xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 515bddf0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode, refer param_set_mcq_mode() */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 static int param_set_mcq_mode(const char *val, const struct kernel_param *kp)
110 {
111 	int ret;
112 
113 	ret = param_set_bool(val, kp);
114 	if (ret)
115 		return ret;
116 
117 	return 0;
118 }
119 
120 static const struct kernel_param_ops mcq_mode_ops = {
121 	.set = param_set_mcq_mode,
122 	.get = param_get_bool,
123 };
124 
125 module_param_cb(use_mcq_mode, &mcq_mode_ops, &use_mcq_mode, 0644);
126 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
127 
128 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
129 	({                                                              \
130 		int _ret;                                               \
131 		if (_on)                                                \
132 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
133 		else                                                    \
134 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
135 		_ret;                                                   \
136 	})
137 
138 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
139 	size_t __len = (len);                                            \
140 	print_hex_dump(KERN_ERR, prefix_str,                             \
141 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
142 		       16, 4, buf, __len, false);                        \
143 } while (0)
144 
145 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
146 		     const char *prefix)
147 {
148 	u32 *regs;
149 	size_t pos;
150 
151 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
152 		return -EINVAL;
153 
154 	regs = kzalloc(len, GFP_ATOMIC);
155 	if (!regs)
156 		return -ENOMEM;
157 
158 	for (pos = 0; pos < len; pos += 4) {
159 		if (offset == 0 &&
160 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
161 		    pos <= REG_UIC_ERROR_CODE_DME)
162 			continue;
163 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
164 	}
165 
166 	ufshcd_hex_dump(prefix, regs, len);
167 	kfree(regs);
168 
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
172 
173 enum {
174 	UFSHCD_MAX_CHANNEL	= 0,
175 	UFSHCD_MAX_ID		= 1,
176 	UFSHCD_NUM_RESERVED	= 1,
177 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
178 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
179 };
180 
181 static const char *const ufshcd_state_name[] = {
182 	[UFSHCD_STATE_RESET]			= "reset",
183 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
184 	[UFSHCD_STATE_ERROR]			= "error",
185 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
186 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
187 };
188 
189 /* UFSHCD error handling flags */
190 enum {
191 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
192 };
193 
194 /* UFSHCD UIC layer error flags */
195 enum {
196 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
197 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
198 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
199 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
200 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
201 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
202 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
203 };
204 
205 #define ufshcd_set_eh_in_progress(h) \
206 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
207 #define ufshcd_eh_in_progress(h) \
208 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
209 #define ufshcd_clear_eh_in_progress(h) \
210 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
211 
212 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
213 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
214 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
215 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
216 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
217 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
218 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
219 	/*
220 	 * For DeepSleep, the link is first put in hibern8 and then off.
221 	 * Leaving the link in hibern8 is not supported.
222 	 */
223 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
224 };
225 
226 static inline enum ufs_dev_pwr_mode
227 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
228 {
229 	return ufs_pm_lvl_states[lvl].dev_state;
230 }
231 
232 static inline enum uic_link_state
233 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
234 {
235 	return ufs_pm_lvl_states[lvl].link_state;
236 }
237 
238 static inline enum ufs_pm_level
239 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
240 					enum uic_link_state link_state)
241 {
242 	enum ufs_pm_level lvl;
243 
244 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
245 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
246 			(ufs_pm_lvl_states[lvl].link_state == link_state))
247 			return lvl;
248 	}
249 
250 	/* if no match found, return the level 0 */
251 	return UFS_PM_LVL_0;
252 }
253 
254 static const struct ufs_dev_quirk ufs_fixups[] = {
255 	/* UFS cards deviations table */
256 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
257 	  .model = UFS_ANY_MODEL,
258 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
259 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
260 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
261 	  .model = UFS_ANY_MODEL,
262 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
263 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
264 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
265 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
266 	  .model = UFS_ANY_MODEL,
267 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
268 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
269 	  .model = "hB8aL1" /*H28U62301AMR*/,
270 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
271 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
272 	  .model = UFS_ANY_MODEL,
273 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
274 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
275 	  .model = "THGLF2G9C8KBADG",
276 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
277 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
278 	  .model = "THGLF2G9D8KBADG",
279 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
280 	{}
281 };
282 
283 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
284 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
285 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
286 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
287 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
288 static void ufshcd_hba_exit(struct ufs_hba *hba);
289 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
290 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
291 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
292 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
293 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
294 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
295 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
296 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
297 static irqreturn_t ufshcd_intr(int irq, void *__hba);
298 static int ufshcd_change_power_mode(struct ufs_hba *hba,
299 			     struct ufs_pa_layer_attr *pwr_mode);
300 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
301 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
302 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
303 					 struct ufs_vreg *vreg);
304 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
305 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
306 						 bool enable);
307 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
308 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
309 
310 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
311 {
312 	if (!hba->is_irq_enabled) {
313 		enable_irq(hba->irq);
314 		hba->is_irq_enabled = true;
315 	}
316 }
317 
318 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
319 {
320 	if (hba->is_irq_enabled) {
321 		disable_irq(hba->irq);
322 		hba->is_irq_enabled = false;
323 	}
324 }
325 
326 static void ufshcd_configure_wb(struct ufs_hba *hba)
327 {
328 	if (!ufshcd_is_wb_allowed(hba))
329 		return;
330 
331 	ufshcd_wb_toggle(hba, true);
332 
333 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
334 
335 	if (ufshcd_is_wb_buf_flush_allowed(hba))
336 		ufshcd_wb_toggle_buf_flush(hba, true);
337 }
338 
339 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
340 {
341 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
342 		scsi_unblock_requests(hba->host);
343 }
344 
345 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
346 {
347 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
348 		scsi_block_requests(hba->host);
349 }
350 
351 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
352 				      enum ufs_trace_str_t str_t)
353 {
354 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
355 	struct utp_upiu_header *header;
356 
357 	if (!trace_ufshcd_upiu_enabled())
358 		return;
359 
360 	if (str_t == UFS_CMD_SEND)
361 		header = &rq->header;
362 	else
363 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
364 
365 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
366 			  UFS_TSF_CDB);
367 }
368 
369 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
370 					enum ufs_trace_str_t str_t,
371 					struct utp_upiu_req *rq_rsp)
372 {
373 	if (!trace_ufshcd_upiu_enabled())
374 		return;
375 
376 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
377 			  &rq_rsp->qr, UFS_TSF_OSF);
378 }
379 
380 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
381 				     enum ufs_trace_str_t str_t)
382 {
383 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
384 
385 	if (!trace_ufshcd_upiu_enabled())
386 		return;
387 
388 	if (str_t == UFS_TM_SEND)
389 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
390 				  &descp->upiu_req.req_header,
391 				  &descp->upiu_req.input_param1,
392 				  UFS_TSF_TM_INPUT);
393 	else
394 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
395 				  &descp->upiu_rsp.rsp_header,
396 				  &descp->upiu_rsp.output_param1,
397 				  UFS_TSF_TM_OUTPUT);
398 }
399 
400 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
401 					 const struct uic_command *ucmd,
402 					 enum ufs_trace_str_t str_t)
403 {
404 	u32 cmd;
405 
406 	if (!trace_ufshcd_uic_command_enabled())
407 		return;
408 
409 	if (str_t == UFS_CMD_SEND)
410 		cmd = ucmd->command;
411 	else
412 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
413 
414 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
415 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
416 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
417 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
418 }
419 
420 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
421 				     enum ufs_trace_str_t str_t)
422 {
423 	u64 lba = 0;
424 	u8 opcode = 0, group_id = 0;
425 	u32 intr, doorbell;
426 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
427 	struct scsi_cmnd *cmd = lrbp->cmd;
428 	struct request *rq = scsi_cmd_to_rq(cmd);
429 	int transfer_len = -1;
430 
431 	if (!cmd)
432 		return;
433 
434 	/* trace UPIU also */
435 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
436 	if (!trace_ufshcd_command_enabled())
437 		return;
438 
439 	opcode = cmd->cmnd[0];
440 
441 	if (opcode == READ_10 || opcode == WRITE_10) {
442 		/*
443 		 * Currently we only fully trace read(10) and write(10) commands
444 		 */
445 		transfer_len =
446 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
447 		lba = scsi_get_lba(cmd);
448 		if (opcode == WRITE_10)
449 			group_id = lrbp->cmd->cmnd[6];
450 	} else if (opcode == UNMAP) {
451 		/*
452 		 * The number of Bytes to be unmapped beginning with the lba.
453 		 */
454 		transfer_len = blk_rq_bytes(rq);
455 		lba = scsi_get_lba(cmd);
456 	}
457 
458 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
459 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
460 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
461 			doorbell, transfer_len, intr, lba, opcode, group_id);
462 }
463 
464 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
465 {
466 	struct ufs_clk_info *clki;
467 	struct list_head *head = &hba->clk_list_head;
468 
469 	if (list_empty(head))
470 		return;
471 
472 	list_for_each_entry(clki, head, list) {
473 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
474 				clki->max_freq)
475 			dev_err(hba->dev, "clk: %s, rate: %u\n",
476 					clki->name, clki->curr_freq);
477 	}
478 }
479 
480 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
481 			     const char *err_name)
482 {
483 	int i;
484 	bool found = false;
485 	const struct ufs_event_hist *e;
486 
487 	if (id >= UFS_EVT_CNT)
488 		return;
489 
490 	e = &hba->ufs_stats.event[id];
491 
492 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
493 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
494 
495 		if (e->tstamp[p] == 0)
496 			continue;
497 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
498 			e->val[p], div_u64(e->tstamp[p], 1000));
499 		found = true;
500 	}
501 
502 	if (!found)
503 		dev_err(hba->dev, "No record of %s\n", err_name);
504 	else
505 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
506 }
507 
508 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
509 {
510 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
511 
512 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
513 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
514 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
515 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
517 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
518 			 "auto_hibern8_err");
519 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
520 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
521 			 "link_startup_fail");
522 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
523 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
524 			 "suspend_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
526 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
527 			 "wlun suspend_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
529 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
530 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
531 
532 	ufshcd_vops_dbg_register_dump(hba);
533 }
534 
535 static
536 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
537 {
538 	const struct ufshcd_lrb *lrbp;
539 	int prdt_length;
540 	int tag;
541 
542 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
543 		lrbp = &hba->lrb[tag];
544 
545 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 				tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 				tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 		dev_err(hba->dev,
550 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 			tag, (u64)lrbp->utrd_dma_addr);
552 
553 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 				sizeof(struct utp_transfer_req_desc));
555 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 			(u64)lrbp->ucd_req_dma_addr);
557 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 				sizeof(struct utp_upiu_req));
559 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 			(u64)lrbp->ucd_rsp_dma_addr);
561 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 				sizeof(struct utp_upiu_rsp));
563 
564 		prdt_length = le16_to_cpu(
565 			lrbp->utr_descriptor_ptr->prd_table_length);
566 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 			prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 		dev_err(hba->dev,
570 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 			tag, prdt_length,
572 			(u64)lrbp->ucd_prdt_dma_addr);
573 
574 		if (pr_prdt)
575 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 				ufshcd_sg_entry_size(hba) * prdt_length);
577 	}
578 }
579 
580 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
581 {
582 	int tag;
583 
584 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
585 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
586 
587 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
588 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
589 	}
590 }
591 
592 static void ufshcd_print_host_state(struct ufs_hba *hba)
593 {
594 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
595 
596 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
597 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
598 		hba->outstanding_reqs, hba->outstanding_tasks);
599 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
600 		hba->saved_err, hba->saved_uic_err);
601 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
602 		hba->curr_dev_pwr_mode, hba->uic_link_state);
603 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
604 		hba->pm_op_in_progress, hba->is_sys_suspended);
605 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
606 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
607 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
608 	dev_err(hba->dev,
609 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
610 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
611 		hba->ufs_stats.hibern8_exit_cnt);
612 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
613 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
614 		hba->ufs_stats.last_intr_status);
615 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
616 		hba->eh_flags, hba->req_abort_count);
617 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
618 		hba->ufs_version, hba->capabilities, hba->caps);
619 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
620 		hba->dev_quirks);
621 	if (sdev_ufs)
622 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
623 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
624 
625 	ufshcd_print_clk_freqs(hba);
626 }
627 
628 /**
629  * ufshcd_print_pwr_info - print power params as saved in hba
630  * power info
631  * @hba: per-adapter instance
632  */
633 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
634 {
635 	static const char * const names[] = {
636 		"INVALID MODE",
637 		"FAST MODE",
638 		"SLOW_MODE",
639 		"INVALID MODE",
640 		"FASTAUTO_MODE",
641 		"SLOWAUTO_MODE",
642 		"INVALID MODE",
643 	};
644 
645 	/*
646 	 * Using dev_dbg to avoid messages during runtime PM to avoid
647 	 * never-ending cycles of messages written back to storage by user space
648 	 * causing runtime resume, causing more messages and so on.
649 	 */
650 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
651 		 __func__,
652 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
653 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
654 		 names[hba->pwr_info.pwr_rx],
655 		 names[hba->pwr_info.pwr_tx],
656 		 hba->pwr_info.hs_rate);
657 }
658 
659 static void ufshcd_device_reset(struct ufs_hba *hba)
660 {
661 	int err;
662 
663 	err = ufshcd_vops_device_reset(hba);
664 
665 	if (!err) {
666 		ufshcd_set_ufs_dev_active(hba);
667 		if (ufshcd_is_wb_allowed(hba)) {
668 			hba->dev_info.wb_enabled = false;
669 			hba->dev_info.wb_buf_flush_enabled = false;
670 		}
671 	}
672 	if (err != -EOPNOTSUPP)
673 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
674 }
675 
676 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
677 {
678 	if (!us)
679 		return;
680 
681 	if (us < 10)
682 		udelay(us);
683 	else
684 		usleep_range(us, us + tolerance);
685 }
686 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
687 
688 /**
689  * ufshcd_wait_for_register - wait for register value to change
690  * @hba: per-adapter interface
691  * @reg: mmio register offset
692  * @mask: mask to apply to the read register value
693  * @val: value to wait for
694  * @interval_us: polling interval in microseconds
695  * @timeout_ms: timeout in milliseconds
696  *
697  * Return:
698  * -ETIMEDOUT on error, zero on success.
699  */
700 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
701 				u32 val, unsigned long interval_us,
702 				unsigned long timeout_ms)
703 {
704 	int err = 0;
705 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
706 
707 	/* ignore bits that we don't intend to wait on */
708 	val = val & mask;
709 
710 	while ((ufshcd_readl(hba, reg) & mask) != val) {
711 		usleep_range(interval_us, interval_us + 50);
712 		if (time_after(jiffies, timeout)) {
713 			if ((ufshcd_readl(hba, reg) & mask) != val)
714 				err = -ETIMEDOUT;
715 			break;
716 		}
717 	}
718 
719 	return err;
720 }
721 
722 /**
723  * ufshcd_get_intr_mask - Get the interrupt bit mask
724  * @hba: Pointer to adapter instance
725  *
726  * Returns interrupt bit mask per version
727  */
728 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
729 {
730 	if (hba->ufs_version == ufshci_version(1, 0))
731 		return INTERRUPT_MASK_ALL_VER_10;
732 	if (hba->ufs_version <= ufshci_version(2, 0))
733 		return INTERRUPT_MASK_ALL_VER_11;
734 
735 	return INTERRUPT_MASK_ALL_VER_21;
736 }
737 
738 /**
739  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
740  * @hba: Pointer to adapter instance
741  *
742  * Returns UFSHCI version supported by the controller
743  */
744 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
745 {
746 	u32 ufshci_ver;
747 
748 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
749 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
750 	else
751 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
752 
753 	/*
754 	 * UFSHCI v1.x uses a different version scheme, in order
755 	 * to allow the use of comparisons with the ufshci_version
756 	 * function, we convert it to the same scheme as ufs 2.0+.
757 	 */
758 	if (ufshci_ver & 0x00010000)
759 		return ufshci_version(1, ufshci_ver & 0x00000100);
760 
761 	return ufshci_ver;
762 }
763 
764 /**
765  * ufshcd_is_device_present - Check if any device connected to
766  *			      the host controller
767  * @hba: pointer to adapter instance
768  *
769  * Returns true if device present, false if no device detected
770  */
771 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
772 {
773 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
774 }
775 
776 /**
777  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
778  * @lrbp: pointer to local command reference block
779  * @cqe: pointer to the completion queue entry
780  *
781  * This function is used to get the OCS field from UTRD
782  * Returns the OCS field in the UTRD
783  */
784 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
785 				      struct cq_entry *cqe)
786 {
787 	if (cqe)
788 		return le32_to_cpu(cqe->status) & MASK_OCS;
789 
790 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
791 }
792 
793 /**
794  * ufshcd_utrl_clear() - Clear requests from the controller request list.
795  * @hba: per adapter instance
796  * @mask: mask with one bit set for each request to be cleared
797  */
798 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
799 {
800 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
801 		mask = ~mask;
802 	/*
803 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
804 	 * Register (UTRLCLR): This field is bit significant. Each bit
805 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
806 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
807 	 * by host software to indicate to the host controller that a transfer
808 	 * request slot is cleared. The host controller
809 	 * shall free up any resources associated to the request slot
810 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
811 	 * host software indicates no change to request slots by setting the
812 	 * associated bits in this field to ‘1’. Bits in this field shall only
813 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
814 	 */
815 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
816 }
817 
818 /**
819  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
820  * @hba: per adapter instance
821  * @pos: position of the bit to be cleared
822  */
823 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
824 {
825 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
826 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
827 	else
828 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
829 }
830 
831 /**
832  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
833  * @reg: Register value of host controller status
834  *
835  * Returns integer, 0 on Success and positive value if failed
836  */
837 static inline int ufshcd_get_lists_status(u32 reg)
838 {
839 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
840 }
841 
842 /**
843  * ufshcd_get_uic_cmd_result - Get the UIC command result
844  * @hba: Pointer to adapter instance
845  *
846  * This function gets the result of UIC command completion
847  * Returns 0 on success, non zero value on error
848  */
849 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
850 {
851 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
852 	       MASK_UIC_COMMAND_RESULT;
853 }
854 
855 /**
856  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
857  * @hba: Pointer to adapter instance
858  *
859  * This function gets UIC command argument3
860  * Returns 0 on success, non zero value on error
861  */
862 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
863 {
864 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
865 }
866 
867 /**
868  * ufshcd_get_req_rsp - returns the TR response transaction type
869  * @ucd_rsp_ptr: pointer to response UPIU
870  */
871 static inline int
872 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
873 {
874 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
875 }
876 
877 /**
878  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * This function gets the response status and scsi_status from response UPIU
882  * Returns the response result code.
883  */
884 static inline int
885 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
886 {
887 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
888 }
889 
890 /*
891  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
892  *				from response UPIU
893  * @ucd_rsp_ptr: pointer to response UPIU
894  *
895  * Return the data segment length.
896  */
897 static inline unsigned int
898 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
901 		MASK_RSP_UPIU_DATA_SEG_LEN;
902 }
903 
904 /**
905  * ufshcd_is_exception_event - Check if the device raised an exception event
906  * @ucd_rsp_ptr: pointer to response UPIU
907  *
908  * The function checks if the device raised an exception event indicated in
909  * the Device Information field of response UPIU.
910  *
911  * Returns true if exception is raised, false otherwise.
912  */
913 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
914 {
915 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
916 			MASK_RSP_EXCEPTION_EVENT;
917 }
918 
919 /**
920  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
921  * @hba: per adapter instance
922  */
923 static inline void
924 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
925 {
926 	ufshcd_writel(hba, INT_AGGR_ENABLE |
927 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
928 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930 
931 /**
932  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
933  * @hba: per adapter instance
934  * @cnt: Interrupt aggregation counter threshold
935  * @tmout: Interrupt aggregation timeout value
936  */
937 static inline void
938 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
939 {
940 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
941 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
942 		      INT_AGGR_TIMEOUT_VAL(tmout),
943 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
944 }
945 
946 /**
947  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
948  * @hba: per adapter instance
949  */
950 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
951 {
952 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954 
955 /**
956  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
957  *			When run-stop registers are set to 1, it indicates the
958  *			host controller that it can process the requests
959  * @hba: per adapter instance
960  */
961 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
962 {
963 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
965 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
966 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
967 }
968 
969 /**
970  * ufshcd_hba_start - Start controller initialization sequence
971  * @hba: per adapter instance
972  */
973 static inline void ufshcd_hba_start(struct ufs_hba *hba)
974 {
975 	u32 val = CONTROLLER_ENABLE;
976 
977 	if (ufshcd_crypto_enable(hba))
978 		val |= CRYPTO_GENERAL_ENABLE;
979 
980 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
981 }
982 
983 /**
984  * ufshcd_is_hba_active - Get controller state
985  * @hba: per adapter instance
986  *
987  * Returns true if and only if the controller is active.
988  */
989 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
990 {
991 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
992 }
993 
994 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
995 {
996 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
997 	if (hba->ufs_version <= ufshci_version(1, 1))
998 		return UFS_UNIPRO_VER_1_41;
999 	else
1000 		return UFS_UNIPRO_VER_1_6;
1001 }
1002 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1003 
1004 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1005 {
1006 	/*
1007 	 * If both host and device support UniPro ver1.6 or later, PA layer
1008 	 * parameters tuning happens during link startup itself.
1009 	 *
1010 	 * We can manually tune PA layer parameters if either host or device
1011 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1012 	 * logic simple, we will only do manual tuning if local unipro version
1013 	 * doesn't support ver1.6 or later.
1014 	 */
1015 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1016 }
1017 
1018 /**
1019  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1020  * @hba: per adapter instance
1021  * @scale_up: If True, set max possible frequency othewise set low frequency
1022  *
1023  * Returns 0 if successful
1024  * Returns < 0 for any other errors
1025  */
1026 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1027 {
1028 	int ret = 0;
1029 	struct ufs_clk_info *clki;
1030 	struct list_head *head = &hba->clk_list_head;
1031 
1032 	if (list_empty(head))
1033 		goto out;
1034 
1035 	list_for_each_entry(clki, head, list) {
1036 		if (!IS_ERR_OR_NULL(clki->clk)) {
1037 			if (scale_up && clki->max_freq) {
1038 				if (clki->curr_freq == clki->max_freq)
1039 					continue;
1040 
1041 				ret = clk_set_rate(clki->clk, clki->max_freq);
1042 				if (ret) {
1043 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1044 						__func__, clki->name,
1045 						clki->max_freq, ret);
1046 					break;
1047 				}
1048 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1049 						"scaled up", clki->name,
1050 						clki->curr_freq,
1051 						clki->max_freq);
1052 
1053 				clki->curr_freq = clki->max_freq;
1054 
1055 			} else if (!scale_up && clki->min_freq) {
1056 				if (clki->curr_freq == clki->min_freq)
1057 					continue;
1058 
1059 				ret = clk_set_rate(clki->clk, clki->min_freq);
1060 				if (ret) {
1061 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1062 						__func__, clki->name,
1063 						clki->min_freq, ret);
1064 					break;
1065 				}
1066 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1067 						"scaled down", clki->name,
1068 						clki->curr_freq,
1069 						clki->min_freq);
1070 				clki->curr_freq = clki->min_freq;
1071 			}
1072 		}
1073 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1074 				clki->name, clk_get_rate(clki->clk));
1075 	}
1076 
1077 out:
1078 	return ret;
1079 }
1080 
1081 /**
1082  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1083  * @hba: per adapter instance
1084  * @scale_up: True if scaling up and false if scaling down
1085  *
1086  * Returns 0 if successful
1087  * Returns < 0 for any other errors
1088  */
1089 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1090 {
1091 	int ret = 0;
1092 	ktime_t start = ktime_get();
1093 
1094 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1095 	if (ret)
1096 		goto out;
1097 
1098 	ret = ufshcd_set_clk_freq(hba, scale_up);
1099 	if (ret)
1100 		goto out;
1101 
1102 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1103 	if (ret)
1104 		ufshcd_set_clk_freq(hba, !scale_up);
1105 
1106 out:
1107 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1108 			(scale_up ? "up" : "down"),
1109 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1110 	return ret;
1111 }
1112 
1113 /**
1114  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1115  * @hba: per adapter instance
1116  * @scale_up: True if scaling up and false if scaling down
1117  *
1118  * Returns true if scaling is required, false otherwise.
1119  */
1120 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1121 					       bool scale_up)
1122 {
1123 	struct ufs_clk_info *clki;
1124 	struct list_head *head = &hba->clk_list_head;
1125 
1126 	if (list_empty(head))
1127 		return false;
1128 
1129 	list_for_each_entry(clki, head, list) {
1130 		if (!IS_ERR_OR_NULL(clki->clk)) {
1131 			if (scale_up && clki->max_freq) {
1132 				if (clki->curr_freq == clki->max_freq)
1133 					continue;
1134 				return true;
1135 			} else if (!scale_up && clki->min_freq) {
1136 				if (clki->curr_freq == clki->min_freq)
1137 					continue;
1138 				return true;
1139 			}
1140 		}
1141 	}
1142 
1143 	return false;
1144 }
1145 
1146 /*
1147  * Determine the number of pending commands by counting the bits in the SCSI
1148  * device budget maps. This approach has been selected because a bit is set in
1149  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1150  * flag. The host_self_blocked flag can be modified by calling
1151  * scsi_block_requests() or scsi_unblock_requests().
1152  */
1153 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1154 {
1155 	const struct scsi_device *sdev;
1156 	u32 pending = 0;
1157 
1158 	lockdep_assert_held(hba->host->host_lock);
1159 	__shost_for_each_device(sdev, hba->host)
1160 		pending += sbitmap_weight(&sdev->budget_map);
1161 
1162 	return pending;
1163 }
1164 
1165 /*
1166  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1167  * has expired.
1168  *
1169  * Return: 0 upon success; -EBUSY upon timeout.
1170  */
1171 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1172 					u64 wait_timeout_us)
1173 {
1174 	unsigned long flags;
1175 	int ret = 0;
1176 	u32 tm_doorbell;
1177 	u32 tr_pending;
1178 	bool timeout = false, do_last_check = false;
1179 	ktime_t start;
1180 
1181 	ufshcd_hold(hba, false);
1182 	spin_lock_irqsave(hba->host->host_lock, flags);
1183 	/*
1184 	 * Wait for all the outstanding tasks/transfer requests.
1185 	 * Verify by checking the doorbell registers are clear.
1186 	 */
1187 	start = ktime_get();
1188 	do {
1189 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1190 			ret = -EBUSY;
1191 			goto out;
1192 		}
1193 
1194 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1195 		tr_pending = ufshcd_pending_cmds(hba);
1196 		if (!tm_doorbell && !tr_pending) {
1197 			timeout = false;
1198 			break;
1199 		} else if (do_last_check) {
1200 			break;
1201 		}
1202 
1203 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1204 		io_schedule_timeout(msecs_to_jiffies(20));
1205 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1206 		    wait_timeout_us) {
1207 			timeout = true;
1208 			/*
1209 			 * We might have scheduled out for long time so make
1210 			 * sure to check if doorbells are cleared by this time
1211 			 * or not.
1212 			 */
1213 			do_last_check = true;
1214 		}
1215 		spin_lock_irqsave(hba->host->host_lock, flags);
1216 	} while (tm_doorbell || tr_pending);
1217 
1218 	if (timeout) {
1219 		dev_err(hba->dev,
1220 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1221 			__func__, tm_doorbell, tr_pending);
1222 		ret = -EBUSY;
1223 	}
1224 out:
1225 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1226 	ufshcd_release(hba);
1227 	return ret;
1228 }
1229 
1230 /**
1231  * ufshcd_scale_gear - scale up/down UFS gear
1232  * @hba: per adapter instance
1233  * @scale_up: True for scaling up gear and false for scaling down
1234  *
1235  * Returns 0 for success,
1236  * Returns -EBUSY if scaling can't happen at this time
1237  * Returns non-zero for any other errors
1238  */
1239 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1240 {
1241 	int ret = 0;
1242 	struct ufs_pa_layer_attr new_pwr_info;
1243 
1244 	if (scale_up) {
1245 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1246 		       sizeof(struct ufs_pa_layer_attr));
1247 	} else {
1248 		memcpy(&new_pwr_info, &hba->pwr_info,
1249 		       sizeof(struct ufs_pa_layer_attr));
1250 
1251 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1252 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1253 			/* save the current power mode */
1254 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1255 				&hba->pwr_info,
1256 				sizeof(struct ufs_pa_layer_attr));
1257 
1258 			/* scale down gear */
1259 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1260 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1261 		}
1262 	}
1263 
1264 	/* check if the power mode needs to be changed or not? */
1265 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1266 	if (ret)
1267 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1268 			__func__, ret,
1269 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1270 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1271 
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1277  * has expired.
1278  *
1279  * Return: 0 upon success; -EBUSY upon timeout.
1280  */
1281 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1282 {
1283 	int ret = 0;
1284 	/*
1285 	 * make sure that there are no outstanding requests when
1286 	 * clock scaling is in progress
1287 	 */
1288 	ufshcd_scsi_block_requests(hba);
1289 	mutex_lock(&hba->wb_mutex);
1290 	down_write(&hba->clk_scaling_lock);
1291 
1292 	if (!hba->clk_scaling.is_allowed ||
1293 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1294 		ret = -EBUSY;
1295 		up_write(&hba->clk_scaling_lock);
1296 		mutex_unlock(&hba->wb_mutex);
1297 		ufshcd_scsi_unblock_requests(hba);
1298 		goto out;
1299 	}
1300 
1301 	/* let's not get into low power until clock scaling is completed */
1302 	ufshcd_hold(hba, false);
1303 
1304 out:
1305 	return ret;
1306 }
1307 
1308 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1309 {
1310 	up_write(&hba->clk_scaling_lock);
1311 
1312 	/* Enable Write Booster if we have scaled up else disable it */
1313 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1314 		ufshcd_wb_toggle(hba, scale_up);
1315 
1316 	mutex_unlock(&hba->wb_mutex);
1317 
1318 	ufshcd_scsi_unblock_requests(hba);
1319 	ufshcd_release(hba);
1320 }
1321 
1322 /**
1323  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1324  * @hba: per adapter instance
1325  * @scale_up: True for scaling up and false for scalin down
1326  *
1327  * Returns 0 for success,
1328  * Returns -EBUSY if scaling can't happen at this time
1329  * Returns non-zero for any other errors
1330  */
1331 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1332 {
1333 	int ret = 0;
1334 
1335 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1336 	if (ret)
1337 		return ret;
1338 
1339 	/* scale down the gear before scaling down clocks */
1340 	if (!scale_up) {
1341 		ret = ufshcd_scale_gear(hba, false);
1342 		if (ret)
1343 			goto out_unprepare;
1344 	}
1345 
1346 	ret = ufshcd_scale_clks(hba, scale_up);
1347 	if (ret) {
1348 		if (!scale_up)
1349 			ufshcd_scale_gear(hba, true);
1350 		goto out_unprepare;
1351 	}
1352 
1353 	/* scale up the gear after scaling up clocks */
1354 	if (scale_up) {
1355 		ret = ufshcd_scale_gear(hba, true);
1356 		if (ret) {
1357 			ufshcd_scale_clks(hba, false);
1358 			goto out_unprepare;
1359 		}
1360 	}
1361 
1362 out_unprepare:
1363 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1364 	return ret;
1365 }
1366 
1367 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1368 {
1369 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1370 					   clk_scaling.suspend_work);
1371 	unsigned long irq_flags;
1372 
1373 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1374 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1375 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1376 		return;
1377 	}
1378 	hba->clk_scaling.is_suspended = true;
1379 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1380 
1381 	__ufshcd_suspend_clkscaling(hba);
1382 }
1383 
1384 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1385 {
1386 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1387 					   clk_scaling.resume_work);
1388 	unsigned long irq_flags;
1389 
1390 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1391 	if (!hba->clk_scaling.is_suspended) {
1392 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1393 		return;
1394 	}
1395 	hba->clk_scaling.is_suspended = false;
1396 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1397 
1398 	devfreq_resume_device(hba->devfreq);
1399 }
1400 
1401 static int ufshcd_devfreq_target(struct device *dev,
1402 				unsigned long *freq, u32 flags)
1403 {
1404 	int ret = 0;
1405 	struct ufs_hba *hba = dev_get_drvdata(dev);
1406 	ktime_t start;
1407 	bool scale_up, sched_clk_scaling_suspend_work = false;
1408 	struct list_head *clk_list = &hba->clk_list_head;
1409 	struct ufs_clk_info *clki;
1410 	unsigned long irq_flags;
1411 
1412 	/*
1413 	 * Skip devfreq if UFS initialization is not finished.
1414 	 * Otherwise ufs could be in a inconsistent state.
1415 	 */
1416 	if (!smp_load_acquire(&hba->logical_unit_scan_finished))
1417 		return 0;
1418 
1419 	if (!ufshcd_is_clkscaling_supported(hba))
1420 		return -EINVAL;
1421 
1422 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1423 	/* Override with the closest supported frequency */
1424 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1425 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1426 	if (ufshcd_eh_in_progress(hba)) {
1427 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1428 		return 0;
1429 	}
1430 
1431 	if (!hba->clk_scaling.active_reqs)
1432 		sched_clk_scaling_suspend_work = true;
1433 
1434 	if (list_empty(clk_list)) {
1435 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1436 		goto out;
1437 	}
1438 
1439 	/* Decide based on the rounded-off frequency and update */
1440 	scale_up = *freq == clki->max_freq;
1441 	if (!scale_up)
1442 		*freq = clki->min_freq;
1443 	/* Update the frequency */
1444 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1445 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1446 		ret = 0;
1447 		goto out; /* no state change required */
1448 	}
1449 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1450 
1451 	start = ktime_get();
1452 	ret = ufshcd_devfreq_scale(hba, scale_up);
1453 
1454 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1455 		(scale_up ? "up" : "down"),
1456 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1457 
1458 out:
1459 	if (sched_clk_scaling_suspend_work)
1460 		queue_work(hba->clk_scaling.workq,
1461 			   &hba->clk_scaling.suspend_work);
1462 
1463 	return ret;
1464 }
1465 
1466 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1467 		struct devfreq_dev_status *stat)
1468 {
1469 	struct ufs_hba *hba = dev_get_drvdata(dev);
1470 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1471 	unsigned long flags;
1472 	struct list_head *clk_list = &hba->clk_list_head;
1473 	struct ufs_clk_info *clki;
1474 	ktime_t curr_t;
1475 
1476 	if (!ufshcd_is_clkscaling_supported(hba))
1477 		return -EINVAL;
1478 
1479 	memset(stat, 0, sizeof(*stat));
1480 
1481 	spin_lock_irqsave(hba->host->host_lock, flags);
1482 	curr_t = ktime_get();
1483 	if (!scaling->window_start_t)
1484 		goto start_window;
1485 
1486 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1487 	/*
1488 	 * If current frequency is 0, then the ondemand governor considers
1489 	 * there's no initial frequency set. And it always requests to set
1490 	 * to max. frequency.
1491 	 */
1492 	stat->current_frequency = clki->curr_freq;
1493 	if (scaling->is_busy_started)
1494 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1495 				scaling->busy_start_t);
1496 
1497 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1498 	stat->busy_time = scaling->tot_busy_t;
1499 start_window:
1500 	scaling->window_start_t = curr_t;
1501 	scaling->tot_busy_t = 0;
1502 
1503 	if (hba->outstanding_reqs) {
1504 		scaling->busy_start_t = curr_t;
1505 		scaling->is_busy_started = true;
1506 	} else {
1507 		scaling->busy_start_t = 0;
1508 		scaling->is_busy_started = false;
1509 	}
1510 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1511 	return 0;
1512 }
1513 
1514 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1515 {
1516 	struct list_head *clk_list = &hba->clk_list_head;
1517 	struct ufs_clk_info *clki;
1518 	struct devfreq *devfreq;
1519 	int ret;
1520 
1521 	/* Skip devfreq if we don't have any clocks in the list */
1522 	if (list_empty(clk_list))
1523 		return 0;
1524 
1525 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1526 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1527 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1528 
1529 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1530 					 &hba->vps->ondemand_data);
1531 	devfreq = devfreq_add_device(hba->dev,
1532 			&hba->vps->devfreq_profile,
1533 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1534 			&hba->vps->ondemand_data);
1535 	if (IS_ERR(devfreq)) {
1536 		ret = PTR_ERR(devfreq);
1537 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1538 
1539 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1540 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1541 		return ret;
1542 	}
1543 
1544 	hba->devfreq = devfreq;
1545 
1546 	return 0;
1547 }
1548 
1549 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1550 {
1551 	struct list_head *clk_list = &hba->clk_list_head;
1552 	struct ufs_clk_info *clki;
1553 
1554 	if (!hba->devfreq)
1555 		return;
1556 
1557 	devfreq_remove_device(hba->devfreq);
1558 	hba->devfreq = NULL;
1559 
1560 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1561 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1562 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1563 }
1564 
1565 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1566 {
1567 	unsigned long flags;
1568 
1569 	devfreq_suspend_device(hba->devfreq);
1570 	spin_lock_irqsave(hba->host->host_lock, flags);
1571 	hba->clk_scaling.window_start_t = 0;
1572 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1573 }
1574 
1575 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1576 {
1577 	unsigned long flags;
1578 	bool suspend = false;
1579 
1580 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1581 	cancel_work_sync(&hba->clk_scaling.resume_work);
1582 
1583 	spin_lock_irqsave(hba->host->host_lock, flags);
1584 	if (!hba->clk_scaling.is_suspended) {
1585 		suspend = true;
1586 		hba->clk_scaling.is_suspended = true;
1587 	}
1588 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1589 
1590 	if (suspend)
1591 		__ufshcd_suspend_clkscaling(hba);
1592 }
1593 
1594 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1595 {
1596 	unsigned long flags;
1597 	bool resume = false;
1598 
1599 	spin_lock_irqsave(hba->host->host_lock, flags);
1600 	if (hba->clk_scaling.is_suspended) {
1601 		resume = true;
1602 		hba->clk_scaling.is_suspended = false;
1603 	}
1604 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1605 
1606 	if (resume)
1607 		devfreq_resume_device(hba->devfreq);
1608 }
1609 
1610 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1611 		struct device_attribute *attr, char *buf)
1612 {
1613 	struct ufs_hba *hba = dev_get_drvdata(dev);
1614 
1615 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1616 }
1617 
1618 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1619 		struct device_attribute *attr, const char *buf, size_t count)
1620 {
1621 	struct ufs_hba *hba = dev_get_drvdata(dev);
1622 	u32 value;
1623 	int err = 0;
1624 
1625 	if (kstrtou32(buf, 0, &value))
1626 		return -EINVAL;
1627 
1628 	down(&hba->host_sem);
1629 	if (!ufshcd_is_user_access_allowed(hba)) {
1630 		err = -EBUSY;
1631 		goto out;
1632 	}
1633 
1634 	value = !!value;
1635 	if (value == hba->clk_scaling.is_enabled)
1636 		goto out;
1637 
1638 	ufshcd_rpm_get_sync(hba);
1639 	ufshcd_hold(hba, false);
1640 
1641 	hba->clk_scaling.is_enabled = value;
1642 
1643 	if (value) {
1644 		ufshcd_resume_clkscaling(hba);
1645 	} else {
1646 		ufshcd_suspend_clkscaling(hba);
1647 		err = ufshcd_devfreq_scale(hba, true);
1648 		if (err)
1649 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1650 					__func__, err);
1651 	}
1652 
1653 	ufshcd_release(hba);
1654 	ufshcd_rpm_put_sync(hba);
1655 out:
1656 	up(&hba->host_sem);
1657 	return err ? err : count;
1658 }
1659 
1660 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1661 {
1662 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1663 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1664 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1665 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1666 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1667 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1668 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1669 }
1670 
1671 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1672 {
1673 	if (hba->clk_scaling.enable_attr.attr.name)
1674 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1675 }
1676 
1677 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1678 {
1679 	char wq_name[sizeof("ufs_clkscaling_00")];
1680 
1681 	if (!ufshcd_is_clkscaling_supported(hba))
1682 		return;
1683 
1684 	if (!hba->clk_scaling.min_gear)
1685 		hba->clk_scaling.min_gear = UFS_HS_G1;
1686 
1687 	INIT_WORK(&hba->clk_scaling.suspend_work,
1688 		  ufshcd_clk_scaling_suspend_work);
1689 	INIT_WORK(&hba->clk_scaling.resume_work,
1690 		  ufshcd_clk_scaling_resume_work);
1691 
1692 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1693 		 hba->host->host_no);
1694 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1695 
1696 	hba->clk_scaling.is_initialized = true;
1697 }
1698 
1699 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1700 {
1701 	if (!hba->clk_scaling.is_initialized)
1702 		return;
1703 
1704 	ufshcd_remove_clk_scaling_sysfs(hba);
1705 	destroy_workqueue(hba->clk_scaling.workq);
1706 	ufshcd_devfreq_remove(hba);
1707 	hba->clk_scaling.is_initialized = false;
1708 }
1709 
1710 static void ufshcd_ungate_work(struct work_struct *work)
1711 {
1712 	int ret;
1713 	unsigned long flags;
1714 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1715 			clk_gating.ungate_work);
1716 
1717 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1718 
1719 	spin_lock_irqsave(hba->host->host_lock, flags);
1720 	if (hba->clk_gating.state == CLKS_ON) {
1721 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1722 		goto unblock_reqs;
1723 	}
1724 
1725 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1726 	ufshcd_hba_vreg_set_hpm(hba);
1727 	ufshcd_setup_clocks(hba, true);
1728 
1729 	ufshcd_enable_irq(hba);
1730 
1731 	/* Exit from hibern8 */
1732 	if (ufshcd_can_hibern8_during_gating(hba)) {
1733 		/* Prevent gating in this path */
1734 		hba->clk_gating.is_suspended = true;
1735 		if (ufshcd_is_link_hibern8(hba)) {
1736 			ret = ufshcd_uic_hibern8_exit(hba);
1737 			if (ret)
1738 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1739 					__func__, ret);
1740 			else
1741 				ufshcd_set_link_active(hba);
1742 		}
1743 		hba->clk_gating.is_suspended = false;
1744 	}
1745 unblock_reqs:
1746 	ufshcd_scsi_unblock_requests(hba);
1747 }
1748 
1749 /**
1750  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1751  * Also, exit from hibern8 mode and set the link as active.
1752  * @hba: per adapter instance
1753  * @async: This indicates whether caller should ungate clocks asynchronously.
1754  */
1755 int ufshcd_hold(struct ufs_hba *hba, bool async)
1756 {
1757 	int rc = 0;
1758 	bool flush_result;
1759 	unsigned long flags;
1760 
1761 	if (!ufshcd_is_clkgating_allowed(hba) ||
1762 	    !hba->clk_gating.is_initialized)
1763 		goto out;
1764 	spin_lock_irqsave(hba->host->host_lock, flags);
1765 	hba->clk_gating.active_reqs++;
1766 
1767 start:
1768 	switch (hba->clk_gating.state) {
1769 	case CLKS_ON:
1770 		/*
1771 		 * Wait for the ungate work to complete if in progress.
1772 		 * Though the clocks may be in ON state, the link could
1773 		 * still be in hibner8 state if hibern8 is allowed
1774 		 * during clock gating.
1775 		 * Make sure we exit hibern8 state also in addition to
1776 		 * clocks being ON.
1777 		 */
1778 		if (ufshcd_can_hibern8_during_gating(hba) &&
1779 		    ufshcd_is_link_hibern8(hba)) {
1780 			if (async) {
1781 				rc = -EAGAIN;
1782 				hba->clk_gating.active_reqs--;
1783 				break;
1784 			}
1785 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1786 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1787 			if (hba->clk_gating.is_suspended && !flush_result)
1788 				goto out;
1789 			spin_lock_irqsave(hba->host->host_lock, flags);
1790 			goto start;
1791 		}
1792 		break;
1793 	case REQ_CLKS_OFF:
1794 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1795 			hba->clk_gating.state = CLKS_ON;
1796 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1797 						hba->clk_gating.state);
1798 			break;
1799 		}
1800 		/*
1801 		 * If we are here, it means gating work is either done or
1802 		 * currently running. Hence, fall through to cancel gating
1803 		 * work and to enable clocks.
1804 		 */
1805 		fallthrough;
1806 	case CLKS_OFF:
1807 		hba->clk_gating.state = REQ_CLKS_ON;
1808 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1809 					hba->clk_gating.state);
1810 		if (queue_work(hba->clk_gating.clk_gating_workq,
1811 			       &hba->clk_gating.ungate_work))
1812 			ufshcd_scsi_block_requests(hba);
1813 		/*
1814 		 * fall through to check if we should wait for this
1815 		 * work to be done or not.
1816 		 */
1817 		fallthrough;
1818 	case REQ_CLKS_ON:
1819 		if (async) {
1820 			rc = -EAGAIN;
1821 			hba->clk_gating.active_reqs--;
1822 			break;
1823 		}
1824 
1825 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 		flush_work(&hba->clk_gating.ungate_work);
1827 		/* Make sure state is CLKS_ON before returning */
1828 		spin_lock_irqsave(hba->host->host_lock, flags);
1829 		goto start;
1830 	default:
1831 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1832 				__func__, hba->clk_gating.state);
1833 		break;
1834 	}
1835 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1836 out:
1837 	return rc;
1838 }
1839 EXPORT_SYMBOL_GPL(ufshcd_hold);
1840 
1841 static void ufshcd_gate_work(struct work_struct *work)
1842 {
1843 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1844 			clk_gating.gate_work.work);
1845 	unsigned long flags;
1846 	int ret;
1847 
1848 	spin_lock_irqsave(hba->host->host_lock, flags);
1849 	/*
1850 	 * In case you are here to cancel this work the gating state
1851 	 * would be marked as REQ_CLKS_ON. In this case save time by
1852 	 * skipping the gating work and exit after changing the clock
1853 	 * state to CLKS_ON.
1854 	 */
1855 	if (hba->clk_gating.is_suspended ||
1856 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1857 		hba->clk_gating.state = CLKS_ON;
1858 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1859 					hba->clk_gating.state);
1860 		goto rel_lock;
1861 	}
1862 
1863 	if (hba->clk_gating.active_reqs
1864 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1865 		|| hba->outstanding_reqs || hba->outstanding_tasks
1866 		|| hba->active_uic_cmd || hba->uic_async_done)
1867 		goto rel_lock;
1868 
1869 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1870 
1871 	/* put the link into hibern8 mode before turning off clocks */
1872 	if (ufshcd_can_hibern8_during_gating(hba)) {
1873 		ret = ufshcd_uic_hibern8_enter(hba);
1874 		if (ret) {
1875 			hba->clk_gating.state = CLKS_ON;
1876 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1877 					__func__, ret);
1878 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1879 						hba->clk_gating.state);
1880 			goto out;
1881 		}
1882 		ufshcd_set_link_hibern8(hba);
1883 	}
1884 
1885 	ufshcd_disable_irq(hba);
1886 
1887 	ufshcd_setup_clocks(hba, false);
1888 
1889 	/* Put the host controller in low power mode if possible */
1890 	ufshcd_hba_vreg_set_lpm(hba);
1891 	/*
1892 	 * In case you are here to cancel this work the gating state
1893 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1894 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1895 	 * and a request to turn them on is pending. By doing this way,
1896 	 * we keep the state machine in tact and this would ultimately
1897 	 * prevent from doing cancel work multiple times when there are
1898 	 * new requests arriving before the current cancel work is done.
1899 	 */
1900 	spin_lock_irqsave(hba->host->host_lock, flags);
1901 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1902 		hba->clk_gating.state = CLKS_OFF;
1903 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1904 					hba->clk_gating.state);
1905 	}
1906 rel_lock:
1907 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1908 out:
1909 	return;
1910 }
1911 
1912 /* host lock must be held before calling this variant */
1913 static void __ufshcd_release(struct ufs_hba *hba)
1914 {
1915 	if (!ufshcd_is_clkgating_allowed(hba))
1916 		return;
1917 
1918 	hba->clk_gating.active_reqs--;
1919 
1920 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1921 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1922 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1923 	    hba->active_uic_cmd || hba->uic_async_done ||
1924 	    hba->clk_gating.state == CLKS_OFF)
1925 		return;
1926 
1927 	hba->clk_gating.state = REQ_CLKS_OFF;
1928 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1929 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1930 			   &hba->clk_gating.gate_work,
1931 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1932 }
1933 
1934 void ufshcd_release(struct ufs_hba *hba)
1935 {
1936 	unsigned long flags;
1937 
1938 	spin_lock_irqsave(hba->host->host_lock, flags);
1939 	__ufshcd_release(hba);
1940 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1941 }
1942 EXPORT_SYMBOL_GPL(ufshcd_release);
1943 
1944 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1945 		struct device_attribute *attr, char *buf)
1946 {
1947 	struct ufs_hba *hba = dev_get_drvdata(dev);
1948 
1949 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1950 }
1951 
1952 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1953 {
1954 	struct ufs_hba *hba = dev_get_drvdata(dev);
1955 	unsigned long flags;
1956 
1957 	spin_lock_irqsave(hba->host->host_lock, flags);
1958 	hba->clk_gating.delay_ms = value;
1959 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1960 }
1961 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1962 
1963 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1964 		struct device_attribute *attr, const char *buf, size_t count)
1965 {
1966 	unsigned long value;
1967 
1968 	if (kstrtoul(buf, 0, &value))
1969 		return -EINVAL;
1970 
1971 	ufshcd_clkgate_delay_set(dev, value);
1972 	return count;
1973 }
1974 
1975 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1976 		struct device_attribute *attr, char *buf)
1977 {
1978 	struct ufs_hba *hba = dev_get_drvdata(dev);
1979 
1980 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1981 }
1982 
1983 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1984 		struct device_attribute *attr, const char *buf, size_t count)
1985 {
1986 	struct ufs_hba *hba = dev_get_drvdata(dev);
1987 	unsigned long flags;
1988 	u32 value;
1989 
1990 	if (kstrtou32(buf, 0, &value))
1991 		return -EINVAL;
1992 
1993 	value = !!value;
1994 
1995 	spin_lock_irqsave(hba->host->host_lock, flags);
1996 	if (value == hba->clk_gating.is_enabled)
1997 		goto out;
1998 
1999 	if (value)
2000 		__ufshcd_release(hba);
2001 	else
2002 		hba->clk_gating.active_reqs++;
2003 
2004 	hba->clk_gating.is_enabled = value;
2005 out:
2006 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2007 	return count;
2008 }
2009 
2010 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2011 {
2012 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2013 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2014 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2015 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2016 	hba->clk_gating.delay_attr.attr.mode = 0644;
2017 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2018 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2019 
2020 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2021 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2022 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2023 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2024 	hba->clk_gating.enable_attr.attr.mode = 0644;
2025 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2026 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2027 }
2028 
2029 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2030 {
2031 	if (hba->clk_gating.delay_attr.attr.name)
2032 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2033 	if (hba->clk_gating.enable_attr.attr.name)
2034 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2035 }
2036 
2037 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2038 {
2039 	char wq_name[sizeof("ufs_clk_gating_00")];
2040 
2041 	if (!ufshcd_is_clkgating_allowed(hba))
2042 		return;
2043 
2044 	hba->clk_gating.state = CLKS_ON;
2045 
2046 	hba->clk_gating.delay_ms = 150;
2047 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2048 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2049 
2050 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2051 		 hba->host->host_no);
2052 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2053 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2054 
2055 	ufshcd_init_clk_gating_sysfs(hba);
2056 
2057 	hba->clk_gating.is_enabled = true;
2058 	hba->clk_gating.is_initialized = true;
2059 }
2060 
2061 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2062 {
2063 	if (!hba->clk_gating.is_initialized)
2064 		return;
2065 
2066 	ufshcd_remove_clk_gating_sysfs(hba);
2067 
2068 	/* Ungate the clock if necessary. */
2069 	ufshcd_hold(hba, false);
2070 	hba->clk_gating.is_initialized = false;
2071 	ufshcd_release(hba);
2072 
2073 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2074 }
2075 
2076 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2077 {
2078 	bool queue_resume_work = false;
2079 	ktime_t curr_t = ktime_get();
2080 	unsigned long flags;
2081 
2082 	if (!ufshcd_is_clkscaling_supported(hba))
2083 		return;
2084 
2085 	spin_lock_irqsave(hba->host->host_lock, flags);
2086 	if (!hba->clk_scaling.active_reqs++)
2087 		queue_resume_work = true;
2088 
2089 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2090 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2091 		return;
2092 	}
2093 
2094 	if (queue_resume_work)
2095 		queue_work(hba->clk_scaling.workq,
2096 			   &hba->clk_scaling.resume_work);
2097 
2098 	if (!hba->clk_scaling.window_start_t) {
2099 		hba->clk_scaling.window_start_t = curr_t;
2100 		hba->clk_scaling.tot_busy_t = 0;
2101 		hba->clk_scaling.is_busy_started = false;
2102 	}
2103 
2104 	if (!hba->clk_scaling.is_busy_started) {
2105 		hba->clk_scaling.busy_start_t = curr_t;
2106 		hba->clk_scaling.is_busy_started = true;
2107 	}
2108 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2109 }
2110 
2111 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2112 {
2113 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2114 	unsigned long flags;
2115 
2116 	if (!ufshcd_is_clkscaling_supported(hba))
2117 		return;
2118 
2119 	spin_lock_irqsave(hba->host->host_lock, flags);
2120 	hba->clk_scaling.active_reqs--;
2121 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
2122 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2123 					scaling->busy_start_t));
2124 		scaling->busy_start_t = 0;
2125 		scaling->is_busy_started = false;
2126 	}
2127 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2128 }
2129 
2130 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2131 {
2132 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2133 		return READ;
2134 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2135 		return WRITE;
2136 	else
2137 		return -EINVAL;
2138 }
2139 
2140 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2141 						struct ufshcd_lrb *lrbp)
2142 {
2143 	const struct ufs_hba_monitor *m = &hba->monitor;
2144 
2145 	return (m->enabled && lrbp && lrbp->cmd &&
2146 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2147 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2148 }
2149 
2150 static void ufshcd_start_monitor(struct ufs_hba *hba,
2151 				 const struct ufshcd_lrb *lrbp)
2152 {
2153 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2154 	unsigned long flags;
2155 
2156 	spin_lock_irqsave(hba->host->host_lock, flags);
2157 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2158 		hba->monitor.busy_start_ts[dir] = ktime_get();
2159 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2160 }
2161 
2162 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2163 {
2164 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2165 	unsigned long flags;
2166 
2167 	spin_lock_irqsave(hba->host->host_lock, flags);
2168 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2169 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2170 		struct ufs_hba_monitor *m = &hba->monitor;
2171 		ktime_t now, inc, lat;
2172 
2173 		now = lrbp->compl_time_stamp;
2174 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2175 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2176 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2177 
2178 		/* Update latencies */
2179 		m->nr_req[dir]++;
2180 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2181 		m->lat_sum[dir] += lat;
2182 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2183 			m->lat_max[dir] = lat;
2184 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2185 			m->lat_min[dir] = lat;
2186 
2187 		m->nr_queued[dir]--;
2188 		/* Push forward the busy start of monitor */
2189 		m->busy_start_ts[dir] = now;
2190 	}
2191 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2192 }
2193 
2194 /**
2195  * ufshcd_send_command - Send SCSI or device management commands
2196  * @hba: per adapter instance
2197  * @task_tag: Task tag of the command
2198  * @hwq: pointer to hardware queue instance
2199  */
2200 static inline
2201 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2202 			 struct ufs_hw_queue *hwq)
2203 {
2204 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2205 	unsigned long flags;
2206 
2207 	lrbp->issue_time_stamp = ktime_get();
2208 	lrbp->issue_time_stamp_local_clock = local_clock();
2209 	lrbp->compl_time_stamp = ktime_set(0, 0);
2210 	lrbp->compl_time_stamp_local_clock = 0;
2211 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2212 	ufshcd_clk_scaling_start_busy(hba);
2213 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2214 		ufshcd_start_monitor(hba, lrbp);
2215 
2216 	if (is_mcq_enabled(hba)) {
2217 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2218 
2219 		spin_lock(&hwq->sq_lock);
2220 		memcpy(hwq->sqe_base_addr + (hwq->sq_tail_slot * utrd_size),
2221 		       lrbp->utr_descriptor_ptr, utrd_size);
2222 		ufshcd_inc_sq_tail(hwq);
2223 		spin_unlock(&hwq->sq_lock);
2224 	} else {
2225 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2226 		if (hba->vops && hba->vops->setup_xfer_req)
2227 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2228 						  !!lrbp->cmd);
2229 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2230 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2231 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2232 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2233 	}
2234 }
2235 
2236 /**
2237  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2238  * @lrbp: pointer to local reference block
2239  */
2240 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2241 {
2242 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2243 	int len;
2244 
2245 	if (sense_buffer &&
2246 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2247 		int len_to_copy;
2248 
2249 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2250 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2251 
2252 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2253 		       len_to_copy);
2254 	}
2255 }
2256 
2257 /**
2258  * ufshcd_copy_query_response() - Copy the Query Response and the data
2259  * descriptor
2260  * @hba: per adapter instance
2261  * @lrbp: pointer to local reference block
2262  */
2263 static
2264 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2265 {
2266 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2267 
2268 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2269 
2270 	/* Get the descriptor */
2271 	if (hba->dev_cmd.query.descriptor &&
2272 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2273 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2274 				GENERAL_UPIU_REQUEST_SIZE;
2275 		u16 resp_len;
2276 		u16 buf_len;
2277 
2278 		/* data segment length */
2279 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2280 						MASK_QUERY_DATA_SEG_LEN;
2281 		buf_len = be16_to_cpu(
2282 				hba->dev_cmd.query.request.upiu_req.length);
2283 		if (likely(buf_len >= resp_len)) {
2284 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2285 		} else {
2286 			dev_warn(hba->dev,
2287 				 "%s: rsp size %d is bigger than buffer size %d",
2288 				 __func__, resp_len, buf_len);
2289 			return -EINVAL;
2290 		}
2291 	}
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * ufshcd_hba_capabilities - Read controller capabilities
2298  * @hba: per adapter instance
2299  *
2300  * Return: 0 on success, negative on error.
2301  */
2302 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2303 {
2304 	int err;
2305 
2306 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2307 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2308 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2309 
2310 	/* nutrs and nutmrs are 0 based values */
2311 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2312 	hba->nutmrs =
2313 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2314 	hba->reserved_slot = hba->nutrs - 1;
2315 
2316 	/* Read crypto capabilities */
2317 	err = ufshcd_hba_init_crypto_capabilities(hba);
2318 	if (err)
2319 		dev_err(hba->dev, "crypto setup failed\n");
2320 
2321 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2322 	if (!hba->mcq_sup)
2323 		return err;
2324 
2325 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2326 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2327 				     hba->mcq_capabilities);
2328 
2329 	return err;
2330 }
2331 
2332 /**
2333  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2334  *                            to accept UIC commands
2335  * @hba: per adapter instance
2336  * Return true on success, else false
2337  */
2338 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2339 {
2340 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2341 }
2342 
2343 /**
2344  * ufshcd_get_upmcrs - Get the power mode change request status
2345  * @hba: Pointer to adapter instance
2346  *
2347  * This function gets the UPMCRS field of HCS register
2348  * Returns value of UPMCRS field
2349  */
2350 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2351 {
2352 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2353 }
2354 
2355 /**
2356  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2357  * @hba: per adapter instance
2358  * @uic_cmd: UIC command
2359  */
2360 static inline void
2361 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2362 {
2363 	lockdep_assert_held(&hba->uic_cmd_mutex);
2364 
2365 	WARN_ON(hba->active_uic_cmd);
2366 
2367 	hba->active_uic_cmd = uic_cmd;
2368 
2369 	/* Write Args */
2370 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2371 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2372 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2373 
2374 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2375 
2376 	/* Write UIC Cmd */
2377 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2378 		      REG_UIC_COMMAND);
2379 }
2380 
2381 /**
2382  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2383  * @hba: per adapter instance
2384  * @uic_cmd: UIC command
2385  *
2386  * Returns 0 only if success.
2387  */
2388 static int
2389 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2390 {
2391 	int ret;
2392 	unsigned long flags;
2393 
2394 	lockdep_assert_held(&hba->uic_cmd_mutex);
2395 
2396 	if (wait_for_completion_timeout(&uic_cmd->done,
2397 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2398 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2399 	} else {
2400 		ret = -ETIMEDOUT;
2401 		dev_err(hba->dev,
2402 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2403 			uic_cmd->command, uic_cmd->argument3);
2404 
2405 		if (!uic_cmd->cmd_active) {
2406 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2407 				__func__);
2408 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2409 		}
2410 	}
2411 
2412 	spin_lock_irqsave(hba->host->host_lock, flags);
2413 	hba->active_uic_cmd = NULL;
2414 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2415 
2416 	return ret;
2417 }
2418 
2419 /**
2420  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2421  * @hba: per adapter instance
2422  * @uic_cmd: UIC command
2423  * @completion: initialize the completion only if this is set to true
2424  *
2425  * Returns 0 only if success.
2426  */
2427 static int
2428 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2429 		      bool completion)
2430 {
2431 	lockdep_assert_held(&hba->uic_cmd_mutex);
2432 	lockdep_assert_held(hba->host->host_lock);
2433 
2434 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2435 		dev_err(hba->dev,
2436 			"Controller not ready to accept UIC commands\n");
2437 		return -EIO;
2438 	}
2439 
2440 	if (completion)
2441 		init_completion(&uic_cmd->done);
2442 
2443 	uic_cmd->cmd_active = 1;
2444 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2445 
2446 	return 0;
2447 }
2448 
2449 /**
2450  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2451  * @hba: per adapter instance
2452  * @uic_cmd: UIC command
2453  *
2454  * Returns 0 only if success.
2455  */
2456 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2457 {
2458 	int ret;
2459 	unsigned long flags;
2460 
2461 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2462 		return 0;
2463 
2464 	ufshcd_hold(hba, false);
2465 	mutex_lock(&hba->uic_cmd_mutex);
2466 	ufshcd_add_delay_before_dme_cmd(hba);
2467 
2468 	spin_lock_irqsave(hba->host->host_lock, flags);
2469 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2470 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2471 	if (!ret)
2472 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2473 
2474 	mutex_unlock(&hba->uic_cmd_mutex);
2475 
2476 	ufshcd_release(hba);
2477 	return ret;
2478 }
2479 
2480 /**
2481  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2482  * @hba:	per-adapter instance
2483  * @lrbp:	pointer to local reference block
2484  * @sg_entries:	The number of sg lists actually used
2485  * @sg_list:	Pointer to SG list
2486  */
2487 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2488 			       struct scatterlist *sg_list)
2489 {
2490 	struct ufshcd_sg_entry *prd;
2491 	struct scatterlist *sg;
2492 	int i;
2493 
2494 	if (sg_entries) {
2495 
2496 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2497 			lrbp->utr_descriptor_ptr->prd_table_length =
2498 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2499 		else
2500 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2501 
2502 		prd = lrbp->ucd_prdt_ptr;
2503 
2504 		for_each_sg(sg_list, sg, sg_entries, i) {
2505 			const unsigned int len = sg_dma_len(sg);
2506 
2507 			/*
2508 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2509 			 * based value that indicates the length, in bytes, of
2510 			 * the data block. A maximum of length of 256KB may
2511 			 * exist for any entry. Bits 1:0 of this field shall be
2512 			 * 11b to indicate Dword granularity. A value of '3'
2513 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2514 			 */
2515 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2516 			prd->size = cpu_to_le32(len - 1);
2517 			prd->addr = cpu_to_le64(sg->dma_address);
2518 			prd->reserved = 0;
2519 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2520 		}
2521 	} else {
2522 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2523 	}
2524 }
2525 
2526 /**
2527  * ufshcd_map_sg - Map scatter-gather list to prdt
2528  * @hba: per adapter instance
2529  * @lrbp: pointer to local reference block
2530  *
2531  * Returns 0 in case of success, non-zero value in case of failure
2532  */
2533 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2534 {
2535 	struct scsi_cmnd *cmd = lrbp->cmd;
2536 	int sg_segments = scsi_dma_map(cmd);
2537 
2538 	if (sg_segments < 0)
2539 		return sg_segments;
2540 
2541 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2542 
2543 	return 0;
2544 }
2545 
2546 /**
2547  * ufshcd_enable_intr - enable interrupts
2548  * @hba: per adapter instance
2549  * @intrs: interrupt bits
2550  */
2551 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2552 {
2553 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2554 
2555 	if (hba->ufs_version == ufshci_version(1, 0)) {
2556 		u32 rw;
2557 		rw = set & INTERRUPT_MASK_RW_VER_10;
2558 		set = rw | ((set ^ intrs) & intrs);
2559 	} else {
2560 		set |= intrs;
2561 	}
2562 
2563 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2564 }
2565 
2566 /**
2567  * ufshcd_disable_intr - disable interrupts
2568  * @hba: per adapter instance
2569  * @intrs: interrupt bits
2570  */
2571 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2572 {
2573 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2574 
2575 	if (hba->ufs_version == ufshci_version(1, 0)) {
2576 		u32 rw;
2577 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2578 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2579 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2580 
2581 	} else {
2582 		set &= ~intrs;
2583 	}
2584 
2585 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2586 }
2587 
2588 /**
2589  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2590  * descriptor according to request
2591  * @lrbp: pointer to local reference block
2592  * @upiu_flags: flags required in the header
2593  * @cmd_dir: requests data direction
2594  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2595  */
2596 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2597 					enum dma_data_direction cmd_dir, int ehs_length)
2598 {
2599 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2600 	u32 data_direction;
2601 	u32 dword_0;
2602 	u32 dword_1 = 0;
2603 	u32 dword_3 = 0;
2604 
2605 	if (cmd_dir == DMA_FROM_DEVICE) {
2606 		data_direction = UTP_DEVICE_TO_HOST;
2607 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2608 	} else if (cmd_dir == DMA_TO_DEVICE) {
2609 		data_direction = UTP_HOST_TO_DEVICE;
2610 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2611 	} else {
2612 		data_direction = UTP_NO_DATA_TRANSFER;
2613 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2614 	}
2615 
2616 	dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET) |
2617 		ehs_length << 8;
2618 	if (lrbp->intr_cmd)
2619 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2620 
2621 	/* Prepare crypto related dwords */
2622 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2623 
2624 	/* Transfer request descriptor header fields */
2625 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2626 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2627 	/*
2628 	 * assigning invalid value for command status. Controller
2629 	 * updates OCS on command completion, with the command
2630 	 * status
2631 	 */
2632 	req_desc->header.dword_2 =
2633 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2634 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2635 
2636 	req_desc->prd_table_length = 0;
2637 }
2638 
2639 /**
2640  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2641  * for scsi commands
2642  * @lrbp: local reference block pointer
2643  * @upiu_flags: flags
2644  */
2645 static
2646 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2647 {
2648 	struct scsi_cmnd *cmd = lrbp->cmd;
2649 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2650 	unsigned short cdb_len;
2651 
2652 	/* command descriptor fields */
2653 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2654 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2655 				lrbp->lun, lrbp->task_tag);
2656 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2657 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2658 
2659 	/* Total EHS length and Data segment length will be zero */
2660 	ucd_req_ptr->header.dword_2 = 0;
2661 
2662 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2663 
2664 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2665 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2666 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2667 
2668 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2669 }
2670 
2671 /**
2672  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2673  * @hba: UFS hba
2674  * @lrbp: local reference block pointer
2675  * @upiu_flags: flags
2676  */
2677 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2678 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2679 {
2680 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2681 	struct ufs_query *query = &hba->dev_cmd.query;
2682 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2683 
2684 	/* Query request header */
2685 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2686 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2687 			lrbp->lun, lrbp->task_tag);
2688 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2689 			0, query->request.query_func, 0, 0);
2690 
2691 	/* Data segment length only need for WRITE_DESC */
2692 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2693 		ucd_req_ptr->header.dword_2 =
2694 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2695 	else
2696 		ucd_req_ptr->header.dword_2 = 0;
2697 
2698 	/* Copy the Query Request buffer as is */
2699 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2700 			QUERY_OSF_SIZE);
2701 
2702 	/* Copy the Descriptor */
2703 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2704 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2705 
2706 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2707 }
2708 
2709 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2710 {
2711 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2712 
2713 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2714 
2715 	/* command descriptor fields */
2716 	ucd_req_ptr->header.dword_0 =
2717 		UPIU_HEADER_DWORD(
2718 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2719 	/* clear rest of the fields of basic header */
2720 	ucd_req_ptr->header.dword_1 = 0;
2721 	ucd_req_ptr->header.dword_2 = 0;
2722 
2723 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2724 }
2725 
2726 /**
2727  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2728  *			     for Device Management Purposes
2729  * @hba: per adapter instance
2730  * @lrbp: pointer to local reference block
2731  */
2732 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2733 				      struct ufshcd_lrb *lrbp)
2734 {
2735 	u8 upiu_flags;
2736 	int ret = 0;
2737 
2738 	if (hba->ufs_version <= ufshci_version(1, 1))
2739 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2740 	else
2741 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2742 
2743 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2744 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2745 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2746 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2747 		ufshcd_prepare_utp_nop_upiu(lrbp);
2748 	else
2749 		ret = -EINVAL;
2750 
2751 	return ret;
2752 }
2753 
2754 /**
2755  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2756  *			   for SCSI Purposes
2757  * @hba: per adapter instance
2758  * @lrbp: pointer to local reference block
2759  */
2760 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2761 {
2762 	u8 upiu_flags;
2763 	int ret = 0;
2764 
2765 	if (hba->ufs_version <= ufshci_version(1, 1))
2766 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2767 	else
2768 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2769 
2770 	if (likely(lrbp->cmd)) {
2771 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2772 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2773 	} else {
2774 		ret = -EINVAL;
2775 	}
2776 
2777 	return ret;
2778 }
2779 
2780 /**
2781  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2782  * @upiu_wlun_id: UPIU W-LUN id
2783  *
2784  * Returns SCSI W-LUN id
2785  */
2786 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2787 {
2788 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2789 }
2790 
2791 static inline bool is_device_wlun(struct scsi_device *sdev)
2792 {
2793 	return sdev->lun ==
2794 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2795 }
2796 
2797 /*
2798  * Associate the UFS controller queue with the default and poll HCTX types.
2799  * Initialize the mq_map[] arrays.
2800  */
2801 static void ufshcd_map_queues(struct Scsi_Host *shost)
2802 {
2803 	struct ufs_hba *hba = shost_priv(shost);
2804 	int i, queue_offset = 0;
2805 
2806 	if (!is_mcq_supported(hba)) {
2807 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2808 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2809 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2810 		hba->nr_hw_queues = 1;
2811 	}
2812 
2813 	for (i = 0; i < shost->nr_maps; i++) {
2814 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2815 
2816 		map->nr_queues = hba->nr_queues[i];
2817 		if (!map->nr_queues)
2818 			continue;
2819 		map->queue_offset = queue_offset;
2820 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2821 			map->queue_offset = 0;
2822 
2823 		blk_mq_map_queues(map);
2824 		queue_offset += map->nr_queues;
2825 	}
2826 }
2827 
2828 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2829 {
2830 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2831 		i * sizeof_utp_transfer_cmd_desc(hba);
2832 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2833 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2834 		i * sizeof_utp_transfer_cmd_desc(hba);
2835 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2836 				       response_upiu);
2837 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2838 
2839 	lrb->utr_descriptor_ptr = utrdlp + i;
2840 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2841 		i * sizeof(struct utp_transfer_req_desc);
2842 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2843 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2844 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2845 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2846 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2847 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2848 }
2849 
2850 /**
2851  * ufshcd_queuecommand - main entry point for SCSI requests
2852  * @host: SCSI host pointer
2853  * @cmd: command from SCSI Midlayer
2854  *
2855  * Returns 0 for success, non-zero in case of failure
2856  */
2857 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2858 {
2859 	struct ufs_hba *hba = shost_priv(host);
2860 	int tag = scsi_cmd_to_rq(cmd)->tag;
2861 	struct ufshcd_lrb *lrbp;
2862 	int err = 0;
2863 	struct ufs_hw_queue *hwq = NULL;
2864 
2865 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2866 
2867 	/*
2868 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2869 	 * calls.
2870 	 */
2871 	rcu_read_lock();
2872 
2873 	switch (hba->ufshcd_state) {
2874 	case UFSHCD_STATE_OPERATIONAL:
2875 		break;
2876 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2877 		/*
2878 		 * SCSI error handler can call ->queuecommand() while UFS error
2879 		 * handler is in progress. Error interrupts could change the
2880 		 * state from UFSHCD_STATE_RESET to
2881 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2882 		 * being issued in that case.
2883 		 */
2884 		if (ufshcd_eh_in_progress(hba)) {
2885 			err = SCSI_MLQUEUE_HOST_BUSY;
2886 			goto out;
2887 		}
2888 		break;
2889 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2890 		/*
2891 		 * pm_runtime_get_sync() is used at error handling preparation
2892 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2893 		 * PM ops, it can never be finished if we let SCSI layer keep
2894 		 * retrying it, which gets err handler stuck forever. Neither
2895 		 * can we let the scsi cmd pass through, because UFS is in bad
2896 		 * state, the scsi cmd may eventually time out, which will get
2897 		 * err handler blocked for too long. So, just fail the scsi cmd
2898 		 * sent from PM ops, err handler can recover PM error anyways.
2899 		 */
2900 		if (hba->pm_op_in_progress) {
2901 			hba->force_reset = true;
2902 			set_host_byte(cmd, DID_BAD_TARGET);
2903 			scsi_done(cmd);
2904 			goto out;
2905 		}
2906 		fallthrough;
2907 	case UFSHCD_STATE_RESET:
2908 		err = SCSI_MLQUEUE_HOST_BUSY;
2909 		goto out;
2910 	case UFSHCD_STATE_ERROR:
2911 		set_host_byte(cmd, DID_ERROR);
2912 		scsi_done(cmd);
2913 		goto out;
2914 	}
2915 
2916 	hba->req_abort_count = 0;
2917 
2918 	err = ufshcd_hold(hba, true);
2919 	if (err) {
2920 		err = SCSI_MLQUEUE_HOST_BUSY;
2921 		goto out;
2922 	}
2923 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2924 		(hba->clk_gating.state != CLKS_ON));
2925 
2926 	lrbp = &hba->lrb[tag];
2927 	WARN_ON(lrbp->cmd);
2928 	lrbp->cmd = cmd;
2929 	lrbp->task_tag = tag;
2930 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2931 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2932 
2933 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2934 
2935 	lrbp->req_abort_skip = false;
2936 
2937 	ufshpb_prep(hba, lrbp);
2938 
2939 	ufshcd_comp_scsi_upiu(hba, lrbp);
2940 
2941 	err = ufshcd_map_sg(hba, lrbp);
2942 	if (err) {
2943 		lrbp->cmd = NULL;
2944 		ufshcd_release(hba);
2945 		goto out;
2946 	}
2947 
2948 	if (is_mcq_enabled(hba))
2949 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2950 
2951 	ufshcd_send_command(hba, tag, hwq);
2952 
2953 out:
2954 	rcu_read_unlock();
2955 
2956 	if (ufs_trigger_eh()) {
2957 		unsigned long flags;
2958 
2959 		spin_lock_irqsave(hba->host->host_lock, flags);
2960 		ufshcd_schedule_eh_work(hba);
2961 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2962 	}
2963 
2964 	return err;
2965 }
2966 
2967 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2968 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2969 {
2970 	lrbp->cmd = NULL;
2971 	lrbp->task_tag = tag;
2972 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2973 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2974 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2975 	hba->dev_cmd.type = cmd_type;
2976 
2977 	return ufshcd_compose_devman_upiu(hba, lrbp);
2978 }
2979 
2980 /*
2981  * Clear all the requests from the controller for which a bit has been set in
2982  * @mask and wait until the controller confirms that these requests have been
2983  * cleared.
2984  */
2985 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2986 {
2987 	unsigned long flags;
2988 
2989 	/* clear outstanding transaction before retry */
2990 	spin_lock_irqsave(hba->host->host_lock, flags);
2991 	ufshcd_utrl_clear(hba, mask);
2992 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2993 
2994 	/*
2995 	 * wait for h/w to clear corresponding bit in door-bell.
2996 	 * max. wait is 1 sec.
2997 	 */
2998 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2999 					mask, ~mask, 1000, 1000);
3000 }
3001 
3002 static int
3003 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3004 {
3005 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
3006 
3007 	/* Get the UPIU response */
3008 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
3009 				UPIU_RSP_CODE_OFFSET;
3010 	return query_res->response;
3011 }
3012 
3013 /**
3014  * ufshcd_dev_cmd_completion() - handles device management command responses
3015  * @hba: per adapter instance
3016  * @lrbp: pointer to local reference block
3017  */
3018 static int
3019 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3020 {
3021 	int resp;
3022 	int err = 0;
3023 
3024 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3025 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3026 
3027 	switch (resp) {
3028 	case UPIU_TRANSACTION_NOP_IN:
3029 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3030 			err = -EINVAL;
3031 			dev_err(hba->dev, "%s: unexpected response %x\n",
3032 					__func__, resp);
3033 		}
3034 		break;
3035 	case UPIU_TRANSACTION_QUERY_RSP:
3036 		err = ufshcd_check_query_response(hba, lrbp);
3037 		if (!err)
3038 			err = ufshcd_copy_query_response(hba, lrbp);
3039 		break;
3040 	case UPIU_TRANSACTION_REJECT_UPIU:
3041 		/* TODO: handle Reject UPIU Response */
3042 		err = -EPERM;
3043 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3044 				__func__);
3045 		break;
3046 	case UPIU_TRANSACTION_RESPONSE:
3047 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3048 			err = -EINVAL;
3049 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3050 		}
3051 		break;
3052 	default:
3053 		err = -EINVAL;
3054 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3055 				__func__, resp);
3056 		break;
3057 	}
3058 
3059 	return err;
3060 }
3061 
3062 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3063 		struct ufshcd_lrb *lrbp, int max_timeout)
3064 {
3065 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3066 	unsigned long flags;
3067 	bool pending;
3068 	int err;
3069 
3070 retry:
3071 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3072 						time_left);
3073 
3074 	if (likely(time_left)) {
3075 		/*
3076 		 * The completion handler called complete() and the caller of
3077 		 * this function still owns the @lrbp tag so the code below does
3078 		 * not trigger any race conditions.
3079 		 */
3080 		hba->dev_cmd.complete = NULL;
3081 		err = ufshcd_get_tr_ocs(lrbp, hba->dev_cmd.cqe);
3082 		if (!err)
3083 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3084 	} else {
3085 		err = -ETIMEDOUT;
3086 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3087 			__func__, lrbp->task_tag);
3088 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
3089 			/* successfully cleared the command, retry if needed */
3090 			err = -EAGAIN;
3091 			/*
3092 			 * Since clearing the command succeeded we also need to
3093 			 * clear the task tag bit from the outstanding_reqs
3094 			 * variable.
3095 			 */
3096 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3097 			pending = test_bit(lrbp->task_tag,
3098 					   &hba->outstanding_reqs);
3099 			if (pending) {
3100 				hba->dev_cmd.complete = NULL;
3101 				__clear_bit(lrbp->task_tag,
3102 					    &hba->outstanding_reqs);
3103 			}
3104 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3105 
3106 			if (!pending) {
3107 				/*
3108 				 * The completion handler ran while we tried to
3109 				 * clear the command.
3110 				 */
3111 				time_left = 1;
3112 				goto retry;
3113 			}
3114 		} else {
3115 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3116 				__func__, lrbp->task_tag);
3117 
3118 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3119 			pending = test_bit(lrbp->task_tag,
3120 					   &hba->outstanding_reqs);
3121 			if (pending)
3122 				hba->dev_cmd.complete = NULL;
3123 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3124 
3125 			if (!pending) {
3126 				/*
3127 				 * The completion handler ran while we tried to
3128 				 * clear the command.
3129 				 */
3130 				time_left = 1;
3131 				goto retry;
3132 			}
3133 		}
3134 	}
3135 
3136 	return err;
3137 }
3138 
3139 /**
3140  * ufshcd_exec_dev_cmd - API for sending device management requests
3141  * @hba: UFS hba
3142  * @cmd_type: specifies the type (NOP, Query...)
3143  * @timeout: timeout in milliseconds
3144  *
3145  * NOTE: Since there is only one available tag for device management commands,
3146  * it is expected you hold the hba->dev_cmd.lock mutex.
3147  */
3148 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3149 		enum dev_cmd_type cmd_type, int timeout)
3150 {
3151 	DECLARE_COMPLETION_ONSTACK(wait);
3152 	const u32 tag = hba->reserved_slot;
3153 	struct ufshcd_lrb *lrbp;
3154 	int err;
3155 
3156 	/* Protects use of hba->reserved_slot. */
3157 	lockdep_assert_held(&hba->dev_cmd.lock);
3158 
3159 	down_read(&hba->clk_scaling_lock);
3160 
3161 	lrbp = &hba->lrb[tag];
3162 	WARN_ON(lrbp->cmd);
3163 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3164 	if (unlikely(err))
3165 		goto out;
3166 
3167 	hba->dev_cmd.complete = &wait;
3168 	hba->dev_cmd.cqe = NULL;
3169 
3170 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3171 
3172 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3173 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3174 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3175 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3176 
3177 out:
3178 	up_read(&hba->clk_scaling_lock);
3179 	return err;
3180 }
3181 
3182 /**
3183  * ufshcd_init_query() - init the query response and request parameters
3184  * @hba: per-adapter instance
3185  * @request: address of the request pointer to be initialized
3186  * @response: address of the response pointer to be initialized
3187  * @opcode: operation to perform
3188  * @idn: flag idn to access
3189  * @index: LU number to access
3190  * @selector: query/flag/descriptor further identification
3191  */
3192 static inline void ufshcd_init_query(struct ufs_hba *hba,
3193 		struct ufs_query_req **request, struct ufs_query_res **response,
3194 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3195 {
3196 	*request = &hba->dev_cmd.query.request;
3197 	*response = &hba->dev_cmd.query.response;
3198 	memset(*request, 0, sizeof(struct ufs_query_req));
3199 	memset(*response, 0, sizeof(struct ufs_query_res));
3200 	(*request)->upiu_req.opcode = opcode;
3201 	(*request)->upiu_req.idn = idn;
3202 	(*request)->upiu_req.index = index;
3203 	(*request)->upiu_req.selector = selector;
3204 }
3205 
3206 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3207 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3208 {
3209 	int ret;
3210 	int retries;
3211 
3212 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3213 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3214 		if (ret)
3215 			dev_dbg(hba->dev,
3216 				"%s: failed with error %d, retries %d\n",
3217 				__func__, ret, retries);
3218 		else
3219 			break;
3220 	}
3221 
3222 	if (ret)
3223 		dev_err(hba->dev,
3224 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3225 			__func__, opcode, idn, ret, retries);
3226 	return ret;
3227 }
3228 
3229 /**
3230  * ufshcd_query_flag() - API function for sending flag query requests
3231  * @hba: per-adapter instance
3232  * @opcode: flag query to perform
3233  * @idn: flag idn to access
3234  * @index: flag index to access
3235  * @flag_res: the flag value after the query request completes
3236  *
3237  * Returns 0 for success, non-zero in case of failure
3238  */
3239 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3240 			enum flag_idn idn, u8 index, bool *flag_res)
3241 {
3242 	struct ufs_query_req *request = NULL;
3243 	struct ufs_query_res *response = NULL;
3244 	int err, selector = 0;
3245 	int timeout = QUERY_REQ_TIMEOUT;
3246 
3247 	BUG_ON(!hba);
3248 
3249 	ufshcd_hold(hba, false);
3250 	mutex_lock(&hba->dev_cmd.lock);
3251 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3252 			selector);
3253 
3254 	switch (opcode) {
3255 	case UPIU_QUERY_OPCODE_SET_FLAG:
3256 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3257 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3258 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3259 		break;
3260 	case UPIU_QUERY_OPCODE_READ_FLAG:
3261 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3262 		if (!flag_res) {
3263 			/* No dummy reads */
3264 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3265 					__func__);
3266 			err = -EINVAL;
3267 			goto out_unlock;
3268 		}
3269 		break;
3270 	default:
3271 		dev_err(hba->dev,
3272 			"%s: Expected query flag opcode but got = %d\n",
3273 			__func__, opcode);
3274 		err = -EINVAL;
3275 		goto out_unlock;
3276 	}
3277 
3278 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3279 
3280 	if (err) {
3281 		dev_err(hba->dev,
3282 			"%s: Sending flag query for idn %d failed, err = %d\n",
3283 			__func__, idn, err);
3284 		goto out_unlock;
3285 	}
3286 
3287 	if (flag_res)
3288 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3289 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3290 
3291 out_unlock:
3292 	mutex_unlock(&hba->dev_cmd.lock);
3293 	ufshcd_release(hba);
3294 	return err;
3295 }
3296 
3297 /**
3298  * ufshcd_query_attr - API function for sending attribute requests
3299  * @hba: per-adapter instance
3300  * @opcode: attribute opcode
3301  * @idn: attribute idn to access
3302  * @index: index field
3303  * @selector: selector field
3304  * @attr_val: the attribute value after the query request completes
3305  *
3306  * Returns 0 for success, non-zero in case of failure
3307 */
3308 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3309 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3310 {
3311 	struct ufs_query_req *request = NULL;
3312 	struct ufs_query_res *response = NULL;
3313 	int err;
3314 
3315 	BUG_ON(!hba);
3316 
3317 	if (!attr_val) {
3318 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3319 				__func__, opcode);
3320 		return -EINVAL;
3321 	}
3322 
3323 	ufshcd_hold(hba, false);
3324 
3325 	mutex_lock(&hba->dev_cmd.lock);
3326 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3327 			selector);
3328 
3329 	switch (opcode) {
3330 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3331 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3332 		request->upiu_req.value = cpu_to_be32(*attr_val);
3333 		break;
3334 	case UPIU_QUERY_OPCODE_READ_ATTR:
3335 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3336 		break;
3337 	default:
3338 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3339 				__func__, opcode);
3340 		err = -EINVAL;
3341 		goto out_unlock;
3342 	}
3343 
3344 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3345 
3346 	if (err) {
3347 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3348 				__func__, opcode, idn, index, err);
3349 		goto out_unlock;
3350 	}
3351 
3352 	*attr_val = be32_to_cpu(response->upiu_res.value);
3353 
3354 out_unlock:
3355 	mutex_unlock(&hba->dev_cmd.lock);
3356 	ufshcd_release(hba);
3357 	return err;
3358 }
3359 
3360 /**
3361  * ufshcd_query_attr_retry() - API function for sending query
3362  * attribute with retries
3363  * @hba: per-adapter instance
3364  * @opcode: attribute opcode
3365  * @idn: attribute idn to access
3366  * @index: index field
3367  * @selector: selector field
3368  * @attr_val: the attribute value after the query request
3369  * completes
3370  *
3371  * Returns 0 for success, non-zero in case of failure
3372 */
3373 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3374 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3375 	u32 *attr_val)
3376 {
3377 	int ret = 0;
3378 	u32 retries;
3379 
3380 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3381 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3382 						selector, attr_val);
3383 		if (ret)
3384 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3385 				__func__, ret, retries);
3386 		else
3387 			break;
3388 	}
3389 
3390 	if (ret)
3391 		dev_err(hba->dev,
3392 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3393 			__func__, idn, ret, QUERY_REQ_RETRIES);
3394 	return ret;
3395 }
3396 
3397 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3398 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3399 			u8 selector, u8 *desc_buf, int *buf_len)
3400 {
3401 	struct ufs_query_req *request = NULL;
3402 	struct ufs_query_res *response = NULL;
3403 	int err;
3404 
3405 	BUG_ON(!hba);
3406 
3407 	if (!desc_buf) {
3408 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3409 				__func__, opcode);
3410 		return -EINVAL;
3411 	}
3412 
3413 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3414 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3415 				__func__, *buf_len);
3416 		return -EINVAL;
3417 	}
3418 
3419 	ufshcd_hold(hba, false);
3420 
3421 	mutex_lock(&hba->dev_cmd.lock);
3422 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3423 			selector);
3424 	hba->dev_cmd.query.descriptor = desc_buf;
3425 	request->upiu_req.length = cpu_to_be16(*buf_len);
3426 
3427 	switch (opcode) {
3428 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3429 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3430 		break;
3431 	case UPIU_QUERY_OPCODE_READ_DESC:
3432 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3433 		break;
3434 	default:
3435 		dev_err(hba->dev,
3436 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3437 				__func__, opcode);
3438 		err = -EINVAL;
3439 		goto out_unlock;
3440 	}
3441 
3442 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3443 
3444 	if (err) {
3445 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3446 				__func__, opcode, idn, index, err);
3447 		goto out_unlock;
3448 	}
3449 
3450 	*buf_len = be16_to_cpu(response->upiu_res.length);
3451 
3452 out_unlock:
3453 	hba->dev_cmd.query.descriptor = NULL;
3454 	mutex_unlock(&hba->dev_cmd.lock);
3455 	ufshcd_release(hba);
3456 	return err;
3457 }
3458 
3459 /**
3460  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3461  * @hba: per-adapter instance
3462  * @opcode: attribute opcode
3463  * @idn: attribute idn to access
3464  * @index: index field
3465  * @selector: selector field
3466  * @desc_buf: the buffer that contains the descriptor
3467  * @buf_len: length parameter passed to the device
3468  *
3469  * Returns 0 for success, non-zero in case of failure.
3470  * The buf_len parameter will contain, on return, the length parameter
3471  * received on the response.
3472  */
3473 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3474 				  enum query_opcode opcode,
3475 				  enum desc_idn idn, u8 index,
3476 				  u8 selector,
3477 				  u8 *desc_buf, int *buf_len)
3478 {
3479 	int err;
3480 	int retries;
3481 
3482 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3483 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3484 						selector, desc_buf, buf_len);
3485 		if (!err || err == -EINVAL)
3486 			break;
3487 	}
3488 
3489 	return err;
3490 }
3491 
3492 /**
3493  * ufshcd_read_desc_param - read the specified descriptor parameter
3494  * @hba: Pointer to adapter instance
3495  * @desc_id: descriptor idn value
3496  * @desc_index: descriptor index
3497  * @param_offset: offset of the parameter to read
3498  * @param_read_buf: pointer to buffer where parameter would be read
3499  * @param_size: sizeof(param_read_buf)
3500  *
3501  * Return 0 in case of success, non-zero otherwise
3502  */
3503 int ufshcd_read_desc_param(struct ufs_hba *hba,
3504 			   enum desc_idn desc_id,
3505 			   int desc_index,
3506 			   u8 param_offset,
3507 			   u8 *param_read_buf,
3508 			   u8 param_size)
3509 {
3510 	int ret;
3511 	u8 *desc_buf;
3512 	int buff_len = QUERY_DESC_MAX_SIZE;
3513 	bool is_kmalloc = true;
3514 
3515 	/* Safety check */
3516 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3517 		return -EINVAL;
3518 
3519 	/* Check whether we need temp memory */
3520 	if (param_offset != 0 || param_size < buff_len) {
3521 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3522 		if (!desc_buf)
3523 			return -ENOMEM;
3524 	} else {
3525 		desc_buf = param_read_buf;
3526 		is_kmalloc = false;
3527 	}
3528 
3529 	/* Request for full descriptor */
3530 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3531 					    desc_id, desc_index, 0,
3532 					    desc_buf, &buff_len);
3533 	if (ret) {
3534 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3535 			__func__, desc_id, desc_index, param_offset, ret);
3536 		goto out;
3537 	}
3538 
3539 	/* Update descriptor length */
3540 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3541 
3542 	if (param_offset >= buff_len) {
3543 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3544 			__func__, param_offset, desc_id, buff_len);
3545 		ret = -EINVAL;
3546 		goto out;
3547 	}
3548 
3549 	/* Sanity check */
3550 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3551 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3552 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3553 		ret = -EINVAL;
3554 		goto out;
3555 	}
3556 
3557 	if (is_kmalloc) {
3558 		/* Make sure we don't copy more data than available */
3559 		if (param_offset >= buff_len)
3560 			ret = -EINVAL;
3561 		else
3562 			memcpy(param_read_buf, &desc_buf[param_offset],
3563 			       min_t(u32, param_size, buff_len - param_offset));
3564 	}
3565 out:
3566 	if (is_kmalloc)
3567 		kfree(desc_buf);
3568 	return ret;
3569 }
3570 
3571 /**
3572  * struct uc_string_id - unicode string
3573  *
3574  * @len: size of this descriptor inclusive
3575  * @type: descriptor type
3576  * @uc: unicode string character
3577  */
3578 struct uc_string_id {
3579 	u8 len;
3580 	u8 type;
3581 	wchar_t uc[];
3582 } __packed;
3583 
3584 /* replace non-printable or non-ASCII characters with spaces */
3585 static inline char ufshcd_remove_non_printable(u8 ch)
3586 {
3587 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3588 }
3589 
3590 /**
3591  * ufshcd_read_string_desc - read string descriptor
3592  * @hba: pointer to adapter instance
3593  * @desc_index: descriptor index
3594  * @buf: pointer to buffer where descriptor would be read,
3595  *       the caller should free the memory.
3596  * @ascii: if true convert from unicode to ascii characters
3597  *         null terminated string.
3598  *
3599  * Return:
3600  * *      string size on success.
3601  * *      -ENOMEM: on allocation failure
3602  * *      -EINVAL: on a wrong parameter
3603  */
3604 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3605 			    u8 **buf, bool ascii)
3606 {
3607 	struct uc_string_id *uc_str;
3608 	u8 *str;
3609 	int ret;
3610 
3611 	if (!buf)
3612 		return -EINVAL;
3613 
3614 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3615 	if (!uc_str)
3616 		return -ENOMEM;
3617 
3618 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3619 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3620 	if (ret < 0) {
3621 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3622 			QUERY_REQ_RETRIES, ret);
3623 		str = NULL;
3624 		goto out;
3625 	}
3626 
3627 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3628 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3629 		str = NULL;
3630 		ret = 0;
3631 		goto out;
3632 	}
3633 
3634 	if (ascii) {
3635 		ssize_t ascii_len;
3636 		int i;
3637 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3638 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3639 		str = kzalloc(ascii_len, GFP_KERNEL);
3640 		if (!str) {
3641 			ret = -ENOMEM;
3642 			goto out;
3643 		}
3644 
3645 		/*
3646 		 * the descriptor contains string in UTF16 format
3647 		 * we need to convert to utf-8 so it can be displayed
3648 		 */
3649 		ret = utf16s_to_utf8s(uc_str->uc,
3650 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3651 				      UTF16_BIG_ENDIAN, str, ascii_len);
3652 
3653 		/* replace non-printable or non-ASCII characters with spaces */
3654 		for (i = 0; i < ret; i++)
3655 			str[i] = ufshcd_remove_non_printable(str[i]);
3656 
3657 		str[ret++] = '\0';
3658 
3659 	} else {
3660 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3661 		if (!str) {
3662 			ret = -ENOMEM;
3663 			goto out;
3664 		}
3665 		ret = uc_str->len;
3666 	}
3667 out:
3668 	*buf = str;
3669 	kfree(uc_str);
3670 	return ret;
3671 }
3672 
3673 /**
3674  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3675  * @hba: Pointer to adapter instance
3676  * @lun: lun id
3677  * @param_offset: offset of the parameter to read
3678  * @param_read_buf: pointer to buffer where parameter would be read
3679  * @param_size: sizeof(param_read_buf)
3680  *
3681  * Return 0 in case of success, non-zero otherwise
3682  */
3683 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3684 					      int lun,
3685 					      enum unit_desc_param param_offset,
3686 					      u8 *param_read_buf,
3687 					      u32 param_size)
3688 {
3689 	/*
3690 	 * Unit descriptors are only available for general purpose LUs (LUN id
3691 	 * from 0 to 7) and RPMB Well known LU.
3692 	 */
3693 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3694 		return -EOPNOTSUPP;
3695 
3696 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3697 				      param_offset, param_read_buf, param_size);
3698 }
3699 
3700 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3701 {
3702 	int err = 0;
3703 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3704 
3705 	if (hba->dev_info.wspecversion >= 0x300) {
3706 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3707 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3708 				&gating_wait);
3709 		if (err)
3710 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3711 					 err, gating_wait);
3712 
3713 		if (gating_wait == 0) {
3714 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3715 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3716 					 gating_wait);
3717 		}
3718 
3719 		hba->dev_info.clk_gating_wait_us = gating_wait;
3720 	}
3721 
3722 	return err;
3723 }
3724 
3725 /**
3726  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3727  * @hba: per adapter instance
3728  *
3729  * 1. Allocate DMA memory for Command Descriptor array
3730  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3731  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3732  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3733  *	(UTMRDL)
3734  * 4. Allocate memory for local reference block(lrb).
3735  *
3736  * Returns 0 for success, non-zero in case of failure
3737  */
3738 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3739 {
3740 	size_t utmrdl_size, utrdl_size, ucdl_size;
3741 
3742 	/* Allocate memory for UTP command descriptors */
3743 	ucdl_size = sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs;
3744 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3745 						  ucdl_size,
3746 						  &hba->ucdl_dma_addr,
3747 						  GFP_KERNEL);
3748 
3749 	/*
3750 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3751 	 */
3752 	if (!hba->ucdl_base_addr ||
3753 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3754 		dev_err(hba->dev,
3755 			"Command Descriptor Memory allocation failed\n");
3756 		goto out;
3757 	}
3758 
3759 	/*
3760 	 * Allocate memory for UTP Transfer descriptors
3761 	 * UFSHCI requires 1024 byte alignment of UTRD
3762 	 */
3763 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3764 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3765 						   utrdl_size,
3766 						   &hba->utrdl_dma_addr,
3767 						   GFP_KERNEL);
3768 	if (!hba->utrdl_base_addr ||
3769 	    WARN_ON(hba->utrdl_dma_addr & (1024 - 1))) {
3770 		dev_err(hba->dev,
3771 			"Transfer Descriptor Memory allocation failed\n");
3772 		goto out;
3773 	}
3774 
3775 	/*
3776 	 * Skip utmrdl allocation; it may have been
3777 	 * allocated during first pass and not released during
3778 	 * MCQ memory allocation.
3779 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3780 	 */
3781 	if (hba->utmrdl_base_addr)
3782 		goto skip_utmrdl;
3783 	/*
3784 	 * Allocate memory for UTP Task Management descriptors
3785 	 * UFSHCI requires 1024 byte alignment of UTMRD
3786 	 */
3787 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3788 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3789 						    utmrdl_size,
3790 						    &hba->utmrdl_dma_addr,
3791 						    GFP_KERNEL);
3792 	if (!hba->utmrdl_base_addr ||
3793 	    WARN_ON(hba->utmrdl_dma_addr & (1024 - 1))) {
3794 		dev_err(hba->dev,
3795 		"Task Management Descriptor Memory allocation failed\n");
3796 		goto out;
3797 	}
3798 
3799 skip_utmrdl:
3800 	/* Allocate memory for local reference block */
3801 	hba->lrb = devm_kcalloc(hba->dev,
3802 				hba->nutrs, sizeof(struct ufshcd_lrb),
3803 				GFP_KERNEL);
3804 	if (!hba->lrb) {
3805 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3806 		goto out;
3807 	}
3808 	return 0;
3809 out:
3810 	return -ENOMEM;
3811 }
3812 
3813 /**
3814  * ufshcd_host_memory_configure - configure local reference block with
3815  *				memory offsets
3816  * @hba: per adapter instance
3817  *
3818  * Configure Host memory space
3819  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3820  * address.
3821  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3822  * and PRDT offset.
3823  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3824  * into local reference block.
3825  */
3826 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3827 {
3828 	struct utp_transfer_req_desc *utrdlp;
3829 	dma_addr_t cmd_desc_dma_addr;
3830 	dma_addr_t cmd_desc_element_addr;
3831 	u16 response_offset;
3832 	u16 prdt_offset;
3833 	int cmd_desc_size;
3834 	int i;
3835 
3836 	utrdlp = hba->utrdl_base_addr;
3837 
3838 	response_offset =
3839 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3840 	prdt_offset =
3841 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3842 
3843 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3844 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3845 
3846 	for (i = 0; i < hba->nutrs; i++) {
3847 		/* Configure UTRD with command descriptor base address */
3848 		cmd_desc_element_addr =
3849 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3850 		utrdlp[i].command_desc_base_addr_lo =
3851 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3852 		utrdlp[i].command_desc_base_addr_hi =
3853 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3854 
3855 		/* Response upiu and prdt offset should be in double words */
3856 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3857 			utrdlp[i].response_upiu_offset =
3858 				cpu_to_le16(response_offset);
3859 			utrdlp[i].prd_table_offset =
3860 				cpu_to_le16(prdt_offset);
3861 			utrdlp[i].response_upiu_length =
3862 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3863 		} else {
3864 			utrdlp[i].response_upiu_offset =
3865 				cpu_to_le16(response_offset >> 2);
3866 			utrdlp[i].prd_table_offset =
3867 				cpu_to_le16(prdt_offset >> 2);
3868 			utrdlp[i].response_upiu_length =
3869 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3870 		}
3871 
3872 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3873 	}
3874 }
3875 
3876 /**
3877  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3878  * @hba: per adapter instance
3879  *
3880  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3881  * in order to initialize the Unipro link startup procedure.
3882  * Once the Unipro links are up, the device connected to the controller
3883  * is detected.
3884  *
3885  * Returns 0 on success, non-zero value on failure
3886  */
3887 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3888 {
3889 	struct uic_command uic_cmd = {0};
3890 	int ret;
3891 
3892 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3893 
3894 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3895 	if (ret)
3896 		dev_dbg(hba->dev,
3897 			"dme-link-startup: error code %d\n", ret);
3898 	return ret;
3899 }
3900 /**
3901  * ufshcd_dme_reset - UIC command for DME_RESET
3902  * @hba: per adapter instance
3903  *
3904  * DME_RESET command is issued in order to reset UniPro stack.
3905  * This function now deals with cold reset.
3906  *
3907  * Returns 0 on success, non-zero value on failure
3908  */
3909 static int ufshcd_dme_reset(struct ufs_hba *hba)
3910 {
3911 	struct uic_command uic_cmd = {0};
3912 	int ret;
3913 
3914 	uic_cmd.command = UIC_CMD_DME_RESET;
3915 
3916 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3917 	if (ret)
3918 		dev_err(hba->dev,
3919 			"dme-reset: error code %d\n", ret);
3920 
3921 	return ret;
3922 }
3923 
3924 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3925 			       int agreed_gear,
3926 			       int adapt_val)
3927 {
3928 	int ret;
3929 
3930 	if (agreed_gear < UFS_HS_G4)
3931 		adapt_val = PA_NO_ADAPT;
3932 
3933 	ret = ufshcd_dme_set(hba,
3934 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3935 			     adapt_val);
3936 	return ret;
3937 }
3938 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3939 
3940 /**
3941  * ufshcd_dme_enable - UIC command for DME_ENABLE
3942  * @hba: per adapter instance
3943  *
3944  * DME_ENABLE command is issued in order to enable UniPro stack.
3945  *
3946  * Returns 0 on success, non-zero value on failure
3947  */
3948 static int ufshcd_dme_enable(struct ufs_hba *hba)
3949 {
3950 	struct uic_command uic_cmd = {0};
3951 	int ret;
3952 
3953 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3954 
3955 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3956 	if (ret)
3957 		dev_err(hba->dev,
3958 			"dme-enable: error code %d\n", ret);
3959 
3960 	return ret;
3961 }
3962 
3963 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3964 {
3965 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3966 	unsigned long min_sleep_time_us;
3967 
3968 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3969 		return;
3970 
3971 	/*
3972 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3973 	 * this function
3974 	 */
3975 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3976 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3977 	} else {
3978 		unsigned long delta =
3979 			(unsigned long) ktime_to_us(
3980 				ktime_sub(ktime_get(),
3981 				hba->last_dme_cmd_tstamp));
3982 
3983 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3984 			min_sleep_time_us =
3985 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3986 		else
3987 			return; /* no more delay required */
3988 	}
3989 
3990 	/* allow sleep for extra 50us if needed */
3991 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3992 }
3993 
3994 /**
3995  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3996  * @hba: per adapter instance
3997  * @attr_sel: uic command argument1
3998  * @attr_set: attribute set type as uic command argument2
3999  * @mib_val: setting value as uic command argument3
4000  * @peer: indicate whether peer or local
4001  *
4002  * Returns 0 on success, non-zero value on failure
4003  */
4004 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4005 			u8 attr_set, u32 mib_val, u8 peer)
4006 {
4007 	struct uic_command uic_cmd = {0};
4008 	static const char *const action[] = {
4009 		"dme-set",
4010 		"dme-peer-set"
4011 	};
4012 	const char *set = action[!!peer];
4013 	int ret;
4014 	int retries = UFS_UIC_COMMAND_RETRIES;
4015 
4016 	uic_cmd.command = peer ?
4017 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4018 	uic_cmd.argument1 = attr_sel;
4019 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4020 	uic_cmd.argument3 = mib_val;
4021 
4022 	do {
4023 		/* for peer attributes we retry upon failure */
4024 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4025 		if (ret)
4026 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4027 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4028 	} while (ret && peer && --retries);
4029 
4030 	if (ret)
4031 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4032 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4033 			UFS_UIC_COMMAND_RETRIES - retries);
4034 
4035 	return ret;
4036 }
4037 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4038 
4039 /**
4040  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4041  * @hba: per adapter instance
4042  * @attr_sel: uic command argument1
4043  * @mib_val: the value of the attribute as returned by the UIC command
4044  * @peer: indicate whether peer or local
4045  *
4046  * Returns 0 on success, non-zero value on failure
4047  */
4048 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4049 			u32 *mib_val, u8 peer)
4050 {
4051 	struct uic_command uic_cmd = {0};
4052 	static const char *const action[] = {
4053 		"dme-get",
4054 		"dme-peer-get"
4055 	};
4056 	const char *get = action[!!peer];
4057 	int ret;
4058 	int retries = UFS_UIC_COMMAND_RETRIES;
4059 	struct ufs_pa_layer_attr orig_pwr_info;
4060 	struct ufs_pa_layer_attr temp_pwr_info;
4061 	bool pwr_mode_change = false;
4062 
4063 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4064 		orig_pwr_info = hba->pwr_info;
4065 		temp_pwr_info = orig_pwr_info;
4066 
4067 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4068 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4069 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4070 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4071 			pwr_mode_change = true;
4072 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4073 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4074 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4075 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4076 			pwr_mode_change = true;
4077 		}
4078 		if (pwr_mode_change) {
4079 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4080 			if (ret)
4081 				goto out;
4082 		}
4083 	}
4084 
4085 	uic_cmd.command = peer ?
4086 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4087 	uic_cmd.argument1 = attr_sel;
4088 
4089 	do {
4090 		/* for peer attributes we retry upon failure */
4091 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4092 		if (ret)
4093 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4094 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4095 	} while (ret && peer && --retries);
4096 
4097 	if (ret)
4098 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4099 			get, UIC_GET_ATTR_ID(attr_sel),
4100 			UFS_UIC_COMMAND_RETRIES - retries);
4101 
4102 	if (mib_val && !ret)
4103 		*mib_val = uic_cmd.argument3;
4104 
4105 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4106 	    && pwr_mode_change)
4107 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4108 out:
4109 	return ret;
4110 }
4111 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4112 
4113 /**
4114  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4115  * state) and waits for it to take effect.
4116  *
4117  * @hba: per adapter instance
4118  * @cmd: UIC command to execute
4119  *
4120  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4121  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4122  * and device UniPro link and hence it's final completion would be indicated by
4123  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4124  * addition to normal UIC command completion Status (UCCS). This function only
4125  * returns after the relevant status bits indicate the completion.
4126  *
4127  * Returns 0 on success, non-zero value on failure
4128  */
4129 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4130 {
4131 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4132 	unsigned long flags;
4133 	u8 status;
4134 	int ret;
4135 	bool reenable_intr = false;
4136 
4137 	mutex_lock(&hba->uic_cmd_mutex);
4138 	ufshcd_add_delay_before_dme_cmd(hba);
4139 
4140 	spin_lock_irqsave(hba->host->host_lock, flags);
4141 	if (ufshcd_is_link_broken(hba)) {
4142 		ret = -ENOLINK;
4143 		goto out_unlock;
4144 	}
4145 	hba->uic_async_done = &uic_async_done;
4146 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4147 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4148 		/*
4149 		 * Make sure UIC command completion interrupt is disabled before
4150 		 * issuing UIC command.
4151 		 */
4152 		wmb();
4153 		reenable_intr = true;
4154 	}
4155 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4156 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4157 	if (ret) {
4158 		dev_err(hba->dev,
4159 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4160 			cmd->command, cmd->argument3, ret);
4161 		goto out;
4162 	}
4163 
4164 	if (!wait_for_completion_timeout(hba->uic_async_done,
4165 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4166 		dev_err(hba->dev,
4167 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4168 			cmd->command, cmd->argument3);
4169 
4170 		if (!cmd->cmd_active) {
4171 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4172 				__func__);
4173 			goto check_upmcrs;
4174 		}
4175 
4176 		ret = -ETIMEDOUT;
4177 		goto out;
4178 	}
4179 
4180 check_upmcrs:
4181 	status = ufshcd_get_upmcrs(hba);
4182 	if (status != PWR_LOCAL) {
4183 		dev_err(hba->dev,
4184 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4185 			cmd->command, status);
4186 		ret = (status != PWR_OK) ? status : -1;
4187 	}
4188 out:
4189 	if (ret) {
4190 		ufshcd_print_host_state(hba);
4191 		ufshcd_print_pwr_info(hba);
4192 		ufshcd_print_evt_hist(hba);
4193 	}
4194 
4195 	spin_lock_irqsave(hba->host->host_lock, flags);
4196 	hba->active_uic_cmd = NULL;
4197 	hba->uic_async_done = NULL;
4198 	if (reenable_intr)
4199 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4200 	if (ret) {
4201 		ufshcd_set_link_broken(hba);
4202 		ufshcd_schedule_eh_work(hba);
4203 	}
4204 out_unlock:
4205 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4206 	mutex_unlock(&hba->uic_cmd_mutex);
4207 
4208 	return ret;
4209 }
4210 
4211 /**
4212  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4213  *				using DME_SET primitives.
4214  * @hba: per adapter instance
4215  * @mode: powr mode value
4216  *
4217  * Returns 0 on success, non-zero value on failure
4218  */
4219 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4220 {
4221 	struct uic_command uic_cmd = {0};
4222 	int ret;
4223 
4224 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4225 		ret = ufshcd_dme_set(hba,
4226 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4227 		if (ret) {
4228 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4229 						__func__, ret);
4230 			goto out;
4231 		}
4232 	}
4233 
4234 	uic_cmd.command = UIC_CMD_DME_SET;
4235 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4236 	uic_cmd.argument3 = mode;
4237 	ufshcd_hold(hba, false);
4238 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4239 	ufshcd_release(hba);
4240 
4241 out:
4242 	return ret;
4243 }
4244 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4245 
4246 int ufshcd_link_recovery(struct ufs_hba *hba)
4247 {
4248 	int ret;
4249 	unsigned long flags;
4250 
4251 	spin_lock_irqsave(hba->host->host_lock, flags);
4252 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4253 	ufshcd_set_eh_in_progress(hba);
4254 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4255 
4256 	/* Reset the attached device */
4257 	ufshcd_device_reset(hba);
4258 
4259 	ret = ufshcd_host_reset_and_restore(hba);
4260 
4261 	spin_lock_irqsave(hba->host->host_lock, flags);
4262 	if (ret)
4263 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4264 	ufshcd_clear_eh_in_progress(hba);
4265 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4266 
4267 	if (ret)
4268 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4269 			__func__, ret);
4270 
4271 	return ret;
4272 }
4273 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4274 
4275 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4276 {
4277 	int ret;
4278 	struct uic_command uic_cmd = {0};
4279 	ktime_t start = ktime_get();
4280 
4281 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4282 
4283 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4284 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4285 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4286 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4287 
4288 	if (ret)
4289 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4290 			__func__, ret);
4291 	else
4292 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4293 								POST_CHANGE);
4294 
4295 	return ret;
4296 }
4297 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4298 
4299 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4300 {
4301 	struct uic_command uic_cmd = {0};
4302 	int ret;
4303 	ktime_t start = ktime_get();
4304 
4305 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4306 
4307 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4308 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4309 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4310 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4311 
4312 	if (ret) {
4313 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4314 			__func__, ret);
4315 	} else {
4316 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4317 								POST_CHANGE);
4318 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4319 		hba->ufs_stats.hibern8_exit_cnt++;
4320 	}
4321 
4322 	return ret;
4323 }
4324 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4325 
4326 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4327 {
4328 	unsigned long flags;
4329 	bool update = false;
4330 
4331 	if (!ufshcd_is_auto_hibern8_supported(hba))
4332 		return;
4333 
4334 	spin_lock_irqsave(hba->host->host_lock, flags);
4335 	if (hba->ahit != ahit) {
4336 		hba->ahit = ahit;
4337 		update = true;
4338 	}
4339 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4340 
4341 	if (update &&
4342 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4343 		ufshcd_rpm_get_sync(hba);
4344 		ufshcd_hold(hba, false);
4345 		ufshcd_auto_hibern8_enable(hba);
4346 		ufshcd_release(hba);
4347 		ufshcd_rpm_put_sync(hba);
4348 	}
4349 }
4350 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4351 
4352 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4353 {
4354 	if (!ufshcd_is_auto_hibern8_supported(hba))
4355 		return;
4356 
4357 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4358 }
4359 
4360  /**
4361  * ufshcd_init_pwr_info - setting the POR (power on reset)
4362  * values in hba power info
4363  * @hba: per-adapter instance
4364  */
4365 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4366 {
4367 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4368 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4369 	hba->pwr_info.lane_rx = 1;
4370 	hba->pwr_info.lane_tx = 1;
4371 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4372 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4373 	hba->pwr_info.hs_rate = 0;
4374 }
4375 
4376 /**
4377  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4378  * @hba: per-adapter instance
4379  */
4380 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4381 {
4382 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4383 
4384 	if (hba->max_pwr_info.is_valid)
4385 		return 0;
4386 
4387 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4388 		pwr_info->pwr_tx = FASTAUTO_MODE;
4389 		pwr_info->pwr_rx = FASTAUTO_MODE;
4390 	} else {
4391 		pwr_info->pwr_tx = FAST_MODE;
4392 		pwr_info->pwr_rx = FAST_MODE;
4393 	}
4394 	pwr_info->hs_rate = PA_HS_MODE_B;
4395 
4396 	/* Get the connected lane count */
4397 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4398 			&pwr_info->lane_rx);
4399 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4400 			&pwr_info->lane_tx);
4401 
4402 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4403 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4404 				__func__,
4405 				pwr_info->lane_rx,
4406 				pwr_info->lane_tx);
4407 		return -EINVAL;
4408 	}
4409 
4410 	/*
4411 	 * First, get the maximum gears of HS speed.
4412 	 * If a zero value, it means there is no HSGEAR capability.
4413 	 * Then, get the maximum gears of PWM speed.
4414 	 */
4415 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4416 	if (!pwr_info->gear_rx) {
4417 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4418 				&pwr_info->gear_rx);
4419 		if (!pwr_info->gear_rx) {
4420 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4421 				__func__, pwr_info->gear_rx);
4422 			return -EINVAL;
4423 		}
4424 		pwr_info->pwr_rx = SLOW_MODE;
4425 	}
4426 
4427 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4428 			&pwr_info->gear_tx);
4429 	if (!pwr_info->gear_tx) {
4430 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4431 				&pwr_info->gear_tx);
4432 		if (!pwr_info->gear_tx) {
4433 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4434 				__func__, pwr_info->gear_tx);
4435 			return -EINVAL;
4436 		}
4437 		pwr_info->pwr_tx = SLOW_MODE;
4438 	}
4439 
4440 	hba->max_pwr_info.is_valid = true;
4441 	return 0;
4442 }
4443 
4444 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4445 			     struct ufs_pa_layer_attr *pwr_mode)
4446 {
4447 	int ret;
4448 
4449 	/* if already configured to the requested pwr_mode */
4450 	if (!hba->force_pmc &&
4451 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4452 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4453 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4454 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4455 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4456 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4457 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4458 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4459 		return 0;
4460 	}
4461 
4462 	/*
4463 	 * Configure attributes for power mode change with below.
4464 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4465 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4466 	 * - PA_HSSERIES
4467 	 */
4468 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4469 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4470 			pwr_mode->lane_rx);
4471 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4472 			pwr_mode->pwr_rx == FAST_MODE)
4473 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4474 	else
4475 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4476 
4477 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4478 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4479 			pwr_mode->lane_tx);
4480 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4481 			pwr_mode->pwr_tx == FAST_MODE)
4482 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4483 	else
4484 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4485 
4486 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4487 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4488 	    pwr_mode->pwr_rx == FAST_MODE ||
4489 	    pwr_mode->pwr_tx == FAST_MODE)
4490 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4491 						pwr_mode->hs_rate);
4492 
4493 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4494 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4495 				DL_FC0ProtectionTimeOutVal_Default);
4496 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4497 				DL_TC0ReplayTimeOutVal_Default);
4498 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4499 				DL_AFC0ReqTimeOutVal_Default);
4500 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4501 				DL_FC1ProtectionTimeOutVal_Default);
4502 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4503 				DL_TC1ReplayTimeOutVal_Default);
4504 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4505 				DL_AFC1ReqTimeOutVal_Default);
4506 
4507 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4508 				DL_FC0ProtectionTimeOutVal_Default);
4509 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4510 				DL_TC0ReplayTimeOutVal_Default);
4511 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4512 				DL_AFC0ReqTimeOutVal_Default);
4513 	}
4514 
4515 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4516 			| pwr_mode->pwr_tx);
4517 
4518 	if (ret) {
4519 		dev_err(hba->dev,
4520 			"%s: power mode change failed %d\n", __func__, ret);
4521 	} else {
4522 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4523 								pwr_mode);
4524 
4525 		memcpy(&hba->pwr_info, pwr_mode,
4526 			sizeof(struct ufs_pa_layer_attr));
4527 	}
4528 
4529 	return ret;
4530 }
4531 
4532 /**
4533  * ufshcd_config_pwr_mode - configure a new power mode
4534  * @hba: per-adapter instance
4535  * @desired_pwr_mode: desired power configuration
4536  */
4537 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4538 		struct ufs_pa_layer_attr *desired_pwr_mode)
4539 {
4540 	struct ufs_pa_layer_attr final_params = { 0 };
4541 	int ret;
4542 
4543 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4544 					desired_pwr_mode, &final_params);
4545 
4546 	if (ret)
4547 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4548 
4549 	ret = ufshcd_change_power_mode(hba, &final_params);
4550 
4551 	return ret;
4552 }
4553 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4554 
4555 /**
4556  * ufshcd_complete_dev_init() - checks device readiness
4557  * @hba: per-adapter instance
4558  *
4559  * Set fDeviceInit flag and poll until device toggles it.
4560  */
4561 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4562 {
4563 	int err;
4564 	bool flag_res = true;
4565 	ktime_t timeout;
4566 
4567 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4568 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4569 	if (err) {
4570 		dev_err(hba->dev,
4571 			"%s: setting fDeviceInit flag failed with error %d\n",
4572 			__func__, err);
4573 		goto out;
4574 	}
4575 
4576 	/* Poll fDeviceInit flag to be cleared */
4577 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4578 	do {
4579 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4580 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4581 		if (!flag_res)
4582 			break;
4583 		usleep_range(500, 1000);
4584 	} while (ktime_before(ktime_get(), timeout));
4585 
4586 	if (err) {
4587 		dev_err(hba->dev,
4588 				"%s: reading fDeviceInit flag failed with error %d\n",
4589 				__func__, err);
4590 	} else if (flag_res) {
4591 		dev_err(hba->dev,
4592 				"%s: fDeviceInit was not cleared by the device\n",
4593 				__func__);
4594 		err = -EBUSY;
4595 	}
4596 out:
4597 	return err;
4598 }
4599 
4600 /**
4601  * ufshcd_make_hba_operational - Make UFS controller operational
4602  * @hba: per adapter instance
4603  *
4604  * To bring UFS host controller to operational state,
4605  * 1. Enable required interrupts
4606  * 2. Configure interrupt aggregation
4607  * 3. Program UTRL and UTMRL base address
4608  * 4. Configure run-stop-registers
4609  *
4610  * Returns 0 on success, non-zero value on failure
4611  */
4612 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4613 {
4614 	int err = 0;
4615 	u32 reg;
4616 
4617 	/* Enable required interrupts */
4618 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4619 
4620 	/* Configure interrupt aggregation */
4621 	if (ufshcd_is_intr_aggr_allowed(hba))
4622 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4623 	else
4624 		ufshcd_disable_intr_aggr(hba);
4625 
4626 	/* Configure UTRL and UTMRL base address registers */
4627 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4628 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4629 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4630 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4631 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4632 			REG_UTP_TASK_REQ_LIST_BASE_L);
4633 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4634 			REG_UTP_TASK_REQ_LIST_BASE_H);
4635 
4636 	/*
4637 	 * Make sure base address and interrupt setup are updated before
4638 	 * enabling the run/stop registers below.
4639 	 */
4640 	wmb();
4641 
4642 	/*
4643 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4644 	 */
4645 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4646 	if (!(ufshcd_get_lists_status(reg))) {
4647 		ufshcd_enable_run_stop_reg(hba);
4648 	} else {
4649 		dev_err(hba->dev,
4650 			"Host controller not ready to process requests");
4651 		err = -EIO;
4652 	}
4653 
4654 	return err;
4655 }
4656 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4657 
4658 /**
4659  * ufshcd_hba_stop - Send controller to reset state
4660  * @hba: per adapter instance
4661  */
4662 void ufshcd_hba_stop(struct ufs_hba *hba)
4663 {
4664 	unsigned long flags;
4665 	int err;
4666 
4667 	/*
4668 	 * Obtain the host lock to prevent that the controller is disabled
4669 	 * while the UFS interrupt handler is active on another CPU.
4670 	 */
4671 	spin_lock_irqsave(hba->host->host_lock, flags);
4672 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4673 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4674 
4675 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4676 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4677 					10, 1);
4678 	if (err)
4679 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4680 }
4681 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4682 
4683 /**
4684  * ufshcd_hba_execute_hce - initialize the controller
4685  * @hba: per adapter instance
4686  *
4687  * The controller resets itself and controller firmware initialization
4688  * sequence kicks off. When controller is ready it will set
4689  * the Host Controller Enable bit to 1.
4690  *
4691  * Returns 0 on success, non-zero value on failure
4692  */
4693 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4694 {
4695 	int retry_outer = 3;
4696 	int retry_inner;
4697 
4698 start:
4699 	if (ufshcd_is_hba_active(hba))
4700 		/* change controller state to "reset state" */
4701 		ufshcd_hba_stop(hba);
4702 
4703 	/* UniPro link is disabled at this point */
4704 	ufshcd_set_link_off(hba);
4705 
4706 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4707 
4708 	/* start controller initialization sequence */
4709 	ufshcd_hba_start(hba);
4710 
4711 	/*
4712 	 * To initialize a UFS host controller HCE bit must be set to 1.
4713 	 * During initialization the HCE bit value changes from 1->0->1.
4714 	 * When the host controller completes initialization sequence
4715 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4716 	 * to check if the controller has completed initialization sequence.
4717 	 * So without this delay the value HCE = 1, set in the previous
4718 	 * instruction might be read back.
4719 	 * This delay can be changed based on the controller.
4720 	 */
4721 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4722 
4723 	/* wait for the host controller to complete initialization */
4724 	retry_inner = 50;
4725 	while (!ufshcd_is_hba_active(hba)) {
4726 		if (retry_inner) {
4727 			retry_inner--;
4728 		} else {
4729 			dev_err(hba->dev,
4730 				"Controller enable failed\n");
4731 			if (retry_outer) {
4732 				retry_outer--;
4733 				goto start;
4734 			}
4735 			return -EIO;
4736 		}
4737 		usleep_range(1000, 1100);
4738 	}
4739 
4740 	/* enable UIC related interrupts */
4741 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4742 
4743 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4744 
4745 	return 0;
4746 }
4747 
4748 int ufshcd_hba_enable(struct ufs_hba *hba)
4749 {
4750 	int ret;
4751 
4752 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4753 		ufshcd_set_link_off(hba);
4754 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4755 
4756 		/* enable UIC related interrupts */
4757 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4758 		ret = ufshcd_dme_reset(hba);
4759 		if (ret) {
4760 			dev_err(hba->dev, "DME_RESET failed\n");
4761 			return ret;
4762 		}
4763 
4764 		ret = ufshcd_dme_enable(hba);
4765 		if (ret) {
4766 			dev_err(hba->dev, "Enabling DME failed\n");
4767 			return ret;
4768 		}
4769 
4770 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4771 	} else {
4772 		ret = ufshcd_hba_execute_hce(hba);
4773 	}
4774 
4775 	return ret;
4776 }
4777 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4778 
4779 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4780 {
4781 	int tx_lanes = 0, i, err = 0;
4782 
4783 	if (!peer)
4784 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4785 			       &tx_lanes);
4786 	else
4787 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4788 				    &tx_lanes);
4789 	for (i = 0; i < tx_lanes; i++) {
4790 		if (!peer)
4791 			err = ufshcd_dme_set(hba,
4792 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4793 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4794 					0);
4795 		else
4796 			err = ufshcd_dme_peer_set(hba,
4797 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4798 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4799 					0);
4800 		if (err) {
4801 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4802 				__func__, peer, i, err);
4803 			break;
4804 		}
4805 	}
4806 
4807 	return err;
4808 }
4809 
4810 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4811 {
4812 	return ufshcd_disable_tx_lcc(hba, true);
4813 }
4814 
4815 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4816 {
4817 	struct ufs_event_hist *e;
4818 
4819 	if (id >= UFS_EVT_CNT)
4820 		return;
4821 
4822 	e = &hba->ufs_stats.event[id];
4823 	e->val[e->pos] = val;
4824 	e->tstamp[e->pos] = local_clock();
4825 	e->cnt += 1;
4826 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4827 
4828 	ufshcd_vops_event_notify(hba, id, &val);
4829 }
4830 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4831 
4832 /**
4833  * ufshcd_link_startup - Initialize unipro link startup
4834  * @hba: per adapter instance
4835  *
4836  * Returns 0 for success, non-zero in case of failure
4837  */
4838 static int ufshcd_link_startup(struct ufs_hba *hba)
4839 {
4840 	int ret;
4841 	int retries = DME_LINKSTARTUP_RETRIES;
4842 	bool link_startup_again = false;
4843 
4844 	/*
4845 	 * If UFS device isn't active then we will have to issue link startup
4846 	 * 2 times to make sure the device state move to active.
4847 	 */
4848 	if (!ufshcd_is_ufs_dev_active(hba))
4849 		link_startup_again = true;
4850 
4851 link_startup:
4852 	do {
4853 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4854 
4855 		ret = ufshcd_dme_link_startup(hba);
4856 
4857 		/* check if device is detected by inter-connect layer */
4858 		if (!ret && !ufshcd_is_device_present(hba)) {
4859 			ufshcd_update_evt_hist(hba,
4860 					       UFS_EVT_LINK_STARTUP_FAIL,
4861 					       0);
4862 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4863 			ret = -ENXIO;
4864 			goto out;
4865 		}
4866 
4867 		/*
4868 		 * DME link lost indication is only received when link is up,
4869 		 * but we can't be sure if the link is up until link startup
4870 		 * succeeds. So reset the local Uni-Pro and try again.
4871 		 */
4872 		if (ret && retries && ufshcd_hba_enable(hba)) {
4873 			ufshcd_update_evt_hist(hba,
4874 					       UFS_EVT_LINK_STARTUP_FAIL,
4875 					       (u32)ret);
4876 			goto out;
4877 		}
4878 	} while (ret && retries--);
4879 
4880 	if (ret) {
4881 		/* failed to get the link up... retire */
4882 		ufshcd_update_evt_hist(hba,
4883 				       UFS_EVT_LINK_STARTUP_FAIL,
4884 				       (u32)ret);
4885 		goto out;
4886 	}
4887 
4888 	if (link_startup_again) {
4889 		link_startup_again = false;
4890 		retries = DME_LINKSTARTUP_RETRIES;
4891 		goto link_startup;
4892 	}
4893 
4894 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4895 	ufshcd_init_pwr_info(hba);
4896 	ufshcd_print_pwr_info(hba);
4897 
4898 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4899 		ret = ufshcd_disable_device_tx_lcc(hba);
4900 		if (ret)
4901 			goto out;
4902 	}
4903 
4904 	/* Include any host controller configuration via UIC commands */
4905 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4906 	if (ret)
4907 		goto out;
4908 
4909 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4910 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4911 	ret = ufshcd_make_hba_operational(hba);
4912 out:
4913 	if (ret) {
4914 		dev_err(hba->dev, "link startup failed %d\n", ret);
4915 		ufshcd_print_host_state(hba);
4916 		ufshcd_print_pwr_info(hba);
4917 		ufshcd_print_evt_hist(hba);
4918 	}
4919 	return ret;
4920 }
4921 
4922 /**
4923  * ufshcd_verify_dev_init() - Verify device initialization
4924  * @hba: per-adapter instance
4925  *
4926  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4927  * device Transport Protocol (UTP) layer is ready after a reset.
4928  * If the UTP layer at the device side is not initialized, it may
4929  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4930  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4931  */
4932 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4933 {
4934 	int err = 0;
4935 	int retries;
4936 
4937 	ufshcd_hold(hba, false);
4938 	mutex_lock(&hba->dev_cmd.lock);
4939 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4940 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4941 					  hba->nop_out_timeout);
4942 
4943 		if (!err || err == -ETIMEDOUT)
4944 			break;
4945 
4946 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4947 	}
4948 	mutex_unlock(&hba->dev_cmd.lock);
4949 	ufshcd_release(hba);
4950 
4951 	if (err)
4952 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4953 	return err;
4954 }
4955 
4956 /**
4957  * ufshcd_setup_links - associate link b/w device wlun and other luns
4958  * @sdev: pointer to SCSI device
4959  * @hba: pointer to ufs hba
4960  */
4961 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4962 {
4963 	struct device_link *link;
4964 
4965 	/*
4966 	 * Device wlun is the supplier & rest of the luns are consumers.
4967 	 * This ensures that device wlun suspends after all other luns.
4968 	 */
4969 	if (hba->ufs_device_wlun) {
4970 		link = device_link_add(&sdev->sdev_gendev,
4971 				       &hba->ufs_device_wlun->sdev_gendev,
4972 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4973 		if (!link) {
4974 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4975 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4976 			return;
4977 		}
4978 		hba->luns_avail--;
4979 		/* Ignore REPORT_LUN wlun probing */
4980 		if (hba->luns_avail == 1) {
4981 			ufshcd_rpm_put(hba);
4982 			return;
4983 		}
4984 	} else {
4985 		/*
4986 		 * Device wlun is probed. The assumption is that WLUNs are
4987 		 * scanned before other LUNs.
4988 		 */
4989 		hba->luns_avail--;
4990 	}
4991 }
4992 
4993 /**
4994  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4995  * @hba: per-adapter instance
4996  * @sdev: pointer to SCSI device
4997  */
4998 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4999 {
5000 	int len = QUERY_DESC_MAX_SIZE;
5001 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5002 	u8 lun_qdepth = hba->nutrs;
5003 	u8 *desc_buf;
5004 	int ret;
5005 
5006 	desc_buf = kzalloc(len, GFP_KERNEL);
5007 	if (!desc_buf)
5008 		goto set_qdepth;
5009 
5010 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5011 	if (ret < 0) {
5012 		if (ret == -EOPNOTSUPP)
5013 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5014 			lun_qdepth = 1;
5015 		kfree(desc_buf);
5016 		goto set_qdepth;
5017 	}
5018 
5019 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5020 		/*
5021 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5022 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5023 		 */
5024 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5025 	}
5026 	/*
5027 	 * According to UFS device specification, the write protection mode is only supported by
5028 	 * normal LU, not supported by WLUN.
5029 	 */
5030 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5031 	    !hba->dev_info.is_lu_power_on_wp &&
5032 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5033 		hba->dev_info.is_lu_power_on_wp = true;
5034 
5035 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5036 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5037 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5038 		hba->dev_info.b_advanced_rpmb_en = true;
5039 
5040 
5041 	kfree(desc_buf);
5042 set_qdepth:
5043 	/*
5044 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5045 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5046 	 */
5047 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5048 	scsi_change_queue_depth(sdev, lun_qdepth);
5049 }
5050 
5051 /**
5052  * ufshcd_slave_alloc - handle initial SCSI device configurations
5053  * @sdev: pointer to SCSI device
5054  *
5055  * Returns success
5056  */
5057 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5058 {
5059 	struct ufs_hba *hba;
5060 
5061 	hba = shost_priv(sdev->host);
5062 
5063 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5064 	sdev->use_10_for_ms = 1;
5065 
5066 	/* DBD field should be set to 1 in mode sense(10) */
5067 	sdev->set_dbd_for_ms = 1;
5068 
5069 	/* allow SCSI layer to restart the device in case of errors */
5070 	sdev->allow_restart = 1;
5071 
5072 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5073 	sdev->no_report_opcodes = 1;
5074 
5075 	/* WRITE_SAME command is not supported */
5076 	sdev->no_write_same = 1;
5077 
5078 	ufshcd_lu_init(hba, sdev);
5079 
5080 	ufshcd_setup_links(hba, sdev);
5081 
5082 	return 0;
5083 }
5084 
5085 /**
5086  * ufshcd_change_queue_depth - change queue depth
5087  * @sdev: pointer to SCSI device
5088  * @depth: required depth to set
5089  *
5090  * Change queue depth and make sure the max. limits are not crossed.
5091  */
5092 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5093 {
5094 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5095 }
5096 
5097 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5098 {
5099 	/* skip well-known LU */
5100 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5101 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5102 		return;
5103 
5104 	ufshpb_destroy_lu(hba, sdev);
5105 }
5106 
5107 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5108 {
5109 	/* skip well-known LU */
5110 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5111 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5112 		return;
5113 
5114 	ufshpb_init_hpb_lu(hba, sdev);
5115 }
5116 
5117 /**
5118  * ufshcd_slave_configure - adjust SCSI device configurations
5119  * @sdev: pointer to SCSI device
5120  */
5121 static int ufshcd_slave_configure(struct scsi_device *sdev)
5122 {
5123 	struct ufs_hba *hba = shost_priv(sdev->host);
5124 	struct request_queue *q = sdev->request_queue;
5125 
5126 	ufshcd_hpb_configure(hba, sdev);
5127 
5128 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5129 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5130 		blk_queue_update_dma_alignment(q, 4096 - 1);
5131 	/*
5132 	 * Block runtime-pm until all consumers are added.
5133 	 * Refer ufshcd_setup_links().
5134 	 */
5135 	if (is_device_wlun(sdev))
5136 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5137 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5138 		sdev->rpm_autosuspend = 1;
5139 	/*
5140 	 * Do not print messages during runtime PM to avoid never-ending cycles
5141 	 * of messages written back to storage by user space causing runtime
5142 	 * resume, causing more messages and so on.
5143 	 */
5144 	sdev->silence_suspend = 1;
5145 
5146 	ufshcd_crypto_register(hba, q);
5147 
5148 	return 0;
5149 }
5150 
5151 /**
5152  * ufshcd_slave_destroy - remove SCSI device configurations
5153  * @sdev: pointer to SCSI device
5154  */
5155 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5156 {
5157 	struct ufs_hba *hba;
5158 	unsigned long flags;
5159 
5160 	hba = shost_priv(sdev->host);
5161 
5162 	ufshcd_hpb_destroy(hba, sdev);
5163 
5164 	/* Drop the reference as it won't be needed anymore */
5165 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5166 		spin_lock_irqsave(hba->host->host_lock, flags);
5167 		hba->ufs_device_wlun = NULL;
5168 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5169 	} else if (hba->ufs_device_wlun) {
5170 		struct device *supplier = NULL;
5171 
5172 		/* Ensure UFS Device WLUN exists and does not disappear */
5173 		spin_lock_irqsave(hba->host->host_lock, flags);
5174 		if (hba->ufs_device_wlun) {
5175 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5176 			get_device(supplier);
5177 		}
5178 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5179 
5180 		if (supplier) {
5181 			/*
5182 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5183 			 * device will not have been registered but can still
5184 			 * have a device link holding a reference to the device.
5185 			 */
5186 			device_link_remove(&sdev->sdev_gendev, supplier);
5187 			put_device(supplier);
5188 		}
5189 	}
5190 }
5191 
5192 /**
5193  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5194  * @lrbp: pointer to local reference block of completed command
5195  * @scsi_status: SCSI command status
5196  *
5197  * Returns value base on SCSI command status
5198  */
5199 static inline int
5200 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5201 {
5202 	int result = 0;
5203 
5204 	switch (scsi_status) {
5205 	case SAM_STAT_CHECK_CONDITION:
5206 		ufshcd_copy_sense_data(lrbp);
5207 		fallthrough;
5208 	case SAM_STAT_GOOD:
5209 		result |= DID_OK << 16 | scsi_status;
5210 		break;
5211 	case SAM_STAT_TASK_SET_FULL:
5212 	case SAM_STAT_BUSY:
5213 	case SAM_STAT_TASK_ABORTED:
5214 		ufshcd_copy_sense_data(lrbp);
5215 		result |= scsi_status;
5216 		break;
5217 	default:
5218 		result |= DID_ERROR << 16;
5219 		break;
5220 	} /* end of switch */
5221 
5222 	return result;
5223 }
5224 
5225 /**
5226  * ufshcd_transfer_rsp_status - Get overall status of the response
5227  * @hba: per adapter instance
5228  * @lrbp: pointer to local reference block of completed command
5229  * @cqe: pointer to the completion queue entry
5230  *
5231  * Returns result of the command to notify SCSI midlayer
5232  */
5233 static inline int
5234 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5235 			   struct cq_entry *cqe)
5236 {
5237 	int result = 0;
5238 	int scsi_status;
5239 	enum utp_ocs ocs;
5240 
5241 	/* overall command status of utrd */
5242 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5243 
5244 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5245 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5246 					MASK_RSP_UPIU_RESULT)
5247 			ocs = OCS_SUCCESS;
5248 	}
5249 
5250 	switch (ocs) {
5251 	case OCS_SUCCESS:
5252 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5253 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5254 		switch (result) {
5255 		case UPIU_TRANSACTION_RESPONSE:
5256 			/*
5257 			 * get the response UPIU result to extract
5258 			 * the SCSI command status
5259 			 */
5260 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5261 
5262 			/*
5263 			 * get the result based on SCSI status response
5264 			 * to notify the SCSI midlayer of the command status
5265 			 */
5266 			scsi_status = result & MASK_SCSI_STATUS;
5267 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5268 
5269 			/*
5270 			 * Currently we are only supporting BKOPs exception
5271 			 * events hence we can ignore BKOPs exception event
5272 			 * during power management callbacks. BKOPs exception
5273 			 * event is not expected to be raised in runtime suspend
5274 			 * callback as it allows the urgent bkops.
5275 			 * During system suspend, we are anyway forcefully
5276 			 * disabling the bkops and if urgent bkops is needed
5277 			 * it will be enabled on system resume. Long term
5278 			 * solution could be to abort the system suspend if
5279 			 * UFS device needs urgent BKOPs.
5280 			 */
5281 			if (!hba->pm_op_in_progress &&
5282 			    !ufshcd_eh_in_progress(hba) &&
5283 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5284 				/* Flushed in suspend */
5285 				schedule_work(&hba->eeh_work);
5286 
5287 			if (scsi_status == SAM_STAT_GOOD)
5288 				ufshpb_rsp_upiu(hba, lrbp);
5289 			break;
5290 		case UPIU_TRANSACTION_REJECT_UPIU:
5291 			/* TODO: handle Reject UPIU Response */
5292 			result = DID_ERROR << 16;
5293 			dev_err(hba->dev,
5294 				"Reject UPIU not fully implemented\n");
5295 			break;
5296 		default:
5297 			dev_err(hba->dev,
5298 				"Unexpected request response code = %x\n",
5299 				result);
5300 			result = DID_ERROR << 16;
5301 			break;
5302 		}
5303 		break;
5304 	case OCS_ABORTED:
5305 		result |= DID_ABORT << 16;
5306 		break;
5307 	case OCS_INVALID_COMMAND_STATUS:
5308 		result |= DID_REQUEUE << 16;
5309 		break;
5310 	case OCS_INVALID_CMD_TABLE_ATTR:
5311 	case OCS_INVALID_PRDT_ATTR:
5312 	case OCS_MISMATCH_DATA_BUF_SIZE:
5313 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5314 	case OCS_PEER_COMM_FAILURE:
5315 	case OCS_FATAL_ERROR:
5316 	case OCS_DEVICE_FATAL_ERROR:
5317 	case OCS_INVALID_CRYPTO_CONFIG:
5318 	case OCS_GENERAL_CRYPTO_ERROR:
5319 	default:
5320 		result |= DID_ERROR << 16;
5321 		dev_err(hba->dev,
5322 				"OCS error from controller = %x for tag %d\n",
5323 				ocs, lrbp->task_tag);
5324 		ufshcd_print_evt_hist(hba);
5325 		ufshcd_print_host_state(hba);
5326 		break;
5327 	} /* end of switch */
5328 
5329 	if ((host_byte(result) != DID_OK) &&
5330 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5331 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5332 	return result;
5333 }
5334 
5335 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5336 					 u32 intr_mask)
5337 {
5338 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5339 	    !ufshcd_is_auto_hibern8_enabled(hba))
5340 		return false;
5341 
5342 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5343 		return false;
5344 
5345 	if (hba->active_uic_cmd &&
5346 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5347 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5348 		return false;
5349 
5350 	return true;
5351 }
5352 
5353 /**
5354  * ufshcd_uic_cmd_compl - handle completion of uic command
5355  * @hba: per adapter instance
5356  * @intr_status: interrupt status generated by the controller
5357  *
5358  * Returns
5359  *  IRQ_HANDLED - If interrupt is valid
5360  *  IRQ_NONE    - If invalid interrupt
5361  */
5362 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5363 {
5364 	irqreturn_t retval = IRQ_NONE;
5365 
5366 	spin_lock(hba->host->host_lock);
5367 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5368 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5369 
5370 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5371 		hba->active_uic_cmd->argument2 |=
5372 			ufshcd_get_uic_cmd_result(hba);
5373 		hba->active_uic_cmd->argument3 =
5374 			ufshcd_get_dme_attr_val(hba);
5375 		if (!hba->uic_async_done)
5376 			hba->active_uic_cmd->cmd_active = 0;
5377 		complete(&hba->active_uic_cmd->done);
5378 		retval = IRQ_HANDLED;
5379 	}
5380 
5381 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5382 		hba->active_uic_cmd->cmd_active = 0;
5383 		complete(hba->uic_async_done);
5384 		retval = IRQ_HANDLED;
5385 	}
5386 
5387 	if (retval == IRQ_HANDLED)
5388 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5389 					     UFS_CMD_COMP);
5390 	spin_unlock(hba->host->host_lock);
5391 	return retval;
5392 }
5393 
5394 /* Release the resources allocated for processing a SCSI command. */
5395 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5396 				    struct ufshcd_lrb *lrbp)
5397 {
5398 	struct scsi_cmnd *cmd = lrbp->cmd;
5399 
5400 	scsi_dma_unmap(cmd);
5401 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5402 	ufshcd_release(hba);
5403 	ufshcd_clk_scaling_update_busy(hba);
5404 }
5405 
5406 /**
5407  * ufshcd_compl_one_cqe - handle a completion queue entry
5408  * @hba: per adapter instance
5409  * @task_tag: the task tag of the request to be completed
5410  * @cqe: pointer to the completion queue entry
5411  */
5412 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5413 			  struct cq_entry *cqe)
5414 {
5415 	struct ufshcd_lrb *lrbp;
5416 	struct scsi_cmnd *cmd;
5417 
5418 	lrbp = &hba->lrb[task_tag];
5419 	lrbp->compl_time_stamp = ktime_get();
5420 	cmd = lrbp->cmd;
5421 	if (cmd) {
5422 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5423 			ufshcd_update_monitor(hba, lrbp);
5424 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5425 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5426 		ufshcd_release_scsi_cmd(hba, lrbp);
5427 		/* Do not touch lrbp after scsi done */
5428 		scsi_done(cmd);
5429 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5430 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5431 		if (hba->dev_cmd.complete) {
5432 			hba->dev_cmd.cqe = cqe;
5433 			ufshcd_add_command_trace(hba, task_tag, UFS_DEV_COMP);
5434 			complete(hba->dev_cmd.complete);
5435 			ufshcd_clk_scaling_update_busy(hba);
5436 		}
5437 	}
5438 }
5439 
5440 /**
5441  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5442  * @hba: per adapter instance
5443  * @completed_reqs: bitmask that indicates which requests to complete
5444  */
5445 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5446 					unsigned long completed_reqs)
5447 {
5448 	int tag;
5449 
5450 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5451 		ufshcd_compl_one_cqe(hba, tag, NULL);
5452 }
5453 
5454 /* Any value that is not an existing queue number is fine for this constant. */
5455 enum {
5456 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5457 };
5458 
5459 static void ufshcd_clear_polled(struct ufs_hba *hba,
5460 				unsigned long *completed_reqs)
5461 {
5462 	int tag;
5463 
5464 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5465 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5466 
5467 		if (!cmd)
5468 			continue;
5469 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5470 			__clear_bit(tag, completed_reqs);
5471 	}
5472 }
5473 
5474 /*
5475  * Returns > 0 if one or more commands have been completed or 0 if no
5476  * requests have been completed.
5477  */
5478 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5479 {
5480 	struct ufs_hba *hba = shost_priv(shost);
5481 	unsigned long completed_reqs, flags;
5482 	u32 tr_doorbell;
5483 	struct ufs_hw_queue *hwq;
5484 
5485 	if (is_mcq_enabled(hba)) {
5486 		hwq = &hba->uhq[queue_num + UFSHCD_MCQ_IO_QUEUE_OFFSET];
5487 
5488 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5489 	}
5490 
5491 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5492 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5493 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5494 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5495 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5496 		  hba->outstanding_reqs);
5497 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5498 		/* Do not complete polled requests from interrupt context. */
5499 		ufshcd_clear_polled(hba, &completed_reqs);
5500 	}
5501 	hba->outstanding_reqs &= ~completed_reqs;
5502 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5503 
5504 	if (completed_reqs)
5505 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5506 
5507 	return completed_reqs != 0;
5508 }
5509 
5510 /**
5511  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5512  * @hba: per adapter instance
5513  *
5514  * Returns
5515  *  IRQ_HANDLED - If interrupt is valid
5516  *  IRQ_NONE    - If invalid interrupt
5517  */
5518 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5519 {
5520 	/* Resetting interrupt aggregation counters first and reading the
5521 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5522 	 * In order to prevent other interrupts starvation the DB is read once
5523 	 * after reset. The down side of this solution is the possibility of
5524 	 * false interrupt if device completes another request after resetting
5525 	 * aggregation and before reading the DB.
5526 	 */
5527 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5528 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5529 		ufshcd_reset_intr_aggr(hba);
5530 
5531 	if (ufs_fail_completion())
5532 		return IRQ_HANDLED;
5533 
5534 	/*
5535 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5536 	 * do not want polling to trigger spurious interrupt complaints.
5537 	 */
5538 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5539 
5540 	return IRQ_HANDLED;
5541 }
5542 
5543 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5544 {
5545 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5546 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5547 				       &ee_ctrl_mask);
5548 }
5549 
5550 int ufshcd_write_ee_control(struct ufs_hba *hba)
5551 {
5552 	int err;
5553 
5554 	mutex_lock(&hba->ee_ctrl_mutex);
5555 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5556 	mutex_unlock(&hba->ee_ctrl_mutex);
5557 	if (err)
5558 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5559 			__func__, err);
5560 	return err;
5561 }
5562 
5563 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5564 			     const u16 *other_mask, u16 set, u16 clr)
5565 {
5566 	u16 new_mask, ee_ctrl_mask;
5567 	int err = 0;
5568 
5569 	mutex_lock(&hba->ee_ctrl_mutex);
5570 	new_mask = (*mask & ~clr) | set;
5571 	ee_ctrl_mask = new_mask | *other_mask;
5572 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5573 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5574 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5575 	if (!err) {
5576 		hba->ee_ctrl_mask = ee_ctrl_mask;
5577 		*mask = new_mask;
5578 	}
5579 	mutex_unlock(&hba->ee_ctrl_mutex);
5580 	return err;
5581 }
5582 
5583 /**
5584  * ufshcd_disable_ee - disable exception event
5585  * @hba: per-adapter instance
5586  * @mask: exception event to disable
5587  *
5588  * Disables exception event in the device so that the EVENT_ALERT
5589  * bit is not set.
5590  *
5591  * Returns zero on success, non-zero error value on failure.
5592  */
5593 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5594 {
5595 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5596 }
5597 
5598 /**
5599  * ufshcd_enable_ee - enable exception event
5600  * @hba: per-adapter instance
5601  * @mask: exception event to enable
5602  *
5603  * Enable corresponding exception event in the device to allow
5604  * device to alert host in critical scenarios.
5605  *
5606  * Returns zero on success, non-zero error value on failure.
5607  */
5608 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5609 {
5610 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5611 }
5612 
5613 /**
5614  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5615  * @hba: per-adapter instance
5616  *
5617  * Allow device to manage background operations on its own. Enabling
5618  * this might lead to inconsistent latencies during normal data transfers
5619  * as the device is allowed to manage its own way of handling background
5620  * operations.
5621  *
5622  * Returns zero on success, non-zero on failure.
5623  */
5624 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5625 {
5626 	int err = 0;
5627 
5628 	if (hba->auto_bkops_enabled)
5629 		goto out;
5630 
5631 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5632 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5633 	if (err) {
5634 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5635 				__func__, err);
5636 		goto out;
5637 	}
5638 
5639 	hba->auto_bkops_enabled = true;
5640 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5641 
5642 	/* No need of URGENT_BKOPS exception from the device */
5643 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5644 	if (err)
5645 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5646 				__func__, err);
5647 out:
5648 	return err;
5649 }
5650 
5651 /**
5652  * ufshcd_disable_auto_bkops - block device in doing background operations
5653  * @hba: per-adapter instance
5654  *
5655  * Disabling background operations improves command response latency but
5656  * has drawback of device moving into critical state where the device is
5657  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5658  * host is idle so that BKOPS are managed effectively without any negative
5659  * impacts.
5660  *
5661  * Returns zero on success, non-zero on failure.
5662  */
5663 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5664 {
5665 	int err = 0;
5666 
5667 	if (!hba->auto_bkops_enabled)
5668 		goto out;
5669 
5670 	/*
5671 	 * If host assisted BKOPs is to be enabled, make sure
5672 	 * urgent bkops exception is allowed.
5673 	 */
5674 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5675 	if (err) {
5676 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5677 				__func__, err);
5678 		goto out;
5679 	}
5680 
5681 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5682 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5683 	if (err) {
5684 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5685 				__func__, err);
5686 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5687 		goto out;
5688 	}
5689 
5690 	hba->auto_bkops_enabled = false;
5691 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5692 	hba->is_urgent_bkops_lvl_checked = false;
5693 out:
5694 	return err;
5695 }
5696 
5697 /**
5698  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5699  * @hba: per adapter instance
5700  *
5701  * After a device reset the device may toggle the BKOPS_EN flag
5702  * to default value. The s/w tracking variables should be updated
5703  * as well. This function would change the auto-bkops state based on
5704  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5705  */
5706 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5707 {
5708 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5709 		hba->auto_bkops_enabled = false;
5710 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5711 		ufshcd_enable_auto_bkops(hba);
5712 	} else {
5713 		hba->auto_bkops_enabled = true;
5714 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5715 		ufshcd_disable_auto_bkops(hba);
5716 	}
5717 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5718 	hba->is_urgent_bkops_lvl_checked = false;
5719 }
5720 
5721 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5722 {
5723 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5724 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5725 }
5726 
5727 /**
5728  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5729  * @hba: per-adapter instance
5730  * @status: bkops_status value
5731  *
5732  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5733  * flag in the device to permit background operations if the device
5734  * bkops_status is greater than or equal to "status" argument passed to
5735  * this function, disable otherwise.
5736  *
5737  * Returns 0 for success, non-zero in case of failure.
5738  *
5739  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5740  * to know whether auto bkops is enabled or disabled after this function
5741  * returns control to it.
5742  */
5743 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5744 			     enum bkops_status status)
5745 {
5746 	int err;
5747 	u32 curr_status = 0;
5748 
5749 	err = ufshcd_get_bkops_status(hba, &curr_status);
5750 	if (err) {
5751 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5752 				__func__, err);
5753 		goto out;
5754 	} else if (curr_status > BKOPS_STATUS_MAX) {
5755 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5756 				__func__, curr_status);
5757 		err = -EINVAL;
5758 		goto out;
5759 	}
5760 
5761 	if (curr_status >= status)
5762 		err = ufshcd_enable_auto_bkops(hba);
5763 	else
5764 		err = ufshcd_disable_auto_bkops(hba);
5765 out:
5766 	return err;
5767 }
5768 
5769 /**
5770  * ufshcd_urgent_bkops - handle urgent bkops exception event
5771  * @hba: per-adapter instance
5772  *
5773  * Enable fBackgroundOpsEn flag in the device to permit background
5774  * operations.
5775  *
5776  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5777  * and negative error value for any other failure.
5778  */
5779 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5780 {
5781 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5782 }
5783 
5784 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5785 {
5786 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5787 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5788 }
5789 
5790 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5791 {
5792 	int err;
5793 	u32 curr_status = 0;
5794 
5795 	if (hba->is_urgent_bkops_lvl_checked)
5796 		goto enable_auto_bkops;
5797 
5798 	err = ufshcd_get_bkops_status(hba, &curr_status);
5799 	if (err) {
5800 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5801 				__func__, err);
5802 		goto out;
5803 	}
5804 
5805 	/*
5806 	 * We are seeing that some devices are raising the urgent bkops
5807 	 * exception events even when BKOPS status doesn't indicate performace
5808 	 * impacted or critical. Handle these device by determining their urgent
5809 	 * bkops status at runtime.
5810 	 */
5811 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5812 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5813 				__func__, curr_status);
5814 		/* update the current status as the urgent bkops level */
5815 		hba->urgent_bkops_lvl = curr_status;
5816 		hba->is_urgent_bkops_lvl_checked = true;
5817 	}
5818 
5819 enable_auto_bkops:
5820 	err = ufshcd_enable_auto_bkops(hba);
5821 out:
5822 	if (err < 0)
5823 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5824 				__func__, err);
5825 }
5826 
5827 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5828 {
5829 	u32 value;
5830 
5831 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5832 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5833 		return;
5834 
5835 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5836 
5837 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5838 
5839 	/*
5840 	 * A placeholder for the platform vendors to add whatever additional
5841 	 * steps required
5842 	 */
5843 }
5844 
5845 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5846 {
5847 	u8 index;
5848 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5849 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5850 
5851 	index = ufshcd_wb_get_query_index(hba);
5852 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5853 }
5854 
5855 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5856 {
5857 	int ret;
5858 
5859 	if (!ufshcd_is_wb_allowed(hba) ||
5860 	    hba->dev_info.wb_enabled == enable)
5861 		return 0;
5862 
5863 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5864 	if (ret) {
5865 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5866 			__func__, enable ? "enabling" : "disabling", ret);
5867 		return ret;
5868 	}
5869 
5870 	hba->dev_info.wb_enabled = enable;
5871 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5872 			__func__, enable ? "enabled" : "disabled");
5873 
5874 	return ret;
5875 }
5876 
5877 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5878 						 bool enable)
5879 {
5880 	int ret;
5881 
5882 	ret = __ufshcd_wb_toggle(hba, enable,
5883 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5884 	if (ret) {
5885 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5886 			__func__, enable ? "enabling" : "disabling", ret);
5887 		return;
5888 	}
5889 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5890 			__func__, enable ? "enabled" : "disabled");
5891 }
5892 
5893 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5894 {
5895 	int ret;
5896 
5897 	if (!ufshcd_is_wb_allowed(hba) ||
5898 	    hba->dev_info.wb_buf_flush_enabled == enable)
5899 		return 0;
5900 
5901 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5902 	if (ret) {
5903 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5904 			__func__, enable ? "enabling" : "disabling", ret);
5905 		return ret;
5906 	}
5907 
5908 	hba->dev_info.wb_buf_flush_enabled = enable;
5909 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5910 			__func__, enable ? "enabled" : "disabled");
5911 
5912 	return ret;
5913 }
5914 
5915 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5916 						u32 avail_buf)
5917 {
5918 	u32 cur_buf;
5919 	int ret;
5920 	u8 index;
5921 
5922 	index = ufshcd_wb_get_query_index(hba);
5923 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5924 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5925 					      index, 0, &cur_buf);
5926 	if (ret) {
5927 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5928 			__func__, ret);
5929 		return false;
5930 	}
5931 
5932 	if (!cur_buf) {
5933 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5934 			 cur_buf);
5935 		return false;
5936 	}
5937 	/* Let it continue to flush when available buffer exceeds threshold */
5938 	return avail_buf < hba->vps->wb_flush_threshold;
5939 }
5940 
5941 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5942 {
5943 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5944 		ufshcd_wb_toggle_buf_flush(hba, false);
5945 
5946 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5947 	ufshcd_wb_toggle(hba, false);
5948 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5949 
5950 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5951 }
5952 
5953 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5954 {
5955 	u32 lifetime;
5956 	int ret;
5957 	u8 index;
5958 
5959 	index = ufshcd_wb_get_query_index(hba);
5960 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5961 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5962 				      index, 0, &lifetime);
5963 	if (ret) {
5964 		dev_err(hba->dev,
5965 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5966 			__func__, ret);
5967 		return false;
5968 	}
5969 
5970 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5971 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5972 			__func__, lifetime);
5973 		return false;
5974 	}
5975 
5976 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5977 		__func__, lifetime);
5978 
5979 	return true;
5980 }
5981 
5982 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5983 {
5984 	int ret;
5985 	u32 avail_buf;
5986 	u8 index;
5987 
5988 	if (!ufshcd_is_wb_allowed(hba))
5989 		return false;
5990 
5991 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5992 		ufshcd_wb_force_disable(hba);
5993 		return false;
5994 	}
5995 
5996 	/*
5997 	 * The ufs device needs the vcc to be ON to flush.
5998 	 * With user-space reduction enabled, it's enough to enable flush
5999 	 * by checking only the available buffer. The threshold
6000 	 * defined here is > 90% full.
6001 	 * With user-space preserved enabled, the current-buffer
6002 	 * should be checked too because the wb buffer size can reduce
6003 	 * when disk tends to be full. This info is provided by current
6004 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6005 	 * keeping vcc on when current buffer is empty.
6006 	 */
6007 	index = ufshcd_wb_get_query_index(hba);
6008 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6009 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6010 				      index, 0, &avail_buf);
6011 	if (ret) {
6012 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6013 			 __func__, ret);
6014 		return false;
6015 	}
6016 
6017 	if (!hba->dev_info.b_presrv_uspc_en)
6018 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6019 
6020 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6021 }
6022 
6023 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6024 {
6025 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6026 					   struct ufs_hba,
6027 					   rpm_dev_flush_recheck_work);
6028 	/*
6029 	 * To prevent unnecessary VCC power drain after device finishes
6030 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6031 	 * after a certain delay to recheck the threshold by next runtime
6032 	 * suspend.
6033 	 */
6034 	ufshcd_rpm_get_sync(hba);
6035 	ufshcd_rpm_put_sync(hba);
6036 }
6037 
6038 /**
6039  * ufshcd_exception_event_handler - handle exceptions raised by device
6040  * @work: pointer to work data
6041  *
6042  * Read bExceptionEventStatus attribute from the device and handle the
6043  * exception event accordingly.
6044  */
6045 static void ufshcd_exception_event_handler(struct work_struct *work)
6046 {
6047 	struct ufs_hba *hba;
6048 	int err;
6049 	u32 status = 0;
6050 	hba = container_of(work, struct ufs_hba, eeh_work);
6051 
6052 	ufshcd_scsi_block_requests(hba);
6053 	err = ufshcd_get_ee_status(hba, &status);
6054 	if (err) {
6055 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6056 				__func__, err);
6057 		goto out;
6058 	}
6059 
6060 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6061 
6062 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6063 		ufshcd_bkops_exception_event_handler(hba);
6064 
6065 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6066 		ufshcd_temp_exception_event_handler(hba, status);
6067 
6068 	ufs_debugfs_exception_event(hba, status);
6069 out:
6070 	ufshcd_scsi_unblock_requests(hba);
6071 }
6072 
6073 /* Complete requests that have door-bell cleared */
6074 static void ufshcd_complete_requests(struct ufs_hba *hba)
6075 {
6076 	ufshcd_transfer_req_compl(hba);
6077 	ufshcd_tmc_handler(hba);
6078 }
6079 
6080 /**
6081  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6082  *				to recover from the DL NAC errors or not.
6083  * @hba: per-adapter instance
6084  *
6085  * Returns true if error handling is required, false otherwise
6086  */
6087 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6088 {
6089 	unsigned long flags;
6090 	bool err_handling = true;
6091 
6092 	spin_lock_irqsave(hba->host->host_lock, flags);
6093 	/*
6094 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6095 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6096 	 */
6097 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6098 		goto out;
6099 
6100 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6101 	    ((hba->saved_err & UIC_ERROR) &&
6102 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6103 		goto out;
6104 
6105 	if ((hba->saved_err & UIC_ERROR) &&
6106 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6107 		int err;
6108 		/*
6109 		 * wait for 50ms to see if we can get any other errors or not.
6110 		 */
6111 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6112 		msleep(50);
6113 		spin_lock_irqsave(hba->host->host_lock, flags);
6114 
6115 		/*
6116 		 * now check if we have got any other severe errors other than
6117 		 * DL NAC error?
6118 		 */
6119 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6120 		    ((hba->saved_err & UIC_ERROR) &&
6121 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6122 			goto out;
6123 
6124 		/*
6125 		 * As DL NAC is the only error received so far, send out NOP
6126 		 * command to confirm if link is still active or not.
6127 		 *   - If we don't get any response then do error recovery.
6128 		 *   - If we get response then clear the DL NAC error bit.
6129 		 */
6130 
6131 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6132 		err = ufshcd_verify_dev_init(hba);
6133 		spin_lock_irqsave(hba->host->host_lock, flags);
6134 
6135 		if (err)
6136 			goto out;
6137 
6138 		/* Link seems to be alive hence ignore the DL NAC errors */
6139 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6140 			hba->saved_err &= ~UIC_ERROR;
6141 		/* clear NAC error */
6142 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6143 		if (!hba->saved_uic_err)
6144 			err_handling = false;
6145 	}
6146 out:
6147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6148 	return err_handling;
6149 }
6150 
6151 /* host lock must be held before calling this func */
6152 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6153 {
6154 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6155 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6156 }
6157 
6158 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6159 {
6160 	lockdep_assert_held(hba->host->host_lock);
6161 
6162 	/* handle fatal errors only when link is not in error state */
6163 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6164 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6165 		    ufshcd_is_saved_err_fatal(hba))
6166 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6167 		else
6168 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6169 		queue_work(hba->eh_wq, &hba->eh_work);
6170 	}
6171 }
6172 
6173 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6174 {
6175 	spin_lock_irq(hba->host->host_lock);
6176 	hba->force_reset = true;
6177 	ufshcd_schedule_eh_work(hba);
6178 	spin_unlock_irq(hba->host->host_lock);
6179 }
6180 
6181 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6182 {
6183 	mutex_lock(&hba->wb_mutex);
6184 	down_write(&hba->clk_scaling_lock);
6185 	hba->clk_scaling.is_allowed = allow;
6186 	up_write(&hba->clk_scaling_lock);
6187 	mutex_unlock(&hba->wb_mutex);
6188 }
6189 
6190 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6191 {
6192 	if (suspend) {
6193 		if (hba->clk_scaling.is_enabled)
6194 			ufshcd_suspend_clkscaling(hba);
6195 		ufshcd_clk_scaling_allow(hba, false);
6196 	} else {
6197 		ufshcd_clk_scaling_allow(hba, true);
6198 		if (hba->clk_scaling.is_enabled)
6199 			ufshcd_resume_clkscaling(hba);
6200 	}
6201 }
6202 
6203 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6204 {
6205 	ufshcd_rpm_get_sync(hba);
6206 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6207 	    hba->is_sys_suspended) {
6208 		enum ufs_pm_op pm_op;
6209 
6210 		/*
6211 		 * Don't assume anything of resume, if
6212 		 * resume fails, irq and clocks can be OFF, and powers
6213 		 * can be OFF or in LPM.
6214 		 */
6215 		ufshcd_setup_hba_vreg(hba, true);
6216 		ufshcd_enable_irq(hba);
6217 		ufshcd_setup_vreg(hba, true);
6218 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6219 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6220 		ufshcd_hold(hba, false);
6221 		if (!ufshcd_is_clkgating_allowed(hba))
6222 			ufshcd_setup_clocks(hba, true);
6223 		ufshcd_release(hba);
6224 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6225 		ufshcd_vops_resume(hba, pm_op);
6226 	} else {
6227 		ufshcd_hold(hba, false);
6228 		if (ufshcd_is_clkscaling_supported(hba) &&
6229 		    hba->clk_scaling.is_enabled)
6230 			ufshcd_suspend_clkscaling(hba);
6231 		ufshcd_clk_scaling_allow(hba, false);
6232 	}
6233 	ufshcd_scsi_block_requests(hba);
6234 	/* Drain ufshcd_queuecommand() */
6235 	synchronize_rcu();
6236 	cancel_work_sync(&hba->eeh_work);
6237 }
6238 
6239 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6240 {
6241 	ufshcd_scsi_unblock_requests(hba);
6242 	ufshcd_release(hba);
6243 	if (ufshcd_is_clkscaling_supported(hba))
6244 		ufshcd_clk_scaling_suspend(hba, false);
6245 	ufshcd_rpm_put(hba);
6246 }
6247 
6248 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6249 {
6250 	return (!hba->is_powered || hba->shutting_down ||
6251 		!hba->ufs_device_wlun ||
6252 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6253 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6254 		   ufshcd_is_link_broken(hba))));
6255 }
6256 
6257 #ifdef CONFIG_PM
6258 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6259 {
6260 	struct Scsi_Host *shost = hba->host;
6261 	struct scsi_device *sdev;
6262 	struct request_queue *q;
6263 	int ret;
6264 
6265 	hba->is_sys_suspended = false;
6266 	/*
6267 	 * Set RPM status of wlun device to RPM_ACTIVE,
6268 	 * this also clears its runtime error.
6269 	 */
6270 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6271 
6272 	/* hba device might have a runtime error otherwise */
6273 	if (ret)
6274 		ret = pm_runtime_set_active(hba->dev);
6275 	/*
6276 	 * If wlun device had runtime error, we also need to resume those
6277 	 * consumer scsi devices in case any of them has failed to be
6278 	 * resumed due to supplier runtime resume failure. This is to unblock
6279 	 * blk_queue_enter in case there are bios waiting inside it.
6280 	 */
6281 	if (!ret) {
6282 		shost_for_each_device(sdev, shost) {
6283 			q = sdev->request_queue;
6284 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6285 				       q->rpm_status == RPM_SUSPENDING))
6286 				pm_request_resume(q->dev);
6287 		}
6288 	}
6289 }
6290 #else
6291 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6292 {
6293 }
6294 #endif
6295 
6296 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6297 {
6298 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6299 	u32 mode;
6300 
6301 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6302 
6303 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6304 		return true;
6305 
6306 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6307 		return true;
6308 
6309 	return false;
6310 }
6311 
6312 static bool ufshcd_abort_all(struct ufs_hba *hba)
6313 {
6314 	bool needs_reset = false;
6315 	int tag, ret;
6316 
6317 	/* Clear pending transfer requests */
6318 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6319 		ret = ufshcd_try_to_abort_task(hba, tag);
6320 		dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6321 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6322 			ret ? "failed" : "succeeded");
6323 		if (ret) {
6324 			needs_reset = true;
6325 			goto out;
6326 		}
6327 	}
6328 
6329 	/* Clear pending task management requests */
6330 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6331 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6332 			needs_reset = true;
6333 			goto out;
6334 		}
6335 	}
6336 
6337 out:
6338 	/* Complete the requests that are cleared by s/w */
6339 	ufshcd_complete_requests(hba);
6340 
6341 	return needs_reset;
6342 }
6343 
6344 /**
6345  * ufshcd_err_handler - handle UFS errors that require s/w attention
6346  * @work: pointer to work structure
6347  */
6348 static void ufshcd_err_handler(struct work_struct *work)
6349 {
6350 	int retries = MAX_ERR_HANDLER_RETRIES;
6351 	struct ufs_hba *hba;
6352 	unsigned long flags;
6353 	bool needs_restore;
6354 	bool needs_reset;
6355 	int pmc_err;
6356 
6357 	hba = container_of(work, struct ufs_hba, eh_work);
6358 
6359 	dev_info(hba->dev,
6360 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6361 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6362 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6363 		 hba->saved_uic_err, hba->force_reset,
6364 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6365 
6366 	down(&hba->host_sem);
6367 	spin_lock_irqsave(hba->host->host_lock, flags);
6368 	if (ufshcd_err_handling_should_stop(hba)) {
6369 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6370 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6371 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6372 		up(&hba->host_sem);
6373 		return;
6374 	}
6375 	ufshcd_set_eh_in_progress(hba);
6376 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6377 	ufshcd_err_handling_prepare(hba);
6378 	/* Complete requests that have door-bell cleared by h/w */
6379 	ufshcd_complete_requests(hba);
6380 	spin_lock_irqsave(hba->host->host_lock, flags);
6381 again:
6382 	needs_restore = false;
6383 	needs_reset = false;
6384 
6385 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6386 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6387 	/*
6388 	 * A full reset and restore might have happened after preparation
6389 	 * is finished, double check whether we should stop.
6390 	 */
6391 	if (ufshcd_err_handling_should_stop(hba))
6392 		goto skip_err_handling;
6393 
6394 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6395 		bool ret;
6396 
6397 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6398 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6399 		ret = ufshcd_quirk_dl_nac_errors(hba);
6400 		spin_lock_irqsave(hba->host->host_lock, flags);
6401 		if (!ret && ufshcd_err_handling_should_stop(hba))
6402 			goto skip_err_handling;
6403 	}
6404 
6405 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6406 	    (hba->saved_uic_err &&
6407 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6408 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6409 
6410 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6411 		ufshcd_print_host_state(hba);
6412 		ufshcd_print_pwr_info(hba);
6413 		ufshcd_print_evt_hist(hba);
6414 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6415 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6416 		spin_lock_irqsave(hba->host->host_lock, flags);
6417 	}
6418 
6419 	/*
6420 	 * if host reset is required then skip clearing the pending
6421 	 * transfers forcefully because they will get cleared during
6422 	 * host reset and restore
6423 	 */
6424 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6425 	    ufshcd_is_saved_err_fatal(hba) ||
6426 	    ((hba->saved_err & UIC_ERROR) &&
6427 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6428 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6429 		needs_reset = true;
6430 		goto do_reset;
6431 	}
6432 
6433 	/*
6434 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6435 	 * check if power mode restore is needed.
6436 	 */
6437 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6438 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6439 		if (!hba->saved_uic_err)
6440 			hba->saved_err &= ~UIC_ERROR;
6441 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6442 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6443 			needs_restore = true;
6444 		spin_lock_irqsave(hba->host->host_lock, flags);
6445 		if (!hba->saved_err && !needs_restore)
6446 			goto skip_err_handling;
6447 	}
6448 
6449 	hba->silence_err_logs = true;
6450 	/* release lock as clear command might sleep */
6451 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6452 
6453 	needs_reset = ufshcd_abort_all(hba);
6454 
6455 	spin_lock_irqsave(hba->host->host_lock, flags);
6456 	hba->silence_err_logs = false;
6457 	if (needs_reset)
6458 		goto do_reset;
6459 
6460 	/*
6461 	 * After all reqs and tasks are cleared from doorbell,
6462 	 * now it is safe to retore power mode.
6463 	 */
6464 	if (needs_restore) {
6465 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6466 		/*
6467 		 * Hold the scaling lock just in case dev cmds
6468 		 * are sent via bsg and/or sysfs.
6469 		 */
6470 		down_write(&hba->clk_scaling_lock);
6471 		hba->force_pmc = true;
6472 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6473 		if (pmc_err) {
6474 			needs_reset = true;
6475 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6476 					__func__, pmc_err);
6477 		}
6478 		hba->force_pmc = false;
6479 		ufshcd_print_pwr_info(hba);
6480 		up_write(&hba->clk_scaling_lock);
6481 		spin_lock_irqsave(hba->host->host_lock, flags);
6482 	}
6483 
6484 do_reset:
6485 	/* Fatal errors need reset */
6486 	if (needs_reset) {
6487 		int err;
6488 
6489 		hba->force_reset = false;
6490 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6491 		err = ufshcd_reset_and_restore(hba);
6492 		if (err)
6493 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6494 					__func__, err);
6495 		else
6496 			ufshcd_recover_pm_error(hba);
6497 		spin_lock_irqsave(hba->host->host_lock, flags);
6498 	}
6499 
6500 skip_err_handling:
6501 	if (!needs_reset) {
6502 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6503 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6504 		if (hba->saved_err || hba->saved_uic_err)
6505 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6506 			    __func__, hba->saved_err, hba->saved_uic_err);
6507 	}
6508 	/* Exit in an operational state or dead */
6509 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6510 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6511 		if (--retries)
6512 			goto again;
6513 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6514 	}
6515 	ufshcd_clear_eh_in_progress(hba);
6516 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6517 	ufshcd_err_handling_unprepare(hba);
6518 	up(&hba->host_sem);
6519 
6520 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6521 		 ufshcd_state_name[hba->ufshcd_state]);
6522 }
6523 
6524 /**
6525  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6526  * @hba: per-adapter instance
6527  *
6528  * Returns
6529  *  IRQ_HANDLED - If interrupt is valid
6530  *  IRQ_NONE    - If invalid interrupt
6531  */
6532 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6533 {
6534 	u32 reg;
6535 	irqreturn_t retval = IRQ_NONE;
6536 
6537 	/* PHY layer error */
6538 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6539 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6540 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6541 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6542 		/*
6543 		 * To know whether this error is fatal or not, DB timeout
6544 		 * must be checked but this error is handled separately.
6545 		 */
6546 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6547 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6548 					__func__);
6549 
6550 		/* Got a LINERESET indication. */
6551 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6552 			struct uic_command *cmd = NULL;
6553 
6554 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6555 			if (hba->uic_async_done && hba->active_uic_cmd)
6556 				cmd = hba->active_uic_cmd;
6557 			/*
6558 			 * Ignore the LINERESET during power mode change
6559 			 * operation via DME_SET command.
6560 			 */
6561 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6562 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6563 		}
6564 		retval |= IRQ_HANDLED;
6565 	}
6566 
6567 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6568 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6569 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6570 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6571 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6572 
6573 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6574 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6575 		else if (hba->dev_quirks &
6576 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6577 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6578 				hba->uic_error |=
6579 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6580 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6581 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6582 		}
6583 		retval |= IRQ_HANDLED;
6584 	}
6585 
6586 	/* UIC NL/TL/DME errors needs software retry */
6587 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6588 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6589 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6590 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6591 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6592 		retval |= IRQ_HANDLED;
6593 	}
6594 
6595 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6596 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6597 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6598 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6599 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6600 		retval |= IRQ_HANDLED;
6601 	}
6602 
6603 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6604 	if ((reg & UIC_DME_ERROR) &&
6605 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6606 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6607 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6608 		retval |= IRQ_HANDLED;
6609 	}
6610 
6611 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6612 			__func__, hba->uic_error);
6613 	return retval;
6614 }
6615 
6616 /**
6617  * ufshcd_check_errors - Check for errors that need s/w attention
6618  * @hba: per-adapter instance
6619  * @intr_status: interrupt status generated by the controller
6620  *
6621  * Returns
6622  *  IRQ_HANDLED - If interrupt is valid
6623  *  IRQ_NONE    - If invalid interrupt
6624  */
6625 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6626 {
6627 	bool queue_eh_work = false;
6628 	irqreturn_t retval = IRQ_NONE;
6629 
6630 	spin_lock(hba->host->host_lock);
6631 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6632 
6633 	if (hba->errors & INT_FATAL_ERRORS) {
6634 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6635 				       hba->errors);
6636 		queue_eh_work = true;
6637 	}
6638 
6639 	if (hba->errors & UIC_ERROR) {
6640 		hba->uic_error = 0;
6641 		retval = ufshcd_update_uic_error(hba);
6642 		if (hba->uic_error)
6643 			queue_eh_work = true;
6644 	}
6645 
6646 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6647 		dev_err(hba->dev,
6648 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6649 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6650 			"Enter" : "Exit",
6651 			hba->errors, ufshcd_get_upmcrs(hba));
6652 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6653 				       hba->errors);
6654 		ufshcd_set_link_broken(hba);
6655 		queue_eh_work = true;
6656 	}
6657 
6658 	if (queue_eh_work) {
6659 		/*
6660 		 * update the transfer error masks to sticky bits, let's do this
6661 		 * irrespective of current ufshcd_state.
6662 		 */
6663 		hba->saved_err |= hba->errors;
6664 		hba->saved_uic_err |= hba->uic_error;
6665 
6666 		/* dump controller state before resetting */
6667 		if ((hba->saved_err &
6668 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6669 		    (hba->saved_uic_err &&
6670 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6671 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6672 					__func__, hba->saved_err,
6673 					hba->saved_uic_err);
6674 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6675 					 "host_regs: ");
6676 			ufshcd_print_pwr_info(hba);
6677 		}
6678 		ufshcd_schedule_eh_work(hba);
6679 		retval |= IRQ_HANDLED;
6680 	}
6681 	/*
6682 	 * if (!queue_eh_work) -
6683 	 * Other errors are either non-fatal where host recovers
6684 	 * itself without s/w intervention or errors that will be
6685 	 * handled by the SCSI core layer.
6686 	 */
6687 	hba->errors = 0;
6688 	hba->uic_error = 0;
6689 	spin_unlock(hba->host->host_lock);
6690 	return retval;
6691 }
6692 
6693 /**
6694  * ufshcd_tmc_handler - handle task management function completion
6695  * @hba: per adapter instance
6696  *
6697  * Returns
6698  *  IRQ_HANDLED - If interrupt is valid
6699  *  IRQ_NONE    - If invalid interrupt
6700  */
6701 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6702 {
6703 	unsigned long flags, pending, issued;
6704 	irqreturn_t ret = IRQ_NONE;
6705 	int tag;
6706 
6707 	spin_lock_irqsave(hba->host->host_lock, flags);
6708 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6709 	issued = hba->outstanding_tasks & ~pending;
6710 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6711 		struct request *req = hba->tmf_rqs[tag];
6712 		struct completion *c = req->end_io_data;
6713 
6714 		complete(c);
6715 		ret = IRQ_HANDLED;
6716 	}
6717 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6718 
6719 	return ret;
6720 }
6721 
6722 /**
6723  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6724  * @hba: per adapter instance
6725  *
6726  * Returns IRQ_HANDLED if interrupt is handled
6727  */
6728 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6729 {
6730 	struct ufs_hw_queue *hwq;
6731 	unsigned long outstanding_cqs;
6732 	unsigned int nr_queues;
6733 	int i, ret;
6734 	u32 events;
6735 
6736 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6737 	if (ret)
6738 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6739 
6740 	/* Exclude the poll queues */
6741 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6742 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6743 		hwq = &hba->uhq[i];
6744 
6745 		events = ufshcd_mcq_read_cqis(hba, i);
6746 		if (events)
6747 			ufshcd_mcq_write_cqis(hba, events, i);
6748 
6749 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6750 			ufshcd_mcq_poll_cqe_nolock(hba, hwq);
6751 	}
6752 
6753 	return IRQ_HANDLED;
6754 }
6755 
6756 /**
6757  * ufshcd_sl_intr - Interrupt service routine
6758  * @hba: per adapter instance
6759  * @intr_status: contains interrupts generated by the controller
6760  *
6761  * Returns
6762  *  IRQ_HANDLED - If interrupt is valid
6763  *  IRQ_NONE    - If invalid interrupt
6764  */
6765 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6766 {
6767 	irqreturn_t retval = IRQ_NONE;
6768 
6769 	if (intr_status & UFSHCD_UIC_MASK)
6770 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6771 
6772 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6773 		retval |= ufshcd_check_errors(hba, intr_status);
6774 
6775 	if (intr_status & UTP_TASK_REQ_COMPL)
6776 		retval |= ufshcd_tmc_handler(hba);
6777 
6778 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6779 		retval |= ufshcd_transfer_req_compl(hba);
6780 
6781 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6782 		retval |= ufshcd_handle_mcq_cq_events(hba);
6783 
6784 	return retval;
6785 }
6786 
6787 /**
6788  * ufshcd_intr - Main interrupt service routine
6789  * @irq: irq number
6790  * @__hba: pointer to adapter instance
6791  *
6792  * Returns
6793  *  IRQ_HANDLED - If interrupt is valid
6794  *  IRQ_NONE    - If invalid interrupt
6795  */
6796 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6797 {
6798 	u32 intr_status, enabled_intr_status = 0;
6799 	irqreturn_t retval = IRQ_NONE;
6800 	struct ufs_hba *hba = __hba;
6801 	int retries = hba->nutrs;
6802 
6803 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6804 	hba->ufs_stats.last_intr_status = intr_status;
6805 	hba->ufs_stats.last_intr_ts = local_clock();
6806 
6807 	/*
6808 	 * There could be max of hba->nutrs reqs in flight and in worst case
6809 	 * if the reqs get finished 1 by 1 after the interrupt status is
6810 	 * read, make sure we handle them by checking the interrupt status
6811 	 * again in a loop until we process all of the reqs before returning.
6812 	 */
6813 	while (intr_status && retries--) {
6814 		enabled_intr_status =
6815 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6816 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6817 		if (enabled_intr_status)
6818 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6819 
6820 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6821 	}
6822 
6823 	if (enabled_intr_status && retval == IRQ_NONE &&
6824 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6825 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6826 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6827 					__func__,
6828 					intr_status,
6829 					hba->ufs_stats.last_intr_status,
6830 					enabled_intr_status);
6831 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6832 	}
6833 
6834 	return retval;
6835 }
6836 
6837 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6838 {
6839 	int err = 0;
6840 	u32 mask = 1 << tag;
6841 	unsigned long flags;
6842 
6843 	if (!test_bit(tag, &hba->outstanding_tasks))
6844 		goto out;
6845 
6846 	spin_lock_irqsave(hba->host->host_lock, flags);
6847 	ufshcd_utmrl_clear(hba, tag);
6848 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6849 
6850 	/* poll for max. 1 sec to clear door bell register by h/w */
6851 	err = ufshcd_wait_for_register(hba,
6852 			REG_UTP_TASK_REQ_DOOR_BELL,
6853 			mask, 0, 1000, 1000);
6854 
6855 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6856 		tag, err ? "succeeded" : "failed");
6857 
6858 out:
6859 	return err;
6860 }
6861 
6862 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6863 		struct utp_task_req_desc *treq, u8 tm_function)
6864 {
6865 	struct request_queue *q = hba->tmf_queue;
6866 	struct Scsi_Host *host = hba->host;
6867 	DECLARE_COMPLETION_ONSTACK(wait);
6868 	struct request *req;
6869 	unsigned long flags;
6870 	int task_tag, err;
6871 
6872 	/*
6873 	 * blk_mq_alloc_request() is used here only to get a free tag.
6874 	 */
6875 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6876 	if (IS_ERR(req))
6877 		return PTR_ERR(req);
6878 
6879 	req->end_io_data = &wait;
6880 	ufshcd_hold(hba, false);
6881 
6882 	spin_lock_irqsave(host->host_lock, flags);
6883 
6884 	task_tag = req->tag;
6885 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6886 		  task_tag);
6887 	hba->tmf_rqs[req->tag] = req;
6888 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6889 
6890 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6891 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6892 
6893 	/* send command to the controller */
6894 	__set_bit(task_tag, &hba->outstanding_tasks);
6895 
6896 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6897 	/* Make sure that doorbell is committed immediately */
6898 	wmb();
6899 
6900 	spin_unlock_irqrestore(host->host_lock, flags);
6901 
6902 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6903 
6904 	/* wait until the task management command is completed */
6905 	err = wait_for_completion_io_timeout(&wait,
6906 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6907 	if (!err) {
6908 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6909 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6910 				__func__, tm_function);
6911 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6912 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6913 					__func__, task_tag);
6914 		err = -ETIMEDOUT;
6915 	} else {
6916 		err = 0;
6917 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6918 
6919 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6920 	}
6921 
6922 	spin_lock_irqsave(hba->host->host_lock, flags);
6923 	hba->tmf_rqs[req->tag] = NULL;
6924 	__clear_bit(task_tag, &hba->outstanding_tasks);
6925 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6926 
6927 	ufshcd_release(hba);
6928 	blk_mq_free_request(req);
6929 
6930 	return err;
6931 }
6932 
6933 /**
6934  * ufshcd_issue_tm_cmd - issues task management commands to controller
6935  * @hba: per adapter instance
6936  * @lun_id: LUN ID to which TM command is sent
6937  * @task_id: task ID to which the TM command is applicable
6938  * @tm_function: task management function opcode
6939  * @tm_response: task management service response return value
6940  *
6941  * Returns non-zero value on error, zero on success.
6942  */
6943 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6944 		u8 tm_function, u8 *tm_response)
6945 {
6946 	struct utp_task_req_desc treq = { { 0 }, };
6947 	enum utp_ocs ocs_value;
6948 	int err;
6949 
6950 	/* Configure task request descriptor */
6951 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6952 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6953 
6954 	/* Configure task request UPIU */
6955 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6956 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6957 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6958 
6959 	/*
6960 	 * The host shall provide the same value for LUN field in the basic
6961 	 * header and for Input Parameter.
6962 	 */
6963 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6964 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6965 
6966 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6967 	if (err == -ETIMEDOUT)
6968 		return err;
6969 
6970 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6971 	if (ocs_value != OCS_SUCCESS)
6972 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6973 				__func__, ocs_value);
6974 	else if (tm_response)
6975 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6976 				MASK_TM_SERVICE_RESP;
6977 	return err;
6978 }
6979 
6980 /**
6981  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6982  * @hba:	per-adapter instance
6983  * @req_upiu:	upiu request
6984  * @rsp_upiu:	upiu reply
6985  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6986  * @buff_len:	descriptor size, 0 if NA
6987  * @cmd_type:	specifies the type (NOP, Query...)
6988  * @desc_op:	descriptor operation
6989  *
6990  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6991  * Therefore, it "rides" the device management infrastructure: uses its tag and
6992  * tasks work queues.
6993  *
6994  * Since there is only one available tag for device management commands,
6995  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6996  */
6997 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6998 					struct utp_upiu_req *req_upiu,
6999 					struct utp_upiu_req *rsp_upiu,
7000 					u8 *desc_buff, int *buff_len,
7001 					enum dev_cmd_type cmd_type,
7002 					enum query_opcode desc_op)
7003 {
7004 	DECLARE_COMPLETION_ONSTACK(wait);
7005 	const u32 tag = hba->reserved_slot;
7006 	struct ufshcd_lrb *lrbp;
7007 	int err = 0;
7008 	u8 upiu_flags;
7009 
7010 	/* Protects use of hba->reserved_slot. */
7011 	lockdep_assert_held(&hba->dev_cmd.lock);
7012 
7013 	down_read(&hba->clk_scaling_lock);
7014 
7015 	lrbp = &hba->lrb[tag];
7016 	WARN_ON(lrbp->cmd);
7017 	lrbp->cmd = NULL;
7018 	lrbp->task_tag = tag;
7019 	lrbp->lun = 0;
7020 	lrbp->intr_cmd = true;
7021 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7022 	hba->dev_cmd.type = cmd_type;
7023 
7024 	if (hba->ufs_version <= ufshci_version(1, 1))
7025 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7026 	else
7027 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7028 
7029 	/* update the task tag in the request upiu */
7030 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
7031 
7032 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7033 
7034 	/* just copy the upiu request as it is */
7035 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7036 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7037 		/* The Data Segment Area is optional depending upon the query
7038 		 * function value. for WRITE DESCRIPTOR, the data segment
7039 		 * follows right after the tsf.
7040 		 */
7041 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7042 		*buff_len = 0;
7043 	}
7044 
7045 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7046 
7047 	hba->dev_cmd.complete = &wait;
7048 
7049 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7050 
7051 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7052 	/*
7053 	 * ignore the returning value here - ufshcd_check_query_response is
7054 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7055 	 * read the response directly ignoring all errors.
7056 	 */
7057 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7058 
7059 	/* just copy the upiu response as it is */
7060 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7061 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7062 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7063 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
7064 			       MASK_QUERY_DATA_SEG_LEN;
7065 
7066 		if (*buff_len >= resp_len) {
7067 			memcpy(desc_buff, descp, resp_len);
7068 			*buff_len = resp_len;
7069 		} else {
7070 			dev_warn(hba->dev,
7071 				 "%s: rsp size %d is bigger than buffer size %d",
7072 				 __func__, resp_len, *buff_len);
7073 			*buff_len = 0;
7074 			err = -EINVAL;
7075 		}
7076 	}
7077 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7078 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7079 
7080 	up_read(&hba->clk_scaling_lock);
7081 	return err;
7082 }
7083 
7084 /**
7085  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7086  * @hba:	per-adapter instance
7087  * @req_upiu:	upiu request
7088  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7089  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7090  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7091  * @buff_len:	descriptor size, 0 if NA
7092  * @desc_op:	descriptor operation
7093  *
7094  * Supports UTP Transfer requests (nop and query), and UTP Task
7095  * Management requests.
7096  * It is up to the caller to fill the upiu conent properly, as it will
7097  * be copied without any further input validations.
7098  */
7099 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7100 			     struct utp_upiu_req *req_upiu,
7101 			     struct utp_upiu_req *rsp_upiu,
7102 			     int msgcode,
7103 			     u8 *desc_buff, int *buff_len,
7104 			     enum query_opcode desc_op)
7105 {
7106 	int err;
7107 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7108 	struct utp_task_req_desc treq = { { 0 }, };
7109 	enum utp_ocs ocs_value;
7110 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
7111 
7112 	switch (msgcode) {
7113 	case UPIU_TRANSACTION_NOP_OUT:
7114 		cmd_type = DEV_CMD_TYPE_NOP;
7115 		fallthrough;
7116 	case UPIU_TRANSACTION_QUERY_REQ:
7117 		ufshcd_hold(hba, false);
7118 		mutex_lock(&hba->dev_cmd.lock);
7119 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7120 						   desc_buff, buff_len,
7121 						   cmd_type, desc_op);
7122 		mutex_unlock(&hba->dev_cmd.lock);
7123 		ufshcd_release(hba);
7124 
7125 		break;
7126 	case UPIU_TRANSACTION_TASK_REQ:
7127 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7128 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7129 
7130 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7131 
7132 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7133 		if (err == -ETIMEDOUT)
7134 			break;
7135 
7136 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7137 		if (ocs_value != OCS_SUCCESS) {
7138 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7139 				ocs_value);
7140 			break;
7141 		}
7142 
7143 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7144 
7145 		break;
7146 	default:
7147 		err = -EINVAL;
7148 
7149 		break;
7150 	}
7151 
7152 	return err;
7153 }
7154 
7155 /**
7156  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7157  * @hba:	per adapter instance
7158  * @req_upiu:	upiu request
7159  * @rsp_upiu:	upiu reply
7160  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7161  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7162  * @sg_cnt:	The number of sg lists actually used
7163  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7164  * @dir:	DMA direction
7165  *
7166  * Returns zero on success, non-zero on failure
7167  */
7168 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7169 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7170 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7171 			 enum dma_data_direction dir)
7172 {
7173 	DECLARE_COMPLETION_ONSTACK(wait);
7174 	const u32 tag = hba->reserved_slot;
7175 	struct ufshcd_lrb *lrbp;
7176 	int err = 0;
7177 	int result;
7178 	u8 upiu_flags;
7179 	u8 *ehs_data;
7180 	u16 ehs_len;
7181 
7182 	/* Protects use of hba->reserved_slot. */
7183 	ufshcd_hold(hba, false);
7184 	mutex_lock(&hba->dev_cmd.lock);
7185 	down_read(&hba->clk_scaling_lock);
7186 
7187 	lrbp = &hba->lrb[tag];
7188 	WARN_ON(lrbp->cmd);
7189 	lrbp->cmd = NULL;
7190 	lrbp->task_tag = tag;
7191 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7192 
7193 	lrbp->intr_cmd = true;
7194 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7195 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7196 
7197 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7198 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7199 
7200 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7201 
7202 	/* update the task tag and LUN in the request upiu */
7203 	req_upiu->header.dword_0 |= cpu_to_be32(upiu_flags << 16 | UFS_UPIU_RPMB_WLUN << 8 | tag);
7204 
7205 	/* copy the UPIU(contains CDB) request as it is */
7206 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7207 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7208 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7209 
7210 	if (dir != DMA_NONE && sg_list)
7211 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7212 
7213 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7214 
7215 	hba->dev_cmd.complete = &wait;
7216 
7217 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7218 
7219 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7220 
7221 	if (!err) {
7222 		/* Just copy the upiu response as it is */
7223 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7224 		/* Get the response UPIU result */
7225 		result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
7226 
7227 		ehs_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) >> 24;
7228 		/*
7229 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7230 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7231 		 * Message is 02h
7232 		 */
7233 		if (ehs_len == 2 && rsp_ehs) {
7234 			/*
7235 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7236 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7237 			 */
7238 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7239 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7240 		}
7241 	}
7242 
7243 	up_read(&hba->clk_scaling_lock);
7244 	mutex_unlock(&hba->dev_cmd.lock);
7245 	ufshcd_release(hba);
7246 	return err ? : result;
7247 }
7248 
7249 /**
7250  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7251  * @cmd: SCSI command pointer
7252  *
7253  * Returns SUCCESS/FAILED
7254  */
7255 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7256 {
7257 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7258 	struct Scsi_Host *host;
7259 	struct ufs_hba *hba;
7260 	u32 pos;
7261 	int err;
7262 	u8 resp = 0xF, lun;
7263 
7264 	host = cmd->device->host;
7265 	hba = shost_priv(host);
7266 
7267 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7268 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7269 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7270 		if (!err)
7271 			err = resp;
7272 		goto out;
7273 	}
7274 
7275 	/* clear the commands that were pending for corresponding LUN */
7276 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7277 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7278 		if (hba->lrb[pos].lun == lun)
7279 			__set_bit(pos, &pending_reqs);
7280 	hba->outstanding_reqs &= ~pending_reqs;
7281 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7282 
7283 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7284 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7285 		not_cleared = pending_reqs &
7286 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7287 		hba->outstanding_reqs |= not_cleared;
7288 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7289 
7290 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7291 			__func__, not_cleared);
7292 	}
7293 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7294 
7295 out:
7296 	hba->req_abort_count = 0;
7297 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7298 	if (!err) {
7299 		err = SUCCESS;
7300 	} else {
7301 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7302 		err = FAILED;
7303 	}
7304 	return err;
7305 }
7306 
7307 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7308 {
7309 	struct ufshcd_lrb *lrbp;
7310 	int tag;
7311 
7312 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7313 		lrbp = &hba->lrb[tag];
7314 		lrbp->req_abort_skip = true;
7315 	}
7316 }
7317 
7318 /**
7319  * ufshcd_try_to_abort_task - abort a specific task
7320  * @hba: Pointer to adapter instance
7321  * @tag: Task tag/index to be aborted
7322  *
7323  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7324  * command, and in host controller by clearing the door-bell register. There can
7325  * be race between controller sending the command to the device while abort is
7326  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7327  * really issued and then try to abort it.
7328  *
7329  * Returns zero on success, non-zero on failure
7330  */
7331 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7332 {
7333 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7334 	int err = 0;
7335 	int poll_cnt;
7336 	u8 resp = 0xF;
7337 	u32 reg;
7338 
7339 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7340 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7341 				UFS_QUERY_TASK, &resp);
7342 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7343 			/* cmd pending in the device */
7344 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7345 				__func__, tag);
7346 			break;
7347 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7348 			/*
7349 			 * cmd not pending in the device, check if it is
7350 			 * in transition.
7351 			 */
7352 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7353 				__func__, tag);
7354 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7355 			if (reg & (1 << tag)) {
7356 				/* sleep for max. 200us to stabilize */
7357 				usleep_range(100, 200);
7358 				continue;
7359 			}
7360 			/* command completed already */
7361 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7362 				__func__, tag);
7363 			goto out;
7364 		} else {
7365 			dev_err(hba->dev,
7366 				"%s: no response from device. tag = %d, err %d\n",
7367 				__func__, tag, err);
7368 			if (!err)
7369 				err = resp; /* service response error */
7370 			goto out;
7371 		}
7372 	}
7373 
7374 	if (!poll_cnt) {
7375 		err = -EBUSY;
7376 		goto out;
7377 	}
7378 
7379 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7380 			UFS_ABORT_TASK, &resp);
7381 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7382 		if (!err) {
7383 			err = resp; /* service response error */
7384 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7385 				__func__, tag, err);
7386 		}
7387 		goto out;
7388 	}
7389 
7390 	err = ufshcd_clear_cmds(hba, 1U << tag);
7391 	if (err)
7392 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7393 			__func__, tag, err);
7394 
7395 out:
7396 	return err;
7397 }
7398 
7399 /**
7400  * ufshcd_abort - scsi host template eh_abort_handler callback
7401  * @cmd: SCSI command pointer
7402  *
7403  * Returns SUCCESS/FAILED
7404  */
7405 static int ufshcd_abort(struct scsi_cmnd *cmd)
7406 {
7407 	struct Scsi_Host *host = cmd->device->host;
7408 	struct ufs_hba *hba = shost_priv(host);
7409 	int tag = scsi_cmd_to_rq(cmd)->tag;
7410 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7411 	unsigned long flags;
7412 	int err = FAILED;
7413 	bool outstanding;
7414 	u32 reg;
7415 
7416 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7417 
7418 	ufshcd_hold(hba, false);
7419 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7420 	/* If command is already aborted/completed, return FAILED. */
7421 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7422 		dev_err(hba->dev,
7423 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7424 			__func__, tag, hba->outstanding_reqs, reg);
7425 		goto release;
7426 	}
7427 
7428 	/* Print Transfer Request of aborted task */
7429 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7430 
7431 	/*
7432 	 * Print detailed info about aborted request.
7433 	 * As more than one request might get aborted at the same time,
7434 	 * print full information only for the first aborted request in order
7435 	 * to reduce repeated printouts. For other aborted requests only print
7436 	 * basic details.
7437 	 */
7438 	scsi_print_command(cmd);
7439 	if (!hba->req_abort_count) {
7440 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7441 		ufshcd_print_evt_hist(hba);
7442 		ufshcd_print_host_state(hba);
7443 		ufshcd_print_pwr_info(hba);
7444 		ufshcd_print_trs(hba, 1 << tag, true);
7445 	} else {
7446 		ufshcd_print_trs(hba, 1 << tag, false);
7447 	}
7448 	hba->req_abort_count++;
7449 
7450 	if (!(reg & (1 << tag))) {
7451 		dev_err(hba->dev,
7452 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7453 		__func__, tag);
7454 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7455 		goto release;
7456 	}
7457 
7458 	/*
7459 	 * Task abort to the device W-LUN is illegal. When this command
7460 	 * will fail, due to spec violation, scsi err handling next step
7461 	 * will be to send LU reset which, again, is a spec violation.
7462 	 * To avoid these unnecessary/illegal steps, first we clean up
7463 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7464 	 * then queue the eh_work and bail.
7465 	 */
7466 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7467 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7468 
7469 		spin_lock_irqsave(host->host_lock, flags);
7470 		hba->force_reset = true;
7471 		ufshcd_schedule_eh_work(hba);
7472 		spin_unlock_irqrestore(host->host_lock, flags);
7473 		goto release;
7474 	}
7475 
7476 	/* Skip task abort in case previous aborts failed and report failure */
7477 	if (lrbp->req_abort_skip) {
7478 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7479 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7480 		goto release;
7481 	}
7482 
7483 	err = ufshcd_try_to_abort_task(hba, tag);
7484 	if (err) {
7485 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7486 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7487 		err = FAILED;
7488 		goto release;
7489 	}
7490 
7491 	/*
7492 	 * Clear the corresponding bit from outstanding_reqs since the command
7493 	 * has been aborted successfully.
7494 	 */
7495 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7496 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7497 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7498 
7499 	if (outstanding)
7500 		ufshcd_release_scsi_cmd(hba, lrbp);
7501 
7502 	err = SUCCESS;
7503 
7504 release:
7505 	/* Matches the ufshcd_hold() call at the start of this function. */
7506 	ufshcd_release(hba);
7507 	return err;
7508 }
7509 
7510 /**
7511  * ufshcd_host_reset_and_restore - reset and restore host controller
7512  * @hba: per-adapter instance
7513  *
7514  * Note that host controller reset may issue DME_RESET to
7515  * local and remote (device) Uni-Pro stack and the attributes
7516  * are reset to default state.
7517  *
7518  * Returns zero on success, non-zero on failure
7519  */
7520 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7521 {
7522 	int err;
7523 
7524 	/*
7525 	 * Stop the host controller and complete the requests
7526 	 * cleared by h/w
7527 	 */
7528 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7529 	ufshcd_hba_stop(hba);
7530 	hba->silence_err_logs = true;
7531 	ufshcd_complete_requests(hba);
7532 	hba->silence_err_logs = false;
7533 
7534 	/* scale up clocks to max frequency before full reinitialization */
7535 	ufshcd_scale_clks(hba, true);
7536 
7537 	err = ufshcd_hba_enable(hba);
7538 
7539 	/* Establish the link again and restore the device */
7540 	if (!err)
7541 		err = ufshcd_probe_hba(hba, false);
7542 
7543 	if (err)
7544 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7545 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7546 	return err;
7547 }
7548 
7549 /**
7550  * ufshcd_reset_and_restore - reset and re-initialize host/device
7551  * @hba: per-adapter instance
7552  *
7553  * Reset and recover device, host and re-establish link. This
7554  * is helpful to recover the communication in fatal error conditions.
7555  *
7556  * Returns zero on success, non-zero on failure
7557  */
7558 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7559 {
7560 	u32 saved_err = 0;
7561 	u32 saved_uic_err = 0;
7562 	int err = 0;
7563 	unsigned long flags;
7564 	int retries = MAX_HOST_RESET_RETRIES;
7565 
7566 	spin_lock_irqsave(hba->host->host_lock, flags);
7567 	do {
7568 		/*
7569 		 * This is a fresh start, cache and clear saved error first,
7570 		 * in case new error generated during reset and restore.
7571 		 */
7572 		saved_err |= hba->saved_err;
7573 		saved_uic_err |= hba->saved_uic_err;
7574 		hba->saved_err = 0;
7575 		hba->saved_uic_err = 0;
7576 		hba->force_reset = false;
7577 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7578 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7579 
7580 		/* Reset the attached device */
7581 		ufshcd_device_reset(hba);
7582 
7583 		err = ufshcd_host_reset_and_restore(hba);
7584 
7585 		spin_lock_irqsave(hba->host->host_lock, flags);
7586 		if (err)
7587 			continue;
7588 		/* Do not exit unless operational or dead */
7589 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7590 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7591 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7592 			err = -EAGAIN;
7593 	} while (err && --retries);
7594 
7595 	/*
7596 	 * Inform scsi mid-layer that we did reset and allow to handle
7597 	 * Unit Attention properly.
7598 	 */
7599 	scsi_report_bus_reset(hba->host, 0);
7600 	if (err) {
7601 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7602 		hba->saved_err |= saved_err;
7603 		hba->saved_uic_err |= saved_uic_err;
7604 	}
7605 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7606 
7607 	return err;
7608 }
7609 
7610 /**
7611  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7612  * @cmd: SCSI command pointer
7613  *
7614  * Returns SUCCESS/FAILED
7615  */
7616 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7617 {
7618 	int err = SUCCESS;
7619 	unsigned long flags;
7620 	struct ufs_hba *hba;
7621 
7622 	hba = shost_priv(cmd->device->host);
7623 
7624 	spin_lock_irqsave(hba->host->host_lock, flags);
7625 	hba->force_reset = true;
7626 	ufshcd_schedule_eh_work(hba);
7627 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7628 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7629 
7630 	flush_work(&hba->eh_work);
7631 
7632 	spin_lock_irqsave(hba->host->host_lock, flags);
7633 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7634 		err = FAILED;
7635 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7636 
7637 	return err;
7638 }
7639 
7640 /**
7641  * ufshcd_get_max_icc_level - calculate the ICC level
7642  * @sup_curr_uA: max. current supported by the regulator
7643  * @start_scan: row at the desc table to start scan from
7644  * @buff: power descriptor buffer
7645  *
7646  * Returns calculated max ICC level for specific regulator
7647  */
7648 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7649 				    const char *buff)
7650 {
7651 	int i;
7652 	int curr_uA;
7653 	u16 data;
7654 	u16 unit;
7655 
7656 	for (i = start_scan; i >= 0; i--) {
7657 		data = get_unaligned_be16(&buff[2 * i]);
7658 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7659 						ATTR_ICC_LVL_UNIT_OFFSET;
7660 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7661 		switch (unit) {
7662 		case UFSHCD_NANO_AMP:
7663 			curr_uA = curr_uA / 1000;
7664 			break;
7665 		case UFSHCD_MILI_AMP:
7666 			curr_uA = curr_uA * 1000;
7667 			break;
7668 		case UFSHCD_AMP:
7669 			curr_uA = curr_uA * 1000 * 1000;
7670 			break;
7671 		case UFSHCD_MICRO_AMP:
7672 		default:
7673 			break;
7674 		}
7675 		if (sup_curr_uA >= curr_uA)
7676 			break;
7677 	}
7678 	if (i < 0) {
7679 		i = 0;
7680 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7681 	}
7682 
7683 	return (u32)i;
7684 }
7685 
7686 /**
7687  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7688  * In case regulators are not initialized we'll return 0
7689  * @hba: per-adapter instance
7690  * @desc_buf: power descriptor buffer to extract ICC levels from.
7691  *
7692  * Returns calculated ICC level
7693  */
7694 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7695 						const u8 *desc_buf)
7696 {
7697 	u32 icc_level = 0;
7698 
7699 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7700 						!hba->vreg_info.vccq2) {
7701 		/*
7702 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7703 		 * never-ending cycles of messages written back to storage by
7704 		 * user space causing runtime resume, causing more messages and
7705 		 * so on.
7706 		 */
7707 		dev_dbg(hba->dev,
7708 			"%s: Regulator capability was not set, actvIccLevel=%d",
7709 							__func__, icc_level);
7710 		goto out;
7711 	}
7712 
7713 	if (hba->vreg_info.vcc->max_uA)
7714 		icc_level = ufshcd_get_max_icc_level(
7715 				hba->vreg_info.vcc->max_uA,
7716 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7717 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7718 
7719 	if (hba->vreg_info.vccq->max_uA)
7720 		icc_level = ufshcd_get_max_icc_level(
7721 				hba->vreg_info.vccq->max_uA,
7722 				icc_level,
7723 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7724 
7725 	if (hba->vreg_info.vccq2->max_uA)
7726 		icc_level = ufshcd_get_max_icc_level(
7727 				hba->vreg_info.vccq2->max_uA,
7728 				icc_level,
7729 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7730 out:
7731 	return icc_level;
7732 }
7733 
7734 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7735 {
7736 	int ret;
7737 	u8 *desc_buf;
7738 	u32 icc_level;
7739 
7740 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7741 	if (!desc_buf)
7742 		return;
7743 
7744 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7745 				     desc_buf, QUERY_DESC_MAX_SIZE);
7746 	if (ret) {
7747 		dev_err(hba->dev,
7748 			"%s: Failed reading power descriptor ret = %d",
7749 			__func__, ret);
7750 		goto out;
7751 	}
7752 
7753 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7754 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7755 
7756 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7757 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7758 
7759 	if (ret)
7760 		dev_err(hba->dev,
7761 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7762 			__func__, icc_level, ret);
7763 
7764 out:
7765 	kfree(desc_buf);
7766 }
7767 
7768 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7769 {
7770 	scsi_autopm_get_device(sdev);
7771 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7772 	if (sdev->rpm_autosuspend)
7773 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7774 						 RPM_AUTOSUSPEND_DELAY_MS);
7775 	scsi_autopm_put_device(sdev);
7776 }
7777 
7778 /**
7779  * ufshcd_scsi_add_wlus - Adds required W-LUs
7780  * @hba: per-adapter instance
7781  *
7782  * UFS device specification requires the UFS devices to support 4 well known
7783  * logical units:
7784  *	"REPORT_LUNS" (address: 01h)
7785  *	"UFS Device" (address: 50h)
7786  *	"RPMB" (address: 44h)
7787  *	"BOOT" (address: 30h)
7788  * UFS device's power management needs to be controlled by "POWER CONDITION"
7789  * field of SSU (START STOP UNIT) command. But this "power condition" field
7790  * will take effect only when its sent to "UFS device" well known logical unit
7791  * hence we require the scsi_device instance to represent this logical unit in
7792  * order for the UFS host driver to send the SSU command for power management.
7793  *
7794  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7795  * Block) LU so user space process can control this LU. User space may also
7796  * want to have access to BOOT LU.
7797  *
7798  * This function adds scsi device instances for each of all well known LUs
7799  * (except "REPORT LUNS" LU).
7800  *
7801  * Returns zero on success (all required W-LUs are added successfully),
7802  * non-zero error value on failure (if failed to add any of the required W-LU).
7803  */
7804 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7805 {
7806 	int ret = 0;
7807 	struct scsi_device *sdev_boot, *sdev_rpmb;
7808 
7809 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7810 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7811 	if (IS_ERR(hba->ufs_device_wlun)) {
7812 		ret = PTR_ERR(hba->ufs_device_wlun);
7813 		hba->ufs_device_wlun = NULL;
7814 		goto out;
7815 	}
7816 	scsi_device_put(hba->ufs_device_wlun);
7817 
7818 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7819 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7820 	if (IS_ERR(sdev_rpmb)) {
7821 		ret = PTR_ERR(sdev_rpmb);
7822 		goto remove_ufs_device_wlun;
7823 	}
7824 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7825 	scsi_device_put(sdev_rpmb);
7826 
7827 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7828 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7829 	if (IS_ERR(sdev_boot)) {
7830 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7831 	} else {
7832 		ufshcd_blk_pm_runtime_init(sdev_boot);
7833 		scsi_device_put(sdev_boot);
7834 	}
7835 	goto out;
7836 
7837 remove_ufs_device_wlun:
7838 	scsi_remove_device(hba->ufs_device_wlun);
7839 out:
7840 	return ret;
7841 }
7842 
7843 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7844 {
7845 	struct ufs_dev_info *dev_info = &hba->dev_info;
7846 	u8 lun;
7847 	u32 d_lu_wb_buf_alloc;
7848 	u32 ext_ufs_feature;
7849 
7850 	if (!ufshcd_is_wb_allowed(hba))
7851 		return;
7852 
7853 	/*
7854 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7855 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7856 	 * enabled
7857 	 */
7858 	if (!(dev_info->wspecversion >= 0x310 ||
7859 	      dev_info->wspecversion == 0x220 ||
7860 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7861 		goto wb_disabled;
7862 
7863 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7864 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7865 
7866 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7867 		goto wb_disabled;
7868 
7869 	/*
7870 	 * WB may be supported but not configured while provisioning. The spec
7871 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7872 	 * buffer configured.
7873 	 */
7874 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7875 
7876 	dev_info->b_presrv_uspc_en =
7877 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7878 
7879 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7880 		if (!get_unaligned_be32(desc_buf +
7881 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7882 			goto wb_disabled;
7883 	} else {
7884 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7885 			d_lu_wb_buf_alloc = 0;
7886 			ufshcd_read_unit_desc_param(hba,
7887 					lun,
7888 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7889 					(u8 *)&d_lu_wb_buf_alloc,
7890 					sizeof(d_lu_wb_buf_alloc));
7891 			if (d_lu_wb_buf_alloc) {
7892 				dev_info->wb_dedicated_lu = lun;
7893 				break;
7894 			}
7895 		}
7896 
7897 		if (!d_lu_wb_buf_alloc)
7898 			goto wb_disabled;
7899 	}
7900 
7901 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7902 		goto wb_disabled;
7903 
7904 	return;
7905 
7906 wb_disabled:
7907 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7908 }
7909 
7910 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7911 {
7912 	struct ufs_dev_info *dev_info = &hba->dev_info;
7913 	u32 ext_ufs_feature;
7914 	u8 mask = 0;
7915 
7916 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7917 		return;
7918 
7919 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7920 
7921 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7922 		mask |= MASK_EE_TOO_LOW_TEMP;
7923 
7924 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7925 		mask |= MASK_EE_TOO_HIGH_TEMP;
7926 
7927 	if (mask) {
7928 		ufshcd_enable_ee(hba, mask);
7929 		ufs_hwmon_probe(hba, mask);
7930 	}
7931 }
7932 
7933 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
7934 {
7935 	struct ufs_dev_info *dev_info = &hba->dev_info;
7936 	u32 ext_ufs_feature;
7937 	u32 ext_iid_en = 0;
7938 	int err;
7939 
7940 	/* Only UFS-4.0 and above may support EXT_IID */
7941 	if (dev_info->wspecversion < 0x400)
7942 		goto out;
7943 
7944 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7945 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7946 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
7947 		goto out;
7948 
7949 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7950 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
7951 	if (err)
7952 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
7953 
7954 out:
7955 	dev_info->b_ext_iid_en = ext_iid_en;
7956 }
7957 
7958 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7959 			     const struct ufs_dev_quirk *fixups)
7960 {
7961 	const struct ufs_dev_quirk *f;
7962 	struct ufs_dev_info *dev_info = &hba->dev_info;
7963 
7964 	if (!fixups)
7965 		return;
7966 
7967 	for (f = fixups; f->quirk; f++) {
7968 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7969 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7970 		     ((dev_info->model &&
7971 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7972 		      !strcmp(f->model, UFS_ANY_MODEL)))
7973 			hba->dev_quirks |= f->quirk;
7974 	}
7975 }
7976 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7977 
7978 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7979 {
7980 	/* fix by general quirk table */
7981 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7982 
7983 	/* allow vendors to fix quirks */
7984 	ufshcd_vops_fixup_dev_quirks(hba);
7985 }
7986 
7987 static int ufs_get_device_desc(struct ufs_hba *hba)
7988 {
7989 	int err;
7990 	u8 model_index;
7991 	u8 b_ufs_feature_sup;
7992 	u8 *desc_buf;
7993 	struct ufs_dev_info *dev_info = &hba->dev_info;
7994 
7995 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7996 	if (!desc_buf) {
7997 		err = -ENOMEM;
7998 		goto out;
7999 	}
8000 
8001 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8002 				     QUERY_DESC_MAX_SIZE);
8003 	if (err) {
8004 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8005 			__func__, err);
8006 		goto out;
8007 	}
8008 
8009 	/*
8010 	 * getting vendor (manufacturerID) and Bank Index in big endian
8011 	 * format
8012 	 */
8013 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8014 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8015 
8016 	/* getting Specification Version in big endian format */
8017 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8018 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8019 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8020 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
8021 
8022 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8023 
8024 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
8025 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
8026 		bool hpb_en = false;
8027 
8028 		ufshpb_get_dev_info(hba, desc_buf);
8029 
8030 		if (!ufshpb_is_legacy(hba))
8031 			err = ufshcd_query_flag_retry(hba,
8032 						      UPIU_QUERY_OPCODE_READ_FLAG,
8033 						      QUERY_FLAG_IDN_HPB_EN, 0,
8034 						      &hpb_en);
8035 
8036 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
8037 			dev_info->hpb_enabled = true;
8038 	}
8039 
8040 	err = ufshcd_read_string_desc(hba, model_index,
8041 				      &dev_info->model, SD_ASCII_STD);
8042 	if (err < 0) {
8043 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8044 			__func__, err);
8045 		goto out;
8046 	}
8047 
8048 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8049 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8050 
8051 	ufs_fixup_device_setup(hba);
8052 
8053 	ufshcd_wb_probe(hba, desc_buf);
8054 
8055 	ufshcd_temp_notif_probe(hba, desc_buf);
8056 
8057 	if (hba->ext_iid_sup)
8058 		ufshcd_ext_iid_probe(hba, desc_buf);
8059 
8060 	/*
8061 	 * ufshcd_read_string_desc returns size of the string
8062 	 * reset the error value
8063 	 */
8064 	err = 0;
8065 
8066 out:
8067 	kfree(desc_buf);
8068 	return err;
8069 }
8070 
8071 static void ufs_put_device_desc(struct ufs_hba *hba)
8072 {
8073 	struct ufs_dev_info *dev_info = &hba->dev_info;
8074 
8075 	kfree(dev_info->model);
8076 	dev_info->model = NULL;
8077 }
8078 
8079 /**
8080  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8081  * @hba: per-adapter instance
8082  *
8083  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8084  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8085  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8086  * the hibern8 exit latency.
8087  *
8088  * Returns zero on success, non-zero error value on failure.
8089  */
8090 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8091 {
8092 	int ret = 0;
8093 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8094 
8095 	ret = ufshcd_dme_peer_get(hba,
8096 				  UIC_ARG_MIB_SEL(
8097 					RX_MIN_ACTIVATETIME_CAPABILITY,
8098 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8099 				  &peer_rx_min_activatetime);
8100 	if (ret)
8101 		goto out;
8102 
8103 	/* make sure proper unit conversion is applied */
8104 	tuned_pa_tactivate =
8105 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8106 		 / PA_TACTIVATE_TIME_UNIT_US);
8107 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8108 			     tuned_pa_tactivate);
8109 
8110 out:
8111 	return ret;
8112 }
8113 
8114 /**
8115  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8116  * @hba: per-adapter instance
8117  *
8118  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8119  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8120  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8121  * This optimal value can help reduce the hibern8 exit latency.
8122  *
8123  * Returns zero on success, non-zero error value on failure.
8124  */
8125 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8126 {
8127 	int ret = 0;
8128 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8129 	u32 max_hibern8_time, tuned_pa_hibern8time;
8130 
8131 	ret = ufshcd_dme_get(hba,
8132 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8133 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8134 				  &local_tx_hibern8_time_cap);
8135 	if (ret)
8136 		goto out;
8137 
8138 	ret = ufshcd_dme_peer_get(hba,
8139 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8140 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8141 				  &peer_rx_hibern8_time_cap);
8142 	if (ret)
8143 		goto out;
8144 
8145 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8146 			       peer_rx_hibern8_time_cap);
8147 	/* make sure proper unit conversion is applied */
8148 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8149 				/ PA_HIBERN8_TIME_UNIT_US);
8150 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8151 			     tuned_pa_hibern8time);
8152 out:
8153 	return ret;
8154 }
8155 
8156 /**
8157  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8158  * less than device PA_TACTIVATE time.
8159  * @hba: per-adapter instance
8160  *
8161  * Some UFS devices require host PA_TACTIVATE to be lower than device
8162  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8163  * for such devices.
8164  *
8165  * Returns zero on success, non-zero error value on failure.
8166  */
8167 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8168 {
8169 	int ret = 0;
8170 	u32 granularity, peer_granularity;
8171 	u32 pa_tactivate, peer_pa_tactivate;
8172 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8173 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8174 
8175 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8176 				  &granularity);
8177 	if (ret)
8178 		goto out;
8179 
8180 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8181 				  &peer_granularity);
8182 	if (ret)
8183 		goto out;
8184 
8185 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8186 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8187 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8188 			__func__, granularity);
8189 		return -EINVAL;
8190 	}
8191 
8192 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8193 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8194 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8195 			__func__, peer_granularity);
8196 		return -EINVAL;
8197 	}
8198 
8199 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8200 	if (ret)
8201 		goto out;
8202 
8203 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8204 				  &peer_pa_tactivate);
8205 	if (ret)
8206 		goto out;
8207 
8208 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8209 	peer_pa_tactivate_us = peer_pa_tactivate *
8210 			     gran_to_us_table[peer_granularity - 1];
8211 
8212 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8213 		u32 new_peer_pa_tactivate;
8214 
8215 		new_peer_pa_tactivate = pa_tactivate_us /
8216 				      gran_to_us_table[peer_granularity - 1];
8217 		new_peer_pa_tactivate++;
8218 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8219 					  new_peer_pa_tactivate);
8220 	}
8221 
8222 out:
8223 	return ret;
8224 }
8225 
8226 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8227 {
8228 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8229 		ufshcd_tune_pa_tactivate(hba);
8230 		ufshcd_tune_pa_hibern8time(hba);
8231 	}
8232 
8233 	ufshcd_vops_apply_dev_quirks(hba);
8234 
8235 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8236 		/* set 1ms timeout for PA_TACTIVATE */
8237 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8238 
8239 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8240 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8241 }
8242 
8243 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8244 {
8245 	hba->ufs_stats.hibern8_exit_cnt = 0;
8246 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8247 	hba->req_abort_count = 0;
8248 }
8249 
8250 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8251 {
8252 	int err;
8253 	u8 *desc_buf;
8254 
8255 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8256 	if (!desc_buf) {
8257 		err = -ENOMEM;
8258 		goto out;
8259 	}
8260 
8261 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8262 				     desc_buf, QUERY_DESC_MAX_SIZE);
8263 	if (err) {
8264 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8265 				__func__, err);
8266 		goto out;
8267 	}
8268 
8269 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8270 		hba->dev_info.max_lu_supported = 32;
8271 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8272 		hba->dev_info.max_lu_supported = 8;
8273 
8274 	if (desc_buf[QUERY_DESC_LENGTH_OFFSET] >=
8275 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8276 		ufshpb_get_geo_info(hba, desc_buf);
8277 
8278 out:
8279 	kfree(desc_buf);
8280 	return err;
8281 }
8282 
8283 struct ufs_ref_clk {
8284 	unsigned long freq_hz;
8285 	enum ufs_ref_clk_freq val;
8286 };
8287 
8288 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8289 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8290 	{26000000, REF_CLK_FREQ_26_MHZ},
8291 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8292 	{52000000, REF_CLK_FREQ_52_MHZ},
8293 	{0, REF_CLK_FREQ_INVAL},
8294 };
8295 
8296 static enum ufs_ref_clk_freq
8297 ufs_get_bref_clk_from_hz(unsigned long freq)
8298 {
8299 	int i;
8300 
8301 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8302 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8303 			return ufs_ref_clk_freqs[i].val;
8304 
8305 	return REF_CLK_FREQ_INVAL;
8306 }
8307 
8308 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8309 {
8310 	unsigned long freq;
8311 
8312 	freq = clk_get_rate(refclk);
8313 
8314 	hba->dev_ref_clk_freq =
8315 		ufs_get_bref_clk_from_hz(freq);
8316 
8317 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8318 		dev_err(hba->dev,
8319 		"invalid ref_clk setting = %ld\n", freq);
8320 }
8321 
8322 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8323 {
8324 	int err;
8325 	u32 ref_clk;
8326 	u32 freq = hba->dev_ref_clk_freq;
8327 
8328 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8329 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8330 
8331 	if (err) {
8332 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8333 			err);
8334 		goto out;
8335 	}
8336 
8337 	if (ref_clk == freq)
8338 		goto out; /* nothing to update */
8339 
8340 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8341 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8342 
8343 	if (err) {
8344 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8345 			ufs_ref_clk_freqs[freq].freq_hz);
8346 		goto out;
8347 	}
8348 
8349 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8350 			ufs_ref_clk_freqs[freq].freq_hz);
8351 
8352 out:
8353 	return err;
8354 }
8355 
8356 static int ufshcd_device_params_init(struct ufs_hba *hba)
8357 {
8358 	bool flag;
8359 	int ret;
8360 
8361 	/* Init UFS geometry descriptor related parameters */
8362 	ret = ufshcd_device_geo_params_init(hba);
8363 	if (ret)
8364 		goto out;
8365 
8366 	/* Check and apply UFS device quirks */
8367 	ret = ufs_get_device_desc(hba);
8368 	if (ret) {
8369 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8370 			__func__, ret);
8371 		goto out;
8372 	}
8373 
8374 	ufshcd_get_ref_clk_gating_wait(hba);
8375 
8376 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8377 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8378 		hba->dev_info.f_power_on_wp_en = flag;
8379 
8380 	/* Probe maximum power mode co-supported by both UFS host and device */
8381 	if (ufshcd_get_max_pwr_mode(hba))
8382 		dev_err(hba->dev,
8383 			"%s: Failed getting max supported power mode\n",
8384 			__func__);
8385 out:
8386 	return ret;
8387 }
8388 
8389 /**
8390  * ufshcd_add_lus - probe and add UFS logical units
8391  * @hba: per-adapter instance
8392  */
8393 static int ufshcd_add_lus(struct ufs_hba *hba)
8394 {
8395 	int ret;
8396 
8397 	/* Add required well known logical units to scsi mid layer */
8398 	ret = ufshcd_scsi_add_wlus(hba);
8399 	if (ret)
8400 		goto out;
8401 
8402 	ufs_bsg_probe(hba);
8403 	ufshpb_init(hba);
8404 	scsi_scan_host(hba->host);
8405 	pm_runtime_put_sync(hba->dev);
8406 
8407 out:
8408 	return ret;
8409 }
8410 
8411 /* SDB - Single Doorbell */
8412 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8413 {
8414 	size_t ucdl_size, utrdl_size;
8415 
8416 	ucdl_size = sizeof(struct utp_transfer_cmd_desc) * nutrs;
8417 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8418 			   hba->ucdl_dma_addr);
8419 
8420 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8421 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8422 			   hba->utrdl_dma_addr);
8423 
8424 	devm_kfree(hba->dev, hba->lrb);
8425 }
8426 
8427 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8428 {
8429 	int ret;
8430 	int old_nutrs = hba->nutrs;
8431 
8432 	ret = ufshcd_mcq_decide_queue_depth(hba);
8433 	if (ret < 0)
8434 		return ret;
8435 
8436 	hba->nutrs = ret;
8437 	ret = ufshcd_mcq_init(hba);
8438 	if (ret)
8439 		goto err;
8440 
8441 	/*
8442 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8443 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8444 	 */
8445 	if (hba->nutrs != old_nutrs) {
8446 		ufshcd_release_sdb_queue(hba, old_nutrs);
8447 		ret = ufshcd_memory_alloc(hba);
8448 		if (ret)
8449 			goto err;
8450 		ufshcd_host_memory_configure(hba);
8451 	}
8452 
8453 	ret = ufshcd_mcq_memory_alloc(hba);
8454 	if (ret)
8455 		goto err;
8456 
8457 	return 0;
8458 err:
8459 	hba->nutrs = old_nutrs;
8460 	return ret;
8461 }
8462 
8463 static void ufshcd_config_mcq(struct ufs_hba *hba)
8464 {
8465 	int ret;
8466 
8467 	ret = ufshcd_mcq_vops_config_esi(hba);
8468 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8469 
8470 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_MCQ_INTRS);
8471 	ufshcd_mcq_make_queues_operational(hba);
8472 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8473 
8474 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8475 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8476 
8477 	/* Select MCQ mode */
8478 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8479 		      REG_UFS_MEM_CFG);
8480 	hba->mcq_enabled = true;
8481 
8482 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8483 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8484 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8485 		 hba->nutrs);
8486 }
8487 
8488 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8489 {
8490 	int ret;
8491 	struct Scsi_Host *host = hba->host;
8492 
8493 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8494 
8495 	ret = ufshcd_link_startup(hba);
8496 	if (ret)
8497 		return ret;
8498 
8499 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8500 		return ret;
8501 
8502 	/* Debug counters initialization */
8503 	ufshcd_clear_dbg_ufs_stats(hba);
8504 
8505 	/* UniPro link is active now */
8506 	ufshcd_set_link_active(hba);
8507 
8508 	/* Reconfigure MCQ upon reset */
8509 	if (is_mcq_enabled(hba) && !init_dev_params)
8510 		ufshcd_config_mcq(hba);
8511 
8512 	/* Verify device initialization by sending NOP OUT UPIU */
8513 	ret = ufshcd_verify_dev_init(hba);
8514 	if (ret)
8515 		return ret;
8516 
8517 	/* Initiate UFS initialization, and waiting until completion */
8518 	ret = ufshcd_complete_dev_init(hba);
8519 	if (ret)
8520 		return ret;
8521 
8522 	/*
8523 	 * Initialize UFS device parameters used by driver, these
8524 	 * parameters are associated with UFS descriptors.
8525 	 */
8526 	if (init_dev_params) {
8527 		ret = ufshcd_device_params_init(hba);
8528 		if (ret)
8529 			return ret;
8530 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8531 			ret = ufshcd_alloc_mcq(hba);
8532 			if (!ret) {
8533 				ufshcd_config_mcq(hba);
8534 			} else {
8535 				/* Continue with SDB mode */
8536 				use_mcq_mode = false;
8537 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8538 					 ret);
8539 			}
8540 			ret = scsi_add_host(host, hba->dev);
8541 			if (ret) {
8542 				dev_err(hba->dev, "scsi_add_host failed\n");
8543 				return ret;
8544 			}
8545 			hba->scsi_host_added = true;
8546 		} else if (is_mcq_supported(hba)) {
8547 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8548 			ufshcd_config_mcq(hba);
8549 		}
8550 	}
8551 
8552 	ufshcd_tune_unipro_params(hba);
8553 
8554 	/* UFS device is also active now */
8555 	ufshcd_set_ufs_dev_active(hba);
8556 	ufshcd_force_reset_auto_bkops(hba);
8557 
8558 	/* Gear up to HS gear if supported */
8559 	if (hba->max_pwr_info.is_valid) {
8560 		/*
8561 		 * Set the right value to bRefClkFreq before attempting to
8562 		 * switch to HS gears.
8563 		 */
8564 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8565 			ufshcd_set_dev_ref_clk(hba);
8566 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8567 		if (ret) {
8568 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8569 					__func__, ret);
8570 			return ret;
8571 		}
8572 	}
8573 
8574 	return 0;
8575 }
8576 
8577 /**
8578  * ufshcd_probe_hba - probe hba to detect device and initialize it
8579  * @hba: per-adapter instance
8580  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8581  *
8582  * Execute link-startup and verify device initialization
8583  */
8584 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8585 {
8586 	ktime_t start = ktime_get();
8587 	unsigned long flags;
8588 	int ret;
8589 
8590 	ret = ufshcd_device_init(hba, init_dev_params);
8591 	if (ret)
8592 		goto out;
8593 
8594 	if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8595 		/* Reset the device and controller before doing reinit */
8596 		ufshcd_device_reset(hba);
8597 		ufshcd_hba_stop(hba);
8598 		ufshcd_vops_reinit_notify(hba);
8599 		ret = ufshcd_hba_enable(hba);
8600 		if (ret) {
8601 			dev_err(hba->dev, "Host controller enable failed\n");
8602 			ufshcd_print_evt_hist(hba);
8603 			ufshcd_print_host_state(hba);
8604 			goto out;
8605 		}
8606 
8607 		/* Reinit the device */
8608 		ret = ufshcd_device_init(hba, init_dev_params);
8609 		if (ret)
8610 			goto out;
8611 	}
8612 
8613 	ufshcd_print_pwr_info(hba);
8614 
8615 	/*
8616 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8617 	 * and for removable UFS card as well, hence always set the parameter.
8618 	 * Note: Error handler may issue the device reset hence resetting
8619 	 * bActiveICCLevel as well so it is always safe to set this here.
8620 	 */
8621 	ufshcd_set_active_icc_lvl(hba);
8622 
8623 	/* Enable UFS Write Booster if supported */
8624 	ufshcd_configure_wb(hba);
8625 
8626 	if (hba->ee_usr_mask)
8627 		ufshcd_write_ee_control(hba);
8628 	/* Enable Auto-Hibernate if configured */
8629 	ufshcd_auto_hibern8_enable(hba);
8630 
8631 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8632 out:
8633 	spin_lock_irqsave(hba->host->host_lock, flags);
8634 	if (ret)
8635 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8636 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8637 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8638 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8639 
8640 	trace_ufshcd_init(dev_name(hba->dev), ret,
8641 		ktime_to_us(ktime_sub(ktime_get(), start)),
8642 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8643 	return ret;
8644 }
8645 
8646 /**
8647  * ufshcd_async_scan - asynchronous execution for probing hba
8648  * @data: data pointer to pass to this function
8649  * @cookie: cookie data
8650  */
8651 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8652 {
8653 	struct ufs_hba *hba = (struct ufs_hba *)data;
8654 	int ret;
8655 
8656 	down(&hba->host_sem);
8657 	/* Initialize hba, detect and initialize UFS device */
8658 	ret = ufshcd_probe_hba(hba, true);
8659 	up(&hba->host_sem);
8660 	if (ret)
8661 		goto out;
8662 
8663 	/* Probe and add UFS logical units  */
8664 	ret = ufshcd_add_lus(hba);
8665 out:
8666 	/*
8667 	 * If we failed to initialize the device or the device is not
8668 	 * present, turn off the power/clocks etc.
8669 	 */
8670 	if (ret) {
8671 		pm_runtime_put_sync(hba->dev);
8672 		ufshcd_hba_exit(hba);
8673 	} else {
8674 		/*
8675 		 * Make sure that when reader code sees UFS initialization has finished,
8676 		 * all initialization steps have really been executed.
8677 		 */
8678 		smp_store_release(&hba->logical_unit_scan_finished, true);
8679 	}
8680 }
8681 
8682 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8683 {
8684 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8685 
8686 	if (!hba->system_suspending) {
8687 		/* Activate the error handler in the SCSI core. */
8688 		return SCSI_EH_NOT_HANDLED;
8689 	}
8690 
8691 	/*
8692 	 * If we get here we know that no TMFs are outstanding and also that
8693 	 * the only pending command is a START STOP UNIT command. Handle the
8694 	 * timeout of that command directly to prevent a deadlock between
8695 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8696 	 */
8697 	ufshcd_link_recovery(hba);
8698 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8699 		 __func__, hba->outstanding_tasks);
8700 
8701 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8702 }
8703 
8704 static const struct attribute_group *ufshcd_driver_groups[] = {
8705 	&ufs_sysfs_unit_descriptor_group,
8706 	&ufs_sysfs_lun_attributes_group,
8707 #ifdef CONFIG_SCSI_UFS_HPB
8708 	&ufs_sysfs_hpb_stat_group,
8709 	&ufs_sysfs_hpb_param_group,
8710 #endif
8711 	NULL,
8712 };
8713 
8714 static struct ufs_hba_variant_params ufs_hba_vps = {
8715 	.hba_enable_delay_us		= 1000,
8716 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8717 	.devfreq_profile.polling_ms	= 100,
8718 	.devfreq_profile.target		= ufshcd_devfreq_target,
8719 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8720 	.ondemand_data.upthreshold	= 70,
8721 	.ondemand_data.downdifferential	= 5,
8722 };
8723 
8724 static struct scsi_host_template ufshcd_driver_template = {
8725 	.module			= THIS_MODULE,
8726 	.name			= UFSHCD,
8727 	.proc_name		= UFSHCD,
8728 	.map_queues		= ufshcd_map_queues,
8729 	.queuecommand		= ufshcd_queuecommand,
8730 	.mq_poll		= ufshcd_poll,
8731 	.slave_alloc		= ufshcd_slave_alloc,
8732 	.slave_configure	= ufshcd_slave_configure,
8733 	.slave_destroy		= ufshcd_slave_destroy,
8734 	.change_queue_depth	= ufshcd_change_queue_depth,
8735 	.eh_abort_handler	= ufshcd_abort,
8736 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8737 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8738 	.eh_timed_out		= ufshcd_eh_timed_out,
8739 	.this_id		= -1,
8740 	.sg_tablesize		= SG_ALL,
8741 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8742 	.can_queue		= UFSHCD_CAN_QUEUE,
8743 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8744 	.max_sectors		= (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8745 	.max_host_blocked	= 1,
8746 	.track_queue_depth	= 1,
8747 	.sdev_groups		= ufshcd_driver_groups,
8748 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8749 };
8750 
8751 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8752 				   int ua)
8753 {
8754 	int ret;
8755 
8756 	if (!vreg)
8757 		return 0;
8758 
8759 	/*
8760 	 * "set_load" operation shall be required on those regulators
8761 	 * which specifically configured current limitation. Otherwise
8762 	 * zero max_uA may cause unexpected behavior when regulator is
8763 	 * enabled or set as high power mode.
8764 	 */
8765 	if (!vreg->max_uA)
8766 		return 0;
8767 
8768 	ret = regulator_set_load(vreg->reg, ua);
8769 	if (ret < 0) {
8770 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8771 				__func__, vreg->name, ua, ret);
8772 	}
8773 
8774 	return ret;
8775 }
8776 
8777 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8778 					 struct ufs_vreg *vreg)
8779 {
8780 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8781 }
8782 
8783 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8784 					 struct ufs_vreg *vreg)
8785 {
8786 	if (!vreg)
8787 		return 0;
8788 
8789 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8790 }
8791 
8792 static int ufshcd_config_vreg(struct device *dev,
8793 		struct ufs_vreg *vreg, bool on)
8794 {
8795 	if (regulator_count_voltages(vreg->reg) <= 0)
8796 		return 0;
8797 
8798 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8799 }
8800 
8801 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8802 {
8803 	int ret = 0;
8804 
8805 	if (!vreg || vreg->enabled)
8806 		goto out;
8807 
8808 	ret = ufshcd_config_vreg(dev, vreg, true);
8809 	if (!ret)
8810 		ret = regulator_enable(vreg->reg);
8811 
8812 	if (!ret)
8813 		vreg->enabled = true;
8814 	else
8815 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8816 				__func__, vreg->name, ret);
8817 out:
8818 	return ret;
8819 }
8820 
8821 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8822 {
8823 	int ret = 0;
8824 
8825 	if (!vreg || !vreg->enabled || vreg->always_on)
8826 		goto out;
8827 
8828 	ret = regulator_disable(vreg->reg);
8829 
8830 	if (!ret) {
8831 		/* ignore errors on applying disable config */
8832 		ufshcd_config_vreg(dev, vreg, false);
8833 		vreg->enabled = false;
8834 	} else {
8835 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8836 				__func__, vreg->name, ret);
8837 	}
8838 out:
8839 	return ret;
8840 }
8841 
8842 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8843 {
8844 	int ret = 0;
8845 	struct device *dev = hba->dev;
8846 	struct ufs_vreg_info *info = &hba->vreg_info;
8847 
8848 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8849 	if (ret)
8850 		goto out;
8851 
8852 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8853 	if (ret)
8854 		goto out;
8855 
8856 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8857 
8858 out:
8859 	if (ret) {
8860 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8861 		ufshcd_toggle_vreg(dev, info->vccq, false);
8862 		ufshcd_toggle_vreg(dev, info->vcc, false);
8863 	}
8864 	return ret;
8865 }
8866 
8867 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8868 {
8869 	struct ufs_vreg_info *info = &hba->vreg_info;
8870 
8871 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8872 }
8873 
8874 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8875 {
8876 	int ret = 0;
8877 
8878 	if (!vreg)
8879 		goto out;
8880 
8881 	vreg->reg = devm_regulator_get(dev, vreg->name);
8882 	if (IS_ERR(vreg->reg)) {
8883 		ret = PTR_ERR(vreg->reg);
8884 		dev_err(dev, "%s: %s get failed, err=%d\n",
8885 				__func__, vreg->name, ret);
8886 	}
8887 out:
8888 	return ret;
8889 }
8890 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8891 
8892 static int ufshcd_init_vreg(struct ufs_hba *hba)
8893 {
8894 	int ret = 0;
8895 	struct device *dev = hba->dev;
8896 	struct ufs_vreg_info *info = &hba->vreg_info;
8897 
8898 	ret = ufshcd_get_vreg(dev, info->vcc);
8899 	if (ret)
8900 		goto out;
8901 
8902 	ret = ufshcd_get_vreg(dev, info->vccq);
8903 	if (!ret)
8904 		ret = ufshcd_get_vreg(dev, info->vccq2);
8905 out:
8906 	return ret;
8907 }
8908 
8909 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8910 {
8911 	struct ufs_vreg_info *info = &hba->vreg_info;
8912 
8913 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8914 }
8915 
8916 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8917 {
8918 	int ret = 0;
8919 	struct ufs_clk_info *clki;
8920 	struct list_head *head = &hba->clk_list_head;
8921 	unsigned long flags;
8922 	ktime_t start = ktime_get();
8923 	bool clk_state_changed = false;
8924 
8925 	if (list_empty(head))
8926 		goto out;
8927 
8928 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8929 	if (ret)
8930 		return ret;
8931 
8932 	list_for_each_entry(clki, head, list) {
8933 		if (!IS_ERR_OR_NULL(clki->clk)) {
8934 			/*
8935 			 * Don't disable clocks which are needed
8936 			 * to keep the link active.
8937 			 */
8938 			if (ufshcd_is_link_active(hba) &&
8939 			    clki->keep_link_active)
8940 				continue;
8941 
8942 			clk_state_changed = on ^ clki->enabled;
8943 			if (on && !clki->enabled) {
8944 				ret = clk_prepare_enable(clki->clk);
8945 				if (ret) {
8946 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8947 						__func__, clki->name, ret);
8948 					goto out;
8949 				}
8950 			} else if (!on && clki->enabled) {
8951 				clk_disable_unprepare(clki->clk);
8952 			}
8953 			clki->enabled = on;
8954 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8955 					clki->name, on ? "en" : "dis");
8956 		}
8957 	}
8958 
8959 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8960 	if (ret)
8961 		return ret;
8962 
8963 out:
8964 	if (ret) {
8965 		list_for_each_entry(clki, head, list) {
8966 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8967 				clk_disable_unprepare(clki->clk);
8968 		}
8969 	} else if (!ret && on) {
8970 		spin_lock_irqsave(hba->host->host_lock, flags);
8971 		hba->clk_gating.state = CLKS_ON;
8972 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8973 					hba->clk_gating.state);
8974 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8975 	}
8976 
8977 	if (clk_state_changed)
8978 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8979 			(on ? "on" : "off"),
8980 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8981 	return ret;
8982 }
8983 
8984 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
8985 {
8986 	u32 freq;
8987 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
8988 
8989 	if (ret) {
8990 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
8991 		return REF_CLK_FREQ_INVAL;
8992 	}
8993 
8994 	return ufs_get_bref_clk_from_hz(freq);
8995 }
8996 
8997 static int ufshcd_init_clocks(struct ufs_hba *hba)
8998 {
8999 	int ret = 0;
9000 	struct ufs_clk_info *clki;
9001 	struct device *dev = hba->dev;
9002 	struct list_head *head = &hba->clk_list_head;
9003 
9004 	if (list_empty(head))
9005 		goto out;
9006 
9007 	list_for_each_entry(clki, head, list) {
9008 		if (!clki->name)
9009 			continue;
9010 
9011 		clki->clk = devm_clk_get(dev, clki->name);
9012 		if (IS_ERR(clki->clk)) {
9013 			ret = PTR_ERR(clki->clk);
9014 			dev_err(dev, "%s: %s clk get failed, %d\n",
9015 					__func__, clki->name, ret);
9016 			goto out;
9017 		}
9018 
9019 		/*
9020 		 * Parse device ref clk freq as per device tree "ref_clk".
9021 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9022 		 * in ufshcd_alloc_host().
9023 		 */
9024 		if (!strcmp(clki->name, "ref_clk"))
9025 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9026 
9027 		if (clki->max_freq) {
9028 			ret = clk_set_rate(clki->clk, clki->max_freq);
9029 			if (ret) {
9030 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9031 					__func__, clki->name,
9032 					clki->max_freq, ret);
9033 				goto out;
9034 			}
9035 			clki->curr_freq = clki->max_freq;
9036 		}
9037 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9038 				clki->name, clk_get_rate(clki->clk));
9039 	}
9040 out:
9041 	return ret;
9042 }
9043 
9044 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9045 {
9046 	int err = 0;
9047 
9048 	if (!hba->vops)
9049 		goto out;
9050 
9051 	err = ufshcd_vops_init(hba);
9052 	if (err)
9053 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
9054 			__func__, ufshcd_get_var_name(hba), err);
9055 out:
9056 	return err;
9057 }
9058 
9059 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9060 {
9061 	if (!hba->vops)
9062 		return;
9063 
9064 	ufshcd_vops_exit(hba);
9065 }
9066 
9067 static int ufshcd_hba_init(struct ufs_hba *hba)
9068 {
9069 	int err;
9070 
9071 	/*
9072 	 * Handle host controller power separately from the UFS device power
9073 	 * rails as it will help controlling the UFS host controller power
9074 	 * collapse easily which is different than UFS device power collapse.
9075 	 * Also, enable the host controller power before we go ahead with rest
9076 	 * of the initialization here.
9077 	 */
9078 	err = ufshcd_init_hba_vreg(hba);
9079 	if (err)
9080 		goto out;
9081 
9082 	err = ufshcd_setup_hba_vreg(hba, true);
9083 	if (err)
9084 		goto out;
9085 
9086 	err = ufshcd_init_clocks(hba);
9087 	if (err)
9088 		goto out_disable_hba_vreg;
9089 
9090 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9091 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9092 
9093 	err = ufshcd_setup_clocks(hba, true);
9094 	if (err)
9095 		goto out_disable_hba_vreg;
9096 
9097 	err = ufshcd_init_vreg(hba);
9098 	if (err)
9099 		goto out_disable_clks;
9100 
9101 	err = ufshcd_setup_vreg(hba, true);
9102 	if (err)
9103 		goto out_disable_clks;
9104 
9105 	err = ufshcd_variant_hba_init(hba);
9106 	if (err)
9107 		goto out_disable_vreg;
9108 
9109 	ufs_debugfs_hba_init(hba);
9110 
9111 	hba->is_powered = true;
9112 	goto out;
9113 
9114 out_disable_vreg:
9115 	ufshcd_setup_vreg(hba, false);
9116 out_disable_clks:
9117 	ufshcd_setup_clocks(hba, false);
9118 out_disable_hba_vreg:
9119 	ufshcd_setup_hba_vreg(hba, false);
9120 out:
9121 	return err;
9122 }
9123 
9124 static void ufshcd_hba_exit(struct ufs_hba *hba)
9125 {
9126 	if (hba->is_powered) {
9127 		ufshcd_exit_clk_scaling(hba);
9128 		ufshcd_exit_clk_gating(hba);
9129 		if (hba->eh_wq)
9130 			destroy_workqueue(hba->eh_wq);
9131 		ufs_debugfs_hba_exit(hba);
9132 		ufshcd_variant_hba_exit(hba);
9133 		ufshcd_setup_vreg(hba, false);
9134 		ufshcd_setup_clocks(hba, false);
9135 		ufshcd_setup_hba_vreg(hba, false);
9136 		hba->is_powered = false;
9137 		ufs_put_device_desc(hba);
9138 	}
9139 }
9140 
9141 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9142 				     enum ufs_dev_pwr_mode pwr_mode,
9143 				     struct scsi_sense_hdr *sshdr)
9144 {
9145 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9146 	const struct scsi_exec_args args = {
9147 		.sshdr = sshdr,
9148 		.req_flags = BLK_MQ_REQ_PM,
9149 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9150 	};
9151 
9152 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9153 			/*bufflen=*/0, /*timeout=*/HZ, /*retries=*/0, &args);
9154 }
9155 
9156 /**
9157  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9158  *			     power mode
9159  * @hba: per adapter instance
9160  * @pwr_mode: device power mode to set
9161  *
9162  * Returns 0 if requested power mode is set successfully
9163  * Returns < 0 if failed to set the requested power mode
9164  */
9165 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9166 				     enum ufs_dev_pwr_mode pwr_mode)
9167 {
9168 	struct scsi_sense_hdr sshdr;
9169 	struct scsi_device *sdp;
9170 	unsigned long flags;
9171 	int ret, retries;
9172 
9173 	spin_lock_irqsave(hba->host->host_lock, flags);
9174 	sdp = hba->ufs_device_wlun;
9175 	if (sdp && scsi_device_online(sdp))
9176 		ret = scsi_device_get(sdp);
9177 	else
9178 		ret = -ENODEV;
9179 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9180 
9181 	if (ret)
9182 		return ret;
9183 
9184 	/*
9185 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9186 	 * handling, which would wait for host to be resumed. Since we know
9187 	 * we are functional while we are here, skip host resume in error
9188 	 * handling context.
9189 	 */
9190 	hba->host->eh_noresume = 1;
9191 
9192 	/*
9193 	 * Current function would be generally called from the power management
9194 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9195 	 * already suspended childs.
9196 	 */
9197 	for (retries = 3; retries > 0; --retries) {
9198 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9199 		/*
9200 		 * scsi_execute() only returns a negative value if the request
9201 		 * queue is dying.
9202 		 */
9203 		if (ret <= 0)
9204 			break;
9205 	}
9206 	if (ret) {
9207 		sdev_printk(KERN_WARNING, sdp,
9208 			    "START_STOP failed for power mode: %d, result %x\n",
9209 			    pwr_mode, ret);
9210 		if (ret > 0) {
9211 			if (scsi_sense_valid(&sshdr))
9212 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9213 			ret = -EIO;
9214 		}
9215 	} else {
9216 		hba->curr_dev_pwr_mode = pwr_mode;
9217 	}
9218 
9219 	scsi_device_put(sdp);
9220 	hba->host->eh_noresume = 0;
9221 	return ret;
9222 }
9223 
9224 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9225 					enum uic_link_state req_link_state,
9226 					bool check_for_bkops)
9227 {
9228 	int ret = 0;
9229 
9230 	if (req_link_state == hba->uic_link_state)
9231 		return 0;
9232 
9233 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9234 		ret = ufshcd_uic_hibern8_enter(hba);
9235 		if (!ret) {
9236 			ufshcd_set_link_hibern8(hba);
9237 		} else {
9238 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9239 					__func__, ret);
9240 			goto out;
9241 		}
9242 	}
9243 	/*
9244 	 * If autobkops is enabled, link can't be turned off because
9245 	 * turning off the link would also turn off the device, except in the
9246 	 * case of DeepSleep where the device is expected to remain powered.
9247 	 */
9248 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9249 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9250 		/*
9251 		 * Let's make sure that link is in low power mode, we are doing
9252 		 * this currently by putting the link in Hibern8. Otherway to
9253 		 * put the link in low power mode is to send the DME end point
9254 		 * to device and then send the DME reset command to local
9255 		 * unipro. But putting the link in hibern8 is much faster.
9256 		 *
9257 		 * Note also that putting the link in Hibern8 is a requirement
9258 		 * for entering DeepSleep.
9259 		 */
9260 		ret = ufshcd_uic_hibern8_enter(hba);
9261 		if (ret) {
9262 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9263 					__func__, ret);
9264 			goto out;
9265 		}
9266 		/*
9267 		 * Change controller state to "reset state" which
9268 		 * should also put the link in off/reset state
9269 		 */
9270 		ufshcd_hba_stop(hba);
9271 		/*
9272 		 * TODO: Check if we need any delay to make sure that
9273 		 * controller is reset
9274 		 */
9275 		ufshcd_set_link_off(hba);
9276 	}
9277 
9278 out:
9279 	return ret;
9280 }
9281 
9282 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9283 {
9284 	bool vcc_off = false;
9285 
9286 	/*
9287 	 * It seems some UFS devices may keep drawing more than sleep current
9288 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9289 	 * To avoid this situation, add 2ms delay before putting these UFS
9290 	 * rails in LPM mode.
9291 	 */
9292 	if (!ufshcd_is_link_active(hba) &&
9293 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9294 		usleep_range(2000, 2100);
9295 
9296 	/*
9297 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9298 	 * power.
9299 	 *
9300 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9301 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9302 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9303 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9304 	 *
9305 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9306 	 * in low power state which would save some power.
9307 	 *
9308 	 * If Write Booster is enabled and the device needs to flush the WB
9309 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9310 	 */
9311 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9312 	    !hba->dev_info.is_lu_power_on_wp) {
9313 		ufshcd_setup_vreg(hba, false);
9314 		vcc_off = true;
9315 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9316 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9317 		vcc_off = true;
9318 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9319 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9320 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9321 		}
9322 	}
9323 
9324 	/*
9325 	 * Some UFS devices require delay after VCC power rail is turned-off.
9326 	 */
9327 	if (vcc_off && hba->vreg_info.vcc &&
9328 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9329 		usleep_range(5000, 5100);
9330 }
9331 
9332 #ifdef CONFIG_PM
9333 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9334 {
9335 	int ret = 0;
9336 
9337 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9338 	    !hba->dev_info.is_lu_power_on_wp) {
9339 		ret = ufshcd_setup_vreg(hba, true);
9340 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9341 		if (!ufshcd_is_link_active(hba)) {
9342 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9343 			if (ret)
9344 				goto vcc_disable;
9345 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9346 			if (ret)
9347 				goto vccq_lpm;
9348 		}
9349 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9350 	}
9351 	goto out;
9352 
9353 vccq_lpm:
9354 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9355 vcc_disable:
9356 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9357 out:
9358 	return ret;
9359 }
9360 #endif /* CONFIG_PM */
9361 
9362 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9363 {
9364 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9365 		ufshcd_setup_hba_vreg(hba, false);
9366 }
9367 
9368 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9369 {
9370 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9371 		ufshcd_setup_hba_vreg(hba, true);
9372 }
9373 
9374 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9375 {
9376 	int ret = 0;
9377 	bool check_for_bkops;
9378 	enum ufs_pm_level pm_lvl;
9379 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9380 	enum uic_link_state req_link_state;
9381 
9382 	hba->pm_op_in_progress = true;
9383 	if (pm_op != UFS_SHUTDOWN_PM) {
9384 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9385 			 hba->rpm_lvl : hba->spm_lvl;
9386 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9387 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9388 	} else {
9389 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9390 		req_link_state = UIC_LINK_OFF_STATE;
9391 	}
9392 
9393 	ufshpb_suspend(hba);
9394 
9395 	/*
9396 	 * If we can't transition into any of the low power modes
9397 	 * just gate the clocks.
9398 	 */
9399 	ufshcd_hold(hba, false);
9400 	hba->clk_gating.is_suspended = true;
9401 
9402 	if (ufshcd_is_clkscaling_supported(hba))
9403 		ufshcd_clk_scaling_suspend(hba, true);
9404 
9405 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9406 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9407 		goto vops_suspend;
9408 	}
9409 
9410 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9411 	    (req_link_state == hba->uic_link_state))
9412 		goto enable_scaling;
9413 
9414 	/* UFS device & link must be active before we enter in this function */
9415 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9416 		ret = -EINVAL;
9417 		goto enable_scaling;
9418 	}
9419 
9420 	if (pm_op == UFS_RUNTIME_PM) {
9421 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9422 			/*
9423 			 * The device is idle with no requests in the queue,
9424 			 * allow background operations if bkops status shows
9425 			 * that performance might be impacted.
9426 			 */
9427 			ret = ufshcd_urgent_bkops(hba);
9428 			if (ret)
9429 				goto enable_scaling;
9430 		} else {
9431 			/* make sure that auto bkops is disabled */
9432 			ufshcd_disable_auto_bkops(hba);
9433 		}
9434 		/*
9435 		 * If device needs to do BKOP or WB buffer flush during
9436 		 * Hibern8, keep device power mode as "active power mode"
9437 		 * and VCC supply.
9438 		 */
9439 		hba->dev_info.b_rpm_dev_flush_capable =
9440 			hba->auto_bkops_enabled ||
9441 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9442 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9443 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9444 			ufshcd_wb_need_flush(hba));
9445 	}
9446 
9447 	flush_work(&hba->eeh_work);
9448 
9449 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9450 	if (ret)
9451 		goto enable_scaling;
9452 
9453 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9454 		if (pm_op != UFS_RUNTIME_PM)
9455 			/* ensure that bkops is disabled */
9456 			ufshcd_disable_auto_bkops(hba);
9457 
9458 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9459 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9460 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9461 				/*
9462 				 * If return err in suspend flow, IO will hang.
9463 				 * Trigger error handler and break suspend for
9464 				 * error recovery.
9465 				 */
9466 				ufshcd_force_error_recovery(hba);
9467 				ret = -EBUSY;
9468 			}
9469 			if (ret)
9470 				goto enable_scaling;
9471 		}
9472 	}
9473 
9474 	/*
9475 	 * In the case of DeepSleep, the device is expected to remain powered
9476 	 * with the link off, so do not check for bkops.
9477 	 */
9478 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9479 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9480 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9481 		/*
9482 		 * If return err in suspend flow, IO will hang.
9483 		 * Trigger error handler and break suspend for
9484 		 * error recovery.
9485 		 */
9486 		ufshcd_force_error_recovery(hba);
9487 		ret = -EBUSY;
9488 	}
9489 	if (ret)
9490 		goto set_dev_active;
9491 
9492 vops_suspend:
9493 	/*
9494 	 * Call vendor specific suspend callback. As these callbacks may access
9495 	 * vendor specific host controller register space call them before the
9496 	 * host clocks are ON.
9497 	 */
9498 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9499 	if (ret)
9500 		goto set_link_active;
9501 	goto out;
9502 
9503 set_link_active:
9504 	/*
9505 	 * Device hardware reset is required to exit DeepSleep. Also, for
9506 	 * DeepSleep, the link is off so host reset and restore will be done
9507 	 * further below.
9508 	 */
9509 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9510 		ufshcd_device_reset(hba);
9511 		WARN_ON(!ufshcd_is_link_off(hba));
9512 	}
9513 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9514 		ufshcd_set_link_active(hba);
9515 	else if (ufshcd_is_link_off(hba))
9516 		ufshcd_host_reset_and_restore(hba);
9517 set_dev_active:
9518 	/* Can also get here needing to exit DeepSleep */
9519 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9520 		ufshcd_device_reset(hba);
9521 		ufshcd_host_reset_and_restore(hba);
9522 	}
9523 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9524 		ufshcd_disable_auto_bkops(hba);
9525 enable_scaling:
9526 	if (ufshcd_is_clkscaling_supported(hba))
9527 		ufshcd_clk_scaling_suspend(hba, false);
9528 
9529 	hba->dev_info.b_rpm_dev_flush_capable = false;
9530 out:
9531 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9532 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9533 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9534 	}
9535 
9536 	if (ret) {
9537 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9538 		hba->clk_gating.is_suspended = false;
9539 		ufshcd_release(hba);
9540 		ufshpb_resume(hba);
9541 	}
9542 	hba->pm_op_in_progress = false;
9543 	return ret;
9544 }
9545 
9546 #ifdef CONFIG_PM
9547 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9548 {
9549 	int ret;
9550 	enum uic_link_state old_link_state = hba->uic_link_state;
9551 
9552 	hba->pm_op_in_progress = true;
9553 
9554 	/*
9555 	 * Call vendor specific resume callback. As these callbacks may access
9556 	 * vendor specific host controller register space call them when the
9557 	 * host clocks are ON.
9558 	 */
9559 	ret = ufshcd_vops_resume(hba, pm_op);
9560 	if (ret)
9561 		goto out;
9562 
9563 	/* For DeepSleep, the only supported option is to have the link off */
9564 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9565 
9566 	if (ufshcd_is_link_hibern8(hba)) {
9567 		ret = ufshcd_uic_hibern8_exit(hba);
9568 		if (!ret) {
9569 			ufshcd_set_link_active(hba);
9570 		} else {
9571 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9572 					__func__, ret);
9573 			goto vendor_suspend;
9574 		}
9575 	} else if (ufshcd_is_link_off(hba)) {
9576 		/*
9577 		 * A full initialization of the host and the device is
9578 		 * required since the link was put to off during suspend.
9579 		 * Note, in the case of DeepSleep, the device will exit
9580 		 * DeepSleep due to device reset.
9581 		 */
9582 		ret = ufshcd_reset_and_restore(hba);
9583 		/*
9584 		 * ufshcd_reset_and_restore() should have already
9585 		 * set the link state as active
9586 		 */
9587 		if (ret || !ufshcd_is_link_active(hba))
9588 			goto vendor_suspend;
9589 	}
9590 
9591 	if (!ufshcd_is_ufs_dev_active(hba)) {
9592 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9593 		if (ret)
9594 			goto set_old_link_state;
9595 	}
9596 
9597 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9598 		ufshcd_enable_auto_bkops(hba);
9599 	else
9600 		/*
9601 		 * If BKOPs operations are urgently needed at this moment then
9602 		 * keep auto-bkops enabled or else disable it.
9603 		 */
9604 		ufshcd_urgent_bkops(hba);
9605 
9606 	if (hba->ee_usr_mask)
9607 		ufshcd_write_ee_control(hba);
9608 
9609 	if (ufshcd_is_clkscaling_supported(hba))
9610 		ufshcd_clk_scaling_suspend(hba, false);
9611 
9612 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9613 		hba->dev_info.b_rpm_dev_flush_capable = false;
9614 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9615 	}
9616 
9617 	/* Enable Auto-Hibernate if configured */
9618 	ufshcd_auto_hibern8_enable(hba);
9619 
9620 	ufshpb_resume(hba);
9621 	goto out;
9622 
9623 set_old_link_state:
9624 	ufshcd_link_state_transition(hba, old_link_state, 0);
9625 vendor_suspend:
9626 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9627 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9628 out:
9629 	if (ret)
9630 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9631 	hba->clk_gating.is_suspended = false;
9632 	ufshcd_release(hba);
9633 	hba->pm_op_in_progress = false;
9634 	return ret;
9635 }
9636 
9637 static int ufshcd_wl_runtime_suspend(struct device *dev)
9638 {
9639 	struct scsi_device *sdev = to_scsi_device(dev);
9640 	struct ufs_hba *hba;
9641 	int ret;
9642 	ktime_t start = ktime_get();
9643 
9644 	hba = shost_priv(sdev->host);
9645 
9646 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9647 	if (ret)
9648 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9649 
9650 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9651 		ktime_to_us(ktime_sub(ktime_get(), start)),
9652 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9653 
9654 	return ret;
9655 }
9656 
9657 static int ufshcd_wl_runtime_resume(struct device *dev)
9658 {
9659 	struct scsi_device *sdev = to_scsi_device(dev);
9660 	struct ufs_hba *hba;
9661 	int ret = 0;
9662 	ktime_t start = ktime_get();
9663 
9664 	hba = shost_priv(sdev->host);
9665 
9666 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9667 	if (ret)
9668 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9669 
9670 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9671 		ktime_to_us(ktime_sub(ktime_get(), start)),
9672 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9673 
9674 	return ret;
9675 }
9676 #endif
9677 
9678 #ifdef CONFIG_PM_SLEEP
9679 static int ufshcd_wl_suspend(struct device *dev)
9680 {
9681 	struct scsi_device *sdev = to_scsi_device(dev);
9682 	struct ufs_hba *hba;
9683 	int ret = 0;
9684 	ktime_t start = ktime_get();
9685 
9686 	hba = shost_priv(sdev->host);
9687 	down(&hba->host_sem);
9688 	hba->system_suspending = true;
9689 
9690 	if (pm_runtime_suspended(dev))
9691 		goto out;
9692 
9693 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9694 	if (ret) {
9695 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9696 		up(&hba->host_sem);
9697 	}
9698 
9699 out:
9700 	if (!ret)
9701 		hba->is_sys_suspended = true;
9702 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9703 		ktime_to_us(ktime_sub(ktime_get(), start)),
9704 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9705 
9706 	return ret;
9707 }
9708 
9709 static int ufshcd_wl_resume(struct device *dev)
9710 {
9711 	struct scsi_device *sdev = to_scsi_device(dev);
9712 	struct ufs_hba *hba;
9713 	int ret = 0;
9714 	ktime_t start = ktime_get();
9715 
9716 	hba = shost_priv(sdev->host);
9717 
9718 	if (pm_runtime_suspended(dev))
9719 		goto out;
9720 
9721 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9722 	if (ret)
9723 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9724 out:
9725 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9726 		ktime_to_us(ktime_sub(ktime_get(), start)),
9727 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9728 	if (!ret)
9729 		hba->is_sys_suspended = false;
9730 	hba->system_suspending = false;
9731 	up(&hba->host_sem);
9732 	return ret;
9733 }
9734 #endif
9735 
9736 static void ufshcd_wl_shutdown(struct device *dev)
9737 {
9738 	struct scsi_device *sdev = to_scsi_device(dev);
9739 	struct ufs_hba *hba;
9740 
9741 	hba = shost_priv(sdev->host);
9742 
9743 	down(&hba->host_sem);
9744 	hba->shutting_down = true;
9745 	up(&hba->host_sem);
9746 
9747 	/* Turn on everything while shutting down */
9748 	ufshcd_rpm_get_sync(hba);
9749 	scsi_device_quiesce(sdev);
9750 	shost_for_each_device(sdev, hba->host) {
9751 		if (sdev == hba->ufs_device_wlun)
9752 			continue;
9753 		scsi_device_quiesce(sdev);
9754 	}
9755 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9756 }
9757 
9758 /**
9759  * ufshcd_suspend - helper function for suspend operations
9760  * @hba: per adapter instance
9761  *
9762  * This function will put disable irqs, turn off clocks
9763  * and set vreg and hba-vreg in lpm mode.
9764  */
9765 static int ufshcd_suspend(struct ufs_hba *hba)
9766 {
9767 	int ret;
9768 
9769 	if (!hba->is_powered)
9770 		return 0;
9771 	/*
9772 	 * Disable the host irq as host controller as there won't be any
9773 	 * host controller transaction expected till resume.
9774 	 */
9775 	ufshcd_disable_irq(hba);
9776 	ret = ufshcd_setup_clocks(hba, false);
9777 	if (ret) {
9778 		ufshcd_enable_irq(hba);
9779 		return ret;
9780 	}
9781 	if (ufshcd_is_clkgating_allowed(hba)) {
9782 		hba->clk_gating.state = CLKS_OFF;
9783 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9784 					hba->clk_gating.state);
9785 	}
9786 
9787 	ufshcd_vreg_set_lpm(hba);
9788 	/* Put the host controller in low power mode if possible */
9789 	ufshcd_hba_vreg_set_lpm(hba);
9790 	return ret;
9791 }
9792 
9793 #ifdef CONFIG_PM
9794 /**
9795  * ufshcd_resume - helper function for resume operations
9796  * @hba: per adapter instance
9797  *
9798  * This function basically turns on the regulators, clocks and
9799  * irqs of the hba.
9800  *
9801  * Returns 0 for success and non-zero for failure
9802  */
9803 static int ufshcd_resume(struct ufs_hba *hba)
9804 {
9805 	int ret;
9806 
9807 	if (!hba->is_powered)
9808 		return 0;
9809 
9810 	ufshcd_hba_vreg_set_hpm(hba);
9811 	ret = ufshcd_vreg_set_hpm(hba);
9812 	if (ret)
9813 		goto out;
9814 
9815 	/* Make sure clocks are enabled before accessing controller */
9816 	ret = ufshcd_setup_clocks(hba, true);
9817 	if (ret)
9818 		goto disable_vreg;
9819 
9820 	/* enable the host irq as host controller would be active soon */
9821 	ufshcd_enable_irq(hba);
9822 
9823 	goto out;
9824 
9825 disable_vreg:
9826 	ufshcd_vreg_set_lpm(hba);
9827 out:
9828 	if (ret)
9829 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9830 	return ret;
9831 }
9832 #endif /* CONFIG_PM */
9833 
9834 #ifdef CONFIG_PM_SLEEP
9835 /**
9836  * ufshcd_system_suspend - system suspend callback
9837  * @dev: Device associated with the UFS controller.
9838  *
9839  * Executed before putting the system into a sleep state in which the contents
9840  * of main memory are preserved.
9841  *
9842  * Returns 0 for success and non-zero for failure
9843  */
9844 int ufshcd_system_suspend(struct device *dev)
9845 {
9846 	struct ufs_hba *hba = dev_get_drvdata(dev);
9847 	int ret = 0;
9848 	ktime_t start = ktime_get();
9849 
9850 	if (pm_runtime_suspended(hba->dev))
9851 		goto out;
9852 
9853 	ret = ufshcd_suspend(hba);
9854 out:
9855 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9856 		ktime_to_us(ktime_sub(ktime_get(), start)),
9857 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9858 	return ret;
9859 }
9860 EXPORT_SYMBOL(ufshcd_system_suspend);
9861 
9862 /**
9863  * ufshcd_system_resume - system resume callback
9864  * @dev: Device associated with the UFS controller.
9865  *
9866  * Executed after waking the system up from a sleep state in which the contents
9867  * of main memory were preserved.
9868  *
9869  * Returns 0 for success and non-zero for failure
9870  */
9871 int ufshcd_system_resume(struct device *dev)
9872 {
9873 	struct ufs_hba *hba = dev_get_drvdata(dev);
9874 	ktime_t start = ktime_get();
9875 	int ret = 0;
9876 
9877 	if (pm_runtime_suspended(hba->dev))
9878 		goto out;
9879 
9880 	ret = ufshcd_resume(hba);
9881 
9882 out:
9883 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9884 		ktime_to_us(ktime_sub(ktime_get(), start)),
9885 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9886 
9887 	return ret;
9888 }
9889 EXPORT_SYMBOL(ufshcd_system_resume);
9890 #endif /* CONFIG_PM_SLEEP */
9891 
9892 #ifdef CONFIG_PM
9893 /**
9894  * ufshcd_runtime_suspend - runtime suspend callback
9895  * @dev: Device associated with the UFS controller.
9896  *
9897  * Check the description of ufshcd_suspend() function for more details.
9898  *
9899  * Returns 0 for success and non-zero for failure
9900  */
9901 int ufshcd_runtime_suspend(struct device *dev)
9902 {
9903 	struct ufs_hba *hba = dev_get_drvdata(dev);
9904 	int ret;
9905 	ktime_t start = ktime_get();
9906 
9907 	ret = ufshcd_suspend(hba);
9908 
9909 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9910 		ktime_to_us(ktime_sub(ktime_get(), start)),
9911 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9912 	return ret;
9913 }
9914 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9915 
9916 /**
9917  * ufshcd_runtime_resume - runtime resume routine
9918  * @dev: Device associated with the UFS controller.
9919  *
9920  * This function basically brings controller
9921  * to active state. Following operations are done in this function:
9922  *
9923  * 1. Turn on all the controller related clocks
9924  * 2. Turn ON VCC rail
9925  */
9926 int ufshcd_runtime_resume(struct device *dev)
9927 {
9928 	struct ufs_hba *hba = dev_get_drvdata(dev);
9929 	int ret;
9930 	ktime_t start = ktime_get();
9931 
9932 	ret = ufshcd_resume(hba);
9933 
9934 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9935 		ktime_to_us(ktime_sub(ktime_get(), start)),
9936 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9937 	return ret;
9938 }
9939 EXPORT_SYMBOL(ufshcd_runtime_resume);
9940 #endif /* CONFIG_PM */
9941 
9942 /**
9943  * ufshcd_shutdown - shutdown routine
9944  * @hba: per adapter instance
9945  *
9946  * This function would turn off both UFS device and UFS hba
9947  * regulators. It would also disable clocks.
9948  *
9949  * Returns 0 always to allow force shutdown even in case of errors.
9950  */
9951 int ufshcd_shutdown(struct ufs_hba *hba)
9952 {
9953 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9954 		ufshcd_suspend(hba);
9955 
9956 	hba->is_powered = false;
9957 	/* allow force shutdown even in case of errors */
9958 	return 0;
9959 }
9960 EXPORT_SYMBOL(ufshcd_shutdown);
9961 
9962 /**
9963  * ufshcd_remove - de-allocate SCSI host and host memory space
9964  *		data structure memory
9965  * @hba: per adapter instance
9966  */
9967 void ufshcd_remove(struct ufs_hba *hba)
9968 {
9969 	if (hba->ufs_device_wlun)
9970 		ufshcd_rpm_get_sync(hba);
9971 	ufs_hwmon_remove(hba);
9972 	ufs_bsg_remove(hba);
9973 	ufshpb_remove(hba);
9974 	ufs_sysfs_remove_nodes(hba->dev);
9975 	blk_mq_destroy_queue(hba->tmf_queue);
9976 	blk_put_queue(hba->tmf_queue);
9977 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9978 	scsi_remove_host(hba->host);
9979 	/* disable interrupts */
9980 	ufshcd_disable_intr(hba, hba->intr_mask);
9981 	ufshcd_hba_stop(hba);
9982 	ufshcd_hba_exit(hba);
9983 }
9984 EXPORT_SYMBOL_GPL(ufshcd_remove);
9985 
9986 #ifdef CONFIG_PM_SLEEP
9987 int ufshcd_system_freeze(struct device *dev)
9988 {
9989 
9990 	return ufshcd_system_suspend(dev);
9991 
9992 }
9993 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
9994 
9995 int ufshcd_system_restore(struct device *dev)
9996 {
9997 
9998 	struct ufs_hba *hba = dev_get_drvdata(dev);
9999 	int ret;
10000 
10001 	ret = ufshcd_system_resume(dev);
10002 	if (ret)
10003 		return ret;
10004 
10005 	/* Configure UTRL and UTMRL base address registers */
10006 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10007 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10008 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10009 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10010 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10011 			REG_UTP_TASK_REQ_LIST_BASE_L);
10012 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10013 			REG_UTP_TASK_REQ_LIST_BASE_H);
10014 	/*
10015 	 * Make sure that UTRL and UTMRL base address registers
10016 	 * are updated with the latest queue addresses. Only after
10017 	 * updating these addresses, we can queue the new commands.
10018 	 */
10019 	mb();
10020 
10021 	/* Resuming from hibernate, assume that link was OFF */
10022 	ufshcd_set_link_off(hba);
10023 
10024 	return 0;
10025 
10026 }
10027 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10028 
10029 int ufshcd_system_thaw(struct device *dev)
10030 {
10031 	return ufshcd_system_resume(dev);
10032 }
10033 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10034 #endif /* CONFIG_PM_SLEEP  */
10035 
10036 /**
10037  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10038  * @hba: pointer to Host Bus Adapter (HBA)
10039  */
10040 void ufshcd_dealloc_host(struct ufs_hba *hba)
10041 {
10042 	scsi_host_put(hba->host);
10043 }
10044 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10045 
10046 /**
10047  * ufshcd_set_dma_mask - Set dma mask based on the controller
10048  *			 addressing capability
10049  * @hba: per adapter instance
10050  *
10051  * Returns 0 for success, non-zero for failure
10052  */
10053 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10054 {
10055 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10056 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10057 			return 0;
10058 	}
10059 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10060 }
10061 
10062 /**
10063  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10064  * @dev: pointer to device handle
10065  * @hba_handle: driver private handle
10066  * Returns 0 on success, non-zero value on failure
10067  */
10068 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10069 {
10070 	struct Scsi_Host *host;
10071 	struct ufs_hba *hba;
10072 	int err = 0;
10073 
10074 	if (!dev) {
10075 		dev_err(dev,
10076 		"Invalid memory reference for dev is NULL\n");
10077 		err = -ENODEV;
10078 		goto out_error;
10079 	}
10080 
10081 	host = scsi_host_alloc(&ufshcd_driver_template,
10082 				sizeof(struct ufs_hba));
10083 	if (!host) {
10084 		dev_err(dev, "scsi_host_alloc failed\n");
10085 		err = -ENOMEM;
10086 		goto out_error;
10087 	}
10088 	host->nr_maps = HCTX_TYPE_POLL + 1;
10089 	hba = shost_priv(host);
10090 	hba->host = host;
10091 	hba->dev = dev;
10092 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10093 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10094 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10095 	INIT_LIST_HEAD(&hba->clk_list_head);
10096 	spin_lock_init(&hba->outstanding_lock);
10097 
10098 	*hba_handle = hba;
10099 
10100 out_error:
10101 	return err;
10102 }
10103 EXPORT_SYMBOL(ufshcd_alloc_host);
10104 
10105 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10106 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10107 				     const struct blk_mq_queue_data *qd)
10108 {
10109 	WARN_ON_ONCE(true);
10110 	return BLK_STS_NOTSUPP;
10111 }
10112 
10113 static const struct blk_mq_ops ufshcd_tmf_ops = {
10114 	.queue_rq = ufshcd_queue_tmf,
10115 };
10116 
10117 /**
10118  * ufshcd_init - Driver initialization routine
10119  * @hba: per-adapter instance
10120  * @mmio_base: base register address
10121  * @irq: Interrupt line of device
10122  * Returns 0 on success, non-zero value on failure
10123  */
10124 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10125 {
10126 	int err;
10127 	struct Scsi_Host *host = hba->host;
10128 	struct device *dev = hba->dev;
10129 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10130 
10131 	/*
10132 	 * dev_set_drvdata() must be called before any callbacks are registered
10133 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10134 	 * sysfs).
10135 	 */
10136 	dev_set_drvdata(dev, hba);
10137 
10138 	if (!mmio_base) {
10139 		dev_err(hba->dev,
10140 		"Invalid memory reference for mmio_base is NULL\n");
10141 		err = -ENODEV;
10142 		goto out_error;
10143 	}
10144 
10145 	hba->mmio_base = mmio_base;
10146 	hba->irq = irq;
10147 	hba->vps = &ufs_hba_vps;
10148 
10149 	err = ufshcd_hba_init(hba);
10150 	if (err)
10151 		goto out_error;
10152 
10153 	/* Read capabilities registers */
10154 	err = ufshcd_hba_capabilities(hba);
10155 	if (err)
10156 		goto out_disable;
10157 
10158 	/* Get UFS version supported by the controller */
10159 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10160 
10161 	/* Get Interrupt bit mask per version */
10162 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10163 
10164 	err = ufshcd_set_dma_mask(hba);
10165 	if (err) {
10166 		dev_err(hba->dev, "set dma mask failed\n");
10167 		goto out_disable;
10168 	}
10169 
10170 	/* Allocate memory for host memory space */
10171 	err = ufshcd_memory_alloc(hba);
10172 	if (err) {
10173 		dev_err(hba->dev, "Memory allocation failed\n");
10174 		goto out_disable;
10175 	}
10176 
10177 	/* Configure LRB */
10178 	ufshcd_host_memory_configure(hba);
10179 
10180 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10181 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10182 	host->max_id = UFSHCD_MAX_ID;
10183 	host->max_lun = UFS_MAX_LUNS;
10184 	host->max_channel = UFSHCD_MAX_CHANNEL;
10185 	host->unique_id = host->host_no;
10186 	host->max_cmd_len = UFS_CDB_SIZE;
10187 
10188 	hba->max_pwr_info.is_valid = false;
10189 
10190 	/* Initialize work queues */
10191 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10192 		 hba->host->host_no);
10193 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10194 	if (!hba->eh_wq) {
10195 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10196 			__func__);
10197 		err = -ENOMEM;
10198 		goto out_disable;
10199 	}
10200 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10201 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10202 
10203 	sema_init(&hba->host_sem, 1);
10204 
10205 	/* Initialize UIC command mutex */
10206 	mutex_init(&hba->uic_cmd_mutex);
10207 
10208 	/* Initialize mutex for device management commands */
10209 	mutex_init(&hba->dev_cmd.lock);
10210 
10211 	/* Initialize mutex for exception event control */
10212 	mutex_init(&hba->ee_ctrl_mutex);
10213 
10214 	mutex_init(&hba->wb_mutex);
10215 	init_rwsem(&hba->clk_scaling_lock);
10216 
10217 	ufshcd_init_clk_gating(hba);
10218 
10219 	ufshcd_init_clk_scaling(hba);
10220 
10221 	/*
10222 	 * In order to avoid any spurious interrupt immediately after
10223 	 * registering UFS controller interrupt handler, clear any pending UFS
10224 	 * interrupt status and disable all the UFS interrupts.
10225 	 */
10226 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10227 		      REG_INTERRUPT_STATUS);
10228 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10229 	/*
10230 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10231 	 * status is cleared before registering UFS interrupt handler.
10232 	 */
10233 	mb();
10234 
10235 	/* IRQ registration */
10236 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10237 	if (err) {
10238 		dev_err(hba->dev, "request irq failed\n");
10239 		goto out_disable;
10240 	} else {
10241 		hba->is_irq_enabled = true;
10242 	}
10243 
10244 	if (!is_mcq_supported(hba)) {
10245 		err = scsi_add_host(host, hba->dev);
10246 		if (err) {
10247 			dev_err(hba->dev, "scsi_add_host failed\n");
10248 			goto out_disable;
10249 		}
10250 	}
10251 
10252 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10253 		.nr_hw_queues	= 1,
10254 		.queue_depth	= hba->nutmrs,
10255 		.ops		= &ufshcd_tmf_ops,
10256 		.flags		= BLK_MQ_F_NO_SCHED,
10257 	};
10258 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10259 	if (err < 0)
10260 		goto out_remove_scsi_host;
10261 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10262 	if (IS_ERR(hba->tmf_queue)) {
10263 		err = PTR_ERR(hba->tmf_queue);
10264 		goto free_tmf_tag_set;
10265 	}
10266 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10267 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10268 	if (!hba->tmf_rqs) {
10269 		err = -ENOMEM;
10270 		goto free_tmf_queue;
10271 	}
10272 
10273 	/* Reset the attached device */
10274 	ufshcd_device_reset(hba);
10275 
10276 	ufshcd_init_crypto(hba);
10277 
10278 	/* Host controller enable */
10279 	err = ufshcd_hba_enable(hba);
10280 	if (err) {
10281 		dev_err(hba->dev, "Host controller enable failed\n");
10282 		ufshcd_print_evt_hist(hba);
10283 		ufshcd_print_host_state(hba);
10284 		goto free_tmf_queue;
10285 	}
10286 
10287 	/*
10288 	 * Set the default power management level for runtime and system PM.
10289 	 * Default power saving mode is to keep UFS link in Hibern8 state
10290 	 * and UFS device in sleep state.
10291 	 */
10292 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10293 						UFS_SLEEP_PWR_MODE,
10294 						UIC_LINK_HIBERN8_STATE);
10295 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10296 						UFS_SLEEP_PWR_MODE,
10297 						UIC_LINK_HIBERN8_STATE);
10298 
10299 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10300 			  ufshcd_rpm_dev_flush_recheck_work);
10301 
10302 	/* Set the default auto-hiberate idle timer value to 150 ms */
10303 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10304 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10305 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10306 	}
10307 
10308 	/* Hold auto suspend until async scan completes */
10309 	pm_runtime_get_sync(dev);
10310 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10311 	/*
10312 	 * We are assuming that device wasn't put in sleep/power-down
10313 	 * state exclusively during the boot stage before kernel.
10314 	 * This assumption helps avoid doing link startup twice during
10315 	 * ufshcd_probe_hba().
10316 	 */
10317 	ufshcd_set_ufs_dev_active(hba);
10318 
10319 	/* Initialize devfreq */
10320 	if (ufshcd_is_clkscaling_supported(hba)) {
10321 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
10322 			&hba->pwr_info,
10323 			sizeof(struct ufs_pa_layer_attr));
10324 		hba->clk_scaling.saved_pwr_info.is_valid = true;
10325 		hba->clk_scaling.is_allowed = true;
10326 
10327 		err = ufshcd_devfreq_init(hba);
10328 		if (err)
10329 			goto rpm_put_sync;
10330 
10331 		hba->clk_scaling.is_enabled = true;
10332 		ufshcd_init_clk_scaling_sysfs(hba);
10333 	}
10334 
10335 	async_schedule(ufshcd_async_scan, hba);
10336 	ufs_sysfs_add_nodes(hba->dev);
10337 
10338 	device_enable_async_suspend(dev);
10339 	return 0;
10340 
10341 rpm_put_sync:
10342 	pm_runtime_put_sync(dev);
10343 free_tmf_queue:
10344 	blk_mq_destroy_queue(hba->tmf_queue);
10345 	blk_put_queue(hba->tmf_queue);
10346 free_tmf_tag_set:
10347 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10348 out_remove_scsi_host:
10349 	scsi_remove_host(hba->host);
10350 out_disable:
10351 	hba->is_irq_enabled = false;
10352 	ufshcd_hba_exit(hba);
10353 out_error:
10354 	return err;
10355 }
10356 EXPORT_SYMBOL_GPL(ufshcd_init);
10357 
10358 void ufshcd_resume_complete(struct device *dev)
10359 {
10360 	struct ufs_hba *hba = dev_get_drvdata(dev);
10361 
10362 	if (hba->complete_put) {
10363 		ufshcd_rpm_put(hba);
10364 		hba->complete_put = false;
10365 	}
10366 }
10367 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10368 
10369 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10370 {
10371 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10372 	enum ufs_dev_pwr_mode dev_pwr_mode;
10373 	enum uic_link_state link_state;
10374 	unsigned long flags;
10375 	bool res;
10376 
10377 	spin_lock_irqsave(&dev->power.lock, flags);
10378 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10379 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10380 	res = pm_runtime_suspended(dev) &&
10381 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10382 	      hba->uic_link_state == link_state &&
10383 	      !hba->dev_info.b_rpm_dev_flush_capable;
10384 	spin_unlock_irqrestore(&dev->power.lock, flags);
10385 
10386 	return res;
10387 }
10388 
10389 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10390 {
10391 	struct ufs_hba *hba = dev_get_drvdata(dev);
10392 	int ret;
10393 
10394 	/*
10395 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10396 	 * are same. And it doesn't wake up the device for system-suspend
10397 	 * if it's runtime suspended. But ufs doesn't follow that.
10398 	 * Refer ufshcd_resume_complete()
10399 	 */
10400 	if (hba->ufs_device_wlun) {
10401 		/* Prevent runtime suspend */
10402 		ufshcd_rpm_get_noresume(hba);
10403 		/*
10404 		 * Check if already runtime suspended in same state as system
10405 		 * suspend would be.
10406 		 */
10407 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10408 			/* RPM state is not ok for SPM, so runtime resume */
10409 			ret = ufshcd_rpm_resume(hba);
10410 			if (ret < 0 && ret != -EACCES) {
10411 				ufshcd_rpm_put(hba);
10412 				return ret;
10413 			}
10414 		}
10415 		hba->complete_put = true;
10416 	}
10417 	return 0;
10418 }
10419 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10420 
10421 int ufshcd_suspend_prepare(struct device *dev)
10422 {
10423 	return __ufshcd_suspend_prepare(dev, true);
10424 }
10425 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10426 
10427 #ifdef CONFIG_PM_SLEEP
10428 static int ufshcd_wl_poweroff(struct device *dev)
10429 {
10430 	struct scsi_device *sdev = to_scsi_device(dev);
10431 	struct ufs_hba *hba = shost_priv(sdev->host);
10432 
10433 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10434 	return 0;
10435 }
10436 #endif
10437 
10438 static int ufshcd_wl_probe(struct device *dev)
10439 {
10440 	struct scsi_device *sdev = to_scsi_device(dev);
10441 
10442 	if (!is_device_wlun(sdev))
10443 		return -ENODEV;
10444 
10445 	blk_pm_runtime_init(sdev->request_queue, dev);
10446 	pm_runtime_set_autosuspend_delay(dev, 0);
10447 	pm_runtime_allow(dev);
10448 
10449 	return  0;
10450 }
10451 
10452 static int ufshcd_wl_remove(struct device *dev)
10453 {
10454 	pm_runtime_forbid(dev);
10455 	return 0;
10456 }
10457 
10458 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10459 #ifdef CONFIG_PM_SLEEP
10460 	.suspend = ufshcd_wl_suspend,
10461 	.resume = ufshcd_wl_resume,
10462 	.freeze = ufshcd_wl_suspend,
10463 	.thaw = ufshcd_wl_resume,
10464 	.poweroff = ufshcd_wl_poweroff,
10465 	.restore = ufshcd_wl_resume,
10466 #endif
10467 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10468 };
10469 
10470 /*
10471  * ufs_dev_wlun_template - describes ufs device wlun
10472  * ufs-device wlun - used to send pm commands
10473  * All luns are consumers of ufs-device wlun.
10474  *
10475  * Currently, no sd driver is present for wluns.
10476  * Hence the no specific pm operations are performed.
10477  * With ufs design, SSU should be sent to ufs-device wlun.
10478  * Hence register a scsi driver for ufs wluns only.
10479  */
10480 static struct scsi_driver ufs_dev_wlun_template = {
10481 	.gendrv = {
10482 		.name = "ufs_device_wlun",
10483 		.owner = THIS_MODULE,
10484 		.probe = ufshcd_wl_probe,
10485 		.remove = ufshcd_wl_remove,
10486 		.pm = &ufshcd_wl_pm_ops,
10487 		.shutdown = ufshcd_wl_shutdown,
10488 	},
10489 };
10490 
10491 static int __init ufshcd_core_init(void)
10492 {
10493 	int ret;
10494 
10495 	ufs_debugfs_init();
10496 
10497 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10498 	if (ret)
10499 		ufs_debugfs_exit();
10500 	return ret;
10501 }
10502 
10503 static void __exit ufshcd_core_exit(void)
10504 {
10505 	ufs_debugfs_exit();
10506 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10507 }
10508 
10509 module_init(ufshcd_core_init);
10510 module_exit(ufshcd_core_exit);
10511 
10512 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10513 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10514 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10515 MODULE_LICENSE("GPL");
10516