xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 8957261c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 	  .model = UFS_ANY_MODEL,
244 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 	  .model = UFS_ANY_MODEL,
249 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 	  .model = "hB8aL1" /*H28U62301AMR*/,
252 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 	  .model = "THGLF2G9C8KBADG",
258 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 	  .model = "THGLF2G9D8KBADG",
261 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 	{}
263 };
264 
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 			     struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 					 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 						 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290 
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 	if (!hba->is_irq_enabled) {
294 		enable_irq(hba->irq);
295 		hba->is_irq_enabled = true;
296 	}
297 }
298 
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 	if (hba->is_irq_enabled) {
302 		disable_irq(hba->irq);
303 		hba->is_irq_enabled = false;
304 	}
305 }
306 
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 	if (!ufshcd_is_wb_allowed(hba))
310 		return;
311 
312 	ufshcd_wb_toggle(hba, true);
313 
314 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315 
316 	if (ufshcd_is_wb_buf_flush_allowed(hba))
317 		ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319 
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 		scsi_unblock_requests(hba->host);
324 }
325 
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 		scsi_block_requests(hba->host);
330 }
331 
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 				      enum ufs_trace_str_t str_t)
334 {
335 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 	struct utp_upiu_header *header;
337 
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	if (str_t == UFS_CMD_SEND)
342 		header = &rq->header;
343 	else
344 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345 
346 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 			  UFS_TSF_CDB);
348 }
349 
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 					enum ufs_trace_str_t str_t,
352 					struct utp_upiu_req *rq_rsp)
353 {
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 			  &rq_rsp->qr, UFS_TSF_OSF);
359 }
360 
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 				     enum ufs_trace_str_t str_t)
363 {
364 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365 
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	if (str_t == UFS_TM_SEND)
370 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 				  &descp->upiu_req.req_header,
372 				  &descp->upiu_req.input_param1,
373 				  UFS_TSF_TM_INPUT);
374 	else
375 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 				  &descp->upiu_rsp.rsp_header,
377 				  &descp->upiu_rsp.output_param1,
378 				  UFS_TSF_TM_OUTPUT);
379 }
380 
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 					 const struct uic_command *ucmd,
383 					 enum ufs_trace_str_t str_t)
384 {
385 	u32 cmd;
386 
387 	if (!trace_ufshcd_uic_command_enabled())
388 		return;
389 
390 	if (str_t == UFS_CMD_SEND)
391 		cmd = ucmd->command;
392 	else
393 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394 
395 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400 
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 				     enum ufs_trace_str_t str_t)
403 {
404 	u64 lba = 0;
405 	u8 opcode = 0, group_id = 0;
406 	u32 doorbell = 0;
407 	u32 intr;
408 	int hwq_id = -1;
409 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 	struct scsi_cmnd *cmd = lrbp->cmd;
411 	struct request *rq = scsi_cmd_to_rq(cmd);
412 	int transfer_len = -1;
413 
414 	if (!cmd)
415 		return;
416 
417 	/* trace UPIU also */
418 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 	if (!trace_ufshcd_command_enabled())
420 		return;
421 
422 	opcode = cmd->cmnd[0];
423 
424 	if (opcode == READ_10 || opcode == WRITE_10) {
425 		/*
426 		 * Currently we only fully trace read(10) and write(10) commands
427 		 */
428 		transfer_len =
429 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 		lba = scsi_get_lba(cmd);
431 		if (opcode == WRITE_10)
432 			group_id = lrbp->cmd->cmnd[6];
433 	} else if (opcode == UNMAP) {
434 		/*
435 		 * The number of Bytes to be unmapped beginning with the lba.
436 		 */
437 		transfer_len = blk_rq_bytes(rq);
438 		lba = scsi_get_lba(cmd);
439 	}
440 
441 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442 
443 	if (is_mcq_enabled(hba)) {
444 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445 
446 		hwq_id = hwq->id;
447 	} else {
448 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 	}
450 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453 
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 	struct ufs_clk_info *clki;
457 	struct list_head *head = &hba->clk_list_head;
458 
459 	if (list_empty(head))
460 		return;
461 
462 	list_for_each_entry(clki, head, list) {
463 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 				clki->max_freq)
465 			dev_err(hba->dev, "clk: %s, rate: %u\n",
466 					clki->name, clki->curr_freq);
467 	}
468 }
469 
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 			     const char *err_name)
472 {
473 	int i;
474 	bool found = false;
475 	const struct ufs_event_hist *e;
476 
477 	if (id >= UFS_EVT_CNT)
478 		return;
479 
480 	e = &hba->ufs_stats.event[id];
481 
482 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484 
485 		if (e->tstamp[p] == 0)
486 			continue;
487 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 			e->val[p], div_u64(e->tstamp[p], 1000));
489 		found = true;
490 	}
491 
492 	if (!found)
493 		dev_err(hba->dev, "No record of %s\n", err_name);
494 	else
495 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497 
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501 
502 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 			 "auto_hibern8_err");
509 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 			 "link_startup_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 			 "suspend_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 			 "wlun suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521 
522 	ufshcd_vops_dbg_register_dump(hba);
523 }
524 
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 	const struct ufshcd_lrb *lrbp;
529 	int prdt_length;
530 
531 	lrbp = &hba->lrb[tag];
532 
533 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 	dev_err(hba->dev,
538 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 		tag, (u64)lrbp->utrd_dma_addr);
540 
541 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 			sizeof(struct utp_transfer_req_desc));
543 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 		(u64)lrbp->ucd_req_dma_addr);
545 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 			sizeof(struct utp_upiu_req));
547 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 		(u64)lrbp->ucd_rsp_dma_addr);
549 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 			sizeof(struct utp_upiu_rsp));
551 
552 	prdt_length = le16_to_cpu(
553 		lrbp->utr_descriptor_ptr->prd_table_length);
554 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 		prdt_length /= ufshcd_sg_entry_size(hba);
556 
557 	dev_err(hba->dev,
558 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559 		tag, prdt_length,
560 		(u64)lrbp->ucd_prdt_dma_addr);
561 
562 	if (pr_prdt)
563 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 			ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566 
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 	struct scsi_device *sdev = req->q->queuedata;
570 	struct Scsi_Host *shost = sdev->host;
571 	struct ufs_hba *hba = shost_priv(shost);
572 
573 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574 
575 	return true;
576 }
577 
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587 
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 	int tag;
591 
592 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594 
595 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 	}
598 }
599 
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603 
604 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 		hba->outstanding_reqs, hba->outstanding_tasks);
607 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 		hba->saved_err, hba->saved_uic_err);
609 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 		hba->curr_dev_pwr_mode, hba->uic_link_state);
611 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 		hba->pm_op_in_progress, hba->is_sys_suspended);
613 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 	dev_err(hba->dev,
617 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 		hba->ufs_stats.hibern8_exit_cnt);
620 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 		hba->ufs_stats.last_intr_status);
623 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 		hba->eh_flags, hba->req_abort_count);
625 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 		hba->ufs_version, hba->capabilities, hba->caps);
627 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 		hba->dev_quirks);
629 	if (sdev_ufs)
630 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632 
633 	ufshcd_print_clk_freqs(hba);
634 }
635 
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 	static const char * const names[] = {
644 		"INVALID MODE",
645 		"FAST MODE",
646 		"SLOW_MODE",
647 		"INVALID MODE",
648 		"FASTAUTO_MODE",
649 		"SLOWAUTO_MODE",
650 		"INVALID MODE",
651 	};
652 
653 	/*
654 	 * Using dev_dbg to avoid messages during runtime PM to avoid
655 	 * never-ending cycles of messages written back to storage by user space
656 	 * causing runtime resume, causing more messages and so on.
657 	 */
658 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 		 __func__,
660 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 		 names[hba->pwr_info.pwr_rx],
663 		 names[hba->pwr_info.pwr_tx],
664 		 hba->pwr_info.hs_rate);
665 }
666 
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 	int err;
670 
671 	err = ufshcd_vops_device_reset(hba);
672 
673 	if (!err) {
674 		ufshcd_set_ufs_dev_active(hba);
675 		if (ufshcd_is_wb_allowed(hba)) {
676 			hba->dev_info.wb_enabled = false;
677 			hba->dev_info.wb_buf_flush_enabled = false;
678 		}
679 	}
680 	if (err != -EOPNOTSUPP)
681 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683 
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 	if (!us)
687 		return;
688 
689 	if (us < 10)
690 		udelay(us);
691 	else
692 		usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695 
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 				u32 val, unsigned long interval_us,
709 				unsigned long timeout_ms)
710 {
711 	int err = 0;
712 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713 
714 	/* ignore bits that we don't intend to wait on */
715 	val = val & mask;
716 
717 	while ((ufshcd_readl(hba, reg) & mask) != val) {
718 		usleep_range(interval_us, interval_us + 50);
719 		if (time_after(jiffies, timeout)) {
720 			if ((ufshcd_readl(hba, reg) & mask) != val)
721 				err = -ETIMEDOUT;
722 			break;
723 		}
724 	}
725 
726 	return err;
727 }
728 
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 	if (hba->ufs_version == ufshci_version(1, 0))
738 		return INTERRUPT_MASK_ALL_VER_10;
739 	if (hba->ufs_version <= ufshci_version(2, 0))
740 		return INTERRUPT_MASK_ALL_VER_11;
741 
742 	return INTERRUPT_MASK_ALL_VER_21;
743 }
744 
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 	u32 ufshci_ver;
754 
755 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 	else
758 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759 
760 	/*
761 	 * UFSHCI v1.x uses a different version scheme, in order
762 	 * to allow the use of comparisons with the ufshci_version
763 	 * function, we convert it to the same scheme as ufs 2.0+.
764 	 */
765 	if (ufshci_ver & 0x00010000)
766 		return ufshci_version(1, ufshci_ver & 0x00000100);
767 
768 	return ufshci_ver;
769 }
770 
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *			      the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782 
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 				      struct cq_entry *cqe)
794 {
795 	if (cqe)
796 		return le32_to_cpu(cqe->status) & MASK_OCS;
797 
798 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800 
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 		mask = ~mask;
810 	/*
811 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 	 * Register (UTRLCLR): This field is bit significant. Each bit
813 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 	 * by host software to indicate to the host controller that a transfer
816 	 * request slot is cleared. The host controller
817 	 * shall free up any resources associated to the request slot
818 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 	 * host software indicates no change to request slots by setting the
820 	 * associated bits in this field to ‘1’. Bits in this field shall only
821 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 	 */
823 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825 
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 	else
836 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849 
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876 
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 	return ucd_rsp_ptr->header.transaction_code;
887 }
888 
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.device_information & 1;
901 }
902 
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 	ufshcd_writel(hba, INT_AGGR_ENABLE |
911 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914 
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 		      INT_AGGR_TIMEOUT_VAL(tmout),
927 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929 
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938 
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *			When run-stop registers are set to 1, it indicates the
942  *			host controller that it can process the requests
943  * @hba: per adapter instance
944  */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952 
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 	u32 val = CONTROLLER_ENABLE;
960 
961 	if (ufshcd_crypto_enable(hba))
962 		val |= CRYPTO_GENERAL_ENABLE;
963 
964 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966 
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978 
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 	if (hba->ufs_version <= ufshci_version(1, 1))
983 		return UFS_UNIPRO_VER_1_41;
984 	else
985 		return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988 
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 	/*
992 	 * If both host and device support UniPro ver1.6 or later, PA layer
993 	 * parameters tuning happens during link startup itself.
994 	 *
995 	 * We can manually tune PA layer parameters if either host or device
996 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 	 * logic simple, we will only do manual tuning if local unipro version
998 	 * doesn't support ver1.6 or later.
999 	 */
1000 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002 
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 	int ret = 0;
1013 	struct ufs_clk_info *clki;
1014 	struct list_head *head = &hba->clk_list_head;
1015 
1016 	if (list_empty(head))
1017 		goto out;
1018 
1019 	list_for_each_entry(clki, head, list) {
1020 		if (!IS_ERR_OR_NULL(clki->clk)) {
1021 			if (scale_up && clki->max_freq) {
1022 				if (clki->curr_freq == clki->max_freq)
1023 					continue;
1024 
1025 				ret = clk_set_rate(clki->clk, clki->max_freq);
1026 				if (ret) {
1027 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 						__func__, clki->name,
1029 						clki->max_freq, ret);
1030 					break;
1031 				}
1032 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 						"scaled up", clki->name,
1034 						clki->curr_freq,
1035 						clki->max_freq);
1036 
1037 				clki->curr_freq = clki->max_freq;
1038 
1039 			} else if (!scale_up && clki->min_freq) {
1040 				if (clki->curr_freq == clki->min_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->min_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->min_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled down", clki->name,
1052 						clki->curr_freq,
1053 						clki->min_freq);
1054 				clki->curr_freq = clki->min_freq;
1055 			}
1056 		}
1057 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 				clki->name, clk_get_rate(clki->clk));
1059 	}
1060 
1061 out:
1062 	return ret;
1063 }
1064 
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 	int ret = 0;
1075 	ktime_t start = ktime_get();
1076 
1077 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 	if (ret)
1079 		goto out;
1080 
1081 	ret = ufshcd_set_clk_freq(hba, scale_up);
1082 	if (ret)
1083 		goto out;
1084 
1085 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 	if (ret)
1087 		ufshcd_set_clk_freq(hba, !scale_up);
1088 
1089 out:
1090 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 			(scale_up ? "up" : "down"),
1092 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 					       bool scale_up)
1105 {
1106 	struct ufs_clk_info *clki;
1107 	struct list_head *head = &hba->clk_list_head;
1108 
1109 	if (list_empty(head))
1110 		return false;
1111 
1112 	list_for_each_entry(clki, head, list) {
1113 		if (!IS_ERR_OR_NULL(clki->clk)) {
1114 			if (scale_up && clki->max_freq) {
1115 				if (clki->curr_freq == clki->max_freq)
1116 					continue;
1117 				return true;
1118 			} else if (!scale_up && clki->min_freq) {
1119 				if (clki->curr_freq == clki->min_freq)
1120 					continue;
1121 				return true;
1122 			}
1123 		}
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 	const struct scsi_device *sdev;
1139 	u32 pending = 0;
1140 
1141 	lockdep_assert_held(hba->host->host_lock);
1142 	__shost_for_each_device(sdev, hba->host)
1143 		pending += sbitmap_weight(&sdev->budget_map);
1144 
1145 	return pending;
1146 }
1147 
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 					u64 wait_timeout_us)
1156 {
1157 	unsigned long flags;
1158 	int ret = 0;
1159 	u32 tm_doorbell;
1160 	u32 tr_pending;
1161 	bool timeout = false, do_last_check = false;
1162 	ktime_t start;
1163 
1164 	ufshcd_hold(hba);
1165 	spin_lock_irqsave(hba->host->host_lock, flags);
1166 	/*
1167 	 * Wait for all the outstanding tasks/transfer requests.
1168 	 * Verify by checking the doorbell registers are clear.
1169 	 */
1170 	start = ktime_get();
1171 	do {
1172 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 			ret = -EBUSY;
1174 			goto out;
1175 		}
1176 
1177 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 		tr_pending = ufshcd_pending_cmds(hba);
1179 		if (!tm_doorbell && !tr_pending) {
1180 			timeout = false;
1181 			break;
1182 		} else if (do_last_check) {
1183 			break;
1184 		}
1185 
1186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 		io_schedule_timeout(msecs_to_jiffies(20));
1188 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 		    wait_timeout_us) {
1190 			timeout = true;
1191 			/*
1192 			 * We might have scheduled out for long time so make
1193 			 * sure to check if doorbells are cleared by this time
1194 			 * or not.
1195 			 */
1196 			do_last_check = true;
1197 		}
1198 		spin_lock_irqsave(hba->host->host_lock, flags);
1199 	} while (tm_doorbell || tr_pending);
1200 
1201 	if (timeout) {
1202 		dev_err(hba->dev,
1203 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 			__func__, tm_doorbell, tr_pending);
1205 		ret = -EBUSY;
1206 	}
1207 out:
1208 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 	ufshcd_release(hba);
1210 	return ret;
1211 }
1212 
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 	int ret = 0;
1224 	struct ufs_pa_layer_attr new_pwr_info;
1225 
1226 	if (scale_up) {
1227 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 		       sizeof(struct ufs_pa_layer_attr));
1229 	} else {
1230 		memcpy(&new_pwr_info, &hba->pwr_info,
1231 		       sizeof(struct ufs_pa_layer_attr));
1232 
1233 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 			/* save the current power mode */
1236 			memcpy(&hba->clk_scaling.saved_pwr_info,
1237 				&hba->pwr_info,
1238 				sizeof(struct ufs_pa_layer_attr));
1239 
1240 			/* scale down gear */
1241 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 		}
1244 	}
1245 
1246 	/* check if the power mode needs to be changed or not? */
1247 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 	if (ret)
1249 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 			__func__, ret,
1251 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 	int ret = 0;
1266 	/*
1267 	 * make sure that there are no outstanding requests when
1268 	 * clock scaling is in progress
1269 	 */
1270 	ufshcd_scsi_block_requests(hba);
1271 	mutex_lock(&hba->wb_mutex);
1272 	down_write(&hba->clk_scaling_lock);
1273 
1274 	if (!hba->clk_scaling.is_allowed ||
1275 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 		ret = -EBUSY;
1277 		up_write(&hba->clk_scaling_lock);
1278 		mutex_unlock(&hba->wb_mutex);
1279 		ufshcd_scsi_unblock_requests(hba);
1280 		goto out;
1281 	}
1282 
1283 	/* let's not get into low power until clock scaling is completed */
1284 	ufshcd_hold(hba);
1285 
1286 out:
1287 	return ret;
1288 }
1289 
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 	up_write(&hba->clk_scaling_lock);
1293 
1294 	/* Enable Write Booster if we have scaled up else disable it */
1295 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 		ufshcd_wb_toggle(hba, scale_up);
1297 
1298 	mutex_unlock(&hba->wb_mutex);
1299 
1300 	ufshcd_scsi_unblock_requests(hba);
1301 	ufshcd_release(hba);
1302 }
1303 
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 	int ret = 0;
1315 
1316 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* scale down the gear before scaling down clocks */
1321 	if (!scale_up) {
1322 		ret = ufshcd_scale_gear(hba, false);
1323 		if (ret)
1324 			goto out_unprepare;
1325 	}
1326 
1327 	ret = ufshcd_scale_clks(hba, scale_up);
1328 	if (ret) {
1329 		if (!scale_up)
1330 			ufshcd_scale_gear(hba, true);
1331 		goto out_unprepare;
1332 	}
1333 
1334 	/* scale up the gear after scaling up clocks */
1335 	if (scale_up) {
1336 		ret = ufshcd_scale_gear(hba, true);
1337 		if (ret) {
1338 			ufshcd_scale_clks(hba, false);
1339 			goto out_unprepare;
1340 		}
1341 	}
1342 
1343 out_unprepare:
1344 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 	return ret;
1346 }
1347 
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 					   clk_scaling.suspend_work);
1352 	unsigned long irq_flags;
1353 
1354 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 		return;
1358 	}
1359 	hba->clk_scaling.is_suspended = true;
1360 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 
1362 	__ufshcd_suspend_clkscaling(hba);
1363 }
1364 
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 					   clk_scaling.resume_work);
1369 	unsigned long irq_flags;
1370 
1371 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 	if (!hba->clk_scaling.is_suspended) {
1373 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 		return;
1375 	}
1376 	hba->clk_scaling.is_suspended = false;
1377 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378 
1379 	devfreq_resume_device(hba->devfreq);
1380 }
1381 
1382 static int ufshcd_devfreq_target(struct device *dev,
1383 				unsigned long *freq, u32 flags)
1384 {
1385 	int ret = 0;
1386 	struct ufs_hba *hba = dev_get_drvdata(dev);
1387 	ktime_t start;
1388 	bool scale_up, sched_clk_scaling_suspend_work = false;
1389 	struct list_head *clk_list = &hba->clk_list_head;
1390 	struct ufs_clk_info *clki;
1391 	unsigned long irq_flags;
1392 
1393 	if (!ufshcd_is_clkscaling_supported(hba))
1394 		return -EINVAL;
1395 
1396 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 	/* Override with the closest supported frequency */
1398 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (ufshcd_eh_in_progress(hba)) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return 0;
1403 	}
1404 
1405 	if (!hba->clk_scaling.active_reqs)
1406 		sched_clk_scaling_suspend_work = true;
1407 
1408 	if (list_empty(clk_list)) {
1409 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 		goto out;
1411 	}
1412 
1413 	/* Decide based on the rounded-off frequency and update */
1414 	scale_up = *freq == clki->max_freq;
1415 	if (!scale_up)
1416 		*freq = clki->min_freq;
1417 	/* Update the frequency */
1418 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		ret = 0;
1421 		goto out; /* no state change required */
1422 	}
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	start = ktime_get();
1426 	ret = ufshcd_devfreq_scale(hba, scale_up);
1427 
1428 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 		(scale_up ? "up" : "down"),
1430 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431 
1432 out:
1433 	if (sched_clk_scaling_suspend_work)
1434 		queue_work(hba->clk_scaling.workq,
1435 			   &hba->clk_scaling.suspend_work);
1436 
1437 	return ret;
1438 }
1439 
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 		struct devfreq_dev_status *stat)
1442 {
1443 	struct ufs_hba *hba = dev_get_drvdata(dev);
1444 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 	unsigned long flags;
1446 	struct list_head *clk_list = &hba->clk_list_head;
1447 	struct ufs_clk_info *clki;
1448 	ktime_t curr_t;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return -EINVAL;
1452 
1453 	memset(stat, 0, sizeof(*stat));
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, flags);
1456 	curr_t = ktime_get();
1457 	if (!scaling->window_start_t)
1458 		goto start_window;
1459 
1460 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 	/*
1462 	 * If current frequency is 0, then the ondemand governor considers
1463 	 * there's no initial frequency set. And it always requests to set
1464 	 * to max. frequency.
1465 	 */
1466 	stat->current_frequency = clki->curr_freq;
1467 	if (scaling->is_busy_started)
1468 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 				scaling->busy_start_t);
1470 
1471 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 	stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 	scaling->window_start_t = curr_t;
1475 	scaling->tot_busy_t = 0;
1476 
1477 	if (scaling->active_reqs) {
1478 		scaling->busy_start_t = curr_t;
1479 		scaling->is_busy_started = true;
1480 	} else {
1481 		scaling->busy_start_t = 0;
1482 		scaling->is_busy_started = false;
1483 	}
1484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 	return 0;
1486 }
1487 
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 	struct devfreq *devfreq;
1493 	int ret;
1494 
1495 	/* Skip devfreq if we don't have any clocks in the list */
1496 	if (list_empty(clk_list))
1497 		return 0;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502 
1503 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 					 &hba->vps->ondemand_data);
1505 	devfreq = devfreq_add_device(hba->dev,
1506 			&hba->vps->devfreq_profile,
1507 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 			&hba->vps->ondemand_data);
1509 	if (IS_ERR(devfreq)) {
1510 		ret = PTR_ERR(devfreq);
1511 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512 
1513 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 		return ret;
1516 	}
1517 
1518 	hba->devfreq = devfreq;
1519 
1520 	return 0;
1521 }
1522 
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!hba->devfreq)
1529 		return;
1530 
1531 	devfreq_remove_device(hba->devfreq);
1532 	hba->devfreq = NULL;
1533 
1534 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538 
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 	unsigned long flags;
1542 
1543 	devfreq_suspend_device(hba->devfreq);
1544 	spin_lock_irqsave(hba->host->host_lock, flags);
1545 	hba->clk_scaling.window_start_t = 0;
1546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548 
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 	unsigned long flags;
1552 	bool suspend = false;
1553 
1554 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 	cancel_work_sync(&hba->clk_scaling.resume_work);
1556 
1557 	spin_lock_irqsave(hba->host->host_lock, flags);
1558 	if (!hba->clk_scaling.is_suspended) {
1559 		suspend = true;
1560 		hba->clk_scaling.is_suspended = true;
1561 	}
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 
1564 	if (suspend)
1565 		__ufshcd_suspend_clkscaling(hba);
1566 }
1567 
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool resume = false;
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (hba->clk_scaling.is_suspended) {
1575 		resume = true;
1576 		hba->clk_scaling.is_suspended = false;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (resume)
1581 		devfreq_resume_device(hba->devfreq);
1582 }
1583 
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct ufs_hba *hba = dev_get_drvdata(dev);
1588 
1589 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591 
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 		struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 	struct ufs_hba *hba = dev_get_drvdata(dev);
1596 	u32 value;
1597 	int err = 0;
1598 
1599 	if (kstrtou32(buf, 0, &value))
1600 		return -EINVAL;
1601 
1602 	down(&hba->host_sem);
1603 	if (!ufshcd_is_user_access_allowed(hba)) {
1604 		err = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	value = !!value;
1609 	if (value == hba->clk_scaling.is_enabled)
1610 		goto out;
1611 
1612 	ufshcd_rpm_get_sync(hba);
1613 	ufshcd_hold(hba);
1614 
1615 	hba->clk_scaling.is_enabled = value;
1616 
1617 	if (value) {
1618 		ufshcd_resume_clkscaling(hba);
1619 	} else {
1620 		ufshcd_suspend_clkscaling(hba);
1621 		err = ufshcd_devfreq_scale(hba, true);
1622 		if (err)
1623 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 					__func__, err);
1625 	}
1626 
1627 	ufshcd_release(hba);
1628 	ufshcd_rpm_put_sync(hba);
1629 out:
1630 	up(&hba->host_sem);
1631 	return err ? err : count;
1632 }
1633 
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644 
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 	if (hba->clk_scaling.enable_attr.attr.name)
1648 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650 
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 	char wq_name[sizeof("ufs_clkscaling_00")];
1654 
1655 	if (!ufshcd_is_clkscaling_supported(hba))
1656 		return;
1657 
1658 	if (!hba->clk_scaling.min_gear)
1659 		hba->clk_scaling.min_gear = UFS_HS_G1;
1660 
1661 	INIT_WORK(&hba->clk_scaling.suspend_work,
1662 		  ufshcd_clk_scaling_suspend_work);
1663 	INIT_WORK(&hba->clk_scaling.resume_work,
1664 		  ufshcd_clk_scaling_resume_work);
1665 
1666 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 		 hba->host->host_no);
1668 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669 
1670 	hba->clk_scaling.is_initialized = true;
1671 }
1672 
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 	if (!hba->clk_scaling.is_initialized)
1676 		return;
1677 
1678 	ufshcd_remove_clk_scaling_sysfs(hba);
1679 	destroy_workqueue(hba->clk_scaling.workq);
1680 	ufshcd_devfreq_remove(hba);
1681 	hba->clk_scaling.is_initialized = false;
1682 }
1683 
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 	int ret;
1687 	unsigned long flags;
1688 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 			clk_gating.ungate_work);
1690 
1691 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692 
1693 	spin_lock_irqsave(hba->host->host_lock, flags);
1694 	if (hba->clk_gating.state == CLKS_ON) {
1695 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 		return;
1697 	}
1698 
1699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 	ufshcd_hba_vreg_set_hpm(hba);
1701 	ufshcd_setup_clocks(hba, true);
1702 
1703 	ufshcd_enable_irq(hba);
1704 
1705 	/* Exit from hibern8 */
1706 	if (ufshcd_can_hibern8_during_gating(hba)) {
1707 		/* Prevent gating in this path */
1708 		hba->clk_gating.is_suspended = true;
1709 		if (ufshcd_is_link_hibern8(hba)) {
1710 			ret = ufshcd_uic_hibern8_exit(hba);
1711 			if (ret)
1712 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 					__func__, ret);
1714 			else
1715 				ufshcd_set_link_active(hba);
1716 		}
1717 		hba->clk_gating.is_suspended = false;
1718 	}
1719 }
1720 
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 	bool flush_result;
1729 	unsigned long flags;
1730 
1731 	if (!ufshcd_is_clkgating_allowed(hba) ||
1732 	    !hba->clk_gating.is_initialized)
1733 		return;
1734 	spin_lock_irqsave(hba->host->host_lock, flags);
1735 	hba->clk_gating.active_reqs++;
1736 
1737 start:
1738 	switch (hba->clk_gating.state) {
1739 	case CLKS_ON:
1740 		/*
1741 		 * Wait for the ungate work to complete if in progress.
1742 		 * Though the clocks may be in ON state, the link could
1743 		 * still be in hibner8 state if hibern8 is allowed
1744 		 * during clock gating.
1745 		 * Make sure we exit hibern8 state also in addition to
1746 		 * clocks being ON.
1747 		 */
1748 		if (ufshcd_can_hibern8_during_gating(hba) &&
1749 		    ufshcd_is_link_hibern8(hba)) {
1750 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 			if (hba->clk_gating.is_suspended && !flush_result)
1753 				return;
1754 			spin_lock_irqsave(hba->host->host_lock, flags);
1755 			goto start;
1756 		}
1757 		break;
1758 	case REQ_CLKS_OFF:
1759 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 			hba->clk_gating.state = CLKS_ON;
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			break;
1764 		}
1765 		/*
1766 		 * If we are here, it means gating work is either done or
1767 		 * currently running. Hence, fall through to cancel gating
1768 		 * work and to enable clocks.
1769 		 */
1770 		fallthrough;
1771 	case CLKS_OFF:
1772 		hba->clk_gating.state = REQ_CLKS_ON;
1773 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 					hba->clk_gating.state);
1775 		queue_work(hba->clk_gating.clk_gating_workq,
1776 			   &hba->clk_gating.ungate_work);
1777 		/*
1778 		 * fall through to check if we should wait for this
1779 		 * work to be done or not.
1780 		 */
1781 		fallthrough;
1782 	case REQ_CLKS_ON:
1783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 		flush_work(&hba->clk_gating.ungate_work);
1785 		/* Make sure state is CLKS_ON before returning */
1786 		spin_lock_irqsave(hba->host->host_lock, flags);
1787 		goto start;
1788 	default:
1789 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 				__func__, hba->clk_gating.state);
1791 		break;
1792 	}
1793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796 
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 			clk_gating.gate_work.work);
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	spin_lock_irqsave(hba->host->host_lock, flags);
1805 	/*
1806 	 * In case you are here to cancel this work the gating state
1807 	 * would be marked as REQ_CLKS_ON. In this case save time by
1808 	 * skipping the gating work and exit after changing the clock
1809 	 * state to CLKS_ON.
1810 	 */
1811 	if (hba->clk_gating.is_suspended ||
1812 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 		hba->clk_gating.state = CLKS_ON;
1814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 					hba->clk_gating.state);
1816 		goto rel_lock;
1817 	}
1818 
1819 	if (hba->clk_gating.active_reqs
1820 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 		|| hba->outstanding_reqs || hba->outstanding_tasks
1822 		|| hba->active_uic_cmd || hba->uic_async_done)
1823 		goto rel_lock;
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 
1827 	/* put the link into hibern8 mode before turning off clocks */
1828 	if (ufshcd_can_hibern8_during_gating(hba)) {
1829 		ret = ufshcd_uic_hibern8_enter(hba);
1830 		if (ret) {
1831 			hba->clk_gating.state = CLKS_ON;
1832 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 					__func__, ret);
1834 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 						hba->clk_gating.state);
1836 			goto out;
1837 		}
1838 		ufshcd_set_link_hibern8(hba);
1839 	}
1840 
1841 	ufshcd_disable_irq(hba);
1842 
1843 	ufshcd_setup_clocks(hba, false);
1844 
1845 	/* Put the host controller in low power mode if possible */
1846 	ufshcd_hba_vreg_set_lpm(hba);
1847 	/*
1848 	 * In case you are here to cancel this work the gating state
1849 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 	 * and a request to turn them on is pending. By doing this way,
1852 	 * we keep the state machine in tact and this would ultimately
1853 	 * prevent from doing cancel work multiple times when there are
1854 	 * new requests arriving before the current cancel work is done.
1855 	 */
1856 	spin_lock_irqsave(hba->host->host_lock, flags);
1857 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 		hba->clk_gating.state = CLKS_OFF;
1859 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 					hba->clk_gating.state);
1861 	}
1862 rel_lock:
1863 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 	return;
1866 }
1867 
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 	if (!ufshcd_is_clkgating_allowed(hba))
1872 		return;
1873 
1874 	hba->clk_gating.active_reqs--;
1875 
1876 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 	    hba->active_uic_cmd || hba->uic_async_done ||
1880 	    hba->clk_gating.state == CLKS_OFF)
1881 		return;
1882 
1883 	hba->clk_gating.state = REQ_CLKS_OFF;
1884 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 			   &hba->clk_gating.gate_work,
1887 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889 
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(hba->host->host_lock, flags);
1895 	__ufshcd_release(hba);
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899 
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 		struct device_attribute *attr, char *buf)
1902 {
1903 	struct ufs_hba *hba = dev_get_drvdata(dev);
1904 
1905 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907 
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 	struct ufs_hba *hba = dev_get_drvdata(dev);
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(hba->host->host_lock, flags);
1914 	hba->clk_gating.delay_ms = value;
1915 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918 
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	unsigned long value;
1923 
1924 	if (kstrtoul(buf, 0, &value))
1925 		return -EINVAL;
1926 
1927 	ufshcd_clkgate_delay_set(dev, value);
1928 	return count;
1929 }
1930 
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 		struct device_attribute *attr, char *buf)
1933 {
1934 	struct ufs_hba *hba = dev_get_drvdata(dev);
1935 
1936 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938 
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 		struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 	struct ufs_hba *hba = dev_get_drvdata(dev);
1943 	unsigned long flags;
1944 	u32 value;
1945 
1946 	if (kstrtou32(buf, 0, &value))
1947 		return -EINVAL;
1948 
1949 	value = !!value;
1950 
1951 	spin_lock_irqsave(hba->host->host_lock, flags);
1952 	if (value == hba->clk_gating.is_enabled)
1953 		goto out;
1954 
1955 	if (value)
1956 		__ufshcd_release(hba);
1957 	else
1958 		hba->clk_gating.active_reqs++;
1959 
1960 	hba->clk_gating.is_enabled = value;
1961 out:
1962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 	return count;
1964 }
1965 
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 	hba->clk_gating.delay_attr.attr.mode = 0644;
1973 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975 
1976 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 	hba->clk_gating.enable_attr.attr.mode = 0644;
1981 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984 
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 	if (hba->clk_gating.delay_attr.attr.name)
1988 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 	if (hba->clk_gating.enable_attr.attr.name)
1990 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992 
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 	char wq_name[sizeof("ufs_clk_gating_00")];
1996 
1997 	if (!ufshcd_is_clkgating_allowed(hba))
1998 		return;
1999 
2000 	hba->clk_gating.state = CLKS_ON;
2001 
2002 	hba->clk_gating.delay_ms = 150;
2003 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005 
2006 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 		 hba->host->host_no);
2008 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010 
2011 	ufshcd_init_clk_gating_sysfs(hba);
2012 
2013 	hba->clk_gating.is_enabled = true;
2014 	hba->clk_gating.is_initialized = true;
2015 }
2016 
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 	if (!hba->clk_gating.is_initialized)
2020 		return;
2021 
2022 	ufshcd_remove_clk_gating_sysfs(hba);
2023 
2024 	/* Ungate the clock if necessary. */
2025 	ufshcd_hold(hba);
2026 	hba->clk_gating.is_initialized = false;
2027 	ufshcd_release(hba);
2028 
2029 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031 
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 	bool queue_resume_work = false;
2035 	ktime_t curr_t = ktime_get();
2036 	unsigned long flags;
2037 
2038 	if (!ufshcd_is_clkscaling_supported(hba))
2039 		return;
2040 
2041 	spin_lock_irqsave(hba->host->host_lock, flags);
2042 	if (!hba->clk_scaling.active_reqs++)
2043 		queue_resume_work = true;
2044 
2045 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 		return;
2048 	}
2049 
2050 	if (queue_resume_work)
2051 		queue_work(hba->clk_scaling.workq,
2052 			   &hba->clk_scaling.resume_work);
2053 
2054 	if (!hba->clk_scaling.window_start_t) {
2055 		hba->clk_scaling.window_start_t = curr_t;
2056 		hba->clk_scaling.tot_busy_t = 0;
2057 		hba->clk_scaling.is_busy_started = false;
2058 	}
2059 
2060 	if (!hba->clk_scaling.is_busy_started) {
2061 		hba->clk_scaling.busy_start_t = curr_t;
2062 		hba->clk_scaling.is_busy_started = true;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 	unsigned long flags;
2071 
2072 	if (!ufshcd_is_clkscaling_supported(hba))
2073 		return;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	hba->clk_scaling.active_reqs--;
2077 	if (!scaling->active_reqs && scaling->is_busy_started) {
2078 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 					scaling->busy_start_t));
2080 		scaling->busy_start_t = 0;
2081 		scaling->is_busy_started = false;
2082 	}
2083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085 
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 		return READ;
2090 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 		return WRITE;
2092 	else
2093 		return -EINVAL;
2094 }
2095 
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 						struct ufshcd_lrb *lrbp)
2098 {
2099 	const struct ufs_hba_monitor *m = &hba->monitor;
2100 
2101 	return (m->enabled && lrbp && lrbp->cmd &&
2102 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105 
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 				 const struct ufshcd_lrb *lrbp)
2108 {
2109 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 		hba->monitor.busy_start_ts[dir] = ktime_get();
2115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117 
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 		struct ufs_hba_monitor *m = &hba->monitor;
2127 		ktime_t now, inc, lat;
2128 
2129 		now = lrbp->compl_time_stamp;
2130 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133 
2134 		/* Update latencies */
2135 		m->nr_req[dir]++;
2136 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 		m->lat_sum[dir] += lat;
2138 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 			m->lat_max[dir] = lat;
2140 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 			m->lat_min[dir] = lat;
2142 
2143 		m->nr_queued[dir]--;
2144 		/* Push forward the busy start of monitor */
2145 		m->busy_start_ts[dir] = now;
2146 	}
2147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149 
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 			 struct ufs_hw_queue *hwq)
2159 {
2160 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 	unsigned long flags;
2162 
2163 	lrbp->issue_time_stamp = ktime_get();
2164 	lrbp->issue_time_stamp_local_clock = local_clock();
2165 	lrbp->compl_time_stamp = ktime_set(0, 0);
2166 	lrbp->compl_time_stamp_local_clock = 0;
2167 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 	ufshcd_clk_scaling_start_busy(hba);
2169 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 		ufshcd_start_monitor(hba, lrbp);
2171 
2172 	if (is_mcq_enabled(hba)) {
2173 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 		struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2176 
2177 		spin_lock(&hwq->sq_lock);
2178 		memcpy(dest, src, utrd_size);
2179 		ufshcd_inc_sq_tail(hwq);
2180 		spin_unlock(&hwq->sq_lock);
2181 	} else {
2182 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2183 		if (hba->vops && hba->vops->setup_xfer_req)
2184 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2185 						  !!lrbp->cmd);
2186 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2187 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2188 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2189 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2190 	}
2191 }
2192 
2193 /**
2194  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2195  * @lrbp: pointer to local reference block
2196  */
2197 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2198 {
2199 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2200 	u16 resp_len;
2201 	int len;
2202 
2203 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2204 	if (sense_buffer && resp_len) {
2205 		int len_to_copy;
2206 
2207 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2208 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2209 
2210 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2211 		       len_to_copy);
2212 	}
2213 }
2214 
2215 /**
2216  * ufshcd_copy_query_response() - Copy the Query Response and the data
2217  * descriptor
2218  * @hba: per adapter instance
2219  * @lrbp: pointer to local reference block
2220  *
2221  * Return: 0 upon success; < 0 upon failure.
2222  */
2223 static
2224 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2225 {
2226 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2227 
2228 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2229 
2230 	/* Get the descriptor */
2231 	if (hba->dev_cmd.query.descriptor &&
2232 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2233 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2234 				GENERAL_UPIU_REQUEST_SIZE;
2235 		u16 resp_len;
2236 		u16 buf_len;
2237 
2238 		/* data segment length */
2239 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2240 				       .data_segment_length);
2241 		buf_len = be16_to_cpu(
2242 				hba->dev_cmd.query.request.upiu_req.length);
2243 		if (likely(buf_len >= resp_len)) {
2244 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2245 		} else {
2246 			dev_warn(hba->dev,
2247 				 "%s: rsp size %d is bigger than buffer size %d",
2248 				 __func__, resp_len, buf_len);
2249 			return -EINVAL;
2250 		}
2251 	}
2252 
2253 	return 0;
2254 }
2255 
2256 /**
2257  * ufshcd_hba_capabilities - Read controller capabilities
2258  * @hba: per adapter instance
2259  *
2260  * Return: 0 on success, negative on error.
2261  */
2262 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2263 {
2264 	int err;
2265 
2266 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2267 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2268 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2269 
2270 	/* nutrs and nutmrs are 0 based values */
2271 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2272 	hba->nutmrs =
2273 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2274 	hba->reserved_slot = hba->nutrs - 1;
2275 
2276 	/* Read crypto capabilities */
2277 	err = ufshcd_hba_init_crypto_capabilities(hba);
2278 	if (err) {
2279 		dev_err(hba->dev, "crypto setup failed\n");
2280 		return err;
2281 	}
2282 
2283 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2284 	if (!hba->mcq_sup)
2285 		return 0;
2286 
2287 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2288 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2289 				     hba->mcq_capabilities);
2290 
2291 	return 0;
2292 }
2293 
2294 /**
2295  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2296  *                            to accept UIC commands
2297  * @hba: per adapter instance
2298  *
2299  * Return: true on success, else false.
2300  */
2301 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2302 {
2303 	u32 val;
2304 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2305 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2306 				    REG_CONTROLLER_STATUS);
2307 	return ret == 0 ? true : false;
2308 }
2309 
2310 /**
2311  * ufshcd_get_upmcrs - Get the power mode change request status
2312  * @hba: Pointer to adapter instance
2313  *
2314  * This function gets the UPMCRS field of HCS register
2315  *
2316  * Return: value of UPMCRS field.
2317  */
2318 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2319 {
2320 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2321 }
2322 
2323 /**
2324  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2325  * @hba: per adapter instance
2326  * @uic_cmd: UIC command
2327  */
2328 static inline void
2329 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2330 {
2331 	lockdep_assert_held(&hba->uic_cmd_mutex);
2332 
2333 	WARN_ON(hba->active_uic_cmd);
2334 
2335 	hba->active_uic_cmd = uic_cmd;
2336 
2337 	/* Write Args */
2338 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2339 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2340 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2341 
2342 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2343 
2344 	/* Write UIC Cmd */
2345 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2346 		      REG_UIC_COMMAND);
2347 }
2348 
2349 /**
2350  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2351  * @hba: per adapter instance
2352  * @uic_cmd: UIC command
2353  *
2354  * Return: 0 only if success.
2355  */
2356 static int
2357 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2358 {
2359 	int ret;
2360 	unsigned long flags;
2361 
2362 	lockdep_assert_held(&hba->uic_cmd_mutex);
2363 
2364 	if (wait_for_completion_timeout(&uic_cmd->done,
2365 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2366 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2367 	} else {
2368 		ret = -ETIMEDOUT;
2369 		dev_err(hba->dev,
2370 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2371 			uic_cmd->command, uic_cmd->argument3);
2372 
2373 		if (!uic_cmd->cmd_active) {
2374 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2375 				__func__);
2376 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2377 		}
2378 	}
2379 
2380 	spin_lock_irqsave(hba->host->host_lock, flags);
2381 	hba->active_uic_cmd = NULL;
2382 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2383 
2384 	return ret;
2385 }
2386 
2387 /**
2388  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2389  * @hba: per adapter instance
2390  * @uic_cmd: UIC command
2391  * @completion: initialize the completion only if this is set to true
2392  *
2393  * Return: 0 only if success.
2394  */
2395 static int
2396 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2397 		      bool completion)
2398 {
2399 	lockdep_assert_held(&hba->uic_cmd_mutex);
2400 
2401 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2402 		dev_err(hba->dev,
2403 			"Controller not ready to accept UIC commands\n");
2404 		return -EIO;
2405 	}
2406 
2407 	if (completion)
2408 		init_completion(&uic_cmd->done);
2409 
2410 	uic_cmd->cmd_active = 1;
2411 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2412 
2413 	return 0;
2414 }
2415 
2416 /**
2417  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2418  * @hba: per adapter instance
2419  * @uic_cmd: UIC command
2420  *
2421  * Return: 0 only if success.
2422  */
2423 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2424 {
2425 	int ret;
2426 
2427 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2428 		return 0;
2429 
2430 	ufshcd_hold(hba);
2431 	mutex_lock(&hba->uic_cmd_mutex);
2432 	ufshcd_add_delay_before_dme_cmd(hba);
2433 
2434 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2435 	if (!ret)
2436 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2437 
2438 	mutex_unlock(&hba->uic_cmd_mutex);
2439 
2440 	ufshcd_release(hba);
2441 	return ret;
2442 }
2443 
2444 /**
2445  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2446  * @hba:	per-adapter instance
2447  * @lrbp:	pointer to local reference block
2448  * @sg_entries:	The number of sg lists actually used
2449  * @sg_list:	Pointer to SG list
2450  */
2451 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2452 			       struct scatterlist *sg_list)
2453 {
2454 	struct ufshcd_sg_entry *prd;
2455 	struct scatterlist *sg;
2456 	int i;
2457 
2458 	if (sg_entries) {
2459 
2460 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2461 			lrbp->utr_descriptor_ptr->prd_table_length =
2462 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2463 		else
2464 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2465 
2466 		prd = lrbp->ucd_prdt_ptr;
2467 
2468 		for_each_sg(sg_list, sg, sg_entries, i) {
2469 			const unsigned int len = sg_dma_len(sg);
2470 
2471 			/*
2472 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2473 			 * based value that indicates the length, in bytes, of
2474 			 * the data block. A maximum of length of 256KB may
2475 			 * exist for any entry. Bits 1:0 of this field shall be
2476 			 * 11b to indicate Dword granularity. A value of '3'
2477 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2478 			 */
2479 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2480 			prd->size = cpu_to_le32(len - 1);
2481 			prd->addr = cpu_to_le64(sg->dma_address);
2482 			prd->reserved = 0;
2483 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2484 		}
2485 	} else {
2486 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2487 	}
2488 }
2489 
2490 /**
2491  * ufshcd_map_sg - Map scatter-gather list to prdt
2492  * @hba: per adapter instance
2493  * @lrbp: pointer to local reference block
2494  *
2495  * Return: 0 in case of success, non-zero value in case of failure.
2496  */
2497 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2498 {
2499 	struct scsi_cmnd *cmd = lrbp->cmd;
2500 	int sg_segments = scsi_dma_map(cmd);
2501 
2502 	if (sg_segments < 0)
2503 		return sg_segments;
2504 
2505 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2506 
2507 	return 0;
2508 }
2509 
2510 /**
2511  * ufshcd_enable_intr - enable interrupts
2512  * @hba: per adapter instance
2513  * @intrs: interrupt bits
2514  */
2515 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2516 {
2517 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2518 
2519 	if (hba->ufs_version == ufshci_version(1, 0)) {
2520 		u32 rw;
2521 		rw = set & INTERRUPT_MASK_RW_VER_10;
2522 		set = rw | ((set ^ intrs) & intrs);
2523 	} else {
2524 		set |= intrs;
2525 	}
2526 
2527 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2528 }
2529 
2530 /**
2531  * ufshcd_disable_intr - disable interrupts
2532  * @hba: per adapter instance
2533  * @intrs: interrupt bits
2534  */
2535 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2536 {
2537 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2538 
2539 	if (hba->ufs_version == ufshci_version(1, 0)) {
2540 		u32 rw;
2541 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2542 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2543 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2544 
2545 	} else {
2546 		set &= ~intrs;
2547 	}
2548 
2549 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2550 }
2551 
2552 /**
2553  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2554  * descriptor according to request
2555  * @lrbp: pointer to local reference block
2556  * @upiu_flags: flags required in the header
2557  * @cmd_dir: requests data direction
2558  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2559  */
2560 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2561 					enum dma_data_direction cmd_dir, int ehs_length)
2562 {
2563 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2564 	struct request_desc_header *h = &req_desc->header;
2565 	enum utp_data_direction data_direction;
2566 
2567 	*h = (typeof(*h)){ };
2568 
2569 	if (cmd_dir == DMA_FROM_DEVICE) {
2570 		data_direction = UTP_DEVICE_TO_HOST;
2571 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2572 	} else if (cmd_dir == DMA_TO_DEVICE) {
2573 		data_direction = UTP_HOST_TO_DEVICE;
2574 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2575 	} else {
2576 		data_direction = UTP_NO_DATA_TRANSFER;
2577 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2578 	}
2579 
2580 	h->command_type = lrbp->command_type;
2581 	h->data_direction = data_direction;
2582 	h->ehs_length = ehs_length;
2583 
2584 	if (lrbp->intr_cmd)
2585 		h->interrupt = 1;
2586 
2587 	/* Prepare crypto related dwords */
2588 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2589 
2590 	/*
2591 	 * assigning invalid value for command status. Controller
2592 	 * updates OCS on command completion, with the command
2593 	 * status
2594 	 */
2595 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2596 
2597 	req_desc->prd_table_length = 0;
2598 }
2599 
2600 /**
2601  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2602  * for scsi commands
2603  * @lrbp: local reference block pointer
2604  * @upiu_flags: flags
2605  */
2606 static
2607 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2608 {
2609 	struct scsi_cmnd *cmd = lrbp->cmd;
2610 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2611 	unsigned short cdb_len;
2612 
2613 	ucd_req_ptr->header = (struct utp_upiu_header){
2614 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2615 		.flags = upiu_flags,
2616 		.lun = lrbp->lun,
2617 		.task_tag = lrbp->task_tag,
2618 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2619 	};
2620 
2621 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2622 
2623 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2624 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2625 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2626 
2627 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2628 }
2629 
2630 /**
2631  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2632  * @hba: UFS hba
2633  * @lrbp: local reference block pointer
2634  * @upiu_flags: flags
2635  */
2636 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2637 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2638 {
2639 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2640 	struct ufs_query *query = &hba->dev_cmd.query;
2641 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2642 
2643 	/* Query request header */
2644 	ucd_req_ptr->header = (struct utp_upiu_header){
2645 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2646 		.flags = upiu_flags,
2647 		.lun = lrbp->lun,
2648 		.task_tag = lrbp->task_tag,
2649 		.query_function = query->request.query_func,
2650 		/* Data segment length only need for WRITE_DESC */
2651 		.data_segment_length =
2652 			query->request.upiu_req.opcode ==
2653 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2654 				cpu_to_be16(len) :
2655 				0,
2656 	};
2657 
2658 	/* Copy the Query Request buffer as is */
2659 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2660 			QUERY_OSF_SIZE);
2661 
2662 	/* Copy the Descriptor */
2663 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2664 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2665 
2666 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2667 }
2668 
2669 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2670 {
2671 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2672 
2673 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2674 
2675 	ucd_req_ptr->header = (struct utp_upiu_header){
2676 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2677 		.task_tag = lrbp->task_tag,
2678 	};
2679 
2680 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2681 }
2682 
2683 /**
2684  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2685  *			     for Device Management Purposes
2686  * @hba: per adapter instance
2687  * @lrbp: pointer to local reference block
2688  *
2689  * Return: 0 upon success; < 0 upon failure.
2690  */
2691 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2692 				      struct ufshcd_lrb *lrbp)
2693 {
2694 	u8 upiu_flags;
2695 	int ret = 0;
2696 
2697 	if (hba->ufs_version <= ufshci_version(1, 1))
2698 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2699 	else
2700 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2701 
2702 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2703 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2704 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2705 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2706 		ufshcd_prepare_utp_nop_upiu(lrbp);
2707 	else
2708 		ret = -EINVAL;
2709 
2710 	return ret;
2711 }
2712 
2713 /**
2714  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2715  *			   for SCSI Purposes
2716  * @hba: per adapter instance
2717  * @lrbp: pointer to local reference block
2718  *
2719  * Return: 0 upon success; < 0 upon failure.
2720  */
2721 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2722 {
2723 	u8 upiu_flags;
2724 	int ret = 0;
2725 
2726 	if (hba->ufs_version <= ufshci_version(1, 1))
2727 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2728 	else
2729 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2730 
2731 	if (likely(lrbp->cmd)) {
2732 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2733 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2734 	} else {
2735 		ret = -EINVAL;
2736 	}
2737 
2738 	return ret;
2739 }
2740 
2741 /**
2742  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2743  * @upiu_wlun_id: UPIU W-LUN id
2744  *
2745  * Return: SCSI W-LUN id.
2746  */
2747 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2748 {
2749 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2750 }
2751 
2752 static inline bool is_device_wlun(struct scsi_device *sdev)
2753 {
2754 	return sdev->lun ==
2755 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2756 }
2757 
2758 /*
2759  * Associate the UFS controller queue with the default and poll HCTX types.
2760  * Initialize the mq_map[] arrays.
2761  */
2762 static void ufshcd_map_queues(struct Scsi_Host *shost)
2763 {
2764 	struct ufs_hba *hba = shost_priv(shost);
2765 	int i, queue_offset = 0;
2766 
2767 	if (!is_mcq_supported(hba)) {
2768 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2769 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2770 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2771 		hba->nr_hw_queues = 1;
2772 	}
2773 
2774 	for (i = 0; i < shost->nr_maps; i++) {
2775 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2776 
2777 		map->nr_queues = hba->nr_queues[i];
2778 		if (!map->nr_queues)
2779 			continue;
2780 		map->queue_offset = queue_offset;
2781 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2782 			map->queue_offset = 0;
2783 
2784 		blk_mq_map_queues(map);
2785 		queue_offset += map->nr_queues;
2786 	}
2787 }
2788 
2789 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2790 {
2791 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2792 		i * ufshcd_get_ucd_size(hba);
2793 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2794 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2795 		i * ufshcd_get_ucd_size(hba);
2796 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2797 				       response_upiu);
2798 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2799 
2800 	lrb->utr_descriptor_ptr = utrdlp + i;
2801 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2802 		i * sizeof(struct utp_transfer_req_desc);
2803 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2804 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2805 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2806 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2807 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2808 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2809 }
2810 
2811 /**
2812  * ufshcd_queuecommand - main entry point for SCSI requests
2813  * @host: SCSI host pointer
2814  * @cmd: command from SCSI Midlayer
2815  *
2816  * Return: 0 for success, non-zero in case of failure.
2817  */
2818 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2819 {
2820 	struct ufs_hba *hba = shost_priv(host);
2821 	int tag = scsi_cmd_to_rq(cmd)->tag;
2822 	struct ufshcd_lrb *lrbp;
2823 	int err = 0;
2824 	struct ufs_hw_queue *hwq = NULL;
2825 
2826 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2827 
2828 	switch (hba->ufshcd_state) {
2829 	case UFSHCD_STATE_OPERATIONAL:
2830 		break;
2831 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2832 		/*
2833 		 * SCSI error handler can call ->queuecommand() while UFS error
2834 		 * handler is in progress. Error interrupts could change the
2835 		 * state from UFSHCD_STATE_RESET to
2836 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2837 		 * being issued in that case.
2838 		 */
2839 		if (ufshcd_eh_in_progress(hba)) {
2840 			err = SCSI_MLQUEUE_HOST_BUSY;
2841 			goto out;
2842 		}
2843 		break;
2844 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2845 		/*
2846 		 * pm_runtime_get_sync() is used at error handling preparation
2847 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2848 		 * PM ops, it can never be finished if we let SCSI layer keep
2849 		 * retrying it, which gets err handler stuck forever. Neither
2850 		 * can we let the scsi cmd pass through, because UFS is in bad
2851 		 * state, the scsi cmd may eventually time out, which will get
2852 		 * err handler blocked for too long. So, just fail the scsi cmd
2853 		 * sent from PM ops, err handler can recover PM error anyways.
2854 		 */
2855 		if (hba->pm_op_in_progress) {
2856 			hba->force_reset = true;
2857 			set_host_byte(cmd, DID_BAD_TARGET);
2858 			scsi_done(cmd);
2859 			goto out;
2860 		}
2861 		fallthrough;
2862 	case UFSHCD_STATE_RESET:
2863 		err = SCSI_MLQUEUE_HOST_BUSY;
2864 		goto out;
2865 	case UFSHCD_STATE_ERROR:
2866 		set_host_byte(cmd, DID_ERROR);
2867 		scsi_done(cmd);
2868 		goto out;
2869 	}
2870 
2871 	hba->req_abort_count = 0;
2872 
2873 	ufshcd_hold(hba);
2874 
2875 	lrbp = &hba->lrb[tag];
2876 	lrbp->cmd = cmd;
2877 	lrbp->task_tag = tag;
2878 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2879 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2880 
2881 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2882 
2883 	lrbp->req_abort_skip = false;
2884 
2885 	ufshcd_comp_scsi_upiu(hba, lrbp);
2886 
2887 	err = ufshcd_map_sg(hba, lrbp);
2888 	if (err) {
2889 		ufshcd_release(hba);
2890 		goto out;
2891 	}
2892 
2893 	if (is_mcq_enabled(hba))
2894 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2895 
2896 	ufshcd_send_command(hba, tag, hwq);
2897 
2898 out:
2899 	if (ufs_trigger_eh()) {
2900 		unsigned long flags;
2901 
2902 		spin_lock_irqsave(hba->host->host_lock, flags);
2903 		ufshcd_schedule_eh_work(hba);
2904 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2905 	}
2906 
2907 	return err;
2908 }
2909 
2910 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2911 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2912 {
2913 	lrbp->cmd = NULL;
2914 	lrbp->task_tag = tag;
2915 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2916 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2917 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2918 	hba->dev_cmd.type = cmd_type;
2919 
2920 	return ufshcd_compose_devman_upiu(hba, lrbp);
2921 }
2922 
2923 /*
2924  * Check with the block layer if the command is inflight
2925  * @cmd: command to check.
2926  *
2927  * Return: true if command is inflight; false if not.
2928  */
2929 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2930 {
2931 	struct request *rq;
2932 
2933 	if (!cmd)
2934 		return false;
2935 
2936 	rq = scsi_cmd_to_rq(cmd);
2937 	if (!blk_mq_request_started(rq))
2938 		return false;
2939 
2940 	return true;
2941 }
2942 
2943 /*
2944  * Clear the pending command in the controller and wait until
2945  * the controller confirms that the command has been cleared.
2946  * @hba: per adapter instance
2947  * @task_tag: The tag number of the command to be cleared.
2948  */
2949 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2950 {
2951 	u32 mask = 1U << task_tag;
2952 	unsigned long flags;
2953 	int err;
2954 
2955 	if (is_mcq_enabled(hba)) {
2956 		/*
2957 		 * MCQ mode. Clean up the MCQ resources similar to
2958 		 * what the ufshcd_utrl_clear() does for SDB mode.
2959 		 */
2960 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2961 		if (err) {
2962 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2963 				__func__, task_tag, err);
2964 			return err;
2965 		}
2966 		return 0;
2967 	}
2968 
2969 	/* clear outstanding transaction before retry */
2970 	spin_lock_irqsave(hba->host->host_lock, flags);
2971 	ufshcd_utrl_clear(hba, mask);
2972 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2973 
2974 	/*
2975 	 * wait for h/w to clear corresponding bit in door-bell.
2976 	 * max. wait is 1 sec.
2977 	 */
2978 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2979 					mask, ~mask, 1000, 1000);
2980 }
2981 
2982 /**
2983  * ufshcd_dev_cmd_completion() - handles device management command responses
2984  * @hba: per adapter instance
2985  * @lrbp: pointer to local reference block
2986  *
2987  * Return: 0 upon success; < 0 upon failure.
2988  */
2989 static int
2990 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2991 {
2992 	enum upiu_response_transaction resp;
2993 	int err = 0;
2994 
2995 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2996 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2997 
2998 	switch (resp) {
2999 	case UPIU_TRANSACTION_NOP_IN:
3000 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3001 			err = -EINVAL;
3002 			dev_err(hba->dev, "%s: unexpected response %x\n",
3003 					__func__, resp);
3004 		}
3005 		break;
3006 	case UPIU_TRANSACTION_QUERY_RSP: {
3007 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3008 
3009 		if (response == 0)
3010 			err = ufshcd_copy_query_response(hba, lrbp);
3011 		break;
3012 	}
3013 	case UPIU_TRANSACTION_REJECT_UPIU:
3014 		/* TODO: handle Reject UPIU Response */
3015 		err = -EPERM;
3016 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3017 				__func__);
3018 		break;
3019 	case UPIU_TRANSACTION_RESPONSE:
3020 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3021 			err = -EINVAL;
3022 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3023 		}
3024 		break;
3025 	default:
3026 		err = -EINVAL;
3027 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3028 				__func__, resp);
3029 		break;
3030 	}
3031 
3032 	return err;
3033 }
3034 
3035 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3036 		struct ufshcd_lrb *lrbp, int max_timeout)
3037 {
3038 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3039 	unsigned long flags;
3040 	bool pending;
3041 	int err;
3042 
3043 retry:
3044 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3045 						time_left);
3046 
3047 	if (likely(time_left)) {
3048 		/*
3049 		 * The completion handler called complete() and the caller of
3050 		 * this function still owns the @lrbp tag so the code below does
3051 		 * not trigger any race conditions.
3052 		 */
3053 		hba->dev_cmd.complete = NULL;
3054 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3055 		if (!err)
3056 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3057 	} else {
3058 		err = -ETIMEDOUT;
3059 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3060 			__func__, lrbp->task_tag);
3061 
3062 		/* MCQ mode */
3063 		if (is_mcq_enabled(hba)) {
3064 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3065 			hba->dev_cmd.complete = NULL;
3066 			return err;
3067 		}
3068 
3069 		/* SDB mode */
3070 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3071 			/* successfully cleared the command, retry if needed */
3072 			err = -EAGAIN;
3073 			/*
3074 			 * Since clearing the command succeeded we also need to
3075 			 * clear the task tag bit from the outstanding_reqs
3076 			 * variable.
3077 			 */
3078 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3079 			pending = test_bit(lrbp->task_tag,
3080 					   &hba->outstanding_reqs);
3081 			if (pending) {
3082 				hba->dev_cmd.complete = NULL;
3083 				__clear_bit(lrbp->task_tag,
3084 					    &hba->outstanding_reqs);
3085 			}
3086 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3087 
3088 			if (!pending) {
3089 				/*
3090 				 * The completion handler ran while we tried to
3091 				 * clear the command.
3092 				 */
3093 				time_left = 1;
3094 				goto retry;
3095 			}
3096 		} else {
3097 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3098 				__func__, lrbp->task_tag);
3099 
3100 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3101 			pending = test_bit(lrbp->task_tag,
3102 					   &hba->outstanding_reqs);
3103 			if (pending)
3104 				hba->dev_cmd.complete = NULL;
3105 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3106 
3107 			if (!pending) {
3108 				/*
3109 				 * The completion handler ran while we tried to
3110 				 * clear the command.
3111 				 */
3112 				time_left = 1;
3113 				goto retry;
3114 			}
3115 		}
3116 	}
3117 
3118 	return err;
3119 }
3120 
3121 /**
3122  * ufshcd_exec_dev_cmd - API for sending device management requests
3123  * @hba: UFS hba
3124  * @cmd_type: specifies the type (NOP, Query...)
3125  * @timeout: timeout in milliseconds
3126  *
3127  * Return: 0 upon success; < 0 upon failure.
3128  *
3129  * NOTE: Since there is only one available tag for device management commands,
3130  * it is expected you hold the hba->dev_cmd.lock mutex.
3131  */
3132 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3133 		enum dev_cmd_type cmd_type, int timeout)
3134 {
3135 	DECLARE_COMPLETION_ONSTACK(wait);
3136 	const u32 tag = hba->reserved_slot;
3137 	struct ufshcd_lrb *lrbp;
3138 	int err;
3139 
3140 	/* Protects use of hba->reserved_slot. */
3141 	lockdep_assert_held(&hba->dev_cmd.lock);
3142 
3143 	down_read(&hba->clk_scaling_lock);
3144 
3145 	lrbp = &hba->lrb[tag];
3146 	lrbp->cmd = NULL;
3147 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3148 	if (unlikely(err))
3149 		goto out;
3150 
3151 	hba->dev_cmd.complete = &wait;
3152 
3153 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3154 
3155 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3156 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3157 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3158 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3159 
3160 out:
3161 	up_read(&hba->clk_scaling_lock);
3162 	return err;
3163 }
3164 
3165 /**
3166  * ufshcd_init_query() - init the query response and request parameters
3167  * @hba: per-adapter instance
3168  * @request: address of the request pointer to be initialized
3169  * @response: address of the response pointer to be initialized
3170  * @opcode: operation to perform
3171  * @idn: flag idn to access
3172  * @index: LU number to access
3173  * @selector: query/flag/descriptor further identification
3174  */
3175 static inline void ufshcd_init_query(struct ufs_hba *hba,
3176 		struct ufs_query_req **request, struct ufs_query_res **response,
3177 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3178 {
3179 	*request = &hba->dev_cmd.query.request;
3180 	*response = &hba->dev_cmd.query.response;
3181 	memset(*request, 0, sizeof(struct ufs_query_req));
3182 	memset(*response, 0, sizeof(struct ufs_query_res));
3183 	(*request)->upiu_req.opcode = opcode;
3184 	(*request)->upiu_req.idn = idn;
3185 	(*request)->upiu_req.index = index;
3186 	(*request)->upiu_req.selector = selector;
3187 }
3188 
3189 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3190 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3191 {
3192 	int ret;
3193 	int retries;
3194 
3195 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3196 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3197 		if (ret)
3198 			dev_dbg(hba->dev,
3199 				"%s: failed with error %d, retries %d\n",
3200 				__func__, ret, retries);
3201 		else
3202 			break;
3203 	}
3204 
3205 	if (ret)
3206 		dev_err(hba->dev,
3207 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3208 			__func__, opcode, idn, ret, retries);
3209 	return ret;
3210 }
3211 
3212 /**
3213  * ufshcd_query_flag() - API function for sending flag query requests
3214  * @hba: per-adapter instance
3215  * @opcode: flag query to perform
3216  * @idn: flag idn to access
3217  * @index: flag index to access
3218  * @flag_res: the flag value after the query request completes
3219  *
3220  * Return: 0 for success, non-zero in case of failure.
3221  */
3222 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3223 			enum flag_idn idn, u8 index, bool *flag_res)
3224 {
3225 	struct ufs_query_req *request = NULL;
3226 	struct ufs_query_res *response = NULL;
3227 	int err, selector = 0;
3228 	int timeout = QUERY_REQ_TIMEOUT;
3229 
3230 	BUG_ON(!hba);
3231 
3232 	ufshcd_hold(hba);
3233 	mutex_lock(&hba->dev_cmd.lock);
3234 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3235 			selector);
3236 
3237 	switch (opcode) {
3238 	case UPIU_QUERY_OPCODE_SET_FLAG:
3239 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3240 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3241 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3242 		break;
3243 	case UPIU_QUERY_OPCODE_READ_FLAG:
3244 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3245 		if (!flag_res) {
3246 			/* No dummy reads */
3247 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3248 					__func__);
3249 			err = -EINVAL;
3250 			goto out_unlock;
3251 		}
3252 		break;
3253 	default:
3254 		dev_err(hba->dev,
3255 			"%s: Expected query flag opcode but got = %d\n",
3256 			__func__, opcode);
3257 		err = -EINVAL;
3258 		goto out_unlock;
3259 	}
3260 
3261 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3262 
3263 	if (err) {
3264 		dev_err(hba->dev,
3265 			"%s: Sending flag query for idn %d failed, err = %d\n",
3266 			__func__, idn, err);
3267 		goto out_unlock;
3268 	}
3269 
3270 	if (flag_res)
3271 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3272 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3273 
3274 out_unlock:
3275 	mutex_unlock(&hba->dev_cmd.lock);
3276 	ufshcd_release(hba);
3277 	return err;
3278 }
3279 
3280 /**
3281  * ufshcd_query_attr - API function for sending attribute requests
3282  * @hba: per-adapter instance
3283  * @opcode: attribute opcode
3284  * @idn: attribute idn to access
3285  * @index: index field
3286  * @selector: selector field
3287  * @attr_val: the attribute value after the query request completes
3288  *
3289  * Return: 0 for success, non-zero in case of failure.
3290 */
3291 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3292 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3293 {
3294 	struct ufs_query_req *request = NULL;
3295 	struct ufs_query_res *response = NULL;
3296 	int err;
3297 
3298 	BUG_ON(!hba);
3299 
3300 	if (!attr_val) {
3301 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3302 				__func__, opcode);
3303 		return -EINVAL;
3304 	}
3305 
3306 	ufshcd_hold(hba);
3307 
3308 	mutex_lock(&hba->dev_cmd.lock);
3309 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3310 			selector);
3311 
3312 	switch (opcode) {
3313 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3314 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3315 		request->upiu_req.value = cpu_to_be32(*attr_val);
3316 		break;
3317 	case UPIU_QUERY_OPCODE_READ_ATTR:
3318 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3319 		break;
3320 	default:
3321 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3322 				__func__, opcode);
3323 		err = -EINVAL;
3324 		goto out_unlock;
3325 	}
3326 
3327 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3328 
3329 	if (err) {
3330 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3331 				__func__, opcode, idn, index, err);
3332 		goto out_unlock;
3333 	}
3334 
3335 	*attr_val = be32_to_cpu(response->upiu_res.value);
3336 
3337 out_unlock:
3338 	mutex_unlock(&hba->dev_cmd.lock);
3339 	ufshcd_release(hba);
3340 	return err;
3341 }
3342 
3343 /**
3344  * ufshcd_query_attr_retry() - API function for sending query
3345  * attribute with retries
3346  * @hba: per-adapter instance
3347  * @opcode: attribute opcode
3348  * @idn: attribute idn to access
3349  * @index: index field
3350  * @selector: selector field
3351  * @attr_val: the attribute value after the query request
3352  * completes
3353  *
3354  * Return: 0 for success, non-zero in case of failure.
3355 */
3356 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3357 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3358 	u32 *attr_val)
3359 {
3360 	int ret = 0;
3361 	u32 retries;
3362 
3363 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3364 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3365 						selector, attr_val);
3366 		if (ret)
3367 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3368 				__func__, ret, retries);
3369 		else
3370 			break;
3371 	}
3372 
3373 	if (ret)
3374 		dev_err(hba->dev,
3375 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3376 			__func__, idn, ret, QUERY_REQ_RETRIES);
3377 	return ret;
3378 }
3379 
3380 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3381 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3382 			u8 selector, u8 *desc_buf, int *buf_len)
3383 {
3384 	struct ufs_query_req *request = NULL;
3385 	struct ufs_query_res *response = NULL;
3386 	int err;
3387 
3388 	BUG_ON(!hba);
3389 
3390 	if (!desc_buf) {
3391 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3392 				__func__, opcode);
3393 		return -EINVAL;
3394 	}
3395 
3396 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3397 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3398 				__func__, *buf_len);
3399 		return -EINVAL;
3400 	}
3401 
3402 	ufshcd_hold(hba);
3403 
3404 	mutex_lock(&hba->dev_cmd.lock);
3405 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3406 			selector);
3407 	hba->dev_cmd.query.descriptor = desc_buf;
3408 	request->upiu_req.length = cpu_to_be16(*buf_len);
3409 
3410 	switch (opcode) {
3411 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3412 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3413 		break;
3414 	case UPIU_QUERY_OPCODE_READ_DESC:
3415 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3416 		break;
3417 	default:
3418 		dev_err(hba->dev,
3419 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3420 				__func__, opcode);
3421 		err = -EINVAL;
3422 		goto out_unlock;
3423 	}
3424 
3425 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3426 
3427 	if (err) {
3428 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3429 				__func__, opcode, idn, index, err);
3430 		goto out_unlock;
3431 	}
3432 
3433 	*buf_len = be16_to_cpu(response->upiu_res.length);
3434 
3435 out_unlock:
3436 	hba->dev_cmd.query.descriptor = NULL;
3437 	mutex_unlock(&hba->dev_cmd.lock);
3438 	ufshcd_release(hba);
3439 	return err;
3440 }
3441 
3442 /**
3443  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3444  * @hba: per-adapter instance
3445  * @opcode: attribute opcode
3446  * @idn: attribute idn to access
3447  * @index: index field
3448  * @selector: selector field
3449  * @desc_buf: the buffer that contains the descriptor
3450  * @buf_len: length parameter passed to the device
3451  *
3452  * The buf_len parameter will contain, on return, the length parameter
3453  * received on the response.
3454  *
3455  * Return: 0 for success, non-zero in case of failure.
3456  */
3457 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3458 				  enum query_opcode opcode,
3459 				  enum desc_idn idn, u8 index,
3460 				  u8 selector,
3461 				  u8 *desc_buf, int *buf_len)
3462 {
3463 	int err;
3464 	int retries;
3465 
3466 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3467 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3468 						selector, desc_buf, buf_len);
3469 		if (!err || err == -EINVAL)
3470 			break;
3471 	}
3472 
3473 	return err;
3474 }
3475 
3476 /**
3477  * ufshcd_read_desc_param - read the specified descriptor parameter
3478  * @hba: Pointer to adapter instance
3479  * @desc_id: descriptor idn value
3480  * @desc_index: descriptor index
3481  * @param_offset: offset of the parameter to read
3482  * @param_read_buf: pointer to buffer where parameter would be read
3483  * @param_size: sizeof(param_read_buf)
3484  *
3485  * Return: 0 in case of success, non-zero otherwise.
3486  */
3487 int ufshcd_read_desc_param(struct ufs_hba *hba,
3488 			   enum desc_idn desc_id,
3489 			   int desc_index,
3490 			   u8 param_offset,
3491 			   u8 *param_read_buf,
3492 			   u8 param_size)
3493 {
3494 	int ret;
3495 	u8 *desc_buf;
3496 	int buff_len = QUERY_DESC_MAX_SIZE;
3497 	bool is_kmalloc = true;
3498 
3499 	/* Safety check */
3500 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3501 		return -EINVAL;
3502 
3503 	/* Check whether we need temp memory */
3504 	if (param_offset != 0 || param_size < buff_len) {
3505 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3506 		if (!desc_buf)
3507 			return -ENOMEM;
3508 	} else {
3509 		desc_buf = param_read_buf;
3510 		is_kmalloc = false;
3511 	}
3512 
3513 	/* Request for full descriptor */
3514 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3515 					    desc_id, desc_index, 0,
3516 					    desc_buf, &buff_len);
3517 	if (ret) {
3518 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3519 			__func__, desc_id, desc_index, param_offset, ret);
3520 		goto out;
3521 	}
3522 
3523 	/* Update descriptor length */
3524 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3525 
3526 	if (param_offset >= buff_len) {
3527 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3528 			__func__, param_offset, desc_id, buff_len);
3529 		ret = -EINVAL;
3530 		goto out;
3531 	}
3532 
3533 	/* Sanity check */
3534 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3535 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3536 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3537 		ret = -EINVAL;
3538 		goto out;
3539 	}
3540 
3541 	if (is_kmalloc) {
3542 		/* Make sure we don't copy more data than available */
3543 		if (param_offset >= buff_len)
3544 			ret = -EINVAL;
3545 		else
3546 			memcpy(param_read_buf, &desc_buf[param_offset],
3547 			       min_t(u32, param_size, buff_len - param_offset));
3548 	}
3549 out:
3550 	if (is_kmalloc)
3551 		kfree(desc_buf);
3552 	return ret;
3553 }
3554 
3555 /**
3556  * struct uc_string_id - unicode string
3557  *
3558  * @len: size of this descriptor inclusive
3559  * @type: descriptor type
3560  * @uc: unicode string character
3561  */
3562 struct uc_string_id {
3563 	u8 len;
3564 	u8 type;
3565 	wchar_t uc[];
3566 } __packed;
3567 
3568 /* replace non-printable or non-ASCII characters with spaces */
3569 static inline char ufshcd_remove_non_printable(u8 ch)
3570 {
3571 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3572 }
3573 
3574 /**
3575  * ufshcd_read_string_desc - read string descriptor
3576  * @hba: pointer to adapter instance
3577  * @desc_index: descriptor index
3578  * @buf: pointer to buffer where descriptor would be read,
3579  *       the caller should free the memory.
3580  * @ascii: if true convert from unicode to ascii characters
3581  *         null terminated string.
3582  *
3583  * Return:
3584  * *      string size on success.
3585  * *      -ENOMEM: on allocation failure
3586  * *      -EINVAL: on a wrong parameter
3587  */
3588 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3589 			    u8 **buf, bool ascii)
3590 {
3591 	struct uc_string_id *uc_str;
3592 	u8 *str;
3593 	int ret;
3594 
3595 	if (!buf)
3596 		return -EINVAL;
3597 
3598 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3599 	if (!uc_str)
3600 		return -ENOMEM;
3601 
3602 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3603 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3604 	if (ret < 0) {
3605 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3606 			QUERY_REQ_RETRIES, ret);
3607 		str = NULL;
3608 		goto out;
3609 	}
3610 
3611 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3612 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3613 		str = NULL;
3614 		ret = 0;
3615 		goto out;
3616 	}
3617 
3618 	if (ascii) {
3619 		ssize_t ascii_len;
3620 		int i;
3621 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3622 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3623 		str = kzalloc(ascii_len, GFP_KERNEL);
3624 		if (!str) {
3625 			ret = -ENOMEM;
3626 			goto out;
3627 		}
3628 
3629 		/*
3630 		 * the descriptor contains string in UTF16 format
3631 		 * we need to convert to utf-8 so it can be displayed
3632 		 */
3633 		ret = utf16s_to_utf8s(uc_str->uc,
3634 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3635 				      UTF16_BIG_ENDIAN, str, ascii_len);
3636 
3637 		/* replace non-printable or non-ASCII characters with spaces */
3638 		for (i = 0; i < ret; i++)
3639 			str[i] = ufshcd_remove_non_printable(str[i]);
3640 
3641 		str[ret++] = '\0';
3642 
3643 	} else {
3644 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3645 		if (!str) {
3646 			ret = -ENOMEM;
3647 			goto out;
3648 		}
3649 		ret = uc_str->len;
3650 	}
3651 out:
3652 	*buf = str;
3653 	kfree(uc_str);
3654 	return ret;
3655 }
3656 
3657 /**
3658  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3659  * @hba: Pointer to adapter instance
3660  * @lun: lun id
3661  * @param_offset: offset of the parameter to read
3662  * @param_read_buf: pointer to buffer where parameter would be read
3663  * @param_size: sizeof(param_read_buf)
3664  *
3665  * Return: 0 in case of success, non-zero otherwise.
3666  */
3667 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3668 					      int lun,
3669 					      enum unit_desc_param param_offset,
3670 					      u8 *param_read_buf,
3671 					      u32 param_size)
3672 {
3673 	/*
3674 	 * Unit descriptors are only available for general purpose LUs (LUN id
3675 	 * from 0 to 7) and RPMB Well known LU.
3676 	 */
3677 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3678 		return -EOPNOTSUPP;
3679 
3680 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3681 				      param_offset, param_read_buf, param_size);
3682 }
3683 
3684 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3685 {
3686 	int err = 0;
3687 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3688 
3689 	if (hba->dev_info.wspecversion >= 0x300) {
3690 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3691 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3692 				&gating_wait);
3693 		if (err)
3694 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3695 					 err, gating_wait);
3696 
3697 		if (gating_wait == 0) {
3698 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3699 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3700 					 gating_wait);
3701 		}
3702 
3703 		hba->dev_info.clk_gating_wait_us = gating_wait;
3704 	}
3705 
3706 	return err;
3707 }
3708 
3709 /**
3710  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3711  * @hba: per adapter instance
3712  *
3713  * 1. Allocate DMA memory for Command Descriptor array
3714  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3715  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3716  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3717  *	(UTMRDL)
3718  * 4. Allocate memory for local reference block(lrb).
3719  *
3720  * Return: 0 for success, non-zero in case of failure.
3721  */
3722 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3723 {
3724 	size_t utmrdl_size, utrdl_size, ucdl_size;
3725 
3726 	/* Allocate memory for UTP command descriptors */
3727 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3728 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3729 						  ucdl_size,
3730 						  &hba->ucdl_dma_addr,
3731 						  GFP_KERNEL);
3732 
3733 	/*
3734 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3735 	 */
3736 	if (!hba->ucdl_base_addr ||
3737 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3738 		dev_err(hba->dev,
3739 			"Command Descriptor Memory allocation failed\n");
3740 		goto out;
3741 	}
3742 
3743 	/*
3744 	 * Allocate memory for UTP Transfer descriptors
3745 	 * UFSHCI requires 1KB alignment of UTRD
3746 	 */
3747 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3748 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3749 						   utrdl_size,
3750 						   &hba->utrdl_dma_addr,
3751 						   GFP_KERNEL);
3752 	if (!hba->utrdl_base_addr ||
3753 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3754 		dev_err(hba->dev,
3755 			"Transfer Descriptor Memory allocation failed\n");
3756 		goto out;
3757 	}
3758 
3759 	/*
3760 	 * Skip utmrdl allocation; it may have been
3761 	 * allocated during first pass and not released during
3762 	 * MCQ memory allocation.
3763 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3764 	 */
3765 	if (hba->utmrdl_base_addr)
3766 		goto skip_utmrdl;
3767 	/*
3768 	 * Allocate memory for UTP Task Management descriptors
3769 	 * UFSHCI requires 1KB alignment of UTMRD
3770 	 */
3771 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3772 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3773 						    utmrdl_size,
3774 						    &hba->utmrdl_dma_addr,
3775 						    GFP_KERNEL);
3776 	if (!hba->utmrdl_base_addr ||
3777 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3778 		dev_err(hba->dev,
3779 		"Task Management Descriptor Memory allocation failed\n");
3780 		goto out;
3781 	}
3782 
3783 skip_utmrdl:
3784 	/* Allocate memory for local reference block */
3785 	hba->lrb = devm_kcalloc(hba->dev,
3786 				hba->nutrs, sizeof(struct ufshcd_lrb),
3787 				GFP_KERNEL);
3788 	if (!hba->lrb) {
3789 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3790 		goto out;
3791 	}
3792 	return 0;
3793 out:
3794 	return -ENOMEM;
3795 }
3796 
3797 /**
3798  * ufshcd_host_memory_configure - configure local reference block with
3799  *				memory offsets
3800  * @hba: per adapter instance
3801  *
3802  * Configure Host memory space
3803  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3804  * address.
3805  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3806  * and PRDT offset.
3807  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3808  * into local reference block.
3809  */
3810 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3811 {
3812 	struct utp_transfer_req_desc *utrdlp;
3813 	dma_addr_t cmd_desc_dma_addr;
3814 	dma_addr_t cmd_desc_element_addr;
3815 	u16 response_offset;
3816 	u16 prdt_offset;
3817 	int cmd_desc_size;
3818 	int i;
3819 
3820 	utrdlp = hba->utrdl_base_addr;
3821 
3822 	response_offset =
3823 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3824 	prdt_offset =
3825 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3826 
3827 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3828 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3829 
3830 	for (i = 0; i < hba->nutrs; i++) {
3831 		/* Configure UTRD with command descriptor base address */
3832 		cmd_desc_element_addr =
3833 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3834 		utrdlp[i].command_desc_base_addr =
3835 				cpu_to_le64(cmd_desc_element_addr);
3836 
3837 		/* Response upiu and prdt offset should be in double words */
3838 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3839 			utrdlp[i].response_upiu_offset =
3840 				cpu_to_le16(response_offset);
3841 			utrdlp[i].prd_table_offset =
3842 				cpu_to_le16(prdt_offset);
3843 			utrdlp[i].response_upiu_length =
3844 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3845 		} else {
3846 			utrdlp[i].response_upiu_offset =
3847 				cpu_to_le16(response_offset >> 2);
3848 			utrdlp[i].prd_table_offset =
3849 				cpu_to_le16(prdt_offset >> 2);
3850 			utrdlp[i].response_upiu_length =
3851 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3852 		}
3853 
3854 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3855 	}
3856 }
3857 
3858 /**
3859  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3860  * @hba: per adapter instance
3861  *
3862  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3863  * in order to initialize the Unipro link startup procedure.
3864  * Once the Unipro links are up, the device connected to the controller
3865  * is detected.
3866  *
3867  * Return: 0 on success, non-zero value on failure.
3868  */
3869 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3870 {
3871 	struct uic_command uic_cmd = {0};
3872 	int ret;
3873 
3874 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3875 
3876 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3877 	if (ret)
3878 		dev_dbg(hba->dev,
3879 			"dme-link-startup: error code %d\n", ret);
3880 	return ret;
3881 }
3882 /**
3883  * ufshcd_dme_reset - UIC command for DME_RESET
3884  * @hba: per adapter instance
3885  *
3886  * DME_RESET command is issued in order to reset UniPro stack.
3887  * This function now deals with cold reset.
3888  *
3889  * Return: 0 on success, non-zero value on failure.
3890  */
3891 static int ufshcd_dme_reset(struct ufs_hba *hba)
3892 {
3893 	struct uic_command uic_cmd = {0};
3894 	int ret;
3895 
3896 	uic_cmd.command = UIC_CMD_DME_RESET;
3897 
3898 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3899 	if (ret)
3900 		dev_err(hba->dev,
3901 			"dme-reset: error code %d\n", ret);
3902 
3903 	return ret;
3904 }
3905 
3906 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3907 			       int agreed_gear,
3908 			       int adapt_val)
3909 {
3910 	int ret;
3911 
3912 	if (agreed_gear < UFS_HS_G4)
3913 		adapt_val = PA_NO_ADAPT;
3914 
3915 	ret = ufshcd_dme_set(hba,
3916 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3917 			     adapt_val);
3918 	return ret;
3919 }
3920 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3921 
3922 /**
3923  * ufshcd_dme_enable - UIC command for DME_ENABLE
3924  * @hba: per adapter instance
3925  *
3926  * DME_ENABLE command is issued in order to enable UniPro stack.
3927  *
3928  * Return: 0 on success, non-zero value on failure.
3929  */
3930 static int ufshcd_dme_enable(struct ufs_hba *hba)
3931 {
3932 	struct uic_command uic_cmd = {0};
3933 	int ret;
3934 
3935 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3936 
3937 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3938 	if (ret)
3939 		dev_err(hba->dev,
3940 			"dme-enable: error code %d\n", ret);
3941 
3942 	return ret;
3943 }
3944 
3945 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3946 {
3947 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3948 	unsigned long min_sleep_time_us;
3949 
3950 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3951 		return;
3952 
3953 	/*
3954 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3955 	 * this function
3956 	 */
3957 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3958 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3959 	} else {
3960 		unsigned long delta =
3961 			(unsigned long) ktime_to_us(
3962 				ktime_sub(ktime_get(),
3963 				hba->last_dme_cmd_tstamp));
3964 
3965 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3966 			min_sleep_time_us =
3967 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3968 		else
3969 			return; /* no more delay required */
3970 	}
3971 
3972 	/* allow sleep for extra 50us if needed */
3973 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3974 }
3975 
3976 /**
3977  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3978  * @hba: per adapter instance
3979  * @attr_sel: uic command argument1
3980  * @attr_set: attribute set type as uic command argument2
3981  * @mib_val: setting value as uic command argument3
3982  * @peer: indicate whether peer or local
3983  *
3984  * Return: 0 on success, non-zero value on failure.
3985  */
3986 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3987 			u8 attr_set, u32 mib_val, u8 peer)
3988 {
3989 	struct uic_command uic_cmd = {0};
3990 	static const char *const action[] = {
3991 		"dme-set",
3992 		"dme-peer-set"
3993 	};
3994 	const char *set = action[!!peer];
3995 	int ret;
3996 	int retries = UFS_UIC_COMMAND_RETRIES;
3997 
3998 	uic_cmd.command = peer ?
3999 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4000 	uic_cmd.argument1 = attr_sel;
4001 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4002 	uic_cmd.argument3 = mib_val;
4003 
4004 	do {
4005 		/* for peer attributes we retry upon failure */
4006 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4007 		if (ret)
4008 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4009 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4010 	} while (ret && peer && --retries);
4011 
4012 	if (ret)
4013 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4014 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4015 			UFS_UIC_COMMAND_RETRIES - retries);
4016 
4017 	return ret;
4018 }
4019 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4020 
4021 /**
4022  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4023  * @hba: per adapter instance
4024  * @attr_sel: uic command argument1
4025  * @mib_val: the value of the attribute as returned by the UIC command
4026  * @peer: indicate whether peer or local
4027  *
4028  * Return: 0 on success, non-zero value on failure.
4029  */
4030 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4031 			u32 *mib_val, u8 peer)
4032 {
4033 	struct uic_command uic_cmd = {0};
4034 	static const char *const action[] = {
4035 		"dme-get",
4036 		"dme-peer-get"
4037 	};
4038 	const char *get = action[!!peer];
4039 	int ret;
4040 	int retries = UFS_UIC_COMMAND_RETRIES;
4041 	struct ufs_pa_layer_attr orig_pwr_info;
4042 	struct ufs_pa_layer_attr temp_pwr_info;
4043 	bool pwr_mode_change = false;
4044 
4045 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4046 		orig_pwr_info = hba->pwr_info;
4047 		temp_pwr_info = orig_pwr_info;
4048 
4049 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4050 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4051 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4052 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4053 			pwr_mode_change = true;
4054 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4055 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4056 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4057 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4058 			pwr_mode_change = true;
4059 		}
4060 		if (pwr_mode_change) {
4061 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4062 			if (ret)
4063 				goto out;
4064 		}
4065 	}
4066 
4067 	uic_cmd.command = peer ?
4068 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4069 	uic_cmd.argument1 = attr_sel;
4070 
4071 	do {
4072 		/* for peer attributes we retry upon failure */
4073 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4074 		if (ret)
4075 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4076 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4077 	} while (ret && peer && --retries);
4078 
4079 	if (ret)
4080 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4081 			get, UIC_GET_ATTR_ID(attr_sel),
4082 			UFS_UIC_COMMAND_RETRIES - retries);
4083 
4084 	if (mib_val && !ret)
4085 		*mib_val = uic_cmd.argument3;
4086 
4087 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4088 	    && pwr_mode_change)
4089 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4090 out:
4091 	return ret;
4092 }
4093 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4094 
4095 /**
4096  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4097  * state) and waits for it to take effect.
4098  *
4099  * @hba: per adapter instance
4100  * @cmd: UIC command to execute
4101  *
4102  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4103  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4104  * and device UniPro link and hence it's final completion would be indicated by
4105  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4106  * addition to normal UIC command completion Status (UCCS). This function only
4107  * returns after the relevant status bits indicate the completion.
4108  *
4109  * Return: 0 on success, non-zero value on failure.
4110  */
4111 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4112 {
4113 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4114 	unsigned long flags;
4115 	u8 status;
4116 	int ret;
4117 	bool reenable_intr = false;
4118 
4119 	mutex_lock(&hba->uic_cmd_mutex);
4120 	ufshcd_add_delay_before_dme_cmd(hba);
4121 
4122 	spin_lock_irqsave(hba->host->host_lock, flags);
4123 	if (ufshcd_is_link_broken(hba)) {
4124 		ret = -ENOLINK;
4125 		goto out_unlock;
4126 	}
4127 	hba->uic_async_done = &uic_async_done;
4128 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4129 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4130 		/*
4131 		 * Make sure UIC command completion interrupt is disabled before
4132 		 * issuing UIC command.
4133 		 */
4134 		wmb();
4135 		reenable_intr = true;
4136 	}
4137 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4138 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4139 	if (ret) {
4140 		dev_err(hba->dev,
4141 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4142 			cmd->command, cmd->argument3, ret);
4143 		goto out;
4144 	}
4145 
4146 	if (!wait_for_completion_timeout(hba->uic_async_done,
4147 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4148 		dev_err(hba->dev,
4149 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4150 			cmd->command, cmd->argument3);
4151 
4152 		if (!cmd->cmd_active) {
4153 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4154 				__func__);
4155 			goto check_upmcrs;
4156 		}
4157 
4158 		ret = -ETIMEDOUT;
4159 		goto out;
4160 	}
4161 
4162 check_upmcrs:
4163 	status = ufshcd_get_upmcrs(hba);
4164 	if (status != PWR_LOCAL) {
4165 		dev_err(hba->dev,
4166 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4167 			cmd->command, status);
4168 		ret = (status != PWR_OK) ? status : -1;
4169 	}
4170 out:
4171 	if (ret) {
4172 		ufshcd_print_host_state(hba);
4173 		ufshcd_print_pwr_info(hba);
4174 		ufshcd_print_evt_hist(hba);
4175 	}
4176 
4177 	spin_lock_irqsave(hba->host->host_lock, flags);
4178 	hba->active_uic_cmd = NULL;
4179 	hba->uic_async_done = NULL;
4180 	if (reenable_intr)
4181 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4182 	if (ret) {
4183 		ufshcd_set_link_broken(hba);
4184 		ufshcd_schedule_eh_work(hba);
4185 	}
4186 out_unlock:
4187 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4188 	mutex_unlock(&hba->uic_cmd_mutex);
4189 
4190 	return ret;
4191 }
4192 
4193 /**
4194  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4195  *				using DME_SET primitives.
4196  * @hba: per adapter instance
4197  * @mode: powr mode value
4198  *
4199  * Return: 0 on success, non-zero value on failure.
4200  */
4201 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4202 {
4203 	struct uic_command uic_cmd = {0};
4204 	int ret;
4205 
4206 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4207 		ret = ufshcd_dme_set(hba,
4208 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4209 		if (ret) {
4210 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4211 						__func__, ret);
4212 			goto out;
4213 		}
4214 	}
4215 
4216 	uic_cmd.command = UIC_CMD_DME_SET;
4217 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4218 	uic_cmd.argument3 = mode;
4219 	ufshcd_hold(hba);
4220 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4221 	ufshcd_release(hba);
4222 
4223 out:
4224 	return ret;
4225 }
4226 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4227 
4228 int ufshcd_link_recovery(struct ufs_hba *hba)
4229 {
4230 	int ret;
4231 	unsigned long flags;
4232 
4233 	spin_lock_irqsave(hba->host->host_lock, flags);
4234 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4235 	ufshcd_set_eh_in_progress(hba);
4236 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4237 
4238 	/* Reset the attached device */
4239 	ufshcd_device_reset(hba);
4240 
4241 	ret = ufshcd_host_reset_and_restore(hba);
4242 
4243 	spin_lock_irqsave(hba->host->host_lock, flags);
4244 	if (ret)
4245 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4246 	ufshcd_clear_eh_in_progress(hba);
4247 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4248 
4249 	if (ret)
4250 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4251 			__func__, ret);
4252 
4253 	return ret;
4254 }
4255 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4256 
4257 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4258 {
4259 	int ret;
4260 	struct uic_command uic_cmd = {0};
4261 	ktime_t start = ktime_get();
4262 
4263 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4264 
4265 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4266 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4267 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4268 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4269 
4270 	if (ret)
4271 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4272 			__func__, ret);
4273 	else
4274 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4275 								POST_CHANGE);
4276 
4277 	return ret;
4278 }
4279 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4280 
4281 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4282 {
4283 	struct uic_command uic_cmd = {0};
4284 	int ret;
4285 	ktime_t start = ktime_get();
4286 
4287 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4288 
4289 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4290 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4291 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4292 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4293 
4294 	if (ret) {
4295 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4296 			__func__, ret);
4297 	} else {
4298 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4299 								POST_CHANGE);
4300 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4301 		hba->ufs_stats.hibern8_exit_cnt++;
4302 	}
4303 
4304 	return ret;
4305 }
4306 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4307 
4308 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4309 {
4310 	unsigned long flags;
4311 	bool update = false;
4312 
4313 	if (!ufshcd_is_auto_hibern8_supported(hba))
4314 		return;
4315 
4316 	spin_lock_irqsave(hba->host->host_lock, flags);
4317 	if (hba->ahit != ahit) {
4318 		hba->ahit = ahit;
4319 		update = true;
4320 	}
4321 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4322 
4323 	if (update &&
4324 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4325 		ufshcd_rpm_get_sync(hba);
4326 		ufshcd_hold(hba);
4327 		ufshcd_auto_hibern8_enable(hba);
4328 		ufshcd_release(hba);
4329 		ufshcd_rpm_put_sync(hba);
4330 	}
4331 }
4332 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4333 
4334 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4335 {
4336 	if (!ufshcd_is_auto_hibern8_supported(hba))
4337 		return;
4338 
4339 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4340 }
4341 
4342  /**
4343  * ufshcd_init_pwr_info - setting the POR (power on reset)
4344  * values in hba power info
4345  * @hba: per-adapter instance
4346  */
4347 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4348 {
4349 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4350 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4351 	hba->pwr_info.lane_rx = UFS_LANE_1;
4352 	hba->pwr_info.lane_tx = UFS_LANE_1;
4353 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4354 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4355 	hba->pwr_info.hs_rate = 0;
4356 }
4357 
4358 /**
4359  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4360  * @hba: per-adapter instance
4361  *
4362  * Return: 0 upon success; < 0 upon failure.
4363  */
4364 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4365 {
4366 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4367 
4368 	if (hba->max_pwr_info.is_valid)
4369 		return 0;
4370 
4371 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4372 		pwr_info->pwr_tx = FASTAUTO_MODE;
4373 		pwr_info->pwr_rx = FASTAUTO_MODE;
4374 	} else {
4375 		pwr_info->pwr_tx = FAST_MODE;
4376 		pwr_info->pwr_rx = FAST_MODE;
4377 	}
4378 	pwr_info->hs_rate = PA_HS_MODE_B;
4379 
4380 	/* Get the connected lane count */
4381 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4382 			&pwr_info->lane_rx);
4383 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4384 			&pwr_info->lane_tx);
4385 
4386 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4387 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4388 				__func__,
4389 				pwr_info->lane_rx,
4390 				pwr_info->lane_tx);
4391 		return -EINVAL;
4392 	}
4393 
4394 	/*
4395 	 * First, get the maximum gears of HS speed.
4396 	 * If a zero value, it means there is no HSGEAR capability.
4397 	 * Then, get the maximum gears of PWM speed.
4398 	 */
4399 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4400 	if (!pwr_info->gear_rx) {
4401 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4402 				&pwr_info->gear_rx);
4403 		if (!pwr_info->gear_rx) {
4404 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4405 				__func__, pwr_info->gear_rx);
4406 			return -EINVAL;
4407 		}
4408 		pwr_info->pwr_rx = SLOW_MODE;
4409 	}
4410 
4411 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4412 			&pwr_info->gear_tx);
4413 	if (!pwr_info->gear_tx) {
4414 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4415 				&pwr_info->gear_tx);
4416 		if (!pwr_info->gear_tx) {
4417 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4418 				__func__, pwr_info->gear_tx);
4419 			return -EINVAL;
4420 		}
4421 		pwr_info->pwr_tx = SLOW_MODE;
4422 	}
4423 
4424 	hba->max_pwr_info.is_valid = true;
4425 	return 0;
4426 }
4427 
4428 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4429 			     struct ufs_pa_layer_attr *pwr_mode)
4430 {
4431 	int ret;
4432 
4433 	/* if already configured to the requested pwr_mode */
4434 	if (!hba->force_pmc &&
4435 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4436 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4437 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4438 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4439 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4440 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4441 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4442 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4443 		return 0;
4444 	}
4445 
4446 	/*
4447 	 * Configure attributes for power mode change with below.
4448 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4449 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4450 	 * - PA_HSSERIES
4451 	 */
4452 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4453 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4454 			pwr_mode->lane_rx);
4455 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4456 			pwr_mode->pwr_rx == FAST_MODE)
4457 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4458 	else
4459 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4460 
4461 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4462 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4463 			pwr_mode->lane_tx);
4464 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4465 			pwr_mode->pwr_tx == FAST_MODE)
4466 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4467 	else
4468 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4469 
4470 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4471 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4472 	    pwr_mode->pwr_rx == FAST_MODE ||
4473 	    pwr_mode->pwr_tx == FAST_MODE)
4474 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4475 						pwr_mode->hs_rate);
4476 
4477 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4478 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4479 				DL_FC0ProtectionTimeOutVal_Default);
4480 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4481 				DL_TC0ReplayTimeOutVal_Default);
4482 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4483 				DL_AFC0ReqTimeOutVal_Default);
4484 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4485 				DL_FC1ProtectionTimeOutVal_Default);
4486 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4487 				DL_TC1ReplayTimeOutVal_Default);
4488 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4489 				DL_AFC1ReqTimeOutVal_Default);
4490 
4491 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4492 				DL_FC0ProtectionTimeOutVal_Default);
4493 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4494 				DL_TC0ReplayTimeOutVal_Default);
4495 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4496 				DL_AFC0ReqTimeOutVal_Default);
4497 	}
4498 
4499 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4500 			| pwr_mode->pwr_tx);
4501 
4502 	if (ret) {
4503 		dev_err(hba->dev,
4504 			"%s: power mode change failed %d\n", __func__, ret);
4505 	} else {
4506 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4507 								pwr_mode);
4508 
4509 		memcpy(&hba->pwr_info, pwr_mode,
4510 			sizeof(struct ufs_pa_layer_attr));
4511 	}
4512 
4513 	return ret;
4514 }
4515 
4516 /**
4517  * ufshcd_config_pwr_mode - configure a new power mode
4518  * @hba: per-adapter instance
4519  * @desired_pwr_mode: desired power configuration
4520  *
4521  * Return: 0 upon success; < 0 upon failure.
4522  */
4523 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4524 		struct ufs_pa_layer_attr *desired_pwr_mode)
4525 {
4526 	struct ufs_pa_layer_attr final_params = { 0 };
4527 	int ret;
4528 
4529 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4530 					desired_pwr_mode, &final_params);
4531 
4532 	if (ret)
4533 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4534 
4535 	ret = ufshcd_change_power_mode(hba, &final_params);
4536 
4537 	return ret;
4538 }
4539 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4540 
4541 /**
4542  * ufshcd_complete_dev_init() - checks device readiness
4543  * @hba: per-adapter instance
4544  *
4545  * Set fDeviceInit flag and poll until device toggles it.
4546  *
4547  * Return: 0 upon success; < 0 upon failure.
4548  */
4549 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4550 {
4551 	int err;
4552 	bool flag_res = true;
4553 	ktime_t timeout;
4554 
4555 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4556 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4557 	if (err) {
4558 		dev_err(hba->dev,
4559 			"%s: setting fDeviceInit flag failed with error %d\n",
4560 			__func__, err);
4561 		goto out;
4562 	}
4563 
4564 	/* Poll fDeviceInit flag to be cleared */
4565 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4566 	do {
4567 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4568 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4569 		if (!flag_res)
4570 			break;
4571 		usleep_range(500, 1000);
4572 	} while (ktime_before(ktime_get(), timeout));
4573 
4574 	if (err) {
4575 		dev_err(hba->dev,
4576 				"%s: reading fDeviceInit flag failed with error %d\n",
4577 				__func__, err);
4578 	} else if (flag_res) {
4579 		dev_err(hba->dev,
4580 				"%s: fDeviceInit was not cleared by the device\n",
4581 				__func__);
4582 		err = -EBUSY;
4583 	}
4584 out:
4585 	return err;
4586 }
4587 
4588 /**
4589  * ufshcd_make_hba_operational - Make UFS controller operational
4590  * @hba: per adapter instance
4591  *
4592  * To bring UFS host controller to operational state,
4593  * 1. Enable required interrupts
4594  * 2. Configure interrupt aggregation
4595  * 3. Program UTRL and UTMRL base address
4596  * 4. Configure run-stop-registers
4597  *
4598  * Return: 0 on success, non-zero value on failure.
4599  */
4600 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4601 {
4602 	int err = 0;
4603 	u32 reg;
4604 
4605 	/* Enable required interrupts */
4606 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4607 
4608 	/* Configure interrupt aggregation */
4609 	if (ufshcd_is_intr_aggr_allowed(hba))
4610 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4611 	else
4612 		ufshcd_disable_intr_aggr(hba);
4613 
4614 	/* Configure UTRL and UTMRL base address registers */
4615 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4616 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4617 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4618 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4619 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4620 			REG_UTP_TASK_REQ_LIST_BASE_L);
4621 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4622 			REG_UTP_TASK_REQ_LIST_BASE_H);
4623 
4624 	/*
4625 	 * Make sure base address and interrupt setup are updated before
4626 	 * enabling the run/stop registers below.
4627 	 */
4628 	wmb();
4629 
4630 	/*
4631 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4632 	 */
4633 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4634 	if (!(ufshcd_get_lists_status(reg))) {
4635 		ufshcd_enable_run_stop_reg(hba);
4636 	} else {
4637 		dev_err(hba->dev,
4638 			"Host controller not ready to process requests");
4639 		err = -EIO;
4640 	}
4641 
4642 	return err;
4643 }
4644 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4645 
4646 /**
4647  * ufshcd_hba_stop - Send controller to reset state
4648  * @hba: per adapter instance
4649  */
4650 void ufshcd_hba_stop(struct ufs_hba *hba)
4651 {
4652 	unsigned long flags;
4653 	int err;
4654 
4655 	/*
4656 	 * Obtain the host lock to prevent that the controller is disabled
4657 	 * while the UFS interrupt handler is active on another CPU.
4658 	 */
4659 	spin_lock_irqsave(hba->host->host_lock, flags);
4660 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4661 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4662 
4663 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4664 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4665 					10, 1);
4666 	if (err)
4667 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4668 }
4669 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4670 
4671 /**
4672  * ufshcd_hba_execute_hce - initialize the controller
4673  * @hba: per adapter instance
4674  *
4675  * The controller resets itself and controller firmware initialization
4676  * sequence kicks off. When controller is ready it will set
4677  * the Host Controller Enable bit to 1.
4678  *
4679  * Return: 0 on success, non-zero value on failure.
4680  */
4681 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4682 {
4683 	int retry_outer = 3;
4684 	int retry_inner;
4685 
4686 start:
4687 	if (ufshcd_is_hba_active(hba))
4688 		/* change controller state to "reset state" */
4689 		ufshcd_hba_stop(hba);
4690 
4691 	/* UniPro link is disabled at this point */
4692 	ufshcd_set_link_off(hba);
4693 
4694 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4695 
4696 	/* start controller initialization sequence */
4697 	ufshcd_hba_start(hba);
4698 
4699 	/*
4700 	 * To initialize a UFS host controller HCE bit must be set to 1.
4701 	 * During initialization the HCE bit value changes from 1->0->1.
4702 	 * When the host controller completes initialization sequence
4703 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4704 	 * to check if the controller has completed initialization sequence.
4705 	 * So without this delay the value HCE = 1, set in the previous
4706 	 * instruction might be read back.
4707 	 * This delay can be changed based on the controller.
4708 	 */
4709 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4710 
4711 	/* wait for the host controller to complete initialization */
4712 	retry_inner = 50;
4713 	while (!ufshcd_is_hba_active(hba)) {
4714 		if (retry_inner) {
4715 			retry_inner--;
4716 		} else {
4717 			dev_err(hba->dev,
4718 				"Controller enable failed\n");
4719 			if (retry_outer) {
4720 				retry_outer--;
4721 				goto start;
4722 			}
4723 			return -EIO;
4724 		}
4725 		usleep_range(1000, 1100);
4726 	}
4727 
4728 	/* enable UIC related interrupts */
4729 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4730 
4731 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4732 
4733 	return 0;
4734 }
4735 
4736 int ufshcd_hba_enable(struct ufs_hba *hba)
4737 {
4738 	int ret;
4739 
4740 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4741 		ufshcd_set_link_off(hba);
4742 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4743 
4744 		/* enable UIC related interrupts */
4745 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4746 		ret = ufshcd_dme_reset(hba);
4747 		if (ret) {
4748 			dev_err(hba->dev, "DME_RESET failed\n");
4749 			return ret;
4750 		}
4751 
4752 		ret = ufshcd_dme_enable(hba);
4753 		if (ret) {
4754 			dev_err(hba->dev, "Enabling DME failed\n");
4755 			return ret;
4756 		}
4757 
4758 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4759 	} else {
4760 		ret = ufshcd_hba_execute_hce(hba);
4761 	}
4762 
4763 	return ret;
4764 }
4765 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4766 
4767 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4768 {
4769 	int tx_lanes = 0, i, err = 0;
4770 
4771 	if (!peer)
4772 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4773 			       &tx_lanes);
4774 	else
4775 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4776 				    &tx_lanes);
4777 	for (i = 0; i < tx_lanes; i++) {
4778 		if (!peer)
4779 			err = ufshcd_dme_set(hba,
4780 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4781 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4782 					0);
4783 		else
4784 			err = ufshcd_dme_peer_set(hba,
4785 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4786 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4787 					0);
4788 		if (err) {
4789 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4790 				__func__, peer, i, err);
4791 			break;
4792 		}
4793 	}
4794 
4795 	return err;
4796 }
4797 
4798 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4799 {
4800 	return ufshcd_disable_tx_lcc(hba, true);
4801 }
4802 
4803 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4804 {
4805 	struct ufs_event_hist *e;
4806 
4807 	if (id >= UFS_EVT_CNT)
4808 		return;
4809 
4810 	e = &hba->ufs_stats.event[id];
4811 	e->val[e->pos] = val;
4812 	e->tstamp[e->pos] = local_clock();
4813 	e->cnt += 1;
4814 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4815 
4816 	ufshcd_vops_event_notify(hba, id, &val);
4817 }
4818 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4819 
4820 /**
4821  * ufshcd_link_startup - Initialize unipro link startup
4822  * @hba: per adapter instance
4823  *
4824  * Return: 0 for success, non-zero in case of failure.
4825  */
4826 static int ufshcd_link_startup(struct ufs_hba *hba)
4827 {
4828 	int ret;
4829 	int retries = DME_LINKSTARTUP_RETRIES;
4830 	bool link_startup_again = false;
4831 
4832 	/*
4833 	 * If UFS device isn't active then we will have to issue link startup
4834 	 * 2 times to make sure the device state move to active.
4835 	 */
4836 	if (!ufshcd_is_ufs_dev_active(hba))
4837 		link_startup_again = true;
4838 
4839 link_startup:
4840 	do {
4841 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4842 
4843 		ret = ufshcd_dme_link_startup(hba);
4844 
4845 		/* check if device is detected by inter-connect layer */
4846 		if (!ret && !ufshcd_is_device_present(hba)) {
4847 			ufshcd_update_evt_hist(hba,
4848 					       UFS_EVT_LINK_STARTUP_FAIL,
4849 					       0);
4850 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4851 			ret = -ENXIO;
4852 			goto out;
4853 		}
4854 
4855 		/*
4856 		 * DME link lost indication is only received when link is up,
4857 		 * but we can't be sure if the link is up until link startup
4858 		 * succeeds. So reset the local Uni-Pro and try again.
4859 		 */
4860 		if (ret && retries && ufshcd_hba_enable(hba)) {
4861 			ufshcd_update_evt_hist(hba,
4862 					       UFS_EVT_LINK_STARTUP_FAIL,
4863 					       (u32)ret);
4864 			goto out;
4865 		}
4866 	} while (ret && retries--);
4867 
4868 	if (ret) {
4869 		/* failed to get the link up... retire */
4870 		ufshcd_update_evt_hist(hba,
4871 				       UFS_EVT_LINK_STARTUP_FAIL,
4872 				       (u32)ret);
4873 		goto out;
4874 	}
4875 
4876 	if (link_startup_again) {
4877 		link_startup_again = false;
4878 		retries = DME_LINKSTARTUP_RETRIES;
4879 		goto link_startup;
4880 	}
4881 
4882 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4883 	ufshcd_init_pwr_info(hba);
4884 	ufshcd_print_pwr_info(hba);
4885 
4886 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4887 		ret = ufshcd_disable_device_tx_lcc(hba);
4888 		if (ret)
4889 			goto out;
4890 	}
4891 
4892 	/* Include any host controller configuration via UIC commands */
4893 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4894 	if (ret)
4895 		goto out;
4896 
4897 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4898 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4899 	ret = ufshcd_make_hba_operational(hba);
4900 out:
4901 	if (ret) {
4902 		dev_err(hba->dev, "link startup failed %d\n", ret);
4903 		ufshcd_print_host_state(hba);
4904 		ufshcd_print_pwr_info(hba);
4905 		ufshcd_print_evt_hist(hba);
4906 	}
4907 	return ret;
4908 }
4909 
4910 /**
4911  * ufshcd_verify_dev_init() - Verify device initialization
4912  * @hba: per-adapter instance
4913  *
4914  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4915  * device Transport Protocol (UTP) layer is ready after a reset.
4916  * If the UTP layer at the device side is not initialized, it may
4917  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4918  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4919  *
4920  * Return: 0 upon success; < 0 upon failure.
4921  */
4922 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4923 {
4924 	int err = 0;
4925 	int retries;
4926 
4927 	ufshcd_hold(hba);
4928 	mutex_lock(&hba->dev_cmd.lock);
4929 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4930 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4931 					  hba->nop_out_timeout);
4932 
4933 		if (!err || err == -ETIMEDOUT)
4934 			break;
4935 
4936 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4937 	}
4938 	mutex_unlock(&hba->dev_cmd.lock);
4939 	ufshcd_release(hba);
4940 
4941 	if (err)
4942 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4943 	return err;
4944 }
4945 
4946 /**
4947  * ufshcd_setup_links - associate link b/w device wlun and other luns
4948  * @sdev: pointer to SCSI device
4949  * @hba: pointer to ufs hba
4950  */
4951 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4952 {
4953 	struct device_link *link;
4954 
4955 	/*
4956 	 * Device wlun is the supplier & rest of the luns are consumers.
4957 	 * This ensures that device wlun suspends after all other luns.
4958 	 */
4959 	if (hba->ufs_device_wlun) {
4960 		link = device_link_add(&sdev->sdev_gendev,
4961 				       &hba->ufs_device_wlun->sdev_gendev,
4962 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4963 		if (!link) {
4964 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4965 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4966 			return;
4967 		}
4968 		hba->luns_avail--;
4969 		/* Ignore REPORT_LUN wlun probing */
4970 		if (hba->luns_avail == 1) {
4971 			ufshcd_rpm_put(hba);
4972 			return;
4973 		}
4974 	} else {
4975 		/*
4976 		 * Device wlun is probed. The assumption is that WLUNs are
4977 		 * scanned before other LUNs.
4978 		 */
4979 		hba->luns_avail--;
4980 	}
4981 }
4982 
4983 /**
4984  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4985  * @hba: per-adapter instance
4986  * @sdev: pointer to SCSI device
4987  */
4988 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4989 {
4990 	int len = QUERY_DESC_MAX_SIZE;
4991 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4992 	u8 lun_qdepth = hba->nutrs;
4993 	u8 *desc_buf;
4994 	int ret;
4995 
4996 	desc_buf = kzalloc(len, GFP_KERNEL);
4997 	if (!desc_buf)
4998 		goto set_qdepth;
4999 
5000 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5001 	if (ret < 0) {
5002 		if (ret == -EOPNOTSUPP)
5003 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5004 			lun_qdepth = 1;
5005 		kfree(desc_buf);
5006 		goto set_qdepth;
5007 	}
5008 
5009 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5010 		/*
5011 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5012 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5013 		 */
5014 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5015 	}
5016 	/*
5017 	 * According to UFS device specification, the write protection mode is only supported by
5018 	 * normal LU, not supported by WLUN.
5019 	 */
5020 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5021 	    !hba->dev_info.is_lu_power_on_wp &&
5022 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5023 		hba->dev_info.is_lu_power_on_wp = true;
5024 
5025 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5026 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5027 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5028 		hba->dev_info.b_advanced_rpmb_en = true;
5029 
5030 
5031 	kfree(desc_buf);
5032 set_qdepth:
5033 	/*
5034 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5035 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5036 	 */
5037 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5038 	scsi_change_queue_depth(sdev, lun_qdepth);
5039 }
5040 
5041 /**
5042  * ufshcd_slave_alloc - handle initial SCSI device configurations
5043  * @sdev: pointer to SCSI device
5044  *
5045  * Return: success.
5046  */
5047 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5048 {
5049 	struct ufs_hba *hba;
5050 
5051 	hba = shost_priv(sdev->host);
5052 
5053 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5054 	sdev->use_10_for_ms = 1;
5055 
5056 	/* DBD field should be set to 1 in mode sense(10) */
5057 	sdev->set_dbd_for_ms = 1;
5058 
5059 	/* allow SCSI layer to restart the device in case of errors */
5060 	sdev->allow_restart = 1;
5061 
5062 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5063 	sdev->no_report_opcodes = 1;
5064 
5065 	/* WRITE_SAME command is not supported */
5066 	sdev->no_write_same = 1;
5067 
5068 	ufshcd_lu_init(hba, sdev);
5069 
5070 	ufshcd_setup_links(hba, sdev);
5071 
5072 	return 0;
5073 }
5074 
5075 /**
5076  * ufshcd_change_queue_depth - change queue depth
5077  * @sdev: pointer to SCSI device
5078  * @depth: required depth to set
5079  *
5080  * Change queue depth and make sure the max. limits are not crossed.
5081  *
5082  * Return: new queue depth.
5083  */
5084 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5085 {
5086 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5087 }
5088 
5089 /**
5090  * ufshcd_slave_configure - adjust SCSI device configurations
5091  * @sdev: pointer to SCSI device
5092  *
5093  * Return: 0 (success).
5094  */
5095 static int ufshcd_slave_configure(struct scsi_device *sdev)
5096 {
5097 	struct ufs_hba *hba = shost_priv(sdev->host);
5098 	struct request_queue *q = sdev->request_queue;
5099 
5100 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5101 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5102 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5103 	/*
5104 	 * Block runtime-pm until all consumers are added.
5105 	 * Refer ufshcd_setup_links().
5106 	 */
5107 	if (is_device_wlun(sdev))
5108 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5109 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5110 		sdev->rpm_autosuspend = 1;
5111 	/*
5112 	 * Do not print messages during runtime PM to avoid never-ending cycles
5113 	 * of messages written back to storage by user space causing runtime
5114 	 * resume, causing more messages and so on.
5115 	 */
5116 	sdev->silence_suspend = 1;
5117 
5118 	ufshcd_crypto_register(hba, q);
5119 
5120 	return 0;
5121 }
5122 
5123 /**
5124  * ufshcd_slave_destroy - remove SCSI device configurations
5125  * @sdev: pointer to SCSI device
5126  */
5127 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5128 {
5129 	struct ufs_hba *hba;
5130 	unsigned long flags;
5131 
5132 	hba = shost_priv(sdev->host);
5133 
5134 	/* Drop the reference as it won't be needed anymore */
5135 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5136 		spin_lock_irqsave(hba->host->host_lock, flags);
5137 		hba->ufs_device_wlun = NULL;
5138 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5139 	} else if (hba->ufs_device_wlun) {
5140 		struct device *supplier = NULL;
5141 
5142 		/* Ensure UFS Device WLUN exists and does not disappear */
5143 		spin_lock_irqsave(hba->host->host_lock, flags);
5144 		if (hba->ufs_device_wlun) {
5145 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5146 			get_device(supplier);
5147 		}
5148 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5149 
5150 		if (supplier) {
5151 			/*
5152 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5153 			 * device will not have been registered but can still
5154 			 * have a device link holding a reference to the device.
5155 			 */
5156 			device_link_remove(&sdev->sdev_gendev, supplier);
5157 			put_device(supplier);
5158 		}
5159 	}
5160 }
5161 
5162 /**
5163  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5164  * @lrbp: pointer to local reference block of completed command
5165  * @scsi_status: SCSI command status
5166  *
5167  * Return: value base on SCSI command status.
5168  */
5169 static inline int
5170 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5171 {
5172 	int result = 0;
5173 
5174 	switch (scsi_status) {
5175 	case SAM_STAT_CHECK_CONDITION:
5176 		ufshcd_copy_sense_data(lrbp);
5177 		fallthrough;
5178 	case SAM_STAT_GOOD:
5179 		result |= DID_OK << 16 | scsi_status;
5180 		break;
5181 	case SAM_STAT_TASK_SET_FULL:
5182 	case SAM_STAT_BUSY:
5183 	case SAM_STAT_TASK_ABORTED:
5184 		ufshcd_copy_sense_data(lrbp);
5185 		result |= scsi_status;
5186 		break;
5187 	default:
5188 		result |= DID_ERROR << 16;
5189 		break;
5190 	} /* end of switch */
5191 
5192 	return result;
5193 }
5194 
5195 /**
5196  * ufshcd_transfer_rsp_status - Get overall status of the response
5197  * @hba: per adapter instance
5198  * @lrbp: pointer to local reference block of completed command
5199  * @cqe: pointer to the completion queue entry
5200  *
5201  * Return: result of the command to notify SCSI midlayer.
5202  */
5203 static inline int
5204 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5205 			   struct cq_entry *cqe)
5206 {
5207 	int result = 0;
5208 	int scsi_status;
5209 	enum utp_ocs ocs;
5210 	u8 upiu_flags;
5211 	u32 resid;
5212 
5213 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5214 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5215 	/*
5216 	 * Test !overflow instead of underflow to support UFS devices that do
5217 	 * not set either flag.
5218 	 */
5219 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5220 		scsi_set_resid(lrbp->cmd, resid);
5221 
5222 	/* overall command status of utrd */
5223 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5224 
5225 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5226 		if (lrbp->ucd_rsp_ptr->header.response ||
5227 		    lrbp->ucd_rsp_ptr->header.status)
5228 			ocs = OCS_SUCCESS;
5229 	}
5230 
5231 	switch (ocs) {
5232 	case OCS_SUCCESS:
5233 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5234 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5235 		case UPIU_TRANSACTION_RESPONSE:
5236 			/*
5237 			 * get the result based on SCSI status response
5238 			 * to notify the SCSI midlayer of the command status
5239 			 */
5240 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5241 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5242 
5243 			/*
5244 			 * Currently we are only supporting BKOPs exception
5245 			 * events hence we can ignore BKOPs exception event
5246 			 * during power management callbacks. BKOPs exception
5247 			 * event is not expected to be raised in runtime suspend
5248 			 * callback as it allows the urgent bkops.
5249 			 * During system suspend, we are anyway forcefully
5250 			 * disabling the bkops and if urgent bkops is needed
5251 			 * it will be enabled on system resume. Long term
5252 			 * solution could be to abort the system suspend if
5253 			 * UFS device needs urgent BKOPs.
5254 			 */
5255 			if (!hba->pm_op_in_progress &&
5256 			    !ufshcd_eh_in_progress(hba) &&
5257 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5258 				/* Flushed in suspend */
5259 				schedule_work(&hba->eeh_work);
5260 			break;
5261 		case UPIU_TRANSACTION_REJECT_UPIU:
5262 			/* TODO: handle Reject UPIU Response */
5263 			result = DID_ERROR << 16;
5264 			dev_err(hba->dev,
5265 				"Reject UPIU not fully implemented\n");
5266 			break;
5267 		default:
5268 			dev_err(hba->dev,
5269 				"Unexpected request response code = %x\n",
5270 				result);
5271 			result = DID_ERROR << 16;
5272 			break;
5273 		}
5274 		break;
5275 	case OCS_ABORTED:
5276 		result |= DID_ABORT << 16;
5277 		break;
5278 	case OCS_INVALID_COMMAND_STATUS:
5279 		result |= DID_REQUEUE << 16;
5280 		break;
5281 	case OCS_INVALID_CMD_TABLE_ATTR:
5282 	case OCS_INVALID_PRDT_ATTR:
5283 	case OCS_MISMATCH_DATA_BUF_SIZE:
5284 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5285 	case OCS_PEER_COMM_FAILURE:
5286 	case OCS_FATAL_ERROR:
5287 	case OCS_DEVICE_FATAL_ERROR:
5288 	case OCS_INVALID_CRYPTO_CONFIG:
5289 	case OCS_GENERAL_CRYPTO_ERROR:
5290 	default:
5291 		result |= DID_ERROR << 16;
5292 		dev_err(hba->dev,
5293 				"OCS error from controller = %x for tag %d\n",
5294 				ocs, lrbp->task_tag);
5295 		ufshcd_print_evt_hist(hba);
5296 		ufshcd_print_host_state(hba);
5297 		break;
5298 	} /* end of switch */
5299 
5300 	if ((host_byte(result) != DID_OK) &&
5301 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5302 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5303 	return result;
5304 }
5305 
5306 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5307 					 u32 intr_mask)
5308 {
5309 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5310 	    !ufshcd_is_auto_hibern8_enabled(hba))
5311 		return false;
5312 
5313 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5314 		return false;
5315 
5316 	if (hba->active_uic_cmd &&
5317 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5318 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5319 		return false;
5320 
5321 	return true;
5322 }
5323 
5324 /**
5325  * ufshcd_uic_cmd_compl - handle completion of uic command
5326  * @hba: per adapter instance
5327  * @intr_status: interrupt status generated by the controller
5328  *
5329  * Return:
5330  *  IRQ_HANDLED - If interrupt is valid
5331  *  IRQ_NONE    - If invalid interrupt
5332  */
5333 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5334 {
5335 	irqreturn_t retval = IRQ_NONE;
5336 
5337 	spin_lock(hba->host->host_lock);
5338 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5339 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5340 
5341 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5342 		hba->active_uic_cmd->argument2 |=
5343 			ufshcd_get_uic_cmd_result(hba);
5344 		hba->active_uic_cmd->argument3 =
5345 			ufshcd_get_dme_attr_val(hba);
5346 		if (!hba->uic_async_done)
5347 			hba->active_uic_cmd->cmd_active = 0;
5348 		complete(&hba->active_uic_cmd->done);
5349 		retval = IRQ_HANDLED;
5350 	}
5351 
5352 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5353 		hba->active_uic_cmd->cmd_active = 0;
5354 		complete(hba->uic_async_done);
5355 		retval = IRQ_HANDLED;
5356 	}
5357 
5358 	if (retval == IRQ_HANDLED)
5359 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5360 					     UFS_CMD_COMP);
5361 	spin_unlock(hba->host->host_lock);
5362 	return retval;
5363 }
5364 
5365 /* Release the resources allocated for processing a SCSI command. */
5366 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5367 			     struct ufshcd_lrb *lrbp)
5368 {
5369 	struct scsi_cmnd *cmd = lrbp->cmd;
5370 
5371 	scsi_dma_unmap(cmd);
5372 	ufshcd_release(hba);
5373 	ufshcd_clk_scaling_update_busy(hba);
5374 }
5375 
5376 /**
5377  * ufshcd_compl_one_cqe - handle a completion queue entry
5378  * @hba: per adapter instance
5379  * @task_tag: the task tag of the request to be completed
5380  * @cqe: pointer to the completion queue entry
5381  */
5382 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5383 			  struct cq_entry *cqe)
5384 {
5385 	struct ufshcd_lrb *lrbp;
5386 	struct scsi_cmnd *cmd;
5387 	enum utp_ocs ocs;
5388 
5389 	lrbp = &hba->lrb[task_tag];
5390 	lrbp->compl_time_stamp = ktime_get();
5391 	cmd = lrbp->cmd;
5392 	if (cmd) {
5393 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5394 			ufshcd_update_monitor(hba, lrbp);
5395 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5396 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5397 		ufshcd_release_scsi_cmd(hba, lrbp);
5398 		/* Do not touch lrbp after scsi done */
5399 		scsi_done(cmd);
5400 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5401 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5402 		if (hba->dev_cmd.complete) {
5403 			if (cqe) {
5404 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5405 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5406 			}
5407 			complete(hba->dev_cmd.complete);
5408 			ufshcd_clk_scaling_update_busy(hba);
5409 		}
5410 	}
5411 }
5412 
5413 /**
5414  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5415  * @hba: per adapter instance
5416  * @completed_reqs: bitmask that indicates which requests to complete
5417  */
5418 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5419 					unsigned long completed_reqs)
5420 {
5421 	int tag;
5422 
5423 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5424 		ufshcd_compl_one_cqe(hba, tag, NULL);
5425 }
5426 
5427 /* Any value that is not an existing queue number is fine for this constant. */
5428 enum {
5429 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5430 };
5431 
5432 static void ufshcd_clear_polled(struct ufs_hba *hba,
5433 				unsigned long *completed_reqs)
5434 {
5435 	int tag;
5436 
5437 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5438 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5439 
5440 		if (!cmd)
5441 			continue;
5442 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5443 			__clear_bit(tag, completed_reqs);
5444 	}
5445 }
5446 
5447 /*
5448  * Return: > 0 if one or more commands have been completed or 0 if no
5449  * requests have been completed.
5450  */
5451 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5452 {
5453 	struct ufs_hba *hba = shost_priv(shost);
5454 	unsigned long completed_reqs, flags;
5455 	u32 tr_doorbell;
5456 	struct ufs_hw_queue *hwq;
5457 
5458 	if (is_mcq_enabled(hba)) {
5459 		hwq = &hba->uhq[queue_num];
5460 
5461 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5462 	}
5463 
5464 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5465 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5466 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5467 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5468 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5469 		  hba->outstanding_reqs);
5470 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5471 		/* Do not complete polled requests from interrupt context. */
5472 		ufshcd_clear_polled(hba, &completed_reqs);
5473 	}
5474 	hba->outstanding_reqs &= ~completed_reqs;
5475 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5476 
5477 	if (completed_reqs)
5478 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5479 
5480 	return completed_reqs != 0;
5481 }
5482 
5483 /**
5484  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5485  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5486  * to complete the pending transfers and free the resources associated with
5487  * the scsi command.
5488  *
5489  * @hba: per adapter instance
5490  * @force_compl: This flag is set to true when invoked
5491  * from ufshcd_host_reset_and_restore() in which case it requires special
5492  * handling because the host controller has been reset by ufshcd_hba_stop().
5493  */
5494 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5495 					      bool force_compl)
5496 {
5497 	struct ufs_hw_queue *hwq;
5498 	struct ufshcd_lrb *lrbp;
5499 	struct scsi_cmnd *cmd;
5500 	unsigned long flags;
5501 	u32 hwq_num, utag;
5502 	int tag;
5503 
5504 	for (tag = 0; tag < hba->nutrs; tag++) {
5505 		lrbp = &hba->lrb[tag];
5506 		cmd = lrbp->cmd;
5507 		if (!ufshcd_cmd_inflight(cmd) ||
5508 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5509 			continue;
5510 
5511 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5512 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5513 		hwq = &hba->uhq[hwq_num];
5514 
5515 		if (force_compl) {
5516 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5517 			/*
5518 			 * For those cmds of which the cqes are not present
5519 			 * in the cq, complete them explicitly.
5520 			 */
5521 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5522 				spin_lock_irqsave(&hwq->cq_lock, flags);
5523 				set_host_byte(cmd, DID_REQUEUE);
5524 				ufshcd_release_scsi_cmd(hba, lrbp);
5525 				scsi_done(cmd);
5526 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5527 			}
5528 		} else {
5529 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5530 		}
5531 	}
5532 }
5533 
5534 /**
5535  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5536  * @hba: per adapter instance
5537  *
5538  * Return:
5539  *  IRQ_HANDLED - If interrupt is valid
5540  *  IRQ_NONE    - If invalid interrupt
5541  */
5542 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5543 {
5544 	/* Resetting interrupt aggregation counters first and reading the
5545 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5546 	 * In order to prevent other interrupts starvation the DB is read once
5547 	 * after reset. The down side of this solution is the possibility of
5548 	 * false interrupt if device completes another request after resetting
5549 	 * aggregation and before reading the DB.
5550 	 */
5551 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5552 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5553 		ufshcd_reset_intr_aggr(hba);
5554 
5555 	if (ufs_fail_completion())
5556 		return IRQ_HANDLED;
5557 
5558 	/*
5559 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5560 	 * do not want polling to trigger spurious interrupt complaints.
5561 	 */
5562 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5563 
5564 	return IRQ_HANDLED;
5565 }
5566 
5567 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5568 {
5569 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5570 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5571 				       &ee_ctrl_mask);
5572 }
5573 
5574 int ufshcd_write_ee_control(struct ufs_hba *hba)
5575 {
5576 	int err;
5577 
5578 	mutex_lock(&hba->ee_ctrl_mutex);
5579 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5580 	mutex_unlock(&hba->ee_ctrl_mutex);
5581 	if (err)
5582 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5583 			__func__, err);
5584 	return err;
5585 }
5586 
5587 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5588 			     const u16 *other_mask, u16 set, u16 clr)
5589 {
5590 	u16 new_mask, ee_ctrl_mask;
5591 	int err = 0;
5592 
5593 	mutex_lock(&hba->ee_ctrl_mutex);
5594 	new_mask = (*mask & ~clr) | set;
5595 	ee_ctrl_mask = new_mask | *other_mask;
5596 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5597 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5598 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5599 	if (!err) {
5600 		hba->ee_ctrl_mask = ee_ctrl_mask;
5601 		*mask = new_mask;
5602 	}
5603 	mutex_unlock(&hba->ee_ctrl_mutex);
5604 	return err;
5605 }
5606 
5607 /**
5608  * ufshcd_disable_ee - disable exception event
5609  * @hba: per-adapter instance
5610  * @mask: exception event to disable
5611  *
5612  * Disables exception event in the device so that the EVENT_ALERT
5613  * bit is not set.
5614  *
5615  * Return: zero on success, non-zero error value on failure.
5616  */
5617 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5618 {
5619 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5620 }
5621 
5622 /**
5623  * ufshcd_enable_ee - enable exception event
5624  * @hba: per-adapter instance
5625  * @mask: exception event to enable
5626  *
5627  * Enable corresponding exception event in the device to allow
5628  * device to alert host in critical scenarios.
5629  *
5630  * Return: zero on success, non-zero error value on failure.
5631  */
5632 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5633 {
5634 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5635 }
5636 
5637 /**
5638  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5639  * @hba: per-adapter instance
5640  *
5641  * Allow device to manage background operations on its own. Enabling
5642  * this might lead to inconsistent latencies during normal data transfers
5643  * as the device is allowed to manage its own way of handling background
5644  * operations.
5645  *
5646  * Return: zero on success, non-zero on failure.
5647  */
5648 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5649 {
5650 	int err = 0;
5651 
5652 	if (hba->auto_bkops_enabled)
5653 		goto out;
5654 
5655 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5656 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5657 	if (err) {
5658 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5659 				__func__, err);
5660 		goto out;
5661 	}
5662 
5663 	hba->auto_bkops_enabled = true;
5664 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5665 
5666 	/* No need of URGENT_BKOPS exception from the device */
5667 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5668 	if (err)
5669 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5670 				__func__, err);
5671 out:
5672 	return err;
5673 }
5674 
5675 /**
5676  * ufshcd_disable_auto_bkops - block device in doing background operations
5677  * @hba: per-adapter instance
5678  *
5679  * Disabling background operations improves command response latency but
5680  * has drawback of device moving into critical state where the device is
5681  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5682  * host is idle so that BKOPS are managed effectively without any negative
5683  * impacts.
5684  *
5685  * Return: zero on success, non-zero on failure.
5686  */
5687 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5688 {
5689 	int err = 0;
5690 
5691 	if (!hba->auto_bkops_enabled)
5692 		goto out;
5693 
5694 	/*
5695 	 * If host assisted BKOPs is to be enabled, make sure
5696 	 * urgent bkops exception is allowed.
5697 	 */
5698 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5699 	if (err) {
5700 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5701 				__func__, err);
5702 		goto out;
5703 	}
5704 
5705 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5706 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5707 	if (err) {
5708 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5709 				__func__, err);
5710 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5711 		goto out;
5712 	}
5713 
5714 	hba->auto_bkops_enabled = false;
5715 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5716 	hba->is_urgent_bkops_lvl_checked = false;
5717 out:
5718 	return err;
5719 }
5720 
5721 /**
5722  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5723  * @hba: per adapter instance
5724  *
5725  * After a device reset the device may toggle the BKOPS_EN flag
5726  * to default value. The s/w tracking variables should be updated
5727  * as well. This function would change the auto-bkops state based on
5728  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5729  */
5730 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5731 {
5732 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5733 		hba->auto_bkops_enabled = false;
5734 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5735 		ufshcd_enable_auto_bkops(hba);
5736 	} else {
5737 		hba->auto_bkops_enabled = true;
5738 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5739 		ufshcd_disable_auto_bkops(hba);
5740 	}
5741 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5742 	hba->is_urgent_bkops_lvl_checked = false;
5743 }
5744 
5745 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5746 {
5747 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5748 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5749 }
5750 
5751 /**
5752  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5753  * @hba: per-adapter instance
5754  * @status: bkops_status value
5755  *
5756  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5757  * flag in the device to permit background operations if the device
5758  * bkops_status is greater than or equal to "status" argument passed to
5759  * this function, disable otherwise.
5760  *
5761  * Return: 0 for success, non-zero in case of failure.
5762  *
5763  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5764  * to know whether auto bkops is enabled or disabled after this function
5765  * returns control to it.
5766  */
5767 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5768 			     enum bkops_status status)
5769 {
5770 	int err;
5771 	u32 curr_status = 0;
5772 
5773 	err = ufshcd_get_bkops_status(hba, &curr_status);
5774 	if (err) {
5775 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5776 				__func__, err);
5777 		goto out;
5778 	} else if (curr_status > BKOPS_STATUS_MAX) {
5779 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5780 				__func__, curr_status);
5781 		err = -EINVAL;
5782 		goto out;
5783 	}
5784 
5785 	if (curr_status >= status)
5786 		err = ufshcd_enable_auto_bkops(hba);
5787 	else
5788 		err = ufshcd_disable_auto_bkops(hba);
5789 out:
5790 	return err;
5791 }
5792 
5793 /**
5794  * ufshcd_urgent_bkops - handle urgent bkops exception event
5795  * @hba: per-adapter instance
5796  *
5797  * Enable fBackgroundOpsEn flag in the device to permit background
5798  * operations.
5799  *
5800  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5801  * and negative error value for any other failure.
5802  *
5803  * Return: 0 upon success; < 0 upon failure.
5804  */
5805 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5806 {
5807 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5808 }
5809 
5810 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5811 {
5812 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5813 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5814 }
5815 
5816 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5817 {
5818 	int err;
5819 	u32 curr_status = 0;
5820 
5821 	if (hba->is_urgent_bkops_lvl_checked)
5822 		goto enable_auto_bkops;
5823 
5824 	err = ufshcd_get_bkops_status(hba, &curr_status);
5825 	if (err) {
5826 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5827 				__func__, err);
5828 		goto out;
5829 	}
5830 
5831 	/*
5832 	 * We are seeing that some devices are raising the urgent bkops
5833 	 * exception events even when BKOPS status doesn't indicate performace
5834 	 * impacted or critical. Handle these device by determining their urgent
5835 	 * bkops status at runtime.
5836 	 */
5837 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5838 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5839 				__func__, curr_status);
5840 		/* update the current status as the urgent bkops level */
5841 		hba->urgent_bkops_lvl = curr_status;
5842 		hba->is_urgent_bkops_lvl_checked = true;
5843 	}
5844 
5845 enable_auto_bkops:
5846 	err = ufshcd_enable_auto_bkops(hba);
5847 out:
5848 	if (err < 0)
5849 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5850 				__func__, err);
5851 }
5852 
5853 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5854 {
5855 	u32 value;
5856 
5857 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5858 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5859 		return;
5860 
5861 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5862 
5863 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5864 
5865 	/*
5866 	 * A placeholder for the platform vendors to add whatever additional
5867 	 * steps required
5868 	 */
5869 }
5870 
5871 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5872 {
5873 	u8 index;
5874 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5875 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5876 
5877 	index = ufshcd_wb_get_query_index(hba);
5878 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5879 }
5880 
5881 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5882 {
5883 	int ret;
5884 
5885 	if (!ufshcd_is_wb_allowed(hba) ||
5886 	    hba->dev_info.wb_enabled == enable)
5887 		return 0;
5888 
5889 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5890 	if (ret) {
5891 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5892 			__func__, enable ? "enabling" : "disabling", ret);
5893 		return ret;
5894 	}
5895 
5896 	hba->dev_info.wb_enabled = enable;
5897 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5898 			__func__, enable ? "enabled" : "disabled");
5899 
5900 	return ret;
5901 }
5902 
5903 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5904 						 bool enable)
5905 {
5906 	int ret;
5907 
5908 	ret = __ufshcd_wb_toggle(hba, enable,
5909 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5910 	if (ret) {
5911 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5912 			__func__, enable ? "enabling" : "disabling", ret);
5913 		return;
5914 	}
5915 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5916 			__func__, enable ? "enabled" : "disabled");
5917 }
5918 
5919 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5920 {
5921 	int ret;
5922 
5923 	if (!ufshcd_is_wb_allowed(hba) ||
5924 	    hba->dev_info.wb_buf_flush_enabled == enable)
5925 		return 0;
5926 
5927 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5928 	if (ret) {
5929 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5930 			__func__, enable ? "enabling" : "disabling", ret);
5931 		return ret;
5932 	}
5933 
5934 	hba->dev_info.wb_buf_flush_enabled = enable;
5935 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5936 			__func__, enable ? "enabled" : "disabled");
5937 
5938 	return ret;
5939 }
5940 
5941 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5942 						u32 avail_buf)
5943 {
5944 	u32 cur_buf;
5945 	int ret;
5946 	u8 index;
5947 
5948 	index = ufshcd_wb_get_query_index(hba);
5949 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5950 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5951 					      index, 0, &cur_buf);
5952 	if (ret) {
5953 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5954 			__func__, ret);
5955 		return false;
5956 	}
5957 
5958 	if (!cur_buf) {
5959 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5960 			 cur_buf);
5961 		return false;
5962 	}
5963 	/* Let it continue to flush when available buffer exceeds threshold */
5964 	return avail_buf < hba->vps->wb_flush_threshold;
5965 }
5966 
5967 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5968 {
5969 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5970 		ufshcd_wb_toggle_buf_flush(hba, false);
5971 
5972 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5973 	ufshcd_wb_toggle(hba, false);
5974 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5975 
5976 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5977 }
5978 
5979 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5980 {
5981 	u32 lifetime;
5982 	int ret;
5983 	u8 index;
5984 
5985 	index = ufshcd_wb_get_query_index(hba);
5986 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5987 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5988 				      index, 0, &lifetime);
5989 	if (ret) {
5990 		dev_err(hba->dev,
5991 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5992 			__func__, ret);
5993 		return false;
5994 	}
5995 
5996 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5997 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5998 			__func__, lifetime);
5999 		return false;
6000 	}
6001 
6002 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6003 		__func__, lifetime);
6004 
6005 	return true;
6006 }
6007 
6008 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6009 {
6010 	int ret;
6011 	u32 avail_buf;
6012 	u8 index;
6013 
6014 	if (!ufshcd_is_wb_allowed(hba))
6015 		return false;
6016 
6017 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6018 		ufshcd_wb_force_disable(hba);
6019 		return false;
6020 	}
6021 
6022 	/*
6023 	 * The ufs device needs the vcc to be ON to flush.
6024 	 * With user-space reduction enabled, it's enough to enable flush
6025 	 * by checking only the available buffer. The threshold
6026 	 * defined here is > 90% full.
6027 	 * With user-space preserved enabled, the current-buffer
6028 	 * should be checked too because the wb buffer size can reduce
6029 	 * when disk tends to be full. This info is provided by current
6030 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6031 	 * keeping vcc on when current buffer is empty.
6032 	 */
6033 	index = ufshcd_wb_get_query_index(hba);
6034 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6035 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6036 				      index, 0, &avail_buf);
6037 	if (ret) {
6038 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6039 			 __func__, ret);
6040 		return false;
6041 	}
6042 
6043 	if (!hba->dev_info.b_presrv_uspc_en)
6044 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6045 
6046 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6047 }
6048 
6049 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6050 {
6051 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6052 					   struct ufs_hba,
6053 					   rpm_dev_flush_recheck_work);
6054 	/*
6055 	 * To prevent unnecessary VCC power drain after device finishes
6056 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6057 	 * after a certain delay to recheck the threshold by next runtime
6058 	 * suspend.
6059 	 */
6060 	ufshcd_rpm_get_sync(hba);
6061 	ufshcd_rpm_put_sync(hba);
6062 }
6063 
6064 /**
6065  * ufshcd_exception_event_handler - handle exceptions raised by device
6066  * @work: pointer to work data
6067  *
6068  * Read bExceptionEventStatus attribute from the device and handle the
6069  * exception event accordingly.
6070  */
6071 static void ufshcd_exception_event_handler(struct work_struct *work)
6072 {
6073 	struct ufs_hba *hba;
6074 	int err;
6075 	u32 status = 0;
6076 	hba = container_of(work, struct ufs_hba, eeh_work);
6077 
6078 	ufshcd_scsi_block_requests(hba);
6079 	err = ufshcd_get_ee_status(hba, &status);
6080 	if (err) {
6081 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6082 				__func__, err);
6083 		goto out;
6084 	}
6085 
6086 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6087 
6088 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6089 		ufshcd_bkops_exception_event_handler(hba);
6090 
6091 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6092 		ufshcd_temp_exception_event_handler(hba, status);
6093 
6094 	ufs_debugfs_exception_event(hba, status);
6095 out:
6096 	ufshcd_scsi_unblock_requests(hba);
6097 }
6098 
6099 /* Complete requests that have door-bell cleared */
6100 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6101 {
6102 	if (is_mcq_enabled(hba))
6103 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6104 	else
6105 		ufshcd_transfer_req_compl(hba);
6106 
6107 	ufshcd_tmc_handler(hba);
6108 }
6109 
6110 /**
6111  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6112  *				to recover from the DL NAC errors or not.
6113  * @hba: per-adapter instance
6114  *
6115  * Return: true if error handling is required, false otherwise.
6116  */
6117 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6118 {
6119 	unsigned long flags;
6120 	bool err_handling = true;
6121 
6122 	spin_lock_irqsave(hba->host->host_lock, flags);
6123 	/*
6124 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6125 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6126 	 */
6127 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6128 		goto out;
6129 
6130 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6131 	    ((hba->saved_err & UIC_ERROR) &&
6132 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6133 		goto out;
6134 
6135 	if ((hba->saved_err & UIC_ERROR) &&
6136 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6137 		int err;
6138 		/*
6139 		 * wait for 50ms to see if we can get any other errors or not.
6140 		 */
6141 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6142 		msleep(50);
6143 		spin_lock_irqsave(hba->host->host_lock, flags);
6144 
6145 		/*
6146 		 * now check if we have got any other severe errors other than
6147 		 * DL NAC error?
6148 		 */
6149 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6150 		    ((hba->saved_err & UIC_ERROR) &&
6151 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6152 			goto out;
6153 
6154 		/*
6155 		 * As DL NAC is the only error received so far, send out NOP
6156 		 * command to confirm if link is still active or not.
6157 		 *   - If we don't get any response then do error recovery.
6158 		 *   - If we get response then clear the DL NAC error bit.
6159 		 */
6160 
6161 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6162 		err = ufshcd_verify_dev_init(hba);
6163 		spin_lock_irqsave(hba->host->host_lock, flags);
6164 
6165 		if (err)
6166 			goto out;
6167 
6168 		/* Link seems to be alive hence ignore the DL NAC errors */
6169 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6170 			hba->saved_err &= ~UIC_ERROR;
6171 		/* clear NAC error */
6172 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6173 		if (!hba->saved_uic_err)
6174 			err_handling = false;
6175 	}
6176 out:
6177 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6178 	return err_handling;
6179 }
6180 
6181 /* host lock must be held before calling this func */
6182 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6183 {
6184 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6185 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6186 }
6187 
6188 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6189 {
6190 	lockdep_assert_held(hba->host->host_lock);
6191 
6192 	/* handle fatal errors only when link is not in error state */
6193 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6194 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6195 		    ufshcd_is_saved_err_fatal(hba))
6196 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6197 		else
6198 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6199 		queue_work(hba->eh_wq, &hba->eh_work);
6200 	}
6201 }
6202 
6203 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6204 {
6205 	spin_lock_irq(hba->host->host_lock);
6206 	hba->force_reset = true;
6207 	ufshcd_schedule_eh_work(hba);
6208 	spin_unlock_irq(hba->host->host_lock);
6209 }
6210 
6211 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6212 {
6213 	mutex_lock(&hba->wb_mutex);
6214 	down_write(&hba->clk_scaling_lock);
6215 	hba->clk_scaling.is_allowed = allow;
6216 	up_write(&hba->clk_scaling_lock);
6217 	mutex_unlock(&hba->wb_mutex);
6218 }
6219 
6220 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6221 {
6222 	if (suspend) {
6223 		if (hba->clk_scaling.is_enabled)
6224 			ufshcd_suspend_clkscaling(hba);
6225 		ufshcd_clk_scaling_allow(hba, false);
6226 	} else {
6227 		ufshcd_clk_scaling_allow(hba, true);
6228 		if (hba->clk_scaling.is_enabled)
6229 			ufshcd_resume_clkscaling(hba);
6230 	}
6231 }
6232 
6233 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6234 {
6235 	ufshcd_rpm_get_sync(hba);
6236 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6237 	    hba->is_sys_suspended) {
6238 		enum ufs_pm_op pm_op;
6239 
6240 		/*
6241 		 * Don't assume anything of resume, if
6242 		 * resume fails, irq and clocks can be OFF, and powers
6243 		 * can be OFF or in LPM.
6244 		 */
6245 		ufshcd_setup_hba_vreg(hba, true);
6246 		ufshcd_enable_irq(hba);
6247 		ufshcd_setup_vreg(hba, true);
6248 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6249 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6250 		ufshcd_hold(hba);
6251 		if (!ufshcd_is_clkgating_allowed(hba))
6252 			ufshcd_setup_clocks(hba, true);
6253 		ufshcd_release(hba);
6254 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6255 		ufshcd_vops_resume(hba, pm_op);
6256 	} else {
6257 		ufshcd_hold(hba);
6258 		if (ufshcd_is_clkscaling_supported(hba) &&
6259 		    hba->clk_scaling.is_enabled)
6260 			ufshcd_suspend_clkscaling(hba);
6261 		ufshcd_clk_scaling_allow(hba, false);
6262 	}
6263 	ufshcd_scsi_block_requests(hba);
6264 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6265 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6266 	cancel_work_sync(&hba->eeh_work);
6267 }
6268 
6269 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6270 {
6271 	ufshcd_scsi_unblock_requests(hba);
6272 	ufshcd_release(hba);
6273 	if (ufshcd_is_clkscaling_supported(hba))
6274 		ufshcd_clk_scaling_suspend(hba, false);
6275 	ufshcd_rpm_put(hba);
6276 }
6277 
6278 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6279 {
6280 	return (!hba->is_powered || hba->shutting_down ||
6281 		!hba->ufs_device_wlun ||
6282 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6283 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6284 		   ufshcd_is_link_broken(hba))));
6285 }
6286 
6287 #ifdef CONFIG_PM
6288 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6289 {
6290 	struct Scsi_Host *shost = hba->host;
6291 	struct scsi_device *sdev;
6292 	struct request_queue *q;
6293 	int ret;
6294 
6295 	hba->is_sys_suspended = false;
6296 	/*
6297 	 * Set RPM status of wlun device to RPM_ACTIVE,
6298 	 * this also clears its runtime error.
6299 	 */
6300 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6301 
6302 	/* hba device might have a runtime error otherwise */
6303 	if (ret)
6304 		ret = pm_runtime_set_active(hba->dev);
6305 	/*
6306 	 * If wlun device had runtime error, we also need to resume those
6307 	 * consumer scsi devices in case any of them has failed to be
6308 	 * resumed due to supplier runtime resume failure. This is to unblock
6309 	 * blk_queue_enter in case there are bios waiting inside it.
6310 	 */
6311 	if (!ret) {
6312 		shost_for_each_device(sdev, shost) {
6313 			q = sdev->request_queue;
6314 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6315 				       q->rpm_status == RPM_SUSPENDING))
6316 				pm_request_resume(q->dev);
6317 		}
6318 	}
6319 }
6320 #else
6321 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6322 {
6323 }
6324 #endif
6325 
6326 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6327 {
6328 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6329 	u32 mode;
6330 
6331 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6332 
6333 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6334 		return true;
6335 
6336 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6337 		return true;
6338 
6339 	return false;
6340 }
6341 
6342 static bool ufshcd_abort_one(struct request *rq, void *priv)
6343 {
6344 	int *ret = priv;
6345 	u32 tag = rq->tag;
6346 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6347 	struct scsi_device *sdev = cmd->device;
6348 	struct Scsi_Host *shost = sdev->host;
6349 	struct ufs_hba *hba = shost_priv(shost);
6350 
6351 	*ret = ufshcd_try_to_abort_task(hba, tag);
6352 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6353 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6354 		*ret ? "failed" : "succeeded");
6355 	return *ret == 0;
6356 }
6357 
6358 /**
6359  * ufshcd_abort_all - Abort all pending commands.
6360  * @hba: Host bus adapter pointer.
6361  *
6362  * Return: true if and only if the host controller needs to be reset.
6363  */
6364 static bool ufshcd_abort_all(struct ufs_hba *hba)
6365 {
6366 	int tag, ret = 0;
6367 
6368 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6369 	if (ret)
6370 		goto out;
6371 
6372 	/* Clear pending task management requests */
6373 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6374 		ret = ufshcd_clear_tm_cmd(hba, tag);
6375 		if (ret)
6376 			goto out;
6377 	}
6378 
6379 out:
6380 	/* Complete the requests that are cleared by s/w */
6381 	ufshcd_complete_requests(hba, false);
6382 
6383 	return ret != 0;
6384 }
6385 
6386 /**
6387  * ufshcd_err_handler - handle UFS errors that require s/w attention
6388  * @work: pointer to work structure
6389  */
6390 static void ufshcd_err_handler(struct work_struct *work)
6391 {
6392 	int retries = MAX_ERR_HANDLER_RETRIES;
6393 	struct ufs_hba *hba;
6394 	unsigned long flags;
6395 	bool needs_restore;
6396 	bool needs_reset;
6397 	int pmc_err;
6398 
6399 	hba = container_of(work, struct ufs_hba, eh_work);
6400 
6401 	dev_info(hba->dev,
6402 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6403 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6404 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6405 		 hba->saved_uic_err, hba->force_reset,
6406 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6407 
6408 	down(&hba->host_sem);
6409 	spin_lock_irqsave(hba->host->host_lock, flags);
6410 	if (ufshcd_err_handling_should_stop(hba)) {
6411 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6412 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6413 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6414 		up(&hba->host_sem);
6415 		return;
6416 	}
6417 	ufshcd_set_eh_in_progress(hba);
6418 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6419 	ufshcd_err_handling_prepare(hba);
6420 	/* Complete requests that have door-bell cleared by h/w */
6421 	ufshcd_complete_requests(hba, false);
6422 	spin_lock_irqsave(hba->host->host_lock, flags);
6423 again:
6424 	needs_restore = false;
6425 	needs_reset = false;
6426 
6427 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6428 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6429 	/*
6430 	 * A full reset and restore might have happened after preparation
6431 	 * is finished, double check whether we should stop.
6432 	 */
6433 	if (ufshcd_err_handling_should_stop(hba))
6434 		goto skip_err_handling;
6435 
6436 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6437 		bool ret;
6438 
6439 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6440 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6441 		ret = ufshcd_quirk_dl_nac_errors(hba);
6442 		spin_lock_irqsave(hba->host->host_lock, flags);
6443 		if (!ret && ufshcd_err_handling_should_stop(hba))
6444 			goto skip_err_handling;
6445 	}
6446 
6447 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6448 	    (hba->saved_uic_err &&
6449 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6450 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6451 
6452 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6453 		ufshcd_print_host_state(hba);
6454 		ufshcd_print_pwr_info(hba);
6455 		ufshcd_print_evt_hist(hba);
6456 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6457 		ufshcd_print_trs_all(hba, pr_prdt);
6458 		spin_lock_irqsave(hba->host->host_lock, flags);
6459 	}
6460 
6461 	/*
6462 	 * if host reset is required then skip clearing the pending
6463 	 * transfers forcefully because they will get cleared during
6464 	 * host reset and restore
6465 	 */
6466 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6467 	    ufshcd_is_saved_err_fatal(hba) ||
6468 	    ((hba->saved_err & UIC_ERROR) &&
6469 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6470 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6471 		needs_reset = true;
6472 		goto do_reset;
6473 	}
6474 
6475 	/*
6476 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6477 	 * check if power mode restore is needed.
6478 	 */
6479 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6480 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6481 		if (!hba->saved_uic_err)
6482 			hba->saved_err &= ~UIC_ERROR;
6483 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6484 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6485 			needs_restore = true;
6486 		spin_lock_irqsave(hba->host->host_lock, flags);
6487 		if (!hba->saved_err && !needs_restore)
6488 			goto skip_err_handling;
6489 	}
6490 
6491 	hba->silence_err_logs = true;
6492 	/* release lock as clear command might sleep */
6493 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6494 
6495 	needs_reset = ufshcd_abort_all(hba);
6496 
6497 	spin_lock_irqsave(hba->host->host_lock, flags);
6498 	hba->silence_err_logs = false;
6499 	if (needs_reset)
6500 		goto do_reset;
6501 
6502 	/*
6503 	 * After all reqs and tasks are cleared from doorbell,
6504 	 * now it is safe to retore power mode.
6505 	 */
6506 	if (needs_restore) {
6507 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6508 		/*
6509 		 * Hold the scaling lock just in case dev cmds
6510 		 * are sent via bsg and/or sysfs.
6511 		 */
6512 		down_write(&hba->clk_scaling_lock);
6513 		hba->force_pmc = true;
6514 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6515 		if (pmc_err) {
6516 			needs_reset = true;
6517 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6518 					__func__, pmc_err);
6519 		}
6520 		hba->force_pmc = false;
6521 		ufshcd_print_pwr_info(hba);
6522 		up_write(&hba->clk_scaling_lock);
6523 		spin_lock_irqsave(hba->host->host_lock, flags);
6524 	}
6525 
6526 do_reset:
6527 	/* Fatal errors need reset */
6528 	if (needs_reset) {
6529 		int err;
6530 
6531 		hba->force_reset = false;
6532 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6533 		err = ufshcd_reset_and_restore(hba);
6534 		if (err)
6535 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6536 					__func__, err);
6537 		else
6538 			ufshcd_recover_pm_error(hba);
6539 		spin_lock_irqsave(hba->host->host_lock, flags);
6540 	}
6541 
6542 skip_err_handling:
6543 	if (!needs_reset) {
6544 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6545 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6546 		if (hba->saved_err || hba->saved_uic_err)
6547 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6548 			    __func__, hba->saved_err, hba->saved_uic_err);
6549 	}
6550 	/* Exit in an operational state or dead */
6551 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6552 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6553 		if (--retries)
6554 			goto again;
6555 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6556 	}
6557 	ufshcd_clear_eh_in_progress(hba);
6558 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6559 	ufshcd_err_handling_unprepare(hba);
6560 	up(&hba->host_sem);
6561 
6562 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6563 		 ufshcd_state_name[hba->ufshcd_state]);
6564 }
6565 
6566 /**
6567  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6568  * @hba: per-adapter instance
6569  *
6570  * Return:
6571  *  IRQ_HANDLED - If interrupt is valid
6572  *  IRQ_NONE    - If invalid interrupt
6573  */
6574 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6575 {
6576 	u32 reg;
6577 	irqreturn_t retval = IRQ_NONE;
6578 
6579 	/* PHY layer error */
6580 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6581 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6582 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6583 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6584 		/*
6585 		 * To know whether this error is fatal or not, DB timeout
6586 		 * must be checked but this error is handled separately.
6587 		 */
6588 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6589 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6590 					__func__);
6591 
6592 		/* Got a LINERESET indication. */
6593 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6594 			struct uic_command *cmd = NULL;
6595 
6596 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6597 			if (hba->uic_async_done && hba->active_uic_cmd)
6598 				cmd = hba->active_uic_cmd;
6599 			/*
6600 			 * Ignore the LINERESET during power mode change
6601 			 * operation via DME_SET command.
6602 			 */
6603 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6604 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6605 		}
6606 		retval |= IRQ_HANDLED;
6607 	}
6608 
6609 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6610 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6611 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6612 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6613 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6614 
6615 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6616 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6617 		else if (hba->dev_quirks &
6618 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6619 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6620 				hba->uic_error |=
6621 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6622 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6623 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6624 		}
6625 		retval |= IRQ_HANDLED;
6626 	}
6627 
6628 	/* UIC NL/TL/DME errors needs software retry */
6629 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6630 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6631 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6632 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6633 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6634 		retval |= IRQ_HANDLED;
6635 	}
6636 
6637 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6638 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6639 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6640 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6641 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6642 		retval |= IRQ_HANDLED;
6643 	}
6644 
6645 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6646 	if ((reg & UIC_DME_ERROR) &&
6647 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6648 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6649 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6650 		retval |= IRQ_HANDLED;
6651 	}
6652 
6653 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6654 			__func__, hba->uic_error);
6655 	return retval;
6656 }
6657 
6658 /**
6659  * ufshcd_check_errors - Check for errors that need s/w attention
6660  * @hba: per-adapter instance
6661  * @intr_status: interrupt status generated by the controller
6662  *
6663  * Return:
6664  *  IRQ_HANDLED - If interrupt is valid
6665  *  IRQ_NONE    - If invalid interrupt
6666  */
6667 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6668 {
6669 	bool queue_eh_work = false;
6670 	irqreturn_t retval = IRQ_NONE;
6671 
6672 	spin_lock(hba->host->host_lock);
6673 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6674 
6675 	if (hba->errors & INT_FATAL_ERRORS) {
6676 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6677 				       hba->errors);
6678 		queue_eh_work = true;
6679 	}
6680 
6681 	if (hba->errors & UIC_ERROR) {
6682 		hba->uic_error = 0;
6683 		retval = ufshcd_update_uic_error(hba);
6684 		if (hba->uic_error)
6685 			queue_eh_work = true;
6686 	}
6687 
6688 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6689 		dev_err(hba->dev,
6690 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6691 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6692 			"Enter" : "Exit",
6693 			hba->errors, ufshcd_get_upmcrs(hba));
6694 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6695 				       hba->errors);
6696 		ufshcd_set_link_broken(hba);
6697 		queue_eh_work = true;
6698 	}
6699 
6700 	if (queue_eh_work) {
6701 		/*
6702 		 * update the transfer error masks to sticky bits, let's do this
6703 		 * irrespective of current ufshcd_state.
6704 		 */
6705 		hba->saved_err |= hba->errors;
6706 		hba->saved_uic_err |= hba->uic_error;
6707 
6708 		/* dump controller state before resetting */
6709 		if ((hba->saved_err &
6710 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6711 		    (hba->saved_uic_err &&
6712 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6713 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6714 					__func__, hba->saved_err,
6715 					hba->saved_uic_err);
6716 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6717 					 "host_regs: ");
6718 			ufshcd_print_pwr_info(hba);
6719 		}
6720 		ufshcd_schedule_eh_work(hba);
6721 		retval |= IRQ_HANDLED;
6722 	}
6723 	/*
6724 	 * if (!queue_eh_work) -
6725 	 * Other errors are either non-fatal where host recovers
6726 	 * itself without s/w intervention or errors that will be
6727 	 * handled by the SCSI core layer.
6728 	 */
6729 	hba->errors = 0;
6730 	hba->uic_error = 0;
6731 	spin_unlock(hba->host->host_lock);
6732 	return retval;
6733 }
6734 
6735 /**
6736  * ufshcd_tmc_handler - handle task management function completion
6737  * @hba: per adapter instance
6738  *
6739  * Return:
6740  *  IRQ_HANDLED - If interrupt is valid
6741  *  IRQ_NONE    - If invalid interrupt
6742  */
6743 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6744 {
6745 	unsigned long flags, pending, issued;
6746 	irqreturn_t ret = IRQ_NONE;
6747 	int tag;
6748 
6749 	spin_lock_irqsave(hba->host->host_lock, flags);
6750 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6751 	issued = hba->outstanding_tasks & ~pending;
6752 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6753 		struct request *req = hba->tmf_rqs[tag];
6754 		struct completion *c = req->end_io_data;
6755 
6756 		complete(c);
6757 		ret = IRQ_HANDLED;
6758 	}
6759 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6760 
6761 	return ret;
6762 }
6763 
6764 /**
6765  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6766  * @hba: per adapter instance
6767  *
6768  * Return: IRQ_HANDLED if interrupt is handled.
6769  */
6770 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6771 {
6772 	struct ufs_hw_queue *hwq;
6773 	unsigned long outstanding_cqs;
6774 	unsigned int nr_queues;
6775 	int i, ret;
6776 	u32 events;
6777 
6778 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6779 	if (ret)
6780 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6781 
6782 	/* Exclude the poll queues */
6783 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6784 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6785 		hwq = &hba->uhq[i];
6786 
6787 		events = ufshcd_mcq_read_cqis(hba, i);
6788 		if (events)
6789 			ufshcd_mcq_write_cqis(hba, events, i);
6790 
6791 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6792 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6793 	}
6794 
6795 	return IRQ_HANDLED;
6796 }
6797 
6798 /**
6799  * ufshcd_sl_intr - Interrupt service routine
6800  * @hba: per adapter instance
6801  * @intr_status: contains interrupts generated by the controller
6802  *
6803  * Return:
6804  *  IRQ_HANDLED - If interrupt is valid
6805  *  IRQ_NONE    - If invalid interrupt
6806  */
6807 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6808 {
6809 	irqreturn_t retval = IRQ_NONE;
6810 
6811 	if (intr_status & UFSHCD_UIC_MASK)
6812 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6813 
6814 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6815 		retval |= ufshcd_check_errors(hba, intr_status);
6816 
6817 	if (intr_status & UTP_TASK_REQ_COMPL)
6818 		retval |= ufshcd_tmc_handler(hba);
6819 
6820 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6821 		retval |= ufshcd_transfer_req_compl(hba);
6822 
6823 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6824 		retval |= ufshcd_handle_mcq_cq_events(hba);
6825 
6826 	return retval;
6827 }
6828 
6829 /**
6830  * ufshcd_intr - Main interrupt service routine
6831  * @irq: irq number
6832  * @__hba: pointer to adapter instance
6833  *
6834  * Return:
6835  *  IRQ_HANDLED - If interrupt is valid
6836  *  IRQ_NONE    - If invalid interrupt
6837  */
6838 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6839 {
6840 	u32 intr_status, enabled_intr_status = 0;
6841 	irqreturn_t retval = IRQ_NONE;
6842 	struct ufs_hba *hba = __hba;
6843 	int retries = hba->nutrs;
6844 
6845 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6846 	hba->ufs_stats.last_intr_status = intr_status;
6847 	hba->ufs_stats.last_intr_ts = local_clock();
6848 
6849 	/*
6850 	 * There could be max of hba->nutrs reqs in flight and in worst case
6851 	 * if the reqs get finished 1 by 1 after the interrupt status is
6852 	 * read, make sure we handle them by checking the interrupt status
6853 	 * again in a loop until we process all of the reqs before returning.
6854 	 */
6855 	while (intr_status && retries--) {
6856 		enabled_intr_status =
6857 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6858 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6859 		if (enabled_intr_status)
6860 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6861 
6862 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6863 	}
6864 
6865 	if (enabled_intr_status && retval == IRQ_NONE &&
6866 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6867 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6868 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6869 					__func__,
6870 					intr_status,
6871 					hba->ufs_stats.last_intr_status,
6872 					enabled_intr_status);
6873 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6874 	}
6875 
6876 	return retval;
6877 }
6878 
6879 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6880 {
6881 	int err = 0;
6882 	u32 mask = 1 << tag;
6883 	unsigned long flags;
6884 
6885 	if (!test_bit(tag, &hba->outstanding_tasks))
6886 		goto out;
6887 
6888 	spin_lock_irqsave(hba->host->host_lock, flags);
6889 	ufshcd_utmrl_clear(hba, tag);
6890 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6891 
6892 	/* poll for max. 1 sec to clear door bell register by h/w */
6893 	err = ufshcd_wait_for_register(hba,
6894 			REG_UTP_TASK_REQ_DOOR_BELL,
6895 			mask, 0, 1000, 1000);
6896 
6897 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6898 		tag, err ? "succeeded" : "failed");
6899 
6900 out:
6901 	return err;
6902 }
6903 
6904 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6905 		struct utp_task_req_desc *treq, u8 tm_function)
6906 {
6907 	struct request_queue *q = hba->tmf_queue;
6908 	struct Scsi_Host *host = hba->host;
6909 	DECLARE_COMPLETION_ONSTACK(wait);
6910 	struct request *req;
6911 	unsigned long flags;
6912 	int task_tag, err;
6913 
6914 	/*
6915 	 * blk_mq_alloc_request() is used here only to get a free tag.
6916 	 */
6917 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6918 	if (IS_ERR(req))
6919 		return PTR_ERR(req);
6920 
6921 	req->end_io_data = &wait;
6922 	ufshcd_hold(hba);
6923 
6924 	spin_lock_irqsave(host->host_lock, flags);
6925 
6926 	task_tag = req->tag;
6927 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6928 		  task_tag);
6929 	hba->tmf_rqs[req->tag] = req;
6930 	treq->upiu_req.req_header.task_tag = task_tag;
6931 
6932 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6933 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6934 
6935 	/* send command to the controller */
6936 	__set_bit(task_tag, &hba->outstanding_tasks);
6937 
6938 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6939 	/* Make sure that doorbell is committed immediately */
6940 	wmb();
6941 
6942 	spin_unlock_irqrestore(host->host_lock, flags);
6943 
6944 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6945 
6946 	/* wait until the task management command is completed */
6947 	err = wait_for_completion_io_timeout(&wait,
6948 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6949 	if (!err) {
6950 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6951 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6952 				__func__, tm_function);
6953 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6954 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6955 					__func__, task_tag);
6956 		err = -ETIMEDOUT;
6957 	} else {
6958 		err = 0;
6959 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6960 
6961 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6962 	}
6963 
6964 	spin_lock_irqsave(hba->host->host_lock, flags);
6965 	hba->tmf_rqs[req->tag] = NULL;
6966 	__clear_bit(task_tag, &hba->outstanding_tasks);
6967 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6968 
6969 	ufshcd_release(hba);
6970 	blk_mq_free_request(req);
6971 
6972 	return err;
6973 }
6974 
6975 /**
6976  * ufshcd_issue_tm_cmd - issues task management commands to controller
6977  * @hba: per adapter instance
6978  * @lun_id: LUN ID to which TM command is sent
6979  * @task_id: task ID to which the TM command is applicable
6980  * @tm_function: task management function opcode
6981  * @tm_response: task management service response return value
6982  *
6983  * Return: non-zero value on error, zero on success.
6984  */
6985 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6986 		u8 tm_function, u8 *tm_response)
6987 {
6988 	struct utp_task_req_desc treq = { };
6989 	enum utp_ocs ocs_value;
6990 	int err;
6991 
6992 	/* Configure task request descriptor */
6993 	treq.header.interrupt = 1;
6994 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
6995 
6996 	/* Configure task request UPIU */
6997 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
6998 	treq.upiu_req.req_header.lun = lun_id;
6999 	treq.upiu_req.req_header.tm_function = tm_function;
7000 
7001 	/*
7002 	 * The host shall provide the same value for LUN field in the basic
7003 	 * header and for Input Parameter.
7004 	 */
7005 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7006 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7007 
7008 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7009 	if (err == -ETIMEDOUT)
7010 		return err;
7011 
7012 	ocs_value = treq.header.ocs & MASK_OCS;
7013 	if (ocs_value != OCS_SUCCESS)
7014 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7015 				__func__, ocs_value);
7016 	else if (tm_response)
7017 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7018 				MASK_TM_SERVICE_RESP;
7019 	return err;
7020 }
7021 
7022 /**
7023  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7024  * @hba:	per-adapter instance
7025  * @req_upiu:	upiu request
7026  * @rsp_upiu:	upiu reply
7027  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7028  * @buff_len:	descriptor size, 0 if NA
7029  * @cmd_type:	specifies the type (NOP, Query...)
7030  * @desc_op:	descriptor operation
7031  *
7032  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7033  * Therefore, it "rides" the device management infrastructure: uses its tag and
7034  * tasks work queues.
7035  *
7036  * Since there is only one available tag for device management commands,
7037  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7038  *
7039  * Return: 0 upon success; < 0 upon failure.
7040  */
7041 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7042 					struct utp_upiu_req *req_upiu,
7043 					struct utp_upiu_req *rsp_upiu,
7044 					u8 *desc_buff, int *buff_len,
7045 					enum dev_cmd_type cmd_type,
7046 					enum query_opcode desc_op)
7047 {
7048 	DECLARE_COMPLETION_ONSTACK(wait);
7049 	const u32 tag = hba->reserved_slot;
7050 	struct ufshcd_lrb *lrbp;
7051 	int err = 0;
7052 	u8 upiu_flags;
7053 
7054 	/* Protects use of hba->reserved_slot. */
7055 	lockdep_assert_held(&hba->dev_cmd.lock);
7056 
7057 	down_read(&hba->clk_scaling_lock);
7058 
7059 	lrbp = &hba->lrb[tag];
7060 	lrbp->cmd = NULL;
7061 	lrbp->task_tag = tag;
7062 	lrbp->lun = 0;
7063 	lrbp->intr_cmd = true;
7064 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7065 	hba->dev_cmd.type = cmd_type;
7066 
7067 	if (hba->ufs_version <= ufshci_version(1, 1))
7068 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7069 	else
7070 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7071 
7072 	/* update the task tag in the request upiu */
7073 	req_upiu->header.task_tag = tag;
7074 
7075 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7076 
7077 	/* just copy the upiu request as it is */
7078 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7079 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7080 		/* The Data Segment Area is optional depending upon the query
7081 		 * function value. for WRITE DESCRIPTOR, the data segment
7082 		 * follows right after the tsf.
7083 		 */
7084 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7085 		*buff_len = 0;
7086 	}
7087 
7088 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7089 
7090 	hba->dev_cmd.complete = &wait;
7091 
7092 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7093 
7094 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7095 	/*
7096 	 * ignore the returning value here - ufshcd_check_query_response is
7097 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7098 	 * read the response directly ignoring all errors.
7099 	 */
7100 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7101 
7102 	/* just copy the upiu response as it is */
7103 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7104 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7105 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7106 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7107 					   .data_segment_length);
7108 
7109 		if (*buff_len >= resp_len) {
7110 			memcpy(desc_buff, descp, resp_len);
7111 			*buff_len = resp_len;
7112 		} else {
7113 			dev_warn(hba->dev,
7114 				 "%s: rsp size %d is bigger than buffer size %d",
7115 				 __func__, resp_len, *buff_len);
7116 			*buff_len = 0;
7117 			err = -EINVAL;
7118 		}
7119 	}
7120 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7121 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7122 
7123 	up_read(&hba->clk_scaling_lock);
7124 	return err;
7125 }
7126 
7127 /**
7128  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7129  * @hba:	per-adapter instance
7130  * @req_upiu:	upiu request
7131  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7132  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7133  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7134  * @buff_len:	descriptor size, 0 if NA
7135  * @desc_op:	descriptor operation
7136  *
7137  * Supports UTP Transfer requests (nop and query), and UTP Task
7138  * Management requests.
7139  * It is up to the caller to fill the upiu conent properly, as it will
7140  * be copied without any further input validations.
7141  *
7142  * Return: 0 upon success; < 0 upon failure.
7143  */
7144 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7145 			     struct utp_upiu_req *req_upiu,
7146 			     struct utp_upiu_req *rsp_upiu,
7147 			     enum upiu_request_transaction msgcode,
7148 			     u8 *desc_buff, int *buff_len,
7149 			     enum query_opcode desc_op)
7150 {
7151 	int err;
7152 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7153 	struct utp_task_req_desc treq = { };
7154 	enum utp_ocs ocs_value;
7155 	u8 tm_f = req_upiu->header.tm_function;
7156 
7157 	switch (msgcode) {
7158 	case UPIU_TRANSACTION_NOP_OUT:
7159 		cmd_type = DEV_CMD_TYPE_NOP;
7160 		fallthrough;
7161 	case UPIU_TRANSACTION_QUERY_REQ:
7162 		ufshcd_hold(hba);
7163 		mutex_lock(&hba->dev_cmd.lock);
7164 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7165 						   desc_buff, buff_len,
7166 						   cmd_type, desc_op);
7167 		mutex_unlock(&hba->dev_cmd.lock);
7168 		ufshcd_release(hba);
7169 
7170 		break;
7171 	case UPIU_TRANSACTION_TASK_REQ:
7172 		treq.header.interrupt = 1;
7173 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7174 
7175 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7176 
7177 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7178 		if (err == -ETIMEDOUT)
7179 			break;
7180 
7181 		ocs_value = treq.header.ocs & MASK_OCS;
7182 		if (ocs_value != OCS_SUCCESS) {
7183 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7184 				ocs_value);
7185 			break;
7186 		}
7187 
7188 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7189 
7190 		break;
7191 	default:
7192 		err = -EINVAL;
7193 
7194 		break;
7195 	}
7196 
7197 	return err;
7198 }
7199 
7200 /**
7201  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7202  * @hba:	per adapter instance
7203  * @req_upiu:	upiu request
7204  * @rsp_upiu:	upiu reply
7205  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7206  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7207  * @sg_cnt:	The number of sg lists actually used
7208  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7209  * @dir:	DMA direction
7210  *
7211  * Return: zero on success, non-zero on failure.
7212  */
7213 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7214 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7215 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7216 			 enum dma_data_direction dir)
7217 {
7218 	DECLARE_COMPLETION_ONSTACK(wait);
7219 	const u32 tag = hba->reserved_slot;
7220 	struct ufshcd_lrb *lrbp;
7221 	int err = 0;
7222 	int result;
7223 	u8 upiu_flags;
7224 	u8 *ehs_data;
7225 	u16 ehs_len;
7226 
7227 	/* Protects use of hba->reserved_slot. */
7228 	ufshcd_hold(hba);
7229 	mutex_lock(&hba->dev_cmd.lock);
7230 	down_read(&hba->clk_scaling_lock);
7231 
7232 	lrbp = &hba->lrb[tag];
7233 	lrbp->cmd = NULL;
7234 	lrbp->task_tag = tag;
7235 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7236 
7237 	lrbp->intr_cmd = true;
7238 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7239 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7240 
7241 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7242 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7243 
7244 	/*
7245 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7246 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7247 	 * HW controller takes EHS length from UTRD.
7248 	 */
7249 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7250 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7251 	else
7252 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7253 
7254 	/* update the task tag */
7255 	req_upiu->header.task_tag = tag;
7256 
7257 	/* copy the UPIU(contains CDB) request as it is */
7258 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7259 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7260 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7261 
7262 	if (dir != DMA_NONE && sg_list)
7263 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7264 
7265 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7266 
7267 	hba->dev_cmd.complete = &wait;
7268 
7269 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7270 
7271 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7272 
7273 	if (!err) {
7274 		/* Just copy the upiu response as it is */
7275 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7276 		/* Get the response UPIU result */
7277 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7278 			lrbp->ucd_rsp_ptr->header.status;
7279 
7280 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7281 		/*
7282 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7283 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7284 		 * Message is 02h
7285 		 */
7286 		if (ehs_len == 2 && rsp_ehs) {
7287 			/*
7288 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7289 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7290 			 */
7291 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7292 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7293 		}
7294 	}
7295 
7296 	up_read(&hba->clk_scaling_lock);
7297 	mutex_unlock(&hba->dev_cmd.lock);
7298 	ufshcd_release(hba);
7299 	return err ? : result;
7300 }
7301 
7302 /**
7303  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7304  * @cmd: SCSI command pointer
7305  *
7306  * Return: SUCCESS or FAILED.
7307  */
7308 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7309 {
7310 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7311 	struct Scsi_Host *host;
7312 	struct ufs_hba *hba;
7313 	struct ufs_hw_queue *hwq;
7314 	struct ufshcd_lrb *lrbp;
7315 	u32 pos, not_cleared_mask = 0;
7316 	int err;
7317 	u8 resp = 0xF, lun;
7318 
7319 	host = cmd->device->host;
7320 	hba = shost_priv(host);
7321 
7322 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7323 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7324 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7325 		if (!err)
7326 			err = resp;
7327 		goto out;
7328 	}
7329 
7330 	if (is_mcq_enabled(hba)) {
7331 		for (pos = 0; pos < hba->nutrs; pos++) {
7332 			lrbp = &hba->lrb[pos];
7333 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7334 			    lrbp->lun == lun) {
7335 				ufshcd_clear_cmd(hba, pos);
7336 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7337 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7338 			}
7339 		}
7340 		err = 0;
7341 		goto out;
7342 	}
7343 
7344 	/* clear the commands that were pending for corresponding LUN */
7345 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7346 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7347 		if (hba->lrb[pos].lun == lun)
7348 			__set_bit(pos, &pending_reqs);
7349 	hba->outstanding_reqs &= ~pending_reqs;
7350 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7351 
7352 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7353 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7354 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7355 			not_cleared = 1U << pos &
7356 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7357 			hba->outstanding_reqs |= not_cleared;
7358 			not_cleared_mask |= not_cleared;
7359 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7360 
7361 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7362 				__func__, pos);
7363 		}
7364 	}
7365 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7366 
7367 out:
7368 	hba->req_abort_count = 0;
7369 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7370 	if (!err) {
7371 		err = SUCCESS;
7372 	} else {
7373 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7374 		err = FAILED;
7375 	}
7376 	return err;
7377 }
7378 
7379 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7380 {
7381 	struct ufshcd_lrb *lrbp;
7382 	int tag;
7383 
7384 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7385 		lrbp = &hba->lrb[tag];
7386 		lrbp->req_abort_skip = true;
7387 	}
7388 }
7389 
7390 /**
7391  * ufshcd_try_to_abort_task - abort a specific task
7392  * @hba: Pointer to adapter instance
7393  * @tag: Task tag/index to be aborted
7394  *
7395  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7396  * command, and in host controller by clearing the door-bell register. There can
7397  * be race between controller sending the command to the device while abort is
7398  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7399  * really issued and then try to abort it.
7400  *
7401  * Return: zero on success, non-zero on failure.
7402  */
7403 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7404 {
7405 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7406 	int err = 0;
7407 	int poll_cnt;
7408 	u8 resp = 0xF;
7409 	u32 reg;
7410 
7411 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7412 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7413 				UFS_QUERY_TASK, &resp);
7414 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7415 			/* cmd pending in the device */
7416 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7417 				__func__, tag);
7418 			break;
7419 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7420 			/*
7421 			 * cmd not pending in the device, check if it is
7422 			 * in transition.
7423 			 */
7424 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7425 				__func__, tag);
7426 			if (is_mcq_enabled(hba)) {
7427 				/* MCQ mode */
7428 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7429 					/* sleep for max. 200us same delay as in SDB mode */
7430 					usleep_range(100, 200);
7431 					continue;
7432 				}
7433 				/* command completed already */
7434 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7435 					__func__, tag);
7436 				goto out;
7437 			}
7438 
7439 			/* Single Doorbell Mode */
7440 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7441 			if (reg & (1 << tag)) {
7442 				/* sleep for max. 200us to stabilize */
7443 				usleep_range(100, 200);
7444 				continue;
7445 			}
7446 			/* command completed already */
7447 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7448 				__func__, tag);
7449 			goto out;
7450 		} else {
7451 			dev_err(hba->dev,
7452 				"%s: no response from device. tag = %d, err %d\n",
7453 				__func__, tag, err);
7454 			if (!err)
7455 				err = resp; /* service response error */
7456 			goto out;
7457 		}
7458 	}
7459 
7460 	if (!poll_cnt) {
7461 		err = -EBUSY;
7462 		goto out;
7463 	}
7464 
7465 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7466 			UFS_ABORT_TASK, &resp);
7467 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7468 		if (!err) {
7469 			err = resp; /* service response error */
7470 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7471 				__func__, tag, err);
7472 		}
7473 		goto out;
7474 	}
7475 
7476 	err = ufshcd_clear_cmd(hba, tag);
7477 	if (err)
7478 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7479 			__func__, tag, err);
7480 
7481 out:
7482 	return err;
7483 }
7484 
7485 /**
7486  * ufshcd_abort - scsi host template eh_abort_handler callback
7487  * @cmd: SCSI command pointer
7488  *
7489  * Return: SUCCESS or FAILED.
7490  */
7491 static int ufshcd_abort(struct scsi_cmnd *cmd)
7492 {
7493 	struct Scsi_Host *host = cmd->device->host;
7494 	struct ufs_hba *hba = shost_priv(host);
7495 	int tag = scsi_cmd_to_rq(cmd)->tag;
7496 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7497 	unsigned long flags;
7498 	int err = FAILED;
7499 	bool outstanding;
7500 	u32 reg;
7501 
7502 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7503 
7504 	ufshcd_hold(hba);
7505 
7506 	if (!is_mcq_enabled(hba)) {
7507 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7508 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7509 			/* If command is already aborted/completed, return FAILED. */
7510 			dev_err(hba->dev,
7511 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7512 				__func__, tag, hba->outstanding_reqs, reg);
7513 			goto release;
7514 		}
7515 	}
7516 
7517 	/* Print Transfer Request of aborted task */
7518 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7519 
7520 	/*
7521 	 * Print detailed info about aborted request.
7522 	 * As more than one request might get aborted at the same time,
7523 	 * print full information only for the first aborted request in order
7524 	 * to reduce repeated printouts. For other aborted requests only print
7525 	 * basic details.
7526 	 */
7527 	scsi_print_command(cmd);
7528 	if (!hba->req_abort_count) {
7529 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7530 		ufshcd_print_evt_hist(hba);
7531 		ufshcd_print_host_state(hba);
7532 		ufshcd_print_pwr_info(hba);
7533 		ufshcd_print_tr(hba, tag, true);
7534 	} else {
7535 		ufshcd_print_tr(hba, tag, false);
7536 	}
7537 	hba->req_abort_count++;
7538 
7539 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7540 		/* only execute this code in single doorbell mode */
7541 		dev_err(hba->dev,
7542 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7543 		__func__, tag);
7544 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7545 		goto release;
7546 	}
7547 
7548 	/*
7549 	 * Task abort to the device W-LUN is illegal. When this command
7550 	 * will fail, due to spec violation, scsi err handling next step
7551 	 * will be to send LU reset which, again, is a spec violation.
7552 	 * To avoid these unnecessary/illegal steps, first we clean up
7553 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7554 	 * then queue the eh_work and bail.
7555 	 */
7556 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7557 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7558 
7559 		spin_lock_irqsave(host->host_lock, flags);
7560 		hba->force_reset = true;
7561 		ufshcd_schedule_eh_work(hba);
7562 		spin_unlock_irqrestore(host->host_lock, flags);
7563 		goto release;
7564 	}
7565 
7566 	if (is_mcq_enabled(hba)) {
7567 		/* MCQ mode. Branch off to handle abort for mcq mode */
7568 		err = ufshcd_mcq_abort(cmd);
7569 		goto release;
7570 	}
7571 
7572 	/* Skip task abort in case previous aborts failed and report failure */
7573 	if (lrbp->req_abort_skip) {
7574 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7575 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7576 		goto release;
7577 	}
7578 
7579 	err = ufshcd_try_to_abort_task(hba, tag);
7580 	if (err) {
7581 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7582 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7583 		err = FAILED;
7584 		goto release;
7585 	}
7586 
7587 	/*
7588 	 * Clear the corresponding bit from outstanding_reqs since the command
7589 	 * has been aborted successfully.
7590 	 */
7591 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7592 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7593 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7594 
7595 	if (outstanding)
7596 		ufshcd_release_scsi_cmd(hba, lrbp);
7597 
7598 	err = SUCCESS;
7599 
7600 release:
7601 	/* Matches the ufshcd_hold() call at the start of this function. */
7602 	ufshcd_release(hba);
7603 	return err;
7604 }
7605 
7606 /**
7607  * ufshcd_host_reset_and_restore - reset and restore host controller
7608  * @hba: per-adapter instance
7609  *
7610  * Note that host controller reset may issue DME_RESET to
7611  * local and remote (device) Uni-Pro stack and the attributes
7612  * are reset to default state.
7613  *
7614  * Return: zero on success, non-zero on failure.
7615  */
7616 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7617 {
7618 	int err;
7619 
7620 	/*
7621 	 * Stop the host controller and complete the requests
7622 	 * cleared by h/w
7623 	 */
7624 	ufshcd_hba_stop(hba);
7625 	hba->silence_err_logs = true;
7626 	ufshcd_complete_requests(hba, true);
7627 	hba->silence_err_logs = false;
7628 
7629 	/* scale up clocks to max frequency before full reinitialization */
7630 	ufshcd_scale_clks(hba, true);
7631 
7632 	err = ufshcd_hba_enable(hba);
7633 
7634 	/* Establish the link again and restore the device */
7635 	if (!err)
7636 		err = ufshcd_probe_hba(hba, false);
7637 
7638 	if (err)
7639 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7640 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7641 	return err;
7642 }
7643 
7644 /**
7645  * ufshcd_reset_and_restore - reset and re-initialize host/device
7646  * @hba: per-adapter instance
7647  *
7648  * Reset and recover device, host and re-establish link. This
7649  * is helpful to recover the communication in fatal error conditions.
7650  *
7651  * Return: zero on success, non-zero on failure.
7652  */
7653 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7654 {
7655 	u32 saved_err = 0;
7656 	u32 saved_uic_err = 0;
7657 	int err = 0;
7658 	unsigned long flags;
7659 	int retries = MAX_HOST_RESET_RETRIES;
7660 
7661 	spin_lock_irqsave(hba->host->host_lock, flags);
7662 	do {
7663 		/*
7664 		 * This is a fresh start, cache and clear saved error first,
7665 		 * in case new error generated during reset and restore.
7666 		 */
7667 		saved_err |= hba->saved_err;
7668 		saved_uic_err |= hba->saved_uic_err;
7669 		hba->saved_err = 0;
7670 		hba->saved_uic_err = 0;
7671 		hba->force_reset = false;
7672 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7673 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7674 
7675 		/* Reset the attached device */
7676 		ufshcd_device_reset(hba);
7677 
7678 		err = ufshcd_host_reset_and_restore(hba);
7679 
7680 		spin_lock_irqsave(hba->host->host_lock, flags);
7681 		if (err)
7682 			continue;
7683 		/* Do not exit unless operational or dead */
7684 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7685 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7686 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7687 			err = -EAGAIN;
7688 	} while (err && --retries);
7689 
7690 	/*
7691 	 * Inform scsi mid-layer that we did reset and allow to handle
7692 	 * Unit Attention properly.
7693 	 */
7694 	scsi_report_bus_reset(hba->host, 0);
7695 	if (err) {
7696 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7697 		hba->saved_err |= saved_err;
7698 		hba->saved_uic_err |= saved_uic_err;
7699 	}
7700 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7701 
7702 	return err;
7703 }
7704 
7705 /**
7706  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7707  * @cmd: SCSI command pointer
7708  *
7709  * Return: SUCCESS or FAILED.
7710  */
7711 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7712 {
7713 	int err = SUCCESS;
7714 	unsigned long flags;
7715 	struct ufs_hba *hba;
7716 
7717 	hba = shost_priv(cmd->device->host);
7718 
7719 	spin_lock_irqsave(hba->host->host_lock, flags);
7720 	hba->force_reset = true;
7721 	ufshcd_schedule_eh_work(hba);
7722 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7723 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7724 
7725 	flush_work(&hba->eh_work);
7726 
7727 	spin_lock_irqsave(hba->host->host_lock, flags);
7728 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7729 		err = FAILED;
7730 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7731 
7732 	return err;
7733 }
7734 
7735 /**
7736  * ufshcd_get_max_icc_level - calculate the ICC level
7737  * @sup_curr_uA: max. current supported by the regulator
7738  * @start_scan: row at the desc table to start scan from
7739  * @buff: power descriptor buffer
7740  *
7741  * Return: calculated max ICC level for specific regulator.
7742  */
7743 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7744 				    const char *buff)
7745 {
7746 	int i;
7747 	int curr_uA;
7748 	u16 data;
7749 	u16 unit;
7750 
7751 	for (i = start_scan; i >= 0; i--) {
7752 		data = get_unaligned_be16(&buff[2 * i]);
7753 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7754 						ATTR_ICC_LVL_UNIT_OFFSET;
7755 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7756 		switch (unit) {
7757 		case UFSHCD_NANO_AMP:
7758 			curr_uA = curr_uA / 1000;
7759 			break;
7760 		case UFSHCD_MILI_AMP:
7761 			curr_uA = curr_uA * 1000;
7762 			break;
7763 		case UFSHCD_AMP:
7764 			curr_uA = curr_uA * 1000 * 1000;
7765 			break;
7766 		case UFSHCD_MICRO_AMP:
7767 		default:
7768 			break;
7769 		}
7770 		if (sup_curr_uA >= curr_uA)
7771 			break;
7772 	}
7773 	if (i < 0) {
7774 		i = 0;
7775 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7776 	}
7777 
7778 	return (u32)i;
7779 }
7780 
7781 /**
7782  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7783  * In case regulators are not initialized we'll return 0
7784  * @hba: per-adapter instance
7785  * @desc_buf: power descriptor buffer to extract ICC levels from.
7786  *
7787  * Return: calculated ICC level.
7788  */
7789 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7790 						const u8 *desc_buf)
7791 {
7792 	u32 icc_level = 0;
7793 
7794 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7795 						!hba->vreg_info.vccq2) {
7796 		/*
7797 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7798 		 * never-ending cycles of messages written back to storage by
7799 		 * user space causing runtime resume, causing more messages and
7800 		 * so on.
7801 		 */
7802 		dev_dbg(hba->dev,
7803 			"%s: Regulator capability was not set, actvIccLevel=%d",
7804 							__func__, icc_level);
7805 		goto out;
7806 	}
7807 
7808 	if (hba->vreg_info.vcc->max_uA)
7809 		icc_level = ufshcd_get_max_icc_level(
7810 				hba->vreg_info.vcc->max_uA,
7811 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7812 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7813 
7814 	if (hba->vreg_info.vccq->max_uA)
7815 		icc_level = ufshcd_get_max_icc_level(
7816 				hba->vreg_info.vccq->max_uA,
7817 				icc_level,
7818 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7819 
7820 	if (hba->vreg_info.vccq2->max_uA)
7821 		icc_level = ufshcd_get_max_icc_level(
7822 				hba->vreg_info.vccq2->max_uA,
7823 				icc_level,
7824 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7825 out:
7826 	return icc_level;
7827 }
7828 
7829 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7830 {
7831 	int ret;
7832 	u8 *desc_buf;
7833 	u32 icc_level;
7834 
7835 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7836 	if (!desc_buf)
7837 		return;
7838 
7839 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7840 				     desc_buf, QUERY_DESC_MAX_SIZE);
7841 	if (ret) {
7842 		dev_err(hba->dev,
7843 			"%s: Failed reading power descriptor ret = %d",
7844 			__func__, ret);
7845 		goto out;
7846 	}
7847 
7848 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7849 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7850 
7851 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7852 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7853 
7854 	if (ret)
7855 		dev_err(hba->dev,
7856 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7857 			__func__, icc_level, ret);
7858 
7859 out:
7860 	kfree(desc_buf);
7861 }
7862 
7863 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7864 {
7865 	scsi_autopm_get_device(sdev);
7866 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7867 	if (sdev->rpm_autosuspend)
7868 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7869 						 RPM_AUTOSUSPEND_DELAY_MS);
7870 	scsi_autopm_put_device(sdev);
7871 }
7872 
7873 /**
7874  * ufshcd_scsi_add_wlus - Adds required W-LUs
7875  * @hba: per-adapter instance
7876  *
7877  * UFS device specification requires the UFS devices to support 4 well known
7878  * logical units:
7879  *	"REPORT_LUNS" (address: 01h)
7880  *	"UFS Device" (address: 50h)
7881  *	"RPMB" (address: 44h)
7882  *	"BOOT" (address: 30h)
7883  * UFS device's power management needs to be controlled by "POWER CONDITION"
7884  * field of SSU (START STOP UNIT) command. But this "power condition" field
7885  * will take effect only when its sent to "UFS device" well known logical unit
7886  * hence we require the scsi_device instance to represent this logical unit in
7887  * order for the UFS host driver to send the SSU command for power management.
7888  *
7889  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7890  * Block) LU so user space process can control this LU. User space may also
7891  * want to have access to BOOT LU.
7892  *
7893  * This function adds scsi device instances for each of all well known LUs
7894  * (except "REPORT LUNS" LU).
7895  *
7896  * Return: zero on success (all required W-LUs are added successfully),
7897  * non-zero error value on failure (if failed to add any of the required W-LU).
7898  */
7899 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7900 {
7901 	int ret = 0;
7902 	struct scsi_device *sdev_boot, *sdev_rpmb;
7903 
7904 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7905 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7906 	if (IS_ERR(hba->ufs_device_wlun)) {
7907 		ret = PTR_ERR(hba->ufs_device_wlun);
7908 		hba->ufs_device_wlun = NULL;
7909 		goto out;
7910 	}
7911 	scsi_device_put(hba->ufs_device_wlun);
7912 
7913 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7914 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7915 	if (IS_ERR(sdev_rpmb)) {
7916 		ret = PTR_ERR(sdev_rpmb);
7917 		goto remove_ufs_device_wlun;
7918 	}
7919 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7920 	scsi_device_put(sdev_rpmb);
7921 
7922 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7923 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7924 	if (IS_ERR(sdev_boot)) {
7925 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7926 	} else {
7927 		ufshcd_blk_pm_runtime_init(sdev_boot);
7928 		scsi_device_put(sdev_boot);
7929 	}
7930 	goto out;
7931 
7932 remove_ufs_device_wlun:
7933 	scsi_remove_device(hba->ufs_device_wlun);
7934 out:
7935 	return ret;
7936 }
7937 
7938 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7939 {
7940 	struct ufs_dev_info *dev_info = &hba->dev_info;
7941 	u8 lun;
7942 	u32 d_lu_wb_buf_alloc;
7943 	u32 ext_ufs_feature;
7944 
7945 	if (!ufshcd_is_wb_allowed(hba))
7946 		return;
7947 
7948 	/*
7949 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7950 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7951 	 * enabled
7952 	 */
7953 	if (!(dev_info->wspecversion >= 0x310 ||
7954 	      dev_info->wspecversion == 0x220 ||
7955 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7956 		goto wb_disabled;
7957 
7958 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7959 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7960 
7961 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7962 		goto wb_disabled;
7963 
7964 	/*
7965 	 * WB may be supported but not configured while provisioning. The spec
7966 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7967 	 * buffer configured.
7968 	 */
7969 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7970 
7971 	dev_info->b_presrv_uspc_en =
7972 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7973 
7974 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7975 		if (!get_unaligned_be32(desc_buf +
7976 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7977 			goto wb_disabled;
7978 	} else {
7979 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7980 			d_lu_wb_buf_alloc = 0;
7981 			ufshcd_read_unit_desc_param(hba,
7982 					lun,
7983 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7984 					(u8 *)&d_lu_wb_buf_alloc,
7985 					sizeof(d_lu_wb_buf_alloc));
7986 			if (d_lu_wb_buf_alloc) {
7987 				dev_info->wb_dedicated_lu = lun;
7988 				break;
7989 			}
7990 		}
7991 
7992 		if (!d_lu_wb_buf_alloc)
7993 			goto wb_disabled;
7994 	}
7995 
7996 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7997 		goto wb_disabled;
7998 
7999 	return;
8000 
8001 wb_disabled:
8002 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8003 }
8004 
8005 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8006 {
8007 	struct ufs_dev_info *dev_info = &hba->dev_info;
8008 	u32 ext_ufs_feature;
8009 	u8 mask = 0;
8010 
8011 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8012 		return;
8013 
8014 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8015 
8016 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8017 		mask |= MASK_EE_TOO_LOW_TEMP;
8018 
8019 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8020 		mask |= MASK_EE_TOO_HIGH_TEMP;
8021 
8022 	if (mask) {
8023 		ufshcd_enable_ee(hba, mask);
8024 		ufs_hwmon_probe(hba, mask);
8025 	}
8026 }
8027 
8028 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8029 {
8030 	struct ufs_dev_info *dev_info = &hba->dev_info;
8031 	u32 ext_ufs_feature;
8032 	u32 ext_iid_en = 0;
8033 	int err;
8034 
8035 	/* Only UFS-4.0 and above may support EXT_IID */
8036 	if (dev_info->wspecversion < 0x400)
8037 		goto out;
8038 
8039 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8040 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8041 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8042 		goto out;
8043 
8044 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8045 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8046 	if (err)
8047 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8048 
8049 out:
8050 	dev_info->b_ext_iid_en = ext_iid_en;
8051 }
8052 
8053 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8054 			     const struct ufs_dev_quirk *fixups)
8055 {
8056 	const struct ufs_dev_quirk *f;
8057 	struct ufs_dev_info *dev_info = &hba->dev_info;
8058 
8059 	if (!fixups)
8060 		return;
8061 
8062 	for (f = fixups; f->quirk; f++) {
8063 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8064 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8065 		     ((dev_info->model &&
8066 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8067 		      !strcmp(f->model, UFS_ANY_MODEL)))
8068 			hba->dev_quirks |= f->quirk;
8069 	}
8070 }
8071 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8072 
8073 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8074 {
8075 	/* fix by general quirk table */
8076 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8077 
8078 	/* allow vendors to fix quirks */
8079 	ufshcd_vops_fixup_dev_quirks(hba);
8080 }
8081 
8082 static int ufs_get_device_desc(struct ufs_hba *hba)
8083 {
8084 	int err;
8085 	u8 model_index;
8086 	u8 *desc_buf;
8087 	struct ufs_dev_info *dev_info = &hba->dev_info;
8088 
8089 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8090 	if (!desc_buf) {
8091 		err = -ENOMEM;
8092 		goto out;
8093 	}
8094 
8095 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8096 				     QUERY_DESC_MAX_SIZE);
8097 	if (err) {
8098 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8099 			__func__, err);
8100 		goto out;
8101 	}
8102 
8103 	/*
8104 	 * getting vendor (manufacturerID) and Bank Index in big endian
8105 	 * format
8106 	 */
8107 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8108 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8109 
8110 	/* getting Specification Version in big endian format */
8111 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8112 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8113 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8114 
8115 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8116 
8117 	err = ufshcd_read_string_desc(hba, model_index,
8118 				      &dev_info->model, SD_ASCII_STD);
8119 	if (err < 0) {
8120 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8121 			__func__, err);
8122 		goto out;
8123 	}
8124 
8125 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8126 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8127 
8128 	ufs_fixup_device_setup(hba);
8129 
8130 	ufshcd_wb_probe(hba, desc_buf);
8131 
8132 	ufshcd_temp_notif_probe(hba, desc_buf);
8133 
8134 	if (hba->ext_iid_sup)
8135 		ufshcd_ext_iid_probe(hba, desc_buf);
8136 
8137 	/*
8138 	 * ufshcd_read_string_desc returns size of the string
8139 	 * reset the error value
8140 	 */
8141 	err = 0;
8142 
8143 out:
8144 	kfree(desc_buf);
8145 	return err;
8146 }
8147 
8148 static void ufs_put_device_desc(struct ufs_hba *hba)
8149 {
8150 	struct ufs_dev_info *dev_info = &hba->dev_info;
8151 
8152 	kfree(dev_info->model);
8153 	dev_info->model = NULL;
8154 }
8155 
8156 /**
8157  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8158  * @hba: per-adapter instance
8159  *
8160  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8161  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8162  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8163  * the hibern8 exit latency.
8164  *
8165  * Return: zero on success, non-zero error value on failure.
8166  */
8167 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8168 {
8169 	int ret = 0;
8170 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8171 
8172 	ret = ufshcd_dme_peer_get(hba,
8173 				  UIC_ARG_MIB_SEL(
8174 					RX_MIN_ACTIVATETIME_CAPABILITY,
8175 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8176 				  &peer_rx_min_activatetime);
8177 	if (ret)
8178 		goto out;
8179 
8180 	/* make sure proper unit conversion is applied */
8181 	tuned_pa_tactivate =
8182 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8183 		 / PA_TACTIVATE_TIME_UNIT_US);
8184 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8185 			     tuned_pa_tactivate);
8186 
8187 out:
8188 	return ret;
8189 }
8190 
8191 /**
8192  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8193  * @hba: per-adapter instance
8194  *
8195  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8196  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8197  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8198  * This optimal value can help reduce the hibern8 exit latency.
8199  *
8200  * Return: zero on success, non-zero error value on failure.
8201  */
8202 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8203 {
8204 	int ret = 0;
8205 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8206 	u32 max_hibern8_time, tuned_pa_hibern8time;
8207 
8208 	ret = ufshcd_dme_get(hba,
8209 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8210 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8211 				  &local_tx_hibern8_time_cap);
8212 	if (ret)
8213 		goto out;
8214 
8215 	ret = ufshcd_dme_peer_get(hba,
8216 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8217 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8218 				  &peer_rx_hibern8_time_cap);
8219 	if (ret)
8220 		goto out;
8221 
8222 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8223 			       peer_rx_hibern8_time_cap);
8224 	/* make sure proper unit conversion is applied */
8225 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8226 				/ PA_HIBERN8_TIME_UNIT_US);
8227 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8228 			     tuned_pa_hibern8time);
8229 out:
8230 	return ret;
8231 }
8232 
8233 /**
8234  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8235  * less than device PA_TACTIVATE time.
8236  * @hba: per-adapter instance
8237  *
8238  * Some UFS devices require host PA_TACTIVATE to be lower than device
8239  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8240  * for such devices.
8241  *
8242  * Return: zero on success, non-zero error value on failure.
8243  */
8244 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8245 {
8246 	int ret = 0;
8247 	u32 granularity, peer_granularity;
8248 	u32 pa_tactivate, peer_pa_tactivate;
8249 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8250 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8251 
8252 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8253 				  &granularity);
8254 	if (ret)
8255 		goto out;
8256 
8257 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8258 				  &peer_granularity);
8259 	if (ret)
8260 		goto out;
8261 
8262 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8263 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8264 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8265 			__func__, granularity);
8266 		return -EINVAL;
8267 	}
8268 
8269 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8270 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8271 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8272 			__func__, peer_granularity);
8273 		return -EINVAL;
8274 	}
8275 
8276 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8277 	if (ret)
8278 		goto out;
8279 
8280 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8281 				  &peer_pa_tactivate);
8282 	if (ret)
8283 		goto out;
8284 
8285 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8286 	peer_pa_tactivate_us = peer_pa_tactivate *
8287 			     gran_to_us_table[peer_granularity - 1];
8288 
8289 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8290 		u32 new_peer_pa_tactivate;
8291 
8292 		new_peer_pa_tactivate = pa_tactivate_us /
8293 				      gran_to_us_table[peer_granularity - 1];
8294 		new_peer_pa_tactivate++;
8295 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8296 					  new_peer_pa_tactivate);
8297 	}
8298 
8299 out:
8300 	return ret;
8301 }
8302 
8303 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8304 {
8305 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8306 		ufshcd_tune_pa_tactivate(hba);
8307 		ufshcd_tune_pa_hibern8time(hba);
8308 	}
8309 
8310 	ufshcd_vops_apply_dev_quirks(hba);
8311 
8312 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8313 		/* set 1ms timeout for PA_TACTIVATE */
8314 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8315 
8316 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8317 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8318 }
8319 
8320 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8321 {
8322 	hba->ufs_stats.hibern8_exit_cnt = 0;
8323 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8324 	hba->req_abort_count = 0;
8325 }
8326 
8327 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8328 {
8329 	int err;
8330 	u8 *desc_buf;
8331 
8332 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8333 	if (!desc_buf) {
8334 		err = -ENOMEM;
8335 		goto out;
8336 	}
8337 
8338 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8339 				     desc_buf, QUERY_DESC_MAX_SIZE);
8340 	if (err) {
8341 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8342 				__func__, err);
8343 		goto out;
8344 	}
8345 
8346 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8347 		hba->dev_info.max_lu_supported = 32;
8348 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8349 		hba->dev_info.max_lu_supported = 8;
8350 
8351 out:
8352 	kfree(desc_buf);
8353 	return err;
8354 }
8355 
8356 struct ufs_ref_clk {
8357 	unsigned long freq_hz;
8358 	enum ufs_ref_clk_freq val;
8359 };
8360 
8361 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8362 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8363 	{26000000, REF_CLK_FREQ_26_MHZ},
8364 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8365 	{52000000, REF_CLK_FREQ_52_MHZ},
8366 	{0, REF_CLK_FREQ_INVAL},
8367 };
8368 
8369 static enum ufs_ref_clk_freq
8370 ufs_get_bref_clk_from_hz(unsigned long freq)
8371 {
8372 	int i;
8373 
8374 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8375 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8376 			return ufs_ref_clk_freqs[i].val;
8377 
8378 	return REF_CLK_FREQ_INVAL;
8379 }
8380 
8381 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8382 {
8383 	unsigned long freq;
8384 
8385 	freq = clk_get_rate(refclk);
8386 
8387 	hba->dev_ref_clk_freq =
8388 		ufs_get_bref_clk_from_hz(freq);
8389 
8390 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8391 		dev_err(hba->dev,
8392 		"invalid ref_clk setting = %ld\n", freq);
8393 }
8394 
8395 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8396 {
8397 	int err;
8398 	u32 ref_clk;
8399 	u32 freq = hba->dev_ref_clk_freq;
8400 
8401 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8402 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8403 
8404 	if (err) {
8405 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8406 			err);
8407 		goto out;
8408 	}
8409 
8410 	if (ref_clk == freq)
8411 		goto out; /* nothing to update */
8412 
8413 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8414 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8415 
8416 	if (err) {
8417 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8418 			ufs_ref_clk_freqs[freq].freq_hz);
8419 		goto out;
8420 	}
8421 
8422 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8423 			ufs_ref_clk_freqs[freq].freq_hz);
8424 
8425 out:
8426 	return err;
8427 }
8428 
8429 static int ufshcd_device_params_init(struct ufs_hba *hba)
8430 {
8431 	bool flag;
8432 	int ret;
8433 
8434 	/* Init UFS geometry descriptor related parameters */
8435 	ret = ufshcd_device_geo_params_init(hba);
8436 	if (ret)
8437 		goto out;
8438 
8439 	/* Check and apply UFS device quirks */
8440 	ret = ufs_get_device_desc(hba);
8441 	if (ret) {
8442 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8443 			__func__, ret);
8444 		goto out;
8445 	}
8446 
8447 	ufshcd_get_ref_clk_gating_wait(hba);
8448 
8449 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8450 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8451 		hba->dev_info.f_power_on_wp_en = flag;
8452 
8453 	/* Probe maximum power mode co-supported by both UFS host and device */
8454 	if (ufshcd_get_max_pwr_mode(hba))
8455 		dev_err(hba->dev,
8456 			"%s: Failed getting max supported power mode\n",
8457 			__func__);
8458 out:
8459 	return ret;
8460 }
8461 
8462 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8463 {
8464 	int err;
8465 	struct ufs_query_req *request = NULL;
8466 	struct ufs_query_res *response = NULL;
8467 	struct ufs_dev_info *dev_info = &hba->dev_info;
8468 	struct utp_upiu_query_v4_0 *upiu_data;
8469 
8470 	if (dev_info->wspecversion < 0x400)
8471 		return;
8472 
8473 	ufshcd_hold(hba);
8474 
8475 	mutex_lock(&hba->dev_cmd.lock);
8476 
8477 	ufshcd_init_query(hba, &request, &response,
8478 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8479 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8480 
8481 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8482 
8483 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8484 
8485 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8486 
8487 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8488 
8489 	if (err)
8490 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8491 			__func__, err);
8492 
8493 	mutex_unlock(&hba->dev_cmd.lock);
8494 	ufshcd_release(hba);
8495 }
8496 
8497 /**
8498  * ufshcd_add_lus - probe and add UFS logical units
8499  * @hba: per-adapter instance
8500  *
8501  * Return: 0 upon success; < 0 upon failure.
8502  */
8503 static int ufshcd_add_lus(struct ufs_hba *hba)
8504 {
8505 	int ret;
8506 
8507 	/* Add required well known logical units to scsi mid layer */
8508 	ret = ufshcd_scsi_add_wlus(hba);
8509 	if (ret)
8510 		goto out;
8511 
8512 	/* Initialize devfreq after UFS device is detected */
8513 	if (ufshcd_is_clkscaling_supported(hba)) {
8514 		memcpy(&hba->clk_scaling.saved_pwr_info,
8515 			&hba->pwr_info,
8516 			sizeof(struct ufs_pa_layer_attr));
8517 		hba->clk_scaling.is_allowed = true;
8518 
8519 		ret = ufshcd_devfreq_init(hba);
8520 		if (ret)
8521 			goto out;
8522 
8523 		hba->clk_scaling.is_enabled = true;
8524 		ufshcd_init_clk_scaling_sysfs(hba);
8525 	}
8526 
8527 	ufs_bsg_probe(hba);
8528 	scsi_scan_host(hba->host);
8529 	pm_runtime_put_sync(hba->dev);
8530 
8531 out:
8532 	return ret;
8533 }
8534 
8535 /* SDB - Single Doorbell */
8536 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8537 {
8538 	size_t ucdl_size, utrdl_size;
8539 
8540 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8541 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8542 			   hba->ucdl_dma_addr);
8543 
8544 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8545 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8546 			   hba->utrdl_dma_addr);
8547 
8548 	devm_kfree(hba->dev, hba->lrb);
8549 }
8550 
8551 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8552 {
8553 	int ret;
8554 	int old_nutrs = hba->nutrs;
8555 
8556 	ret = ufshcd_mcq_decide_queue_depth(hba);
8557 	if (ret < 0)
8558 		return ret;
8559 
8560 	hba->nutrs = ret;
8561 	ret = ufshcd_mcq_init(hba);
8562 	if (ret)
8563 		goto err;
8564 
8565 	/*
8566 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8567 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8568 	 */
8569 	if (hba->nutrs != old_nutrs) {
8570 		ufshcd_release_sdb_queue(hba, old_nutrs);
8571 		ret = ufshcd_memory_alloc(hba);
8572 		if (ret)
8573 			goto err;
8574 		ufshcd_host_memory_configure(hba);
8575 	}
8576 
8577 	ret = ufshcd_mcq_memory_alloc(hba);
8578 	if (ret)
8579 		goto err;
8580 
8581 	return 0;
8582 err:
8583 	hba->nutrs = old_nutrs;
8584 	return ret;
8585 }
8586 
8587 static void ufshcd_config_mcq(struct ufs_hba *hba)
8588 {
8589 	int ret;
8590 	u32 intrs;
8591 
8592 	ret = ufshcd_mcq_vops_config_esi(hba);
8593 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8594 
8595 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8596 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8597 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8598 	ufshcd_enable_intr(hba, intrs);
8599 	ufshcd_mcq_make_queues_operational(hba);
8600 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8601 
8602 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8603 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8604 
8605 	/* Select MCQ mode */
8606 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8607 		      REG_UFS_MEM_CFG);
8608 	hba->mcq_enabled = true;
8609 
8610 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8611 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8612 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8613 		 hba->nutrs);
8614 }
8615 
8616 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8617 {
8618 	int ret;
8619 	struct Scsi_Host *host = hba->host;
8620 
8621 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8622 
8623 	ret = ufshcd_link_startup(hba);
8624 	if (ret)
8625 		return ret;
8626 
8627 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8628 		return ret;
8629 
8630 	/* Debug counters initialization */
8631 	ufshcd_clear_dbg_ufs_stats(hba);
8632 
8633 	/* UniPro link is active now */
8634 	ufshcd_set_link_active(hba);
8635 
8636 	/* Reconfigure MCQ upon reset */
8637 	if (is_mcq_enabled(hba) && !init_dev_params)
8638 		ufshcd_config_mcq(hba);
8639 
8640 	/* Verify device initialization by sending NOP OUT UPIU */
8641 	ret = ufshcd_verify_dev_init(hba);
8642 	if (ret)
8643 		return ret;
8644 
8645 	/* Initiate UFS initialization, and waiting until completion */
8646 	ret = ufshcd_complete_dev_init(hba);
8647 	if (ret)
8648 		return ret;
8649 
8650 	/*
8651 	 * Initialize UFS device parameters used by driver, these
8652 	 * parameters are associated with UFS descriptors.
8653 	 */
8654 	if (init_dev_params) {
8655 		ret = ufshcd_device_params_init(hba);
8656 		if (ret)
8657 			return ret;
8658 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8659 			ret = ufshcd_alloc_mcq(hba);
8660 			if (!ret) {
8661 				ufshcd_config_mcq(hba);
8662 			} else {
8663 				/* Continue with SDB mode */
8664 				use_mcq_mode = false;
8665 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8666 					 ret);
8667 			}
8668 			ret = scsi_add_host(host, hba->dev);
8669 			if (ret) {
8670 				dev_err(hba->dev, "scsi_add_host failed\n");
8671 				return ret;
8672 			}
8673 			hba->scsi_host_added = true;
8674 		} else if (is_mcq_supported(hba)) {
8675 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8676 			ufshcd_config_mcq(hba);
8677 		}
8678 	}
8679 
8680 	ufshcd_tune_unipro_params(hba);
8681 
8682 	/* UFS device is also active now */
8683 	ufshcd_set_ufs_dev_active(hba);
8684 	ufshcd_force_reset_auto_bkops(hba);
8685 
8686 	ufshcd_set_timestamp_attr(hba);
8687 
8688 	/* Gear up to HS gear if supported */
8689 	if (hba->max_pwr_info.is_valid) {
8690 		/*
8691 		 * Set the right value to bRefClkFreq before attempting to
8692 		 * switch to HS gears.
8693 		 */
8694 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8695 			ufshcd_set_dev_ref_clk(hba);
8696 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8697 		if (ret) {
8698 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8699 					__func__, ret);
8700 			return ret;
8701 		}
8702 	}
8703 
8704 	return 0;
8705 }
8706 
8707 /**
8708  * ufshcd_probe_hba - probe hba to detect device and initialize it
8709  * @hba: per-adapter instance
8710  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8711  *
8712  * Execute link-startup and verify device initialization
8713  *
8714  * Return: 0 upon success; < 0 upon failure.
8715  */
8716 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8717 {
8718 	ktime_t start = ktime_get();
8719 	unsigned long flags;
8720 	int ret;
8721 
8722 	ret = ufshcd_device_init(hba, init_dev_params);
8723 	if (ret)
8724 		goto out;
8725 
8726 	if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8727 		/* Reset the device and controller before doing reinit */
8728 		ufshcd_device_reset(hba);
8729 		ufshcd_hba_stop(hba);
8730 		ufshcd_vops_reinit_notify(hba);
8731 		ret = ufshcd_hba_enable(hba);
8732 		if (ret) {
8733 			dev_err(hba->dev, "Host controller enable failed\n");
8734 			ufshcd_print_evt_hist(hba);
8735 			ufshcd_print_host_state(hba);
8736 			goto out;
8737 		}
8738 
8739 		/* Reinit the device */
8740 		ret = ufshcd_device_init(hba, init_dev_params);
8741 		if (ret)
8742 			goto out;
8743 	}
8744 
8745 	ufshcd_print_pwr_info(hba);
8746 
8747 	/*
8748 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8749 	 * and for removable UFS card as well, hence always set the parameter.
8750 	 * Note: Error handler may issue the device reset hence resetting
8751 	 * bActiveICCLevel as well so it is always safe to set this here.
8752 	 */
8753 	ufshcd_set_active_icc_lvl(hba);
8754 
8755 	/* Enable UFS Write Booster if supported */
8756 	ufshcd_configure_wb(hba);
8757 
8758 	if (hba->ee_usr_mask)
8759 		ufshcd_write_ee_control(hba);
8760 	/* Enable Auto-Hibernate if configured */
8761 	ufshcd_auto_hibern8_enable(hba);
8762 
8763 out:
8764 	spin_lock_irqsave(hba->host->host_lock, flags);
8765 	if (ret)
8766 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8767 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8768 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8769 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8770 
8771 	trace_ufshcd_init(dev_name(hba->dev), ret,
8772 		ktime_to_us(ktime_sub(ktime_get(), start)),
8773 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8774 	return ret;
8775 }
8776 
8777 /**
8778  * ufshcd_async_scan - asynchronous execution for probing hba
8779  * @data: data pointer to pass to this function
8780  * @cookie: cookie data
8781  */
8782 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8783 {
8784 	struct ufs_hba *hba = (struct ufs_hba *)data;
8785 	int ret;
8786 
8787 	down(&hba->host_sem);
8788 	/* Initialize hba, detect and initialize UFS device */
8789 	ret = ufshcd_probe_hba(hba, true);
8790 	up(&hba->host_sem);
8791 	if (ret)
8792 		goto out;
8793 
8794 	/* Probe and add UFS logical units  */
8795 	ret = ufshcd_add_lus(hba);
8796 out:
8797 	/*
8798 	 * If we failed to initialize the device or the device is not
8799 	 * present, turn off the power/clocks etc.
8800 	 */
8801 	if (ret) {
8802 		pm_runtime_put_sync(hba->dev);
8803 		ufshcd_hba_exit(hba);
8804 	}
8805 }
8806 
8807 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8808 {
8809 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8810 
8811 	if (!hba->system_suspending) {
8812 		/* Activate the error handler in the SCSI core. */
8813 		return SCSI_EH_NOT_HANDLED;
8814 	}
8815 
8816 	/*
8817 	 * If we get here we know that no TMFs are outstanding and also that
8818 	 * the only pending command is a START STOP UNIT command. Handle the
8819 	 * timeout of that command directly to prevent a deadlock between
8820 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8821 	 */
8822 	ufshcd_link_recovery(hba);
8823 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8824 		 __func__, hba->outstanding_tasks);
8825 
8826 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8827 }
8828 
8829 static const struct attribute_group *ufshcd_driver_groups[] = {
8830 	&ufs_sysfs_unit_descriptor_group,
8831 	&ufs_sysfs_lun_attributes_group,
8832 	NULL,
8833 };
8834 
8835 static struct ufs_hba_variant_params ufs_hba_vps = {
8836 	.hba_enable_delay_us		= 1000,
8837 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8838 	.devfreq_profile.polling_ms	= 100,
8839 	.devfreq_profile.target		= ufshcd_devfreq_target,
8840 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8841 	.ondemand_data.upthreshold	= 70,
8842 	.ondemand_data.downdifferential	= 5,
8843 };
8844 
8845 static const struct scsi_host_template ufshcd_driver_template = {
8846 	.module			= THIS_MODULE,
8847 	.name			= UFSHCD,
8848 	.proc_name		= UFSHCD,
8849 	.map_queues		= ufshcd_map_queues,
8850 	.queuecommand		= ufshcd_queuecommand,
8851 	.mq_poll		= ufshcd_poll,
8852 	.slave_alloc		= ufshcd_slave_alloc,
8853 	.slave_configure	= ufshcd_slave_configure,
8854 	.slave_destroy		= ufshcd_slave_destroy,
8855 	.change_queue_depth	= ufshcd_change_queue_depth,
8856 	.eh_abort_handler	= ufshcd_abort,
8857 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8858 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8859 	.eh_timed_out		= ufshcd_eh_timed_out,
8860 	.this_id		= -1,
8861 	.sg_tablesize		= SG_ALL,
8862 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8863 	.can_queue		= UFSHCD_CAN_QUEUE,
8864 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8865 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8866 	.max_host_blocked	= 1,
8867 	.track_queue_depth	= 1,
8868 	.skip_settle_delay	= 1,
8869 	.sdev_groups		= ufshcd_driver_groups,
8870 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8871 };
8872 
8873 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8874 				   int ua)
8875 {
8876 	int ret;
8877 
8878 	if (!vreg)
8879 		return 0;
8880 
8881 	/*
8882 	 * "set_load" operation shall be required on those regulators
8883 	 * which specifically configured current limitation. Otherwise
8884 	 * zero max_uA may cause unexpected behavior when regulator is
8885 	 * enabled or set as high power mode.
8886 	 */
8887 	if (!vreg->max_uA)
8888 		return 0;
8889 
8890 	ret = regulator_set_load(vreg->reg, ua);
8891 	if (ret < 0) {
8892 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8893 				__func__, vreg->name, ua, ret);
8894 	}
8895 
8896 	return ret;
8897 }
8898 
8899 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8900 					 struct ufs_vreg *vreg)
8901 {
8902 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8903 }
8904 
8905 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8906 					 struct ufs_vreg *vreg)
8907 {
8908 	if (!vreg)
8909 		return 0;
8910 
8911 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8912 }
8913 
8914 static int ufshcd_config_vreg(struct device *dev,
8915 		struct ufs_vreg *vreg, bool on)
8916 {
8917 	if (regulator_count_voltages(vreg->reg) <= 0)
8918 		return 0;
8919 
8920 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8921 }
8922 
8923 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8924 {
8925 	int ret = 0;
8926 
8927 	if (!vreg || vreg->enabled)
8928 		goto out;
8929 
8930 	ret = ufshcd_config_vreg(dev, vreg, true);
8931 	if (!ret)
8932 		ret = regulator_enable(vreg->reg);
8933 
8934 	if (!ret)
8935 		vreg->enabled = true;
8936 	else
8937 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8938 				__func__, vreg->name, ret);
8939 out:
8940 	return ret;
8941 }
8942 
8943 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8944 {
8945 	int ret = 0;
8946 
8947 	if (!vreg || !vreg->enabled || vreg->always_on)
8948 		goto out;
8949 
8950 	ret = regulator_disable(vreg->reg);
8951 
8952 	if (!ret) {
8953 		/* ignore errors on applying disable config */
8954 		ufshcd_config_vreg(dev, vreg, false);
8955 		vreg->enabled = false;
8956 	} else {
8957 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8958 				__func__, vreg->name, ret);
8959 	}
8960 out:
8961 	return ret;
8962 }
8963 
8964 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8965 {
8966 	int ret = 0;
8967 	struct device *dev = hba->dev;
8968 	struct ufs_vreg_info *info = &hba->vreg_info;
8969 
8970 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8971 	if (ret)
8972 		goto out;
8973 
8974 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8975 	if (ret)
8976 		goto out;
8977 
8978 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8979 
8980 out:
8981 	if (ret) {
8982 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8983 		ufshcd_toggle_vreg(dev, info->vccq, false);
8984 		ufshcd_toggle_vreg(dev, info->vcc, false);
8985 	}
8986 	return ret;
8987 }
8988 
8989 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8990 {
8991 	struct ufs_vreg_info *info = &hba->vreg_info;
8992 
8993 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8994 }
8995 
8996 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8997 {
8998 	int ret = 0;
8999 
9000 	if (!vreg)
9001 		goto out;
9002 
9003 	vreg->reg = devm_regulator_get(dev, vreg->name);
9004 	if (IS_ERR(vreg->reg)) {
9005 		ret = PTR_ERR(vreg->reg);
9006 		dev_err(dev, "%s: %s get failed, err=%d\n",
9007 				__func__, vreg->name, ret);
9008 	}
9009 out:
9010 	return ret;
9011 }
9012 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9013 
9014 static int ufshcd_init_vreg(struct ufs_hba *hba)
9015 {
9016 	int ret = 0;
9017 	struct device *dev = hba->dev;
9018 	struct ufs_vreg_info *info = &hba->vreg_info;
9019 
9020 	ret = ufshcd_get_vreg(dev, info->vcc);
9021 	if (ret)
9022 		goto out;
9023 
9024 	ret = ufshcd_get_vreg(dev, info->vccq);
9025 	if (!ret)
9026 		ret = ufshcd_get_vreg(dev, info->vccq2);
9027 out:
9028 	return ret;
9029 }
9030 
9031 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9032 {
9033 	struct ufs_vreg_info *info = &hba->vreg_info;
9034 
9035 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9036 }
9037 
9038 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9039 {
9040 	int ret = 0;
9041 	struct ufs_clk_info *clki;
9042 	struct list_head *head = &hba->clk_list_head;
9043 	unsigned long flags;
9044 	ktime_t start = ktime_get();
9045 	bool clk_state_changed = false;
9046 
9047 	if (list_empty(head))
9048 		goto out;
9049 
9050 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9051 	if (ret)
9052 		return ret;
9053 
9054 	list_for_each_entry(clki, head, list) {
9055 		if (!IS_ERR_OR_NULL(clki->clk)) {
9056 			/*
9057 			 * Don't disable clocks which are needed
9058 			 * to keep the link active.
9059 			 */
9060 			if (ufshcd_is_link_active(hba) &&
9061 			    clki->keep_link_active)
9062 				continue;
9063 
9064 			clk_state_changed = on ^ clki->enabled;
9065 			if (on && !clki->enabled) {
9066 				ret = clk_prepare_enable(clki->clk);
9067 				if (ret) {
9068 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9069 						__func__, clki->name, ret);
9070 					goto out;
9071 				}
9072 			} else if (!on && clki->enabled) {
9073 				clk_disable_unprepare(clki->clk);
9074 			}
9075 			clki->enabled = on;
9076 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9077 					clki->name, on ? "en" : "dis");
9078 		}
9079 	}
9080 
9081 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9082 	if (ret)
9083 		return ret;
9084 
9085 out:
9086 	if (ret) {
9087 		list_for_each_entry(clki, head, list) {
9088 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9089 				clk_disable_unprepare(clki->clk);
9090 		}
9091 	} else if (!ret && on) {
9092 		spin_lock_irqsave(hba->host->host_lock, flags);
9093 		hba->clk_gating.state = CLKS_ON;
9094 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9095 					hba->clk_gating.state);
9096 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9097 	}
9098 
9099 	if (clk_state_changed)
9100 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9101 			(on ? "on" : "off"),
9102 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9103 	return ret;
9104 }
9105 
9106 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9107 {
9108 	u32 freq;
9109 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9110 
9111 	if (ret) {
9112 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9113 		return REF_CLK_FREQ_INVAL;
9114 	}
9115 
9116 	return ufs_get_bref_clk_from_hz(freq);
9117 }
9118 
9119 static int ufshcd_init_clocks(struct ufs_hba *hba)
9120 {
9121 	int ret = 0;
9122 	struct ufs_clk_info *clki;
9123 	struct device *dev = hba->dev;
9124 	struct list_head *head = &hba->clk_list_head;
9125 
9126 	if (list_empty(head))
9127 		goto out;
9128 
9129 	list_for_each_entry(clki, head, list) {
9130 		if (!clki->name)
9131 			continue;
9132 
9133 		clki->clk = devm_clk_get(dev, clki->name);
9134 		if (IS_ERR(clki->clk)) {
9135 			ret = PTR_ERR(clki->clk);
9136 			dev_err(dev, "%s: %s clk get failed, %d\n",
9137 					__func__, clki->name, ret);
9138 			goto out;
9139 		}
9140 
9141 		/*
9142 		 * Parse device ref clk freq as per device tree "ref_clk".
9143 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9144 		 * in ufshcd_alloc_host().
9145 		 */
9146 		if (!strcmp(clki->name, "ref_clk"))
9147 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9148 
9149 		if (clki->max_freq) {
9150 			ret = clk_set_rate(clki->clk, clki->max_freq);
9151 			if (ret) {
9152 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9153 					__func__, clki->name,
9154 					clki->max_freq, ret);
9155 				goto out;
9156 			}
9157 			clki->curr_freq = clki->max_freq;
9158 		}
9159 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9160 				clki->name, clk_get_rate(clki->clk));
9161 	}
9162 out:
9163 	return ret;
9164 }
9165 
9166 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9167 {
9168 	int err = 0;
9169 
9170 	if (!hba->vops)
9171 		goto out;
9172 
9173 	err = ufshcd_vops_init(hba);
9174 	if (err)
9175 		dev_err_probe(hba->dev, err,
9176 			      "%s: variant %s init failed with err %d\n",
9177 			      __func__, ufshcd_get_var_name(hba), err);
9178 out:
9179 	return err;
9180 }
9181 
9182 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9183 {
9184 	if (!hba->vops)
9185 		return;
9186 
9187 	ufshcd_vops_exit(hba);
9188 }
9189 
9190 static int ufshcd_hba_init(struct ufs_hba *hba)
9191 {
9192 	int err;
9193 
9194 	/*
9195 	 * Handle host controller power separately from the UFS device power
9196 	 * rails as it will help controlling the UFS host controller power
9197 	 * collapse easily which is different than UFS device power collapse.
9198 	 * Also, enable the host controller power before we go ahead with rest
9199 	 * of the initialization here.
9200 	 */
9201 	err = ufshcd_init_hba_vreg(hba);
9202 	if (err)
9203 		goto out;
9204 
9205 	err = ufshcd_setup_hba_vreg(hba, true);
9206 	if (err)
9207 		goto out;
9208 
9209 	err = ufshcd_init_clocks(hba);
9210 	if (err)
9211 		goto out_disable_hba_vreg;
9212 
9213 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9214 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9215 
9216 	err = ufshcd_setup_clocks(hba, true);
9217 	if (err)
9218 		goto out_disable_hba_vreg;
9219 
9220 	err = ufshcd_init_vreg(hba);
9221 	if (err)
9222 		goto out_disable_clks;
9223 
9224 	err = ufshcd_setup_vreg(hba, true);
9225 	if (err)
9226 		goto out_disable_clks;
9227 
9228 	err = ufshcd_variant_hba_init(hba);
9229 	if (err)
9230 		goto out_disable_vreg;
9231 
9232 	ufs_debugfs_hba_init(hba);
9233 
9234 	hba->is_powered = true;
9235 	goto out;
9236 
9237 out_disable_vreg:
9238 	ufshcd_setup_vreg(hba, false);
9239 out_disable_clks:
9240 	ufshcd_setup_clocks(hba, false);
9241 out_disable_hba_vreg:
9242 	ufshcd_setup_hba_vreg(hba, false);
9243 out:
9244 	return err;
9245 }
9246 
9247 static void ufshcd_hba_exit(struct ufs_hba *hba)
9248 {
9249 	if (hba->is_powered) {
9250 		ufshcd_exit_clk_scaling(hba);
9251 		ufshcd_exit_clk_gating(hba);
9252 		if (hba->eh_wq)
9253 			destroy_workqueue(hba->eh_wq);
9254 		ufs_debugfs_hba_exit(hba);
9255 		ufshcd_variant_hba_exit(hba);
9256 		ufshcd_setup_vreg(hba, false);
9257 		ufshcd_setup_clocks(hba, false);
9258 		ufshcd_setup_hba_vreg(hba, false);
9259 		hba->is_powered = false;
9260 		ufs_put_device_desc(hba);
9261 	}
9262 }
9263 
9264 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9265 				     enum ufs_dev_pwr_mode pwr_mode,
9266 				     struct scsi_sense_hdr *sshdr)
9267 {
9268 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9269 	const struct scsi_exec_args args = {
9270 		.sshdr = sshdr,
9271 		.req_flags = BLK_MQ_REQ_PM,
9272 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9273 	};
9274 
9275 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9276 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9277 			&args);
9278 }
9279 
9280 /**
9281  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9282  *			     power mode
9283  * @hba: per adapter instance
9284  * @pwr_mode: device power mode to set
9285  *
9286  * Return: 0 if requested power mode is set successfully;
9287  *         < 0 if failed to set the requested power mode.
9288  */
9289 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9290 				     enum ufs_dev_pwr_mode pwr_mode)
9291 {
9292 	struct scsi_sense_hdr sshdr;
9293 	struct scsi_device *sdp;
9294 	unsigned long flags;
9295 	int ret, retries;
9296 
9297 	spin_lock_irqsave(hba->host->host_lock, flags);
9298 	sdp = hba->ufs_device_wlun;
9299 	if (sdp && scsi_device_online(sdp))
9300 		ret = scsi_device_get(sdp);
9301 	else
9302 		ret = -ENODEV;
9303 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9304 
9305 	if (ret)
9306 		return ret;
9307 
9308 	/*
9309 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9310 	 * handling, which would wait for host to be resumed. Since we know
9311 	 * we are functional while we are here, skip host resume in error
9312 	 * handling context.
9313 	 */
9314 	hba->host->eh_noresume = 1;
9315 
9316 	/*
9317 	 * Current function would be generally called from the power management
9318 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9319 	 * already suspended childs.
9320 	 */
9321 	for (retries = 3; retries > 0; --retries) {
9322 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9323 		/*
9324 		 * scsi_execute() only returns a negative value if the request
9325 		 * queue is dying.
9326 		 */
9327 		if (ret <= 0)
9328 			break;
9329 	}
9330 	if (ret) {
9331 		sdev_printk(KERN_WARNING, sdp,
9332 			    "START_STOP failed for power mode: %d, result %x\n",
9333 			    pwr_mode, ret);
9334 		if (ret > 0) {
9335 			if (scsi_sense_valid(&sshdr))
9336 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9337 			ret = -EIO;
9338 		}
9339 	} else {
9340 		hba->curr_dev_pwr_mode = pwr_mode;
9341 	}
9342 
9343 	scsi_device_put(sdp);
9344 	hba->host->eh_noresume = 0;
9345 	return ret;
9346 }
9347 
9348 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9349 					enum uic_link_state req_link_state,
9350 					bool check_for_bkops)
9351 {
9352 	int ret = 0;
9353 
9354 	if (req_link_state == hba->uic_link_state)
9355 		return 0;
9356 
9357 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9358 		ret = ufshcd_uic_hibern8_enter(hba);
9359 		if (!ret) {
9360 			ufshcd_set_link_hibern8(hba);
9361 		} else {
9362 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9363 					__func__, ret);
9364 			goto out;
9365 		}
9366 	}
9367 	/*
9368 	 * If autobkops is enabled, link can't be turned off because
9369 	 * turning off the link would also turn off the device, except in the
9370 	 * case of DeepSleep where the device is expected to remain powered.
9371 	 */
9372 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9373 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9374 		/*
9375 		 * Let's make sure that link is in low power mode, we are doing
9376 		 * this currently by putting the link in Hibern8. Otherway to
9377 		 * put the link in low power mode is to send the DME end point
9378 		 * to device and then send the DME reset command to local
9379 		 * unipro. But putting the link in hibern8 is much faster.
9380 		 *
9381 		 * Note also that putting the link in Hibern8 is a requirement
9382 		 * for entering DeepSleep.
9383 		 */
9384 		ret = ufshcd_uic_hibern8_enter(hba);
9385 		if (ret) {
9386 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9387 					__func__, ret);
9388 			goto out;
9389 		}
9390 		/*
9391 		 * Change controller state to "reset state" which
9392 		 * should also put the link in off/reset state
9393 		 */
9394 		ufshcd_hba_stop(hba);
9395 		/*
9396 		 * TODO: Check if we need any delay to make sure that
9397 		 * controller is reset
9398 		 */
9399 		ufshcd_set_link_off(hba);
9400 	}
9401 
9402 out:
9403 	return ret;
9404 }
9405 
9406 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9407 {
9408 	bool vcc_off = false;
9409 
9410 	/*
9411 	 * It seems some UFS devices may keep drawing more than sleep current
9412 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9413 	 * To avoid this situation, add 2ms delay before putting these UFS
9414 	 * rails in LPM mode.
9415 	 */
9416 	if (!ufshcd_is_link_active(hba) &&
9417 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9418 		usleep_range(2000, 2100);
9419 
9420 	/*
9421 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9422 	 * power.
9423 	 *
9424 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9425 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9426 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9427 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9428 	 *
9429 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9430 	 * in low power state which would save some power.
9431 	 *
9432 	 * If Write Booster is enabled and the device needs to flush the WB
9433 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9434 	 */
9435 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9436 	    !hba->dev_info.is_lu_power_on_wp) {
9437 		ufshcd_setup_vreg(hba, false);
9438 		vcc_off = true;
9439 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9440 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9441 		vcc_off = true;
9442 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9443 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9444 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9445 		}
9446 	}
9447 
9448 	/*
9449 	 * Some UFS devices require delay after VCC power rail is turned-off.
9450 	 */
9451 	if (vcc_off && hba->vreg_info.vcc &&
9452 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9453 		usleep_range(5000, 5100);
9454 }
9455 
9456 #ifdef CONFIG_PM
9457 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9458 {
9459 	int ret = 0;
9460 
9461 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9462 	    !hba->dev_info.is_lu_power_on_wp) {
9463 		ret = ufshcd_setup_vreg(hba, true);
9464 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9465 		if (!ufshcd_is_link_active(hba)) {
9466 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9467 			if (ret)
9468 				goto vcc_disable;
9469 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9470 			if (ret)
9471 				goto vccq_lpm;
9472 		}
9473 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9474 	}
9475 	goto out;
9476 
9477 vccq_lpm:
9478 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9479 vcc_disable:
9480 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9481 out:
9482 	return ret;
9483 }
9484 #endif /* CONFIG_PM */
9485 
9486 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9487 {
9488 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9489 		ufshcd_setup_hba_vreg(hba, false);
9490 }
9491 
9492 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9493 {
9494 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9495 		ufshcd_setup_hba_vreg(hba, true);
9496 }
9497 
9498 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9499 {
9500 	int ret = 0;
9501 	bool check_for_bkops;
9502 	enum ufs_pm_level pm_lvl;
9503 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9504 	enum uic_link_state req_link_state;
9505 
9506 	hba->pm_op_in_progress = true;
9507 	if (pm_op != UFS_SHUTDOWN_PM) {
9508 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9509 			 hba->rpm_lvl : hba->spm_lvl;
9510 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9511 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9512 	} else {
9513 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9514 		req_link_state = UIC_LINK_OFF_STATE;
9515 	}
9516 
9517 	/*
9518 	 * If we can't transition into any of the low power modes
9519 	 * just gate the clocks.
9520 	 */
9521 	ufshcd_hold(hba);
9522 	hba->clk_gating.is_suspended = true;
9523 
9524 	if (ufshcd_is_clkscaling_supported(hba))
9525 		ufshcd_clk_scaling_suspend(hba, true);
9526 
9527 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9528 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9529 		goto vops_suspend;
9530 	}
9531 
9532 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9533 	    (req_link_state == hba->uic_link_state))
9534 		goto enable_scaling;
9535 
9536 	/* UFS device & link must be active before we enter in this function */
9537 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9538 		ret = -EINVAL;
9539 		goto enable_scaling;
9540 	}
9541 
9542 	if (pm_op == UFS_RUNTIME_PM) {
9543 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9544 			/*
9545 			 * The device is idle with no requests in the queue,
9546 			 * allow background operations if bkops status shows
9547 			 * that performance might be impacted.
9548 			 */
9549 			ret = ufshcd_urgent_bkops(hba);
9550 			if (ret) {
9551 				/*
9552 				 * If return err in suspend flow, IO will hang.
9553 				 * Trigger error handler and break suspend for
9554 				 * error recovery.
9555 				 */
9556 				ufshcd_force_error_recovery(hba);
9557 				ret = -EBUSY;
9558 				goto enable_scaling;
9559 			}
9560 		} else {
9561 			/* make sure that auto bkops is disabled */
9562 			ufshcd_disable_auto_bkops(hba);
9563 		}
9564 		/*
9565 		 * If device needs to do BKOP or WB buffer flush during
9566 		 * Hibern8, keep device power mode as "active power mode"
9567 		 * and VCC supply.
9568 		 */
9569 		hba->dev_info.b_rpm_dev_flush_capable =
9570 			hba->auto_bkops_enabled ||
9571 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9572 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9573 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9574 			ufshcd_wb_need_flush(hba));
9575 	}
9576 
9577 	flush_work(&hba->eeh_work);
9578 
9579 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9580 	if (ret)
9581 		goto enable_scaling;
9582 
9583 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9584 		if (pm_op != UFS_RUNTIME_PM)
9585 			/* ensure that bkops is disabled */
9586 			ufshcd_disable_auto_bkops(hba);
9587 
9588 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9589 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9590 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9591 				/*
9592 				 * If return err in suspend flow, IO will hang.
9593 				 * Trigger error handler and break suspend for
9594 				 * error recovery.
9595 				 */
9596 				ufshcd_force_error_recovery(hba);
9597 				ret = -EBUSY;
9598 			}
9599 			if (ret)
9600 				goto enable_scaling;
9601 		}
9602 	}
9603 
9604 	/*
9605 	 * In the case of DeepSleep, the device is expected to remain powered
9606 	 * with the link off, so do not check for bkops.
9607 	 */
9608 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9609 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9610 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9611 		/*
9612 		 * If return err in suspend flow, IO will hang.
9613 		 * Trigger error handler and break suspend for
9614 		 * error recovery.
9615 		 */
9616 		ufshcd_force_error_recovery(hba);
9617 		ret = -EBUSY;
9618 	}
9619 	if (ret)
9620 		goto set_dev_active;
9621 
9622 vops_suspend:
9623 	/*
9624 	 * Call vendor specific suspend callback. As these callbacks may access
9625 	 * vendor specific host controller register space call them before the
9626 	 * host clocks are ON.
9627 	 */
9628 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9629 	if (ret)
9630 		goto set_link_active;
9631 	goto out;
9632 
9633 set_link_active:
9634 	/*
9635 	 * Device hardware reset is required to exit DeepSleep. Also, for
9636 	 * DeepSleep, the link is off so host reset and restore will be done
9637 	 * further below.
9638 	 */
9639 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9640 		ufshcd_device_reset(hba);
9641 		WARN_ON(!ufshcd_is_link_off(hba));
9642 	}
9643 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9644 		ufshcd_set_link_active(hba);
9645 	else if (ufshcd_is_link_off(hba))
9646 		ufshcd_host_reset_and_restore(hba);
9647 set_dev_active:
9648 	/* Can also get here needing to exit DeepSleep */
9649 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9650 		ufshcd_device_reset(hba);
9651 		ufshcd_host_reset_and_restore(hba);
9652 	}
9653 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9654 		ufshcd_disable_auto_bkops(hba);
9655 enable_scaling:
9656 	if (ufshcd_is_clkscaling_supported(hba))
9657 		ufshcd_clk_scaling_suspend(hba, false);
9658 
9659 	hba->dev_info.b_rpm_dev_flush_capable = false;
9660 out:
9661 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9662 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9663 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9664 	}
9665 
9666 	if (ret) {
9667 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9668 		hba->clk_gating.is_suspended = false;
9669 		ufshcd_release(hba);
9670 	}
9671 	hba->pm_op_in_progress = false;
9672 	return ret;
9673 }
9674 
9675 #ifdef CONFIG_PM
9676 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9677 {
9678 	int ret;
9679 	enum uic_link_state old_link_state = hba->uic_link_state;
9680 
9681 	hba->pm_op_in_progress = true;
9682 
9683 	/*
9684 	 * Call vendor specific resume callback. As these callbacks may access
9685 	 * vendor specific host controller register space call them when the
9686 	 * host clocks are ON.
9687 	 */
9688 	ret = ufshcd_vops_resume(hba, pm_op);
9689 	if (ret)
9690 		goto out;
9691 
9692 	/* For DeepSleep, the only supported option is to have the link off */
9693 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9694 
9695 	if (ufshcd_is_link_hibern8(hba)) {
9696 		ret = ufshcd_uic_hibern8_exit(hba);
9697 		if (!ret) {
9698 			ufshcd_set_link_active(hba);
9699 		} else {
9700 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9701 					__func__, ret);
9702 			goto vendor_suspend;
9703 		}
9704 	} else if (ufshcd_is_link_off(hba)) {
9705 		/*
9706 		 * A full initialization of the host and the device is
9707 		 * required since the link was put to off during suspend.
9708 		 * Note, in the case of DeepSleep, the device will exit
9709 		 * DeepSleep due to device reset.
9710 		 */
9711 		ret = ufshcd_reset_and_restore(hba);
9712 		/*
9713 		 * ufshcd_reset_and_restore() should have already
9714 		 * set the link state as active
9715 		 */
9716 		if (ret || !ufshcd_is_link_active(hba))
9717 			goto vendor_suspend;
9718 	}
9719 
9720 	if (!ufshcd_is_ufs_dev_active(hba)) {
9721 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9722 		if (ret)
9723 			goto set_old_link_state;
9724 		ufshcd_set_timestamp_attr(hba);
9725 	}
9726 
9727 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9728 		ufshcd_enable_auto_bkops(hba);
9729 	else
9730 		/*
9731 		 * If BKOPs operations are urgently needed at this moment then
9732 		 * keep auto-bkops enabled or else disable it.
9733 		 */
9734 		ufshcd_urgent_bkops(hba);
9735 
9736 	if (hba->ee_usr_mask)
9737 		ufshcd_write_ee_control(hba);
9738 
9739 	if (ufshcd_is_clkscaling_supported(hba))
9740 		ufshcd_clk_scaling_suspend(hba, false);
9741 
9742 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9743 		hba->dev_info.b_rpm_dev_flush_capable = false;
9744 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9745 	}
9746 
9747 	/* Enable Auto-Hibernate if configured */
9748 	ufshcd_auto_hibern8_enable(hba);
9749 
9750 	goto out;
9751 
9752 set_old_link_state:
9753 	ufshcd_link_state_transition(hba, old_link_state, 0);
9754 vendor_suspend:
9755 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9756 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9757 out:
9758 	if (ret)
9759 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9760 	hba->clk_gating.is_suspended = false;
9761 	ufshcd_release(hba);
9762 	hba->pm_op_in_progress = false;
9763 	return ret;
9764 }
9765 
9766 static int ufshcd_wl_runtime_suspend(struct device *dev)
9767 {
9768 	struct scsi_device *sdev = to_scsi_device(dev);
9769 	struct ufs_hba *hba;
9770 	int ret;
9771 	ktime_t start = ktime_get();
9772 
9773 	hba = shost_priv(sdev->host);
9774 
9775 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9776 	if (ret)
9777 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9778 
9779 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9780 		ktime_to_us(ktime_sub(ktime_get(), start)),
9781 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9782 
9783 	return ret;
9784 }
9785 
9786 static int ufshcd_wl_runtime_resume(struct device *dev)
9787 {
9788 	struct scsi_device *sdev = to_scsi_device(dev);
9789 	struct ufs_hba *hba;
9790 	int ret = 0;
9791 	ktime_t start = ktime_get();
9792 
9793 	hba = shost_priv(sdev->host);
9794 
9795 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9796 	if (ret)
9797 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9798 
9799 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9800 		ktime_to_us(ktime_sub(ktime_get(), start)),
9801 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9802 
9803 	return ret;
9804 }
9805 #endif
9806 
9807 #ifdef CONFIG_PM_SLEEP
9808 static int ufshcd_wl_suspend(struct device *dev)
9809 {
9810 	struct scsi_device *sdev = to_scsi_device(dev);
9811 	struct ufs_hba *hba;
9812 	int ret = 0;
9813 	ktime_t start = ktime_get();
9814 
9815 	hba = shost_priv(sdev->host);
9816 	down(&hba->host_sem);
9817 	hba->system_suspending = true;
9818 
9819 	if (pm_runtime_suspended(dev))
9820 		goto out;
9821 
9822 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9823 	if (ret) {
9824 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9825 		up(&hba->host_sem);
9826 	}
9827 
9828 out:
9829 	if (!ret)
9830 		hba->is_sys_suspended = true;
9831 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9832 		ktime_to_us(ktime_sub(ktime_get(), start)),
9833 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9834 
9835 	return ret;
9836 }
9837 
9838 static int ufshcd_wl_resume(struct device *dev)
9839 {
9840 	struct scsi_device *sdev = to_scsi_device(dev);
9841 	struct ufs_hba *hba;
9842 	int ret = 0;
9843 	ktime_t start = ktime_get();
9844 
9845 	hba = shost_priv(sdev->host);
9846 
9847 	if (pm_runtime_suspended(dev))
9848 		goto out;
9849 
9850 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9851 	if (ret)
9852 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9853 out:
9854 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9855 		ktime_to_us(ktime_sub(ktime_get(), start)),
9856 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9857 	if (!ret)
9858 		hba->is_sys_suspended = false;
9859 	hba->system_suspending = false;
9860 	up(&hba->host_sem);
9861 	return ret;
9862 }
9863 #endif
9864 
9865 /**
9866  * ufshcd_suspend - helper function for suspend operations
9867  * @hba: per adapter instance
9868  *
9869  * This function will put disable irqs, turn off clocks
9870  * and set vreg and hba-vreg in lpm mode.
9871  *
9872  * Return: 0 upon success; < 0 upon failure.
9873  */
9874 static int ufshcd_suspend(struct ufs_hba *hba)
9875 {
9876 	int ret;
9877 
9878 	if (!hba->is_powered)
9879 		return 0;
9880 	/*
9881 	 * Disable the host irq as host controller as there won't be any
9882 	 * host controller transaction expected till resume.
9883 	 */
9884 	ufshcd_disable_irq(hba);
9885 	ret = ufshcd_setup_clocks(hba, false);
9886 	if (ret) {
9887 		ufshcd_enable_irq(hba);
9888 		return ret;
9889 	}
9890 	if (ufshcd_is_clkgating_allowed(hba)) {
9891 		hba->clk_gating.state = CLKS_OFF;
9892 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9893 					hba->clk_gating.state);
9894 	}
9895 
9896 	ufshcd_vreg_set_lpm(hba);
9897 	/* Put the host controller in low power mode if possible */
9898 	ufshcd_hba_vreg_set_lpm(hba);
9899 	return ret;
9900 }
9901 
9902 #ifdef CONFIG_PM
9903 /**
9904  * ufshcd_resume - helper function for resume operations
9905  * @hba: per adapter instance
9906  *
9907  * This function basically turns on the regulators, clocks and
9908  * irqs of the hba.
9909  *
9910  * Return: 0 for success and non-zero for failure.
9911  */
9912 static int ufshcd_resume(struct ufs_hba *hba)
9913 {
9914 	int ret;
9915 
9916 	if (!hba->is_powered)
9917 		return 0;
9918 
9919 	ufshcd_hba_vreg_set_hpm(hba);
9920 	ret = ufshcd_vreg_set_hpm(hba);
9921 	if (ret)
9922 		goto out;
9923 
9924 	/* Make sure clocks are enabled before accessing controller */
9925 	ret = ufshcd_setup_clocks(hba, true);
9926 	if (ret)
9927 		goto disable_vreg;
9928 
9929 	/* enable the host irq as host controller would be active soon */
9930 	ufshcd_enable_irq(hba);
9931 
9932 	goto out;
9933 
9934 disable_vreg:
9935 	ufshcd_vreg_set_lpm(hba);
9936 out:
9937 	if (ret)
9938 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9939 	return ret;
9940 }
9941 #endif /* CONFIG_PM */
9942 
9943 #ifdef CONFIG_PM_SLEEP
9944 /**
9945  * ufshcd_system_suspend - system suspend callback
9946  * @dev: Device associated with the UFS controller.
9947  *
9948  * Executed before putting the system into a sleep state in which the contents
9949  * of main memory are preserved.
9950  *
9951  * Return: 0 for success and non-zero for failure.
9952  */
9953 int ufshcd_system_suspend(struct device *dev)
9954 {
9955 	struct ufs_hba *hba = dev_get_drvdata(dev);
9956 	int ret = 0;
9957 	ktime_t start = ktime_get();
9958 
9959 	if (pm_runtime_suspended(hba->dev))
9960 		goto out;
9961 
9962 	ret = ufshcd_suspend(hba);
9963 out:
9964 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9965 		ktime_to_us(ktime_sub(ktime_get(), start)),
9966 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9967 	return ret;
9968 }
9969 EXPORT_SYMBOL(ufshcd_system_suspend);
9970 
9971 /**
9972  * ufshcd_system_resume - system resume callback
9973  * @dev: Device associated with the UFS controller.
9974  *
9975  * Executed after waking the system up from a sleep state in which the contents
9976  * of main memory were preserved.
9977  *
9978  * Return: 0 for success and non-zero for failure.
9979  */
9980 int ufshcd_system_resume(struct device *dev)
9981 {
9982 	struct ufs_hba *hba = dev_get_drvdata(dev);
9983 	ktime_t start = ktime_get();
9984 	int ret = 0;
9985 
9986 	if (pm_runtime_suspended(hba->dev))
9987 		goto out;
9988 
9989 	ret = ufshcd_resume(hba);
9990 
9991 out:
9992 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9993 		ktime_to_us(ktime_sub(ktime_get(), start)),
9994 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9995 
9996 	return ret;
9997 }
9998 EXPORT_SYMBOL(ufshcd_system_resume);
9999 #endif /* CONFIG_PM_SLEEP */
10000 
10001 #ifdef CONFIG_PM
10002 /**
10003  * ufshcd_runtime_suspend - runtime suspend callback
10004  * @dev: Device associated with the UFS controller.
10005  *
10006  * Check the description of ufshcd_suspend() function for more details.
10007  *
10008  * Return: 0 for success and non-zero for failure.
10009  */
10010 int ufshcd_runtime_suspend(struct device *dev)
10011 {
10012 	struct ufs_hba *hba = dev_get_drvdata(dev);
10013 	int ret;
10014 	ktime_t start = ktime_get();
10015 
10016 	ret = ufshcd_suspend(hba);
10017 
10018 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10019 		ktime_to_us(ktime_sub(ktime_get(), start)),
10020 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10021 	return ret;
10022 }
10023 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10024 
10025 /**
10026  * ufshcd_runtime_resume - runtime resume routine
10027  * @dev: Device associated with the UFS controller.
10028  *
10029  * This function basically brings controller
10030  * to active state. Following operations are done in this function:
10031  *
10032  * 1. Turn on all the controller related clocks
10033  * 2. Turn ON VCC rail
10034  *
10035  * Return: 0 upon success; < 0 upon failure.
10036  */
10037 int ufshcd_runtime_resume(struct device *dev)
10038 {
10039 	struct ufs_hba *hba = dev_get_drvdata(dev);
10040 	int ret;
10041 	ktime_t start = ktime_get();
10042 
10043 	ret = ufshcd_resume(hba);
10044 
10045 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10046 		ktime_to_us(ktime_sub(ktime_get(), start)),
10047 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10048 	return ret;
10049 }
10050 EXPORT_SYMBOL(ufshcd_runtime_resume);
10051 #endif /* CONFIG_PM */
10052 
10053 static void ufshcd_wl_shutdown(struct device *dev)
10054 {
10055 	struct scsi_device *sdev = to_scsi_device(dev);
10056 	struct ufs_hba *hba = shost_priv(sdev->host);
10057 
10058 	down(&hba->host_sem);
10059 	hba->shutting_down = true;
10060 	up(&hba->host_sem);
10061 
10062 	/* Turn on everything while shutting down */
10063 	ufshcd_rpm_get_sync(hba);
10064 	scsi_device_quiesce(sdev);
10065 	shost_for_each_device(sdev, hba->host) {
10066 		if (sdev == hba->ufs_device_wlun)
10067 			continue;
10068 		scsi_device_quiesce(sdev);
10069 	}
10070 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10071 
10072 	/*
10073 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10074 	 * clocks.
10075 	 */
10076 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10077 		ufshcd_suspend(hba);
10078 
10079 	hba->is_powered = false;
10080 }
10081 
10082 /**
10083  * ufshcd_remove - de-allocate SCSI host and host memory space
10084  *		data structure memory
10085  * @hba: per adapter instance
10086  */
10087 void ufshcd_remove(struct ufs_hba *hba)
10088 {
10089 	if (hba->ufs_device_wlun)
10090 		ufshcd_rpm_get_sync(hba);
10091 	ufs_hwmon_remove(hba);
10092 	ufs_bsg_remove(hba);
10093 	ufs_sysfs_remove_nodes(hba->dev);
10094 	blk_mq_destroy_queue(hba->tmf_queue);
10095 	blk_put_queue(hba->tmf_queue);
10096 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10097 	scsi_remove_host(hba->host);
10098 	/* disable interrupts */
10099 	ufshcd_disable_intr(hba, hba->intr_mask);
10100 	ufshcd_hba_stop(hba);
10101 	ufshcd_hba_exit(hba);
10102 }
10103 EXPORT_SYMBOL_GPL(ufshcd_remove);
10104 
10105 #ifdef CONFIG_PM_SLEEP
10106 int ufshcd_system_freeze(struct device *dev)
10107 {
10108 
10109 	return ufshcd_system_suspend(dev);
10110 
10111 }
10112 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10113 
10114 int ufshcd_system_restore(struct device *dev)
10115 {
10116 
10117 	struct ufs_hba *hba = dev_get_drvdata(dev);
10118 	int ret;
10119 
10120 	ret = ufshcd_system_resume(dev);
10121 	if (ret)
10122 		return ret;
10123 
10124 	/* Configure UTRL and UTMRL base address registers */
10125 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10126 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10127 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10128 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10129 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10130 			REG_UTP_TASK_REQ_LIST_BASE_L);
10131 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10132 			REG_UTP_TASK_REQ_LIST_BASE_H);
10133 	/*
10134 	 * Make sure that UTRL and UTMRL base address registers
10135 	 * are updated with the latest queue addresses. Only after
10136 	 * updating these addresses, we can queue the new commands.
10137 	 */
10138 	mb();
10139 
10140 	/* Resuming from hibernate, assume that link was OFF */
10141 	ufshcd_set_link_off(hba);
10142 
10143 	return 0;
10144 
10145 }
10146 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10147 
10148 int ufshcd_system_thaw(struct device *dev)
10149 {
10150 	return ufshcd_system_resume(dev);
10151 }
10152 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10153 #endif /* CONFIG_PM_SLEEP  */
10154 
10155 /**
10156  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10157  * @hba: pointer to Host Bus Adapter (HBA)
10158  */
10159 void ufshcd_dealloc_host(struct ufs_hba *hba)
10160 {
10161 	scsi_host_put(hba->host);
10162 }
10163 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10164 
10165 /**
10166  * ufshcd_set_dma_mask - Set dma mask based on the controller
10167  *			 addressing capability
10168  * @hba: per adapter instance
10169  *
10170  * Return: 0 for success, non-zero for failure.
10171  */
10172 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10173 {
10174 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10175 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10176 			return 0;
10177 	}
10178 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10179 }
10180 
10181 /**
10182  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10183  * @dev: pointer to device handle
10184  * @hba_handle: driver private handle
10185  *
10186  * Return: 0 on success, non-zero value on failure.
10187  */
10188 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10189 {
10190 	struct Scsi_Host *host;
10191 	struct ufs_hba *hba;
10192 	int err = 0;
10193 
10194 	if (!dev) {
10195 		dev_err(dev,
10196 		"Invalid memory reference for dev is NULL\n");
10197 		err = -ENODEV;
10198 		goto out_error;
10199 	}
10200 
10201 	host = scsi_host_alloc(&ufshcd_driver_template,
10202 				sizeof(struct ufs_hba));
10203 	if (!host) {
10204 		dev_err(dev, "scsi_host_alloc failed\n");
10205 		err = -ENOMEM;
10206 		goto out_error;
10207 	}
10208 	host->nr_maps = HCTX_TYPE_POLL + 1;
10209 	hba = shost_priv(host);
10210 	hba->host = host;
10211 	hba->dev = dev;
10212 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10213 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10214 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10215 	INIT_LIST_HEAD(&hba->clk_list_head);
10216 	spin_lock_init(&hba->outstanding_lock);
10217 
10218 	*hba_handle = hba;
10219 
10220 out_error:
10221 	return err;
10222 }
10223 EXPORT_SYMBOL(ufshcd_alloc_host);
10224 
10225 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10226 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10227 				     const struct blk_mq_queue_data *qd)
10228 {
10229 	WARN_ON_ONCE(true);
10230 	return BLK_STS_NOTSUPP;
10231 }
10232 
10233 static const struct blk_mq_ops ufshcd_tmf_ops = {
10234 	.queue_rq = ufshcd_queue_tmf,
10235 };
10236 
10237 /**
10238  * ufshcd_init - Driver initialization routine
10239  * @hba: per-adapter instance
10240  * @mmio_base: base register address
10241  * @irq: Interrupt line of device
10242  *
10243  * Return: 0 on success, non-zero value on failure.
10244  */
10245 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10246 {
10247 	int err;
10248 	struct Scsi_Host *host = hba->host;
10249 	struct device *dev = hba->dev;
10250 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10251 
10252 	/*
10253 	 * dev_set_drvdata() must be called before any callbacks are registered
10254 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10255 	 * sysfs).
10256 	 */
10257 	dev_set_drvdata(dev, hba);
10258 
10259 	if (!mmio_base) {
10260 		dev_err(hba->dev,
10261 		"Invalid memory reference for mmio_base is NULL\n");
10262 		err = -ENODEV;
10263 		goto out_error;
10264 	}
10265 
10266 	hba->mmio_base = mmio_base;
10267 	hba->irq = irq;
10268 	hba->vps = &ufs_hba_vps;
10269 
10270 	err = ufshcd_hba_init(hba);
10271 	if (err)
10272 		goto out_error;
10273 
10274 	/* Read capabilities registers */
10275 	err = ufshcd_hba_capabilities(hba);
10276 	if (err)
10277 		goto out_disable;
10278 
10279 	/* Get UFS version supported by the controller */
10280 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10281 
10282 	/* Get Interrupt bit mask per version */
10283 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10284 
10285 	err = ufshcd_set_dma_mask(hba);
10286 	if (err) {
10287 		dev_err(hba->dev, "set dma mask failed\n");
10288 		goto out_disable;
10289 	}
10290 
10291 	/* Allocate memory for host memory space */
10292 	err = ufshcd_memory_alloc(hba);
10293 	if (err) {
10294 		dev_err(hba->dev, "Memory allocation failed\n");
10295 		goto out_disable;
10296 	}
10297 
10298 	/* Configure LRB */
10299 	ufshcd_host_memory_configure(hba);
10300 
10301 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10302 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10303 	host->max_id = UFSHCD_MAX_ID;
10304 	host->max_lun = UFS_MAX_LUNS;
10305 	host->max_channel = UFSHCD_MAX_CHANNEL;
10306 	host->unique_id = host->host_no;
10307 	host->max_cmd_len = UFS_CDB_SIZE;
10308 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10309 
10310 	hba->max_pwr_info.is_valid = false;
10311 
10312 	/* Initialize work queues */
10313 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10314 		 hba->host->host_no);
10315 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10316 	if (!hba->eh_wq) {
10317 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10318 			__func__);
10319 		err = -ENOMEM;
10320 		goto out_disable;
10321 	}
10322 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10323 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10324 
10325 	sema_init(&hba->host_sem, 1);
10326 
10327 	/* Initialize UIC command mutex */
10328 	mutex_init(&hba->uic_cmd_mutex);
10329 
10330 	/* Initialize mutex for device management commands */
10331 	mutex_init(&hba->dev_cmd.lock);
10332 
10333 	/* Initialize mutex for exception event control */
10334 	mutex_init(&hba->ee_ctrl_mutex);
10335 
10336 	mutex_init(&hba->wb_mutex);
10337 	init_rwsem(&hba->clk_scaling_lock);
10338 
10339 	ufshcd_init_clk_gating(hba);
10340 
10341 	ufshcd_init_clk_scaling(hba);
10342 
10343 	/*
10344 	 * In order to avoid any spurious interrupt immediately after
10345 	 * registering UFS controller interrupt handler, clear any pending UFS
10346 	 * interrupt status and disable all the UFS interrupts.
10347 	 */
10348 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10349 		      REG_INTERRUPT_STATUS);
10350 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10351 	/*
10352 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10353 	 * status is cleared before registering UFS interrupt handler.
10354 	 */
10355 	mb();
10356 
10357 	/* IRQ registration */
10358 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10359 	if (err) {
10360 		dev_err(hba->dev, "request irq failed\n");
10361 		goto out_disable;
10362 	} else {
10363 		hba->is_irq_enabled = true;
10364 	}
10365 
10366 	if (!is_mcq_supported(hba)) {
10367 		err = scsi_add_host(host, hba->dev);
10368 		if (err) {
10369 			dev_err(hba->dev, "scsi_add_host failed\n");
10370 			goto out_disable;
10371 		}
10372 	}
10373 
10374 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10375 		.nr_hw_queues	= 1,
10376 		.queue_depth	= hba->nutmrs,
10377 		.ops		= &ufshcd_tmf_ops,
10378 		.flags		= BLK_MQ_F_NO_SCHED,
10379 	};
10380 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10381 	if (err < 0)
10382 		goto out_remove_scsi_host;
10383 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10384 	if (IS_ERR(hba->tmf_queue)) {
10385 		err = PTR_ERR(hba->tmf_queue);
10386 		goto free_tmf_tag_set;
10387 	}
10388 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10389 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10390 	if (!hba->tmf_rqs) {
10391 		err = -ENOMEM;
10392 		goto free_tmf_queue;
10393 	}
10394 
10395 	/* Reset the attached device */
10396 	ufshcd_device_reset(hba);
10397 
10398 	ufshcd_init_crypto(hba);
10399 
10400 	/* Host controller enable */
10401 	err = ufshcd_hba_enable(hba);
10402 	if (err) {
10403 		dev_err(hba->dev, "Host controller enable failed\n");
10404 		ufshcd_print_evt_hist(hba);
10405 		ufshcd_print_host_state(hba);
10406 		goto free_tmf_queue;
10407 	}
10408 
10409 	/*
10410 	 * Set the default power management level for runtime and system PM.
10411 	 * Default power saving mode is to keep UFS link in Hibern8 state
10412 	 * and UFS device in sleep state.
10413 	 */
10414 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10415 						UFS_SLEEP_PWR_MODE,
10416 						UIC_LINK_HIBERN8_STATE);
10417 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10418 						UFS_SLEEP_PWR_MODE,
10419 						UIC_LINK_HIBERN8_STATE);
10420 
10421 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10422 			  ufshcd_rpm_dev_flush_recheck_work);
10423 
10424 	/* Set the default auto-hiberate idle timer value to 150 ms */
10425 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10426 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10427 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10428 	}
10429 
10430 	/* Hold auto suspend until async scan completes */
10431 	pm_runtime_get_sync(dev);
10432 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10433 	/*
10434 	 * We are assuming that device wasn't put in sleep/power-down
10435 	 * state exclusively during the boot stage before kernel.
10436 	 * This assumption helps avoid doing link startup twice during
10437 	 * ufshcd_probe_hba().
10438 	 */
10439 	ufshcd_set_ufs_dev_active(hba);
10440 
10441 	async_schedule(ufshcd_async_scan, hba);
10442 	ufs_sysfs_add_nodes(hba->dev);
10443 
10444 	device_enable_async_suspend(dev);
10445 	return 0;
10446 
10447 free_tmf_queue:
10448 	blk_mq_destroy_queue(hba->tmf_queue);
10449 	blk_put_queue(hba->tmf_queue);
10450 free_tmf_tag_set:
10451 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10452 out_remove_scsi_host:
10453 	scsi_remove_host(hba->host);
10454 out_disable:
10455 	hba->is_irq_enabled = false;
10456 	ufshcd_hba_exit(hba);
10457 out_error:
10458 	return err;
10459 }
10460 EXPORT_SYMBOL_GPL(ufshcd_init);
10461 
10462 void ufshcd_resume_complete(struct device *dev)
10463 {
10464 	struct ufs_hba *hba = dev_get_drvdata(dev);
10465 
10466 	if (hba->complete_put) {
10467 		ufshcd_rpm_put(hba);
10468 		hba->complete_put = false;
10469 	}
10470 }
10471 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10472 
10473 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10474 {
10475 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10476 	enum ufs_dev_pwr_mode dev_pwr_mode;
10477 	enum uic_link_state link_state;
10478 	unsigned long flags;
10479 	bool res;
10480 
10481 	spin_lock_irqsave(&dev->power.lock, flags);
10482 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10483 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10484 	res = pm_runtime_suspended(dev) &&
10485 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10486 	      hba->uic_link_state == link_state &&
10487 	      !hba->dev_info.b_rpm_dev_flush_capable;
10488 	spin_unlock_irqrestore(&dev->power.lock, flags);
10489 
10490 	return res;
10491 }
10492 
10493 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10494 {
10495 	struct ufs_hba *hba = dev_get_drvdata(dev);
10496 	int ret;
10497 
10498 	/*
10499 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10500 	 * are same. And it doesn't wake up the device for system-suspend
10501 	 * if it's runtime suspended. But ufs doesn't follow that.
10502 	 * Refer ufshcd_resume_complete()
10503 	 */
10504 	if (hba->ufs_device_wlun) {
10505 		/* Prevent runtime suspend */
10506 		ufshcd_rpm_get_noresume(hba);
10507 		/*
10508 		 * Check if already runtime suspended in same state as system
10509 		 * suspend would be.
10510 		 */
10511 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10512 			/* RPM state is not ok for SPM, so runtime resume */
10513 			ret = ufshcd_rpm_resume(hba);
10514 			if (ret < 0 && ret != -EACCES) {
10515 				ufshcd_rpm_put(hba);
10516 				return ret;
10517 			}
10518 		}
10519 		hba->complete_put = true;
10520 	}
10521 	return 0;
10522 }
10523 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10524 
10525 int ufshcd_suspend_prepare(struct device *dev)
10526 {
10527 	return __ufshcd_suspend_prepare(dev, true);
10528 }
10529 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10530 
10531 #ifdef CONFIG_PM_SLEEP
10532 static int ufshcd_wl_poweroff(struct device *dev)
10533 {
10534 	struct scsi_device *sdev = to_scsi_device(dev);
10535 	struct ufs_hba *hba = shost_priv(sdev->host);
10536 
10537 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10538 	return 0;
10539 }
10540 #endif
10541 
10542 static int ufshcd_wl_probe(struct device *dev)
10543 {
10544 	struct scsi_device *sdev = to_scsi_device(dev);
10545 
10546 	if (!is_device_wlun(sdev))
10547 		return -ENODEV;
10548 
10549 	blk_pm_runtime_init(sdev->request_queue, dev);
10550 	pm_runtime_set_autosuspend_delay(dev, 0);
10551 	pm_runtime_allow(dev);
10552 
10553 	return  0;
10554 }
10555 
10556 static int ufshcd_wl_remove(struct device *dev)
10557 {
10558 	pm_runtime_forbid(dev);
10559 	return 0;
10560 }
10561 
10562 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10563 #ifdef CONFIG_PM_SLEEP
10564 	.suspend = ufshcd_wl_suspend,
10565 	.resume = ufshcd_wl_resume,
10566 	.freeze = ufshcd_wl_suspend,
10567 	.thaw = ufshcd_wl_resume,
10568 	.poweroff = ufshcd_wl_poweroff,
10569 	.restore = ufshcd_wl_resume,
10570 #endif
10571 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10572 };
10573 
10574 static void ufshcd_check_header_layout(void)
10575 {
10576 	/*
10577 	 * gcc compilers before version 10 cannot do constant-folding for
10578 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10579 	 * before.
10580 	 */
10581 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10582 		return;
10583 
10584 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10585 				.cci = 3})[0] != 3);
10586 
10587 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10588 				.ehs_length = 2})[1] != 2);
10589 
10590 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10591 				.enable_crypto = 1})[2]
10592 		     != 0x80);
10593 
10594 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10595 					.command_type = 5,
10596 					.data_direction = 3,
10597 					.interrupt = 1,
10598 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10599 
10600 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10601 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10602 		cpu_to_le32(0xdeadbeef));
10603 
10604 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10605 				.ocs = 4})[8] != 4);
10606 
10607 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10608 				.cds = 5})[9] != 5);
10609 
10610 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10611 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10612 		cpu_to_le32(0xbadcafe));
10613 
10614 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10615 			     .iid = 0xf })[4] != 0xf0);
10616 
10617 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10618 			     .command_set_type = 0xf })[4] != 0xf);
10619 }
10620 
10621 /*
10622  * ufs_dev_wlun_template - describes ufs device wlun
10623  * ufs-device wlun - used to send pm commands
10624  * All luns are consumers of ufs-device wlun.
10625  *
10626  * Currently, no sd driver is present for wluns.
10627  * Hence the no specific pm operations are performed.
10628  * With ufs design, SSU should be sent to ufs-device wlun.
10629  * Hence register a scsi driver for ufs wluns only.
10630  */
10631 static struct scsi_driver ufs_dev_wlun_template = {
10632 	.gendrv = {
10633 		.name = "ufs_device_wlun",
10634 		.owner = THIS_MODULE,
10635 		.probe = ufshcd_wl_probe,
10636 		.remove = ufshcd_wl_remove,
10637 		.pm = &ufshcd_wl_pm_ops,
10638 		.shutdown = ufshcd_wl_shutdown,
10639 	},
10640 };
10641 
10642 static int __init ufshcd_core_init(void)
10643 {
10644 	int ret;
10645 
10646 	ufshcd_check_header_layout();
10647 
10648 	ufs_debugfs_init();
10649 
10650 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10651 	if (ret)
10652 		ufs_debugfs_exit();
10653 	return ret;
10654 }
10655 
10656 static void __exit ufshcd_core_exit(void)
10657 {
10658 	ufs_debugfs_exit();
10659 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10660 }
10661 
10662 module_init(ufshcd_core_init);
10663 module_exit(ufshcd_core_exit);
10664 
10665 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10666 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10667 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10668 MODULE_SOFTDEP("pre: governor_simpleondemand");
10669 MODULE_LICENSE("GPL");
10670