1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/sched/clock.h> 25 #include <linux/iopoll.h> 26 #include <scsi/scsi_cmnd.h> 27 #include <scsi/scsi_dbg.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include "ufshcd-priv.h" 31 #include <ufs/ufs_quirks.h> 32 #include <ufs/unipro.h> 33 #include "ufs-sysfs.h" 34 #include "ufs-debugfs.h" 35 #include "ufs-fault-injection.h" 36 #include "ufs_bsg.h" 37 #include "ufshcd-crypto.h" 38 #include <asm/unaligned.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/ufs.h> 42 43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 44 UTP_TASK_REQ_COMPL |\ 45 UFSHCD_ERROR_MASK) 46 47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 48 UFSHCD_ERROR_MASK |\ 49 MCQ_CQ_EVENT_STATUS) 50 51 52 /* UIC command timeout, unit: ms */ 53 #define UIC_CMD_TIMEOUT 500 54 55 /* NOP OUT retries waiting for NOP IN response */ 56 #define NOP_OUT_RETRIES 10 57 /* Timeout after 50 msecs if NOP OUT hangs without response */ 58 #define NOP_OUT_TIMEOUT 50 /* msecs */ 59 60 /* Query request retries */ 61 #define QUERY_REQ_RETRIES 3 62 /* Query request timeout */ 63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 64 65 /* Advanced RPMB request timeout */ 66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 67 68 /* Task management command timeout */ 69 #define TM_CMD_TIMEOUT 100 /* msecs */ 70 71 /* maximum number of retries for a general UIC command */ 72 #define UFS_UIC_COMMAND_RETRIES 3 73 74 /* maximum number of link-startup retries */ 75 #define DME_LINKSTARTUP_RETRIES 3 76 77 /* maximum number of reset retries before giving up */ 78 #define MAX_HOST_RESET_RETRIES 5 79 80 /* Maximum number of error handler retries before giving up */ 81 #define MAX_ERR_HANDLER_RETRIES 5 82 83 /* Expose the flag value from utp_upiu_query.value */ 84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 85 86 /* Interrupt aggregation default timeout, unit: 40us */ 87 #define INT_AGGR_DEF_TO 0x02 88 89 /* default delay of autosuspend: 2000 ms */ 90 #define RPM_AUTOSUSPEND_DELAY_MS 2000 91 92 /* Default delay of RPM device flush delayed work */ 93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 94 95 /* Default value of wait time before gating device ref clock */ 96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 97 98 /* Polling time to wait for fDeviceInit */ 99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 100 101 /* UFSHC 4.0 compliant HC support this mode. */ 102 static bool use_mcq_mode = true; 103 104 static bool is_mcq_supported(struct ufs_hba *hba) 105 { 106 return hba->mcq_sup && use_mcq_mode; 107 } 108 109 module_param(use_mcq_mode, bool, 0644); 110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 111 112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 113 ({ \ 114 int _ret; \ 115 if (_on) \ 116 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 117 else \ 118 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 119 _ret; \ 120 }) 121 122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 123 size_t __len = (len); \ 124 print_hex_dump(KERN_ERR, prefix_str, \ 125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 126 16, 4, buf, __len, false); \ 127 } while (0) 128 129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 130 const char *prefix) 131 { 132 u32 *regs; 133 size_t pos; 134 135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 136 return -EINVAL; 137 138 regs = kzalloc(len, GFP_ATOMIC); 139 if (!regs) 140 return -ENOMEM; 141 142 for (pos = 0; pos < len; pos += 4) { 143 if (offset == 0 && 144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 145 pos <= REG_UIC_ERROR_CODE_DME) 146 continue; 147 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 148 } 149 150 ufshcd_hex_dump(prefix, regs, len); 151 kfree(regs); 152 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 156 157 enum { 158 UFSHCD_MAX_CHANNEL = 0, 159 UFSHCD_MAX_ID = 1, 160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, 161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, 162 }; 163 164 static const char *const ufshcd_state_name[] = { 165 [UFSHCD_STATE_RESET] = "reset", 166 [UFSHCD_STATE_OPERATIONAL] = "operational", 167 [UFSHCD_STATE_ERROR] = "error", 168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 170 }; 171 172 /* UFSHCD error handling flags */ 173 enum { 174 UFSHCD_EH_IN_PROGRESS = (1 << 0), 175 }; 176 177 /* UFSHCD UIC layer error flags */ 178 enum { 179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 186 }; 187 188 #define ufshcd_set_eh_in_progress(h) \ 189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 190 #define ufshcd_eh_in_progress(h) \ 191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 192 #define ufshcd_clear_eh_in_progress(h) \ 193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 194 195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 202 /* 203 * For DeepSleep, the link is first put in hibern8 and then off. 204 * Leaving the link in hibern8 is not supported. 205 */ 206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 207 }; 208 209 static inline enum ufs_dev_pwr_mode 210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 211 { 212 return ufs_pm_lvl_states[lvl].dev_state; 213 } 214 215 static inline enum uic_link_state 216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 217 { 218 return ufs_pm_lvl_states[lvl].link_state; 219 } 220 221 static inline enum ufs_pm_level 222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 223 enum uic_link_state link_state) 224 { 225 enum ufs_pm_level lvl; 226 227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 229 (ufs_pm_lvl_states[lvl].link_state == link_state)) 230 return lvl; 231 } 232 233 /* if no match found, return the level 0 */ 234 return UFS_PM_LVL_0; 235 } 236 237 static const struct ufs_dev_quirk ufs_fixups[] = { 238 /* UFS cards deviations table */ 239 { .wmanufacturerid = UFS_VENDOR_MICRON, 240 .model = UFS_ANY_MODEL, 241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 243 .model = UFS_ANY_MODEL, 244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 248 .model = UFS_ANY_MODEL, 249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 251 .model = "hB8aL1" /*H28U62301AMR*/, 252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 254 .model = UFS_ANY_MODEL, 255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 257 .model = "THGLF2G9C8KBADG", 258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 260 .model = "THGLF2G9D8KBADG", 261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 262 {} 263 }; 264 265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 266 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 267 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 270 static void ufshcd_hba_exit(struct ufs_hba *hba); 271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 279 static irqreturn_t ufshcd_intr(int irq, void *__hba); 280 static int ufshcd_change_power_mode(struct ufs_hba *hba, 281 struct ufs_pa_layer_attr *pwr_mode); 282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 285 struct ufs_vreg *vreg); 286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 287 bool enable); 288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 290 291 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 292 { 293 if (!hba->is_irq_enabled) { 294 enable_irq(hba->irq); 295 hba->is_irq_enabled = true; 296 } 297 } 298 299 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 300 { 301 if (hba->is_irq_enabled) { 302 disable_irq(hba->irq); 303 hba->is_irq_enabled = false; 304 } 305 } 306 307 static void ufshcd_configure_wb(struct ufs_hba *hba) 308 { 309 if (!ufshcd_is_wb_allowed(hba)) 310 return; 311 312 ufshcd_wb_toggle(hba, true); 313 314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 315 316 if (ufshcd_is_wb_buf_flush_allowed(hba)) 317 ufshcd_wb_toggle_buf_flush(hba, true); 318 } 319 320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 321 { 322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 323 scsi_unblock_requests(hba->host); 324 } 325 326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 327 { 328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 329 scsi_block_requests(hba->host); 330 } 331 332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 333 enum ufs_trace_str_t str_t) 334 { 335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 336 struct utp_upiu_header *header; 337 338 if (!trace_ufshcd_upiu_enabled()) 339 return; 340 341 if (str_t == UFS_CMD_SEND) 342 header = &rq->header; 343 else 344 header = &hba->lrb[tag].ucd_rsp_ptr->header; 345 346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 347 UFS_TSF_CDB); 348 } 349 350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 351 enum ufs_trace_str_t str_t, 352 struct utp_upiu_req *rq_rsp) 353 { 354 if (!trace_ufshcd_upiu_enabled()) 355 return; 356 357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 358 &rq_rsp->qr, UFS_TSF_OSF); 359 } 360 361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 362 enum ufs_trace_str_t str_t) 363 { 364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 365 366 if (!trace_ufshcd_upiu_enabled()) 367 return; 368 369 if (str_t == UFS_TM_SEND) 370 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 371 &descp->upiu_req.req_header, 372 &descp->upiu_req.input_param1, 373 UFS_TSF_TM_INPUT); 374 else 375 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 376 &descp->upiu_rsp.rsp_header, 377 &descp->upiu_rsp.output_param1, 378 UFS_TSF_TM_OUTPUT); 379 } 380 381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 382 const struct uic_command *ucmd, 383 enum ufs_trace_str_t str_t) 384 { 385 u32 cmd; 386 387 if (!trace_ufshcd_uic_command_enabled()) 388 return; 389 390 if (str_t == UFS_CMD_SEND) 391 cmd = ucmd->command; 392 else 393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 394 395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 399 } 400 401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 402 enum ufs_trace_str_t str_t) 403 { 404 u64 lba = 0; 405 u8 opcode = 0, group_id = 0; 406 u32 doorbell = 0; 407 u32 intr; 408 int hwq_id = -1; 409 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 410 struct scsi_cmnd *cmd = lrbp->cmd; 411 struct request *rq = scsi_cmd_to_rq(cmd); 412 int transfer_len = -1; 413 414 if (!cmd) 415 return; 416 417 /* trace UPIU also */ 418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 419 if (!trace_ufshcd_command_enabled()) 420 return; 421 422 opcode = cmd->cmnd[0]; 423 424 if (opcode == READ_10 || opcode == WRITE_10) { 425 /* 426 * Currently we only fully trace read(10) and write(10) commands 427 */ 428 transfer_len = 429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 430 lba = scsi_get_lba(cmd); 431 if (opcode == WRITE_10) 432 group_id = lrbp->cmd->cmnd[6]; 433 } else if (opcode == UNMAP) { 434 /* 435 * The number of Bytes to be unmapped beginning with the lba. 436 */ 437 transfer_len = blk_rq_bytes(rq); 438 lba = scsi_get_lba(cmd); 439 } 440 441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 442 443 if (is_mcq_enabled(hba)) { 444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 445 446 hwq_id = hwq->id; 447 } else { 448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 449 } 450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag, 451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id); 452 } 453 454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 455 { 456 struct ufs_clk_info *clki; 457 struct list_head *head = &hba->clk_list_head; 458 459 if (list_empty(head)) 460 return; 461 462 list_for_each_entry(clki, head, list) { 463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 464 clki->max_freq) 465 dev_err(hba->dev, "clk: %s, rate: %u\n", 466 clki->name, clki->curr_freq); 467 } 468 } 469 470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 471 const char *err_name) 472 { 473 int i; 474 bool found = false; 475 const struct ufs_event_hist *e; 476 477 if (id >= UFS_EVT_CNT) 478 return; 479 480 e = &hba->ufs_stats.event[id]; 481 482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 484 485 if (e->tstamp[p] == 0) 486 continue; 487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 488 e->val[p], div_u64(e->tstamp[p], 1000)); 489 found = true; 490 } 491 492 if (!found) 493 dev_err(hba->dev, "No record of %s\n", err_name); 494 else 495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 496 } 497 498 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 499 { 500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 501 502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 508 "auto_hibern8_err"); 509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 511 "link_startup_fail"); 512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 514 "suspend_fail"); 515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 517 "wlun suspend_fail"); 518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 521 522 ufshcd_vops_dbg_register_dump(hba); 523 } 524 525 static 526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 527 { 528 const struct ufshcd_lrb *lrbp; 529 int prdt_length; 530 531 lrbp = &hba->lrb[tag]; 532 533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 537 dev_err(hba->dev, 538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 539 tag, (u64)lrbp->utrd_dma_addr); 540 541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 542 sizeof(struct utp_transfer_req_desc)); 543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 544 (u64)lrbp->ucd_req_dma_addr); 545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 546 sizeof(struct utp_upiu_req)); 547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 548 (u64)lrbp->ucd_rsp_dma_addr); 549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 550 sizeof(struct utp_upiu_rsp)); 551 552 prdt_length = le16_to_cpu( 553 lrbp->utr_descriptor_ptr->prd_table_length); 554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 555 prdt_length /= ufshcd_sg_entry_size(hba); 556 557 dev_err(hba->dev, 558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 559 tag, prdt_length, 560 (u64)lrbp->ucd_prdt_dma_addr); 561 562 if (pr_prdt) 563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 564 ufshcd_sg_entry_size(hba) * prdt_length); 565 } 566 567 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 568 { 569 struct scsi_device *sdev = req->q->queuedata; 570 struct Scsi_Host *shost = sdev->host; 571 struct ufs_hba *hba = shost_priv(shost); 572 573 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 574 575 return true; 576 } 577 578 /** 579 * ufshcd_print_trs_all - print trs for all started requests. 580 * @hba: per-adapter instance. 581 * @pr_prdt: need to print prdt or not. 582 */ 583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 584 { 585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 586 } 587 588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 589 { 590 int tag; 591 592 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 594 595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 597 } 598 } 599 600 static void ufshcd_print_host_state(struct ufs_hba *hba) 601 { 602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 603 604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 606 hba->outstanding_reqs, hba->outstanding_tasks); 607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 608 hba->saved_err, hba->saved_uic_err); 609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 610 hba->curr_dev_pwr_mode, hba->uic_link_state); 611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 612 hba->pm_op_in_progress, hba->is_sys_suspended); 613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 614 hba->auto_bkops_enabled, hba->host->host_self_blocked); 615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 616 dev_err(hba->dev, 617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 619 hba->ufs_stats.hibern8_exit_cnt); 620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 621 div_u64(hba->ufs_stats.last_intr_ts, 1000), 622 hba->ufs_stats.last_intr_status); 623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 624 hba->eh_flags, hba->req_abort_count); 625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 626 hba->ufs_version, hba->capabilities, hba->caps); 627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 628 hba->dev_quirks); 629 if (sdev_ufs) 630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 632 633 ufshcd_print_clk_freqs(hba); 634 } 635 636 /** 637 * ufshcd_print_pwr_info - print power params as saved in hba 638 * power info 639 * @hba: per-adapter instance 640 */ 641 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 642 { 643 static const char * const names[] = { 644 "INVALID MODE", 645 "FAST MODE", 646 "SLOW_MODE", 647 "INVALID MODE", 648 "FASTAUTO_MODE", 649 "SLOWAUTO_MODE", 650 "INVALID MODE", 651 }; 652 653 /* 654 * Using dev_dbg to avoid messages during runtime PM to avoid 655 * never-ending cycles of messages written back to storage by user space 656 * causing runtime resume, causing more messages and so on. 657 */ 658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 659 __func__, 660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 662 names[hba->pwr_info.pwr_rx], 663 names[hba->pwr_info.pwr_tx], 664 hba->pwr_info.hs_rate); 665 } 666 667 static void ufshcd_device_reset(struct ufs_hba *hba) 668 { 669 int err; 670 671 err = ufshcd_vops_device_reset(hba); 672 673 if (!err) { 674 ufshcd_set_ufs_dev_active(hba); 675 if (ufshcd_is_wb_allowed(hba)) { 676 hba->dev_info.wb_enabled = false; 677 hba->dev_info.wb_buf_flush_enabled = false; 678 } 679 } 680 if (err != -EOPNOTSUPP) 681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 682 } 683 684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 685 { 686 if (!us) 687 return; 688 689 if (us < 10) 690 udelay(us); 691 else 692 usleep_range(us, us + tolerance); 693 } 694 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 695 696 /** 697 * ufshcd_wait_for_register - wait for register value to change 698 * @hba: per-adapter interface 699 * @reg: mmio register offset 700 * @mask: mask to apply to the read register value 701 * @val: value to wait for 702 * @interval_us: polling interval in microseconds 703 * @timeout_ms: timeout in milliseconds 704 * 705 * Return: -ETIMEDOUT on error, zero on success. 706 */ 707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 708 u32 val, unsigned long interval_us, 709 unsigned long timeout_ms) 710 { 711 int err = 0; 712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 713 714 /* ignore bits that we don't intend to wait on */ 715 val = val & mask; 716 717 while ((ufshcd_readl(hba, reg) & mask) != val) { 718 usleep_range(interval_us, interval_us + 50); 719 if (time_after(jiffies, timeout)) { 720 if ((ufshcd_readl(hba, reg) & mask) != val) 721 err = -ETIMEDOUT; 722 break; 723 } 724 } 725 726 return err; 727 } 728 729 /** 730 * ufshcd_get_intr_mask - Get the interrupt bit mask 731 * @hba: Pointer to adapter instance 732 * 733 * Return: interrupt bit mask per version 734 */ 735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 736 { 737 if (hba->ufs_version == ufshci_version(1, 0)) 738 return INTERRUPT_MASK_ALL_VER_10; 739 if (hba->ufs_version <= ufshci_version(2, 0)) 740 return INTERRUPT_MASK_ALL_VER_11; 741 742 return INTERRUPT_MASK_ALL_VER_21; 743 } 744 745 /** 746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 747 * @hba: Pointer to adapter instance 748 * 749 * Return: UFSHCI version supported by the controller 750 */ 751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 752 { 753 u32 ufshci_ver; 754 755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 757 else 758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 759 760 /* 761 * UFSHCI v1.x uses a different version scheme, in order 762 * to allow the use of comparisons with the ufshci_version 763 * function, we convert it to the same scheme as ufs 2.0+. 764 */ 765 if (ufshci_ver & 0x00010000) 766 return ufshci_version(1, ufshci_ver & 0x00000100); 767 768 return ufshci_ver; 769 } 770 771 /** 772 * ufshcd_is_device_present - Check if any device connected to 773 * the host controller 774 * @hba: pointer to adapter instance 775 * 776 * Return: true if device present, false if no device detected 777 */ 778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 779 { 780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 781 } 782 783 /** 784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 785 * @lrbp: pointer to local command reference block 786 * @cqe: pointer to the completion queue entry 787 * 788 * This function is used to get the OCS field from UTRD 789 * 790 * Return: the OCS field in the UTRD. 791 */ 792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 793 struct cq_entry *cqe) 794 { 795 if (cqe) 796 return le32_to_cpu(cqe->status) & MASK_OCS; 797 798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 799 } 800 801 /** 802 * ufshcd_utrl_clear() - Clear requests from the controller request list. 803 * @hba: per adapter instance 804 * @mask: mask with one bit set for each request to be cleared 805 */ 806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 807 { 808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 809 mask = ~mask; 810 /* 811 * From the UFSHCI specification: "UTP Transfer Request List CLear 812 * Register (UTRLCLR): This field is bit significant. Each bit 813 * corresponds to a slot in the UTP Transfer Request List, where bit 0 814 * corresponds to request slot 0. A bit in this field is set to ‘0’ 815 * by host software to indicate to the host controller that a transfer 816 * request slot is cleared. The host controller 817 * shall free up any resources associated to the request slot 818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 819 * host software indicates no change to request slots by setting the 820 * associated bits in this field to ‘1’. Bits in this field shall only 821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 822 */ 823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 824 } 825 826 /** 827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 828 * @hba: per adapter instance 829 * @pos: position of the bit to be cleared 830 */ 831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 832 { 833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 835 else 836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 837 } 838 839 /** 840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 841 * @reg: Register value of host controller status 842 * 843 * Return: 0 on success; a positive value if failed. 844 */ 845 static inline int ufshcd_get_lists_status(u32 reg) 846 { 847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 848 } 849 850 /** 851 * ufshcd_get_uic_cmd_result - Get the UIC command result 852 * @hba: Pointer to adapter instance 853 * 854 * This function gets the result of UIC command completion 855 * 856 * Return: 0 on success; non-zero value on error. 857 */ 858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 859 { 860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 861 MASK_UIC_COMMAND_RESULT; 862 } 863 864 /** 865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 866 * @hba: Pointer to adapter instance 867 * 868 * This function gets UIC command argument3 869 * 870 * Return: 0 on success; non-zero value on error. 871 */ 872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 873 { 874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 875 } 876 877 /** 878 * ufshcd_get_req_rsp - returns the TR response transaction type 879 * @ucd_rsp_ptr: pointer to response UPIU 880 * 881 * Return: UPIU type. 882 */ 883 static inline enum upiu_response_transaction 884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 885 { 886 return ucd_rsp_ptr->header.transaction_code; 887 } 888 889 /** 890 * ufshcd_is_exception_event - Check if the device raised an exception event 891 * @ucd_rsp_ptr: pointer to response UPIU 892 * 893 * The function checks if the device raised an exception event indicated in 894 * the Device Information field of response UPIU. 895 * 896 * Return: true if exception is raised, false otherwise. 897 */ 898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 899 { 900 return ucd_rsp_ptr->header.device_information & 1; 901 } 902 903 /** 904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 905 * @hba: per adapter instance 906 */ 907 static inline void 908 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 909 { 910 ufshcd_writel(hba, INT_AGGR_ENABLE | 911 INT_AGGR_COUNTER_AND_TIMER_RESET, 912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 913 } 914 915 /** 916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 917 * @hba: per adapter instance 918 * @cnt: Interrupt aggregation counter threshold 919 * @tmout: Interrupt aggregation timeout value 920 */ 921 static inline void 922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 923 { 924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 925 INT_AGGR_COUNTER_THLD_VAL(cnt) | 926 INT_AGGR_TIMEOUT_VAL(tmout), 927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 928 } 929 930 /** 931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 932 * @hba: per adapter instance 933 */ 934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 935 { 936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 937 } 938 939 /** 940 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 941 * When run-stop registers are set to 1, it indicates the 942 * host controller that it can process the requests 943 * @hba: per adapter instance 944 */ 945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 946 { 947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 948 REG_UTP_TASK_REQ_LIST_RUN_STOP); 949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 951 } 952 953 /** 954 * ufshcd_hba_start - Start controller initialization sequence 955 * @hba: per adapter instance 956 */ 957 static inline void ufshcd_hba_start(struct ufs_hba *hba) 958 { 959 u32 val = CONTROLLER_ENABLE; 960 961 if (ufshcd_crypto_enable(hba)) 962 val |= CRYPTO_GENERAL_ENABLE; 963 964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 965 } 966 967 /** 968 * ufshcd_is_hba_active - Get controller state 969 * @hba: per adapter instance 970 * 971 * Return: true if and only if the controller is active. 972 */ 973 bool ufshcd_is_hba_active(struct ufs_hba *hba) 974 { 975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 976 } 977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 978 979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 980 { 981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 982 if (hba->ufs_version <= ufshci_version(1, 1)) 983 return UFS_UNIPRO_VER_1_41; 984 else 985 return UFS_UNIPRO_VER_1_6; 986 } 987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 988 989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 990 { 991 /* 992 * If both host and device support UniPro ver1.6 or later, PA layer 993 * parameters tuning happens during link startup itself. 994 * 995 * We can manually tune PA layer parameters if either host or device 996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 997 * logic simple, we will only do manual tuning if local unipro version 998 * doesn't support ver1.6 or later. 999 */ 1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; 1001 } 1002 1003 /** 1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1005 * @hba: per adapter instance 1006 * @scale_up: If True, set max possible frequency othewise set low frequency 1007 * 1008 * Return: 0 if successful; < 0 upon failure. 1009 */ 1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1011 { 1012 int ret = 0; 1013 struct ufs_clk_info *clki; 1014 struct list_head *head = &hba->clk_list_head; 1015 1016 if (list_empty(head)) 1017 goto out; 1018 1019 list_for_each_entry(clki, head, list) { 1020 if (!IS_ERR_OR_NULL(clki->clk)) { 1021 if (scale_up && clki->max_freq) { 1022 if (clki->curr_freq == clki->max_freq) 1023 continue; 1024 1025 ret = clk_set_rate(clki->clk, clki->max_freq); 1026 if (ret) { 1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1028 __func__, clki->name, 1029 clki->max_freq, ret); 1030 break; 1031 } 1032 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1033 "scaled up", clki->name, 1034 clki->curr_freq, 1035 clki->max_freq); 1036 1037 clki->curr_freq = clki->max_freq; 1038 1039 } else if (!scale_up && clki->min_freq) { 1040 if (clki->curr_freq == clki->min_freq) 1041 continue; 1042 1043 ret = clk_set_rate(clki->clk, clki->min_freq); 1044 if (ret) { 1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1046 __func__, clki->name, 1047 clki->min_freq, ret); 1048 break; 1049 } 1050 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1051 "scaled down", clki->name, 1052 clki->curr_freq, 1053 clki->min_freq); 1054 clki->curr_freq = clki->min_freq; 1055 } 1056 } 1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1058 clki->name, clk_get_rate(clki->clk)); 1059 } 1060 1061 out: 1062 return ret; 1063 } 1064 1065 /** 1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1067 * @hba: per adapter instance 1068 * @scale_up: True if scaling up and false if scaling down 1069 * 1070 * Return: 0 if successful; < 0 upon failure. 1071 */ 1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 1073 { 1074 int ret = 0; 1075 ktime_t start = ktime_get(); 1076 1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1078 if (ret) 1079 goto out; 1080 1081 ret = ufshcd_set_clk_freq(hba, scale_up); 1082 if (ret) 1083 goto out; 1084 1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1086 if (ret) 1087 ufshcd_set_clk_freq(hba, !scale_up); 1088 1089 out: 1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1091 (scale_up ? "up" : "down"), 1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1093 return ret; 1094 } 1095 1096 /** 1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1098 * @hba: per adapter instance 1099 * @scale_up: True if scaling up and false if scaling down 1100 * 1101 * Return: true if scaling is required, false otherwise. 1102 */ 1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1104 bool scale_up) 1105 { 1106 struct ufs_clk_info *clki; 1107 struct list_head *head = &hba->clk_list_head; 1108 1109 if (list_empty(head)) 1110 return false; 1111 1112 list_for_each_entry(clki, head, list) { 1113 if (!IS_ERR_OR_NULL(clki->clk)) { 1114 if (scale_up && clki->max_freq) { 1115 if (clki->curr_freq == clki->max_freq) 1116 continue; 1117 return true; 1118 } else if (!scale_up && clki->min_freq) { 1119 if (clki->curr_freq == clki->min_freq) 1120 continue; 1121 return true; 1122 } 1123 } 1124 } 1125 1126 return false; 1127 } 1128 1129 /* 1130 * Determine the number of pending commands by counting the bits in the SCSI 1131 * device budget maps. This approach has been selected because a bit is set in 1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1133 * flag. The host_self_blocked flag can be modified by calling 1134 * scsi_block_requests() or scsi_unblock_requests(). 1135 */ 1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1137 { 1138 const struct scsi_device *sdev; 1139 u32 pending = 0; 1140 1141 lockdep_assert_held(hba->host->host_lock); 1142 __shost_for_each_device(sdev, hba->host) 1143 pending += sbitmap_weight(&sdev->budget_map); 1144 1145 return pending; 1146 } 1147 1148 /* 1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1150 * has expired. 1151 * 1152 * Return: 0 upon success; -EBUSY upon timeout. 1153 */ 1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1155 u64 wait_timeout_us) 1156 { 1157 unsigned long flags; 1158 int ret = 0; 1159 u32 tm_doorbell; 1160 u32 tr_pending; 1161 bool timeout = false, do_last_check = false; 1162 ktime_t start; 1163 1164 ufshcd_hold(hba); 1165 spin_lock_irqsave(hba->host->host_lock, flags); 1166 /* 1167 * Wait for all the outstanding tasks/transfer requests. 1168 * Verify by checking the doorbell registers are clear. 1169 */ 1170 start = ktime_get(); 1171 do { 1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1173 ret = -EBUSY; 1174 goto out; 1175 } 1176 1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1178 tr_pending = ufshcd_pending_cmds(hba); 1179 if (!tm_doorbell && !tr_pending) { 1180 timeout = false; 1181 break; 1182 } else if (do_last_check) { 1183 break; 1184 } 1185 1186 spin_unlock_irqrestore(hba->host->host_lock, flags); 1187 io_schedule_timeout(msecs_to_jiffies(20)); 1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1189 wait_timeout_us) { 1190 timeout = true; 1191 /* 1192 * We might have scheduled out for long time so make 1193 * sure to check if doorbells are cleared by this time 1194 * or not. 1195 */ 1196 do_last_check = true; 1197 } 1198 spin_lock_irqsave(hba->host->host_lock, flags); 1199 } while (tm_doorbell || tr_pending); 1200 1201 if (timeout) { 1202 dev_err(hba->dev, 1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1204 __func__, tm_doorbell, tr_pending); 1205 ret = -EBUSY; 1206 } 1207 out: 1208 spin_unlock_irqrestore(hba->host->host_lock, flags); 1209 ufshcd_release(hba); 1210 return ret; 1211 } 1212 1213 /** 1214 * ufshcd_scale_gear - scale up/down UFS gear 1215 * @hba: per adapter instance 1216 * @scale_up: True for scaling up gear and false for scaling down 1217 * 1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1219 * non-zero for any other errors. 1220 */ 1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1222 { 1223 int ret = 0; 1224 struct ufs_pa_layer_attr new_pwr_info; 1225 1226 if (scale_up) { 1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1228 sizeof(struct ufs_pa_layer_attr)); 1229 } else { 1230 memcpy(&new_pwr_info, &hba->pwr_info, 1231 sizeof(struct ufs_pa_layer_attr)); 1232 1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1235 /* save the current power mode */ 1236 memcpy(&hba->clk_scaling.saved_pwr_info, 1237 &hba->pwr_info, 1238 sizeof(struct ufs_pa_layer_attr)); 1239 1240 /* scale down gear */ 1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1243 } 1244 } 1245 1246 /* check if the power mode needs to be changed or not? */ 1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1248 if (ret) 1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1250 __func__, ret, 1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1259 * has expired. 1260 * 1261 * Return: 0 upon success; -EBUSY upon timeout. 1262 */ 1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1264 { 1265 int ret = 0; 1266 /* 1267 * make sure that there are no outstanding requests when 1268 * clock scaling is in progress 1269 */ 1270 blk_mq_quiesce_tagset(&hba->host->tag_set); 1271 mutex_lock(&hba->wb_mutex); 1272 down_write(&hba->clk_scaling_lock); 1273 1274 if (!hba->clk_scaling.is_allowed || 1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1276 ret = -EBUSY; 1277 up_write(&hba->clk_scaling_lock); 1278 mutex_unlock(&hba->wb_mutex); 1279 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1280 goto out; 1281 } 1282 1283 /* let's not get into low power until clock scaling is completed */ 1284 ufshcd_hold(hba); 1285 1286 out: 1287 return ret; 1288 } 1289 1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1291 { 1292 up_write(&hba->clk_scaling_lock); 1293 1294 /* Enable Write Booster if we have scaled up else disable it */ 1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1296 ufshcd_wb_toggle(hba, scale_up); 1297 1298 mutex_unlock(&hba->wb_mutex); 1299 1300 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1301 ufshcd_release(hba); 1302 } 1303 1304 /** 1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1306 * @hba: per adapter instance 1307 * @scale_up: True for scaling up and false for scalin down 1308 * 1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1310 * for any other errors. 1311 */ 1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1313 { 1314 int ret = 0; 1315 1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1317 if (ret) 1318 return ret; 1319 1320 /* scale down the gear before scaling down clocks */ 1321 if (!scale_up) { 1322 ret = ufshcd_scale_gear(hba, false); 1323 if (ret) 1324 goto out_unprepare; 1325 } 1326 1327 ret = ufshcd_scale_clks(hba, scale_up); 1328 if (ret) { 1329 if (!scale_up) 1330 ufshcd_scale_gear(hba, true); 1331 goto out_unprepare; 1332 } 1333 1334 /* scale up the gear after scaling up clocks */ 1335 if (scale_up) { 1336 ret = ufshcd_scale_gear(hba, true); 1337 if (ret) { 1338 ufshcd_scale_clks(hba, false); 1339 goto out_unprepare; 1340 } 1341 } 1342 1343 out_unprepare: 1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1345 return ret; 1346 } 1347 1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1349 { 1350 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1351 clk_scaling.suspend_work); 1352 unsigned long irq_flags; 1353 1354 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1357 return; 1358 } 1359 hba->clk_scaling.is_suspended = true; 1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1361 1362 __ufshcd_suspend_clkscaling(hba); 1363 } 1364 1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1366 { 1367 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1368 clk_scaling.resume_work); 1369 unsigned long irq_flags; 1370 1371 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1372 if (!hba->clk_scaling.is_suspended) { 1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1374 return; 1375 } 1376 hba->clk_scaling.is_suspended = false; 1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1378 1379 devfreq_resume_device(hba->devfreq); 1380 } 1381 1382 static int ufshcd_devfreq_target(struct device *dev, 1383 unsigned long *freq, u32 flags) 1384 { 1385 int ret = 0; 1386 struct ufs_hba *hba = dev_get_drvdata(dev); 1387 ktime_t start; 1388 bool scale_up, sched_clk_scaling_suspend_work = false; 1389 struct list_head *clk_list = &hba->clk_list_head; 1390 struct ufs_clk_info *clki; 1391 unsigned long irq_flags; 1392 1393 if (!ufshcd_is_clkscaling_supported(hba)) 1394 return -EINVAL; 1395 1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1397 /* Override with the closest supported frequency */ 1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1399 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1400 if (ufshcd_eh_in_progress(hba)) { 1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1402 return 0; 1403 } 1404 1405 if (!hba->clk_scaling.active_reqs) 1406 sched_clk_scaling_suspend_work = true; 1407 1408 if (list_empty(clk_list)) { 1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1410 goto out; 1411 } 1412 1413 /* Decide based on the rounded-off frequency and update */ 1414 scale_up = *freq == clki->max_freq; 1415 if (!scale_up) 1416 *freq = clki->min_freq; 1417 /* Update the frequency */ 1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1420 ret = 0; 1421 goto out; /* no state change required */ 1422 } 1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1424 1425 start = ktime_get(); 1426 ret = ufshcd_devfreq_scale(hba, scale_up); 1427 1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1429 (scale_up ? "up" : "down"), 1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1431 1432 out: 1433 if (sched_clk_scaling_suspend_work) 1434 queue_work(hba->clk_scaling.workq, 1435 &hba->clk_scaling.suspend_work); 1436 1437 return ret; 1438 } 1439 1440 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1441 struct devfreq_dev_status *stat) 1442 { 1443 struct ufs_hba *hba = dev_get_drvdata(dev); 1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1445 unsigned long flags; 1446 struct list_head *clk_list = &hba->clk_list_head; 1447 struct ufs_clk_info *clki; 1448 ktime_t curr_t; 1449 1450 if (!ufshcd_is_clkscaling_supported(hba)) 1451 return -EINVAL; 1452 1453 memset(stat, 0, sizeof(*stat)); 1454 1455 spin_lock_irqsave(hba->host->host_lock, flags); 1456 curr_t = ktime_get(); 1457 if (!scaling->window_start_t) 1458 goto start_window; 1459 1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1461 /* 1462 * If current frequency is 0, then the ondemand governor considers 1463 * there's no initial frequency set. And it always requests to set 1464 * to max. frequency. 1465 */ 1466 stat->current_frequency = clki->curr_freq; 1467 if (scaling->is_busy_started) 1468 scaling->tot_busy_t += ktime_us_delta(curr_t, 1469 scaling->busy_start_t); 1470 1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1472 stat->busy_time = scaling->tot_busy_t; 1473 start_window: 1474 scaling->window_start_t = curr_t; 1475 scaling->tot_busy_t = 0; 1476 1477 if (scaling->active_reqs) { 1478 scaling->busy_start_t = curr_t; 1479 scaling->is_busy_started = true; 1480 } else { 1481 scaling->busy_start_t = 0; 1482 scaling->is_busy_started = false; 1483 } 1484 spin_unlock_irqrestore(hba->host->host_lock, flags); 1485 return 0; 1486 } 1487 1488 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1489 { 1490 struct list_head *clk_list = &hba->clk_list_head; 1491 struct ufs_clk_info *clki; 1492 struct devfreq *devfreq; 1493 int ret; 1494 1495 /* Skip devfreq if we don't have any clocks in the list */ 1496 if (list_empty(clk_list)) 1497 return 0; 1498 1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1502 1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1504 &hba->vps->ondemand_data); 1505 devfreq = devfreq_add_device(hba->dev, 1506 &hba->vps->devfreq_profile, 1507 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1508 &hba->vps->ondemand_data); 1509 if (IS_ERR(devfreq)) { 1510 ret = PTR_ERR(devfreq); 1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1512 1513 dev_pm_opp_remove(hba->dev, clki->min_freq); 1514 dev_pm_opp_remove(hba->dev, clki->max_freq); 1515 return ret; 1516 } 1517 1518 hba->devfreq = devfreq; 1519 1520 return 0; 1521 } 1522 1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1524 { 1525 struct list_head *clk_list = &hba->clk_list_head; 1526 struct ufs_clk_info *clki; 1527 1528 if (!hba->devfreq) 1529 return; 1530 1531 devfreq_remove_device(hba->devfreq); 1532 hba->devfreq = NULL; 1533 1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1535 dev_pm_opp_remove(hba->dev, clki->min_freq); 1536 dev_pm_opp_remove(hba->dev, clki->max_freq); 1537 } 1538 1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1540 { 1541 unsigned long flags; 1542 1543 devfreq_suspend_device(hba->devfreq); 1544 spin_lock_irqsave(hba->host->host_lock, flags); 1545 hba->clk_scaling.window_start_t = 0; 1546 spin_unlock_irqrestore(hba->host->host_lock, flags); 1547 } 1548 1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1550 { 1551 unsigned long flags; 1552 bool suspend = false; 1553 1554 cancel_work_sync(&hba->clk_scaling.suspend_work); 1555 cancel_work_sync(&hba->clk_scaling.resume_work); 1556 1557 spin_lock_irqsave(hba->host->host_lock, flags); 1558 if (!hba->clk_scaling.is_suspended) { 1559 suspend = true; 1560 hba->clk_scaling.is_suspended = true; 1561 } 1562 spin_unlock_irqrestore(hba->host->host_lock, flags); 1563 1564 if (suspend) 1565 __ufshcd_suspend_clkscaling(hba); 1566 } 1567 1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1569 { 1570 unsigned long flags; 1571 bool resume = false; 1572 1573 spin_lock_irqsave(hba->host->host_lock, flags); 1574 if (hba->clk_scaling.is_suspended) { 1575 resume = true; 1576 hba->clk_scaling.is_suspended = false; 1577 } 1578 spin_unlock_irqrestore(hba->host->host_lock, flags); 1579 1580 if (resume) 1581 devfreq_resume_device(hba->devfreq); 1582 } 1583 1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1585 struct device_attribute *attr, char *buf) 1586 { 1587 struct ufs_hba *hba = dev_get_drvdata(dev); 1588 1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1590 } 1591 1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1593 struct device_attribute *attr, const char *buf, size_t count) 1594 { 1595 struct ufs_hba *hba = dev_get_drvdata(dev); 1596 u32 value; 1597 int err = 0; 1598 1599 if (kstrtou32(buf, 0, &value)) 1600 return -EINVAL; 1601 1602 down(&hba->host_sem); 1603 if (!ufshcd_is_user_access_allowed(hba)) { 1604 err = -EBUSY; 1605 goto out; 1606 } 1607 1608 value = !!value; 1609 if (value == hba->clk_scaling.is_enabled) 1610 goto out; 1611 1612 ufshcd_rpm_get_sync(hba); 1613 ufshcd_hold(hba); 1614 1615 hba->clk_scaling.is_enabled = value; 1616 1617 if (value) { 1618 ufshcd_resume_clkscaling(hba); 1619 } else { 1620 ufshcd_suspend_clkscaling(hba); 1621 err = ufshcd_devfreq_scale(hba, true); 1622 if (err) 1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1624 __func__, err); 1625 } 1626 1627 ufshcd_release(hba); 1628 ufshcd_rpm_put_sync(hba); 1629 out: 1630 up(&hba->host_sem); 1631 return err ? err : count; 1632 } 1633 1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1635 { 1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1640 hba->clk_scaling.enable_attr.attr.mode = 0644; 1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1643 } 1644 1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1646 { 1647 if (hba->clk_scaling.enable_attr.attr.name) 1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1649 } 1650 1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1652 { 1653 char wq_name[sizeof("ufs_clkscaling_00")]; 1654 1655 if (!ufshcd_is_clkscaling_supported(hba)) 1656 return; 1657 1658 if (!hba->clk_scaling.min_gear) 1659 hba->clk_scaling.min_gear = UFS_HS_G1; 1660 1661 INIT_WORK(&hba->clk_scaling.suspend_work, 1662 ufshcd_clk_scaling_suspend_work); 1663 INIT_WORK(&hba->clk_scaling.resume_work, 1664 ufshcd_clk_scaling_resume_work); 1665 1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1667 hba->host->host_no); 1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1669 1670 hba->clk_scaling.is_initialized = true; 1671 } 1672 1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1674 { 1675 if (!hba->clk_scaling.is_initialized) 1676 return; 1677 1678 ufshcd_remove_clk_scaling_sysfs(hba); 1679 destroy_workqueue(hba->clk_scaling.workq); 1680 ufshcd_devfreq_remove(hba); 1681 hba->clk_scaling.is_initialized = false; 1682 } 1683 1684 static void ufshcd_ungate_work(struct work_struct *work) 1685 { 1686 int ret; 1687 unsigned long flags; 1688 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1689 clk_gating.ungate_work); 1690 1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1692 1693 spin_lock_irqsave(hba->host->host_lock, flags); 1694 if (hba->clk_gating.state == CLKS_ON) { 1695 spin_unlock_irqrestore(hba->host->host_lock, flags); 1696 return; 1697 } 1698 1699 spin_unlock_irqrestore(hba->host->host_lock, flags); 1700 ufshcd_hba_vreg_set_hpm(hba); 1701 ufshcd_setup_clocks(hba, true); 1702 1703 ufshcd_enable_irq(hba); 1704 1705 /* Exit from hibern8 */ 1706 if (ufshcd_can_hibern8_during_gating(hba)) { 1707 /* Prevent gating in this path */ 1708 hba->clk_gating.is_suspended = true; 1709 if (ufshcd_is_link_hibern8(hba)) { 1710 ret = ufshcd_uic_hibern8_exit(hba); 1711 if (ret) 1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1713 __func__, ret); 1714 else 1715 ufshcd_set_link_active(hba); 1716 } 1717 hba->clk_gating.is_suspended = false; 1718 } 1719 } 1720 1721 /** 1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1723 * Also, exit from hibern8 mode and set the link as active. 1724 * @hba: per adapter instance 1725 */ 1726 void ufshcd_hold(struct ufs_hba *hba) 1727 { 1728 bool flush_result; 1729 unsigned long flags; 1730 1731 if (!ufshcd_is_clkgating_allowed(hba) || 1732 !hba->clk_gating.is_initialized) 1733 return; 1734 spin_lock_irqsave(hba->host->host_lock, flags); 1735 hba->clk_gating.active_reqs++; 1736 1737 start: 1738 switch (hba->clk_gating.state) { 1739 case CLKS_ON: 1740 /* 1741 * Wait for the ungate work to complete if in progress. 1742 * Though the clocks may be in ON state, the link could 1743 * still be in hibner8 state if hibern8 is allowed 1744 * during clock gating. 1745 * Make sure we exit hibern8 state also in addition to 1746 * clocks being ON. 1747 */ 1748 if (ufshcd_can_hibern8_during_gating(hba) && 1749 ufshcd_is_link_hibern8(hba)) { 1750 spin_unlock_irqrestore(hba->host->host_lock, flags); 1751 flush_result = flush_work(&hba->clk_gating.ungate_work); 1752 if (hba->clk_gating.is_suspended && !flush_result) 1753 return; 1754 spin_lock_irqsave(hba->host->host_lock, flags); 1755 goto start; 1756 } 1757 break; 1758 case REQ_CLKS_OFF: 1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1760 hba->clk_gating.state = CLKS_ON; 1761 trace_ufshcd_clk_gating(dev_name(hba->dev), 1762 hba->clk_gating.state); 1763 break; 1764 } 1765 /* 1766 * If we are here, it means gating work is either done or 1767 * currently running. Hence, fall through to cancel gating 1768 * work and to enable clocks. 1769 */ 1770 fallthrough; 1771 case CLKS_OFF: 1772 hba->clk_gating.state = REQ_CLKS_ON; 1773 trace_ufshcd_clk_gating(dev_name(hba->dev), 1774 hba->clk_gating.state); 1775 queue_work(hba->clk_gating.clk_gating_workq, 1776 &hba->clk_gating.ungate_work); 1777 /* 1778 * fall through to check if we should wait for this 1779 * work to be done or not. 1780 */ 1781 fallthrough; 1782 case REQ_CLKS_ON: 1783 spin_unlock_irqrestore(hba->host->host_lock, flags); 1784 flush_work(&hba->clk_gating.ungate_work); 1785 /* Make sure state is CLKS_ON before returning */ 1786 spin_lock_irqsave(hba->host->host_lock, flags); 1787 goto start; 1788 default: 1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1790 __func__, hba->clk_gating.state); 1791 break; 1792 } 1793 spin_unlock_irqrestore(hba->host->host_lock, flags); 1794 } 1795 EXPORT_SYMBOL_GPL(ufshcd_hold); 1796 1797 static void ufshcd_gate_work(struct work_struct *work) 1798 { 1799 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1800 clk_gating.gate_work.work); 1801 unsigned long flags; 1802 int ret; 1803 1804 spin_lock_irqsave(hba->host->host_lock, flags); 1805 /* 1806 * In case you are here to cancel this work the gating state 1807 * would be marked as REQ_CLKS_ON. In this case save time by 1808 * skipping the gating work and exit after changing the clock 1809 * state to CLKS_ON. 1810 */ 1811 if (hba->clk_gating.is_suspended || 1812 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1813 hba->clk_gating.state = CLKS_ON; 1814 trace_ufshcd_clk_gating(dev_name(hba->dev), 1815 hba->clk_gating.state); 1816 goto rel_lock; 1817 } 1818 1819 if (hba->clk_gating.active_reqs 1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1821 || hba->outstanding_reqs || hba->outstanding_tasks 1822 || hba->active_uic_cmd || hba->uic_async_done) 1823 goto rel_lock; 1824 1825 spin_unlock_irqrestore(hba->host->host_lock, flags); 1826 1827 /* put the link into hibern8 mode before turning off clocks */ 1828 if (ufshcd_can_hibern8_during_gating(hba)) { 1829 ret = ufshcd_uic_hibern8_enter(hba); 1830 if (ret) { 1831 hba->clk_gating.state = CLKS_ON; 1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1833 __func__, ret); 1834 trace_ufshcd_clk_gating(dev_name(hba->dev), 1835 hba->clk_gating.state); 1836 goto out; 1837 } 1838 ufshcd_set_link_hibern8(hba); 1839 } 1840 1841 ufshcd_disable_irq(hba); 1842 1843 ufshcd_setup_clocks(hba, false); 1844 1845 /* Put the host controller in low power mode if possible */ 1846 ufshcd_hba_vreg_set_lpm(hba); 1847 /* 1848 * In case you are here to cancel this work the gating state 1849 * would be marked as REQ_CLKS_ON. In this case keep the state 1850 * as REQ_CLKS_ON which would anyway imply that clocks are off 1851 * and a request to turn them on is pending. By doing this way, 1852 * we keep the state machine in tact and this would ultimately 1853 * prevent from doing cancel work multiple times when there are 1854 * new requests arriving before the current cancel work is done. 1855 */ 1856 spin_lock_irqsave(hba->host->host_lock, flags); 1857 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1858 hba->clk_gating.state = CLKS_OFF; 1859 trace_ufshcd_clk_gating(dev_name(hba->dev), 1860 hba->clk_gating.state); 1861 } 1862 rel_lock: 1863 spin_unlock_irqrestore(hba->host->host_lock, flags); 1864 out: 1865 return; 1866 } 1867 1868 /* host lock must be held before calling this variant */ 1869 static void __ufshcd_release(struct ufs_hba *hba) 1870 { 1871 if (!ufshcd_is_clkgating_allowed(hba)) 1872 return; 1873 1874 hba->clk_gating.active_reqs--; 1875 1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 1879 hba->active_uic_cmd || hba->uic_async_done || 1880 hba->clk_gating.state == CLKS_OFF) 1881 return; 1882 1883 hba->clk_gating.state = REQ_CLKS_OFF; 1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1885 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1886 &hba->clk_gating.gate_work, 1887 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1888 } 1889 1890 void ufshcd_release(struct ufs_hba *hba) 1891 { 1892 unsigned long flags; 1893 1894 spin_lock_irqsave(hba->host->host_lock, flags); 1895 __ufshcd_release(hba); 1896 spin_unlock_irqrestore(hba->host->host_lock, flags); 1897 } 1898 EXPORT_SYMBOL_GPL(ufshcd_release); 1899 1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1901 struct device_attribute *attr, char *buf) 1902 { 1903 struct ufs_hba *hba = dev_get_drvdata(dev); 1904 1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 1906 } 1907 1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 1909 { 1910 struct ufs_hba *hba = dev_get_drvdata(dev); 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(hba->host->host_lock, flags); 1914 hba->clk_gating.delay_ms = value; 1915 spin_unlock_irqrestore(hba->host->host_lock, flags); 1916 } 1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 1918 1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1920 struct device_attribute *attr, const char *buf, size_t count) 1921 { 1922 unsigned long value; 1923 1924 if (kstrtoul(buf, 0, &value)) 1925 return -EINVAL; 1926 1927 ufshcd_clkgate_delay_set(dev, value); 1928 return count; 1929 } 1930 1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1932 struct device_attribute *attr, char *buf) 1933 { 1934 struct ufs_hba *hba = dev_get_drvdata(dev); 1935 1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 1937 } 1938 1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1940 struct device_attribute *attr, const char *buf, size_t count) 1941 { 1942 struct ufs_hba *hba = dev_get_drvdata(dev); 1943 unsigned long flags; 1944 u32 value; 1945 1946 if (kstrtou32(buf, 0, &value)) 1947 return -EINVAL; 1948 1949 value = !!value; 1950 1951 spin_lock_irqsave(hba->host->host_lock, flags); 1952 if (value == hba->clk_gating.is_enabled) 1953 goto out; 1954 1955 if (value) 1956 __ufshcd_release(hba); 1957 else 1958 hba->clk_gating.active_reqs++; 1959 1960 hba->clk_gating.is_enabled = value; 1961 out: 1962 spin_unlock_irqrestore(hba->host->host_lock, flags); 1963 return count; 1964 } 1965 1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 1967 { 1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 1972 hba->clk_gating.delay_attr.attr.mode = 0644; 1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 1975 1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 1980 hba->clk_gating.enable_attr.attr.mode = 0644; 1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 1983 } 1984 1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 1986 { 1987 if (hba->clk_gating.delay_attr.attr.name) 1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 1989 if (hba->clk_gating.enable_attr.attr.name) 1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 1991 } 1992 1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 1994 { 1995 char wq_name[sizeof("ufs_clk_gating_00")]; 1996 1997 if (!ufshcd_is_clkgating_allowed(hba)) 1998 return; 1999 2000 hba->clk_gating.state = CLKS_ON; 2001 2002 hba->clk_gating.delay_ms = 150; 2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2005 2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 2007 hba->host->host_no); 2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 2009 WQ_MEM_RECLAIM | WQ_HIGHPRI); 2010 2011 ufshcd_init_clk_gating_sysfs(hba); 2012 2013 hba->clk_gating.is_enabled = true; 2014 hba->clk_gating.is_initialized = true; 2015 } 2016 2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2018 { 2019 if (!hba->clk_gating.is_initialized) 2020 return; 2021 2022 ufshcd_remove_clk_gating_sysfs(hba); 2023 2024 /* Ungate the clock if necessary. */ 2025 ufshcd_hold(hba); 2026 hba->clk_gating.is_initialized = false; 2027 ufshcd_release(hba); 2028 2029 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2030 } 2031 2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2033 { 2034 bool queue_resume_work = false; 2035 ktime_t curr_t = ktime_get(); 2036 unsigned long flags; 2037 2038 if (!ufshcd_is_clkscaling_supported(hba)) 2039 return; 2040 2041 spin_lock_irqsave(hba->host->host_lock, flags); 2042 if (!hba->clk_scaling.active_reqs++) 2043 queue_resume_work = true; 2044 2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2046 spin_unlock_irqrestore(hba->host->host_lock, flags); 2047 return; 2048 } 2049 2050 if (queue_resume_work) 2051 queue_work(hba->clk_scaling.workq, 2052 &hba->clk_scaling.resume_work); 2053 2054 if (!hba->clk_scaling.window_start_t) { 2055 hba->clk_scaling.window_start_t = curr_t; 2056 hba->clk_scaling.tot_busy_t = 0; 2057 hba->clk_scaling.is_busy_started = false; 2058 } 2059 2060 if (!hba->clk_scaling.is_busy_started) { 2061 hba->clk_scaling.busy_start_t = curr_t; 2062 hba->clk_scaling.is_busy_started = true; 2063 } 2064 spin_unlock_irqrestore(hba->host->host_lock, flags); 2065 } 2066 2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2068 { 2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2070 unsigned long flags; 2071 2072 if (!ufshcd_is_clkscaling_supported(hba)) 2073 return; 2074 2075 spin_lock_irqsave(hba->host->host_lock, flags); 2076 hba->clk_scaling.active_reqs--; 2077 if (!scaling->active_reqs && scaling->is_busy_started) { 2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2079 scaling->busy_start_t)); 2080 scaling->busy_start_t = 0; 2081 scaling->is_busy_started = false; 2082 } 2083 spin_unlock_irqrestore(hba->host->host_lock, flags); 2084 } 2085 2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2087 { 2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2089 return READ; 2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2091 return WRITE; 2092 else 2093 return -EINVAL; 2094 } 2095 2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2097 struct ufshcd_lrb *lrbp) 2098 { 2099 const struct ufs_hba_monitor *m = &hba->monitor; 2100 2101 return (m->enabled && lrbp && lrbp->cmd && 2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2104 } 2105 2106 static void ufshcd_start_monitor(struct ufs_hba *hba, 2107 const struct ufshcd_lrb *lrbp) 2108 { 2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2110 unsigned long flags; 2111 2112 spin_lock_irqsave(hba->host->host_lock, flags); 2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2114 hba->monitor.busy_start_ts[dir] = ktime_get(); 2115 spin_unlock_irqrestore(hba->host->host_lock, flags); 2116 } 2117 2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2119 { 2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2121 unsigned long flags; 2122 2123 spin_lock_irqsave(hba->host->host_lock, flags); 2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2126 struct ufs_hba_monitor *m = &hba->monitor; 2127 ktime_t now, inc, lat; 2128 2129 now = lrbp->compl_time_stamp; 2130 inc = ktime_sub(now, m->busy_start_ts[dir]); 2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2132 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2133 2134 /* Update latencies */ 2135 m->nr_req[dir]++; 2136 lat = ktime_sub(now, lrbp->issue_time_stamp); 2137 m->lat_sum[dir] += lat; 2138 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2139 m->lat_max[dir] = lat; 2140 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2141 m->lat_min[dir] = lat; 2142 2143 m->nr_queued[dir]--; 2144 /* Push forward the busy start of monitor */ 2145 m->busy_start_ts[dir] = now; 2146 } 2147 spin_unlock_irqrestore(hba->host->host_lock, flags); 2148 } 2149 2150 /** 2151 * ufshcd_send_command - Send SCSI or device management commands 2152 * @hba: per adapter instance 2153 * @task_tag: Task tag of the command 2154 * @hwq: pointer to hardware queue instance 2155 */ 2156 static inline 2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2158 struct ufs_hw_queue *hwq) 2159 { 2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2161 unsigned long flags; 2162 2163 lrbp->issue_time_stamp = ktime_get(); 2164 lrbp->issue_time_stamp_local_clock = local_clock(); 2165 lrbp->compl_time_stamp = ktime_set(0, 0); 2166 lrbp->compl_time_stamp_local_clock = 0; 2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2168 ufshcd_clk_scaling_start_busy(hba); 2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2170 ufshcd_start_monitor(hba, lrbp); 2171 2172 if (is_mcq_enabled(hba)) { 2173 int utrd_size = sizeof(struct utp_transfer_req_desc); 2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2175 struct utp_transfer_req_desc *dest; 2176 2177 spin_lock(&hwq->sq_lock); 2178 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2179 memcpy(dest, src, utrd_size); 2180 ufshcd_inc_sq_tail(hwq); 2181 spin_unlock(&hwq->sq_lock); 2182 } else { 2183 spin_lock_irqsave(&hba->outstanding_lock, flags); 2184 if (hba->vops && hba->vops->setup_xfer_req) 2185 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2186 !!lrbp->cmd); 2187 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2188 ufshcd_writel(hba, 1 << lrbp->task_tag, 2189 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2190 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2191 } 2192 } 2193 2194 /** 2195 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2196 * @lrbp: pointer to local reference block 2197 */ 2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2199 { 2200 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2201 u16 resp_len; 2202 int len; 2203 2204 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2205 if (sense_buffer && resp_len) { 2206 int len_to_copy; 2207 2208 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2209 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2210 2211 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2212 len_to_copy); 2213 } 2214 } 2215 2216 /** 2217 * ufshcd_copy_query_response() - Copy the Query Response and the data 2218 * descriptor 2219 * @hba: per adapter instance 2220 * @lrbp: pointer to local reference block 2221 * 2222 * Return: 0 upon success; < 0 upon failure. 2223 */ 2224 static 2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2226 { 2227 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2228 2229 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2230 2231 /* Get the descriptor */ 2232 if (hba->dev_cmd.query.descriptor && 2233 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2234 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2235 GENERAL_UPIU_REQUEST_SIZE; 2236 u16 resp_len; 2237 u16 buf_len; 2238 2239 /* data segment length */ 2240 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2241 .data_segment_length); 2242 buf_len = be16_to_cpu( 2243 hba->dev_cmd.query.request.upiu_req.length); 2244 if (likely(buf_len >= resp_len)) { 2245 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2246 } else { 2247 dev_warn(hba->dev, 2248 "%s: rsp size %d is bigger than buffer size %d", 2249 __func__, resp_len, buf_len); 2250 return -EINVAL; 2251 } 2252 } 2253 2254 return 0; 2255 } 2256 2257 /** 2258 * ufshcd_hba_capabilities - Read controller capabilities 2259 * @hba: per adapter instance 2260 * 2261 * Return: 0 on success, negative on error. 2262 */ 2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2264 { 2265 int err; 2266 2267 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2268 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) 2269 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; 2270 2271 /* nutrs and nutmrs are 0 based values */ 2272 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2273 hba->nutmrs = 2274 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2275 hba->reserved_slot = hba->nutrs - 1; 2276 2277 /* Read crypto capabilities */ 2278 err = ufshcd_hba_init_crypto_capabilities(hba); 2279 if (err) { 2280 dev_err(hba->dev, "crypto setup failed\n"); 2281 return err; 2282 } 2283 2284 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2285 if (!hba->mcq_sup) 2286 return 0; 2287 2288 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2289 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2290 hba->mcq_capabilities); 2291 2292 return 0; 2293 } 2294 2295 /** 2296 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2297 * to accept UIC commands 2298 * @hba: per adapter instance 2299 * 2300 * Return: true on success, else false. 2301 */ 2302 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2303 { 2304 u32 val; 2305 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2306 500, UIC_CMD_TIMEOUT * 1000, false, hba, 2307 REG_CONTROLLER_STATUS); 2308 return ret == 0 ? true : false; 2309 } 2310 2311 /** 2312 * ufshcd_get_upmcrs - Get the power mode change request status 2313 * @hba: Pointer to adapter instance 2314 * 2315 * This function gets the UPMCRS field of HCS register 2316 * 2317 * Return: value of UPMCRS field. 2318 */ 2319 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2320 { 2321 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2322 } 2323 2324 /** 2325 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2326 * @hba: per adapter instance 2327 * @uic_cmd: UIC command 2328 */ 2329 static inline void 2330 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2331 { 2332 lockdep_assert_held(&hba->uic_cmd_mutex); 2333 2334 WARN_ON(hba->active_uic_cmd); 2335 2336 hba->active_uic_cmd = uic_cmd; 2337 2338 /* Write Args */ 2339 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2340 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2341 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2342 2343 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2344 2345 /* Write UIC Cmd */ 2346 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2347 REG_UIC_COMMAND); 2348 } 2349 2350 /** 2351 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2352 * @hba: per adapter instance 2353 * @uic_cmd: UIC command 2354 * 2355 * Return: 0 only if success. 2356 */ 2357 static int 2358 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2359 { 2360 int ret; 2361 unsigned long flags; 2362 2363 lockdep_assert_held(&hba->uic_cmd_mutex); 2364 2365 if (wait_for_completion_timeout(&uic_cmd->done, 2366 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2367 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2368 } else { 2369 ret = -ETIMEDOUT; 2370 dev_err(hba->dev, 2371 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2372 uic_cmd->command, uic_cmd->argument3); 2373 2374 if (!uic_cmd->cmd_active) { 2375 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2376 __func__); 2377 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2378 } 2379 } 2380 2381 spin_lock_irqsave(hba->host->host_lock, flags); 2382 hba->active_uic_cmd = NULL; 2383 spin_unlock_irqrestore(hba->host->host_lock, flags); 2384 2385 return ret; 2386 } 2387 2388 /** 2389 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2390 * @hba: per adapter instance 2391 * @uic_cmd: UIC command 2392 * @completion: initialize the completion only if this is set to true 2393 * 2394 * Return: 0 only if success. 2395 */ 2396 static int 2397 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, 2398 bool completion) 2399 { 2400 lockdep_assert_held(&hba->uic_cmd_mutex); 2401 2402 if (!ufshcd_ready_for_uic_cmd(hba)) { 2403 dev_err(hba->dev, 2404 "Controller not ready to accept UIC commands\n"); 2405 return -EIO; 2406 } 2407 2408 if (completion) 2409 init_completion(&uic_cmd->done); 2410 2411 uic_cmd->cmd_active = 1; 2412 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2413 2414 return 0; 2415 } 2416 2417 /** 2418 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2419 * @hba: per adapter instance 2420 * @uic_cmd: UIC command 2421 * 2422 * Return: 0 only if success. 2423 */ 2424 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2425 { 2426 int ret; 2427 2428 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2429 return 0; 2430 2431 ufshcd_hold(hba); 2432 mutex_lock(&hba->uic_cmd_mutex); 2433 ufshcd_add_delay_before_dme_cmd(hba); 2434 2435 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); 2436 if (!ret) 2437 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2438 2439 mutex_unlock(&hba->uic_cmd_mutex); 2440 2441 ufshcd_release(hba); 2442 return ret; 2443 } 2444 2445 /** 2446 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2447 * @hba: per-adapter instance 2448 * @lrbp: pointer to local reference block 2449 * @sg_entries: The number of sg lists actually used 2450 * @sg_list: Pointer to SG list 2451 */ 2452 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2453 struct scatterlist *sg_list) 2454 { 2455 struct ufshcd_sg_entry *prd; 2456 struct scatterlist *sg; 2457 int i; 2458 2459 if (sg_entries) { 2460 2461 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2462 lrbp->utr_descriptor_ptr->prd_table_length = 2463 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2464 else 2465 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2466 2467 prd = lrbp->ucd_prdt_ptr; 2468 2469 for_each_sg(sg_list, sg, sg_entries, i) { 2470 const unsigned int len = sg_dma_len(sg); 2471 2472 /* 2473 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2474 * based value that indicates the length, in bytes, of 2475 * the data block. A maximum of length of 256KB may 2476 * exist for any entry. Bits 1:0 of this field shall be 2477 * 11b to indicate Dword granularity. A value of '3' 2478 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2479 */ 2480 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2481 prd->size = cpu_to_le32(len - 1); 2482 prd->addr = cpu_to_le64(sg->dma_address); 2483 prd->reserved = 0; 2484 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2485 } 2486 } else { 2487 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2488 } 2489 } 2490 2491 /** 2492 * ufshcd_map_sg - Map scatter-gather list to prdt 2493 * @hba: per adapter instance 2494 * @lrbp: pointer to local reference block 2495 * 2496 * Return: 0 in case of success, non-zero value in case of failure. 2497 */ 2498 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2499 { 2500 struct scsi_cmnd *cmd = lrbp->cmd; 2501 int sg_segments = scsi_dma_map(cmd); 2502 2503 if (sg_segments < 0) 2504 return sg_segments; 2505 2506 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2507 2508 return 0; 2509 } 2510 2511 /** 2512 * ufshcd_enable_intr - enable interrupts 2513 * @hba: per adapter instance 2514 * @intrs: interrupt bits 2515 */ 2516 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2517 { 2518 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2519 2520 if (hba->ufs_version == ufshci_version(1, 0)) { 2521 u32 rw; 2522 rw = set & INTERRUPT_MASK_RW_VER_10; 2523 set = rw | ((set ^ intrs) & intrs); 2524 } else { 2525 set |= intrs; 2526 } 2527 2528 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2529 } 2530 2531 /** 2532 * ufshcd_disable_intr - disable interrupts 2533 * @hba: per adapter instance 2534 * @intrs: interrupt bits 2535 */ 2536 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2537 { 2538 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2539 2540 if (hba->ufs_version == ufshci_version(1, 0)) { 2541 u32 rw; 2542 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2543 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2544 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2545 2546 } else { 2547 set &= ~intrs; 2548 } 2549 2550 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2551 } 2552 2553 /** 2554 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2555 * descriptor according to request 2556 * @lrbp: pointer to local reference block 2557 * @upiu_flags: flags required in the header 2558 * @cmd_dir: requests data direction 2559 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2560 */ 2561 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags, 2562 enum dma_data_direction cmd_dir, int ehs_length) 2563 { 2564 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2565 struct request_desc_header *h = &req_desc->header; 2566 enum utp_data_direction data_direction; 2567 2568 *h = (typeof(*h)){ }; 2569 2570 if (cmd_dir == DMA_FROM_DEVICE) { 2571 data_direction = UTP_DEVICE_TO_HOST; 2572 *upiu_flags = UPIU_CMD_FLAGS_READ; 2573 } else if (cmd_dir == DMA_TO_DEVICE) { 2574 data_direction = UTP_HOST_TO_DEVICE; 2575 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2576 } else { 2577 data_direction = UTP_NO_DATA_TRANSFER; 2578 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2579 } 2580 2581 h->command_type = lrbp->command_type; 2582 h->data_direction = data_direction; 2583 h->ehs_length = ehs_length; 2584 2585 if (lrbp->intr_cmd) 2586 h->interrupt = 1; 2587 2588 /* Prepare crypto related dwords */ 2589 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2590 2591 /* 2592 * assigning invalid value for command status. Controller 2593 * updates OCS on command completion, with the command 2594 * status 2595 */ 2596 h->ocs = OCS_INVALID_COMMAND_STATUS; 2597 2598 req_desc->prd_table_length = 0; 2599 } 2600 2601 /** 2602 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2603 * for scsi commands 2604 * @lrbp: local reference block pointer 2605 * @upiu_flags: flags 2606 */ 2607 static 2608 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2609 { 2610 struct scsi_cmnd *cmd = lrbp->cmd; 2611 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2612 unsigned short cdb_len; 2613 2614 ucd_req_ptr->header = (struct utp_upiu_header){ 2615 .transaction_code = UPIU_TRANSACTION_COMMAND, 2616 .flags = upiu_flags, 2617 .lun = lrbp->lun, 2618 .task_tag = lrbp->task_tag, 2619 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2620 }; 2621 2622 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2623 2624 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2625 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2626 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2627 2628 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2629 } 2630 2631 /** 2632 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2633 * @hba: UFS hba 2634 * @lrbp: local reference block pointer 2635 * @upiu_flags: flags 2636 */ 2637 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2638 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2639 { 2640 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2641 struct ufs_query *query = &hba->dev_cmd.query; 2642 u16 len = be16_to_cpu(query->request.upiu_req.length); 2643 2644 /* Query request header */ 2645 ucd_req_ptr->header = (struct utp_upiu_header){ 2646 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2647 .flags = upiu_flags, 2648 .lun = lrbp->lun, 2649 .task_tag = lrbp->task_tag, 2650 .query_function = query->request.query_func, 2651 /* Data segment length only need for WRITE_DESC */ 2652 .data_segment_length = 2653 query->request.upiu_req.opcode == 2654 UPIU_QUERY_OPCODE_WRITE_DESC ? 2655 cpu_to_be16(len) : 2656 0, 2657 }; 2658 2659 /* Copy the Query Request buffer as is */ 2660 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2661 QUERY_OSF_SIZE); 2662 2663 /* Copy the Descriptor */ 2664 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2665 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2666 2667 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2668 } 2669 2670 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2671 { 2672 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2673 2674 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2675 2676 ucd_req_ptr->header = (struct utp_upiu_header){ 2677 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2678 .task_tag = lrbp->task_tag, 2679 }; 2680 2681 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2682 } 2683 2684 /** 2685 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2686 * for Device Management Purposes 2687 * @hba: per adapter instance 2688 * @lrbp: pointer to local reference block 2689 * 2690 * Return: 0 upon success; < 0 upon failure. 2691 */ 2692 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2693 struct ufshcd_lrb *lrbp) 2694 { 2695 u8 upiu_flags; 2696 int ret = 0; 2697 2698 if (hba->ufs_version <= ufshci_version(1, 1)) 2699 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2700 else 2701 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2702 2703 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 2704 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2705 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2706 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2707 ufshcd_prepare_utp_nop_upiu(lrbp); 2708 else 2709 ret = -EINVAL; 2710 2711 return ret; 2712 } 2713 2714 /** 2715 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2716 * for SCSI Purposes 2717 * @hba: per adapter instance 2718 * @lrbp: pointer to local reference block 2719 * 2720 * Return: 0 upon success; < 0 upon failure. 2721 */ 2722 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2723 { 2724 u8 upiu_flags; 2725 int ret = 0; 2726 2727 if (hba->ufs_version <= ufshci_version(1, 1)) 2728 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2729 else 2730 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2731 2732 if (likely(lrbp->cmd)) { 2733 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2734 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2735 } else { 2736 ret = -EINVAL; 2737 } 2738 2739 return ret; 2740 } 2741 2742 /** 2743 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2744 * @upiu_wlun_id: UPIU W-LUN id 2745 * 2746 * Return: SCSI W-LUN id. 2747 */ 2748 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2749 { 2750 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2751 } 2752 2753 static inline bool is_device_wlun(struct scsi_device *sdev) 2754 { 2755 return sdev->lun == 2756 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2757 } 2758 2759 /* 2760 * Associate the UFS controller queue with the default and poll HCTX types. 2761 * Initialize the mq_map[] arrays. 2762 */ 2763 static void ufshcd_map_queues(struct Scsi_Host *shost) 2764 { 2765 struct ufs_hba *hba = shost_priv(shost); 2766 int i, queue_offset = 0; 2767 2768 if (!is_mcq_supported(hba)) { 2769 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2770 hba->nr_queues[HCTX_TYPE_READ] = 0; 2771 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2772 hba->nr_hw_queues = 1; 2773 } 2774 2775 for (i = 0; i < shost->nr_maps; i++) { 2776 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2777 2778 map->nr_queues = hba->nr_queues[i]; 2779 if (!map->nr_queues) 2780 continue; 2781 map->queue_offset = queue_offset; 2782 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2783 map->queue_offset = 0; 2784 2785 blk_mq_map_queues(map); 2786 queue_offset += map->nr_queues; 2787 } 2788 } 2789 2790 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2791 { 2792 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2793 i * ufshcd_get_ucd_size(hba); 2794 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2795 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2796 i * ufshcd_get_ucd_size(hba); 2797 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2798 response_upiu); 2799 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2800 2801 lrb->utr_descriptor_ptr = utrdlp + i; 2802 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2803 i * sizeof(struct utp_transfer_req_desc); 2804 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2805 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2806 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2807 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2808 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2809 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2810 } 2811 2812 /** 2813 * ufshcd_queuecommand - main entry point for SCSI requests 2814 * @host: SCSI host pointer 2815 * @cmd: command from SCSI Midlayer 2816 * 2817 * Return: 0 for success, non-zero in case of failure. 2818 */ 2819 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2820 { 2821 struct ufs_hba *hba = shost_priv(host); 2822 int tag = scsi_cmd_to_rq(cmd)->tag; 2823 struct ufshcd_lrb *lrbp; 2824 int err = 0; 2825 struct ufs_hw_queue *hwq = NULL; 2826 2827 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); 2828 2829 switch (hba->ufshcd_state) { 2830 case UFSHCD_STATE_OPERATIONAL: 2831 break; 2832 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2833 /* 2834 * SCSI error handler can call ->queuecommand() while UFS error 2835 * handler is in progress. Error interrupts could change the 2836 * state from UFSHCD_STATE_RESET to 2837 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2838 * being issued in that case. 2839 */ 2840 if (ufshcd_eh_in_progress(hba)) { 2841 err = SCSI_MLQUEUE_HOST_BUSY; 2842 goto out; 2843 } 2844 break; 2845 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2846 /* 2847 * pm_runtime_get_sync() is used at error handling preparation 2848 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2849 * PM ops, it can never be finished if we let SCSI layer keep 2850 * retrying it, which gets err handler stuck forever. Neither 2851 * can we let the scsi cmd pass through, because UFS is in bad 2852 * state, the scsi cmd may eventually time out, which will get 2853 * err handler blocked for too long. So, just fail the scsi cmd 2854 * sent from PM ops, err handler can recover PM error anyways. 2855 */ 2856 if (hba->pm_op_in_progress) { 2857 hba->force_reset = true; 2858 set_host_byte(cmd, DID_BAD_TARGET); 2859 scsi_done(cmd); 2860 goto out; 2861 } 2862 fallthrough; 2863 case UFSHCD_STATE_RESET: 2864 err = SCSI_MLQUEUE_HOST_BUSY; 2865 goto out; 2866 case UFSHCD_STATE_ERROR: 2867 set_host_byte(cmd, DID_ERROR); 2868 scsi_done(cmd); 2869 goto out; 2870 } 2871 2872 hba->req_abort_count = 0; 2873 2874 ufshcd_hold(hba); 2875 2876 lrbp = &hba->lrb[tag]; 2877 lrbp->cmd = cmd; 2878 lrbp->task_tag = tag; 2879 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2880 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2881 2882 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 2883 2884 lrbp->req_abort_skip = false; 2885 2886 ufshcd_comp_scsi_upiu(hba, lrbp); 2887 2888 err = ufshcd_map_sg(hba, lrbp); 2889 if (err) { 2890 ufshcd_release(hba); 2891 goto out; 2892 } 2893 2894 if (is_mcq_enabled(hba)) 2895 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 2896 2897 ufshcd_send_command(hba, tag, hwq); 2898 2899 out: 2900 if (ufs_trigger_eh()) { 2901 unsigned long flags; 2902 2903 spin_lock_irqsave(hba->host->host_lock, flags); 2904 ufshcd_schedule_eh_work(hba); 2905 spin_unlock_irqrestore(hba->host->host_lock, flags); 2906 } 2907 2908 return err; 2909 } 2910 2911 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2912 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2913 { 2914 lrbp->cmd = NULL; 2915 lrbp->task_tag = tag; 2916 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2917 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2918 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2919 hba->dev_cmd.type = cmd_type; 2920 2921 return ufshcd_compose_devman_upiu(hba, lrbp); 2922 } 2923 2924 /* 2925 * Check with the block layer if the command is inflight 2926 * @cmd: command to check. 2927 * 2928 * Return: true if command is inflight; false if not. 2929 */ 2930 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 2931 { 2932 struct request *rq; 2933 2934 if (!cmd) 2935 return false; 2936 2937 rq = scsi_cmd_to_rq(cmd); 2938 if (!blk_mq_request_started(rq)) 2939 return false; 2940 2941 return true; 2942 } 2943 2944 /* 2945 * Clear the pending command in the controller and wait until 2946 * the controller confirms that the command has been cleared. 2947 * @hba: per adapter instance 2948 * @task_tag: The tag number of the command to be cleared. 2949 */ 2950 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 2951 { 2952 u32 mask; 2953 unsigned long flags; 2954 int err; 2955 2956 if (is_mcq_enabled(hba)) { 2957 /* 2958 * MCQ mode. Clean up the MCQ resources similar to 2959 * what the ufshcd_utrl_clear() does for SDB mode. 2960 */ 2961 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 2962 if (err) { 2963 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 2964 __func__, task_tag, err); 2965 return err; 2966 } 2967 return 0; 2968 } 2969 2970 mask = 1U << task_tag; 2971 2972 /* clear outstanding transaction before retry */ 2973 spin_lock_irqsave(hba->host->host_lock, flags); 2974 ufshcd_utrl_clear(hba, mask); 2975 spin_unlock_irqrestore(hba->host->host_lock, flags); 2976 2977 /* 2978 * wait for h/w to clear corresponding bit in door-bell. 2979 * max. wait is 1 sec. 2980 */ 2981 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 2982 mask, ~mask, 1000, 1000); 2983 } 2984 2985 /** 2986 * ufshcd_dev_cmd_completion() - handles device management command responses 2987 * @hba: per adapter instance 2988 * @lrbp: pointer to local reference block 2989 * 2990 * Return: 0 upon success; < 0 upon failure. 2991 */ 2992 static int 2993 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2994 { 2995 enum upiu_response_transaction resp; 2996 int err = 0; 2997 2998 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 2999 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3000 3001 switch (resp) { 3002 case UPIU_TRANSACTION_NOP_IN: 3003 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3004 err = -EINVAL; 3005 dev_err(hba->dev, "%s: unexpected response %x\n", 3006 __func__, resp); 3007 } 3008 break; 3009 case UPIU_TRANSACTION_QUERY_RSP: { 3010 u8 response = lrbp->ucd_rsp_ptr->header.response; 3011 3012 if (response == 0) 3013 err = ufshcd_copy_query_response(hba, lrbp); 3014 break; 3015 } 3016 case UPIU_TRANSACTION_REJECT_UPIU: 3017 /* TODO: handle Reject UPIU Response */ 3018 err = -EPERM; 3019 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3020 __func__); 3021 break; 3022 case UPIU_TRANSACTION_RESPONSE: 3023 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3024 err = -EINVAL; 3025 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3026 } 3027 break; 3028 default: 3029 err = -EINVAL; 3030 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3031 __func__, resp); 3032 break; 3033 } 3034 3035 return err; 3036 } 3037 3038 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3039 struct ufshcd_lrb *lrbp, int max_timeout) 3040 { 3041 unsigned long time_left = msecs_to_jiffies(max_timeout); 3042 unsigned long flags; 3043 bool pending; 3044 int err; 3045 3046 retry: 3047 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3048 time_left); 3049 3050 if (likely(time_left)) { 3051 /* 3052 * The completion handler called complete() and the caller of 3053 * this function still owns the @lrbp tag so the code below does 3054 * not trigger any race conditions. 3055 */ 3056 hba->dev_cmd.complete = NULL; 3057 err = ufshcd_get_tr_ocs(lrbp, NULL); 3058 if (!err) 3059 err = ufshcd_dev_cmd_completion(hba, lrbp); 3060 } else { 3061 err = -ETIMEDOUT; 3062 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3063 __func__, lrbp->task_tag); 3064 3065 /* MCQ mode */ 3066 if (is_mcq_enabled(hba)) { 3067 /* successfully cleared the command, retry if needed */ 3068 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) 3069 err = -EAGAIN; 3070 hba->dev_cmd.complete = NULL; 3071 return err; 3072 } 3073 3074 /* SDB mode */ 3075 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3076 /* successfully cleared the command, retry if needed */ 3077 err = -EAGAIN; 3078 /* 3079 * Since clearing the command succeeded we also need to 3080 * clear the task tag bit from the outstanding_reqs 3081 * variable. 3082 */ 3083 spin_lock_irqsave(&hba->outstanding_lock, flags); 3084 pending = test_bit(lrbp->task_tag, 3085 &hba->outstanding_reqs); 3086 if (pending) { 3087 hba->dev_cmd.complete = NULL; 3088 __clear_bit(lrbp->task_tag, 3089 &hba->outstanding_reqs); 3090 } 3091 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3092 3093 if (!pending) { 3094 /* 3095 * The completion handler ran while we tried to 3096 * clear the command. 3097 */ 3098 time_left = 1; 3099 goto retry; 3100 } 3101 } else { 3102 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3103 __func__, lrbp->task_tag); 3104 3105 spin_lock_irqsave(&hba->outstanding_lock, flags); 3106 pending = test_bit(lrbp->task_tag, 3107 &hba->outstanding_reqs); 3108 if (pending) 3109 hba->dev_cmd.complete = NULL; 3110 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3111 3112 if (!pending) { 3113 /* 3114 * The completion handler ran while we tried to 3115 * clear the command. 3116 */ 3117 time_left = 1; 3118 goto retry; 3119 } 3120 } 3121 } 3122 3123 return err; 3124 } 3125 3126 /** 3127 * ufshcd_exec_dev_cmd - API for sending device management requests 3128 * @hba: UFS hba 3129 * @cmd_type: specifies the type (NOP, Query...) 3130 * @timeout: timeout in milliseconds 3131 * 3132 * Return: 0 upon success; < 0 upon failure. 3133 * 3134 * NOTE: Since there is only one available tag for device management commands, 3135 * it is expected you hold the hba->dev_cmd.lock mutex. 3136 */ 3137 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3138 enum dev_cmd_type cmd_type, int timeout) 3139 { 3140 DECLARE_COMPLETION_ONSTACK(wait); 3141 const u32 tag = hba->reserved_slot; 3142 struct ufshcd_lrb *lrbp; 3143 int err; 3144 3145 /* Protects use of hba->reserved_slot. */ 3146 lockdep_assert_held(&hba->dev_cmd.lock); 3147 3148 down_read(&hba->clk_scaling_lock); 3149 3150 lrbp = &hba->lrb[tag]; 3151 lrbp->cmd = NULL; 3152 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3153 if (unlikely(err)) 3154 goto out; 3155 3156 hba->dev_cmd.complete = &wait; 3157 3158 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3159 3160 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3161 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3162 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3163 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3164 3165 out: 3166 up_read(&hba->clk_scaling_lock); 3167 return err; 3168 } 3169 3170 /** 3171 * ufshcd_init_query() - init the query response and request parameters 3172 * @hba: per-adapter instance 3173 * @request: address of the request pointer to be initialized 3174 * @response: address of the response pointer to be initialized 3175 * @opcode: operation to perform 3176 * @idn: flag idn to access 3177 * @index: LU number to access 3178 * @selector: query/flag/descriptor further identification 3179 */ 3180 static inline void ufshcd_init_query(struct ufs_hba *hba, 3181 struct ufs_query_req **request, struct ufs_query_res **response, 3182 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3183 { 3184 *request = &hba->dev_cmd.query.request; 3185 *response = &hba->dev_cmd.query.response; 3186 memset(*request, 0, sizeof(struct ufs_query_req)); 3187 memset(*response, 0, sizeof(struct ufs_query_res)); 3188 (*request)->upiu_req.opcode = opcode; 3189 (*request)->upiu_req.idn = idn; 3190 (*request)->upiu_req.index = index; 3191 (*request)->upiu_req.selector = selector; 3192 } 3193 3194 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3195 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3196 { 3197 int ret; 3198 int retries; 3199 3200 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3201 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3202 if (ret) 3203 dev_dbg(hba->dev, 3204 "%s: failed with error %d, retries %d\n", 3205 __func__, ret, retries); 3206 else 3207 break; 3208 } 3209 3210 if (ret) 3211 dev_err(hba->dev, 3212 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3213 __func__, opcode, idn, ret, retries); 3214 return ret; 3215 } 3216 3217 /** 3218 * ufshcd_query_flag() - API function for sending flag query requests 3219 * @hba: per-adapter instance 3220 * @opcode: flag query to perform 3221 * @idn: flag idn to access 3222 * @index: flag index to access 3223 * @flag_res: the flag value after the query request completes 3224 * 3225 * Return: 0 for success, non-zero in case of failure. 3226 */ 3227 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3228 enum flag_idn idn, u8 index, bool *flag_res) 3229 { 3230 struct ufs_query_req *request = NULL; 3231 struct ufs_query_res *response = NULL; 3232 int err, selector = 0; 3233 int timeout = QUERY_REQ_TIMEOUT; 3234 3235 BUG_ON(!hba); 3236 3237 ufshcd_hold(hba); 3238 mutex_lock(&hba->dev_cmd.lock); 3239 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3240 selector); 3241 3242 switch (opcode) { 3243 case UPIU_QUERY_OPCODE_SET_FLAG: 3244 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3245 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3246 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3247 break; 3248 case UPIU_QUERY_OPCODE_READ_FLAG: 3249 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3250 if (!flag_res) { 3251 /* No dummy reads */ 3252 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3253 __func__); 3254 err = -EINVAL; 3255 goto out_unlock; 3256 } 3257 break; 3258 default: 3259 dev_err(hba->dev, 3260 "%s: Expected query flag opcode but got = %d\n", 3261 __func__, opcode); 3262 err = -EINVAL; 3263 goto out_unlock; 3264 } 3265 3266 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3267 3268 if (err) { 3269 dev_err(hba->dev, 3270 "%s: Sending flag query for idn %d failed, err = %d\n", 3271 __func__, idn, err); 3272 goto out_unlock; 3273 } 3274 3275 if (flag_res) 3276 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3277 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3278 3279 out_unlock: 3280 mutex_unlock(&hba->dev_cmd.lock); 3281 ufshcd_release(hba); 3282 return err; 3283 } 3284 3285 /** 3286 * ufshcd_query_attr - API function for sending attribute requests 3287 * @hba: per-adapter instance 3288 * @opcode: attribute opcode 3289 * @idn: attribute idn to access 3290 * @index: index field 3291 * @selector: selector field 3292 * @attr_val: the attribute value after the query request completes 3293 * 3294 * Return: 0 for success, non-zero in case of failure. 3295 */ 3296 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3297 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3298 { 3299 struct ufs_query_req *request = NULL; 3300 struct ufs_query_res *response = NULL; 3301 int err; 3302 3303 BUG_ON(!hba); 3304 3305 if (!attr_val) { 3306 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3307 __func__, opcode); 3308 return -EINVAL; 3309 } 3310 3311 ufshcd_hold(hba); 3312 3313 mutex_lock(&hba->dev_cmd.lock); 3314 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3315 selector); 3316 3317 switch (opcode) { 3318 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3319 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3320 request->upiu_req.value = cpu_to_be32(*attr_val); 3321 break; 3322 case UPIU_QUERY_OPCODE_READ_ATTR: 3323 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3324 break; 3325 default: 3326 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3327 __func__, opcode); 3328 err = -EINVAL; 3329 goto out_unlock; 3330 } 3331 3332 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3333 3334 if (err) { 3335 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3336 __func__, opcode, idn, index, err); 3337 goto out_unlock; 3338 } 3339 3340 *attr_val = be32_to_cpu(response->upiu_res.value); 3341 3342 out_unlock: 3343 mutex_unlock(&hba->dev_cmd.lock); 3344 ufshcd_release(hba); 3345 return err; 3346 } 3347 3348 /** 3349 * ufshcd_query_attr_retry() - API function for sending query 3350 * attribute with retries 3351 * @hba: per-adapter instance 3352 * @opcode: attribute opcode 3353 * @idn: attribute idn to access 3354 * @index: index field 3355 * @selector: selector field 3356 * @attr_val: the attribute value after the query request 3357 * completes 3358 * 3359 * Return: 0 for success, non-zero in case of failure. 3360 */ 3361 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3362 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3363 u32 *attr_val) 3364 { 3365 int ret = 0; 3366 u32 retries; 3367 3368 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3369 ret = ufshcd_query_attr(hba, opcode, idn, index, 3370 selector, attr_val); 3371 if (ret) 3372 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3373 __func__, ret, retries); 3374 else 3375 break; 3376 } 3377 3378 if (ret) 3379 dev_err(hba->dev, 3380 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3381 __func__, idn, ret, QUERY_REQ_RETRIES); 3382 return ret; 3383 } 3384 3385 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3386 enum query_opcode opcode, enum desc_idn idn, u8 index, 3387 u8 selector, u8 *desc_buf, int *buf_len) 3388 { 3389 struct ufs_query_req *request = NULL; 3390 struct ufs_query_res *response = NULL; 3391 int err; 3392 3393 BUG_ON(!hba); 3394 3395 if (!desc_buf) { 3396 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3397 __func__, opcode); 3398 return -EINVAL; 3399 } 3400 3401 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3402 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3403 __func__, *buf_len); 3404 return -EINVAL; 3405 } 3406 3407 ufshcd_hold(hba); 3408 3409 mutex_lock(&hba->dev_cmd.lock); 3410 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3411 selector); 3412 hba->dev_cmd.query.descriptor = desc_buf; 3413 request->upiu_req.length = cpu_to_be16(*buf_len); 3414 3415 switch (opcode) { 3416 case UPIU_QUERY_OPCODE_WRITE_DESC: 3417 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3418 break; 3419 case UPIU_QUERY_OPCODE_READ_DESC: 3420 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3421 break; 3422 default: 3423 dev_err(hba->dev, 3424 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3425 __func__, opcode); 3426 err = -EINVAL; 3427 goto out_unlock; 3428 } 3429 3430 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3431 3432 if (err) { 3433 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3434 __func__, opcode, idn, index, err); 3435 goto out_unlock; 3436 } 3437 3438 *buf_len = be16_to_cpu(response->upiu_res.length); 3439 3440 out_unlock: 3441 hba->dev_cmd.query.descriptor = NULL; 3442 mutex_unlock(&hba->dev_cmd.lock); 3443 ufshcd_release(hba); 3444 return err; 3445 } 3446 3447 /** 3448 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3449 * @hba: per-adapter instance 3450 * @opcode: attribute opcode 3451 * @idn: attribute idn to access 3452 * @index: index field 3453 * @selector: selector field 3454 * @desc_buf: the buffer that contains the descriptor 3455 * @buf_len: length parameter passed to the device 3456 * 3457 * The buf_len parameter will contain, on return, the length parameter 3458 * received on the response. 3459 * 3460 * Return: 0 for success, non-zero in case of failure. 3461 */ 3462 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3463 enum query_opcode opcode, 3464 enum desc_idn idn, u8 index, 3465 u8 selector, 3466 u8 *desc_buf, int *buf_len) 3467 { 3468 int err; 3469 int retries; 3470 3471 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3472 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3473 selector, desc_buf, buf_len); 3474 if (!err || err == -EINVAL) 3475 break; 3476 } 3477 3478 return err; 3479 } 3480 3481 /** 3482 * ufshcd_read_desc_param - read the specified descriptor parameter 3483 * @hba: Pointer to adapter instance 3484 * @desc_id: descriptor idn value 3485 * @desc_index: descriptor index 3486 * @param_offset: offset of the parameter to read 3487 * @param_read_buf: pointer to buffer where parameter would be read 3488 * @param_size: sizeof(param_read_buf) 3489 * 3490 * Return: 0 in case of success, non-zero otherwise. 3491 */ 3492 int ufshcd_read_desc_param(struct ufs_hba *hba, 3493 enum desc_idn desc_id, 3494 int desc_index, 3495 u8 param_offset, 3496 u8 *param_read_buf, 3497 u8 param_size) 3498 { 3499 int ret; 3500 u8 *desc_buf; 3501 int buff_len = QUERY_DESC_MAX_SIZE; 3502 bool is_kmalloc = true; 3503 3504 /* Safety check */ 3505 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3506 return -EINVAL; 3507 3508 /* Check whether we need temp memory */ 3509 if (param_offset != 0 || param_size < buff_len) { 3510 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3511 if (!desc_buf) 3512 return -ENOMEM; 3513 } else { 3514 desc_buf = param_read_buf; 3515 is_kmalloc = false; 3516 } 3517 3518 /* Request for full descriptor */ 3519 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3520 desc_id, desc_index, 0, 3521 desc_buf, &buff_len); 3522 if (ret) { 3523 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3524 __func__, desc_id, desc_index, param_offset, ret); 3525 goto out; 3526 } 3527 3528 /* Update descriptor length */ 3529 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3530 3531 if (param_offset >= buff_len) { 3532 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3533 __func__, param_offset, desc_id, buff_len); 3534 ret = -EINVAL; 3535 goto out; 3536 } 3537 3538 /* Sanity check */ 3539 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3540 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3541 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3542 ret = -EINVAL; 3543 goto out; 3544 } 3545 3546 if (is_kmalloc) { 3547 /* Make sure we don't copy more data than available */ 3548 if (param_offset >= buff_len) 3549 ret = -EINVAL; 3550 else 3551 memcpy(param_read_buf, &desc_buf[param_offset], 3552 min_t(u32, param_size, buff_len - param_offset)); 3553 } 3554 out: 3555 if (is_kmalloc) 3556 kfree(desc_buf); 3557 return ret; 3558 } 3559 3560 /** 3561 * struct uc_string_id - unicode string 3562 * 3563 * @len: size of this descriptor inclusive 3564 * @type: descriptor type 3565 * @uc: unicode string character 3566 */ 3567 struct uc_string_id { 3568 u8 len; 3569 u8 type; 3570 wchar_t uc[]; 3571 } __packed; 3572 3573 /* replace non-printable or non-ASCII characters with spaces */ 3574 static inline char ufshcd_remove_non_printable(u8 ch) 3575 { 3576 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3577 } 3578 3579 /** 3580 * ufshcd_read_string_desc - read string descriptor 3581 * @hba: pointer to adapter instance 3582 * @desc_index: descriptor index 3583 * @buf: pointer to buffer where descriptor would be read, 3584 * the caller should free the memory. 3585 * @ascii: if true convert from unicode to ascii characters 3586 * null terminated string. 3587 * 3588 * Return: 3589 * * string size on success. 3590 * * -ENOMEM: on allocation failure 3591 * * -EINVAL: on a wrong parameter 3592 */ 3593 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3594 u8 **buf, bool ascii) 3595 { 3596 struct uc_string_id *uc_str; 3597 u8 *str; 3598 int ret; 3599 3600 if (!buf) 3601 return -EINVAL; 3602 3603 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3604 if (!uc_str) 3605 return -ENOMEM; 3606 3607 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3608 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3609 if (ret < 0) { 3610 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3611 QUERY_REQ_RETRIES, ret); 3612 str = NULL; 3613 goto out; 3614 } 3615 3616 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3617 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3618 str = NULL; 3619 ret = 0; 3620 goto out; 3621 } 3622 3623 if (ascii) { 3624 ssize_t ascii_len; 3625 int i; 3626 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3627 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3628 str = kzalloc(ascii_len, GFP_KERNEL); 3629 if (!str) { 3630 ret = -ENOMEM; 3631 goto out; 3632 } 3633 3634 /* 3635 * the descriptor contains string in UTF16 format 3636 * we need to convert to utf-8 so it can be displayed 3637 */ 3638 ret = utf16s_to_utf8s(uc_str->uc, 3639 uc_str->len - QUERY_DESC_HDR_SIZE, 3640 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3641 3642 /* replace non-printable or non-ASCII characters with spaces */ 3643 for (i = 0; i < ret; i++) 3644 str[i] = ufshcd_remove_non_printable(str[i]); 3645 3646 str[ret++] = '\0'; 3647 3648 } else { 3649 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3650 if (!str) { 3651 ret = -ENOMEM; 3652 goto out; 3653 } 3654 ret = uc_str->len; 3655 } 3656 out: 3657 *buf = str; 3658 kfree(uc_str); 3659 return ret; 3660 } 3661 3662 /** 3663 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3664 * @hba: Pointer to adapter instance 3665 * @lun: lun id 3666 * @param_offset: offset of the parameter to read 3667 * @param_read_buf: pointer to buffer where parameter would be read 3668 * @param_size: sizeof(param_read_buf) 3669 * 3670 * Return: 0 in case of success, non-zero otherwise. 3671 */ 3672 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3673 int lun, 3674 enum unit_desc_param param_offset, 3675 u8 *param_read_buf, 3676 u32 param_size) 3677 { 3678 /* 3679 * Unit descriptors are only available for general purpose LUs (LUN id 3680 * from 0 to 7) and RPMB Well known LU. 3681 */ 3682 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3683 return -EOPNOTSUPP; 3684 3685 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3686 param_offset, param_read_buf, param_size); 3687 } 3688 3689 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3690 { 3691 int err = 0; 3692 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3693 3694 if (hba->dev_info.wspecversion >= 0x300) { 3695 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3696 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3697 &gating_wait); 3698 if (err) 3699 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3700 err, gating_wait); 3701 3702 if (gating_wait == 0) { 3703 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3704 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3705 gating_wait); 3706 } 3707 3708 hba->dev_info.clk_gating_wait_us = gating_wait; 3709 } 3710 3711 return err; 3712 } 3713 3714 /** 3715 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3716 * @hba: per adapter instance 3717 * 3718 * 1. Allocate DMA memory for Command Descriptor array 3719 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3720 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3721 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3722 * (UTMRDL) 3723 * 4. Allocate memory for local reference block(lrb). 3724 * 3725 * Return: 0 for success, non-zero in case of failure. 3726 */ 3727 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3728 { 3729 size_t utmrdl_size, utrdl_size, ucdl_size; 3730 3731 /* Allocate memory for UTP command descriptors */ 3732 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3733 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3734 ucdl_size, 3735 &hba->ucdl_dma_addr, 3736 GFP_KERNEL); 3737 3738 /* 3739 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3740 */ 3741 if (!hba->ucdl_base_addr || 3742 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3743 dev_err(hba->dev, 3744 "Command Descriptor Memory allocation failed\n"); 3745 goto out; 3746 } 3747 3748 /* 3749 * Allocate memory for UTP Transfer descriptors 3750 * UFSHCI requires 1KB alignment of UTRD 3751 */ 3752 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3753 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3754 utrdl_size, 3755 &hba->utrdl_dma_addr, 3756 GFP_KERNEL); 3757 if (!hba->utrdl_base_addr || 3758 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3759 dev_err(hba->dev, 3760 "Transfer Descriptor Memory allocation failed\n"); 3761 goto out; 3762 } 3763 3764 /* 3765 * Skip utmrdl allocation; it may have been 3766 * allocated during first pass and not released during 3767 * MCQ memory allocation. 3768 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3769 */ 3770 if (hba->utmrdl_base_addr) 3771 goto skip_utmrdl; 3772 /* 3773 * Allocate memory for UTP Task Management descriptors 3774 * UFSHCI requires 1KB alignment of UTMRD 3775 */ 3776 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3777 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3778 utmrdl_size, 3779 &hba->utmrdl_dma_addr, 3780 GFP_KERNEL); 3781 if (!hba->utmrdl_base_addr || 3782 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3783 dev_err(hba->dev, 3784 "Task Management Descriptor Memory allocation failed\n"); 3785 goto out; 3786 } 3787 3788 skip_utmrdl: 3789 /* Allocate memory for local reference block */ 3790 hba->lrb = devm_kcalloc(hba->dev, 3791 hba->nutrs, sizeof(struct ufshcd_lrb), 3792 GFP_KERNEL); 3793 if (!hba->lrb) { 3794 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3795 goto out; 3796 } 3797 return 0; 3798 out: 3799 return -ENOMEM; 3800 } 3801 3802 /** 3803 * ufshcd_host_memory_configure - configure local reference block with 3804 * memory offsets 3805 * @hba: per adapter instance 3806 * 3807 * Configure Host memory space 3808 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3809 * address. 3810 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3811 * and PRDT offset. 3812 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3813 * into local reference block. 3814 */ 3815 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3816 { 3817 struct utp_transfer_req_desc *utrdlp; 3818 dma_addr_t cmd_desc_dma_addr; 3819 dma_addr_t cmd_desc_element_addr; 3820 u16 response_offset; 3821 u16 prdt_offset; 3822 int cmd_desc_size; 3823 int i; 3824 3825 utrdlp = hba->utrdl_base_addr; 3826 3827 response_offset = 3828 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3829 prdt_offset = 3830 offsetof(struct utp_transfer_cmd_desc, prd_table); 3831 3832 cmd_desc_size = ufshcd_get_ucd_size(hba); 3833 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3834 3835 for (i = 0; i < hba->nutrs; i++) { 3836 /* Configure UTRD with command descriptor base address */ 3837 cmd_desc_element_addr = 3838 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3839 utrdlp[i].command_desc_base_addr = 3840 cpu_to_le64(cmd_desc_element_addr); 3841 3842 /* Response upiu and prdt offset should be in double words */ 3843 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3844 utrdlp[i].response_upiu_offset = 3845 cpu_to_le16(response_offset); 3846 utrdlp[i].prd_table_offset = 3847 cpu_to_le16(prdt_offset); 3848 utrdlp[i].response_upiu_length = 3849 cpu_to_le16(ALIGNED_UPIU_SIZE); 3850 } else { 3851 utrdlp[i].response_upiu_offset = 3852 cpu_to_le16(response_offset >> 2); 3853 utrdlp[i].prd_table_offset = 3854 cpu_to_le16(prdt_offset >> 2); 3855 utrdlp[i].response_upiu_length = 3856 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3857 } 3858 3859 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3860 } 3861 } 3862 3863 /** 3864 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3865 * @hba: per adapter instance 3866 * 3867 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3868 * in order to initialize the Unipro link startup procedure. 3869 * Once the Unipro links are up, the device connected to the controller 3870 * is detected. 3871 * 3872 * Return: 0 on success, non-zero value on failure. 3873 */ 3874 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3875 { 3876 struct uic_command uic_cmd = {0}; 3877 int ret; 3878 3879 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3880 3881 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3882 if (ret) 3883 dev_dbg(hba->dev, 3884 "dme-link-startup: error code %d\n", ret); 3885 return ret; 3886 } 3887 /** 3888 * ufshcd_dme_reset - UIC command for DME_RESET 3889 * @hba: per adapter instance 3890 * 3891 * DME_RESET command is issued in order to reset UniPro stack. 3892 * This function now deals with cold reset. 3893 * 3894 * Return: 0 on success, non-zero value on failure. 3895 */ 3896 static int ufshcd_dme_reset(struct ufs_hba *hba) 3897 { 3898 struct uic_command uic_cmd = {0}; 3899 int ret; 3900 3901 uic_cmd.command = UIC_CMD_DME_RESET; 3902 3903 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3904 if (ret) 3905 dev_err(hba->dev, 3906 "dme-reset: error code %d\n", ret); 3907 3908 return ret; 3909 } 3910 3911 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 3912 int agreed_gear, 3913 int adapt_val) 3914 { 3915 int ret; 3916 3917 if (agreed_gear < UFS_HS_G4) 3918 adapt_val = PA_NO_ADAPT; 3919 3920 ret = ufshcd_dme_set(hba, 3921 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 3922 adapt_val); 3923 return ret; 3924 } 3925 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 3926 3927 /** 3928 * ufshcd_dme_enable - UIC command for DME_ENABLE 3929 * @hba: per adapter instance 3930 * 3931 * DME_ENABLE command is issued in order to enable UniPro stack. 3932 * 3933 * Return: 0 on success, non-zero value on failure. 3934 */ 3935 static int ufshcd_dme_enable(struct ufs_hba *hba) 3936 { 3937 struct uic_command uic_cmd = {0}; 3938 int ret; 3939 3940 uic_cmd.command = UIC_CMD_DME_ENABLE; 3941 3942 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3943 if (ret) 3944 dev_err(hba->dev, 3945 "dme-enable: error code %d\n", ret); 3946 3947 return ret; 3948 } 3949 3950 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3951 { 3952 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3953 unsigned long min_sleep_time_us; 3954 3955 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3956 return; 3957 3958 /* 3959 * last_dme_cmd_tstamp will be 0 only for 1st call to 3960 * this function 3961 */ 3962 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3963 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3964 } else { 3965 unsigned long delta = 3966 (unsigned long) ktime_to_us( 3967 ktime_sub(ktime_get(), 3968 hba->last_dme_cmd_tstamp)); 3969 3970 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3971 min_sleep_time_us = 3972 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 3973 else 3974 return; /* no more delay required */ 3975 } 3976 3977 /* allow sleep for extra 50us if needed */ 3978 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 3979 } 3980 3981 /** 3982 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 3983 * @hba: per adapter instance 3984 * @attr_sel: uic command argument1 3985 * @attr_set: attribute set type as uic command argument2 3986 * @mib_val: setting value as uic command argument3 3987 * @peer: indicate whether peer or local 3988 * 3989 * Return: 0 on success, non-zero value on failure. 3990 */ 3991 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 3992 u8 attr_set, u32 mib_val, u8 peer) 3993 { 3994 struct uic_command uic_cmd = {0}; 3995 static const char *const action[] = { 3996 "dme-set", 3997 "dme-peer-set" 3998 }; 3999 const char *set = action[!!peer]; 4000 int ret; 4001 int retries = UFS_UIC_COMMAND_RETRIES; 4002 4003 uic_cmd.command = peer ? 4004 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 4005 uic_cmd.argument1 = attr_sel; 4006 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 4007 uic_cmd.argument3 = mib_val; 4008 4009 do { 4010 /* for peer attributes we retry upon failure */ 4011 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4012 if (ret) 4013 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4014 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4015 } while (ret && peer && --retries); 4016 4017 if (ret) 4018 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4019 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4020 UFS_UIC_COMMAND_RETRIES - retries); 4021 4022 return ret; 4023 } 4024 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4025 4026 /** 4027 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4028 * @hba: per adapter instance 4029 * @attr_sel: uic command argument1 4030 * @mib_val: the value of the attribute as returned by the UIC command 4031 * @peer: indicate whether peer or local 4032 * 4033 * Return: 0 on success, non-zero value on failure. 4034 */ 4035 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4036 u32 *mib_val, u8 peer) 4037 { 4038 struct uic_command uic_cmd = {0}; 4039 static const char *const action[] = { 4040 "dme-get", 4041 "dme-peer-get" 4042 }; 4043 const char *get = action[!!peer]; 4044 int ret; 4045 int retries = UFS_UIC_COMMAND_RETRIES; 4046 struct ufs_pa_layer_attr orig_pwr_info; 4047 struct ufs_pa_layer_attr temp_pwr_info; 4048 bool pwr_mode_change = false; 4049 4050 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4051 orig_pwr_info = hba->pwr_info; 4052 temp_pwr_info = orig_pwr_info; 4053 4054 if (orig_pwr_info.pwr_tx == FAST_MODE || 4055 orig_pwr_info.pwr_rx == FAST_MODE) { 4056 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4057 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4058 pwr_mode_change = true; 4059 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4060 orig_pwr_info.pwr_rx == SLOW_MODE) { 4061 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4062 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4063 pwr_mode_change = true; 4064 } 4065 if (pwr_mode_change) { 4066 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4067 if (ret) 4068 goto out; 4069 } 4070 } 4071 4072 uic_cmd.command = peer ? 4073 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 4074 uic_cmd.argument1 = attr_sel; 4075 4076 do { 4077 /* for peer attributes we retry upon failure */ 4078 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4079 if (ret) 4080 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4081 get, UIC_GET_ATTR_ID(attr_sel), ret); 4082 } while (ret && peer && --retries); 4083 4084 if (ret) 4085 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4086 get, UIC_GET_ATTR_ID(attr_sel), 4087 UFS_UIC_COMMAND_RETRIES - retries); 4088 4089 if (mib_val && !ret) 4090 *mib_val = uic_cmd.argument3; 4091 4092 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4093 && pwr_mode_change) 4094 ufshcd_change_power_mode(hba, &orig_pwr_info); 4095 out: 4096 return ret; 4097 } 4098 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4099 4100 /** 4101 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4102 * state) and waits for it to take effect. 4103 * 4104 * @hba: per adapter instance 4105 * @cmd: UIC command to execute 4106 * 4107 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4108 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4109 * and device UniPro link and hence it's final completion would be indicated by 4110 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4111 * addition to normal UIC command completion Status (UCCS). This function only 4112 * returns after the relevant status bits indicate the completion. 4113 * 4114 * Return: 0 on success, non-zero value on failure. 4115 */ 4116 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4117 { 4118 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4119 unsigned long flags; 4120 u8 status; 4121 int ret; 4122 bool reenable_intr = false; 4123 4124 mutex_lock(&hba->uic_cmd_mutex); 4125 ufshcd_add_delay_before_dme_cmd(hba); 4126 4127 spin_lock_irqsave(hba->host->host_lock, flags); 4128 if (ufshcd_is_link_broken(hba)) { 4129 ret = -ENOLINK; 4130 goto out_unlock; 4131 } 4132 hba->uic_async_done = &uic_async_done; 4133 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4134 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4135 /* 4136 * Make sure UIC command completion interrupt is disabled before 4137 * issuing UIC command. 4138 */ 4139 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 4140 reenable_intr = true; 4141 } 4142 spin_unlock_irqrestore(hba->host->host_lock, flags); 4143 ret = __ufshcd_send_uic_cmd(hba, cmd, false); 4144 if (ret) { 4145 dev_err(hba->dev, 4146 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4147 cmd->command, cmd->argument3, ret); 4148 goto out; 4149 } 4150 4151 if (!wait_for_completion_timeout(hba->uic_async_done, 4152 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4153 dev_err(hba->dev, 4154 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4155 cmd->command, cmd->argument3); 4156 4157 if (!cmd->cmd_active) { 4158 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4159 __func__); 4160 goto check_upmcrs; 4161 } 4162 4163 ret = -ETIMEDOUT; 4164 goto out; 4165 } 4166 4167 check_upmcrs: 4168 status = ufshcd_get_upmcrs(hba); 4169 if (status != PWR_LOCAL) { 4170 dev_err(hba->dev, 4171 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4172 cmd->command, status); 4173 ret = (status != PWR_OK) ? status : -1; 4174 } 4175 out: 4176 if (ret) { 4177 ufshcd_print_host_state(hba); 4178 ufshcd_print_pwr_info(hba); 4179 ufshcd_print_evt_hist(hba); 4180 } 4181 4182 spin_lock_irqsave(hba->host->host_lock, flags); 4183 hba->active_uic_cmd = NULL; 4184 hba->uic_async_done = NULL; 4185 if (reenable_intr) 4186 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4187 if (ret) { 4188 ufshcd_set_link_broken(hba); 4189 ufshcd_schedule_eh_work(hba); 4190 } 4191 out_unlock: 4192 spin_unlock_irqrestore(hba->host->host_lock, flags); 4193 mutex_unlock(&hba->uic_cmd_mutex); 4194 4195 return ret; 4196 } 4197 4198 /** 4199 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4200 * using DME_SET primitives. 4201 * @hba: per adapter instance 4202 * @mode: powr mode value 4203 * 4204 * Return: 0 on success, non-zero value on failure. 4205 */ 4206 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4207 { 4208 struct uic_command uic_cmd = {0}; 4209 int ret; 4210 4211 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4212 ret = ufshcd_dme_set(hba, 4213 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4214 if (ret) { 4215 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4216 __func__, ret); 4217 goto out; 4218 } 4219 } 4220 4221 uic_cmd.command = UIC_CMD_DME_SET; 4222 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 4223 uic_cmd.argument3 = mode; 4224 ufshcd_hold(hba); 4225 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4226 ufshcd_release(hba); 4227 4228 out: 4229 return ret; 4230 } 4231 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4232 4233 int ufshcd_link_recovery(struct ufs_hba *hba) 4234 { 4235 int ret; 4236 unsigned long flags; 4237 4238 spin_lock_irqsave(hba->host->host_lock, flags); 4239 hba->ufshcd_state = UFSHCD_STATE_RESET; 4240 ufshcd_set_eh_in_progress(hba); 4241 spin_unlock_irqrestore(hba->host->host_lock, flags); 4242 4243 /* Reset the attached device */ 4244 ufshcd_device_reset(hba); 4245 4246 ret = ufshcd_host_reset_and_restore(hba); 4247 4248 spin_lock_irqsave(hba->host->host_lock, flags); 4249 if (ret) 4250 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4251 ufshcd_clear_eh_in_progress(hba); 4252 spin_unlock_irqrestore(hba->host->host_lock, flags); 4253 4254 if (ret) 4255 dev_err(hba->dev, "%s: link recovery failed, err %d", 4256 __func__, ret); 4257 4258 return ret; 4259 } 4260 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4261 4262 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4263 { 4264 int ret; 4265 struct uic_command uic_cmd = {0}; 4266 ktime_t start = ktime_get(); 4267 4268 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4269 4270 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 4271 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4272 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4273 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4274 4275 if (ret) 4276 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4277 __func__, ret); 4278 else 4279 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4280 POST_CHANGE); 4281 4282 return ret; 4283 } 4284 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4285 4286 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4287 { 4288 struct uic_command uic_cmd = {0}; 4289 int ret; 4290 ktime_t start = ktime_get(); 4291 4292 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4293 4294 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 4295 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4296 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4297 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4298 4299 if (ret) { 4300 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4301 __func__, ret); 4302 } else { 4303 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4304 POST_CHANGE); 4305 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4306 hba->ufs_stats.hibern8_exit_cnt++; 4307 } 4308 4309 return ret; 4310 } 4311 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4312 4313 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4314 { 4315 unsigned long flags; 4316 bool update = false; 4317 4318 if (!ufshcd_is_auto_hibern8_supported(hba)) 4319 return; 4320 4321 spin_lock_irqsave(hba->host->host_lock, flags); 4322 if (hba->ahit != ahit) { 4323 hba->ahit = ahit; 4324 update = true; 4325 } 4326 spin_unlock_irqrestore(hba->host->host_lock, flags); 4327 4328 if (update && 4329 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4330 ufshcd_rpm_get_sync(hba); 4331 ufshcd_hold(hba); 4332 ufshcd_auto_hibern8_enable(hba); 4333 ufshcd_release(hba); 4334 ufshcd_rpm_put_sync(hba); 4335 } 4336 } 4337 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4338 4339 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4340 { 4341 if (!ufshcd_is_auto_hibern8_supported(hba)) 4342 return; 4343 4344 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4345 } 4346 4347 /** 4348 * ufshcd_init_pwr_info - setting the POR (power on reset) 4349 * values in hba power info 4350 * @hba: per-adapter instance 4351 */ 4352 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4353 { 4354 hba->pwr_info.gear_rx = UFS_PWM_G1; 4355 hba->pwr_info.gear_tx = UFS_PWM_G1; 4356 hba->pwr_info.lane_rx = UFS_LANE_1; 4357 hba->pwr_info.lane_tx = UFS_LANE_1; 4358 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4359 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4360 hba->pwr_info.hs_rate = 0; 4361 } 4362 4363 /** 4364 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4365 * @hba: per-adapter instance 4366 * 4367 * Return: 0 upon success; < 0 upon failure. 4368 */ 4369 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4370 { 4371 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4372 4373 if (hba->max_pwr_info.is_valid) 4374 return 0; 4375 4376 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4377 pwr_info->pwr_tx = FASTAUTO_MODE; 4378 pwr_info->pwr_rx = FASTAUTO_MODE; 4379 } else { 4380 pwr_info->pwr_tx = FAST_MODE; 4381 pwr_info->pwr_rx = FAST_MODE; 4382 } 4383 pwr_info->hs_rate = PA_HS_MODE_B; 4384 4385 /* Get the connected lane count */ 4386 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4387 &pwr_info->lane_rx); 4388 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4389 &pwr_info->lane_tx); 4390 4391 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4392 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4393 __func__, 4394 pwr_info->lane_rx, 4395 pwr_info->lane_tx); 4396 return -EINVAL; 4397 } 4398 4399 /* 4400 * First, get the maximum gears of HS speed. 4401 * If a zero value, it means there is no HSGEAR capability. 4402 * Then, get the maximum gears of PWM speed. 4403 */ 4404 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4405 if (!pwr_info->gear_rx) { 4406 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4407 &pwr_info->gear_rx); 4408 if (!pwr_info->gear_rx) { 4409 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4410 __func__, pwr_info->gear_rx); 4411 return -EINVAL; 4412 } 4413 pwr_info->pwr_rx = SLOW_MODE; 4414 } 4415 4416 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4417 &pwr_info->gear_tx); 4418 if (!pwr_info->gear_tx) { 4419 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4420 &pwr_info->gear_tx); 4421 if (!pwr_info->gear_tx) { 4422 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4423 __func__, pwr_info->gear_tx); 4424 return -EINVAL; 4425 } 4426 pwr_info->pwr_tx = SLOW_MODE; 4427 } 4428 4429 hba->max_pwr_info.is_valid = true; 4430 return 0; 4431 } 4432 4433 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4434 struct ufs_pa_layer_attr *pwr_mode) 4435 { 4436 int ret; 4437 4438 /* if already configured to the requested pwr_mode */ 4439 if (!hba->force_pmc && 4440 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4441 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4442 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4443 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4444 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4445 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4446 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4447 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4448 return 0; 4449 } 4450 4451 /* 4452 * Configure attributes for power mode change with below. 4453 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4454 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4455 * - PA_HSSERIES 4456 */ 4457 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4458 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4459 pwr_mode->lane_rx); 4460 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4461 pwr_mode->pwr_rx == FAST_MODE) 4462 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4463 else 4464 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4465 4466 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4467 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4468 pwr_mode->lane_tx); 4469 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4470 pwr_mode->pwr_tx == FAST_MODE) 4471 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4472 else 4473 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4474 4475 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4476 pwr_mode->pwr_tx == FASTAUTO_MODE || 4477 pwr_mode->pwr_rx == FAST_MODE || 4478 pwr_mode->pwr_tx == FAST_MODE) 4479 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4480 pwr_mode->hs_rate); 4481 4482 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4483 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4484 DL_FC0ProtectionTimeOutVal_Default); 4485 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4486 DL_TC0ReplayTimeOutVal_Default); 4487 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4488 DL_AFC0ReqTimeOutVal_Default); 4489 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4490 DL_FC1ProtectionTimeOutVal_Default); 4491 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4492 DL_TC1ReplayTimeOutVal_Default); 4493 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4494 DL_AFC1ReqTimeOutVal_Default); 4495 4496 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4497 DL_FC0ProtectionTimeOutVal_Default); 4498 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4499 DL_TC0ReplayTimeOutVal_Default); 4500 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4501 DL_AFC0ReqTimeOutVal_Default); 4502 } 4503 4504 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4505 | pwr_mode->pwr_tx); 4506 4507 if (ret) { 4508 dev_err(hba->dev, 4509 "%s: power mode change failed %d\n", __func__, ret); 4510 } else { 4511 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4512 pwr_mode); 4513 4514 memcpy(&hba->pwr_info, pwr_mode, 4515 sizeof(struct ufs_pa_layer_attr)); 4516 } 4517 4518 return ret; 4519 } 4520 4521 /** 4522 * ufshcd_config_pwr_mode - configure a new power mode 4523 * @hba: per-adapter instance 4524 * @desired_pwr_mode: desired power configuration 4525 * 4526 * Return: 0 upon success; < 0 upon failure. 4527 */ 4528 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4529 struct ufs_pa_layer_attr *desired_pwr_mode) 4530 { 4531 struct ufs_pa_layer_attr final_params = { 0 }; 4532 int ret; 4533 4534 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4535 desired_pwr_mode, &final_params); 4536 4537 if (ret) 4538 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4539 4540 ret = ufshcd_change_power_mode(hba, &final_params); 4541 4542 return ret; 4543 } 4544 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4545 4546 /** 4547 * ufshcd_complete_dev_init() - checks device readiness 4548 * @hba: per-adapter instance 4549 * 4550 * Set fDeviceInit flag and poll until device toggles it. 4551 * 4552 * Return: 0 upon success; < 0 upon failure. 4553 */ 4554 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4555 { 4556 int err; 4557 bool flag_res = true; 4558 ktime_t timeout; 4559 4560 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4561 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4562 if (err) { 4563 dev_err(hba->dev, 4564 "%s: setting fDeviceInit flag failed with error %d\n", 4565 __func__, err); 4566 goto out; 4567 } 4568 4569 /* Poll fDeviceInit flag to be cleared */ 4570 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4571 do { 4572 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4573 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4574 if (!flag_res) 4575 break; 4576 usleep_range(500, 1000); 4577 } while (ktime_before(ktime_get(), timeout)); 4578 4579 if (err) { 4580 dev_err(hba->dev, 4581 "%s: reading fDeviceInit flag failed with error %d\n", 4582 __func__, err); 4583 } else if (flag_res) { 4584 dev_err(hba->dev, 4585 "%s: fDeviceInit was not cleared by the device\n", 4586 __func__); 4587 err = -EBUSY; 4588 } 4589 out: 4590 return err; 4591 } 4592 4593 /** 4594 * ufshcd_make_hba_operational - Make UFS controller operational 4595 * @hba: per adapter instance 4596 * 4597 * To bring UFS host controller to operational state, 4598 * 1. Enable required interrupts 4599 * 2. Configure interrupt aggregation 4600 * 3. Program UTRL and UTMRL base address 4601 * 4. Configure run-stop-registers 4602 * 4603 * Return: 0 on success, non-zero value on failure. 4604 */ 4605 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4606 { 4607 int err = 0; 4608 u32 reg; 4609 4610 /* Enable required interrupts */ 4611 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4612 4613 /* Configure interrupt aggregation */ 4614 if (ufshcd_is_intr_aggr_allowed(hba)) 4615 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4616 else 4617 ufshcd_disable_intr_aggr(hba); 4618 4619 /* Configure UTRL and UTMRL base address registers */ 4620 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4621 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4622 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4623 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4624 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4625 REG_UTP_TASK_REQ_LIST_BASE_L); 4626 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4627 REG_UTP_TASK_REQ_LIST_BASE_H); 4628 4629 /* 4630 * Make sure base address and interrupt setup are updated before 4631 * enabling the run/stop registers below. 4632 */ 4633 wmb(); 4634 4635 /* 4636 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4637 */ 4638 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4639 if (!(ufshcd_get_lists_status(reg))) { 4640 ufshcd_enable_run_stop_reg(hba); 4641 } else { 4642 dev_err(hba->dev, 4643 "Host controller not ready to process requests"); 4644 err = -EIO; 4645 } 4646 4647 return err; 4648 } 4649 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4650 4651 /** 4652 * ufshcd_hba_stop - Send controller to reset state 4653 * @hba: per adapter instance 4654 */ 4655 void ufshcd_hba_stop(struct ufs_hba *hba) 4656 { 4657 unsigned long flags; 4658 int err; 4659 4660 /* 4661 * Obtain the host lock to prevent that the controller is disabled 4662 * while the UFS interrupt handler is active on another CPU. 4663 */ 4664 spin_lock_irqsave(hba->host->host_lock, flags); 4665 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4666 spin_unlock_irqrestore(hba->host->host_lock, flags); 4667 4668 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4669 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4670 10, 1); 4671 if (err) 4672 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4673 } 4674 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4675 4676 /** 4677 * ufshcd_hba_execute_hce - initialize the controller 4678 * @hba: per adapter instance 4679 * 4680 * The controller resets itself and controller firmware initialization 4681 * sequence kicks off. When controller is ready it will set 4682 * the Host Controller Enable bit to 1. 4683 * 4684 * Return: 0 on success, non-zero value on failure. 4685 */ 4686 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4687 { 4688 int retry_outer = 3; 4689 int retry_inner; 4690 4691 start: 4692 if (ufshcd_is_hba_active(hba)) 4693 /* change controller state to "reset state" */ 4694 ufshcd_hba_stop(hba); 4695 4696 /* UniPro link is disabled at this point */ 4697 ufshcd_set_link_off(hba); 4698 4699 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4700 4701 /* start controller initialization sequence */ 4702 ufshcd_hba_start(hba); 4703 4704 /* 4705 * To initialize a UFS host controller HCE bit must be set to 1. 4706 * During initialization the HCE bit value changes from 1->0->1. 4707 * When the host controller completes initialization sequence 4708 * it sets the value of HCE bit to 1. The same HCE bit is read back 4709 * to check if the controller has completed initialization sequence. 4710 * So without this delay the value HCE = 1, set in the previous 4711 * instruction might be read back. 4712 * This delay can be changed based on the controller. 4713 */ 4714 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4715 4716 /* wait for the host controller to complete initialization */ 4717 retry_inner = 50; 4718 while (!ufshcd_is_hba_active(hba)) { 4719 if (retry_inner) { 4720 retry_inner--; 4721 } else { 4722 dev_err(hba->dev, 4723 "Controller enable failed\n"); 4724 if (retry_outer) { 4725 retry_outer--; 4726 goto start; 4727 } 4728 return -EIO; 4729 } 4730 usleep_range(1000, 1100); 4731 } 4732 4733 /* enable UIC related interrupts */ 4734 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4735 4736 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4737 4738 return 0; 4739 } 4740 4741 int ufshcd_hba_enable(struct ufs_hba *hba) 4742 { 4743 int ret; 4744 4745 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4746 ufshcd_set_link_off(hba); 4747 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4748 4749 /* enable UIC related interrupts */ 4750 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4751 ret = ufshcd_dme_reset(hba); 4752 if (ret) { 4753 dev_err(hba->dev, "DME_RESET failed\n"); 4754 return ret; 4755 } 4756 4757 ret = ufshcd_dme_enable(hba); 4758 if (ret) { 4759 dev_err(hba->dev, "Enabling DME failed\n"); 4760 return ret; 4761 } 4762 4763 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4764 } else { 4765 ret = ufshcd_hba_execute_hce(hba); 4766 } 4767 4768 return ret; 4769 } 4770 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4771 4772 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4773 { 4774 int tx_lanes = 0, i, err = 0; 4775 4776 if (!peer) 4777 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4778 &tx_lanes); 4779 else 4780 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4781 &tx_lanes); 4782 for (i = 0; i < tx_lanes; i++) { 4783 if (!peer) 4784 err = ufshcd_dme_set(hba, 4785 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4786 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4787 0); 4788 else 4789 err = ufshcd_dme_peer_set(hba, 4790 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4791 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4792 0); 4793 if (err) { 4794 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4795 __func__, peer, i, err); 4796 break; 4797 } 4798 } 4799 4800 return err; 4801 } 4802 4803 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4804 { 4805 return ufshcd_disable_tx_lcc(hba, true); 4806 } 4807 4808 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4809 { 4810 struct ufs_event_hist *e; 4811 4812 if (id >= UFS_EVT_CNT) 4813 return; 4814 4815 e = &hba->ufs_stats.event[id]; 4816 e->val[e->pos] = val; 4817 e->tstamp[e->pos] = local_clock(); 4818 e->cnt += 1; 4819 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4820 4821 ufshcd_vops_event_notify(hba, id, &val); 4822 } 4823 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4824 4825 /** 4826 * ufshcd_link_startup - Initialize unipro link startup 4827 * @hba: per adapter instance 4828 * 4829 * Return: 0 for success, non-zero in case of failure. 4830 */ 4831 static int ufshcd_link_startup(struct ufs_hba *hba) 4832 { 4833 int ret; 4834 int retries = DME_LINKSTARTUP_RETRIES; 4835 bool link_startup_again = false; 4836 4837 /* 4838 * If UFS device isn't active then we will have to issue link startup 4839 * 2 times to make sure the device state move to active. 4840 */ 4841 if (!ufshcd_is_ufs_dev_active(hba)) 4842 link_startup_again = true; 4843 4844 link_startup: 4845 do { 4846 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4847 4848 ret = ufshcd_dme_link_startup(hba); 4849 4850 /* check if device is detected by inter-connect layer */ 4851 if (!ret && !ufshcd_is_device_present(hba)) { 4852 ufshcd_update_evt_hist(hba, 4853 UFS_EVT_LINK_STARTUP_FAIL, 4854 0); 4855 dev_err(hba->dev, "%s: Device not present\n", __func__); 4856 ret = -ENXIO; 4857 goto out; 4858 } 4859 4860 /* 4861 * DME link lost indication is only received when link is up, 4862 * but we can't be sure if the link is up until link startup 4863 * succeeds. So reset the local Uni-Pro and try again. 4864 */ 4865 if (ret && retries && ufshcd_hba_enable(hba)) { 4866 ufshcd_update_evt_hist(hba, 4867 UFS_EVT_LINK_STARTUP_FAIL, 4868 (u32)ret); 4869 goto out; 4870 } 4871 } while (ret && retries--); 4872 4873 if (ret) { 4874 /* failed to get the link up... retire */ 4875 ufshcd_update_evt_hist(hba, 4876 UFS_EVT_LINK_STARTUP_FAIL, 4877 (u32)ret); 4878 goto out; 4879 } 4880 4881 if (link_startup_again) { 4882 link_startup_again = false; 4883 retries = DME_LINKSTARTUP_RETRIES; 4884 goto link_startup; 4885 } 4886 4887 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4888 ufshcd_init_pwr_info(hba); 4889 ufshcd_print_pwr_info(hba); 4890 4891 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4892 ret = ufshcd_disable_device_tx_lcc(hba); 4893 if (ret) 4894 goto out; 4895 } 4896 4897 /* Include any host controller configuration via UIC commands */ 4898 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4899 if (ret) 4900 goto out; 4901 4902 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4903 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4904 ret = ufshcd_make_hba_operational(hba); 4905 out: 4906 if (ret) { 4907 dev_err(hba->dev, "link startup failed %d\n", ret); 4908 ufshcd_print_host_state(hba); 4909 ufshcd_print_pwr_info(hba); 4910 ufshcd_print_evt_hist(hba); 4911 } 4912 return ret; 4913 } 4914 4915 /** 4916 * ufshcd_verify_dev_init() - Verify device initialization 4917 * @hba: per-adapter instance 4918 * 4919 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4920 * device Transport Protocol (UTP) layer is ready after a reset. 4921 * If the UTP layer at the device side is not initialized, it may 4922 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4923 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4924 * 4925 * Return: 0 upon success; < 0 upon failure. 4926 */ 4927 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4928 { 4929 int err = 0; 4930 int retries; 4931 4932 ufshcd_hold(hba); 4933 mutex_lock(&hba->dev_cmd.lock); 4934 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4935 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4936 hba->nop_out_timeout); 4937 4938 if (!err || err == -ETIMEDOUT) 4939 break; 4940 4941 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4942 } 4943 mutex_unlock(&hba->dev_cmd.lock); 4944 ufshcd_release(hba); 4945 4946 if (err) 4947 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4948 return err; 4949 } 4950 4951 /** 4952 * ufshcd_setup_links - associate link b/w device wlun and other luns 4953 * @sdev: pointer to SCSI device 4954 * @hba: pointer to ufs hba 4955 */ 4956 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 4957 { 4958 struct device_link *link; 4959 4960 /* 4961 * Device wlun is the supplier & rest of the luns are consumers. 4962 * This ensures that device wlun suspends after all other luns. 4963 */ 4964 if (hba->ufs_device_wlun) { 4965 link = device_link_add(&sdev->sdev_gendev, 4966 &hba->ufs_device_wlun->sdev_gendev, 4967 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 4968 if (!link) { 4969 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 4970 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 4971 return; 4972 } 4973 hba->luns_avail--; 4974 /* Ignore REPORT_LUN wlun probing */ 4975 if (hba->luns_avail == 1) { 4976 ufshcd_rpm_put(hba); 4977 return; 4978 } 4979 } else { 4980 /* 4981 * Device wlun is probed. The assumption is that WLUNs are 4982 * scanned before other LUNs. 4983 */ 4984 hba->luns_avail--; 4985 } 4986 } 4987 4988 /** 4989 * ufshcd_lu_init - Initialize the relevant parameters of the LU 4990 * @hba: per-adapter instance 4991 * @sdev: pointer to SCSI device 4992 */ 4993 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 4994 { 4995 int len = QUERY_DESC_MAX_SIZE; 4996 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 4997 u8 lun_qdepth = hba->nutrs; 4998 u8 *desc_buf; 4999 int ret; 5000 5001 desc_buf = kzalloc(len, GFP_KERNEL); 5002 if (!desc_buf) 5003 goto set_qdepth; 5004 5005 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5006 if (ret < 0) { 5007 if (ret == -EOPNOTSUPP) 5008 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5009 lun_qdepth = 1; 5010 kfree(desc_buf); 5011 goto set_qdepth; 5012 } 5013 5014 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5015 /* 5016 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5017 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5018 */ 5019 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5020 } 5021 /* 5022 * According to UFS device specification, the write protection mode is only supported by 5023 * normal LU, not supported by WLUN. 5024 */ 5025 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5026 !hba->dev_info.is_lu_power_on_wp && 5027 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5028 hba->dev_info.is_lu_power_on_wp = true; 5029 5030 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5031 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5032 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5033 hba->dev_info.b_advanced_rpmb_en = true; 5034 5035 5036 kfree(desc_buf); 5037 set_qdepth: 5038 /* 5039 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5040 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5041 */ 5042 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5043 scsi_change_queue_depth(sdev, lun_qdepth); 5044 } 5045 5046 /** 5047 * ufshcd_slave_alloc - handle initial SCSI device configurations 5048 * @sdev: pointer to SCSI device 5049 * 5050 * Return: success. 5051 */ 5052 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5053 { 5054 struct ufs_hba *hba; 5055 5056 hba = shost_priv(sdev->host); 5057 5058 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5059 sdev->use_10_for_ms = 1; 5060 5061 /* DBD field should be set to 1 in mode sense(10) */ 5062 sdev->set_dbd_for_ms = 1; 5063 5064 /* allow SCSI layer to restart the device in case of errors */ 5065 sdev->allow_restart = 1; 5066 5067 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5068 sdev->no_report_opcodes = 1; 5069 5070 /* WRITE_SAME command is not supported */ 5071 sdev->no_write_same = 1; 5072 5073 ufshcd_lu_init(hba, sdev); 5074 5075 ufshcd_setup_links(hba, sdev); 5076 5077 return 0; 5078 } 5079 5080 /** 5081 * ufshcd_change_queue_depth - change queue depth 5082 * @sdev: pointer to SCSI device 5083 * @depth: required depth to set 5084 * 5085 * Change queue depth and make sure the max. limits are not crossed. 5086 * 5087 * Return: new queue depth. 5088 */ 5089 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5090 { 5091 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5092 } 5093 5094 /** 5095 * ufshcd_slave_configure - adjust SCSI device configurations 5096 * @sdev: pointer to SCSI device 5097 * 5098 * Return: 0 (success). 5099 */ 5100 static int ufshcd_slave_configure(struct scsi_device *sdev) 5101 { 5102 struct ufs_hba *hba = shost_priv(sdev->host); 5103 struct request_queue *q = sdev->request_queue; 5104 5105 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 5106 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT) 5107 blk_queue_update_dma_alignment(q, SZ_4K - 1); 5108 /* 5109 * Block runtime-pm until all consumers are added. 5110 * Refer ufshcd_setup_links(). 5111 */ 5112 if (is_device_wlun(sdev)) 5113 pm_runtime_get_noresume(&sdev->sdev_gendev); 5114 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5115 sdev->rpm_autosuspend = 1; 5116 /* 5117 * Do not print messages during runtime PM to avoid never-ending cycles 5118 * of messages written back to storage by user space causing runtime 5119 * resume, causing more messages and so on. 5120 */ 5121 sdev->silence_suspend = 1; 5122 5123 ufshcd_crypto_register(hba, q); 5124 5125 return 0; 5126 } 5127 5128 /** 5129 * ufshcd_slave_destroy - remove SCSI device configurations 5130 * @sdev: pointer to SCSI device 5131 */ 5132 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5133 { 5134 struct ufs_hba *hba; 5135 unsigned long flags; 5136 5137 hba = shost_priv(sdev->host); 5138 5139 /* Drop the reference as it won't be needed anymore */ 5140 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5141 spin_lock_irqsave(hba->host->host_lock, flags); 5142 hba->ufs_device_wlun = NULL; 5143 spin_unlock_irqrestore(hba->host->host_lock, flags); 5144 } else if (hba->ufs_device_wlun) { 5145 struct device *supplier = NULL; 5146 5147 /* Ensure UFS Device WLUN exists and does not disappear */ 5148 spin_lock_irqsave(hba->host->host_lock, flags); 5149 if (hba->ufs_device_wlun) { 5150 supplier = &hba->ufs_device_wlun->sdev_gendev; 5151 get_device(supplier); 5152 } 5153 spin_unlock_irqrestore(hba->host->host_lock, flags); 5154 5155 if (supplier) { 5156 /* 5157 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5158 * device will not have been registered but can still 5159 * have a device link holding a reference to the device. 5160 */ 5161 device_link_remove(&sdev->sdev_gendev, supplier); 5162 put_device(supplier); 5163 } 5164 } 5165 } 5166 5167 /** 5168 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5169 * @lrbp: pointer to local reference block of completed command 5170 * @scsi_status: SCSI command status 5171 * 5172 * Return: value base on SCSI command status. 5173 */ 5174 static inline int 5175 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5176 { 5177 int result = 0; 5178 5179 switch (scsi_status) { 5180 case SAM_STAT_CHECK_CONDITION: 5181 ufshcd_copy_sense_data(lrbp); 5182 fallthrough; 5183 case SAM_STAT_GOOD: 5184 result |= DID_OK << 16 | scsi_status; 5185 break; 5186 case SAM_STAT_TASK_SET_FULL: 5187 case SAM_STAT_BUSY: 5188 case SAM_STAT_TASK_ABORTED: 5189 ufshcd_copy_sense_data(lrbp); 5190 result |= scsi_status; 5191 break; 5192 default: 5193 result |= DID_ERROR << 16; 5194 break; 5195 } /* end of switch */ 5196 5197 return result; 5198 } 5199 5200 /** 5201 * ufshcd_transfer_rsp_status - Get overall status of the response 5202 * @hba: per adapter instance 5203 * @lrbp: pointer to local reference block of completed command 5204 * @cqe: pointer to the completion queue entry 5205 * 5206 * Return: result of the command to notify SCSI midlayer. 5207 */ 5208 static inline int 5209 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5210 struct cq_entry *cqe) 5211 { 5212 int result = 0; 5213 int scsi_status; 5214 enum utp_ocs ocs; 5215 u8 upiu_flags; 5216 u32 resid; 5217 5218 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5219 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5220 /* 5221 * Test !overflow instead of underflow to support UFS devices that do 5222 * not set either flag. 5223 */ 5224 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5225 scsi_set_resid(lrbp->cmd, resid); 5226 5227 /* overall command status of utrd */ 5228 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5229 5230 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5231 if (lrbp->ucd_rsp_ptr->header.response || 5232 lrbp->ucd_rsp_ptr->header.status) 5233 ocs = OCS_SUCCESS; 5234 } 5235 5236 switch (ocs) { 5237 case OCS_SUCCESS: 5238 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5239 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5240 case UPIU_TRANSACTION_RESPONSE: 5241 /* 5242 * get the result based on SCSI status response 5243 * to notify the SCSI midlayer of the command status 5244 */ 5245 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5246 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5247 5248 /* 5249 * Currently we are only supporting BKOPs exception 5250 * events hence we can ignore BKOPs exception event 5251 * during power management callbacks. BKOPs exception 5252 * event is not expected to be raised in runtime suspend 5253 * callback as it allows the urgent bkops. 5254 * During system suspend, we are anyway forcefully 5255 * disabling the bkops and if urgent bkops is needed 5256 * it will be enabled on system resume. Long term 5257 * solution could be to abort the system suspend if 5258 * UFS device needs urgent BKOPs. 5259 */ 5260 if (!hba->pm_op_in_progress && 5261 !ufshcd_eh_in_progress(hba) && 5262 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5263 /* Flushed in suspend */ 5264 schedule_work(&hba->eeh_work); 5265 break; 5266 case UPIU_TRANSACTION_REJECT_UPIU: 5267 /* TODO: handle Reject UPIU Response */ 5268 result = DID_ERROR << 16; 5269 dev_err(hba->dev, 5270 "Reject UPIU not fully implemented\n"); 5271 break; 5272 default: 5273 dev_err(hba->dev, 5274 "Unexpected request response code = %x\n", 5275 result); 5276 result = DID_ERROR << 16; 5277 break; 5278 } 5279 break; 5280 case OCS_ABORTED: 5281 result |= DID_ABORT << 16; 5282 break; 5283 case OCS_INVALID_COMMAND_STATUS: 5284 result |= DID_REQUEUE << 16; 5285 break; 5286 case OCS_INVALID_CMD_TABLE_ATTR: 5287 case OCS_INVALID_PRDT_ATTR: 5288 case OCS_MISMATCH_DATA_BUF_SIZE: 5289 case OCS_MISMATCH_RESP_UPIU_SIZE: 5290 case OCS_PEER_COMM_FAILURE: 5291 case OCS_FATAL_ERROR: 5292 case OCS_DEVICE_FATAL_ERROR: 5293 case OCS_INVALID_CRYPTO_CONFIG: 5294 case OCS_GENERAL_CRYPTO_ERROR: 5295 default: 5296 result |= DID_ERROR << 16; 5297 dev_err(hba->dev, 5298 "OCS error from controller = %x for tag %d\n", 5299 ocs, lrbp->task_tag); 5300 ufshcd_print_evt_hist(hba); 5301 ufshcd_print_host_state(hba); 5302 break; 5303 } /* end of switch */ 5304 5305 if ((host_byte(result) != DID_OK) && 5306 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5307 ufshcd_print_tr(hba, lrbp->task_tag, true); 5308 return result; 5309 } 5310 5311 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5312 u32 intr_mask) 5313 { 5314 if (!ufshcd_is_auto_hibern8_supported(hba) || 5315 !ufshcd_is_auto_hibern8_enabled(hba)) 5316 return false; 5317 5318 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5319 return false; 5320 5321 if (hba->active_uic_cmd && 5322 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5323 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5324 return false; 5325 5326 return true; 5327 } 5328 5329 /** 5330 * ufshcd_uic_cmd_compl - handle completion of uic command 5331 * @hba: per adapter instance 5332 * @intr_status: interrupt status generated by the controller 5333 * 5334 * Return: 5335 * IRQ_HANDLED - If interrupt is valid 5336 * IRQ_NONE - If invalid interrupt 5337 */ 5338 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5339 { 5340 irqreturn_t retval = IRQ_NONE; 5341 5342 spin_lock(hba->host->host_lock); 5343 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5344 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5345 5346 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5347 hba->active_uic_cmd->argument2 |= 5348 ufshcd_get_uic_cmd_result(hba); 5349 hba->active_uic_cmd->argument3 = 5350 ufshcd_get_dme_attr_val(hba); 5351 if (!hba->uic_async_done) 5352 hba->active_uic_cmd->cmd_active = 0; 5353 complete(&hba->active_uic_cmd->done); 5354 retval = IRQ_HANDLED; 5355 } 5356 5357 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5358 hba->active_uic_cmd->cmd_active = 0; 5359 complete(hba->uic_async_done); 5360 retval = IRQ_HANDLED; 5361 } 5362 5363 if (retval == IRQ_HANDLED) 5364 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5365 UFS_CMD_COMP); 5366 spin_unlock(hba->host->host_lock); 5367 return retval; 5368 } 5369 5370 /* Release the resources allocated for processing a SCSI command. */ 5371 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5372 struct ufshcd_lrb *lrbp) 5373 { 5374 struct scsi_cmnd *cmd = lrbp->cmd; 5375 5376 scsi_dma_unmap(cmd); 5377 ufshcd_release(hba); 5378 ufshcd_clk_scaling_update_busy(hba); 5379 } 5380 5381 /** 5382 * ufshcd_compl_one_cqe - handle a completion queue entry 5383 * @hba: per adapter instance 5384 * @task_tag: the task tag of the request to be completed 5385 * @cqe: pointer to the completion queue entry 5386 */ 5387 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5388 struct cq_entry *cqe) 5389 { 5390 struct ufshcd_lrb *lrbp; 5391 struct scsi_cmnd *cmd; 5392 enum utp_ocs ocs; 5393 5394 lrbp = &hba->lrb[task_tag]; 5395 lrbp->compl_time_stamp = ktime_get(); 5396 cmd = lrbp->cmd; 5397 if (cmd) { 5398 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5399 ufshcd_update_monitor(hba, lrbp); 5400 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5401 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5402 ufshcd_release_scsi_cmd(hba, lrbp); 5403 /* Do not touch lrbp after scsi done */ 5404 scsi_done(cmd); 5405 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 5406 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 5407 if (hba->dev_cmd.complete) { 5408 if (cqe) { 5409 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5410 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5411 } 5412 complete(hba->dev_cmd.complete); 5413 ufshcd_clk_scaling_update_busy(hba); 5414 } 5415 } 5416 } 5417 5418 /** 5419 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5420 * @hba: per adapter instance 5421 * @completed_reqs: bitmask that indicates which requests to complete 5422 */ 5423 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5424 unsigned long completed_reqs) 5425 { 5426 int tag; 5427 5428 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5429 ufshcd_compl_one_cqe(hba, tag, NULL); 5430 } 5431 5432 /* Any value that is not an existing queue number is fine for this constant. */ 5433 enum { 5434 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5435 }; 5436 5437 static void ufshcd_clear_polled(struct ufs_hba *hba, 5438 unsigned long *completed_reqs) 5439 { 5440 int tag; 5441 5442 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5443 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5444 5445 if (!cmd) 5446 continue; 5447 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5448 __clear_bit(tag, completed_reqs); 5449 } 5450 } 5451 5452 /* 5453 * Return: > 0 if one or more commands have been completed or 0 if no 5454 * requests have been completed. 5455 */ 5456 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5457 { 5458 struct ufs_hba *hba = shost_priv(shost); 5459 unsigned long completed_reqs, flags; 5460 u32 tr_doorbell; 5461 struct ufs_hw_queue *hwq; 5462 5463 if (is_mcq_enabled(hba)) { 5464 hwq = &hba->uhq[queue_num]; 5465 5466 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5467 } 5468 5469 spin_lock_irqsave(&hba->outstanding_lock, flags); 5470 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5471 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5472 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5473 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5474 hba->outstanding_reqs); 5475 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5476 /* Do not complete polled requests from interrupt context. */ 5477 ufshcd_clear_polled(hba, &completed_reqs); 5478 } 5479 hba->outstanding_reqs &= ~completed_reqs; 5480 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5481 5482 if (completed_reqs) 5483 __ufshcd_transfer_req_compl(hba, completed_reqs); 5484 5485 return completed_reqs != 0; 5486 } 5487 5488 /** 5489 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5490 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5491 * to complete the pending transfers and free the resources associated with 5492 * the scsi command. 5493 * 5494 * @hba: per adapter instance 5495 * @force_compl: This flag is set to true when invoked 5496 * from ufshcd_host_reset_and_restore() in which case it requires special 5497 * handling because the host controller has been reset by ufshcd_hba_stop(). 5498 */ 5499 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5500 bool force_compl) 5501 { 5502 struct ufs_hw_queue *hwq; 5503 struct ufshcd_lrb *lrbp; 5504 struct scsi_cmnd *cmd; 5505 unsigned long flags; 5506 u32 hwq_num, utag; 5507 int tag; 5508 5509 for (tag = 0; tag < hba->nutrs; tag++) { 5510 lrbp = &hba->lrb[tag]; 5511 cmd = lrbp->cmd; 5512 if (!ufshcd_cmd_inflight(cmd) || 5513 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5514 continue; 5515 5516 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd)); 5517 hwq_num = blk_mq_unique_tag_to_hwq(utag); 5518 hwq = &hba->uhq[hwq_num]; 5519 5520 if (force_compl) { 5521 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5522 /* 5523 * For those cmds of which the cqes are not present 5524 * in the cq, complete them explicitly. 5525 */ 5526 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5527 spin_lock_irqsave(&hwq->cq_lock, flags); 5528 set_host_byte(cmd, DID_REQUEUE); 5529 ufshcd_release_scsi_cmd(hba, lrbp); 5530 scsi_done(cmd); 5531 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5532 } 5533 } else { 5534 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5535 } 5536 } 5537 } 5538 5539 /** 5540 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5541 * @hba: per adapter instance 5542 * 5543 * Return: 5544 * IRQ_HANDLED - If interrupt is valid 5545 * IRQ_NONE - If invalid interrupt 5546 */ 5547 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5548 { 5549 /* Resetting interrupt aggregation counters first and reading the 5550 * DOOR_BELL afterward allows us to handle all the completed requests. 5551 * In order to prevent other interrupts starvation the DB is read once 5552 * after reset. The down side of this solution is the possibility of 5553 * false interrupt if device completes another request after resetting 5554 * aggregation and before reading the DB. 5555 */ 5556 if (ufshcd_is_intr_aggr_allowed(hba) && 5557 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5558 ufshcd_reset_intr_aggr(hba); 5559 5560 if (ufs_fail_completion()) 5561 return IRQ_HANDLED; 5562 5563 /* 5564 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5565 * do not want polling to trigger spurious interrupt complaints. 5566 */ 5567 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5568 5569 return IRQ_HANDLED; 5570 } 5571 5572 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5573 { 5574 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5575 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5576 &ee_ctrl_mask); 5577 } 5578 5579 int ufshcd_write_ee_control(struct ufs_hba *hba) 5580 { 5581 int err; 5582 5583 mutex_lock(&hba->ee_ctrl_mutex); 5584 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5585 mutex_unlock(&hba->ee_ctrl_mutex); 5586 if (err) 5587 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5588 __func__, err); 5589 return err; 5590 } 5591 5592 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5593 const u16 *other_mask, u16 set, u16 clr) 5594 { 5595 u16 new_mask, ee_ctrl_mask; 5596 int err = 0; 5597 5598 mutex_lock(&hba->ee_ctrl_mutex); 5599 new_mask = (*mask & ~clr) | set; 5600 ee_ctrl_mask = new_mask | *other_mask; 5601 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5602 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5603 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5604 if (!err) { 5605 hba->ee_ctrl_mask = ee_ctrl_mask; 5606 *mask = new_mask; 5607 } 5608 mutex_unlock(&hba->ee_ctrl_mutex); 5609 return err; 5610 } 5611 5612 /** 5613 * ufshcd_disable_ee - disable exception event 5614 * @hba: per-adapter instance 5615 * @mask: exception event to disable 5616 * 5617 * Disables exception event in the device so that the EVENT_ALERT 5618 * bit is not set. 5619 * 5620 * Return: zero on success, non-zero error value on failure. 5621 */ 5622 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5623 { 5624 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5625 } 5626 5627 /** 5628 * ufshcd_enable_ee - enable exception event 5629 * @hba: per-adapter instance 5630 * @mask: exception event to enable 5631 * 5632 * Enable corresponding exception event in the device to allow 5633 * device to alert host in critical scenarios. 5634 * 5635 * Return: zero on success, non-zero error value on failure. 5636 */ 5637 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5638 { 5639 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5640 } 5641 5642 /** 5643 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5644 * @hba: per-adapter instance 5645 * 5646 * Allow device to manage background operations on its own. Enabling 5647 * this might lead to inconsistent latencies during normal data transfers 5648 * as the device is allowed to manage its own way of handling background 5649 * operations. 5650 * 5651 * Return: zero on success, non-zero on failure. 5652 */ 5653 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5654 { 5655 int err = 0; 5656 5657 if (hba->auto_bkops_enabled) 5658 goto out; 5659 5660 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5661 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5662 if (err) { 5663 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5664 __func__, err); 5665 goto out; 5666 } 5667 5668 hba->auto_bkops_enabled = true; 5669 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5670 5671 /* No need of URGENT_BKOPS exception from the device */ 5672 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5673 if (err) 5674 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5675 __func__, err); 5676 out: 5677 return err; 5678 } 5679 5680 /** 5681 * ufshcd_disable_auto_bkops - block device in doing background operations 5682 * @hba: per-adapter instance 5683 * 5684 * Disabling background operations improves command response latency but 5685 * has drawback of device moving into critical state where the device is 5686 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5687 * host is idle so that BKOPS are managed effectively without any negative 5688 * impacts. 5689 * 5690 * Return: zero on success, non-zero on failure. 5691 */ 5692 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5693 { 5694 int err = 0; 5695 5696 if (!hba->auto_bkops_enabled) 5697 goto out; 5698 5699 /* 5700 * If host assisted BKOPs is to be enabled, make sure 5701 * urgent bkops exception is allowed. 5702 */ 5703 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5704 if (err) { 5705 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5706 __func__, err); 5707 goto out; 5708 } 5709 5710 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5711 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5712 if (err) { 5713 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5714 __func__, err); 5715 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5716 goto out; 5717 } 5718 5719 hba->auto_bkops_enabled = false; 5720 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5721 hba->is_urgent_bkops_lvl_checked = false; 5722 out: 5723 return err; 5724 } 5725 5726 /** 5727 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5728 * @hba: per adapter instance 5729 * 5730 * After a device reset the device may toggle the BKOPS_EN flag 5731 * to default value. The s/w tracking variables should be updated 5732 * as well. This function would change the auto-bkops state based on 5733 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5734 */ 5735 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5736 { 5737 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5738 hba->auto_bkops_enabled = false; 5739 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5740 ufshcd_enable_auto_bkops(hba); 5741 } else { 5742 hba->auto_bkops_enabled = true; 5743 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5744 ufshcd_disable_auto_bkops(hba); 5745 } 5746 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5747 hba->is_urgent_bkops_lvl_checked = false; 5748 } 5749 5750 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5751 { 5752 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5753 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5754 } 5755 5756 /** 5757 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5758 * @hba: per-adapter instance 5759 * @status: bkops_status value 5760 * 5761 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5762 * flag in the device to permit background operations if the device 5763 * bkops_status is greater than or equal to "status" argument passed to 5764 * this function, disable otherwise. 5765 * 5766 * Return: 0 for success, non-zero in case of failure. 5767 * 5768 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5769 * to know whether auto bkops is enabled or disabled after this function 5770 * returns control to it. 5771 */ 5772 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5773 enum bkops_status status) 5774 { 5775 int err; 5776 u32 curr_status = 0; 5777 5778 err = ufshcd_get_bkops_status(hba, &curr_status); 5779 if (err) { 5780 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5781 __func__, err); 5782 goto out; 5783 } else if (curr_status > BKOPS_STATUS_MAX) { 5784 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5785 __func__, curr_status); 5786 err = -EINVAL; 5787 goto out; 5788 } 5789 5790 if (curr_status >= status) 5791 err = ufshcd_enable_auto_bkops(hba); 5792 else 5793 err = ufshcd_disable_auto_bkops(hba); 5794 out: 5795 return err; 5796 } 5797 5798 /** 5799 * ufshcd_urgent_bkops - handle urgent bkops exception event 5800 * @hba: per-adapter instance 5801 * 5802 * Enable fBackgroundOpsEn flag in the device to permit background 5803 * operations. 5804 * 5805 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5806 * and negative error value for any other failure. 5807 * 5808 * Return: 0 upon success; < 0 upon failure. 5809 */ 5810 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5811 { 5812 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5813 } 5814 5815 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5816 { 5817 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5818 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5819 } 5820 5821 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5822 { 5823 int err; 5824 u32 curr_status = 0; 5825 5826 if (hba->is_urgent_bkops_lvl_checked) 5827 goto enable_auto_bkops; 5828 5829 err = ufshcd_get_bkops_status(hba, &curr_status); 5830 if (err) { 5831 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5832 __func__, err); 5833 goto out; 5834 } 5835 5836 /* 5837 * We are seeing that some devices are raising the urgent bkops 5838 * exception events even when BKOPS status doesn't indicate performace 5839 * impacted or critical. Handle these device by determining their urgent 5840 * bkops status at runtime. 5841 */ 5842 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5843 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5844 __func__, curr_status); 5845 /* update the current status as the urgent bkops level */ 5846 hba->urgent_bkops_lvl = curr_status; 5847 hba->is_urgent_bkops_lvl_checked = true; 5848 } 5849 5850 enable_auto_bkops: 5851 err = ufshcd_enable_auto_bkops(hba); 5852 out: 5853 if (err < 0) 5854 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5855 __func__, err); 5856 } 5857 5858 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5859 { 5860 u32 value; 5861 5862 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5863 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5864 return; 5865 5866 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5867 5868 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5869 5870 /* 5871 * A placeholder for the platform vendors to add whatever additional 5872 * steps required 5873 */ 5874 } 5875 5876 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5877 { 5878 u8 index; 5879 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5880 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5881 5882 index = ufshcd_wb_get_query_index(hba); 5883 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5884 } 5885 5886 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5887 { 5888 int ret; 5889 5890 if (!ufshcd_is_wb_allowed(hba) || 5891 hba->dev_info.wb_enabled == enable) 5892 return 0; 5893 5894 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5895 if (ret) { 5896 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5897 __func__, enable ? "enabling" : "disabling", ret); 5898 return ret; 5899 } 5900 5901 hba->dev_info.wb_enabled = enable; 5902 dev_dbg(hba->dev, "%s: Write Booster %s\n", 5903 __func__, enable ? "enabled" : "disabled"); 5904 5905 return ret; 5906 } 5907 5908 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 5909 bool enable) 5910 { 5911 int ret; 5912 5913 ret = __ufshcd_wb_toggle(hba, enable, 5914 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 5915 if (ret) { 5916 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 5917 __func__, enable ? "enabling" : "disabling", ret); 5918 return; 5919 } 5920 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 5921 __func__, enable ? "enabled" : "disabled"); 5922 } 5923 5924 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 5925 { 5926 int ret; 5927 5928 if (!ufshcd_is_wb_allowed(hba) || 5929 hba->dev_info.wb_buf_flush_enabled == enable) 5930 return 0; 5931 5932 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 5933 if (ret) { 5934 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 5935 __func__, enable ? "enabling" : "disabling", ret); 5936 return ret; 5937 } 5938 5939 hba->dev_info.wb_buf_flush_enabled = enable; 5940 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 5941 __func__, enable ? "enabled" : "disabled"); 5942 5943 return ret; 5944 } 5945 5946 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5947 u32 avail_buf) 5948 { 5949 u32 cur_buf; 5950 int ret; 5951 u8 index; 5952 5953 index = ufshcd_wb_get_query_index(hba); 5954 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5955 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 5956 index, 0, &cur_buf); 5957 if (ret) { 5958 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 5959 __func__, ret); 5960 return false; 5961 } 5962 5963 if (!cur_buf) { 5964 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 5965 cur_buf); 5966 return false; 5967 } 5968 /* Let it continue to flush when available buffer exceeds threshold */ 5969 return avail_buf < hba->vps->wb_flush_threshold; 5970 } 5971 5972 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 5973 { 5974 if (ufshcd_is_wb_buf_flush_allowed(hba)) 5975 ufshcd_wb_toggle_buf_flush(hba, false); 5976 5977 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 5978 ufshcd_wb_toggle(hba, false); 5979 hba->caps &= ~UFSHCD_CAP_WB_EN; 5980 5981 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 5982 } 5983 5984 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 5985 { 5986 u32 lifetime; 5987 int ret; 5988 u8 index; 5989 5990 index = ufshcd_wb_get_query_index(hba); 5991 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5992 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 5993 index, 0, &lifetime); 5994 if (ret) { 5995 dev_err(hba->dev, 5996 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 5997 __func__, ret); 5998 return false; 5999 } 6000 6001 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6002 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6003 __func__, lifetime); 6004 return false; 6005 } 6006 6007 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6008 __func__, lifetime); 6009 6010 return true; 6011 } 6012 6013 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6014 { 6015 int ret; 6016 u32 avail_buf; 6017 u8 index; 6018 6019 if (!ufshcd_is_wb_allowed(hba)) 6020 return false; 6021 6022 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6023 ufshcd_wb_force_disable(hba); 6024 return false; 6025 } 6026 6027 /* 6028 * The ufs device needs the vcc to be ON to flush. 6029 * With user-space reduction enabled, it's enough to enable flush 6030 * by checking only the available buffer. The threshold 6031 * defined here is > 90% full. 6032 * With user-space preserved enabled, the current-buffer 6033 * should be checked too because the wb buffer size can reduce 6034 * when disk tends to be full. This info is provided by current 6035 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6036 * keeping vcc on when current buffer is empty. 6037 */ 6038 index = ufshcd_wb_get_query_index(hba); 6039 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6040 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6041 index, 0, &avail_buf); 6042 if (ret) { 6043 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6044 __func__, ret); 6045 return false; 6046 } 6047 6048 if (!hba->dev_info.b_presrv_uspc_en) 6049 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6050 6051 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6052 } 6053 6054 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6055 { 6056 struct ufs_hba *hba = container_of(to_delayed_work(work), 6057 struct ufs_hba, 6058 rpm_dev_flush_recheck_work); 6059 /* 6060 * To prevent unnecessary VCC power drain after device finishes 6061 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6062 * after a certain delay to recheck the threshold by next runtime 6063 * suspend. 6064 */ 6065 ufshcd_rpm_get_sync(hba); 6066 ufshcd_rpm_put_sync(hba); 6067 } 6068 6069 /** 6070 * ufshcd_exception_event_handler - handle exceptions raised by device 6071 * @work: pointer to work data 6072 * 6073 * Read bExceptionEventStatus attribute from the device and handle the 6074 * exception event accordingly. 6075 */ 6076 static void ufshcd_exception_event_handler(struct work_struct *work) 6077 { 6078 struct ufs_hba *hba; 6079 int err; 6080 u32 status = 0; 6081 hba = container_of(work, struct ufs_hba, eeh_work); 6082 6083 ufshcd_scsi_block_requests(hba); 6084 err = ufshcd_get_ee_status(hba, &status); 6085 if (err) { 6086 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6087 __func__, err); 6088 goto out; 6089 } 6090 6091 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6092 6093 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6094 ufshcd_bkops_exception_event_handler(hba); 6095 6096 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6097 ufshcd_temp_exception_event_handler(hba, status); 6098 6099 ufs_debugfs_exception_event(hba, status); 6100 out: 6101 ufshcd_scsi_unblock_requests(hba); 6102 } 6103 6104 /* Complete requests that have door-bell cleared */ 6105 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6106 { 6107 if (is_mcq_enabled(hba)) 6108 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6109 else 6110 ufshcd_transfer_req_compl(hba); 6111 6112 ufshcd_tmc_handler(hba); 6113 } 6114 6115 /** 6116 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6117 * to recover from the DL NAC errors or not. 6118 * @hba: per-adapter instance 6119 * 6120 * Return: true if error handling is required, false otherwise. 6121 */ 6122 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6123 { 6124 unsigned long flags; 6125 bool err_handling = true; 6126 6127 spin_lock_irqsave(hba->host->host_lock, flags); 6128 /* 6129 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6130 * device fatal error and/or DL NAC & REPLAY timeout errors. 6131 */ 6132 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6133 goto out; 6134 6135 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6136 ((hba->saved_err & UIC_ERROR) && 6137 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6138 goto out; 6139 6140 if ((hba->saved_err & UIC_ERROR) && 6141 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6142 int err; 6143 /* 6144 * wait for 50ms to see if we can get any other errors or not. 6145 */ 6146 spin_unlock_irqrestore(hba->host->host_lock, flags); 6147 msleep(50); 6148 spin_lock_irqsave(hba->host->host_lock, flags); 6149 6150 /* 6151 * now check if we have got any other severe errors other than 6152 * DL NAC error? 6153 */ 6154 if ((hba->saved_err & INT_FATAL_ERRORS) || 6155 ((hba->saved_err & UIC_ERROR) && 6156 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6157 goto out; 6158 6159 /* 6160 * As DL NAC is the only error received so far, send out NOP 6161 * command to confirm if link is still active or not. 6162 * - If we don't get any response then do error recovery. 6163 * - If we get response then clear the DL NAC error bit. 6164 */ 6165 6166 spin_unlock_irqrestore(hba->host->host_lock, flags); 6167 err = ufshcd_verify_dev_init(hba); 6168 spin_lock_irqsave(hba->host->host_lock, flags); 6169 6170 if (err) 6171 goto out; 6172 6173 /* Link seems to be alive hence ignore the DL NAC errors */ 6174 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6175 hba->saved_err &= ~UIC_ERROR; 6176 /* clear NAC error */ 6177 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6178 if (!hba->saved_uic_err) 6179 err_handling = false; 6180 } 6181 out: 6182 spin_unlock_irqrestore(hba->host->host_lock, flags); 6183 return err_handling; 6184 } 6185 6186 /* host lock must be held before calling this func */ 6187 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6188 { 6189 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6190 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6191 } 6192 6193 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6194 { 6195 lockdep_assert_held(hba->host->host_lock); 6196 6197 /* handle fatal errors only when link is not in error state */ 6198 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6199 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6200 ufshcd_is_saved_err_fatal(hba)) 6201 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6202 else 6203 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6204 queue_work(hba->eh_wq, &hba->eh_work); 6205 } 6206 } 6207 6208 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6209 { 6210 spin_lock_irq(hba->host->host_lock); 6211 hba->force_reset = true; 6212 ufshcd_schedule_eh_work(hba); 6213 spin_unlock_irq(hba->host->host_lock); 6214 } 6215 6216 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6217 { 6218 mutex_lock(&hba->wb_mutex); 6219 down_write(&hba->clk_scaling_lock); 6220 hba->clk_scaling.is_allowed = allow; 6221 up_write(&hba->clk_scaling_lock); 6222 mutex_unlock(&hba->wb_mutex); 6223 } 6224 6225 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6226 { 6227 if (suspend) { 6228 if (hba->clk_scaling.is_enabled) 6229 ufshcd_suspend_clkscaling(hba); 6230 ufshcd_clk_scaling_allow(hba, false); 6231 } else { 6232 ufshcd_clk_scaling_allow(hba, true); 6233 if (hba->clk_scaling.is_enabled) 6234 ufshcd_resume_clkscaling(hba); 6235 } 6236 } 6237 6238 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6239 { 6240 ufshcd_rpm_get_sync(hba); 6241 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6242 hba->is_sys_suspended) { 6243 enum ufs_pm_op pm_op; 6244 6245 /* 6246 * Don't assume anything of resume, if 6247 * resume fails, irq and clocks can be OFF, and powers 6248 * can be OFF or in LPM. 6249 */ 6250 ufshcd_setup_hba_vreg(hba, true); 6251 ufshcd_enable_irq(hba); 6252 ufshcd_setup_vreg(hba, true); 6253 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6254 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6255 ufshcd_hold(hba); 6256 if (!ufshcd_is_clkgating_allowed(hba)) 6257 ufshcd_setup_clocks(hba, true); 6258 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6259 ufshcd_vops_resume(hba, pm_op); 6260 } else { 6261 ufshcd_hold(hba); 6262 if (ufshcd_is_clkscaling_supported(hba) && 6263 hba->clk_scaling.is_enabled) 6264 ufshcd_suspend_clkscaling(hba); 6265 ufshcd_clk_scaling_allow(hba, false); 6266 } 6267 ufshcd_scsi_block_requests(hba); 6268 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6269 blk_mq_wait_quiesce_done(&hba->host->tag_set); 6270 cancel_work_sync(&hba->eeh_work); 6271 } 6272 6273 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6274 { 6275 ufshcd_scsi_unblock_requests(hba); 6276 ufshcd_release(hba); 6277 if (ufshcd_is_clkscaling_supported(hba)) 6278 ufshcd_clk_scaling_suspend(hba, false); 6279 ufshcd_rpm_put(hba); 6280 } 6281 6282 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6283 { 6284 return (!hba->is_powered || hba->shutting_down || 6285 !hba->ufs_device_wlun || 6286 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6287 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6288 ufshcd_is_link_broken(hba)))); 6289 } 6290 6291 #ifdef CONFIG_PM 6292 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6293 { 6294 struct Scsi_Host *shost = hba->host; 6295 struct scsi_device *sdev; 6296 struct request_queue *q; 6297 int ret; 6298 6299 hba->is_sys_suspended = false; 6300 /* 6301 * Set RPM status of wlun device to RPM_ACTIVE, 6302 * this also clears its runtime error. 6303 */ 6304 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6305 6306 /* hba device might have a runtime error otherwise */ 6307 if (ret) 6308 ret = pm_runtime_set_active(hba->dev); 6309 /* 6310 * If wlun device had runtime error, we also need to resume those 6311 * consumer scsi devices in case any of them has failed to be 6312 * resumed due to supplier runtime resume failure. This is to unblock 6313 * blk_queue_enter in case there are bios waiting inside it. 6314 */ 6315 if (!ret) { 6316 shost_for_each_device(sdev, shost) { 6317 q = sdev->request_queue; 6318 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6319 q->rpm_status == RPM_SUSPENDING)) 6320 pm_request_resume(q->dev); 6321 } 6322 } 6323 } 6324 #else 6325 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6326 { 6327 } 6328 #endif 6329 6330 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6331 { 6332 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6333 u32 mode; 6334 6335 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6336 6337 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6338 return true; 6339 6340 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6341 return true; 6342 6343 return false; 6344 } 6345 6346 static bool ufshcd_abort_one(struct request *rq, void *priv) 6347 { 6348 int *ret = priv; 6349 u32 tag = rq->tag; 6350 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6351 struct scsi_device *sdev = cmd->device; 6352 struct Scsi_Host *shost = sdev->host; 6353 struct ufs_hba *hba = shost_priv(shost); 6354 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 6355 struct ufs_hw_queue *hwq; 6356 unsigned long flags; 6357 6358 *ret = ufshcd_try_to_abort_task(hba, tag); 6359 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6360 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6361 *ret ? "failed" : "succeeded"); 6362 6363 /* Release cmd in MCQ mode if abort succeeds */ 6364 if (is_mcq_enabled(hba) && (*ret == 0)) { 6365 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 6366 if (!hwq) 6367 return 0; 6368 spin_lock_irqsave(&hwq->cq_lock, flags); 6369 if (ufshcd_cmd_inflight(lrbp->cmd)) 6370 ufshcd_release_scsi_cmd(hba, lrbp); 6371 spin_unlock_irqrestore(&hwq->cq_lock, flags); 6372 } 6373 6374 return *ret == 0; 6375 } 6376 6377 /** 6378 * ufshcd_abort_all - Abort all pending commands. 6379 * @hba: Host bus adapter pointer. 6380 * 6381 * Return: true if and only if the host controller needs to be reset. 6382 */ 6383 static bool ufshcd_abort_all(struct ufs_hba *hba) 6384 { 6385 int tag, ret = 0; 6386 6387 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6388 if (ret) 6389 goto out; 6390 6391 /* Clear pending task management requests */ 6392 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6393 ret = ufshcd_clear_tm_cmd(hba, tag); 6394 if (ret) 6395 goto out; 6396 } 6397 6398 out: 6399 /* Complete the requests that are cleared by s/w */ 6400 ufshcd_complete_requests(hba, false); 6401 6402 return ret != 0; 6403 } 6404 6405 /** 6406 * ufshcd_err_handler - handle UFS errors that require s/w attention 6407 * @work: pointer to work structure 6408 */ 6409 static void ufshcd_err_handler(struct work_struct *work) 6410 { 6411 int retries = MAX_ERR_HANDLER_RETRIES; 6412 struct ufs_hba *hba; 6413 unsigned long flags; 6414 bool needs_restore; 6415 bool needs_reset; 6416 int pmc_err; 6417 6418 hba = container_of(work, struct ufs_hba, eh_work); 6419 6420 dev_info(hba->dev, 6421 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6422 __func__, ufshcd_state_name[hba->ufshcd_state], 6423 hba->is_powered, hba->shutting_down, hba->saved_err, 6424 hba->saved_uic_err, hba->force_reset, 6425 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6426 6427 down(&hba->host_sem); 6428 spin_lock_irqsave(hba->host->host_lock, flags); 6429 if (ufshcd_err_handling_should_stop(hba)) { 6430 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6431 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6432 spin_unlock_irqrestore(hba->host->host_lock, flags); 6433 up(&hba->host_sem); 6434 return; 6435 } 6436 ufshcd_set_eh_in_progress(hba); 6437 spin_unlock_irqrestore(hba->host->host_lock, flags); 6438 ufshcd_err_handling_prepare(hba); 6439 /* Complete requests that have door-bell cleared by h/w */ 6440 ufshcd_complete_requests(hba, false); 6441 spin_lock_irqsave(hba->host->host_lock, flags); 6442 again: 6443 needs_restore = false; 6444 needs_reset = false; 6445 6446 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6447 hba->ufshcd_state = UFSHCD_STATE_RESET; 6448 /* 6449 * A full reset and restore might have happened after preparation 6450 * is finished, double check whether we should stop. 6451 */ 6452 if (ufshcd_err_handling_should_stop(hba)) 6453 goto skip_err_handling; 6454 6455 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6456 bool ret; 6457 6458 spin_unlock_irqrestore(hba->host->host_lock, flags); 6459 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6460 ret = ufshcd_quirk_dl_nac_errors(hba); 6461 spin_lock_irqsave(hba->host->host_lock, flags); 6462 if (!ret && ufshcd_err_handling_should_stop(hba)) 6463 goto skip_err_handling; 6464 } 6465 6466 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6467 (hba->saved_uic_err && 6468 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6469 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6470 6471 spin_unlock_irqrestore(hba->host->host_lock, flags); 6472 ufshcd_print_host_state(hba); 6473 ufshcd_print_pwr_info(hba); 6474 ufshcd_print_evt_hist(hba); 6475 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6476 ufshcd_print_trs_all(hba, pr_prdt); 6477 spin_lock_irqsave(hba->host->host_lock, flags); 6478 } 6479 6480 /* 6481 * if host reset is required then skip clearing the pending 6482 * transfers forcefully because they will get cleared during 6483 * host reset and restore 6484 */ 6485 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6486 ufshcd_is_saved_err_fatal(hba) || 6487 ((hba->saved_err & UIC_ERROR) && 6488 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6489 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6490 needs_reset = true; 6491 goto do_reset; 6492 } 6493 6494 /* 6495 * If LINERESET was caught, UFS might have been put to PWM mode, 6496 * check if power mode restore is needed. 6497 */ 6498 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6499 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6500 if (!hba->saved_uic_err) 6501 hba->saved_err &= ~UIC_ERROR; 6502 spin_unlock_irqrestore(hba->host->host_lock, flags); 6503 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6504 needs_restore = true; 6505 spin_lock_irqsave(hba->host->host_lock, flags); 6506 if (!hba->saved_err && !needs_restore) 6507 goto skip_err_handling; 6508 } 6509 6510 hba->silence_err_logs = true; 6511 /* release lock as clear command might sleep */ 6512 spin_unlock_irqrestore(hba->host->host_lock, flags); 6513 6514 needs_reset = ufshcd_abort_all(hba); 6515 6516 spin_lock_irqsave(hba->host->host_lock, flags); 6517 hba->silence_err_logs = false; 6518 if (needs_reset) 6519 goto do_reset; 6520 6521 /* 6522 * After all reqs and tasks are cleared from doorbell, 6523 * now it is safe to retore power mode. 6524 */ 6525 if (needs_restore) { 6526 spin_unlock_irqrestore(hba->host->host_lock, flags); 6527 /* 6528 * Hold the scaling lock just in case dev cmds 6529 * are sent via bsg and/or sysfs. 6530 */ 6531 down_write(&hba->clk_scaling_lock); 6532 hba->force_pmc = true; 6533 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6534 if (pmc_err) { 6535 needs_reset = true; 6536 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6537 __func__, pmc_err); 6538 } 6539 hba->force_pmc = false; 6540 ufshcd_print_pwr_info(hba); 6541 up_write(&hba->clk_scaling_lock); 6542 spin_lock_irqsave(hba->host->host_lock, flags); 6543 } 6544 6545 do_reset: 6546 /* Fatal errors need reset */ 6547 if (needs_reset) { 6548 int err; 6549 6550 hba->force_reset = false; 6551 spin_unlock_irqrestore(hba->host->host_lock, flags); 6552 err = ufshcd_reset_and_restore(hba); 6553 if (err) 6554 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6555 __func__, err); 6556 else 6557 ufshcd_recover_pm_error(hba); 6558 spin_lock_irqsave(hba->host->host_lock, flags); 6559 } 6560 6561 skip_err_handling: 6562 if (!needs_reset) { 6563 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6564 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6565 if (hba->saved_err || hba->saved_uic_err) 6566 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6567 __func__, hba->saved_err, hba->saved_uic_err); 6568 } 6569 /* Exit in an operational state or dead */ 6570 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6571 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6572 if (--retries) 6573 goto again; 6574 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6575 } 6576 ufshcd_clear_eh_in_progress(hba); 6577 spin_unlock_irqrestore(hba->host->host_lock, flags); 6578 ufshcd_err_handling_unprepare(hba); 6579 up(&hba->host_sem); 6580 6581 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6582 ufshcd_state_name[hba->ufshcd_state]); 6583 } 6584 6585 /** 6586 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6587 * @hba: per-adapter instance 6588 * 6589 * Return: 6590 * IRQ_HANDLED - If interrupt is valid 6591 * IRQ_NONE - If invalid interrupt 6592 */ 6593 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6594 { 6595 u32 reg; 6596 irqreturn_t retval = IRQ_NONE; 6597 6598 /* PHY layer error */ 6599 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6600 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6601 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6602 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6603 /* 6604 * To know whether this error is fatal or not, DB timeout 6605 * must be checked but this error is handled separately. 6606 */ 6607 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6608 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6609 __func__); 6610 6611 /* Got a LINERESET indication. */ 6612 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6613 struct uic_command *cmd = NULL; 6614 6615 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6616 if (hba->uic_async_done && hba->active_uic_cmd) 6617 cmd = hba->active_uic_cmd; 6618 /* 6619 * Ignore the LINERESET during power mode change 6620 * operation via DME_SET command. 6621 */ 6622 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6623 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6624 } 6625 retval |= IRQ_HANDLED; 6626 } 6627 6628 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6629 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6630 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6631 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6632 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6633 6634 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6635 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6636 else if (hba->dev_quirks & 6637 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6638 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6639 hba->uic_error |= 6640 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6641 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6642 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6643 } 6644 retval |= IRQ_HANDLED; 6645 } 6646 6647 /* UIC NL/TL/DME errors needs software retry */ 6648 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6649 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6650 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6651 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6652 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6653 retval |= IRQ_HANDLED; 6654 } 6655 6656 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6657 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6658 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6659 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6660 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6661 retval |= IRQ_HANDLED; 6662 } 6663 6664 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6665 if ((reg & UIC_DME_ERROR) && 6666 (reg & UIC_DME_ERROR_CODE_MASK)) { 6667 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6668 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6669 retval |= IRQ_HANDLED; 6670 } 6671 6672 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6673 __func__, hba->uic_error); 6674 return retval; 6675 } 6676 6677 /** 6678 * ufshcd_check_errors - Check for errors that need s/w attention 6679 * @hba: per-adapter instance 6680 * @intr_status: interrupt status generated by the controller 6681 * 6682 * Return: 6683 * IRQ_HANDLED - If interrupt is valid 6684 * IRQ_NONE - If invalid interrupt 6685 */ 6686 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6687 { 6688 bool queue_eh_work = false; 6689 irqreturn_t retval = IRQ_NONE; 6690 6691 spin_lock(hba->host->host_lock); 6692 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6693 6694 if (hba->errors & INT_FATAL_ERRORS) { 6695 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6696 hba->errors); 6697 queue_eh_work = true; 6698 } 6699 6700 if (hba->errors & UIC_ERROR) { 6701 hba->uic_error = 0; 6702 retval = ufshcd_update_uic_error(hba); 6703 if (hba->uic_error) 6704 queue_eh_work = true; 6705 } 6706 6707 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6708 dev_err(hba->dev, 6709 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6710 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6711 "Enter" : "Exit", 6712 hba->errors, ufshcd_get_upmcrs(hba)); 6713 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6714 hba->errors); 6715 ufshcd_set_link_broken(hba); 6716 queue_eh_work = true; 6717 } 6718 6719 if (queue_eh_work) { 6720 /* 6721 * update the transfer error masks to sticky bits, let's do this 6722 * irrespective of current ufshcd_state. 6723 */ 6724 hba->saved_err |= hba->errors; 6725 hba->saved_uic_err |= hba->uic_error; 6726 6727 /* dump controller state before resetting */ 6728 if ((hba->saved_err & 6729 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6730 (hba->saved_uic_err && 6731 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6732 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6733 __func__, hba->saved_err, 6734 hba->saved_uic_err); 6735 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6736 "host_regs: "); 6737 ufshcd_print_pwr_info(hba); 6738 } 6739 ufshcd_schedule_eh_work(hba); 6740 retval |= IRQ_HANDLED; 6741 } 6742 /* 6743 * if (!queue_eh_work) - 6744 * Other errors are either non-fatal where host recovers 6745 * itself without s/w intervention or errors that will be 6746 * handled by the SCSI core layer. 6747 */ 6748 hba->errors = 0; 6749 hba->uic_error = 0; 6750 spin_unlock(hba->host->host_lock); 6751 return retval; 6752 } 6753 6754 /** 6755 * ufshcd_tmc_handler - handle task management function completion 6756 * @hba: per adapter instance 6757 * 6758 * Return: 6759 * IRQ_HANDLED - If interrupt is valid 6760 * IRQ_NONE - If invalid interrupt 6761 */ 6762 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6763 { 6764 unsigned long flags, pending, issued; 6765 irqreturn_t ret = IRQ_NONE; 6766 int tag; 6767 6768 spin_lock_irqsave(hba->host->host_lock, flags); 6769 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6770 issued = hba->outstanding_tasks & ~pending; 6771 for_each_set_bit(tag, &issued, hba->nutmrs) { 6772 struct request *req = hba->tmf_rqs[tag]; 6773 struct completion *c = req->end_io_data; 6774 6775 complete(c); 6776 ret = IRQ_HANDLED; 6777 } 6778 spin_unlock_irqrestore(hba->host->host_lock, flags); 6779 6780 return ret; 6781 } 6782 6783 /** 6784 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6785 * @hba: per adapter instance 6786 * 6787 * Return: IRQ_HANDLED if interrupt is handled. 6788 */ 6789 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6790 { 6791 struct ufs_hw_queue *hwq; 6792 unsigned long outstanding_cqs; 6793 unsigned int nr_queues; 6794 int i, ret; 6795 u32 events; 6796 6797 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6798 if (ret) 6799 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6800 6801 /* Exclude the poll queues */ 6802 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6803 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6804 hwq = &hba->uhq[i]; 6805 6806 events = ufshcd_mcq_read_cqis(hba, i); 6807 if (events) 6808 ufshcd_mcq_write_cqis(hba, events, i); 6809 6810 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6811 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6812 } 6813 6814 return IRQ_HANDLED; 6815 } 6816 6817 /** 6818 * ufshcd_sl_intr - Interrupt service routine 6819 * @hba: per adapter instance 6820 * @intr_status: contains interrupts generated by the controller 6821 * 6822 * Return: 6823 * IRQ_HANDLED - If interrupt is valid 6824 * IRQ_NONE - If invalid interrupt 6825 */ 6826 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6827 { 6828 irqreturn_t retval = IRQ_NONE; 6829 6830 if (intr_status & UFSHCD_UIC_MASK) 6831 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6832 6833 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6834 retval |= ufshcd_check_errors(hba, intr_status); 6835 6836 if (intr_status & UTP_TASK_REQ_COMPL) 6837 retval |= ufshcd_tmc_handler(hba); 6838 6839 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6840 retval |= ufshcd_transfer_req_compl(hba); 6841 6842 if (intr_status & MCQ_CQ_EVENT_STATUS) 6843 retval |= ufshcd_handle_mcq_cq_events(hba); 6844 6845 return retval; 6846 } 6847 6848 /** 6849 * ufshcd_intr - Main interrupt service routine 6850 * @irq: irq number 6851 * @__hba: pointer to adapter instance 6852 * 6853 * Return: 6854 * IRQ_HANDLED - If interrupt is valid 6855 * IRQ_NONE - If invalid interrupt 6856 */ 6857 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6858 { 6859 u32 intr_status, enabled_intr_status = 0; 6860 irqreturn_t retval = IRQ_NONE; 6861 struct ufs_hba *hba = __hba; 6862 int retries = hba->nutrs; 6863 6864 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6865 hba->ufs_stats.last_intr_status = intr_status; 6866 hba->ufs_stats.last_intr_ts = local_clock(); 6867 6868 /* 6869 * There could be max of hba->nutrs reqs in flight and in worst case 6870 * if the reqs get finished 1 by 1 after the interrupt status is 6871 * read, make sure we handle them by checking the interrupt status 6872 * again in a loop until we process all of the reqs before returning. 6873 */ 6874 while (intr_status && retries--) { 6875 enabled_intr_status = 6876 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6877 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6878 if (enabled_intr_status) 6879 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6880 6881 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6882 } 6883 6884 if (enabled_intr_status && retval == IRQ_NONE && 6885 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6886 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6887 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6888 __func__, 6889 intr_status, 6890 hba->ufs_stats.last_intr_status, 6891 enabled_intr_status); 6892 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6893 } 6894 6895 return retval; 6896 } 6897 6898 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6899 { 6900 int err = 0; 6901 u32 mask = 1 << tag; 6902 unsigned long flags; 6903 6904 if (!test_bit(tag, &hba->outstanding_tasks)) 6905 goto out; 6906 6907 spin_lock_irqsave(hba->host->host_lock, flags); 6908 ufshcd_utmrl_clear(hba, tag); 6909 spin_unlock_irqrestore(hba->host->host_lock, flags); 6910 6911 /* poll for max. 1 sec to clear door bell register by h/w */ 6912 err = ufshcd_wait_for_register(hba, 6913 REG_UTP_TASK_REQ_DOOR_BELL, 6914 mask, 0, 1000, 1000); 6915 6916 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6917 tag, err < 0 ? "failed" : "succeeded"); 6918 6919 out: 6920 return err; 6921 } 6922 6923 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6924 struct utp_task_req_desc *treq, u8 tm_function) 6925 { 6926 struct request_queue *q = hba->tmf_queue; 6927 struct Scsi_Host *host = hba->host; 6928 DECLARE_COMPLETION_ONSTACK(wait); 6929 struct request *req; 6930 unsigned long flags; 6931 int task_tag, err; 6932 6933 /* 6934 * blk_mq_alloc_request() is used here only to get a free tag. 6935 */ 6936 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 6937 if (IS_ERR(req)) 6938 return PTR_ERR(req); 6939 6940 req->end_io_data = &wait; 6941 ufshcd_hold(hba); 6942 6943 spin_lock_irqsave(host->host_lock, flags); 6944 6945 task_tag = req->tag; 6946 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", 6947 task_tag); 6948 hba->tmf_rqs[req->tag] = req; 6949 treq->upiu_req.req_header.task_tag = task_tag; 6950 6951 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 6952 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 6953 6954 /* send command to the controller */ 6955 __set_bit(task_tag, &hba->outstanding_tasks); 6956 6957 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 6958 /* Make sure that doorbell is committed immediately */ 6959 wmb(); 6960 6961 spin_unlock_irqrestore(host->host_lock, flags); 6962 6963 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 6964 6965 /* wait until the task management command is completed */ 6966 err = wait_for_completion_io_timeout(&wait, 6967 msecs_to_jiffies(TM_CMD_TIMEOUT)); 6968 if (!err) { 6969 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 6970 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 6971 __func__, tm_function); 6972 if (ufshcd_clear_tm_cmd(hba, task_tag)) 6973 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 6974 __func__, task_tag); 6975 err = -ETIMEDOUT; 6976 } else { 6977 err = 0; 6978 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 6979 6980 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 6981 } 6982 6983 spin_lock_irqsave(hba->host->host_lock, flags); 6984 hba->tmf_rqs[req->tag] = NULL; 6985 __clear_bit(task_tag, &hba->outstanding_tasks); 6986 spin_unlock_irqrestore(hba->host->host_lock, flags); 6987 6988 ufshcd_release(hba); 6989 blk_mq_free_request(req); 6990 6991 return err; 6992 } 6993 6994 /** 6995 * ufshcd_issue_tm_cmd - issues task management commands to controller 6996 * @hba: per adapter instance 6997 * @lun_id: LUN ID to which TM command is sent 6998 * @task_id: task ID to which the TM command is applicable 6999 * @tm_function: task management function opcode 7000 * @tm_response: task management service response return value 7001 * 7002 * Return: non-zero value on error, zero on success. 7003 */ 7004 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7005 u8 tm_function, u8 *tm_response) 7006 { 7007 struct utp_task_req_desc treq = { }; 7008 enum utp_ocs ocs_value; 7009 int err; 7010 7011 /* Configure task request descriptor */ 7012 treq.header.interrupt = 1; 7013 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7014 7015 /* Configure task request UPIU */ 7016 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7017 treq.upiu_req.req_header.lun = lun_id; 7018 treq.upiu_req.req_header.tm_function = tm_function; 7019 7020 /* 7021 * The host shall provide the same value for LUN field in the basic 7022 * header and for Input Parameter. 7023 */ 7024 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7025 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7026 7027 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7028 if (err == -ETIMEDOUT) 7029 return err; 7030 7031 ocs_value = treq.header.ocs & MASK_OCS; 7032 if (ocs_value != OCS_SUCCESS) 7033 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7034 __func__, ocs_value); 7035 else if (tm_response) 7036 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7037 MASK_TM_SERVICE_RESP; 7038 return err; 7039 } 7040 7041 /** 7042 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7043 * @hba: per-adapter instance 7044 * @req_upiu: upiu request 7045 * @rsp_upiu: upiu reply 7046 * @desc_buff: pointer to descriptor buffer, NULL if NA 7047 * @buff_len: descriptor size, 0 if NA 7048 * @cmd_type: specifies the type (NOP, Query...) 7049 * @desc_op: descriptor operation 7050 * 7051 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7052 * Therefore, it "rides" the device management infrastructure: uses its tag and 7053 * tasks work queues. 7054 * 7055 * Since there is only one available tag for device management commands, 7056 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7057 * 7058 * Return: 0 upon success; < 0 upon failure. 7059 */ 7060 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7061 struct utp_upiu_req *req_upiu, 7062 struct utp_upiu_req *rsp_upiu, 7063 u8 *desc_buff, int *buff_len, 7064 enum dev_cmd_type cmd_type, 7065 enum query_opcode desc_op) 7066 { 7067 DECLARE_COMPLETION_ONSTACK(wait); 7068 const u32 tag = hba->reserved_slot; 7069 struct ufshcd_lrb *lrbp; 7070 int err = 0; 7071 u8 upiu_flags; 7072 7073 /* Protects use of hba->reserved_slot. */ 7074 lockdep_assert_held(&hba->dev_cmd.lock); 7075 7076 down_read(&hba->clk_scaling_lock); 7077 7078 lrbp = &hba->lrb[tag]; 7079 lrbp->cmd = NULL; 7080 lrbp->task_tag = tag; 7081 lrbp->lun = 0; 7082 lrbp->intr_cmd = true; 7083 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7084 hba->dev_cmd.type = cmd_type; 7085 7086 if (hba->ufs_version <= ufshci_version(1, 1)) 7087 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 7088 else 7089 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7090 7091 /* update the task tag in the request upiu */ 7092 req_upiu->header.task_tag = tag; 7093 7094 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 7095 7096 /* just copy the upiu request as it is */ 7097 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7098 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7099 /* The Data Segment Area is optional depending upon the query 7100 * function value. for WRITE DESCRIPTOR, the data segment 7101 * follows right after the tsf. 7102 */ 7103 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7104 *buff_len = 0; 7105 } 7106 7107 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7108 7109 hba->dev_cmd.complete = &wait; 7110 7111 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 7112 7113 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7114 /* 7115 * ignore the returning value here - ufshcd_check_query_response is 7116 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7117 * read the response directly ignoring all errors. 7118 */ 7119 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 7120 7121 /* just copy the upiu response as it is */ 7122 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7123 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7124 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7125 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7126 .data_segment_length); 7127 7128 if (*buff_len >= resp_len) { 7129 memcpy(desc_buff, descp, resp_len); 7130 *buff_len = resp_len; 7131 } else { 7132 dev_warn(hba->dev, 7133 "%s: rsp size %d is bigger than buffer size %d", 7134 __func__, resp_len, *buff_len); 7135 *buff_len = 0; 7136 err = -EINVAL; 7137 } 7138 } 7139 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7140 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7141 7142 up_read(&hba->clk_scaling_lock); 7143 return err; 7144 } 7145 7146 /** 7147 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7148 * @hba: per-adapter instance 7149 * @req_upiu: upiu request 7150 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7151 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7152 * @desc_buff: pointer to descriptor buffer, NULL if NA 7153 * @buff_len: descriptor size, 0 if NA 7154 * @desc_op: descriptor operation 7155 * 7156 * Supports UTP Transfer requests (nop and query), and UTP Task 7157 * Management requests. 7158 * It is up to the caller to fill the upiu conent properly, as it will 7159 * be copied without any further input validations. 7160 * 7161 * Return: 0 upon success; < 0 upon failure. 7162 */ 7163 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7164 struct utp_upiu_req *req_upiu, 7165 struct utp_upiu_req *rsp_upiu, 7166 enum upiu_request_transaction msgcode, 7167 u8 *desc_buff, int *buff_len, 7168 enum query_opcode desc_op) 7169 { 7170 int err; 7171 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7172 struct utp_task_req_desc treq = { }; 7173 enum utp_ocs ocs_value; 7174 u8 tm_f = req_upiu->header.tm_function; 7175 7176 switch (msgcode) { 7177 case UPIU_TRANSACTION_NOP_OUT: 7178 cmd_type = DEV_CMD_TYPE_NOP; 7179 fallthrough; 7180 case UPIU_TRANSACTION_QUERY_REQ: 7181 ufshcd_hold(hba); 7182 mutex_lock(&hba->dev_cmd.lock); 7183 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7184 desc_buff, buff_len, 7185 cmd_type, desc_op); 7186 mutex_unlock(&hba->dev_cmd.lock); 7187 ufshcd_release(hba); 7188 7189 break; 7190 case UPIU_TRANSACTION_TASK_REQ: 7191 treq.header.interrupt = 1; 7192 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7193 7194 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7195 7196 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7197 if (err == -ETIMEDOUT) 7198 break; 7199 7200 ocs_value = treq.header.ocs & MASK_OCS; 7201 if (ocs_value != OCS_SUCCESS) { 7202 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7203 ocs_value); 7204 break; 7205 } 7206 7207 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7208 7209 break; 7210 default: 7211 err = -EINVAL; 7212 7213 break; 7214 } 7215 7216 return err; 7217 } 7218 7219 /** 7220 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7221 * @hba: per adapter instance 7222 * @req_upiu: upiu request 7223 * @rsp_upiu: upiu reply 7224 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7225 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7226 * @sg_cnt: The number of sg lists actually used 7227 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7228 * @dir: DMA direction 7229 * 7230 * Return: zero on success, non-zero on failure. 7231 */ 7232 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7233 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7234 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7235 enum dma_data_direction dir) 7236 { 7237 DECLARE_COMPLETION_ONSTACK(wait); 7238 const u32 tag = hba->reserved_slot; 7239 struct ufshcd_lrb *lrbp; 7240 int err = 0; 7241 int result; 7242 u8 upiu_flags; 7243 u8 *ehs_data; 7244 u16 ehs_len; 7245 7246 /* Protects use of hba->reserved_slot. */ 7247 ufshcd_hold(hba); 7248 mutex_lock(&hba->dev_cmd.lock); 7249 down_read(&hba->clk_scaling_lock); 7250 7251 lrbp = &hba->lrb[tag]; 7252 lrbp->cmd = NULL; 7253 lrbp->task_tag = tag; 7254 lrbp->lun = UFS_UPIU_RPMB_WLUN; 7255 7256 lrbp->intr_cmd = true; 7257 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7258 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB; 7259 7260 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */ 7261 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7262 7263 /* 7264 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes 7265 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1, 7266 * HW controller takes EHS length from UTRD. 7267 */ 7268 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) 7269 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2); 7270 else 7271 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0); 7272 7273 /* update the task tag */ 7274 req_upiu->header.task_tag = tag; 7275 7276 /* copy the UPIU(contains CDB) request as it is */ 7277 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7278 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7279 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7280 7281 if (dir != DMA_NONE && sg_list) 7282 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7283 7284 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7285 7286 hba->dev_cmd.complete = &wait; 7287 7288 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7289 7290 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT); 7291 7292 if (!err) { 7293 /* Just copy the upiu response as it is */ 7294 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7295 /* Get the response UPIU result */ 7296 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7297 lrbp->ucd_rsp_ptr->header.status; 7298 7299 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7300 /* 7301 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7302 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7303 * Message is 02h 7304 */ 7305 if (ehs_len == 2 && rsp_ehs) { 7306 /* 7307 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7308 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7309 */ 7310 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7311 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7312 } 7313 } 7314 7315 up_read(&hba->clk_scaling_lock); 7316 mutex_unlock(&hba->dev_cmd.lock); 7317 ufshcd_release(hba); 7318 return err ? : result; 7319 } 7320 7321 /** 7322 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7323 * @cmd: SCSI command pointer 7324 * 7325 * Return: SUCCESS or FAILED. 7326 */ 7327 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7328 { 7329 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7330 struct Scsi_Host *host; 7331 struct ufs_hba *hba; 7332 struct ufs_hw_queue *hwq; 7333 struct ufshcd_lrb *lrbp; 7334 u32 pos, not_cleared_mask = 0; 7335 int err; 7336 u8 resp = 0xF, lun; 7337 7338 host = cmd->device->host; 7339 hba = shost_priv(host); 7340 7341 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7342 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7343 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7344 if (!err) 7345 err = resp; 7346 goto out; 7347 } 7348 7349 if (is_mcq_enabled(hba)) { 7350 for (pos = 0; pos < hba->nutrs; pos++) { 7351 lrbp = &hba->lrb[pos]; 7352 if (ufshcd_cmd_inflight(lrbp->cmd) && 7353 lrbp->lun == lun) { 7354 ufshcd_clear_cmd(hba, pos); 7355 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7356 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7357 } 7358 } 7359 err = 0; 7360 goto out; 7361 } 7362 7363 /* clear the commands that were pending for corresponding LUN */ 7364 spin_lock_irqsave(&hba->outstanding_lock, flags); 7365 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7366 if (hba->lrb[pos].lun == lun) 7367 __set_bit(pos, &pending_reqs); 7368 hba->outstanding_reqs &= ~pending_reqs; 7369 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7370 7371 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7372 if (ufshcd_clear_cmd(hba, pos) < 0) { 7373 spin_lock_irqsave(&hba->outstanding_lock, flags); 7374 not_cleared = 1U << pos & 7375 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7376 hba->outstanding_reqs |= not_cleared; 7377 not_cleared_mask |= not_cleared; 7378 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7379 7380 dev_err(hba->dev, "%s: failed to clear request %d\n", 7381 __func__, pos); 7382 } 7383 } 7384 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7385 7386 out: 7387 hba->req_abort_count = 0; 7388 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7389 if (!err) { 7390 err = SUCCESS; 7391 } else { 7392 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7393 err = FAILED; 7394 } 7395 return err; 7396 } 7397 7398 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7399 { 7400 struct ufshcd_lrb *lrbp; 7401 int tag; 7402 7403 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7404 lrbp = &hba->lrb[tag]; 7405 lrbp->req_abort_skip = true; 7406 } 7407 } 7408 7409 /** 7410 * ufshcd_try_to_abort_task - abort a specific task 7411 * @hba: Pointer to adapter instance 7412 * @tag: Task tag/index to be aborted 7413 * 7414 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7415 * command, and in host controller by clearing the door-bell register. There can 7416 * be race between controller sending the command to the device while abort is 7417 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7418 * really issued and then try to abort it. 7419 * 7420 * Return: zero on success, non-zero on failure. 7421 */ 7422 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7423 { 7424 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7425 int err = 0; 7426 int poll_cnt; 7427 u8 resp = 0xF; 7428 u32 reg; 7429 7430 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7431 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7432 UFS_QUERY_TASK, &resp); 7433 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7434 /* cmd pending in the device */ 7435 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7436 __func__, tag); 7437 break; 7438 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7439 /* 7440 * cmd not pending in the device, check if it is 7441 * in transition. 7442 */ 7443 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7444 __func__, tag); 7445 if (is_mcq_enabled(hba)) { 7446 /* MCQ mode */ 7447 if (ufshcd_cmd_inflight(lrbp->cmd)) { 7448 /* sleep for max. 200us same delay as in SDB mode */ 7449 usleep_range(100, 200); 7450 continue; 7451 } 7452 /* command completed already */ 7453 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", 7454 __func__, tag); 7455 goto out; 7456 } 7457 7458 /* Single Doorbell Mode */ 7459 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7460 if (reg & (1 << tag)) { 7461 /* sleep for max. 200us to stabilize */ 7462 usleep_range(100, 200); 7463 continue; 7464 } 7465 /* command completed already */ 7466 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7467 __func__, tag); 7468 goto out; 7469 } else { 7470 dev_err(hba->dev, 7471 "%s: no response from device. tag = %d, err %d\n", 7472 __func__, tag, err); 7473 if (!err) 7474 err = resp; /* service response error */ 7475 goto out; 7476 } 7477 } 7478 7479 if (!poll_cnt) { 7480 err = -EBUSY; 7481 goto out; 7482 } 7483 7484 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7485 UFS_ABORT_TASK, &resp); 7486 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7487 if (!err) { 7488 err = resp; /* service response error */ 7489 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7490 __func__, tag, err); 7491 } 7492 goto out; 7493 } 7494 7495 err = ufshcd_clear_cmd(hba, tag); 7496 if (err) 7497 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7498 __func__, tag, err); 7499 7500 out: 7501 return err; 7502 } 7503 7504 /** 7505 * ufshcd_abort - scsi host template eh_abort_handler callback 7506 * @cmd: SCSI command pointer 7507 * 7508 * Return: SUCCESS or FAILED. 7509 */ 7510 static int ufshcd_abort(struct scsi_cmnd *cmd) 7511 { 7512 struct Scsi_Host *host = cmd->device->host; 7513 struct ufs_hba *hba = shost_priv(host); 7514 int tag = scsi_cmd_to_rq(cmd)->tag; 7515 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7516 unsigned long flags; 7517 int err = FAILED; 7518 bool outstanding; 7519 u32 reg; 7520 7521 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); 7522 7523 ufshcd_hold(hba); 7524 7525 if (!is_mcq_enabled(hba)) { 7526 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7527 if (!test_bit(tag, &hba->outstanding_reqs)) { 7528 /* If command is already aborted/completed, return FAILED. */ 7529 dev_err(hba->dev, 7530 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7531 __func__, tag, hba->outstanding_reqs, reg); 7532 goto release; 7533 } 7534 } 7535 7536 /* Print Transfer Request of aborted task */ 7537 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7538 7539 /* 7540 * Print detailed info about aborted request. 7541 * As more than one request might get aborted at the same time, 7542 * print full information only for the first aborted request in order 7543 * to reduce repeated printouts. For other aborted requests only print 7544 * basic details. 7545 */ 7546 scsi_print_command(cmd); 7547 if (!hba->req_abort_count) { 7548 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7549 ufshcd_print_evt_hist(hba); 7550 ufshcd_print_host_state(hba); 7551 ufshcd_print_pwr_info(hba); 7552 ufshcd_print_tr(hba, tag, true); 7553 } else { 7554 ufshcd_print_tr(hba, tag, false); 7555 } 7556 hba->req_abort_count++; 7557 7558 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) { 7559 /* only execute this code in single doorbell mode */ 7560 dev_err(hba->dev, 7561 "%s: cmd was completed, but without a notifying intr, tag = %d", 7562 __func__, tag); 7563 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7564 goto release; 7565 } 7566 7567 /* 7568 * Task abort to the device W-LUN is illegal. When this command 7569 * will fail, due to spec violation, scsi err handling next step 7570 * will be to send LU reset which, again, is a spec violation. 7571 * To avoid these unnecessary/illegal steps, first we clean up 7572 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7573 * then queue the eh_work and bail. 7574 */ 7575 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7576 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7577 7578 spin_lock_irqsave(host->host_lock, flags); 7579 hba->force_reset = true; 7580 ufshcd_schedule_eh_work(hba); 7581 spin_unlock_irqrestore(host->host_lock, flags); 7582 goto release; 7583 } 7584 7585 if (is_mcq_enabled(hba)) { 7586 /* MCQ mode. Branch off to handle abort for mcq mode */ 7587 err = ufshcd_mcq_abort(cmd); 7588 goto release; 7589 } 7590 7591 /* Skip task abort in case previous aborts failed and report failure */ 7592 if (lrbp->req_abort_skip) { 7593 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7594 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7595 goto release; 7596 } 7597 7598 err = ufshcd_try_to_abort_task(hba, tag); 7599 if (err) { 7600 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7601 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7602 err = FAILED; 7603 goto release; 7604 } 7605 7606 /* 7607 * Clear the corresponding bit from outstanding_reqs since the command 7608 * has been aborted successfully. 7609 */ 7610 spin_lock_irqsave(&hba->outstanding_lock, flags); 7611 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7612 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7613 7614 if (outstanding) 7615 ufshcd_release_scsi_cmd(hba, lrbp); 7616 7617 err = SUCCESS; 7618 7619 release: 7620 /* Matches the ufshcd_hold() call at the start of this function. */ 7621 ufshcd_release(hba); 7622 return err; 7623 } 7624 7625 /** 7626 * ufshcd_host_reset_and_restore - reset and restore host controller 7627 * @hba: per-adapter instance 7628 * 7629 * Note that host controller reset may issue DME_RESET to 7630 * local and remote (device) Uni-Pro stack and the attributes 7631 * are reset to default state. 7632 * 7633 * Return: zero on success, non-zero on failure. 7634 */ 7635 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7636 { 7637 int err; 7638 7639 /* 7640 * Stop the host controller and complete the requests 7641 * cleared by h/w 7642 */ 7643 ufshcd_hba_stop(hba); 7644 hba->silence_err_logs = true; 7645 ufshcd_complete_requests(hba, true); 7646 hba->silence_err_logs = false; 7647 7648 /* scale up clocks to max frequency before full reinitialization */ 7649 ufshcd_scale_clks(hba, true); 7650 7651 err = ufshcd_hba_enable(hba); 7652 7653 /* Establish the link again and restore the device */ 7654 if (!err) 7655 err = ufshcd_probe_hba(hba, false); 7656 7657 if (err) 7658 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7659 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7660 return err; 7661 } 7662 7663 /** 7664 * ufshcd_reset_and_restore - reset and re-initialize host/device 7665 * @hba: per-adapter instance 7666 * 7667 * Reset and recover device, host and re-establish link. This 7668 * is helpful to recover the communication in fatal error conditions. 7669 * 7670 * Return: zero on success, non-zero on failure. 7671 */ 7672 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7673 { 7674 u32 saved_err = 0; 7675 u32 saved_uic_err = 0; 7676 int err = 0; 7677 unsigned long flags; 7678 int retries = MAX_HOST_RESET_RETRIES; 7679 7680 spin_lock_irqsave(hba->host->host_lock, flags); 7681 do { 7682 /* 7683 * This is a fresh start, cache and clear saved error first, 7684 * in case new error generated during reset and restore. 7685 */ 7686 saved_err |= hba->saved_err; 7687 saved_uic_err |= hba->saved_uic_err; 7688 hba->saved_err = 0; 7689 hba->saved_uic_err = 0; 7690 hba->force_reset = false; 7691 hba->ufshcd_state = UFSHCD_STATE_RESET; 7692 spin_unlock_irqrestore(hba->host->host_lock, flags); 7693 7694 /* Reset the attached device */ 7695 ufshcd_device_reset(hba); 7696 7697 err = ufshcd_host_reset_and_restore(hba); 7698 7699 spin_lock_irqsave(hba->host->host_lock, flags); 7700 if (err) 7701 continue; 7702 /* Do not exit unless operational or dead */ 7703 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7704 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7705 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7706 err = -EAGAIN; 7707 } while (err && --retries); 7708 7709 /* 7710 * Inform scsi mid-layer that we did reset and allow to handle 7711 * Unit Attention properly. 7712 */ 7713 scsi_report_bus_reset(hba->host, 0); 7714 if (err) { 7715 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7716 hba->saved_err |= saved_err; 7717 hba->saved_uic_err |= saved_uic_err; 7718 } 7719 spin_unlock_irqrestore(hba->host->host_lock, flags); 7720 7721 return err; 7722 } 7723 7724 /** 7725 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7726 * @cmd: SCSI command pointer 7727 * 7728 * Return: SUCCESS or FAILED. 7729 */ 7730 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7731 { 7732 int err = SUCCESS; 7733 unsigned long flags; 7734 struct ufs_hba *hba; 7735 7736 hba = shost_priv(cmd->device->host); 7737 7738 spin_lock_irqsave(hba->host->host_lock, flags); 7739 hba->force_reset = true; 7740 ufshcd_schedule_eh_work(hba); 7741 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7742 spin_unlock_irqrestore(hba->host->host_lock, flags); 7743 7744 flush_work(&hba->eh_work); 7745 7746 spin_lock_irqsave(hba->host->host_lock, flags); 7747 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7748 err = FAILED; 7749 spin_unlock_irqrestore(hba->host->host_lock, flags); 7750 7751 return err; 7752 } 7753 7754 /** 7755 * ufshcd_get_max_icc_level - calculate the ICC level 7756 * @sup_curr_uA: max. current supported by the regulator 7757 * @start_scan: row at the desc table to start scan from 7758 * @buff: power descriptor buffer 7759 * 7760 * Return: calculated max ICC level for specific regulator. 7761 */ 7762 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7763 const char *buff) 7764 { 7765 int i; 7766 int curr_uA; 7767 u16 data; 7768 u16 unit; 7769 7770 for (i = start_scan; i >= 0; i--) { 7771 data = get_unaligned_be16(&buff[2 * i]); 7772 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7773 ATTR_ICC_LVL_UNIT_OFFSET; 7774 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7775 switch (unit) { 7776 case UFSHCD_NANO_AMP: 7777 curr_uA = curr_uA / 1000; 7778 break; 7779 case UFSHCD_MILI_AMP: 7780 curr_uA = curr_uA * 1000; 7781 break; 7782 case UFSHCD_AMP: 7783 curr_uA = curr_uA * 1000 * 1000; 7784 break; 7785 case UFSHCD_MICRO_AMP: 7786 default: 7787 break; 7788 } 7789 if (sup_curr_uA >= curr_uA) 7790 break; 7791 } 7792 if (i < 0) { 7793 i = 0; 7794 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7795 } 7796 7797 return (u32)i; 7798 } 7799 7800 /** 7801 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7802 * In case regulators are not initialized we'll return 0 7803 * @hba: per-adapter instance 7804 * @desc_buf: power descriptor buffer to extract ICC levels from. 7805 * 7806 * Return: calculated ICC level. 7807 */ 7808 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7809 const u8 *desc_buf) 7810 { 7811 u32 icc_level = 0; 7812 7813 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7814 !hba->vreg_info.vccq2) { 7815 /* 7816 * Using dev_dbg to avoid messages during runtime PM to avoid 7817 * never-ending cycles of messages written back to storage by 7818 * user space causing runtime resume, causing more messages and 7819 * so on. 7820 */ 7821 dev_dbg(hba->dev, 7822 "%s: Regulator capability was not set, actvIccLevel=%d", 7823 __func__, icc_level); 7824 goto out; 7825 } 7826 7827 if (hba->vreg_info.vcc->max_uA) 7828 icc_level = ufshcd_get_max_icc_level( 7829 hba->vreg_info.vcc->max_uA, 7830 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7831 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7832 7833 if (hba->vreg_info.vccq->max_uA) 7834 icc_level = ufshcd_get_max_icc_level( 7835 hba->vreg_info.vccq->max_uA, 7836 icc_level, 7837 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7838 7839 if (hba->vreg_info.vccq2->max_uA) 7840 icc_level = ufshcd_get_max_icc_level( 7841 hba->vreg_info.vccq2->max_uA, 7842 icc_level, 7843 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7844 out: 7845 return icc_level; 7846 } 7847 7848 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7849 { 7850 int ret; 7851 u8 *desc_buf; 7852 u32 icc_level; 7853 7854 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7855 if (!desc_buf) 7856 return; 7857 7858 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7859 desc_buf, QUERY_DESC_MAX_SIZE); 7860 if (ret) { 7861 dev_err(hba->dev, 7862 "%s: Failed reading power descriptor ret = %d", 7863 __func__, ret); 7864 goto out; 7865 } 7866 7867 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7868 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7869 7870 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7871 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7872 7873 if (ret) 7874 dev_err(hba->dev, 7875 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7876 __func__, icc_level, ret); 7877 7878 out: 7879 kfree(desc_buf); 7880 } 7881 7882 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7883 { 7884 scsi_autopm_get_device(sdev); 7885 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7886 if (sdev->rpm_autosuspend) 7887 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7888 RPM_AUTOSUSPEND_DELAY_MS); 7889 scsi_autopm_put_device(sdev); 7890 } 7891 7892 /** 7893 * ufshcd_scsi_add_wlus - Adds required W-LUs 7894 * @hba: per-adapter instance 7895 * 7896 * UFS device specification requires the UFS devices to support 4 well known 7897 * logical units: 7898 * "REPORT_LUNS" (address: 01h) 7899 * "UFS Device" (address: 50h) 7900 * "RPMB" (address: 44h) 7901 * "BOOT" (address: 30h) 7902 * UFS device's power management needs to be controlled by "POWER CONDITION" 7903 * field of SSU (START STOP UNIT) command. But this "power condition" field 7904 * will take effect only when its sent to "UFS device" well known logical unit 7905 * hence we require the scsi_device instance to represent this logical unit in 7906 * order for the UFS host driver to send the SSU command for power management. 7907 * 7908 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7909 * Block) LU so user space process can control this LU. User space may also 7910 * want to have access to BOOT LU. 7911 * 7912 * This function adds scsi device instances for each of all well known LUs 7913 * (except "REPORT LUNS" LU). 7914 * 7915 * Return: zero on success (all required W-LUs are added successfully), 7916 * non-zero error value on failure (if failed to add any of the required W-LU). 7917 */ 7918 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7919 { 7920 int ret = 0; 7921 struct scsi_device *sdev_boot, *sdev_rpmb; 7922 7923 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7924 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7925 if (IS_ERR(hba->ufs_device_wlun)) { 7926 ret = PTR_ERR(hba->ufs_device_wlun); 7927 hba->ufs_device_wlun = NULL; 7928 goto out; 7929 } 7930 scsi_device_put(hba->ufs_device_wlun); 7931 7932 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7933 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7934 if (IS_ERR(sdev_rpmb)) { 7935 ret = PTR_ERR(sdev_rpmb); 7936 goto remove_ufs_device_wlun; 7937 } 7938 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7939 scsi_device_put(sdev_rpmb); 7940 7941 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7942 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7943 if (IS_ERR(sdev_boot)) { 7944 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7945 } else { 7946 ufshcd_blk_pm_runtime_init(sdev_boot); 7947 scsi_device_put(sdev_boot); 7948 } 7949 goto out; 7950 7951 remove_ufs_device_wlun: 7952 scsi_remove_device(hba->ufs_device_wlun); 7953 out: 7954 return ret; 7955 } 7956 7957 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 7958 { 7959 struct ufs_dev_info *dev_info = &hba->dev_info; 7960 u8 lun; 7961 u32 d_lu_wb_buf_alloc; 7962 u32 ext_ufs_feature; 7963 7964 if (!ufshcd_is_wb_allowed(hba)) 7965 return; 7966 7967 /* 7968 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 7969 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 7970 * enabled 7971 */ 7972 if (!(dev_info->wspecversion >= 0x310 || 7973 dev_info->wspecversion == 0x220 || 7974 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 7975 goto wb_disabled; 7976 7977 ext_ufs_feature = get_unaligned_be32(desc_buf + 7978 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 7979 7980 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 7981 goto wb_disabled; 7982 7983 /* 7984 * WB may be supported but not configured while provisioning. The spec 7985 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 7986 * buffer configured. 7987 */ 7988 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 7989 7990 dev_info->b_presrv_uspc_en = 7991 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 7992 7993 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 7994 if (!get_unaligned_be32(desc_buf + 7995 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 7996 goto wb_disabled; 7997 } else { 7998 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 7999 d_lu_wb_buf_alloc = 0; 8000 ufshcd_read_unit_desc_param(hba, 8001 lun, 8002 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8003 (u8 *)&d_lu_wb_buf_alloc, 8004 sizeof(d_lu_wb_buf_alloc)); 8005 if (d_lu_wb_buf_alloc) { 8006 dev_info->wb_dedicated_lu = lun; 8007 break; 8008 } 8009 } 8010 8011 if (!d_lu_wb_buf_alloc) 8012 goto wb_disabled; 8013 } 8014 8015 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8016 goto wb_disabled; 8017 8018 return; 8019 8020 wb_disabled: 8021 hba->caps &= ~UFSHCD_CAP_WB_EN; 8022 } 8023 8024 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8025 { 8026 struct ufs_dev_info *dev_info = &hba->dev_info; 8027 u32 ext_ufs_feature; 8028 u8 mask = 0; 8029 8030 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8031 return; 8032 8033 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8034 8035 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8036 mask |= MASK_EE_TOO_LOW_TEMP; 8037 8038 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8039 mask |= MASK_EE_TOO_HIGH_TEMP; 8040 8041 if (mask) { 8042 ufshcd_enable_ee(hba, mask); 8043 ufs_hwmon_probe(hba, mask); 8044 } 8045 } 8046 8047 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8048 { 8049 struct ufs_dev_info *dev_info = &hba->dev_info; 8050 u32 ext_ufs_feature; 8051 u32 ext_iid_en = 0; 8052 int err; 8053 8054 /* Only UFS-4.0 and above may support EXT_IID */ 8055 if (dev_info->wspecversion < 0x400) 8056 goto out; 8057 8058 ext_ufs_feature = get_unaligned_be32(desc_buf + 8059 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8060 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8061 goto out; 8062 8063 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8064 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8065 if (err) 8066 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8067 8068 out: 8069 dev_info->b_ext_iid_en = ext_iid_en; 8070 } 8071 8072 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8073 const struct ufs_dev_quirk *fixups) 8074 { 8075 const struct ufs_dev_quirk *f; 8076 struct ufs_dev_info *dev_info = &hba->dev_info; 8077 8078 if (!fixups) 8079 return; 8080 8081 for (f = fixups; f->quirk; f++) { 8082 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8083 f->wmanufacturerid == UFS_ANY_VENDOR) && 8084 ((dev_info->model && 8085 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8086 !strcmp(f->model, UFS_ANY_MODEL))) 8087 hba->dev_quirks |= f->quirk; 8088 } 8089 } 8090 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8091 8092 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8093 { 8094 /* fix by general quirk table */ 8095 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8096 8097 /* allow vendors to fix quirks */ 8098 ufshcd_vops_fixup_dev_quirks(hba); 8099 } 8100 8101 static int ufs_get_device_desc(struct ufs_hba *hba) 8102 { 8103 int err; 8104 u8 model_index; 8105 u8 *desc_buf; 8106 struct ufs_dev_info *dev_info = &hba->dev_info; 8107 8108 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8109 if (!desc_buf) { 8110 err = -ENOMEM; 8111 goto out; 8112 } 8113 8114 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8115 QUERY_DESC_MAX_SIZE); 8116 if (err) { 8117 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8118 __func__, err); 8119 goto out; 8120 } 8121 8122 /* 8123 * getting vendor (manufacturerID) and Bank Index in big endian 8124 * format 8125 */ 8126 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8127 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8128 8129 /* getting Specification Version in big endian format */ 8130 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8131 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8132 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8133 8134 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8135 8136 err = ufshcd_read_string_desc(hba, model_index, 8137 &dev_info->model, SD_ASCII_STD); 8138 if (err < 0) { 8139 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8140 __func__, err); 8141 goto out; 8142 } 8143 8144 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8145 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8146 8147 ufs_fixup_device_setup(hba); 8148 8149 ufshcd_wb_probe(hba, desc_buf); 8150 8151 ufshcd_temp_notif_probe(hba, desc_buf); 8152 8153 if (hba->ext_iid_sup) 8154 ufshcd_ext_iid_probe(hba, desc_buf); 8155 8156 /* 8157 * ufshcd_read_string_desc returns size of the string 8158 * reset the error value 8159 */ 8160 err = 0; 8161 8162 out: 8163 kfree(desc_buf); 8164 return err; 8165 } 8166 8167 static void ufs_put_device_desc(struct ufs_hba *hba) 8168 { 8169 struct ufs_dev_info *dev_info = &hba->dev_info; 8170 8171 kfree(dev_info->model); 8172 dev_info->model = NULL; 8173 } 8174 8175 /** 8176 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 8177 * @hba: per-adapter instance 8178 * 8179 * PA_TActivate parameter can be tuned manually if UniPro version is less than 8180 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 8181 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 8182 * the hibern8 exit latency. 8183 * 8184 * Return: zero on success, non-zero error value on failure. 8185 */ 8186 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 8187 { 8188 int ret = 0; 8189 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 8190 8191 ret = ufshcd_dme_peer_get(hba, 8192 UIC_ARG_MIB_SEL( 8193 RX_MIN_ACTIVATETIME_CAPABILITY, 8194 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8195 &peer_rx_min_activatetime); 8196 if (ret) 8197 goto out; 8198 8199 /* make sure proper unit conversion is applied */ 8200 tuned_pa_tactivate = 8201 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 8202 / PA_TACTIVATE_TIME_UNIT_US); 8203 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8204 tuned_pa_tactivate); 8205 8206 out: 8207 return ret; 8208 } 8209 8210 /** 8211 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 8212 * @hba: per-adapter instance 8213 * 8214 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 8215 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 8216 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 8217 * This optimal value can help reduce the hibern8 exit latency. 8218 * 8219 * Return: zero on success, non-zero error value on failure. 8220 */ 8221 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 8222 { 8223 int ret = 0; 8224 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 8225 u32 max_hibern8_time, tuned_pa_hibern8time; 8226 8227 ret = ufshcd_dme_get(hba, 8228 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 8229 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 8230 &local_tx_hibern8_time_cap); 8231 if (ret) 8232 goto out; 8233 8234 ret = ufshcd_dme_peer_get(hba, 8235 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 8236 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8237 &peer_rx_hibern8_time_cap); 8238 if (ret) 8239 goto out; 8240 8241 max_hibern8_time = max(local_tx_hibern8_time_cap, 8242 peer_rx_hibern8_time_cap); 8243 /* make sure proper unit conversion is applied */ 8244 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 8245 / PA_HIBERN8_TIME_UNIT_US); 8246 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 8247 tuned_pa_hibern8time); 8248 out: 8249 return ret; 8250 } 8251 8252 /** 8253 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8254 * less than device PA_TACTIVATE time. 8255 * @hba: per-adapter instance 8256 * 8257 * Some UFS devices require host PA_TACTIVATE to be lower than device 8258 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8259 * for such devices. 8260 * 8261 * Return: zero on success, non-zero error value on failure. 8262 */ 8263 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8264 { 8265 int ret = 0; 8266 u32 granularity, peer_granularity; 8267 u32 pa_tactivate, peer_pa_tactivate; 8268 u32 pa_tactivate_us, peer_pa_tactivate_us; 8269 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8270 8271 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8272 &granularity); 8273 if (ret) 8274 goto out; 8275 8276 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8277 &peer_granularity); 8278 if (ret) 8279 goto out; 8280 8281 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8282 (granularity > PA_GRANULARITY_MAX_VAL)) { 8283 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8284 __func__, granularity); 8285 return -EINVAL; 8286 } 8287 8288 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8289 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8290 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8291 __func__, peer_granularity); 8292 return -EINVAL; 8293 } 8294 8295 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8296 if (ret) 8297 goto out; 8298 8299 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8300 &peer_pa_tactivate); 8301 if (ret) 8302 goto out; 8303 8304 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8305 peer_pa_tactivate_us = peer_pa_tactivate * 8306 gran_to_us_table[peer_granularity - 1]; 8307 8308 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8309 u32 new_peer_pa_tactivate; 8310 8311 new_peer_pa_tactivate = pa_tactivate_us / 8312 gran_to_us_table[peer_granularity - 1]; 8313 new_peer_pa_tactivate++; 8314 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8315 new_peer_pa_tactivate); 8316 } 8317 8318 out: 8319 return ret; 8320 } 8321 8322 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8323 { 8324 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 8325 ufshcd_tune_pa_tactivate(hba); 8326 ufshcd_tune_pa_hibern8time(hba); 8327 } 8328 8329 ufshcd_vops_apply_dev_quirks(hba); 8330 8331 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8332 /* set 1ms timeout for PA_TACTIVATE */ 8333 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8334 8335 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8336 ufshcd_quirk_tune_host_pa_tactivate(hba); 8337 } 8338 8339 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8340 { 8341 hba->ufs_stats.hibern8_exit_cnt = 0; 8342 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8343 hba->req_abort_count = 0; 8344 } 8345 8346 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8347 { 8348 int err; 8349 u8 *desc_buf; 8350 8351 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8352 if (!desc_buf) { 8353 err = -ENOMEM; 8354 goto out; 8355 } 8356 8357 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8358 desc_buf, QUERY_DESC_MAX_SIZE); 8359 if (err) { 8360 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8361 __func__, err); 8362 goto out; 8363 } 8364 8365 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8366 hba->dev_info.max_lu_supported = 32; 8367 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8368 hba->dev_info.max_lu_supported = 8; 8369 8370 out: 8371 kfree(desc_buf); 8372 return err; 8373 } 8374 8375 struct ufs_ref_clk { 8376 unsigned long freq_hz; 8377 enum ufs_ref_clk_freq val; 8378 }; 8379 8380 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8381 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8382 {26000000, REF_CLK_FREQ_26_MHZ}, 8383 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8384 {52000000, REF_CLK_FREQ_52_MHZ}, 8385 {0, REF_CLK_FREQ_INVAL}, 8386 }; 8387 8388 static enum ufs_ref_clk_freq 8389 ufs_get_bref_clk_from_hz(unsigned long freq) 8390 { 8391 int i; 8392 8393 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8394 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8395 return ufs_ref_clk_freqs[i].val; 8396 8397 return REF_CLK_FREQ_INVAL; 8398 } 8399 8400 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8401 { 8402 unsigned long freq; 8403 8404 freq = clk_get_rate(refclk); 8405 8406 hba->dev_ref_clk_freq = 8407 ufs_get_bref_clk_from_hz(freq); 8408 8409 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8410 dev_err(hba->dev, 8411 "invalid ref_clk setting = %ld\n", freq); 8412 } 8413 8414 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8415 { 8416 int err; 8417 u32 ref_clk; 8418 u32 freq = hba->dev_ref_clk_freq; 8419 8420 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8421 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8422 8423 if (err) { 8424 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8425 err); 8426 goto out; 8427 } 8428 8429 if (ref_clk == freq) 8430 goto out; /* nothing to update */ 8431 8432 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8433 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8434 8435 if (err) { 8436 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8437 ufs_ref_clk_freqs[freq].freq_hz); 8438 goto out; 8439 } 8440 8441 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8442 ufs_ref_clk_freqs[freq].freq_hz); 8443 8444 out: 8445 return err; 8446 } 8447 8448 static int ufshcd_device_params_init(struct ufs_hba *hba) 8449 { 8450 bool flag; 8451 int ret; 8452 8453 /* Init UFS geometry descriptor related parameters */ 8454 ret = ufshcd_device_geo_params_init(hba); 8455 if (ret) 8456 goto out; 8457 8458 /* Check and apply UFS device quirks */ 8459 ret = ufs_get_device_desc(hba); 8460 if (ret) { 8461 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8462 __func__, ret); 8463 goto out; 8464 } 8465 8466 ufshcd_get_ref_clk_gating_wait(hba); 8467 8468 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8469 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8470 hba->dev_info.f_power_on_wp_en = flag; 8471 8472 /* Probe maximum power mode co-supported by both UFS host and device */ 8473 if (ufshcd_get_max_pwr_mode(hba)) 8474 dev_err(hba->dev, 8475 "%s: Failed getting max supported power mode\n", 8476 __func__); 8477 out: 8478 return ret; 8479 } 8480 8481 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8482 { 8483 int err; 8484 struct ufs_query_req *request = NULL; 8485 struct ufs_query_res *response = NULL; 8486 struct ufs_dev_info *dev_info = &hba->dev_info; 8487 struct utp_upiu_query_v4_0 *upiu_data; 8488 8489 if (dev_info->wspecversion < 0x400) 8490 return; 8491 8492 ufshcd_hold(hba); 8493 8494 mutex_lock(&hba->dev_cmd.lock); 8495 8496 ufshcd_init_query(hba, &request, &response, 8497 UPIU_QUERY_OPCODE_WRITE_ATTR, 8498 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8499 8500 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8501 8502 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8503 8504 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8505 8506 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8507 8508 if (err) 8509 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8510 __func__, err); 8511 8512 mutex_unlock(&hba->dev_cmd.lock); 8513 ufshcd_release(hba); 8514 } 8515 8516 /** 8517 * ufshcd_add_lus - probe and add UFS logical units 8518 * @hba: per-adapter instance 8519 * 8520 * Return: 0 upon success; < 0 upon failure. 8521 */ 8522 static int ufshcd_add_lus(struct ufs_hba *hba) 8523 { 8524 int ret; 8525 8526 /* Add required well known logical units to scsi mid layer */ 8527 ret = ufshcd_scsi_add_wlus(hba); 8528 if (ret) 8529 goto out; 8530 8531 /* Initialize devfreq after UFS device is detected */ 8532 if (ufshcd_is_clkscaling_supported(hba)) { 8533 memcpy(&hba->clk_scaling.saved_pwr_info, 8534 &hba->pwr_info, 8535 sizeof(struct ufs_pa_layer_attr)); 8536 hba->clk_scaling.is_allowed = true; 8537 8538 ret = ufshcd_devfreq_init(hba); 8539 if (ret) 8540 goto out; 8541 8542 hba->clk_scaling.is_enabled = true; 8543 ufshcd_init_clk_scaling_sysfs(hba); 8544 } 8545 8546 ufs_bsg_probe(hba); 8547 scsi_scan_host(hba->host); 8548 8549 out: 8550 return ret; 8551 } 8552 8553 /* SDB - Single Doorbell */ 8554 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8555 { 8556 size_t ucdl_size, utrdl_size; 8557 8558 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8559 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8560 hba->ucdl_dma_addr); 8561 8562 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8563 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8564 hba->utrdl_dma_addr); 8565 8566 devm_kfree(hba->dev, hba->lrb); 8567 } 8568 8569 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8570 { 8571 int ret; 8572 int old_nutrs = hba->nutrs; 8573 8574 ret = ufshcd_mcq_decide_queue_depth(hba); 8575 if (ret < 0) 8576 return ret; 8577 8578 hba->nutrs = ret; 8579 ret = ufshcd_mcq_init(hba); 8580 if (ret) 8581 goto err; 8582 8583 /* 8584 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8585 * Number of supported tags in MCQ mode may be larger than SDB mode. 8586 */ 8587 if (hba->nutrs != old_nutrs) { 8588 ufshcd_release_sdb_queue(hba, old_nutrs); 8589 ret = ufshcd_memory_alloc(hba); 8590 if (ret) 8591 goto err; 8592 ufshcd_host_memory_configure(hba); 8593 } 8594 8595 ret = ufshcd_mcq_memory_alloc(hba); 8596 if (ret) 8597 goto err; 8598 8599 return 0; 8600 err: 8601 hba->nutrs = old_nutrs; 8602 return ret; 8603 } 8604 8605 static void ufshcd_config_mcq(struct ufs_hba *hba) 8606 { 8607 int ret; 8608 u32 intrs; 8609 8610 ret = ufshcd_mcq_vops_config_esi(hba); 8611 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8612 8613 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8614 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8615 intrs &= ~MCQ_CQ_EVENT_STATUS; 8616 ufshcd_enable_intr(hba, intrs); 8617 ufshcd_mcq_make_queues_operational(hba); 8618 ufshcd_mcq_config_mac(hba, hba->nutrs); 8619 8620 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8621 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8622 8623 /* Select MCQ mode */ 8624 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1, 8625 REG_UFS_MEM_CFG); 8626 hba->mcq_enabled = true; 8627 8628 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8629 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8630 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8631 hba->nutrs); 8632 } 8633 8634 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8635 { 8636 int ret; 8637 struct Scsi_Host *host = hba->host; 8638 8639 hba->ufshcd_state = UFSHCD_STATE_RESET; 8640 8641 ret = ufshcd_link_startup(hba); 8642 if (ret) 8643 return ret; 8644 8645 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8646 return ret; 8647 8648 /* Debug counters initialization */ 8649 ufshcd_clear_dbg_ufs_stats(hba); 8650 8651 /* UniPro link is active now */ 8652 ufshcd_set_link_active(hba); 8653 8654 /* Reconfigure MCQ upon reset */ 8655 if (is_mcq_enabled(hba) && !init_dev_params) 8656 ufshcd_config_mcq(hba); 8657 8658 /* Verify device initialization by sending NOP OUT UPIU */ 8659 ret = ufshcd_verify_dev_init(hba); 8660 if (ret) 8661 return ret; 8662 8663 /* Initiate UFS initialization, and waiting until completion */ 8664 ret = ufshcd_complete_dev_init(hba); 8665 if (ret) 8666 return ret; 8667 8668 /* 8669 * Initialize UFS device parameters used by driver, these 8670 * parameters are associated with UFS descriptors. 8671 */ 8672 if (init_dev_params) { 8673 ret = ufshcd_device_params_init(hba); 8674 if (ret) 8675 return ret; 8676 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8677 ret = ufshcd_alloc_mcq(hba); 8678 if (!ret) { 8679 ufshcd_config_mcq(hba); 8680 } else { 8681 /* Continue with SDB mode */ 8682 use_mcq_mode = false; 8683 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8684 ret); 8685 } 8686 ret = scsi_add_host(host, hba->dev); 8687 if (ret) { 8688 dev_err(hba->dev, "scsi_add_host failed\n"); 8689 return ret; 8690 } 8691 hba->scsi_host_added = true; 8692 } else if (is_mcq_supported(hba)) { 8693 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ 8694 ufshcd_config_mcq(hba); 8695 } 8696 } 8697 8698 ufshcd_tune_unipro_params(hba); 8699 8700 /* UFS device is also active now */ 8701 ufshcd_set_ufs_dev_active(hba); 8702 ufshcd_force_reset_auto_bkops(hba); 8703 8704 ufshcd_set_timestamp_attr(hba); 8705 8706 /* Gear up to HS gear if supported */ 8707 if (hba->max_pwr_info.is_valid) { 8708 /* 8709 * Set the right value to bRefClkFreq before attempting to 8710 * switch to HS gears. 8711 */ 8712 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8713 ufshcd_set_dev_ref_clk(hba); 8714 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8715 if (ret) { 8716 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8717 __func__, ret); 8718 return ret; 8719 } 8720 } 8721 8722 return 0; 8723 } 8724 8725 /** 8726 * ufshcd_probe_hba - probe hba to detect device and initialize it 8727 * @hba: per-adapter instance 8728 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8729 * 8730 * Execute link-startup and verify device initialization 8731 * 8732 * Return: 0 upon success; < 0 upon failure. 8733 */ 8734 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8735 { 8736 ktime_t start = ktime_get(); 8737 unsigned long flags; 8738 int ret; 8739 8740 ret = ufshcd_device_init(hba, init_dev_params); 8741 if (ret) 8742 goto out; 8743 8744 if (!hba->pm_op_in_progress && 8745 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8746 /* Reset the device and controller before doing reinit */ 8747 ufshcd_device_reset(hba); 8748 ufs_put_device_desc(hba); 8749 ufshcd_hba_stop(hba); 8750 ufshcd_vops_reinit_notify(hba); 8751 ret = ufshcd_hba_enable(hba); 8752 if (ret) { 8753 dev_err(hba->dev, "Host controller enable failed\n"); 8754 ufshcd_print_evt_hist(hba); 8755 ufshcd_print_host_state(hba); 8756 goto out; 8757 } 8758 8759 /* Reinit the device */ 8760 ret = ufshcd_device_init(hba, init_dev_params); 8761 if (ret) 8762 goto out; 8763 } 8764 8765 ufshcd_print_pwr_info(hba); 8766 8767 /* 8768 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8769 * and for removable UFS card as well, hence always set the parameter. 8770 * Note: Error handler may issue the device reset hence resetting 8771 * bActiveICCLevel as well so it is always safe to set this here. 8772 */ 8773 ufshcd_set_active_icc_lvl(hba); 8774 8775 /* Enable UFS Write Booster if supported */ 8776 ufshcd_configure_wb(hba); 8777 8778 if (hba->ee_usr_mask) 8779 ufshcd_write_ee_control(hba); 8780 /* Enable Auto-Hibernate if configured */ 8781 ufshcd_auto_hibern8_enable(hba); 8782 8783 out: 8784 spin_lock_irqsave(hba->host->host_lock, flags); 8785 if (ret) 8786 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8787 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8788 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8789 spin_unlock_irqrestore(hba->host->host_lock, flags); 8790 8791 trace_ufshcd_init(dev_name(hba->dev), ret, 8792 ktime_to_us(ktime_sub(ktime_get(), start)), 8793 hba->curr_dev_pwr_mode, hba->uic_link_state); 8794 return ret; 8795 } 8796 8797 /** 8798 * ufshcd_async_scan - asynchronous execution for probing hba 8799 * @data: data pointer to pass to this function 8800 * @cookie: cookie data 8801 */ 8802 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8803 { 8804 struct ufs_hba *hba = (struct ufs_hba *)data; 8805 int ret; 8806 8807 down(&hba->host_sem); 8808 /* Initialize hba, detect and initialize UFS device */ 8809 ret = ufshcd_probe_hba(hba, true); 8810 up(&hba->host_sem); 8811 if (ret) 8812 goto out; 8813 8814 /* Probe and add UFS logical units */ 8815 ret = ufshcd_add_lus(hba); 8816 8817 out: 8818 pm_runtime_put_sync(hba->dev); 8819 8820 if (ret) 8821 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 8822 } 8823 8824 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8825 { 8826 struct ufs_hba *hba = shost_priv(scmd->device->host); 8827 8828 if (!hba->system_suspending) { 8829 /* Activate the error handler in the SCSI core. */ 8830 return SCSI_EH_NOT_HANDLED; 8831 } 8832 8833 /* 8834 * If we get here we know that no TMFs are outstanding and also that 8835 * the only pending command is a START STOP UNIT command. Handle the 8836 * timeout of that command directly to prevent a deadlock between 8837 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8838 */ 8839 ufshcd_link_recovery(hba); 8840 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8841 __func__, hba->outstanding_tasks); 8842 8843 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8844 } 8845 8846 static const struct attribute_group *ufshcd_driver_groups[] = { 8847 &ufs_sysfs_unit_descriptor_group, 8848 &ufs_sysfs_lun_attributes_group, 8849 NULL, 8850 }; 8851 8852 static struct ufs_hba_variant_params ufs_hba_vps = { 8853 .hba_enable_delay_us = 1000, 8854 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8855 .devfreq_profile.polling_ms = 100, 8856 .devfreq_profile.target = ufshcd_devfreq_target, 8857 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8858 .ondemand_data.upthreshold = 70, 8859 .ondemand_data.downdifferential = 5, 8860 }; 8861 8862 static const struct scsi_host_template ufshcd_driver_template = { 8863 .module = THIS_MODULE, 8864 .name = UFSHCD, 8865 .proc_name = UFSHCD, 8866 .map_queues = ufshcd_map_queues, 8867 .queuecommand = ufshcd_queuecommand, 8868 .mq_poll = ufshcd_poll, 8869 .slave_alloc = ufshcd_slave_alloc, 8870 .slave_configure = ufshcd_slave_configure, 8871 .slave_destroy = ufshcd_slave_destroy, 8872 .change_queue_depth = ufshcd_change_queue_depth, 8873 .eh_abort_handler = ufshcd_abort, 8874 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8875 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8876 .eh_timed_out = ufshcd_eh_timed_out, 8877 .this_id = -1, 8878 .sg_tablesize = SG_ALL, 8879 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 8880 .can_queue = UFSHCD_CAN_QUEUE, 8881 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8882 .max_sectors = SZ_1M / SECTOR_SIZE, 8883 .max_host_blocked = 1, 8884 .track_queue_depth = 1, 8885 .skip_settle_delay = 1, 8886 .sdev_groups = ufshcd_driver_groups, 8887 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 8888 }; 8889 8890 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8891 int ua) 8892 { 8893 int ret; 8894 8895 if (!vreg) 8896 return 0; 8897 8898 /* 8899 * "set_load" operation shall be required on those regulators 8900 * which specifically configured current limitation. Otherwise 8901 * zero max_uA may cause unexpected behavior when regulator is 8902 * enabled or set as high power mode. 8903 */ 8904 if (!vreg->max_uA) 8905 return 0; 8906 8907 ret = regulator_set_load(vreg->reg, ua); 8908 if (ret < 0) { 8909 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8910 __func__, vreg->name, ua, ret); 8911 } 8912 8913 return ret; 8914 } 8915 8916 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8917 struct ufs_vreg *vreg) 8918 { 8919 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8920 } 8921 8922 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8923 struct ufs_vreg *vreg) 8924 { 8925 if (!vreg) 8926 return 0; 8927 8928 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8929 } 8930 8931 static int ufshcd_config_vreg(struct device *dev, 8932 struct ufs_vreg *vreg, bool on) 8933 { 8934 if (regulator_count_voltages(vreg->reg) <= 0) 8935 return 0; 8936 8937 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8938 } 8939 8940 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8941 { 8942 int ret = 0; 8943 8944 if (!vreg || vreg->enabled) 8945 goto out; 8946 8947 ret = ufshcd_config_vreg(dev, vreg, true); 8948 if (!ret) 8949 ret = regulator_enable(vreg->reg); 8950 8951 if (!ret) 8952 vreg->enabled = true; 8953 else 8954 dev_err(dev, "%s: %s enable failed, err=%d\n", 8955 __func__, vreg->name, ret); 8956 out: 8957 return ret; 8958 } 8959 8960 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 8961 { 8962 int ret = 0; 8963 8964 if (!vreg || !vreg->enabled || vreg->always_on) 8965 goto out; 8966 8967 ret = regulator_disable(vreg->reg); 8968 8969 if (!ret) { 8970 /* ignore errors on applying disable config */ 8971 ufshcd_config_vreg(dev, vreg, false); 8972 vreg->enabled = false; 8973 } else { 8974 dev_err(dev, "%s: %s disable failed, err=%d\n", 8975 __func__, vreg->name, ret); 8976 } 8977 out: 8978 return ret; 8979 } 8980 8981 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 8982 { 8983 int ret = 0; 8984 struct device *dev = hba->dev; 8985 struct ufs_vreg_info *info = &hba->vreg_info; 8986 8987 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 8988 if (ret) 8989 goto out; 8990 8991 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 8992 if (ret) 8993 goto out; 8994 8995 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 8996 8997 out: 8998 if (ret) { 8999 ufshcd_toggle_vreg(dev, info->vccq2, false); 9000 ufshcd_toggle_vreg(dev, info->vccq, false); 9001 ufshcd_toggle_vreg(dev, info->vcc, false); 9002 } 9003 return ret; 9004 } 9005 9006 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9007 { 9008 struct ufs_vreg_info *info = &hba->vreg_info; 9009 9010 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9011 } 9012 9013 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9014 { 9015 int ret = 0; 9016 9017 if (!vreg) 9018 goto out; 9019 9020 vreg->reg = devm_regulator_get(dev, vreg->name); 9021 if (IS_ERR(vreg->reg)) { 9022 ret = PTR_ERR(vreg->reg); 9023 dev_err(dev, "%s: %s get failed, err=%d\n", 9024 __func__, vreg->name, ret); 9025 } 9026 out: 9027 return ret; 9028 } 9029 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9030 9031 static int ufshcd_init_vreg(struct ufs_hba *hba) 9032 { 9033 int ret = 0; 9034 struct device *dev = hba->dev; 9035 struct ufs_vreg_info *info = &hba->vreg_info; 9036 9037 ret = ufshcd_get_vreg(dev, info->vcc); 9038 if (ret) 9039 goto out; 9040 9041 ret = ufshcd_get_vreg(dev, info->vccq); 9042 if (!ret) 9043 ret = ufshcd_get_vreg(dev, info->vccq2); 9044 out: 9045 return ret; 9046 } 9047 9048 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9049 { 9050 struct ufs_vreg_info *info = &hba->vreg_info; 9051 9052 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9053 } 9054 9055 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9056 { 9057 int ret = 0; 9058 struct ufs_clk_info *clki; 9059 struct list_head *head = &hba->clk_list_head; 9060 unsigned long flags; 9061 ktime_t start = ktime_get(); 9062 bool clk_state_changed = false; 9063 9064 if (list_empty(head)) 9065 goto out; 9066 9067 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9068 if (ret) 9069 return ret; 9070 9071 list_for_each_entry(clki, head, list) { 9072 if (!IS_ERR_OR_NULL(clki->clk)) { 9073 /* 9074 * Don't disable clocks which are needed 9075 * to keep the link active. 9076 */ 9077 if (ufshcd_is_link_active(hba) && 9078 clki->keep_link_active) 9079 continue; 9080 9081 clk_state_changed = on ^ clki->enabled; 9082 if (on && !clki->enabled) { 9083 ret = clk_prepare_enable(clki->clk); 9084 if (ret) { 9085 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9086 __func__, clki->name, ret); 9087 goto out; 9088 } 9089 } else if (!on && clki->enabled) { 9090 clk_disable_unprepare(clki->clk); 9091 } 9092 clki->enabled = on; 9093 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9094 clki->name, on ? "en" : "dis"); 9095 } 9096 } 9097 9098 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9099 if (ret) 9100 return ret; 9101 9102 out: 9103 if (ret) { 9104 list_for_each_entry(clki, head, list) { 9105 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9106 clk_disable_unprepare(clki->clk); 9107 } 9108 } else if (!ret && on) { 9109 spin_lock_irqsave(hba->host->host_lock, flags); 9110 hba->clk_gating.state = CLKS_ON; 9111 trace_ufshcd_clk_gating(dev_name(hba->dev), 9112 hba->clk_gating.state); 9113 spin_unlock_irqrestore(hba->host->host_lock, flags); 9114 } 9115 9116 if (clk_state_changed) 9117 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9118 (on ? "on" : "off"), 9119 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9120 return ret; 9121 } 9122 9123 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9124 { 9125 u32 freq; 9126 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9127 9128 if (ret) { 9129 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9130 return REF_CLK_FREQ_INVAL; 9131 } 9132 9133 return ufs_get_bref_clk_from_hz(freq); 9134 } 9135 9136 static int ufshcd_init_clocks(struct ufs_hba *hba) 9137 { 9138 int ret = 0; 9139 struct ufs_clk_info *clki; 9140 struct device *dev = hba->dev; 9141 struct list_head *head = &hba->clk_list_head; 9142 9143 if (list_empty(head)) 9144 goto out; 9145 9146 list_for_each_entry(clki, head, list) { 9147 if (!clki->name) 9148 continue; 9149 9150 clki->clk = devm_clk_get(dev, clki->name); 9151 if (IS_ERR(clki->clk)) { 9152 ret = PTR_ERR(clki->clk); 9153 dev_err(dev, "%s: %s clk get failed, %d\n", 9154 __func__, clki->name, ret); 9155 goto out; 9156 } 9157 9158 /* 9159 * Parse device ref clk freq as per device tree "ref_clk". 9160 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9161 * in ufshcd_alloc_host(). 9162 */ 9163 if (!strcmp(clki->name, "ref_clk")) 9164 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9165 9166 if (clki->max_freq) { 9167 ret = clk_set_rate(clki->clk, clki->max_freq); 9168 if (ret) { 9169 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9170 __func__, clki->name, 9171 clki->max_freq, ret); 9172 goto out; 9173 } 9174 clki->curr_freq = clki->max_freq; 9175 } 9176 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9177 clki->name, clk_get_rate(clki->clk)); 9178 } 9179 out: 9180 return ret; 9181 } 9182 9183 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9184 { 9185 int err = 0; 9186 9187 if (!hba->vops) 9188 goto out; 9189 9190 err = ufshcd_vops_init(hba); 9191 if (err) 9192 dev_err_probe(hba->dev, err, 9193 "%s: variant %s init failed with err %d\n", 9194 __func__, ufshcd_get_var_name(hba), err); 9195 out: 9196 return err; 9197 } 9198 9199 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9200 { 9201 if (!hba->vops) 9202 return; 9203 9204 ufshcd_vops_exit(hba); 9205 } 9206 9207 static int ufshcd_hba_init(struct ufs_hba *hba) 9208 { 9209 int err; 9210 9211 /* 9212 * Handle host controller power separately from the UFS device power 9213 * rails as it will help controlling the UFS host controller power 9214 * collapse easily which is different than UFS device power collapse. 9215 * Also, enable the host controller power before we go ahead with rest 9216 * of the initialization here. 9217 */ 9218 err = ufshcd_init_hba_vreg(hba); 9219 if (err) 9220 goto out; 9221 9222 err = ufshcd_setup_hba_vreg(hba, true); 9223 if (err) 9224 goto out; 9225 9226 err = ufshcd_init_clocks(hba); 9227 if (err) 9228 goto out_disable_hba_vreg; 9229 9230 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9231 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9232 9233 err = ufshcd_setup_clocks(hba, true); 9234 if (err) 9235 goto out_disable_hba_vreg; 9236 9237 err = ufshcd_init_vreg(hba); 9238 if (err) 9239 goto out_disable_clks; 9240 9241 err = ufshcd_setup_vreg(hba, true); 9242 if (err) 9243 goto out_disable_clks; 9244 9245 err = ufshcd_variant_hba_init(hba); 9246 if (err) 9247 goto out_disable_vreg; 9248 9249 ufs_debugfs_hba_init(hba); 9250 9251 hba->is_powered = true; 9252 goto out; 9253 9254 out_disable_vreg: 9255 ufshcd_setup_vreg(hba, false); 9256 out_disable_clks: 9257 ufshcd_setup_clocks(hba, false); 9258 out_disable_hba_vreg: 9259 ufshcd_setup_hba_vreg(hba, false); 9260 out: 9261 return err; 9262 } 9263 9264 static void ufshcd_hba_exit(struct ufs_hba *hba) 9265 { 9266 if (hba->is_powered) { 9267 ufshcd_exit_clk_scaling(hba); 9268 ufshcd_exit_clk_gating(hba); 9269 if (hba->eh_wq) 9270 destroy_workqueue(hba->eh_wq); 9271 ufs_debugfs_hba_exit(hba); 9272 ufshcd_variant_hba_exit(hba); 9273 ufshcd_setup_vreg(hba, false); 9274 ufshcd_setup_clocks(hba, false); 9275 ufshcd_setup_hba_vreg(hba, false); 9276 hba->is_powered = false; 9277 ufs_put_device_desc(hba); 9278 } 9279 } 9280 9281 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9282 enum ufs_dev_pwr_mode pwr_mode, 9283 struct scsi_sense_hdr *sshdr) 9284 { 9285 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9286 const struct scsi_exec_args args = { 9287 .sshdr = sshdr, 9288 .req_flags = BLK_MQ_REQ_PM, 9289 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9290 }; 9291 9292 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9293 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9294 &args); 9295 } 9296 9297 /** 9298 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9299 * power mode 9300 * @hba: per adapter instance 9301 * @pwr_mode: device power mode to set 9302 * 9303 * Return: 0 if requested power mode is set successfully; 9304 * < 0 if failed to set the requested power mode. 9305 */ 9306 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9307 enum ufs_dev_pwr_mode pwr_mode) 9308 { 9309 struct scsi_sense_hdr sshdr; 9310 struct scsi_device *sdp; 9311 unsigned long flags; 9312 int ret, retries; 9313 9314 spin_lock_irqsave(hba->host->host_lock, flags); 9315 sdp = hba->ufs_device_wlun; 9316 if (sdp && scsi_device_online(sdp)) 9317 ret = scsi_device_get(sdp); 9318 else 9319 ret = -ENODEV; 9320 spin_unlock_irqrestore(hba->host->host_lock, flags); 9321 9322 if (ret) 9323 return ret; 9324 9325 /* 9326 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9327 * handling, which would wait for host to be resumed. Since we know 9328 * we are functional while we are here, skip host resume in error 9329 * handling context. 9330 */ 9331 hba->host->eh_noresume = 1; 9332 9333 /* 9334 * Current function would be generally called from the power management 9335 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9336 * already suspended childs. 9337 */ 9338 for (retries = 3; retries > 0; --retries) { 9339 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9340 /* 9341 * scsi_execute() only returns a negative value if the request 9342 * queue is dying. 9343 */ 9344 if (ret <= 0) 9345 break; 9346 } 9347 if (ret) { 9348 sdev_printk(KERN_WARNING, sdp, 9349 "START_STOP failed for power mode: %d, result %x\n", 9350 pwr_mode, ret); 9351 if (ret > 0) { 9352 if (scsi_sense_valid(&sshdr)) 9353 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9354 ret = -EIO; 9355 } 9356 } else { 9357 hba->curr_dev_pwr_mode = pwr_mode; 9358 } 9359 9360 scsi_device_put(sdp); 9361 hba->host->eh_noresume = 0; 9362 return ret; 9363 } 9364 9365 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9366 enum uic_link_state req_link_state, 9367 bool check_for_bkops) 9368 { 9369 int ret = 0; 9370 9371 if (req_link_state == hba->uic_link_state) 9372 return 0; 9373 9374 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9375 ret = ufshcd_uic_hibern8_enter(hba); 9376 if (!ret) { 9377 ufshcd_set_link_hibern8(hba); 9378 } else { 9379 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9380 __func__, ret); 9381 goto out; 9382 } 9383 } 9384 /* 9385 * If autobkops is enabled, link can't be turned off because 9386 * turning off the link would also turn off the device, except in the 9387 * case of DeepSleep where the device is expected to remain powered. 9388 */ 9389 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9390 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9391 /* 9392 * Let's make sure that link is in low power mode, we are doing 9393 * this currently by putting the link in Hibern8. Otherway to 9394 * put the link in low power mode is to send the DME end point 9395 * to device and then send the DME reset command to local 9396 * unipro. But putting the link in hibern8 is much faster. 9397 * 9398 * Note also that putting the link in Hibern8 is a requirement 9399 * for entering DeepSleep. 9400 */ 9401 ret = ufshcd_uic_hibern8_enter(hba); 9402 if (ret) { 9403 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9404 __func__, ret); 9405 goto out; 9406 } 9407 /* 9408 * Change controller state to "reset state" which 9409 * should also put the link in off/reset state 9410 */ 9411 ufshcd_hba_stop(hba); 9412 /* 9413 * TODO: Check if we need any delay to make sure that 9414 * controller is reset 9415 */ 9416 ufshcd_set_link_off(hba); 9417 } 9418 9419 out: 9420 return ret; 9421 } 9422 9423 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9424 { 9425 bool vcc_off = false; 9426 9427 /* 9428 * It seems some UFS devices may keep drawing more than sleep current 9429 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9430 * To avoid this situation, add 2ms delay before putting these UFS 9431 * rails in LPM mode. 9432 */ 9433 if (!ufshcd_is_link_active(hba) && 9434 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9435 usleep_range(2000, 2100); 9436 9437 /* 9438 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9439 * power. 9440 * 9441 * If UFS device and link is in OFF state, all power supplies (VCC, 9442 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9443 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9444 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9445 * 9446 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9447 * in low power state which would save some power. 9448 * 9449 * If Write Booster is enabled and the device needs to flush the WB 9450 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9451 */ 9452 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9453 !hba->dev_info.is_lu_power_on_wp) { 9454 ufshcd_setup_vreg(hba, false); 9455 vcc_off = true; 9456 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9457 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9458 vcc_off = true; 9459 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9460 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9461 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9462 } 9463 } 9464 9465 /* 9466 * Some UFS devices require delay after VCC power rail is turned-off. 9467 */ 9468 if (vcc_off && hba->vreg_info.vcc && 9469 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9470 usleep_range(5000, 5100); 9471 } 9472 9473 #ifdef CONFIG_PM 9474 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9475 { 9476 int ret = 0; 9477 9478 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9479 !hba->dev_info.is_lu_power_on_wp) { 9480 ret = ufshcd_setup_vreg(hba, true); 9481 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9482 if (!ufshcd_is_link_active(hba)) { 9483 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9484 if (ret) 9485 goto vcc_disable; 9486 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9487 if (ret) 9488 goto vccq_lpm; 9489 } 9490 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9491 } 9492 goto out; 9493 9494 vccq_lpm: 9495 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9496 vcc_disable: 9497 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9498 out: 9499 return ret; 9500 } 9501 #endif /* CONFIG_PM */ 9502 9503 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9504 { 9505 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9506 ufshcd_setup_hba_vreg(hba, false); 9507 } 9508 9509 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9510 { 9511 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9512 ufshcd_setup_hba_vreg(hba, true); 9513 } 9514 9515 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9516 { 9517 int ret = 0; 9518 bool check_for_bkops; 9519 enum ufs_pm_level pm_lvl; 9520 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9521 enum uic_link_state req_link_state; 9522 9523 hba->pm_op_in_progress = true; 9524 if (pm_op != UFS_SHUTDOWN_PM) { 9525 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9526 hba->rpm_lvl : hba->spm_lvl; 9527 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9528 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9529 } else { 9530 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9531 req_link_state = UIC_LINK_OFF_STATE; 9532 } 9533 9534 /* 9535 * If we can't transition into any of the low power modes 9536 * just gate the clocks. 9537 */ 9538 ufshcd_hold(hba); 9539 hba->clk_gating.is_suspended = true; 9540 9541 if (ufshcd_is_clkscaling_supported(hba)) 9542 ufshcd_clk_scaling_suspend(hba, true); 9543 9544 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9545 req_link_state == UIC_LINK_ACTIVE_STATE) { 9546 goto vops_suspend; 9547 } 9548 9549 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9550 (req_link_state == hba->uic_link_state)) 9551 goto enable_scaling; 9552 9553 /* UFS device & link must be active before we enter in this function */ 9554 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9555 /* Wait err handler finish or trigger err recovery */ 9556 if (!ufshcd_eh_in_progress(hba)) 9557 ufshcd_force_error_recovery(hba); 9558 ret = -EBUSY; 9559 goto enable_scaling; 9560 } 9561 9562 if (pm_op == UFS_RUNTIME_PM) { 9563 if (ufshcd_can_autobkops_during_suspend(hba)) { 9564 /* 9565 * The device is idle with no requests in the queue, 9566 * allow background operations if bkops status shows 9567 * that performance might be impacted. 9568 */ 9569 ret = ufshcd_urgent_bkops(hba); 9570 if (ret) { 9571 /* 9572 * If return err in suspend flow, IO will hang. 9573 * Trigger error handler and break suspend for 9574 * error recovery. 9575 */ 9576 ufshcd_force_error_recovery(hba); 9577 ret = -EBUSY; 9578 goto enable_scaling; 9579 } 9580 } else { 9581 /* make sure that auto bkops is disabled */ 9582 ufshcd_disable_auto_bkops(hba); 9583 } 9584 /* 9585 * If device needs to do BKOP or WB buffer flush during 9586 * Hibern8, keep device power mode as "active power mode" 9587 * and VCC supply. 9588 */ 9589 hba->dev_info.b_rpm_dev_flush_capable = 9590 hba->auto_bkops_enabled || 9591 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9592 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9593 ufshcd_is_auto_hibern8_enabled(hba))) && 9594 ufshcd_wb_need_flush(hba)); 9595 } 9596 9597 flush_work(&hba->eeh_work); 9598 9599 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9600 if (ret) 9601 goto enable_scaling; 9602 9603 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9604 if (pm_op != UFS_RUNTIME_PM) 9605 /* ensure that bkops is disabled */ 9606 ufshcd_disable_auto_bkops(hba); 9607 9608 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9609 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9610 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9611 /* 9612 * If return err in suspend flow, IO will hang. 9613 * Trigger error handler and break suspend for 9614 * error recovery. 9615 */ 9616 ufshcd_force_error_recovery(hba); 9617 ret = -EBUSY; 9618 } 9619 if (ret) 9620 goto enable_scaling; 9621 } 9622 } 9623 9624 /* 9625 * In the case of DeepSleep, the device is expected to remain powered 9626 * with the link off, so do not check for bkops. 9627 */ 9628 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9629 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9630 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9631 /* 9632 * If return err in suspend flow, IO will hang. 9633 * Trigger error handler and break suspend for 9634 * error recovery. 9635 */ 9636 ufshcd_force_error_recovery(hba); 9637 ret = -EBUSY; 9638 } 9639 if (ret) 9640 goto set_dev_active; 9641 9642 vops_suspend: 9643 /* 9644 * Call vendor specific suspend callback. As these callbacks may access 9645 * vendor specific host controller register space call them before the 9646 * host clocks are ON. 9647 */ 9648 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9649 if (ret) 9650 goto set_link_active; 9651 goto out; 9652 9653 set_link_active: 9654 /* 9655 * Device hardware reset is required to exit DeepSleep. Also, for 9656 * DeepSleep, the link is off so host reset and restore will be done 9657 * further below. 9658 */ 9659 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9660 ufshcd_device_reset(hba); 9661 WARN_ON(!ufshcd_is_link_off(hba)); 9662 } 9663 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9664 ufshcd_set_link_active(hba); 9665 else if (ufshcd_is_link_off(hba)) 9666 ufshcd_host_reset_and_restore(hba); 9667 set_dev_active: 9668 /* Can also get here needing to exit DeepSleep */ 9669 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9670 ufshcd_device_reset(hba); 9671 ufshcd_host_reset_and_restore(hba); 9672 } 9673 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9674 ufshcd_disable_auto_bkops(hba); 9675 enable_scaling: 9676 if (ufshcd_is_clkscaling_supported(hba)) 9677 ufshcd_clk_scaling_suspend(hba, false); 9678 9679 hba->dev_info.b_rpm_dev_flush_capable = false; 9680 out: 9681 if (hba->dev_info.b_rpm_dev_flush_capable) { 9682 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9683 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9684 } 9685 9686 if (ret) { 9687 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9688 hba->clk_gating.is_suspended = false; 9689 ufshcd_release(hba); 9690 } 9691 hba->pm_op_in_progress = false; 9692 return ret; 9693 } 9694 9695 #ifdef CONFIG_PM 9696 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9697 { 9698 int ret; 9699 enum uic_link_state old_link_state = hba->uic_link_state; 9700 9701 hba->pm_op_in_progress = true; 9702 9703 /* 9704 * Call vendor specific resume callback. As these callbacks may access 9705 * vendor specific host controller register space call them when the 9706 * host clocks are ON. 9707 */ 9708 ret = ufshcd_vops_resume(hba, pm_op); 9709 if (ret) 9710 goto out; 9711 9712 /* For DeepSleep, the only supported option is to have the link off */ 9713 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9714 9715 if (ufshcd_is_link_hibern8(hba)) { 9716 ret = ufshcd_uic_hibern8_exit(hba); 9717 if (!ret) { 9718 ufshcd_set_link_active(hba); 9719 } else { 9720 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9721 __func__, ret); 9722 goto vendor_suspend; 9723 } 9724 } else if (ufshcd_is_link_off(hba)) { 9725 /* 9726 * A full initialization of the host and the device is 9727 * required since the link was put to off during suspend. 9728 * Note, in the case of DeepSleep, the device will exit 9729 * DeepSleep due to device reset. 9730 */ 9731 ret = ufshcd_reset_and_restore(hba); 9732 /* 9733 * ufshcd_reset_and_restore() should have already 9734 * set the link state as active 9735 */ 9736 if (ret || !ufshcd_is_link_active(hba)) 9737 goto vendor_suspend; 9738 } 9739 9740 if (!ufshcd_is_ufs_dev_active(hba)) { 9741 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9742 if (ret) 9743 goto set_old_link_state; 9744 ufshcd_set_timestamp_attr(hba); 9745 } 9746 9747 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9748 ufshcd_enable_auto_bkops(hba); 9749 else 9750 /* 9751 * If BKOPs operations are urgently needed at this moment then 9752 * keep auto-bkops enabled or else disable it. 9753 */ 9754 ufshcd_urgent_bkops(hba); 9755 9756 if (hba->ee_usr_mask) 9757 ufshcd_write_ee_control(hba); 9758 9759 if (ufshcd_is_clkscaling_supported(hba)) 9760 ufshcd_clk_scaling_suspend(hba, false); 9761 9762 if (hba->dev_info.b_rpm_dev_flush_capable) { 9763 hba->dev_info.b_rpm_dev_flush_capable = false; 9764 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9765 } 9766 9767 /* Enable Auto-Hibernate if configured */ 9768 ufshcd_auto_hibern8_enable(hba); 9769 9770 goto out; 9771 9772 set_old_link_state: 9773 ufshcd_link_state_transition(hba, old_link_state, 0); 9774 vendor_suspend: 9775 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9776 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9777 out: 9778 if (ret) 9779 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9780 hba->clk_gating.is_suspended = false; 9781 ufshcd_release(hba); 9782 hba->pm_op_in_progress = false; 9783 return ret; 9784 } 9785 9786 static int ufshcd_wl_runtime_suspend(struct device *dev) 9787 { 9788 struct scsi_device *sdev = to_scsi_device(dev); 9789 struct ufs_hba *hba; 9790 int ret; 9791 ktime_t start = ktime_get(); 9792 9793 hba = shost_priv(sdev->host); 9794 9795 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9796 if (ret) 9797 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9798 9799 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9800 ktime_to_us(ktime_sub(ktime_get(), start)), 9801 hba->curr_dev_pwr_mode, hba->uic_link_state); 9802 9803 return ret; 9804 } 9805 9806 static int ufshcd_wl_runtime_resume(struct device *dev) 9807 { 9808 struct scsi_device *sdev = to_scsi_device(dev); 9809 struct ufs_hba *hba; 9810 int ret = 0; 9811 ktime_t start = ktime_get(); 9812 9813 hba = shost_priv(sdev->host); 9814 9815 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9816 if (ret) 9817 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9818 9819 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9820 ktime_to_us(ktime_sub(ktime_get(), start)), 9821 hba->curr_dev_pwr_mode, hba->uic_link_state); 9822 9823 return ret; 9824 } 9825 #endif 9826 9827 #ifdef CONFIG_PM_SLEEP 9828 static int ufshcd_wl_suspend(struct device *dev) 9829 { 9830 struct scsi_device *sdev = to_scsi_device(dev); 9831 struct ufs_hba *hba; 9832 int ret = 0; 9833 ktime_t start = ktime_get(); 9834 9835 hba = shost_priv(sdev->host); 9836 down(&hba->host_sem); 9837 hba->system_suspending = true; 9838 9839 if (pm_runtime_suspended(dev)) 9840 goto out; 9841 9842 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9843 if (ret) { 9844 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9845 up(&hba->host_sem); 9846 } 9847 9848 out: 9849 if (!ret) 9850 hba->is_sys_suspended = true; 9851 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9852 ktime_to_us(ktime_sub(ktime_get(), start)), 9853 hba->curr_dev_pwr_mode, hba->uic_link_state); 9854 9855 return ret; 9856 } 9857 9858 static int ufshcd_wl_resume(struct device *dev) 9859 { 9860 struct scsi_device *sdev = to_scsi_device(dev); 9861 struct ufs_hba *hba; 9862 int ret = 0; 9863 ktime_t start = ktime_get(); 9864 9865 hba = shost_priv(sdev->host); 9866 9867 if (pm_runtime_suspended(dev)) 9868 goto out; 9869 9870 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9871 if (ret) 9872 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9873 out: 9874 trace_ufshcd_wl_resume(dev_name(dev), ret, 9875 ktime_to_us(ktime_sub(ktime_get(), start)), 9876 hba->curr_dev_pwr_mode, hba->uic_link_state); 9877 if (!ret) 9878 hba->is_sys_suspended = false; 9879 hba->system_suspending = false; 9880 up(&hba->host_sem); 9881 return ret; 9882 } 9883 #endif 9884 9885 /** 9886 * ufshcd_suspend - helper function for suspend operations 9887 * @hba: per adapter instance 9888 * 9889 * This function will put disable irqs, turn off clocks 9890 * and set vreg and hba-vreg in lpm mode. 9891 * 9892 * Return: 0 upon success; < 0 upon failure. 9893 */ 9894 static int ufshcd_suspend(struct ufs_hba *hba) 9895 { 9896 int ret; 9897 9898 if (!hba->is_powered) 9899 return 0; 9900 /* 9901 * Disable the host irq as host controller as there won't be any 9902 * host controller transaction expected till resume. 9903 */ 9904 ufshcd_disable_irq(hba); 9905 ret = ufshcd_setup_clocks(hba, false); 9906 if (ret) { 9907 ufshcd_enable_irq(hba); 9908 return ret; 9909 } 9910 if (ufshcd_is_clkgating_allowed(hba)) { 9911 hba->clk_gating.state = CLKS_OFF; 9912 trace_ufshcd_clk_gating(dev_name(hba->dev), 9913 hba->clk_gating.state); 9914 } 9915 9916 ufshcd_vreg_set_lpm(hba); 9917 /* Put the host controller in low power mode if possible */ 9918 ufshcd_hba_vreg_set_lpm(hba); 9919 return ret; 9920 } 9921 9922 #ifdef CONFIG_PM 9923 /** 9924 * ufshcd_resume - helper function for resume operations 9925 * @hba: per adapter instance 9926 * 9927 * This function basically turns on the regulators, clocks and 9928 * irqs of the hba. 9929 * 9930 * Return: 0 for success and non-zero for failure. 9931 */ 9932 static int ufshcd_resume(struct ufs_hba *hba) 9933 { 9934 int ret; 9935 9936 if (!hba->is_powered) 9937 return 0; 9938 9939 ufshcd_hba_vreg_set_hpm(hba); 9940 ret = ufshcd_vreg_set_hpm(hba); 9941 if (ret) 9942 goto out; 9943 9944 /* Make sure clocks are enabled before accessing controller */ 9945 ret = ufshcd_setup_clocks(hba, true); 9946 if (ret) 9947 goto disable_vreg; 9948 9949 /* enable the host irq as host controller would be active soon */ 9950 ufshcd_enable_irq(hba); 9951 9952 goto out; 9953 9954 disable_vreg: 9955 ufshcd_vreg_set_lpm(hba); 9956 out: 9957 if (ret) 9958 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 9959 return ret; 9960 } 9961 #endif /* CONFIG_PM */ 9962 9963 #ifdef CONFIG_PM_SLEEP 9964 /** 9965 * ufshcd_system_suspend - system suspend callback 9966 * @dev: Device associated with the UFS controller. 9967 * 9968 * Executed before putting the system into a sleep state in which the contents 9969 * of main memory are preserved. 9970 * 9971 * Return: 0 for success and non-zero for failure. 9972 */ 9973 int ufshcd_system_suspend(struct device *dev) 9974 { 9975 struct ufs_hba *hba = dev_get_drvdata(dev); 9976 int ret = 0; 9977 ktime_t start = ktime_get(); 9978 9979 if (pm_runtime_suspended(hba->dev)) 9980 goto out; 9981 9982 ret = ufshcd_suspend(hba); 9983 out: 9984 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 9985 ktime_to_us(ktime_sub(ktime_get(), start)), 9986 hba->curr_dev_pwr_mode, hba->uic_link_state); 9987 return ret; 9988 } 9989 EXPORT_SYMBOL(ufshcd_system_suspend); 9990 9991 /** 9992 * ufshcd_system_resume - system resume callback 9993 * @dev: Device associated with the UFS controller. 9994 * 9995 * Executed after waking the system up from a sleep state in which the contents 9996 * of main memory were preserved. 9997 * 9998 * Return: 0 for success and non-zero for failure. 9999 */ 10000 int ufshcd_system_resume(struct device *dev) 10001 { 10002 struct ufs_hba *hba = dev_get_drvdata(dev); 10003 ktime_t start = ktime_get(); 10004 int ret = 0; 10005 10006 if (pm_runtime_suspended(hba->dev)) 10007 goto out; 10008 10009 ret = ufshcd_resume(hba); 10010 10011 out: 10012 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10013 ktime_to_us(ktime_sub(ktime_get(), start)), 10014 hba->curr_dev_pwr_mode, hba->uic_link_state); 10015 10016 return ret; 10017 } 10018 EXPORT_SYMBOL(ufshcd_system_resume); 10019 #endif /* CONFIG_PM_SLEEP */ 10020 10021 #ifdef CONFIG_PM 10022 /** 10023 * ufshcd_runtime_suspend - runtime suspend callback 10024 * @dev: Device associated with the UFS controller. 10025 * 10026 * Check the description of ufshcd_suspend() function for more details. 10027 * 10028 * Return: 0 for success and non-zero for failure. 10029 */ 10030 int ufshcd_runtime_suspend(struct device *dev) 10031 { 10032 struct ufs_hba *hba = dev_get_drvdata(dev); 10033 int ret; 10034 ktime_t start = ktime_get(); 10035 10036 ret = ufshcd_suspend(hba); 10037 10038 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10039 ktime_to_us(ktime_sub(ktime_get(), start)), 10040 hba->curr_dev_pwr_mode, hba->uic_link_state); 10041 return ret; 10042 } 10043 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10044 10045 /** 10046 * ufshcd_runtime_resume - runtime resume routine 10047 * @dev: Device associated with the UFS controller. 10048 * 10049 * This function basically brings controller 10050 * to active state. Following operations are done in this function: 10051 * 10052 * 1. Turn on all the controller related clocks 10053 * 2. Turn ON VCC rail 10054 * 10055 * Return: 0 upon success; < 0 upon failure. 10056 */ 10057 int ufshcd_runtime_resume(struct device *dev) 10058 { 10059 struct ufs_hba *hba = dev_get_drvdata(dev); 10060 int ret; 10061 ktime_t start = ktime_get(); 10062 10063 ret = ufshcd_resume(hba); 10064 10065 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10066 ktime_to_us(ktime_sub(ktime_get(), start)), 10067 hba->curr_dev_pwr_mode, hba->uic_link_state); 10068 return ret; 10069 } 10070 EXPORT_SYMBOL(ufshcd_runtime_resume); 10071 #endif /* CONFIG_PM */ 10072 10073 static void ufshcd_wl_shutdown(struct device *dev) 10074 { 10075 struct scsi_device *sdev = to_scsi_device(dev); 10076 struct ufs_hba *hba = shost_priv(sdev->host); 10077 10078 down(&hba->host_sem); 10079 hba->shutting_down = true; 10080 up(&hba->host_sem); 10081 10082 /* Turn on everything while shutting down */ 10083 ufshcd_rpm_get_sync(hba); 10084 scsi_device_quiesce(sdev); 10085 shost_for_each_device(sdev, hba->host) { 10086 if (sdev == hba->ufs_device_wlun) 10087 continue; 10088 scsi_device_quiesce(sdev); 10089 } 10090 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10091 10092 /* 10093 * Next, turn off the UFS controller and the UFS regulators. Disable 10094 * clocks. 10095 */ 10096 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10097 ufshcd_suspend(hba); 10098 10099 hba->is_powered = false; 10100 } 10101 10102 /** 10103 * ufshcd_remove - de-allocate SCSI host and host memory space 10104 * data structure memory 10105 * @hba: per adapter instance 10106 */ 10107 void ufshcd_remove(struct ufs_hba *hba) 10108 { 10109 if (hba->ufs_device_wlun) 10110 ufshcd_rpm_get_sync(hba); 10111 ufs_hwmon_remove(hba); 10112 ufs_bsg_remove(hba); 10113 ufs_sysfs_remove_nodes(hba->dev); 10114 blk_mq_destroy_queue(hba->tmf_queue); 10115 blk_put_queue(hba->tmf_queue); 10116 blk_mq_free_tag_set(&hba->tmf_tag_set); 10117 scsi_remove_host(hba->host); 10118 /* disable interrupts */ 10119 ufshcd_disable_intr(hba, hba->intr_mask); 10120 ufshcd_hba_stop(hba); 10121 ufshcd_hba_exit(hba); 10122 } 10123 EXPORT_SYMBOL_GPL(ufshcd_remove); 10124 10125 #ifdef CONFIG_PM_SLEEP 10126 int ufshcd_system_freeze(struct device *dev) 10127 { 10128 10129 return ufshcd_system_suspend(dev); 10130 10131 } 10132 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10133 10134 int ufshcd_system_restore(struct device *dev) 10135 { 10136 10137 struct ufs_hba *hba = dev_get_drvdata(dev); 10138 int ret; 10139 10140 ret = ufshcd_system_resume(dev); 10141 if (ret) 10142 return ret; 10143 10144 /* Configure UTRL and UTMRL base address registers */ 10145 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10146 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10147 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10148 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10149 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10150 REG_UTP_TASK_REQ_LIST_BASE_L); 10151 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10152 REG_UTP_TASK_REQ_LIST_BASE_H); 10153 /* 10154 * Make sure that UTRL and UTMRL base address registers 10155 * are updated with the latest queue addresses. Only after 10156 * updating these addresses, we can queue the new commands. 10157 */ 10158 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10159 10160 return 0; 10161 10162 } 10163 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10164 10165 int ufshcd_system_thaw(struct device *dev) 10166 { 10167 return ufshcd_system_resume(dev); 10168 } 10169 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10170 #endif /* CONFIG_PM_SLEEP */ 10171 10172 /** 10173 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10174 * @hba: pointer to Host Bus Adapter (HBA) 10175 */ 10176 void ufshcd_dealloc_host(struct ufs_hba *hba) 10177 { 10178 scsi_host_put(hba->host); 10179 } 10180 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10181 10182 /** 10183 * ufshcd_set_dma_mask - Set dma mask based on the controller 10184 * addressing capability 10185 * @hba: per adapter instance 10186 * 10187 * Return: 0 for success, non-zero for failure. 10188 */ 10189 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10190 { 10191 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10192 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10193 return 0; 10194 } 10195 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10196 } 10197 10198 /** 10199 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10200 * @dev: pointer to device handle 10201 * @hba_handle: driver private handle 10202 * 10203 * Return: 0 on success, non-zero value on failure. 10204 */ 10205 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10206 { 10207 struct Scsi_Host *host; 10208 struct ufs_hba *hba; 10209 int err = 0; 10210 10211 if (!dev) { 10212 dev_err(dev, 10213 "Invalid memory reference for dev is NULL\n"); 10214 err = -ENODEV; 10215 goto out_error; 10216 } 10217 10218 host = scsi_host_alloc(&ufshcd_driver_template, 10219 sizeof(struct ufs_hba)); 10220 if (!host) { 10221 dev_err(dev, "scsi_host_alloc failed\n"); 10222 err = -ENOMEM; 10223 goto out_error; 10224 } 10225 host->nr_maps = HCTX_TYPE_POLL + 1; 10226 hba = shost_priv(host); 10227 hba->host = host; 10228 hba->dev = dev; 10229 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10230 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10231 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10232 INIT_LIST_HEAD(&hba->clk_list_head); 10233 spin_lock_init(&hba->outstanding_lock); 10234 10235 *hba_handle = hba; 10236 10237 out_error: 10238 return err; 10239 } 10240 EXPORT_SYMBOL(ufshcd_alloc_host); 10241 10242 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10243 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10244 const struct blk_mq_queue_data *qd) 10245 { 10246 WARN_ON_ONCE(true); 10247 return BLK_STS_NOTSUPP; 10248 } 10249 10250 static const struct blk_mq_ops ufshcd_tmf_ops = { 10251 .queue_rq = ufshcd_queue_tmf, 10252 }; 10253 10254 /** 10255 * ufshcd_init - Driver initialization routine 10256 * @hba: per-adapter instance 10257 * @mmio_base: base register address 10258 * @irq: Interrupt line of device 10259 * 10260 * Return: 0 on success, non-zero value on failure. 10261 */ 10262 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10263 { 10264 int err; 10265 struct Scsi_Host *host = hba->host; 10266 struct device *dev = hba->dev; 10267 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 10268 10269 /* 10270 * dev_set_drvdata() must be called before any callbacks are registered 10271 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10272 * sysfs). 10273 */ 10274 dev_set_drvdata(dev, hba); 10275 10276 if (!mmio_base) { 10277 dev_err(hba->dev, 10278 "Invalid memory reference for mmio_base is NULL\n"); 10279 err = -ENODEV; 10280 goto out_error; 10281 } 10282 10283 hba->mmio_base = mmio_base; 10284 hba->irq = irq; 10285 hba->vps = &ufs_hba_vps; 10286 10287 err = ufshcd_hba_init(hba); 10288 if (err) 10289 goto out_error; 10290 10291 /* Read capabilities registers */ 10292 err = ufshcd_hba_capabilities(hba); 10293 if (err) 10294 goto out_disable; 10295 10296 /* Get UFS version supported by the controller */ 10297 hba->ufs_version = ufshcd_get_ufs_version(hba); 10298 10299 /* Get Interrupt bit mask per version */ 10300 hba->intr_mask = ufshcd_get_intr_mask(hba); 10301 10302 err = ufshcd_set_dma_mask(hba); 10303 if (err) { 10304 dev_err(hba->dev, "set dma mask failed\n"); 10305 goto out_disable; 10306 } 10307 10308 /* Allocate memory for host memory space */ 10309 err = ufshcd_memory_alloc(hba); 10310 if (err) { 10311 dev_err(hba->dev, "Memory allocation failed\n"); 10312 goto out_disable; 10313 } 10314 10315 /* Configure LRB */ 10316 ufshcd_host_memory_configure(hba); 10317 10318 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10319 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10320 host->max_id = UFSHCD_MAX_ID; 10321 host->max_lun = UFS_MAX_LUNS; 10322 host->max_channel = UFSHCD_MAX_CHANNEL; 10323 host->unique_id = host->host_no; 10324 host->max_cmd_len = UFS_CDB_SIZE; 10325 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10326 10327 hba->max_pwr_info.is_valid = false; 10328 10329 /* Initialize work queues */ 10330 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 10331 hba->host->host_no); 10332 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 10333 if (!hba->eh_wq) { 10334 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10335 __func__); 10336 err = -ENOMEM; 10337 goto out_disable; 10338 } 10339 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10340 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10341 10342 sema_init(&hba->host_sem, 1); 10343 10344 /* Initialize UIC command mutex */ 10345 mutex_init(&hba->uic_cmd_mutex); 10346 10347 /* Initialize mutex for device management commands */ 10348 mutex_init(&hba->dev_cmd.lock); 10349 10350 /* Initialize mutex for exception event control */ 10351 mutex_init(&hba->ee_ctrl_mutex); 10352 10353 mutex_init(&hba->wb_mutex); 10354 init_rwsem(&hba->clk_scaling_lock); 10355 10356 ufshcd_init_clk_gating(hba); 10357 10358 ufshcd_init_clk_scaling(hba); 10359 10360 /* 10361 * In order to avoid any spurious interrupt immediately after 10362 * registering UFS controller interrupt handler, clear any pending UFS 10363 * interrupt status and disable all the UFS interrupts. 10364 */ 10365 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10366 REG_INTERRUPT_STATUS); 10367 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10368 /* 10369 * Make sure that UFS interrupts are disabled and any pending interrupt 10370 * status is cleared before registering UFS interrupt handler. 10371 */ 10372 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10373 10374 /* IRQ registration */ 10375 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10376 if (err) { 10377 dev_err(hba->dev, "request irq failed\n"); 10378 goto out_disable; 10379 } else { 10380 hba->is_irq_enabled = true; 10381 } 10382 10383 if (!is_mcq_supported(hba)) { 10384 err = scsi_add_host(host, hba->dev); 10385 if (err) { 10386 dev_err(hba->dev, "scsi_add_host failed\n"); 10387 goto out_disable; 10388 } 10389 } 10390 10391 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10392 .nr_hw_queues = 1, 10393 .queue_depth = hba->nutmrs, 10394 .ops = &ufshcd_tmf_ops, 10395 .flags = BLK_MQ_F_NO_SCHED, 10396 }; 10397 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10398 if (err < 0) 10399 goto out_remove_scsi_host; 10400 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 10401 if (IS_ERR(hba->tmf_queue)) { 10402 err = PTR_ERR(hba->tmf_queue); 10403 goto free_tmf_tag_set; 10404 } 10405 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10406 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10407 if (!hba->tmf_rqs) { 10408 err = -ENOMEM; 10409 goto free_tmf_queue; 10410 } 10411 10412 /* Reset the attached device */ 10413 ufshcd_device_reset(hba); 10414 10415 ufshcd_init_crypto(hba); 10416 10417 /* Host controller enable */ 10418 err = ufshcd_hba_enable(hba); 10419 if (err) { 10420 dev_err(hba->dev, "Host controller enable failed\n"); 10421 ufshcd_print_evt_hist(hba); 10422 ufshcd_print_host_state(hba); 10423 goto free_tmf_queue; 10424 } 10425 10426 /* 10427 * Set the default power management level for runtime and system PM. 10428 * Default power saving mode is to keep UFS link in Hibern8 state 10429 * and UFS device in sleep state. 10430 */ 10431 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10432 UFS_SLEEP_PWR_MODE, 10433 UIC_LINK_HIBERN8_STATE); 10434 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10435 UFS_SLEEP_PWR_MODE, 10436 UIC_LINK_HIBERN8_STATE); 10437 10438 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 10439 ufshcd_rpm_dev_flush_recheck_work); 10440 10441 /* Set the default auto-hiberate idle timer value to 150 ms */ 10442 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10443 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10444 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10445 } 10446 10447 /* Hold auto suspend until async scan completes */ 10448 pm_runtime_get_sync(dev); 10449 atomic_set(&hba->scsi_block_reqs_cnt, 0); 10450 /* 10451 * We are assuming that device wasn't put in sleep/power-down 10452 * state exclusively during the boot stage before kernel. 10453 * This assumption helps avoid doing link startup twice during 10454 * ufshcd_probe_hba(). 10455 */ 10456 ufshcd_set_ufs_dev_active(hba); 10457 10458 async_schedule(ufshcd_async_scan, hba); 10459 ufs_sysfs_add_nodes(hba->dev); 10460 10461 device_enable_async_suspend(dev); 10462 return 0; 10463 10464 free_tmf_queue: 10465 blk_mq_destroy_queue(hba->tmf_queue); 10466 blk_put_queue(hba->tmf_queue); 10467 free_tmf_tag_set: 10468 blk_mq_free_tag_set(&hba->tmf_tag_set); 10469 out_remove_scsi_host: 10470 scsi_remove_host(hba->host); 10471 out_disable: 10472 hba->is_irq_enabled = false; 10473 ufshcd_hba_exit(hba); 10474 out_error: 10475 return err; 10476 } 10477 EXPORT_SYMBOL_GPL(ufshcd_init); 10478 10479 void ufshcd_resume_complete(struct device *dev) 10480 { 10481 struct ufs_hba *hba = dev_get_drvdata(dev); 10482 10483 if (hba->complete_put) { 10484 ufshcd_rpm_put(hba); 10485 hba->complete_put = false; 10486 } 10487 } 10488 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10489 10490 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10491 { 10492 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10493 enum ufs_dev_pwr_mode dev_pwr_mode; 10494 enum uic_link_state link_state; 10495 unsigned long flags; 10496 bool res; 10497 10498 spin_lock_irqsave(&dev->power.lock, flags); 10499 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10500 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10501 res = pm_runtime_suspended(dev) && 10502 hba->curr_dev_pwr_mode == dev_pwr_mode && 10503 hba->uic_link_state == link_state && 10504 !hba->dev_info.b_rpm_dev_flush_capable; 10505 spin_unlock_irqrestore(&dev->power.lock, flags); 10506 10507 return res; 10508 } 10509 10510 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10511 { 10512 struct ufs_hba *hba = dev_get_drvdata(dev); 10513 int ret; 10514 10515 /* 10516 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10517 * are same. And it doesn't wake up the device for system-suspend 10518 * if it's runtime suspended. But ufs doesn't follow that. 10519 * Refer ufshcd_resume_complete() 10520 */ 10521 if (hba->ufs_device_wlun) { 10522 /* Prevent runtime suspend */ 10523 ufshcd_rpm_get_noresume(hba); 10524 /* 10525 * Check if already runtime suspended in same state as system 10526 * suspend would be. 10527 */ 10528 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10529 /* RPM state is not ok for SPM, so runtime resume */ 10530 ret = ufshcd_rpm_resume(hba); 10531 if (ret < 0 && ret != -EACCES) { 10532 ufshcd_rpm_put(hba); 10533 return ret; 10534 } 10535 } 10536 hba->complete_put = true; 10537 } 10538 return 0; 10539 } 10540 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10541 10542 int ufshcd_suspend_prepare(struct device *dev) 10543 { 10544 return __ufshcd_suspend_prepare(dev, true); 10545 } 10546 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10547 10548 #ifdef CONFIG_PM_SLEEP 10549 static int ufshcd_wl_poweroff(struct device *dev) 10550 { 10551 struct scsi_device *sdev = to_scsi_device(dev); 10552 struct ufs_hba *hba = shost_priv(sdev->host); 10553 10554 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10555 return 0; 10556 } 10557 #endif 10558 10559 static int ufshcd_wl_probe(struct device *dev) 10560 { 10561 struct scsi_device *sdev = to_scsi_device(dev); 10562 10563 if (!is_device_wlun(sdev)) 10564 return -ENODEV; 10565 10566 blk_pm_runtime_init(sdev->request_queue, dev); 10567 pm_runtime_set_autosuspend_delay(dev, 0); 10568 pm_runtime_allow(dev); 10569 10570 return 0; 10571 } 10572 10573 static int ufshcd_wl_remove(struct device *dev) 10574 { 10575 pm_runtime_forbid(dev); 10576 return 0; 10577 } 10578 10579 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10580 #ifdef CONFIG_PM_SLEEP 10581 .suspend = ufshcd_wl_suspend, 10582 .resume = ufshcd_wl_resume, 10583 .freeze = ufshcd_wl_suspend, 10584 .thaw = ufshcd_wl_resume, 10585 .poweroff = ufshcd_wl_poweroff, 10586 .restore = ufshcd_wl_resume, 10587 #endif 10588 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10589 }; 10590 10591 static void ufshcd_check_header_layout(void) 10592 { 10593 /* 10594 * gcc compilers before version 10 cannot do constant-folding for 10595 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10596 * before. 10597 */ 10598 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10599 return; 10600 10601 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10602 .cci = 3})[0] != 3); 10603 10604 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10605 .ehs_length = 2})[1] != 2); 10606 10607 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10608 .enable_crypto = 1})[2] 10609 != 0x80); 10610 10611 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10612 .command_type = 5, 10613 .data_direction = 3, 10614 .interrupt = 1, 10615 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10616 10617 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10618 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10619 cpu_to_le32(0xdeadbeef)); 10620 10621 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10622 .ocs = 4})[8] != 4); 10623 10624 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10625 .cds = 5})[9] != 5); 10626 10627 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10628 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10629 cpu_to_le32(0xbadcafe)); 10630 10631 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10632 .iid = 0xf })[4] != 0xf0); 10633 10634 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10635 .command_set_type = 0xf })[4] != 0xf); 10636 } 10637 10638 /* 10639 * ufs_dev_wlun_template - describes ufs device wlun 10640 * ufs-device wlun - used to send pm commands 10641 * All luns are consumers of ufs-device wlun. 10642 * 10643 * Currently, no sd driver is present for wluns. 10644 * Hence the no specific pm operations are performed. 10645 * With ufs design, SSU should be sent to ufs-device wlun. 10646 * Hence register a scsi driver for ufs wluns only. 10647 */ 10648 static struct scsi_driver ufs_dev_wlun_template = { 10649 .gendrv = { 10650 .name = "ufs_device_wlun", 10651 .owner = THIS_MODULE, 10652 .probe = ufshcd_wl_probe, 10653 .remove = ufshcd_wl_remove, 10654 .pm = &ufshcd_wl_pm_ops, 10655 .shutdown = ufshcd_wl_shutdown, 10656 }, 10657 }; 10658 10659 static int __init ufshcd_core_init(void) 10660 { 10661 int ret; 10662 10663 ufshcd_check_header_layout(); 10664 10665 ufs_debugfs_init(); 10666 10667 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10668 if (ret) 10669 ufs_debugfs_exit(); 10670 return ret; 10671 } 10672 10673 static void __exit ufshcd_core_exit(void) 10674 { 10675 ufs_debugfs_exit(); 10676 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10677 } 10678 10679 module_init(ufshcd_core_init); 10680 module_exit(ufshcd_core_exit); 10681 10682 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10683 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10684 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10685 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10686 MODULE_LICENSE("GPL"); 10687