; 5895 } 5896 5897 enable_auto_bkops: 5898 err = ufshcd_enable_auto_bkops(hba); 5899 out: 5900 if (err < 0) 5901 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5902 __func__, err); 5903 } 5904 5905 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5906 { 5907 u32 value; 5908 5909 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5910 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5911 return; 5912 5913 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5914 5915 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5916 5917 /* 5918 * A placeholder for the platform vendors to add whatever additional 5919 * steps required 5920 */ 5921 } 5922 5923 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5924 { 5925 u8 index; 5926 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5927 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5928 5929 index = ufshcd_wb_get_query_index(hba); 5930 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5931 } 5932 5933 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5934 { 5935 int ret; 5936 5937 if (!ufshcd_is_wb_allowed(hba) || 5938 hba->dev_info.wb_enabled == enable) 5939 return 0; 5940 5941 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5942 if (ret) { 5943 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5944 __func__, enable ? "enabling" : "disabling", ret); 5945 return ret; 5946 } 5947 5948 hba->dev_info.wb_enabled = enable; 5949 dev_dbg(hba->dev, "%s: Write Booster %s\n", 5950 __func__, enable ? "enabled" : "disabled"); 5951 5952 return ret; 5953 } 5954 5955 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 5956 bool enable) 5957 { 5958 int ret; 5959 5960 ret = __ufshcd_wb_toggle(hba, enable, 5961 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 5962 if (ret) { 5963 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 5964 __func__, enable ? "enabling" : "disabling", ret); 5965 return; 5966 } 5967 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 5968 __func__, enable ? "enabled" : "disabled"); 5969 } 5970 5971 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 5972 { 5973 int ret; 5974 5975 if (!ufshcd_is_wb_allowed(hba) || 5976 hba->dev_info.wb_buf_flush_enabled == enable) 5977 return 0; 5978 5979 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 5980 if (ret) { 5981 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 5982 __func__, enable ? "enabling" : "disabling", ret); 5983 return ret; 5984 } 5985 5986 hba->dev_info.wb_buf_flush_enabled = enable; 5987 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 5988 __func__, enable ? "enabled" : "disabled"); 5989 5990 return ret; 5991 } 5992 5993 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5994 u32 avail_buf) 5995 { 5996 u32 cur_buf; 5997 int ret; 5998 u8 index; 5999 6000 index = ufshcd_wb_get_query_index(hba); 6001 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6002 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 6003 index, 0, &cur_buf); 6004 if (ret) { 6005 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 6006 __func__, ret); 6007 return false; 6008 } 6009 6010 if (!cur_buf) { 6011 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6012 cur_buf); 6013 return false; 6014 } 6015 /* Let it continue to flush when available buffer exceeds threshold */ 6016 return avail_buf < hba->vps->wb_flush_threshold; 6017 } 6018 6019 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6020 { 6021 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6022 ufshcd_wb_toggle_buf_flush(hba, false); 6023 6024 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6025 ufshcd_wb_toggle(hba, false); 6026 hba->caps &= ~UFSHCD_CAP_WB_EN; 6027 6028 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6029 } 6030 6031 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6032 { 6033 u32 lifetime; 6034 int ret; 6035 u8 index; 6036 6037 index = ufshcd_wb_get_query_index(hba); 6038 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6039 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6040 index, 0, &lifetime); 6041 if (ret) { 6042 dev_err(hba->dev, 6043 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6044 __func__, ret); 6045 return false; 6046 } 6047 6048 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6049 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6050 __func__, lifetime); 6051 return false; 6052 } 6053 6054 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6055 __func__, lifetime); 6056 6057 return true; 6058 } 6059 6060 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6061 { 6062 int ret; 6063 u32 avail_buf; 6064 u8 index; 6065 6066 if (!ufshcd_is_wb_allowed(hba)) 6067 return false; 6068 6069 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6070 ufshcd_wb_force_disable(hba); 6071 return false; 6072 } 6073 6074 /* 6075 * The ufs device needs the vcc to be ON to flush. 6076 * With user-space reduction enabled, it's enough to enable flush 6077 * by checking only the available buffer. The threshold 6078 * defined here is > 90% full. 6079 * With user-space preserved enabled, the current-buffer 6080 * should be checked too because the wb buffer size can reduce 6081 * when disk tends to be full. This info is provided by current 6082 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6083 * keeping vcc on when current buffer is empty. 6084 */ 6085 index = ufshcd_wb_get_query_index(hba); 6086 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6087 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6088 index, 0, &avail_buf); 6089 if (ret) { 6090 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6091 __func__, ret); 6092 return false; 6093 } 6094 6095 if (!hba->dev_info.b_presrv_uspc_en) 6096 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6097 6098 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6099 } 6100 6101 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6102 { 6103 struct ufs_hba *hba = container_of(to_delayed_work(work), 6104 struct ufs_hba, 6105 rpm_dev_flush_recheck_work); 6106 /* 6107 * To prevent unnecessary VCC power drain after device finishes 6108 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6109 * after a certain delay to recheck the threshold by next runtime 6110 * suspend. 6111 */ 6112 ufshcd_rpm_get_sync(hba); 6113 ufshcd_rpm_put_sync(hba); 6114 } 6115 6116 /** 6117 * ufshcd_exception_event_handler - handle exceptions raised by device 6118 * @work: pointer to work data 6119 * 6120 * Read bExceptionEventStatus attribute from the device and handle the 6121 * exception event accordingly. 6122 */ 6123 static void ufshcd_exception_event_handler(struct work_struct *work) 6124 { 6125 struct ufs_hba *hba; 6126 int err; 6127 u32 status = 0; 6128 hba = container_of(work, struct ufs_hba, eeh_work); 6129 6130 ufshcd_scsi_block_requests(hba); 6131 err = ufshcd_get_ee_status(hba, &status); 6132 if (err) { 6133 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6134 __func__, err); 6135 goto out; 6136 } 6137 6138 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6139 6140 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6141 ufshcd_bkops_exception_event_handler(hba); 6142 6143 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6144 ufshcd_temp_exception_event_handler(hba, status); 6145 6146 ufs_debugfs_exception_event(hba, status); 6147 out: 6148 ufshcd_scsi_unblock_requests(hba); 6149 } 6150 6151 /* Complete requests that have door-bell cleared */ 6152 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6153 { 6154 if (is_mcq_enabled(hba)) 6155 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6156 else 6157 ufshcd_transfer_req_compl(hba); 6158 6159 ufshcd_tmc_handler(hba); 6160 } 6161 6162 /** 6163 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6164 * to recover from the DL NAC errors or not. 6165 * @hba: per-adapter instance 6166 * 6167 * Return: true if error handling is required, false otherwise. 6168 */ 6169 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6170 { 6171 unsigned long flags; 6172 bool err_handling = true; 6173 6174 spin_lock_irqsave(hba->host->host_lock, flags); 6175 /* 6176 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6177 * device fatal error and/or DL NAC & REPLAY timeout errors. 6178 */ 6179 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6180 goto out; 6181 6182 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6183 ((hba->saved_err & UIC_ERROR) && 6184 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6185 goto out; 6186 6187 if ((hba->saved_err & UIC_ERROR) && 6188 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6189 int err; 6190 /* 6191 * wait for 50ms to see if we can get any other errors or not. 6192 */ 6193 spin_unlock_irqrestore(hba->host->host_lock, flags); 6194 msleep(50); 6195 spin_lock_irqsave(hba->host->host_lock, flags); 6196 6197 /* 6198 * now check if we have got any other severe errors other than 6199 * DL NAC error? 6200 */ 6201 if ((hba->saved_err & INT_FATAL_ERRORS) || 6202 ((hba->saved_err & UIC_ERROR) && 6203 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6204 goto out; 6205 6206 /* 6207 * As DL NAC is the only error received so far, send out NOP 6208 * command to confirm if link is still active or not. 6209 * - If we don't get any response then do error recovery. 6210 * - If we get response then clear the DL NAC error bit. 6211 */ 6212 6213 spin_unlock_irqrestore(hba->host->host_lock, flags); 6214 err = ufshcd_verify_dev_init(hba); 6215 spin_lock_irqsave(hba->host->host_lock, flags); 6216 6217 if (err) 6218 goto out; 6219 6220 /* Link seems to be alive hence ignore the DL NAC errors */ 6221 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6222 hba->saved_err &= ~UIC_ERROR; 6223 /* clear NAC error */ 6224 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6225 if (!hba->saved_uic_err) 6226 err_handling = false; 6227 } 6228 out: 6229 spin_unlock_irqrestore(hba->host->host_lock, flags); 6230 return err_handling; 6231 } 6232 6233 /* host lock must be held before calling this func */ 6234 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6235 { 6236 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6237 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6238 } 6239 6240 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6241 { 6242 lockdep_assert_held(hba->host->host_lock); 6243 6244 /* handle fatal errors only when link is not in error state */ 6245 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6246 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6247 ufshcd_is_saved_err_fatal(hba)) 6248 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6249 else 6250 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6251 queue_work(hba->eh_wq, &hba->eh_work); 6252 } 6253 } 6254 6255 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6256 { 6257 spin_lock_irq(hba->host->host_lock); 6258 hba->force_reset = true; 6259 ufshcd_schedule_eh_work(hba); 6260 spin_unlock_irq(hba->host->host_lock); 6261 } 6262 6263 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6264 { 6265 mutex_lock(&hba->wb_mutex); 6266 down_write(&hba->clk_scaling_lock); 6267 hba->clk_scaling.is_allowed = allow; 6268 up_write(&hba->clk_scaling_lock); 6269 mutex_unlock(&hba->wb_mutex); 6270 } 6271 6272 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6273 { 6274 if (suspend) { 6275 if (hba->clk_scaling.is_enabled) 6276 ufshcd_suspend_clkscaling(hba); 6277 ufshcd_clk_scaling_allow(hba, false); 6278 } else { 6279 ufshcd_clk_scaling_allow(hba, true); 6280 if (hba->clk_scaling.is_enabled) 6281 ufshcd_resume_clkscaling(hba); 6282 } 6283 } 6284 6285 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6286 { 6287 ufshcd_rpm_get_sync(hba); 6288 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6289 hba->is_sys_suspended) { 6290 enum ufs_pm_op pm_op; 6291 6292 /* 6293 * Don't assume anything of resume, if 6294 * resume fails, irq and clocks can be OFF, and powers 6295 * can be OFF or in LPM. 6296 */ 6297 ufshcd_setup_hba_vreg(hba, true); 6298 ufshcd_enable_irq(hba); 6299 ufshcd_setup_vreg(hba, true); 6300 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6301 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6302 ufshcd_hold(hba); 6303 if (!ufshcd_is_clkgating_allowed(hba)) 6304 ufshcd_setup_clocks(hba, true); 6305 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6306 ufshcd_vops_resume(hba, pm_op); 6307 } else { 6308 ufshcd_hold(hba); 6309 if (ufshcd_is_clkscaling_supported(hba) && 6310 hba->clk_scaling.is_enabled) 6311 ufshcd_suspend_clkscaling(hba); 6312 ufshcd_clk_scaling_allow(hba, false); 6313 } 6314 ufshcd_scsi_block_requests(hba); 6315 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6316 blk_mq_wait_quiesce_done(&hba->host->tag_set); 6317 cancel_work_sync(&hba->eeh_work); 6318 } 6319 6320 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6321 { 6322 ufshcd_scsi_unblock_requests(hba); 6323 ufshcd_release(hba); 6324 if (ufshcd_is_clkscaling_supported(hba)) 6325 ufshcd_clk_scaling_suspend(hba, false); 6326 ufshcd_rpm_put(hba); 6327 } 6328 6329 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6330 { 6331 return (!hba->is_powered || hba->shutting_down || 6332 !hba->ufs_device_wlun || 6333 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6334 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6335 ufshcd_is_link_broken(hba)))); 6336 } 6337 6338 #ifdef CONFIG_PM 6339 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6340 { 6341 struct Scsi_Host *shost = hba->host; 6342 struct scsi_device *sdev; 6343 struct request_queue *q; 6344 int ret; 6345 6346 hba->is_sys_suspended = false; 6347 /* 6348 * Set RPM status of wlun device to RPM_ACTIVE, 6349 * this also clears its runtime error. 6350 */ 6351 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6352 6353 /* hba device might have a runtime error otherwise */ 6354 if (ret) 6355 ret = pm_runtime_set_active(hba->dev); 6356 /* 6357 * If wlun device had runtime error, we also need to resume those 6358 * consumer scsi devices in case any of them has failed to be 6359 * resumed due to supplier runtime resume failure. This is to unblock 6360 * blk_queue_enter in case there are bios waiting inside it. 6361 */ 6362 if (!ret) { 6363 shost_for_each_device(sdev, shost) { 6364 q = sdev->request_queue; 6365 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6366 q->rpm_status == RPM_SUSPENDING)) 6367 pm_request_resume(q->dev); 6368 } 6369 } 6370 } 6371 #else 6372 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6373 { 6374 } 6375 #endif 6376 6377 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6378 { 6379 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6380 u32 mode; 6381 6382 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6383 6384 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6385 return true; 6386 6387 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6388 return true; 6389 6390 return false; 6391 } 6392 6393 static bool ufshcd_abort_one(struct request *rq, void *priv) 6394 { 6395 int *ret = priv; 6396 u32 tag = rq->tag; 6397 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6398 struct scsi_device *sdev = cmd->device; 6399 struct Scsi_Host *shost = sdev->host; 6400 struct ufs_hba *hba = shost_priv(shost); 6401 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 6402 struct ufs_hw_queue *hwq; 6403 unsigned long flags; 6404 6405 *ret = ufshcd_try_to_abort_task(hba, tag); 6406 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6407 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6408 *ret ? "failed" : "succeeded"); 6409 6410 /* Release cmd in MCQ mode if abort succeeds */ 6411 if (is_mcq_enabled(hba) && (*ret == 0)) { 6412 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 6413 if (!hwq) 6414 return 0; 6415 spin_lock_irqsave(&hwq->cq_lock, flags); 6416 if (ufshcd_cmd_inflight(lrbp->cmd)) 6417 ufshcd_release_scsi_cmd(hba, lrbp); 6418 spin_unlock_irqrestore(&hwq->cq_lock, flags); 6419 } 6420 6421 return *ret == 0; 6422 } 6423 6424 /** 6425 * ufshcd_abort_all - Abort all pending commands. 6426 * @hba: Host bus adapter pointer. 6427 * 6428 * Return: true if and only if the host controller needs to be reset. 6429 */ 6430 static bool ufshcd_abort_all(struct ufs_hba *hba) 6431 { 6432 int tag, ret = 0; 6433 6434 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6435 if (ret) 6436 goto out; 6437 6438 /* Clear pending task management requests */ 6439 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6440 ret = ufshcd_clear_tm_cmd(hba, tag); 6441 if (ret) 6442 goto out; 6443 } 6444 6445 out: 6446 /* Complete the requests that are cleared by s/w */ 6447 ufshcd_complete_requests(hba, false); 6448 6449 return ret != 0; 6450 } 6451 6452 /** 6453 * ufshcd_err_handler - handle UFS errors that require s/w attention 6454 * @work: pointer to work structure 6455 */ 6456 static void ufshcd_err_handler(struct work_struct *work) 6457 { 6458 int retries = MAX_ERR_HANDLER_RETRIES; 6459 struct ufs_hba *hba; 6460 unsigned long flags; 6461 bool needs_restore; 6462 bool needs_reset; 6463 int pmc_err; 6464 6465 hba = container_of(work, struct ufs_hba, eh_work); 6466 6467 dev_info(hba->dev, 6468 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6469 __func__, ufshcd_state_name[hba->ufshcd_state], 6470 hba->is_powered, hba->shutting_down, hba->saved_err, 6471 hba->saved_uic_err, hba->force_reset, 6472 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6473 6474 down(&hba->host_sem); 6475 spin_lock_irqsave(hba->host->host_lock, flags); 6476 if (ufshcd_err_handling_should_stop(hba)) { 6477 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6478 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6479 spin_unlock_irqrestore(hba->host->host_lock, flags); 6480 up(&hba->host_sem); 6481 return; 6482 } 6483 ufshcd_set_eh_in_progress(hba); 6484 spin_unlock_irqrestore(hba->host->host_lock, flags); 6485 ufshcd_err_handling_prepare(hba); 6486 /* Complete requests that have door-bell cleared by h/w */ 6487 ufshcd_complete_requests(hba, false); 6488 spin_lock_irqsave(hba->host->host_lock, flags); 6489 again: 6490 needs_restore = false; 6491 needs_reset = false; 6492 6493 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6494 hba->ufshcd_state = UFSHCD_STATE_RESET; 6495 /* 6496 * A full reset and restore might have happened after preparation 6497 * is finished, double check whether we should stop. 6498 */ 6499 if (ufshcd_err_handling_should_stop(hba)) 6500 goto skip_err_handling; 6501 6502 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6503 !hba->force_reset) { 6504 bool ret; 6505 6506 spin_unlock_irqrestore(hba->host->host_lock, flags); 6507 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6508 ret = ufshcd_quirk_dl_nac_errors(hba); 6509 spin_lock_irqsave(hba->host->host_lock, flags); 6510 if (!ret && ufshcd_err_handling_should_stop(hba)) 6511 goto skip_err_handling; 6512 } 6513 6514 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6515 (hba->saved_uic_err && 6516 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6517 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6518 6519 spin_unlock_irqrestore(hba->host->host_lock, flags); 6520 ufshcd_print_host_state(hba); 6521 ufshcd_print_pwr_info(hba); 6522 ufshcd_print_evt_hist(hba); 6523 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6524 ufshcd_print_trs_all(hba, pr_prdt); 6525 spin_lock_irqsave(hba->host->host_lock, flags); 6526 } 6527 6528 /* 6529 * if host reset is required then skip clearing the pending 6530 * transfers forcefully because they will get cleared during 6531 * host reset and restore 6532 */ 6533 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6534 ufshcd_is_saved_err_fatal(hba) || 6535 ((hba->saved_err & UIC_ERROR) && 6536 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6537 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6538 needs_reset = true; 6539 goto do_reset; 6540 } 6541 6542 /* 6543 * If LINERESET was caught, UFS might have been put to PWM mode, 6544 * check if power mode restore is needed. 6545 */ 6546 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6547 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6548 if (!hba->saved_uic_err) 6549 hba->saved_err &= ~UIC_ERROR; 6550 spin_unlock_irqrestore(hba->host->host_lock, flags); 6551 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6552 needs_restore = true; 6553 spin_lock_irqsave(hba->host->host_lock, flags); 6554 if (!hba->saved_err && !needs_restore) 6555 goto skip_err_handling; 6556 } 6557 6558 hba->silence_err_logs = true; 6559 /* release lock as clear command might sleep */ 6560 spin_unlock_irqrestore(hba->host->host_lock, flags); 6561 6562 needs_reset = ufshcd_abort_all(hba); 6563 6564 spin_lock_irqsave(hba->host->host_lock, flags); 6565 hba->silence_err_logs = false; 6566 if (needs_reset) 6567 goto do_reset; 6568 6569 /* 6570 * After all reqs and tasks are cleared from doorbell, 6571 * now it is safe to retore power mode. 6572 */ 6573 if (needs_restore) { 6574 spin_unlock_irqrestore(hba->host->host_lock, flags); 6575 /* 6576 * Hold the scaling lock just in case dev cmds 6577 * are sent via bsg and/or sysfs. 6578 */ 6579 down_write(&hba->clk_scaling_lock); 6580 hba->force_pmc = true; 6581 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6582 if (pmc_err) { 6583 needs_reset = true; 6584 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6585 __func__, pmc_err); 6586 } 6587 hba->force_pmc = false; 6588 ufshcd_print_pwr_info(hba); 6589 up_write(&hba->clk_scaling_lock); 6590 spin_lock_irqsave(hba->host->host_lock, flags); 6591 } 6592 6593 do_reset: 6594 /* Fatal errors need reset */ 6595 if (needs_reset) { 6596 int err; 6597 6598 hba->force_reset = false; 6599 spin_unlock_irqrestore(hba->host->host_lock, flags); 6600 err = ufshcd_reset_and_restore(hba); 6601 if (err) 6602 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6603 __func__, err); 6604 else 6605 ufshcd_recover_pm_error(hba); 6606 spin_lock_irqsave(hba->host->host_lock, flags); 6607 } 6608 6609 skip_err_handling: 6610 if (!needs_reset) { 6611 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6612 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6613 if (hba->saved_err || hba->saved_uic_err) 6614 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6615 __func__, hba->saved_err, hba->saved_uic_err); 6616 } 6617 /* Exit in an operational state or dead */ 6618 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6619 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6620 if (--retries) 6621 goto again; 6622 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6623 } 6624 ufshcd_clear_eh_in_progress(hba); 6625 spin_unlock_irqrestore(hba->host->host_lock, flags); 6626 ufshcd_err_handling_unprepare(hba); 6627 up(&hba->host_sem); 6628 6629 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6630 ufshcd_state_name[hba->ufshcd_state]); 6631 } 6632 6633 /** 6634 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6635 * @hba: per-adapter instance 6636 * 6637 * Return: 6638 * IRQ_HANDLED - If interrupt is valid 6639 * IRQ_NONE - If invalid interrupt 6640 */ 6641 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6642 { 6643 u32 reg; 6644 irqreturn_t retval = IRQ_NONE; 6645 6646 /* PHY layer error */ 6647 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6648 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6649 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6650 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6651 /* 6652 * To know whether this error is fatal or not, DB timeout 6653 * must be checked but this error is handled separately. 6654 */ 6655 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6656 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6657 __func__); 6658 6659 /* Got a LINERESET indication. */ 6660 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6661 struct uic_command *cmd = NULL; 6662 6663 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6664 if (hba->uic_async_done && hba->active_uic_cmd) 6665 cmd = hba->active_uic_cmd; 6666 /* 6667 * Ignore the LINERESET during power mode change 6668 * operation via DME_SET command. 6669 */ 6670 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6671 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6672 } 6673 retval |= IRQ_HANDLED; 6674 } 6675 6676 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6677 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6678 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6679 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6680 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6681 6682 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6683 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6684 else if (hba->dev_quirks & 6685 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6686 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6687 hba->uic_error |= 6688 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6689 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6690 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6691 } 6692 retval |= IRQ_HANDLED; 6693 } 6694 6695 /* UIC NL/TL/DME errors needs software retry */ 6696 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6697 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6698 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6699 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6700 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6701 retval |= IRQ_HANDLED; 6702 } 6703 6704 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6705 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6706 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6707 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6708 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6709 retval |= IRQ_HANDLED; 6710 } 6711 6712 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6713 if ((reg & UIC_DME_ERROR) && 6714 (reg & UIC_DME_ERROR_CODE_MASK)) { 6715 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6716 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6717 retval |= IRQ_HANDLED; 6718 } 6719 6720 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6721 __func__, hba->uic_error); 6722 return retval; 6723 } 6724 6725 /** 6726 * ufshcd_check_errors - Check for errors that need s/w attention 6727 * @hba: per-adapter instance 6728 * @intr_status: interrupt status generated by the controller 6729 * 6730 * Return: 6731 * IRQ_HANDLED - If interrupt is valid 6732 * IRQ_NONE - If invalid interrupt 6733 */ 6734 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6735 { 6736 bool queue_eh_work = false; 6737 irqreturn_t retval = IRQ_NONE; 6738 6739 spin_lock(hba->host->host_lock); 6740 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6741 6742 if (hba->errors & INT_FATAL_ERRORS) { 6743 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6744 hba->errors); 6745 queue_eh_work = true; 6746 } 6747 6748 if (hba->errors & UIC_ERROR) { 6749 hba->uic_error = 0; 6750 retval = ufshcd_update_uic_error(hba); 6751 if (hba->uic_error) 6752 queue_eh_work = true; 6753 } 6754 6755 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6756 dev_err(hba->dev, 6757 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6758 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6759 "Enter" : "Exit", 6760 hba->errors, ufshcd_get_upmcrs(hba)); 6761 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6762 hba->errors); 6763 ufshcd_set_link_broken(hba); 6764 queue_eh_work = true; 6765 } 6766 6767 if (queue_eh_work) { 6768 /* 6769 * update the transfer error masks to sticky bits, let's do this 6770 * irrespective of current ufshcd_state. 6771 */ 6772 hba->saved_err |= hba->errors; 6773 hba->saved_uic_err |= hba->uic_error; 6774 6775 /* dump controller state before resetting */ 6776 if ((hba->saved_err & 6777 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6778 (hba->saved_uic_err && 6779 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6780 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6781 __func__, hba->saved_err, 6782 hba->saved_uic_err); 6783 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6784 "host_regs: "); 6785 ufshcd_print_pwr_info(hba); 6786 } 6787 ufshcd_schedule_eh_work(hba); 6788 retval |= IRQ_HANDLED; 6789 } 6790 /* 6791 * if (!queue_eh_work) - 6792 * Other errors are either non-fatal where host recovers 6793 * itself without s/w intervention or errors that will be 6794 * handled by the SCSI core layer. 6795 */ 6796 hba->errors = 0; 6797 hba->uic_error = 0; 6798 spin_unlock(hba->host->host_lock); 6799 return retval; 6800 } 6801 6802 /** 6803 * ufshcd_tmc_handler - handle task management function completion 6804 * @hba: per adapter instance 6805 * 6806 * Return: 6807 * IRQ_HANDLED - If interrupt is valid 6808 * IRQ_NONE - If invalid interrupt 6809 */ 6810 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6811 { 6812 unsigned long flags, pending, issued; 6813 irqreturn_t ret = IRQ_NONE; 6814 int tag; 6815 6816 spin_lock_irqsave(hba->host->host_lock, flags); 6817 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6818 issued = hba->outstanding_tasks & ~pending; 6819 for_each_set_bit(tag, &issued, hba->nutmrs) { 6820 struct request *req = hba->tmf_rqs[tag]; 6821 struct completion *c = req->end_io_data; 6822 6823 complete(c); 6824 ret = IRQ_HANDLED; 6825 } 6826 spin_unlock_irqrestore(hba->host->host_lock, flags); 6827 6828 return ret; 6829 } 6830 6831 /** 6832 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6833 * @hba: per adapter instance 6834 * 6835 * Return: IRQ_HANDLED if interrupt is handled. 6836 */ 6837 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6838 { 6839 struct ufs_hw_queue *hwq; 6840 unsigned long outstanding_cqs; 6841 unsigned int nr_queues; 6842 int i, ret; 6843 u32 events; 6844 6845 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6846 if (ret) 6847 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6848 6849 /* Exclude the poll queues */ 6850 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6851 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6852 hwq = &hba->uhq[i]; 6853 6854 events = ufshcd_mcq_read_cqis(hba, i); 6855 if (events) 6856 ufshcd_mcq_write_cqis(hba, events, i); 6857 6858 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6859 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6860 } 6861 6862 return IRQ_HANDLED; 6863 } 6864 6865 /** 6866 * ufshcd_sl_intr - Interrupt service routine 6867 * @hba: per adapter instance 6868 * @intr_status: contains interrupts generated by the controller 6869 * 6870 * Return: 6871 * IRQ_HANDLED - If interrupt is valid 6872 * IRQ_NONE - If invalid interrupt 6873 */ 6874 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6875 { 6876 irqreturn_t retval = IRQ_NONE; 6877 6878 if (intr_status & UFSHCD_UIC_MASK) 6879 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6880 6881 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6882 retval |= ufshcd_check_errors(hba, intr_status); 6883 6884 if (intr_status & UTP_TASK_REQ_COMPL) 6885 retval |= ufshcd_tmc_handler(hba); 6886 6887 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6888 retval |= ufshcd_transfer_req_compl(hba); 6889 6890 if (intr_status & MCQ_CQ_EVENT_STATUS) 6891 retval |= ufshcd_handle_mcq_cq_events(hba); 6892 6893 return retval; 6894 } 6895 6896 /** 6897 * ufshcd_intr - Main interrupt service routine 6898 * @irq: irq number 6899 * @__hba: pointer to adapter instance 6900 * 6901 * Return: 6902 * IRQ_HANDLED - If interrupt is valid 6903 * IRQ_NONE - If invalid interrupt 6904 */ 6905 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6906 { 6907 u32 intr_status, enabled_intr_status = 0; 6908 irqreturn_t retval = IRQ_NONE; 6909 struct ufs_hba *hba = __hba; 6910 int retries = hba->nutrs; 6911 6912 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6913 hba->ufs_stats.last_intr_status = intr_status; 6914 hba->ufs_stats.last_intr_ts = local_clock(); 6915 6916 /* 6917 * There could be max of hba->nutrs reqs in flight and in worst case 6918 * if the reqs get finished 1 by 1 after the interrupt status is 6919 * read, make sure we handle them by checking the interrupt status 6920 * again in a loop until we process all of the reqs before returning. 6921 */ 6922 while (intr_status && retries--) { 6923 enabled_intr_status = 6924 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6925 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6926 if (enabled_intr_status) 6927 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6928 6929 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6930 } 6931 6932 if (enabled_intr_status && retval == IRQ_NONE && 6933 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6934 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6935 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6936 __func__, 6937 intr_status, 6938 hba->ufs_stats.last_intr_status, 6939 enabled_intr_status); 6940 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6941 } 6942 6943 return retval; 6944 } 6945 6946 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6947 { 6948 int err = 0; 6949 u32 mask = 1 << tag; 6950 unsigned long flags; 6951 6952 if (!test_bit(tag, &hba->outstanding_tasks)) 6953 goto out; 6954 6955 spin_lock_irqsave(hba->host->host_lock, flags); 6956 ufshcd_utmrl_clear(hba, tag); 6957 spin_unlock_irqrestore(hba->host->host_lock, flags); 6958 6959 /* poll for max. 1 sec to clear door bell register by h/w */ 6960 err = ufshcd_wait_for_register(hba, 6961 REG_UTP_TASK_REQ_DOOR_BELL, 6962 mask, 0, 1000, 1000); 6963 6964 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6965 tag, err < 0 ? "failed" : "succeeded"); 6966 6967 out: 6968 return err; 6969 } 6970 6971 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6972 struct utp_task_req_desc *treq, u8 tm_function) 6973 { 6974 struct request_queue *q = hba->tmf_queue; 6975 struct Scsi_Host *host = hba->host; 6976 DECLARE_COMPLETION_ONSTACK(wait); 6977 struct request *req; 6978 unsigned long flags; 6979 int task_tag, err; 6980 6981 /* 6982 * blk_mq_alloc_request() is used here only to get a free tag. 6983 */ 6984 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 6985 if (IS_ERR(req)) 6986 return PTR_ERR(req); 6987 6988 req->end_io_data = &wait; 6989 ufshcd_hold(hba); 6990 6991 spin_lock_irqsave(host->host_lock, flags); 6992 6993 task_tag = req->tag; 6994 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", 6995 task_tag); 6996 hba->tmf_rqs[req->tag] = req; 6997 treq->upiu_req.req_header.task_tag = task_tag; 6998 6999 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 7000 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 7001 7002 /* send command to the controller */ 7003 __set_bit(task_tag, &hba->outstanding_tasks); 7004 7005 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 7006 /* Make sure that doorbell is committed immediately */ 7007 wmb(); 7008 7009 spin_unlock_irqrestore(host->host_lock, flags); 7010 7011 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 7012 7013 /* wait until the task management command is completed */ 7014 err = wait_for_completion_io_timeout(&wait, 7015 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7016 if (!err) { 7017 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7018 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7019 __func__, tm_function); 7020 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7021 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7022 __func__, task_tag); 7023 err = -ETIMEDOUT; 7024 } else { 7025 err = 0; 7026 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7027 7028 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7029 } 7030 7031 spin_lock_irqsave(hba->host->host_lock, flags); 7032 hba->tmf_rqs[req->tag] = NULL; 7033 __clear_bit(task_tag, &hba->outstanding_tasks); 7034 spin_unlock_irqrestore(hba->host->host_lock, flags); 7035 7036 ufshcd_release(hba); 7037 blk_mq_free_request(req); 7038 7039 return err; 7040 } 7041 7042 /** 7043 * ufshcd_issue_tm_cmd - issues task management commands to controller 7044 * @hba: per adapter instance 7045 * @lun_id: LUN ID to which TM command is sent 7046 * @task_id: task ID to which the TM command is applicable 7047 * @tm_function: task management function opcode 7048 * @tm_response: task management service response return value 7049 * 7050 * Return: non-zero value on error, zero on success. 7051 */ 7052 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7053 u8 tm_function, u8 *tm_response) 7054 { 7055 struct utp_task_req_desc treq = { }; 7056 enum utp_ocs ocs_value; 7057 int err; 7058 7059 /* Configure task request descriptor */ 7060 treq.header.interrupt = 1; 7061 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7062 7063 /* Configure task request UPIU */ 7064 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7065 treq.upiu_req.req_header.lun = lun_id; 7066 treq.upiu_req.req_header.tm_function = tm_function; 7067 7068 /* 7069 * The host shall provide the same value for LUN field in the basic 7070 * header and for Input Parameter. 7071 */ 7072 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7073 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7074 7075 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7076 if (err == -ETIMEDOUT) 7077 return err; 7078 7079 ocs_value = treq.header.ocs & MASK_OCS; 7080 if (ocs_value != OCS_SUCCESS) 7081 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7082 __func__, ocs_value); 7083 else if (tm_response) 7084 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7085 MASK_TM_SERVICE_RESP; 7086 return err; 7087 } 7088 7089 /** 7090 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7091 * @hba: per-adapter instance 7092 * @req_upiu: upiu request 7093 * @rsp_upiu: upiu reply 7094 * @desc_buff: pointer to descriptor buffer, NULL if NA 7095 * @buff_len: descriptor size, 0 if NA 7096 * @cmd_type: specifies the type (NOP, Query...) 7097 * @desc_op: descriptor operation 7098 * 7099 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7100 * Therefore, it "rides" the device management infrastructure: uses its tag and 7101 * tasks work queues. 7102 * 7103 * Since there is only one available tag for device management commands, 7104 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7105 * 7106 * Return: 0 upon success; < 0 upon failure. 7107 */ 7108 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7109 struct utp_upiu_req *req_upiu, 7110 struct utp_upiu_req *rsp_upiu, 7111 u8 *desc_buff, int *buff_len, 7112 enum dev_cmd_type cmd_type, 7113 enum query_opcode desc_op) 7114 { 7115 DECLARE_COMPLETION_ONSTACK(wait); 7116 const u32 tag = hba->reserved_slot; 7117 struct ufshcd_lrb *lrbp; 7118 int err = 0; 7119 u8 upiu_flags; 7120 7121 /* Protects use of hba->reserved_slot. */ 7122 lockdep_assert_held(&hba->dev_cmd.lock); 7123 7124 down_read(&hba->clk_scaling_lock); 7125 7126 lrbp = &hba->lrb[tag]; 7127 lrbp->cmd = NULL; 7128 lrbp->task_tag = tag; 7129 lrbp->lun = 0; 7130 lrbp->intr_cmd = true; 7131 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7132 hba->dev_cmd.type = cmd_type; 7133 7134 if (hba->ufs_version <= ufshci_version(1, 1)) 7135 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 7136 else 7137 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7138 7139 /* update the task tag in the request upiu */ 7140 req_upiu->header.task_tag = tag; 7141 7142 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 7143 7144 /* just copy the upiu request as it is */ 7145 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7146 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7147 /* The Data Segment Area is optional depending upon the query 7148 * function value. for WRITE DESCRIPTOR, the data segment 7149 * follows right after the tsf. 7150 */ 7151 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7152 *buff_len = 0; 7153 } 7154 7155 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7156 7157 hba->dev_cmd.complete = &wait; 7158 7159 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 7160 7161 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7162 /* 7163 * ignore the returning value here - ufshcd_check_query_response is 7164 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7165 * read the response directly ignoring all errors. 7166 */ 7167 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 7168 7169 /* just copy the upiu response as it is */ 7170 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7171 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7172 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7173 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7174 .data_segment_length); 7175 7176 if (*buff_len >= resp_len) { 7177 memcpy(desc_buff, descp, resp_len); 7178 *buff_len = resp_len; 7179 } else { 7180 dev_warn(hba->dev, 7181 "%s: rsp size %d is bigger than buffer size %d", 7182 __func__, resp_len, *buff_len); 7183 *buff_len = 0; 7184 err = -EINVAL; 7185 } 7186 } 7187 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7188 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7189 7190 up_read(&hba->clk_scaling_lock); 7191 return err; 7192 } 7193 7194 /** 7195 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7196 * @hba: per-adapter instance 7197 * @req_upiu: upiu request 7198 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7199 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7200 * @desc_buff: pointer to descriptor buffer, NULL if NA 7201 * @buff_len: descriptor size, 0 if NA 7202 * @desc_op: descriptor operation 7203 * 7204 * Supports UTP Transfer requests (nop and query), and UTP Task 7205 * Management requests. 7206 * It is up to the caller to fill the upiu conent properly, as it will 7207 * be copied without any further input validations. 7208 * 7209 * Return: 0 upon success; < 0 upon failure. 7210 */ 7211 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7212 struct utp_upiu_req *req_upiu, 7213 struct utp_upiu_req *rsp_upiu, 7214 enum upiu_request_transaction msgcode, 7215 u8 *desc_buff, int *buff_len, 7216 enum query_opcode desc_op) 7217 { 7218 int err; 7219 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7220 struct utp_task_req_desc treq = { }; 7221 enum utp_ocs ocs_value; 7222 u8 tm_f = req_upiu->header.tm_function; 7223 7224 switch (msgcode) { 7225 case UPIU_TRANSACTION_NOP_OUT: 7226 cmd_type = DEV_CMD_TYPE_NOP; 7227 fallthrough; 7228 case UPIU_TRANSACTION_QUERY_REQ: 7229 ufshcd_hold(hba); 7230 mutex_lock(&hba->dev_cmd.lock); 7231 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7232 desc_buff, buff_len, 7233 cmd_type, desc_op); 7234 mutex_unlock(&hba->dev_cmd.lock); 7235 ufshcd_release(hba); 7236 7237 break; 7238 case UPIU_TRANSACTION_TASK_REQ: 7239 treq.header.interrupt = 1; 7240 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7241 7242 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7243 7244 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7245 if (err == -ETIMEDOUT) 7246 break; 7247 7248 ocs_value = treq.header.ocs & MASK_OCS; 7249 if (ocs_value != OCS_SUCCESS) { 7250 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7251 ocs_value); 7252 break; 7253 } 7254 7255 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7256 7257 break; 7258 default: 7259 err = -EINVAL; 7260 7261 break; 7262 } 7263 7264 return err; 7265 } 7266 7267 /** 7268 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7269 * @hba: per adapter instance 7270 * @req_upiu: upiu request 7271 * @rsp_upiu: upiu reply 7272 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7273 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7274 * @sg_cnt: The number of sg lists actually used 7275 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7276 * @dir: DMA direction 7277 * 7278 * Return: zero on success, non-zero on failure. 7279 */ 7280 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7281 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7282 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7283 enum dma_data_direction dir) 7284 { 7285 DECLARE_COMPLETION_ONSTACK(wait); 7286 const u32 tag = hba->reserved_slot; 7287 struct ufshcd_lrb *lrbp; 7288 int err = 0; 7289 int result; 7290 u8 upiu_flags; 7291 u8 *ehs_data; 7292 u16 ehs_len; 7293 7294 /* Protects use of hba->reserved_slot. */ 7295 ufshcd_hold(hba); 7296 mutex_lock(&hba->dev_cmd.lock); 7297 down_read(&hba->clk_scaling_lock); 7298 7299 lrbp = &hba->lrb[tag]; 7300 lrbp->cmd = NULL; 7301 lrbp->task_tag = tag; 7302 lrbp->lun = UFS_UPIU_RPMB_WLUN; 7303 7304 lrbp->intr_cmd = true; 7305 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7306 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB; 7307 7308 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */ 7309 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7310 7311 /* 7312 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes 7313 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1, 7314 * HW controller takes EHS length from UTRD. 7315 */ 7316 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) 7317 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2); 7318 else 7319 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0); 7320 7321 /* update the task tag */ 7322 req_upiu->header.task_tag = tag; 7323 7324 /* copy the UPIU(contains CDB) request as it is */ 7325 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7326 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7327 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7328 7329 if (dir != DMA_NONE && sg_list) 7330 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7331 7332 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7333 7334 hba->dev_cmd.complete = &wait; 7335 7336 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7337 7338 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT); 7339 7340 if (!err) { 7341 /* Just copy the upiu response as it is */ 7342 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7343 /* Get the response UPIU result */ 7344 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7345 lrbp->ucd_rsp_ptr->header.status; 7346 7347 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7348 /* 7349 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7350 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7351 * Message is 02h 7352 */ 7353 if (ehs_len == 2 && rsp_ehs) { 7354 /* 7355 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7356 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7357 */ 7358 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7359 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7360 } 7361 } 7362 7363 up_read(&hba->clk_scaling_lock); 7364 mutex_unlock(&hba->dev_cmd.lock); 7365 ufshcd_release(hba); 7366 return err ? : result; 7367 } 7368 7369 /** 7370 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7371 * @cmd: SCSI command pointer 7372 * 7373 * Return: SUCCESS or FAILED. 7374 */ 7375 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7376 { 7377 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7378 struct Scsi_Host *host; 7379 struct ufs_hba *hba; 7380 struct ufs_hw_queue *hwq; 7381 struct ufshcd_lrb *lrbp; 7382 u32 pos, not_cleared_mask = 0; 7383 int err; 7384 u8 resp = 0xF, lun; 7385 7386 host = cmd->device->host; 7387 hba = shost_priv(host); 7388 7389 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7390 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7391 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7392 if (!err) 7393 err = resp; 7394 goto out; 7395 } 7396 7397 if (is_mcq_enabled(hba)) { 7398 for (pos = 0; pos < hba->nutrs; pos++) { 7399 lrbp = &hba->lrb[pos]; 7400 if (ufshcd_cmd_inflight(lrbp->cmd) && 7401 lrbp->lun == lun) { 7402 ufshcd_clear_cmd(hba, pos); 7403 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7404 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7405 } 7406 } 7407 err = 0; 7408 goto out; 7409 } 7410 7411 /* clear the commands that were pending for corresponding LUN */ 7412 spin_lock_irqsave(&hba->outstanding_lock, flags); 7413 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7414 if (hba->lrb[pos].lun == lun) 7415 __set_bit(pos, &pending_reqs); 7416 hba->outstanding_reqs &= ~pending_reqs; 7417 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7418 7419 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7420 if (ufshcd_clear_cmd(hba, pos) < 0) { 7421 spin_lock_irqsave(&hba->outstanding_lock, flags); 7422 not_cleared = 1U << pos & 7423 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7424 hba->outstanding_reqs |= not_cleared; 7425 not_cleared_mask |= not_cleared; 7426 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7427 7428 dev_err(hba->dev, "%s: failed to clear request %d\n", 7429 __func__, pos); 7430 } 7431 } 7432 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7433 7434 out: 7435 hba->req_abort_count = 0; 7436 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7437 if (!err) { 7438 err = SUCCESS; 7439 } else { 7440 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7441 err = FAILED; 7442 } 7443 return err; 7444 } 7445 7446 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7447 { 7448 struct ufshcd_lrb *lrbp; 7449 int tag; 7450 7451 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7452 lrbp = &hba->lrb[tag]; 7453 lrbp->req_abort_skip = true; 7454 } 7455 } 7456 7457 /** 7458 * ufshcd_try_to_abort_task - abort a specific task 7459 * @hba: Pointer to adapter instance 7460 * @tag: Task tag/index to be aborted 7461 * 7462 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7463 * command, and in host controller by clearing the door-bell register. There can 7464 * be race between controller sending the command to the device while abort is 7465 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7466 * really issued and then try to abort it. 7467 * 7468 * Return: zero on success, non-zero on failure. 7469 */ 7470 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7471 { 7472 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7473 int err = 0; 7474 int poll_cnt; 7475 u8 resp = 0xF; 7476 u32 reg; 7477 7478 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7479 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7480 UFS_QUERY_TASK, &resp); 7481 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7482 /* cmd pending in the device */ 7483 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7484 __func__, tag); 7485 break; 7486 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7487 /* 7488 * cmd not pending in the device, check if it is 7489 * in transition. 7490 */ 7491 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7492 __func__, tag); 7493 if (is_mcq_enabled(hba)) { 7494 /* MCQ mode */ 7495 if (ufshcd_cmd_inflight(lrbp->cmd)) { 7496 /* sleep for max. 200us same delay as in SDB mode */ 7497 usleep_range(100, 200); 7498 continue; 7499 } 7500 /* command completed already */ 7501 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", 7502 __func__, tag); 7503 goto out; 7504 } 7505 7506 /* Single Doorbell Mode */ 7507 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7508 if (reg & (1 << tag)) { 7509 /* sleep for max. 200us to stabilize */ 7510 usleep_range(100, 200); 7511 continue; 7512 } 7513 /* command completed already */ 7514 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7515 __func__, tag); 7516 goto out; 7517 } else { 7518 dev_err(hba->dev, 7519 "%s: no response from device. tag = %d, err %d\n", 7520 __func__, tag, err); 7521 if (!err) 7522 err = resp; /* service response error */ 7523 goto out; 7524 } 7525 } 7526 7527 if (!poll_cnt) { 7528 err = -EBUSY; 7529 goto out; 7530 } 7531 7532 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7533 UFS_ABORT_TASK, &resp); 7534 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7535 if (!err) { 7536 err = resp; /* service response error */ 7537 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7538 __func__, tag, err); 7539 } 7540 goto out; 7541 } 7542 7543 err = ufshcd_clear_cmd(hba, tag); 7544 if (err) 7545 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7546 __func__, tag, err); 7547 7548 out: 7549 return err; 7550 } 7551 7552 /** 7553 * ufshcd_abort - scsi host template eh_abort_handler callback 7554 * @cmd: SCSI command pointer 7555 * 7556 * Return: SUCCESS or FAILED. 7557 */ 7558 static int ufshcd_abort(struct scsi_cmnd *cmd) 7559 { 7560 struct Scsi_Host *host = cmd->device->host; 7561 struct ufs_hba *hba = shost_priv(host); 7562 int tag = scsi_cmd_to_rq(cmd)->tag; 7563 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7564 unsigned long flags; 7565 int err = FAILED; 7566 bool outstanding; 7567 u32 reg; 7568 7569 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); 7570 7571 ufshcd_hold(hba); 7572 7573 if (!is_mcq_enabled(hba)) { 7574 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7575 if (!test_bit(tag, &hba->outstanding_reqs)) { 7576 /* If command is already aborted/completed, return FAILED. */ 7577 dev_err(hba->dev, 7578 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7579 __func__, tag, hba->outstanding_reqs, reg); 7580 goto release; 7581 } 7582 } 7583 7584 /* Print Transfer Request of aborted task */ 7585 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7586 7587 /* 7588 * Print detailed info about aborted request. 7589 * As more than one request might get aborted at the same time, 7590 * print full information only for the first aborted request in order 7591 * to reduce repeated printouts. For other aborted requests only print 7592 * basic details. 7593 */ 7594 scsi_print_command(cmd); 7595 if (!hba->req_abort_count) { 7596 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7597 ufshcd_print_evt_hist(hba); 7598 ufshcd_print_host_state(hba); 7599 ufshcd_print_pwr_info(hba); 7600 ufshcd_print_tr(hba, tag, true); 7601 } else { 7602 ufshcd_print_tr(hba, tag, false); 7603 } 7604 hba->req_abort_count++; 7605 7606 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) { 7607 /* only execute this code in single doorbell mode */ 7608 dev_err(hba->dev, 7609 "%s: cmd was completed, but without a notifying intr, tag = %d", 7610 __func__, tag); 7611 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7612 goto release; 7613 } 7614 7615 /* 7616 * Task abort to the device W-LUN is illegal. When this command 7617 * will fail, due to spec violation, scsi err handling next step 7618 * will be to send LU reset which, again, is a spec violation. 7619 * To avoid these unnecessary/illegal steps, first we clean up 7620 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7621 * then queue the eh_work and bail. 7622 */ 7623 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7624 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7625 7626 spin_lock_irqsave(host->host_lock, flags); 7627 hba->force_reset = true; 7628 ufshcd_schedule_eh_work(hba); 7629 spin_unlock_irqrestore(host->host_lock, flags); 7630 goto release; 7631 } 7632 7633 if (is_mcq_enabled(hba)) { 7634 /* MCQ mode. Branch off to handle abort for mcq mode */ 7635 err = ufshcd_mcq_abort(cmd); 7636 goto release; 7637 } 7638 7639 /* Skip task abort in case previous aborts failed and report failure */ 7640 if (lrbp->req_abort_skip) { 7641 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7642 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7643 goto release; 7644 } 7645 7646 err = ufshcd_try_to_abort_task(hba, tag); 7647 if (err) { 7648 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7649 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7650 err = FAILED; 7651 goto release; 7652 } 7653 7654 /* 7655 * Clear the corresponding bit from outstanding_reqs since the command 7656 * has been aborted successfully. 7657 */ 7658 spin_lock_irqsave(&hba->outstanding_lock, flags); 7659 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7660 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7661 7662 if (outstanding) 7663 ufshcd_release_scsi_cmd(hba, lrbp); 7664 7665 err = SUCCESS; 7666 7667 release: 7668 /* Matches the ufshcd_hold() call at the start of this function. */ 7669 ufshcd_release(hba); 7670 return err; 7671 } 7672 7673 /** 7674 * ufshcd_host_reset_and_restore - reset and restore host controller 7675 * @hba: per-adapter instance 7676 * 7677 * Note that host controller reset may issue DME_RESET to 7678 * local and remote (device) Uni-Pro stack and the attributes 7679 * are reset to default state. 7680 * 7681 * Return: zero on success, non-zero on failure. 7682 */ 7683 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7684 { 7685 int err; 7686 7687 /* 7688 * Stop the host controller and complete the requests 7689 * cleared by h/w 7690 */ 7691 ufshcd_hba_stop(hba); 7692 hba->silence_err_logs = true; 7693 ufshcd_complete_requests(hba, true); 7694 hba->silence_err_logs = false; 7695 7696 /* scale up clocks to max frequency before full reinitialization */ 7697 ufshcd_scale_clks(hba, true); 7698 7699 err = ufshcd_hba_enable(hba); 7700 7701 /* Establish the link again and restore the device */ 7702 if (!err) 7703 err = ufshcd_probe_hba(hba, false); 7704 7705 if (err) 7706 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7707 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7708 return err; 7709 } 7710 7711 /** 7712 * ufshcd_reset_and_restore - reset and re-initialize host/device 7713 * @hba: per-adapter instance 7714 * 7715 * Reset and recover device, host and re-establish link. This 7716 * is helpful to recover the communication in fatal error conditions. 7717 * 7718 * Return: zero on success, non-zero on failure. 7719 */ 7720 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7721 { 7722 u32 saved_err = 0; 7723 u32 saved_uic_err = 0; 7724 int err = 0; 7725 unsigned long flags; 7726 int retries = MAX_HOST_RESET_RETRIES; 7727 7728 spin_lock_irqsave(hba->host->host_lock, flags); 7729 do { 7730 /* 7731 * This is a fresh start, cache and clear saved error first, 7732 * in case new error generated during reset and restore. 7733 */ 7734 saved_err |= hba->saved_err; 7735 saved_uic_err |= hba->saved_uic_err; 7736 hba->saved_err = 0; 7737 hba->saved_uic_err = 0; 7738 hba->force_reset = false; 7739 hba->ufshcd_state = UFSHCD_STATE_RESET; 7740 spin_unlock_irqrestore(hba->host->host_lock, flags); 7741 7742 /* Reset the attached device */ 7743 ufshcd_device_reset(hba); 7744 7745 err = ufshcd_host_reset_and_restore(hba); 7746 7747 spin_lock_irqsave(hba->host->host_lock, flags); 7748 if (err) 7749 continue; 7750 /* Do not exit unless operational or dead */ 7751 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7752 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7753 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7754 err = -EAGAIN; 7755 } while (err && --retries); 7756 7757 /* 7758 * Inform scsi mid-layer that we did reset and allow to handle 7759 * Unit Attention properly. 7760 */ 7761 scsi_report_bus_reset(hba->host, 0); 7762 if (err) { 7763 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7764 hba->saved_err |= saved_err; 7765 hba->saved_uic_err |= saved_uic_err; 7766 } 7767 spin_unlock_irqrestore(hba->host->host_lock, flags); 7768 7769 return err; 7770 } 7771 7772 /** 7773 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7774 * @cmd: SCSI command pointer 7775 * 7776 * Return: SUCCESS or FAILED. 7777 */ 7778 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7779 { 7780 int err = SUCCESS; 7781 unsigned long flags; 7782 struct ufs_hba *hba; 7783 7784 hba = shost_priv(cmd->device->host); 7785 7786 spin_lock_irqsave(hba->host->host_lock, flags); 7787 hba->force_reset = true; 7788 ufshcd_schedule_eh_work(hba); 7789 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7790 spin_unlock_irqrestore(hba->host->host_lock, flags); 7791 7792 flush_work(&hba->eh_work); 7793 7794 spin_lock_irqsave(hba->host->host_lock, flags); 7795 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7796 err = FAILED; 7797 spin_unlock_irqrestore(hba->host->host_lock, flags); 7798 7799 return err; 7800 } 7801 7802 /** 7803 * ufshcd_get_max_icc_level - calculate the ICC level 7804 * @sup_curr_uA: max. current supported by the regulator 7805 * @start_scan: row at the desc table to start scan from 7806 * @buff: power descriptor buffer 7807 * 7808 * Return: calculated max ICC level for specific regulator. 7809 */ 7810 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7811 const char *buff) 7812 { 7813 int i; 7814 int curr_uA; 7815 u16 data; 7816 u16 unit; 7817 7818 for (i = start_scan; i >= 0; i--) { 7819 data = get_unaligned_be16(&buff[2 * i]); 7820 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7821 ATTR_ICC_LVL_UNIT_OFFSET; 7822 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7823 switch (unit) { 7824 case UFSHCD_NANO_AMP: 7825 curr_uA = curr_uA / 1000; 7826 break; 7827 case UFSHCD_MILI_AMP: 7828 curr_uA = curr_uA * 1000; 7829 break; 7830 case UFSHCD_AMP: 7831 curr_uA = curr_uA * 1000 * 1000; 7832 break; 7833 case UFSHCD_MICRO_AMP: 7834 default: 7835 break; 7836 } 7837 if (sup_curr_uA >= curr_uA) 7838 break; 7839 } 7840 if (i < 0) { 7841 i = 0; 7842 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7843 } 7844 7845 return (u32)i; 7846 } 7847 7848 /** 7849 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7850 * In case regulators are not initialized we'll return 0 7851 * @hba: per-adapter instance 7852 * @desc_buf: power descriptor buffer to extract ICC levels from. 7853 * 7854 * Return: calculated ICC level. 7855 */ 7856 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7857 const u8 *desc_buf) 7858 { 7859 u32 icc_level = 0; 7860 7861 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7862 !hba->vreg_info.vccq2) { 7863 /* 7864 * Using dev_dbg to avoid messages during runtime PM to avoid 7865 * never-ending cycles of messages written back to storage by 7866 * user space causing runtime resume, causing more messages and 7867 * so on. 7868 */ 7869 dev_dbg(hba->dev, 7870 "%s: Regulator capability was not set, actvIccLevel=%d", 7871 __func__, icc_level); 7872 goto out; 7873 } 7874 7875 if (hba->vreg_info.vcc->max_uA) 7876 icc_level = ufshcd_get_max_icc_level( 7877 hba->vreg_info.vcc->max_uA, 7878 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7879 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7880 7881 if (hba->vreg_info.vccq->max_uA) 7882 icc_level = ufshcd_get_max_icc_level( 7883 hba->vreg_info.vccq->max_uA, 7884 icc_level, 7885 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7886 7887 if (hba->vreg_info.vccq2->max_uA) 7888 icc_level = ufshcd_get_max_icc_level( 7889 hba->vreg_info.vccq2->max_uA, 7890 icc_level, 7891 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7892 out: 7893 return icc_level; 7894 } 7895 7896 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7897 { 7898 int ret; 7899 u8 *desc_buf; 7900 u32 icc_level; 7901 7902 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7903 if (!desc_buf) 7904 return; 7905 7906 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7907 desc_buf, QUERY_DESC_MAX_SIZE); 7908 if (ret) { 7909 dev_err(hba->dev, 7910 "%s: Failed reading power descriptor ret = %d", 7911 __func__, ret); 7912 goto out; 7913 } 7914 7915 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7916 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7917 7918 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7919 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7920 7921 if (ret) 7922 dev_err(hba->dev, 7923 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7924 __func__, icc_level, ret); 7925 7926 out: 7927 kfree(desc_buf); 7928 } 7929 7930 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7931 { 7932 scsi_autopm_get_device(sdev); 7933 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7934 if (sdev->rpm_autosuspend) 7935 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7936 RPM_AUTOSUSPEND_DELAY_MS); 7937 scsi_autopm_put_device(sdev); 7938 } 7939 7940 /** 7941 * ufshcd_scsi_add_wlus - Adds required W-LUs 7942 * @hba: per-adapter instance 7943 * 7944 * UFS device specification requires the UFS devices to support 4 well known 7945 * logical units: 7946 * "REPORT_LUNS" (address: 01h) 7947 * "UFS Device" (address: 50h) 7948 * "RPMB" (address: 44h) 7949 * "BOOT" (address: 30h) 7950 * UFS device's power management needs to be controlled by "POWER CONDITION" 7951 * field of SSU (START STOP UNIT) command. But this "power condition" field 7952 * will take effect only when its sent to "UFS device" well known logical unit 7953 * hence we require the scsi_device instance to represent this logical unit in 7954 * order for the UFS host driver to send the SSU command for power management. 7955 * 7956 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7957 * Block) LU so user space process can control this LU. User space may also 7958 * want to have access to BOOT LU. 7959 * 7960 * This function adds scsi device instances for each of all well known LUs 7961 * (except "REPORT LUNS" LU). 7962 * 7963 * Return: zero on success (all required W-LUs are added successfully), 7964 * non-zero error value on failure (if failed to add any of the required W-LU). 7965 */ 7966 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7967 { 7968 int ret = 0; 7969 struct scsi_device *sdev_boot, *sdev_rpmb; 7970 7971 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7972 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7973 if (IS_ERR(hba->ufs_device_wlun)) { 7974 ret = PTR_ERR(hba->ufs_device_wlun); 7975 hba->ufs_device_wlun = NULL; 7976 goto out; 7977 } 7978 scsi_device_put(hba->ufs_device_wlun); 7979 7980 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7981 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7982 if (IS_ERR(sdev_rpmb)) { 7983 ret = PTR_ERR(sdev_rpmb); 7984 goto remove_ufs_device_wlun; 7985 } 7986 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7987 scsi_device_put(sdev_rpmb); 7988 7989 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7990 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7991 if (IS_ERR(sdev_boot)) { 7992 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7993 } else { 7994 ufshcd_blk_pm_runtime_init(sdev_boot); 7995 scsi_device_put(sdev_boot); 7996 } 7997 goto out; 7998 7999 remove_ufs_device_wlun: 8000 scsi_remove_device(hba->ufs_device_wlun); 8001 out: 8002 return ret; 8003 } 8004 8005 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 8006 { 8007 struct ufs_dev_info *dev_info = &hba->dev_info; 8008 u8 lun; 8009 u32 d_lu_wb_buf_alloc; 8010 u32 ext_ufs_feature; 8011 8012 if (!ufshcd_is_wb_allowed(hba)) 8013 return; 8014 8015 /* 8016 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 8017 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 8018 * enabled 8019 */ 8020 if (!(dev_info->wspecversion >= 0x310 || 8021 dev_info->wspecversion == 0x220 || 8022 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 8023 goto wb_disabled; 8024 8025 ext_ufs_feature = get_unaligned_be32(desc_buf + 8026 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8027 8028 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8029 goto wb_disabled; 8030 8031 /* 8032 * WB may be supported but not configured while provisioning. The spec 8033 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8034 * buffer configured. 8035 */ 8036 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8037 8038 dev_info->b_presrv_uspc_en = 8039 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8040 8041 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8042 if (!get_unaligned_be32(desc_buf + 8043 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8044 goto wb_disabled; 8045 } else { 8046 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8047 d_lu_wb_buf_alloc = 0; 8048 ufshcd_read_unit_desc_param(hba, 8049 lun, 8050 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8051 (u8 *)&d_lu_wb_buf_alloc, 8052 sizeof(d_lu_wb_buf_alloc)); 8053 if (d_lu_wb_buf_alloc) { 8054 dev_info->wb_dedicated_lu = lun; 8055 break; 8056 } 8057 } 8058 8059 if (!d_lu_wb_buf_alloc) 8060 goto wb_disabled; 8061 } 8062 8063 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8064 goto wb_disabled; 8065 8066 return; 8067 8068 wb_disabled: 8069 hba->caps &= ~UFSHCD_CAP_WB_EN; 8070 } 8071 8072 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8073 { 8074 struct ufs_dev_info *dev_info = &hba->dev_info; 8075 u32 ext_ufs_feature; 8076 u8 mask = 0; 8077 8078 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8079 return; 8080 8081 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8082 8083 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8084 mask |= MASK_EE_TOO_LOW_TEMP; 8085 8086 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8087 mask |= MASK_EE_TOO_HIGH_TEMP; 8088 8089 if (mask) { 8090 ufshcd_enable_ee(hba, mask); 8091 ufs_hwmon_probe(hba, mask); 8092 } 8093 } 8094 8095 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8096 { 8097 struct ufs_dev_info *dev_info = &hba->dev_info; 8098 u32 ext_ufs_feature; 8099 u32 ext_iid_en = 0; 8100 int err; 8101 8102 /* Only UFS-4.0 and above may support EXT_IID */ 8103 if (dev_info->wspecversion < 0x400) 8104 goto out; 8105 8106 ext_ufs_feature = get_unaligned_be32(desc_buf + 8107 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8108 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8109 goto out; 8110 8111 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8112 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8113 if (err) 8114 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8115 8116 out: 8117 dev_info->b_ext_iid_en = ext_iid_en; 8118 } 8119 8120 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8121 const struct ufs_dev_quirk *fixups) 8122 { 8123 const struct ufs_dev_quirk *f; 8124 struct ufs_dev_info *dev_info = &hba->dev_info; 8125 8126 if (!fixups) 8127 return; 8128 8129 for (f = fixups; f->quirk; f++) { 8130 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8131 f->wmanufacturerid == UFS_ANY_VENDOR) && 8132 ((dev_info->model && 8133 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8134 !strcmp(f->model, UFS_ANY_MODEL))) 8135 hba->dev_quirks |= f->quirk; 8136 } 8137 } 8138 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8139 8140 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8141 { 8142 /* fix by general quirk table */ 8143 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8144 8145 /* allow vendors to fix quirks */ 8146 ufshcd_vops_fixup_dev_quirks(hba); 8147 } 8148 8149 static int ufs_get_device_desc(struct ufs_hba *hba) 8150 { 8151 int err; 8152 u8 model_index; 8153 u8 *desc_buf; 8154 struct ufs_dev_info *dev_info = &hba->dev_info; 8155 8156 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8157 if (!desc_buf) { 8158 err = -ENOMEM; 8159 goto out; 8160 } 8161 8162 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8163 QUERY_DESC_MAX_SIZE); 8164 if (err) { 8165 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8166 __func__, err); 8167 goto out; 8168 } 8169 8170 /* 8171 * getting vendor (manufacturerID) and Bank Index in big endian 8172 * format 8173 */ 8174 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8175 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8176 8177 /* getting Specification Version in big endian format */ 8178 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8179 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8180 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8181 8182 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8183 8184 err = ufshcd_read_string_desc(hba, model_index, 8185 &dev_info->model, SD_ASCII_STD); 8186 if (err < 0) { 8187 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8188 __func__, err); 8189 goto out; 8190 } 8191 8192 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8193 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8194 8195 ufs_fixup_device_setup(hba); 8196 8197 ufshcd_wb_probe(hba, desc_buf); 8198 8199 ufshcd_temp_notif_probe(hba, desc_buf); 8200 8201 if (hba->ext_iid_sup) 8202 ufshcd_ext_iid_probe(hba, desc_buf); 8203 8204 /* 8205 * ufshcd_read_string_desc returns size of the string 8206 * reset the error value 8207 */ 8208 err = 0; 8209 8210 out: 8211 kfree(desc_buf); 8212 return err; 8213 } 8214 8215 static void ufs_put_device_desc(struct ufs_hba *hba) 8216 { 8217 struct ufs_dev_info *dev_info = &hba->dev_info; 8218 8219 kfree(dev_info->model); 8220 dev_info->model = NULL; 8221 } 8222 8223 /** 8224 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 8225 * @hba: per-adapter instance 8226 * 8227 * PA_TActivate parameter can be tuned manually if UniPro version is less than 8228 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 8229 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 8230 * the hibern8 exit latency. 8231 * 8232 * Return: zero on success, non-zero error value on failure. 8233 */ 8234 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 8235 { 8236 int ret = 0; 8237 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 8238 8239 ret = ufshcd_dme_peer_get(hba, 8240 UIC_ARG_MIB_SEL( 8241 RX_MIN_ACTIVATETIME_CAPABILITY, 8242 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8243 &peer_rx_min_activatetime); 8244 if (ret) 8245 goto out; 8246 8247 /* make sure proper unit conversion is applied */ 8248 tuned_pa_tactivate = 8249 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 8250 / PA_TACTIVATE_TIME_UNIT_US); 8251 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8252 tuned_pa_tactivate); 8253 8254 out: 8255 return ret; 8256 } 8257 8258 /** 8259 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 8260 * @hba: per-adapter instance 8261 * 8262 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 8263 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 8264 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 8265 * This optimal value can help reduce the hibern8 exit latency. 8266 * 8267 * Return: zero on success, non-zero error value on failure. 8268 */ 8269 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 8270 { 8271 int ret = 0; 8272 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 8273 u32 max_hibern8_time, tuned_pa_hibern8time; 8274 8275 ret = ufshcd_dme_get(hba, 8276 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 8277 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 8278 &local_tx_hibern8_time_cap); 8279 if (ret) 8280 goto out; 8281 8282 ret = ufshcd_dme_peer_get(hba, 8283 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 8284 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8285 &peer_rx_hibern8_time_cap); 8286 if (ret) 8287 goto out; 8288 8289 max_hibern8_time = max(local_tx_hibern8_time_cap, 8290 peer_rx_hibern8_time_cap); 8291 /* make sure proper unit conversion is applied */ 8292 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 8293 / PA_HIBERN8_TIME_UNIT_US); 8294 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 8295 tuned_pa_hibern8time); 8296 out: 8297 return ret; 8298 } 8299 8300 /** 8301 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8302 * less than device PA_TACTIVATE time. 8303 * @hba: per-adapter instance 8304 * 8305 * Some UFS devices require host PA_TACTIVATE to be lower than device 8306 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8307 * for such devices. 8308 * 8309 * Return: zero on success, non-zero error value on failure. 8310 */ 8311 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8312 { 8313 int ret = 0; 8314 u32 granularity, peer_granularity; 8315 u32 pa_tactivate, peer_pa_tactivate; 8316 u32 pa_tactivate_us, peer_pa_tactivate_us; 8317 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8318 8319 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8320 &granularity); 8321 if (ret) 8322 goto out; 8323 8324 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8325 &peer_granularity); 8326 if (ret) 8327 goto out; 8328 8329 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8330 (granularity > PA_GRANULARITY_MAX_VAL)) { 8331 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8332 __func__, granularity); 8333 return -EINVAL; 8334 } 8335 8336 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8337 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8338 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8339 __func__, peer_granularity); 8340 return -EINVAL; 8341 } 8342 8343 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8344 if (ret) 8345 goto out; 8346 8347 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8348 &peer_pa_tactivate); 8349 if (ret) 8350 goto out; 8351 8352 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8353 peer_pa_tactivate_us = peer_pa_tactivate * 8354 gran_to_us_table[peer_granularity - 1]; 8355 8356 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8357 u32 new_peer_pa_tactivate; 8358 8359 new_peer_pa_tactivate = pa_tactivate_us / 8360 gran_to_us_table[peer_granularity - 1]; 8361 new_peer_pa_tactivate++; 8362 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8363 new_peer_pa_tactivate); 8364 } 8365 8366 out: 8367 return ret; 8368 } 8369 8370 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8371 { 8372 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 8373 ufshcd_tune_pa_tactivate(hba); 8374 ufshcd_tune_pa_hibern8time(hba); 8375 } 8376 8377 ufshcd_vops_apply_dev_quirks(hba); 8378 8379 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8380 /* set 1ms timeout for PA_TACTIVATE */ 8381 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8382 8383 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8384 ufshcd_quirk_tune_host_pa_tactivate(hba); 8385 } 8386 8387 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8388 { 8389 hba->ufs_stats.hibern8_exit_cnt = 0; 8390 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8391 hba->req_abort_count = 0; 8392 } 8393 8394 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8395 { 8396 int err; 8397 u8 *desc_buf; 8398 8399 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8400 if (!desc_buf) { 8401 err = -ENOMEM; 8402 goto out; 8403 } 8404 8405 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8406 desc_buf, QUERY_DESC_MAX_SIZE); 8407 if (err) { 8408 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8409 __func__, err); 8410 goto out; 8411 } 8412 8413 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8414 hba->dev_info.max_lu_supported = 32; 8415 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8416 hba->dev_info.max_lu_supported = 8; 8417 8418 out: 8419 kfree(desc_buf); 8420 return err; 8421 } 8422 8423 struct ufs_ref_clk { 8424 unsigned long freq_hz; 8425 enum ufs_ref_clk_freq val; 8426 }; 8427 8428 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8429 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8430 {26000000, REF_CLK_FREQ_26_MHZ}, 8431 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8432 {52000000, REF_CLK_FREQ_52_MHZ}, 8433 {0, REF_CLK_FREQ_INVAL}, 8434 }; 8435 8436 static enum ufs_ref_clk_freq 8437 ufs_get_bref_clk_from_hz(unsigned long freq) 8438 { 8439 int i; 8440 8441 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8442 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8443 return ufs_ref_clk_freqs[i].val; 8444 8445 return REF_CLK_FREQ_INVAL; 8446 } 8447 8448 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8449 { 8450 unsigned long freq; 8451 8452 freq = clk_get_rate(refclk); 8453 8454 hba->dev_ref_clk_freq = 8455 ufs_get_bref_clk_from_hz(freq); 8456 8457 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8458 dev_err(hba->dev, 8459 "invalid ref_clk setting = %ld\n", freq); 8460 } 8461 8462 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8463 { 8464 int err; 8465 u32 ref_clk; 8466 u32 freq = hba->dev_ref_clk_freq; 8467 8468 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8469 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8470 8471 if (err) { 8472 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8473 err); 8474 goto out; 8475 } 8476 8477 if (ref_clk == freq) 8478 goto out; /* nothing to update */ 8479 8480 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8481 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8482 8483 if (err) { 8484 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8485 ufs_ref_clk_freqs[freq].freq_hz); 8486 goto out; 8487 } 8488 8489 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8490 ufs_ref_clk_freqs[freq].freq_hz); 8491 8492 out: 8493 return err; 8494 } 8495 8496 static int ufshcd_device_params_init(struct ufs_hba *hba) 8497 { 8498 bool flag; 8499 int ret; 8500 8501 /* Init UFS geometry descriptor related parameters */ 8502 ret = ufshcd_device_geo_params_init(hba); 8503 if (ret) 8504 goto out; 8505 8506 /* Check and apply UFS device quirks */ 8507 ret = ufs_get_device_desc(hba); 8508 if (ret) { 8509 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8510 __func__, ret); 8511 goto out; 8512 } 8513 8514 ufshcd_get_ref_clk_gating_wait(hba); 8515 8516 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8517 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8518 hba->dev_info.f_power_on_wp_en = flag; 8519 8520 /* Probe maximum power mode co-supported by both UFS host and device */ 8521 if (ufshcd_get_max_pwr_mode(hba)) 8522 dev_err(hba->dev, 8523 "%s: Failed getting max supported power mode\n", 8524 __func__); 8525 out: 8526 return ret; 8527 } 8528 8529 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8530 { 8531 int err; 8532 struct ufs_query_req *request = NULL; 8533 struct ufs_query_res *response = NULL; 8534 struct ufs_dev_info *dev_info = &hba->dev_info; 8535 struct utp_upiu_query_v4_0 *upiu_data; 8536 8537 if (dev_info->wspecversion < 0x400) 8538 return; 8539 8540 ufshcd_hold(hba); 8541 8542 mutex_lock(&hba->dev_cmd.lock); 8543 8544 ufshcd_init_query(hba, &request, &response, 8545 UPIU_QUERY_OPCODE_WRITE_ATTR, 8546 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8547 8548 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8549 8550 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8551 8552 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8553 8554 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8555 8556 if (err) 8557 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8558 __func__, err); 8559 8560 mutex_unlock(&hba->dev_cmd.lock); 8561 ufshcd_release(hba); 8562 } 8563 8564 /** 8565 * ufshcd_add_lus - probe and add UFS logical units 8566 * @hba: per-adapter instance 8567 * 8568 * Return: 0 upon success; < 0 upon failure. 8569 */ 8570 static int ufshcd_add_lus(struct ufs_hba *hba) 8571 { 8572 int ret; 8573 8574 /* Add required well known logical units to scsi mid layer */ 8575 ret = ufshcd_scsi_add_wlus(hba); 8576 if (ret) 8577 goto out; 8578 8579 /* Initialize devfreq after UFS device is detected */ 8580 if (ufshcd_is_clkscaling_supported(hba)) { 8581 memcpy(&hba->clk_scaling.saved_pwr_info, 8582 &hba->pwr_info, 8583 sizeof(struct ufs_pa_layer_attr)); 8584 hba->clk_scaling.is_allowed = true; 8585 8586 ret = ufshcd_devfreq_init(hba); 8587 if (ret) 8588 goto out; 8589 8590 hba->clk_scaling.is_enabled = true; 8591 ufshcd_init_clk_scaling_sysfs(hba); 8592 } 8593 8594 ufs_bsg_probe(hba); 8595 scsi_scan_host(hba->host); 8596 8597 out: 8598 return ret; 8599 } 8600 8601 /* SDB - Single Doorbell */ 8602 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8603 { 8604 size_t ucdl_size, utrdl_size; 8605 8606 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8607 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8608 hba->ucdl_dma_addr); 8609 8610 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8611 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8612 hba->utrdl_dma_addr); 8613 8614 devm_kfree(hba->dev, hba->lrb); 8615 } 8616 8617 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8618 { 8619 int ret; 8620 int old_nutrs = hba->nutrs; 8621 8622 ret = ufshcd_mcq_decide_queue_depth(hba); 8623 if (ret < 0) 8624 return ret; 8625 8626 hba->nutrs = ret; 8627 ret = ufshcd_mcq_init(hba); 8628 if (ret) 8629 goto err; 8630 8631 /* 8632 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8633 * Number of supported tags in MCQ mode may be larger than SDB mode. 8634 */ 8635 if (hba->nutrs != old_nutrs) { 8636 ufshcd_release_sdb_queue(hba, old_nutrs); 8637 ret = ufshcd_memory_alloc(hba); 8638 if (ret) 8639 goto err; 8640 ufshcd_host_memory_configure(hba); 8641 } 8642 8643 ret = ufshcd_mcq_memory_alloc(hba); 8644 if (ret) 8645 goto err; 8646 8647 return 0; 8648 err: 8649 hba->nutrs = old_nutrs; 8650 return ret; 8651 } 8652 8653 static void ufshcd_config_mcq(struct ufs_hba *hba) 8654 { 8655 int ret; 8656 u32 intrs; 8657 8658 ret = ufshcd_mcq_vops_config_esi(hba); 8659 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8660 8661 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8662 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8663 intrs &= ~MCQ_CQ_EVENT_STATUS; 8664 ufshcd_enable_intr(hba, intrs); 8665 ufshcd_mcq_make_queues_operational(hba); 8666 ufshcd_mcq_config_mac(hba, hba->nutrs); 8667 8668 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8669 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8670 8671 /* Select MCQ mode */ 8672 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1, 8673 REG_UFS_MEM_CFG); 8674 hba->mcq_enabled = true; 8675 8676 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8677 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8678 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8679 hba->nutrs); 8680 } 8681 8682 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8683 { 8684 int ret; 8685 struct Scsi_Host *host = hba->host; 8686 8687 hba->ufshcd_state = UFSHCD_STATE_RESET; 8688 8689 ret = ufshcd_link_startup(hba); 8690 if (ret) 8691 return ret; 8692 8693 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8694 return ret; 8695 8696 /* Debug counters initialization */ 8697 ufshcd_clear_dbg_ufs_stats(hba); 8698 8699 /* UniPro link is active now */ 8700 ufshcd_set_link_active(hba); 8701 8702 /* Reconfigure MCQ upon reset */ 8703 if (is_mcq_enabled(hba) && !init_dev_params) 8704 ufshcd_config_mcq(hba); 8705 8706 /* Verify device initialization by sending NOP OUT UPIU */ 8707 ret = ufshcd_verify_dev_init(hba); 8708 if (ret) 8709 return ret; 8710 8711 /* Initiate UFS initialization, and waiting until completion */ 8712 ret = ufshcd_complete_dev_init(hba); 8713 if (ret) 8714 return ret; 8715 8716 /* 8717 * Initialize UFS device parameters used by driver, these 8718 * parameters are associated with UFS descriptors. 8719 */ 8720 if (init_dev_params) { 8721 ret = ufshcd_device_params_init(hba); 8722 if (ret) 8723 return ret; 8724 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8725 ret = ufshcd_alloc_mcq(hba); 8726 if (!ret) { 8727 ufshcd_config_mcq(hba); 8728 } else { 8729 /* Continue with SDB mode */ 8730 use_mcq_mode = false; 8731 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8732 ret); 8733 } 8734 ret = scsi_add_host(host, hba->dev); 8735 if (ret) { 8736 dev_err(hba->dev, "scsi_add_host failed\n"); 8737 return ret; 8738 } 8739 hba->scsi_host_added = true; 8740 } else if (is_mcq_supported(hba)) { 8741 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ 8742 ufshcd_config_mcq(hba); 8743 } 8744 } 8745 8746 ufshcd_tune_unipro_params(hba); 8747 8748 /* UFS device is also active now */ 8749 ufshcd_set_ufs_dev_active(hba); 8750 ufshcd_force_reset_auto_bkops(hba); 8751 8752 ufshcd_set_timestamp_attr(hba); 8753 8754 /* Gear up to HS gear if supported */ 8755 if (hba->max_pwr_info.is_valid) { 8756 /* 8757 * Set the right value to bRefClkFreq before attempting to 8758 * switch to HS gears. 8759 */ 8760 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8761 ufshcd_set_dev_ref_clk(hba); 8762 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8763 if (ret) { 8764 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8765 __func__, ret); 8766 return ret; 8767 } 8768 } 8769 8770 return 0; 8771 } 8772 8773 /** 8774 * ufshcd_probe_hba - probe hba to detect device and initialize it 8775 * @hba: per-adapter instance 8776 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8777 * 8778 * Execute link-startup and verify device initialization 8779 * 8780 * Return: 0 upon success; < 0 upon failure. 8781 */ 8782 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8783 { 8784 ktime_t start = ktime_get(); 8785 unsigned long flags; 8786 int ret; 8787 8788 ret = ufshcd_device_init(hba, init_dev_params); 8789 if (ret) 8790 goto out; 8791 8792 if (!hba->pm_op_in_progress && 8793 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8794 /* Reset the device and controller before doing reinit */ 8795 ufshcd_device_reset(hba); 8796 ufs_put_device_desc(hba); 8797 ufshcd_hba_stop(hba); 8798 ufshcd_vops_reinit_notify(hba); 8799 ret = ufshcd_hba_enable(hba); 8800 if (ret) { 8801 dev_err(hba->dev, "Host controller enable failed\n"); 8802 ufshcd_print_evt_hist(hba); 8803 ufshcd_print_host_state(hba); 8804 goto out; 8805 } 8806 8807 /* Reinit the device */ 8808 ret = ufshcd_device_init(hba, init_dev_params); 8809 if (ret) 8810 goto out; 8811 } 8812 8813 ufshcd_print_pwr_info(hba); 8814 8815 /* 8816 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8817 * and for removable UFS card as well, hence always set the parameter. 8818 * Note: Error handler may issue the device reset hence resetting 8819 * bActiveICCLevel as well so it is always safe to set this here. 8820 */ 8821 ufshcd_set_active_icc_lvl(hba); 8822 8823 /* Enable UFS Write Booster if supported */ 8824 ufshcd_configure_wb(hba); 8825 8826 if (hba->ee_usr_mask) 8827 ufshcd_write_ee_control(hba); 8828 /* Enable Auto-Hibernate if configured */ 8829 ufshcd_auto_hibern8_enable(hba); 8830 8831 out: 8832 spin_lock_irqsave(hba->host->host_lock, flags); 8833 if (ret) 8834 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8835 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8836 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8837 spin_unlock_irqrestore(hba->host->host_lock, flags); 8838 8839 trace_ufshcd_init(dev_name(hba->dev), ret, 8840 ktime_to_us(ktime_sub(ktime_get(), start)), 8841 hba->curr_dev_pwr_mode, hba->uic_link_state); 8842 return ret; 8843 } 8844 8845 /** 8846 * ufshcd_async_scan - asynchronous execution for probing hba 8847 * @data: data pointer to pass to this function 8848 * @cookie: cookie data 8849 */ 8850 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8851 { 8852 struct ufs_hba *hba = (struct ufs_hba *)data; 8853 int ret; 8854 8855 down(&hba->host_sem); 8856 /* Initialize hba, detect and initialize UFS device */ 8857 ret = ufshcd_probe_hba(hba, true); 8858 up(&hba->host_sem); 8859 if (ret) 8860 goto out; 8861 8862 /* Probe and add UFS logical units */ 8863 ret = ufshcd_add_lus(hba); 8864 8865 out: 8866 pm_runtime_put_sync(hba->dev); 8867 8868 if (ret) 8869 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 8870 } 8871 8872 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8873 { 8874 struct ufs_hba *hba = shost_priv(scmd->device->host); 8875 8876 if (!hba->system_suspending) { 8877 /* Activate the error handler in the SCSI core. */ 8878 return SCSI_EH_NOT_HANDLED; 8879 } 8880 8881 /* 8882 * If we get here we know that no TMFs are outstanding and also that 8883 * the only pending command is a START STOP UNIT command. Handle the 8884 * timeout of that command directly to prevent a deadlock between 8885 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8886 */ 8887 ufshcd_link_recovery(hba); 8888 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8889 __func__, hba->outstanding_tasks); 8890 8891 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8892 } 8893 8894 static const struct attribute_group *ufshcd_driver_groups[] = { 8895 &ufs_sysfs_unit_descriptor_group, 8896 &ufs_sysfs_lun_attributes_group, 8897 NULL, 8898 }; 8899 8900 static struct ufs_hba_variant_params ufs_hba_vps = { 8901 .hba_enable_delay_us = 1000, 8902 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8903 .devfreq_profile.polling_ms = 100, 8904 .devfreq_profile.target = ufshcd_devfreq_target, 8905 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8906 .ondemand_data.upthreshold = 70, 8907 .ondemand_data.downdifferential = 5, 8908 }; 8909 8910 static const struct scsi_host_template ufshcd_driver_template = { 8911 .module = THIS_MODULE, 8912 .name = UFSHCD, 8913 .proc_name = UFSHCD, 8914 .map_queues = ufshcd_map_queues, 8915 .queuecommand = ufshcd_queuecommand, 8916 .mq_poll = ufshcd_poll, 8917 .slave_alloc = ufshcd_slave_alloc, 8918 .slave_configure = ufshcd_slave_configure, 8919 .slave_destroy = ufshcd_slave_destroy, 8920 .change_queue_depth = ufshcd_change_queue_depth, 8921 .eh_abort_handler = ufshcd_abort, 8922 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8923 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8924 .eh_timed_out = ufshcd_eh_timed_out, 8925 .this_id = -1, 8926 .sg_tablesize = SG_ALL, 8927 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 8928 .can_queue = UFSHCD_CAN_QUEUE, 8929 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8930 .max_sectors = SZ_1M / SECTOR_SIZE, 8931 .max_host_blocked = 1, 8932 .track_queue_depth = 1, 8933 .skip_settle_delay = 1, 8934 .sdev_groups = ufshcd_driver_groups, 8935 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 8936 }; 8937 8938 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8939 int ua) 8940 { 8941 int ret; 8942 8943 if (!vreg) 8944 return 0; 8945 8946 /* 8947 * "set_load" operation shall be required on those regulators 8948 * which specifically configured current limitation. Otherwise 8949 * zero max_uA may cause unexpected behavior when regulator is 8950 * enabled or set as high power mode. 8951 */ 8952 if (!vreg->max_uA) 8953 return 0; 8954 8955 ret = regulator_set_load(vreg->reg, ua); 8956 if (ret < 0) { 8957 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8958 __func__, vreg->name, ua, ret); 8959 } 8960 8961 return ret; 8962 } 8963 8964 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8965 struct ufs_vreg *vreg) 8966 { 8967 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8968 } 8969 8970 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8971 struct ufs_vreg *vreg) 8972 { 8973 if (!vreg) 8974 return 0; 8975 8976 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8977 } 8978 8979 static int ufshcd_config_vreg(struct device *dev, 8980 struct ufs_vreg *vreg, bool on) 8981 { 8982 if (regulator_count_voltages(vreg->reg) <= 0) 8983 return 0; 8984 8985 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8986 } 8987 8988 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8989 { 8990 int ret = 0; 8991 8992 if (!vreg || vreg->enabled) 8993 goto out; 8994 8995 ret = ufshcd_config_vreg(dev, vreg, true); 8996 if (!ret) 8997 ret = regulator_enable(vreg->reg); 8998 8999 if (!ret) 9000 vreg->enabled = true; 9001 else 9002 dev_err(dev, "%s: %s enable failed, err=%d\n", 9003 __func__, vreg->name, ret); 9004 out: 9005 return ret; 9006 } 9007 9008 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9009 { 9010 int ret = 0; 9011 9012 if (!vreg || !vreg->enabled || vreg->always_on) 9013 goto out; 9014 9015 ret = regulator_disable(vreg->reg); 9016 9017 if (!ret) { 9018 /* ignore errors on applying disable config */ 9019 ufshcd_config_vreg(dev, vreg, false); 9020 vreg->enabled = false; 9021 } else { 9022 dev_err(dev, "%s: %s disable failed, err=%d\n", 9023 __func__, vreg->name, ret); 9024 } 9025 out: 9026 return ret; 9027 } 9028 9029 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9030 { 9031 int ret = 0; 9032 struct device *dev = hba->dev; 9033 struct ufs_vreg_info *info = &hba->vreg_info; 9034 9035 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9036 if (ret) 9037 goto out; 9038 9039 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9040 if (ret) 9041 goto out; 9042 9043 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9044 9045 out: 9046 if (ret) { 9047 ufshcd_toggle_vreg(dev, info->vccq2, false); 9048 ufshcd_toggle_vreg(dev, info->vccq, false); 9049 ufshcd_toggle_vreg(dev, info->vcc, false); 9050 } 9051 return ret; 9052 } 9053 9054 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9055 { 9056 struct ufs_vreg_info *info = &hba->vreg_info; 9057 9058 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9059 } 9060 9061 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9062 { 9063 int ret = 0; 9064 9065 if (!vreg) 9066 goto out; 9067 9068 vreg->reg = devm_regulator_get(dev, vreg->name); 9069 if (IS_ERR(vreg->reg)) { 9070 ret = PTR_ERR(vreg->reg); 9071 dev_err(dev, "%s: %s get failed, err=%d\n", 9072 __func__, vreg->name, ret); 9073 } 9074 out: 9075 return ret; 9076 } 9077 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9078 9079 static int ufshcd_init_vreg(struct ufs_hba *hba) 9080 { 9081 int ret = 0; 9082 struct device *dev = hba->dev; 9083 struct ufs_vreg_info *info = &hba->vreg_info; 9084 9085 ret = ufshcd_get_vreg(dev, info->vcc); 9086 if (ret) 9087 goto out; 9088 9089 ret = ufshcd_get_vreg(dev, info->vccq); 9090 if (!ret) 9091 ret = ufshcd_get_vreg(dev, info->vccq2); 9092 out: 9093 return ret; 9094 } 9095 9096 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9097 { 9098 struct ufs_vreg_info *info = &hba->vreg_info; 9099 9100 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9101 } 9102 9103 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9104 { 9105 int ret = 0; 9106 struct ufs_clk_info *clki; 9107 struct list_head *head = &hba->clk_list_head; 9108 unsigned long flags; 9109 ktime_t start = ktime_get(); 9110 bool clk_state_changed = false; 9111 9112 if (list_empty(head)) 9113 goto out; 9114 9115 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9116 if (ret) 9117 return ret; 9118 9119 list_for_each_entry(clki, head, list) { 9120 if (!IS_ERR_OR_NULL(clki->clk)) { 9121 /* 9122 * Don't disable clocks which are needed 9123 * to keep the link active. 9124 */ 9125 if (ufshcd_is_link_active(hba) && 9126 clki->keep_link_active) 9127 continue; 9128 9129 clk_state_changed = on ^ clki->enabled; 9130 if (on && !clki->enabled) { 9131 ret = clk_prepare_enable(clki->clk); 9132 if (ret) { 9133 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9134 __func__, clki->name, ret); 9135 goto out; 9136 } 9137 } else if (!on && clki->enabled) { 9138 clk_disable_unprepare(clki->clk); 9139 } 9140 clki->enabled = on; 9141 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9142 clki->name, on ? "en" : "dis"); 9143 } 9144 } 9145 9146 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9147 if (ret) 9148 return ret; 9149 9150 out: 9151 if (ret) { 9152 list_for_each_entry(clki, head, list) { 9153 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9154 clk_disable_unprepare(clki->clk); 9155 } 9156 } else if (!ret && on) { 9157 spin_lock_irqsave(hba->host->host_lock, flags); 9158 hba->clk_gating.state = CLKS_ON; 9159 trace_ufshcd_clk_gating(dev_name(hba->dev), 9160 hba->clk_gating.state); 9161 spin_unlock_irqrestore(hba->host->host_lock, flags); 9162 } 9163 9164 if (clk_state_changed) 9165 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9166 (on ? "on" : "off"), 9167 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9168 return ret; 9169 } 9170 9171 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9172 { 9173 u32 freq; 9174 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9175 9176 if (ret) { 9177 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9178 return REF_CLK_FREQ_INVAL; 9179 } 9180 9181 return ufs_get_bref_clk_from_hz(freq); 9182 } 9183 9184 static int ufshcd_init_clocks(struct ufs_hba *hba) 9185 { 9186 int ret = 0; 9187 struct ufs_clk_info *clki; 9188 struct device *dev = hba->dev; 9189 struct list_head *head = &hba->clk_list_head; 9190 9191 if (list_empty(head)) 9192 goto out; 9193 9194 list_for_each_entry(clki, head, list) { 9195 if (!clki->name) 9196 continue; 9197 9198 clki->clk = devm_clk_get(dev, clki->name); 9199 if (IS_ERR(clki->clk)) { 9200 ret = PTR_ERR(clki->clk); 9201 dev_err(dev, "%s: %s clk get failed, %d\n", 9202 __func__, clki->name, ret); 9203 goto out; 9204 } 9205 9206 /* 9207 * Parse device ref clk freq as per device tree "ref_clk". 9208 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9209 * in ufshcd_alloc_host(). 9210 */ 9211 if (!strcmp(clki->name, "ref_clk")) 9212 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9213 9214 if (clki->max_freq) { 9215 ret = clk_set_rate(clki->clk, clki->max_freq); 9216 if (ret) { 9217 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9218 __func__, clki->name, 9219 clki->max_freq, ret); 9220 goto out; 9221 } 9222 clki->curr_freq = clki->max_freq; 9223 } 9224 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9225 clki->name, clk_get_rate(clki->clk)); 9226 } 9227 out: 9228 return ret; 9229 } 9230 9231 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9232 { 9233 int err = 0; 9234 9235 if (!hba->vops) 9236 goto out; 9237 9238 err = ufshcd_vops_init(hba); 9239 if (err) 9240 dev_err_probe(hba->dev, err, 9241 "%s: variant %s init failed with err %d\n", 9242 __func__, ufshcd_get_var_name(hba), err); 9243 out: 9244 return err; 9245 } 9246 9247 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9248 { 9249 if (!hba->vops) 9250 return; 9251 9252 ufshcd_vops_exit(hba); 9253 } 9254 9255 static int ufshcd_hba_init(struct ufs_hba *hba) 9256 { 9257 int err; 9258 9259 /* 9260 * Handle host controller power separately from the UFS device power 9261 * rails as it will help controlling the UFS host controller power 9262 * collapse easily which is different than UFS device power collapse. 9263 * Also, enable the host controller power before we go ahead with rest 9264 * of the initialization here. 9265 */ 9266 err = ufshcd_init_hba_vreg(hba); 9267 if (err) 9268 goto out; 9269 9270 err = ufshcd_setup_hba_vreg(hba, true); 9271 if (err) 9272 goto out; 9273 9274 err = ufshcd_init_clocks(hba); 9275 if (err) 9276 goto out_disable_hba_vreg; 9277 9278 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9279 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9280 9281 err = ufshcd_setup_clocks(hba, true); 9282 if (err) 9283 goto out_disable_hba_vreg; 9284 9285 err = ufshcd_init_vreg(hba); 9286 if (err) 9287 goto out_disable_clks; 9288 9289 err = ufshcd_setup_vreg(hba, true); 9290 if (err) 9291 goto out_disable_clks; 9292 9293 err = ufshcd_variant_hba_init(hba); 9294 if (err) 9295 goto out_disable_vreg; 9296 9297 ufs_debugfs_hba_init(hba); 9298 9299 hba->is_powered = true; 9300 goto out; 9301 9302 out_disable_vreg: 9303 ufshcd_setup_vreg(hba, false); 9304 out_disable_clks: 9305 ufshcd_setup_clocks(hba, false); 9306 out_disable_hba_vreg: 9307 ufshcd_setup_hba_vreg(hba, false); 9308 out: 9309 return err; 9310 } 9311 9312 static void ufshcd_hba_exit(struct ufs_hba *hba) 9313 { 9314 if (hba->is_powered) { 9315 ufshcd_exit_clk_scaling(hba); 9316 ufshcd_exit_clk_gating(hba); 9317 if (hba->eh_wq) 9318 destroy_workqueue(hba->eh_wq); 9319 ufs_debugfs_hba_exit(hba); 9320 ufshcd_variant_hba_exit(hba); 9321 ufshcd_setup_vreg(hba, false); 9322 ufshcd_setup_clocks(hba, false); 9323 ufshcd_setup_hba_vreg(hba, false); 9324 hba->is_powered = false; 9325 ufs_put_device_desc(hba); 9326 } 9327 } 9328 9329 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9330 enum ufs_dev_pwr_mode pwr_mode, 9331 struct scsi_sense_hdr *sshdr) 9332 { 9333 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9334 const struct scsi_exec_args args = { 9335 .sshdr = sshdr, 9336 .req_flags = BLK_MQ_REQ_PM, 9337 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9338 }; 9339 9340 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9341 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9342 &args); 9343 } 9344 9345 /** 9346 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9347 * power mode 9348 * @hba: per adapter instance 9349 * @pwr_mode: device power mode to set 9350 * 9351 * Return: 0 if requested power mode is set successfully; 9352 * < 0 if failed to set the requested power mode. 9353 */ 9354 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9355 enum ufs_dev_pwr_mode pwr_mode) 9356 { 9357 struct scsi_sense_hdr sshdr; 9358 struct scsi_device *sdp; 9359 unsigned long flags; 9360 int ret, retries; 9361 9362 spin_lock_irqsave(hba->host->host_lock, flags); 9363 sdp = hba->ufs_device_wlun; 9364 if (sdp && scsi_device_online(sdp)) 9365 ret = scsi_device_get(sdp); 9366 else 9367 ret = -ENODEV; 9368 spin_unlock_irqrestore(hba->host->host_lock, flags); 9369 9370 if (ret) 9371 return ret; 9372 9373 /* 9374 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9375 * handling, which would wait for host to be resumed. Since we know 9376 * we are functional while we are here, skip host resume in error 9377 * handling context. 9378 */ 9379 hba->host->eh_noresume = 1; 9380 9381 /* 9382 * Current function would be generally called from the power management 9383 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9384 * already suspended childs. 9385 */ 9386 for (retries = 3; retries > 0; --retries) { 9387 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9388 /* 9389 * scsi_execute() only returns a negative value if the request 9390 * queue is dying. 9391 */ 9392 if (ret <= 0) 9393 break; 9394 } 9395 if (ret) { 9396 sdev_printk(KERN_WARNING, sdp, 9397 "START_STOP failed for power mode: %d, result %x\n", 9398 pwr_mode, ret); 9399 if (ret > 0) { 9400 if (scsi_sense_valid(&sshdr)) 9401 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9402 ret = -EIO; 9403 } 9404 } else { 9405 hba->curr_dev_pwr_mode = pwr_mode; 9406 } 9407 9408 scsi_device_put(sdp); 9409 hba->host->eh_noresume = 0; 9410 return ret; 9411 } 9412 9413 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9414 enum uic_link_state req_link_state, 9415 bool check_for_bkops) 9416 { 9417 int ret = 0; 9418 9419 if (req_link_state == hba->uic_link_state) 9420 return 0; 9421 9422 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9423 ret = ufshcd_uic_hibern8_enter(hba); 9424 if (!ret) { 9425 ufshcd_set_link_hibern8(hba); 9426 } else { 9427 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9428 __func__, ret); 9429 goto out; 9430 } 9431 } 9432 /* 9433 * If autobkops is enabled, link can't be turned off because 9434 * turning off the link would also turn off the device, except in the 9435 * case of DeepSleep where the device is expected to remain powered. 9436 */ 9437 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9438 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9439 /* 9440 * Let's make sure that link is in low power mode, we are doing 9441 * this currently by putting the link in Hibern8. Otherway to 9442 * put the link in low power mode is to send the DME end point 9443 * to device and then send the DME reset command to local 9444 * unipro. But putting the link in hibern8 is much faster. 9445 * 9446 * Note also that putting the link in Hibern8 is a requirement 9447 * for entering DeepSleep. 9448 */ 9449 ret = ufshcd_uic_hibern8_enter(hba); 9450 if (ret) { 9451 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9452 __func__, ret); 9453 goto out; 9454 } 9455 /* 9456 * Change controller state to "reset state" which 9457 * should also put the link in off/reset state 9458 */ 9459 ufshcd_hba_stop(hba); 9460 /* 9461 * TODO: Check if we need any delay to make sure that 9462 * controller is reset 9463 */ 9464 ufshcd_set_link_off(hba); 9465 } 9466 9467 out: 9468 return ret; 9469 } 9470 9471 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9472 { 9473 bool vcc_off = false; 9474 9475 /* 9476 * It seems some UFS devices may keep drawing more than sleep current 9477 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9478 * To avoid this situation, add 2ms delay before putting these UFS 9479 * rails in LPM mode. 9480 */ 9481 if (!ufshcd_is_link_active(hba) && 9482 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9483 usleep_range(2000, 2100); 9484 9485 /* 9486 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9487 * power. 9488 * 9489 * If UFS device and link is in OFF state, all power supplies (VCC, 9490 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9491 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9492 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9493 * 9494 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9495 * in low power state which would save some power. 9496 * 9497 * If Write Booster is enabled and the device needs to flush the WB 9498 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9499 */ 9500 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9501 !hba->dev_info.is_lu_power_on_wp) { 9502 ufshcd_setup_vreg(hba, false); 9503 vcc_off = true; 9504 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9505 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9506 vcc_off = true; 9507 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9508 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9509 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9510 } 9511 } 9512 9513 /* 9514 * Some UFS devices require delay after VCC power rail is turned-off. 9515 */ 9516 if (vcc_off && hba->vreg_info.vcc && 9517 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9518 usleep_range(5000, 5100); 9519 } 9520 9521 #ifdef CONFIG_PM 9522 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9523 { 9524 int ret = 0; 9525 9526 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9527 !hba->dev_info.is_lu_power_on_wp) { 9528 ret = ufshcd_setup_vreg(hba, true); 9529 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9530 if (!ufshcd_is_link_active(hba)) { 9531 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9532 if (ret) 9533 goto vcc_disable; 9534 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9535 if (ret) 9536 goto vccq_lpm; 9537 } 9538 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9539 } 9540 goto out; 9541 9542 vccq_lpm: 9543 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9544 vcc_disable: 9545 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9546 out: 9547 return ret; 9548 } 9549 #endif /* CONFIG_PM */ 9550 9551 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9552 { 9553 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9554 ufshcd_setup_hba_vreg(hba, false); 9555 } 9556 9557 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9558 { 9559 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9560 ufshcd_setup_hba_vreg(hba, true); 9561 } 9562 9563 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9564 { 9565 int ret = 0; 9566 bool check_for_bkops; 9567 enum ufs_pm_level pm_lvl; 9568 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9569 enum uic_link_state req_link_state; 9570 9571 hba->pm_op_in_progress = true; 9572 if (pm_op != UFS_SHUTDOWN_PM) { 9573 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9574 hba->rpm_lvl : hba->spm_lvl; 9575 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9576 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9577 } else { 9578 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9579 req_link_state = UIC_LINK_OFF_STATE; 9580 } 9581 9582 /* 9583 * If we can't transition into any of the low power modes 9584 * just gate the clocks. 9585 */ 9586 ufshcd_hold(hba); 9587 hba->clk_gating.is_suspended = true; 9588 9589 if (ufshcd_is_clkscaling_supported(hba)) 9590 ufshcd_clk_scaling_suspend(hba, true); 9591 9592 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9593 req_link_state == UIC_LINK_ACTIVE_STATE) { 9594 goto vops_suspend; 9595 } 9596 9597 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9598 (req_link_state == hba->uic_link_state)) 9599 goto enable_scaling; 9600 9601 /* UFS device & link must be active before we enter in this function */ 9602 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9603 /* Wait err handler finish or trigger err recovery */ 9604 if (!ufshcd_eh_in_progress(hba)) 9605 ufshcd_force_error_recovery(hba); 9606 ret = -EBUSY; 9607 goto enable_scaling; 9608 } 9609 9610 if (pm_op == UFS_RUNTIME_PM) { 9611 if (ufshcd_can_autobkops_during_suspend(hba)) { 9612 /* 9613 * The device is idle with no requests in the queue, 9614 * allow background operations if bkops status shows 9615 * that performance might be impacted. 9616 */ 9617 ret = ufshcd_urgent_bkops(hba); 9618 if (ret) { 9619 /* 9620 * If return err in suspend flow, IO will hang. 9621 * Trigger error handler and break suspend for 9622 * error recovery. 9623 */ 9624 ufshcd_force_error_recovery(hba); 9625 ret = -EBUSY; 9626 goto enable_scaling; 9627 } 9628 } else { 9629 /* make sure that auto bkops is disabled */ 9630 ufshcd_disable_auto_bkops(hba); 9631 } 9632 /* 9633 * If device needs to do BKOP or WB buffer flush during 9634 * Hibern8, keep device power mode as "active power mode" 9635 * and VCC supply. 9636 */ 9637 hba->dev_info.b_rpm_dev_flush_capable = 9638 hba->auto_bkops_enabled || 9639 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9640 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9641 ufshcd_is_auto_hibern8_enabled(hba))) && 9642 ufshcd_wb_need_flush(hba)); 9643 } 9644 9645 flush_work(&hba->eeh_work); 9646 9647 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9648 if (ret) 9649 goto enable_scaling; 9650 9651 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9652 if (pm_op != UFS_RUNTIME_PM) 9653 /* ensure that bkops is disabled */ 9654 ufshcd_disable_auto_bkops(hba); 9655 9656 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9657 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9658 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9659 /* 9660 * If return err in suspend flow, IO will hang. 9661 * Trigger error handler and break suspend for 9662 * error recovery. 9663 */ 9664 ufshcd_force_error_recovery(hba); 9665 ret = -EBUSY; 9666 } 9667 if (ret) 9668 goto enable_scaling; 9669 } 9670 } 9671 9672 /* 9673 * In the case of DeepSleep, the device is expected to remain powered 9674 * with the link off, so do not check for bkops. 9675 */ 9676 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9677 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9678 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9679 /* 9680 * If return err in suspend flow, IO will hang. 9681 * Trigger error handler and break suspend for 9682 * error recovery. 9683 */ 9684 ufshcd_force_error_recovery(hba); 9685 ret = -EBUSY; 9686 } 9687 if (ret) 9688 goto set_dev_active; 9689 9690 vops_suspend: 9691 /* 9692 * Call vendor specific suspend callback. As these callbacks may access 9693 * vendor specific host controller register space call them before the 9694 * host clocks are ON. 9695 */ 9696 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9697 if (ret) 9698 goto set_link_active; 9699 goto out; 9700 9701 set_link_active: 9702 /* 9703 * Device hardware reset is required to exit DeepSleep. Also, for 9704 * DeepSleep, the link is off so host reset and restore will be done 9705 * further below. 9706 */ 9707 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9708 ufshcd_device_reset(hba); 9709 WARN_ON(!ufshcd_is_link_off(hba)); 9710 } 9711 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9712 ufshcd_set_link_active(hba); 9713 else if (ufshcd_is_link_off(hba)) 9714 ufshcd_host_reset_and_restore(hba); 9715 set_dev_active: 9716 /* Can also get here needing to exit DeepSleep */ 9717 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9718 ufshcd_device_reset(hba); 9719 ufshcd_host_reset_and_restore(hba); 9720 } 9721 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9722 ufshcd_disable_auto_bkops(hba); 9723 enable_scaling: 9724 if (ufshcd_is_clkscaling_supported(hba)) 9725 ufshcd_clk_scaling_suspend(hba, false); 9726 9727 hba->dev_info.b_rpm_dev_flush_capable = false; 9728 out: 9729 if (hba->dev_info.b_rpm_dev_flush_capable) { 9730 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9731 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9732 } 9733 9734 if (ret) { 9735 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9736 hba->clk_gating.is_suspended = false; 9737 ufshcd_release(hba); 9738 } 9739 hba->pm_op_in_progress = false; 9740 return ret; 9741 } 9742 9743 #ifdef CONFIG_PM 9744 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9745 { 9746 int ret; 9747 enum uic_link_state old_link_state = hba->uic_link_state; 9748 9749 hba->pm_op_in_progress = true; 9750 9751 /* 9752 * Call vendor specific resume callback. As these callbacks may access 9753 * vendor specific host controller register space call them when the 9754 * host clocks are ON. 9755 */ 9756 ret = ufshcd_vops_resume(hba, pm_op); 9757 if (ret) 9758 goto out; 9759 9760 /* For DeepSleep, the only supported option is to have the link off */ 9761 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9762 9763 if (ufshcd_is_link_hibern8(hba)) { 9764 ret = ufshcd_uic_hibern8_exit(hba); 9765 if (!ret) { 9766 ufshcd_set_link_active(hba); 9767 } else { 9768 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9769 __func__, ret); 9770 goto vendor_suspend; 9771 } 9772 } else if (ufshcd_is_link_off(hba)) { 9773 /* 9774 * A full initialization of the host and the device is 9775 * required since the link was put to off during suspend. 9776 * Note, in the case of DeepSleep, the device will exit 9777 * DeepSleep due to device reset. 9778 */ 9779 ret = ufshcd_reset_and_restore(hba); 9780 /* 9781 * ufshcd_reset_and_restore() should have already 9782 * set the link state as active 9783 */ 9784 if (ret || !ufshcd_is_link_active(hba)) 9785 goto vendor_suspend; 9786 } 9787 9788 if (!ufshcd_is_ufs_dev_active(hba)) { 9789 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9790 if (ret) 9791 goto set_old_link_state; 9792 ufshcd_set_timestamp_attr(hba); 9793 } 9794 9795 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9796 ufshcd_enable_auto_bkops(hba); 9797 else 9798 /* 9799 * If BKOPs operations are urgently needed at this moment then 9800 * keep auto-bkops enabled or else disable it. 9801 */ 9802 ufshcd_urgent_bkops(hba); 9803 9804 if (hba->ee_usr_mask) 9805 ufshcd_write_ee_control(hba); 9806 9807 if (ufshcd_is_clkscaling_supported(hba)) 9808 ufshcd_clk_scaling_suspend(hba, false); 9809 9810 if (hba->dev_info.b_rpm_dev_flush_capable) { 9811 hba->dev_info.b_rpm_dev_flush_capable = false; 9812 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9813 } 9814 9815 /* Enable Auto-Hibernate if configured */ 9816 ufshcd_auto_hibern8_enable(hba); 9817 9818 goto out; 9819 9820 set_old_link_state: 9821 ufshcd_link_state_transition(hba, old_link_state, 0); 9822 vendor_suspend: 9823 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9824 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9825 out: 9826 if (ret) 9827 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9828 hba->clk_gating.is_suspended = false; 9829 ufshcd_release(hba); 9830 hba->pm_op_in_progress = false; 9831 return ret; 9832 } 9833 9834 static int ufshcd_wl_runtime_suspend(struct device *dev) 9835 { 9836 struct scsi_device *sdev = to_scsi_device(dev); 9837 struct ufs_hba *hba; 9838 int ret; 9839 ktime_t start = ktime_get(); 9840 9841 hba = shost_priv(sdev->host); 9842 9843 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9844 if (ret) 9845 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9846 9847 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9848 ktime_to_us(ktime_sub(ktime_get(), start)), 9849 hba->curr_dev_pwr_mode, hba->uic_link_state); 9850 9851 return ret; 9852 } 9853 9854 static int ufshcd_wl_runtime_resume(struct device *dev) 9855 { 9856 struct scsi_device *sdev = to_scsi_device(dev); 9857 struct ufs_hba *hba; 9858 int ret = 0; 9859 ktime_t start = ktime_get(); 9860 9861 hba = shost_priv(sdev->host); 9862 9863 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9864 if (ret) 9865 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9866 9867 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9868 ktime_to_us(ktime_sub(ktime_get(), start)), 9869 hba->curr_dev_pwr_mode, hba->uic_link_state); 9870 9871 return ret; 9872 } 9873 #endif 9874 9875 #ifdef CONFIG_PM_SLEEP 9876 static int ufshcd_wl_suspend(struct device *dev) 9877 { 9878 struct scsi_device *sdev = to_scsi_device(dev); 9879 struct ufs_hba *hba; 9880 int ret = 0; 9881 ktime_t start = ktime_get(); 9882 9883 hba = shost_priv(sdev->host); 9884 down(&hba->host_sem); 9885 hba->system_suspending = true; 9886 9887 if (pm_runtime_suspended(dev)) 9888 goto out; 9889 9890 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9891 if (ret) { 9892 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9893 up(&hba->host_sem); 9894 } 9895 9896 out: 9897 if (!ret) 9898 hba->is_sys_suspended = true; 9899 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9900 ktime_to_us(ktime_sub(ktime_get(), start)), 9901 hba->curr_dev_pwr_mode, hba->uic_link_state); 9902 9903 return ret; 9904 } 9905 9906 static int ufshcd_wl_resume(struct device *dev) 9907 { 9908 struct scsi_device *sdev = to_scsi_device(dev); 9909 struct ufs_hba *hba; 9910 int ret = 0; 9911 ktime_t start = ktime_get(); 9912 9913 hba = shost_priv(sdev->host); 9914 9915 if (pm_runtime_suspended(dev)) 9916 goto out; 9917 9918 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9919 if (ret) 9920 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9921 out: 9922 trace_ufshcd_wl_resume(dev_name(dev), ret, 9923 ktime_to_us(ktime_sub(ktime_get(), start)), 9924 hba->curr_dev_pwr_mode, hba->uic_link_state); 9925 if (!ret) 9926 hba->is_sys_suspended = false; 9927 hba->system_suspending = false; 9928 up(&hba->host_sem); 9929 return ret; 9930 } 9931 #endif 9932 9933 /** 9934 * ufshcd_suspend - helper function for suspend operations 9935 * @hba: per adapter instance 9936 * 9937 * This function will put disable irqs, turn off clocks 9938 * and set vreg and hba-vreg in lpm mode. 9939 * 9940 * Return: 0 upon success; < 0 upon failure. 9941 */ 9942 static int ufshcd_suspend(struct ufs_hba *hba) 9943 { 9944 int ret; 9945 9946 if (!hba->is_powered) 9947 return 0; 9948 /* 9949 * Disable the host irq as host controller as there won't be any 9950 * host controller transaction expected till resume. 9951 */ 9952 ufshcd_disable_irq(hba); 9953 ret = ufshcd_setup_clocks(hba, false); 9954 if (ret) { 9955 ufshcd_enable_irq(hba); 9956 return ret; 9957 } 9958 if (ufshcd_is_clkgating_allowed(hba)) { 9959 hba->clk_gating.state = CLKS_OFF; 9960 trace_ufshcd_clk_gating(dev_name(hba->dev), 9961 hba->clk_gating.state); 9962 } 9963 9964 ufshcd_vreg_set_lpm(hba); 9965 /* Put the host controller in low power mode if possible */ 9966 ufshcd_hba_vreg_set_lpm(hba); 9967 return ret; 9968 } 9969 9970 #ifdef CONFIG_PM 9971 /** 9972 * ufshcd_resume - helper function for resume operations 9973 * @hba: per adapter instance 9974 * 9975 * This function basically turns on the regulators, clocks and 9976 * irqs of the hba. 9977 * 9978 * Return: 0 for success and non-zero for failure. 9979 */ 9980 static int ufshcd_resume(struct ufs_hba *hba) 9981 { 9982 int ret; 9983 9984 if (!hba->is_powered) 9985 return 0; 9986 9987 ufshcd_hba_vreg_set_hpm(hba); 9988 ret = ufshcd_vreg_set_hpm(hba); 9989 if (ret) 9990 goto out; 9991 9992 /* Make sure clocks are enabled before accessing controller */ 9993 ret = ufshcd_setup_clocks(hba, true); 9994 if (ret) 9995 goto disable_vreg; 9996 9997 /* enable the host irq as host controller would be active soon */ 9998 ufshcd_enable_irq(hba); 9999 10000 goto out; 10001 10002 disable_vreg: 10003 ufshcd_vreg_set_lpm(hba); 10004 out: 10005 if (ret) 10006 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10007 return ret; 10008 } 10009 #endif /* CONFIG_PM */ 10010 10011 #ifdef CONFIG_PM_SLEEP 10012 /** 10013 * ufshcd_system_suspend - system suspend callback 10014 * @dev: Device associated with the UFS controller. 10015 * 10016 * Executed before putting the system into a sleep state in which the contents 10017 * of main memory are preserved. 10018 * 10019 * Return: 0 for success and non-zero for failure. 10020 */ 10021 int ufshcd_system_suspend(struct device *dev) 10022 { 10023 struct ufs_hba *hba = dev_get_drvdata(dev); 10024 int ret = 0; 10025 ktime_t start = ktime_get(); 10026 10027 if (pm_runtime_suspended(hba->dev)) 10028 goto out; 10029 10030 ret = ufshcd_suspend(hba); 10031 out: 10032 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 10033 ktime_to_us(ktime_sub(ktime_get(), start)), 10034 hba->curr_dev_pwr_mode, hba->uic_link_state); 10035 return ret; 10036 } 10037 EXPORT_SYMBOL(ufshcd_system_suspend); 10038 10039 /** 10040 * ufshcd_system_resume - system resume callback 10041 * @dev: Device associated with the UFS controller. 10042 * 10043 * Executed after waking the system up from a sleep state in which the contents 10044 * of main memory were preserved. 10045 * 10046 * Return: 0 for success and non-zero for failure. 10047 */ 10048 int ufshcd_system_resume(struct device *dev) 10049 { 10050 struct ufs_hba *hba = dev_get_drvdata(dev); 10051 ktime_t start = ktime_get(); 10052 int ret = 0; 10053 10054 if (pm_runtime_suspended(hba->dev)) 10055 goto out; 10056 10057 ret = ufshcd_resume(hba); 10058 10059 out: 10060 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10061 ktime_to_us(ktime_sub(ktime_get(), start)), 10062 hba->curr_dev_pwr_mode, hba->uic_link_state); 10063 10064 return ret; 10065 } 10066 EXPORT_SYMBOL(ufshcd_system_resume); 10067 #endif /* CONFIG_PM_SLEEP */ 10068 10069 #ifdef CONFIG_PM 10070 /** 10071 * ufshcd_runtime_suspend - runtime suspend callback 10072 * @dev: Device associated with the UFS controller. 10073 * 10074 * Check the description of ufshcd_suspend() function for more details. 10075 * 10076 * Return: 0 for success and non-zero for failure. 10077 */ 10078 int ufshcd_runtime_suspend(struct device *dev) 10079 { 10080 struct ufs_hba *hba = dev_get_drvdata(dev); 10081 int ret; 10082 ktime_t start = ktime_get(); 10083 10084 ret = ufshcd_suspend(hba); 10085 10086 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10087 ktime_to_us(ktime_sub(ktime_get(), start)), 10088 hba->curr_dev_pwr_mode, hba->uic_link_state); 10089 return ret; 10090 } 10091 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10092 10093 /** 10094 * ufshcd_runtime_resume - runtime resume routine 10095 * @dev: Device associated with the UFS controller. 10096 * 10097 * This function basically brings controller 10098 * to active state. Following operations are done in this function: 10099 * 10100 * 1. Turn on all the controller related clocks 10101 * 2. Turn ON VCC rail 10102 * 10103 * Return: 0 upon success; < 0 upon failure. 10104 */ 10105 int ufshcd_runtime_resume(struct device *dev) 10106 { 10107 struct ufs_hba *hba = dev_get_drvdata(dev); 10108 int ret; 10109 ktime_t start = ktime_get(); 10110 10111 ret = ufshcd_resume(hba); 10112 10113 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10114 ktime_to_us(ktime_sub(ktime_get(), start)), 10115 hba->curr_dev_pwr_mode, hba->uic_link_state); 10116 return ret; 10117 } 10118 EXPORT_SYMBOL(ufshcd_runtime_resume); 10119 #endif /* CONFIG_PM */ 10120 10121 static void ufshcd_wl_shutdown(struct device *dev) 10122 { 10123 struct scsi_device *sdev = to_scsi_device(dev); 10124 struct ufs_hba *hba = shost_priv(sdev->host); 10125 10126 down(&hba->host_sem); 10127 hba->shutting_down = true; 10128 up(&hba->host_sem); 10129 10130 /* Turn on everything while shutting down */ 10131 ufshcd_rpm_get_sync(hba); 10132 scsi_device_quiesce(sdev); 10133 shost_for_each_device(sdev, hba->host) { 10134 if (sdev == hba->ufs_device_wlun) 10135 continue; 10136 mutex_lock(&sdev->state_mutex); 10137 scsi_device_set_state(sdev, SDEV_OFFLINE); 10138 mutex_unlock(&sdev->state_mutex); 10139 } 10140 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10141 10142 /* 10143 * Next, turn off the UFS controller and the UFS regulators. Disable 10144 * clocks. 10145 */ 10146 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10147 ufshcd_suspend(hba); 10148 10149 hba->is_powered = false; 10150 } 10151 10152 /** 10153 * ufshcd_remove - de-allocate SCSI host and host memory space 10154 * data structure memory 10155 * @hba: per adapter instance 10156 */ 10157 void ufshcd_remove(struct ufs_hba *hba) 10158 { 10159 if (hba->ufs_device_wlun) 10160 ufshcd_rpm_get_sync(hba); 10161 ufs_hwmon_remove(hba); 10162 ufs_bsg_remove(hba); 10163 ufs_sysfs_remove_nodes(hba->dev); 10164 blk_mq_destroy_queue(hba->tmf_queue); 10165 blk_put_queue(hba->tmf_queue); 10166 blk_mq_free_tag_set(&hba->tmf_tag_set); 10167 if (hba->scsi_host_added) 10168 scsi_remove_host(hba->host); 10169 /* disable interrupts */ 10170 ufshcd_disable_intr(hba, hba->intr_mask); 10171 ufshcd_hba_stop(hba); 10172 ufshcd_hba_exit(hba); 10173 } 10174 EXPORT_SYMBOL_GPL(ufshcd_remove); 10175 10176 #ifdef CONFIG_PM_SLEEP 10177 int ufshcd_system_freeze(struct device *dev) 10178 { 10179 10180 return ufshcd_system_suspend(dev); 10181 10182 } 10183 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10184 10185 int ufshcd_system_restore(struct device *dev) 10186 { 10187 10188 struct ufs_hba *hba = dev_get_drvdata(dev); 10189 int ret; 10190 10191 ret = ufshcd_system_resume(dev); 10192 if (ret) 10193 return ret; 10194 10195 /* Configure UTRL and UTMRL base address registers */ 10196 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10197 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10198 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10199 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10200 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10201 REG_UTP_TASK_REQ_LIST_BASE_L); 10202 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10203 REG_UTP_TASK_REQ_LIST_BASE_H); 10204 /* 10205 * Make sure that UTRL and UTMRL base address registers 10206 * are updated with the latest queue addresses. Only after 10207 * updating these addresses, we can queue the new commands. 10208 */ 10209 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10210 10211 return 0; 10212 10213 } 10214 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10215 10216 int ufshcd_system_thaw(struct device *dev) 10217 { 10218 return ufshcd_system_resume(dev); 10219 } 10220 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10221 #endif /* CONFIG_PM_SLEEP */ 10222 10223 /** 10224 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10225 * @hba: pointer to Host Bus Adapter (HBA) 10226 */ 10227 void ufshcd_dealloc_host(struct ufs_hba *hba) 10228 { 10229 scsi_host_put(hba->host); 10230 } 10231 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10232 10233 /** 10234 * ufshcd_set_dma_mask - Set dma mask based on the controller 10235 * addressing capability 10236 * @hba: per adapter instance 10237 * 10238 * Return: 0 for success, non-zero for failure. 10239 */ 10240 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10241 { 10242 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10243 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10244 return 0; 10245 } 10246 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10247 } 10248 10249 /** 10250 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10251 * @dev: pointer to device handle 10252 * @hba_handle: driver private handle 10253 * 10254 * Return: 0 on success, non-zero value on failure. 10255 */ 10256 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10257 { 10258 struct Scsi_Host *host; 10259 struct ufs_hba *hba; 10260 int err = 0; 10261 10262 if (!dev) { 10263 dev_err(dev, 10264 "Invalid memory reference for dev is NULL\n"); 10265 err = -ENODEV; 10266 goto out_error; 10267 } 10268 10269 host = scsi_host_alloc(&ufshcd_driver_template, 10270 sizeof(struct ufs_hba)); 10271 if (!host) { 10272 dev_err(dev, "scsi_host_alloc failed\n"); 10273 err = -ENOMEM; 10274 goto out_error; 10275 } 10276 host->nr_maps = HCTX_TYPE_POLL + 1; 10277 hba = shost_priv(host); 10278 hba->host = host; 10279 hba->dev = dev; 10280 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10281 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10282 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10283 INIT_LIST_HEAD(&hba->clk_list_head); 10284 spin_lock_init(&hba->outstanding_lock); 10285 10286 *hba_handle = hba; 10287 10288 out_error: 10289 return err; 10290 } 10291 EXPORT_SYMBOL(ufshcd_alloc_host); 10292 10293 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10294 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10295 const struct blk_mq_queue_data *qd) 10296 { 10297 WARN_ON_ONCE(true); 10298 return BLK_STS_NOTSUPP; 10299 } 10300 10301 static const struct blk_mq_ops ufshcd_tmf_ops = { 10302 .queue_rq = ufshcd_queue_tmf, 10303 }; 10304 10305 /** 10306 * ufshcd_init - Driver initialization routine 10307 * @hba: per-adapter instance 10308 * @mmio_base: base register address 10309 * @irq: Interrupt line of device 10310 * 10311 * Return: 0 on success, non-zero value on failure. 10312 */ 10313 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10314 { 10315 int err; 10316 struct Scsi_Host *host = hba->host; 10317 struct device *dev = hba->dev; 10318 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 10319 10320 /* 10321 * dev_set_drvdata() must be called before any callbacks are registered 10322 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10323 * sysfs). 10324 */ 10325 dev_set_drvdata(dev, hba); 10326 10327 if (!mmio_base) { 10328 dev_err(hba->dev, 10329 "Invalid memory reference for mmio_base is NULL\n"); 10330 err = -ENODEV; 10331 goto out_error; 10332 } 10333 10334 hba->mmio_base = mmio_base; 10335 hba->irq = irq; 10336 hba->vps = &ufs_hba_vps; 10337 10338 err = ufshcd_hba_init(hba); 10339 if (err) 10340 goto out_error; 10341 10342 /* Read capabilities registers */ 10343 err = ufshcd_hba_capabilities(hba); 10344 if (err) 10345 goto out_disable; 10346 10347 /* Get UFS version supported by the controller */ 10348 hba->ufs_version = ufshcd_get_ufs_version(hba); 10349 10350 /* Get Interrupt bit mask per version */ 10351 hba->intr_mask = ufshcd_get_intr_mask(hba); 10352 10353 err = ufshcd_set_dma_mask(hba); 10354 if (err) { 10355 dev_err(hba->dev, "set dma mask failed\n"); 10356 goto out_disable; 10357 } 10358 10359 /* Allocate memory for host memory space */ 10360 err = ufshcd_memory_alloc(hba); 10361 if (err) { 10362 dev_err(hba->dev, "Memory allocation failed\n"); 10363 goto out_disable; 10364 } 10365 10366 /* Configure LRB */ 10367 ufshcd_host_memory_configure(hba); 10368 10369 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10370 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10371 host->max_id = UFSHCD_MAX_ID; 10372 host->max_lun = UFS_MAX_LUNS; 10373 host->max_channel = UFSHCD_MAX_CHANNEL; 10374 host->unique_id = host->host_no; 10375 host->max_cmd_len = UFS_CDB_SIZE; 10376 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10377 10378 hba->max_pwr_info.is_valid = false; 10379 10380 /* Initialize work queues */ 10381 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 10382 hba->host->host_no); 10383 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 10384 if (!hba->eh_wq) { 10385 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10386 __func__); 10387 err = -ENOMEM; 10388 goto out_disable; 10389 } 10390 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10391 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10392 10393 sema_init(&hba->host_sem, 1); 10394 10395 /* Initialize UIC command mutex */ 10396 mutex_init(&hba->uic_cmd_mutex); 10397 10398 /* Initialize mutex for device management commands */ 10399 mutex_init(&hba->dev_cmd.lock); 10400 10401 /* Initialize mutex for exception event control */ 10402 mutex_init(&hba->ee_ctrl_mutex); 10403 10404 mutex_init(&hba->wb_mutex); 10405 init_rwsem(&hba->clk_scaling_lock); 10406 10407 ufshcd_init_clk_gating(hba); 10408 10409 ufshcd_init_clk_scaling(hba); 10410 10411 /* 10412 * In order to avoid any spurious interrupt immediately after 10413 * registering UFS controller interrupt handler, clear any pending UFS 10414 * interrupt status and disable all the UFS interrupts. 10415 */ 10416 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10417 REG_INTERRUPT_STATUS); 10418 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10419 /* 10420 * Make sure that UFS interrupts are disabled and any pending interrupt 10421 * status is cleared before registering UFS interrupt handler. 10422 */ 10423 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10424 10425 /* IRQ registration */ 10426 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10427 if (err) { 10428 dev_err(hba->dev, "request irq failed\n"); 10429 goto out_disable; 10430 } else { 10431 hba->is_irq_enabled = true; 10432 } 10433 10434 if (!is_mcq_supported(hba)) { 10435 if (!hba->lsdb_sup) { 10436 dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n", 10437 __func__); 10438 err = -EINVAL; 10439 goto out_disable; 10440 } 10441 err = scsi_add_host(host, hba->dev); 10442 if (err) { 10443 dev_err(hba->dev, "scsi_add_host failed\n"); 10444 goto out_disable; 10445 } 10446 hba->scsi_host_added = true; 10447 } 10448 10449 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10450 .nr_hw_queues = 1, 10451 .queue_depth = hba->nutmrs, 10452 .ops = &ufshcd_tmf_ops, 10453 .flags = BLK_MQ_F_NO_SCHED, 10454 }; 10455 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10456 if (err < 0) 10457 goto out_remove_scsi_host; 10458 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 10459 if (IS_ERR(hba->tmf_queue)) { 10460 err = PTR_ERR(hba->tmf_queue); 10461 goto free_tmf_tag_set; 10462 } 10463 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10464 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10465 if (!hba->tmf_rqs) { 10466 err = -ENOMEM; 10467 goto free_tmf_queue; 10468 } 10469 10470 /* Reset the attached device */ 10471 ufshcd_device_reset(hba); 10472 10473 ufshcd_init_crypto(hba); 10474 10475 /* Host controller enable */ 10476 err = ufshcd_hba_enable(hba); 10477 if (err) { 10478 dev_err(hba->dev, "Host controller enable failed\n"); 10479 ufshcd_print_evt_hist(hba); 10480 ufshcd_print_host_state(hba); 10481 goto free_tmf_queue; 10482 } 10483 10484 /* 10485 * Set the default power management level for runtime and system PM. 10486 * Default power saving mode is to keep UFS link in Hibern8 state 10487 * and UFS device in sleep state. 10488 */ 10489 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10490 UFS_SLEEP_PWR_MODE, 10491 UIC_LINK_HIBERN8_STATE); 10492 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10493 UFS_SLEEP_PWR_MODE, 10494 UIC_LINK_HIBERN8_STATE); 10495 10496 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 10497 ufshcd_rpm_dev_flush_recheck_work); 10498 10499 /* Set the default auto-hiberate idle timer value to 150 ms */ 10500 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10501 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10502 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10503 } 10504 10505 /* Hold auto suspend until async scan completes */ 10506 pm_runtime_get_sync(dev); 10507 atomic_set(&hba->scsi_block_reqs_cnt, 0); 10508 /* 10509 * We are assuming that device wasn't put in sleep/power-down 10510 * state exclusively during the boot stage before kernel. 10511 * This assumption helps avoid doing link startup twice during 10512 * ufshcd_probe_hba(). 10513 */ 10514 ufshcd_set_ufs_dev_active(hba); 10515 10516 async_schedule(ufshcd_async_scan, hba); 10517 ufs_sysfs_add_nodes(hba->dev); 10518 10519 device_enable_async_suspend(dev); 10520 return 0; 10521 10522 free_tmf_queue: 10523 blk_mq_destroy_queue(hba->tmf_queue); 10524 blk_put_queue(hba->tmf_queue); 10525 free_tmf_tag_set: 10526 blk_mq_free_tag_set(&hba->tmf_tag_set); 10527 out_remove_scsi_host: 10528 if (hba->scsi_host_added) 10529 scsi_remove_host(hba->host); 10530 out_disable: 10531 hba->is_irq_enabled = false; 10532 ufshcd_hba_exit(hba); 10533 out_error: 10534 return err; 10535 } 10536 EXPORT_SYMBOL_GPL(ufshcd_init); 10537 10538 void ufshcd_resume_complete(struct device *dev) 10539 { 10540 struct ufs_hba *hba = dev_get_drvdata(dev); 10541 10542 if (hba->complete_put) { 10543 ufshcd_rpm_put(hba); 10544 hba->complete_put = false; 10545 } 10546 } 10547 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10548 10549 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10550 { 10551 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10552 enum ufs_dev_pwr_mode dev_pwr_mode; 10553 enum uic_link_state link_state; 10554 unsigned long flags; 10555 bool res; 10556 10557 spin_lock_irqsave(&dev->power.lock, flags); 10558 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10559 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10560 res = pm_runtime_suspended(dev) && 10561 hba->curr_dev_pwr_mode == dev_pwr_mode && 10562 hba->uic_link_state == link_state && 10563 !hba->dev_info.b_rpm_dev_flush_capable; 10564 spin_unlock_irqrestore(&dev->power.lock, flags); 10565 10566 return res; 10567 } 10568 10569 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10570 { 10571 struct ufs_hba *hba = dev_get_drvdata(dev); 10572 int ret; 10573 10574 /* 10575 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10576 * are same. And it doesn't wake up the device for system-suspend 10577 * if it's runtime suspended. But ufs doesn't follow that. 10578 * Refer ufshcd_resume_complete() 10579 */ 10580 if (hba->ufs_device_wlun) { 10581 /* Prevent runtime suspend */ 10582 ufshcd_rpm_get_noresume(hba); 10583 /* 10584 * Check if already runtime suspended in same state as system 10585 * suspend would be. 10586 */ 10587 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10588 /* RPM state is not ok for SPM, so runtime resume */ 10589 ret = ufshcd_rpm_resume(hba); 10590 if (ret < 0 && ret != -EACCES) { 10591 ufshcd_rpm_put(hba); 10592 return ret; 10593 } 10594 } 10595 hba->complete_put = true; 10596 } 10597 return 0; 10598 } 10599 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10600 10601 int ufshcd_suspend_prepare(struct device *dev) 10602 { 10603 return __ufshcd_suspend_prepare(dev, true); 10604 } 10605 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10606 10607 #ifdef CONFIG_PM_SLEEP 10608 static int ufshcd_wl_poweroff(struct device *dev) 10609 { 10610 struct scsi_device *sdev = to_scsi_device(dev); 10611 struct ufs_hba *hba = shost_priv(sdev->host); 10612 10613 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10614 return 0; 10615 } 10616 #endif 10617 10618 static int ufshcd_wl_probe(struct device *dev) 10619 { 10620 struct scsi_device *sdev = to_scsi_device(dev); 10621 10622 if (!is_device_wlun(sdev)) 10623 return -ENODEV; 10624 10625 blk_pm_runtime_init(sdev->request_queue, dev); 10626 pm_runtime_set_autosuspend_delay(dev, 0); 10627 pm_runtime_allow(dev); 10628 10629 return 0; 10630 } 10631 10632 static int ufshcd_wl_remove(struct device *dev) 10633 { 10634 pm_runtime_forbid(dev); 10635 return 0; 10636 } 10637 10638 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10639 #ifdef CONFIG_PM_SLEEP 10640 .suspend = ufshcd_wl_suspend, 10641 .resume = ufshcd_wl_resume, 10642 .freeze = ufshcd_wl_suspend, 10643 .thaw = ufshcd_wl_resume, 10644 .poweroff = ufshcd_wl_poweroff, 10645 .restore = ufshcd_wl_resume, 10646 #endif 10647 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10648 }; 10649 10650 static void ufshcd_check_header_layout(void) 10651 { 10652 /* 10653 * gcc compilers before version 10 cannot do constant-folding for 10654 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10655 * before. 10656 */ 10657 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10658 return; 10659 10660 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10661 .cci = 3})[0] != 3); 10662 10663 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10664 .ehs_length = 2})[1] != 2); 10665 10666 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10667 .enable_crypto = 1})[2] 10668 != 0x80); 10669 10670 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10671 .command_type = 5, 10672 .data_direction = 3, 10673 .interrupt = 1, 10674 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10675 10676 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10677 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10678 cpu_to_le32(0xdeadbeef)); 10679 10680 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10681 .ocs = 4})[8] != 4); 10682 10683 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10684 .cds = 5})[9] != 5); 10685 10686 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10687 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10688 cpu_to_le32(0xbadcafe)); 10689 10690 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10691 .iid = 0xf })[4] != 0xf0); 10692 10693 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10694 .command_set_type = 0xf })[4] != 0xf); 10695 } 10696 10697 /* 10698 * ufs_dev_wlun_template - describes ufs device wlun 10699 * ufs-device wlun - used to send pm commands 10700 * All luns are consumers of ufs-device wlun. 10701 * 10702 * Currently, no sd driver is present for wluns. 10703 * Hence the no specific pm operations are performed. 10704 * With ufs design, SSU should be sent to ufs-device wlun. 10705 * Hence register a scsi driver for ufs wluns only. 10706 */ 10707 static struct scsi_driver ufs_dev_wlun_template = { 10708 .gendrv = { 10709 .name = "ufs_device_wlun", 10710 .owner = THIS_MODULE, 10711 .probe = ufshcd_wl_probe, 10712 .remove = ufshcd_wl_remove, 10713 .pm = &ufshcd_wl_pm_ops, 10714 .shutdown = ufshcd_wl_shutdown, 10715 }, 10716 }; 10717 10718 static int __init ufshcd_core_init(void) 10719 { 10720 int ret; 10721 10722 ufshcd_check_header_layout(); 10723 10724 ufs_debugfs_init(); 10725 10726 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10727 if (ret) 10728 ufs_debugfs_exit(); 10729 return ret; 10730 } 10731 10732 static void __exit ufshcd_core_exit(void) 10733 { 10734 ufs_debugfs_exit(); 10735 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10736 } 10737 10738 module_init(ufshcd_core_init); 10739 module_exit(ufshcd_core_exit); 10740 10741 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10742 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10743 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10744 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10745 MODULE_LICENSE("GPL"); 10746