xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 94ab3170)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 	  .model = UFS_ANY_MODEL,
244 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 	  .model = UFS_ANY_MODEL,
249 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 	  .model = "hB8aL1" /*H28U62301AMR*/,
252 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 	  .model = "THGLF2G9C8KBADG",
258 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 	  .model = "THGLF2G9D8KBADG",
261 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 	{}
263 };
264 
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 			     struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 					 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 						 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290 
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 	if (!hba->is_irq_enabled) {
294 		enable_irq(hba->irq);
295 		hba->is_irq_enabled = true;
296 	}
297 }
298 
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 	if (hba->is_irq_enabled) {
302 		disable_irq(hba->irq);
303 		hba->is_irq_enabled = false;
304 	}
305 }
306 
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 	if (!ufshcd_is_wb_allowed(hba))
310 		return;
311 
312 	ufshcd_wb_toggle(hba, true);
313 
314 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315 
316 	if (ufshcd_is_wb_buf_flush_allowed(hba))
317 		ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319 
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 		scsi_unblock_requests(hba->host);
324 }
325 
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 		scsi_block_requests(hba->host);
330 }
331 
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 				      enum ufs_trace_str_t str_t)
334 {
335 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 	struct utp_upiu_header *header;
337 
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	if (str_t == UFS_CMD_SEND)
342 		header = &rq->header;
343 	else
344 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345 
346 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 			  UFS_TSF_CDB);
348 }
349 
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 					enum ufs_trace_str_t str_t,
352 					struct utp_upiu_req *rq_rsp)
353 {
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 			  &rq_rsp->qr, UFS_TSF_OSF);
359 }
360 
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 				     enum ufs_trace_str_t str_t)
363 {
364 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365 
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	if (str_t == UFS_TM_SEND)
370 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 				  &descp->upiu_req.req_header,
372 				  &descp->upiu_req.input_param1,
373 				  UFS_TSF_TM_INPUT);
374 	else
375 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 				  &descp->upiu_rsp.rsp_header,
377 				  &descp->upiu_rsp.output_param1,
378 				  UFS_TSF_TM_OUTPUT);
379 }
380 
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 					 const struct uic_command *ucmd,
383 					 enum ufs_trace_str_t str_t)
384 {
385 	u32 cmd;
386 
387 	if (!trace_ufshcd_uic_command_enabled())
388 		return;
389 
390 	if (str_t == UFS_CMD_SEND)
391 		cmd = ucmd->command;
392 	else
393 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394 
395 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400 
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 				     enum ufs_trace_str_t str_t)
403 {
404 	u64 lba = 0;
405 	u8 opcode = 0, group_id = 0;
406 	u32 doorbell = 0;
407 	u32 intr;
408 	int hwq_id = -1;
409 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 	struct scsi_cmnd *cmd = lrbp->cmd;
411 	struct request *rq = scsi_cmd_to_rq(cmd);
412 	int transfer_len = -1;
413 
414 	if (!cmd)
415 		return;
416 
417 	/* trace UPIU also */
418 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 	if (!trace_ufshcd_command_enabled())
420 		return;
421 
422 	opcode = cmd->cmnd[0];
423 
424 	if (opcode == READ_10 || opcode == WRITE_10) {
425 		/*
426 		 * Currently we only fully trace read(10) and write(10) commands
427 		 */
428 		transfer_len =
429 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 		lba = scsi_get_lba(cmd);
431 		if (opcode == WRITE_10)
432 			group_id = lrbp->cmd->cmnd[6];
433 	} else if (opcode == UNMAP) {
434 		/*
435 		 * The number of Bytes to be unmapped beginning with the lba.
436 		 */
437 		transfer_len = blk_rq_bytes(rq);
438 		lba = scsi_get_lba(cmd);
439 	}
440 
441 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442 
443 	if (is_mcq_enabled(hba)) {
444 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445 
446 		hwq_id = hwq->id;
447 	} else {
448 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 	}
450 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453 
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 	struct ufs_clk_info *clki;
457 	struct list_head *head = &hba->clk_list_head;
458 
459 	if (list_empty(head))
460 		return;
461 
462 	list_for_each_entry(clki, head, list) {
463 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 				clki->max_freq)
465 			dev_err(hba->dev, "clk: %s, rate: %u\n",
466 					clki->name, clki->curr_freq);
467 	}
468 }
469 
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 			     const char *err_name)
472 {
473 	int i;
474 	bool found = false;
475 	const struct ufs_event_hist *e;
476 
477 	if (id >= UFS_EVT_CNT)
478 		return;
479 
480 	e = &hba->ufs_stats.event[id];
481 
482 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484 
485 		if (e->tstamp[p] == 0)
486 			continue;
487 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 			e->val[p], div_u64(e->tstamp[p], 1000));
489 		found = true;
490 	}
491 
492 	if (!found)
493 		dev_err(hba->dev, "No record of %s\n", err_name);
494 	else
495 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497 
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501 
502 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 			 "auto_hibern8_err");
509 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 			 "link_startup_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 			 "suspend_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 			 "wlun suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521 
522 	ufshcd_vops_dbg_register_dump(hba);
523 }
524 
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 	const struct ufshcd_lrb *lrbp;
529 	int prdt_length;
530 
531 	lrbp = &hba->lrb[tag];
532 
533 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 	dev_err(hba->dev,
538 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 		tag, (u64)lrbp->utrd_dma_addr);
540 
541 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 			sizeof(struct utp_transfer_req_desc));
543 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 		(u64)lrbp->ucd_req_dma_addr);
545 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 			sizeof(struct utp_upiu_req));
547 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 		(u64)lrbp->ucd_rsp_dma_addr);
549 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 			sizeof(struct utp_upiu_rsp));
551 
552 	prdt_length = le16_to_cpu(
553 		lrbp->utr_descriptor_ptr->prd_table_length);
554 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 		prdt_length /= ufshcd_sg_entry_size(hba);
556 
557 	dev_err(hba->dev,
558 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559 		tag, prdt_length,
560 		(u64)lrbp->ucd_prdt_dma_addr);
561 
562 	if (pr_prdt)
563 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 			ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566 
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 	struct scsi_device *sdev = req->q->queuedata;
570 	struct Scsi_Host *shost = sdev->host;
571 	struct ufs_hba *hba = shost_priv(shost);
572 
573 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574 
575 	return true;
576 }
577 
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587 
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 	int tag;
591 
592 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594 
595 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 	}
598 }
599 
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603 
604 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 		hba->outstanding_reqs, hba->outstanding_tasks);
607 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 		hba->saved_err, hba->saved_uic_err);
609 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 		hba->curr_dev_pwr_mode, hba->uic_link_state);
611 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 		hba->pm_op_in_progress, hba->is_sys_suspended);
613 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 	dev_err(hba->dev,
617 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 		hba->ufs_stats.hibern8_exit_cnt);
620 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 		hba->ufs_stats.last_intr_status);
623 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 		hba->eh_flags, hba->req_abort_count);
625 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 		hba->ufs_version, hba->capabilities, hba->caps);
627 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 		hba->dev_quirks);
629 	if (sdev_ufs)
630 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632 
633 	ufshcd_print_clk_freqs(hba);
634 }
635 
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 	static const char * const names[] = {
644 		"INVALID MODE",
645 		"FAST MODE",
646 		"SLOW_MODE",
647 		"INVALID MODE",
648 		"FASTAUTO_MODE",
649 		"SLOWAUTO_MODE",
650 		"INVALID MODE",
651 	};
652 
653 	/*
654 	 * Using dev_dbg to avoid messages during runtime PM to avoid
655 	 * never-ending cycles of messages written back to storage by user space
656 	 * causing runtime resume, causing more messages and so on.
657 	 */
658 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 		 __func__,
660 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 		 names[hba->pwr_info.pwr_rx],
663 		 names[hba->pwr_info.pwr_tx],
664 		 hba->pwr_info.hs_rate);
665 }
666 
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 	int err;
670 
671 	err = ufshcd_vops_device_reset(hba);
672 
673 	if (!err) {
674 		ufshcd_set_ufs_dev_active(hba);
675 		if (ufshcd_is_wb_allowed(hba)) {
676 			hba->dev_info.wb_enabled = false;
677 			hba->dev_info.wb_buf_flush_enabled = false;
678 		}
679 	}
680 	if (err != -EOPNOTSUPP)
681 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683 
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 	if (!us)
687 		return;
688 
689 	if (us < 10)
690 		udelay(us);
691 	else
692 		usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695 
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 				u32 val, unsigned long interval_us,
709 				unsigned long timeout_ms)
710 {
711 	int err = 0;
712 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713 
714 	/* ignore bits that we don't intend to wait on */
715 	val = val & mask;
716 
717 	while ((ufshcd_readl(hba, reg) & mask) != val) {
718 		usleep_range(interval_us, interval_us + 50);
719 		if (time_after(jiffies, timeout)) {
720 			if ((ufshcd_readl(hba, reg) & mask) != val)
721 				err = -ETIMEDOUT;
722 			break;
723 		}
724 	}
725 
726 	return err;
727 }
728 
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 	if (hba->ufs_version == ufshci_version(1, 0))
738 		return INTERRUPT_MASK_ALL_VER_10;
739 	if (hba->ufs_version <= ufshci_version(2, 0))
740 		return INTERRUPT_MASK_ALL_VER_11;
741 
742 	return INTERRUPT_MASK_ALL_VER_21;
743 }
744 
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 	u32 ufshci_ver;
754 
755 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 	else
758 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759 
760 	/*
761 	 * UFSHCI v1.x uses a different version scheme, in order
762 	 * to allow the use of comparisons with the ufshci_version
763 	 * function, we convert it to the same scheme as ufs 2.0+.
764 	 */
765 	if (ufshci_ver & 0x00010000)
766 		return ufshci_version(1, ufshci_ver & 0x00000100);
767 
768 	return ufshci_ver;
769 }
770 
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *			      the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782 
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 				      struct cq_entry *cqe)
794 {
795 	if (cqe)
796 		return le32_to_cpu(cqe->status) & MASK_OCS;
797 
798 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800 
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 		mask = ~mask;
810 	/*
811 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 	 * Register (UTRLCLR): This field is bit significant. Each bit
813 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 	 * by host software to indicate to the host controller that a transfer
816 	 * request slot is cleared. The host controller
817 	 * shall free up any resources associated to the request slot
818 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 	 * host software indicates no change to request slots by setting the
820 	 * associated bits in this field to ‘1’. Bits in this field shall only
821 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 	 */
823 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825 
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 	else
836 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849 
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876 
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 	return ucd_rsp_ptr->header.transaction_code;
887 }
888 
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.device_information & 1;
901 }
902 
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 	ufshcd_writel(hba, INT_AGGR_ENABLE |
911 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914 
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 		      INT_AGGR_TIMEOUT_VAL(tmout),
927 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929 
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938 
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *			When run-stop registers are set to 1, it indicates the
942  *			host controller that it can process the requests
943  * @hba: per adapter instance
944  */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952 
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 	u32 val = CONTROLLER_ENABLE;
960 
961 	if (ufshcd_crypto_enable(hba))
962 		val |= CRYPTO_GENERAL_ENABLE;
963 
964 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966 
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978 
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 	if (hba->ufs_version <= ufshci_version(1, 1))
983 		return UFS_UNIPRO_VER_1_41;
984 	else
985 		return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988 
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 	/*
992 	 * If both host and device support UniPro ver1.6 or later, PA layer
993 	 * parameters tuning happens during link startup itself.
994 	 *
995 	 * We can manually tune PA layer parameters if either host or device
996 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 	 * logic simple, we will only do manual tuning if local unipro version
998 	 * doesn't support ver1.6 or later.
999 	 */
1000 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002 
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 	int ret = 0;
1013 	struct ufs_clk_info *clki;
1014 	struct list_head *head = &hba->clk_list_head;
1015 
1016 	if (list_empty(head))
1017 		goto out;
1018 
1019 	list_for_each_entry(clki, head, list) {
1020 		if (!IS_ERR_OR_NULL(clki->clk)) {
1021 			if (scale_up && clki->max_freq) {
1022 				if (clki->curr_freq == clki->max_freq)
1023 					continue;
1024 
1025 				ret = clk_set_rate(clki->clk, clki->max_freq);
1026 				if (ret) {
1027 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 						__func__, clki->name,
1029 						clki->max_freq, ret);
1030 					break;
1031 				}
1032 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 						"scaled up", clki->name,
1034 						clki->curr_freq,
1035 						clki->max_freq);
1036 
1037 				clki->curr_freq = clki->max_freq;
1038 
1039 			} else if (!scale_up && clki->min_freq) {
1040 				if (clki->curr_freq == clki->min_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->min_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->min_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled down", clki->name,
1052 						clki->curr_freq,
1053 						clki->min_freq);
1054 				clki->curr_freq = clki->min_freq;
1055 			}
1056 		}
1057 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 				clki->name, clk_get_rate(clki->clk));
1059 	}
1060 
1061 out:
1062 	return ret;
1063 }
1064 
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 	int ret = 0;
1075 	ktime_t start = ktime_get();
1076 
1077 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 	if (ret)
1079 		goto out;
1080 
1081 	ret = ufshcd_set_clk_freq(hba, scale_up);
1082 	if (ret)
1083 		goto out;
1084 
1085 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 	if (ret)
1087 		ufshcd_set_clk_freq(hba, !scale_up);
1088 
1089 out:
1090 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 			(scale_up ? "up" : "down"),
1092 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 					       bool scale_up)
1105 {
1106 	struct ufs_clk_info *clki;
1107 	struct list_head *head = &hba->clk_list_head;
1108 
1109 	if (list_empty(head))
1110 		return false;
1111 
1112 	list_for_each_entry(clki, head, list) {
1113 		if (!IS_ERR_OR_NULL(clki->clk)) {
1114 			if (scale_up && clki->max_freq) {
1115 				if (clki->curr_freq == clki->max_freq)
1116 					continue;
1117 				return true;
1118 			} else if (!scale_up && clki->min_freq) {
1119 				if (clki->curr_freq == clki->min_freq)
1120 					continue;
1121 				return true;
1122 			}
1123 		}
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 	const struct scsi_device *sdev;
1139 	u32 pending = 0;
1140 
1141 	lockdep_assert_held(hba->host->host_lock);
1142 	__shost_for_each_device(sdev, hba->host)
1143 		pending += sbitmap_weight(&sdev->budget_map);
1144 
1145 	return pending;
1146 }
1147 
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 					u64 wait_timeout_us)
1156 {
1157 	unsigned long flags;
1158 	int ret = 0;
1159 	u32 tm_doorbell;
1160 	u32 tr_pending;
1161 	bool timeout = false, do_last_check = false;
1162 	ktime_t start;
1163 
1164 	ufshcd_hold(hba);
1165 	spin_lock_irqsave(hba->host->host_lock, flags);
1166 	/*
1167 	 * Wait for all the outstanding tasks/transfer requests.
1168 	 * Verify by checking the doorbell registers are clear.
1169 	 */
1170 	start = ktime_get();
1171 	do {
1172 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 			ret = -EBUSY;
1174 			goto out;
1175 		}
1176 
1177 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 		tr_pending = ufshcd_pending_cmds(hba);
1179 		if (!tm_doorbell && !tr_pending) {
1180 			timeout = false;
1181 			break;
1182 		} else if (do_last_check) {
1183 			break;
1184 		}
1185 
1186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 		io_schedule_timeout(msecs_to_jiffies(20));
1188 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 		    wait_timeout_us) {
1190 			timeout = true;
1191 			/*
1192 			 * We might have scheduled out for long time so make
1193 			 * sure to check if doorbells are cleared by this time
1194 			 * or not.
1195 			 */
1196 			do_last_check = true;
1197 		}
1198 		spin_lock_irqsave(hba->host->host_lock, flags);
1199 	} while (tm_doorbell || tr_pending);
1200 
1201 	if (timeout) {
1202 		dev_err(hba->dev,
1203 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 			__func__, tm_doorbell, tr_pending);
1205 		ret = -EBUSY;
1206 	}
1207 out:
1208 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 	ufshcd_release(hba);
1210 	return ret;
1211 }
1212 
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 	int ret = 0;
1224 	struct ufs_pa_layer_attr new_pwr_info;
1225 
1226 	if (scale_up) {
1227 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 		       sizeof(struct ufs_pa_layer_attr));
1229 	} else {
1230 		memcpy(&new_pwr_info, &hba->pwr_info,
1231 		       sizeof(struct ufs_pa_layer_attr));
1232 
1233 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 			/* save the current power mode */
1236 			memcpy(&hba->clk_scaling.saved_pwr_info,
1237 				&hba->pwr_info,
1238 				sizeof(struct ufs_pa_layer_attr));
1239 
1240 			/* scale down gear */
1241 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 		}
1244 	}
1245 
1246 	/* check if the power mode needs to be changed or not? */
1247 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 	if (ret)
1249 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 			__func__, ret,
1251 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 	int ret = 0;
1266 	/*
1267 	 * make sure that there are no outstanding requests when
1268 	 * clock scaling is in progress
1269 	 */
1270 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1271 	mutex_lock(&hba->wb_mutex);
1272 	down_write(&hba->clk_scaling_lock);
1273 
1274 	if (!hba->clk_scaling.is_allowed ||
1275 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 		ret = -EBUSY;
1277 		up_write(&hba->clk_scaling_lock);
1278 		mutex_unlock(&hba->wb_mutex);
1279 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1280 		goto out;
1281 	}
1282 
1283 	/* let's not get into low power until clock scaling is completed */
1284 	ufshcd_hold(hba);
1285 
1286 out:
1287 	return ret;
1288 }
1289 
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 	up_write(&hba->clk_scaling_lock);
1293 
1294 	/* Enable Write Booster if we have scaled up else disable it */
1295 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 		ufshcd_wb_toggle(hba, scale_up);
1297 
1298 	mutex_unlock(&hba->wb_mutex);
1299 
1300 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1301 	ufshcd_release(hba);
1302 }
1303 
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 	int ret = 0;
1315 
1316 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* scale down the gear before scaling down clocks */
1321 	if (!scale_up) {
1322 		ret = ufshcd_scale_gear(hba, false);
1323 		if (ret)
1324 			goto out_unprepare;
1325 	}
1326 
1327 	ret = ufshcd_scale_clks(hba, scale_up);
1328 	if (ret) {
1329 		if (!scale_up)
1330 			ufshcd_scale_gear(hba, true);
1331 		goto out_unprepare;
1332 	}
1333 
1334 	/* scale up the gear after scaling up clocks */
1335 	if (scale_up) {
1336 		ret = ufshcd_scale_gear(hba, true);
1337 		if (ret) {
1338 			ufshcd_scale_clks(hba, false);
1339 			goto out_unprepare;
1340 		}
1341 	}
1342 
1343 out_unprepare:
1344 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 	return ret;
1346 }
1347 
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 					   clk_scaling.suspend_work);
1352 	unsigned long irq_flags;
1353 
1354 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 		return;
1358 	}
1359 	hba->clk_scaling.is_suspended = true;
1360 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 
1362 	__ufshcd_suspend_clkscaling(hba);
1363 }
1364 
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 					   clk_scaling.resume_work);
1369 	unsigned long irq_flags;
1370 
1371 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 	if (!hba->clk_scaling.is_suspended) {
1373 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 		return;
1375 	}
1376 	hba->clk_scaling.is_suspended = false;
1377 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378 
1379 	devfreq_resume_device(hba->devfreq);
1380 }
1381 
1382 static int ufshcd_devfreq_target(struct device *dev,
1383 				unsigned long *freq, u32 flags)
1384 {
1385 	int ret = 0;
1386 	struct ufs_hba *hba = dev_get_drvdata(dev);
1387 	ktime_t start;
1388 	bool scale_up, sched_clk_scaling_suspend_work = false;
1389 	struct list_head *clk_list = &hba->clk_list_head;
1390 	struct ufs_clk_info *clki;
1391 	unsigned long irq_flags;
1392 
1393 	if (!ufshcd_is_clkscaling_supported(hba))
1394 		return -EINVAL;
1395 
1396 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 	/* Override with the closest supported frequency */
1398 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (ufshcd_eh_in_progress(hba)) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return 0;
1403 	}
1404 
1405 	if (!hba->clk_scaling.active_reqs)
1406 		sched_clk_scaling_suspend_work = true;
1407 
1408 	if (list_empty(clk_list)) {
1409 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 		goto out;
1411 	}
1412 
1413 	/* Decide based on the rounded-off frequency and update */
1414 	scale_up = *freq == clki->max_freq;
1415 	if (!scale_up)
1416 		*freq = clki->min_freq;
1417 	/* Update the frequency */
1418 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		ret = 0;
1421 		goto out; /* no state change required */
1422 	}
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	start = ktime_get();
1426 	ret = ufshcd_devfreq_scale(hba, scale_up);
1427 
1428 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 		(scale_up ? "up" : "down"),
1430 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431 
1432 out:
1433 	if (sched_clk_scaling_suspend_work)
1434 		queue_work(hba->clk_scaling.workq,
1435 			   &hba->clk_scaling.suspend_work);
1436 
1437 	return ret;
1438 }
1439 
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 		struct devfreq_dev_status *stat)
1442 {
1443 	struct ufs_hba *hba = dev_get_drvdata(dev);
1444 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 	unsigned long flags;
1446 	struct list_head *clk_list = &hba->clk_list_head;
1447 	struct ufs_clk_info *clki;
1448 	ktime_t curr_t;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return -EINVAL;
1452 
1453 	memset(stat, 0, sizeof(*stat));
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, flags);
1456 	curr_t = ktime_get();
1457 	if (!scaling->window_start_t)
1458 		goto start_window;
1459 
1460 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 	/*
1462 	 * If current frequency is 0, then the ondemand governor considers
1463 	 * there's no initial frequency set. And it always requests to set
1464 	 * to max. frequency.
1465 	 */
1466 	stat->current_frequency = clki->curr_freq;
1467 	if (scaling->is_busy_started)
1468 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 				scaling->busy_start_t);
1470 
1471 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 	stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 	scaling->window_start_t = curr_t;
1475 	scaling->tot_busy_t = 0;
1476 
1477 	if (scaling->active_reqs) {
1478 		scaling->busy_start_t = curr_t;
1479 		scaling->is_busy_started = true;
1480 	} else {
1481 		scaling->busy_start_t = 0;
1482 		scaling->is_busy_started = false;
1483 	}
1484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 	return 0;
1486 }
1487 
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 	struct devfreq *devfreq;
1493 	int ret;
1494 
1495 	/* Skip devfreq if we don't have any clocks in the list */
1496 	if (list_empty(clk_list))
1497 		return 0;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502 
1503 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 					 &hba->vps->ondemand_data);
1505 	devfreq = devfreq_add_device(hba->dev,
1506 			&hba->vps->devfreq_profile,
1507 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 			&hba->vps->ondemand_data);
1509 	if (IS_ERR(devfreq)) {
1510 		ret = PTR_ERR(devfreq);
1511 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512 
1513 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 		return ret;
1516 	}
1517 
1518 	hba->devfreq = devfreq;
1519 
1520 	return 0;
1521 }
1522 
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!hba->devfreq)
1529 		return;
1530 
1531 	devfreq_remove_device(hba->devfreq);
1532 	hba->devfreq = NULL;
1533 
1534 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538 
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 	unsigned long flags;
1542 
1543 	devfreq_suspend_device(hba->devfreq);
1544 	spin_lock_irqsave(hba->host->host_lock, flags);
1545 	hba->clk_scaling.window_start_t = 0;
1546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548 
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 	unsigned long flags;
1552 	bool suspend = false;
1553 
1554 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 	cancel_work_sync(&hba->clk_scaling.resume_work);
1556 
1557 	spin_lock_irqsave(hba->host->host_lock, flags);
1558 	if (!hba->clk_scaling.is_suspended) {
1559 		suspend = true;
1560 		hba->clk_scaling.is_suspended = true;
1561 	}
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 
1564 	if (suspend)
1565 		__ufshcd_suspend_clkscaling(hba);
1566 }
1567 
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool resume = false;
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (hba->clk_scaling.is_suspended) {
1575 		resume = true;
1576 		hba->clk_scaling.is_suspended = false;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (resume)
1581 		devfreq_resume_device(hba->devfreq);
1582 }
1583 
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct ufs_hba *hba = dev_get_drvdata(dev);
1588 
1589 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591 
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 		struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 	struct ufs_hba *hba = dev_get_drvdata(dev);
1596 	u32 value;
1597 	int err = 0;
1598 
1599 	if (kstrtou32(buf, 0, &value))
1600 		return -EINVAL;
1601 
1602 	down(&hba->host_sem);
1603 	if (!ufshcd_is_user_access_allowed(hba)) {
1604 		err = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	value = !!value;
1609 	if (value == hba->clk_scaling.is_enabled)
1610 		goto out;
1611 
1612 	ufshcd_rpm_get_sync(hba);
1613 	ufshcd_hold(hba);
1614 
1615 	hba->clk_scaling.is_enabled = value;
1616 
1617 	if (value) {
1618 		ufshcd_resume_clkscaling(hba);
1619 	} else {
1620 		ufshcd_suspend_clkscaling(hba);
1621 		err = ufshcd_devfreq_scale(hba, true);
1622 		if (err)
1623 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 					__func__, err);
1625 	}
1626 
1627 	ufshcd_release(hba);
1628 	ufshcd_rpm_put_sync(hba);
1629 out:
1630 	up(&hba->host_sem);
1631 	return err ? err : count;
1632 }
1633 
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644 
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 	if (hba->clk_scaling.enable_attr.attr.name)
1648 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650 
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 	char wq_name[sizeof("ufs_clkscaling_00")];
1654 
1655 	if (!ufshcd_is_clkscaling_supported(hba))
1656 		return;
1657 
1658 	if (!hba->clk_scaling.min_gear)
1659 		hba->clk_scaling.min_gear = UFS_HS_G1;
1660 
1661 	INIT_WORK(&hba->clk_scaling.suspend_work,
1662 		  ufshcd_clk_scaling_suspend_work);
1663 	INIT_WORK(&hba->clk_scaling.resume_work,
1664 		  ufshcd_clk_scaling_resume_work);
1665 
1666 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 		 hba->host->host_no);
1668 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669 
1670 	hba->clk_scaling.is_initialized = true;
1671 }
1672 
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 	if (!hba->clk_scaling.is_initialized)
1676 		return;
1677 
1678 	ufshcd_remove_clk_scaling_sysfs(hba);
1679 	destroy_workqueue(hba->clk_scaling.workq);
1680 	ufshcd_devfreq_remove(hba);
1681 	hba->clk_scaling.is_initialized = false;
1682 }
1683 
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 	int ret;
1687 	unsigned long flags;
1688 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 			clk_gating.ungate_work);
1690 
1691 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692 
1693 	spin_lock_irqsave(hba->host->host_lock, flags);
1694 	if (hba->clk_gating.state == CLKS_ON) {
1695 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 		return;
1697 	}
1698 
1699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 	ufshcd_hba_vreg_set_hpm(hba);
1701 	ufshcd_setup_clocks(hba, true);
1702 
1703 	ufshcd_enable_irq(hba);
1704 
1705 	/* Exit from hibern8 */
1706 	if (ufshcd_can_hibern8_during_gating(hba)) {
1707 		/* Prevent gating in this path */
1708 		hba->clk_gating.is_suspended = true;
1709 		if (ufshcd_is_link_hibern8(hba)) {
1710 			ret = ufshcd_uic_hibern8_exit(hba);
1711 			if (ret)
1712 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 					__func__, ret);
1714 			else
1715 				ufshcd_set_link_active(hba);
1716 		}
1717 		hba->clk_gating.is_suspended = false;
1718 	}
1719 }
1720 
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 	bool flush_result;
1729 	unsigned long flags;
1730 
1731 	if (!ufshcd_is_clkgating_allowed(hba) ||
1732 	    !hba->clk_gating.is_initialized)
1733 		return;
1734 	spin_lock_irqsave(hba->host->host_lock, flags);
1735 	hba->clk_gating.active_reqs++;
1736 
1737 start:
1738 	switch (hba->clk_gating.state) {
1739 	case CLKS_ON:
1740 		/*
1741 		 * Wait for the ungate work to complete if in progress.
1742 		 * Though the clocks may be in ON state, the link could
1743 		 * still be in hibner8 state if hibern8 is allowed
1744 		 * during clock gating.
1745 		 * Make sure we exit hibern8 state also in addition to
1746 		 * clocks being ON.
1747 		 */
1748 		if (ufshcd_can_hibern8_during_gating(hba) &&
1749 		    ufshcd_is_link_hibern8(hba)) {
1750 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 			if (hba->clk_gating.is_suspended && !flush_result)
1753 				return;
1754 			spin_lock_irqsave(hba->host->host_lock, flags);
1755 			goto start;
1756 		}
1757 		break;
1758 	case REQ_CLKS_OFF:
1759 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 			hba->clk_gating.state = CLKS_ON;
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			break;
1764 		}
1765 		/*
1766 		 * If we are here, it means gating work is either done or
1767 		 * currently running. Hence, fall through to cancel gating
1768 		 * work and to enable clocks.
1769 		 */
1770 		fallthrough;
1771 	case CLKS_OFF:
1772 		hba->clk_gating.state = REQ_CLKS_ON;
1773 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 					hba->clk_gating.state);
1775 		queue_work(hba->clk_gating.clk_gating_workq,
1776 			   &hba->clk_gating.ungate_work);
1777 		/*
1778 		 * fall through to check if we should wait for this
1779 		 * work to be done or not.
1780 		 */
1781 		fallthrough;
1782 	case REQ_CLKS_ON:
1783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 		flush_work(&hba->clk_gating.ungate_work);
1785 		/* Make sure state is CLKS_ON before returning */
1786 		spin_lock_irqsave(hba->host->host_lock, flags);
1787 		goto start;
1788 	default:
1789 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 				__func__, hba->clk_gating.state);
1791 		break;
1792 	}
1793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796 
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 			clk_gating.gate_work.work);
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	spin_lock_irqsave(hba->host->host_lock, flags);
1805 	/*
1806 	 * In case you are here to cancel this work the gating state
1807 	 * would be marked as REQ_CLKS_ON. In this case save time by
1808 	 * skipping the gating work and exit after changing the clock
1809 	 * state to CLKS_ON.
1810 	 */
1811 	if (hba->clk_gating.is_suspended ||
1812 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 		hba->clk_gating.state = CLKS_ON;
1814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 					hba->clk_gating.state);
1816 		goto rel_lock;
1817 	}
1818 
1819 	if (hba->clk_gating.active_reqs
1820 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 		|| hba->outstanding_reqs || hba->outstanding_tasks
1822 		|| hba->active_uic_cmd || hba->uic_async_done)
1823 		goto rel_lock;
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 
1827 	/* put the link into hibern8 mode before turning off clocks */
1828 	if (ufshcd_can_hibern8_during_gating(hba)) {
1829 		ret = ufshcd_uic_hibern8_enter(hba);
1830 		if (ret) {
1831 			hba->clk_gating.state = CLKS_ON;
1832 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 					__func__, ret);
1834 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 						hba->clk_gating.state);
1836 			goto out;
1837 		}
1838 		ufshcd_set_link_hibern8(hba);
1839 	}
1840 
1841 	ufshcd_disable_irq(hba);
1842 
1843 	ufshcd_setup_clocks(hba, false);
1844 
1845 	/* Put the host controller in low power mode if possible */
1846 	ufshcd_hba_vreg_set_lpm(hba);
1847 	/*
1848 	 * In case you are here to cancel this work the gating state
1849 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 	 * and a request to turn them on is pending. By doing this way,
1852 	 * we keep the state machine in tact and this would ultimately
1853 	 * prevent from doing cancel work multiple times when there are
1854 	 * new requests arriving before the current cancel work is done.
1855 	 */
1856 	spin_lock_irqsave(hba->host->host_lock, flags);
1857 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 		hba->clk_gating.state = CLKS_OFF;
1859 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 					hba->clk_gating.state);
1861 	}
1862 rel_lock:
1863 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 	return;
1866 }
1867 
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 	if (!ufshcd_is_clkgating_allowed(hba))
1872 		return;
1873 
1874 	hba->clk_gating.active_reqs--;
1875 
1876 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 	    hba->active_uic_cmd || hba->uic_async_done ||
1880 	    hba->clk_gating.state == CLKS_OFF)
1881 		return;
1882 
1883 	hba->clk_gating.state = REQ_CLKS_OFF;
1884 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 			   &hba->clk_gating.gate_work,
1887 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889 
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(hba->host->host_lock, flags);
1895 	__ufshcd_release(hba);
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899 
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 		struct device_attribute *attr, char *buf)
1902 {
1903 	struct ufs_hba *hba = dev_get_drvdata(dev);
1904 
1905 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907 
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 	struct ufs_hba *hba = dev_get_drvdata(dev);
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(hba->host->host_lock, flags);
1914 	hba->clk_gating.delay_ms = value;
1915 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918 
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	unsigned long value;
1923 
1924 	if (kstrtoul(buf, 0, &value))
1925 		return -EINVAL;
1926 
1927 	ufshcd_clkgate_delay_set(dev, value);
1928 	return count;
1929 }
1930 
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 		struct device_attribute *attr, char *buf)
1933 {
1934 	struct ufs_hba *hba = dev_get_drvdata(dev);
1935 
1936 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938 
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 		struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 	struct ufs_hba *hba = dev_get_drvdata(dev);
1943 	unsigned long flags;
1944 	u32 value;
1945 
1946 	if (kstrtou32(buf, 0, &value))
1947 		return -EINVAL;
1948 
1949 	value = !!value;
1950 
1951 	spin_lock_irqsave(hba->host->host_lock, flags);
1952 	if (value == hba->clk_gating.is_enabled)
1953 		goto out;
1954 
1955 	if (value)
1956 		__ufshcd_release(hba);
1957 	else
1958 		hba->clk_gating.active_reqs++;
1959 
1960 	hba->clk_gating.is_enabled = value;
1961 out:
1962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 	return count;
1964 }
1965 
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 	hba->clk_gating.delay_attr.attr.mode = 0644;
1973 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975 
1976 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 	hba->clk_gating.enable_attr.attr.mode = 0644;
1981 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984 
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 	if (hba->clk_gating.delay_attr.attr.name)
1988 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 	if (hba->clk_gating.enable_attr.attr.name)
1990 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992 
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 	char wq_name[sizeof("ufs_clk_gating_00")];
1996 
1997 	if (!ufshcd_is_clkgating_allowed(hba))
1998 		return;
1999 
2000 	hba->clk_gating.state = CLKS_ON;
2001 
2002 	hba->clk_gating.delay_ms = 150;
2003 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005 
2006 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 		 hba->host->host_no);
2008 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010 
2011 	ufshcd_init_clk_gating_sysfs(hba);
2012 
2013 	hba->clk_gating.is_enabled = true;
2014 	hba->clk_gating.is_initialized = true;
2015 }
2016 
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 	if (!hba->clk_gating.is_initialized)
2020 		return;
2021 
2022 	ufshcd_remove_clk_gating_sysfs(hba);
2023 
2024 	/* Ungate the clock if necessary. */
2025 	ufshcd_hold(hba);
2026 	hba->clk_gating.is_initialized = false;
2027 	ufshcd_release(hba);
2028 
2029 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031 
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 	bool queue_resume_work = false;
2035 	ktime_t curr_t = ktime_get();
2036 	unsigned long flags;
2037 
2038 	if (!ufshcd_is_clkscaling_supported(hba))
2039 		return;
2040 
2041 	spin_lock_irqsave(hba->host->host_lock, flags);
2042 	if (!hba->clk_scaling.active_reqs++)
2043 		queue_resume_work = true;
2044 
2045 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 		return;
2048 	}
2049 
2050 	if (queue_resume_work)
2051 		queue_work(hba->clk_scaling.workq,
2052 			   &hba->clk_scaling.resume_work);
2053 
2054 	if (!hba->clk_scaling.window_start_t) {
2055 		hba->clk_scaling.window_start_t = curr_t;
2056 		hba->clk_scaling.tot_busy_t = 0;
2057 		hba->clk_scaling.is_busy_started = false;
2058 	}
2059 
2060 	if (!hba->clk_scaling.is_busy_started) {
2061 		hba->clk_scaling.busy_start_t = curr_t;
2062 		hba->clk_scaling.is_busy_started = true;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 	unsigned long flags;
2071 
2072 	if (!ufshcd_is_clkscaling_supported(hba))
2073 		return;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	hba->clk_scaling.active_reqs--;
2077 	if (!scaling->active_reqs && scaling->is_busy_started) {
2078 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 					scaling->busy_start_t));
2080 		scaling->busy_start_t = 0;
2081 		scaling->is_busy_started = false;
2082 	}
2083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085 
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 		return READ;
2090 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 		return WRITE;
2092 	else
2093 		return -EINVAL;
2094 }
2095 
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 						struct ufshcd_lrb *lrbp)
2098 {
2099 	const struct ufs_hba_monitor *m = &hba->monitor;
2100 
2101 	return (m->enabled && lrbp && lrbp->cmd &&
2102 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105 
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 				 const struct ufshcd_lrb *lrbp)
2108 {
2109 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 		hba->monitor.busy_start_ts[dir] = ktime_get();
2115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117 
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 		struct ufs_hba_monitor *m = &hba->monitor;
2127 		ktime_t now, inc, lat;
2128 
2129 		now = lrbp->compl_time_stamp;
2130 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133 
2134 		/* Update latencies */
2135 		m->nr_req[dir]++;
2136 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 		m->lat_sum[dir] += lat;
2138 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 			m->lat_max[dir] = lat;
2140 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 			m->lat_min[dir] = lat;
2142 
2143 		m->nr_queued[dir]--;
2144 		/* Push forward the busy start of monitor */
2145 		m->busy_start_ts[dir] = now;
2146 	}
2147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149 
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 			 struct ufs_hw_queue *hwq)
2159 {
2160 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 	unsigned long flags;
2162 
2163 	lrbp->issue_time_stamp = ktime_get();
2164 	lrbp->issue_time_stamp_local_clock = local_clock();
2165 	lrbp->compl_time_stamp = ktime_set(0, 0);
2166 	lrbp->compl_time_stamp_local_clock = 0;
2167 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 	ufshcd_clk_scaling_start_busy(hba);
2169 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 		ufshcd_start_monitor(hba, lrbp);
2171 
2172 	if (is_mcq_enabled(hba)) {
2173 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 		struct utp_transfer_req_desc *dest;
2176 
2177 		spin_lock(&hwq->sq_lock);
2178 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 		memcpy(dest, src, utrd_size);
2180 		ufshcd_inc_sq_tail(hwq);
2181 		spin_unlock(&hwq->sq_lock);
2182 	} else {
2183 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 		if (hba->vops && hba->vops->setup_xfer_req)
2185 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 						  !!lrbp->cmd);
2187 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 	}
2192 }
2193 
2194 /**
2195  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196  * @lrbp: pointer to local reference block
2197  */
2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 	u16 resp_len;
2202 	int len;
2203 
2204 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 	if (sense_buffer && resp_len) {
2206 		int len_to_copy;
2207 
2208 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210 
2211 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 		       len_to_copy);
2213 	}
2214 }
2215 
2216 /**
2217  * ufshcd_copy_query_response() - Copy the Query Response and the data
2218  * descriptor
2219  * @hba: per adapter instance
2220  * @lrbp: pointer to local reference block
2221  *
2222  * Return: 0 upon success; < 0 upon failure.
2223  */
2224 static
2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228 
2229 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230 
2231 	/* Get the descriptor */
2232 	if (hba->dev_cmd.query.descriptor &&
2233 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 				GENERAL_UPIU_REQUEST_SIZE;
2236 		u16 resp_len;
2237 		u16 buf_len;
2238 
2239 		/* data segment length */
2240 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 				       .data_segment_length);
2242 		buf_len = be16_to_cpu(
2243 				hba->dev_cmd.query.request.upiu_req.length);
2244 		if (likely(buf_len >= resp_len)) {
2245 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 		} else {
2247 			dev_warn(hba->dev,
2248 				 "%s: rsp size %d is bigger than buffer size %d",
2249 				 __func__, resp_len, buf_len);
2250 			return -EINVAL;
2251 		}
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 /**
2258  * ufshcd_hba_capabilities - Read controller capabilities
2259  * @hba: per adapter instance
2260  *
2261  * Return: 0 on success, negative on error.
2262  */
2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 	int err;
2266 
2267 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270 
2271 	/* nutrs and nutmrs are 0 based values */
2272 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273 	hba->nutmrs =
2274 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275 	hba->reserved_slot = hba->nutrs - 1;
2276 
2277 	/* Read crypto capabilities */
2278 	err = ufshcd_hba_init_crypto_capabilities(hba);
2279 	if (err) {
2280 		dev_err(hba->dev, "crypto setup failed\n");
2281 		return err;
2282 	}
2283 
2284 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2285 	if (!hba->mcq_sup)
2286 		return 0;
2287 
2288 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2289 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2290 				     hba->mcq_capabilities);
2291 
2292 	return 0;
2293 }
2294 
2295 /**
2296  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2297  *                            to accept UIC commands
2298  * @hba: per adapter instance
2299  *
2300  * Return: true on success, else false.
2301  */
2302 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2303 {
2304 	u32 val;
2305 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2306 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2307 				    REG_CONTROLLER_STATUS);
2308 	return ret == 0 ? true : false;
2309 }
2310 
2311 /**
2312  * ufshcd_get_upmcrs - Get the power mode change request status
2313  * @hba: Pointer to adapter instance
2314  *
2315  * This function gets the UPMCRS field of HCS register
2316  *
2317  * Return: value of UPMCRS field.
2318  */
2319 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2320 {
2321 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2322 }
2323 
2324 /**
2325  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2326  * @hba: per adapter instance
2327  * @uic_cmd: UIC command
2328  */
2329 static inline void
2330 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2331 {
2332 	lockdep_assert_held(&hba->uic_cmd_mutex);
2333 
2334 	WARN_ON(hba->active_uic_cmd);
2335 
2336 	hba->active_uic_cmd = uic_cmd;
2337 
2338 	/* Write Args */
2339 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2340 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2341 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2342 
2343 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2344 
2345 	/* Write UIC Cmd */
2346 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2347 		      REG_UIC_COMMAND);
2348 }
2349 
2350 /**
2351  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2352  * @hba: per adapter instance
2353  * @uic_cmd: UIC command
2354  *
2355  * Return: 0 only if success.
2356  */
2357 static int
2358 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2359 {
2360 	int ret;
2361 	unsigned long flags;
2362 
2363 	lockdep_assert_held(&hba->uic_cmd_mutex);
2364 
2365 	if (wait_for_completion_timeout(&uic_cmd->done,
2366 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2367 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2368 	} else {
2369 		ret = -ETIMEDOUT;
2370 		dev_err(hba->dev,
2371 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2372 			uic_cmd->command, uic_cmd->argument3);
2373 
2374 		if (!uic_cmd->cmd_active) {
2375 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2376 				__func__);
2377 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378 		}
2379 	}
2380 
2381 	spin_lock_irqsave(hba->host->host_lock, flags);
2382 	hba->active_uic_cmd = NULL;
2383 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2384 
2385 	return ret;
2386 }
2387 
2388 /**
2389  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2390  * @hba: per adapter instance
2391  * @uic_cmd: UIC command
2392  * @completion: initialize the completion only if this is set to true
2393  *
2394  * Return: 0 only if success.
2395  */
2396 static int
2397 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2398 		      bool completion)
2399 {
2400 	lockdep_assert_held(&hba->uic_cmd_mutex);
2401 
2402 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2403 		dev_err(hba->dev,
2404 			"Controller not ready to accept UIC commands\n");
2405 		return -EIO;
2406 	}
2407 
2408 	if (completion)
2409 		init_completion(&uic_cmd->done);
2410 
2411 	uic_cmd->cmd_active = 1;
2412 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2413 
2414 	return 0;
2415 }
2416 
2417 /**
2418  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2419  * @hba: per adapter instance
2420  * @uic_cmd: UIC command
2421  *
2422  * Return: 0 only if success.
2423  */
2424 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2425 {
2426 	int ret;
2427 
2428 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2429 		return 0;
2430 
2431 	ufshcd_hold(hba);
2432 	mutex_lock(&hba->uic_cmd_mutex);
2433 	ufshcd_add_delay_before_dme_cmd(hba);
2434 
2435 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2436 	if (!ret)
2437 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2438 
2439 	mutex_unlock(&hba->uic_cmd_mutex);
2440 
2441 	ufshcd_release(hba);
2442 	return ret;
2443 }
2444 
2445 /**
2446  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2447  * @hba:	per-adapter instance
2448  * @lrbp:	pointer to local reference block
2449  * @sg_entries:	The number of sg lists actually used
2450  * @sg_list:	Pointer to SG list
2451  */
2452 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2453 			       struct scatterlist *sg_list)
2454 {
2455 	struct ufshcd_sg_entry *prd;
2456 	struct scatterlist *sg;
2457 	int i;
2458 
2459 	if (sg_entries) {
2460 
2461 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2462 			lrbp->utr_descriptor_ptr->prd_table_length =
2463 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2464 		else
2465 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2466 
2467 		prd = lrbp->ucd_prdt_ptr;
2468 
2469 		for_each_sg(sg_list, sg, sg_entries, i) {
2470 			const unsigned int len = sg_dma_len(sg);
2471 
2472 			/*
2473 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2474 			 * based value that indicates the length, in bytes, of
2475 			 * the data block. A maximum of length of 256KB may
2476 			 * exist for any entry. Bits 1:0 of this field shall be
2477 			 * 11b to indicate Dword granularity. A value of '3'
2478 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2479 			 */
2480 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2481 			prd->size = cpu_to_le32(len - 1);
2482 			prd->addr = cpu_to_le64(sg->dma_address);
2483 			prd->reserved = 0;
2484 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2485 		}
2486 	} else {
2487 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2488 	}
2489 }
2490 
2491 /**
2492  * ufshcd_map_sg - Map scatter-gather list to prdt
2493  * @hba: per adapter instance
2494  * @lrbp: pointer to local reference block
2495  *
2496  * Return: 0 in case of success, non-zero value in case of failure.
2497  */
2498 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2499 {
2500 	struct scsi_cmnd *cmd = lrbp->cmd;
2501 	int sg_segments = scsi_dma_map(cmd);
2502 
2503 	if (sg_segments < 0)
2504 		return sg_segments;
2505 
2506 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2507 
2508 	return 0;
2509 }
2510 
2511 /**
2512  * ufshcd_enable_intr - enable interrupts
2513  * @hba: per adapter instance
2514  * @intrs: interrupt bits
2515  */
2516 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2517 {
2518 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2519 
2520 	if (hba->ufs_version == ufshci_version(1, 0)) {
2521 		u32 rw;
2522 		rw = set & INTERRUPT_MASK_RW_VER_10;
2523 		set = rw | ((set ^ intrs) & intrs);
2524 	} else {
2525 		set |= intrs;
2526 	}
2527 
2528 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2529 }
2530 
2531 /**
2532  * ufshcd_disable_intr - disable interrupts
2533  * @hba: per adapter instance
2534  * @intrs: interrupt bits
2535  */
2536 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2537 {
2538 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2539 
2540 	if (hba->ufs_version == ufshci_version(1, 0)) {
2541 		u32 rw;
2542 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2543 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2544 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2545 
2546 	} else {
2547 		set &= ~intrs;
2548 	}
2549 
2550 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2551 }
2552 
2553 /**
2554  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2555  * descriptor according to request
2556  * @lrbp: pointer to local reference block
2557  * @upiu_flags: flags required in the header
2558  * @cmd_dir: requests data direction
2559  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2560  */
2561 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2562 					enum dma_data_direction cmd_dir, int ehs_length)
2563 {
2564 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2565 	struct request_desc_header *h = &req_desc->header;
2566 	enum utp_data_direction data_direction;
2567 
2568 	*h = (typeof(*h)){ };
2569 
2570 	if (cmd_dir == DMA_FROM_DEVICE) {
2571 		data_direction = UTP_DEVICE_TO_HOST;
2572 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2573 	} else if (cmd_dir == DMA_TO_DEVICE) {
2574 		data_direction = UTP_HOST_TO_DEVICE;
2575 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2576 	} else {
2577 		data_direction = UTP_NO_DATA_TRANSFER;
2578 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2579 	}
2580 
2581 	h->command_type = lrbp->command_type;
2582 	h->data_direction = data_direction;
2583 	h->ehs_length = ehs_length;
2584 
2585 	if (lrbp->intr_cmd)
2586 		h->interrupt = 1;
2587 
2588 	/* Prepare crypto related dwords */
2589 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2590 
2591 	/*
2592 	 * assigning invalid value for command status. Controller
2593 	 * updates OCS on command completion, with the command
2594 	 * status
2595 	 */
2596 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2597 
2598 	req_desc->prd_table_length = 0;
2599 }
2600 
2601 /**
2602  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2603  * for scsi commands
2604  * @lrbp: local reference block pointer
2605  * @upiu_flags: flags
2606  */
2607 static
2608 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2609 {
2610 	struct scsi_cmnd *cmd = lrbp->cmd;
2611 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2612 	unsigned short cdb_len;
2613 
2614 	ucd_req_ptr->header = (struct utp_upiu_header){
2615 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2616 		.flags = upiu_flags,
2617 		.lun = lrbp->lun,
2618 		.task_tag = lrbp->task_tag,
2619 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2620 	};
2621 
2622 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2623 
2624 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2625 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2626 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2627 
2628 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2629 }
2630 
2631 /**
2632  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2633  * @hba: UFS hba
2634  * @lrbp: local reference block pointer
2635  * @upiu_flags: flags
2636  */
2637 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2638 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2639 {
2640 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2641 	struct ufs_query *query = &hba->dev_cmd.query;
2642 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2643 
2644 	/* Query request header */
2645 	ucd_req_ptr->header = (struct utp_upiu_header){
2646 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2647 		.flags = upiu_flags,
2648 		.lun = lrbp->lun,
2649 		.task_tag = lrbp->task_tag,
2650 		.query_function = query->request.query_func,
2651 		/* Data segment length only need for WRITE_DESC */
2652 		.data_segment_length =
2653 			query->request.upiu_req.opcode ==
2654 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2655 				cpu_to_be16(len) :
2656 				0,
2657 	};
2658 
2659 	/* Copy the Query Request buffer as is */
2660 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2661 			QUERY_OSF_SIZE);
2662 
2663 	/* Copy the Descriptor */
2664 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2665 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2666 
2667 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2668 }
2669 
2670 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2671 {
2672 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2673 
2674 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2675 
2676 	ucd_req_ptr->header = (struct utp_upiu_header){
2677 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2678 		.task_tag = lrbp->task_tag,
2679 	};
2680 
2681 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2682 }
2683 
2684 /**
2685  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2686  *			     for Device Management Purposes
2687  * @hba: per adapter instance
2688  * @lrbp: pointer to local reference block
2689  *
2690  * Return: 0 upon success; < 0 upon failure.
2691  */
2692 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2693 				      struct ufshcd_lrb *lrbp)
2694 {
2695 	u8 upiu_flags;
2696 	int ret = 0;
2697 
2698 	if (hba->ufs_version <= ufshci_version(1, 1))
2699 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2700 	else
2701 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2702 
2703 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2704 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2705 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2706 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2707 		ufshcd_prepare_utp_nop_upiu(lrbp);
2708 	else
2709 		ret = -EINVAL;
2710 
2711 	return ret;
2712 }
2713 
2714 /**
2715  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2716  *			   for SCSI Purposes
2717  * @hba: per adapter instance
2718  * @lrbp: pointer to local reference block
2719  *
2720  * Return: 0 upon success; < 0 upon failure.
2721  */
2722 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2723 {
2724 	u8 upiu_flags;
2725 	int ret = 0;
2726 
2727 	if (hba->ufs_version <= ufshci_version(1, 1))
2728 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2729 	else
2730 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2731 
2732 	if (likely(lrbp->cmd)) {
2733 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2734 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2735 	} else {
2736 		ret = -EINVAL;
2737 	}
2738 
2739 	return ret;
2740 }
2741 
2742 /**
2743  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2744  * @upiu_wlun_id: UPIU W-LUN id
2745  *
2746  * Return: SCSI W-LUN id.
2747  */
2748 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2749 {
2750 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2751 }
2752 
2753 static inline bool is_device_wlun(struct scsi_device *sdev)
2754 {
2755 	return sdev->lun ==
2756 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2757 }
2758 
2759 /*
2760  * Associate the UFS controller queue with the default and poll HCTX types.
2761  * Initialize the mq_map[] arrays.
2762  */
2763 static void ufshcd_map_queues(struct Scsi_Host *shost)
2764 {
2765 	struct ufs_hba *hba = shost_priv(shost);
2766 	int i, queue_offset = 0;
2767 
2768 	if (!is_mcq_supported(hba)) {
2769 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2770 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2771 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2772 		hba->nr_hw_queues = 1;
2773 	}
2774 
2775 	for (i = 0; i < shost->nr_maps; i++) {
2776 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2777 
2778 		map->nr_queues = hba->nr_queues[i];
2779 		if (!map->nr_queues)
2780 			continue;
2781 		map->queue_offset = queue_offset;
2782 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2783 			map->queue_offset = 0;
2784 
2785 		blk_mq_map_queues(map);
2786 		queue_offset += map->nr_queues;
2787 	}
2788 }
2789 
2790 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2791 {
2792 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2793 		i * ufshcd_get_ucd_size(hba);
2794 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2795 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2796 		i * ufshcd_get_ucd_size(hba);
2797 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2798 				       response_upiu);
2799 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2800 
2801 	lrb->utr_descriptor_ptr = utrdlp + i;
2802 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2803 		i * sizeof(struct utp_transfer_req_desc);
2804 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2805 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2806 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2807 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2808 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2809 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2810 }
2811 
2812 /**
2813  * ufshcd_queuecommand - main entry point for SCSI requests
2814  * @host: SCSI host pointer
2815  * @cmd: command from SCSI Midlayer
2816  *
2817  * Return: 0 for success, non-zero in case of failure.
2818  */
2819 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2820 {
2821 	struct ufs_hba *hba = shost_priv(host);
2822 	int tag = scsi_cmd_to_rq(cmd)->tag;
2823 	struct ufshcd_lrb *lrbp;
2824 	int err = 0;
2825 	struct ufs_hw_queue *hwq = NULL;
2826 
2827 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2828 
2829 	switch (hba->ufshcd_state) {
2830 	case UFSHCD_STATE_OPERATIONAL:
2831 		break;
2832 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2833 		/*
2834 		 * SCSI error handler can call ->queuecommand() while UFS error
2835 		 * handler is in progress. Error interrupts could change the
2836 		 * state from UFSHCD_STATE_RESET to
2837 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2838 		 * being issued in that case.
2839 		 */
2840 		if (ufshcd_eh_in_progress(hba)) {
2841 			err = SCSI_MLQUEUE_HOST_BUSY;
2842 			goto out;
2843 		}
2844 		break;
2845 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2846 		/*
2847 		 * pm_runtime_get_sync() is used at error handling preparation
2848 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2849 		 * PM ops, it can never be finished if we let SCSI layer keep
2850 		 * retrying it, which gets err handler stuck forever. Neither
2851 		 * can we let the scsi cmd pass through, because UFS is in bad
2852 		 * state, the scsi cmd may eventually time out, which will get
2853 		 * err handler blocked for too long. So, just fail the scsi cmd
2854 		 * sent from PM ops, err handler can recover PM error anyways.
2855 		 */
2856 		if (hba->pm_op_in_progress) {
2857 			hba->force_reset = true;
2858 			set_host_byte(cmd, DID_BAD_TARGET);
2859 			scsi_done(cmd);
2860 			goto out;
2861 		}
2862 		fallthrough;
2863 	case UFSHCD_STATE_RESET:
2864 		err = SCSI_MLQUEUE_HOST_BUSY;
2865 		goto out;
2866 	case UFSHCD_STATE_ERROR:
2867 		set_host_byte(cmd, DID_ERROR);
2868 		scsi_done(cmd);
2869 		goto out;
2870 	}
2871 
2872 	hba->req_abort_count = 0;
2873 
2874 	ufshcd_hold(hba);
2875 
2876 	lrbp = &hba->lrb[tag];
2877 	lrbp->cmd = cmd;
2878 	lrbp->task_tag = tag;
2879 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2880 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2881 
2882 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2883 
2884 	lrbp->req_abort_skip = false;
2885 
2886 	ufshcd_comp_scsi_upiu(hba, lrbp);
2887 
2888 	err = ufshcd_map_sg(hba, lrbp);
2889 	if (err) {
2890 		ufshcd_release(hba);
2891 		goto out;
2892 	}
2893 
2894 	if (is_mcq_enabled(hba))
2895 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2896 
2897 	ufshcd_send_command(hba, tag, hwq);
2898 
2899 out:
2900 	if (ufs_trigger_eh()) {
2901 		unsigned long flags;
2902 
2903 		spin_lock_irqsave(hba->host->host_lock, flags);
2904 		ufshcd_schedule_eh_work(hba);
2905 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2906 	}
2907 
2908 	return err;
2909 }
2910 
2911 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2912 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2913 {
2914 	lrbp->cmd = NULL;
2915 	lrbp->task_tag = tag;
2916 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2917 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2918 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2919 	hba->dev_cmd.type = cmd_type;
2920 
2921 	return ufshcd_compose_devman_upiu(hba, lrbp);
2922 }
2923 
2924 /*
2925  * Check with the block layer if the command is inflight
2926  * @cmd: command to check.
2927  *
2928  * Return: true if command is inflight; false if not.
2929  */
2930 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2931 {
2932 	struct request *rq;
2933 
2934 	if (!cmd)
2935 		return false;
2936 
2937 	rq = scsi_cmd_to_rq(cmd);
2938 	if (!blk_mq_request_started(rq))
2939 		return false;
2940 
2941 	return true;
2942 }
2943 
2944 /*
2945  * Clear the pending command in the controller and wait until
2946  * the controller confirms that the command has been cleared.
2947  * @hba: per adapter instance
2948  * @task_tag: The tag number of the command to be cleared.
2949  */
2950 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2951 {
2952 	u32 mask;
2953 	unsigned long flags;
2954 	int err;
2955 
2956 	if (is_mcq_enabled(hba)) {
2957 		/*
2958 		 * MCQ mode. Clean up the MCQ resources similar to
2959 		 * what the ufshcd_utrl_clear() does for SDB mode.
2960 		 */
2961 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2962 		if (err) {
2963 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2964 				__func__, task_tag, err);
2965 			return err;
2966 		}
2967 		return 0;
2968 	}
2969 
2970 	mask = 1U << task_tag;
2971 
2972 	/* clear outstanding transaction before retry */
2973 	spin_lock_irqsave(hba->host->host_lock, flags);
2974 	ufshcd_utrl_clear(hba, mask);
2975 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2976 
2977 	/*
2978 	 * wait for h/w to clear corresponding bit in door-bell.
2979 	 * max. wait is 1 sec.
2980 	 */
2981 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2982 					mask, ~mask, 1000, 1000);
2983 }
2984 
2985 /**
2986  * ufshcd_dev_cmd_completion() - handles device management command responses
2987  * @hba: per adapter instance
2988  * @lrbp: pointer to local reference block
2989  *
2990  * Return: 0 upon success; < 0 upon failure.
2991  */
2992 static int
2993 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2994 {
2995 	enum upiu_response_transaction resp;
2996 	int err = 0;
2997 
2998 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2999 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3000 
3001 	switch (resp) {
3002 	case UPIU_TRANSACTION_NOP_IN:
3003 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3004 			err = -EINVAL;
3005 			dev_err(hba->dev, "%s: unexpected response %x\n",
3006 					__func__, resp);
3007 		}
3008 		break;
3009 	case UPIU_TRANSACTION_QUERY_RSP: {
3010 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3011 
3012 		if (response == 0)
3013 			err = ufshcd_copy_query_response(hba, lrbp);
3014 		break;
3015 	}
3016 	case UPIU_TRANSACTION_REJECT_UPIU:
3017 		/* TODO: handle Reject UPIU Response */
3018 		err = -EPERM;
3019 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3020 				__func__);
3021 		break;
3022 	case UPIU_TRANSACTION_RESPONSE:
3023 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3024 			err = -EINVAL;
3025 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3026 		}
3027 		break;
3028 	default:
3029 		err = -EINVAL;
3030 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3031 				__func__, resp);
3032 		break;
3033 	}
3034 
3035 	return err;
3036 }
3037 
3038 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3039 		struct ufshcd_lrb *lrbp, int max_timeout)
3040 {
3041 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3042 	unsigned long flags;
3043 	bool pending;
3044 	int err;
3045 
3046 retry:
3047 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3048 						time_left);
3049 
3050 	if (likely(time_left)) {
3051 		/*
3052 		 * The completion handler called complete() and the caller of
3053 		 * this function still owns the @lrbp tag so the code below does
3054 		 * not trigger any race conditions.
3055 		 */
3056 		hba->dev_cmd.complete = NULL;
3057 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3058 		if (!err)
3059 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3060 	} else {
3061 		err = -ETIMEDOUT;
3062 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3063 			__func__, lrbp->task_tag);
3064 
3065 		/* MCQ mode */
3066 		if (is_mcq_enabled(hba)) {
3067 			/* successfully cleared the command, retry if needed */
3068 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3069 				err = -EAGAIN;
3070 			hba->dev_cmd.complete = NULL;
3071 			return err;
3072 		}
3073 
3074 		/* SDB mode */
3075 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3076 			/* successfully cleared the command, retry if needed */
3077 			err = -EAGAIN;
3078 			/*
3079 			 * Since clearing the command succeeded we also need to
3080 			 * clear the task tag bit from the outstanding_reqs
3081 			 * variable.
3082 			 */
3083 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3084 			pending = test_bit(lrbp->task_tag,
3085 					   &hba->outstanding_reqs);
3086 			if (pending) {
3087 				hba->dev_cmd.complete = NULL;
3088 				__clear_bit(lrbp->task_tag,
3089 					    &hba->outstanding_reqs);
3090 			}
3091 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3092 
3093 			if (!pending) {
3094 				/*
3095 				 * The completion handler ran while we tried to
3096 				 * clear the command.
3097 				 */
3098 				time_left = 1;
3099 				goto retry;
3100 			}
3101 		} else {
3102 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3103 				__func__, lrbp->task_tag);
3104 
3105 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3106 			pending = test_bit(lrbp->task_tag,
3107 					   &hba->outstanding_reqs);
3108 			if (pending)
3109 				hba->dev_cmd.complete = NULL;
3110 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3111 
3112 			if (!pending) {
3113 				/*
3114 				 * The completion handler ran while we tried to
3115 				 * clear the command.
3116 				 */
3117 				time_left = 1;
3118 				goto retry;
3119 			}
3120 		}
3121 	}
3122 
3123 	return err;
3124 }
3125 
3126 /**
3127  * ufshcd_exec_dev_cmd - API for sending device management requests
3128  * @hba: UFS hba
3129  * @cmd_type: specifies the type (NOP, Query...)
3130  * @timeout: timeout in milliseconds
3131  *
3132  * Return: 0 upon success; < 0 upon failure.
3133  *
3134  * NOTE: Since there is only one available tag for device management commands,
3135  * it is expected you hold the hba->dev_cmd.lock mutex.
3136  */
3137 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3138 		enum dev_cmd_type cmd_type, int timeout)
3139 {
3140 	DECLARE_COMPLETION_ONSTACK(wait);
3141 	const u32 tag = hba->reserved_slot;
3142 	struct ufshcd_lrb *lrbp;
3143 	int err;
3144 
3145 	/* Protects use of hba->reserved_slot. */
3146 	lockdep_assert_held(&hba->dev_cmd.lock);
3147 
3148 	down_read(&hba->clk_scaling_lock);
3149 
3150 	lrbp = &hba->lrb[tag];
3151 	lrbp->cmd = NULL;
3152 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3153 	if (unlikely(err))
3154 		goto out;
3155 
3156 	hba->dev_cmd.complete = &wait;
3157 
3158 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3159 
3160 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3161 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3162 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3163 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3164 
3165 out:
3166 	up_read(&hba->clk_scaling_lock);
3167 	return err;
3168 }
3169 
3170 /**
3171  * ufshcd_init_query() - init the query response and request parameters
3172  * @hba: per-adapter instance
3173  * @request: address of the request pointer to be initialized
3174  * @response: address of the response pointer to be initialized
3175  * @opcode: operation to perform
3176  * @idn: flag idn to access
3177  * @index: LU number to access
3178  * @selector: query/flag/descriptor further identification
3179  */
3180 static inline void ufshcd_init_query(struct ufs_hba *hba,
3181 		struct ufs_query_req **request, struct ufs_query_res **response,
3182 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3183 {
3184 	*request = &hba->dev_cmd.query.request;
3185 	*response = &hba->dev_cmd.query.response;
3186 	memset(*request, 0, sizeof(struct ufs_query_req));
3187 	memset(*response, 0, sizeof(struct ufs_query_res));
3188 	(*request)->upiu_req.opcode = opcode;
3189 	(*request)->upiu_req.idn = idn;
3190 	(*request)->upiu_req.index = index;
3191 	(*request)->upiu_req.selector = selector;
3192 }
3193 
3194 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3195 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3196 {
3197 	int ret;
3198 	int retries;
3199 
3200 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3201 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3202 		if (ret)
3203 			dev_dbg(hba->dev,
3204 				"%s: failed with error %d, retries %d\n",
3205 				__func__, ret, retries);
3206 		else
3207 			break;
3208 	}
3209 
3210 	if (ret)
3211 		dev_err(hba->dev,
3212 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3213 			__func__, opcode, idn, ret, retries);
3214 	return ret;
3215 }
3216 
3217 /**
3218  * ufshcd_query_flag() - API function for sending flag query requests
3219  * @hba: per-adapter instance
3220  * @opcode: flag query to perform
3221  * @idn: flag idn to access
3222  * @index: flag index to access
3223  * @flag_res: the flag value after the query request completes
3224  *
3225  * Return: 0 for success, non-zero in case of failure.
3226  */
3227 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3228 			enum flag_idn idn, u8 index, bool *flag_res)
3229 {
3230 	struct ufs_query_req *request = NULL;
3231 	struct ufs_query_res *response = NULL;
3232 	int err, selector = 0;
3233 	int timeout = QUERY_REQ_TIMEOUT;
3234 
3235 	BUG_ON(!hba);
3236 
3237 	ufshcd_hold(hba);
3238 	mutex_lock(&hba->dev_cmd.lock);
3239 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3240 			selector);
3241 
3242 	switch (opcode) {
3243 	case UPIU_QUERY_OPCODE_SET_FLAG:
3244 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3245 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3246 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3247 		break;
3248 	case UPIU_QUERY_OPCODE_READ_FLAG:
3249 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3250 		if (!flag_res) {
3251 			/* No dummy reads */
3252 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3253 					__func__);
3254 			err = -EINVAL;
3255 			goto out_unlock;
3256 		}
3257 		break;
3258 	default:
3259 		dev_err(hba->dev,
3260 			"%s: Expected query flag opcode but got = %d\n",
3261 			__func__, opcode);
3262 		err = -EINVAL;
3263 		goto out_unlock;
3264 	}
3265 
3266 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3267 
3268 	if (err) {
3269 		dev_err(hba->dev,
3270 			"%s: Sending flag query for idn %d failed, err = %d\n",
3271 			__func__, idn, err);
3272 		goto out_unlock;
3273 	}
3274 
3275 	if (flag_res)
3276 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3277 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3278 
3279 out_unlock:
3280 	mutex_unlock(&hba->dev_cmd.lock);
3281 	ufshcd_release(hba);
3282 	return err;
3283 }
3284 
3285 /**
3286  * ufshcd_query_attr - API function for sending attribute requests
3287  * @hba: per-adapter instance
3288  * @opcode: attribute opcode
3289  * @idn: attribute idn to access
3290  * @index: index field
3291  * @selector: selector field
3292  * @attr_val: the attribute value after the query request completes
3293  *
3294  * Return: 0 for success, non-zero in case of failure.
3295 */
3296 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3297 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3298 {
3299 	struct ufs_query_req *request = NULL;
3300 	struct ufs_query_res *response = NULL;
3301 	int err;
3302 
3303 	BUG_ON(!hba);
3304 
3305 	if (!attr_val) {
3306 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3307 				__func__, opcode);
3308 		return -EINVAL;
3309 	}
3310 
3311 	ufshcd_hold(hba);
3312 
3313 	mutex_lock(&hba->dev_cmd.lock);
3314 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3315 			selector);
3316 
3317 	switch (opcode) {
3318 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3319 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3320 		request->upiu_req.value = cpu_to_be32(*attr_val);
3321 		break;
3322 	case UPIU_QUERY_OPCODE_READ_ATTR:
3323 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3324 		break;
3325 	default:
3326 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3327 				__func__, opcode);
3328 		err = -EINVAL;
3329 		goto out_unlock;
3330 	}
3331 
3332 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3333 
3334 	if (err) {
3335 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3336 				__func__, opcode, idn, index, err);
3337 		goto out_unlock;
3338 	}
3339 
3340 	*attr_val = be32_to_cpu(response->upiu_res.value);
3341 
3342 out_unlock:
3343 	mutex_unlock(&hba->dev_cmd.lock);
3344 	ufshcd_release(hba);
3345 	return err;
3346 }
3347 
3348 /**
3349  * ufshcd_query_attr_retry() - API function for sending query
3350  * attribute with retries
3351  * @hba: per-adapter instance
3352  * @opcode: attribute opcode
3353  * @idn: attribute idn to access
3354  * @index: index field
3355  * @selector: selector field
3356  * @attr_val: the attribute value after the query request
3357  * completes
3358  *
3359  * Return: 0 for success, non-zero in case of failure.
3360 */
3361 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3362 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3363 	u32 *attr_val)
3364 {
3365 	int ret = 0;
3366 	u32 retries;
3367 
3368 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3369 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3370 						selector, attr_val);
3371 		if (ret)
3372 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3373 				__func__, ret, retries);
3374 		else
3375 			break;
3376 	}
3377 
3378 	if (ret)
3379 		dev_err(hba->dev,
3380 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3381 			__func__, idn, ret, QUERY_REQ_RETRIES);
3382 	return ret;
3383 }
3384 
3385 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3386 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3387 			u8 selector, u8 *desc_buf, int *buf_len)
3388 {
3389 	struct ufs_query_req *request = NULL;
3390 	struct ufs_query_res *response = NULL;
3391 	int err;
3392 
3393 	BUG_ON(!hba);
3394 
3395 	if (!desc_buf) {
3396 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3397 				__func__, opcode);
3398 		return -EINVAL;
3399 	}
3400 
3401 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3402 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3403 				__func__, *buf_len);
3404 		return -EINVAL;
3405 	}
3406 
3407 	ufshcd_hold(hba);
3408 
3409 	mutex_lock(&hba->dev_cmd.lock);
3410 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3411 			selector);
3412 	hba->dev_cmd.query.descriptor = desc_buf;
3413 	request->upiu_req.length = cpu_to_be16(*buf_len);
3414 
3415 	switch (opcode) {
3416 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3417 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3418 		break;
3419 	case UPIU_QUERY_OPCODE_READ_DESC:
3420 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3421 		break;
3422 	default:
3423 		dev_err(hba->dev,
3424 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3425 				__func__, opcode);
3426 		err = -EINVAL;
3427 		goto out_unlock;
3428 	}
3429 
3430 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3431 
3432 	if (err) {
3433 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3434 				__func__, opcode, idn, index, err);
3435 		goto out_unlock;
3436 	}
3437 
3438 	*buf_len = be16_to_cpu(response->upiu_res.length);
3439 
3440 out_unlock:
3441 	hba->dev_cmd.query.descriptor = NULL;
3442 	mutex_unlock(&hba->dev_cmd.lock);
3443 	ufshcd_release(hba);
3444 	return err;
3445 }
3446 
3447 /**
3448  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3449  * @hba: per-adapter instance
3450  * @opcode: attribute opcode
3451  * @idn: attribute idn to access
3452  * @index: index field
3453  * @selector: selector field
3454  * @desc_buf: the buffer that contains the descriptor
3455  * @buf_len: length parameter passed to the device
3456  *
3457  * The buf_len parameter will contain, on return, the length parameter
3458  * received on the response.
3459  *
3460  * Return: 0 for success, non-zero in case of failure.
3461  */
3462 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3463 				  enum query_opcode opcode,
3464 				  enum desc_idn idn, u8 index,
3465 				  u8 selector,
3466 				  u8 *desc_buf, int *buf_len)
3467 {
3468 	int err;
3469 	int retries;
3470 
3471 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3472 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3473 						selector, desc_buf, buf_len);
3474 		if (!err || err == -EINVAL)
3475 			break;
3476 	}
3477 
3478 	return err;
3479 }
3480 
3481 /**
3482  * ufshcd_read_desc_param - read the specified descriptor parameter
3483  * @hba: Pointer to adapter instance
3484  * @desc_id: descriptor idn value
3485  * @desc_index: descriptor index
3486  * @param_offset: offset of the parameter to read
3487  * @param_read_buf: pointer to buffer where parameter would be read
3488  * @param_size: sizeof(param_read_buf)
3489  *
3490  * Return: 0 in case of success, non-zero otherwise.
3491  */
3492 int ufshcd_read_desc_param(struct ufs_hba *hba,
3493 			   enum desc_idn desc_id,
3494 			   int desc_index,
3495 			   u8 param_offset,
3496 			   u8 *param_read_buf,
3497 			   u8 param_size)
3498 {
3499 	int ret;
3500 	u8 *desc_buf;
3501 	int buff_len = QUERY_DESC_MAX_SIZE;
3502 	bool is_kmalloc = true;
3503 
3504 	/* Safety check */
3505 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3506 		return -EINVAL;
3507 
3508 	/* Check whether we need temp memory */
3509 	if (param_offset != 0 || param_size < buff_len) {
3510 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3511 		if (!desc_buf)
3512 			return -ENOMEM;
3513 	} else {
3514 		desc_buf = param_read_buf;
3515 		is_kmalloc = false;
3516 	}
3517 
3518 	/* Request for full descriptor */
3519 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3520 					    desc_id, desc_index, 0,
3521 					    desc_buf, &buff_len);
3522 	if (ret) {
3523 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3524 			__func__, desc_id, desc_index, param_offset, ret);
3525 		goto out;
3526 	}
3527 
3528 	/* Update descriptor length */
3529 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3530 
3531 	if (param_offset >= buff_len) {
3532 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3533 			__func__, param_offset, desc_id, buff_len);
3534 		ret = -EINVAL;
3535 		goto out;
3536 	}
3537 
3538 	/* Sanity check */
3539 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3540 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3541 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3542 		ret = -EINVAL;
3543 		goto out;
3544 	}
3545 
3546 	if (is_kmalloc) {
3547 		/* Make sure we don't copy more data than available */
3548 		if (param_offset >= buff_len)
3549 			ret = -EINVAL;
3550 		else
3551 			memcpy(param_read_buf, &desc_buf[param_offset],
3552 			       min_t(u32, param_size, buff_len - param_offset));
3553 	}
3554 out:
3555 	if (is_kmalloc)
3556 		kfree(desc_buf);
3557 	return ret;
3558 }
3559 
3560 /**
3561  * struct uc_string_id - unicode string
3562  *
3563  * @len: size of this descriptor inclusive
3564  * @type: descriptor type
3565  * @uc: unicode string character
3566  */
3567 struct uc_string_id {
3568 	u8 len;
3569 	u8 type;
3570 	wchar_t uc[];
3571 } __packed;
3572 
3573 /* replace non-printable or non-ASCII characters with spaces */
3574 static inline char ufshcd_remove_non_printable(u8 ch)
3575 {
3576 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3577 }
3578 
3579 /**
3580  * ufshcd_read_string_desc - read string descriptor
3581  * @hba: pointer to adapter instance
3582  * @desc_index: descriptor index
3583  * @buf: pointer to buffer where descriptor would be read,
3584  *       the caller should free the memory.
3585  * @ascii: if true convert from unicode to ascii characters
3586  *         null terminated string.
3587  *
3588  * Return:
3589  * *      string size on success.
3590  * *      -ENOMEM: on allocation failure
3591  * *      -EINVAL: on a wrong parameter
3592  */
3593 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3594 			    u8 **buf, bool ascii)
3595 {
3596 	struct uc_string_id *uc_str;
3597 	u8 *str;
3598 	int ret;
3599 
3600 	if (!buf)
3601 		return -EINVAL;
3602 
3603 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3604 	if (!uc_str)
3605 		return -ENOMEM;
3606 
3607 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3608 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3609 	if (ret < 0) {
3610 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3611 			QUERY_REQ_RETRIES, ret);
3612 		str = NULL;
3613 		goto out;
3614 	}
3615 
3616 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3617 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3618 		str = NULL;
3619 		ret = 0;
3620 		goto out;
3621 	}
3622 
3623 	if (ascii) {
3624 		ssize_t ascii_len;
3625 		int i;
3626 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3627 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3628 		str = kzalloc(ascii_len, GFP_KERNEL);
3629 		if (!str) {
3630 			ret = -ENOMEM;
3631 			goto out;
3632 		}
3633 
3634 		/*
3635 		 * the descriptor contains string in UTF16 format
3636 		 * we need to convert to utf-8 so it can be displayed
3637 		 */
3638 		ret = utf16s_to_utf8s(uc_str->uc,
3639 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3640 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3641 
3642 		/* replace non-printable or non-ASCII characters with spaces */
3643 		for (i = 0; i < ret; i++)
3644 			str[i] = ufshcd_remove_non_printable(str[i]);
3645 
3646 		str[ret++] = '\0';
3647 
3648 	} else {
3649 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3650 		if (!str) {
3651 			ret = -ENOMEM;
3652 			goto out;
3653 		}
3654 		ret = uc_str->len;
3655 	}
3656 out:
3657 	*buf = str;
3658 	kfree(uc_str);
3659 	return ret;
3660 }
3661 
3662 /**
3663  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3664  * @hba: Pointer to adapter instance
3665  * @lun: lun id
3666  * @param_offset: offset of the parameter to read
3667  * @param_read_buf: pointer to buffer where parameter would be read
3668  * @param_size: sizeof(param_read_buf)
3669  *
3670  * Return: 0 in case of success, non-zero otherwise.
3671  */
3672 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3673 					      int lun,
3674 					      enum unit_desc_param param_offset,
3675 					      u8 *param_read_buf,
3676 					      u32 param_size)
3677 {
3678 	/*
3679 	 * Unit descriptors are only available for general purpose LUs (LUN id
3680 	 * from 0 to 7) and RPMB Well known LU.
3681 	 */
3682 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3683 		return -EOPNOTSUPP;
3684 
3685 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3686 				      param_offset, param_read_buf, param_size);
3687 }
3688 
3689 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3690 {
3691 	int err = 0;
3692 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3693 
3694 	if (hba->dev_info.wspecversion >= 0x300) {
3695 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3696 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3697 				&gating_wait);
3698 		if (err)
3699 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3700 					 err, gating_wait);
3701 
3702 		if (gating_wait == 0) {
3703 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3704 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3705 					 gating_wait);
3706 		}
3707 
3708 		hba->dev_info.clk_gating_wait_us = gating_wait;
3709 	}
3710 
3711 	return err;
3712 }
3713 
3714 /**
3715  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3716  * @hba: per adapter instance
3717  *
3718  * 1. Allocate DMA memory for Command Descriptor array
3719  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3720  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3721  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3722  *	(UTMRDL)
3723  * 4. Allocate memory for local reference block(lrb).
3724  *
3725  * Return: 0 for success, non-zero in case of failure.
3726  */
3727 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3728 {
3729 	size_t utmrdl_size, utrdl_size, ucdl_size;
3730 
3731 	/* Allocate memory for UTP command descriptors */
3732 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3733 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3734 						  ucdl_size,
3735 						  &hba->ucdl_dma_addr,
3736 						  GFP_KERNEL);
3737 
3738 	/*
3739 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3740 	 */
3741 	if (!hba->ucdl_base_addr ||
3742 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3743 		dev_err(hba->dev,
3744 			"Command Descriptor Memory allocation failed\n");
3745 		goto out;
3746 	}
3747 
3748 	/*
3749 	 * Allocate memory for UTP Transfer descriptors
3750 	 * UFSHCI requires 1KB alignment of UTRD
3751 	 */
3752 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3753 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3754 						   utrdl_size,
3755 						   &hba->utrdl_dma_addr,
3756 						   GFP_KERNEL);
3757 	if (!hba->utrdl_base_addr ||
3758 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3759 		dev_err(hba->dev,
3760 			"Transfer Descriptor Memory allocation failed\n");
3761 		goto out;
3762 	}
3763 
3764 	/*
3765 	 * Skip utmrdl allocation; it may have been
3766 	 * allocated during first pass and not released during
3767 	 * MCQ memory allocation.
3768 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3769 	 */
3770 	if (hba->utmrdl_base_addr)
3771 		goto skip_utmrdl;
3772 	/*
3773 	 * Allocate memory for UTP Task Management descriptors
3774 	 * UFSHCI requires 1KB alignment of UTMRD
3775 	 */
3776 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3777 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3778 						    utmrdl_size,
3779 						    &hba->utmrdl_dma_addr,
3780 						    GFP_KERNEL);
3781 	if (!hba->utmrdl_base_addr ||
3782 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3783 		dev_err(hba->dev,
3784 		"Task Management Descriptor Memory allocation failed\n");
3785 		goto out;
3786 	}
3787 
3788 skip_utmrdl:
3789 	/* Allocate memory for local reference block */
3790 	hba->lrb = devm_kcalloc(hba->dev,
3791 				hba->nutrs, sizeof(struct ufshcd_lrb),
3792 				GFP_KERNEL);
3793 	if (!hba->lrb) {
3794 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3795 		goto out;
3796 	}
3797 	return 0;
3798 out:
3799 	return -ENOMEM;
3800 }
3801 
3802 /**
3803  * ufshcd_host_memory_configure - configure local reference block with
3804  *				memory offsets
3805  * @hba: per adapter instance
3806  *
3807  * Configure Host memory space
3808  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3809  * address.
3810  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3811  * and PRDT offset.
3812  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3813  * into local reference block.
3814  */
3815 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3816 {
3817 	struct utp_transfer_req_desc *utrdlp;
3818 	dma_addr_t cmd_desc_dma_addr;
3819 	dma_addr_t cmd_desc_element_addr;
3820 	u16 response_offset;
3821 	u16 prdt_offset;
3822 	int cmd_desc_size;
3823 	int i;
3824 
3825 	utrdlp = hba->utrdl_base_addr;
3826 
3827 	response_offset =
3828 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3829 	prdt_offset =
3830 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3831 
3832 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3833 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3834 
3835 	for (i = 0; i < hba->nutrs; i++) {
3836 		/* Configure UTRD with command descriptor base address */
3837 		cmd_desc_element_addr =
3838 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3839 		utrdlp[i].command_desc_base_addr =
3840 				cpu_to_le64(cmd_desc_element_addr);
3841 
3842 		/* Response upiu and prdt offset should be in double words */
3843 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3844 			utrdlp[i].response_upiu_offset =
3845 				cpu_to_le16(response_offset);
3846 			utrdlp[i].prd_table_offset =
3847 				cpu_to_le16(prdt_offset);
3848 			utrdlp[i].response_upiu_length =
3849 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3850 		} else {
3851 			utrdlp[i].response_upiu_offset =
3852 				cpu_to_le16(response_offset >> 2);
3853 			utrdlp[i].prd_table_offset =
3854 				cpu_to_le16(prdt_offset >> 2);
3855 			utrdlp[i].response_upiu_length =
3856 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3857 		}
3858 
3859 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3860 	}
3861 }
3862 
3863 /**
3864  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3865  * @hba: per adapter instance
3866  *
3867  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3868  * in order to initialize the Unipro link startup procedure.
3869  * Once the Unipro links are up, the device connected to the controller
3870  * is detected.
3871  *
3872  * Return: 0 on success, non-zero value on failure.
3873  */
3874 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3875 {
3876 	struct uic_command uic_cmd = {0};
3877 	int ret;
3878 
3879 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3880 
3881 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3882 	if (ret)
3883 		dev_dbg(hba->dev,
3884 			"dme-link-startup: error code %d\n", ret);
3885 	return ret;
3886 }
3887 /**
3888  * ufshcd_dme_reset - UIC command for DME_RESET
3889  * @hba: per adapter instance
3890  *
3891  * DME_RESET command is issued in order to reset UniPro stack.
3892  * This function now deals with cold reset.
3893  *
3894  * Return: 0 on success, non-zero value on failure.
3895  */
3896 static int ufshcd_dme_reset(struct ufs_hba *hba)
3897 {
3898 	struct uic_command uic_cmd = {0};
3899 	int ret;
3900 
3901 	uic_cmd.command = UIC_CMD_DME_RESET;
3902 
3903 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3904 	if (ret)
3905 		dev_err(hba->dev,
3906 			"dme-reset: error code %d\n", ret);
3907 
3908 	return ret;
3909 }
3910 
3911 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3912 			       int agreed_gear,
3913 			       int adapt_val)
3914 {
3915 	int ret;
3916 
3917 	if (agreed_gear < UFS_HS_G4)
3918 		adapt_val = PA_NO_ADAPT;
3919 
3920 	ret = ufshcd_dme_set(hba,
3921 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3922 			     adapt_val);
3923 	return ret;
3924 }
3925 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3926 
3927 /**
3928  * ufshcd_dme_enable - UIC command for DME_ENABLE
3929  * @hba: per adapter instance
3930  *
3931  * DME_ENABLE command is issued in order to enable UniPro stack.
3932  *
3933  * Return: 0 on success, non-zero value on failure.
3934  */
3935 static int ufshcd_dme_enable(struct ufs_hba *hba)
3936 {
3937 	struct uic_command uic_cmd = {0};
3938 	int ret;
3939 
3940 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3941 
3942 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3943 	if (ret)
3944 		dev_err(hba->dev,
3945 			"dme-enable: error code %d\n", ret);
3946 
3947 	return ret;
3948 }
3949 
3950 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3951 {
3952 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3953 	unsigned long min_sleep_time_us;
3954 
3955 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3956 		return;
3957 
3958 	/*
3959 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3960 	 * this function
3961 	 */
3962 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3963 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3964 	} else {
3965 		unsigned long delta =
3966 			(unsigned long) ktime_to_us(
3967 				ktime_sub(ktime_get(),
3968 				hba->last_dme_cmd_tstamp));
3969 
3970 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3971 			min_sleep_time_us =
3972 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3973 		else
3974 			min_sleep_time_us = 0; /* no more delay required */
3975 	}
3976 
3977 	if (min_sleep_time_us > 0) {
3978 		/* allow sleep for extra 50us if needed */
3979 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3980 	}
3981 
3982 	/* update the last_dme_cmd_tstamp */
3983 	hba->last_dme_cmd_tstamp = ktime_get();
3984 }
3985 
3986 /**
3987  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3988  * @hba: per adapter instance
3989  * @attr_sel: uic command argument1
3990  * @attr_set: attribute set type as uic command argument2
3991  * @mib_val: setting value as uic command argument3
3992  * @peer: indicate whether peer or local
3993  *
3994  * Return: 0 on success, non-zero value on failure.
3995  */
3996 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3997 			u8 attr_set, u32 mib_val, u8 peer)
3998 {
3999 	struct uic_command uic_cmd = {0};
4000 	static const char *const action[] = {
4001 		"dme-set",
4002 		"dme-peer-set"
4003 	};
4004 	const char *set = action[!!peer];
4005 	int ret;
4006 	int retries = UFS_UIC_COMMAND_RETRIES;
4007 
4008 	uic_cmd.command = peer ?
4009 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4010 	uic_cmd.argument1 = attr_sel;
4011 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4012 	uic_cmd.argument3 = mib_val;
4013 
4014 	do {
4015 		/* for peer attributes we retry upon failure */
4016 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4017 		if (ret)
4018 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4019 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4020 	} while (ret && peer && --retries);
4021 
4022 	if (ret)
4023 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4024 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4025 			UFS_UIC_COMMAND_RETRIES - retries);
4026 
4027 	return ret;
4028 }
4029 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4030 
4031 /**
4032  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4033  * @hba: per adapter instance
4034  * @attr_sel: uic command argument1
4035  * @mib_val: the value of the attribute as returned by the UIC command
4036  * @peer: indicate whether peer or local
4037  *
4038  * Return: 0 on success, non-zero value on failure.
4039  */
4040 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4041 			u32 *mib_val, u8 peer)
4042 {
4043 	struct uic_command uic_cmd = {0};
4044 	static const char *const action[] = {
4045 		"dme-get",
4046 		"dme-peer-get"
4047 	};
4048 	const char *get = action[!!peer];
4049 	int ret;
4050 	int retries = UFS_UIC_COMMAND_RETRIES;
4051 	struct ufs_pa_layer_attr orig_pwr_info;
4052 	struct ufs_pa_layer_attr temp_pwr_info;
4053 	bool pwr_mode_change = false;
4054 
4055 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4056 		orig_pwr_info = hba->pwr_info;
4057 		temp_pwr_info = orig_pwr_info;
4058 
4059 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4060 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4061 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4062 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4063 			pwr_mode_change = true;
4064 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4065 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4066 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4067 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4068 			pwr_mode_change = true;
4069 		}
4070 		if (pwr_mode_change) {
4071 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4072 			if (ret)
4073 				goto out;
4074 		}
4075 	}
4076 
4077 	uic_cmd.command = peer ?
4078 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4079 	uic_cmd.argument1 = attr_sel;
4080 
4081 	do {
4082 		/* for peer attributes we retry upon failure */
4083 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4084 		if (ret)
4085 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4086 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4087 	} while (ret && peer && --retries);
4088 
4089 	if (ret)
4090 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4091 			get, UIC_GET_ATTR_ID(attr_sel),
4092 			UFS_UIC_COMMAND_RETRIES - retries);
4093 
4094 	if (mib_val && !ret)
4095 		*mib_val = uic_cmd.argument3;
4096 
4097 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4098 	    && pwr_mode_change)
4099 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4100 out:
4101 	return ret;
4102 }
4103 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4104 
4105 /**
4106  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4107  * state) and waits for it to take effect.
4108  *
4109  * @hba: per adapter instance
4110  * @cmd: UIC command to execute
4111  *
4112  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4113  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4114  * and device UniPro link and hence it's final completion would be indicated by
4115  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4116  * addition to normal UIC command completion Status (UCCS). This function only
4117  * returns after the relevant status bits indicate the completion.
4118  *
4119  * Return: 0 on success, non-zero value on failure.
4120  */
4121 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4122 {
4123 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4124 	unsigned long flags;
4125 	u8 status;
4126 	int ret;
4127 	bool reenable_intr = false;
4128 
4129 	mutex_lock(&hba->uic_cmd_mutex);
4130 	ufshcd_add_delay_before_dme_cmd(hba);
4131 
4132 	spin_lock_irqsave(hba->host->host_lock, flags);
4133 	if (ufshcd_is_link_broken(hba)) {
4134 		ret = -ENOLINK;
4135 		goto out_unlock;
4136 	}
4137 	hba->uic_async_done = &uic_async_done;
4138 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4139 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4140 		/*
4141 		 * Make sure UIC command completion interrupt is disabled before
4142 		 * issuing UIC command.
4143 		 */
4144 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4145 		reenable_intr = true;
4146 	}
4147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4148 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4149 	if (ret) {
4150 		dev_err(hba->dev,
4151 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4152 			cmd->command, cmd->argument3, ret);
4153 		goto out;
4154 	}
4155 
4156 	if (!wait_for_completion_timeout(hba->uic_async_done,
4157 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4158 		dev_err(hba->dev,
4159 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4160 			cmd->command, cmd->argument3);
4161 
4162 		if (!cmd->cmd_active) {
4163 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4164 				__func__);
4165 			goto check_upmcrs;
4166 		}
4167 
4168 		ret = -ETIMEDOUT;
4169 		goto out;
4170 	}
4171 
4172 check_upmcrs:
4173 	status = ufshcd_get_upmcrs(hba);
4174 	if (status != PWR_LOCAL) {
4175 		dev_err(hba->dev,
4176 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4177 			cmd->command, status);
4178 		ret = (status != PWR_OK) ? status : -1;
4179 	}
4180 out:
4181 	if (ret) {
4182 		ufshcd_print_host_state(hba);
4183 		ufshcd_print_pwr_info(hba);
4184 		ufshcd_print_evt_hist(hba);
4185 	}
4186 
4187 	spin_lock_irqsave(hba->host->host_lock, flags);
4188 	hba->active_uic_cmd = NULL;
4189 	hba->uic_async_done = NULL;
4190 	if (reenable_intr)
4191 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4192 	if (ret) {
4193 		ufshcd_set_link_broken(hba);
4194 		ufshcd_schedule_eh_work(hba);
4195 	}
4196 out_unlock:
4197 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4198 	mutex_unlock(&hba->uic_cmd_mutex);
4199 
4200 	return ret;
4201 }
4202 
4203 /**
4204  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4205  *				using DME_SET primitives.
4206  * @hba: per adapter instance
4207  * @mode: powr mode value
4208  *
4209  * Return: 0 on success, non-zero value on failure.
4210  */
4211 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4212 {
4213 	struct uic_command uic_cmd = {0};
4214 	int ret;
4215 
4216 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4217 		ret = ufshcd_dme_set(hba,
4218 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4219 		if (ret) {
4220 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4221 						__func__, ret);
4222 			goto out;
4223 		}
4224 	}
4225 
4226 	uic_cmd.command = UIC_CMD_DME_SET;
4227 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4228 	uic_cmd.argument3 = mode;
4229 	ufshcd_hold(hba);
4230 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4231 	ufshcd_release(hba);
4232 
4233 out:
4234 	return ret;
4235 }
4236 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4237 
4238 int ufshcd_link_recovery(struct ufs_hba *hba)
4239 {
4240 	int ret;
4241 	unsigned long flags;
4242 
4243 	spin_lock_irqsave(hba->host->host_lock, flags);
4244 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4245 	ufshcd_set_eh_in_progress(hba);
4246 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4247 
4248 	/* Reset the attached device */
4249 	ufshcd_device_reset(hba);
4250 
4251 	ret = ufshcd_host_reset_and_restore(hba);
4252 
4253 	spin_lock_irqsave(hba->host->host_lock, flags);
4254 	if (ret)
4255 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4256 	ufshcd_clear_eh_in_progress(hba);
4257 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4258 
4259 	if (ret)
4260 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4261 			__func__, ret);
4262 
4263 	return ret;
4264 }
4265 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4266 
4267 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4268 {
4269 	int ret;
4270 	struct uic_command uic_cmd = {0};
4271 	ktime_t start = ktime_get();
4272 
4273 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4274 
4275 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4276 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4277 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4278 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4279 
4280 	if (ret)
4281 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4282 			__func__, ret);
4283 	else
4284 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4285 								POST_CHANGE);
4286 
4287 	return ret;
4288 }
4289 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4290 
4291 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4292 {
4293 	struct uic_command uic_cmd = {0};
4294 	int ret;
4295 	ktime_t start = ktime_get();
4296 
4297 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4298 
4299 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4300 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4301 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4302 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4303 
4304 	if (ret) {
4305 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4306 			__func__, ret);
4307 	} else {
4308 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4309 								POST_CHANGE);
4310 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4311 		hba->ufs_stats.hibern8_exit_cnt++;
4312 	}
4313 
4314 	return ret;
4315 }
4316 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4317 
4318 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4319 {
4320 	unsigned long flags;
4321 	bool update = false;
4322 
4323 	if (!ufshcd_is_auto_hibern8_supported(hba))
4324 		return;
4325 
4326 	spin_lock_irqsave(hba->host->host_lock, flags);
4327 	if (hba->ahit != ahit) {
4328 		hba->ahit = ahit;
4329 		update = true;
4330 	}
4331 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4332 
4333 	if (update &&
4334 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4335 		ufshcd_rpm_get_sync(hba);
4336 		ufshcd_hold(hba);
4337 		ufshcd_auto_hibern8_enable(hba);
4338 		ufshcd_release(hba);
4339 		ufshcd_rpm_put_sync(hba);
4340 	}
4341 }
4342 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4343 
4344 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4345 {
4346 	if (!ufshcd_is_auto_hibern8_supported(hba))
4347 		return;
4348 
4349 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4350 }
4351 
4352  /**
4353  * ufshcd_init_pwr_info - setting the POR (power on reset)
4354  * values in hba power info
4355  * @hba: per-adapter instance
4356  */
4357 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4358 {
4359 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4360 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4361 	hba->pwr_info.lane_rx = UFS_LANE_1;
4362 	hba->pwr_info.lane_tx = UFS_LANE_1;
4363 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4364 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4365 	hba->pwr_info.hs_rate = 0;
4366 }
4367 
4368 /**
4369  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4370  * @hba: per-adapter instance
4371  *
4372  * Return: 0 upon success; < 0 upon failure.
4373  */
4374 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4375 {
4376 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4377 
4378 	if (hba->max_pwr_info.is_valid)
4379 		return 0;
4380 
4381 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4382 		pwr_info->pwr_tx = FASTAUTO_MODE;
4383 		pwr_info->pwr_rx = FASTAUTO_MODE;
4384 	} else {
4385 		pwr_info->pwr_tx = FAST_MODE;
4386 		pwr_info->pwr_rx = FAST_MODE;
4387 	}
4388 	pwr_info->hs_rate = PA_HS_MODE_B;
4389 
4390 	/* Get the connected lane count */
4391 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4392 			&pwr_info->lane_rx);
4393 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4394 			&pwr_info->lane_tx);
4395 
4396 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4397 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4398 				__func__,
4399 				pwr_info->lane_rx,
4400 				pwr_info->lane_tx);
4401 		return -EINVAL;
4402 	}
4403 
4404 	/*
4405 	 * First, get the maximum gears of HS speed.
4406 	 * If a zero value, it means there is no HSGEAR capability.
4407 	 * Then, get the maximum gears of PWM speed.
4408 	 */
4409 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4410 	if (!pwr_info->gear_rx) {
4411 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4412 				&pwr_info->gear_rx);
4413 		if (!pwr_info->gear_rx) {
4414 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4415 				__func__, pwr_info->gear_rx);
4416 			return -EINVAL;
4417 		}
4418 		pwr_info->pwr_rx = SLOW_MODE;
4419 	}
4420 
4421 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4422 			&pwr_info->gear_tx);
4423 	if (!pwr_info->gear_tx) {
4424 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4425 				&pwr_info->gear_tx);
4426 		if (!pwr_info->gear_tx) {
4427 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4428 				__func__, pwr_info->gear_tx);
4429 			return -EINVAL;
4430 		}
4431 		pwr_info->pwr_tx = SLOW_MODE;
4432 	}
4433 
4434 	hba->max_pwr_info.is_valid = true;
4435 	return 0;
4436 }
4437 
4438 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4439 			     struct ufs_pa_layer_attr *pwr_mode)
4440 {
4441 	int ret;
4442 
4443 	/* if already configured to the requested pwr_mode */
4444 	if (!hba->force_pmc &&
4445 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4446 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4447 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4448 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4449 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4450 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4451 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4452 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4453 		return 0;
4454 	}
4455 
4456 	/*
4457 	 * Configure attributes for power mode change with below.
4458 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4459 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4460 	 * - PA_HSSERIES
4461 	 */
4462 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4463 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4464 			pwr_mode->lane_rx);
4465 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4466 			pwr_mode->pwr_rx == FAST_MODE)
4467 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4468 	else
4469 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4470 
4471 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4472 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4473 			pwr_mode->lane_tx);
4474 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4475 			pwr_mode->pwr_tx == FAST_MODE)
4476 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4477 	else
4478 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4479 
4480 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4481 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4482 	    pwr_mode->pwr_rx == FAST_MODE ||
4483 	    pwr_mode->pwr_tx == FAST_MODE)
4484 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4485 						pwr_mode->hs_rate);
4486 
4487 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4488 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4489 				DL_FC0ProtectionTimeOutVal_Default);
4490 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4491 				DL_TC0ReplayTimeOutVal_Default);
4492 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4493 				DL_AFC0ReqTimeOutVal_Default);
4494 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4495 				DL_FC1ProtectionTimeOutVal_Default);
4496 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4497 				DL_TC1ReplayTimeOutVal_Default);
4498 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4499 				DL_AFC1ReqTimeOutVal_Default);
4500 
4501 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4502 				DL_FC0ProtectionTimeOutVal_Default);
4503 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4504 				DL_TC0ReplayTimeOutVal_Default);
4505 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4506 				DL_AFC0ReqTimeOutVal_Default);
4507 	}
4508 
4509 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4510 			| pwr_mode->pwr_tx);
4511 
4512 	if (ret) {
4513 		dev_err(hba->dev,
4514 			"%s: power mode change failed %d\n", __func__, ret);
4515 	} else {
4516 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4517 								pwr_mode);
4518 
4519 		memcpy(&hba->pwr_info, pwr_mode,
4520 			sizeof(struct ufs_pa_layer_attr));
4521 	}
4522 
4523 	return ret;
4524 }
4525 
4526 /**
4527  * ufshcd_config_pwr_mode - configure a new power mode
4528  * @hba: per-adapter instance
4529  * @desired_pwr_mode: desired power configuration
4530  *
4531  * Return: 0 upon success; < 0 upon failure.
4532  */
4533 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4534 		struct ufs_pa_layer_attr *desired_pwr_mode)
4535 {
4536 	struct ufs_pa_layer_attr final_params = { 0 };
4537 	int ret;
4538 
4539 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4540 					desired_pwr_mode, &final_params);
4541 
4542 	if (ret)
4543 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4544 
4545 	ret = ufshcd_change_power_mode(hba, &final_params);
4546 
4547 	return ret;
4548 }
4549 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4550 
4551 /**
4552  * ufshcd_complete_dev_init() - checks device readiness
4553  * @hba: per-adapter instance
4554  *
4555  * Set fDeviceInit flag and poll until device toggles it.
4556  *
4557  * Return: 0 upon success; < 0 upon failure.
4558  */
4559 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4560 {
4561 	int err;
4562 	bool flag_res = true;
4563 	ktime_t timeout;
4564 
4565 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4566 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4567 	if (err) {
4568 		dev_err(hba->dev,
4569 			"%s: setting fDeviceInit flag failed with error %d\n",
4570 			__func__, err);
4571 		goto out;
4572 	}
4573 
4574 	/* Poll fDeviceInit flag to be cleared */
4575 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4576 	do {
4577 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4578 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4579 		if (!flag_res)
4580 			break;
4581 		usleep_range(500, 1000);
4582 	} while (ktime_before(ktime_get(), timeout));
4583 
4584 	if (err) {
4585 		dev_err(hba->dev,
4586 				"%s: reading fDeviceInit flag failed with error %d\n",
4587 				__func__, err);
4588 	} else if (flag_res) {
4589 		dev_err(hba->dev,
4590 				"%s: fDeviceInit was not cleared by the device\n",
4591 				__func__);
4592 		err = -EBUSY;
4593 	}
4594 out:
4595 	return err;
4596 }
4597 
4598 /**
4599  * ufshcd_make_hba_operational - Make UFS controller operational
4600  * @hba: per adapter instance
4601  *
4602  * To bring UFS host controller to operational state,
4603  * 1. Enable required interrupts
4604  * 2. Configure interrupt aggregation
4605  * 3. Program UTRL and UTMRL base address
4606  * 4. Configure run-stop-registers
4607  *
4608  * Return: 0 on success, non-zero value on failure.
4609  */
4610 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4611 {
4612 	int err = 0;
4613 	u32 reg;
4614 
4615 	/* Enable required interrupts */
4616 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4617 
4618 	/* Configure interrupt aggregation */
4619 	if (ufshcd_is_intr_aggr_allowed(hba))
4620 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4621 	else
4622 		ufshcd_disable_intr_aggr(hba);
4623 
4624 	/* Configure UTRL and UTMRL base address registers */
4625 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4626 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4627 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4628 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4629 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4630 			REG_UTP_TASK_REQ_LIST_BASE_L);
4631 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4632 			REG_UTP_TASK_REQ_LIST_BASE_H);
4633 
4634 	/*
4635 	 * Make sure base address and interrupt setup are updated before
4636 	 * enabling the run/stop registers below.
4637 	 */
4638 	wmb();
4639 
4640 	/*
4641 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4642 	 */
4643 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4644 	if (!(ufshcd_get_lists_status(reg))) {
4645 		ufshcd_enable_run_stop_reg(hba);
4646 	} else {
4647 		dev_err(hba->dev,
4648 			"Host controller not ready to process requests");
4649 		err = -EIO;
4650 	}
4651 
4652 	return err;
4653 }
4654 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4655 
4656 /**
4657  * ufshcd_hba_stop - Send controller to reset state
4658  * @hba: per adapter instance
4659  */
4660 void ufshcd_hba_stop(struct ufs_hba *hba)
4661 {
4662 	unsigned long flags;
4663 	int err;
4664 
4665 	/*
4666 	 * Obtain the host lock to prevent that the controller is disabled
4667 	 * while the UFS interrupt handler is active on another CPU.
4668 	 */
4669 	spin_lock_irqsave(hba->host->host_lock, flags);
4670 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4671 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4672 
4673 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4674 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4675 					10, 1);
4676 	if (err)
4677 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4678 }
4679 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4680 
4681 /**
4682  * ufshcd_hba_execute_hce - initialize the controller
4683  * @hba: per adapter instance
4684  *
4685  * The controller resets itself and controller firmware initialization
4686  * sequence kicks off. When controller is ready it will set
4687  * the Host Controller Enable bit to 1.
4688  *
4689  * Return: 0 on success, non-zero value on failure.
4690  */
4691 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4692 {
4693 	int retry_outer = 3;
4694 	int retry_inner;
4695 
4696 start:
4697 	if (ufshcd_is_hba_active(hba))
4698 		/* change controller state to "reset state" */
4699 		ufshcd_hba_stop(hba);
4700 
4701 	/* UniPro link is disabled at this point */
4702 	ufshcd_set_link_off(hba);
4703 
4704 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4705 
4706 	/* start controller initialization sequence */
4707 	ufshcd_hba_start(hba);
4708 
4709 	/*
4710 	 * To initialize a UFS host controller HCE bit must be set to 1.
4711 	 * During initialization the HCE bit value changes from 1->0->1.
4712 	 * When the host controller completes initialization sequence
4713 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4714 	 * to check if the controller has completed initialization sequence.
4715 	 * So without this delay the value HCE = 1, set in the previous
4716 	 * instruction might be read back.
4717 	 * This delay can be changed based on the controller.
4718 	 */
4719 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4720 
4721 	/* wait for the host controller to complete initialization */
4722 	retry_inner = 50;
4723 	while (!ufshcd_is_hba_active(hba)) {
4724 		if (retry_inner) {
4725 			retry_inner--;
4726 		} else {
4727 			dev_err(hba->dev,
4728 				"Controller enable failed\n");
4729 			if (retry_outer) {
4730 				retry_outer--;
4731 				goto start;
4732 			}
4733 			return -EIO;
4734 		}
4735 		usleep_range(1000, 1100);
4736 	}
4737 
4738 	/* enable UIC related interrupts */
4739 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4740 
4741 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4742 
4743 	return 0;
4744 }
4745 
4746 int ufshcd_hba_enable(struct ufs_hba *hba)
4747 {
4748 	int ret;
4749 
4750 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4751 		ufshcd_set_link_off(hba);
4752 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4753 
4754 		/* enable UIC related interrupts */
4755 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4756 		ret = ufshcd_dme_reset(hba);
4757 		if (ret) {
4758 			dev_err(hba->dev, "DME_RESET failed\n");
4759 			return ret;
4760 		}
4761 
4762 		ret = ufshcd_dme_enable(hba);
4763 		if (ret) {
4764 			dev_err(hba->dev, "Enabling DME failed\n");
4765 			return ret;
4766 		}
4767 
4768 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4769 	} else {
4770 		ret = ufshcd_hba_execute_hce(hba);
4771 	}
4772 
4773 	return ret;
4774 }
4775 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4776 
4777 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4778 {
4779 	int tx_lanes = 0, i, err = 0;
4780 
4781 	if (!peer)
4782 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4783 			       &tx_lanes);
4784 	else
4785 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4786 				    &tx_lanes);
4787 	for (i = 0; i < tx_lanes; i++) {
4788 		if (!peer)
4789 			err = ufshcd_dme_set(hba,
4790 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4791 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4792 					0);
4793 		else
4794 			err = ufshcd_dme_peer_set(hba,
4795 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4796 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4797 					0);
4798 		if (err) {
4799 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4800 				__func__, peer, i, err);
4801 			break;
4802 		}
4803 	}
4804 
4805 	return err;
4806 }
4807 
4808 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4809 {
4810 	return ufshcd_disable_tx_lcc(hba, true);
4811 }
4812 
4813 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4814 {
4815 	struct ufs_event_hist *e;
4816 
4817 	if (id >= UFS_EVT_CNT)
4818 		return;
4819 
4820 	e = &hba->ufs_stats.event[id];
4821 	e->val[e->pos] = val;
4822 	e->tstamp[e->pos] = local_clock();
4823 	e->cnt += 1;
4824 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4825 
4826 	ufshcd_vops_event_notify(hba, id, &val);
4827 }
4828 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4829 
4830 /**
4831  * ufshcd_link_startup - Initialize unipro link startup
4832  * @hba: per adapter instance
4833  *
4834  * Return: 0 for success, non-zero in case of failure.
4835  */
4836 static int ufshcd_link_startup(struct ufs_hba *hba)
4837 {
4838 	int ret;
4839 	int retries = DME_LINKSTARTUP_RETRIES;
4840 	bool link_startup_again = false;
4841 
4842 	/*
4843 	 * If UFS device isn't active then we will have to issue link startup
4844 	 * 2 times to make sure the device state move to active.
4845 	 */
4846 	if (!ufshcd_is_ufs_dev_active(hba))
4847 		link_startup_again = true;
4848 
4849 link_startup:
4850 	do {
4851 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4852 
4853 		ret = ufshcd_dme_link_startup(hba);
4854 
4855 		/* check if device is detected by inter-connect layer */
4856 		if (!ret && !ufshcd_is_device_present(hba)) {
4857 			ufshcd_update_evt_hist(hba,
4858 					       UFS_EVT_LINK_STARTUP_FAIL,
4859 					       0);
4860 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4861 			ret = -ENXIO;
4862 			goto out;
4863 		}
4864 
4865 		/*
4866 		 * DME link lost indication is only received when link is up,
4867 		 * but we can't be sure if the link is up until link startup
4868 		 * succeeds. So reset the local Uni-Pro and try again.
4869 		 */
4870 		if (ret && retries && ufshcd_hba_enable(hba)) {
4871 			ufshcd_update_evt_hist(hba,
4872 					       UFS_EVT_LINK_STARTUP_FAIL,
4873 					       (u32)ret);
4874 			goto out;
4875 		}
4876 	} while (ret && retries--);
4877 
4878 	if (ret) {
4879 		/* failed to get the link up... retire */
4880 		ufshcd_update_evt_hist(hba,
4881 				       UFS_EVT_LINK_STARTUP_FAIL,
4882 				       (u32)ret);
4883 		goto out;
4884 	}
4885 
4886 	if (link_startup_again) {
4887 		link_startup_again = false;
4888 		retries = DME_LINKSTARTUP_RETRIES;
4889 		goto link_startup;
4890 	}
4891 
4892 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4893 	ufshcd_init_pwr_info(hba);
4894 	ufshcd_print_pwr_info(hba);
4895 
4896 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4897 		ret = ufshcd_disable_device_tx_lcc(hba);
4898 		if (ret)
4899 			goto out;
4900 	}
4901 
4902 	/* Include any host controller configuration via UIC commands */
4903 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4904 	if (ret)
4905 		goto out;
4906 
4907 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4908 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4909 	ret = ufshcd_make_hba_operational(hba);
4910 out:
4911 	if (ret) {
4912 		dev_err(hba->dev, "link startup failed %d\n", ret);
4913 		ufshcd_print_host_state(hba);
4914 		ufshcd_print_pwr_info(hba);
4915 		ufshcd_print_evt_hist(hba);
4916 	}
4917 	return ret;
4918 }
4919 
4920 /**
4921  * ufshcd_verify_dev_init() - Verify device initialization
4922  * @hba: per-adapter instance
4923  *
4924  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4925  * device Transport Protocol (UTP) layer is ready after a reset.
4926  * If the UTP layer at the device side is not initialized, it may
4927  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4928  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4929  *
4930  * Return: 0 upon success; < 0 upon failure.
4931  */
4932 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4933 {
4934 	int err = 0;
4935 	int retries;
4936 
4937 	ufshcd_hold(hba);
4938 	mutex_lock(&hba->dev_cmd.lock);
4939 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4940 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4941 					  hba->nop_out_timeout);
4942 
4943 		if (!err || err == -ETIMEDOUT)
4944 			break;
4945 
4946 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4947 	}
4948 	mutex_unlock(&hba->dev_cmd.lock);
4949 	ufshcd_release(hba);
4950 
4951 	if (err)
4952 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4953 	return err;
4954 }
4955 
4956 /**
4957  * ufshcd_setup_links - associate link b/w device wlun and other luns
4958  * @sdev: pointer to SCSI device
4959  * @hba: pointer to ufs hba
4960  */
4961 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4962 {
4963 	struct device_link *link;
4964 
4965 	/*
4966 	 * Device wlun is the supplier & rest of the luns are consumers.
4967 	 * This ensures that device wlun suspends after all other luns.
4968 	 */
4969 	if (hba->ufs_device_wlun) {
4970 		link = device_link_add(&sdev->sdev_gendev,
4971 				       &hba->ufs_device_wlun->sdev_gendev,
4972 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4973 		if (!link) {
4974 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4975 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4976 			return;
4977 		}
4978 		hba->luns_avail--;
4979 		/* Ignore REPORT_LUN wlun probing */
4980 		if (hba->luns_avail == 1) {
4981 			ufshcd_rpm_put(hba);
4982 			return;
4983 		}
4984 	} else {
4985 		/*
4986 		 * Device wlun is probed. The assumption is that WLUNs are
4987 		 * scanned before other LUNs.
4988 		 */
4989 		hba->luns_avail--;
4990 	}
4991 }
4992 
4993 /**
4994  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4995  * @hba: per-adapter instance
4996  * @sdev: pointer to SCSI device
4997  */
4998 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4999 {
5000 	int len = QUERY_DESC_MAX_SIZE;
5001 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5002 	u8 lun_qdepth = hba->nutrs;
5003 	u8 *desc_buf;
5004 	int ret;
5005 
5006 	desc_buf = kzalloc(len, GFP_KERNEL);
5007 	if (!desc_buf)
5008 		goto set_qdepth;
5009 
5010 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5011 	if (ret < 0) {
5012 		if (ret == -EOPNOTSUPP)
5013 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5014 			lun_qdepth = 1;
5015 		kfree(desc_buf);
5016 		goto set_qdepth;
5017 	}
5018 
5019 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5020 		/*
5021 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5022 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5023 		 */
5024 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5025 	}
5026 	/*
5027 	 * According to UFS device specification, the write protection mode is only supported by
5028 	 * normal LU, not supported by WLUN.
5029 	 */
5030 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5031 	    !hba->dev_info.is_lu_power_on_wp &&
5032 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5033 		hba->dev_info.is_lu_power_on_wp = true;
5034 
5035 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5036 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5037 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5038 		hba->dev_info.b_advanced_rpmb_en = true;
5039 
5040 
5041 	kfree(desc_buf);
5042 set_qdepth:
5043 	/*
5044 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5045 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5046 	 */
5047 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5048 	scsi_change_queue_depth(sdev, lun_qdepth);
5049 }
5050 
5051 /**
5052  * ufshcd_slave_alloc - handle initial SCSI device configurations
5053  * @sdev: pointer to SCSI device
5054  *
5055  * Return: success.
5056  */
5057 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5058 {
5059 	struct ufs_hba *hba;
5060 
5061 	hba = shost_priv(sdev->host);
5062 
5063 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5064 	sdev->use_10_for_ms = 1;
5065 
5066 	/* DBD field should be set to 1 in mode sense(10) */
5067 	sdev->set_dbd_for_ms = 1;
5068 
5069 	/* allow SCSI layer to restart the device in case of errors */
5070 	sdev->allow_restart = 1;
5071 
5072 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5073 	sdev->no_report_opcodes = 1;
5074 
5075 	/* WRITE_SAME command is not supported */
5076 	sdev->no_write_same = 1;
5077 
5078 	ufshcd_lu_init(hba, sdev);
5079 
5080 	ufshcd_setup_links(hba, sdev);
5081 
5082 	return 0;
5083 }
5084 
5085 /**
5086  * ufshcd_change_queue_depth - change queue depth
5087  * @sdev: pointer to SCSI device
5088  * @depth: required depth to set
5089  *
5090  * Change queue depth and make sure the max. limits are not crossed.
5091  *
5092  * Return: new queue depth.
5093  */
5094 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5095 {
5096 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5097 }
5098 
5099 /**
5100  * ufshcd_slave_configure - adjust SCSI device configurations
5101  * @sdev: pointer to SCSI device
5102  *
5103  * Return: 0 (success).
5104  */
5105 static int ufshcd_slave_configure(struct scsi_device *sdev)
5106 {
5107 	struct ufs_hba *hba = shost_priv(sdev->host);
5108 	struct request_queue *q = sdev->request_queue;
5109 
5110 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5111 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5112 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5113 	/*
5114 	 * Block runtime-pm until all consumers are added.
5115 	 * Refer ufshcd_setup_links().
5116 	 */
5117 	if (is_device_wlun(sdev))
5118 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5119 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5120 		sdev->rpm_autosuspend = 1;
5121 	/*
5122 	 * Do not print messages during runtime PM to avoid never-ending cycles
5123 	 * of messages written back to storage by user space causing runtime
5124 	 * resume, causing more messages and so on.
5125 	 */
5126 	sdev->silence_suspend = 1;
5127 
5128 	ufshcd_crypto_register(hba, q);
5129 
5130 	return 0;
5131 }
5132 
5133 /**
5134  * ufshcd_slave_destroy - remove SCSI device configurations
5135  * @sdev: pointer to SCSI device
5136  */
5137 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5138 {
5139 	struct ufs_hba *hba;
5140 	unsigned long flags;
5141 
5142 	hba = shost_priv(sdev->host);
5143 
5144 	/* Drop the reference as it won't be needed anymore */
5145 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5146 		spin_lock_irqsave(hba->host->host_lock, flags);
5147 		hba->ufs_device_wlun = NULL;
5148 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5149 	} else if (hba->ufs_device_wlun) {
5150 		struct device *supplier = NULL;
5151 
5152 		/* Ensure UFS Device WLUN exists and does not disappear */
5153 		spin_lock_irqsave(hba->host->host_lock, flags);
5154 		if (hba->ufs_device_wlun) {
5155 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5156 			get_device(supplier);
5157 		}
5158 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5159 
5160 		if (supplier) {
5161 			/*
5162 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5163 			 * device will not have been registered but can still
5164 			 * have a device link holding a reference to the device.
5165 			 */
5166 			device_link_remove(&sdev->sdev_gendev, supplier);
5167 			put_device(supplier);
5168 		}
5169 	}
5170 }
5171 
5172 /**
5173  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5174  * @lrbp: pointer to local reference block of completed command
5175  * @scsi_status: SCSI command status
5176  *
5177  * Return: value base on SCSI command status.
5178  */
5179 static inline int
5180 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5181 {
5182 	int result = 0;
5183 
5184 	switch (scsi_status) {
5185 	case SAM_STAT_CHECK_CONDITION:
5186 		ufshcd_copy_sense_data(lrbp);
5187 		fallthrough;
5188 	case SAM_STAT_GOOD:
5189 		result |= DID_OK << 16 | scsi_status;
5190 		break;
5191 	case SAM_STAT_TASK_SET_FULL:
5192 	case SAM_STAT_BUSY:
5193 	case SAM_STAT_TASK_ABORTED:
5194 		ufshcd_copy_sense_data(lrbp);
5195 		result |= scsi_status;
5196 		break;
5197 	default:
5198 		result |= DID_ERROR << 16;
5199 		break;
5200 	} /* end of switch */
5201 
5202 	return result;
5203 }
5204 
5205 /**
5206  * ufshcd_transfer_rsp_status - Get overall status of the response
5207  * @hba: per adapter instance
5208  * @lrbp: pointer to local reference block of completed command
5209  * @cqe: pointer to the completion queue entry
5210  *
5211  * Return: result of the command to notify SCSI midlayer.
5212  */
5213 static inline int
5214 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5215 			   struct cq_entry *cqe)
5216 {
5217 	int result = 0;
5218 	int scsi_status;
5219 	enum utp_ocs ocs;
5220 	u8 upiu_flags;
5221 	u32 resid;
5222 
5223 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5224 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5225 	/*
5226 	 * Test !overflow instead of underflow to support UFS devices that do
5227 	 * not set either flag.
5228 	 */
5229 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5230 		scsi_set_resid(lrbp->cmd, resid);
5231 
5232 	/* overall command status of utrd */
5233 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5234 
5235 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5236 		if (lrbp->ucd_rsp_ptr->header.response ||
5237 		    lrbp->ucd_rsp_ptr->header.status)
5238 			ocs = OCS_SUCCESS;
5239 	}
5240 
5241 	switch (ocs) {
5242 	case OCS_SUCCESS:
5243 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5244 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5245 		case UPIU_TRANSACTION_RESPONSE:
5246 			/*
5247 			 * get the result based on SCSI status response
5248 			 * to notify the SCSI midlayer of the command status
5249 			 */
5250 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5251 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5252 
5253 			/*
5254 			 * Currently we are only supporting BKOPs exception
5255 			 * events hence we can ignore BKOPs exception event
5256 			 * during power management callbacks. BKOPs exception
5257 			 * event is not expected to be raised in runtime suspend
5258 			 * callback as it allows the urgent bkops.
5259 			 * During system suspend, we are anyway forcefully
5260 			 * disabling the bkops and if urgent bkops is needed
5261 			 * it will be enabled on system resume. Long term
5262 			 * solution could be to abort the system suspend if
5263 			 * UFS device needs urgent BKOPs.
5264 			 */
5265 			if (!hba->pm_op_in_progress &&
5266 			    !ufshcd_eh_in_progress(hba) &&
5267 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5268 				/* Flushed in suspend */
5269 				schedule_work(&hba->eeh_work);
5270 			break;
5271 		case UPIU_TRANSACTION_REJECT_UPIU:
5272 			/* TODO: handle Reject UPIU Response */
5273 			result = DID_ERROR << 16;
5274 			dev_err(hba->dev,
5275 				"Reject UPIU not fully implemented\n");
5276 			break;
5277 		default:
5278 			dev_err(hba->dev,
5279 				"Unexpected request response code = %x\n",
5280 				result);
5281 			result = DID_ERROR << 16;
5282 			break;
5283 		}
5284 		break;
5285 	case OCS_ABORTED:
5286 		result |= DID_ABORT << 16;
5287 		break;
5288 	case OCS_INVALID_COMMAND_STATUS:
5289 		result |= DID_REQUEUE << 16;
5290 		break;
5291 	case OCS_INVALID_CMD_TABLE_ATTR:
5292 	case OCS_INVALID_PRDT_ATTR:
5293 	case OCS_MISMATCH_DATA_BUF_SIZE:
5294 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5295 	case OCS_PEER_COMM_FAILURE:
5296 	case OCS_FATAL_ERROR:
5297 	case OCS_DEVICE_FATAL_ERROR:
5298 	case OCS_INVALID_CRYPTO_CONFIG:
5299 	case OCS_GENERAL_CRYPTO_ERROR:
5300 	default:
5301 		result |= DID_ERROR << 16;
5302 		dev_err(hba->dev,
5303 				"OCS error from controller = %x for tag %d\n",
5304 				ocs, lrbp->task_tag);
5305 		ufshcd_print_evt_hist(hba);
5306 		ufshcd_print_host_state(hba);
5307 		break;
5308 	} /* end of switch */
5309 
5310 	if ((host_byte(result) != DID_OK) &&
5311 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5312 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5313 	return result;
5314 }
5315 
5316 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5317 					 u32 intr_mask)
5318 {
5319 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5320 	    !ufshcd_is_auto_hibern8_enabled(hba))
5321 		return false;
5322 
5323 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5324 		return false;
5325 
5326 	if (hba->active_uic_cmd &&
5327 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5328 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5329 		return false;
5330 
5331 	return true;
5332 }
5333 
5334 /**
5335  * ufshcd_uic_cmd_compl - handle completion of uic command
5336  * @hba: per adapter instance
5337  * @intr_status: interrupt status generated by the controller
5338  *
5339  * Return:
5340  *  IRQ_HANDLED - If interrupt is valid
5341  *  IRQ_NONE    - If invalid interrupt
5342  */
5343 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5344 {
5345 	irqreturn_t retval = IRQ_NONE;
5346 
5347 	spin_lock(hba->host->host_lock);
5348 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5349 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5350 
5351 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5352 		hba->active_uic_cmd->argument2 |=
5353 			ufshcd_get_uic_cmd_result(hba);
5354 		hba->active_uic_cmd->argument3 =
5355 			ufshcd_get_dme_attr_val(hba);
5356 		if (!hba->uic_async_done)
5357 			hba->active_uic_cmd->cmd_active = 0;
5358 		complete(&hba->active_uic_cmd->done);
5359 		retval = IRQ_HANDLED;
5360 	}
5361 
5362 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5363 		hba->active_uic_cmd->cmd_active = 0;
5364 		complete(hba->uic_async_done);
5365 		retval = IRQ_HANDLED;
5366 	}
5367 
5368 	if (retval == IRQ_HANDLED)
5369 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5370 					     UFS_CMD_COMP);
5371 	spin_unlock(hba->host->host_lock);
5372 	return retval;
5373 }
5374 
5375 /* Release the resources allocated for processing a SCSI command. */
5376 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5377 			     struct ufshcd_lrb *lrbp)
5378 {
5379 	struct scsi_cmnd *cmd = lrbp->cmd;
5380 
5381 	scsi_dma_unmap(cmd);
5382 	ufshcd_release(hba);
5383 	ufshcd_clk_scaling_update_busy(hba);
5384 }
5385 
5386 /**
5387  * ufshcd_compl_one_cqe - handle a completion queue entry
5388  * @hba: per adapter instance
5389  * @task_tag: the task tag of the request to be completed
5390  * @cqe: pointer to the completion queue entry
5391  */
5392 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5393 			  struct cq_entry *cqe)
5394 {
5395 	struct ufshcd_lrb *lrbp;
5396 	struct scsi_cmnd *cmd;
5397 	enum utp_ocs ocs;
5398 
5399 	lrbp = &hba->lrb[task_tag];
5400 	lrbp->compl_time_stamp = ktime_get();
5401 	cmd = lrbp->cmd;
5402 	if (cmd) {
5403 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5404 			ufshcd_update_monitor(hba, lrbp);
5405 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5406 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5407 		ufshcd_release_scsi_cmd(hba, lrbp);
5408 		/* Do not touch lrbp after scsi done */
5409 		scsi_done(cmd);
5410 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5411 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5412 		if (hba->dev_cmd.complete) {
5413 			if (cqe) {
5414 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5415 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5416 			}
5417 			complete(hba->dev_cmd.complete);
5418 			ufshcd_clk_scaling_update_busy(hba);
5419 		}
5420 	}
5421 }
5422 
5423 /**
5424  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5425  * @hba: per adapter instance
5426  * @completed_reqs: bitmask that indicates which requests to complete
5427  */
5428 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5429 					unsigned long completed_reqs)
5430 {
5431 	int tag;
5432 
5433 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5434 		ufshcd_compl_one_cqe(hba, tag, NULL);
5435 }
5436 
5437 /* Any value that is not an existing queue number is fine for this constant. */
5438 enum {
5439 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5440 };
5441 
5442 static void ufshcd_clear_polled(struct ufs_hba *hba,
5443 				unsigned long *completed_reqs)
5444 {
5445 	int tag;
5446 
5447 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5448 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5449 
5450 		if (!cmd)
5451 			continue;
5452 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5453 			__clear_bit(tag, completed_reqs);
5454 	}
5455 }
5456 
5457 /*
5458  * Return: > 0 if one or more commands have been completed or 0 if no
5459  * requests have been completed.
5460  */
5461 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5462 {
5463 	struct ufs_hba *hba = shost_priv(shost);
5464 	unsigned long completed_reqs, flags;
5465 	u32 tr_doorbell;
5466 	struct ufs_hw_queue *hwq;
5467 
5468 	if (is_mcq_enabled(hba)) {
5469 		hwq = &hba->uhq[queue_num];
5470 
5471 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5472 	}
5473 
5474 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5475 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5476 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5477 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5478 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5479 		  hba->outstanding_reqs);
5480 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5481 		/* Do not complete polled requests from interrupt context. */
5482 		ufshcd_clear_polled(hba, &completed_reqs);
5483 	}
5484 	hba->outstanding_reqs &= ~completed_reqs;
5485 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5486 
5487 	if (completed_reqs)
5488 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5489 
5490 	return completed_reqs != 0;
5491 }
5492 
5493 /**
5494  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5495  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5496  * to complete the pending transfers and free the resources associated with
5497  * the scsi command.
5498  *
5499  * @hba: per adapter instance
5500  * @force_compl: This flag is set to true when invoked
5501  * from ufshcd_host_reset_and_restore() in which case it requires special
5502  * handling because the host controller has been reset by ufshcd_hba_stop().
5503  */
5504 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5505 					      bool force_compl)
5506 {
5507 	struct ufs_hw_queue *hwq;
5508 	struct ufshcd_lrb *lrbp;
5509 	struct scsi_cmnd *cmd;
5510 	unsigned long flags;
5511 	u32 hwq_num, utag;
5512 	int tag;
5513 
5514 	for (tag = 0; tag < hba->nutrs; tag++) {
5515 		lrbp = &hba->lrb[tag];
5516 		cmd = lrbp->cmd;
5517 		if (!ufshcd_cmd_inflight(cmd) ||
5518 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5519 			continue;
5520 
5521 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5522 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5523 		hwq = &hba->uhq[hwq_num];
5524 
5525 		if (force_compl) {
5526 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5527 			/*
5528 			 * For those cmds of which the cqes are not present
5529 			 * in the cq, complete them explicitly.
5530 			 */
5531 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5532 				spin_lock_irqsave(&hwq->cq_lock, flags);
5533 				set_host_byte(cmd, DID_REQUEUE);
5534 				ufshcd_release_scsi_cmd(hba, lrbp);
5535 				scsi_done(cmd);
5536 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5537 			}
5538 		} else {
5539 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5540 		}
5541 	}
5542 }
5543 
5544 /**
5545  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5546  * @hba: per adapter instance
5547  *
5548  * Return:
5549  *  IRQ_HANDLED - If interrupt is valid
5550  *  IRQ_NONE    - If invalid interrupt
5551  */
5552 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5553 {
5554 	/* Resetting interrupt aggregation counters first and reading the
5555 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5556 	 * In order to prevent other interrupts starvation the DB is read once
5557 	 * after reset. The down side of this solution is the possibility of
5558 	 * false interrupt if device completes another request after resetting
5559 	 * aggregation and before reading the DB.
5560 	 */
5561 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5562 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5563 		ufshcd_reset_intr_aggr(hba);
5564 
5565 	if (ufs_fail_completion())
5566 		return IRQ_HANDLED;
5567 
5568 	/*
5569 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5570 	 * do not want polling to trigger spurious interrupt complaints.
5571 	 */
5572 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5573 
5574 	return IRQ_HANDLED;
5575 }
5576 
5577 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5578 {
5579 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5580 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5581 				       &ee_ctrl_mask);
5582 }
5583 
5584 int ufshcd_write_ee_control(struct ufs_hba *hba)
5585 {
5586 	int err;
5587 
5588 	mutex_lock(&hba->ee_ctrl_mutex);
5589 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5590 	mutex_unlock(&hba->ee_ctrl_mutex);
5591 	if (err)
5592 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5593 			__func__, err);
5594 	return err;
5595 }
5596 
5597 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5598 			     const u16 *other_mask, u16 set, u16 clr)
5599 {
5600 	u16 new_mask, ee_ctrl_mask;
5601 	int err = 0;
5602 
5603 	mutex_lock(&hba->ee_ctrl_mutex);
5604 	new_mask = (*mask & ~clr) | set;
5605 	ee_ctrl_mask = new_mask | *other_mask;
5606 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5607 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5608 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5609 	if (!err) {
5610 		hba->ee_ctrl_mask = ee_ctrl_mask;
5611 		*mask = new_mask;
5612 	}
5613 	mutex_unlock(&hba->ee_ctrl_mutex);
5614 	return err;
5615 }
5616 
5617 /**
5618  * ufshcd_disable_ee - disable exception event
5619  * @hba: per-adapter instance
5620  * @mask: exception event to disable
5621  *
5622  * Disables exception event in the device so that the EVENT_ALERT
5623  * bit is not set.
5624  *
5625  * Return: zero on success, non-zero error value on failure.
5626  */
5627 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5628 {
5629 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5630 }
5631 
5632 /**
5633  * ufshcd_enable_ee - enable exception event
5634  * @hba: per-adapter instance
5635  * @mask: exception event to enable
5636  *
5637  * Enable corresponding exception event in the device to allow
5638  * device to alert host in critical scenarios.
5639  *
5640  * Return: zero on success, non-zero error value on failure.
5641  */
5642 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5643 {
5644 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5645 }
5646 
5647 /**
5648  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5649  * @hba: per-adapter instance
5650  *
5651  * Allow device to manage background operations on its own. Enabling
5652  * this might lead to inconsistent latencies during normal data transfers
5653  * as the device is allowed to manage its own way of handling background
5654  * operations.
5655  *
5656  * Return: zero on success, non-zero on failure.
5657  */
5658 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5659 {
5660 	int err = 0;
5661 
5662 	if (hba->auto_bkops_enabled)
5663 		goto out;
5664 
5665 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5666 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5667 	if (err) {
5668 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5669 				__func__, err);
5670 		goto out;
5671 	}
5672 
5673 	hba->auto_bkops_enabled = true;
5674 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5675 
5676 	/* No need of URGENT_BKOPS exception from the device */
5677 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5678 	if (err)
5679 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5680 				__func__, err);
5681 out:
5682 	return err;
5683 }
5684 
5685 /**
5686  * ufshcd_disable_auto_bkops - block device in doing background operations
5687  * @hba: per-adapter instance
5688  *
5689  * Disabling background operations improves command response latency but
5690  * has drawback of device moving into critical state where the device is
5691  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5692  * host is idle so that BKOPS are managed effectively without any negative
5693  * impacts.
5694  *
5695  * Return: zero on success, non-zero on failure.
5696  */
5697 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5698 {
5699 	int err = 0;
5700 
5701 	if (!hba->auto_bkops_enabled)
5702 		goto out;
5703 
5704 	/*
5705 	 * If host assisted BKOPs is to be enabled, make sure
5706 	 * urgent bkops exception is allowed.
5707 	 */
5708 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5709 	if (err) {
5710 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5711 				__func__, err);
5712 		goto out;
5713 	}
5714 
5715 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5716 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5717 	if (err) {
5718 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5719 				__func__, err);
5720 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5721 		goto out;
5722 	}
5723 
5724 	hba->auto_bkops_enabled = false;
5725 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5726 	hba->is_urgent_bkops_lvl_checked = false;
5727 out:
5728 	return err;
5729 }
5730 
5731 /**
5732  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5733  * @hba: per adapter instance
5734  *
5735  * After a device reset the device may toggle the BKOPS_EN flag
5736  * to default value. The s/w tracking variables should be updated
5737  * as well. This function would change the auto-bkops state based on
5738  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5739  */
5740 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5741 {
5742 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5743 		hba->auto_bkops_enabled = false;
5744 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5745 		ufshcd_enable_auto_bkops(hba);
5746 	} else {
5747 		hba->auto_bkops_enabled = true;
5748 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5749 		ufshcd_disable_auto_bkops(hba);
5750 	}
5751 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5752 	hba->is_urgent_bkops_lvl_checked = false;
5753 }
5754 
5755 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5756 {
5757 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5758 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5759 }
5760 
5761 /**
5762  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5763  * @hba: per-adapter instance
5764  * @status: bkops_status value
5765  *
5766  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5767  * flag in the device to permit background operations if the device
5768  * bkops_status is greater than or equal to "status" argument passed to
5769  * this function, disable otherwise.
5770  *
5771  * Return: 0 for success, non-zero in case of failure.
5772  *
5773  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5774  * to know whether auto bkops is enabled or disabled after this function
5775  * returns control to it.
5776  */
5777 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5778 			     enum bkops_status status)
5779 {
5780 	int err;
5781 	u32 curr_status = 0;
5782 
5783 	err = ufshcd_get_bkops_status(hba, &curr_status);
5784 	if (err) {
5785 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5786 				__func__, err);
5787 		goto out;
5788 	} else if (curr_status > BKOPS_STATUS_MAX) {
5789 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5790 				__func__, curr_status);
5791 		err = -EINVAL;
5792 		goto out;
5793 	}
5794 
5795 	if (curr_status >= status)
5796 		err = ufshcd_enable_auto_bkops(hba);
5797 	else
5798 		err = ufshcd_disable_auto_bkops(hba);
5799 out:
5800 	return err;
5801 }
5802 
5803 /**
5804  * ufshcd_urgent_bkops - handle urgent bkops exception event
5805  * @hba: per-adapter instance
5806  *
5807  * Enable fBackgroundOpsEn flag in the device to permit background
5808  * operations.
5809  *
5810  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5811  * and negative error value for any other failure.
5812  *
5813  * Return: 0 upon success; < 0 upon failure.
5814  */
5815 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5816 {
5817 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5818 }
5819 
5820 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5821 {
5822 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5823 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5824 }
5825 
5826 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5827 {
5828 	int err;
5829 	u32 curr_status = 0;
5830 
5831 	if (hba->is_urgent_bkops_lvl_checked)
5832 		goto enable_auto_bkops;
5833 
5834 	err = ufshcd_get_bkops_status(hba, &curr_status);
5835 	if (err) {
5836 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5837 				__func__, err);
5838 		goto out;
5839 	}
5840 
5841 	/*
5842 	 * We are seeing that some devices are raising the urgent bkops
5843 	 * exception events even when BKOPS status doesn't indicate performace
5844 	 * impacted or critical. Handle these device by determining their urgent
5845 	 * bkops status at runtime.
5846 	 */
5847 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5848 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5849 				__func__, curr_status);
5850 		/* update the current status as the urgent bkops level */
5851 		hba->urgent_bkops_lvl = curr_status;
5852 		hba->is_urgent_bkops_lvl_checked = true;
5853 	}
5854 
5855 enable_auto_bkops:
5856 	err = ufshcd_enable_auto_bkops(hba);
5857 out:
5858 	if (err < 0)
5859 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5860 				__func__, err);
5861 }
5862 
5863 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5864 {
5865 	u32 value;
5866 
5867 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5868 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5869 		return;
5870 
5871 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5872 
5873 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5874 
5875 	/*
5876 	 * A placeholder for the platform vendors to add whatever additional
5877 	 * steps required
5878 	 */
5879 }
5880 
5881 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5882 {
5883 	u8 index;
5884 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5885 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5886 
5887 	index = ufshcd_wb_get_query_index(hba);
5888 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5889 }
5890 
5891 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5892 {
5893 	int ret;
5894 
5895 	if (!ufshcd_is_wb_allowed(hba) ||
5896 	    hba->dev_info.wb_enabled == enable)
5897 		return 0;
5898 
5899 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5900 	if (ret) {
5901 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5902 			__func__, enable ? "enabling" : "disabling", ret);
5903 		return ret;
5904 	}
5905 
5906 	hba->dev_info.wb_enabled = enable;
5907 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5908 			__func__, enable ? "enabled" : "disabled");
5909 
5910 	return ret;
5911 }
5912 
5913 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5914 						 bool enable)
5915 {
5916 	int ret;
5917 
5918 	ret = __ufshcd_wb_toggle(hba, enable,
5919 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5920 	if (ret) {
5921 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5922 			__func__, enable ? "enabling" : "disabling", ret);
5923 		return;
5924 	}
5925 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5926 			__func__, enable ? "enabled" : "disabled");
5927 }
5928 
5929 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5930 {
5931 	int ret;
5932 
5933 	if (!ufshcd_is_wb_allowed(hba) ||
5934 	    hba->dev_info.wb_buf_flush_enabled == enable)
5935 		return 0;
5936 
5937 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5938 	if (ret) {
5939 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5940 			__func__, enable ? "enabling" : "disabling", ret);
5941 		return ret;
5942 	}
5943 
5944 	hba->dev_info.wb_buf_flush_enabled = enable;
5945 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5946 			__func__, enable ? "enabled" : "disabled");
5947 
5948 	return ret;
5949 }
5950 
5951 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5952 						u32 avail_buf)
5953 {
5954 	u32 cur_buf;
5955 	int ret;
5956 	u8 index;
5957 
5958 	index = ufshcd_wb_get_query_index(hba);
5959 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5960 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5961 					      index, 0, &cur_buf);
5962 	if (ret) {
5963 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5964 			__func__, ret);
5965 		return false;
5966 	}
5967 
5968 	if (!cur_buf) {
5969 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5970 			 cur_buf);
5971 		return false;
5972 	}
5973 	/* Let it continue to flush when available buffer exceeds threshold */
5974 	return avail_buf < hba->vps->wb_flush_threshold;
5975 }
5976 
5977 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5978 {
5979 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5980 		ufshcd_wb_toggle_buf_flush(hba, false);
5981 
5982 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5983 	ufshcd_wb_toggle(hba, false);
5984 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5985 
5986 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5987 }
5988 
5989 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5990 {
5991 	u32 lifetime;
5992 	int ret;
5993 	u8 index;
5994 
5995 	index = ufshcd_wb_get_query_index(hba);
5996 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5997 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5998 				      index, 0, &lifetime);
5999 	if (ret) {
6000 		dev_err(hba->dev,
6001 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6002 			__func__, ret);
6003 		return false;
6004 	}
6005 
6006 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6007 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6008 			__func__, lifetime);
6009 		return false;
6010 	}
6011 
6012 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6013 		__func__, lifetime);
6014 
6015 	return true;
6016 }
6017 
6018 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6019 {
6020 	int ret;
6021 	u32 avail_buf;
6022 	u8 index;
6023 
6024 	if (!ufshcd_is_wb_allowed(hba))
6025 		return false;
6026 
6027 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6028 		ufshcd_wb_force_disable(hba);
6029 		return false;
6030 	}
6031 
6032 	/*
6033 	 * The ufs device needs the vcc to be ON to flush.
6034 	 * With user-space reduction enabled, it's enough to enable flush
6035 	 * by checking only the available buffer. The threshold
6036 	 * defined here is > 90% full.
6037 	 * With user-space preserved enabled, the current-buffer
6038 	 * should be checked too because the wb buffer size can reduce
6039 	 * when disk tends to be full. This info is provided by current
6040 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6041 	 * keeping vcc on when current buffer is empty.
6042 	 */
6043 	index = ufshcd_wb_get_query_index(hba);
6044 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6045 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6046 				      index, 0, &avail_buf);
6047 	if (ret) {
6048 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6049 			 __func__, ret);
6050 		return false;
6051 	}
6052 
6053 	if (!hba->dev_info.b_presrv_uspc_en)
6054 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6055 
6056 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6057 }
6058 
6059 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6060 {
6061 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6062 					   struct ufs_hba,
6063 					   rpm_dev_flush_recheck_work);
6064 	/*
6065 	 * To prevent unnecessary VCC power drain after device finishes
6066 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6067 	 * after a certain delay to recheck the threshold by next runtime
6068 	 * suspend.
6069 	 */
6070 	ufshcd_rpm_get_sync(hba);
6071 	ufshcd_rpm_put_sync(hba);
6072 }
6073 
6074 /**
6075  * ufshcd_exception_event_handler - handle exceptions raised by device
6076  * @work: pointer to work data
6077  *
6078  * Read bExceptionEventStatus attribute from the device and handle the
6079  * exception event accordingly.
6080  */
6081 static void ufshcd_exception_event_handler(struct work_struct *work)
6082 {
6083 	struct ufs_hba *hba;
6084 	int err;
6085 	u32 status = 0;
6086 	hba = container_of(work, struct ufs_hba, eeh_work);
6087 
6088 	ufshcd_scsi_block_requests(hba);
6089 	err = ufshcd_get_ee_status(hba, &status);
6090 	if (err) {
6091 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6092 				__func__, err);
6093 		goto out;
6094 	}
6095 
6096 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6097 
6098 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6099 		ufshcd_bkops_exception_event_handler(hba);
6100 
6101 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6102 		ufshcd_temp_exception_event_handler(hba, status);
6103 
6104 	ufs_debugfs_exception_event(hba, status);
6105 out:
6106 	ufshcd_scsi_unblock_requests(hba);
6107 }
6108 
6109 /* Complete requests that have door-bell cleared */
6110 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6111 {
6112 	if (is_mcq_enabled(hba))
6113 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6114 	else
6115 		ufshcd_transfer_req_compl(hba);
6116 
6117 	ufshcd_tmc_handler(hba);
6118 }
6119 
6120 /**
6121  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6122  *				to recover from the DL NAC errors or not.
6123  * @hba: per-adapter instance
6124  *
6125  * Return: true if error handling is required, false otherwise.
6126  */
6127 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6128 {
6129 	unsigned long flags;
6130 	bool err_handling = true;
6131 
6132 	spin_lock_irqsave(hba->host->host_lock, flags);
6133 	/*
6134 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6135 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6136 	 */
6137 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6138 		goto out;
6139 
6140 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6141 	    ((hba->saved_err & UIC_ERROR) &&
6142 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6143 		goto out;
6144 
6145 	if ((hba->saved_err & UIC_ERROR) &&
6146 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6147 		int err;
6148 		/*
6149 		 * wait for 50ms to see if we can get any other errors or not.
6150 		 */
6151 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6152 		msleep(50);
6153 		spin_lock_irqsave(hba->host->host_lock, flags);
6154 
6155 		/*
6156 		 * now check if we have got any other severe errors other than
6157 		 * DL NAC error?
6158 		 */
6159 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6160 		    ((hba->saved_err & UIC_ERROR) &&
6161 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6162 			goto out;
6163 
6164 		/*
6165 		 * As DL NAC is the only error received so far, send out NOP
6166 		 * command to confirm if link is still active or not.
6167 		 *   - If we don't get any response then do error recovery.
6168 		 *   - If we get response then clear the DL NAC error bit.
6169 		 */
6170 
6171 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6172 		err = ufshcd_verify_dev_init(hba);
6173 		spin_lock_irqsave(hba->host->host_lock, flags);
6174 
6175 		if (err)
6176 			goto out;
6177 
6178 		/* Link seems to be alive hence ignore the DL NAC errors */
6179 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6180 			hba->saved_err &= ~UIC_ERROR;
6181 		/* clear NAC error */
6182 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6183 		if (!hba->saved_uic_err)
6184 			err_handling = false;
6185 	}
6186 out:
6187 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6188 	return err_handling;
6189 }
6190 
6191 /* host lock must be held before calling this func */
6192 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6193 {
6194 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6195 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6196 }
6197 
6198 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6199 {
6200 	lockdep_assert_held(hba->host->host_lock);
6201 
6202 	/* handle fatal errors only when link is not in error state */
6203 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6204 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6205 		    ufshcd_is_saved_err_fatal(hba))
6206 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6207 		else
6208 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6209 		queue_work(hba->eh_wq, &hba->eh_work);
6210 	}
6211 }
6212 
6213 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6214 {
6215 	spin_lock_irq(hba->host->host_lock);
6216 	hba->force_reset = true;
6217 	ufshcd_schedule_eh_work(hba);
6218 	spin_unlock_irq(hba->host->host_lock);
6219 }
6220 
6221 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6222 {
6223 	mutex_lock(&hba->wb_mutex);
6224 	down_write(&hba->clk_scaling_lock);
6225 	hba->clk_scaling.is_allowed = allow;
6226 	up_write(&hba->clk_scaling_lock);
6227 	mutex_unlock(&hba->wb_mutex);
6228 }
6229 
6230 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6231 {
6232 	if (suspend) {
6233 		if (hba->clk_scaling.is_enabled)
6234 			ufshcd_suspend_clkscaling(hba);
6235 		ufshcd_clk_scaling_allow(hba, false);
6236 	} else {
6237 		ufshcd_clk_scaling_allow(hba, true);
6238 		if (hba->clk_scaling.is_enabled)
6239 			ufshcd_resume_clkscaling(hba);
6240 	}
6241 }
6242 
6243 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6244 {
6245 	ufshcd_rpm_get_sync(hba);
6246 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6247 	    hba->is_sys_suspended) {
6248 		enum ufs_pm_op pm_op;
6249 
6250 		/*
6251 		 * Don't assume anything of resume, if
6252 		 * resume fails, irq and clocks can be OFF, and powers
6253 		 * can be OFF or in LPM.
6254 		 */
6255 		ufshcd_setup_hba_vreg(hba, true);
6256 		ufshcd_enable_irq(hba);
6257 		ufshcd_setup_vreg(hba, true);
6258 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6259 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6260 		ufshcd_hold(hba);
6261 		if (!ufshcd_is_clkgating_allowed(hba))
6262 			ufshcd_setup_clocks(hba, true);
6263 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6264 		ufshcd_vops_resume(hba, pm_op);
6265 	} else {
6266 		ufshcd_hold(hba);
6267 		if (ufshcd_is_clkscaling_supported(hba) &&
6268 		    hba->clk_scaling.is_enabled)
6269 			ufshcd_suspend_clkscaling(hba);
6270 		ufshcd_clk_scaling_allow(hba, false);
6271 	}
6272 	ufshcd_scsi_block_requests(hba);
6273 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6274 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6275 	cancel_work_sync(&hba->eeh_work);
6276 }
6277 
6278 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6279 {
6280 	ufshcd_scsi_unblock_requests(hba);
6281 	ufshcd_release(hba);
6282 	if (ufshcd_is_clkscaling_supported(hba))
6283 		ufshcd_clk_scaling_suspend(hba, false);
6284 	ufshcd_rpm_put(hba);
6285 }
6286 
6287 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6288 {
6289 	return (!hba->is_powered || hba->shutting_down ||
6290 		!hba->ufs_device_wlun ||
6291 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6292 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6293 		   ufshcd_is_link_broken(hba))));
6294 }
6295 
6296 #ifdef CONFIG_PM
6297 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6298 {
6299 	struct Scsi_Host *shost = hba->host;
6300 	struct scsi_device *sdev;
6301 	struct request_queue *q;
6302 	int ret;
6303 
6304 	hba->is_sys_suspended = false;
6305 	/*
6306 	 * Set RPM status of wlun device to RPM_ACTIVE,
6307 	 * this also clears its runtime error.
6308 	 */
6309 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6310 
6311 	/* hba device might have a runtime error otherwise */
6312 	if (ret)
6313 		ret = pm_runtime_set_active(hba->dev);
6314 	/*
6315 	 * If wlun device had runtime error, we also need to resume those
6316 	 * consumer scsi devices in case any of them has failed to be
6317 	 * resumed due to supplier runtime resume failure. This is to unblock
6318 	 * blk_queue_enter in case there are bios waiting inside it.
6319 	 */
6320 	if (!ret) {
6321 		shost_for_each_device(sdev, shost) {
6322 			q = sdev->request_queue;
6323 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6324 				       q->rpm_status == RPM_SUSPENDING))
6325 				pm_request_resume(q->dev);
6326 		}
6327 	}
6328 }
6329 #else
6330 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6331 {
6332 }
6333 #endif
6334 
6335 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6336 {
6337 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6338 	u32 mode;
6339 
6340 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6341 
6342 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6343 		return true;
6344 
6345 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6346 		return true;
6347 
6348 	return false;
6349 }
6350 
6351 static bool ufshcd_abort_one(struct request *rq, void *priv)
6352 {
6353 	int *ret = priv;
6354 	u32 tag = rq->tag;
6355 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6356 	struct scsi_device *sdev = cmd->device;
6357 	struct Scsi_Host *shost = sdev->host;
6358 	struct ufs_hba *hba = shost_priv(shost);
6359 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6360 	struct ufs_hw_queue *hwq;
6361 	unsigned long flags;
6362 
6363 	*ret = ufshcd_try_to_abort_task(hba, tag);
6364 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6365 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6366 		*ret ? "failed" : "succeeded");
6367 
6368 	/* Release cmd in MCQ mode if abort succeeds */
6369 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6370 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6371 		if (!hwq)
6372 			return 0;
6373 		spin_lock_irqsave(&hwq->cq_lock, flags);
6374 		if (ufshcd_cmd_inflight(lrbp->cmd))
6375 			ufshcd_release_scsi_cmd(hba, lrbp);
6376 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6377 	}
6378 
6379 	return *ret == 0;
6380 }
6381 
6382 /**
6383  * ufshcd_abort_all - Abort all pending commands.
6384  * @hba: Host bus adapter pointer.
6385  *
6386  * Return: true if and only if the host controller needs to be reset.
6387  */
6388 static bool ufshcd_abort_all(struct ufs_hba *hba)
6389 {
6390 	int tag, ret = 0;
6391 
6392 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6393 	if (ret)
6394 		goto out;
6395 
6396 	/* Clear pending task management requests */
6397 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6398 		ret = ufshcd_clear_tm_cmd(hba, tag);
6399 		if (ret)
6400 			goto out;
6401 	}
6402 
6403 out:
6404 	/* Complete the requests that are cleared by s/w */
6405 	ufshcd_complete_requests(hba, false);
6406 
6407 	return ret != 0;
6408 }
6409 
6410 /**
6411  * ufshcd_err_handler - handle UFS errors that require s/w attention
6412  * @work: pointer to work structure
6413  */
6414 static void ufshcd_err_handler(struct work_struct *work)
6415 {
6416 	int retries = MAX_ERR_HANDLER_RETRIES;
6417 	struct ufs_hba *hba;
6418 	unsigned long flags;
6419 	bool needs_restore;
6420 	bool needs_reset;
6421 	int pmc_err;
6422 
6423 	hba = container_of(work, struct ufs_hba, eh_work);
6424 
6425 	dev_info(hba->dev,
6426 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6427 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6428 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6429 		 hba->saved_uic_err, hba->force_reset,
6430 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6431 
6432 	down(&hba->host_sem);
6433 	spin_lock_irqsave(hba->host->host_lock, flags);
6434 	if (ufshcd_err_handling_should_stop(hba)) {
6435 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6436 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6437 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6438 		up(&hba->host_sem);
6439 		return;
6440 	}
6441 	ufshcd_set_eh_in_progress(hba);
6442 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6443 	ufshcd_err_handling_prepare(hba);
6444 	/* Complete requests that have door-bell cleared by h/w */
6445 	ufshcd_complete_requests(hba, false);
6446 	spin_lock_irqsave(hba->host->host_lock, flags);
6447 again:
6448 	needs_restore = false;
6449 	needs_reset = false;
6450 
6451 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6452 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6453 	/*
6454 	 * A full reset and restore might have happened after preparation
6455 	 * is finished, double check whether we should stop.
6456 	 */
6457 	if (ufshcd_err_handling_should_stop(hba))
6458 		goto skip_err_handling;
6459 
6460 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6461 		bool ret;
6462 
6463 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6464 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6465 		ret = ufshcd_quirk_dl_nac_errors(hba);
6466 		spin_lock_irqsave(hba->host->host_lock, flags);
6467 		if (!ret && ufshcd_err_handling_should_stop(hba))
6468 			goto skip_err_handling;
6469 	}
6470 
6471 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6472 	    (hba->saved_uic_err &&
6473 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6474 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6475 
6476 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6477 		ufshcd_print_host_state(hba);
6478 		ufshcd_print_pwr_info(hba);
6479 		ufshcd_print_evt_hist(hba);
6480 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6481 		ufshcd_print_trs_all(hba, pr_prdt);
6482 		spin_lock_irqsave(hba->host->host_lock, flags);
6483 	}
6484 
6485 	/*
6486 	 * if host reset is required then skip clearing the pending
6487 	 * transfers forcefully because they will get cleared during
6488 	 * host reset and restore
6489 	 */
6490 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6491 	    ufshcd_is_saved_err_fatal(hba) ||
6492 	    ((hba->saved_err & UIC_ERROR) &&
6493 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6494 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6495 		needs_reset = true;
6496 		goto do_reset;
6497 	}
6498 
6499 	/*
6500 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6501 	 * check if power mode restore is needed.
6502 	 */
6503 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6504 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6505 		if (!hba->saved_uic_err)
6506 			hba->saved_err &= ~UIC_ERROR;
6507 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6508 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6509 			needs_restore = true;
6510 		spin_lock_irqsave(hba->host->host_lock, flags);
6511 		if (!hba->saved_err && !needs_restore)
6512 			goto skip_err_handling;
6513 	}
6514 
6515 	hba->silence_err_logs = true;
6516 	/* release lock as clear command might sleep */
6517 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6518 
6519 	needs_reset = ufshcd_abort_all(hba);
6520 
6521 	spin_lock_irqsave(hba->host->host_lock, flags);
6522 	hba->silence_err_logs = false;
6523 	if (needs_reset)
6524 		goto do_reset;
6525 
6526 	/*
6527 	 * After all reqs and tasks are cleared from doorbell,
6528 	 * now it is safe to retore power mode.
6529 	 */
6530 	if (needs_restore) {
6531 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6532 		/*
6533 		 * Hold the scaling lock just in case dev cmds
6534 		 * are sent via bsg and/or sysfs.
6535 		 */
6536 		down_write(&hba->clk_scaling_lock);
6537 		hba->force_pmc = true;
6538 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6539 		if (pmc_err) {
6540 			needs_reset = true;
6541 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6542 					__func__, pmc_err);
6543 		}
6544 		hba->force_pmc = false;
6545 		ufshcd_print_pwr_info(hba);
6546 		up_write(&hba->clk_scaling_lock);
6547 		spin_lock_irqsave(hba->host->host_lock, flags);
6548 	}
6549 
6550 do_reset:
6551 	/* Fatal errors need reset */
6552 	if (needs_reset) {
6553 		int err;
6554 
6555 		hba->force_reset = false;
6556 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6557 		err = ufshcd_reset_and_restore(hba);
6558 		if (err)
6559 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6560 					__func__, err);
6561 		else
6562 			ufshcd_recover_pm_error(hba);
6563 		spin_lock_irqsave(hba->host->host_lock, flags);
6564 	}
6565 
6566 skip_err_handling:
6567 	if (!needs_reset) {
6568 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6569 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6570 		if (hba->saved_err || hba->saved_uic_err)
6571 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6572 			    __func__, hba->saved_err, hba->saved_uic_err);
6573 	}
6574 	/* Exit in an operational state or dead */
6575 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6576 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6577 		if (--retries)
6578 			goto again;
6579 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6580 	}
6581 	ufshcd_clear_eh_in_progress(hba);
6582 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6583 	ufshcd_err_handling_unprepare(hba);
6584 	up(&hba->host_sem);
6585 
6586 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6587 		 ufshcd_state_name[hba->ufshcd_state]);
6588 }
6589 
6590 /**
6591  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6592  * @hba: per-adapter instance
6593  *
6594  * Return:
6595  *  IRQ_HANDLED - If interrupt is valid
6596  *  IRQ_NONE    - If invalid interrupt
6597  */
6598 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6599 {
6600 	u32 reg;
6601 	irqreturn_t retval = IRQ_NONE;
6602 
6603 	/* PHY layer error */
6604 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6605 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6606 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6607 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6608 		/*
6609 		 * To know whether this error is fatal or not, DB timeout
6610 		 * must be checked but this error is handled separately.
6611 		 */
6612 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6613 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6614 					__func__);
6615 
6616 		/* Got a LINERESET indication. */
6617 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6618 			struct uic_command *cmd = NULL;
6619 
6620 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6621 			if (hba->uic_async_done && hba->active_uic_cmd)
6622 				cmd = hba->active_uic_cmd;
6623 			/*
6624 			 * Ignore the LINERESET during power mode change
6625 			 * operation via DME_SET command.
6626 			 */
6627 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6628 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6629 		}
6630 		retval |= IRQ_HANDLED;
6631 	}
6632 
6633 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6634 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6635 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6636 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6637 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6638 
6639 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6640 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6641 		else if (hba->dev_quirks &
6642 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6643 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6644 				hba->uic_error |=
6645 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6646 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6647 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6648 		}
6649 		retval |= IRQ_HANDLED;
6650 	}
6651 
6652 	/* UIC NL/TL/DME errors needs software retry */
6653 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6654 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6655 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6656 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6657 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6658 		retval |= IRQ_HANDLED;
6659 	}
6660 
6661 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6662 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6663 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6664 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6665 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6666 		retval |= IRQ_HANDLED;
6667 	}
6668 
6669 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6670 	if ((reg & UIC_DME_ERROR) &&
6671 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6672 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6673 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6674 		retval |= IRQ_HANDLED;
6675 	}
6676 
6677 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6678 			__func__, hba->uic_error);
6679 	return retval;
6680 }
6681 
6682 /**
6683  * ufshcd_check_errors - Check for errors that need s/w attention
6684  * @hba: per-adapter instance
6685  * @intr_status: interrupt status generated by the controller
6686  *
6687  * Return:
6688  *  IRQ_HANDLED - If interrupt is valid
6689  *  IRQ_NONE    - If invalid interrupt
6690  */
6691 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6692 {
6693 	bool queue_eh_work = false;
6694 	irqreturn_t retval = IRQ_NONE;
6695 
6696 	spin_lock(hba->host->host_lock);
6697 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6698 
6699 	if (hba->errors & INT_FATAL_ERRORS) {
6700 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6701 				       hba->errors);
6702 		queue_eh_work = true;
6703 	}
6704 
6705 	if (hba->errors & UIC_ERROR) {
6706 		hba->uic_error = 0;
6707 		retval = ufshcd_update_uic_error(hba);
6708 		if (hba->uic_error)
6709 			queue_eh_work = true;
6710 	}
6711 
6712 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6713 		dev_err(hba->dev,
6714 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6715 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6716 			"Enter" : "Exit",
6717 			hba->errors, ufshcd_get_upmcrs(hba));
6718 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6719 				       hba->errors);
6720 		ufshcd_set_link_broken(hba);
6721 		queue_eh_work = true;
6722 	}
6723 
6724 	if (queue_eh_work) {
6725 		/*
6726 		 * update the transfer error masks to sticky bits, let's do this
6727 		 * irrespective of current ufshcd_state.
6728 		 */
6729 		hba->saved_err |= hba->errors;
6730 		hba->saved_uic_err |= hba->uic_error;
6731 
6732 		/* dump controller state before resetting */
6733 		if ((hba->saved_err &
6734 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6735 		    (hba->saved_uic_err &&
6736 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6737 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6738 					__func__, hba->saved_err,
6739 					hba->saved_uic_err);
6740 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6741 					 "host_regs: ");
6742 			ufshcd_print_pwr_info(hba);
6743 		}
6744 		ufshcd_schedule_eh_work(hba);
6745 		retval |= IRQ_HANDLED;
6746 	}
6747 	/*
6748 	 * if (!queue_eh_work) -
6749 	 * Other errors are either non-fatal where host recovers
6750 	 * itself without s/w intervention or errors that will be
6751 	 * handled by the SCSI core layer.
6752 	 */
6753 	hba->errors = 0;
6754 	hba->uic_error = 0;
6755 	spin_unlock(hba->host->host_lock);
6756 	return retval;
6757 }
6758 
6759 /**
6760  * ufshcd_tmc_handler - handle task management function completion
6761  * @hba: per adapter instance
6762  *
6763  * Return:
6764  *  IRQ_HANDLED - If interrupt is valid
6765  *  IRQ_NONE    - If invalid interrupt
6766  */
6767 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6768 {
6769 	unsigned long flags, pending, issued;
6770 	irqreturn_t ret = IRQ_NONE;
6771 	int tag;
6772 
6773 	spin_lock_irqsave(hba->host->host_lock, flags);
6774 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6775 	issued = hba->outstanding_tasks & ~pending;
6776 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6777 		struct request *req = hba->tmf_rqs[tag];
6778 		struct completion *c = req->end_io_data;
6779 
6780 		complete(c);
6781 		ret = IRQ_HANDLED;
6782 	}
6783 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6784 
6785 	return ret;
6786 }
6787 
6788 /**
6789  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6790  * @hba: per adapter instance
6791  *
6792  * Return: IRQ_HANDLED if interrupt is handled.
6793  */
6794 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6795 {
6796 	struct ufs_hw_queue *hwq;
6797 	unsigned long outstanding_cqs;
6798 	unsigned int nr_queues;
6799 	int i, ret;
6800 	u32 events;
6801 
6802 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6803 	if (ret)
6804 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6805 
6806 	/* Exclude the poll queues */
6807 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6808 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6809 		hwq = &hba->uhq[i];
6810 
6811 		events = ufshcd_mcq_read_cqis(hba, i);
6812 		if (events)
6813 			ufshcd_mcq_write_cqis(hba, events, i);
6814 
6815 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6816 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6817 	}
6818 
6819 	return IRQ_HANDLED;
6820 }
6821 
6822 /**
6823  * ufshcd_sl_intr - Interrupt service routine
6824  * @hba: per adapter instance
6825  * @intr_status: contains interrupts generated by the controller
6826  *
6827  * Return:
6828  *  IRQ_HANDLED - If interrupt is valid
6829  *  IRQ_NONE    - If invalid interrupt
6830  */
6831 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6832 {
6833 	irqreturn_t retval = IRQ_NONE;
6834 
6835 	if (intr_status & UFSHCD_UIC_MASK)
6836 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6837 
6838 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6839 		retval |= ufshcd_check_errors(hba, intr_status);
6840 
6841 	if (intr_status & UTP_TASK_REQ_COMPL)
6842 		retval |= ufshcd_tmc_handler(hba);
6843 
6844 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6845 		retval |= ufshcd_transfer_req_compl(hba);
6846 
6847 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6848 		retval |= ufshcd_handle_mcq_cq_events(hba);
6849 
6850 	return retval;
6851 }
6852 
6853 /**
6854  * ufshcd_intr - Main interrupt service routine
6855  * @irq: irq number
6856  * @__hba: pointer to adapter instance
6857  *
6858  * Return:
6859  *  IRQ_HANDLED - If interrupt is valid
6860  *  IRQ_NONE    - If invalid interrupt
6861  */
6862 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6863 {
6864 	u32 intr_status, enabled_intr_status = 0;
6865 	irqreturn_t retval = IRQ_NONE;
6866 	struct ufs_hba *hba = __hba;
6867 	int retries = hba->nutrs;
6868 
6869 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6870 	hba->ufs_stats.last_intr_status = intr_status;
6871 	hba->ufs_stats.last_intr_ts = local_clock();
6872 
6873 	/*
6874 	 * There could be max of hba->nutrs reqs in flight and in worst case
6875 	 * if the reqs get finished 1 by 1 after the interrupt status is
6876 	 * read, make sure we handle them by checking the interrupt status
6877 	 * again in a loop until we process all of the reqs before returning.
6878 	 */
6879 	while (intr_status && retries--) {
6880 		enabled_intr_status =
6881 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6882 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6883 		if (enabled_intr_status)
6884 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6885 
6886 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6887 	}
6888 
6889 	if (enabled_intr_status && retval == IRQ_NONE &&
6890 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6891 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6892 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6893 					__func__,
6894 					intr_status,
6895 					hba->ufs_stats.last_intr_status,
6896 					enabled_intr_status);
6897 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6898 	}
6899 
6900 	return retval;
6901 }
6902 
6903 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6904 {
6905 	int err = 0;
6906 	u32 mask = 1 << tag;
6907 	unsigned long flags;
6908 
6909 	if (!test_bit(tag, &hba->outstanding_tasks))
6910 		goto out;
6911 
6912 	spin_lock_irqsave(hba->host->host_lock, flags);
6913 	ufshcd_utmrl_clear(hba, tag);
6914 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6915 
6916 	/* poll for max. 1 sec to clear door bell register by h/w */
6917 	err = ufshcd_wait_for_register(hba,
6918 			REG_UTP_TASK_REQ_DOOR_BELL,
6919 			mask, 0, 1000, 1000);
6920 
6921 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6922 		tag, err < 0 ? "failed" : "succeeded");
6923 
6924 out:
6925 	return err;
6926 }
6927 
6928 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6929 		struct utp_task_req_desc *treq, u8 tm_function)
6930 {
6931 	struct request_queue *q = hba->tmf_queue;
6932 	struct Scsi_Host *host = hba->host;
6933 	DECLARE_COMPLETION_ONSTACK(wait);
6934 	struct request *req;
6935 	unsigned long flags;
6936 	int task_tag, err;
6937 
6938 	/*
6939 	 * blk_mq_alloc_request() is used here only to get a free tag.
6940 	 */
6941 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6942 	if (IS_ERR(req))
6943 		return PTR_ERR(req);
6944 
6945 	req->end_io_data = &wait;
6946 	ufshcd_hold(hba);
6947 
6948 	spin_lock_irqsave(host->host_lock, flags);
6949 
6950 	task_tag = req->tag;
6951 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6952 		  task_tag);
6953 	hba->tmf_rqs[req->tag] = req;
6954 	treq->upiu_req.req_header.task_tag = task_tag;
6955 
6956 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6957 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6958 
6959 	/* send command to the controller */
6960 	__set_bit(task_tag, &hba->outstanding_tasks);
6961 
6962 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6963 	/* Make sure that doorbell is committed immediately */
6964 	wmb();
6965 
6966 	spin_unlock_irqrestore(host->host_lock, flags);
6967 
6968 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6969 
6970 	/* wait until the task management command is completed */
6971 	err = wait_for_completion_io_timeout(&wait,
6972 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6973 	if (!err) {
6974 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6975 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6976 				__func__, tm_function);
6977 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6978 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6979 					__func__, task_tag);
6980 		err = -ETIMEDOUT;
6981 	} else {
6982 		err = 0;
6983 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6984 
6985 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6986 	}
6987 
6988 	spin_lock_irqsave(hba->host->host_lock, flags);
6989 	hba->tmf_rqs[req->tag] = NULL;
6990 	__clear_bit(task_tag, &hba->outstanding_tasks);
6991 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6992 
6993 	ufshcd_release(hba);
6994 	blk_mq_free_request(req);
6995 
6996 	return err;
6997 }
6998 
6999 /**
7000  * ufshcd_issue_tm_cmd - issues task management commands to controller
7001  * @hba: per adapter instance
7002  * @lun_id: LUN ID to which TM command is sent
7003  * @task_id: task ID to which the TM command is applicable
7004  * @tm_function: task management function opcode
7005  * @tm_response: task management service response return value
7006  *
7007  * Return: non-zero value on error, zero on success.
7008  */
7009 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7010 		u8 tm_function, u8 *tm_response)
7011 {
7012 	struct utp_task_req_desc treq = { };
7013 	enum utp_ocs ocs_value;
7014 	int err;
7015 
7016 	/* Configure task request descriptor */
7017 	treq.header.interrupt = 1;
7018 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7019 
7020 	/* Configure task request UPIU */
7021 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7022 	treq.upiu_req.req_header.lun = lun_id;
7023 	treq.upiu_req.req_header.tm_function = tm_function;
7024 
7025 	/*
7026 	 * The host shall provide the same value for LUN field in the basic
7027 	 * header and for Input Parameter.
7028 	 */
7029 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7030 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7031 
7032 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7033 	if (err == -ETIMEDOUT)
7034 		return err;
7035 
7036 	ocs_value = treq.header.ocs & MASK_OCS;
7037 	if (ocs_value != OCS_SUCCESS)
7038 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7039 				__func__, ocs_value);
7040 	else if (tm_response)
7041 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7042 				MASK_TM_SERVICE_RESP;
7043 	return err;
7044 }
7045 
7046 /**
7047  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7048  * @hba:	per-adapter instance
7049  * @req_upiu:	upiu request
7050  * @rsp_upiu:	upiu reply
7051  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7052  * @buff_len:	descriptor size, 0 if NA
7053  * @cmd_type:	specifies the type (NOP, Query...)
7054  * @desc_op:	descriptor operation
7055  *
7056  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7057  * Therefore, it "rides" the device management infrastructure: uses its tag and
7058  * tasks work queues.
7059  *
7060  * Since there is only one available tag for device management commands,
7061  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7062  *
7063  * Return: 0 upon success; < 0 upon failure.
7064  */
7065 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7066 					struct utp_upiu_req *req_upiu,
7067 					struct utp_upiu_req *rsp_upiu,
7068 					u8 *desc_buff, int *buff_len,
7069 					enum dev_cmd_type cmd_type,
7070 					enum query_opcode desc_op)
7071 {
7072 	DECLARE_COMPLETION_ONSTACK(wait);
7073 	const u32 tag = hba->reserved_slot;
7074 	struct ufshcd_lrb *lrbp;
7075 	int err = 0;
7076 	u8 upiu_flags;
7077 
7078 	/* Protects use of hba->reserved_slot. */
7079 	lockdep_assert_held(&hba->dev_cmd.lock);
7080 
7081 	down_read(&hba->clk_scaling_lock);
7082 
7083 	lrbp = &hba->lrb[tag];
7084 	lrbp->cmd = NULL;
7085 	lrbp->task_tag = tag;
7086 	lrbp->lun = 0;
7087 	lrbp->intr_cmd = true;
7088 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7089 	hba->dev_cmd.type = cmd_type;
7090 
7091 	if (hba->ufs_version <= ufshci_version(1, 1))
7092 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7093 	else
7094 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7095 
7096 	/* update the task tag in the request upiu */
7097 	req_upiu->header.task_tag = tag;
7098 
7099 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7100 
7101 	/* just copy the upiu request as it is */
7102 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7103 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7104 		/* The Data Segment Area is optional depending upon the query
7105 		 * function value. for WRITE DESCRIPTOR, the data segment
7106 		 * follows right after the tsf.
7107 		 */
7108 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7109 		*buff_len = 0;
7110 	}
7111 
7112 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7113 
7114 	hba->dev_cmd.complete = &wait;
7115 
7116 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7117 
7118 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7119 	/*
7120 	 * ignore the returning value here - ufshcd_check_query_response is
7121 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7122 	 * read the response directly ignoring all errors.
7123 	 */
7124 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7125 
7126 	/* just copy the upiu response as it is */
7127 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7128 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7129 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7130 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7131 					   .data_segment_length);
7132 
7133 		if (*buff_len >= resp_len) {
7134 			memcpy(desc_buff, descp, resp_len);
7135 			*buff_len = resp_len;
7136 		} else {
7137 			dev_warn(hba->dev,
7138 				 "%s: rsp size %d is bigger than buffer size %d",
7139 				 __func__, resp_len, *buff_len);
7140 			*buff_len = 0;
7141 			err = -EINVAL;
7142 		}
7143 	}
7144 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7145 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7146 
7147 	up_read(&hba->clk_scaling_lock);
7148 	return err;
7149 }
7150 
7151 /**
7152  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7153  * @hba:	per-adapter instance
7154  * @req_upiu:	upiu request
7155  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7156  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7157  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7158  * @buff_len:	descriptor size, 0 if NA
7159  * @desc_op:	descriptor operation
7160  *
7161  * Supports UTP Transfer requests (nop and query), and UTP Task
7162  * Management requests.
7163  * It is up to the caller to fill the upiu conent properly, as it will
7164  * be copied without any further input validations.
7165  *
7166  * Return: 0 upon success; < 0 upon failure.
7167  */
7168 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7169 			     struct utp_upiu_req *req_upiu,
7170 			     struct utp_upiu_req *rsp_upiu,
7171 			     enum upiu_request_transaction msgcode,
7172 			     u8 *desc_buff, int *buff_len,
7173 			     enum query_opcode desc_op)
7174 {
7175 	int err;
7176 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7177 	struct utp_task_req_desc treq = { };
7178 	enum utp_ocs ocs_value;
7179 	u8 tm_f = req_upiu->header.tm_function;
7180 
7181 	switch (msgcode) {
7182 	case UPIU_TRANSACTION_NOP_OUT:
7183 		cmd_type = DEV_CMD_TYPE_NOP;
7184 		fallthrough;
7185 	case UPIU_TRANSACTION_QUERY_REQ:
7186 		ufshcd_hold(hba);
7187 		mutex_lock(&hba->dev_cmd.lock);
7188 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7189 						   desc_buff, buff_len,
7190 						   cmd_type, desc_op);
7191 		mutex_unlock(&hba->dev_cmd.lock);
7192 		ufshcd_release(hba);
7193 
7194 		break;
7195 	case UPIU_TRANSACTION_TASK_REQ:
7196 		treq.header.interrupt = 1;
7197 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7198 
7199 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7200 
7201 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7202 		if (err == -ETIMEDOUT)
7203 			break;
7204 
7205 		ocs_value = treq.header.ocs & MASK_OCS;
7206 		if (ocs_value != OCS_SUCCESS) {
7207 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7208 				ocs_value);
7209 			break;
7210 		}
7211 
7212 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7213 
7214 		break;
7215 	default:
7216 		err = -EINVAL;
7217 
7218 		break;
7219 	}
7220 
7221 	return err;
7222 }
7223 
7224 /**
7225  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7226  * @hba:	per adapter instance
7227  * @req_upiu:	upiu request
7228  * @rsp_upiu:	upiu reply
7229  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7230  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7231  * @sg_cnt:	The number of sg lists actually used
7232  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7233  * @dir:	DMA direction
7234  *
7235  * Return: zero on success, non-zero on failure.
7236  */
7237 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7238 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7239 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7240 			 enum dma_data_direction dir)
7241 {
7242 	DECLARE_COMPLETION_ONSTACK(wait);
7243 	const u32 tag = hba->reserved_slot;
7244 	struct ufshcd_lrb *lrbp;
7245 	int err = 0;
7246 	int result;
7247 	u8 upiu_flags;
7248 	u8 *ehs_data;
7249 	u16 ehs_len;
7250 
7251 	/* Protects use of hba->reserved_slot. */
7252 	ufshcd_hold(hba);
7253 	mutex_lock(&hba->dev_cmd.lock);
7254 	down_read(&hba->clk_scaling_lock);
7255 
7256 	lrbp = &hba->lrb[tag];
7257 	lrbp->cmd = NULL;
7258 	lrbp->task_tag = tag;
7259 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7260 
7261 	lrbp->intr_cmd = true;
7262 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7263 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7264 
7265 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7266 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7267 
7268 	/*
7269 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7270 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7271 	 * HW controller takes EHS length from UTRD.
7272 	 */
7273 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7274 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7275 	else
7276 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7277 
7278 	/* update the task tag */
7279 	req_upiu->header.task_tag = tag;
7280 
7281 	/* copy the UPIU(contains CDB) request as it is */
7282 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7283 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7284 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7285 
7286 	if (dir != DMA_NONE && sg_list)
7287 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7288 
7289 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7290 
7291 	hba->dev_cmd.complete = &wait;
7292 
7293 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7294 
7295 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7296 
7297 	if (!err) {
7298 		/* Just copy the upiu response as it is */
7299 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7300 		/* Get the response UPIU result */
7301 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7302 			lrbp->ucd_rsp_ptr->header.status;
7303 
7304 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7305 		/*
7306 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7307 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7308 		 * Message is 02h
7309 		 */
7310 		if (ehs_len == 2 && rsp_ehs) {
7311 			/*
7312 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7313 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7314 			 */
7315 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7316 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7317 		}
7318 	}
7319 
7320 	up_read(&hba->clk_scaling_lock);
7321 	mutex_unlock(&hba->dev_cmd.lock);
7322 	ufshcd_release(hba);
7323 	return err ? : result;
7324 }
7325 
7326 /**
7327  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7328  * @cmd: SCSI command pointer
7329  *
7330  * Return: SUCCESS or FAILED.
7331  */
7332 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7333 {
7334 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7335 	struct Scsi_Host *host;
7336 	struct ufs_hba *hba;
7337 	struct ufs_hw_queue *hwq;
7338 	struct ufshcd_lrb *lrbp;
7339 	u32 pos, not_cleared_mask = 0;
7340 	int err;
7341 	u8 resp = 0xF, lun;
7342 
7343 	host = cmd->device->host;
7344 	hba = shost_priv(host);
7345 
7346 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7347 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7348 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7349 		if (!err)
7350 			err = resp;
7351 		goto out;
7352 	}
7353 
7354 	if (is_mcq_enabled(hba)) {
7355 		for (pos = 0; pos < hba->nutrs; pos++) {
7356 			lrbp = &hba->lrb[pos];
7357 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7358 			    lrbp->lun == lun) {
7359 				ufshcd_clear_cmd(hba, pos);
7360 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7361 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7362 			}
7363 		}
7364 		err = 0;
7365 		goto out;
7366 	}
7367 
7368 	/* clear the commands that were pending for corresponding LUN */
7369 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7370 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7371 		if (hba->lrb[pos].lun == lun)
7372 			__set_bit(pos, &pending_reqs);
7373 	hba->outstanding_reqs &= ~pending_reqs;
7374 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7375 
7376 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7377 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7378 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7379 			not_cleared = 1U << pos &
7380 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7381 			hba->outstanding_reqs |= not_cleared;
7382 			not_cleared_mask |= not_cleared;
7383 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7384 
7385 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7386 				__func__, pos);
7387 		}
7388 	}
7389 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7390 
7391 out:
7392 	hba->req_abort_count = 0;
7393 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7394 	if (!err) {
7395 		err = SUCCESS;
7396 	} else {
7397 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7398 		err = FAILED;
7399 	}
7400 	return err;
7401 }
7402 
7403 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7404 {
7405 	struct ufshcd_lrb *lrbp;
7406 	int tag;
7407 
7408 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7409 		lrbp = &hba->lrb[tag];
7410 		lrbp->req_abort_skip = true;
7411 	}
7412 }
7413 
7414 /**
7415  * ufshcd_try_to_abort_task - abort a specific task
7416  * @hba: Pointer to adapter instance
7417  * @tag: Task tag/index to be aborted
7418  *
7419  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7420  * command, and in host controller by clearing the door-bell register. There can
7421  * be race between controller sending the command to the device while abort is
7422  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7423  * really issued and then try to abort it.
7424  *
7425  * Return: zero on success, non-zero on failure.
7426  */
7427 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7428 {
7429 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7430 	int err = 0;
7431 	int poll_cnt;
7432 	u8 resp = 0xF;
7433 	u32 reg;
7434 
7435 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7436 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7437 				UFS_QUERY_TASK, &resp);
7438 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7439 			/* cmd pending in the device */
7440 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7441 				__func__, tag);
7442 			break;
7443 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7444 			/*
7445 			 * cmd not pending in the device, check if it is
7446 			 * in transition.
7447 			 */
7448 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7449 				__func__, tag);
7450 			if (is_mcq_enabled(hba)) {
7451 				/* MCQ mode */
7452 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7453 					/* sleep for max. 200us same delay as in SDB mode */
7454 					usleep_range(100, 200);
7455 					continue;
7456 				}
7457 				/* command completed already */
7458 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7459 					__func__, tag);
7460 				goto out;
7461 			}
7462 
7463 			/* Single Doorbell Mode */
7464 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7465 			if (reg & (1 << tag)) {
7466 				/* sleep for max. 200us to stabilize */
7467 				usleep_range(100, 200);
7468 				continue;
7469 			}
7470 			/* command completed already */
7471 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7472 				__func__, tag);
7473 			goto out;
7474 		} else {
7475 			dev_err(hba->dev,
7476 				"%s: no response from device. tag = %d, err %d\n",
7477 				__func__, tag, err);
7478 			if (!err)
7479 				err = resp; /* service response error */
7480 			goto out;
7481 		}
7482 	}
7483 
7484 	if (!poll_cnt) {
7485 		err = -EBUSY;
7486 		goto out;
7487 	}
7488 
7489 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7490 			UFS_ABORT_TASK, &resp);
7491 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7492 		if (!err) {
7493 			err = resp; /* service response error */
7494 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7495 				__func__, tag, err);
7496 		}
7497 		goto out;
7498 	}
7499 
7500 	err = ufshcd_clear_cmd(hba, tag);
7501 	if (err)
7502 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7503 			__func__, tag, err);
7504 
7505 out:
7506 	return err;
7507 }
7508 
7509 /**
7510  * ufshcd_abort - scsi host template eh_abort_handler callback
7511  * @cmd: SCSI command pointer
7512  *
7513  * Return: SUCCESS or FAILED.
7514  */
7515 static int ufshcd_abort(struct scsi_cmnd *cmd)
7516 {
7517 	struct Scsi_Host *host = cmd->device->host;
7518 	struct ufs_hba *hba = shost_priv(host);
7519 	int tag = scsi_cmd_to_rq(cmd)->tag;
7520 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7521 	unsigned long flags;
7522 	int err = FAILED;
7523 	bool outstanding;
7524 	u32 reg;
7525 
7526 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7527 
7528 	ufshcd_hold(hba);
7529 
7530 	if (!is_mcq_enabled(hba)) {
7531 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7532 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7533 			/* If command is already aborted/completed, return FAILED. */
7534 			dev_err(hba->dev,
7535 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7536 				__func__, tag, hba->outstanding_reqs, reg);
7537 			goto release;
7538 		}
7539 	}
7540 
7541 	/* Print Transfer Request of aborted task */
7542 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7543 
7544 	/*
7545 	 * Print detailed info about aborted request.
7546 	 * As more than one request might get aborted at the same time,
7547 	 * print full information only for the first aborted request in order
7548 	 * to reduce repeated printouts. For other aborted requests only print
7549 	 * basic details.
7550 	 */
7551 	scsi_print_command(cmd);
7552 	if (!hba->req_abort_count) {
7553 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7554 		ufshcd_print_evt_hist(hba);
7555 		ufshcd_print_host_state(hba);
7556 		ufshcd_print_pwr_info(hba);
7557 		ufshcd_print_tr(hba, tag, true);
7558 	} else {
7559 		ufshcd_print_tr(hba, tag, false);
7560 	}
7561 	hba->req_abort_count++;
7562 
7563 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7564 		/* only execute this code in single doorbell mode */
7565 		dev_err(hba->dev,
7566 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7567 		__func__, tag);
7568 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7569 		goto release;
7570 	}
7571 
7572 	/*
7573 	 * Task abort to the device W-LUN is illegal. When this command
7574 	 * will fail, due to spec violation, scsi err handling next step
7575 	 * will be to send LU reset which, again, is a spec violation.
7576 	 * To avoid these unnecessary/illegal steps, first we clean up
7577 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7578 	 * then queue the eh_work and bail.
7579 	 */
7580 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7581 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7582 
7583 		spin_lock_irqsave(host->host_lock, flags);
7584 		hba->force_reset = true;
7585 		ufshcd_schedule_eh_work(hba);
7586 		spin_unlock_irqrestore(host->host_lock, flags);
7587 		goto release;
7588 	}
7589 
7590 	if (is_mcq_enabled(hba)) {
7591 		/* MCQ mode. Branch off to handle abort for mcq mode */
7592 		err = ufshcd_mcq_abort(cmd);
7593 		goto release;
7594 	}
7595 
7596 	/* Skip task abort in case previous aborts failed and report failure */
7597 	if (lrbp->req_abort_skip) {
7598 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7599 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7600 		goto release;
7601 	}
7602 
7603 	err = ufshcd_try_to_abort_task(hba, tag);
7604 	if (err) {
7605 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7606 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7607 		err = FAILED;
7608 		goto release;
7609 	}
7610 
7611 	/*
7612 	 * Clear the corresponding bit from outstanding_reqs since the command
7613 	 * has been aborted successfully.
7614 	 */
7615 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7616 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7617 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7618 
7619 	if (outstanding)
7620 		ufshcd_release_scsi_cmd(hba, lrbp);
7621 
7622 	err = SUCCESS;
7623 
7624 release:
7625 	/* Matches the ufshcd_hold() call at the start of this function. */
7626 	ufshcd_release(hba);
7627 	return err;
7628 }
7629 
7630 /**
7631  * ufshcd_host_reset_and_restore - reset and restore host controller
7632  * @hba: per-adapter instance
7633  *
7634  * Note that host controller reset may issue DME_RESET to
7635  * local and remote (device) Uni-Pro stack and the attributes
7636  * are reset to default state.
7637  *
7638  * Return: zero on success, non-zero on failure.
7639  */
7640 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7641 {
7642 	int err;
7643 
7644 	/*
7645 	 * Stop the host controller and complete the requests
7646 	 * cleared by h/w
7647 	 */
7648 	ufshcd_hba_stop(hba);
7649 	hba->silence_err_logs = true;
7650 	ufshcd_complete_requests(hba, true);
7651 	hba->silence_err_logs = false;
7652 
7653 	/* scale up clocks to max frequency before full reinitialization */
7654 	ufshcd_scale_clks(hba, true);
7655 
7656 	err = ufshcd_hba_enable(hba);
7657 
7658 	/* Establish the link again and restore the device */
7659 	if (!err)
7660 		err = ufshcd_probe_hba(hba, false);
7661 
7662 	if (err)
7663 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7664 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7665 	return err;
7666 }
7667 
7668 /**
7669  * ufshcd_reset_and_restore - reset and re-initialize host/device
7670  * @hba: per-adapter instance
7671  *
7672  * Reset and recover device, host and re-establish link. This
7673  * is helpful to recover the communication in fatal error conditions.
7674  *
7675  * Return: zero on success, non-zero on failure.
7676  */
7677 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7678 {
7679 	u32 saved_err = 0;
7680 	u32 saved_uic_err = 0;
7681 	int err = 0;
7682 	unsigned long flags;
7683 	int retries = MAX_HOST_RESET_RETRIES;
7684 
7685 	spin_lock_irqsave(hba->host->host_lock, flags);
7686 	do {
7687 		/*
7688 		 * This is a fresh start, cache and clear saved error first,
7689 		 * in case new error generated during reset and restore.
7690 		 */
7691 		saved_err |= hba->saved_err;
7692 		saved_uic_err |= hba->saved_uic_err;
7693 		hba->saved_err = 0;
7694 		hba->saved_uic_err = 0;
7695 		hba->force_reset = false;
7696 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7697 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7698 
7699 		/* Reset the attached device */
7700 		ufshcd_device_reset(hba);
7701 
7702 		err = ufshcd_host_reset_and_restore(hba);
7703 
7704 		spin_lock_irqsave(hba->host->host_lock, flags);
7705 		if (err)
7706 			continue;
7707 		/* Do not exit unless operational or dead */
7708 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7709 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7710 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7711 			err = -EAGAIN;
7712 	} while (err && --retries);
7713 
7714 	/*
7715 	 * Inform scsi mid-layer that we did reset and allow to handle
7716 	 * Unit Attention properly.
7717 	 */
7718 	scsi_report_bus_reset(hba->host, 0);
7719 	if (err) {
7720 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7721 		hba->saved_err |= saved_err;
7722 		hba->saved_uic_err |= saved_uic_err;
7723 	}
7724 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7725 
7726 	return err;
7727 }
7728 
7729 /**
7730  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7731  * @cmd: SCSI command pointer
7732  *
7733  * Return: SUCCESS or FAILED.
7734  */
7735 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7736 {
7737 	int err = SUCCESS;
7738 	unsigned long flags;
7739 	struct ufs_hba *hba;
7740 
7741 	hba = shost_priv(cmd->device->host);
7742 
7743 	spin_lock_irqsave(hba->host->host_lock, flags);
7744 	hba->force_reset = true;
7745 	ufshcd_schedule_eh_work(hba);
7746 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7747 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7748 
7749 	flush_work(&hba->eh_work);
7750 
7751 	spin_lock_irqsave(hba->host->host_lock, flags);
7752 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7753 		err = FAILED;
7754 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7755 
7756 	return err;
7757 }
7758 
7759 /**
7760  * ufshcd_get_max_icc_level - calculate the ICC level
7761  * @sup_curr_uA: max. current supported by the regulator
7762  * @start_scan: row at the desc table to start scan from
7763  * @buff: power descriptor buffer
7764  *
7765  * Return: calculated max ICC level for specific regulator.
7766  */
7767 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7768 				    const char *buff)
7769 {
7770 	int i;
7771 	int curr_uA;
7772 	u16 data;
7773 	u16 unit;
7774 
7775 	for (i = start_scan; i >= 0; i--) {
7776 		data = get_unaligned_be16(&buff[2 * i]);
7777 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7778 						ATTR_ICC_LVL_UNIT_OFFSET;
7779 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7780 		switch (unit) {
7781 		case UFSHCD_NANO_AMP:
7782 			curr_uA = curr_uA / 1000;
7783 			break;
7784 		case UFSHCD_MILI_AMP:
7785 			curr_uA = curr_uA * 1000;
7786 			break;
7787 		case UFSHCD_AMP:
7788 			curr_uA = curr_uA * 1000 * 1000;
7789 			break;
7790 		case UFSHCD_MICRO_AMP:
7791 		default:
7792 			break;
7793 		}
7794 		if (sup_curr_uA >= curr_uA)
7795 			break;
7796 	}
7797 	if (i < 0) {
7798 		i = 0;
7799 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7800 	}
7801 
7802 	return (u32)i;
7803 }
7804 
7805 /**
7806  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7807  * In case regulators are not initialized we'll return 0
7808  * @hba: per-adapter instance
7809  * @desc_buf: power descriptor buffer to extract ICC levels from.
7810  *
7811  * Return: calculated ICC level.
7812  */
7813 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7814 						const u8 *desc_buf)
7815 {
7816 	u32 icc_level = 0;
7817 
7818 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7819 						!hba->vreg_info.vccq2) {
7820 		/*
7821 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7822 		 * never-ending cycles of messages written back to storage by
7823 		 * user space causing runtime resume, causing more messages and
7824 		 * so on.
7825 		 */
7826 		dev_dbg(hba->dev,
7827 			"%s: Regulator capability was not set, actvIccLevel=%d",
7828 							__func__, icc_level);
7829 		goto out;
7830 	}
7831 
7832 	if (hba->vreg_info.vcc->max_uA)
7833 		icc_level = ufshcd_get_max_icc_level(
7834 				hba->vreg_info.vcc->max_uA,
7835 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7836 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7837 
7838 	if (hba->vreg_info.vccq->max_uA)
7839 		icc_level = ufshcd_get_max_icc_level(
7840 				hba->vreg_info.vccq->max_uA,
7841 				icc_level,
7842 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7843 
7844 	if (hba->vreg_info.vccq2->max_uA)
7845 		icc_level = ufshcd_get_max_icc_level(
7846 				hba->vreg_info.vccq2->max_uA,
7847 				icc_level,
7848 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7849 out:
7850 	return icc_level;
7851 }
7852 
7853 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7854 {
7855 	int ret;
7856 	u8 *desc_buf;
7857 	u32 icc_level;
7858 
7859 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7860 	if (!desc_buf)
7861 		return;
7862 
7863 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7864 				     desc_buf, QUERY_DESC_MAX_SIZE);
7865 	if (ret) {
7866 		dev_err(hba->dev,
7867 			"%s: Failed reading power descriptor ret = %d",
7868 			__func__, ret);
7869 		goto out;
7870 	}
7871 
7872 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7873 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7874 
7875 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7876 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7877 
7878 	if (ret)
7879 		dev_err(hba->dev,
7880 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7881 			__func__, icc_level, ret);
7882 
7883 out:
7884 	kfree(desc_buf);
7885 }
7886 
7887 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7888 {
7889 	scsi_autopm_get_device(sdev);
7890 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7891 	if (sdev->rpm_autosuspend)
7892 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7893 						 RPM_AUTOSUSPEND_DELAY_MS);
7894 	scsi_autopm_put_device(sdev);
7895 }
7896 
7897 /**
7898  * ufshcd_scsi_add_wlus - Adds required W-LUs
7899  * @hba: per-adapter instance
7900  *
7901  * UFS device specification requires the UFS devices to support 4 well known
7902  * logical units:
7903  *	"REPORT_LUNS" (address: 01h)
7904  *	"UFS Device" (address: 50h)
7905  *	"RPMB" (address: 44h)
7906  *	"BOOT" (address: 30h)
7907  * UFS device's power management needs to be controlled by "POWER CONDITION"
7908  * field of SSU (START STOP UNIT) command. But this "power condition" field
7909  * will take effect only when its sent to "UFS device" well known logical unit
7910  * hence we require the scsi_device instance to represent this logical unit in
7911  * order for the UFS host driver to send the SSU command for power management.
7912  *
7913  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7914  * Block) LU so user space process can control this LU. User space may also
7915  * want to have access to BOOT LU.
7916  *
7917  * This function adds scsi device instances for each of all well known LUs
7918  * (except "REPORT LUNS" LU).
7919  *
7920  * Return: zero on success (all required W-LUs are added successfully),
7921  * non-zero error value on failure (if failed to add any of the required W-LU).
7922  */
7923 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7924 {
7925 	int ret = 0;
7926 	struct scsi_device *sdev_boot, *sdev_rpmb;
7927 
7928 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7929 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7930 	if (IS_ERR(hba->ufs_device_wlun)) {
7931 		ret = PTR_ERR(hba->ufs_device_wlun);
7932 		hba->ufs_device_wlun = NULL;
7933 		goto out;
7934 	}
7935 	scsi_device_put(hba->ufs_device_wlun);
7936 
7937 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7938 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7939 	if (IS_ERR(sdev_rpmb)) {
7940 		ret = PTR_ERR(sdev_rpmb);
7941 		goto remove_ufs_device_wlun;
7942 	}
7943 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7944 	scsi_device_put(sdev_rpmb);
7945 
7946 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7947 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7948 	if (IS_ERR(sdev_boot)) {
7949 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7950 	} else {
7951 		ufshcd_blk_pm_runtime_init(sdev_boot);
7952 		scsi_device_put(sdev_boot);
7953 	}
7954 	goto out;
7955 
7956 remove_ufs_device_wlun:
7957 	scsi_remove_device(hba->ufs_device_wlun);
7958 out:
7959 	return ret;
7960 }
7961 
7962 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7963 {
7964 	struct ufs_dev_info *dev_info = &hba->dev_info;
7965 	u8 lun;
7966 	u32 d_lu_wb_buf_alloc;
7967 	u32 ext_ufs_feature;
7968 
7969 	if (!ufshcd_is_wb_allowed(hba))
7970 		return;
7971 
7972 	/*
7973 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7974 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7975 	 * enabled
7976 	 */
7977 	if (!(dev_info->wspecversion >= 0x310 ||
7978 	      dev_info->wspecversion == 0x220 ||
7979 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7980 		goto wb_disabled;
7981 
7982 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7983 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7984 
7985 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7986 		goto wb_disabled;
7987 
7988 	/*
7989 	 * WB may be supported but not configured while provisioning. The spec
7990 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7991 	 * buffer configured.
7992 	 */
7993 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7994 
7995 	dev_info->b_presrv_uspc_en =
7996 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7997 
7998 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7999 		if (!get_unaligned_be32(desc_buf +
8000 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8001 			goto wb_disabled;
8002 	} else {
8003 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8004 			d_lu_wb_buf_alloc = 0;
8005 			ufshcd_read_unit_desc_param(hba,
8006 					lun,
8007 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8008 					(u8 *)&d_lu_wb_buf_alloc,
8009 					sizeof(d_lu_wb_buf_alloc));
8010 			if (d_lu_wb_buf_alloc) {
8011 				dev_info->wb_dedicated_lu = lun;
8012 				break;
8013 			}
8014 		}
8015 
8016 		if (!d_lu_wb_buf_alloc)
8017 			goto wb_disabled;
8018 	}
8019 
8020 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8021 		goto wb_disabled;
8022 
8023 	return;
8024 
8025 wb_disabled:
8026 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8027 }
8028 
8029 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8030 {
8031 	struct ufs_dev_info *dev_info = &hba->dev_info;
8032 	u32 ext_ufs_feature;
8033 	u8 mask = 0;
8034 
8035 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8036 		return;
8037 
8038 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8039 
8040 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8041 		mask |= MASK_EE_TOO_LOW_TEMP;
8042 
8043 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8044 		mask |= MASK_EE_TOO_HIGH_TEMP;
8045 
8046 	if (mask) {
8047 		ufshcd_enable_ee(hba, mask);
8048 		ufs_hwmon_probe(hba, mask);
8049 	}
8050 }
8051 
8052 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8053 {
8054 	struct ufs_dev_info *dev_info = &hba->dev_info;
8055 	u32 ext_ufs_feature;
8056 	u32 ext_iid_en = 0;
8057 	int err;
8058 
8059 	/* Only UFS-4.0 and above may support EXT_IID */
8060 	if (dev_info->wspecversion < 0x400)
8061 		goto out;
8062 
8063 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8064 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8065 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8066 		goto out;
8067 
8068 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8069 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8070 	if (err)
8071 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8072 
8073 out:
8074 	dev_info->b_ext_iid_en = ext_iid_en;
8075 }
8076 
8077 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8078 			     const struct ufs_dev_quirk *fixups)
8079 {
8080 	const struct ufs_dev_quirk *f;
8081 	struct ufs_dev_info *dev_info = &hba->dev_info;
8082 
8083 	if (!fixups)
8084 		return;
8085 
8086 	for (f = fixups; f->quirk; f++) {
8087 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8088 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8089 		     ((dev_info->model &&
8090 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8091 		      !strcmp(f->model, UFS_ANY_MODEL)))
8092 			hba->dev_quirks |= f->quirk;
8093 	}
8094 }
8095 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8096 
8097 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8098 {
8099 	/* fix by general quirk table */
8100 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8101 
8102 	/* allow vendors to fix quirks */
8103 	ufshcd_vops_fixup_dev_quirks(hba);
8104 }
8105 
8106 static int ufs_get_device_desc(struct ufs_hba *hba)
8107 {
8108 	int err;
8109 	u8 model_index;
8110 	u8 *desc_buf;
8111 	struct ufs_dev_info *dev_info = &hba->dev_info;
8112 
8113 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8114 	if (!desc_buf) {
8115 		err = -ENOMEM;
8116 		goto out;
8117 	}
8118 
8119 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8120 				     QUERY_DESC_MAX_SIZE);
8121 	if (err) {
8122 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8123 			__func__, err);
8124 		goto out;
8125 	}
8126 
8127 	/*
8128 	 * getting vendor (manufacturerID) and Bank Index in big endian
8129 	 * format
8130 	 */
8131 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8132 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8133 
8134 	/* getting Specification Version in big endian format */
8135 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8136 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8137 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8138 
8139 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8140 
8141 	err = ufshcd_read_string_desc(hba, model_index,
8142 				      &dev_info->model, SD_ASCII_STD);
8143 	if (err < 0) {
8144 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8145 			__func__, err);
8146 		goto out;
8147 	}
8148 
8149 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8150 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8151 
8152 	ufs_fixup_device_setup(hba);
8153 
8154 	ufshcd_wb_probe(hba, desc_buf);
8155 
8156 	ufshcd_temp_notif_probe(hba, desc_buf);
8157 
8158 	if (hba->ext_iid_sup)
8159 		ufshcd_ext_iid_probe(hba, desc_buf);
8160 
8161 	/*
8162 	 * ufshcd_read_string_desc returns size of the string
8163 	 * reset the error value
8164 	 */
8165 	err = 0;
8166 
8167 out:
8168 	kfree(desc_buf);
8169 	return err;
8170 }
8171 
8172 static void ufs_put_device_desc(struct ufs_hba *hba)
8173 {
8174 	struct ufs_dev_info *dev_info = &hba->dev_info;
8175 
8176 	kfree(dev_info->model);
8177 	dev_info->model = NULL;
8178 }
8179 
8180 /**
8181  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8182  * @hba: per-adapter instance
8183  *
8184  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8185  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8186  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8187  * the hibern8 exit latency.
8188  *
8189  * Return: zero on success, non-zero error value on failure.
8190  */
8191 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8192 {
8193 	int ret = 0;
8194 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8195 
8196 	ret = ufshcd_dme_peer_get(hba,
8197 				  UIC_ARG_MIB_SEL(
8198 					RX_MIN_ACTIVATETIME_CAPABILITY,
8199 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8200 				  &peer_rx_min_activatetime);
8201 	if (ret)
8202 		goto out;
8203 
8204 	/* make sure proper unit conversion is applied */
8205 	tuned_pa_tactivate =
8206 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8207 		 / PA_TACTIVATE_TIME_UNIT_US);
8208 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8209 			     tuned_pa_tactivate);
8210 
8211 out:
8212 	return ret;
8213 }
8214 
8215 /**
8216  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8217  * @hba: per-adapter instance
8218  *
8219  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8220  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8221  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8222  * This optimal value can help reduce the hibern8 exit latency.
8223  *
8224  * Return: zero on success, non-zero error value on failure.
8225  */
8226 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8227 {
8228 	int ret = 0;
8229 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8230 	u32 max_hibern8_time, tuned_pa_hibern8time;
8231 
8232 	ret = ufshcd_dme_get(hba,
8233 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8234 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8235 				  &local_tx_hibern8_time_cap);
8236 	if (ret)
8237 		goto out;
8238 
8239 	ret = ufshcd_dme_peer_get(hba,
8240 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8241 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8242 				  &peer_rx_hibern8_time_cap);
8243 	if (ret)
8244 		goto out;
8245 
8246 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8247 			       peer_rx_hibern8_time_cap);
8248 	/* make sure proper unit conversion is applied */
8249 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8250 				/ PA_HIBERN8_TIME_UNIT_US);
8251 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8252 			     tuned_pa_hibern8time);
8253 out:
8254 	return ret;
8255 }
8256 
8257 /**
8258  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8259  * less than device PA_TACTIVATE time.
8260  * @hba: per-adapter instance
8261  *
8262  * Some UFS devices require host PA_TACTIVATE to be lower than device
8263  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8264  * for such devices.
8265  *
8266  * Return: zero on success, non-zero error value on failure.
8267  */
8268 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8269 {
8270 	int ret = 0;
8271 	u32 granularity, peer_granularity;
8272 	u32 pa_tactivate, peer_pa_tactivate;
8273 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8274 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8275 
8276 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8277 				  &granularity);
8278 	if (ret)
8279 		goto out;
8280 
8281 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8282 				  &peer_granularity);
8283 	if (ret)
8284 		goto out;
8285 
8286 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8287 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8288 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8289 			__func__, granularity);
8290 		return -EINVAL;
8291 	}
8292 
8293 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8294 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8295 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8296 			__func__, peer_granularity);
8297 		return -EINVAL;
8298 	}
8299 
8300 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8301 	if (ret)
8302 		goto out;
8303 
8304 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8305 				  &peer_pa_tactivate);
8306 	if (ret)
8307 		goto out;
8308 
8309 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8310 	peer_pa_tactivate_us = peer_pa_tactivate *
8311 			     gran_to_us_table[peer_granularity - 1];
8312 
8313 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8314 		u32 new_peer_pa_tactivate;
8315 
8316 		new_peer_pa_tactivate = pa_tactivate_us /
8317 				      gran_to_us_table[peer_granularity - 1];
8318 		new_peer_pa_tactivate++;
8319 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8320 					  new_peer_pa_tactivate);
8321 	}
8322 
8323 out:
8324 	return ret;
8325 }
8326 
8327 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8328 {
8329 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8330 		ufshcd_tune_pa_tactivate(hba);
8331 		ufshcd_tune_pa_hibern8time(hba);
8332 	}
8333 
8334 	ufshcd_vops_apply_dev_quirks(hba);
8335 
8336 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8337 		/* set 1ms timeout for PA_TACTIVATE */
8338 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8339 
8340 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8341 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8342 }
8343 
8344 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8345 {
8346 	hba->ufs_stats.hibern8_exit_cnt = 0;
8347 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8348 	hba->req_abort_count = 0;
8349 }
8350 
8351 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8352 {
8353 	int err;
8354 	u8 *desc_buf;
8355 
8356 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8357 	if (!desc_buf) {
8358 		err = -ENOMEM;
8359 		goto out;
8360 	}
8361 
8362 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8363 				     desc_buf, QUERY_DESC_MAX_SIZE);
8364 	if (err) {
8365 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8366 				__func__, err);
8367 		goto out;
8368 	}
8369 
8370 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8371 		hba->dev_info.max_lu_supported = 32;
8372 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8373 		hba->dev_info.max_lu_supported = 8;
8374 
8375 out:
8376 	kfree(desc_buf);
8377 	return err;
8378 }
8379 
8380 struct ufs_ref_clk {
8381 	unsigned long freq_hz;
8382 	enum ufs_ref_clk_freq val;
8383 };
8384 
8385 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8386 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8387 	{26000000, REF_CLK_FREQ_26_MHZ},
8388 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8389 	{52000000, REF_CLK_FREQ_52_MHZ},
8390 	{0, REF_CLK_FREQ_INVAL},
8391 };
8392 
8393 static enum ufs_ref_clk_freq
8394 ufs_get_bref_clk_from_hz(unsigned long freq)
8395 {
8396 	int i;
8397 
8398 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8399 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8400 			return ufs_ref_clk_freqs[i].val;
8401 
8402 	return REF_CLK_FREQ_INVAL;
8403 }
8404 
8405 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8406 {
8407 	unsigned long freq;
8408 
8409 	freq = clk_get_rate(refclk);
8410 
8411 	hba->dev_ref_clk_freq =
8412 		ufs_get_bref_clk_from_hz(freq);
8413 
8414 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8415 		dev_err(hba->dev,
8416 		"invalid ref_clk setting = %ld\n", freq);
8417 }
8418 
8419 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8420 {
8421 	int err;
8422 	u32 ref_clk;
8423 	u32 freq = hba->dev_ref_clk_freq;
8424 
8425 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8426 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8427 
8428 	if (err) {
8429 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8430 			err);
8431 		goto out;
8432 	}
8433 
8434 	if (ref_clk == freq)
8435 		goto out; /* nothing to update */
8436 
8437 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8438 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8439 
8440 	if (err) {
8441 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8442 			ufs_ref_clk_freqs[freq].freq_hz);
8443 		goto out;
8444 	}
8445 
8446 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8447 			ufs_ref_clk_freqs[freq].freq_hz);
8448 
8449 out:
8450 	return err;
8451 }
8452 
8453 static int ufshcd_device_params_init(struct ufs_hba *hba)
8454 {
8455 	bool flag;
8456 	int ret;
8457 
8458 	/* Init UFS geometry descriptor related parameters */
8459 	ret = ufshcd_device_geo_params_init(hba);
8460 	if (ret)
8461 		goto out;
8462 
8463 	/* Check and apply UFS device quirks */
8464 	ret = ufs_get_device_desc(hba);
8465 	if (ret) {
8466 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8467 			__func__, ret);
8468 		goto out;
8469 	}
8470 
8471 	ufshcd_get_ref_clk_gating_wait(hba);
8472 
8473 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8474 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8475 		hba->dev_info.f_power_on_wp_en = flag;
8476 
8477 	/* Probe maximum power mode co-supported by both UFS host and device */
8478 	if (ufshcd_get_max_pwr_mode(hba))
8479 		dev_err(hba->dev,
8480 			"%s: Failed getting max supported power mode\n",
8481 			__func__);
8482 out:
8483 	return ret;
8484 }
8485 
8486 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8487 {
8488 	int err;
8489 	struct ufs_query_req *request = NULL;
8490 	struct ufs_query_res *response = NULL;
8491 	struct ufs_dev_info *dev_info = &hba->dev_info;
8492 	struct utp_upiu_query_v4_0 *upiu_data;
8493 
8494 	if (dev_info->wspecversion < 0x400)
8495 		return;
8496 
8497 	ufshcd_hold(hba);
8498 
8499 	mutex_lock(&hba->dev_cmd.lock);
8500 
8501 	ufshcd_init_query(hba, &request, &response,
8502 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8503 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8504 
8505 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8506 
8507 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8508 
8509 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8510 
8511 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8512 
8513 	if (err)
8514 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8515 			__func__, err);
8516 
8517 	mutex_unlock(&hba->dev_cmd.lock);
8518 	ufshcd_release(hba);
8519 }
8520 
8521 /**
8522  * ufshcd_add_lus - probe and add UFS logical units
8523  * @hba: per-adapter instance
8524  *
8525  * Return: 0 upon success; < 0 upon failure.
8526  */
8527 static int ufshcd_add_lus(struct ufs_hba *hba)
8528 {
8529 	int ret;
8530 
8531 	/* Add required well known logical units to scsi mid layer */
8532 	ret = ufshcd_scsi_add_wlus(hba);
8533 	if (ret)
8534 		goto out;
8535 
8536 	/* Initialize devfreq after UFS device is detected */
8537 	if (ufshcd_is_clkscaling_supported(hba)) {
8538 		memcpy(&hba->clk_scaling.saved_pwr_info,
8539 			&hba->pwr_info,
8540 			sizeof(struct ufs_pa_layer_attr));
8541 		hba->clk_scaling.is_allowed = true;
8542 
8543 		ret = ufshcd_devfreq_init(hba);
8544 		if (ret)
8545 			goto out;
8546 
8547 		hba->clk_scaling.is_enabled = true;
8548 		ufshcd_init_clk_scaling_sysfs(hba);
8549 	}
8550 
8551 	ufs_bsg_probe(hba);
8552 	scsi_scan_host(hba->host);
8553 
8554 out:
8555 	return ret;
8556 }
8557 
8558 /* SDB - Single Doorbell */
8559 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8560 {
8561 	size_t ucdl_size, utrdl_size;
8562 
8563 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8564 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8565 			   hba->ucdl_dma_addr);
8566 
8567 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8568 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8569 			   hba->utrdl_dma_addr);
8570 
8571 	devm_kfree(hba->dev, hba->lrb);
8572 }
8573 
8574 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8575 {
8576 	int ret;
8577 	int old_nutrs = hba->nutrs;
8578 
8579 	ret = ufshcd_mcq_decide_queue_depth(hba);
8580 	if (ret < 0)
8581 		return ret;
8582 
8583 	hba->nutrs = ret;
8584 	ret = ufshcd_mcq_init(hba);
8585 	if (ret)
8586 		goto err;
8587 
8588 	/*
8589 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8590 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8591 	 */
8592 	if (hba->nutrs != old_nutrs) {
8593 		ufshcd_release_sdb_queue(hba, old_nutrs);
8594 		ret = ufshcd_memory_alloc(hba);
8595 		if (ret)
8596 			goto err;
8597 		ufshcd_host_memory_configure(hba);
8598 	}
8599 
8600 	ret = ufshcd_mcq_memory_alloc(hba);
8601 	if (ret)
8602 		goto err;
8603 
8604 	return 0;
8605 err:
8606 	hba->nutrs = old_nutrs;
8607 	return ret;
8608 }
8609 
8610 static void ufshcd_config_mcq(struct ufs_hba *hba)
8611 {
8612 	int ret;
8613 	u32 intrs;
8614 
8615 	ret = ufshcd_mcq_vops_config_esi(hba);
8616 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8617 
8618 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8619 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8620 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8621 	ufshcd_enable_intr(hba, intrs);
8622 	ufshcd_mcq_make_queues_operational(hba);
8623 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8624 
8625 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8626 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8627 
8628 	/* Select MCQ mode */
8629 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8630 		      REG_UFS_MEM_CFG);
8631 	hba->mcq_enabled = true;
8632 
8633 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8634 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8635 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8636 		 hba->nutrs);
8637 }
8638 
8639 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8640 {
8641 	int ret;
8642 	struct Scsi_Host *host = hba->host;
8643 
8644 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8645 
8646 	ret = ufshcd_link_startup(hba);
8647 	if (ret)
8648 		return ret;
8649 
8650 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8651 		return ret;
8652 
8653 	/* Debug counters initialization */
8654 	ufshcd_clear_dbg_ufs_stats(hba);
8655 
8656 	/* UniPro link is active now */
8657 	ufshcd_set_link_active(hba);
8658 
8659 	/* Reconfigure MCQ upon reset */
8660 	if (is_mcq_enabled(hba) && !init_dev_params)
8661 		ufshcd_config_mcq(hba);
8662 
8663 	/* Verify device initialization by sending NOP OUT UPIU */
8664 	ret = ufshcd_verify_dev_init(hba);
8665 	if (ret)
8666 		return ret;
8667 
8668 	/* Initiate UFS initialization, and waiting until completion */
8669 	ret = ufshcd_complete_dev_init(hba);
8670 	if (ret)
8671 		return ret;
8672 
8673 	/*
8674 	 * Initialize UFS device parameters used by driver, these
8675 	 * parameters are associated with UFS descriptors.
8676 	 */
8677 	if (init_dev_params) {
8678 		ret = ufshcd_device_params_init(hba);
8679 		if (ret)
8680 			return ret;
8681 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8682 			ret = ufshcd_alloc_mcq(hba);
8683 			if (!ret) {
8684 				ufshcd_config_mcq(hba);
8685 			} else {
8686 				/* Continue with SDB mode */
8687 				use_mcq_mode = false;
8688 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8689 					 ret);
8690 			}
8691 			ret = scsi_add_host(host, hba->dev);
8692 			if (ret) {
8693 				dev_err(hba->dev, "scsi_add_host failed\n");
8694 				return ret;
8695 			}
8696 			hba->scsi_host_added = true;
8697 		} else if (is_mcq_supported(hba)) {
8698 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8699 			ufshcd_config_mcq(hba);
8700 		}
8701 	}
8702 
8703 	ufshcd_tune_unipro_params(hba);
8704 
8705 	/* UFS device is also active now */
8706 	ufshcd_set_ufs_dev_active(hba);
8707 	ufshcd_force_reset_auto_bkops(hba);
8708 
8709 	ufshcd_set_timestamp_attr(hba);
8710 
8711 	/* Gear up to HS gear if supported */
8712 	if (hba->max_pwr_info.is_valid) {
8713 		/*
8714 		 * Set the right value to bRefClkFreq before attempting to
8715 		 * switch to HS gears.
8716 		 */
8717 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8718 			ufshcd_set_dev_ref_clk(hba);
8719 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8720 		if (ret) {
8721 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8722 					__func__, ret);
8723 			return ret;
8724 		}
8725 	}
8726 
8727 	return 0;
8728 }
8729 
8730 /**
8731  * ufshcd_probe_hba - probe hba to detect device and initialize it
8732  * @hba: per-adapter instance
8733  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8734  *
8735  * Execute link-startup and verify device initialization
8736  *
8737  * Return: 0 upon success; < 0 upon failure.
8738  */
8739 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8740 {
8741 	ktime_t start = ktime_get();
8742 	unsigned long flags;
8743 	int ret;
8744 
8745 	ret = ufshcd_device_init(hba, init_dev_params);
8746 	if (ret)
8747 		goto out;
8748 
8749 	if (!hba->pm_op_in_progress &&
8750 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8751 		/* Reset the device and controller before doing reinit */
8752 		ufshcd_device_reset(hba);
8753 		ufs_put_device_desc(hba);
8754 		ufshcd_hba_stop(hba);
8755 		ufshcd_vops_reinit_notify(hba);
8756 		ret = ufshcd_hba_enable(hba);
8757 		if (ret) {
8758 			dev_err(hba->dev, "Host controller enable failed\n");
8759 			ufshcd_print_evt_hist(hba);
8760 			ufshcd_print_host_state(hba);
8761 			goto out;
8762 		}
8763 
8764 		/* Reinit the device */
8765 		ret = ufshcd_device_init(hba, init_dev_params);
8766 		if (ret)
8767 			goto out;
8768 	}
8769 
8770 	ufshcd_print_pwr_info(hba);
8771 
8772 	/*
8773 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8774 	 * and for removable UFS card as well, hence always set the parameter.
8775 	 * Note: Error handler may issue the device reset hence resetting
8776 	 * bActiveICCLevel as well so it is always safe to set this here.
8777 	 */
8778 	ufshcd_set_active_icc_lvl(hba);
8779 
8780 	/* Enable UFS Write Booster if supported */
8781 	ufshcd_configure_wb(hba);
8782 
8783 	if (hba->ee_usr_mask)
8784 		ufshcd_write_ee_control(hba);
8785 	/* Enable Auto-Hibernate if configured */
8786 	ufshcd_auto_hibern8_enable(hba);
8787 
8788 out:
8789 	spin_lock_irqsave(hba->host->host_lock, flags);
8790 	if (ret)
8791 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8792 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8793 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8794 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8795 
8796 	trace_ufshcd_init(dev_name(hba->dev), ret,
8797 		ktime_to_us(ktime_sub(ktime_get(), start)),
8798 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8799 	return ret;
8800 }
8801 
8802 /**
8803  * ufshcd_async_scan - asynchronous execution for probing hba
8804  * @data: data pointer to pass to this function
8805  * @cookie: cookie data
8806  */
8807 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8808 {
8809 	struct ufs_hba *hba = (struct ufs_hba *)data;
8810 	int ret;
8811 
8812 	down(&hba->host_sem);
8813 	/* Initialize hba, detect and initialize UFS device */
8814 	ret = ufshcd_probe_hba(hba, true);
8815 	up(&hba->host_sem);
8816 	if (ret)
8817 		goto out;
8818 
8819 	/* Probe and add UFS logical units  */
8820 	ret = ufshcd_add_lus(hba);
8821 
8822 out:
8823 	pm_runtime_put_sync(hba->dev);
8824 
8825 	if (ret)
8826 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8827 }
8828 
8829 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8830 {
8831 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8832 
8833 	if (!hba->system_suspending) {
8834 		/* Activate the error handler in the SCSI core. */
8835 		return SCSI_EH_NOT_HANDLED;
8836 	}
8837 
8838 	/*
8839 	 * If we get here we know that no TMFs are outstanding and also that
8840 	 * the only pending command is a START STOP UNIT command. Handle the
8841 	 * timeout of that command directly to prevent a deadlock between
8842 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8843 	 */
8844 	ufshcd_link_recovery(hba);
8845 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8846 		 __func__, hba->outstanding_tasks);
8847 
8848 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8849 }
8850 
8851 static const struct attribute_group *ufshcd_driver_groups[] = {
8852 	&ufs_sysfs_unit_descriptor_group,
8853 	&ufs_sysfs_lun_attributes_group,
8854 	NULL,
8855 };
8856 
8857 static struct ufs_hba_variant_params ufs_hba_vps = {
8858 	.hba_enable_delay_us		= 1000,
8859 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8860 	.devfreq_profile.polling_ms	= 100,
8861 	.devfreq_profile.target		= ufshcd_devfreq_target,
8862 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8863 	.ondemand_data.upthreshold	= 70,
8864 	.ondemand_data.downdifferential	= 5,
8865 };
8866 
8867 static const struct scsi_host_template ufshcd_driver_template = {
8868 	.module			= THIS_MODULE,
8869 	.name			= UFSHCD,
8870 	.proc_name		= UFSHCD,
8871 	.map_queues		= ufshcd_map_queues,
8872 	.queuecommand		= ufshcd_queuecommand,
8873 	.mq_poll		= ufshcd_poll,
8874 	.slave_alloc		= ufshcd_slave_alloc,
8875 	.slave_configure	= ufshcd_slave_configure,
8876 	.slave_destroy		= ufshcd_slave_destroy,
8877 	.change_queue_depth	= ufshcd_change_queue_depth,
8878 	.eh_abort_handler	= ufshcd_abort,
8879 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8880 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8881 	.eh_timed_out		= ufshcd_eh_timed_out,
8882 	.this_id		= -1,
8883 	.sg_tablesize		= SG_ALL,
8884 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8885 	.can_queue		= UFSHCD_CAN_QUEUE,
8886 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8887 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8888 	.max_host_blocked	= 1,
8889 	.track_queue_depth	= 1,
8890 	.skip_settle_delay	= 1,
8891 	.sdev_groups		= ufshcd_driver_groups,
8892 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8893 };
8894 
8895 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8896 				   int ua)
8897 {
8898 	int ret;
8899 
8900 	if (!vreg)
8901 		return 0;
8902 
8903 	/*
8904 	 * "set_load" operation shall be required on those regulators
8905 	 * which specifically configured current limitation. Otherwise
8906 	 * zero max_uA may cause unexpected behavior when regulator is
8907 	 * enabled or set as high power mode.
8908 	 */
8909 	if (!vreg->max_uA)
8910 		return 0;
8911 
8912 	ret = regulator_set_load(vreg->reg, ua);
8913 	if (ret < 0) {
8914 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8915 				__func__, vreg->name, ua, ret);
8916 	}
8917 
8918 	return ret;
8919 }
8920 
8921 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8922 					 struct ufs_vreg *vreg)
8923 {
8924 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8925 }
8926 
8927 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8928 					 struct ufs_vreg *vreg)
8929 {
8930 	if (!vreg)
8931 		return 0;
8932 
8933 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8934 }
8935 
8936 static int ufshcd_config_vreg(struct device *dev,
8937 		struct ufs_vreg *vreg, bool on)
8938 {
8939 	if (regulator_count_voltages(vreg->reg) <= 0)
8940 		return 0;
8941 
8942 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8943 }
8944 
8945 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8946 {
8947 	int ret = 0;
8948 
8949 	if (!vreg || vreg->enabled)
8950 		goto out;
8951 
8952 	ret = ufshcd_config_vreg(dev, vreg, true);
8953 	if (!ret)
8954 		ret = regulator_enable(vreg->reg);
8955 
8956 	if (!ret)
8957 		vreg->enabled = true;
8958 	else
8959 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8960 				__func__, vreg->name, ret);
8961 out:
8962 	return ret;
8963 }
8964 
8965 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8966 {
8967 	int ret = 0;
8968 
8969 	if (!vreg || !vreg->enabled || vreg->always_on)
8970 		goto out;
8971 
8972 	ret = regulator_disable(vreg->reg);
8973 
8974 	if (!ret) {
8975 		/* ignore errors on applying disable config */
8976 		ufshcd_config_vreg(dev, vreg, false);
8977 		vreg->enabled = false;
8978 	} else {
8979 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8980 				__func__, vreg->name, ret);
8981 	}
8982 out:
8983 	return ret;
8984 }
8985 
8986 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8987 {
8988 	int ret = 0;
8989 	struct device *dev = hba->dev;
8990 	struct ufs_vreg_info *info = &hba->vreg_info;
8991 
8992 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8993 	if (ret)
8994 		goto out;
8995 
8996 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8997 	if (ret)
8998 		goto out;
8999 
9000 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9001 
9002 out:
9003 	if (ret) {
9004 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9005 		ufshcd_toggle_vreg(dev, info->vccq, false);
9006 		ufshcd_toggle_vreg(dev, info->vcc, false);
9007 	}
9008 	return ret;
9009 }
9010 
9011 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9012 {
9013 	struct ufs_vreg_info *info = &hba->vreg_info;
9014 
9015 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9016 }
9017 
9018 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9019 {
9020 	int ret = 0;
9021 
9022 	if (!vreg)
9023 		goto out;
9024 
9025 	vreg->reg = devm_regulator_get(dev, vreg->name);
9026 	if (IS_ERR(vreg->reg)) {
9027 		ret = PTR_ERR(vreg->reg);
9028 		dev_err(dev, "%s: %s get failed, err=%d\n",
9029 				__func__, vreg->name, ret);
9030 	}
9031 out:
9032 	return ret;
9033 }
9034 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9035 
9036 static int ufshcd_init_vreg(struct ufs_hba *hba)
9037 {
9038 	int ret = 0;
9039 	struct device *dev = hba->dev;
9040 	struct ufs_vreg_info *info = &hba->vreg_info;
9041 
9042 	ret = ufshcd_get_vreg(dev, info->vcc);
9043 	if (ret)
9044 		goto out;
9045 
9046 	ret = ufshcd_get_vreg(dev, info->vccq);
9047 	if (!ret)
9048 		ret = ufshcd_get_vreg(dev, info->vccq2);
9049 out:
9050 	return ret;
9051 }
9052 
9053 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9054 {
9055 	struct ufs_vreg_info *info = &hba->vreg_info;
9056 
9057 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9058 }
9059 
9060 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9061 {
9062 	int ret = 0;
9063 	struct ufs_clk_info *clki;
9064 	struct list_head *head = &hba->clk_list_head;
9065 	unsigned long flags;
9066 	ktime_t start = ktime_get();
9067 	bool clk_state_changed = false;
9068 
9069 	if (list_empty(head))
9070 		goto out;
9071 
9072 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9073 	if (ret)
9074 		return ret;
9075 
9076 	list_for_each_entry(clki, head, list) {
9077 		if (!IS_ERR_OR_NULL(clki->clk)) {
9078 			/*
9079 			 * Don't disable clocks which are needed
9080 			 * to keep the link active.
9081 			 */
9082 			if (ufshcd_is_link_active(hba) &&
9083 			    clki->keep_link_active)
9084 				continue;
9085 
9086 			clk_state_changed = on ^ clki->enabled;
9087 			if (on && !clki->enabled) {
9088 				ret = clk_prepare_enable(clki->clk);
9089 				if (ret) {
9090 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9091 						__func__, clki->name, ret);
9092 					goto out;
9093 				}
9094 			} else if (!on && clki->enabled) {
9095 				clk_disable_unprepare(clki->clk);
9096 			}
9097 			clki->enabled = on;
9098 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9099 					clki->name, on ? "en" : "dis");
9100 		}
9101 	}
9102 
9103 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9104 	if (ret)
9105 		return ret;
9106 
9107 out:
9108 	if (ret) {
9109 		list_for_each_entry(clki, head, list) {
9110 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9111 				clk_disable_unprepare(clki->clk);
9112 		}
9113 	} else if (!ret && on) {
9114 		spin_lock_irqsave(hba->host->host_lock, flags);
9115 		hba->clk_gating.state = CLKS_ON;
9116 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9117 					hba->clk_gating.state);
9118 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9119 	}
9120 
9121 	if (clk_state_changed)
9122 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9123 			(on ? "on" : "off"),
9124 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9125 	return ret;
9126 }
9127 
9128 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9129 {
9130 	u32 freq;
9131 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9132 
9133 	if (ret) {
9134 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9135 		return REF_CLK_FREQ_INVAL;
9136 	}
9137 
9138 	return ufs_get_bref_clk_from_hz(freq);
9139 }
9140 
9141 static int ufshcd_init_clocks(struct ufs_hba *hba)
9142 {
9143 	int ret = 0;
9144 	struct ufs_clk_info *clki;
9145 	struct device *dev = hba->dev;
9146 	struct list_head *head = &hba->clk_list_head;
9147 
9148 	if (list_empty(head))
9149 		goto out;
9150 
9151 	list_for_each_entry(clki, head, list) {
9152 		if (!clki->name)
9153 			continue;
9154 
9155 		clki->clk = devm_clk_get(dev, clki->name);
9156 		if (IS_ERR(clki->clk)) {
9157 			ret = PTR_ERR(clki->clk);
9158 			dev_err(dev, "%s: %s clk get failed, %d\n",
9159 					__func__, clki->name, ret);
9160 			goto out;
9161 		}
9162 
9163 		/*
9164 		 * Parse device ref clk freq as per device tree "ref_clk".
9165 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9166 		 * in ufshcd_alloc_host().
9167 		 */
9168 		if (!strcmp(clki->name, "ref_clk"))
9169 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9170 
9171 		if (clki->max_freq) {
9172 			ret = clk_set_rate(clki->clk, clki->max_freq);
9173 			if (ret) {
9174 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9175 					__func__, clki->name,
9176 					clki->max_freq, ret);
9177 				goto out;
9178 			}
9179 			clki->curr_freq = clki->max_freq;
9180 		}
9181 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9182 				clki->name, clk_get_rate(clki->clk));
9183 	}
9184 out:
9185 	return ret;
9186 }
9187 
9188 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9189 {
9190 	int err = 0;
9191 
9192 	if (!hba->vops)
9193 		goto out;
9194 
9195 	err = ufshcd_vops_init(hba);
9196 	if (err)
9197 		dev_err_probe(hba->dev, err,
9198 			      "%s: variant %s init failed with err %d\n",
9199 			      __func__, ufshcd_get_var_name(hba), err);
9200 out:
9201 	return err;
9202 }
9203 
9204 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9205 {
9206 	if (!hba->vops)
9207 		return;
9208 
9209 	ufshcd_vops_exit(hba);
9210 }
9211 
9212 static int ufshcd_hba_init(struct ufs_hba *hba)
9213 {
9214 	int err;
9215 
9216 	/*
9217 	 * Handle host controller power separately from the UFS device power
9218 	 * rails as it will help controlling the UFS host controller power
9219 	 * collapse easily which is different than UFS device power collapse.
9220 	 * Also, enable the host controller power before we go ahead with rest
9221 	 * of the initialization here.
9222 	 */
9223 	err = ufshcd_init_hba_vreg(hba);
9224 	if (err)
9225 		goto out;
9226 
9227 	err = ufshcd_setup_hba_vreg(hba, true);
9228 	if (err)
9229 		goto out;
9230 
9231 	err = ufshcd_init_clocks(hba);
9232 	if (err)
9233 		goto out_disable_hba_vreg;
9234 
9235 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9236 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9237 
9238 	err = ufshcd_setup_clocks(hba, true);
9239 	if (err)
9240 		goto out_disable_hba_vreg;
9241 
9242 	err = ufshcd_init_vreg(hba);
9243 	if (err)
9244 		goto out_disable_clks;
9245 
9246 	err = ufshcd_setup_vreg(hba, true);
9247 	if (err)
9248 		goto out_disable_clks;
9249 
9250 	err = ufshcd_variant_hba_init(hba);
9251 	if (err)
9252 		goto out_disable_vreg;
9253 
9254 	ufs_debugfs_hba_init(hba);
9255 
9256 	hba->is_powered = true;
9257 	goto out;
9258 
9259 out_disable_vreg:
9260 	ufshcd_setup_vreg(hba, false);
9261 out_disable_clks:
9262 	ufshcd_setup_clocks(hba, false);
9263 out_disable_hba_vreg:
9264 	ufshcd_setup_hba_vreg(hba, false);
9265 out:
9266 	return err;
9267 }
9268 
9269 static void ufshcd_hba_exit(struct ufs_hba *hba)
9270 {
9271 	if (hba->is_powered) {
9272 		ufshcd_exit_clk_scaling(hba);
9273 		ufshcd_exit_clk_gating(hba);
9274 		if (hba->eh_wq)
9275 			destroy_workqueue(hba->eh_wq);
9276 		ufs_debugfs_hba_exit(hba);
9277 		ufshcd_variant_hba_exit(hba);
9278 		ufshcd_setup_vreg(hba, false);
9279 		ufshcd_setup_clocks(hba, false);
9280 		ufshcd_setup_hba_vreg(hba, false);
9281 		hba->is_powered = false;
9282 		ufs_put_device_desc(hba);
9283 	}
9284 }
9285 
9286 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9287 				     enum ufs_dev_pwr_mode pwr_mode,
9288 				     struct scsi_sense_hdr *sshdr)
9289 {
9290 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9291 	const struct scsi_exec_args args = {
9292 		.sshdr = sshdr,
9293 		.req_flags = BLK_MQ_REQ_PM,
9294 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9295 	};
9296 
9297 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9298 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9299 			&args);
9300 }
9301 
9302 /**
9303  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9304  *			     power mode
9305  * @hba: per adapter instance
9306  * @pwr_mode: device power mode to set
9307  *
9308  * Return: 0 if requested power mode is set successfully;
9309  *         < 0 if failed to set the requested power mode.
9310  */
9311 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9312 				     enum ufs_dev_pwr_mode pwr_mode)
9313 {
9314 	struct scsi_sense_hdr sshdr;
9315 	struct scsi_device *sdp;
9316 	unsigned long flags;
9317 	int ret, retries;
9318 
9319 	spin_lock_irqsave(hba->host->host_lock, flags);
9320 	sdp = hba->ufs_device_wlun;
9321 	if (sdp && scsi_device_online(sdp))
9322 		ret = scsi_device_get(sdp);
9323 	else
9324 		ret = -ENODEV;
9325 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9326 
9327 	if (ret)
9328 		return ret;
9329 
9330 	/*
9331 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9332 	 * handling, which would wait for host to be resumed. Since we know
9333 	 * we are functional while we are here, skip host resume in error
9334 	 * handling context.
9335 	 */
9336 	hba->host->eh_noresume = 1;
9337 
9338 	/*
9339 	 * Current function would be generally called from the power management
9340 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9341 	 * already suspended childs.
9342 	 */
9343 	for (retries = 3; retries > 0; --retries) {
9344 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9345 		/*
9346 		 * scsi_execute() only returns a negative value if the request
9347 		 * queue is dying.
9348 		 */
9349 		if (ret <= 0)
9350 			break;
9351 	}
9352 	if (ret) {
9353 		sdev_printk(KERN_WARNING, sdp,
9354 			    "START_STOP failed for power mode: %d, result %x\n",
9355 			    pwr_mode, ret);
9356 		if (ret > 0) {
9357 			if (scsi_sense_valid(&sshdr))
9358 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9359 			ret = -EIO;
9360 		}
9361 	} else {
9362 		hba->curr_dev_pwr_mode = pwr_mode;
9363 	}
9364 
9365 	scsi_device_put(sdp);
9366 	hba->host->eh_noresume = 0;
9367 	return ret;
9368 }
9369 
9370 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9371 					enum uic_link_state req_link_state,
9372 					bool check_for_bkops)
9373 {
9374 	int ret = 0;
9375 
9376 	if (req_link_state == hba->uic_link_state)
9377 		return 0;
9378 
9379 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9380 		ret = ufshcd_uic_hibern8_enter(hba);
9381 		if (!ret) {
9382 			ufshcd_set_link_hibern8(hba);
9383 		} else {
9384 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9385 					__func__, ret);
9386 			goto out;
9387 		}
9388 	}
9389 	/*
9390 	 * If autobkops is enabled, link can't be turned off because
9391 	 * turning off the link would also turn off the device, except in the
9392 	 * case of DeepSleep where the device is expected to remain powered.
9393 	 */
9394 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9395 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9396 		/*
9397 		 * Let's make sure that link is in low power mode, we are doing
9398 		 * this currently by putting the link in Hibern8. Otherway to
9399 		 * put the link in low power mode is to send the DME end point
9400 		 * to device and then send the DME reset command to local
9401 		 * unipro. But putting the link in hibern8 is much faster.
9402 		 *
9403 		 * Note also that putting the link in Hibern8 is a requirement
9404 		 * for entering DeepSleep.
9405 		 */
9406 		ret = ufshcd_uic_hibern8_enter(hba);
9407 		if (ret) {
9408 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9409 					__func__, ret);
9410 			goto out;
9411 		}
9412 		/*
9413 		 * Change controller state to "reset state" which
9414 		 * should also put the link in off/reset state
9415 		 */
9416 		ufshcd_hba_stop(hba);
9417 		/*
9418 		 * TODO: Check if we need any delay to make sure that
9419 		 * controller is reset
9420 		 */
9421 		ufshcd_set_link_off(hba);
9422 	}
9423 
9424 out:
9425 	return ret;
9426 }
9427 
9428 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9429 {
9430 	bool vcc_off = false;
9431 
9432 	/*
9433 	 * It seems some UFS devices may keep drawing more than sleep current
9434 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9435 	 * To avoid this situation, add 2ms delay before putting these UFS
9436 	 * rails in LPM mode.
9437 	 */
9438 	if (!ufshcd_is_link_active(hba) &&
9439 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9440 		usleep_range(2000, 2100);
9441 
9442 	/*
9443 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9444 	 * power.
9445 	 *
9446 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9447 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9448 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9449 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9450 	 *
9451 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9452 	 * in low power state which would save some power.
9453 	 *
9454 	 * If Write Booster is enabled and the device needs to flush the WB
9455 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9456 	 */
9457 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9458 	    !hba->dev_info.is_lu_power_on_wp) {
9459 		ufshcd_setup_vreg(hba, false);
9460 		vcc_off = true;
9461 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9462 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9463 		vcc_off = true;
9464 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9465 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9466 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9467 		}
9468 	}
9469 
9470 	/*
9471 	 * Some UFS devices require delay after VCC power rail is turned-off.
9472 	 */
9473 	if (vcc_off && hba->vreg_info.vcc &&
9474 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9475 		usleep_range(5000, 5100);
9476 }
9477 
9478 #ifdef CONFIG_PM
9479 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9480 {
9481 	int ret = 0;
9482 
9483 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9484 	    !hba->dev_info.is_lu_power_on_wp) {
9485 		ret = ufshcd_setup_vreg(hba, true);
9486 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9487 		if (!ufshcd_is_link_active(hba)) {
9488 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9489 			if (ret)
9490 				goto vcc_disable;
9491 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9492 			if (ret)
9493 				goto vccq_lpm;
9494 		}
9495 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9496 	}
9497 	goto out;
9498 
9499 vccq_lpm:
9500 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9501 vcc_disable:
9502 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9503 out:
9504 	return ret;
9505 }
9506 #endif /* CONFIG_PM */
9507 
9508 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9509 {
9510 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9511 		ufshcd_setup_hba_vreg(hba, false);
9512 }
9513 
9514 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9515 {
9516 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9517 		ufshcd_setup_hba_vreg(hba, true);
9518 }
9519 
9520 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9521 {
9522 	int ret = 0;
9523 	bool check_for_bkops;
9524 	enum ufs_pm_level pm_lvl;
9525 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9526 	enum uic_link_state req_link_state;
9527 
9528 	hba->pm_op_in_progress = true;
9529 	if (pm_op != UFS_SHUTDOWN_PM) {
9530 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9531 			 hba->rpm_lvl : hba->spm_lvl;
9532 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9533 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9534 	} else {
9535 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9536 		req_link_state = UIC_LINK_OFF_STATE;
9537 	}
9538 
9539 	/*
9540 	 * If we can't transition into any of the low power modes
9541 	 * just gate the clocks.
9542 	 */
9543 	ufshcd_hold(hba);
9544 	hba->clk_gating.is_suspended = true;
9545 
9546 	if (ufshcd_is_clkscaling_supported(hba))
9547 		ufshcd_clk_scaling_suspend(hba, true);
9548 
9549 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9550 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9551 		goto vops_suspend;
9552 	}
9553 
9554 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9555 	    (req_link_state == hba->uic_link_state))
9556 		goto enable_scaling;
9557 
9558 	/* UFS device & link must be active before we enter in this function */
9559 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9560 		/*  Wait err handler finish or trigger err recovery */
9561 		if (!ufshcd_eh_in_progress(hba))
9562 			ufshcd_force_error_recovery(hba);
9563 		ret = -EBUSY;
9564 		goto enable_scaling;
9565 	}
9566 
9567 	if (pm_op == UFS_RUNTIME_PM) {
9568 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9569 			/*
9570 			 * The device is idle with no requests in the queue,
9571 			 * allow background operations if bkops status shows
9572 			 * that performance might be impacted.
9573 			 */
9574 			ret = ufshcd_urgent_bkops(hba);
9575 			if (ret) {
9576 				/*
9577 				 * If return err in suspend flow, IO will hang.
9578 				 * Trigger error handler and break suspend for
9579 				 * error recovery.
9580 				 */
9581 				ufshcd_force_error_recovery(hba);
9582 				ret = -EBUSY;
9583 				goto enable_scaling;
9584 			}
9585 		} else {
9586 			/* make sure that auto bkops is disabled */
9587 			ufshcd_disable_auto_bkops(hba);
9588 		}
9589 		/*
9590 		 * If device needs to do BKOP or WB buffer flush during
9591 		 * Hibern8, keep device power mode as "active power mode"
9592 		 * and VCC supply.
9593 		 */
9594 		hba->dev_info.b_rpm_dev_flush_capable =
9595 			hba->auto_bkops_enabled ||
9596 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9597 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9598 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9599 			ufshcd_wb_need_flush(hba));
9600 	}
9601 
9602 	flush_work(&hba->eeh_work);
9603 
9604 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9605 	if (ret)
9606 		goto enable_scaling;
9607 
9608 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9609 		if (pm_op != UFS_RUNTIME_PM)
9610 			/* ensure that bkops is disabled */
9611 			ufshcd_disable_auto_bkops(hba);
9612 
9613 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9614 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9615 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9616 				/*
9617 				 * If return err in suspend flow, IO will hang.
9618 				 * Trigger error handler and break suspend for
9619 				 * error recovery.
9620 				 */
9621 				ufshcd_force_error_recovery(hba);
9622 				ret = -EBUSY;
9623 			}
9624 			if (ret)
9625 				goto enable_scaling;
9626 		}
9627 	}
9628 
9629 	/*
9630 	 * In the case of DeepSleep, the device is expected to remain powered
9631 	 * with the link off, so do not check for bkops.
9632 	 */
9633 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9634 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9635 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9636 		/*
9637 		 * If return err in suspend flow, IO will hang.
9638 		 * Trigger error handler and break suspend for
9639 		 * error recovery.
9640 		 */
9641 		ufshcd_force_error_recovery(hba);
9642 		ret = -EBUSY;
9643 	}
9644 	if (ret)
9645 		goto set_dev_active;
9646 
9647 vops_suspend:
9648 	/*
9649 	 * Call vendor specific suspend callback. As these callbacks may access
9650 	 * vendor specific host controller register space call them before the
9651 	 * host clocks are ON.
9652 	 */
9653 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9654 	if (ret)
9655 		goto set_link_active;
9656 	goto out;
9657 
9658 set_link_active:
9659 	/*
9660 	 * Device hardware reset is required to exit DeepSleep. Also, for
9661 	 * DeepSleep, the link is off so host reset and restore will be done
9662 	 * further below.
9663 	 */
9664 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9665 		ufshcd_device_reset(hba);
9666 		WARN_ON(!ufshcd_is_link_off(hba));
9667 	}
9668 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9669 		ufshcd_set_link_active(hba);
9670 	else if (ufshcd_is_link_off(hba))
9671 		ufshcd_host_reset_and_restore(hba);
9672 set_dev_active:
9673 	/* Can also get here needing to exit DeepSleep */
9674 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9675 		ufshcd_device_reset(hba);
9676 		ufshcd_host_reset_and_restore(hba);
9677 	}
9678 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9679 		ufshcd_disable_auto_bkops(hba);
9680 enable_scaling:
9681 	if (ufshcd_is_clkscaling_supported(hba))
9682 		ufshcd_clk_scaling_suspend(hba, false);
9683 
9684 	hba->dev_info.b_rpm_dev_flush_capable = false;
9685 out:
9686 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9687 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9688 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9689 	}
9690 
9691 	if (ret) {
9692 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9693 		hba->clk_gating.is_suspended = false;
9694 		ufshcd_release(hba);
9695 	}
9696 	hba->pm_op_in_progress = false;
9697 	return ret;
9698 }
9699 
9700 #ifdef CONFIG_PM
9701 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9702 {
9703 	int ret;
9704 	enum uic_link_state old_link_state = hba->uic_link_state;
9705 
9706 	hba->pm_op_in_progress = true;
9707 
9708 	/*
9709 	 * Call vendor specific resume callback. As these callbacks may access
9710 	 * vendor specific host controller register space call them when the
9711 	 * host clocks are ON.
9712 	 */
9713 	ret = ufshcd_vops_resume(hba, pm_op);
9714 	if (ret)
9715 		goto out;
9716 
9717 	/* For DeepSleep, the only supported option is to have the link off */
9718 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9719 
9720 	if (ufshcd_is_link_hibern8(hba)) {
9721 		ret = ufshcd_uic_hibern8_exit(hba);
9722 		if (!ret) {
9723 			ufshcd_set_link_active(hba);
9724 		} else {
9725 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9726 					__func__, ret);
9727 			goto vendor_suspend;
9728 		}
9729 	} else if (ufshcd_is_link_off(hba)) {
9730 		/*
9731 		 * A full initialization of the host and the device is
9732 		 * required since the link was put to off during suspend.
9733 		 * Note, in the case of DeepSleep, the device will exit
9734 		 * DeepSleep due to device reset.
9735 		 */
9736 		ret = ufshcd_reset_and_restore(hba);
9737 		/*
9738 		 * ufshcd_reset_and_restore() should have already
9739 		 * set the link state as active
9740 		 */
9741 		if (ret || !ufshcd_is_link_active(hba))
9742 			goto vendor_suspend;
9743 	}
9744 
9745 	if (!ufshcd_is_ufs_dev_active(hba)) {
9746 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9747 		if (ret)
9748 			goto set_old_link_state;
9749 		ufshcd_set_timestamp_attr(hba);
9750 	}
9751 
9752 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9753 		ufshcd_enable_auto_bkops(hba);
9754 	else
9755 		/*
9756 		 * If BKOPs operations are urgently needed at this moment then
9757 		 * keep auto-bkops enabled or else disable it.
9758 		 */
9759 		ufshcd_urgent_bkops(hba);
9760 
9761 	if (hba->ee_usr_mask)
9762 		ufshcd_write_ee_control(hba);
9763 
9764 	if (ufshcd_is_clkscaling_supported(hba))
9765 		ufshcd_clk_scaling_suspend(hba, false);
9766 
9767 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9768 		hba->dev_info.b_rpm_dev_flush_capable = false;
9769 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9770 	}
9771 
9772 	/* Enable Auto-Hibernate if configured */
9773 	ufshcd_auto_hibern8_enable(hba);
9774 
9775 	goto out;
9776 
9777 set_old_link_state:
9778 	ufshcd_link_state_transition(hba, old_link_state, 0);
9779 vendor_suspend:
9780 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9781 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9782 out:
9783 	if (ret)
9784 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9785 	hba->clk_gating.is_suspended = false;
9786 	ufshcd_release(hba);
9787 	hba->pm_op_in_progress = false;
9788 	return ret;
9789 }
9790 
9791 static int ufshcd_wl_runtime_suspend(struct device *dev)
9792 {
9793 	struct scsi_device *sdev = to_scsi_device(dev);
9794 	struct ufs_hba *hba;
9795 	int ret;
9796 	ktime_t start = ktime_get();
9797 
9798 	hba = shost_priv(sdev->host);
9799 
9800 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9801 	if (ret)
9802 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9803 
9804 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9805 		ktime_to_us(ktime_sub(ktime_get(), start)),
9806 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9807 
9808 	return ret;
9809 }
9810 
9811 static int ufshcd_wl_runtime_resume(struct device *dev)
9812 {
9813 	struct scsi_device *sdev = to_scsi_device(dev);
9814 	struct ufs_hba *hba;
9815 	int ret = 0;
9816 	ktime_t start = ktime_get();
9817 
9818 	hba = shost_priv(sdev->host);
9819 
9820 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9821 	if (ret)
9822 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9823 
9824 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9825 		ktime_to_us(ktime_sub(ktime_get(), start)),
9826 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9827 
9828 	return ret;
9829 }
9830 #endif
9831 
9832 #ifdef CONFIG_PM_SLEEP
9833 static int ufshcd_wl_suspend(struct device *dev)
9834 {
9835 	struct scsi_device *sdev = to_scsi_device(dev);
9836 	struct ufs_hba *hba;
9837 	int ret = 0;
9838 	ktime_t start = ktime_get();
9839 
9840 	hba = shost_priv(sdev->host);
9841 	down(&hba->host_sem);
9842 	hba->system_suspending = true;
9843 
9844 	if (pm_runtime_suspended(dev))
9845 		goto out;
9846 
9847 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9848 	if (ret) {
9849 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9850 		up(&hba->host_sem);
9851 	}
9852 
9853 out:
9854 	if (!ret)
9855 		hba->is_sys_suspended = true;
9856 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9857 		ktime_to_us(ktime_sub(ktime_get(), start)),
9858 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9859 
9860 	return ret;
9861 }
9862 
9863 static int ufshcd_wl_resume(struct device *dev)
9864 {
9865 	struct scsi_device *sdev = to_scsi_device(dev);
9866 	struct ufs_hba *hba;
9867 	int ret = 0;
9868 	ktime_t start = ktime_get();
9869 
9870 	hba = shost_priv(sdev->host);
9871 
9872 	if (pm_runtime_suspended(dev))
9873 		goto out;
9874 
9875 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9876 	if (ret)
9877 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9878 out:
9879 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9880 		ktime_to_us(ktime_sub(ktime_get(), start)),
9881 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9882 	if (!ret)
9883 		hba->is_sys_suspended = false;
9884 	hba->system_suspending = false;
9885 	up(&hba->host_sem);
9886 	return ret;
9887 }
9888 #endif
9889 
9890 /**
9891  * ufshcd_suspend - helper function for suspend operations
9892  * @hba: per adapter instance
9893  *
9894  * This function will put disable irqs, turn off clocks
9895  * and set vreg and hba-vreg in lpm mode.
9896  *
9897  * Return: 0 upon success; < 0 upon failure.
9898  */
9899 static int ufshcd_suspend(struct ufs_hba *hba)
9900 {
9901 	int ret;
9902 
9903 	if (!hba->is_powered)
9904 		return 0;
9905 	/*
9906 	 * Disable the host irq as host controller as there won't be any
9907 	 * host controller transaction expected till resume.
9908 	 */
9909 	ufshcd_disable_irq(hba);
9910 	ret = ufshcd_setup_clocks(hba, false);
9911 	if (ret) {
9912 		ufshcd_enable_irq(hba);
9913 		return ret;
9914 	}
9915 	if (ufshcd_is_clkgating_allowed(hba)) {
9916 		hba->clk_gating.state = CLKS_OFF;
9917 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9918 					hba->clk_gating.state);
9919 	}
9920 
9921 	ufshcd_vreg_set_lpm(hba);
9922 	/* Put the host controller in low power mode if possible */
9923 	ufshcd_hba_vreg_set_lpm(hba);
9924 	return ret;
9925 }
9926 
9927 #ifdef CONFIG_PM
9928 /**
9929  * ufshcd_resume - helper function for resume operations
9930  * @hba: per adapter instance
9931  *
9932  * This function basically turns on the regulators, clocks and
9933  * irqs of the hba.
9934  *
9935  * Return: 0 for success and non-zero for failure.
9936  */
9937 static int ufshcd_resume(struct ufs_hba *hba)
9938 {
9939 	int ret;
9940 
9941 	if (!hba->is_powered)
9942 		return 0;
9943 
9944 	ufshcd_hba_vreg_set_hpm(hba);
9945 	ret = ufshcd_vreg_set_hpm(hba);
9946 	if (ret)
9947 		goto out;
9948 
9949 	/* Make sure clocks are enabled before accessing controller */
9950 	ret = ufshcd_setup_clocks(hba, true);
9951 	if (ret)
9952 		goto disable_vreg;
9953 
9954 	/* enable the host irq as host controller would be active soon */
9955 	ufshcd_enable_irq(hba);
9956 
9957 	goto out;
9958 
9959 disable_vreg:
9960 	ufshcd_vreg_set_lpm(hba);
9961 out:
9962 	if (ret)
9963 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9964 	return ret;
9965 }
9966 #endif /* CONFIG_PM */
9967 
9968 #ifdef CONFIG_PM_SLEEP
9969 /**
9970  * ufshcd_system_suspend - system suspend callback
9971  * @dev: Device associated with the UFS controller.
9972  *
9973  * Executed before putting the system into a sleep state in which the contents
9974  * of main memory are preserved.
9975  *
9976  * Return: 0 for success and non-zero for failure.
9977  */
9978 int ufshcd_system_suspend(struct device *dev)
9979 {
9980 	struct ufs_hba *hba = dev_get_drvdata(dev);
9981 	int ret = 0;
9982 	ktime_t start = ktime_get();
9983 
9984 	if (pm_runtime_suspended(hba->dev))
9985 		goto out;
9986 
9987 	ret = ufshcd_suspend(hba);
9988 out:
9989 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9990 		ktime_to_us(ktime_sub(ktime_get(), start)),
9991 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9992 	return ret;
9993 }
9994 EXPORT_SYMBOL(ufshcd_system_suspend);
9995 
9996 /**
9997  * ufshcd_system_resume - system resume callback
9998  * @dev: Device associated with the UFS controller.
9999  *
10000  * Executed after waking the system up from a sleep state in which the contents
10001  * of main memory were preserved.
10002  *
10003  * Return: 0 for success and non-zero for failure.
10004  */
10005 int ufshcd_system_resume(struct device *dev)
10006 {
10007 	struct ufs_hba *hba = dev_get_drvdata(dev);
10008 	ktime_t start = ktime_get();
10009 	int ret = 0;
10010 
10011 	if (pm_runtime_suspended(hba->dev))
10012 		goto out;
10013 
10014 	ret = ufshcd_resume(hba);
10015 
10016 out:
10017 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10018 		ktime_to_us(ktime_sub(ktime_get(), start)),
10019 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10020 
10021 	return ret;
10022 }
10023 EXPORT_SYMBOL(ufshcd_system_resume);
10024 #endif /* CONFIG_PM_SLEEP */
10025 
10026 #ifdef CONFIG_PM
10027 /**
10028  * ufshcd_runtime_suspend - runtime suspend callback
10029  * @dev: Device associated with the UFS controller.
10030  *
10031  * Check the description of ufshcd_suspend() function for more details.
10032  *
10033  * Return: 0 for success and non-zero for failure.
10034  */
10035 int ufshcd_runtime_suspend(struct device *dev)
10036 {
10037 	struct ufs_hba *hba = dev_get_drvdata(dev);
10038 	int ret;
10039 	ktime_t start = ktime_get();
10040 
10041 	ret = ufshcd_suspend(hba);
10042 
10043 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10044 		ktime_to_us(ktime_sub(ktime_get(), start)),
10045 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10046 	return ret;
10047 }
10048 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10049 
10050 /**
10051  * ufshcd_runtime_resume - runtime resume routine
10052  * @dev: Device associated with the UFS controller.
10053  *
10054  * This function basically brings controller
10055  * to active state. Following operations are done in this function:
10056  *
10057  * 1. Turn on all the controller related clocks
10058  * 2. Turn ON VCC rail
10059  *
10060  * Return: 0 upon success; < 0 upon failure.
10061  */
10062 int ufshcd_runtime_resume(struct device *dev)
10063 {
10064 	struct ufs_hba *hba = dev_get_drvdata(dev);
10065 	int ret;
10066 	ktime_t start = ktime_get();
10067 
10068 	ret = ufshcd_resume(hba);
10069 
10070 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10071 		ktime_to_us(ktime_sub(ktime_get(), start)),
10072 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10073 	return ret;
10074 }
10075 EXPORT_SYMBOL(ufshcd_runtime_resume);
10076 #endif /* CONFIG_PM */
10077 
10078 static void ufshcd_wl_shutdown(struct device *dev)
10079 {
10080 	struct scsi_device *sdev = to_scsi_device(dev);
10081 	struct ufs_hba *hba = shost_priv(sdev->host);
10082 
10083 	down(&hba->host_sem);
10084 	hba->shutting_down = true;
10085 	up(&hba->host_sem);
10086 
10087 	/* Turn on everything while shutting down */
10088 	ufshcd_rpm_get_sync(hba);
10089 	scsi_device_quiesce(sdev);
10090 	shost_for_each_device(sdev, hba->host) {
10091 		if (sdev == hba->ufs_device_wlun)
10092 			continue;
10093 		scsi_device_quiesce(sdev);
10094 	}
10095 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10096 
10097 	/*
10098 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10099 	 * clocks.
10100 	 */
10101 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10102 		ufshcd_suspend(hba);
10103 
10104 	hba->is_powered = false;
10105 }
10106 
10107 /**
10108  * ufshcd_remove - de-allocate SCSI host and host memory space
10109  *		data structure memory
10110  * @hba: per adapter instance
10111  */
10112 void ufshcd_remove(struct ufs_hba *hba)
10113 {
10114 	if (hba->ufs_device_wlun)
10115 		ufshcd_rpm_get_sync(hba);
10116 	ufs_hwmon_remove(hba);
10117 	ufs_bsg_remove(hba);
10118 	ufs_sysfs_remove_nodes(hba->dev);
10119 	blk_mq_destroy_queue(hba->tmf_queue);
10120 	blk_put_queue(hba->tmf_queue);
10121 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10122 	scsi_remove_host(hba->host);
10123 	/* disable interrupts */
10124 	ufshcd_disable_intr(hba, hba->intr_mask);
10125 	ufshcd_hba_stop(hba);
10126 	ufshcd_hba_exit(hba);
10127 }
10128 EXPORT_SYMBOL_GPL(ufshcd_remove);
10129 
10130 #ifdef CONFIG_PM_SLEEP
10131 int ufshcd_system_freeze(struct device *dev)
10132 {
10133 
10134 	return ufshcd_system_suspend(dev);
10135 
10136 }
10137 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10138 
10139 int ufshcd_system_restore(struct device *dev)
10140 {
10141 
10142 	struct ufs_hba *hba = dev_get_drvdata(dev);
10143 	int ret;
10144 
10145 	ret = ufshcd_system_resume(dev);
10146 	if (ret)
10147 		return ret;
10148 
10149 	/* Configure UTRL and UTMRL base address registers */
10150 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10151 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10152 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10153 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10154 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10155 			REG_UTP_TASK_REQ_LIST_BASE_L);
10156 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10157 			REG_UTP_TASK_REQ_LIST_BASE_H);
10158 	/*
10159 	 * Make sure that UTRL and UTMRL base address registers
10160 	 * are updated with the latest queue addresses. Only after
10161 	 * updating these addresses, we can queue the new commands.
10162 	 */
10163 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10164 
10165 	return 0;
10166 
10167 }
10168 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10169 
10170 int ufshcd_system_thaw(struct device *dev)
10171 {
10172 	return ufshcd_system_resume(dev);
10173 }
10174 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10175 #endif /* CONFIG_PM_SLEEP  */
10176 
10177 /**
10178  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10179  * @hba: pointer to Host Bus Adapter (HBA)
10180  */
10181 void ufshcd_dealloc_host(struct ufs_hba *hba)
10182 {
10183 	scsi_host_put(hba->host);
10184 }
10185 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10186 
10187 /**
10188  * ufshcd_set_dma_mask - Set dma mask based on the controller
10189  *			 addressing capability
10190  * @hba: per adapter instance
10191  *
10192  * Return: 0 for success, non-zero for failure.
10193  */
10194 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10195 {
10196 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10197 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10198 			return 0;
10199 	}
10200 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10201 }
10202 
10203 /**
10204  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10205  * @dev: pointer to device handle
10206  * @hba_handle: driver private handle
10207  *
10208  * Return: 0 on success, non-zero value on failure.
10209  */
10210 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10211 {
10212 	struct Scsi_Host *host;
10213 	struct ufs_hba *hba;
10214 	int err = 0;
10215 
10216 	if (!dev) {
10217 		dev_err(dev,
10218 		"Invalid memory reference for dev is NULL\n");
10219 		err = -ENODEV;
10220 		goto out_error;
10221 	}
10222 
10223 	host = scsi_host_alloc(&ufshcd_driver_template,
10224 				sizeof(struct ufs_hba));
10225 	if (!host) {
10226 		dev_err(dev, "scsi_host_alloc failed\n");
10227 		err = -ENOMEM;
10228 		goto out_error;
10229 	}
10230 	host->nr_maps = HCTX_TYPE_POLL + 1;
10231 	hba = shost_priv(host);
10232 	hba->host = host;
10233 	hba->dev = dev;
10234 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10235 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10236 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10237 	INIT_LIST_HEAD(&hba->clk_list_head);
10238 	spin_lock_init(&hba->outstanding_lock);
10239 
10240 	*hba_handle = hba;
10241 
10242 out_error:
10243 	return err;
10244 }
10245 EXPORT_SYMBOL(ufshcd_alloc_host);
10246 
10247 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10248 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10249 				     const struct blk_mq_queue_data *qd)
10250 {
10251 	WARN_ON_ONCE(true);
10252 	return BLK_STS_NOTSUPP;
10253 }
10254 
10255 static const struct blk_mq_ops ufshcd_tmf_ops = {
10256 	.queue_rq = ufshcd_queue_tmf,
10257 };
10258 
10259 /**
10260  * ufshcd_init - Driver initialization routine
10261  * @hba: per-adapter instance
10262  * @mmio_base: base register address
10263  * @irq: Interrupt line of device
10264  *
10265  * Return: 0 on success, non-zero value on failure.
10266  */
10267 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10268 {
10269 	int err;
10270 	struct Scsi_Host *host = hba->host;
10271 	struct device *dev = hba->dev;
10272 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10273 
10274 	/*
10275 	 * dev_set_drvdata() must be called before any callbacks are registered
10276 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10277 	 * sysfs).
10278 	 */
10279 	dev_set_drvdata(dev, hba);
10280 
10281 	if (!mmio_base) {
10282 		dev_err(hba->dev,
10283 		"Invalid memory reference for mmio_base is NULL\n");
10284 		err = -ENODEV;
10285 		goto out_error;
10286 	}
10287 
10288 	hba->mmio_base = mmio_base;
10289 	hba->irq = irq;
10290 	hba->vps = &ufs_hba_vps;
10291 
10292 	err = ufshcd_hba_init(hba);
10293 	if (err)
10294 		goto out_error;
10295 
10296 	/* Read capabilities registers */
10297 	err = ufshcd_hba_capabilities(hba);
10298 	if (err)
10299 		goto out_disable;
10300 
10301 	/* Get UFS version supported by the controller */
10302 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10303 
10304 	/* Get Interrupt bit mask per version */
10305 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10306 
10307 	err = ufshcd_set_dma_mask(hba);
10308 	if (err) {
10309 		dev_err(hba->dev, "set dma mask failed\n");
10310 		goto out_disable;
10311 	}
10312 
10313 	/* Allocate memory for host memory space */
10314 	err = ufshcd_memory_alloc(hba);
10315 	if (err) {
10316 		dev_err(hba->dev, "Memory allocation failed\n");
10317 		goto out_disable;
10318 	}
10319 
10320 	/* Configure LRB */
10321 	ufshcd_host_memory_configure(hba);
10322 
10323 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10324 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10325 	host->max_id = UFSHCD_MAX_ID;
10326 	host->max_lun = UFS_MAX_LUNS;
10327 	host->max_channel = UFSHCD_MAX_CHANNEL;
10328 	host->unique_id = host->host_no;
10329 	host->max_cmd_len = UFS_CDB_SIZE;
10330 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10331 
10332 	hba->max_pwr_info.is_valid = false;
10333 
10334 	/* Initialize work queues */
10335 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10336 		 hba->host->host_no);
10337 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10338 	if (!hba->eh_wq) {
10339 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10340 			__func__);
10341 		err = -ENOMEM;
10342 		goto out_disable;
10343 	}
10344 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10345 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10346 
10347 	sema_init(&hba->host_sem, 1);
10348 
10349 	/* Initialize UIC command mutex */
10350 	mutex_init(&hba->uic_cmd_mutex);
10351 
10352 	/* Initialize mutex for device management commands */
10353 	mutex_init(&hba->dev_cmd.lock);
10354 
10355 	/* Initialize mutex for exception event control */
10356 	mutex_init(&hba->ee_ctrl_mutex);
10357 
10358 	mutex_init(&hba->wb_mutex);
10359 	init_rwsem(&hba->clk_scaling_lock);
10360 
10361 	ufshcd_init_clk_gating(hba);
10362 
10363 	ufshcd_init_clk_scaling(hba);
10364 
10365 	/*
10366 	 * In order to avoid any spurious interrupt immediately after
10367 	 * registering UFS controller interrupt handler, clear any pending UFS
10368 	 * interrupt status and disable all the UFS interrupts.
10369 	 */
10370 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10371 		      REG_INTERRUPT_STATUS);
10372 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10373 	/*
10374 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10375 	 * status is cleared before registering UFS interrupt handler.
10376 	 */
10377 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10378 
10379 	/* IRQ registration */
10380 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10381 	if (err) {
10382 		dev_err(hba->dev, "request irq failed\n");
10383 		goto out_disable;
10384 	} else {
10385 		hba->is_irq_enabled = true;
10386 	}
10387 
10388 	if (!is_mcq_supported(hba)) {
10389 		err = scsi_add_host(host, hba->dev);
10390 		if (err) {
10391 			dev_err(hba->dev, "scsi_add_host failed\n");
10392 			goto out_disable;
10393 		}
10394 	}
10395 
10396 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10397 		.nr_hw_queues	= 1,
10398 		.queue_depth	= hba->nutmrs,
10399 		.ops		= &ufshcd_tmf_ops,
10400 		.flags		= BLK_MQ_F_NO_SCHED,
10401 	};
10402 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10403 	if (err < 0)
10404 		goto out_remove_scsi_host;
10405 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10406 	if (IS_ERR(hba->tmf_queue)) {
10407 		err = PTR_ERR(hba->tmf_queue);
10408 		goto free_tmf_tag_set;
10409 	}
10410 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10411 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10412 	if (!hba->tmf_rqs) {
10413 		err = -ENOMEM;
10414 		goto free_tmf_queue;
10415 	}
10416 
10417 	/* Reset the attached device */
10418 	ufshcd_device_reset(hba);
10419 
10420 	ufshcd_init_crypto(hba);
10421 
10422 	/* Host controller enable */
10423 	err = ufshcd_hba_enable(hba);
10424 	if (err) {
10425 		dev_err(hba->dev, "Host controller enable failed\n");
10426 		ufshcd_print_evt_hist(hba);
10427 		ufshcd_print_host_state(hba);
10428 		goto free_tmf_queue;
10429 	}
10430 
10431 	/*
10432 	 * Set the default power management level for runtime and system PM.
10433 	 * Default power saving mode is to keep UFS link in Hibern8 state
10434 	 * and UFS device in sleep state.
10435 	 */
10436 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10437 						UFS_SLEEP_PWR_MODE,
10438 						UIC_LINK_HIBERN8_STATE);
10439 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10440 						UFS_SLEEP_PWR_MODE,
10441 						UIC_LINK_HIBERN8_STATE);
10442 
10443 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10444 			  ufshcd_rpm_dev_flush_recheck_work);
10445 
10446 	/* Set the default auto-hiberate idle timer value to 150 ms */
10447 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10448 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10449 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10450 	}
10451 
10452 	/* Hold auto suspend until async scan completes */
10453 	pm_runtime_get_sync(dev);
10454 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10455 	/*
10456 	 * We are assuming that device wasn't put in sleep/power-down
10457 	 * state exclusively during the boot stage before kernel.
10458 	 * This assumption helps avoid doing link startup twice during
10459 	 * ufshcd_probe_hba().
10460 	 */
10461 	ufshcd_set_ufs_dev_active(hba);
10462 
10463 	async_schedule(ufshcd_async_scan, hba);
10464 	ufs_sysfs_add_nodes(hba->dev);
10465 
10466 	device_enable_async_suspend(dev);
10467 	return 0;
10468 
10469 free_tmf_queue:
10470 	blk_mq_destroy_queue(hba->tmf_queue);
10471 	blk_put_queue(hba->tmf_queue);
10472 free_tmf_tag_set:
10473 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10474 out_remove_scsi_host:
10475 	scsi_remove_host(hba->host);
10476 out_disable:
10477 	hba->is_irq_enabled = false;
10478 	ufshcd_hba_exit(hba);
10479 out_error:
10480 	return err;
10481 }
10482 EXPORT_SYMBOL_GPL(ufshcd_init);
10483 
10484 void ufshcd_resume_complete(struct device *dev)
10485 {
10486 	struct ufs_hba *hba = dev_get_drvdata(dev);
10487 
10488 	if (hba->complete_put) {
10489 		ufshcd_rpm_put(hba);
10490 		hba->complete_put = false;
10491 	}
10492 }
10493 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10494 
10495 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10496 {
10497 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10498 	enum ufs_dev_pwr_mode dev_pwr_mode;
10499 	enum uic_link_state link_state;
10500 	unsigned long flags;
10501 	bool res;
10502 
10503 	spin_lock_irqsave(&dev->power.lock, flags);
10504 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10505 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10506 	res = pm_runtime_suspended(dev) &&
10507 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10508 	      hba->uic_link_state == link_state &&
10509 	      !hba->dev_info.b_rpm_dev_flush_capable;
10510 	spin_unlock_irqrestore(&dev->power.lock, flags);
10511 
10512 	return res;
10513 }
10514 
10515 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10516 {
10517 	struct ufs_hba *hba = dev_get_drvdata(dev);
10518 	int ret;
10519 
10520 	/*
10521 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10522 	 * are same. And it doesn't wake up the device for system-suspend
10523 	 * if it's runtime suspended. But ufs doesn't follow that.
10524 	 * Refer ufshcd_resume_complete()
10525 	 */
10526 	if (hba->ufs_device_wlun) {
10527 		/* Prevent runtime suspend */
10528 		ufshcd_rpm_get_noresume(hba);
10529 		/*
10530 		 * Check if already runtime suspended in same state as system
10531 		 * suspend would be.
10532 		 */
10533 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10534 			/* RPM state is not ok for SPM, so runtime resume */
10535 			ret = ufshcd_rpm_resume(hba);
10536 			if (ret < 0 && ret != -EACCES) {
10537 				ufshcd_rpm_put(hba);
10538 				return ret;
10539 			}
10540 		}
10541 		hba->complete_put = true;
10542 	}
10543 	return 0;
10544 }
10545 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10546 
10547 int ufshcd_suspend_prepare(struct device *dev)
10548 {
10549 	return __ufshcd_suspend_prepare(dev, true);
10550 }
10551 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10552 
10553 #ifdef CONFIG_PM_SLEEP
10554 static int ufshcd_wl_poweroff(struct device *dev)
10555 {
10556 	struct scsi_device *sdev = to_scsi_device(dev);
10557 	struct ufs_hba *hba = shost_priv(sdev->host);
10558 
10559 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10560 	return 0;
10561 }
10562 #endif
10563 
10564 static int ufshcd_wl_probe(struct device *dev)
10565 {
10566 	struct scsi_device *sdev = to_scsi_device(dev);
10567 
10568 	if (!is_device_wlun(sdev))
10569 		return -ENODEV;
10570 
10571 	blk_pm_runtime_init(sdev->request_queue, dev);
10572 	pm_runtime_set_autosuspend_delay(dev, 0);
10573 	pm_runtime_allow(dev);
10574 
10575 	return  0;
10576 }
10577 
10578 static int ufshcd_wl_remove(struct device *dev)
10579 {
10580 	pm_runtime_forbid(dev);
10581 	return 0;
10582 }
10583 
10584 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10585 #ifdef CONFIG_PM_SLEEP
10586 	.suspend = ufshcd_wl_suspend,
10587 	.resume = ufshcd_wl_resume,
10588 	.freeze = ufshcd_wl_suspend,
10589 	.thaw = ufshcd_wl_resume,
10590 	.poweroff = ufshcd_wl_poweroff,
10591 	.restore = ufshcd_wl_resume,
10592 #endif
10593 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10594 };
10595 
10596 static void ufshcd_check_header_layout(void)
10597 {
10598 	/*
10599 	 * gcc compilers before version 10 cannot do constant-folding for
10600 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10601 	 * before.
10602 	 */
10603 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10604 		return;
10605 
10606 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10607 				.cci = 3})[0] != 3);
10608 
10609 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10610 				.ehs_length = 2})[1] != 2);
10611 
10612 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10613 				.enable_crypto = 1})[2]
10614 		     != 0x80);
10615 
10616 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10617 					.command_type = 5,
10618 					.data_direction = 3,
10619 					.interrupt = 1,
10620 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10621 
10622 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10623 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10624 		cpu_to_le32(0xdeadbeef));
10625 
10626 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10627 				.ocs = 4})[8] != 4);
10628 
10629 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10630 				.cds = 5})[9] != 5);
10631 
10632 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10633 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10634 		cpu_to_le32(0xbadcafe));
10635 
10636 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10637 			     .iid = 0xf })[4] != 0xf0);
10638 
10639 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10640 			     .command_set_type = 0xf })[4] != 0xf);
10641 }
10642 
10643 /*
10644  * ufs_dev_wlun_template - describes ufs device wlun
10645  * ufs-device wlun - used to send pm commands
10646  * All luns are consumers of ufs-device wlun.
10647  *
10648  * Currently, no sd driver is present for wluns.
10649  * Hence the no specific pm operations are performed.
10650  * With ufs design, SSU should be sent to ufs-device wlun.
10651  * Hence register a scsi driver for ufs wluns only.
10652  */
10653 static struct scsi_driver ufs_dev_wlun_template = {
10654 	.gendrv = {
10655 		.name = "ufs_device_wlun",
10656 		.owner = THIS_MODULE,
10657 		.probe = ufshcd_wl_probe,
10658 		.remove = ufshcd_wl_remove,
10659 		.pm = &ufshcd_wl_pm_ops,
10660 		.shutdown = ufshcd_wl_shutdown,
10661 	},
10662 };
10663 
10664 static int __init ufshcd_core_init(void)
10665 {
10666 	int ret;
10667 
10668 	ufshcd_check_header_layout();
10669 
10670 	ufs_debugfs_init();
10671 
10672 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10673 	if (ret)
10674 		ufs_debugfs_exit();
10675 	return ret;
10676 }
10677 
10678 static void __exit ufshcd_core_exit(void)
10679 {
10680 	ufs_debugfs_exit();
10681 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10682 }
10683 
10684 module_init(ufshcd_core_init);
10685 module_exit(ufshcd_core_exit);
10686 
10687 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10688 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10689 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10690 MODULE_SOFTDEP("pre: governor_simpleondemand");
10691 MODULE_LICENSE("GPL");
10692