xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 	  .model = UFS_ANY_MODEL,
244 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 	  .model = UFS_ANY_MODEL,
249 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 	  .model = "hB8aL1" /*H28U62301AMR*/,
252 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 	  .model = "THGLF2G9C8KBADG",
258 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 	  .model = "THGLF2G9D8KBADG",
261 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 	{}
263 };
264 
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 			     struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 					 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 						 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290 
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 	if (!hba->is_irq_enabled) {
294 		enable_irq(hba->irq);
295 		hba->is_irq_enabled = true;
296 	}
297 }
298 
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 	if (hba->is_irq_enabled) {
302 		disable_irq(hba->irq);
303 		hba->is_irq_enabled = false;
304 	}
305 }
306 
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 	if (!ufshcd_is_wb_allowed(hba))
310 		return;
311 
312 	ufshcd_wb_toggle(hba, true);
313 
314 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315 
316 	if (ufshcd_is_wb_buf_flush_allowed(hba))
317 		ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319 
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 		scsi_unblock_requests(hba->host);
324 }
325 
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 		scsi_block_requests(hba->host);
330 }
331 
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 				      enum ufs_trace_str_t str_t)
334 {
335 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 	struct utp_upiu_header *header;
337 
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	if (str_t == UFS_CMD_SEND)
342 		header = &rq->header;
343 	else
344 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345 
346 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 			  UFS_TSF_CDB);
348 }
349 
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 					enum ufs_trace_str_t str_t,
352 					struct utp_upiu_req *rq_rsp)
353 {
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 			  &rq_rsp->qr, UFS_TSF_OSF);
359 }
360 
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 				     enum ufs_trace_str_t str_t)
363 {
364 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365 
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	if (str_t == UFS_TM_SEND)
370 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 				  &descp->upiu_req.req_header,
372 				  &descp->upiu_req.input_param1,
373 				  UFS_TSF_TM_INPUT);
374 	else
375 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 				  &descp->upiu_rsp.rsp_header,
377 				  &descp->upiu_rsp.output_param1,
378 				  UFS_TSF_TM_OUTPUT);
379 }
380 
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 					 const struct uic_command *ucmd,
383 					 enum ufs_trace_str_t str_t)
384 {
385 	u32 cmd;
386 
387 	if (!trace_ufshcd_uic_command_enabled())
388 		return;
389 
390 	if (str_t == UFS_CMD_SEND)
391 		cmd = ucmd->command;
392 	else
393 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394 
395 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400 
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 				     enum ufs_trace_str_t str_t)
403 {
404 	u64 lba = 0;
405 	u8 opcode = 0, group_id = 0;
406 	u32 doorbell = 0;
407 	u32 intr;
408 	int hwq_id = -1;
409 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 	struct scsi_cmnd *cmd = lrbp->cmd;
411 	struct request *rq = scsi_cmd_to_rq(cmd);
412 	int transfer_len = -1;
413 
414 	if (!cmd)
415 		return;
416 
417 	/* trace UPIU also */
418 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 	if (!trace_ufshcd_command_enabled())
420 		return;
421 
422 	opcode = cmd->cmnd[0];
423 
424 	if (opcode == READ_10 || opcode == WRITE_10) {
425 		/*
426 		 * Currently we only fully trace read(10) and write(10) commands
427 		 */
428 		transfer_len =
429 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 		lba = scsi_get_lba(cmd);
431 		if (opcode == WRITE_10)
432 			group_id = lrbp->cmd->cmnd[6];
433 	} else if (opcode == UNMAP) {
434 		/*
435 		 * The number of Bytes to be unmapped beginning with the lba.
436 		 */
437 		transfer_len = blk_rq_bytes(rq);
438 		lba = scsi_get_lba(cmd);
439 	}
440 
441 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442 
443 	if (is_mcq_enabled(hba)) {
444 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445 
446 		hwq_id = hwq->id;
447 	} else {
448 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 	}
450 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453 
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 	struct ufs_clk_info *clki;
457 	struct list_head *head = &hba->clk_list_head;
458 
459 	if (list_empty(head))
460 		return;
461 
462 	list_for_each_entry(clki, head, list) {
463 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 				clki->max_freq)
465 			dev_err(hba->dev, "clk: %s, rate: %u\n",
466 					clki->name, clki->curr_freq);
467 	}
468 }
469 
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 			     const char *err_name)
472 {
473 	int i;
474 	bool found = false;
475 	const struct ufs_event_hist *e;
476 
477 	if (id >= UFS_EVT_CNT)
478 		return;
479 
480 	e = &hba->ufs_stats.event[id];
481 
482 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484 
485 		if (e->tstamp[p] == 0)
486 			continue;
487 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 			e->val[p], div_u64(e->tstamp[p], 1000));
489 		found = true;
490 	}
491 
492 	if (!found)
493 		dev_err(hba->dev, "No record of %s\n", err_name);
494 	else
495 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497 
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501 
502 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 			 "auto_hibern8_err");
509 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 			 "link_startup_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 			 "suspend_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 			 "wlun suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521 
522 	ufshcd_vops_dbg_register_dump(hba);
523 }
524 
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 	const struct ufshcd_lrb *lrbp;
529 	int prdt_length;
530 
531 	lrbp = &hba->lrb[tag];
532 
533 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 	dev_err(hba->dev,
538 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 		tag, (u64)lrbp->utrd_dma_addr);
540 
541 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 			sizeof(struct utp_transfer_req_desc));
543 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 		(u64)lrbp->ucd_req_dma_addr);
545 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 			sizeof(struct utp_upiu_req));
547 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 		(u64)lrbp->ucd_rsp_dma_addr);
549 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 			sizeof(struct utp_upiu_rsp));
551 
552 	prdt_length = le16_to_cpu(
553 		lrbp->utr_descriptor_ptr->prd_table_length);
554 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 		prdt_length /= ufshcd_sg_entry_size(hba);
556 
557 	dev_err(hba->dev,
558 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559 		tag, prdt_length,
560 		(u64)lrbp->ucd_prdt_dma_addr);
561 
562 	if (pr_prdt)
563 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 			ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566 
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 	struct scsi_device *sdev = req->q->queuedata;
570 	struct Scsi_Host *shost = sdev->host;
571 	struct ufs_hba *hba = shost_priv(shost);
572 
573 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574 
575 	return true;
576 }
577 
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587 
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 	int tag;
591 
592 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594 
595 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 	}
598 }
599 
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603 
604 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 		hba->outstanding_reqs, hba->outstanding_tasks);
607 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 		hba->saved_err, hba->saved_uic_err);
609 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 		hba->curr_dev_pwr_mode, hba->uic_link_state);
611 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 		hba->pm_op_in_progress, hba->is_sys_suspended);
613 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 	dev_err(hba->dev,
617 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 		hba->ufs_stats.hibern8_exit_cnt);
620 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 		hba->ufs_stats.last_intr_status);
623 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 		hba->eh_flags, hba->req_abort_count);
625 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 		hba->ufs_version, hba->capabilities, hba->caps);
627 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 		hba->dev_quirks);
629 	if (sdev_ufs)
630 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632 
633 	ufshcd_print_clk_freqs(hba);
634 }
635 
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 	static const char * const names[] = {
644 		"INVALID MODE",
645 		"FAST MODE",
646 		"SLOW_MODE",
647 		"INVALID MODE",
648 		"FASTAUTO_MODE",
649 		"SLOWAUTO_MODE",
650 		"INVALID MODE",
651 	};
652 
653 	/*
654 	 * Using dev_dbg to avoid messages during runtime PM to avoid
655 	 * never-ending cycles of messages written back to storage by user space
656 	 * causing runtime resume, causing more messages and so on.
657 	 */
658 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 		 __func__,
660 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 		 names[hba->pwr_info.pwr_rx],
663 		 names[hba->pwr_info.pwr_tx],
664 		 hba->pwr_info.hs_rate);
665 }
666 
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 	int err;
670 
671 	err = ufshcd_vops_device_reset(hba);
672 
673 	if (!err) {
674 		ufshcd_set_ufs_dev_active(hba);
675 		if (ufshcd_is_wb_allowed(hba)) {
676 			hba->dev_info.wb_enabled = false;
677 			hba->dev_info.wb_buf_flush_enabled = false;
678 		}
679 	}
680 	if (err != -EOPNOTSUPP)
681 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683 
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 	if (!us)
687 		return;
688 
689 	if (us < 10)
690 		udelay(us);
691 	else
692 		usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695 
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 				u32 val, unsigned long interval_us,
709 				unsigned long timeout_ms)
710 {
711 	int err = 0;
712 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713 
714 	/* ignore bits that we don't intend to wait on */
715 	val = val & mask;
716 
717 	while ((ufshcd_readl(hba, reg) & mask) != val) {
718 		usleep_range(interval_us, interval_us + 50);
719 		if (time_after(jiffies, timeout)) {
720 			if ((ufshcd_readl(hba, reg) & mask) != val)
721 				err = -ETIMEDOUT;
722 			break;
723 		}
724 	}
725 
726 	return err;
727 }
728 
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 	if (hba->ufs_version == ufshci_version(1, 0))
738 		return INTERRUPT_MASK_ALL_VER_10;
739 	if (hba->ufs_version <= ufshci_version(2, 0))
740 		return INTERRUPT_MASK_ALL_VER_11;
741 
742 	return INTERRUPT_MASK_ALL_VER_21;
743 }
744 
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 	u32 ufshci_ver;
754 
755 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 	else
758 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759 
760 	/*
761 	 * UFSHCI v1.x uses a different version scheme, in order
762 	 * to allow the use of comparisons with the ufshci_version
763 	 * function, we convert it to the same scheme as ufs 2.0+.
764 	 */
765 	if (ufshci_ver & 0x00010000)
766 		return ufshci_version(1, ufshci_ver & 0x00000100);
767 
768 	return ufshci_ver;
769 }
770 
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *			      the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782 
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 				      struct cq_entry *cqe)
794 {
795 	if (cqe)
796 		return le32_to_cpu(cqe->status) & MASK_OCS;
797 
798 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800 
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 		mask = ~mask;
810 	/*
811 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 	 * Register (UTRLCLR): This field is bit significant. Each bit
813 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 	 * by host software to indicate to the host controller that a transfer
816 	 * request slot is cleared. The host controller
817 	 * shall free up any resources associated to the request slot
818 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 	 * host software indicates no change to request slots by setting the
820 	 * associated bits in this field to ‘1’. Bits in this field shall only
821 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 	 */
823 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825 
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 	else
836 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849 
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876 
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 	return ucd_rsp_ptr->header.transaction_code;
887 }
888 
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.device_information & 1;
901 }
902 
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 	ufshcd_writel(hba, INT_AGGR_ENABLE |
911 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914 
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 		      INT_AGGR_TIMEOUT_VAL(tmout),
927 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929 
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938 
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *			When run-stop registers are set to 1, it indicates the
942  *			host controller that it can process the requests
943  * @hba: per adapter instance
944  */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952 
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 	u32 val = CONTROLLER_ENABLE;
960 
961 	if (ufshcd_crypto_enable(hba))
962 		val |= CRYPTO_GENERAL_ENABLE;
963 
964 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966 
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978 
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 	if (hba->ufs_version <= ufshci_version(1, 1))
983 		return UFS_UNIPRO_VER_1_41;
984 	else
985 		return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988 
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 	/*
992 	 * If both host and device support UniPro ver1.6 or later, PA layer
993 	 * parameters tuning happens during link startup itself.
994 	 *
995 	 * We can manually tune PA layer parameters if either host or device
996 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 	 * logic simple, we will only do manual tuning if local unipro version
998 	 * doesn't support ver1.6 or later.
999 	 */
1000 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002 
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 	int ret = 0;
1013 	struct ufs_clk_info *clki;
1014 	struct list_head *head = &hba->clk_list_head;
1015 
1016 	if (list_empty(head))
1017 		goto out;
1018 
1019 	list_for_each_entry(clki, head, list) {
1020 		if (!IS_ERR_OR_NULL(clki->clk)) {
1021 			if (scale_up && clki->max_freq) {
1022 				if (clki->curr_freq == clki->max_freq)
1023 					continue;
1024 
1025 				ret = clk_set_rate(clki->clk, clki->max_freq);
1026 				if (ret) {
1027 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 						__func__, clki->name,
1029 						clki->max_freq, ret);
1030 					break;
1031 				}
1032 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 						"scaled up", clki->name,
1034 						clki->curr_freq,
1035 						clki->max_freq);
1036 
1037 				clki->curr_freq = clki->max_freq;
1038 
1039 			} else if (!scale_up && clki->min_freq) {
1040 				if (clki->curr_freq == clki->min_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->min_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->min_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled down", clki->name,
1052 						clki->curr_freq,
1053 						clki->min_freq);
1054 				clki->curr_freq = clki->min_freq;
1055 			}
1056 		}
1057 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 				clki->name, clk_get_rate(clki->clk));
1059 	}
1060 
1061 out:
1062 	return ret;
1063 }
1064 
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 	int ret = 0;
1075 	ktime_t start = ktime_get();
1076 
1077 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 	if (ret)
1079 		goto out;
1080 
1081 	ret = ufshcd_set_clk_freq(hba, scale_up);
1082 	if (ret)
1083 		goto out;
1084 
1085 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 	if (ret)
1087 		ufshcd_set_clk_freq(hba, !scale_up);
1088 
1089 out:
1090 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 			(scale_up ? "up" : "down"),
1092 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 					       bool scale_up)
1105 {
1106 	struct ufs_clk_info *clki;
1107 	struct list_head *head = &hba->clk_list_head;
1108 
1109 	if (list_empty(head))
1110 		return false;
1111 
1112 	list_for_each_entry(clki, head, list) {
1113 		if (!IS_ERR_OR_NULL(clki->clk)) {
1114 			if (scale_up && clki->max_freq) {
1115 				if (clki->curr_freq == clki->max_freq)
1116 					continue;
1117 				return true;
1118 			} else if (!scale_up && clki->min_freq) {
1119 				if (clki->curr_freq == clki->min_freq)
1120 					continue;
1121 				return true;
1122 			}
1123 		}
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 	const struct scsi_device *sdev;
1139 	u32 pending = 0;
1140 
1141 	lockdep_assert_held(hba->host->host_lock);
1142 	__shost_for_each_device(sdev, hba->host)
1143 		pending += sbitmap_weight(&sdev->budget_map);
1144 
1145 	return pending;
1146 }
1147 
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 					u64 wait_timeout_us)
1156 {
1157 	unsigned long flags;
1158 	int ret = 0;
1159 	u32 tm_doorbell;
1160 	u32 tr_pending;
1161 	bool timeout = false, do_last_check = false;
1162 	ktime_t start;
1163 
1164 	ufshcd_hold(hba);
1165 	spin_lock_irqsave(hba->host->host_lock, flags);
1166 	/*
1167 	 * Wait for all the outstanding tasks/transfer requests.
1168 	 * Verify by checking the doorbell registers are clear.
1169 	 */
1170 	start = ktime_get();
1171 	do {
1172 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 			ret = -EBUSY;
1174 			goto out;
1175 		}
1176 
1177 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 		tr_pending = ufshcd_pending_cmds(hba);
1179 		if (!tm_doorbell && !tr_pending) {
1180 			timeout = false;
1181 			break;
1182 		} else if (do_last_check) {
1183 			break;
1184 		}
1185 
1186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 		io_schedule_timeout(msecs_to_jiffies(20));
1188 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 		    wait_timeout_us) {
1190 			timeout = true;
1191 			/*
1192 			 * We might have scheduled out for long time so make
1193 			 * sure to check if doorbells are cleared by this time
1194 			 * or not.
1195 			 */
1196 			do_last_check = true;
1197 		}
1198 		spin_lock_irqsave(hba->host->host_lock, flags);
1199 	} while (tm_doorbell || tr_pending);
1200 
1201 	if (timeout) {
1202 		dev_err(hba->dev,
1203 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 			__func__, tm_doorbell, tr_pending);
1205 		ret = -EBUSY;
1206 	}
1207 out:
1208 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 	ufshcd_release(hba);
1210 	return ret;
1211 }
1212 
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 	int ret = 0;
1224 	struct ufs_pa_layer_attr new_pwr_info;
1225 
1226 	if (scale_up) {
1227 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 		       sizeof(struct ufs_pa_layer_attr));
1229 	} else {
1230 		memcpy(&new_pwr_info, &hba->pwr_info,
1231 		       sizeof(struct ufs_pa_layer_attr));
1232 
1233 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 			/* save the current power mode */
1236 			memcpy(&hba->clk_scaling.saved_pwr_info,
1237 				&hba->pwr_info,
1238 				sizeof(struct ufs_pa_layer_attr));
1239 
1240 			/* scale down gear */
1241 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 		}
1244 	}
1245 
1246 	/* check if the power mode needs to be changed or not? */
1247 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 	if (ret)
1249 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 			__func__, ret,
1251 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 	int ret = 0;
1266 	/*
1267 	 * make sure that there are no outstanding requests when
1268 	 * clock scaling is in progress
1269 	 */
1270 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1271 	mutex_lock(&hba->wb_mutex);
1272 	down_write(&hba->clk_scaling_lock);
1273 
1274 	if (!hba->clk_scaling.is_allowed ||
1275 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 		ret = -EBUSY;
1277 		up_write(&hba->clk_scaling_lock);
1278 		mutex_unlock(&hba->wb_mutex);
1279 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1280 		goto out;
1281 	}
1282 
1283 	/* let's not get into low power until clock scaling is completed */
1284 	ufshcd_hold(hba);
1285 
1286 out:
1287 	return ret;
1288 }
1289 
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 	up_write(&hba->clk_scaling_lock);
1293 
1294 	/* Enable Write Booster if we have scaled up else disable it */
1295 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 		ufshcd_wb_toggle(hba, scale_up);
1297 
1298 	mutex_unlock(&hba->wb_mutex);
1299 
1300 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1301 	ufshcd_release(hba);
1302 }
1303 
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 	int ret = 0;
1315 
1316 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* scale down the gear before scaling down clocks */
1321 	if (!scale_up) {
1322 		ret = ufshcd_scale_gear(hba, false);
1323 		if (ret)
1324 			goto out_unprepare;
1325 	}
1326 
1327 	ret = ufshcd_scale_clks(hba, scale_up);
1328 	if (ret) {
1329 		if (!scale_up)
1330 			ufshcd_scale_gear(hba, true);
1331 		goto out_unprepare;
1332 	}
1333 
1334 	/* scale up the gear after scaling up clocks */
1335 	if (scale_up) {
1336 		ret = ufshcd_scale_gear(hba, true);
1337 		if (ret) {
1338 			ufshcd_scale_clks(hba, false);
1339 			goto out_unprepare;
1340 		}
1341 	}
1342 
1343 out_unprepare:
1344 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 	return ret;
1346 }
1347 
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 					   clk_scaling.suspend_work);
1352 	unsigned long irq_flags;
1353 
1354 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 		return;
1358 	}
1359 	hba->clk_scaling.is_suspended = true;
1360 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 
1362 	__ufshcd_suspend_clkscaling(hba);
1363 }
1364 
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 					   clk_scaling.resume_work);
1369 	unsigned long irq_flags;
1370 
1371 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 	if (!hba->clk_scaling.is_suspended) {
1373 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 		return;
1375 	}
1376 	hba->clk_scaling.is_suspended = false;
1377 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378 
1379 	devfreq_resume_device(hba->devfreq);
1380 }
1381 
1382 static int ufshcd_devfreq_target(struct device *dev,
1383 				unsigned long *freq, u32 flags)
1384 {
1385 	int ret = 0;
1386 	struct ufs_hba *hba = dev_get_drvdata(dev);
1387 	ktime_t start;
1388 	bool scale_up, sched_clk_scaling_suspend_work = false;
1389 	struct list_head *clk_list = &hba->clk_list_head;
1390 	struct ufs_clk_info *clki;
1391 	unsigned long irq_flags;
1392 
1393 	if (!ufshcd_is_clkscaling_supported(hba))
1394 		return -EINVAL;
1395 
1396 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 	/* Override with the closest supported frequency */
1398 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (ufshcd_eh_in_progress(hba)) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return 0;
1403 	}
1404 
1405 	if (!hba->clk_scaling.active_reqs)
1406 		sched_clk_scaling_suspend_work = true;
1407 
1408 	if (list_empty(clk_list)) {
1409 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 		goto out;
1411 	}
1412 
1413 	/* Decide based on the rounded-off frequency and update */
1414 	scale_up = *freq == clki->max_freq;
1415 	if (!scale_up)
1416 		*freq = clki->min_freq;
1417 	/* Update the frequency */
1418 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		ret = 0;
1421 		goto out; /* no state change required */
1422 	}
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	start = ktime_get();
1426 	ret = ufshcd_devfreq_scale(hba, scale_up);
1427 
1428 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 		(scale_up ? "up" : "down"),
1430 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431 
1432 out:
1433 	if (sched_clk_scaling_suspend_work)
1434 		queue_work(hba->clk_scaling.workq,
1435 			   &hba->clk_scaling.suspend_work);
1436 
1437 	return ret;
1438 }
1439 
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 		struct devfreq_dev_status *stat)
1442 {
1443 	struct ufs_hba *hba = dev_get_drvdata(dev);
1444 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 	unsigned long flags;
1446 	struct list_head *clk_list = &hba->clk_list_head;
1447 	struct ufs_clk_info *clki;
1448 	ktime_t curr_t;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return -EINVAL;
1452 
1453 	memset(stat, 0, sizeof(*stat));
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, flags);
1456 	curr_t = ktime_get();
1457 	if (!scaling->window_start_t)
1458 		goto start_window;
1459 
1460 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 	/*
1462 	 * If current frequency is 0, then the ondemand governor considers
1463 	 * there's no initial frequency set. And it always requests to set
1464 	 * to max. frequency.
1465 	 */
1466 	stat->current_frequency = clki->curr_freq;
1467 	if (scaling->is_busy_started)
1468 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 				scaling->busy_start_t);
1470 
1471 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 	stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 	scaling->window_start_t = curr_t;
1475 	scaling->tot_busy_t = 0;
1476 
1477 	if (scaling->active_reqs) {
1478 		scaling->busy_start_t = curr_t;
1479 		scaling->is_busy_started = true;
1480 	} else {
1481 		scaling->busy_start_t = 0;
1482 		scaling->is_busy_started = false;
1483 	}
1484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 	return 0;
1486 }
1487 
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 	struct devfreq *devfreq;
1493 	int ret;
1494 
1495 	/* Skip devfreq if we don't have any clocks in the list */
1496 	if (list_empty(clk_list))
1497 		return 0;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502 
1503 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 					 &hba->vps->ondemand_data);
1505 	devfreq = devfreq_add_device(hba->dev,
1506 			&hba->vps->devfreq_profile,
1507 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 			&hba->vps->ondemand_data);
1509 	if (IS_ERR(devfreq)) {
1510 		ret = PTR_ERR(devfreq);
1511 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512 
1513 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 		return ret;
1516 	}
1517 
1518 	hba->devfreq = devfreq;
1519 
1520 	return 0;
1521 }
1522 
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!hba->devfreq)
1529 		return;
1530 
1531 	devfreq_remove_device(hba->devfreq);
1532 	hba->devfreq = NULL;
1533 
1534 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538 
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 	unsigned long flags;
1542 
1543 	devfreq_suspend_device(hba->devfreq);
1544 	spin_lock_irqsave(hba->host->host_lock, flags);
1545 	hba->clk_scaling.window_start_t = 0;
1546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548 
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 	unsigned long flags;
1552 	bool suspend = false;
1553 
1554 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 	cancel_work_sync(&hba->clk_scaling.resume_work);
1556 
1557 	spin_lock_irqsave(hba->host->host_lock, flags);
1558 	if (!hba->clk_scaling.is_suspended) {
1559 		suspend = true;
1560 		hba->clk_scaling.is_suspended = true;
1561 	}
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 
1564 	if (suspend)
1565 		__ufshcd_suspend_clkscaling(hba);
1566 }
1567 
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool resume = false;
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (hba->clk_scaling.is_suspended) {
1575 		resume = true;
1576 		hba->clk_scaling.is_suspended = false;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (resume)
1581 		devfreq_resume_device(hba->devfreq);
1582 }
1583 
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct ufs_hba *hba = dev_get_drvdata(dev);
1588 
1589 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591 
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 		struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 	struct ufs_hba *hba = dev_get_drvdata(dev);
1596 	u32 value;
1597 	int err = 0;
1598 
1599 	if (kstrtou32(buf, 0, &value))
1600 		return -EINVAL;
1601 
1602 	down(&hba->host_sem);
1603 	if (!ufshcd_is_user_access_allowed(hba)) {
1604 		err = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	value = !!value;
1609 	if (value == hba->clk_scaling.is_enabled)
1610 		goto out;
1611 
1612 	ufshcd_rpm_get_sync(hba);
1613 	ufshcd_hold(hba);
1614 
1615 	hba->clk_scaling.is_enabled = value;
1616 
1617 	if (value) {
1618 		ufshcd_resume_clkscaling(hba);
1619 	} else {
1620 		ufshcd_suspend_clkscaling(hba);
1621 		err = ufshcd_devfreq_scale(hba, true);
1622 		if (err)
1623 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 					__func__, err);
1625 	}
1626 
1627 	ufshcd_release(hba);
1628 	ufshcd_rpm_put_sync(hba);
1629 out:
1630 	up(&hba->host_sem);
1631 	return err ? err : count;
1632 }
1633 
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644 
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 	if (hba->clk_scaling.enable_attr.attr.name)
1648 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650 
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 	char wq_name[sizeof("ufs_clkscaling_00")];
1654 
1655 	if (!ufshcd_is_clkscaling_supported(hba))
1656 		return;
1657 
1658 	if (!hba->clk_scaling.min_gear)
1659 		hba->clk_scaling.min_gear = UFS_HS_G1;
1660 
1661 	INIT_WORK(&hba->clk_scaling.suspend_work,
1662 		  ufshcd_clk_scaling_suspend_work);
1663 	INIT_WORK(&hba->clk_scaling.resume_work,
1664 		  ufshcd_clk_scaling_resume_work);
1665 
1666 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 		 hba->host->host_no);
1668 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669 
1670 	hba->clk_scaling.is_initialized = true;
1671 }
1672 
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 	if (!hba->clk_scaling.is_initialized)
1676 		return;
1677 
1678 	ufshcd_remove_clk_scaling_sysfs(hba);
1679 	destroy_workqueue(hba->clk_scaling.workq);
1680 	ufshcd_devfreq_remove(hba);
1681 	hba->clk_scaling.is_initialized = false;
1682 }
1683 
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 	int ret;
1687 	unsigned long flags;
1688 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 			clk_gating.ungate_work);
1690 
1691 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692 
1693 	spin_lock_irqsave(hba->host->host_lock, flags);
1694 	if (hba->clk_gating.state == CLKS_ON) {
1695 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 		return;
1697 	}
1698 
1699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 	ufshcd_hba_vreg_set_hpm(hba);
1701 	ufshcd_setup_clocks(hba, true);
1702 
1703 	ufshcd_enable_irq(hba);
1704 
1705 	/* Exit from hibern8 */
1706 	if (ufshcd_can_hibern8_during_gating(hba)) {
1707 		/* Prevent gating in this path */
1708 		hba->clk_gating.is_suspended = true;
1709 		if (ufshcd_is_link_hibern8(hba)) {
1710 			ret = ufshcd_uic_hibern8_exit(hba);
1711 			if (ret)
1712 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 					__func__, ret);
1714 			else
1715 				ufshcd_set_link_active(hba);
1716 		}
1717 		hba->clk_gating.is_suspended = false;
1718 	}
1719 }
1720 
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 	bool flush_result;
1729 	unsigned long flags;
1730 
1731 	if (!ufshcd_is_clkgating_allowed(hba) ||
1732 	    !hba->clk_gating.is_initialized)
1733 		return;
1734 	spin_lock_irqsave(hba->host->host_lock, flags);
1735 	hba->clk_gating.active_reqs++;
1736 
1737 start:
1738 	switch (hba->clk_gating.state) {
1739 	case CLKS_ON:
1740 		/*
1741 		 * Wait for the ungate work to complete if in progress.
1742 		 * Though the clocks may be in ON state, the link could
1743 		 * still be in hibner8 state if hibern8 is allowed
1744 		 * during clock gating.
1745 		 * Make sure we exit hibern8 state also in addition to
1746 		 * clocks being ON.
1747 		 */
1748 		if (ufshcd_can_hibern8_during_gating(hba) &&
1749 		    ufshcd_is_link_hibern8(hba)) {
1750 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 			if (hba->clk_gating.is_suspended && !flush_result)
1753 				return;
1754 			spin_lock_irqsave(hba->host->host_lock, flags);
1755 			goto start;
1756 		}
1757 		break;
1758 	case REQ_CLKS_OFF:
1759 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 			hba->clk_gating.state = CLKS_ON;
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			break;
1764 		}
1765 		/*
1766 		 * If we are here, it means gating work is either done or
1767 		 * currently running. Hence, fall through to cancel gating
1768 		 * work and to enable clocks.
1769 		 */
1770 		fallthrough;
1771 	case CLKS_OFF:
1772 		hba->clk_gating.state = REQ_CLKS_ON;
1773 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 					hba->clk_gating.state);
1775 		queue_work(hba->clk_gating.clk_gating_workq,
1776 			   &hba->clk_gating.ungate_work);
1777 		/*
1778 		 * fall through to check if we should wait for this
1779 		 * work to be done or not.
1780 		 */
1781 		fallthrough;
1782 	case REQ_CLKS_ON:
1783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 		flush_work(&hba->clk_gating.ungate_work);
1785 		/* Make sure state is CLKS_ON before returning */
1786 		spin_lock_irqsave(hba->host->host_lock, flags);
1787 		goto start;
1788 	default:
1789 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 				__func__, hba->clk_gating.state);
1791 		break;
1792 	}
1793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796 
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 			clk_gating.gate_work.work);
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	spin_lock_irqsave(hba->host->host_lock, flags);
1805 	/*
1806 	 * In case you are here to cancel this work the gating state
1807 	 * would be marked as REQ_CLKS_ON. In this case save time by
1808 	 * skipping the gating work and exit after changing the clock
1809 	 * state to CLKS_ON.
1810 	 */
1811 	if (hba->clk_gating.is_suspended ||
1812 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 		hba->clk_gating.state = CLKS_ON;
1814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 					hba->clk_gating.state);
1816 		goto rel_lock;
1817 	}
1818 
1819 	if (hba->clk_gating.active_reqs
1820 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 		|| hba->outstanding_reqs || hba->outstanding_tasks
1822 		|| hba->active_uic_cmd || hba->uic_async_done)
1823 		goto rel_lock;
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 
1827 	/* put the link into hibern8 mode before turning off clocks */
1828 	if (ufshcd_can_hibern8_during_gating(hba)) {
1829 		ret = ufshcd_uic_hibern8_enter(hba);
1830 		if (ret) {
1831 			hba->clk_gating.state = CLKS_ON;
1832 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 					__func__, ret);
1834 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 						hba->clk_gating.state);
1836 			goto out;
1837 		}
1838 		ufshcd_set_link_hibern8(hba);
1839 	}
1840 
1841 	ufshcd_disable_irq(hba);
1842 
1843 	ufshcd_setup_clocks(hba, false);
1844 
1845 	/* Put the host controller in low power mode if possible */
1846 	ufshcd_hba_vreg_set_lpm(hba);
1847 	/*
1848 	 * In case you are here to cancel this work the gating state
1849 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 	 * and a request to turn them on is pending. By doing this way,
1852 	 * we keep the state machine in tact and this would ultimately
1853 	 * prevent from doing cancel work multiple times when there are
1854 	 * new requests arriving before the current cancel work is done.
1855 	 */
1856 	spin_lock_irqsave(hba->host->host_lock, flags);
1857 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 		hba->clk_gating.state = CLKS_OFF;
1859 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 					hba->clk_gating.state);
1861 	}
1862 rel_lock:
1863 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 	return;
1866 }
1867 
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 	if (!ufshcd_is_clkgating_allowed(hba))
1872 		return;
1873 
1874 	hba->clk_gating.active_reqs--;
1875 
1876 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 	    hba->active_uic_cmd || hba->uic_async_done ||
1880 	    hba->clk_gating.state == CLKS_OFF)
1881 		return;
1882 
1883 	hba->clk_gating.state = REQ_CLKS_OFF;
1884 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 			   &hba->clk_gating.gate_work,
1887 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889 
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(hba->host->host_lock, flags);
1895 	__ufshcd_release(hba);
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899 
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 		struct device_attribute *attr, char *buf)
1902 {
1903 	struct ufs_hba *hba = dev_get_drvdata(dev);
1904 
1905 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907 
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 	struct ufs_hba *hba = dev_get_drvdata(dev);
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(hba->host->host_lock, flags);
1914 	hba->clk_gating.delay_ms = value;
1915 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918 
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	unsigned long value;
1923 
1924 	if (kstrtoul(buf, 0, &value))
1925 		return -EINVAL;
1926 
1927 	ufshcd_clkgate_delay_set(dev, value);
1928 	return count;
1929 }
1930 
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 		struct device_attribute *attr, char *buf)
1933 {
1934 	struct ufs_hba *hba = dev_get_drvdata(dev);
1935 
1936 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938 
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 		struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 	struct ufs_hba *hba = dev_get_drvdata(dev);
1943 	unsigned long flags;
1944 	u32 value;
1945 
1946 	if (kstrtou32(buf, 0, &value))
1947 		return -EINVAL;
1948 
1949 	value = !!value;
1950 
1951 	spin_lock_irqsave(hba->host->host_lock, flags);
1952 	if (value == hba->clk_gating.is_enabled)
1953 		goto out;
1954 
1955 	if (value)
1956 		__ufshcd_release(hba);
1957 	else
1958 		hba->clk_gating.active_reqs++;
1959 
1960 	hba->clk_gating.is_enabled = value;
1961 out:
1962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 	return count;
1964 }
1965 
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 	hba->clk_gating.delay_attr.attr.mode = 0644;
1973 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975 
1976 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 	hba->clk_gating.enable_attr.attr.mode = 0644;
1981 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984 
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 	if (hba->clk_gating.delay_attr.attr.name)
1988 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 	if (hba->clk_gating.enable_attr.attr.name)
1990 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992 
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 	char wq_name[sizeof("ufs_clk_gating_00")];
1996 
1997 	if (!ufshcd_is_clkgating_allowed(hba))
1998 		return;
1999 
2000 	hba->clk_gating.state = CLKS_ON;
2001 
2002 	hba->clk_gating.delay_ms = 150;
2003 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005 
2006 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 		 hba->host->host_no);
2008 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010 
2011 	ufshcd_init_clk_gating_sysfs(hba);
2012 
2013 	hba->clk_gating.is_enabled = true;
2014 	hba->clk_gating.is_initialized = true;
2015 }
2016 
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 	if (!hba->clk_gating.is_initialized)
2020 		return;
2021 
2022 	ufshcd_remove_clk_gating_sysfs(hba);
2023 
2024 	/* Ungate the clock if necessary. */
2025 	ufshcd_hold(hba);
2026 	hba->clk_gating.is_initialized = false;
2027 	ufshcd_release(hba);
2028 
2029 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031 
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 	bool queue_resume_work = false;
2035 	ktime_t curr_t = ktime_get();
2036 	unsigned long flags;
2037 
2038 	if (!ufshcd_is_clkscaling_supported(hba))
2039 		return;
2040 
2041 	spin_lock_irqsave(hba->host->host_lock, flags);
2042 	if (!hba->clk_scaling.active_reqs++)
2043 		queue_resume_work = true;
2044 
2045 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 		return;
2048 	}
2049 
2050 	if (queue_resume_work)
2051 		queue_work(hba->clk_scaling.workq,
2052 			   &hba->clk_scaling.resume_work);
2053 
2054 	if (!hba->clk_scaling.window_start_t) {
2055 		hba->clk_scaling.window_start_t = curr_t;
2056 		hba->clk_scaling.tot_busy_t = 0;
2057 		hba->clk_scaling.is_busy_started = false;
2058 	}
2059 
2060 	if (!hba->clk_scaling.is_busy_started) {
2061 		hba->clk_scaling.busy_start_t = curr_t;
2062 		hba->clk_scaling.is_busy_started = true;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 	unsigned long flags;
2071 
2072 	if (!ufshcd_is_clkscaling_supported(hba))
2073 		return;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	hba->clk_scaling.active_reqs--;
2077 	if (!scaling->active_reqs && scaling->is_busy_started) {
2078 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 					scaling->busy_start_t));
2080 		scaling->busy_start_t = 0;
2081 		scaling->is_busy_started = false;
2082 	}
2083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085 
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 		return READ;
2090 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 		return WRITE;
2092 	else
2093 		return -EINVAL;
2094 }
2095 
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 						struct ufshcd_lrb *lrbp)
2098 {
2099 	const struct ufs_hba_monitor *m = &hba->monitor;
2100 
2101 	return (m->enabled && lrbp && lrbp->cmd &&
2102 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105 
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 				 const struct ufshcd_lrb *lrbp)
2108 {
2109 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 		hba->monitor.busy_start_ts[dir] = ktime_get();
2115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117 
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 		struct ufs_hba_monitor *m = &hba->monitor;
2127 		ktime_t now, inc, lat;
2128 
2129 		now = lrbp->compl_time_stamp;
2130 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133 
2134 		/* Update latencies */
2135 		m->nr_req[dir]++;
2136 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 		m->lat_sum[dir] += lat;
2138 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 			m->lat_max[dir] = lat;
2140 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 			m->lat_min[dir] = lat;
2142 
2143 		m->nr_queued[dir]--;
2144 		/* Push forward the busy start of monitor */
2145 		m->busy_start_ts[dir] = now;
2146 	}
2147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149 
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 			 struct ufs_hw_queue *hwq)
2159 {
2160 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 	unsigned long flags;
2162 
2163 	lrbp->issue_time_stamp = ktime_get();
2164 	lrbp->issue_time_stamp_local_clock = local_clock();
2165 	lrbp->compl_time_stamp = ktime_set(0, 0);
2166 	lrbp->compl_time_stamp_local_clock = 0;
2167 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 	ufshcd_clk_scaling_start_busy(hba);
2169 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 		ufshcd_start_monitor(hba, lrbp);
2171 
2172 	if (is_mcq_enabled(hba)) {
2173 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 		struct utp_transfer_req_desc *dest;
2176 
2177 		spin_lock(&hwq->sq_lock);
2178 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 		memcpy(dest, src, utrd_size);
2180 		ufshcd_inc_sq_tail(hwq);
2181 		spin_unlock(&hwq->sq_lock);
2182 	} else {
2183 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 		if (hba->vops && hba->vops->setup_xfer_req)
2185 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 						  !!lrbp->cmd);
2187 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 	}
2192 }
2193 
2194 /**
2195  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196  * @lrbp: pointer to local reference block
2197  */
2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 	u16 resp_len;
2202 	int len;
2203 
2204 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 	if (sense_buffer && resp_len) {
2206 		int len_to_copy;
2207 
2208 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210 
2211 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 		       len_to_copy);
2213 	}
2214 }
2215 
2216 /**
2217  * ufshcd_copy_query_response() - Copy the Query Response and the data
2218  * descriptor
2219  * @hba: per adapter instance
2220  * @lrbp: pointer to local reference block
2221  *
2222  * Return: 0 upon success; < 0 upon failure.
2223  */
2224 static
2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228 
2229 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230 
2231 	/* Get the descriptor */
2232 	if (hba->dev_cmd.query.descriptor &&
2233 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 				GENERAL_UPIU_REQUEST_SIZE;
2236 		u16 resp_len;
2237 		u16 buf_len;
2238 
2239 		/* data segment length */
2240 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 				       .data_segment_length);
2242 		buf_len = be16_to_cpu(
2243 				hba->dev_cmd.query.request.upiu_req.length);
2244 		if (likely(buf_len >= resp_len)) {
2245 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 		} else {
2247 			dev_warn(hba->dev,
2248 				 "%s: rsp size %d is bigger than buffer size %d",
2249 				 __func__, resp_len, buf_len);
2250 			return -EINVAL;
2251 		}
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 /**
2258  * ufshcd_hba_capabilities - Read controller capabilities
2259  * @hba: per adapter instance
2260  *
2261  * Return: 0 on success, negative on error.
2262  */
2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 	int err;
2266 
2267 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 
2269 	/* nutrs and nutmrs are 0 based values */
2270 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2271 	hba->nutmrs =
2272 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2273 	hba->reserved_slot = hba->nutrs - 1;
2274 
2275 	/* Read crypto capabilities */
2276 	err = ufshcd_hba_init_crypto_capabilities(hba);
2277 	if (err) {
2278 		dev_err(hba->dev, "crypto setup failed\n");
2279 		return err;
2280 	}
2281 
2282 	/*
2283 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2284 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2285 	 * means we can simply read values regardless of version.
2286 	 */
2287 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2288 	/*
2289 	 * 0h: legacy single doorbell support is available
2290 	 * 1h: indicate that legacy single doorbell support has been removed
2291 	 */
2292 	hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2293 	if (!hba->mcq_sup)
2294 		return 0;
2295 
2296 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2297 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2298 				     hba->mcq_capabilities);
2299 
2300 	return 0;
2301 }
2302 
2303 /**
2304  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2305  *                            to accept UIC commands
2306  * @hba: per adapter instance
2307  *
2308  * Return: true on success, else false.
2309  */
2310 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2311 {
2312 	u32 val;
2313 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2314 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2315 				    REG_CONTROLLER_STATUS);
2316 	return ret == 0 ? true : false;
2317 }
2318 
2319 /**
2320  * ufshcd_get_upmcrs - Get the power mode change request status
2321  * @hba: Pointer to adapter instance
2322  *
2323  * This function gets the UPMCRS field of HCS register
2324  *
2325  * Return: value of UPMCRS field.
2326  */
2327 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2328 {
2329 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2330 }
2331 
2332 /**
2333  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2334  * @hba: per adapter instance
2335  * @uic_cmd: UIC command
2336  */
2337 static inline void
2338 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2339 {
2340 	lockdep_assert_held(&hba->uic_cmd_mutex);
2341 
2342 	WARN_ON(hba->active_uic_cmd);
2343 
2344 	hba->active_uic_cmd = uic_cmd;
2345 
2346 	/* Write Args */
2347 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2348 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2349 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2350 
2351 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2352 
2353 	/* Write UIC Cmd */
2354 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2355 		      REG_UIC_COMMAND);
2356 }
2357 
2358 /**
2359  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2360  * @hba: per adapter instance
2361  * @uic_cmd: UIC command
2362  *
2363  * Return: 0 only if success.
2364  */
2365 static int
2366 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2367 {
2368 	int ret;
2369 	unsigned long flags;
2370 
2371 	lockdep_assert_held(&hba->uic_cmd_mutex);
2372 
2373 	if (wait_for_completion_timeout(&uic_cmd->done,
2374 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2375 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2376 	} else {
2377 		ret = -ETIMEDOUT;
2378 		dev_err(hba->dev,
2379 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2380 			uic_cmd->command, uic_cmd->argument3);
2381 
2382 		if (!uic_cmd->cmd_active) {
2383 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2384 				__func__);
2385 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2386 		}
2387 	}
2388 
2389 	spin_lock_irqsave(hba->host->host_lock, flags);
2390 	hba->active_uic_cmd = NULL;
2391 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2392 
2393 	return ret;
2394 }
2395 
2396 /**
2397  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2398  * @hba: per adapter instance
2399  * @uic_cmd: UIC command
2400  *
2401  * Return: 0 only if success.
2402  */
2403 static int
2404 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2405 {
2406 	lockdep_assert_held(&hba->uic_cmd_mutex);
2407 
2408 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2409 		dev_err(hba->dev,
2410 			"Controller not ready to accept UIC commands\n");
2411 		return -EIO;
2412 	}
2413 
2414 	init_completion(&uic_cmd->done);
2415 
2416 	uic_cmd->cmd_active = 1;
2417 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2418 
2419 	return 0;
2420 }
2421 
2422 /**
2423  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2424  * @hba: per adapter instance
2425  * @uic_cmd: UIC command
2426  *
2427  * Return: 0 only if success.
2428  */
2429 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2430 {
2431 	int ret;
2432 
2433 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2434 		return 0;
2435 
2436 	ufshcd_hold(hba);
2437 	mutex_lock(&hba->uic_cmd_mutex);
2438 	ufshcd_add_delay_before_dme_cmd(hba);
2439 
2440 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2441 	if (!ret)
2442 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2443 
2444 	mutex_unlock(&hba->uic_cmd_mutex);
2445 
2446 	ufshcd_release(hba);
2447 	return ret;
2448 }
2449 
2450 /**
2451  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2452  * @hba:	per-adapter instance
2453  * @lrbp:	pointer to local reference block
2454  * @sg_entries:	The number of sg lists actually used
2455  * @sg_list:	Pointer to SG list
2456  */
2457 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2458 			       struct scatterlist *sg_list)
2459 {
2460 	struct ufshcd_sg_entry *prd;
2461 	struct scatterlist *sg;
2462 	int i;
2463 
2464 	if (sg_entries) {
2465 
2466 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2467 			lrbp->utr_descriptor_ptr->prd_table_length =
2468 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2469 		else
2470 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2471 
2472 		prd = lrbp->ucd_prdt_ptr;
2473 
2474 		for_each_sg(sg_list, sg, sg_entries, i) {
2475 			const unsigned int len = sg_dma_len(sg);
2476 
2477 			/*
2478 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2479 			 * based value that indicates the length, in bytes, of
2480 			 * the data block. A maximum of length of 256KB may
2481 			 * exist for any entry. Bits 1:0 of this field shall be
2482 			 * 11b to indicate Dword granularity. A value of '3'
2483 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2484 			 */
2485 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2486 			prd->size = cpu_to_le32(len - 1);
2487 			prd->addr = cpu_to_le64(sg->dma_address);
2488 			prd->reserved = 0;
2489 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2490 		}
2491 	} else {
2492 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2493 	}
2494 }
2495 
2496 /**
2497  * ufshcd_map_sg - Map scatter-gather list to prdt
2498  * @hba: per adapter instance
2499  * @lrbp: pointer to local reference block
2500  *
2501  * Return: 0 in case of success, non-zero value in case of failure.
2502  */
2503 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2504 {
2505 	struct scsi_cmnd *cmd = lrbp->cmd;
2506 	int sg_segments = scsi_dma_map(cmd);
2507 
2508 	if (sg_segments < 0)
2509 		return sg_segments;
2510 
2511 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2512 
2513 	return 0;
2514 }
2515 
2516 /**
2517  * ufshcd_enable_intr - enable interrupts
2518  * @hba: per adapter instance
2519  * @intrs: interrupt bits
2520  */
2521 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2522 {
2523 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2524 
2525 	if (hba->ufs_version == ufshci_version(1, 0)) {
2526 		u32 rw;
2527 		rw = set & INTERRUPT_MASK_RW_VER_10;
2528 		set = rw | ((set ^ intrs) & intrs);
2529 	} else {
2530 		set |= intrs;
2531 	}
2532 
2533 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2534 }
2535 
2536 /**
2537  * ufshcd_disable_intr - disable interrupts
2538  * @hba: per adapter instance
2539  * @intrs: interrupt bits
2540  */
2541 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2542 {
2543 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2544 
2545 	if (hba->ufs_version == ufshci_version(1, 0)) {
2546 		u32 rw;
2547 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2548 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2549 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2550 
2551 	} else {
2552 		set &= ~intrs;
2553 	}
2554 
2555 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2556 }
2557 
2558 /**
2559  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2560  * descriptor according to request
2561  * @lrbp: pointer to local reference block
2562  * @upiu_flags: flags required in the header
2563  * @cmd_dir: requests data direction
2564  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2565  */
2566 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2567 					enum dma_data_direction cmd_dir, int ehs_length)
2568 {
2569 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2570 	struct request_desc_header *h = &req_desc->header;
2571 	enum utp_data_direction data_direction;
2572 
2573 	*h = (typeof(*h)){ };
2574 
2575 	if (cmd_dir == DMA_FROM_DEVICE) {
2576 		data_direction = UTP_DEVICE_TO_HOST;
2577 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2578 	} else if (cmd_dir == DMA_TO_DEVICE) {
2579 		data_direction = UTP_HOST_TO_DEVICE;
2580 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2581 	} else {
2582 		data_direction = UTP_NO_DATA_TRANSFER;
2583 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2584 	}
2585 
2586 	h->command_type = lrbp->command_type;
2587 	h->data_direction = data_direction;
2588 	h->ehs_length = ehs_length;
2589 
2590 	if (lrbp->intr_cmd)
2591 		h->interrupt = 1;
2592 
2593 	/* Prepare crypto related dwords */
2594 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2595 
2596 	/*
2597 	 * assigning invalid value for command status. Controller
2598 	 * updates OCS on command completion, with the command
2599 	 * status
2600 	 */
2601 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2602 
2603 	req_desc->prd_table_length = 0;
2604 }
2605 
2606 /**
2607  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2608  * for scsi commands
2609  * @lrbp: local reference block pointer
2610  * @upiu_flags: flags
2611  */
2612 static
2613 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2614 {
2615 	struct scsi_cmnd *cmd = lrbp->cmd;
2616 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2617 	unsigned short cdb_len;
2618 
2619 	ucd_req_ptr->header = (struct utp_upiu_header){
2620 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2621 		.flags = upiu_flags,
2622 		.lun = lrbp->lun,
2623 		.task_tag = lrbp->task_tag,
2624 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2625 	};
2626 
2627 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2628 
2629 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2630 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2631 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2632 
2633 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2634 }
2635 
2636 /**
2637  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2638  * @hba: UFS hba
2639  * @lrbp: local reference block pointer
2640  * @upiu_flags: flags
2641  */
2642 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2643 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2644 {
2645 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2646 	struct ufs_query *query = &hba->dev_cmd.query;
2647 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2648 
2649 	/* Query request header */
2650 	ucd_req_ptr->header = (struct utp_upiu_header){
2651 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2652 		.flags = upiu_flags,
2653 		.lun = lrbp->lun,
2654 		.task_tag = lrbp->task_tag,
2655 		.query_function = query->request.query_func,
2656 		/* Data segment length only need for WRITE_DESC */
2657 		.data_segment_length =
2658 			query->request.upiu_req.opcode ==
2659 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2660 				cpu_to_be16(len) :
2661 				0,
2662 	};
2663 
2664 	/* Copy the Query Request buffer as is */
2665 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2666 			QUERY_OSF_SIZE);
2667 
2668 	/* Copy the Descriptor */
2669 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2670 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2671 
2672 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2673 }
2674 
2675 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2676 {
2677 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2678 
2679 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2680 
2681 	ucd_req_ptr->header = (struct utp_upiu_header){
2682 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2683 		.task_tag = lrbp->task_tag,
2684 	};
2685 
2686 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2687 }
2688 
2689 /**
2690  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2691  *			     for Device Management Purposes
2692  * @hba: per adapter instance
2693  * @lrbp: pointer to local reference block
2694  *
2695  * Return: 0 upon success; < 0 upon failure.
2696  */
2697 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2698 				      struct ufshcd_lrb *lrbp)
2699 {
2700 	u8 upiu_flags;
2701 	int ret = 0;
2702 
2703 	if (hba->ufs_version <= ufshci_version(1, 1))
2704 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2705 	else
2706 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2707 
2708 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2709 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2710 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2711 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2712 		ufshcd_prepare_utp_nop_upiu(lrbp);
2713 	else
2714 		ret = -EINVAL;
2715 
2716 	return ret;
2717 }
2718 
2719 /**
2720  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2721  *			   for SCSI Purposes
2722  * @hba: per adapter instance
2723  * @lrbp: pointer to local reference block
2724  *
2725  * Return: 0 upon success; < 0 upon failure.
2726  */
2727 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2728 {
2729 	u8 upiu_flags;
2730 	int ret = 0;
2731 
2732 	if (hba->ufs_version <= ufshci_version(1, 1))
2733 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2734 	else
2735 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2736 
2737 	if (likely(lrbp->cmd)) {
2738 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2739 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2740 	} else {
2741 		ret = -EINVAL;
2742 	}
2743 
2744 	return ret;
2745 }
2746 
2747 /**
2748  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2749  * @upiu_wlun_id: UPIU W-LUN id
2750  *
2751  * Return: SCSI W-LUN id.
2752  */
2753 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2754 {
2755 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2756 }
2757 
2758 static inline bool is_device_wlun(struct scsi_device *sdev)
2759 {
2760 	return sdev->lun ==
2761 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2762 }
2763 
2764 /*
2765  * Associate the UFS controller queue with the default and poll HCTX types.
2766  * Initialize the mq_map[] arrays.
2767  */
2768 static void ufshcd_map_queues(struct Scsi_Host *shost)
2769 {
2770 	struct ufs_hba *hba = shost_priv(shost);
2771 	int i, queue_offset = 0;
2772 
2773 	if (!is_mcq_supported(hba)) {
2774 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2775 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2776 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2777 		hba->nr_hw_queues = 1;
2778 	}
2779 
2780 	for (i = 0; i < shost->nr_maps; i++) {
2781 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2782 
2783 		map->nr_queues = hba->nr_queues[i];
2784 		if (!map->nr_queues)
2785 			continue;
2786 		map->queue_offset = queue_offset;
2787 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2788 			map->queue_offset = 0;
2789 
2790 		blk_mq_map_queues(map);
2791 		queue_offset += map->nr_queues;
2792 	}
2793 }
2794 
2795 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2796 {
2797 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2798 		i * ufshcd_get_ucd_size(hba);
2799 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2800 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2801 		i * ufshcd_get_ucd_size(hba);
2802 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2803 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2804 
2805 	lrb->utr_descriptor_ptr = utrdlp + i;
2806 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2807 		i * sizeof(struct utp_transfer_req_desc);
2808 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2809 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2810 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2811 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2812 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2813 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2814 }
2815 
2816 /**
2817  * ufshcd_queuecommand - main entry point for SCSI requests
2818  * @host: SCSI host pointer
2819  * @cmd: command from SCSI Midlayer
2820  *
2821  * Return: 0 for success, non-zero in case of failure.
2822  */
2823 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2824 {
2825 	struct ufs_hba *hba = shost_priv(host);
2826 	int tag = scsi_cmd_to_rq(cmd)->tag;
2827 	struct ufshcd_lrb *lrbp;
2828 	int err = 0;
2829 	struct ufs_hw_queue *hwq = NULL;
2830 
2831 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2832 
2833 	switch (hba->ufshcd_state) {
2834 	case UFSHCD_STATE_OPERATIONAL:
2835 		break;
2836 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2837 		/*
2838 		 * SCSI error handler can call ->queuecommand() while UFS error
2839 		 * handler is in progress. Error interrupts could change the
2840 		 * state from UFSHCD_STATE_RESET to
2841 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2842 		 * being issued in that case.
2843 		 */
2844 		if (ufshcd_eh_in_progress(hba)) {
2845 			err = SCSI_MLQUEUE_HOST_BUSY;
2846 			goto out;
2847 		}
2848 		break;
2849 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2850 		/*
2851 		 * pm_runtime_get_sync() is used at error handling preparation
2852 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2853 		 * PM ops, it can never be finished if we let SCSI layer keep
2854 		 * retrying it, which gets err handler stuck forever. Neither
2855 		 * can we let the scsi cmd pass through, because UFS is in bad
2856 		 * state, the scsi cmd may eventually time out, which will get
2857 		 * err handler blocked for too long. So, just fail the scsi cmd
2858 		 * sent from PM ops, err handler can recover PM error anyways.
2859 		 */
2860 		if (hba->pm_op_in_progress) {
2861 			hba->force_reset = true;
2862 			set_host_byte(cmd, DID_BAD_TARGET);
2863 			scsi_done(cmd);
2864 			goto out;
2865 		}
2866 		fallthrough;
2867 	case UFSHCD_STATE_RESET:
2868 		err = SCSI_MLQUEUE_HOST_BUSY;
2869 		goto out;
2870 	case UFSHCD_STATE_ERROR:
2871 		set_host_byte(cmd, DID_ERROR);
2872 		scsi_done(cmd);
2873 		goto out;
2874 	}
2875 
2876 	hba->req_abort_count = 0;
2877 
2878 	ufshcd_hold(hba);
2879 
2880 	lrbp = &hba->lrb[tag];
2881 	lrbp->cmd = cmd;
2882 	lrbp->task_tag = tag;
2883 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2884 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2885 
2886 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2887 
2888 	lrbp->req_abort_skip = false;
2889 
2890 	ufshcd_comp_scsi_upiu(hba, lrbp);
2891 
2892 	err = ufshcd_map_sg(hba, lrbp);
2893 	if (err) {
2894 		ufshcd_release(hba);
2895 		goto out;
2896 	}
2897 
2898 	if (is_mcq_enabled(hba))
2899 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2900 
2901 	ufshcd_send_command(hba, tag, hwq);
2902 
2903 out:
2904 	if (ufs_trigger_eh()) {
2905 		unsigned long flags;
2906 
2907 		spin_lock_irqsave(hba->host->host_lock, flags);
2908 		ufshcd_schedule_eh_work(hba);
2909 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2910 	}
2911 
2912 	return err;
2913 }
2914 
2915 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2916 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2917 {
2918 	lrbp->cmd = NULL;
2919 	lrbp->task_tag = tag;
2920 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2921 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2922 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2923 	hba->dev_cmd.type = cmd_type;
2924 
2925 	return ufshcd_compose_devman_upiu(hba, lrbp);
2926 }
2927 
2928 /*
2929  * Check with the block layer if the command is inflight
2930  * @cmd: command to check.
2931  *
2932  * Return: true if command is inflight; false if not.
2933  */
2934 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2935 {
2936 	struct request *rq;
2937 
2938 	if (!cmd)
2939 		return false;
2940 
2941 	rq = scsi_cmd_to_rq(cmd);
2942 	if (!blk_mq_request_started(rq))
2943 		return false;
2944 
2945 	return true;
2946 }
2947 
2948 /*
2949  * Clear the pending command in the controller and wait until
2950  * the controller confirms that the command has been cleared.
2951  * @hba: per adapter instance
2952  * @task_tag: The tag number of the command to be cleared.
2953  */
2954 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2955 {
2956 	u32 mask;
2957 	unsigned long flags;
2958 	int err;
2959 
2960 	if (is_mcq_enabled(hba)) {
2961 		/*
2962 		 * MCQ mode. Clean up the MCQ resources similar to
2963 		 * what the ufshcd_utrl_clear() does for SDB mode.
2964 		 */
2965 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2966 		if (err) {
2967 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2968 				__func__, task_tag, err);
2969 			return err;
2970 		}
2971 		return 0;
2972 	}
2973 
2974 	mask = 1U << task_tag;
2975 
2976 	/* clear outstanding transaction before retry */
2977 	spin_lock_irqsave(hba->host->host_lock, flags);
2978 	ufshcd_utrl_clear(hba, mask);
2979 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2980 
2981 	/*
2982 	 * wait for h/w to clear corresponding bit in door-bell.
2983 	 * max. wait is 1 sec.
2984 	 */
2985 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2986 					mask, ~mask, 1000, 1000);
2987 }
2988 
2989 /**
2990  * ufshcd_dev_cmd_completion() - handles device management command responses
2991  * @hba: per adapter instance
2992  * @lrbp: pointer to local reference block
2993  *
2994  * Return: 0 upon success; < 0 upon failure.
2995  */
2996 static int
2997 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2998 {
2999 	enum upiu_response_transaction resp;
3000 	int err = 0;
3001 
3002 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3003 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3004 
3005 	switch (resp) {
3006 	case UPIU_TRANSACTION_NOP_IN:
3007 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3008 			err = -EINVAL;
3009 			dev_err(hba->dev, "%s: unexpected response %x\n",
3010 					__func__, resp);
3011 		}
3012 		break;
3013 	case UPIU_TRANSACTION_QUERY_RSP: {
3014 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3015 
3016 		if (response == 0)
3017 			err = ufshcd_copy_query_response(hba, lrbp);
3018 		break;
3019 	}
3020 	case UPIU_TRANSACTION_REJECT_UPIU:
3021 		/* TODO: handle Reject UPIU Response */
3022 		err = -EPERM;
3023 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3024 				__func__);
3025 		break;
3026 	case UPIU_TRANSACTION_RESPONSE:
3027 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3028 			err = -EINVAL;
3029 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3030 		}
3031 		break;
3032 	default:
3033 		err = -EINVAL;
3034 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3035 				__func__, resp);
3036 		break;
3037 	}
3038 
3039 	return err;
3040 }
3041 
3042 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3043 		struct ufshcd_lrb *lrbp, int max_timeout)
3044 {
3045 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3046 	unsigned long flags;
3047 	bool pending;
3048 	int err;
3049 
3050 retry:
3051 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3052 						time_left);
3053 
3054 	if (likely(time_left)) {
3055 		/*
3056 		 * The completion handler called complete() and the caller of
3057 		 * this function still owns the @lrbp tag so the code below does
3058 		 * not trigger any race conditions.
3059 		 */
3060 		hba->dev_cmd.complete = NULL;
3061 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3062 		if (!err)
3063 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3064 	} else {
3065 		err = -ETIMEDOUT;
3066 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3067 			__func__, lrbp->task_tag);
3068 
3069 		/* MCQ mode */
3070 		if (is_mcq_enabled(hba)) {
3071 			/* successfully cleared the command, retry if needed */
3072 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3073 				err = -EAGAIN;
3074 			hba->dev_cmd.complete = NULL;
3075 			return err;
3076 		}
3077 
3078 		/* SDB mode */
3079 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3080 			/* successfully cleared the command, retry if needed */
3081 			err = -EAGAIN;
3082 			/*
3083 			 * Since clearing the command succeeded we also need to
3084 			 * clear the task tag bit from the outstanding_reqs
3085 			 * variable.
3086 			 */
3087 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3088 			pending = test_bit(lrbp->task_tag,
3089 					   &hba->outstanding_reqs);
3090 			if (pending) {
3091 				hba->dev_cmd.complete = NULL;
3092 				__clear_bit(lrbp->task_tag,
3093 					    &hba->outstanding_reqs);
3094 			}
3095 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3096 
3097 			if (!pending) {
3098 				/*
3099 				 * The completion handler ran while we tried to
3100 				 * clear the command.
3101 				 */
3102 				time_left = 1;
3103 				goto retry;
3104 			}
3105 		} else {
3106 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3107 				__func__, lrbp->task_tag);
3108 
3109 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3110 			pending = test_bit(lrbp->task_tag,
3111 					   &hba->outstanding_reqs);
3112 			if (pending)
3113 				hba->dev_cmd.complete = NULL;
3114 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3115 
3116 			if (!pending) {
3117 				/*
3118 				 * The completion handler ran while we tried to
3119 				 * clear the command.
3120 				 */
3121 				time_left = 1;
3122 				goto retry;
3123 			}
3124 		}
3125 	}
3126 
3127 	return err;
3128 }
3129 
3130 /**
3131  * ufshcd_exec_dev_cmd - API for sending device management requests
3132  * @hba: UFS hba
3133  * @cmd_type: specifies the type (NOP, Query...)
3134  * @timeout: timeout in milliseconds
3135  *
3136  * Return: 0 upon success; < 0 upon failure.
3137  *
3138  * NOTE: Since there is only one available tag for device management commands,
3139  * it is expected you hold the hba->dev_cmd.lock mutex.
3140  */
3141 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3142 		enum dev_cmd_type cmd_type, int timeout)
3143 {
3144 	DECLARE_COMPLETION_ONSTACK(wait);
3145 	const u32 tag = hba->reserved_slot;
3146 	struct ufshcd_lrb *lrbp;
3147 	int err;
3148 
3149 	/* Protects use of hba->reserved_slot. */
3150 	lockdep_assert_held(&hba->dev_cmd.lock);
3151 
3152 	down_read(&hba->clk_scaling_lock);
3153 
3154 	lrbp = &hba->lrb[tag];
3155 	lrbp->cmd = NULL;
3156 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3157 	if (unlikely(err))
3158 		goto out;
3159 
3160 	hba->dev_cmd.complete = &wait;
3161 
3162 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3163 
3164 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3165 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3166 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3167 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3168 
3169 out:
3170 	up_read(&hba->clk_scaling_lock);
3171 	return err;
3172 }
3173 
3174 /**
3175  * ufshcd_init_query() - init the query response and request parameters
3176  * @hba: per-adapter instance
3177  * @request: address of the request pointer to be initialized
3178  * @response: address of the response pointer to be initialized
3179  * @opcode: operation to perform
3180  * @idn: flag idn to access
3181  * @index: LU number to access
3182  * @selector: query/flag/descriptor further identification
3183  */
3184 static inline void ufshcd_init_query(struct ufs_hba *hba,
3185 		struct ufs_query_req **request, struct ufs_query_res **response,
3186 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3187 {
3188 	*request = &hba->dev_cmd.query.request;
3189 	*response = &hba->dev_cmd.query.response;
3190 	memset(*request, 0, sizeof(struct ufs_query_req));
3191 	memset(*response, 0, sizeof(struct ufs_query_res));
3192 	(*request)->upiu_req.opcode = opcode;
3193 	(*request)->upiu_req.idn = idn;
3194 	(*request)->upiu_req.index = index;
3195 	(*request)->upiu_req.selector = selector;
3196 }
3197 
3198 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3199 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3200 {
3201 	int ret;
3202 	int retries;
3203 
3204 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3205 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3206 		if (ret)
3207 			dev_dbg(hba->dev,
3208 				"%s: failed with error %d, retries %d\n",
3209 				__func__, ret, retries);
3210 		else
3211 			break;
3212 	}
3213 
3214 	if (ret)
3215 		dev_err(hba->dev,
3216 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3217 			__func__, opcode, idn, ret, retries);
3218 	return ret;
3219 }
3220 
3221 /**
3222  * ufshcd_query_flag() - API function for sending flag query requests
3223  * @hba: per-adapter instance
3224  * @opcode: flag query to perform
3225  * @idn: flag idn to access
3226  * @index: flag index to access
3227  * @flag_res: the flag value after the query request completes
3228  *
3229  * Return: 0 for success, non-zero in case of failure.
3230  */
3231 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3232 			enum flag_idn idn, u8 index, bool *flag_res)
3233 {
3234 	struct ufs_query_req *request = NULL;
3235 	struct ufs_query_res *response = NULL;
3236 	int err, selector = 0;
3237 	int timeout = QUERY_REQ_TIMEOUT;
3238 
3239 	BUG_ON(!hba);
3240 
3241 	ufshcd_hold(hba);
3242 	mutex_lock(&hba->dev_cmd.lock);
3243 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3244 			selector);
3245 
3246 	switch (opcode) {
3247 	case UPIU_QUERY_OPCODE_SET_FLAG:
3248 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3249 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3250 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3251 		break;
3252 	case UPIU_QUERY_OPCODE_READ_FLAG:
3253 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3254 		if (!flag_res) {
3255 			/* No dummy reads */
3256 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3257 					__func__);
3258 			err = -EINVAL;
3259 			goto out_unlock;
3260 		}
3261 		break;
3262 	default:
3263 		dev_err(hba->dev,
3264 			"%s: Expected query flag opcode but got = %d\n",
3265 			__func__, opcode);
3266 		err = -EINVAL;
3267 		goto out_unlock;
3268 	}
3269 
3270 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3271 
3272 	if (err) {
3273 		dev_err(hba->dev,
3274 			"%s: Sending flag query for idn %d failed, err = %d\n",
3275 			__func__, idn, err);
3276 		goto out_unlock;
3277 	}
3278 
3279 	if (flag_res)
3280 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3281 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3282 
3283 out_unlock:
3284 	mutex_unlock(&hba->dev_cmd.lock);
3285 	ufshcd_release(hba);
3286 	return err;
3287 }
3288 
3289 /**
3290  * ufshcd_query_attr - API function for sending attribute requests
3291  * @hba: per-adapter instance
3292  * @opcode: attribute opcode
3293  * @idn: attribute idn to access
3294  * @index: index field
3295  * @selector: selector field
3296  * @attr_val: the attribute value after the query request completes
3297  *
3298  * Return: 0 for success, non-zero in case of failure.
3299 */
3300 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3301 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3302 {
3303 	struct ufs_query_req *request = NULL;
3304 	struct ufs_query_res *response = NULL;
3305 	int err;
3306 
3307 	BUG_ON(!hba);
3308 
3309 	if (!attr_val) {
3310 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3311 				__func__, opcode);
3312 		return -EINVAL;
3313 	}
3314 
3315 	ufshcd_hold(hba);
3316 
3317 	mutex_lock(&hba->dev_cmd.lock);
3318 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3319 			selector);
3320 
3321 	switch (opcode) {
3322 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3323 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3324 		request->upiu_req.value = cpu_to_be32(*attr_val);
3325 		break;
3326 	case UPIU_QUERY_OPCODE_READ_ATTR:
3327 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3328 		break;
3329 	default:
3330 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3331 				__func__, opcode);
3332 		err = -EINVAL;
3333 		goto out_unlock;
3334 	}
3335 
3336 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3337 
3338 	if (err) {
3339 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3340 				__func__, opcode, idn, index, err);
3341 		goto out_unlock;
3342 	}
3343 
3344 	*attr_val = be32_to_cpu(response->upiu_res.value);
3345 
3346 out_unlock:
3347 	mutex_unlock(&hba->dev_cmd.lock);
3348 	ufshcd_release(hba);
3349 	return err;
3350 }
3351 
3352 /**
3353  * ufshcd_query_attr_retry() - API function for sending query
3354  * attribute with retries
3355  * @hba: per-adapter instance
3356  * @opcode: attribute opcode
3357  * @idn: attribute idn to access
3358  * @index: index field
3359  * @selector: selector field
3360  * @attr_val: the attribute value after the query request
3361  * completes
3362  *
3363  * Return: 0 for success, non-zero in case of failure.
3364 */
3365 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3366 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3367 	u32 *attr_val)
3368 {
3369 	int ret = 0;
3370 	u32 retries;
3371 
3372 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3373 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3374 						selector, attr_val);
3375 		if (ret)
3376 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3377 				__func__, ret, retries);
3378 		else
3379 			break;
3380 	}
3381 
3382 	if (ret)
3383 		dev_err(hba->dev,
3384 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3385 			__func__, idn, ret, QUERY_REQ_RETRIES);
3386 	return ret;
3387 }
3388 
3389 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3390 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3391 			u8 selector, u8 *desc_buf, int *buf_len)
3392 {
3393 	struct ufs_query_req *request = NULL;
3394 	struct ufs_query_res *response = NULL;
3395 	int err;
3396 
3397 	BUG_ON(!hba);
3398 
3399 	if (!desc_buf) {
3400 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3401 				__func__, opcode);
3402 		return -EINVAL;
3403 	}
3404 
3405 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3406 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3407 				__func__, *buf_len);
3408 		return -EINVAL;
3409 	}
3410 
3411 	ufshcd_hold(hba);
3412 
3413 	mutex_lock(&hba->dev_cmd.lock);
3414 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3415 			selector);
3416 	hba->dev_cmd.query.descriptor = desc_buf;
3417 	request->upiu_req.length = cpu_to_be16(*buf_len);
3418 
3419 	switch (opcode) {
3420 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3421 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3422 		break;
3423 	case UPIU_QUERY_OPCODE_READ_DESC:
3424 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3425 		break;
3426 	default:
3427 		dev_err(hba->dev,
3428 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3429 				__func__, opcode);
3430 		err = -EINVAL;
3431 		goto out_unlock;
3432 	}
3433 
3434 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3435 
3436 	if (err) {
3437 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3438 				__func__, opcode, idn, index, err);
3439 		goto out_unlock;
3440 	}
3441 
3442 	*buf_len = be16_to_cpu(response->upiu_res.length);
3443 
3444 out_unlock:
3445 	hba->dev_cmd.query.descriptor = NULL;
3446 	mutex_unlock(&hba->dev_cmd.lock);
3447 	ufshcd_release(hba);
3448 	return err;
3449 }
3450 
3451 /**
3452  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3453  * @hba: per-adapter instance
3454  * @opcode: attribute opcode
3455  * @idn: attribute idn to access
3456  * @index: index field
3457  * @selector: selector field
3458  * @desc_buf: the buffer that contains the descriptor
3459  * @buf_len: length parameter passed to the device
3460  *
3461  * The buf_len parameter will contain, on return, the length parameter
3462  * received on the response.
3463  *
3464  * Return: 0 for success, non-zero in case of failure.
3465  */
3466 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3467 				  enum query_opcode opcode,
3468 				  enum desc_idn idn, u8 index,
3469 				  u8 selector,
3470 				  u8 *desc_buf, int *buf_len)
3471 {
3472 	int err;
3473 	int retries;
3474 
3475 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3476 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3477 						selector, desc_buf, buf_len);
3478 		if (!err || err == -EINVAL)
3479 			break;
3480 	}
3481 
3482 	return err;
3483 }
3484 
3485 /**
3486  * ufshcd_read_desc_param - read the specified descriptor parameter
3487  * @hba: Pointer to adapter instance
3488  * @desc_id: descriptor idn value
3489  * @desc_index: descriptor index
3490  * @param_offset: offset of the parameter to read
3491  * @param_read_buf: pointer to buffer where parameter would be read
3492  * @param_size: sizeof(param_read_buf)
3493  *
3494  * Return: 0 in case of success, non-zero otherwise.
3495  */
3496 int ufshcd_read_desc_param(struct ufs_hba *hba,
3497 			   enum desc_idn desc_id,
3498 			   int desc_index,
3499 			   u8 param_offset,
3500 			   u8 *param_read_buf,
3501 			   u8 param_size)
3502 {
3503 	int ret;
3504 	u8 *desc_buf;
3505 	int buff_len = QUERY_DESC_MAX_SIZE;
3506 	bool is_kmalloc = true;
3507 
3508 	/* Safety check */
3509 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3510 		return -EINVAL;
3511 
3512 	/* Check whether we need temp memory */
3513 	if (param_offset != 0 || param_size < buff_len) {
3514 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3515 		if (!desc_buf)
3516 			return -ENOMEM;
3517 	} else {
3518 		desc_buf = param_read_buf;
3519 		is_kmalloc = false;
3520 	}
3521 
3522 	/* Request for full descriptor */
3523 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3524 					    desc_id, desc_index, 0,
3525 					    desc_buf, &buff_len);
3526 	if (ret) {
3527 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3528 			__func__, desc_id, desc_index, param_offset, ret);
3529 		goto out;
3530 	}
3531 
3532 	/* Update descriptor length */
3533 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3534 
3535 	if (param_offset >= buff_len) {
3536 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3537 			__func__, param_offset, desc_id, buff_len);
3538 		ret = -EINVAL;
3539 		goto out;
3540 	}
3541 
3542 	/* Sanity check */
3543 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3544 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3545 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3546 		ret = -EINVAL;
3547 		goto out;
3548 	}
3549 
3550 	if (is_kmalloc) {
3551 		/* Make sure we don't copy more data than available */
3552 		if (param_offset >= buff_len)
3553 			ret = -EINVAL;
3554 		else
3555 			memcpy(param_read_buf, &desc_buf[param_offset],
3556 			       min_t(u32, param_size, buff_len - param_offset));
3557 	}
3558 out:
3559 	if (is_kmalloc)
3560 		kfree(desc_buf);
3561 	return ret;
3562 }
3563 
3564 /**
3565  * struct uc_string_id - unicode string
3566  *
3567  * @len: size of this descriptor inclusive
3568  * @type: descriptor type
3569  * @uc: unicode string character
3570  */
3571 struct uc_string_id {
3572 	u8 len;
3573 	u8 type;
3574 	wchar_t uc[];
3575 } __packed;
3576 
3577 /* replace non-printable or non-ASCII characters with spaces */
3578 static inline char ufshcd_remove_non_printable(u8 ch)
3579 {
3580 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3581 }
3582 
3583 /**
3584  * ufshcd_read_string_desc - read string descriptor
3585  * @hba: pointer to adapter instance
3586  * @desc_index: descriptor index
3587  * @buf: pointer to buffer where descriptor would be read,
3588  *       the caller should free the memory.
3589  * @ascii: if true convert from unicode to ascii characters
3590  *         null terminated string.
3591  *
3592  * Return:
3593  * *      string size on success.
3594  * *      -ENOMEM: on allocation failure
3595  * *      -EINVAL: on a wrong parameter
3596  */
3597 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3598 			    u8 **buf, bool ascii)
3599 {
3600 	struct uc_string_id *uc_str;
3601 	u8 *str;
3602 	int ret;
3603 
3604 	if (!buf)
3605 		return -EINVAL;
3606 
3607 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3608 	if (!uc_str)
3609 		return -ENOMEM;
3610 
3611 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3612 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3613 	if (ret < 0) {
3614 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3615 			QUERY_REQ_RETRIES, ret);
3616 		str = NULL;
3617 		goto out;
3618 	}
3619 
3620 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3621 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3622 		str = NULL;
3623 		ret = 0;
3624 		goto out;
3625 	}
3626 
3627 	if (ascii) {
3628 		ssize_t ascii_len;
3629 		int i;
3630 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3631 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3632 		str = kzalloc(ascii_len, GFP_KERNEL);
3633 		if (!str) {
3634 			ret = -ENOMEM;
3635 			goto out;
3636 		}
3637 
3638 		/*
3639 		 * the descriptor contains string in UTF16 format
3640 		 * we need to convert to utf-8 so it can be displayed
3641 		 */
3642 		ret = utf16s_to_utf8s(uc_str->uc,
3643 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3644 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3645 
3646 		/* replace non-printable or non-ASCII characters with spaces */
3647 		for (i = 0; i < ret; i++)
3648 			str[i] = ufshcd_remove_non_printable(str[i]);
3649 
3650 		str[ret++] = '\0';
3651 
3652 	} else {
3653 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3654 		if (!str) {
3655 			ret = -ENOMEM;
3656 			goto out;
3657 		}
3658 		ret = uc_str->len;
3659 	}
3660 out:
3661 	*buf = str;
3662 	kfree(uc_str);
3663 	return ret;
3664 }
3665 
3666 /**
3667  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3668  * @hba: Pointer to adapter instance
3669  * @lun: lun id
3670  * @param_offset: offset of the parameter to read
3671  * @param_read_buf: pointer to buffer where parameter would be read
3672  * @param_size: sizeof(param_read_buf)
3673  *
3674  * Return: 0 in case of success, non-zero otherwise.
3675  */
3676 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3677 					      int lun,
3678 					      enum unit_desc_param param_offset,
3679 					      u8 *param_read_buf,
3680 					      u32 param_size)
3681 {
3682 	/*
3683 	 * Unit descriptors are only available for general purpose LUs (LUN id
3684 	 * from 0 to 7) and RPMB Well known LU.
3685 	 */
3686 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3687 		return -EOPNOTSUPP;
3688 
3689 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3690 				      param_offset, param_read_buf, param_size);
3691 }
3692 
3693 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3694 {
3695 	int err = 0;
3696 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3697 
3698 	if (hba->dev_info.wspecversion >= 0x300) {
3699 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3700 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3701 				&gating_wait);
3702 		if (err)
3703 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3704 					 err, gating_wait);
3705 
3706 		if (gating_wait == 0) {
3707 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3708 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3709 					 gating_wait);
3710 		}
3711 
3712 		hba->dev_info.clk_gating_wait_us = gating_wait;
3713 	}
3714 
3715 	return err;
3716 }
3717 
3718 /**
3719  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3720  * @hba: per adapter instance
3721  *
3722  * 1. Allocate DMA memory for Command Descriptor array
3723  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3724  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3725  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3726  *	(UTMRDL)
3727  * 4. Allocate memory for local reference block(lrb).
3728  *
3729  * Return: 0 for success, non-zero in case of failure.
3730  */
3731 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3732 {
3733 	size_t utmrdl_size, utrdl_size, ucdl_size;
3734 
3735 	/* Allocate memory for UTP command descriptors */
3736 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3737 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3738 						  ucdl_size,
3739 						  &hba->ucdl_dma_addr,
3740 						  GFP_KERNEL);
3741 
3742 	/*
3743 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3744 	 */
3745 	if (!hba->ucdl_base_addr ||
3746 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3747 		dev_err(hba->dev,
3748 			"Command Descriptor Memory allocation failed\n");
3749 		goto out;
3750 	}
3751 
3752 	/*
3753 	 * Allocate memory for UTP Transfer descriptors
3754 	 * UFSHCI requires 1KB alignment of UTRD
3755 	 */
3756 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3757 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3758 						   utrdl_size,
3759 						   &hba->utrdl_dma_addr,
3760 						   GFP_KERNEL);
3761 	if (!hba->utrdl_base_addr ||
3762 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3763 		dev_err(hba->dev,
3764 			"Transfer Descriptor Memory allocation failed\n");
3765 		goto out;
3766 	}
3767 
3768 	/*
3769 	 * Skip utmrdl allocation; it may have been
3770 	 * allocated during first pass and not released during
3771 	 * MCQ memory allocation.
3772 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3773 	 */
3774 	if (hba->utmrdl_base_addr)
3775 		goto skip_utmrdl;
3776 	/*
3777 	 * Allocate memory for UTP Task Management descriptors
3778 	 * UFSHCI requires 1KB alignment of UTMRD
3779 	 */
3780 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3781 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3782 						    utmrdl_size,
3783 						    &hba->utmrdl_dma_addr,
3784 						    GFP_KERNEL);
3785 	if (!hba->utmrdl_base_addr ||
3786 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3787 		dev_err(hba->dev,
3788 		"Task Management Descriptor Memory allocation failed\n");
3789 		goto out;
3790 	}
3791 
3792 skip_utmrdl:
3793 	/* Allocate memory for local reference block */
3794 	hba->lrb = devm_kcalloc(hba->dev,
3795 				hba->nutrs, sizeof(struct ufshcd_lrb),
3796 				GFP_KERNEL);
3797 	if (!hba->lrb) {
3798 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3799 		goto out;
3800 	}
3801 	return 0;
3802 out:
3803 	return -ENOMEM;
3804 }
3805 
3806 /**
3807  * ufshcd_host_memory_configure - configure local reference block with
3808  *				memory offsets
3809  * @hba: per adapter instance
3810  *
3811  * Configure Host memory space
3812  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3813  * address.
3814  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3815  * and PRDT offset.
3816  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3817  * into local reference block.
3818  */
3819 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3820 {
3821 	struct utp_transfer_req_desc *utrdlp;
3822 	dma_addr_t cmd_desc_dma_addr;
3823 	dma_addr_t cmd_desc_element_addr;
3824 	u16 response_offset;
3825 	u16 prdt_offset;
3826 	int cmd_desc_size;
3827 	int i;
3828 
3829 	utrdlp = hba->utrdl_base_addr;
3830 
3831 	response_offset =
3832 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3833 	prdt_offset =
3834 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3835 
3836 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3837 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3838 
3839 	for (i = 0; i < hba->nutrs; i++) {
3840 		/* Configure UTRD with command descriptor base address */
3841 		cmd_desc_element_addr =
3842 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3843 		utrdlp[i].command_desc_base_addr =
3844 				cpu_to_le64(cmd_desc_element_addr);
3845 
3846 		/* Response upiu and prdt offset should be in double words */
3847 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3848 			utrdlp[i].response_upiu_offset =
3849 				cpu_to_le16(response_offset);
3850 			utrdlp[i].prd_table_offset =
3851 				cpu_to_le16(prdt_offset);
3852 			utrdlp[i].response_upiu_length =
3853 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3854 		} else {
3855 			utrdlp[i].response_upiu_offset =
3856 				cpu_to_le16(response_offset >> 2);
3857 			utrdlp[i].prd_table_offset =
3858 				cpu_to_le16(prdt_offset >> 2);
3859 			utrdlp[i].response_upiu_length =
3860 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3861 		}
3862 
3863 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3864 	}
3865 }
3866 
3867 /**
3868  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3869  * @hba: per adapter instance
3870  *
3871  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3872  * in order to initialize the Unipro link startup procedure.
3873  * Once the Unipro links are up, the device connected to the controller
3874  * is detected.
3875  *
3876  * Return: 0 on success, non-zero value on failure.
3877  */
3878 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3879 {
3880 	struct uic_command uic_cmd = {0};
3881 	int ret;
3882 
3883 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3884 
3885 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3886 	if (ret)
3887 		dev_dbg(hba->dev,
3888 			"dme-link-startup: error code %d\n", ret);
3889 	return ret;
3890 }
3891 /**
3892  * ufshcd_dme_reset - UIC command for DME_RESET
3893  * @hba: per adapter instance
3894  *
3895  * DME_RESET command is issued in order to reset UniPro stack.
3896  * This function now deals with cold reset.
3897  *
3898  * Return: 0 on success, non-zero value on failure.
3899  */
3900 static int ufshcd_dme_reset(struct ufs_hba *hba)
3901 {
3902 	struct uic_command uic_cmd = {0};
3903 	int ret;
3904 
3905 	uic_cmd.command = UIC_CMD_DME_RESET;
3906 
3907 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3908 	if (ret)
3909 		dev_err(hba->dev,
3910 			"dme-reset: error code %d\n", ret);
3911 
3912 	return ret;
3913 }
3914 
3915 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3916 			       int agreed_gear,
3917 			       int adapt_val)
3918 {
3919 	int ret;
3920 
3921 	if (agreed_gear < UFS_HS_G4)
3922 		adapt_val = PA_NO_ADAPT;
3923 
3924 	ret = ufshcd_dme_set(hba,
3925 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3926 			     adapt_val);
3927 	return ret;
3928 }
3929 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3930 
3931 /**
3932  * ufshcd_dme_enable - UIC command for DME_ENABLE
3933  * @hba: per adapter instance
3934  *
3935  * DME_ENABLE command is issued in order to enable UniPro stack.
3936  *
3937  * Return: 0 on success, non-zero value on failure.
3938  */
3939 static int ufshcd_dme_enable(struct ufs_hba *hba)
3940 {
3941 	struct uic_command uic_cmd = {0};
3942 	int ret;
3943 
3944 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3945 
3946 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3947 	if (ret)
3948 		dev_err(hba->dev,
3949 			"dme-enable: error code %d\n", ret);
3950 
3951 	return ret;
3952 }
3953 
3954 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3955 {
3956 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3957 	unsigned long min_sleep_time_us;
3958 
3959 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3960 		return;
3961 
3962 	/*
3963 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3964 	 * this function
3965 	 */
3966 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3967 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3968 	} else {
3969 		unsigned long delta =
3970 			(unsigned long) ktime_to_us(
3971 				ktime_sub(ktime_get(),
3972 				hba->last_dme_cmd_tstamp));
3973 
3974 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3975 			min_sleep_time_us =
3976 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3977 		else
3978 			min_sleep_time_us = 0; /* no more delay required */
3979 	}
3980 
3981 	if (min_sleep_time_us > 0) {
3982 		/* allow sleep for extra 50us if needed */
3983 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3984 	}
3985 
3986 	/* update the last_dme_cmd_tstamp */
3987 	hba->last_dme_cmd_tstamp = ktime_get();
3988 }
3989 
3990 /**
3991  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3992  * @hba: per adapter instance
3993  * @attr_sel: uic command argument1
3994  * @attr_set: attribute set type as uic command argument2
3995  * @mib_val: setting value as uic command argument3
3996  * @peer: indicate whether peer or local
3997  *
3998  * Return: 0 on success, non-zero value on failure.
3999  */
4000 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4001 			u8 attr_set, u32 mib_val, u8 peer)
4002 {
4003 	struct uic_command uic_cmd = {0};
4004 	static const char *const action[] = {
4005 		"dme-set",
4006 		"dme-peer-set"
4007 	};
4008 	const char *set = action[!!peer];
4009 	int ret;
4010 	int retries = UFS_UIC_COMMAND_RETRIES;
4011 
4012 	uic_cmd.command = peer ?
4013 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4014 	uic_cmd.argument1 = attr_sel;
4015 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4016 	uic_cmd.argument3 = mib_val;
4017 
4018 	do {
4019 		/* for peer attributes we retry upon failure */
4020 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4021 		if (ret)
4022 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4023 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4024 	} while (ret && peer && --retries);
4025 
4026 	if (ret)
4027 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4028 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4029 			UFS_UIC_COMMAND_RETRIES - retries);
4030 
4031 	return ret;
4032 }
4033 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4034 
4035 /**
4036  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4037  * @hba: per adapter instance
4038  * @attr_sel: uic command argument1
4039  * @mib_val: the value of the attribute as returned by the UIC command
4040  * @peer: indicate whether peer or local
4041  *
4042  * Return: 0 on success, non-zero value on failure.
4043  */
4044 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4045 			u32 *mib_val, u8 peer)
4046 {
4047 	struct uic_command uic_cmd = {0};
4048 	static const char *const action[] = {
4049 		"dme-get",
4050 		"dme-peer-get"
4051 	};
4052 	const char *get = action[!!peer];
4053 	int ret;
4054 	int retries = UFS_UIC_COMMAND_RETRIES;
4055 	struct ufs_pa_layer_attr orig_pwr_info;
4056 	struct ufs_pa_layer_attr temp_pwr_info;
4057 	bool pwr_mode_change = false;
4058 
4059 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4060 		orig_pwr_info = hba->pwr_info;
4061 		temp_pwr_info = orig_pwr_info;
4062 
4063 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4064 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4065 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4066 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4067 			pwr_mode_change = true;
4068 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4069 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4070 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4071 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4072 			pwr_mode_change = true;
4073 		}
4074 		if (pwr_mode_change) {
4075 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4076 			if (ret)
4077 				goto out;
4078 		}
4079 	}
4080 
4081 	uic_cmd.command = peer ?
4082 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4083 	uic_cmd.argument1 = attr_sel;
4084 
4085 	do {
4086 		/* for peer attributes we retry upon failure */
4087 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4088 		if (ret)
4089 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4090 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4091 	} while (ret && peer && --retries);
4092 
4093 	if (ret)
4094 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4095 			get, UIC_GET_ATTR_ID(attr_sel),
4096 			UFS_UIC_COMMAND_RETRIES - retries);
4097 
4098 	if (mib_val && !ret)
4099 		*mib_val = uic_cmd.argument3;
4100 
4101 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4102 	    && pwr_mode_change)
4103 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4104 out:
4105 	return ret;
4106 }
4107 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4108 
4109 /**
4110  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4111  * state) and waits for it to take effect.
4112  *
4113  * @hba: per adapter instance
4114  * @cmd: UIC command to execute
4115  *
4116  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4117  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4118  * and device UniPro link and hence it's final completion would be indicated by
4119  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4120  * addition to normal UIC command completion Status (UCCS). This function only
4121  * returns after the relevant status bits indicate the completion.
4122  *
4123  * Return: 0 on success, non-zero value on failure.
4124  */
4125 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4126 {
4127 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4128 	unsigned long flags;
4129 	u8 status;
4130 	int ret;
4131 	bool reenable_intr = false;
4132 
4133 	mutex_lock(&hba->uic_cmd_mutex);
4134 	ufshcd_add_delay_before_dme_cmd(hba);
4135 
4136 	spin_lock_irqsave(hba->host->host_lock, flags);
4137 	if (ufshcd_is_link_broken(hba)) {
4138 		ret = -ENOLINK;
4139 		goto out_unlock;
4140 	}
4141 	hba->uic_async_done = &uic_async_done;
4142 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4143 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4144 		/*
4145 		 * Make sure UIC command completion interrupt is disabled before
4146 		 * issuing UIC command.
4147 		 */
4148 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4149 		reenable_intr = true;
4150 	}
4151 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4152 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4153 	if (ret) {
4154 		dev_err(hba->dev,
4155 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4156 			cmd->command, cmd->argument3, ret);
4157 		goto out;
4158 	}
4159 
4160 	if (!wait_for_completion_timeout(hba->uic_async_done,
4161 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4162 		dev_err(hba->dev,
4163 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4164 			cmd->command, cmd->argument3);
4165 
4166 		if (!cmd->cmd_active) {
4167 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4168 				__func__);
4169 			goto check_upmcrs;
4170 		}
4171 
4172 		ret = -ETIMEDOUT;
4173 		goto out;
4174 	}
4175 
4176 check_upmcrs:
4177 	status = ufshcd_get_upmcrs(hba);
4178 	if (status != PWR_LOCAL) {
4179 		dev_err(hba->dev,
4180 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4181 			cmd->command, status);
4182 		ret = (status != PWR_OK) ? status : -1;
4183 	}
4184 out:
4185 	if (ret) {
4186 		ufshcd_print_host_state(hba);
4187 		ufshcd_print_pwr_info(hba);
4188 		ufshcd_print_evt_hist(hba);
4189 	}
4190 
4191 	spin_lock_irqsave(hba->host->host_lock, flags);
4192 	hba->active_uic_cmd = NULL;
4193 	hba->uic_async_done = NULL;
4194 	if (reenable_intr)
4195 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4196 	if (ret) {
4197 		ufshcd_set_link_broken(hba);
4198 		ufshcd_schedule_eh_work(hba);
4199 	}
4200 out_unlock:
4201 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4202 	mutex_unlock(&hba->uic_cmd_mutex);
4203 
4204 	return ret;
4205 }
4206 
4207 /**
4208  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4209  * @hba: per adapter instance
4210  * @uic_cmd: UIC command
4211  *
4212  * Return: 0 only if success.
4213  */
4214 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4215 {
4216 	int ret;
4217 
4218 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4219 		return 0;
4220 
4221 	ufshcd_hold(hba);
4222 
4223 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4224 	    uic_cmd->command == UIC_CMD_DME_SET) {
4225 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4226 		goto out;
4227 	}
4228 
4229 	mutex_lock(&hba->uic_cmd_mutex);
4230 	ufshcd_add_delay_before_dme_cmd(hba);
4231 
4232 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4233 	if (!ret)
4234 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4235 
4236 	mutex_unlock(&hba->uic_cmd_mutex);
4237 
4238 out:
4239 	ufshcd_release(hba);
4240 	return ret;
4241 }
4242 
4243 /**
4244  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4245  *				using DME_SET primitives.
4246  * @hba: per adapter instance
4247  * @mode: powr mode value
4248  *
4249  * Return: 0 on success, non-zero value on failure.
4250  */
4251 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4252 {
4253 	struct uic_command uic_cmd = {0};
4254 	int ret;
4255 
4256 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4257 		ret = ufshcd_dme_set(hba,
4258 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4259 		if (ret) {
4260 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4261 						__func__, ret);
4262 			goto out;
4263 		}
4264 	}
4265 
4266 	uic_cmd.command = UIC_CMD_DME_SET;
4267 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4268 	uic_cmd.argument3 = mode;
4269 	ufshcd_hold(hba);
4270 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4271 	ufshcd_release(hba);
4272 
4273 out:
4274 	return ret;
4275 }
4276 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4277 
4278 int ufshcd_link_recovery(struct ufs_hba *hba)
4279 {
4280 	int ret;
4281 	unsigned long flags;
4282 
4283 	spin_lock_irqsave(hba->host->host_lock, flags);
4284 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4285 	ufshcd_set_eh_in_progress(hba);
4286 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4287 
4288 	/* Reset the attached device */
4289 	ufshcd_device_reset(hba);
4290 
4291 	ret = ufshcd_host_reset_and_restore(hba);
4292 
4293 	spin_lock_irqsave(hba->host->host_lock, flags);
4294 	if (ret)
4295 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4296 	ufshcd_clear_eh_in_progress(hba);
4297 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4298 
4299 	if (ret)
4300 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4301 			__func__, ret);
4302 
4303 	return ret;
4304 }
4305 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4306 
4307 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4308 {
4309 	int ret;
4310 	struct uic_command uic_cmd = {0};
4311 	ktime_t start = ktime_get();
4312 
4313 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4314 
4315 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4316 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4317 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4318 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4319 
4320 	if (ret)
4321 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4322 			__func__, ret);
4323 	else
4324 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4325 								POST_CHANGE);
4326 
4327 	return ret;
4328 }
4329 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4330 
4331 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4332 {
4333 	struct uic_command uic_cmd = {0};
4334 	int ret;
4335 	ktime_t start = ktime_get();
4336 
4337 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4338 
4339 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4340 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4341 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4342 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4343 
4344 	if (ret) {
4345 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4346 			__func__, ret);
4347 	} else {
4348 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4349 								POST_CHANGE);
4350 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4351 		hba->ufs_stats.hibern8_exit_cnt++;
4352 	}
4353 
4354 	return ret;
4355 }
4356 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4357 
4358 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4359 {
4360 	unsigned long flags;
4361 	bool update = false;
4362 
4363 	if (!ufshcd_is_auto_hibern8_supported(hba))
4364 		return;
4365 
4366 	spin_lock_irqsave(hba->host->host_lock, flags);
4367 	if (hba->ahit != ahit) {
4368 		hba->ahit = ahit;
4369 		update = true;
4370 	}
4371 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4372 
4373 	if (update &&
4374 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4375 		ufshcd_rpm_get_sync(hba);
4376 		ufshcd_hold(hba);
4377 		ufshcd_auto_hibern8_enable(hba);
4378 		ufshcd_release(hba);
4379 		ufshcd_rpm_put_sync(hba);
4380 	}
4381 }
4382 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4383 
4384 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4385 {
4386 	if (!ufshcd_is_auto_hibern8_supported(hba))
4387 		return;
4388 
4389 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4390 }
4391 
4392  /**
4393  * ufshcd_init_pwr_info - setting the POR (power on reset)
4394  * values in hba power info
4395  * @hba: per-adapter instance
4396  */
4397 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4398 {
4399 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4400 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4401 	hba->pwr_info.lane_rx = UFS_LANE_1;
4402 	hba->pwr_info.lane_tx = UFS_LANE_1;
4403 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4404 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4405 	hba->pwr_info.hs_rate = 0;
4406 }
4407 
4408 /**
4409  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4410  * @hba: per-adapter instance
4411  *
4412  * Return: 0 upon success; < 0 upon failure.
4413  */
4414 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4415 {
4416 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4417 
4418 	if (hba->max_pwr_info.is_valid)
4419 		return 0;
4420 
4421 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4422 		pwr_info->pwr_tx = FASTAUTO_MODE;
4423 		pwr_info->pwr_rx = FASTAUTO_MODE;
4424 	} else {
4425 		pwr_info->pwr_tx = FAST_MODE;
4426 		pwr_info->pwr_rx = FAST_MODE;
4427 	}
4428 	pwr_info->hs_rate = PA_HS_MODE_B;
4429 
4430 	/* Get the connected lane count */
4431 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4432 			&pwr_info->lane_rx);
4433 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4434 			&pwr_info->lane_tx);
4435 
4436 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4437 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4438 				__func__,
4439 				pwr_info->lane_rx,
4440 				pwr_info->lane_tx);
4441 		return -EINVAL;
4442 	}
4443 
4444 	/*
4445 	 * First, get the maximum gears of HS speed.
4446 	 * If a zero value, it means there is no HSGEAR capability.
4447 	 * Then, get the maximum gears of PWM speed.
4448 	 */
4449 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4450 	if (!pwr_info->gear_rx) {
4451 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4452 				&pwr_info->gear_rx);
4453 		if (!pwr_info->gear_rx) {
4454 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4455 				__func__, pwr_info->gear_rx);
4456 			return -EINVAL;
4457 		}
4458 		pwr_info->pwr_rx = SLOW_MODE;
4459 	}
4460 
4461 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4462 			&pwr_info->gear_tx);
4463 	if (!pwr_info->gear_tx) {
4464 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4465 				&pwr_info->gear_tx);
4466 		if (!pwr_info->gear_tx) {
4467 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4468 				__func__, pwr_info->gear_tx);
4469 			return -EINVAL;
4470 		}
4471 		pwr_info->pwr_tx = SLOW_MODE;
4472 	}
4473 
4474 	hba->max_pwr_info.is_valid = true;
4475 	return 0;
4476 }
4477 
4478 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4479 			     struct ufs_pa_layer_attr *pwr_mode)
4480 {
4481 	int ret;
4482 
4483 	/* if already configured to the requested pwr_mode */
4484 	if (!hba->force_pmc &&
4485 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4486 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4487 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4488 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4489 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4490 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4491 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4492 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4493 		return 0;
4494 	}
4495 
4496 	/*
4497 	 * Configure attributes for power mode change with below.
4498 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4499 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4500 	 * - PA_HSSERIES
4501 	 */
4502 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4503 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4504 			pwr_mode->lane_rx);
4505 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4506 			pwr_mode->pwr_rx == FAST_MODE)
4507 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4508 	else
4509 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4510 
4511 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4512 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4513 			pwr_mode->lane_tx);
4514 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4515 			pwr_mode->pwr_tx == FAST_MODE)
4516 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4517 	else
4518 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4519 
4520 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4521 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4522 	    pwr_mode->pwr_rx == FAST_MODE ||
4523 	    pwr_mode->pwr_tx == FAST_MODE)
4524 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4525 						pwr_mode->hs_rate);
4526 
4527 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4528 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4529 				DL_FC0ProtectionTimeOutVal_Default);
4530 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4531 				DL_TC0ReplayTimeOutVal_Default);
4532 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4533 				DL_AFC0ReqTimeOutVal_Default);
4534 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4535 				DL_FC1ProtectionTimeOutVal_Default);
4536 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4537 				DL_TC1ReplayTimeOutVal_Default);
4538 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4539 				DL_AFC1ReqTimeOutVal_Default);
4540 
4541 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4542 				DL_FC0ProtectionTimeOutVal_Default);
4543 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4544 				DL_TC0ReplayTimeOutVal_Default);
4545 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4546 				DL_AFC0ReqTimeOutVal_Default);
4547 	}
4548 
4549 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4550 			| pwr_mode->pwr_tx);
4551 
4552 	if (ret) {
4553 		dev_err(hba->dev,
4554 			"%s: power mode change failed %d\n", __func__, ret);
4555 	} else {
4556 		memcpy(&hba->pwr_info, pwr_mode,
4557 			sizeof(struct ufs_pa_layer_attr));
4558 	}
4559 
4560 	return ret;
4561 }
4562 
4563 /**
4564  * ufshcd_config_pwr_mode - configure a new power mode
4565  * @hba: per-adapter instance
4566  * @desired_pwr_mode: desired power configuration
4567  *
4568  * Return: 0 upon success; < 0 upon failure.
4569  */
4570 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4571 		struct ufs_pa_layer_attr *desired_pwr_mode)
4572 {
4573 	struct ufs_pa_layer_attr final_params = { 0 };
4574 	int ret;
4575 
4576 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4577 					desired_pwr_mode, &final_params);
4578 
4579 	if (ret)
4580 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4581 
4582 	ret = ufshcd_change_power_mode(hba, &final_params);
4583 
4584 	if (!ret)
4585 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4586 					&final_params);
4587 
4588 	return ret;
4589 }
4590 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4591 
4592 /**
4593  * ufshcd_complete_dev_init() - checks device readiness
4594  * @hba: per-adapter instance
4595  *
4596  * Set fDeviceInit flag and poll until device toggles it.
4597  *
4598  * Return: 0 upon success; < 0 upon failure.
4599  */
4600 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4601 {
4602 	int err;
4603 	bool flag_res = true;
4604 	ktime_t timeout;
4605 
4606 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4607 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4608 	if (err) {
4609 		dev_err(hba->dev,
4610 			"%s: setting fDeviceInit flag failed with error %d\n",
4611 			__func__, err);
4612 		goto out;
4613 	}
4614 
4615 	/* Poll fDeviceInit flag to be cleared */
4616 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4617 	do {
4618 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4619 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4620 		if (!flag_res)
4621 			break;
4622 		usleep_range(500, 1000);
4623 	} while (ktime_before(ktime_get(), timeout));
4624 
4625 	if (err) {
4626 		dev_err(hba->dev,
4627 				"%s: reading fDeviceInit flag failed with error %d\n",
4628 				__func__, err);
4629 	} else if (flag_res) {
4630 		dev_err(hba->dev,
4631 				"%s: fDeviceInit was not cleared by the device\n",
4632 				__func__);
4633 		err = -EBUSY;
4634 	}
4635 out:
4636 	return err;
4637 }
4638 
4639 /**
4640  * ufshcd_make_hba_operational - Make UFS controller operational
4641  * @hba: per adapter instance
4642  *
4643  * To bring UFS host controller to operational state,
4644  * 1. Enable required interrupts
4645  * 2. Configure interrupt aggregation
4646  * 3. Program UTRL and UTMRL base address
4647  * 4. Configure run-stop-registers
4648  *
4649  * Return: 0 on success, non-zero value on failure.
4650  */
4651 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4652 {
4653 	int err = 0;
4654 	u32 reg;
4655 
4656 	/* Enable required interrupts */
4657 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4658 
4659 	/* Configure interrupt aggregation */
4660 	if (ufshcd_is_intr_aggr_allowed(hba))
4661 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4662 	else
4663 		ufshcd_disable_intr_aggr(hba);
4664 
4665 	/* Configure UTRL and UTMRL base address registers */
4666 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4667 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4668 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4669 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4670 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4671 			REG_UTP_TASK_REQ_LIST_BASE_L);
4672 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4673 			REG_UTP_TASK_REQ_LIST_BASE_H);
4674 
4675 	/*
4676 	 * Make sure base address and interrupt setup are updated before
4677 	 * enabling the run/stop registers below.
4678 	 */
4679 	wmb();
4680 
4681 	/*
4682 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4683 	 */
4684 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4685 	if (!(ufshcd_get_lists_status(reg))) {
4686 		ufshcd_enable_run_stop_reg(hba);
4687 	} else {
4688 		dev_err(hba->dev,
4689 			"Host controller not ready to process requests");
4690 		err = -EIO;
4691 	}
4692 
4693 	return err;
4694 }
4695 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4696 
4697 /**
4698  * ufshcd_hba_stop - Send controller to reset state
4699  * @hba: per adapter instance
4700  */
4701 void ufshcd_hba_stop(struct ufs_hba *hba)
4702 {
4703 	unsigned long flags;
4704 	int err;
4705 
4706 	/*
4707 	 * Obtain the host lock to prevent that the controller is disabled
4708 	 * while the UFS interrupt handler is active on another CPU.
4709 	 */
4710 	spin_lock_irqsave(hba->host->host_lock, flags);
4711 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4712 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4713 
4714 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4715 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4716 					10, 1);
4717 	if (err)
4718 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4719 }
4720 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4721 
4722 /**
4723  * ufshcd_hba_execute_hce - initialize the controller
4724  * @hba: per adapter instance
4725  *
4726  * The controller resets itself and controller firmware initialization
4727  * sequence kicks off. When controller is ready it will set
4728  * the Host Controller Enable bit to 1.
4729  *
4730  * Return: 0 on success, non-zero value on failure.
4731  */
4732 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4733 {
4734 	int retry_outer = 3;
4735 	int retry_inner;
4736 
4737 start:
4738 	if (ufshcd_is_hba_active(hba))
4739 		/* change controller state to "reset state" */
4740 		ufshcd_hba_stop(hba);
4741 
4742 	/* UniPro link is disabled at this point */
4743 	ufshcd_set_link_off(hba);
4744 
4745 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4746 
4747 	/* start controller initialization sequence */
4748 	ufshcd_hba_start(hba);
4749 
4750 	/*
4751 	 * To initialize a UFS host controller HCE bit must be set to 1.
4752 	 * During initialization the HCE bit value changes from 1->0->1.
4753 	 * When the host controller completes initialization sequence
4754 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4755 	 * to check if the controller has completed initialization sequence.
4756 	 * So without this delay the value HCE = 1, set in the previous
4757 	 * instruction might be read back.
4758 	 * This delay can be changed based on the controller.
4759 	 */
4760 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4761 
4762 	/* wait for the host controller to complete initialization */
4763 	retry_inner = 50;
4764 	while (!ufshcd_is_hba_active(hba)) {
4765 		if (retry_inner) {
4766 			retry_inner--;
4767 		} else {
4768 			dev_err(hba->dev,
4769 				"Controller enable failed\n");
4770 			if (retry_outer) {
4771 				retry_outer--;
4772 				goto start;
4773 			}
4774 			return -EIO;
4775 		}
4776 		usleep_range(1000, 1100);
4777 	}
4778 
4779 	/* enable UIC related interrupts */
4780 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4781 
4782 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4783 
4784 	return 0;
4785 }
4786 
4787 int ufshcd_hba_enable(struct ufs_hba *hba)
4788 {
4789 	int ret;
4790 
4791 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4792 		ufshcd_set_link_off(hba);
4793 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4794 
4795 		/* enable UIC related interrupts */
4796 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4797 		ret = ufshcd_dme_reset(hba);
4798 		if (ret) {
4799 			dev_err(hba->dev, "DME_RESET failed\n");
4800 			return ret;
4801 		}
4802 
4803 		ret = ufshcd_dme_enable(hba);
4804 		if (ret) {
4805 			dev_err(hba->dev, "Enabling DME failed\n");
4806 			return ret;
4807 		}
4808 
4809 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4810 	} else {
4811 		ret = ufshcd_hba_execute_hce(hba);
4812 	}
4813 
4814 	return ret;
4815 }
4816 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4817 
4818 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4819 {
4820 	int tx_lanes = 0, i, err = 0;
4821 
4822 	if (!peer)
4823 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4824 			       &tx_lanes);
4825 	else
4826 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4827 				    &tx_lanes);
4828 	for (i = 0; i < tx_lanes; i++) {
4829 		if (!peer)
4830 			err = ufshcd_dme_set(hba,
4831 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4832 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4833 					0);
4834 		else
4835 			err = ufshcd_dme_peer_set(hba,
4836 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4837 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4838 					0);
4839 		if (err) {
4840 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4841 				__func__, peer, i, err);
4842 			break;
4843 		}
4844 	}
4845 
4846 	return err;
4847 }
4848 
4849 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4850 {
4851 	return ufshcd_disable_tx_lcc(hba, true);
4852 }
4853 
4854 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4855 {
4856 	struct ufs_event_hist *e;
4857 
4858 	if (id >= UFS_EVT_CNT)
4859 		return;
4860 
4861 	e = &hba->ufs_stats.event[id];
4862 	e->val[e->pos] = val;
4863 	e->tstamp[e->pos] = local_clock();
4864 	e->cnt += 1;
4865 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4866 
4867 	ufshcd_vops_event_notify(hba, id, &val);
4868 }
4869 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4870 
4871 /**
4872  * ufshcd_link_startup - Initialize unipro link startup
4873  * @hba: per adapter instance
4874  *
4875  * Return: 0 for success, non-zero in case of failure.
4876  */
4877 static int ufshcd_link_startup(struct ufs_hba *hba)
4878 {
4879 	int ret;
4880 	int retries = DME_LINKSTARTUP_RETRIES;
4881 	bool link_startup_again = false;
4882 
4883 	/*
4884 	 * If UFS device isn't active then we will have to issue link startup
4885 	 * 2 times to make sure the device state move to active.
4886 	 */
4887 	if (!ufshcd_is_ufs_dev_active(hba))
4888 		link_startup_again = true;
4889 
4890 link_startup:
4891 	do {
4892 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4893 
4894 		ret = ufshcd_dme_link_startup(hba);
4895 
4896 		/* check if device is detected by inter-connect layer */
4897 		if (!ret && !ufshcd_is_device_present(hba)) {
4898 			ufshcd_update_evt_hist(hba,
4899 					       UFS_EVT_LINK_STARTUP_FAIL,
4900 					       0);
4901 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4902 			ret = -ENXIO;
4903 			goto out;
4904 		}
4905 
4906 		/*
4907 		 * DME link lost indication is only received when link is up,
4908 		 * but we can't be sure if the link is up until link startup
4909 		 * succeeds. So reset the local Uni-Pro and try again.
4910 		 */
4911 		if (ret && retries && ufshcd_hba_enable(hba)) {
4912 			ufshcd_update_evt_hist(hba,
4913 					       UFS_EVT_LINK_STARTUP_FAIL,
4914 					       (u32)ret);
4915 			goto out;
4916 		}
4917 	} while (ret && retries--);
4918 
4919 	if (ret) {
4920 		/* failed to get the link up... retire */
4921 		ufshcd_update_evt_hist(hba,
4922 				       UFS_EVT_LINK_STARTUP_FAIL,
4923 				       (u32)ret);
4924 		goto out;
4925 	}
4926 
4927 	if (link_startup_again) {
4928 		link_startup_again = false;
4929 		retries = DME_LINKSTARTUP_RETRIES;
4930 		goto link_startup;
4931 	}
4932 
4933 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4934 	ufshcd_init_pwr_info(hba);
4935 	ufshcd_print_pwr_info(hba);
4936 
4937 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4938 		ret = ufshcd_disable_device_tx_lcc(hba);
4939 		if (ret)
4940 			goto out;
4941 	}
4942 
4943 	/* Include any host controller configuration via UIC commands */
4944 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4945 	if (ret)
4946 		goto out;
4947 
4948 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4949 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4950 	ret = ufshcd_make_hba_operational(hba);
4951 out:
4952 	if (ret) {
4953 		dev_err(hba->dev, "link startup failed %d\n", ret);
4954 		ufshcd_print_host_state(hba);
4955 		ufshcd_print_pwr_info(hba);
4956 		ufshcd_print_evt_hist(hba);
4957 	}
4958 	return ret;
4959 }
4960 
4961 /**
4962  * ufshcd_verify_dev_init() - Verify device initialization
4963  * @hba: per-adapter instance
4964  *
4965  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4966  * device Transport Protocol (UTP) layer is ready after a reset.
4967  * If the UTP layer at the device side is not initialized, it may
4968  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4969  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4970  *
4971  * Return: 0 upon success; < 0 upon failure.
4972  */
4973 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4974 {
4975 	int err = 0;
4976 	int retries;
4977 
4978 	ufshcd_hold(hba);
4979 	mutex_lock(&hba->dev_cmd.lock);
4980 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4981 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4982 					  hba->nop_out_timeout);
4983 
4984 		if (!err || err == -ETIMEDOUT)
4985 			break;
4986 
4987 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4988 	}
4989 	mutex_unlock(&hba->dev_cmd.lock);
4990 	ufshcd_release(hba);
4991 
4992 	if (err)
4993 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4994 	return err;
4995 }
4996 
4997 /**
4998  * ufshcd_setup_links - associate link b/w device wlun and other luns
4999  * @sdev: pointer to SCSI device
5000  * @hba: pointer to ufs hba
5001  */
5002 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5003 {
5004 	struct device_link *link;
5005 
5006 	/*
5007 	 * Device wlun is the supplier & rest of the luns are consumers.
5008 	 * This ensures that device wlun suspends after all other luns.
5009 	 */
5010 	if (hba->ufs_device_wlun) {
5011 		link = device_link_add(&sdev->sdev_gendev,
5012 				       &hba->ufs_device_wlun->sdev_gendev,
5013 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5014 		if (!link) {
5015 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5016 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5017 			return;
5018 		}
5019 		hba->luns_avail--;
5020 		/* Ignore REPORT_LUN wlun probing */
5021 		if (hba->luns_avail == 1) {
5022 			ufshcd_rpm_put(hba);
5023 			return;
5024 		}
5025 	} else {
5026 		/*
5027 		 * Device wlun is probed. The assumption is that WLUNs are
5028 		 * scanned before other LUNs.
5029 		 */
5030 		hba->luns_avail--;
5031 	}
5032 }
5033 
5034 /**
5035  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5036  * @hba: per-adapter instance
5037  * @sdev: pointer to SCSI device
5038  */
5039 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5040 {
5041 	int len = QUERY_DESC_MAX_SIZE;
5042 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5043 	u8 lun_qdepth = hba->nutrs;
5044 	u8 *desc_buf;
5045 	int ret;
5046 
5047 	desc_buf = kzalloc(len, GFP_KERNEL);
5048 	if (!desc_buf)
5049 		goto set_qdepth;
5050 
5051 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5052 	if (ret < 0) {
5053 		if (ret == -EOPNOTSUPP)
5054 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5055 			lun_qdepth = 1;
5056 		kfree(desc_buf);
5057 		goto set_qdepth;
5058 	}
5059 
5060 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5061 		/*
5062 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5063 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5064 		 */
5065 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5066 	}
5067 	/*
5068 	 * According to UFS device specification, the write protection mode is only supported by
5069 	 * normal LU, not supported by WLUN.
5070 	 */
5071 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5072 	    !hba->dev_info.is_lu_power_on_wp &&
5073 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5074 		hba->dev_info.is_lu_power_on_wp = true;
5075 
5076 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5077 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5078 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5079 		hba->dev_info.b_advanced_rpmb_en = true;
5080 
5081 
5082 	kfree(desc_buf);
5083 set_qdepth:
5084 	/*
5085 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5086 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5087 	 */
5088 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5089 	scsi_change_queue_depth(sdev, lun_qdepth);
5090 }
5091 
5092 /**
5093  * ufshcd_slave_alloc - handle initial SCSI device configurations
5094  * @sdev: pointer to SCSI device
5095  *
5096  * Return: success.
5097  */
5098 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5099 {
5100 	struct ufs_hba *hba;
5101 
5102 	hba = shost_priv(sdev->host);
5103 
5104 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5105 	sdev->use_10_for_ms = 1;
5106 
5107 	/* DBD field should be set to 1 in mode sense(10) */
5108 	sdev->set_dbd_for_ms = 1;
5109 
5110 	/* allow SCSI layer to restart the device in case of errors */
5111 	sdev->allow_restart = 1;
5112 
5113 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5114 	sdev->no_report_opcodes = 1;
5115 
5116 	/* WRITE_SAME command is not supported */
5117 	sdev->no_write_same = 1;
5118 
5119 	ufshcd_lu_init(hba, sdev);
5120 
5121 	ufshcd_setup_links(hba, sdev);
5122 
5123 	return 0;
5124 }
5125 
5126 /**
5127  * ufshcd_change_queue_depth - change queue depth
5128  * @sdev: pointer to SCSI device
5129  * @depth: required depth to set
5130  *
5131  * Change queue depth and make sure the max. limits are not crossed.
5132  *
5133  * Return: new queue depth.
5134  */
5135 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5136 {
5137 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5138 }
5139 
5140 /**
5141  * ufshcd_slave_configure - adjust SCSI device configurations
5142  * @sdev: pointer to SCSI device
5143  *
5144  * Return: 0 (success).
5145  */
5146 static int ufshcd_slave_configure(struct scsi_device *sdev)
5147 {
5148 	struct ufs_hba *hba = shost_priv(sdev->host);
5149 	struct request_queue *q = sdev->request_queue;
5150 
5151 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5152 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5153 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5154 	/*
5155 	 * Block runtime-pm until all consumers are added.
5156 	 * Refer ufshcd_setup_links().
5157 	 */
5158 	if (is_device_wlun(sdev))
5159 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5160 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5161 		sdev->rpm_autosuspend = 1;
5162 	/*
5163 	 * Do not print messages during runtime PM to avoid never-ending cycles
5164 	 * of messages written back to storage by user space causing runtime
5165 	 * resume, causing more messages and so on.
5166 	 */
5167 	sdev->silence_suspend = 1;
5168 
5169 	ufshcd_crypto_register(hba, q);
5170 
5171 	return 0;
5172 }
5173 
5174 /**
5175  * ufshcd_slave_destroy - remove SCSI device configurations
5176  * @sdev: pointer to SCSI device
5177  */
5178 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5179 {
5180 	struct ufs_hba *hba;
5181 	unsigned long flags;
5182 
5183 	hba = shost_priv(sdev->host);
5184 
5185 	/* Drop the reference as it won't be needed anymore */
5186 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5187 		spin_lock_irqsave(hba->host->host_lock, flags);
5188 		hba->ufs_device_wlun = NULL;
5189 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5190 	} else if (hba->ufs_device_wlun) {
5191 		struct device *supplier = NULL;
5192 
5193 		/* Ensure UFS Device WLUN exists and does not disappear */
5194 		spin_lock_irqsave(hba->host->host_lock, flags);
5195 		if (hba->ufs_device_wlun) {
5196 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5197 			get_device(supplier);
5198 		}
5199 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5200 
5201 		if (supplier) {
5202 			/*
5203 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5204 			 * device will not have been registered but can still
5205 			 * have a device link holding a reference to the device.
5206 			 */
5207 			device_link_remove(&sdev->sdev_gendev, supplier);
5208 			put_device(supplier);
5209 		}
5210 	}
5211 }
5212 
5213 /**
5214  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5215  * @lrbp: pointer to local reference block of completed command
5216  * @scsi_status: SCSI command status
5217  *
5218  * Return: value base on SCSI command status.
5219  */
5220 static inline int
5221 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5222 {
5223 	int result = 0;
5224 
5225 	switch (scsi_status) {
5226 	case SAM_STAT_CHECK_CONDITION:
5227 		ufshcd_copy_sense_data(lrbp);
5228 		fallthrough;
5229 	case SAM_STAT_GOOD:
5230 		result |= DID_OK << 16 | scsi_status;
5231 		break;
5232 	case SAM_STAT_TASK_SET_FULL:
5233 	case SAM_STAT_BUSY:
5234 	case SAM_STAT_TASK_ABORTED:
5235 		ufshcd_copy_sense_data(lrbp);
5236 		result |= scsi_status;
5237 		break;
5238 	default:
5239 		result |= DID_ERROR << 16;
5240 		break;
5241 	} /* end of switch */
5242 
5243 	return result;
5244 }
5245 
5246 /**
5247  * ufshcd_transfer_rsp_status - Get overall status of the response
5248  * @hba: per adapter instance
5249  * @lrbp: pointer to local reference block of completed command
5250  * @cqe: pointer to the completion queue entry
5251  *
5252  * Return: result of the command to notify SCSI midlayer.
5253  */
5254 static inline int
5255 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5256 			   struct cq_entry *cqe)
5257 {
5258 	int result = 0;
5259 	int scsi_status;
5260 	enum utp_ocs ocs;
5261 	u8 upiu_flags;
5262 	u32 resid;
5263 
5264 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5265 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5266 	/*
5267 	 * Test !overflow instead of underflow to support UFS devices that do
5268 	 * not set either flag.
5269 	 */
5270 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5271 		scsi_set_resid(lrbp->cmd, resid);
5272 
5273 	/* overall command status of utrd */
5274 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5275 
5276 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5277 		if (lrbp->ucd_rsp_ptr->header.response ||
5278 		    lrbp->ucd_rsp_ptr->header.status)
5279 			ocs = OCS_SUCCESS;
5280 	}
5281 
5282 	switch (ocs) {
5283 	case OCS_SUCCESS:
5284 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5285 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5286 		case UPIU_TRANSACTION_RESPONSE:
5287 			/*
5288 			 * get the result based on SCSI status response
5289 			 * to notify the SCSI midlayer of the command status
5290 			 */
5291 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5292 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5293 
5294 			/*
5295 			 * Currently we are only supporting BKOPs exception
5296 			 * events hence we can ignore BKOPs exception event
5297 			 * during power management callbacks. BKOPs exception
5298 			 * event is not expected to be raised in runtime suspend
5299 			 * callback as it allows the urgent bkops.
5300 			 * During system suspend, we are anyway forcefully
5301 			 * disabling the bkops and if urgent bkops is needed
5302 			 * it will be enabled on system resume. Long term
5303 			 * solution could be to abort the system suspend if
5304 			 * UFS device needs urgent BKOPs.
5305 			 */
5306 			if (!hba->pm_op_in_progress &&
5307 			    !ufshcd_eh_in_progress(hba) &&
5308 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5309 				/* Flushed in suspend */
5310 				schedule_work(&hba->eeh_work);
5311 			break;
5312 		case UPIU_TRANSACTION_REJECT_UPIU:
5313 			/* TODO: handle Reject UPIU Response */
5314 			result = DID_ERROR << 16;
5315 			dev_err(hba->dev,
5316 				"Reject UPIU not fully implemented\n");
5317 			break;
5318 		default:
5319 			dev_err(hba->dev,
5320 				"Unexpected request response code = %x\n",
5321 				result);
5322 			result = DID_ERROR << 16;
5323 			break;
5324 		}
5325 		break;
5326 	case OCS_ABORTED:
5327 		result |= DID_ABORT << 16;
5328 		break;
5329 	case OCS_INVALID_COMMAND_STATUS:
5330 		result |= DID_REQUEUE << 16;
5331 		break;
5332 	case OCS_INVALID_CMD_TABLE_ATTR:
5333 	case OCS_INVALID_PRDT_ATTR:
5334 	case OCS_MISMATCH_DATA_BUF_SIZE:
5335 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5336 	case OCS_PEER_COMM_FAILURE:
5337 	case OCS_FATAL_ERROR:
5338 	case OCS_DEVICE_FATAL_ERROR:
5339 	case OCS_INVALID_CRYPTO_CONFIG:
5340 	case OCS_GENERAL_CRYPTO_ERROR:
5341 	default:
5342 		result |= DID_ERROR << 16;
5343 		dev_err(hba->dev,
5344 				"OCS error from controller = %x for tag %d\n",
5345 				ocs, lrbp->task_tag);
5346 		ufshcd_print_evt_hist(hba);
5347 		ufshcd_print_host_state(hba);
5348 		break;
5349 	} /* end of switch */
5350 
5351 	if ((host_byte(result) != DID_OK) &&
5352 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5353 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5354 	return result;
5355 }
5356 
5357 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5358 					 u32 intr_mask)
5359 {
5360 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5361 	    !ufshcd_is_auto_hibern8_enabled(hba))
5362 		return false;
5363 
5364 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5365 		return false;
5366 
5367 	if (hba->active_uic_cmd &&
5368 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5369 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5370 		return false;
5371 
5372 	return true;
5373 }
5374 
5375 /**
5376  * ufshcd_uic_cmd_compl - handle completion of uic command
5377  * @hba: per adapter instance
5378  * @intr_status: interrupt status generated by the controller
5379  *
5380  * Return:
5381  *  IRQ_HANDLED - If interrupt is valid
5382  *  IRQ_NONE    - If invalid interrupt
5383  */
5384 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5385 {
5386 	irqreturn_t retval = IRQ_NONE;
5387 
5388 	spin_lock(hba->host->host_lock);
5389 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5390 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5391 
5392 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5393 		hba->active_uic_cmd->argument2 |=
5394 			ufshcd_get_uic_cmd_result(hba);
5395 		hba->active_uic_cmd->argument3 =
5396 			ufshcd_get_dme_attr_val(hba);
5397 		if (!hba->uic_async_done)
5398 			hba->active_uic_cmd->cmd_active = 0;
5399 		complete(&hba->active_uic_cmd->done);
5400 		retval = IRQ_HANDLED;
5401 	}
5402 
5403 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5404 		hba->active_uic_cmd->cmd_active = 0;
5405 		complete(hba->uic_async_done);
5406 		retval = IRQ_HANDLED;
5407 	}
5408 
5409 	if (retval == IRQ_HANDLED)
5410 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5411 					     UFS_CMD_COMP);
5412 	spin_unlock(hba->host->host_lock);
5413 	return retval;
5414 }
5415 
5416 /* Release the resources allocated for processing a SCSI command. */
5417 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5418 			     struct ufshcd_lrb *lrbp)
5419 {
5420 	struct scsi_cmnd *cmd = lrbp->cmd;
5421 
5422 	scsi_dma_unmap(cmd);
5423 	ufshcd_release(hba);
5424 	ufshcd_clk_scaling_update_busy(hba);
5425 }
5426 
5427 /**
5428  * ufshcd_compl_one_cqe - handle a completion queue entry
5429  * @hba: per adapter instance
5430  * @task_tag: the task tag of the request to be completed
5431  * @cqe: pointer to the completion queue entry
5432  */
5433 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5434 			  struct cq_entry *cqe)
5435 {
5436 	struct ufshcd_lrb *lrbp;
5437 	struct scsi_cmnd *cmd;
5438 	enum utp_ocs ocs;
5439 
5440 	lrbp = &hba->lrb[task_tag];
5441 	lrbp->compl_time_stamp = ktime_get();
5442 	cmd = lrbp->cmd;
5443 	if (cmd) {
5444 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5445 			ufshcd_update_monitor(hba, lrbp);
5446 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5447 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5448 		ufshcd_release_scsi_cmd(hba, lrbp);
5449 		/* Do not touch lrbp after scsi done */
5450 		scsi_done(cmd);
5451 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5452 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5453 		if (hba->dev_cmd.complete) {
5454 			if (cqe) {
5455 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5456 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5457 			}
5458 			complete(hba->dev_cmd.complete);
5459 			ufshcd_clk_scaling_update_busy(hba);
5460 		}
5461 	}
5462 }
5463 
5464 /**
5465  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5466  * @hba: per adapter instance
5467  * @completed_reqs: bitmask that indicates which requests to complete
5468  */
5469 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5470 					unsigned long completed_reqs)
5471 {
5472 	int tag;
5473 
5474 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5475 		ufshcd_compl_one_cqe(hba, tag, NULL);
5476 }
5477 
5478 /* Any value that is not an existing queue number is fine for this constant. */
5479 enum {
5480 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5481 };
5482 
5483 static void ufshcd_clear_polled(struct ufs_hba *hba,
5484 				unsigned long *completed_reqs)
5485 {
5486 	int tag;
5487 
5488 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5489 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5490 
5491 		if (!cmd)
5492 			continue;
5493 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5494 			__clear_bit(tag, completed_reqs);
5495 	}
5496 }
5497 
5498 /*
5499  * Return: > 0 if one or more commands have been completed or 0 if no
5500  * requests have been completed.
5501  */
5502 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5503 {
5504 	struct ufs_hba *hba = shost_priv(shost);
5505 	unsigned long completed_reqs, flags;
5506 	u32 tr_doorbell;
5507 	struct ufs_hw_queue *hwq;
5508 
5509 	if (is_mcq_enabled(hba)) {
5510 		hwq = &hba->uhq[queue_num];
5511 
5512 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5513 	}
5514 
5515 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5516 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5517 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5518 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5519 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5520 		  hba->outstanding_reqs);
5521 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5522 		/* Do not complete polled requests from interrupt context. */
5523 		ufshcd_clear_polled(hba, &completed_reqs);
5524 	}
5525 	hba->outstanding_reqs &= ~completed_reqs;
5526 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5527 
5528 	if (completed_reqs)
5529 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5530 
5531 	return completed_reqs != 0;
5532 }
5533 
5534 /**
5535  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5536  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5537  * to complete the pending transfers and free the resources associated with
5538  * the scsi command.
5539  *
5540  * @hba: per adapter instance
5541  * @force_compl: This flag is set to true when invoked
5542  * from ufshcd_host_reset_and_restore() in which case it requires special
5543  * handling because the host controller has been reset by ufshcd_hba_stop().
5544  */
5545 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5546 					      bool force_compl)
5547 {
5548 	struct ufs_hw_queue *hwq;
5549 	struct ufshcd_lrb *lrbp;
5550 	struct scsi_cmnd *cmd;
5551 	unsigned long flags;
5552 	u32 hwq_num, utag;
5553 	int tag;
5554 
5555 	for (tag = 0; tag < hba->nutrs; tag++) {
5556 		lrbp = &hba->lrb[tag];
5557 		cmd = lrbp->cmd;
5558 		if (!ufshcd_cmd_inflight(cmd) ||
5559 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5560 			continue;
5561 
5562 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5563 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5564 		hwq = &hba->uhq[hwq_num];
5565 
5566 		if (force_compl) {
5567 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5568 			/*
5569 			 * For those cmds of which the cqes are not present
5570 			 * in the cq, complete them explicitly.
5571 			 */
5572 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5573 				spin_lock_irqsave(&hwq->cq_lock, flags);
5574 				set_host_byte(cmd, DID_REQUEUE);
5575 				ufshcd_release_scsi_cmd(hba, lrbp);
5576 				scsi_done(cmd);
5577 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5578 			}
5579 		} else {
5580 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5581 		}
5582 	}
5583 }
5584 
5585 /**
5586  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5587  * @hba: per adapter instance
5588  *
5589  * Return:
5590  *  IRQ_HANDLED - If interrupt is valid
5591  *  IRQ_NONE    - If invalid interrupt
5592  */
5593 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5594 {
5595 	/* Resetting interrupt aggregation counters first and reading the
5596 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5597 	 * In order to prevent other interrupts starvation the DB is read once
5598 	 * after reset. The down side of this solution is the possibility of
5599 	 * false interrupt if device completes another request after resetting
5600 	 * aggregation and before reading the DB.
5601 	 */
5602 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5603 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5604 		ufshcd_reset_intr_aggr(hba);
5605 
5606 	if (ufs_fail_completion())
5607 		return IRQ_HANDLED;
5608 
5609 	/*
5610 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5611 	 * do not want polling to trigger spurious interrupt complaints.
5612 	 */
5613 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5614 
5615 	return IRQ_HANDLED;
5616 }
5617 
5618 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5619 {
5620 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5621 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5622 				       &ee_ctrl_mask);
5623 }
5624 
5625 int ufshcd_write_ee_control(struct ufs_hba *hba)
5626 {
5627 	int err;
5628 
5629 	mutex_lock(&hba->ee_ctrl_mutex);
5630 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5631 	mutex_unlock(&hba->ee_ctrl_mutex);
5632 	if (err)
5633 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5634 			__func__, err);
5635 	return err;
5636 }
5637 
5638 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5639 			     const u16 *other_mask, u16 set, u16 clr)
5640 {
5641 	u16 new_mask, ee_ctrl_mask;
5642 	int err = 0;
5643 
5644 	mutex_lock(&hba->ee_ctrl_mutex);
5645 	new_mask = (*mask & ~clr) | set;
5646 	ee_ctrl_mask = new_mask | *other_mask;
5647 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5648 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5649 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5650 	if (!err) {
5651 		hba->ee_ctrl_mask = ee_ctrl_mask;
5652 		*mask = new_mask;
5653 	}
5654 	mutex_unlock(&hba->ee_ctrl_mutex);
5655 	return err;
5656 }
5657 
5658 /**
5659  * ufshcd_disable_ee - disable exception event
5660  * @hba: per-adapter instance
5661  * @mask: exception event to disable
5662  *
5663  * Disables exception event in the device so that the EVENT_ALERT
5664  * bit is not set.
5665  *
5666  * Return: zero on success, non-zero error value on failure.
5667  */
5668 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5669 {
5670 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5671 }
5672 
5673 /**
5674  * ufshcd_enable_ee - enable exception event
5675  * @hba: per-adapter instance
5676  * @mask: exception event to enable
5677  *
5678  * Enable corresponding exception event in the device to allow
5679  * device to alert host in critical scenarios.
5680  *
5681  * Return: zero on success, non-zero error value on failure.
5682  */
5683 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5684 {
5685 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5686 }
5687 
5688 /**
5689  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5690  * @hba: per-adapter instance
5691  *
5692  * Allow device to manage background operations on its own. Enabling
5693  * this might lead to inconsistent latencies during normal data transfers
5694  * as the device is allowed to manage its own way of handling background
5695  * operations.
5696  *
5697  * Return: zero on success, non-zero on failure.
5698  */
5699 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5700 {
5701 	int err = 0;
5702 
5703 	if (hba->auto_bkops_enabled)
5704 		goto out;
5705 
5706 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5707 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5708 	if (err) {
5709 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5710 				__func__, err);
5711 		goto out;
5712 	}
5713 
5714 	hba->auto_bkops_enabled = true;
5715 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5716 
5717 	/* No need of URGENT_BKOPS exception from the device */
5718 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5719 	if (err)
5720 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5721 				__func__, err);
5722 out:
5723 	return err;
5724 }
5725 
5726 /**
5727  * ufshcd_disable_auto_bkops - block device in doing background operations
5728  * @hba: per-adapter instance
5729  *
5730  * Disabling background operations improves command response latency but
5731  * has drawback of device moving into critical state where the device is
5732  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5733  * host is idle so that BKOPS are managed effectively without any negative
5734  * impacts.
5735  *
5736  * Return: zero on success, non-zero on failure.
5737  */
5738 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5739 {
5740 	int err = 0;
5741 
5742 	if (!hba->auto_bkops_enabled)
5743 		goto out;
5744 
5745 	/*
5746 	 * If host assisted BKOPs is to be enabled, make sure
5747 	 * urgent bkops exception is allowed.
5748 	 */
5749 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5750 	if (err) {
5751 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5752 				__func__, err);
5753 		goto out;
5754 	}
5755 
5756 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5757 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5758 	if (err) {
5759 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5760 				__func__, err);
5761 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5762 		goto out;
5763 	}
5764 
5765 	hba->auto_bkops_enabled = false;
5766 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5767 	hba->is_urgent_bkops_lvl_checked = false;
5768 out:
5769 	return err;
5770 }
5771 
5772 /**
5773  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5774  * @hba: per adapter instance
5775  *
5776  * After a device reset the device may toggle the BKOPS_EN flag
5777  * to default value. The s/w tracking variables should be updated
5778  * as well. This function would change the auto-bkops state based on
5779  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5780  */
5781 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5782 {
5783 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5784 		hba->auto_bkops_enabled = false;
5785 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5786 		ufshcd_enable_auto_bkops(hba);
5787 	} else {
5788 		hba->auto_bkops_enabled = true;
5789 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5790 		ufshcd_disable_auto_bkops(hba);
5791 	}
5792 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5793 	hba->is_urgent_bkops_lvl_checked = false;
5794 }
5795 
5796 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5797 {
5798 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5799 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5800 }
5801 
5802 /**
5803  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5804  * @hba: per-adapter instance
5805  * @status: bkops_status value
5806  *
5807  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5808  * flag in the device to permit background operations if the device
5809  * bkops_status is greater than or equal to "status" argument passed to
5810  * this function, disable otherwise.
5811  *
5812  * Return: 0 for success, non-zero in case of failure.
5813  *
5814  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5815  * to know whether auto bkops is enabled or disabled after this function
5816  * returns control to it.
5817  */
5818 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5819 			     enum bkops_status status)
5820 {
5821 	int err;
5822 	u32 curr_status = 0;
5823 
5824 	err = ufshcd_get_bkops_status(hba, &curr_status);
5825 	if (err) {
5826 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5827 				__func__, err);
5828 		goto out;
5829 	} else if (curr_status > BKOPS_STATUS_MAX) {
5830 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5831 				__func__, curr_status);
5832 		err = -EINVAL;
5833 		goto out;
5834 	}
5835 
5836 	if (curr_status >= status)
5837 		err = ufshcd_enable_auto_bkops(hba);
5838 	else
5839 		err = ufshcd_disable_auto_bkops(hba);
5840 out:
5841 	return err;
5842 }
5843 
5844 /**
5845  * ufshcd_urgent_bkops - handle urgent bkops exception event
5846  * @hba: per-adapter instance
5847  *
5848  * Enable fBackgroundOpsEn flag in the device to permit background
5849  * operations.
5850  *
5851  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5852  * and negative error value for any other failure.
5853  *
5854  * Return: 0 upon success; < 0 upon failure.
5855  */
5856 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5857 {
5858 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5859 }
5860 
5861 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5862 {
5863 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5864 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5865 }
5866 
5867 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5868 {
5869 	int err;
5870 	u32 curr_status = 0;
5871 
5872 	if (hba->is_urgent_bkops_lvl_checked)
5873 		goto enable_auto_bkops;
5874 
5875 	err = ufshcd_get_bkops_status(hba, &curr_status);
5876 	if (err) {
5877 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5878 				__func__, err);
5879 		goto out;
5880 	}
5881 
5882 	/*
5883 	 * We are seeing that some devices are raising the urgent bkops
5884 	 * exception events even when BKOPS status doesn't indicate performace
5885 	 * impacted or critical. Handle these device by determining their urgent
5886 	 * bkops status at runtime.
5887 	 */
5888 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5889 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5890 				__func__, curr_status);
5891 		/* update the current status as the urgent bkops level */
5892 		hba->urgent_bkops_lvl = curr_status;
5893 		hba->is_urgent_bkops_lvl_checked = true;
5894 	}
5895 
5896 enable_auto_bkops:
5897 	err = ufshcd_enable_auto_bkops(hba);
5898 out:
5899 	if (err < 0)
5900 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5901 				__func__, err);
5902 }
5903 
5904 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5905 {
5906 	u32 value;
5907 
5908 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5909 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5910 		return;
5911 
5912 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5913 
5914 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5915 
5916 	/*
5917 	 * A placeholder for the platform vendors to add whatever additional
5918 	 * steps required
5919 	 */
5920 }
5921 
5922 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5923 {
5924 	u8 index;
5925 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5926 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5927 
5928 	index = ufshcd_wb_get_query_index(hba);
5929 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5930 }
5931 
5932 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5933 {
5934 	int ret;
5935 
5936 	if (!ufshcd_is_wb_allowed(hba) ||
5937 	    hba->dev_info.wb_enabled == enable)
5938 		return 0;
5939 
5940 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5941 	if (ret) {
5942 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5943 			__func__, enable ? "enabling" : "disabling", ret);
5944 		return ret;
5945 	}
5946 
5947 	hba->dev_info.wb_enabled = enable;
5948 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5949 			__func__, enable ? "enabled" : "disabled");
5950 
5951 	return ret;
5952 }
5953 
5954 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5955 						 bool enable)
5956 {
5957 	int ret;
5958 
5959 	ret = __ufshcd_wb_toggle(hba, enable,
5960 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5961 	if (ret) {
5962 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5963 			__func__, enable ? "enabling" : "disabling", ret);
5964 		return;
5965 	}
5966 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5967 			__func__, enable ? "enabled" : "disabled");
5968 }
5969 
5970 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5971 {
5972 	int ret;
5973 
5974 	if (!ufshcd_is_wb_allowed(hba) ||
5975 	    hba->dev_info.wb_buf_flush_enabled == enable)
5976 		return 0;
5977 
5978 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5979 	if (ret) {
5980 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5981 			__func__, enable ? "enabling" : "disabling", ret);
5982 		return ret;
5983 	}
5984 
5985 	hba->dev_info.wb_buf_flush_enabled = enable;
5986 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5987 			__func__, enable ? "enabled" : "disabled");
5988 
5989 	return ret;
5990 }
5991 
5992 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5993 						u32 avail_buf)
5994 {
5995 	u32 cur_buf;
5996 	int ret;
5997 	u8 index;
5998 
5999 	index = ufshcd_wb_get_query_index(hba);
6000 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6001 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6002 					      index, 0, &cur_buf);
6003 	if (ret) {
6004 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6005 			__func__, ret);
6006 		return false;
6007 	}
6008 
6009 	if (!cur_buf) {
6010 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6011 			 cur_buf);
6012 		return false;
6013 	}
6014 	/* Let it continue to flush when available buffer exceeds threshold */
6015 	return avail_buf < hba->vps->wb_flush_threshold;
6016 }
6017 
6018 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6019 {
6020 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6021 		ufshcd_wb_toggle_buf_flush(hba, false);
6022 
6023 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6024 	ufshcd_wb_toggle(hba, false);
6025 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6026 
6027 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6028 }
6029 
6030 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6031 {
6032 	u32 lifetime;
6033 	int ret;
6034 	u8 index;
6035 
6036 	index = ufshcd_wb_get_query_index(hba);
6037 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6038 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6039 				      index, 0, &lifetime);
6040 	if (ret) {
6041 		dev_err(hba->dev,
6042 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6043 			__func__, ret);
6044 		return false;
6045 	}
6046 
6047 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6048 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6049 			__func__, lifetime);
6050 		return false;
6051 	}
6052 
6053 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6054 		__func__, lifetime);
6055 
6056 	return true;
6057 }
6058 
6059 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6060 {
6061 	int ret;
6062 	u32 avail_buf;
6063 	u8 index;
6064 
6065 	if (!ufshcd_is_wb_allowed(hba))
6066 		return false;
6067 
6068 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6069 		ufshcd_wb_force_disable(hba);
6070 		return false;
6071 	}
6072 
6073 	/*
6074 	 * The ufs device needs the vcc to be ON to flush.
6075 	 * With user-space reduction enabled, it's enough to enable flush
6076 	 * by checking only the available buffer. The threshold
6077 	 * defined here is > 90% full.
6078 	 * With user-space preserved enabled, the current-buffer
6079 	 * should be checked too because the wb buffer size can reduce
6080 	 * when disk tends to be full. This info is provided by current
6081 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6082 	 * keeping vcc on when current buffer is empty.
6083 	 */
6084 	index = ufshcd_wb_get_query_index(hba);
6085 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6086 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6087 				      index, 0, &avail_buf);
6088 	if (ret) {
6089 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6090 			 __func__, ret);
6091 		return false;
6092 	}
6093 
6094 	if (!hba->dev_info.b_presrv_uspc_en)
6095 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6096 
6097 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6098 }
6099 
6100 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6101 {
6102 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6103 					   struct ufs_hba,
6104 					   rpm_dev_flush_recheck_work);
6105 	/*
6106 	 * To prevent unnecessary VCC power drain after device finishes
6107 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6108 	 * after a certain delay to recheck the threshold by next runtime
6109 	 * suspend.
6110 	 */
6111 	ufshcd_rpm_get_sync(hba);
6112 	ufshcd_rpm_put_sync(hba);
6113 }
6114 
6115 /**
6116  * ufshcd_exception_event_handler - handle exceptions raised by device
6117  * @work: pointer to work data
6118  *
6119  * Read bExceptionEventStatus attribute from the device and handle the
6120  * exception event accordingly.
6121  */
6122 static void ufshcd_exception_event_handler(struct work_struct *work)
6123 {
6124 	struct ufs_hba *hba;
6125 	int err;
6126 	u32 status = 0;
6127 	hba = container_of(work, struct ufs_hba, eeh_work);
6128 
6129 	ufshcd_scsi_block_requests(hba);
6130 	err = ufshcd_get_ee_status(hba, &status);
6131 	if (err) {
6132 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6133 				__func__, err);
6134 		goto out;
6135 	}
6136 
6137 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6138 
6139 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6140 		ufshcd_bkops_exception_event_handler(hba);
6141 
6142 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6143 		ufshcd_temp_exception_event_handler(hba, status);
6144 
6145 	ufs_debugfs_exception_event(hba, status);
6146 out:
6147 	ufshcd_scsi_unblock_requests(hba);
6148 }
6149 
6150 /* Complete requests that have door-bell cleared */
6151 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6152 {
6153 	if (is_mcq_enabled(hba))
6154 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6155 	else
6156 		ufshcd_transfer_req_compl(hba);
6157 
6158 	ufshcd_tmc_handler(hba);
6159 }
6160 
6161 /**
6162  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6163  *				to recover from the DL NAC errors or not.
6164  * @hba: per-adapter instance
6165  *
6166  * Return: true if error handling is required, false otherwise.
6167  */
6168 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6169 {
6170 	unsigned long flags;
6171 	bool err_handling = true;
6172 
6173 	spin_lock_irqsave(hba->host->host_lock, flags);
6174 	/*
6175 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6176 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6177 	 */
6178 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6179 		goto out;
6180 
6181 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6182 	    ((hba->saved_err & UIC_ERROR) &&
6183 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6184 		goto out;
6185 
6186 	if ((hba->saved_err & UIC_ERROR) &&
6187 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6188 		int err;
6189 		/*
6190 		 * wait for 50ms to see if we can get any other errors or not.
6191 		 */
6192 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6193 		msleep(50);
6194 		spin_lock_irqsave(hba->host->host_lock, flags);
6195 
6196 		/*
6197 		 * now check if we have got any other severe errors other than
6198 		 * DL NAC error?
6199 		 */
6200 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6201 		    ((hba->saved_err & UIC_ERROR) &&
6202 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6203 			goto out;
6204 
6205 		/*
6206 		 * As DL NAC is the only error received so far, send out NOP
6207 		 * command to confirm if link is still active or not.
6208 		 *   - If we don't get any response then do error recovery.
6209 		 *   - If we get response then clear the DL NAC error bit.
6210 		 */
6211 
6212 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6213 		err = ufshcd_verify_dev_init(hba);
6214 		spin_lock_irqsave(hba->host->host_lock, flags);
6215 
6216 		if (err)
6217 			goto out;
6218 
6219 		/* Link seems to be alive hence ignore the DL NAC errors */
6220 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6221 			hba->saved_err &= ~UIC_ERROR;
6222 		/* clear NAC error */
6223 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6224 		if (!hba->saved_uic_err)
6225 			err_handling = false;
6226 	}
6227 out:
6228 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6229 	return err_handling;
6230 }
6231 
6232 /* host lock must be held before calling this func */
6233 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6234 {
6235 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6236 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6237 }
6238 
6239 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6240 {
6241 	lockdep_assert_held(hba->host->host_lock);
6242 
6243 	/* handle fatal errors only when link is not in error state */
6244 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6245 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6246 		    ufshcd_is_saved_err_fatal(hba))
6247 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6248 		else
6249 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6250 		queue_work(hba->eh_wq, &hba->eh_work);
6251 	}
6252 }
6253 
6254 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6255 {
6256 	spin_lock_irq(hba->host->host_lock);
6257 	hba->force_reset = true;
6258 	ufshcd_schedule_eh_work(hba);
6259 	spin_unlock_irq(hba->host->host_lock);
6260 }
6261 
6262 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6263 {
6264 	mutex_lock(&hba->wb_mutex);
6265 	down_write(&hba->clk_scaling_lock);
6266 	hba->clk_scaling.is_allowed = allow;
6267 	up_write(&hba->clk_scaling_lock);
6268 	mutex_unlock(&hba->wb_mutex);
6269 }
6270 
6271 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6272 {
6273 	if (suspend) {
6274 		if (hba->clk_scaling.is_enabled)
6275 			ufshcd_suspend_clkscaling(hba);
6276 		ufshcd_clk_scaling_allow(hba, false);
6277 	} else {
6278 		ufshcd_clk_scaling_allow(hba, true);
6279 		if (hba->clk_scaling.is_enabled)
6280 			ufshcd_resume_clkscaling(hba);
6281 	}
6282 }
6283 
6284 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6285 {
6286 	ufshcd_rpm_get_sync(hba);
6287 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6288 	    hba->is_sys_suspended) {
6289 		enum ufs_pm_op pm_op;
6290 
6291 		/*
6292 		 * Don't assume anything of resume, if
6293 		 * resume fails, irq and clocks can be OFF, and powers
6294 		 * can be OFF or in LPM.
6295 		 */
6296 		ufshcd_setup_hba_vreg(hba, true);
6297 		ufshcd_enable_irq(hba);
6298 		ufshcd_setup_vreg(hba, true);
6299 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6300 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6301 		ufshcd_hold(hba);
6302 		if (!ufshcd_is_clkgating_allowed(hba))
6303 			ufshcd_setup_clocks(hba, true);
6304 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6305 		ufshcd_vops_resume(hba, pm_op);
6306 	} else {
6307 		ufshcd_hold(hba);
6308 		if (ufshcd_is_clkscaling_supported(hba) &&
6309 		    hba->clk_scaling.is_enabled)
6310 			ufshcd_suspend_clkscaling(hba);
6311 		ufshcd_clk_scaling_allow(hba, false);
6312 	}
6313 	ufshcd_scsi_block_requests(hba);
6314 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6315 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6316 	cancel_work_sync(&hba->eeh_work);
6317 }
6318 
6319 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6320 {
6321 	ufshcd_scsi_unblock_requests(hba);
6322 	ufshcd_release(hba);
6323 	if (ufshcd_is_clkscaling_supported(hba))
6324 		ufshcd_clk_scaling_suspend(hba, false);
6325 	ufshcd_rpm_put(hba);
6326 }
6327 
6328 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6329 {
6330 	return (!hba->is_powered || hba->shutting_down ||
6331 		!hba->ufs_device_wlun ||
6332 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6333 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6334 		   ufshcd_is_link_broken(hba))));
6335 }
6336 
6337 #ifdef CONFIG_PM
6338 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6339 {
6340 	struct Scsi_Host *shost = hba->host;
6341 	struct scsi_device *sdev;
6342 	struct request_queue *q;
6343 	int ret;
6344 
6345 	hba->is_sys_suspended = false;
6346 	/*
6347 	 * Set RPM status of wlun device to RPM_ACTIVE,
6348 	 * this also clears its runtime error.
6349 	 */
6350 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6351 
6352 	/* hba device might have a runtime error otherwise */
6353 	if (ret)
6354 		ret = pm_runtime_set_active(hba->dev);
6355 	/*
6356 	 * If wlun device had runtime error, we also need to resume those
6357 	 * consumer scsi devices in case any of them has failed to be
6358 	 * resumed due to supplier runtime resume failure. This is to unblock
6359 	 * blk_queue_enter in case there are bios waiting inside it.
6360 	 */
6361 	if (!ret) {
6362 		shost_for_each_device(sdev, shost) {
6363 			q = sdev->request_queue;
6364 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6365 				       q->rpm_status == RPM_SUSPENDING))
6366 				pm_request_resume(q->dev);
6367 		}
6368 	}
6369 }
6370 #else
6371 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6372 {
6373 }
6374 #endif
6375 
6376 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6377 {
6378 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6379 	u32 mode;
6380 
6381 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6382 
6383 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6384 		return true;
6385 
6386 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6387 		return true;
6388 
6389 	return false;
6390 }
6391 
6392 static bool ufshcd_abort_one(struct request *rq, void *priv)
6393 {
6394 	int *ret = priv;
6395 	u32 tag = rq->tag;
6396 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6397 	struct scsi_device *sdev = cmd->device;
6398 	struct Scsi_Host *shost = sdev->host;
6399 	struct ufs_hba *hba = shost_priv(shost);
6400 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6401 	struct ufs_hw_queue *hwq;
6402 	unsigned long flags;
6403 
6404 	*ret = ufshcd_try_to_abort_task(hba, tag);
6405 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6406 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6407 		*ret ? "failed" : "succeeded");
6408 
6409 	/* Release cmd in MCQ mode if abort succeeds */
6410 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6411 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6412 		if (!hwq)
6413 			return 0;
6414 		spin_lock_irqsave(&hwq->cq_lock, flags);
6415 		if (ufshcd_cmd_inflight(lrbp->cmd))
6416 			ufshcd_release_scsi_cmd(hba, lrbp);
6417 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6418 	}
6419 
6420 	return *ret == 0;
6421 }
6422 
6423 /**
6424  * ufshcd_abort_all - Abort all pending commands.
6425  * @hba: Host bus adapter pointer.
6426  *
6427  * Return: true if and only if the host controller needs to be reset.
6428  */
6429 static bool ufshcd_abort_all(struct ufs_hba *hba)
6430 {
6431 	int tag, ret = 0;
6432 
6433 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6434 	if (ret)
6435 		goto out;
6436 
6437 	/* Clear pending task management requests */
6438 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6439 		ret = ufshcd_clear_tm_cmd(hba, tag);
6440 		if (ret)
6441 			goto out;
6442 	}
6443 
6444 out:
6445 	/* Complete the requests that are cleared by s/w */
6446 	ufshcd_complete_requests(hba, false);
6447 
6448 	return ret != 0;
6449 }
6450 
6451 /**
6452  * ufshcd_err_handler - handle UFS errors that require s/w attention
6453  * @work: pointer to work structure
6454  */
6455 static void ufshcd_err_handler(struct work_struct *work)
6456 {
6457 	int retries = MAX_ERR_HANDLER_RETRIES;
6458 	struct ufs_hba *hba;
6459 	unsigned long flags;
6460 	bool needs_restore;
6461 	bool needs_reset;
6462 	int pmc_err;
6463 
6464 	hba = container_of(work, struct ufs_hba, eh_work);
6465 
6466 	dev_info(hba->dev,
6467 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6468 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6469 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6470 		 hba->saved_uic_err, hba->force_reset,
6471 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6472 
6473 	down(&hba->host_sem);
6474 	spin_lock_irqsave(hba->host->host_lock, flags);
6475 	if (ufshcd_err_handling_should_stop(hba)) {
6476 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6477 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6478 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6479 		up(&hba->host_sem);
6480 		return;
6481 	}
6482 	ufshcd_set_eh_in_progress(hba);
6483 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6484 	ufshcd_err_handling_prepare(hba);
6485 	/* Complete requests that have door-bell cleared by h/w */
6486 	ufshcd_complete_requests(hba, false);
6487 	spin_lock_irqsave(hba->host->host_lock, flags);
6488 again:
6489 	needs_restore = false;
6490 	needs_reset = false;
6491 
6492 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6493 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6494 	/*
6495 	 * A full reset and restore might have happened after preparation
6496 	 * is finished, double check whether we should stop.
6497 	 */
6498 	if (ufshcd_err_handling_should_stop(hba))
6499 		goto skip_err_handling;
6500 
6501 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6502 	    !hba->force_reset) {
6503 		bool ret;
6504 
6505 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6506 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6507 		ret = ufshcd_quirk_dl_nac_errors(hba);
6508 		spin_lock_irqsave(hba->host->host_lock, flags);
6509 		if (!ret && ufshcd_err_handling_should_stop(hba))
6510 			goto skip_err_handling;
6511 	}
6512 
6513 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6514 	    (hba->saved_uic_err &&
6515 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6516 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6517 
6518 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6519 		ufshcd_print_host_state(hba);
6520 		ufshcd_print_pwr_info(hba);
6521 		ufshcd_print_evt_hist(hba);
6522 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6523 		ufshcd_print_trs_all(hba, pr_prdt);
6524 		spin_lock_irqsave(hba->host->host_lock, flags);
6525 	}
6526 
6527 	/*
6528 	 * if host reset is required then skip clearing the pending
6529 	 * transfers forcefully because they will get cleared during
6530 	 * host reset and restore
6531 	 */
6532 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6533 	    ufshcd_is_saved_err_fatal(hba) ||
6534 	    ((hba->saved_err & UIC_ERROR) &&
6535 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6536 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6537 		needs_reset = true;
6538 		goto do_reset;
6539 	}
6540 
6541 	/*
6542 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6543 	 * check if power mode restore is needed.
6544 	 */
6545 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6546 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6547 		if (!hba->saved_uic_err)
6548 			hba->saved_err &= ~UIC_ERROR;
6549 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6550 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6551 			needs_restore = true;
6552 		spin_lock_irqsave(hba->host->host_lock, flags);
6553 		if (!hba->saved_err && !needs_restore)
6554 			goto skip_err_handling;
6555 	}
6556 
6557 	hba->silence_err_logs = true;
6558 	/* release lock as clear command might sleep */
6559 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6560 
6561 	needs_reset = ufshcd_abort_all(hba);
6562 
6563 	spin_lock_irqsave(hba->host->host_lock, flags);
6564 	hba->silence_err_logs = false;
6565 	if (needs_reset)
6566 		goto do_reset;
6567 
6568 	/*
6569 	 * After all reqs and tasks are cleared from doorbell,
6570 	 * now it is safe to retore power mode.
6571 	 */
6572 	if (needs_restore) {
6573 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6574 		/*
6575 		 * Hold the scaling lock just in case dev cmds
6576 		 * are sent via bsg and/or sysfs.
6577 		 */
6578 		down_write(&hba->clk_scaling_lock);
6579 		hba->force_pmc = true;
6580 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6581 		if (pmc_err) {
6582 			needs_reset = true;
6583 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6584 					__func__, pmc_err);
6585 		}
6586 		hba->force_pmc = false;
6587 		ufshcd_print_pwr_info(hba);
6588 		up_write(&hba->clk_scaling_lock);
6589 		spin_lock_irqsave(hba->host->host_lock, flags);
6590 	}
6591 
6592 do_reset:
6593 	/* Fatal errors need reset */
6594 	if (needs_reset) {
6595 		int err;
6596 
6597 		hba->force_reset = false;
6598 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6599 		err = ufshcd_reset_and_restore(hba);
6600 		if (err)
6601 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6602 					__func__, err);
6603 		else
6604 			ufshcd_recover_pm_error(hba);
6605 		spin_lock_irqsave(hba->host->host_lock, flags);
6606 	}
6607 
6608 skip_err_handling:
6609 	if (!needs_reset) {
6610 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6611 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6612 		if (hba->saved_err || hba->saved_uic_err)
6613 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6614 			    __func__, hba->saved_err, hba->saved_uic_err);
6615 	}
6616 	/* Exit in an operational state or dead */
6617 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6618 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6619 		if (--retries)
6620 			goto again;
6621 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6622 	}
6623 	ufshcd_clear_eh_in_progress(hba);
6624 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6625 	ufshcd_err_handling_unprepare(hba);
6626 	up(&hba->host_sem);
6627 
6628 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6629 		 ufshcd_state_name[hba->ufshcd_state]);
6630 }
6631 
6632 /**
6633  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6634  * @hba: per-adapter instance
6635  *
6636  * Return:
6637  *  IRQ_HANDLED - If interrupt is valid
6638  *  IRQ_NONE    - If invalid interrupt
6639  */
6640 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6641 {
6642 	u32 reg;
6643 	irqreturn_t retval = IRQ_NONE;
6644 
6645 	/* PHY layer error */
6646 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6647 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6648 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6649 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6650 		/*
6651 		 * To know whether this error is fatal or not, DB timeout
6652 		 * must be checked but this error is handled separately.
6653 		 */
6654 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6655 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6656 					__func__);
6657 
6658 		/* Got a LINERESET indication. */
6659 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6660 			struct uic_command *cmd = NULL;
6661 
6662 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6663 			if (hba->uic_async_done && hba->active_uic_cmd)
6664 				cmd = hba->active_uic_cmd;
6665 			/*
6666 			 * Ignore the LINERESET during power mode change
6667 			 * operation via DME_SET command.
6668 			 */
6669 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6670 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6671 		}
6672 		retval |= IRQ_HANDLED;
6673 	}
6674 
6675 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6676 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6677 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6678 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6679 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6680 
6681 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6682 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6683 		else if (hba->dev_quirks &
6684 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6685 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6686 				hba->uic_error |=
6687 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6688 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6689 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6690 		}
6691 		retval |= IRQ_HANDLED;
6692 	}
6693 
6694 	/* UIC NL/TL/DME errors needs software retry */
6695 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6696 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6697 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6698 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6699 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6700 		retval |= IRQ_HANDLED;
6701 	}
6702 
6703 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6704 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6705 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6706 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6707 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6708 		retval |= IRQ_HANDLED;
6709 	}
6710 
6711 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6712 	if ((reg & UIC_DME_ERROR) &&
6713 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6714 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6715 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6716 		retval |= IRQ_HANDLED;
6717 	}
6718 
6719 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6720 			__func__, hba->uic_error);
6721 	return retval;
6722 }
6723 
6724 /**
6725  * ufshcd_check_errors - Check for errors that need s/w attention
6726  * @hba: per-adapter instance
6727  * @intr_status: interrupt status generated by the controller
6728  *
6729  * Return:
6730  *  IRQ_HANDLED - If interrupt is valid
6731  *  IRQ_NONE    - If invalid interrupt
6732  */
6733 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6734 {
6735 	bool queue_eh_work = false;
6736 	irqreturn_t retval = IRQ_NONE;
6737 
6738 	spin_lock(hba->host->host_lock);
6739 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6740 
6741 	if (hba->errors & INT_FATAL_ERRORS) {
6742 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6743 				       hba->errors);
6744 		queue_eh_work = true;
6745 	}
6746 
6747 	if (hba->errors & UIC_ERROR) {
6748 		hba->uic_error = 0;
6749 		retval = ufshcd_update_uic_error(hba);
6750 		if (hba->uic_error)
6751 			queue_eh_work = true;
6752 	}
6753 
6754 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6755 		dev_err(hba->dev,
6756 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6757 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6758 			"Enter" : "Exit",
6759 			hba->errors, ufshcd_get_upmcrs(hba));
6760 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6761 				       hba->errors);
6762 		ufshcd_set_link_broken(hba);
6763 		queue_eh_work = true;
6764 	}
6765 
6766 	if (queue_eh_work) {
6767 		/*
6768 		 * update the transfer error masks to sticky bits, let's do this
6769 		 * irrespective of current ufshcd_state.
6770 		 */
6771 		hba->saved_err |= hba->errors;
6772 		hba->saved_uic_err |= hba->uic_error;
6773 
6774 		/* dump controller state before resetting */
6775 		if ((hba->saved_err &
6776 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6777 		    (hba->saved_uic_err &&
6778 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6779 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6780 					__func__, hba->saved_err,
6781 					hba->saved_uic_err);
6782 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6783 					 "host_regs: ");
6784 			ufshcd_print_pwr_info(hba);
6785 		}
6786 		ufshcd_schedule_eh_work(hba);
6787 		retval |= IRQ_HANDLED;
6788 	}
6789 	/*
6790 	 * if (!queue_eh_work) -
6791 	 * Other errors are either non-fatal where host recovers
6792 	 * itself without s/w intervention or errors that will be
6793 	 * handled by the SCSI core layer.
6794 	 */
6795 	hba->errors = 0;
6796 	hba->uic_error = 0;
6797 	spin_unlock(hba->host->host_lock);
6798 	return retval;
6799 }
6800 
6801 /**
6802  * ufshcd_tmc_handler - handle task management function completion
6803  * @hba: per adapter instance
6804  *
6805  * Return:
6806  *  IRQ_HANDLED - If interrupt is valid
6807  *  IRQ_NONE    - If invalid interrupt
6808  */
6809 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6810 {
6811 	unsigned long flags, pending, issued;
6812 	irqreturn_t ret = IRQ_NONE;
6813 	int tag;
6814 
6815 	spin_lock_irqsave(hba->host->host_lock, flags);
6816 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6817 	issued = hba->outstanding_tasks & ~pending;
6818 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6819 		struct request *req = hba->tmf_rqs[tag];
6820 		struct completion *c = req->end_io_data;
6821 
6822 		complete(c);
6823 		ret = IRQ_HANDLED;
6824 	}
6825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6826 
6827 	return ret;
6828 }
6829 
6830 /**
6831  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6832  * @hba: per adapter instance
6833  *
6834  * Return: IRQ_HANDLED if interrupt is handled.
6835  */
6836 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6837 {
6838 	struct ufs_hw_queue *hwq;
6839 	unsigned long outstanding_cqs;
6840 	unsigned int nr_queues;
6841 	int i, ret;
6842 	u32 events;
6843 
6844 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6845 	if (ret)
6846 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6847 
6848 	/* Exclude the poll queues */
6849 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6850 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6851 		hwq = &hba->uhq[i];
6852 
6853 		events = ufshcd_mcq_read_cqis(hba, i);
6854 		if (events)
6855 			ufshcd_mcq_write_cqis(hba, events, i);
6856 
6857 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6858 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6859 	}
6860 
6861 	return IRQ_HANDLED;
6862 }
6863 
6864 /**
6865  * ufshcd_sl_intr - Interrupt service routine
6866  * @hba: per adapter instance
6867  * @intr_status: contains interrupts generated by the controller
6868  *
6869  * Return:
6870  *  IRQ_HANDLED - If interrupt is valid
6871  *  IRQ_NONE    - If invalid interrupt
6872  */
6873 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6874 {
6875 	irqreturn_t retval = IRQ_NONE;
6876 
6877 	if (intr_status & UFSHCD_UIC_MASK)
6878 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6879 
6880 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6881 		retval |= ufshcd_check_errors(hba, intr_status);
6882 
6883 	if (intr_status & UTP_TASK_REQ_COMPL)
6884 		retval |= ufshcd_tmc_handler(hba);
6885 
6886 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6887 		retval |= ufshcd_transfer_req_compl(hba);
6888 
6889 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6890 		retval |= ufshcd_handle_mcq_cq_events(hba);
6891 
6892 	return retval;
6893 }
6894 
6895 /**
6896  * ufshcd_intr - Main interrupt service routine
6897  * @irq: irq number
6898  * @__hba: pointer to adapter instance
6899  *
6900  * Return:
6901  *  IRQ_HANDLED - If interrupt is valid
6902  *  IRQ_NONE    - If invalid interrupt
6903  */
6904 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6905 {
6906 	u32 intr_status, enabled_intr_status = 0;
6907 	irqreturn_t retval = IRQ_NONE;
6908 	struct ufs_hba *hba = __hba;
6909 	int retries = hba->nutrs;
6910 
6911 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6912 	hba->ufs_stats.last_intr_status = intr_status;
6913 	hba->ufs_stats.last_intr_ts = local_clock();
6914 
6915 	/*
6916 	 * There could be max of hba->nutrs reqs in flight and in worst case
6917 	 * if the reqs get finished 1 by 1 after the interrupt status is
6918 	 * read, make sure we handle them by checking the interrupt status
6919 	 * again in a loop until we process all of the reqs before returning.
6920 	 */
6921 	while (intr_status && retries--) {
6922 		enabled_intr_status =
6923 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6924 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6925 		if (enabled_intr_status)
6926 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6927 
6928 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6929 	}
6930 
6931 	if (enabled_intr_status && retval == IRQ_NONE &&
6932 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6933 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6934 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6935 					__func__,
6936 					intr_status,
6937 					hba->ufs_stats.last_intr_status,
6938 					enabled_intr_status);
6939 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6940 	}
6941 
6942 	return retval;
6943 }
6944 
6945 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6946 {
6947 	int err = 0;
6948 	u32 mask = 1 << tag;
6949 	unsigned long flags;
6950 
6951 	if (!test_bit(tag, &hba->outstanding_tasks))
6952 		goto out;
6953 
6954 	spin_lock_irqsave(hba->host->host_lock, flags);
6955 	ufshcd_utmrl_clear(hba, tag);
6956 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6957 
6958 	/* poll for max. 1 sec to clear door bell register by h/w */
6959 	err = ufshcd_wait_for_register(hba,
6960 			REG_UTP_TASK_REQ_DOOR_BELL,
6961 			mask, 0, 1000, 1000);
6962 
6963 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6964 		tag, err < 0 ? "failed" : "succeeded");
6965 
6966 out:
6967 	return err;
6968 }
6969 
6970 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6971 		struct utp_task_req_desc *treq, u8 tm_function)
6972 {
6973 	struct request_queue *q = hba->tmf_queue;
6974 	struct Scsi_Host *host = hba->host;
6975 	DECLARE_COMPLETION_ONSTACK(wait);
6976 	struct request *req;
6977 	unsigned long flags;
6978 	int task_tag, err;
6979 
6980 	/*
6981 	 * blk_mq_alloc_request() is used here only to get a free tag.
6982 	 */
6983 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6984 	if (IS_ERR(req))
6985 		return PTR_ERR(req);
6986 
6987 	req->end_io_data = &wait;
6988 	ufshcd_hold(hba);
6989 
6990 	spin_lock_irqsave(host->host_lock, flags);
6991 
6992 	task_tag = req->tag;
6993 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6994 		  task_tag);
6995 	hba->tmf_rqs[req->tag] = req;
6996 	treq->upiu_req.req_header.task_tag = task_tag;
6997 
6998 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6999 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7000 
7001 	/* send command to the controller */
7002 	__set_bit(task_tag, &hba->outstanding_tasks);
7003 
7004 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7005 	/* Make sure that doorbell is committed immediately */
7006 	wmb();
7007 
7008 	spin_unlock_irqrestore(host->host_lock, flags);
7009 
7010 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7011 
7012 	/* wait until the task management command is completed */
7013 	err = wait_for_completion_io_timeout(&wait,
7014 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7015 	if (!err) {
7016 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7017 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7018 				__func__, tm_function);
7019 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7020 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7021 					__func__, task_tag);
7022 		err = -ETIMEDOUT;
7023 	} else {
7024 		err = 0;
7025 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7026 
7027 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7028 	}
7029 
7030 	spin_lock_irqsave(hba->host->host_lock, flags);
7031 	hba->tmf_rqs[req->tag] = NULL;
7032 	__clear_bit(task_tag, &hba->outstanding_tasks);
7033 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7034 
7035 	ufshcd_release(hba);
7036 	blk_mq_free_request(req);
7037 
7038 	return err;
7039 }
7040 
7041 /**
7042  * ufshcd_issue_tm_cmd - issues task management commands to controller
7043  * @hba: per adapter instance
7044  * @lun_id: LUN ID to which TM command is sent
7045  * @task_id: task ID to which the TM command is applicable
7046  * @tm_function: task management function opcode
7047  * @tm_response: task management service response return value
7048  *
7049  * Return: non-zero value on error, zero on success.
7050  */
7051 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7052 		u8 tm_function, u8 *tm_response)
7053 {
7054 	struct utp_task_req_desc treq = { };
7055 	enum utp_ocs ocs_value;
7056 	int err;
7057 
7058 	/* Configure task request descriptor */
7059 	treq.header.interrupt = 1;
7060 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7061 
7062 	/* Configure task request UPIU */
7063 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7064 	treq.upiu_req.req_header.lun = lun_id;
7065 	treq.upiu_req.req_header.tm_function = tm_function;
7066 
7067 	/*
7068 	 * The host shall provide the same value for LUN field in the basic
7069 	 * header and for Input Parameter.
7070 	 */
7071 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7072 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7073 
7074 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7075 	if (err == -ETIMEDOUT)
7076 		return err;
7077 
7078 	ocs_value = treq.header.ocs & MASK_OCS;
7079 	if (ocs_value != OCS_SUCCESS)
7080 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7081 				__func__, ocs_value);
7082 	else if (tm_response)
7083 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7084 				MASK_TM_SERVICE_RESP;
7085 	return err;
7086 }
7087 
7088 /**
7089  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7090  * @hba:	per-adapter instance
7091  * @req_upiu:	upiu request
7092  * @rsp_upiu:	upiu reply
7093  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7094  * @buff_len:	descriptor size, 0 if NA
7095  * @cmd_type:	specifies the type (NOP, Query...)
7096  * @desc_op:	descriptor operation
7097  *
7098  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7099  * Therefore, it "rides" the device management infrastructure: uses its tag and
7100  * tasks work queues.
7101  *
7102  * Since there is only one available tag for device management commands,
7103  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7104  *
7105  * Return: 0 upon success; < 0 upon failure.
7106  */
7107 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7108 					struct utp_upiu_req *req_upiu,
7109 					struct utp_upiu_req *rsp_upiu,
7110 					u8 *desc_buff, int *buff_len,
7111 					enum dev_cmd_type cmd_type,
7112 					enum query_opcode desc_op)
7113 {
7114 	DECLARE_COMPLETION_ONSTACK(wait);
7115 	const u32 tag = hba->reserved_slot;
7116 	struct ufshcd_lrb *lrbp;
7117 	int err = 0;
7118 	u8 upiu_flags;
7119 
7120 	/* Protects use of hba->reserved_slot. */
7121 	lockdep_assert_held(&hba->dev_cmd.lock);
7122 
7123 	down_read(&hba->clk_scaling_lock);
7124 
7125 	lrbp = &hba->lrb[tag];
7126 	lrbp->cmd = NULL;
7127 	lrbp->task_tag = tag;
7128 	lrbp->lun = 0;
7129 	lrbp->intr_cmd = true;
7130 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7131 	hba->dev_cmd.type = cmd_type;
7132 
7133 	if (hba->ufs_version <= ufshci_version(1, 1))
7134 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7135 	else
7136 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7137 
7138 	/* update the task tag in the request upiu */
7139 	req_upiu->header.task_tag = tag;
7140 
7141 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7142 
7143 	/* just copy the upiu request as it is */
7144 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7145 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7146 		/* The Data Segment Area is optional depending upon the query
7147 		 * function value. for WRITE DESCRIPTOR, the data segment
7148 		 * follows right after the tsf.
7149 		 */
7150 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7151 		*buff_len = 0;
7152 	}
7153 
7154 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7155 
7156 	hba->dev_cmd.complete = &wait;
7157 
7158 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7159 
7160 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7161 	/*
7162 	 * ignore the returning value here - ufshcd_check_query_response is
7163 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7164 	 * read the response directly ignoring all errors.
7165 	 */
7166 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7167 
7168 	/* just copy the upiu response as it is */
7169 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7170 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7171 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7172 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7173 					   .data_segment_length);
7174 
7175 		if (*buff_len >= resp_len) {
7176 			memcpy(desc_buff, descp, resp_len);
7177 			*buff_len = resp_len;
7178 		} else {
7179 			dev_warn(hba->dev,
7180 				 "%s: rsp size %d is bigger than buffer size %d",
7181 				 __func__, resp_len, *buff_len);
7182 			*buff_len = 0;
7183 			err = -EINVAL;
7184 		}
7185 	}
7186 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7187 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7188 
7189 	up_read(&hba->clk_scaling_lock);
7190 	return err;
7191 }
7192 
7193 /**
7194  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7195  * @hba:	per-adapter instance
7196  * @req_upiu:	upiu request
7197  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7198  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7199  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7200  * @buff_len:	descriptor size, 0 if NA
7201  * @desc_op:	descriptor operation
7202  *
7203  * Supports UTP Transfer requests (nop and query), and UTP Task
7204  * Management requests.
7205  * It is up to the caller to fill the upiu conent properly, as it will
7206  * be copied without any further input validations.
7207  *
7208  * Return: 0 upon success; < 0 upon failure.
7209  */
7210 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7211 			     struct utp_upiu_req *req_upiu,
7212 			     struct utp_upiu_req *rsp_upiu,
7213 			     enum upiu_request_transaction msgcode,
7214 			     u8 *desc_buff, int *buff_len,
7215 			     enum query_opcode desc_op)
7216 {
7217 	int err;
7218 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7219 	struct utp_task_req_desc treq = { };
7220 	enum utp_ocs ocs_value;
7221 	u8 tm_f = req_upiu->header.tm_function;
7222 
7223 	switch (msgcode) {
7224 	case UPIU_TRANSACTION_NOP_OUT:
7225 		cmd_type = DEV_CMD_TYPE_NOP;
7226 		fallthrough;
7227 	case UPIU_TRANSACTION_QUERY_REQ:
7228 		ufshcd_hold(hba);
7229 		mutex_lock(&hba->dev_cmd.lock);
7230 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7231 						   desc_buff, buff_len,
7232 						   cmd_type, desc_op);
7233 		mutex_unlock(&hba->dev_cmd.lock);
7234 		ufshcd_release(hba);
7235 
7236 		break;
7237 	case UPIU_TRANSACTION_TASK_REQ:
7238 		treq.header.interrupt = 1;
7239 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7240 
7241 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7242 
7243 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7244 		if (err == -ETIMEDOUT)
7245 			break;
7246 
7247 		ocs_value = treq.header.ocs & MASK_OCS;
7248 		if (ocs_value != OCS_SUCCESS) {
7249 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7250 				ocs_value);
7251 			break;
7252 		}
7253 
7254 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7255 
7256 		break;
7257 	default:
7258 		err = -EINVAL;
7259 
7260 		break;
7261 	}
7262 
7263 	return err;
7264 }
7265 
7266 /**
7267  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7268  * @hba:	per adapter instance
7269  * @req_upiu:	upiu request
7270  * @rsp_upiu:	upiu reply
7271  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7272  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7273  * @sg_cnt:	The number of sg lists actually used
7274  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7275  * @dir:	DMA direction
7276  *
7277  * Return: zero on success, non-zero on failure.
7278  */
7279 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7280 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7281 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7282 			 enum dma_data_direction dir)
7283 {
7284 	DECLARE_COMPLETION_ONSTACK(wait);
7285 	const u32 tag = hba->reserved_slot;
7286 	struct ufshcd_lrb *lrbp;
7287 	int err = 0;
7288 	int result;
7289 	u8 upiu_flags;
7290 	u8 *ehs_data;
7291 	u16 ehs_len;
7292 
7293 	/* Protects use of hba->reserved_slot. */
7294 	ufshcd_hold(hba);
7295 	mutex_lock(&hba->dev_cmd.lock);
7296 	down_read(&hba->clk_scaling_lock);
7297 
7298 	lrbp = &hba->lrb[tag];
7299 	lrbp->cmd = NULL;
7300 	lrbp->task_tag = tag;
7301 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7302 
7303 	lrbp->intr_cmd = true;
7304 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7305 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7306 
7307 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7308 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7309 
7310 	/*
7311 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7312 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7313 	 * HW controller takes EHS length from UTRD.
7314 	 */
7315 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7316 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7317 	else
7318 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7319 
7320 	/* update the task tag */
7321 	req_upiu->header.task_tag = tag;
7322 
7323 	/* copy the UPIU(contains CDB) request as it is */
7324 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7325 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7326 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7327 
7328 	if (dir != DMA_NONE && sg_list)
7329 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7330 
7331 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7332 
7333 	hba->dev_cmd.complete = &wait;
7334 
7335 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7336 
7337 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7338 
7339 	if (!err) {
7340 		/* Just copy the upiu response as it is */
7341 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7342 		/* Get the response UPIU result */
7343 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7344 			lrbp->ucd_rsp_ptr->header.status;
7345 
7346 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7347 		/*
7348 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7349 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7350 		 * Message is 02h
7351 		 */
7352 		if (ehs_len == 2 && rsp_ehs) {
7353 			/*
7354 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7355 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7356 			 */
7357 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7358 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7359 		}
7360 	}
7361 
7362 	up_read(&hba->clk_scaling_lock);
7363 	mutex_unlock(&hba->dev_cmd.lock);
7364 	ufshcd_release(hba);
7365 	return err ? : result;
7366 }
7367 
7368 /**
7369  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7370  * @cmd: SCSI command pointer
7371  *
7372  * Return: SUCCESS or FAILED.
7373  */
7374 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7375 {
7376 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7377 	struct Scsi_Host *host;
7378 	struct ufs_hba *hba;
7379 	struct ufs_hw_queue *hwq;
7380 	struct ufshcd_lrb *lrbp;
7381 	u32 pos, not_cleared_mask = 0;
7382 	int err;
7383 	u8 resp = 0xF, lun;
7384 
7385 	host = cmd->device->host;
7386 	hba = shost_priv(host);
7387 
7388 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7389 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7390 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7391 		if (!err)
7392 			err = resp;
7393 		goto out;
7394 	}
7395 
7396 	if (is_mcq_enabled(hba)) {
7397 		for (pos = 0; pos < hba->nutrs; pos++) {
7398 			lrbp = &hba->lrb[pos];
7399 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7400 			    lrbp->lun == lun) {
7401 				ufshcd_clear_cmd(hba, pos);
7402 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7403 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7404 			}
7405 		}
7406 		err = 0;
7407 		goto out;
7408 	}
7409 
7410 	/* clear the commands that were pending for corresponding LUN */
7411 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7412 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7413 		if (hba->lrb[pos].lun == lun)
7414 			__set_bit(pos, &pending_reqs);
7415 	hba->outstanding_reqs &= ~pending_reqs;
7416 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7417 
7418 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7419 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7420 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7421 			not_cleared = 1U << pos &
7422 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7423 			hba->outstanding_reqs |= not_cleared;
7424 			not_cleared_mask |= not_cleared;
7425 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7426 
7427 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7428 				__func__, pos);
7429 		}
7430 	}
7431 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7432 
7433 out:
7434 	hba->req_abort_count = 0;
7435 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7436 	if (!err) {
7437 		err = SUCCESS;
7438 	} else {
7439 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7440 		err = FAILED;
7441 	}
7442 	return err;
7443 }
7444 
7445 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7446 {
7447 	struct ufshcd_lrb *lrbp;
7448 	int tag;
7449 
7450 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7451 		lrbp = &hba->lrb[tag];
7452 		lrbp->req_abort_skip = true;
7453 	}
7454 }
7455 
7456 /**
7457  * ufshcd_try_to_abort_task - abort a specific task
7458  * @hba: Pointer to adapter instance
7459  * @tag: Task tag/index to be aborted
7460  *
7461  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7462  * command, and in host controller by clearing the door-bell register. There can
7463  * be race between controller sending the command to the device while abort is
7464  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7465  * really issued and then try to abort it.
7466  *
7467  * Return: zero on success, non-zero on failure.
7468  */
7469 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7470 {
7471 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7472 	int err = 0;
7473 	int poll_cnt;
7474 	u8 resp = 0xF;
7475 	u32 reg;
7476 
7477 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7478 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7479 				UFS_QUERY_TASK, &resp);
7480 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7481 			/* cmd pending in the device */
7482 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7483 				__func__, tag);
7484 			break;
7485 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7486 			/*
7487 			 * cmd not pending in the device, check if it is
7488 			 * in transition.
7489 			 */
7490 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7491 				__func__, tag);
7492 			if (is_mcq_enabled(hba)) {
7493 				/* MCQ mode */
7494 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7495 					/* sleep for max. 200us same delay as in SDB mode */
7496 					usleep_range(100, 200);
7497 					continue;
7498 				}
7499 				/* command completed already */
7500 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7501 					__func__, tag);
7502 				goto out;
7503 			}
7504 
7505 			/* Single Doorbell Mode */
7506 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7507 			if (reg & (1 << tag)) {
7508 				/* sleep for max. 200us to stabilize */
7509 				usleep_range(100, 200);
7510 				continue;
7511 			}
7512 			/* command completed already */
7513 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7514 				__func__, tag);
7515 			goto out;
7516 		} else {
7517 			dev_err(hba->dev,
7518 				"%s: no response from device. tag = %d, err %d\n",
7519 				__func__, tag, err);
7520 			if (!err)
7521 				err = resp; /* service response error */
7522 			goto out;
7523 		}
7524 	}
7525 
7526 	if (!poll_cnt) {
7527 		err = -EBUSY;
7528 		goto out;
7529 	}
7530 
7531 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7532 			UFS_ABORT_TASK, &resp);
7533 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7534 		if (!err) {
7535 			err = resp; /* service response error */
7536 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7537 				__func__, tag, err);
7538 		}
7539 		goto out;
7540 	}
7541 
7542 	err = ufshcd_clear_cmd(hba, tag);
7543 	if (err)
7544 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7545 			__func__, tag, err);
7546 
7547 out:
7548 	return err;
7549 }
7550 
7551 /**
7552  * ufshcd_abort - scsi host template eh_abort_handler callback
7553  * @cmd: SCSI command pointer
7554  *
7555  * Return: SUCCESS or FAILED.
7556  */
7557 static int ufshcd_abort(struct scsi_cmnd *cmd)
7558 {
7559 	struct Scsi_Host *host = cmd->device->host;
7560 	struct ufs_hba *hba = shost_priv(host);
7561 	int tag = scsi_cmd_to_rq(cmd)->tag;
7562 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7563 	unsigned long flags;
7564 	int err = FAILED;
7565 	bool outstanding;
7566 	u32 reg;
7567 
7568 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7569 
7570 	ufshcd_hold(hba);
7571 
7572 	if (!is_mcq_enabled(hba)) {
7573 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7574 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7575 			/* If command is already aborted/completed, return FAILED. */
7576 			dev_err(hba->dev,
7577 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7578 				__func__, tag, hba->outstanding_reqs, reg);
7579 			goto release;
7580 		}
7581 	}
7582 
7583 	/* Print Transfer Request of aborted task */
7584 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7585 
7586 	/*
7587 	 * Print detailed info about aborted request.
7588 	 * As more than one request might get aborted at the same time,
7589 	 * print full information only for the first aborted request in order
7590 	 * to reduce repeated printouts. For other aborted requests only print
7591 	 * basic details.
7592 	 */
7593 	scsi_print_command(cmd);
7594 	if (!hba->req_abort_count) {
7595 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7596 		ufshcd_print_evt_hist(hba);
7597 		ufshcd_print_host_state(hba);
7598 		ufshcd_print_pwr_info(hba);
7599 		ufshcd_print_tr(hba, tag, true);
7600 	} else {
7601 		ufshcd_print_tr(hba, tag, false);
7602 	}
7603 	hba->req_abort_count++;
7604 
7605 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7606 		/* only execute this code in single doorbell mode */
7607 		dev_err(hba->dev,
7608 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7609 		__func__, tag);
7610 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7611 		goto release;
7612 	}
7613 
7614 	/*
7615 	 * Task abort to the device W-LUN is illegal. When this command
7616 	 * will fail, due to spec violation, scsi err handling next step
7617 	 * will be to send LU reset which, again, is a spec violation.
7618 	 * To avoid these unnecessary/illegal steps, first we clean up
7619 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7620 	 * then queue the eh_work and bail.
7621 	 */
7622 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7623 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7624 
7625 		spin_lock_irqsave(host->host_lock, flags);
7626 		hba->force_reset = true;
7627 		ufshcd_schedule_eh_work(hba);
7628 		spin_unlock_irqrestore(host->host_lock, flags);
7629 		goto release;
7630 	}
7631 
7632 	if (is_mcq_enabled(hba)) {
7633 		/* MCQ mode. Branch off to handle abort for mcq mode */
7634 		err = ufshcd_mcq_abort(cmd);
7635 		goto release;
7636 	}
7637 
7638 	/* Skip task abort in case previous aborts failed and report failure */
7639 	if (lrbp->req_abort_skip) {
7640 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7641 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7642 		goto release;
7643 	}
7644 
7645 	err = ufshcd_try_to_abort_task(hba, tag);
7646 	if (err) {
7647 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7648 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7649 		err = FAILED;
7650 		goto release;
7651 	}
7652 
7653 	/*
7654 	 * Clear the corresponding bit from outstanding_reqs since the command
7655 	 * has been aborted successfully.
7656 	 */
7657 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7658 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7659 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7660 
7661 	if (outstanding)
7662 		ufshcd_release_scsi_cmd(hba, lrbp);
7663 
7664 	err = SUCCESS;
7665 
7666 release:
7667 	/* Matches the ufshcd_hold() call at the start of this function. */
7668 	ufshcd_release(hba);
7669 	return err;
7670 }
7671 
7672 /**
7673  * ufshcd_host_reset_and_restore - reset and restore host controller
7674  * @hba: per-adapter instance
7675  *
7676  * Note that host controller reset may issue DME_RESET to
7677  * local and remote (device) Uni-Pro stack and the attributes
7678  * are reset to default state.
7679  *
7680  * Return: zero on success, non-zero on failure.
7681  */
7682 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7683 {
7684 	int err;
7685 
7686 	/*
7687 	 * Stop the host controller and complete the requests
7688 	 * cleared by h/w
7689 	 */
7690 	ufshcd_hba_stop(hba);
7691 	hba->silence_err_logs = true;
7692 	ufshcd_complete_requests(hba, true);
7693 	hba->silence_err_logs = false;
7694 
7695 	/* scale up clocks to max frequency before full reinitialization */
7696 	ufshcd_scale_clks(hba, true);
7697 
7698 	err = ufshcd_hba_enable(hba);
7699 
7700 	/* Establish the link again and restore the device */
7701 	if (!err)
7702 		err = ufshcd_probe_hba(hba, false);
7703 
7704 	if (err)
7705 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7706 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7707 	return err;
7708 }
7709 
7710 /**
7711  * ufshcd_reset_and_restore - reset and re-initialize host/device
7712  * @hba: per-adapter instance
7713  *
7714  * Reset and recover device, host and re-establish link. This
7715  * is helpful to recover the communication in fatal error conditions.
7716  *
7717  * Return: zero on success, non-zero on failure.
7718  */
7719 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7720 {
7721 	u32 saved_err = 0;
7722 	u32 saved_uic_err = 0;
7723 	int err = 0;
7724 	unsigned long flags;
7725 	int retries = MAX_HOST_RESET_RETRIES;
7726 
7727 	spin_lock_irqsave(hba->host->host_lock, flags);
7728 	do {
7729 		/*
7730 		 * This is a fresh start, cache and clear saved error first,
7731 		 * in case new error generated during reset and restore.
7732 		 */
7733 		saved_err |= hba->saved_err;
7734 		saved_uic_err |= hba->saved_uic_err;
7735 		hba->saved_err = 0;
7736 		hba->saved_uic_err = 0;
7737 		hba->force_reset = false;
7738 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7739 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7740 
7741 		/* Reset the attached device */
7742 		ufshcd_device_reset(hba);
7743 
7744 		err = ufshcd_host_reset_and_restore(hba);
7745 
7746 		spin_lock_irqsave(hba->host->host_lock, flags);
7747 		if (err)
7748 			continue;
7749 		/* Do not exit unless operational or dead */
7750 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7751 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7752 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7753 			err = -EAGAIN;
7754 	} while (err && --retries);
7755 
7756 	/*
7757 	 * Inform scsi mid-layer that we did reset and allow to handle
7758 	 * Unit Attention properly.
7759 	 */
7760 	scsi_report_bus_reset(hba->host, 0);
7761 	if (err) {
7762 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7763 		hba->saved_err |= saved_err;
7764 		hba->saved_uic_err |= saved_uic_err;
7765 	}
7766 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7767 
7768 	return err;
7769 }
7770 
7771 /**
7772  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7773  * @cmd: SCSI command pointer
7774  *
7775  * Return: SUCCESS or FAILED.
7776  */
7777 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7778 {
7779 	int err = SUCCESS;
7780 	unsigned long flags;
7781 	struct ufs_hba *hba;
7782 
7783 	hba = shost_priv(cmd->device->host);
7784 
7785 	spin_lock_irqsave(hba->host->host_lock, flags);
7786 	hba->force_reset = true;
7787 	ufshcd_schedule_eh_work(hba);
7788 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7789 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7790 
7791 	flush_work(&hba->eh_work);
7792 
7793 	spin_lock_irqsave(hba->host->host_lock, flags);
7794 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7795 		err = FAILED;
7796 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7797 
7798 	return err;
7799 }
7800 
7801 /**
7802  * ufshcd_get_max_icc_level - calculate the ICC level
7803  * @sup_curr_uA: max. current supported by the regulator
7804  * @start_scan: row at the desc table to start scan from
7805  * @buff: power descriptor buffer
7806  *
7807  * Return: calculated max ICC level for specific regulator.
7808  */
7809 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7810 				    const char *buff)
7811 {
7812 	int i;
7813 	int curr_uA;
7814 	u16 data;
7815 	u16 unit;
7816 
7817 	for (i = start_scan; i >= 0; i--) {
7818 		data = get_unaligned_be16(&buff[2 * i]);
7819 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7820 						ATTR_ICC_LVL_UNIT_OFFSET;
7821 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7822 		switch (unit) {
7823 		case UFSHCD_NANO_AMP:
7824 			curr_uA = curr_uA / 1000;
7825 			break;
7826 		case UFSHCD_MILI_AMP:
7827 			curr_uA = curr_uA * 1000;
7828 			break;
7829 		case UFSHCD_AMP:
7830 			curr_uA = curr_uA * 1000 * 1000;
7831 			break;
7832 		case UFSHCD_MICRO_AMP:
7833 		default:
7834 			break;
7835 		}
7836 		if (sup_curr_uA >= curr_uA)
7837 			break;
7838 	}
7839 	if (i < 0) {
7840 		i = 0;
7841 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7842 	}
7843 
7844 	return (u32)i;
7845 }
7846 
7847 /**
7848  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7849  * In case regulators are not initialized we'll return 0
7850  * @hba: per-adapter instance
7851  * @desc_buf: power descriptor buffer to extract ICC levels from.
7852  *
7853  * Return: calculated ICC level.
7854  */
7855 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7856 						const u8 *desc_buf)
7857 {
7858 	u32 icc_level = 0;
7859 
7860 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7861 						!hba->vreg_info.vccq2) {
7862 		/*
7863 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7864 		 * never-ending cycles of messages written back to storage by
7865 		 * user space causing runtime resume, causing more messages and
7866 		 * so on.
7867 		 */
7868 		dev_dbg(hba->dev,
7869 			"%s: Regulator capability was not set, actvIccLevel=%d",
7870 							__func__, icc_level);
7871 		goto out;
7872 	}
7873 
7874 	if (hba->vreg_info.vcc->max_uA)
7875 		icc_level = ufshcd_get_max_icc_level(
7876 				hba->vreg_info.vcc->max_uA,
7877 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7878 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7879 
7880 	if (hba->vreg_info.vccq->max_uA)
7881 		icc_level = ufshcd_get_max_icc_level(
7882 				hba->vreg_info.vccq->max_uA,
7883 				icc_level,
7884 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7885 
7886 	if (hba->vreg_info.vccq2->max_uA)
7887 		icc_level = ufshcd_get_max_icc_level(
7888 				hba->vreg_info.vccq2->max_uA,
7889 				icc_level,
7890 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7891 out:
7892 	return icc_level;
7893 }
7894 
7895 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7896 {
7897 	int ret;
7898 	u8 *desc_buf;
7899 	u32 icc_level;
7900 
7901 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7902 	if (!desc_buf)
7903 		return;
7904 
7905 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7906 				     desc_buf, QUERY_DESC_MAX_SIZE);
7907 	if (ret) {
7908 		dev_err(hba->dev,
7909 			"%s: Failed reading power descriptor ret = %d",
7910 			__func__, ret);
7911 		goto out;
7912 	}
7913 
7914 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7915 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7916 
7917 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7918 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7919 
7920 	if (ret)
7921 		dev_err(hba->dev,
7922 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7923 			__func__, icc_level, ret);
7924 
7925 out:
7926 	kfree(desc_buf);
7927 }
7928 
7929 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7930 {
7931 	scsi_autopm_get_device(sdev);
7932 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7933 	if (sdev->rpm_autosuspend)
7934 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7935 						 RPM_AUTOSUSPEND_DELAY_MS);
7936 	scsi_autopm_put_device(sdev);
7937 }
7938 
7939 /**
7940  * ufshcd_scsi_add_wlus - Adds required W-LUs
7941  * @hba: per-adapter instance
7942  *
7943  * UFS device specification requires the UFS devices to support 4 well known
7944  * logical units:
7945  *	"REPORT_LUNS" (address: 01h)
7946  *	"UFS Device" (address: 50h)
7947  *	"RPMB" (address: 44h)
7948  *	"BOOT" (address: 30h)
7949  * UFS device's power management needs to be controlled by "POWER CONDITION"
7950  * field of SSU (START STOP UNIT) command. But this "power condition" field
7951  * will take effect only when its sent to "UFS device" well known logical unit
7952  * hence we require the scsi_device instance to represent this logical unit in
7953  * order for the UFS host driver to send the SSU command for power management.
7954  *
7955  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7956  * Block) LU so user space process can control this LU. User space may also
7957  * want to have access to BOOT LU.
7958  *
7959  * This function adds scsi device instances for each of all well known LUs
7960  * (except "REPORT LUNS" LU).
7961  *
7962  * Return: zero on success (all required W-LUs are added successfully),
7963  * non-zero error value on failure (if failed to add any of the required W-LU).
7964  */
7965 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7966 {
7967 	int ret = 0;
7968 	struct scsi_device *sdev_boot, *sdev_rpmb;
7969 
7970 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7971 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7972 	if (IS_ERR(hba->ufs_device_wlun)) {
7973 		ret = PTR_ERR(hba->ufs_device_wlun);
7974 		hba->ufs_device_wlun = NULL;
7975 		goto out;
7976 	}
7977 	scsi_device_put(hba->ufs_device_wlun);
7978 
7979 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7980 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7981 	if (IS_ERR(sdev_rpmb)) {
7982 		ret = PTR_ERR(sdev_rpmb);
7983 		goto remove_ufs_device_wlun;
7984 	}
7985 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7986 	scsi_device_put(sdev_rpmb);
7987 
7988 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7989 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7990 	if (IS_ERR(sdev_boot)) {
7991 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7992 	} else {
7993 		ufshcd_blk_pm_runtime_init(sdev_boot);
7994 		scsi_device_put(sdev_boot);
7995 	}
7996 	goto out;
7997 
7998 remove_ufs_device_wlun:
7999 	scsi_remove_device(hba->ufs_device_wlun);
8000 out:
8001 	return ret;
8002 }
8003 
8004 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8005 {
8006 	struct ufs_dev_info *dev_info = &hba->dev_info;
8007 	u8 lun;
8008 	u32 d_lu_wb_buf_alloc;
8009 	u32 ext_ufs_feature;
8010 
8011 	if (!ufshcd_is_wb_allowed(hba))
8012 		return;
8013 
8014 	/*
8015 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8016 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8017 	 * enabled
8018 	 */
8019 	if (!(dev_info->wspecversion >= 0x310 ||
8020 	      dev_info->wspecversion == 0x220 ||
8021 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8022 		goto wb_disabled;
8023 
8024 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8025 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8026 
8027 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8028 		goto wb_disabled;
8029 
8030 	/*
8031 	 * WB may be supported but not configured while provisioning. The spec
8032 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8033 	 * buffer configured.
8034 	 */
8035 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8036 
8037 	dev_info->b_presrv_uspc_en =
8038 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8039 
8040 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8041 		if (!get_unaligned_be32(desc_buf +
8042 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8043 			goto wb_disabled;
8044 	} else {
8045 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8046 			d_lu_wb_buf_alloc = 0;
8047 			ufshcd_read_unit_desc_param(hba,
8048 					lun,
8049 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8050 					(u8 *)&d_lu_wb_buf_alloc,
8051 					sizeof(d_lu_wb_buf_alloc));
8052 			if (d_lu_wb_buf_alloc) {
8053 				dev_info->wb_dedicated_lu = lun;
8054 				break;
8055 			}
8056 		}
8057 
8058 		if (!d_lu_wb_buf_alloc)
8059 			goto wb_disabled;
8060 	}
8061 
8062 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8063 		goto wb_disabled;
8064 
8065 	return;
8066 
8067 wb_disabled:
8068 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8069 }
8070 
8071 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8072 {
8073 	struct ufs_dev_info *dev_info = &hba->dev_info;
8074 	u32 ext_ufs_feature;
8075 	u8 mask = 0;
8076 
8077 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8078 		return;
8079 
8080 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8081 
8082 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8083 		mask |= MASK_EE_TOO_LOW_TEMP;
8084 
8085 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8086 		mask |= MASK_EE_TOO_HIGH_TEMP;
8087 
8088 	if (mask) {
8089 		ufshcd_enable_ee(hba, mask);
8090 		ufs_hwmon_probe(hba, mask);
8091 	}
8092 }
8093 
8094 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8095 {
8096 	struct ufs_dev_info *dev_info = &hba->dev_info;
8097 	u32 ext_ufs_feature;
8098 	u32 ext_iid_en = 0;
8099 	int err;
8100 
8101 	/* Only UFS-4.0 and above may support EXT_IID */
8102 	if (dev_info->wspecversion < 0x400)
8103 		goto out;
8104 
8105 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8106 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8107 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8108 		goto out;
8109 
8110 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8111 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8112 	if (err)
8113 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8114 
8115 out:
8116 	dev_info->b_ext_iid_en = ext_iid_en;
8117 }
8118 
8119 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8120 			     const struct ufs_dev_quirk *fixups)
8121 {
8122 	const struct ufs_dev_quirk *f;
8123 	struct ufs_dev_info *dev_info = &hba->dev_info;
8124 
8125 	if (!fixups)
8126 		return;
8127 
8128 	for (f = fixups; f->quirk; f++) {
8129 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8130 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8131 		     ((dev_info->model &&
8132 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8133 		      !strcmp(f->model, UFS_ANY_MODEL)))
8134 			hba->dev_quirks |= f->quirk;
8135 	}
8136 }
8137 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8138 
8139 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8140 {
8141 	/* fix by general quirk table */
8142 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8143 
8144 	/* allow vendors to fix quirks */
8145 	ufshcd_vops_fixup_dev_quirks(hba);
8146 }
8147 
8148 static int ufs_get_device_desc(struct ufs_hba *hba)
8149 {
8150 	int err;
8151 	u8 model_index;
8152 	u8 *desc_buf;
8153 	struct ufs_dev_info *dev_info = &hba->dev_info;
8154 
8155 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8156 	if (!desc_buf) {
8157 		err = -ENOMEM;
8158 		goto out;
8159 	}
8160 
8161 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8162 				     QUERY_DESC_MAX_SIZE);
8163 	if (err) {
8164 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8165 			__func__, err);
8166 		goto out;
8167 	}
8168 
8169 	/*
8170 	 * getting vendor (manufacturerID) and Bank Index in big endian
8171 	 * format
8172 	 */
8173 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8174 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8175 
8176 	/* getting Specification Version in big endian format */
8177 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8178 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8179 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8180 
8181 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8182 
8183 	err = ufshcd_read_string_desc(hba, model_index,
8184 				      &dev_info->model, SD_ASCII_STD);
8185 	if (err < 0) {
8186 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8187 			__func__, err);
8188 		goto out;
8189 	}
8190 
8191 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8192 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8193 
8194 	ufs_fixup_device_setup(hba);
8195 
8196 	ufshcd_wb_probe(hba, desc_buf);
8197 
8198 	ufshcd_temp_notif_probe(hba, desc_buf);
8199 
8200 	if (hba->ext_iid_sup)
8201 		ufshcd_ext_iid_probe(hba, desc_buf);
8202 
8203 	/*
8204 	 * ufshcd_read_string_desc returns size of the string
8205 	 * reset the error value
8206 	 */
8207 	err = 0;
8208 
8209 out:
8210 	kfree(desc_buf);
8211 	return err;
8212 }
8213 
8214 static void ufs_put_device_desc(struct ufs_hba *hba)
8215 {
8216 	struct ufs_dev_info *dev_info = &hba->dev_info;
8217 
8218 	kfree(dev_info->model);
8219 	dev_info->model = NULL;
8220 }
8221 
8222 /**
8223  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8224  * @hba: per-adapter instance
8225  *
8226  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8227  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8228  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8229  * the hibern8 exit latency.
8230  *
8231  * Return: zero on success, non-zero error value on failure.
8232  */
8233 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8234 {
8235 	int ret = 0;
8236 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8237 
8238 	ret = ufshcd_dme_peer_get(hba,
8239 				  UIC_ARG_MIB_SEL(
8240 					RX_MIN_ACTIVATETIME_CAPABILITY,
8241 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8242 				  &peer_rx_min_activatetime);
8243 	if (ret)
8244 		goto out;
8245 
8246 	/* make sure proper unit conversion is applied */
8247 	tuned_pa_tactivate =
8248 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8249 		 / PA_TACTIVATE_TIME_UNIT_US);
8250 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8251 			     tuned_pa_tactivate);
8252 
8253 out:
8254 	return ret;
8255 }
8256 
8257 /**
8258  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8259  * @hba: per-adapter instance
8260  *
8261  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8262  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8263  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8264  * This optimal value can help reduce the hibern8 exit latency.
8265  *
8266  * Return: zero on success, non-zero error value on failure.
8267  */
8268 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8269 {
8270 	int ret = 0;
8271 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8272 	u32 max_hibern8_time, tuned_pa_hibern8time;
8273 
8274 	ret = ufshcd_dme_get(hba,
8275 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8276 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8277 				  &local_tx_hibern8_time_cap);
8278 	if (ret)
8279 		goto out;
8280 
8281 	ret = ufshcd_dme_peer_get(hba,
8282 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8283 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8284 				  &peer_rx_hibern8_time_cap);
8285 	if (ret)
8286 		goto out;
8287 
8288 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8289 			       peer_rx_hibern8_time_cap);
8290 	/* make sure proper unit conversion is applied */
8291 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8292 				/ PA_HIBERN8_TIME_UNIT_US);
8293 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8294 			     tuned_pa_hibern8time);
8295 out:
8296 	return ret;
8297 }
8298 
8299 /**
8300  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8301  * less than device PA_TACTIVATE time.
8302  * @hba: per-adapter instance
8303  *
8304  * Some UFS devices require host PA_TACTIVATE to be lower than device
8305  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8306  * for such devices.
8307  *
8308  * Return: zero on success, non-zero error value on failure.
8309  */
8310 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8311 {
8312 	int ret = 0;
8313 	u32 granularity, peer_granularity;
8314 	u32 pa_tactivate, peer_pa_tactivate;
8315 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8316 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8317 
8318 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8319 				  &granularity);
8320 	if (ret)
8321 		goto out;
8322 
8323 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8324 				  &peer_granularity);
8325 	if (ret)
8326 		goto out;
8327 
8328 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8329 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8330 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8331 			__func__, granularity);
8332 		return -EINVAL;
8333 	}
8334 
8335 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8336 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8337 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8338 			__func__, peer_granularity);
8339 		return -EINVAL;
8340 	}
8341 
8342 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8343 	if (ret)
8344 		goto out;
8345 
8346 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8347 				  &peer_pa_tactivate);
8348 	if (ret)
8349 		goto out;
8350 
8351 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8352 	peer_pa_tactivate_us = peer_pa_tactivate *
8353 			     gran_to_us_table[peer_granularity - 1];
8354 
8355 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8356 		u32 new_peer_pa_tactivate;
8357 
8358 		new_peer_pa_tactivate = pa_tactivate_us /
8359 				      gran_to_us_table[peer_granularity - 1];
8360 		new_peer_pa_tactivate++;
8361 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8362 					  new_peer_pa_tactivate);
8363 	}
8364 
8365 out:
8366 	return ret;
8367 }
8368 
8369 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8370 {
8371 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8372 		ufshcd_tune_pa_tactivate(hba);
8373 		ufshcd_tune_pa_hibern8time(hba);
8374 	}
8375 
8376 	ufshcd_vops_apply_dev_quirks(hba);
8377 
8378 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8379 		/* set 1ms timeout for PA_TACTIVATE */
8380 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8381 
8382 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8383 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8384 }
8385 
8386 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8387 {
8388 	hba->ufs_stats.hibern8_exit_cnt = 0;
8389 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8390 	hba->req_abort_count = 0;
8391 }
8392 
8393 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8394 {
8395 	int err;
8396 	u8 *desc_buf;
8397 
8398 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8399 	if (!desc_buf) {
8400 		err = -ENOMEM;
8401 		goto out;
8402 	}
8403 
8404 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8405 				     desc_buf, QUERY_DESC_MAX_SIZE);
8406 	if (err) {
8407 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8408 				__func__, err);
8409 		goto out;
8410 	}
8411 
8412 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8413 		hba->dev_info.max_lu_supported = 32;
8414 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8415 		hba->dev_info.max_lu_supported = 8;
8416 
8417 out:
8418 	kfree(desc_buf);
8419 	return err;
8420 }
8421 
8422 struct ufs_ref_clk {
8423 	unsigned long freq_hz;
8424 	enum ufs_ref_clk_freq val;
8425 };
8426 
8427 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8428 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8429 	{26000000, REF_CLK_FREQ_26_MHZ},
8430 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8431 	{52000000, REF_CLK_FREQ_52_MHZ},
8432 	{0, REF_CLK_FREQ_INVAL},
8433 };
8434 
8435 static enum ufs_ref_clk_freq
8436 ufs_get_bref_clk_from_hz(unsigned long freq)
8437 {
8438 	int i;
8439 
8440 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8441 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8442 			return ufs_ref_clk_freqs[i].val;
8443 
8444 	return REF_CLK_FREQ_INVAL;
8445 }
8446 
8447 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8448 {
8449 	unsigned long freq;
8450 
8451 	freq = clk_get_rate(refclk);
8452 
8453 	hba->dev_ref_clk_freq =
8454 		ufs_get_bref_clk_from_hz(freq);
8455 
8456 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8457 		dev_err(hba->dev,
8458 		"invalid ref_clk setting = %ld\n", freq);
8459 }
8460 
8461 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8462 {
8463 	int err;
8464 	u32 ref_clk;
8465 	u32 freq = hba->dev_ref_clk_freq;
8466 
8467 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8468 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8469 
8470 	if (err) {
8471 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8472 			err);
8473 		goto out;
8474 	}
8475 
8476 	if (ref_clk == freq)
8477 		goto out; /* nothing to update */
8478 
8479 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8480 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8481 
8482 	if (err) {
8483 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8484 			ufs_ref_clk_freqs[freq].freq_hz);
8485 		goto out;
8486 	}
8487 
8488 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8489 			ufs_ref_clk_freqs[freq].freq_hz);
8490 
8491 out:
8492 	return err;
8493 }
8494 
8495 static int ufshcd_device_params_init(struct ufs_hba *hba)
8496 {
8497 	bool flag;
8498 	int ret;
8499 
8500 	/* Init UFS geometry descriptor related parameters */
8501 	ret = ufshcd_device_geo_params_init(hba);
8502 	if (ret)
8503 		goto out;
8504 
8505 	/* Check and apply UFS device quirks */
8506 	ret = ufs_get_device_desc(hba);
8507 	if (ret) {
8508 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8509 			__func__, ret);
8510 		goto out;
8511 	}
8512 
8513 	ufshcd_get_ref_clk_gating_wait(hba);
8514 
8515 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8516 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8517 		hba->dev_info.f_power_on_wp_en = flag;
8518 
8519 	/* Probe maximum power mode co-supported by both UFS host and device */
8520 	if (ufshcd_get_max_pwr_mode(hba))
8521 		dev_err(hba->dev,
8522 			"%s: Failed getting max supported power mode\n",
8523 			__func__);
8524 out:
8525 	return ret;
8526 }
8527 
8528 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8529 {
8530 	int err;
8531 	struct ufs_query_req *request = NULL;
8532 	struct ufs_query_res *response = NULL;
8533 	struct ufs_dev_info *dev_info = &hba->dev_info;
8534 	struct utp_upiu_query_v4_0 *upiu_data;
8535 
8536 	if (dev_info->wspecversion < 0x400)
8537 		return;
8538 
8539 	ufshcd_hold(hba);
8540 
8541 	mutex_lock(&hba->dev_cmd.lock);
8542 
8543 	ufshcd_init_query(hba, &request, &response,
8544 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8545 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8546 
8547 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8548 
8549 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8550 
8551 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8552 
8553 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8554 
8555 	if (err)
8556 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8557 			__func__, err);
8558 
8559 	mutex_unlock(&hba->dev_cmd.lock);
8560 	ufshcd_release(hba);
8561 }
8562 
8563 /**
8564  * ufshcd_add_lus - probe and add UFS logical units
8565  * @hba: per-adapter instance
8566  *
8567  * Return: 0 upon success; < 0 upon failure.
8568  */
8569 static int ufshcd_add_lus(struct ufs_hba *hba)
8570 {
8571 	int ret;
8572 
8573 	/* Add required well known logical units to scsi mid layer */
8574 	ret = ufshcd_scsi_add_wlus(hba);
8575 	if (ret)
8576 		goto out;
8577 
8578 	/* Initialize devfreq after UFS device is detected */
8579 	if (ufshcd_is_clkscaling_supported(hba)) {
8580 		memcpy(&hba->clk_scaling.saved_pwr_info,
8581 			&hba->pwr_info,
8582 			sizeof(struct ufs_pa_layer_attr));
8583 		hba->clk_scaling.is_allowed = true;
8584 
8585 		ret = ufshcd_devfreq_init(hba);
8586 		if (ret)
8587 			goto out;
8588 
8589 		hba->clk_scaling.is_enabled = true;
8590 		ufshcd_init_clk_scaling_sysfs(hba);
8591 	}
8592 
8593 	ufs_bsg_probe(hba);
8594 	scsi_scan_host(hba->host);
8595 
8596 out:
8597 	return ret;
8598 }
8599 
8600 /* SDB - Single Doorbell */
8601 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8602 {
8603 	size_t ucdl_size, utrdl_size;
8604 
8605 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8606 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8607 			   hba->ucdl_dma_addr);
8608 
8609 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8610 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8611 			   hba->utrdl_dma_addr);
8612 
8613 	devm_kfree(hba->dev, hba->lrb);
8614 }
8615 
8616 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8617 {
8618 	int ret;
8619 	int old_nutrs = hba->nutrs;
8620 
8621 	ret = ufshcd_mcq_decide_queue_depth(hba);
8622 	if (ret < 0)
8623 		return ret;
8624 
8625 	hba->nutrs = ret;
8626 	ret = ufshcd_mcq_init(hba);
8627 	if (ret)
8628 		goto err;
8629 
8630 	/*
8631 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8632 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8633 	 */
8634 	if (hba->nutrs != old_nutrs) {
8635 		ufshcd_release_sdb_queue(hba, old_nutrs);
8636 		ret = ufshcd_memory_alloc(hba);
8637 		if (ret)
8638 			goto err;
8639 		ufshcd_host_memory_configure(hba);
8640 	}
8641 
8642 	ret = ufshcd_mcq_memory_alloc(hba);
8643 	if (ret)
8644 		goto err;
8645 
8646 	return 0;
8647 err:
8648 	hba->nutrs = old_nutrs;
8649 	return ret;
8650 }
8651 
8652 static void ufshcd_config_mcq(struct ufs_hba *hba)
8653 {
8654 	int ret;
8655 	u32 intrs;
8656 
8657 	ret = ufshcd_mcq_vops_config_esi(hba);
8658 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8659 
8660 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8661 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8662 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8663 	ufshcd_enable_intr(hba, intrs);
8664 	ufshcd_mcq_make_queues_operational(hba);
8665 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8666 
8667 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8668 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8669 
8670 	/* Select MCQ mode */
8671 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8672 		      REG_UFS_MEM_CFG);
8673 	hba->mcq_enabled = true;
8674 
8675 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8676 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8677 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8678 		 hba->nutrs);
8679 }
8680 
8681 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8682 {
8683 	int ret;
8684 	struct Scsi_Host *host = hba->host;
8685 
8686 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8687 
8688 	ret = ufshcd_link_startup(hba);
8689 	if (ret)
8690 		return ret;
8691 
8692 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8693 		return ret;
8694 
8695 	/* Debug counters initialization */
8696 	ufshcd_clear_dbg_ufs_stats(hba);
8697 
8698 	/* UniPro link is active now */
8699 	ufshcd_set_link_active(hba);
8700 
8701 	/* Reconfigure MCQ upon reset */
8702 	if (is_mcq_enabled(hba) && !init_dev_params)
8703 		ufshcd_config_mcq(hba);
8704 
8705 	/* Verify device initialization by sending NOP OUT UPIU */
8706 	ret = ufshcd_verify_dev_init(hba);
8707 	if (ret)
8708 		return ret;
8709 
8710 	/* Initiate UFS initialization, and waiting until completion */
8711 	ret = ufshcd_complete_dev_init(hba);
8712 	if (ret)
8713 		return ret;
8714 
8715 	/*
8716 	 * Initialize UFS device parameters used by driver, these
8717 	 * parameters are associated with UFS descriptors.
8718 	 */
8719 	if (init_dev_params) {
8720 		ret = ufshcd_device_params_init(hba);
8721 		if (ret)
8722 			return ret;
8723 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8724 			ret = ufshcd_alloc_mcq(hba);
8725 			if (!ret) {
8726 				ufshcd_config_mcq(hba);
8727 			} else {
8728 				/* Continue with SDB mode */
8729 				use_mcq_mode = false;
8730 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8731 					 ret);
8732 			}
8733 			ret = scsi_add_host(host, hba->dev);
8734 			if (ret) {
8735 				dev_err(hba->dev, "scsi_add_host failed\n");
8736 				return ret;
8737 			}
8738 			hba->scsi_host_added = true;
8739 		} else if (is_mcq_supported(hba)) {
8740 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8741 			ufshcd_config_mcq(hba);
8742 		}
8743 	}
8744 
8745 	ufshcd_tune_unipro_params(hba);
8746 
8747 	/* UFS device is also active now */
8748 	ufshcd_set_ufs_dev_active(hba);
8749 	ufshcd_force_reset_auto_bkops(hba);
8750 
8751 	ufshcd_set_timestamp_attr(hba);
8752 
8753 	/* Gear up to HS gear if supported */
8754 	if (hba->max_pwr_info.is_valid) {
8755 		/*
8756 		 * Set the right value to bRefClkFreq before attempting to
8757 		 * switch to HS gears.
8758 		 */
8759 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8760 			ufshcd_set_dev_ref_clk(hba);
8761 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8762 		if (ret) {
8763 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8764 					__func__, ret);
8765 			return ret;
8766 		}
8767 	}
8768 
8769 	return 0;
8770 }
8771 
8772 /**
8773  * ufshcd_probe_hba - probe hba to detect device and initialize it
8774  * @hba: per-adapter instance
8775  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8776  *
8777  * Execute link-startup and verify device initialization
8778  *
8779  * Return: 0 upon success; < 0 upon failure.
8780  */
8781 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8782 {
8783 	ktime_t start = ktime_get();
8784 	unsigned long flags;
8785 	int ret;
8786 
8787 	ret = ufshcd_device_init(hba, init_dev_params);
8788 	if (ret)
8789 		goto out;
8790 
8791 	if (!hba->pm_op_in_progress &&
8792 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8793 		/* Reset the device and controller before doing reinit */
8794 		ufshcd_device_reset(hba);
8795 		ufs_put_device_desc(hba);
8796 		ufshcd_hba_stop(hba);
8797 		ufshcd_vops_reinit_notify(hba);
8798 		ret = ufshcd_hba_enable(hba);
8799 		if (ret) {
8800 			dev_err(hba->dev, "Host controller enable failed\n");
8801 			ufshcd_print_evt_hist(hba);
8802 			ufshcd_print_host_state(hba);
8803 			goto out;
8804 		}
8805 
8806 		/* Reinit the device */
8807 		ret = ufshcd_device_init(hba, init_dev_params);
8808 		if (ret)
8809 			goto out;
8810 	}
8811 
8812 	ufshcd_print_pwr_info(hba);
8813 
8814 	/*
8815 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8816 	 * and for removable UFS card as well, hence always set the parameter.
8817 	 * Note: Error handler may issue the device reset hence resetting
8818 	 * bActiveICCLevel as well so it is always safe to set this here.
8819 	 */
8820 	ufshcd_set_active_icc_lvl(hba);
8821 
8822 	/* Enable UFS Write Booster if supported */
8823 	ufshcd_configure_wb(hba);
8824 
8825 	if (hba->ee_usr_mask)
8826 		ufshcd_write_ee_control(hba);
8827 	/* Enable Auto-Hibernate if configured */
8828 	ufshcd_auto_hibern8_enable(hba);
8829 
8830 out:
8831 	spin_lock_irqsave(hba->host->host_lock, flags);
8832 	if (ret)
8833 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8834 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8835 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8836 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8837 
8838 	trace_ufshcd_init(dev_name(hba->dev), ret,
8839 		ktime_to_us(ktime_sub(ktime_get(), start)),
8840 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8841 	return ret;
8842 }
8843 
8844 /**
8845  * ufshcd_async_scan - asynchronous execution for probing hba
8846  * @data: data pointer to pass to this function
8847  * @cookie: cookie data
8848  */
8849 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8850 {
8851 	struct ufs_hba *hba = (struct ufs_hba *)data;
8852 	int ret;
8853 
8854 	down(&hba->host_sem);
8855 	/* Initialize hba, detect and initialize UFS device */
8856 	ret = ufshcd_probe_hba(hba, true);
8857 	up(&hba->host_sem);
8858 	if (ret)
8859 		goto out;
8860 
8861 	/* Probe and add UFS logical units  */
8862 	ret = ufshcd_add_lus(hba);
8863 
8864 out:
8865 	pm_runtime_put_sync(hba->dev);
8866 
8867 	if (ret)
8868 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8869 }
8870 
8871 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8872 {
8873 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8874 
8875 	if (!hba->system_suspending) {
8876 		/* Activate the error handler in the SCSI core. */
8877 		return SCSI_EH_NOT_HANDLED;
8878 	}
8879 
8880 	/*
8881 	 * If we get here we know that no TMFs are outstanding and also that
8882 	 * the only pending command is a START STOP UNIT command. Handle the
8883 	 * timeout of that command directly to prevent a deadlock between
8884 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8885 	 */
8886 	ufshcd_link_recovery(hba);
8887 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8888 		 __func__, hba->outstanding_tasks);
8889 
8890 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8891 }
8892 
8893 static const struct attribute_group *ufshcd_driver_groups[] = {
8894 	&ufs_sysfs_unit_descriptor_group,
8895 	&ufs_sysfs_lun_attributes_group,
8896 	NULL,
8897 };
8898 
8899 static struct ufs_hba_variant_params ufs_hba_vps = {
8900 	.hba_enable_delay_us		= 1000,
8901 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8902 	.devfreq_profile.polling_ms	= 100,
8903 	.devfreq_profile.target		= ufshcd_devfreq_target,
8904 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8905 	.ondemand_data.upthreshold	= 70,
8906 	.ondemand_data.downdifferential	= 5,
8907 };
8908 
8909 static const struct scsi_host_template ufshcd_driver_template = {
8910 	.module			= THIS_MODULE,
8911 	.name			= UFSHCD,
8912 	.proc_name		= UFSHCD,
8913 	.map_queues		= ufshcd_map_queues,
8914 	.queuecommand		= ufshcd_queuecommand,
8915 	.mq_poll		= ufshcd_poll,
8916 	.slave_alloc		= ufshcd_slave_alloc,
8917 	.slave_configure	= ufshcd_slave_configure,
8918 	.slave_destroy		= ufshcd_slave_destroy,
8919 	.change_queue_depth	= ufshcd_change_queue_depth,
8920 	.eh_abort_handler	= ufshcd_abort,
8921 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8922 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8923 	.eh_timed_out		= ufshcd_eh_timed_out,
8924 	.this_id		= -1,
8925 	.sg_tablesize		= SG_ALL,
8926 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8927 	.can_queue		= UFSHCD_CAN_QUEUE,
8928 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8929 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8930 	.max_host_blocked	= 1,
8931 	.track_queue_depth	= 1,
8932 	.skip_settle_delay	= 1,
8933 	.sdev_groups		= ufshcd_driver_groups,
8934 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8935 };
8936 
8937 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8938 				   int ua)
8939 {
8940 	int ret;
8941 
8942 	if (!vreg)
8943 		return 0;
8944 
8945 	/*
8946 	 * "set_load" operation shall be required on those regulators
8947 	 * which specifically configured current limitation. Otherwise
8948 	 * zero max_uA may cause unexpected behavior when regulator is
8949 	 * enabled or set as high power mode.
8950 	 */
8951 	if (!vreg->max_uA)
8952 		return 0;
8953 
8954 	ret = regulator_set_load(vreg->reg, ua);
8955 	if (ret < 0) {
8956 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8957 				__func__, vreg->name, ua, ret);
8958 	}
8959 
8960 	return ret;
8961 }
8962 
8963 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8964 					 struct ufs_vreg *vreg)
8965 {
8966 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8967 }
8968 
8969 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8970 					 struct ufs_vreg *vreg)
8971 {
8972 	if (!vreg)
8973 		return 0;
8974 
8975 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8976 }
8977 
8978 static int ufshcd_config_vreg(struct device *dev,
8979 		struct ufs_vreg *vreg, bool on)
8980 {
8981 	if (regulator_count_voltages(vreg->reg) <= 0)
8982 		return 0;
8983 
8984 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8985 }
8986 
8987 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8988 {
8989 	int ret = 0;
8990 
8991 	if (!vreg || vreg->enabled)
8992 		goto out;
8993 
8994 	ret = ufshcd_config_vreg(dev, vreg, true);
8995 	if (!ret)
8996 		ret = regulator_enable(vreg->reg);
8997 
8998 	if (!ret)
8999 		vreg->enabled = true;
9000 	else
9001 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9002 				__func__, vreg->name, ret);
9003 out:
9004 	return ret;
9005 }
9006 
9007 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9008 {
9009 	int ret = 0;
9010 
9011 	if (!vreg || !vreg->enabled || vreg->always_on)
9012 		goto out;
9013 
9014 	ret = regulator_disable(vreg->reg);
9015 
9016 	if (!ret) {
9017 		/* ignore errors on applying disable config */
9018 		ufshcd_config_vreg(dev, vreg, false);
9019 		vreg->enabled = false;
9020 	} else {
9021 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9022 				__func__, vreg->name, ret);
9023 	}
9024 out:
9025 	return ret;
9026 }
9027 
9028 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9029 {
9030 	int ret = 0;
9031 	struct device *dev = hba->dev;
9032 	struct ufs_vreg_info *info = &hba->vreg_info;
9033 
9034 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9035 	if (ret)
9036 		goto out;
9037 
9038 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9039 	if (ret)
9040 		goto out;
9041 
9042 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9043 
9044 out:
9045 	if (ret) {
9046 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9047 		ufshcd_toggle_vreg(dev, info->vccq, false);
9048 		ufshcd_toggle_vreg(dev, info->vcc, false);
9049 	}
9050 	return ret;
9051 }
9052 
9053 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9054 {
9055 	struct ufs_vreg_info *info = &hba->vreg_info;
9056 
9057 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9058 }
9059 
9060 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9061 {
9062 	int ret = 0;
9063 
9064 	if (!vreg)
9065 		goto out;
9066 
9067 	vreg->reg = devm_regulator_get(dev, vreg->name);
9068 	if (IS_ERR(vreg->reg)) {
9069 		ret = PTR_ERR(vreg->reg);
9070 		dev_err(dev, "%s: %s get failed, err=%d\n",
9071 				__func__, vreg->name, ret);
9072 	}
9073 out:
9074 	return ret;
9075 }
9076 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9077 
9078 static int ufshcd_init_vreg(struct ufs_hba *hba)
9079 {
9080 	int ret = 0;
9081 	struct device *dev = hba->dev;
9082 	struct ufs_vreg_info *info = &hba->vreg_info;
9083 
9084 	ret = ufshcd_get_vreg(dev, info->vcc);
9085 	if (ret)
9086 		goto out;
9087 
9088 	ret = ufshcd_get_vreg(dev, info->vccq);
9089 	if (!ret)
9090 		ret = ufshcd_get_vreg(dev, info->vccq2);
9091 out:
9092 	return ret;
9093 }
9094 
9095 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9096 {
9097 	struct ufs_vreg_info *info = &hba->vreg_info;
9098 
9099 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9100 }
9101 
9102 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9103 {
9104 	int ret = 0;
9105 	struct ufs_clk_info *clki;
9106 	struct list_head *head = &hba->clk_list_head;
9107 	unsigned long flags;
9108 	ktime_t start = ktime_get();
9109 	bool clk_state_changed = false;
9110 
9111 	if (list_empty(head))
9112 		goto out;
9113 
9114 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9115 	if (ret)
9116 		return ret;
9117 
9118 	list_for_each_entry(clki, head, list) {
9119 		if (!IS_ERR_OR_NULL(clki->clk)) {
9120 			/*
9121 			 * Don't disable clocks which are needed
9122 			 * to keep the link active.
9123 			 */
9124 			if (ufshcd_is_link_active(hba) &&
9125 			    clki->keep_link_active)
9126 				continue;
9127 
9128 			clk_state_changed = on ^ clki->enabled;
9129 			if (on && !clki->enabled) {
9130 				ret = clk_prepare_enable(clki->clk);
9131 				if (ret) {
9132 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9133 						__func__, clki->name, ret);
9134 					goto out;
9135 				}
9136 			} else if (!on && clki->enabled) {
9137 				clk_disable_unprepare(clki->clk);
9138 			}
9139 			clki->enabled = on;
9140 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9141 					clki->name, on ? "en" : "dis");
9142 		}
9143 	}
9144 
9145 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9146 	if (ret)
9147 		return ret;
9148 
9149 out:
9150 	if (ret) {
9151 		list_for_each_entry(clki, head, list) {
9152 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9153 				clk_disable_unprepare(clki->clk);
9154 		}
9155 	} else if (!ret && on) {
9156 		spin_lock_irqsave(hba->host->host_lock, flags);
9157 		hba->clk_gating.state = CLKS_ON;
9158 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9159 					hba->clk_gating.state);
9160 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9161 	}
9162 
9163 	if (clk_state_changed)
9164 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9165 			(on ? "on" : "off"),
9166 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9167 	return ret;
9168 }
9169 
9170 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9171 {
9172 	u32 freq;
9173 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9174 
9175 	if (ret) {
9176 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9177 		return REF_CLK_FREQ_INVAL;
9178 	}
9179 
9180 	return ufs_get_bref_clk_from_hz(freq);
9181 }
9182 
9183 static int ufshcd_init_clocks(struct ufs_hba *hba)
9184 {
9185 	int ret = 0;
9186 	struct ufs_clk_info *clki;
9187 	struct device *dev = hba->dev;
9188 	struct list_head *head = &hba->clk_list_head;
9189 
9190 	if (list_empty(head))
9191 		goto out;
9192 
9193 	list_for_each_entry(clki, head, list) {
9194 		if (!clki->name)
9195 			continue;
9196 
9197 		clki->clk = devm_clk_get(dev, clki->name);
9198 		if (IS_ERR(clki->clk)) {
9199 			ret = PTR_ERR(clki->clk);
9200 			dev_err(dev, "%s: %s clk get failed, %d\n",
9201 					__func__, clki->name, ret);
9202 			goto out;
9203 		}
9204 
9205 		/*
9206 		 * Parse device ref clk freq as per device tree "ref_clk".
9207 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9208 		 * in ufshcd_alloc_host().
9209 		 */
9210 		if (!strcmp(clki->name, "ref_clk"))
9211 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9212 
9213 		if (clki->max_freq) {
9214 			ret = clk_set_rate(clki->clk, clki->max_freq);
9215 			if (ret) {
9216 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9217 					__func__, clki->name,
9218 					clki->max_freq, ret);
9219 				goto out;
9220 			}
9221 			clki->curr_freq = clki->max_freq;
9222 		}
9223 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9224 				clki->name, clk_get_rate(clki->clk));
9225 	}
9226 out:
9227 	return ret;
9228 }
9229 
9230 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9231 {
9232 	int err = 0;
9233 
9234 	if (!hba->vops)
9235 		goto out;
9236 
9237 	err = ufshcd_vops_init(hba);
9238 	if (err)
9239 		dev_err_probe(hba->dev, err,
9240 			      "%s: variant %s init failed with err %d\n",
9241 			      __func__, ufshcd_get_var_name(hba), err);
9242 out:
9243 	return err;
9244 }
9245 
9246 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9247 {
9248 	if (!hba->vops)
9249 		return;
9250 
9251 	ufshcd_vops_exit(hba);
9252 }
9253 
9254 static int ufshcd_hba_init(struct ufs_hba *hba)
9255 {
9256 	int err;
9257 
9258 	/*
9259 	 * Handle host controller power separately from the UFS device power
9260 	 * rails as it will help controlling the UFS host controller power
9261 	 * collapse easily which is different than UFS device power collapse.
9262 	 * Also, enable the host controller power before we go ahead with rest
9263 	 * of the initialization here.
9264 	 */
9265 	err = ufshcd_init_hba_vreg(hba);
9266 	if (err)
9267 		goto out;
9268 
9269 	err = ufshcd_setup_hba_vreg(hba, true);
9270 	if (err)
9271 		goto out;
9272 
9273 	err = ufshcd_init_clocks(hba);
9274 	if (err)
9275 		goto out_disable_hba_vreg;
9276 
9277 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9278 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9279 
9280 	err = ufshcd_setup_clocks(hba, true);
9281 	if (err)
9282 		goto out_disable_hba_vreg;
9283 
9284 	err = ufshcd_init_vreg(hba);
9285 	if (err)
9286 		goto out_disable_clks;
9287 
9288 	err = ufshcd_setup_vreg(hba, true);
9289 	if (err)
9290 		goto out_disable_clks;
9291 
9292 	err = ufshcd_variant_hba_init(hba);
9293 	if (err)
9294 		goto out_disable_vreg;
9295 
9296 	ufs_debugfs_hba_init(hba);
9297 
9298 	hba->is_powered = true;
9299 	goto out;
9300 
9301 out_disable_vreg:
9302 	ufshcd_setup_vreg(hba, false);
9303 out_disable_clks:
9304 	ufshcd_setup_clocks(hba, false);
9305 out_disable_hba_vreg:
9306 	ufshcd_setup_hba_vreg(hba, false);
9307 out:
9308 	return err;
9309 }
9310 
9311 static void ufshcd_hba_exit(struct ufs_hba *hba)
9312 {
9313 	if (hba->is_powered) {
9314 		ufshcd_exit_clk_scaling(hba);
9315 		ufshcd_exit_clk_gating(hba);
9316 		if (hba->eh_wq)
9317 			destroy_workqueue(hba->eh_wq);
9318 		ufs_debugfs_hba_exit(hba);
9319 		ufshcd_variant_hba_exit(hba);
9320 		ufshcd_setup_vreg(hba, false);
9321 		ufshcd_setup_clocks(hba, false);
9322 		ufshcd_setup_hba_vreg(hba, false);
9323 		hba->is_powered = false;
9324 		ufs_put_device_desc(hba);
9325 	}
9326 }
9327 
9328 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9329 				     enum ufs_dev_pwr_mode pwr_mode,
9330 				     struct scsi_sense_hdr *sshdr)
9331 {
9332 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9333 	const struct scsi_exec_args args = {
9334 		.sshdr = sshdr,
9335 		.req_flags = BLK_MQ_REQ_PM,
9336 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9337 	};
9338 
9339 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9340 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9341 			&args);
9342 }
9343 
9344 /**
9345  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9346  *			     power mode
9347  * @hba: per adapter instance
9348  * @pwr_mode: device power mode to set
9349  *
9350  * Return: 0 if requested power mode is set successfully;
9351  *         < 0 if failed to set the requested power mode.
9352  */
9353 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9354 				     enum ufs_dev_pwr_mode pwr_mode)
9355 {
9356 	struct scsi_sense_hdr sshdr;
9357 	struct scsi_device *sdp;
9358 	unsigned long flags;
9359 	int ret, retries;
9360 
9361 	spin_lock_irqsave(hba->host->host_lock, flags);
9362 	sdp = hba->ufs_device_wlun;
9363 	if (sdp && scsi_device_online(sdp))
9364 		ret = scsi_device_get(sdp);
9365 	else
9366 		ret = -ENODEV;
9367 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9368 
9369 	if (ret)
9370 		return ret;
9371 
9372 	/*
9373 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9374 	 * handling, which would wait for host to be resumed. Since we know
9375 	 * we are functional while we are here, skip host resume in error
9376 	 * handling context.
9377 	 */
9378 	hba->host->eh_noresume = 1;
9379 
9380 	/*
9381 	 * Current function would be generally called from the power management
9382 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9383 	 * already suspended childs.
9384 	 */
9385 	for (retries = 3; retries > 0; --retries) {
9386 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9387 		/*
9388 		 * scsi_execute() only returns a negative value if the request
9389 		 * queue is dying.
9390 		 */
9391 		if (ret <= 0)
9392 			break;
9393 	}
9394 	if (ret) {
9395 		sdev_printk(KERN_WARNING, sdp,
9396 			    "START_STOP failed for power mode: %d, result %x\n",
9397 			    pwr_mode, ret);
9398 		if (ret > 0) {
9399 			if (scsi_sense_valid(&sshdr))
9400 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9401 			ret = -EIO;
9402 		}
9403 	} else {
9404 		hba->curr_dev_pwr_mode = pwr_mode;
9405 	}
9406 
9407 	scsi_device_put(sdp);
9408 	hba->host->eh_noresume = 0;
9409 	return ret;
9410 }
9411 
9412 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9413 					enum uic_link_state req_link_state,
9414 					bool check_for_bkops)
9415 {
9416 	int ret = 0;
9417 
9418 	if (req_link_state == hba->uic_link_state)
9419 		return 0;
9420 
9421 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9422 		ret = ufshcd_uic_hibern8_enter(hba);
9423 		if (!ret) {
9424 			ufshcd_set_link_hibern8(hba);
9425 		} else {
9426 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9427 					__func__, ret);
9428 			goto out;
9429 		}
9430 	}
9431 	/*
9432 	 * If autobkops is enabled, link can't be turned off because
9433 	 * turning off the link would also turn off the device, except in the
9434 	 * case of DeepSleep where the device is expected to remain powered.
9435 	 */
9436 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9437 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9438 		/*
9439 		 * Let's make sure that link is in low power mode, we are doing
9440 		 * this currently by putting the link in Hibern8. Otherway to
9441 		 * put the link in low power mode is to send the DME end point
9442 		 * to device and then send the DME reset command to local
9443 		 * unipro. But putting the link in hibern8 is much faster.
9444 		 *
9445 		 * Note also that putting the link in Hibern8 is a requirement
9446 		 * for entering DeepSleep.
9447 		 */
9448 		ret = ufshcd_uic_hibern8_enter(hba);
9449 		if (ret) {
9450 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9451 					__func__, ret);
9452 			goto out;
9453 		}
9454 		/*
9455 		 * Change controller state to "reset state" which
9456 		 * should also put the link in off/reset state
9457 		 */
9458 		ufshcd_hba_stop(hba);
9459 		/*
9460 		 * TODO: Check if we need any delay to make sure that
9461 		 * controller is reset
9462 		 */
9463 		ufshcd_set_link_off(hba);
9464 	}
9465 
9466 out:
9467 	return ret;
9468 }
9469 
9470 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9471 {
9472 	bool vcc_off = false;
9473 
9474 	/*
9475 	 * It seems some UFS devices may keep drawing more than sleep current
9476 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9477 	 * To avoid this situation, add 2ms delay before putting these UFS
9478 	 * rails in LPM mode.
9479 	 */
9480 	if (!ufshcd_is_link_active(hba) &&
9481 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9482 		usleep_range(2000, 2100);
9483 
9484 	/*
9485 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9486 	 * power.
9487 	 *
9488 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9489 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9490 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9491 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9492 	 *
9493 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9494 	 * in low power state which would save some power.
9495 	 *
9496 	 * If Write Booster is enabled and the device needs to flush the WB
9497 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9498 	 */
9499 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9500 	    !hba->dev_info.is_lu_power_on_wp) {
9501 		ufshcd_setup_vreg(hba, false);
9502 		vcc_off = true;
9503 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9504 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9505 		vcc_off = true;
9506 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9507 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9508 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9509 		}
9510 	}
9511 
9512 	/*
9513 	 * Some UFS devices require delay after VCC power rail is turned-off.
9514 	 */
9515 	if (vcc_off && hba->vreg_info.vcc &&
9516 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9517 		usleep_range(5000, 5100);
9518 }
9519 
9520 #ifdef CONFIG_PM
9521 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9522 {
9523 	int ret = 0;
9524 
9525 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9526 	    !hba->dev_info.is_lu_power_on_wp) {
9527 		ret = ufshcd_setup_vreg(hba, true);
9528 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9529 		if (!ufshcd_is_link_active(hba)) {
9530 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9531 			if (ret)
9532 				goto vcc_disable;
9533 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9534 			if (ret)
9535 				goto vccq_lpm;
9536 		}
9537 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9538 	}
9539 	goto out;
9540 
9541 vccq_lpm:
9542 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9543 vcc_disable:
9544 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9545 out:
9546 	return ret;
9547 }
9548 #endif /* CONFIG_PM */
9549 
9550 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9551 {
9552 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9553 		ufshcd_setup_hba_vreg(hba, false);
9554 }
9555 
9556 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9557 {
9558 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9559 		ufshcd_setup_hba_vreg(hba, true);
9560 }
9561 
9562 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9563 {
9564 	int ret = 0;
9565 	bool check_for_bkops;
9566 	enum ufs_pm_level pm_lvl;
9567 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9568 	enum uic_link_state req_link_state;
9569 
9570 	hba->pm_op_in_progress = true;
9571 	if (pm_op != UFS_SHUTDOWN_PM) {
9572 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9573 			 hba->rpm_lvl : hba->spm_lvl;
9574 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9575 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9576 	} else {
9577 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9578 		req_link_state = UIC_LINK_OFF_STATE;
9579 	}
9580 
9581 	/*
9582 	 * If we can't transition into any of the low power modes
9583 	 * just gate the clocks.
9584 	 */
9585 	ufshcd_hold(hba);
9586 	hba->clk_gating.is_suspended = true;
9587 
9588 	if (ufshcd_is_clkscaling_supported(hba))
9589 		ufshcd_clk_scaling_suspend(hba, true);
9590 
9591 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9592 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9593 		goto vops_suspend;
9594 	}
9595 
9596 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9597 	    (req_link_state == hba->uic_link_state))
9598 		goto enable_scaling;
9599 
9600 	/* UFS device & link must be active before we enter in this function */
9601 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9602 		/*  Wait err handler finish or trigger err recovery */
9603 		if (!ufshcd_eh_in_progress(hba))
9604 			ufshcd_force_error_recovery(hba);
9605 		ret = -EBUSY;
9606 		goto enable_scaling;
9607 	}
9608 
9609 	if (pm_op == UFS_RUNTIME_PM) {
9610 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9611 			/*
9612 			 * The device is idle with no requests in the queue,
9613 			 * allow background operations if bkops status shows
9614 			 * that performance might be impacted.
9615 			 */
9616 			ret = ufshcd_urgent_bkops(hba);
9617 			if (ret) {
9618 				/*
9619 				 * If return err in suspend flow, IO will hang.
9620 				 * Trigger error handler and break suspend for
9621 				 * error recovery.
9622 				 */
9623 				ufshcd_force_error_recovery(hba);
9624 				ret = -EBUSY;
9625 				goto enable_scaling;
9626 			}
9627 		} else {
9628 			/* make sure that auto bkops is disabled */
9629 			ufshcd_disable_auto_bkops(hba);
9630 		}
9631 		/*
9632 		 * If device needs to do BKOP or WB buffer flush during
9633 		 * Hibern8, keep device power mode as "active power mode"
9634 		 * and VCC supply.
9635 		 */
9636 		hba->dev_info.b_rpm_dev_flush_capable =
9637 			hba->auto_bkops_enabled ||
9638 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9639 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9640 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9641 			ufshcd_wb_need_flush(hba));
9642 	}
9643 
9644 	flush_work(&hba->eeh_work);
9645 
9646 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9647 	if (ret)
9648 		goto enable_scaling;
9649 
9650 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9651 		if (pm_op != UFS_RUNTIME_PM)
9652 			/* ensure that bkops is disabled */
9653 			ufshcd_disable_auto_bkops(hba);
9654 
9655 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9656 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9657 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9658 				/*
9659 				 * If return err in suspend flow, IO will hang.
9660 				 * Trigger error handler and break suspend for
9661 				 * error recovery.
9662 				 */
9663 				ufshcd_force_error_recovery(hba);
9664 				ret = -EBUSY;
9665 			}
9666 			if (ret)
9667 				goto enable_scaling;
9668 		}
9669 	}
9670 
9671 	/*
9672 	 * In the case of DeepSleep, the device is expected to remain powered
9673 	 * with the link off, so do not check for bkops.
9674 	 */
9675 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9676 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9677 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9678 		/*
9679 		 * If return err in suspend flow, IO will hang.
9680 		 * Trigger error handler and break suspend for
9681 		 * error recovery.
9682 		 */
9683 		ufshcd_force_error_recovery(hba);
9684 		ret = -EBUSY;
9685 	}
9686 	if (ret)
9687 		goto set_dev_active;
9688 
9689 vops_suspend:
9690 	/*
9691 	 * Call vendor specific suspend callback. As these callbacks may access
9692 	 * vendor specific host controller register space call them before the
9693 	 * host clocks are ON.
9694 	 */
9695 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9696 	if (ret)
9697 		goto set_link_active;
9698 	goto out;
9699 
9700 set_link_active:
9701 	/*
9702 	 * Device hardware reset is required to exit DeepSleep. Also, for
9703 	 * DeepSleep, the link is off so host reset and restore will be done
9704 	 * further below.
9705 	 */
9706 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9707 		ufshcd_device_reset(hba);
9708 		WARN_ON(!ufshcd_is_link_off(hba));
9709 	}
9710 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9711 		ufshcd_set_link_active(hba);
9712 	else if (ufshcd_is_link_off(hba))
9713 		ufshcd_host_reset_and_restore(hba);
9714 set_dev_active:
9715 	/* Can also get here needing to exit DeepSleep */
9716 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9717 		ufshcd_device_reset(hba);
9718 		ufshcd_host_reset_and_restore(hba);
9719 	}
9720 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9721 		ufshcd_disable_auto_bkops(hba);
9722 enable_scaling:
9723 	if (ufshcd_is_clkscaling_supported(hba))
9724 		ufshcd_clk_scaling_suspend(hba, false);
9725 
9726 	hba->dev_info.b_rpm_dev_flush_capable = false;
9727 out:
9728 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9729 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9730 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9731 	}
9732 
9733 	if (ret) {
9734 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9735 		hba->clk_gating.is_suspended = false;
9736 		ufshcd_release(hba);
9737 	}
9738 	hba->pm_op_in_progress = false;
9739 	return ret;
9740 }
9741 
9742 #ifdef CONFIG_PM
9743 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9744 {
9745 	int ret;
9746 	enum uic_link_state old_link_state = hba->uic_link_state;
9747 
9748 	hba->pm_op_in_progress = true;
9749 
9750 	/*
9751 	 * Call vendor specific resume callback. As these callbacks may access
9752 	 * vendor specific host controller register space call them when the
9753 	 * host clocks are ON.
9754 	 */
9755 	ret = ufshcd_vops_resume(hba, pm_op);
9756 	if (ret)
9757 		goto out;
9758 
9759 	/* For DeepSleep, the only supported option is to have the link off */
9760 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9761 
9762 	if (ufshcd_is_link_hibern8(hba)) {
9763 		ret = ufshcd_uic_hibern8_exit(hba);
9764 		if (!ret) {
9765 			ufshcd_set_link_active(hba);
9766 		} else {
9767 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9768 					__func__, ret);
9769 			goto vendor_suspend;
9770 		}
9771 	} else if (ufshcd_is_link_off(hba)) {
9772 		/*
9773 		 * A full initialization of the host and the device is
9774 		 * required since the link was put to off during suspend.
9775 		 * Note, in the case of DeepSleep, the device will exit
9776 		 * DeepSleep due to device reset.
9777 		 */
9778 		ret = ufshcd_reset_and_restore(hba);
9779 		/*
9780 		 * ufshcd_reset_and_restore() should have already
9781 		 * set the link state as active
9782 		 */
9783 		if (ret || !ufshcd_is_link_active(hba))
9784 			goto vendor_suspend;
9785 	}
9786 
9787 	if (!ufshcd_is_ufs_dev_active(hba)) {
9788 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9789 		if (ret)
9790 			goto set_old_link_state;
9791 		ufshcd_set_timestamp_attr(hba);
9792 	}
9793 
9794 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9795 		ufshcd_enable_auto_bkops(hba);
9796 	else
9797 		/*
9798 		 * If BKOPs operations are urgently needed at this moment then
9799 		 * keep auto-bkops enabled or else disable it.
9800 		 */
9801 		ufshcd_urgent_bkops(hba);
9802 
9803 	if (hba->ee_usr_mask)
9804 		ufshcd_write_ee_control(hba);
9805 
9806 	if (ufshcd_is_clkscaling_supported(hba))
9807 		ufshcd_clk_scaling_suspend(hba, false);
9808 
9809 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9810 		hba->dev_info.b_rpm_dev_flush_capable = false;
9811 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9812 	}
9813 
9814 	/* Enable Auto-Hibernate if configured */
9815 	ufshcd_auto_hibern8_enable(hba);
9816 
9817 	goto out;
9818 
9819 set_old_link_state:
9820 	ufshcd_link_state_transition(hba, old_link_state, 0);
9821 vendor_suspend:
9822 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9823 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9824 out:
9825 	if (ret)
9826 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9827 	hba->clk_gating.is_suspended = false;
9828 	ufshcd_release(hba);
9829 	hba->pm_op_in_progress = false;
9830 	return ret;
9831 }
9832 
9833 static int ufshcd_wl_runtime_suspend(struct device *dev)
9834 {
9835 	struct scsi_device *sdev = to_scsi_device(dev);
9836 	struct ufs_hba *hba;
9837 	int ret;
9838 	ktime_t start = ktime_get();
9839 
9840 	hba = shost_priv(sdev->host);
9841 
9842 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9843 	if (ret)
9844 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9845 
9846 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9847 		ktime_to_us(ktime_sub(ktime_get(), start)),
9848 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9849 
9850 	return ret;
9851 }
9852 
9853 static int ufshcd_wl_runtime_resume(struct device *dev)
9854 {
9855 	struct scsi_device *sdev = to_scsi_device(dev);
9856 	struct ufs_hba *hba;
9857 	int ret = 0;
9858 	ktime_t start = ktime_get();
9859 
9860 	hba = shost_priv(sdev->host);
9861 
9862 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9863 	if (ret)
9864 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9865 
9866 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9867 		ktime_to_us(ktime_sub(ktime_get(), start)),
9868 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9869 
9870 	return ret;
9871 }
9872 #endif
9873 
9874 #ifdef CONFIG_PM_SLEEP
9875 static int ufshcd_wl_suspend(struct device *dev)
9876 {
9877 	struct scsi_device *sdev = to_scsi_device(dev);
9878 	struct ufs_hba *hba;
9879 	int ret = 0;
9880 	ktime_t start = ktime_get();
9881 
9882 	hba = shost_priv(sdev->host);
9883 	down(&hba->host_sem);
9884 	hba->system_suspending = true;
9885 
9886 	if (pm_runtime_suspended(dev))
9887 		goto out;
9888 
9889 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9890 	if (ret) {
9891 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9892 		up(&hba->host_sem);
9893 	}
9894 
9895 out:
9896 	if (!ret)
9897 		hba->is_sys_suspended = true;
9898 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9899 		ktime_to_us(ktime_sub(ktime_get(), start)),
9900 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9901 
9902 	return ret;
9903 }
9904 
9905 static int ufshcd_wl_resume(struct device *dev)
9906 {
9907 	struct scsi_device *sdev = to_scsi_device(dev);
9908 	struct ufs_hba *hba;
9909 	int ret = 0;
9910 	ktime_t start = ktime_get();
9911 
9912 	hba = shost_priv(sdev->host);
9913 
9914 	if (pm_runtime_suspended(dev))
9915 		goto out;
9916 
9917 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9918 	if (ret)
9919 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9920 out:
9921 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9922 		ktime_to_us(ktime_sub(ktime_get(), start)),
9923 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9924 	if (!ret)
9925 		hba->is_sys_suspended = false;
9926 	hba->system_suspending = false;
9927 	up(&hba->host_sem);
9928 	return ret;
9929 }
9930 #endif
9931 
9932 /**
9933  * ufshcd_suspend - helper function for suspend operations
9934  * @hba: per adapter instance
9935  *
9936  * This function will put disable irqs, turn off clocks
9937  * and set vreg and hba-vreg in lpm mode.
9938  *
9939  * Return: 0 upon success; < 0 upon failure.
9940  */
9941 static int ufshcd_suspend(struct ufs_hba *hba)
9942 {
9943 	int ret;
9944 
9945 	if (!hba->is_powered)
9946 		return 0;
9947 	/*
9948 	 * Disable the host irq as host controller as there won't be any
9949 	 * host controller transaction expected till resume.
9950 	 */
9951 	ufshcd_disable_irq(hba);
9952 	ret = ufshcd_setup_clocks(hba, false);
9953 	if (ret) {
9954 		ufshcd_enable_irq(hba);
9955 		return ret;
9956 	}
9957 	if (ufshcd_is_clkgating_allowed(hba)) {
9958 		hba->clk_gating.state = CLKS_OFF;
9959 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9960 					hba->clk_gating.state);
9961 	}
9962 
9963 	ufshcd_vreg_set_lpm(hba);
9964 	/* Put the host controller in low power mode if possible */
9965 	ufshcd_hba_vreg_set_lpm(hba);
9966 	return ret;
9967 }
9968 
9969 #ifdef CONFIG_PM
9970 /**
9971  * ufshcd_resume - helper function for resume operations
9972  * @hba: per adapter instance
9973  *
9974  * This function basically turns on the regulators, clocks and
9975  * irqs of the hba.
9976  *
9977  * Return: 0 for success and non-zero for failure.
9978  */
9979 static int ufshcd_resume(struct ufs_hba *hba)
9980 {
9981 	int ret;
9982 
9983 	if (!hba->is_powered)
9984 		return 0;
9985 
9986 	ufshcd_hba_vreg_set_hpm(hba);
9987 	ret = ufshcd_vreg_set_hpm(hba);
9988 	if (ret)
9989 		goto out;
9990 
9991 	/* Make sure clocks are enabled before accessing controller */
9992 	ret = ufshcd_setup_clocks(hba, true);
9993 	if (ret)
9994 		goto disable_vreg;
9995 
9996 	/* enable the host irq as host controller would be active soon */
9997 	ufshcd_enable_irq(hba);
9998 
9999 	goto out;
10000 
10001 disable_vreg:
10002 	ufshcd_vreg_set_lpm(hba);
10003 out:
10004 	if (ret)
10005 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10006 	return ret;
10007 }
10008 #endif /* CONFIG_PM */
10009 
10010 #ifdef CONFIG_PM_SLEEP
10011 /**
10012  * ufshcd_system_suspend - system suspend callback
10013  * @dev: Device associated with the UFS controller.
10014  *
10015  * Executed before putting the system into a sleep state in which the contents
10016  * of main memory are preserved.
10017  *
10018  * Return: 0 for success and non-zero for failure.
10019  */
10020 int ufshcd_system_suspend(struct device *dev)
10021 {
10022 	struct ufs_hba *hba = dev_get_drvdata(dev);
10023 	int ret = 0;
10024 	ktime_t start = ktime_get();
10025 
10026 	if (pm_runtime_suspended(hba->dev))
10027 		goto out;
10028 
10029 	ret = ufshcd_suspend(hba);
10030 out:
10031 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10032 		ktime_to_us(ktime_sub(ktime_get(), start)),
10033 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10034 	return ret;
10035 }
10036 EXPORT_SYMBOL(ufshcd_system_suspend);
10037 
10038 /**
10039  * ufshcd_system_resume - system resume callback
10040  * @dev: Device associated with the UFS controller.
10041  *
10042  * Executed after waking the system up from a sleep state in which the contents
10043  * of main memory were preserved.
10044  *
10045  * Return: 0 for success and non-zero for failure.
10046  */
10047 int ufshcd_system_resume(struct device *dev)
10048 {
10049 	struct ufs_hba *hba = dev_get_drvdata(dev);
10050 	ktime_t start = ktime_get();
10051 	int ret = 0;
10052 
10053 	if (pm_runtime_suspended(hba->dev))
10054 		goto out;
10055 
10056 	ret = ufshcd_resume(hba);
10057 
10058 out:
10059 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10060 		ktime_to_us(ktime_sub(ktime_get(), start)),
10061 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10062 
10063 	return ret;
10064 }
10065 EXPORT_SYMBOL(ufshcd_system_resume);
10066 #endif /* CONFIG_PM_SLEEP */
10067 
10068 #ifdef CONFIG_PM
10069 /**
10070  * ufshcd_runtime_suspend - runtime suspend callback
10071  * @dev: Device associated with the UFS controller.
10072  *
10073  * Check the description of ufshcd_suspend() function for more details.
10074  *
10075  * Return: 0 for success and non-zero for failure.
10076  */
10077 int ufshcd_runtime_suspend(struct device *dev)
10078 {
10079 	struct ufs_hba *hba = dev_get_drvdata(dev);
10080 	int ret;
10081 	ktime_t start = ktime_get();
10082 
10083 	ret = ufshcd_suspend(hba);
10084 
10085 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10086 		ktime_to_us(ktime_sub(ktime_get(), start)),
10087 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10088 	return ret;
10089 }
10090 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10091 
10092 /**
10093  * ufshcd_runtime_resume - runtime resume routine
10094  * @dev: Device associated with the UFS controller.
10095  *
10096  * This function basically brings controller
10097  * to active state. Following operations are done in this function:
10098  *
10099  * 1. Turn on all the controller related clocks
10100  * 2. Turn ON VCC rail
10101  *
10102  * Return: 0 upon success; < 0 upon failure.
10103  */
10104 int ufshcd_runtime_resume(struct device *dev)
10105 {
10106 	struct ufs_hba *hba = dev_get_drvdata(dev);
10107 	int ret;
10108 	ktime_t start = ktime_get();
10109 
10110 	ret = ufshcd_resume(hba);
10111 
10112 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10113 		ktime_to_us(ktime_sub(ktime_get(), start)),
10114 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10115 	return ret;
10116 }
10117 EXPORT_SYMBOL(ufshcd_runtime_resume);
10118 #endif /* CONFIG_PM */
10119 
10120 static void ufshcd_wl_shutdown(struct device *dev)
10121 {
10122 	struct scsi_device *sdev = to_scsi_device(dev);
10123 	struct ufs_hba *hba = shost_priv(sdev->host);
10124 
10125 	down(&hba->host_sem);
10126 	hba->shutting_down = true;
10127 	up(&hba->host_sem);
10128 
10129 	/* Turn on everything while shutting down */
10130 	ufshcd_rpm_get_sync(hba);
10131 	scsi_device_quiesce(sdev);
10132 	shost_for_each_device(sdev, hba->host) {
10133 		if (sdev == hba->ufs_device_wlun)
10134 			continue;
10135 		mutex_lock(&sdev->state_mutex);
10136 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10137 		mutex_unlock(&sdev->state_mutex);
10138 	}
10139 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10140 
10141 	/*
10142 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10143 	 * clocks.
10144 	 */
10145 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10146 		ufshcd_suspend(hba);
10147 
10148 	hba->is_powered = false;
10149 }
10150 
10151 /**
10152  * ufshcd_remove - de-allocate SCSI host and host memory space
10153  *		data structure memory
10154  * @hba: per adapter instance
10155  */
10156 void ufshcd_remove(struct ufs_hba *hba)
10157 {
10158 	if (hba->ufs_device_wlun)
10159 		ufshcd_rpm_get_sync(hba);
10160 	ufs_hwmon_remove(hba);
10161 	ufs_bsg_remove(hba);
10162 	ufs_sysfs_remove_nodes(hba->dev);
10163 	blk_mq_destroy_queue(hba->tmf_queue);
10164 	blk_put_queue(hba->tmf_queue);
10165 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10166 	if (hba->scsi_host_added)
10167 		scsi_remove_host(hba->host);
10168 	/* disable interrupts */
10169 	ufshcd_disable_intr(hba, hba->intr_mask);
10170 	ufshcd_hba_stop(hba);
10171 	ufshcd_hba_exit(hba);
10172 }
10173 EXPORT_SYMBOL_GPL(ufshcd_remove);
10174 
10175 #ifdef CONFIG_PM_SLEEP
10176 int ufshcd_system_freeze(struct device *dev)
10177 {
10178 
10179 	return ufshcd_system_suspend(dev);
10180 
10181 }
10182 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10183 
10184 int ufshcd_system_restore(struct device *dev)
10185 {
10186 
10187 	struct ufs_hba *hba = dev_get_drvdata(dev);
10188 	int ret;
10189 
10190 	ret = ufshcd_system_resume(dev);
10191 	if (ret)
10192 		return ret;
10193 
10194 	/* Configure UTRL and UTMRL base address registers */
10195 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10196 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10197 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10198 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10199 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10200 			REG_UTP_TASK_REQ_LIST_BASE_L);
10201 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10202 			REG_UTP_TASK_REQ_LIST_BASE_H);
10203 	/*
10204 	 * Make sure that UTRL and UTMRL base address registers
10205 	 * are updated with the latest queue addresses. Only after
10206 	 * updating these addresses, we can queue the new commands.
10207 	 */
10208 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10209 
10210 	return 0;
10211 
10212 }
10213 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10214 
10215 int ufshcd_system_thaw(struct device *dev)
10216 {
10217 	return ufshcd_system_resume(dev);
10218 }
10219 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10220 #endif /* CONFIG_PM_SLEEP  */
10221 
10222 /**
10223  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10224  * @hba: pointer to Host Bus Adapter (HBA)
10225  */
10226 void ufshcd_dealloc_host(struct ufs_hba *hba)
10227 {
10228 	scsi_host_put(hba->host);
10229 }
10230 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10231 
10232 /**
10233  * ufshcd_set_dma_mask - Set dma mask based on the controller
10234  *			 addressing capability
10235  * @hba: per adapter instance
10236  *
10237  * Return: 0 for success, non-zero for failure.
10238  */
10239 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10240 {
10241 	if (hba->vops && hba->vops->set_dma_mask)
10242 		return hba->vops->set_dma_mask(hba);
10243 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10244 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10245 			return 0;
10246 	}
10247 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10248 }
10249 
10250 /**
10251  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10252  * @dev: pointer to device handle
10253  * @hba_handle: driver private handle
10254  *
10255  * Return: 0 on success, non-zero value on failure.
10256  */
10257 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10258 {
10259 	struct Scsi_Host *host;
10260 	struct ufs_hba *hba;
10261 	int err = 0;
10262 
10263 	if (!dev) {
10264 		dev_err(dev,
10265 		"Invalid memory reference for dev is NULL\n");
10266 		err = -ENODEV;
10267 		goto out_error;
10268 	}
10269 
10270 	host = scsi_host_alloc(&ufshcd_driver_template,
10271 				sizeof(struct ufs_hba));
10272 	if (!host) {
10273 		dev_err(dev, "scsi_host_alloc failed\n");
10274 		err = -ENOMEM;
10275 		goto out_error;
10276 	}
10277 	host->nr_maps = HCTX_TYPE_POLL + 1;
10278 	hba = shost_priv(host);
10279 	hba->host = host;
10280 	hba->dev = dev;
10281 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10282 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10283 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10284 	INIT_LIST_HEAD(&hba->clk_list_head);
10285 	spin_lock_init(&hba->outstanding_lock);
10286 
10287 	*hba_handle = hba;
10288 
10289 out_error:
10290 	return err;
10291 }
10292 EXPORT_SYMBOL(ufshcd_alloc_host);
10293 
10294 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10295 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10296 				     const struct blk_mq_queue_data *qd)
10297 {
10298 	WARN_ON_ONCE(true);
10299 	return BLK_STS_NOTSUPP;
10300 }
10301 
10302 static const struct blk_mq_ops ufshcd_tmf_ops = {
10303 	.queue_rq = ufshcd_queue_tmf,
10304 };
10305 
10306 /**
10307  * ufshcd_init - Driver initialization routine
10308  * @hba: per-adapter instance
10309  * @mmio_base: base register address
10310  * @irq: Interrupt line of device
10311  *
10312  * Return: 0 on success, non-zero value on failure.
10313  */
10314 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10315 {
10316 	int err;
10317 	struct Scsi_Host *host = hba->host;
10318 	struct device *dev = hba->dev;
10319 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10320 
10321 	/*
10322 	 * dev_set_drvdata() must be called before any callbacks are registered
10323 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10324 	 * sysfs).
10325 	 */
10326 	dev_set_drvdata(dev, hba);
10327 
10328 	if (!mmio_base) {
10329 		dev_err(hba->dev,
10330 		"Invalid memory reference for mmio_base is NULL\n");
10331 		err = -ENODEV;
10332 		goto out_error;
10333 	}
10334 
10335 	hba->mmio_base = mmio_base;
10336 	hba->irq = irq;
10337 	hba->vps = &ufs_hba_vps;
10338 
10339 	err = ufshcd_hba_init(hba);
10340 	if (err)
10341 		goto out_error;
10342 
10343 	/* Read capabilities registers */
10344 	err = ufshcd_hba_capabilities(hba);
10345 	if (err)
10346 		goto out_disable;
10347 
10348 	/* Get UFS version supported by the controller */
10349 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10350 
10351 	/* Get Interrupt bit mask per version */
10352 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10353 
10354 	err = ufshcd_set_dma_mask(hba);
10355 	if (err) {
10356 		dev_err(hba->dev, "set dma mask failed\n");
10357 		goto out_disable;
10358 	}
10359 
10360 	/* Allocate memory for host memory space */
10361 	err = ufshcd_memory_alloc(hba);
10362 	if (err) {
10363 		dev_err(hba->dev, "Memory allocation failed\n");
10364 		goto out_disable;
10365 	}
10366 
10367 	/* Configure LRB */
10368 	ufshcd_host_memory_configure(hba);
10369 
10370 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10371 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10372 	host->max_id = UFSHCD_MAX_ID;
10373 	host->max_lun = UFS_MAX_LUNS;
10374 	host->max_channel = UFSHCD_MAX_CHANNEL;
10375 	host->unique_id = host->host_no;
10376 	host->max_cmd_len = UFS_CDB_SIZE;
10377 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10378 
10379 	hba->max_pwr_info.is_valid = false;
10380 
10381 	/* Initialize work queues */
10382 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10383 		 hba->host->host_no);
10384 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10385 	if (!hba->eh_wq) {
10386 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10387 			__func__);
10388 		err = -ENOMEM;
10389 		goto out_disable;
10390 	}
10391 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10392 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10393 
10394 	sema_init(&hba->host_sem, 1);
10395 
10396 	/* Initialize UIC command mutex */
10397 	mutex_init(&hba->uic_cmd_mutex);
10398 
10399 	/* Initialize mutex for device management commands */
10400 	mutex_init(&hba->dev_cmd.lock);
10401 
10402 	/* Initialize mutex for exception event control */
10403 	mutex_init(&hba->ee_ctrl_mutex);
10404 
10405 	mutex_init(&hba->wb_mutex);
10406 	init_rwsem(&hba->clk_scaling_lock);
10407 
10408 	ufshcd_init_clk_gating(hba);
10409 
10410 	ufshcd_init_clk_scaling(hba);
10411 
10412 	/*
10413 	 * In order to avoid any spurious interrupt immediately after
10414 	 * registering UFS controller interrupt handler, clear any pending UFS
10415 	 * interrupt status and disable all the UFS interrupts.
10416 	 */
10417 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10418 		      REG_INTERRUPT_STATUS);
10419 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10420 	/*
10421 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10422 	 * status is cleared before registering UFS interrupt handler.
10423 	 */
10424 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10425 
10426 	/* IRQ registration */
10427 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10428 	if (err) {
10429 		dev_err(hba->dev, "request irq failed\n");
10430 		goto out_disable;
10431 	} else {
10432 		hba->is_irq_enabled = true;
10433 	}
10434 
10435 	if (!is_mcq_supported(hba)) {
10436 		if (!hba->lsdb_sup) {
10437 			dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10438 				__func__);
10439 			err = -EINVAL;
10440 			goto out_disable;
10441 		}
10442 		err = scsi_add_host(host, hba->dev);
10443 		if (err) {
10444 			dev_err(hba->dev, "scsi_add_host failed\n");
10445 			goto out_disable;
10446 		}
10447 		hba->scsi_host_added = true;
10448 	}
10449 
10450 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10451 		.nr_hw_queues	= 1,
10452 		.queue_depth	= hba->nutmrs,
10453 		.ops		= &ufshcd_tmf_ops,
10454 		.flags		= BLK_MQ_F_NO_SCHED,
10455 	};
10456 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10457 	if (err < 0)
10458 		goto out_remove_scsi_host;
10459 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10460 	if (IS_ERR(hba->tmf_queue)) {
10461 		err = PTR_ERR(hba->tmf_queue);
10462 		goto free_tmf_tag_set;
10463 	}
10464 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10465 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10466 	if (!hba->tmf_rqs) {
10467 		err = -ENOMEM;
10468 		goto free_tmf_queue;
10469 	}
10470 
10471 	/* Reset the attached device */
10472 	ufshcd_device_reset(hba);
10473 
10474 	ufshcd_init_crypto(hba);
10475 
10476 	/* Host controller enable */
10477 	err = ufshcd_hba_enable(hba);
10478 	if (err) {
10479 		dev_err(hba->dev, "Host controller enable failed\n");
10480 		ufshcd_print_evt_hist(hba);
10481 		ufshcd_print_host_state(hba);
10482 		goto free_tmf_queue;
10483 	}
10484 
10485 	/*
10486 	 * Set the default power management level for runtime and system PM.
10487 	 * Default power saving mode is to keep UFS link in Hibern8 state
10488 	 * and UFS device in sleep state.
10489 	 */
10490 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10491 						UFS_SLEEP_PWR_MODE,
10492 						UIC_LINK_HIBERN8_STATE);
10493 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10494 						UFS_SLEEP_PWR_MODE,
10495 						UIC_LINK_HIBERN8_STATE);
10496 
10497 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10498 			  ufshcd_rpm_dev_flush_recheck_work);
10499 
10500 	/* Set the default auto-hiberate idle timer value to 150 ms */
10501 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10502 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10503 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10504 	}
10505 
10506 	/* Hold auto suspend until async scan completes */
10507 	pm_runtime_get_sync(dev);
10508 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10509 	/*
10510 	 * We are assuming that device wasn't put in sleep/power-down
10511 	 * state exclusively during the boot stage before kernel.
10512 	 * This assumption helps avoid doing link startup twice during
10513 	 * ufshcd_probe_hba().
10514 	 */
10515 	ufshcd_set_ufs_dev_active(hba);
10516 
10517 	async_schedule(ufshcd_async_scan, hba);
10518 	ufs_sysfs_add_nodes(hba->dev);
10519 
10520 	device_enable_async_suspend(dev);
10521 	return 0;
10522 
10523 free_tmf_queue:
10524 	blk_mq_destroy_queue(hba->tmf_queue);
10525 	blk_put_queue(hba->tmf_queue);
10526 free_tmf_tag_set:
10527 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10528 out_remove_scsi_host:
10529 	if (hba->scsi_host_added)
10530 		scsi_remove_host(hba->host);
10531 out_disable:
10532 	hba->is_irq_enabled = false;
10533 	ufshcd_hba_exit(hba);
10534 out_error:
10535 	return err;
10536 }
10537 EXPORT_SYMBOL_GPL(ufshcd_init);
10538 
10539 void ufshcd_resume_complete(struct device *dev)
10540 {
10541 	struct ufs_hba *hba = dev_get_drvdata(dev);
10542 
10543 	if (hba->complete_put) {
10544 		ufshcd_rpm_put(hba);
10545 		hba->complete_put = false;
10546 	}
10547 }
10548 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10549 
10550 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10551 {
10552 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10553 	enum ufs_dev_pwr_mode dev_pwr_mode;
10554 	enum uic_link_state link_state;
10555 	unsigned long flags;
10556 	bool res;
10557 
10558 	spin_lock_irqsave(&dev->power.lock, flags);
10559 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10560 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10561 	res = pm_runtime_suspended(dev) &&
10562 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10563 	      hba->uic_link_state == link_state &&
10564 	      !hba->dev_info.b_rpm_dev_flush_capable;
10565 	spin_unlock_irqrestore(&dev->power.lock, flags);
10566 
10567 	return res;
10568 }
10569 
10570 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10571 {
10572 	struct ufs_hba *hba = dev_get_drvdata(dev);
10573 	int ret;
10574 
10575 	/*
10576 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10577 	 * are same. And it doesn't wake up the device for system-suspend
10578 	 * if it's runtime suspended. But ufs doesn't follow that.
10579 	 * Refer ufshcd_resume_complete()
10580 	 */
10581 	if (hba->ufs_device_wlun) {
10582 		/* Prevent runtime suspend */
10583 		ufshcd_rpm_get_noresume(hba);
10584 		/*
10585 		 * Check if already runtime suspended in same state as system
10586 		 * suspend would be.
10587 		 */
10588 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10589 			/* RPM state is not ok for SPM, so runtime resume */
10590 			ret = ufshcd_rpm_resume(hba);
10591 			if (ret < 0 && ret != -EACCES) {
10592 				ufshcd_rpm_put(hba);
10593 				return ret;
10594 			}
10595 		}
10596 		hba->complete_put = true;
10597 	}
10598 	return 0;
10599 }
10600 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10601 
10602 int ufshcd_suspend_prepare(struct device *dev)
10603 {
10604 	return __ufshcd_suspend_prepare(dev, true);
10605 }
10606 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10607 
10608 #ifdef CONFIG_PM_SLEEP
10609 static int ufshcd_wl_poweroff(struct device *dev)
10610 {
10611 	struct scsi_device *sdev = to_scsi_device(dev);
10612 	struct ufs_hba *hba = shost_priv(sdev->host);
10613 
10614 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10615 	return 0;
10616 }
10617 #endif
10618 
10619 static int ufshcd_wl_probe(struct device *dev)
10620 {
10621 	struct scsi_device *sdev = to_scsi_device(dev);
10622 
10623 	if (!is_device_wlun(sdev))
10624 		return -ENODEV;
10625 
10626 	blk_pm_runtime_init(sdev->request_queue, dev);
10627 	pm_runtime_set_autosuspend_delay(dev, 0);
10628 	pm_runtime_allow(dev);
10629 
10630 	return  0;
10631 }
10632 
10633 static int ufshcd_wl_remove(struct device *dev)
10634 {
10635 	pm_runtime_forbid(dev);
10636 	return 0;
10637 }
10638 
10639 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10640 #ifdef CONFIG_PM_SLEEP
10641 	.suspend = ufshcd_wl_suspend,
10642 	.resume = ufshcd_wl_resume,
10643 	.freeze = ufshcd_wl_suspend,
10644 	.thaw = ufshcd_wl_resume,
10645 	.poweroff = ufshcd_wl_poweroff,
10646 	.restore = ufshcd_wl_resume,
10647 #endif
10648 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10649 };
10650 
10651 static void ufshcd_check_header_layout(void)
10652 {
10653 	/*
10654 	 * gcc compilers before version 10 cannot do constant-folding for
10655 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10656 	 * before.
10657 	 */
10658 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10659 		return;
10660 
10661 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10662 				.cci = 3})[0] != 3);
10663 
10664 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10665 				.ehs_length = 2})[1] != 2);
10666 
10667 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10668 				.enable_crypto = 1})[2]
10669 		     != 0x80);
10670 
10671 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10672 					.command_type = 5,
10673 					.data_direction = 3,
10674 					.interrupt = 1,
10675 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10676 
10677 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10678 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10679 		cpu_to_le32(0xdeadbeef));
10680 
10681 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10682 				.ocs = 4})[8] != 4);
10683 
10684 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10685 				.cds = 5})[9] != 5);
10686 
10687 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10688 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10689 		cpu_to_le32(0xbadcafe));
10690 
10691 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10692 			     .iid = 0xf })[4] != 0xf0);
10693 
10694 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10695 			     .command_set_type = 0xf })[4] != 0xf);
10696 }
10697 
10698 /*
10699  * ufs_dev_wlun_template - describes ufs device wlun
10700  * ufs-device wlun - used to send pm commands
10701  * All luns are consumers of ufs-device wlun.
10702  *
10703  * Currently, no sd driver is present for wluns.
10704  * Hence the no specific pm operations are performed.
10705  * With ufs design, SSU should be sent to ufs-device wlun.
10706  * Hence register a scsi driver for ufs wluns only.
10707  */
10708 static struct scsi_driver ufs_dev_wlun_template = {
10709 	.gendrv = {
10710 		.name = "ufs_device_wlun",
10711 		.owner = THIS_MODULE,
10712 		.probe = ufshcd_wl_probe,
10713 		.remove = ufshcd_wl_remove,
10714 		.pm = &ufshcd_wl_pm_ops,
10715 		.shutdown = ufshcd_wl_shutdown,
10716 	},
10717 };
10718 
10719 static int __init ufshcd_core_init(void)
10720 {
10721 	int ret;
10722 
10723 	ufshcd_check_header_layout();
10724 
10725 	ufs_debugfs_init();
10726 
10727 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10728 	if (ret)
10729 		ufs_debugfs_exit();
10730 	return ret;
10731 }
10732 
10733 static void __exit ufshcd_core_exit(void)
10734 {
10735 	ufs_debugfs_exit();
10736 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10737 }
10738 
10739 module_init(ufshcd_core_init);
10740 module_exit(ufshcd_core_exit);
10741 
10742 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10743 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10744 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10745 MODULE_SOFTDEP("pre: governor_simpleondemand");
10746 MODULE_LICENSE("GPL");
10747