1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/sched/clock.h> 25 #include <linux/iopoll.h> 26 #include <scsi/scsi_cmnd.h> 27 #include <scsi/scsi_dbg.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include "ufshcd-priv.h" 31 #include <ufs/ufs_quirks.h> 32 #include <ufs/unipro.h> 33 #include "ufs-sysfs.h" 34 #include "ufs-debugfs.h" 35 #include "ufs-fault-injection.h" 36 #include "ufs_bsg.h" 37 #include "ufshcd-crypto.h" 38 #include <asm/unaligned.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/ufs.h> 42 43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 44 UTP_TASK_REQ_COMPL |\ 45 UFSHCD_ERROR_MASK) 46 47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 48 UFSHCD_ERROR_MASK |\ 49 MCQ_CQ_EVENT_STATUS) 50 51 52 /* UIC command timeout, unit: ms */ 53 #define UIC_CMD_TIMEOUT 500 54 55 /* NOP OUT retries waiting for NOP IN response */ 56 #define NOP_OUT_RETRIES 10 57 /* Timeout after 50 msecs if NOP OUT hangs without response */ 58 #define NOP_OUT_TIMEOUT 50 /* msecs */ 59 60 /* Query request retries */ 61 #define QUERY_REQ_RETRIES 3 62 /* Query request timeout */ 63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 64 65 /* Advanced RPMB request timeout */ 66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 67 68 /* Task management command timeout */ 69 #define TM_CMD_TIMEOUT 100 /* msecs */ 70 71 /* maximum number of retries for a general UIC command */ 72 #define UFS_UIC_COMMAND_RETRIES 3 73 74 /* maximum number of link-startup retries */ 75 #define DME_LINKSTARTUP_RETRIES 3 76 77 /* maximum number of reset retries before giving up */ 78 #define MAX_HOST_RESET_RETRIES 5 79 80 /* Maximum number of error handler retries before giving up */ 81 #define MAX_ERR_HANDLER_RETRIES 5 82 83 /* Expose the flag value from utp_upiu_query.value */ 84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 85 86 /* Interrupt aggregation default timeout, unit: 40us */ 87 #define INT_AGGR_DEF_TO 0x02 88 89 /* default delay of autosuspend: 2000 ms */ 90 #define RPM_AUTOSUSPEND_DELAY_MS 2000 91 92 /* Default delay of RPM device flush delayed work */ 93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 94 95 /* Default value of wait time before gating device ref clock */ 96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 97 98 /* Polling time to wait for fDeviceInit */ 99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 100 101 /* UFSHC 4.0 compliant HC support this mode. */ 102 static bool use_mcq_mode = true; 103 104 static bool is_mcq_supported(struct ufs_hba *hba) 105 { 106 return hba->mcq_sup && use_mcq_mode; 107 } 108 109 module_param(use_mcq_mode, bool, 0644); 110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 111 112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 113 ({ \ 114 int _ret; \ 115 if (_on) \ 116 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 117 else \ 118 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 119 _ret; \ 120 }) 121 122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 123 size_t __len = (len); \ 124 print_hex_dump(KERN_ERR, prefix_str, \ 125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 126 16, 4, buf, __len, false); \ 127 } while (0) 128 129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 130 const char *prefix) 131 { 132 u32 *regs; 133 size_t pos; 134 135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 136 return -EINVAL; 137 138 regs = kzalloc(len, GFP_ATOMIC); 139 if (!regs) 140 return -ENOMEM; 141 142 for (pos = 0; pos < len; pos += 4) { 143 if (offset == 0 && 144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 145 pos <= REG_UIC_ERROR_CODE_DME) 146 continue; 147 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 148 } 149 150 ufshcd_hex_dump(prefix, regs, len); 151 kfree(regs); 152 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 156 157 enum { 158 UFSHCD_MAX_CHANNEL = 0, 159 UFSHCD_MAX_ID = 1, 160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, 161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, 162 }; 163 164 static const char *const ufshcd_state_name[] = { 165 [UFSHCD_STATE_RESET] = "reset", 166 [UFSHCD_STATE_OPERATIONAL] = "operational", 167 [UFSHCD_STATE_ERROR] = "error", 168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 170 }; 171 172 /* UFSHCD error handling flags */ 173 enum { 174 UFSHCD_EH_IN_PROGRESS = (1 << 0), 175 }; 176 177 /* UFSHCD UIC layer error flags */ 178 enum { 179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 186 }; 187 188 #define ufshcd_set_eh_in_progress(h) \ 189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 190 #define ufshcd_eh_in_progress(h) \ 191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 192 #define ufshcd_clear_eh_in_progress(h) \ 193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 194 195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 202 /* 203 * For DeepSleep, the link is first put in hibern8 and then off. 204 * Leaving the link in hibern8 is not supported. 205 */ 206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 207 }; 208 209 static inline enum ufs_dev_pwr_mode 210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 211 { 212 return ufs_pm_lvl_states[lvl].dev_state; 213 } 214 215 static inline enum uic_link_state 216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 217 { 218 return ufs_pm_lvl_states[lvl].link_state; 219 } 220 221 static inline enum ufs_pm_level 222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 223 enum uic_link_state link_state) 224 { 225 enum ufs_pm_level lvl; 226 227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 229 (ufs_pm_lvl_states[lvl].link_state == link_state)) 230 return lvl; 231 } 232 233 /* if no match found, return the level 0 */ 234 return UFS_PM_LVL_0; 235 } 236 237 static const struct ufs_dev_quirk ufs_fixups[] = { 238 /* UFS cards deviations table */ 239 { .wmanufacturerid = UFS_VENDOR_MICRON, 240 .model = UFS_ANY_MODEL, 241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 243 .model = UFS_ANY_MODEL, 244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 248 .model = UFS_ANY_MODEL, 249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 251 .model = "hB8aL1" /*H28U62301AMR*/, 252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 254 .model = UFS_ANY_MODEL, 255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 257 .model = "THGLF2G9C8KBADG", 258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 260 .model = "THGLF2G9D8KBADG", 261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 262 {} 263 }; 264 265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 266 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 267 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 270 static void ufshcd_hba_exit(struct ufs_hba *hba); 271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 279 static irqreturn_t ufshcd_intr(int irq, void *__hba); 280 static int ufshcd_change_power_mode(struct ufs_hba *hba, 281 struct ufs_pa_layer_attr *pwr_mode); 282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 285 struct ufs_vreg *vreg); 286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 287 bool enable); 288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 290 291 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 292 { 293 if (!hba->is_irq_enabled) { 294 enable_irq(hba->irq); 295 hba->is_irq_enabled = true; 296 } 297 } 298 299 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 300 { 301 if (hba->is_irq_enabled) { 302 disable_irq(hba->irq); 303 hba->is_irq_enabled = false; 304 } 305 } 306 307 static void ufshcd_configure_wb(struct ufs_hba *hba) 308 { 309 if (!ufshcd_is_wb_allowed(hba)) 310 return; 311 312 ufshcd_wb_toggle(hba, true); 313 314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 315 316 if (ufshcd_is_wb_buf_flush_allowed(hba)) 317 ufshcd_wb_toggle_buf_flush(hba, true); 318 } 319 320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 321 { 322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 323 scsi_unblock_requests(hba->host); 324 } 325 326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 327 { 328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 329 scsi_block_requests(hba->host); 330 } 331 332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 333 enum ufs_trace_str_t str_t) 334 { 335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 336 struct utp_upiu_header *header; 337 338 if (!trace_ufshcd_upiu_enabled()) 339 return; 340 341 if (str_t == UFS_CMD_SEND) 342 header = &rq->header; 343 else 344 header = &hba->lrb[tag].ucd_rsp_ptr->header; 345 346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 347 UFS_TSF_CDB); 348 } 349 350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 351 enum ufs_trace_str_t str_t, 352 struct utp_upiu_req *rq_rsp) 353 { 354 if (!trace_ufshcd_upiu_enabled()) 355 return; 356 357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 358 &rq_rsp->qr, UFS_TSF_OSF); 359 } 360 361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 362 enum ufs_trace_str_t str_t) 363 { 364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 365 366 if (!trace_ufshcd_upiu_enabled()) 367 return; 368 369 if (str_t == UFS_TM_SEND) 370 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 371 &descp->upiu_req.req_header, 372 &descp->upiu_req.input_param1, 373 UFS_TSF_TM_INPUT); 374 else 375 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 376 &descp->upiu_rsp.rsp_header, 377 &descp->upiu_rsp.output_param1, 378 UFS_TSF_TM_OUTPUT); 379 } 380 381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 382 const struct uic_command *ucmd, 383 enum ufs_trace_str_t str_t) 384 { 385 u32 cmd; 386 387 if (!trace_ufshcd_uic_command_enabled()) 388 return; 389 390 if (str_t == UFS_CMD_SEND) 391 cmd = ucmd->command; 392 else 393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 394 395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 399 } 400 401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 402 enum ufs_trace_str_t str_t) 403 { 404 u64 lba = 0; 405 u8 opcode = 0, group_id = 0; 406 u32 doorbell = 0; 407 u32 intr; 408 int hwq_id = -1; 409 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 410 struct scsi_cmnd *cmd = lrbp->cmd; 411 struct request *rq = scsi_cmd_to_rq(cmd); 412 int transfer_len = -1; 413 414 if (!cmd) 415 return; 416 417 /* trace UPIU also */ 418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 419 if (!trace_ufshcd_command_enabled()) 420 return; 421 422 opcode = cmd->cmnd[0]; 423 424 if (opcode == READ_10 || opcode == WRITE_10) { 425 /* 426 * Currently we only fully trace read(10) and write(10) commands 427 */ 428 transfer_len = 429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 430 lba = scsi_get_lba(cmd); 431 if (opcode == WRITE_10) 432 group_id = lrbp->cmd->cmnd[6]; 433 } else if (opcode == UNMAP) { 434 /* 435 * The number of Bytes to be unmapped beginning with the lba. 436 */ 437 transfer_len = blk_rq_bytes(rq); 438 lba = scsi_get_lba(cmd); 439 } 440 441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 442 443 if (is_mcq_enabled(hba)) { 444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 445 446 hwq_id = hwq->id; 447 } else { 448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 449 } 450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag, 451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id); 452 } 453 454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 455 { 456 struct ufs_clk_info *clki; 457 struct list_head *head = &hba->clk_list_head; 458 459 if (list_empty(head)) 460 return; 461 462 list_for_each_entry(clki, head, list) { 463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 464 clki->max_freq) 465 dev_err(hba->dev, "clk: %s, rate: %u\n", 466 clki->name, clki->curr_freq); 467 } 468 } 469 470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 471 const char *err_name) 472 { 473 int i; 474 bool found = false; 475 const struct ufs_event_hist *e; 476 477 if (id >= UFS_EVT_CNT) 478 return; 479 480 e = &hba->ufs_stats.event[id]; 481 482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 484 485 if (e->tstamp[p] == 0) 486 continue; 487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 488 e->val[p], div_u64(e->tstamp[p], 1000)); 489 found = true; 490 } 491 492 if (!found) 493 dev_err(hba->dev, "No record of %s\n", err_name); 494 else 495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 496 } 497 498 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 499 { 500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 501 502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 508 "auto_hibern8_err"); 509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 511 "link_startup_fail"); 512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 514 "suspend_fail"); 515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 517 "wlun suspend_fail"); 518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 521 522 ufshcd_vops_dbg_register_dump(hba); 523 } 524 525 static 526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 527 { 528 const struct ufshcd_lrb *lrbp; 529 int prdt_length; 530 531 lrbp = &hba->lrb[tag]; 532 533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 537 dev_err(hba->dev, 538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 539 tag, (u64)lrbp->utrd_dma_addr); 540 541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 542 sizeof(struct utp_transfer_req_desc)); 543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 544 (u64)lrbp->ucd_req_dma_addr); 545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 546 sizeof(struct utp_upiu_req)); 547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 548 (u64)lrbp->ucd_rsp_dma_addr); 549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 550 sizeof(struct utp_upiu_rsp)); 551 552 prdt_length = le16_to_cpu( 553 lrbp->utr_descriptor_ptr->prd_table_length); 554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 555 prdt_length /= ufshcd_sg_entry_size(hba); 556 557 dev_err(hba->dev, 558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 559 tag, prdt_length, 560 (u64)lrbp->ucd_prdt_dma_addr); 561 562 if (pr_prdt) 563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 564 ufshcd_sg_entry_size(hba) * prdt_length); 565 } 566 567 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 568 { 569 struct scsi_device *sdev = req->q->queuedata; 570 struct Scsi_Host *shost = sdev->host; 571 struct ufs_hba *hba = shost_priv(shost); 572 573 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 574 575 return true; 576 } 577 578 /** 579 * ufshcd_print_trs_all - print trs for all started requests. 580 * @hba: per-adapter instance. 581 * @pr_prdt: need to print prdt or not. 582 */ 583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 584 { 585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 586 } 587 588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 589 { 590 int tag; 591 592 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 594 595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 597 } 598 } 599 600 static void ufshcd_print_host_state(struct ufs_hba *hba) 601 { 602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 603 604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 606 hba->outstanding_reqs, hba->outstanding_tasks); 607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 608 hba->saved_err, hba->saved_uic_err); 609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 610 hba->curr_dev_pwr_mode, hba->uic_link_state); 611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 612 hba->pm_op_in_progress, hba->is_sys_suspended); 613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 614 hba->auto_bkops_enabled, hba->host->host_self_blocked); 615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 616 dev_err(hba->dev, 617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 619 hba->ufs_stats.hibern8_exit_cnt); 620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 621 div_u64(hba->ufs_stats.last_intr_ts, 1000), 622 hba->ufs_stats.last_intr_status); 623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 624 hba->eh_flags, hba->req_abort_count); 625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 626 hba->ufs_version, hba->capabilities, hba->caps); 627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 628 hba->dev_quirks); 629 if (sdev_ufs) 630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 632 633 ufshcd_print_clk_freqs(hba); 634 } 635 636 /** 637 * ufshcd_print_pwr_info - print power params as saved in hba 638 * power info 639 * @hba: per-adapter instance 640 */ 641 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 642 { 643 static const char * const names[] = { 644 "INVALID MODE", 645 "FAST MODE", 646 "SLOW_MODE", 647 "INVALID MODE", 648 "FASTAUTO_MODE", 649 "SLOWAUTO_MODE", 650 "INVALID MODE", 651 }; 652 653 /* 654 * Using dev_dbg to avoid messages during runtime PM to avoid 655 * never-ending cycles of messages written back to storage by user space 656 * causing runtime resume, causing more messages and so on. 657 */ 658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 659 __func__, 660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 662 names[hba->pwr_info.pwr_rx], 663 names[hba->pwr_info.pwr_tx], 664 hba->pwr_info.hs_rate); 665 } 666 667 static void ufshcd_device_reset(struct ufs_hba *hba) 668 { 669 int err; 670 671 err = ufshcd_vops_device_reset(hba); 672 673 if (!err) { 674 ufshcd_set_ufs_dev_active(hba); 675 if (ufshcd_is_wb_allowed(hba)) { 676 hba->dev_info.wb_enabled = false; 677 hba->dev_info.wb_buf_flush_enabled = false; 678 } 679 } 680 if (err != -EOPNOTSUPP) 681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 682 } 683 684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 685 { 686 if (!us) 687 return; 688 689 if (us < 10) 690 udelay(us); 691 else 692 usleep_range(us, us + tolerance); 693 } 694 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 695 696 /** 697 * ufshcd_wait_for_register - wait for register value to change 698 * @hba: per-adapter interface 699 * @reg: mmio register offset 700 * @mask: mask to apply to the read register value 701 * @val: value to wait for 702 * @interval_us: polling interval in microseconds 703 * @timeout_ms: timeout in milliseconds 704 * 705 * Return: -ETIMEDOUT on error, zero on success. 706 */ 707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 708 u32 val, unsigned long interval_us, 709 unsigned long timeout_ms) 710 { 711 int err = 0; 712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 713 714 /* ignore bits that we don't intend to wait on */ 715 val = val & mask; 716 717 while ((ufshcd_readl(hba, reg) & mask) != val) { 718 usleep_range(interval_us, interval_us + 50); 719 if (time_after(jiffies, timeout)) { 720 if ((ufshcd_readl(hba, reg) & mask) != val) 721 err = -ETIMEDOUT; 722 break; 723 } 724 } 725 726 return err; 727 } 728 729 /** 730 * ufshcd_get_intr_mask - Get the interrupt bit mask 731 * @hba: Pointer to adapter instance 732 * 733 * Return: interrupt bit mask per version 734 */ 735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 736 { 737 if (hba->ufs_version == ufshci_version(1, 0)) 738 return INTERRUPT_MASK_ALL_VER_10; 739 if (hba->ufs_version <= ufshci_version(2, 0)) 740 return INTERRUPT_MASK_ALL_VER_11; 741 742 return INTERRUPT_MASK_ALL_VER_21; 743 } 744 745 /** 746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 747 * @hba: Pointer to adapter instance 748 * 749 * Return: UFSHCI version supported by the controller 750 */ 751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 752 { 753 u32 ufshci_ver; 754 755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 757 else 758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 759 760 /* 761 * UFSHCI v1.x uses a different version scheme, in order 762 * to allow the use of comparisons with the ufshci_version 763 * function, we convert it to the same scheme as ufs 2.0+. 764 */ 765 if (ufshci_ver & 0x00010000) 766 return ufshci_version(1, ufshci_ver & 0x00000100); 767 768 return ufshci_ver; 769 } 770 771 /** 772 * ufshcd_is_device_present - Check if any device connected to 773 * the host controller 774 * @hba: pointer to adapter instance 775 * 776 * Return: true if device present, false if no device detected 777 */ 778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 779 { 780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 781 } 782 783 /** 784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 785 * @lrbp: pointer to local command reference block 786 * @cqe: pointer to the completion queue entry 787 * 788 * This function is used to get the OCS field from UTRD 789 * 790 * Return: the OCS field in the UTRD. 791 */ 792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 793 struct cq_entry *cqe) 794 { 795 if (cqe) 796 return le32_to_cpu(cqe->status) & MASK_OCS; 797 798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 799 } 800 801 /** 802 * ufshcd_utrl_clear() - Clear requests from the controller request list. 803 * @hba: per adapter instance 804 * @mask: mask with one bit set for each request to be cleared 805 */ 806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 807 { 808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 809 mask = ~mask; 810 /* 811 * From the UFSHCI specification: "UTP Transfer Request List CLear 812 * Register (UTRLCLR): This field is bit significant. Each bit 813 * corresponds to a slot in the UTP Transfer Request List, where bit 0 814 * corresponds to request slot 0. A bit in this field is set to ‘0’ 815 * by host software to indicate to the host controller that a transfer 816 * request slot is cleared. The host controller 817 * shall free up any resources associated to the request slot 818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 819 * host software indicates no change to request slots by setting the 820 * associated bits in this field to ‘1’. Bits in this field shall only 821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 822 */ 823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 824 } 825 826 /** 827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 828 * @hba: per adapter instance 829 * @pos: position of the bit to be cleared 830 */ 831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 832 { 833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 835 else 836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 837 } 838 839 /** 840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 841 * @reg: Register value of host controller status 842 * 843 * Return: 0 on success; a positive value if failed. 844 */ 845 static inline int ufshcd_get_lists_status(u32 reg) 846 { 847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 848 } 849 850 /** 851 * ufshcd_get_uic_cmd_result - Get the UIC command result 852 * @hba: Pointer to adapter instance 853 * 854 * This function gets the result of UIC command completion 855 * 856 * Return: 0 on success; non-zero value on error. 857 */ 858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 859 { 860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 861 MASK_UIC_COMMAND_RESULT; 862 } 863 864 /** 865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 866 * @hba: Pointer to adapter instance 867 * 868 * This function gets UIC command argument3 869 * 870 * Return: 0 on success; non-zero value on error. 871 */ 872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 873 { 874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 875 } 876 877 /** 878 * ufshcd_get_req_rsp - returns the TR response transaction type 879 * @ucd_rsp_ptr: pointer to response UPIU 880 * 881 * Return: UPIU type. 882 */ 883 static inline enum upiu_response_transaction 884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 885 { 886 return ucd_rsp_ptr->header.transaction_code; 887 } 888 889 /** 890 * ufshcd_is_exception_event - Check if the device raised an exception event 891 * @ucd_rsp_ptr: pointer to response UPIU 892 * 893 * The function checks if the device raised an exception event indicated in 894 * the Device Information field of response UPIU. 895 * 896 * Return: true if exception is raised, false otherwise. 897 */ 898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 899 { 900 return ucd_rsp_ptr->header.device_information & 1; 901 } 902 903 /** 904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 905 * @hba: per adapter instance 906 */ 907 static inline void 908 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 909 { 910 ufshcd_writel(hba, INT_AGGR_ENABLE | 911 INT_AGGR_COUNTER_AND_TIMER_RESET, 912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 913 } 914 915 /** 916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 917 * @hba: per adapter instance 918 * @cnt: Interrupt aggregation counter threshold 919 * @tmout: Interrupt aggregation timeout value 920 */ 921 static inline void 922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 923 { 924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 925 INT_AGGR_COUNTER_THLD_VAL(cnt) | 926 INT_AGGR_TIMEOUT_VAL(tmout), 927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 928 } 929 930 /** 931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 932 * @hba: per adapter instance 933 */ 934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 935 { 936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 937 } 938 939 /** 940 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 941 * When run-stop registers are set to 1, it indicates the 942 * host controller that it can process the requests 943 * @hba: per adapter instance 944 */ 945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 946 { 947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 948 REG_UTP_TASK_REQ_LIST_RUN_STOP); 949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 951 } 952 953 /** 954 * ufshcd_hba_start - Start controller initialization sequence 955 * @hba: per adapter instance 956 */ 957 static inline void ufshcd_hba_start(struct ufs_hba *hba) 958 { 959 u32 val = CONTROLLER_ENABLE; 960 961 if (ufshcd_crypto_enable(hba)) 962 val |= CRYPTO_GENERAL_ENABLE; 963 964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 965 } 966 967 /** 968 * ufshcd_is_hba_active - Get controller state 969 * @hba: per adapter instance 970 * 971 * Return: true if and only if the controller is active. 972 */ 973 bool ufshcd_is_hba_active(struct ufs_hba *hba) 974 { 975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 976 } 977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 978 979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 980 { 981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 982 if (hba->ufs_version <= ufshci_version(1, 1)) 983 return UFS_UNIPRO_VER_1_41; 984 else 985 return UFS_UNIPRO_VER_1_6; 986 } 987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 988 989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 990 { 991 /* 992 * If both host and device support UniPro ver1.6 or later, PA layer 993 * parameters tuning happens during link startup itself. 994 * 995 * We can manually tune PA layer parameters if either host or device 996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 997 * logic simple, we will only do manual tuning if local unipro version 998 * doesn't support ver1.6 or later. 999 */ 1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; 1001 } 1002 1003 /** 1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1005 * @hba: per adapter instance 1006 * @scale_up: If True, set max possible frequency othewise set low frequency 1007 * 1008 * Return: 0 if successful; < 0 upon failure. 1009 */ 1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1011 { 1012 int ret = 0; 1013 struct ufs_clk_info *clki; 1014 struct list_head *head = &hba->clk_list_head; 1015 1016 if (list_empty(head)) 1017 goto out; 1018 1019 list_for_each_entry(clki, head, list) { 1020 if (!IS_ERR_OR_NULL(clki->clk)) { 1021 if (scale_up && clki->max_freq) { 1022 if (clki->curr_freq == clki->max_freq) 1023 continue; 1024 1025 ret = clk_set_rate(clki->clk, clki->max_freq); 1026 if (ret) { 1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1028 __func__, clki->name, 1029 clki->max_freq, ret); 1030 break; 1031 } 1032 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1033 "scaled up", clki->name, 1034 clki->curr_freq, 1035 clki->max_freq); 1036 1037 clki->curr_freq = clki->max_freq; 1038 1039 } else if (!scale_up && clki->min_freq) { 1040 if (clki->curr_freq == clki->min_freq) 1041 continue; 1042 1043 ret = clk_set_rate(clki->clk, clki->min_freq); 1044 if (ret) { 1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1046 __func__, clki->name, 1047 clki->min_freq, ret); 1048 break; 1049 } 1050 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1051 "scaled down", clki->name, 1052 clki->curr_freq, 1053 clki->min_freq); 1054 clki->curr_freq = clki->min_freq; 1055 } 1056 } 1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1058 clki->name, clk_get_rate(clki->clk)); 1059 } 1060 1061 out: 1062 return ret; 1063 } 1064 1065 /** 1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1067 * @hba: per adapter instance 1068 * @scale_up: True if scaling up and false if scaling down 1069 * 1070 * Return: 0 if successful; < 0 upon failure. 1071 */ 1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 1073 { 1074 int ret = 0; 1075 ktime_t start = ktime_get(); 1076 1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1078 if (ret) 1079 goto out; 1080 1081 ret = ufshcd_set_clk_freq(hba, scale_up); 1082 if (ret) 1083 goto out; 1084 1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1086 if (ret) 1087 ufshcd_set_clk_freq(hba, !scale_up); 1088 1089 out: 1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1091 (scale_up ? "up" : "down"), 1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1093 return ret; 1094 } 1095 1096 /** 1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1098 * @hba: per adapter instance 1099 * @scale_up: True if scaling up and false if scaling down 1100 * 1101 * Return: true if scaling is required, false otherwise. 1102 */ 1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1104 bool scale_up) 1105 { 1106 struct ufs_clk_info *clki; 1107 struct list_head *head = &hba->clk_list_head; 1108 1109 if (list_empty(head)) 1110 return false; 1111 1112 list_for_each_entry(clki, head, list) { 1113 if (!IS_ERR_OR_NULL(clki->clk)) { 1114 if (scale_up && clki->max_freq) { 1115 if (clki->curr_freq == clki->max_freq) 1116 continue; 1117 return true; 1118 } else if (!scale_up && clki->min_freq) { 1119 if (clki->curr_freq == clki->min_freq) 1120 continue; 1121 return true; 1122 } 1123 } 1124 } 1125 1126 return false; 1127 } 1128 1129 /* 1130 * Determine the number of pending commands by counting the bits in the SCSI 1131 * device budget maps. This approach has been selected because a bit is set in 1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1133 * flag. The host_self_blocked flag can be modified by calling 1134 * scsi_block_requests() or scsi_unblock_requests(). 1135 */ 1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1137 { 1138 const struct scsi_device *sdev; 1139 u32 pending = 0; 1140 1141 lockdep_assert_held(hba->host->host_lock); 1142 __shost_for_each_device(sdev, hba->host) 1143 pending += sbitmap_weight(&sdev->budget_map); 1144 1145 return pending; 1146 } 1147 1148 /* 1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1150 * has expired. 1151 * 1152 * Return: 0 upon success; -EBUSY upon timeout. 1153 */ 1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1155 u64 wait_timeout_us) 1156 { 1157 unsigned long flags; 1158 int ret = 0; 1159 u32 tm_doorbell; 1160 u32 tr_pending; 1161 bool timeout = false, do_last_check = false; 1162 ktime_t start; 1163 1164 ufshcd_hold(hba); 1165 spin_lock_irqsave(hba->host->host_lock, flags); 1166 /* 1167 * Wait for all the outstanding tasks/transfer requests. 1168 * Verify by checking the doorbell registers are clear. 1169 */ 1170 start = ktime_get(); 1171 do { 1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1173 ret = -EBUSY; 1174 goto out; 1175 } 1176 1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1178 tr_pending = ufshcd_pending_cmds(hba); 1179 if (!tm_doorbell && !tr_pending) { 1180 timeout = false; 1181 break; 1182 } else if (do_last_check) { 1183 break; 1184 } 1185 1186 spin_unlock_irqrestore(hba->host->host_lock, flags); 1187 io_schedule_timeout(msecs_to_jiffies(20)); 1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1189 wait_timeout_us) { 1190 timeout = true; 1191 /* 1192 * We might have scheduled out for long time so make 1193 * sure to check if doorbells are cleared by this time 1194 * or not. 1195 */ 1196 do_last_check = true; 1197 } 1198 spin_lock_irqsave(hba->host->host_lock, flags); 1199 } while (tm_doorbell || tr_pending); 1200 1201 if (timeout) { 1202 dev_err(hba->dev, 1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1204 __func__, tm_doorbell, tr_pending); 1205 ret = -EBUSY; 1206 } 1207 out: 1208 spin_unlock_irqrestore(hba->host->host_lock, flags); 1209 ufshcd_release(hba); 1210 return ret; 1211 } 1212 1213 /** 1214 * ufshcd_scale_gear - scale up/down UFS gear 1215 * @hba: per adapter instance 1216 * @scale_up: True for scaling up gear and false for scaling down 1217 * 1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1219 * non-zero for any other errors. 1220 */ 1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1222 { 1223 int ret = 0; 1224 struct ufs_pa_layer_attr new_pwr_info; 1225 1226 if (scale_up) { 1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1228 sizeof(struct ufs_pa_layer_attr)); 1229 } else { 1230 memcpy(&new_pwr_info, &hba->pwr_info, 1231 sizeof(struct ufs_pa_layer_attr)); 1232 1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1235 /* save the current power mode */ 1236 memcpy(&hba->clk_scaling.saved_pwr_info, 1237 &hba->pwr_info, 1238 sizeof(struct ufs_pa_layer_attr)); 1239 1240 /* scale down gear */ 1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1243 } 1244 } 1245 1246 /* check if the power mode needs to be changed or not? */ 1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1248 if (ret) 1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1250 __func__, ret, 1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1259 * has expired. 1260 * 1261 * Return: 0 upon success; -EBUSY upon timeout. 1262 */ 1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1264 { 1265 int ret = 0; 1266 /* 1267 * make sure that there are no outstanding requests when 1268 * clock scaling is in progress 1269 */ 1270 ufshcd_scsi_block_requests(hba); 1271 mutex_lock(&hba->wb_mutex); 1272 down_write(&hba->clk_scaling_lock); 1273 1274 if (!hba->clk_scaling.is_allowed || 1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1276 ret = -EBUSY; 1277 up_write(&hba->clk_scaling_lock); 1278 mutex_unlock(&hba->wb_mutex); 1279 ufshcd_scsi_unblock_requests(hba); 1280 goto out; 1281 } 1282 1283 /* let's not get into low power until clock scaling is completed */ 1284 ufshcd_hold(hba); 1285 1286 out: 1287 return ret; 1288 } 1289 1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1291 { 1292 up_write(&hba->clk_scaling_lock); 1293 1294 /* Enable Write Booster if we have scaled up else disable it */ 1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1296 ufshcd_wb_toggle(hba, scale_up); 1297 1298 mutex_unlock(&hba->wb_mutex); 1299 1300 ufshcd_scsi_unblock_requests(hba); 1301 ufshcd_release(hba); 1302 } 1303 1304 /** 1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1306 * @hba: per adapter instance 1307 * @scale_up: True for scaling up and false for scalin down 1308 * 1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1310 * for any other errors. 1311 */ 1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1313 { 1314 int ret = 0; 1315 1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1317 if (ret) 1318 return ret; 1319 1320 /* scale down the gear before scaling down clocks */ 1321 if (!scale_up) { 1322 ret = ufshcd_scale_gear(hba, false); 1323 if (ret) 1324 goto out_unprepare; 1325 } 1326 1327 ret = ufshcd_scale_clks(hba, scale_up); 1328 if (ret) { 1329 if (!scale_up) 1330 ufshcd_scale_gear(hba, true); 1331 goto out_unprepare; 1332 } 1333 1334 /* scale up the gear after scaling up clocks */ 1335 if (scale_up) { 1336 ret = ufshcd_scale_gear(hba, true); 1337 if (ret) { 1338 ufshcd_scale_clks(hba, false); 1339 goto out_unprepare; 1340 } 1341 } 1342 1343 out_unprepare: 1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1345 return ret; 1346 } 1347 1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1349 { 1350 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1351 clk_scaling.suspend_work); 1352 unsigned long irq_flags; 1353 1354 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1357 return; 1358 } 1359 hba->clk_scaling.is_suspended = true; 1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1361 1362 __ufshcd_suspend_clkscaling(hba); 1363 } 1364 1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1366 { 1367 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1368 clk_scaling.resume_work); 1369 unsigned long irq_flags; 1370 1371 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1372 if (!hba->clk_scaling.is_suspended) { 1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1374 return; 1375 } 1376 hba->clk_scaling.is_suspended = false; 1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1378 1379 devfreq_resume_device(hba->devfreq); 1380 } 1381 1382 static int ufshcd_devfreq_target(struct device *dev, 1383 unsigned long *freq, u32 flags) 1384 { 1385 int ret = 0; 1386 struct ufs_hba *hba = dev_get_drvdata(dev); 1387 ktime_t start; 1388 bool scale_up, sched_clk_scaling_suspend_work = false; 1389 struct list_head *clk_list = &hba->clk_list_head; 1390 struct ufs_clk_info *clki; 1391 unsigned long irq_flags; 1392 1393 if (!ufshcd_is_clkscaling_supported(hba)) 1394 return -EINVAL; 1395 1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1397 /* Override with the closest supported frequency */ 1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1399 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1400 if (ufshcd_eh_in_progress(hba)) { 1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1402 return 0; 1403 } 1404 1405 if (!hba->clk_scaling.active_reqs) 1406 sched_clk_scaling_suspend_work = true; 1407 1408 if (list_empty(clk_list)) { 1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1410 goto out; 1411 } 1412 1413 /* Decide based on the rounded-off frequency and update */ 1414 scale_up = *freq == clki->max_freq; 1415 if (!scale_up) 1416 *freq = clki->min_freq; 1417 /* Update the frequency */ 1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1420 ret = 0; 1421 goto out; /* no state change required */ 1422 } 1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1424 1425 start = ktime_get(); 1426 ret = ufshcd_devfreq_scale(hba, scale_up); 1427 1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1429 (scale_up ? "up" : "down"), 1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1431 1432 out: 1433 if (sched_clk_scaling_suspend_work) 1434 queue_work(hba->clk_scaling.workq, 1435 &hba->clk_scaling.suspend_work); 1436 1437 return ret; 1438 } 1439 1440 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1441 struct devfreq_dev_status *stat) 1442 { 1443 struct ufs_hba *hba = dev_get_drvdata(dev); 1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1445 unsigned long flags; 1446 struct list_head *clk_list = &hba->clk_list_head; 1447 struct ufs_clk_info *clki; 1448 ktime_t curr_t; 1449 1450 if (!ufshcd_is_clkscaling_supported(hba)) 1451 return -EINVAL; 1452 1453 memset(stat, 0, sizeof(*stat)); 1454 1455 spin_lock_irqsave(hba->host->host_lock, flags); 1456 curr_t = ktime_get(); 1457 if (!scaling->window_start_t) 1458 goto start_window; 1459 1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1461 /* 1462 * If current frequency is 0, then the ondemand governor considers 1463 * there's no initial frequency set. And it always requests to set 1464 * to max. frequency. 1465 */ 1466 stat->current_frequency = clki->curr_freq; 1467 if (scaling->is_busy_started) 1468 scaling->tot_busy_t += ktime_us_delta(curr_t, 1469 scaling->busy_start_t); 1470 1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1472 stat->busy_time = scaling->tot_busy_t; 1473 start_window: 1474 scaling->window_start_t = curr_t; 1475 scaling->tot_busy_t = 0; 1476 1477 if (scaling->active_reqs) { 1478 scaling->busy_start_t = curr_t; 1479 scaling->is_busy_started = true; 1480 } else { 1481 scaling->busy_start_t = 0; 1482 scaling->is_busy_started = false; 1483 } 1484 spin_unlock_irqrestore(hba->host->host_lock, flags); 1485 return 0; 1486 } 1487 1488 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1489 { 1490 struct list_head *clk_list = &hba->clk_list_head; 1491 struct ufs_clk_info *clki; 1492 struct devfreq *devfreq; 1493 int ret; 1494 1495 /* Skip devfreq if we don't have any clocks in the list */ 1496 if (list_empty(clk_list)) 1497 return 0; 1498 1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1502 1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1504 &hba->vps->ondemand_data); 1505 devfreq = devfreq_add_device(hba->dev, 1506 &hba->vps->devfreq_profile, 1507 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1508 &hba->vps->ondemand_data); 1509 if (IS_ERR(devfreq)) { 1510 ret = PTR_ERR(devfreq); 1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1512 1513 dev_pm_opp_remove(hba->dev, clki->min_freq); 1514 dev_pm_opp_remove(hba->dev, clki->max_freq); 1515 return ret; 1516 } 1517 1518 hba->devfreq = devfreq; 1519 1520 return 0; 1521 } 1522 1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1524 { 1525 struct list_head *clk_list = &hba->clk_list_head; 1526 struct ufs_clk_info *clki; 1527 1528 if (!hba->devfreq) 1529 return; 1530 1531 devfreq_remove_device(hba->devfreq); 1532 hba->devfreq = NULL; 1533 1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1535 dev_pm_opp_remove(hba->dev, clki->min_freq); 1536 dev_pm_opp_remove(hba->dev, clki->max_freq); 1537 } 1538 1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1540 { 1541 unsigned long flags; 1542 1543 devfreq_suspend_device(hba->devfreq); 1544 spin_lock_irqsave(hba->host->host_lock, flags); 1545 hba->clk_scaling.window_start_t = 0; 1546 spin_unlock_irqrestore(hba->host->host_lock, flags); 1547 } 1548 1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1550 { 1551 unsigned long flags; 1552 bool suspend = false; 1553 1554 cancel_work_sync(&hba->clk_scaling.suspend_work); 1555 cancel_work_sync(&hba->clk_scaling.resume_work); 1556 1557 spin_lock_irqsave(hba->host->host_lock, flags); 1558 if (!hba->clk_scaling.is_suspended) { 1559 suspend = true; 1560 hba->clk_scaling.is_suspended = true; 1561 } 1562 spin_unlock_irqrestore(hba->host->host_lock, flags); 1563 1564 if (suspend) 1565 __ufshcd_suspend_clkscaling(hba); 1566 } 1567 1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1569 { 1570 unsigned long flags; 1571 bool resume = false; 1572 1573 spin_lock_irqsave(hba->host->host_lock, flags); 1574 if (hba->clk_scaling.is_suspended) { 1575 resume = true; 1576 hba->clk_scaling.is_suspended = false; 1577 } 1578 spin_unlock_irqrestore(hba->host->host_lock, flags); 1579 1580 if (resume) 1581 devfreq_resume_device(hba->devfreq); 1582 } 1583 1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1585 struct device_attribute *attr, char *buf) 1586 { 1587 struct ufs_hba *hba = dev_get_drvdata(dev); 1588 1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1590 } 1591 1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1593 struct device_attribute *attr, const char *buf, size_t count) 1594 { 1595 struct ufs_hba *hba = dev_get_drvdata(dev); 1596 u32 value; 1597 int err = 0; 1598 1599 if (kstrtou32(buf, 0, &value)) 1600 return -EINVAL; 1601 1602 down(&hba->host_sem); 1603 if (!ufshcd_is_user_access_allowed(hba)) { 1604 err = -EBUSY; 1605 goto out; 1606 } 1607 1608 value = !!value; 1609 if (value == hba->clk_scaling.is_enabled) 1610 goto out; 1611 1612 ufshcd_rpm_get_sync(hba); 1613 ufshcd_hold(hba); 1614 1615 hba->clk_scaling.is_enabled = value; 1616 1617 if (value) { 1618 ufshcd_resume_clkscaling(hba); 1619 } else { 1620 ufshcd_suspend_clkscaling(hba); 1621 err = ufshcd_devfreq_scale(hba, true); 1622 if (err) 1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1624 __func__, err); 1625 } 1626 1627 ufshcd_release(hba); 1628 ufshcd_rpm_put_sync(hba); 1629 out: 1630 up(&hba->host_sem); 1631 return err ? err : count; 1632 } 1633 1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1635 { 1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1640 hba->clk_scaling.enable_attr.attr.mode = 0644; 1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1643 } 1644 1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1646 { 1647 if (hba->clk_scaling.enable_attr.attr.name) 1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1649 } 1650 1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1652 { 1653 char wq_name[sizeof("ufs_clkscaling_00")]; 1654 1655 if (!ufshcd_is_clkscaling_supported(hba)) 1656 return; 1657 1658 if (!hba->clk_scaling.min_gear) 1659 hba->clk_scaling.min_gear = UFS_HS_G1; 1660 1661 INIT_WORK(&hba->clk_scaling.suspend_work, 1662 ufshcd_clk_scaling_suspend_work); 1663 INIT_WORK(&hba->clk_scaling.resume_work, 1664 ufshcd_clk_scaling_resume_work); 1665 1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1667 hba->host->host_no); 1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1669 1670 hba->clk_scaling.is_initialized = true; 1671 } 1672 1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1674 { 1675 if (!hba->clk_scaling.is_initialized) 1676 return; 1677 1678 ufshcd_remove_clk_scaling_sysfs(hba); 1679 destroy_workqueue(hba->clk_scaling.workq); 1680 ufshcd_devfreq_remove(hba); 1681 hba->clk_scaling.is_initialized = false; 1682 } 1683 1684 static void ufshcd_ungate_work(struct work_struct *work) 1685 { 1686 int ret; 1687 unsigned long flags; 1688 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1689 clk_gating.ungate_work); 1690 1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1692 1693 spin_lock_irqsave(hba->host->host_lock, flags); 1694 if (hba->clk_gating.state == CLKS_ON) { 1695 spin_unlock_irqrestore(hba->host->host_lock, flags); 1696 return; 1697 } 1698 1699 spin_unlock_irqrestore(hba->host->host_lock, flags); 1700 ufshcd_hba_vreg_set_hpm(hba); 1701 ufshcd_setup_clocks(hba, true); 1702 1703 ufshcd_enable_irq(hba); 1704 1705 /* Exit from hibern8 */ 1706 if (ufshcd_can_hibern8_during_gating(hba)) { 1707 /* Prevent gating in this path */ 1708 hba->clk_gating.is_suspended = true; 1709 if (ufshcd_is_link_hibern8(hba)) { 1710 ret = ufshcd_uic_hibern8_exit(hba); 1711 if (ret) 1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1713 __func__, ret); 1714 else 1715 ufshcd_set_link_active(hba); 1716 } 1717 hba->clk_gating.is_suspended = false; 1718 } 1719 } 1720 1721 /** 1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1723 * Also, exit from hibern8 mode and set the link as active. 1724 * @hba: per adapter instance 1725 */ 1726 void ufshcd_hold(struct ufs_hba *hba) 1727 { 1728 bool flush_result; 1729 unsigned long flags; 1730 1731 if (!ufshcd_is_clkgating_allowed(hba) || 1732 !hba->clk_gating.is_initialized) 1733 return; 1734 spin_lock_irqsave(hba->host->host_lock, flags); 1735 hba->clk_gating.active_reqs++; 1736 1737 start: 1738 switch (hba->clk_gating.state) { 1739 case CLKS_ON: 1740 /* 1741 * Wait for the ungate work to complete if in progress. 1742 * Though the clocks may be in ON state, the link could 1743 * still be in hibner8 state if hibern8 is allowed 1744 * during clock gating. 1745 * Make sure we exit hibern8 state also in addition to 1746 * clocks being ON. 1747 */ 1748 if (ufshcd_can_hibern8_during_gating(hba) && 1749 ufshcd_is_link_hibern8(hba)) { 1750 spin_unlock_irqrestore(hba->host->host_lock, flags); 1751 flush_result = flush_work(&hba->clk_gating.ungate_work); 1752 if (hba->clk_gating.is_suspended && !flush_result) 1753 return; 1754 spin_lock_irqsave(hba->host->host_lock, flags); 1755 goto start; 1756 } 1757 break; 1758 case REQ_CLKS_OFF: 1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1760 hba->clk_gating.state = CLKS_ON; 1761 trace_ufshcd_clk_gating(dev_name(hba->dev), 1762 hba->clk_gating.state); 1763 break; 1764 } 1765 /* 1766 * If we are here, it means gating work is either done or 1767 * currently running. Hence, fall through to cancel gating 1768 * work and to enable clocks. 1769 */ 1770 fallthrough; 1771 case CLKS_OFF: 1772 hba->clk_gating.state = REQ_CLKS_ON; 1773 trace_ufshcd_clk_gating(dev_name(hba->dev), 1774 hba->clk_gating.state); 1775 queue_work(hba->clk_gating.clk_gating_workq, 1776 &hba->clk_gating.ungate_work); 1777 /* 1778 * fall through to check if we should wait for this 1779 * work to be done or not. 1780 */ 1781 fallthrough; 1782 case REQ_CLKS_ON: 1783 spin_unlock_irqrestore(hba->host->host_lock, flags); 1784 flush_work(&hba->clk_gating.ungate_work); 1785 /* Make sure state is CLKS_ON before returning */ 1786 spin_lock_irqsave(hba->host->host_lock, flags); 1787 goto start; 1788 default: 1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1790 __func__, hba->clk_gating.state); 1791 break; 1792 } 1793 spin_unlock_irqrestore(hba->host->host_lock, flags); 1794 } 1795 EXPORT_SYMBOL_GPL(ufshcd_hold); 1796 1797 static void ufshcd_gate_work(struct work_struct *work) 1798 { 1799 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1800 clk_gating.gate_work.work); 1801 unsigned long flags; 1802 int ret; 1803 1804 spin_lock_irqsave(hba->host->host_lock, flags); 1805 /* 1806 * In case you are here to cancel this work the gating state 1807 * would be marked as REQ_CLKS_ON. In this case save time by 1808 * skipping the gating work and exit after changing the clock 1809 * state to CLKS_ON. 1810 */ 1811 if (hba->clk_gating.is_suspended || 1812 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1813 hba->clk_gating.state = CLKS_ON; 1814 trace_ufshcd_clk_gating(dev_name(hba->dev), 1815 hba->clk_gating.state); 1816 goto rel_lock; 1817 } 1818 1819 if (hba->clk_gating.active_reqs 1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1821 || hba->outstanding_reqs || hba->outstanding_tasks 1822 || hba->active_uic_cmd || hba->uic_async_done) 1823 goto rel_lock; 1824 1825 spin_unlock_irqrestore(hba->host->host_lock, flags); 1826 1827 /* put the link into hibern8 mode before turning off clocks */ 1828 if (ufshcd_can_hibern8_during_gating(hba)) { 1829 ret = ufshcd_uic_hibern8_enter(hba); 1830 if (ret) { 1831 hba->clk_gating.state = CLKS_ON; 1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1833 __func__, ret); 1834 trace_ufshcd_clk_gating(dev_name(hba->dev), 1835 hba->clk_gating.state); 1836 goto out; 1837 } 1838 ufshcd_set_link_hibern8(hba); 1839 } 1840 1841 ufshcd_disable_irq(hba); 1842 1843 ufshcd_setup_clocks(hba, false); 1844 1845 /* Put the host controller in low power mode if possible */ 1846 ufshcd_hba_vreg_set_lpm(hba); 1847 /* 1848 * In case you are here to cancel this work the gating state 1849 * would be marked as REQ_CLKS_ON. In this case keep the state 1850 * as REQ_CLKS_ON which would anyway imply that clocks are off 1851 * and a request to turn them on is pending. By doing this way, 1852 * we keep the state machine in tact and this would ultimately 1853 * prevent from doing cancel work multiple times when there are 1854 * new requests arriving before the current cancel work is done. 1855 */ 1856 spin_lock_irqsave(hba->host->host_lock, flags); 1857 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1858 hba->clk_gating.state = CLKS_OFF; 1859 trace_ufshcd_clk_gating(dev_name(hba->dev), 1860 hba->clk_gating.state); 1861 } 1862 rel_lock: 1863 spin_unlock_irqrestore(hba->host->host_lock, flags); 1864 out: 1865 return; 1866 } 1867 1868 /* host lock must be held before calling this variant */ 1869 static void __ufshcd_release(struct ufs_hba *hba) 1870 { 1871 if (!ufshcd_is_clkgating_allowed(hba)) 1872 return; 1873 1874 hba->clk_gating.active_reqs--; 1875 1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 1879 hba->active_uic_cmd || hba->uic_async_done || 1880 hba->clk_gating.state == CLKS_OFF) 1881 return; 1882 1883 hba->clk_gating.state = REQ_CLKS_OFF; 1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1885 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1886 &hba->clk_gating.gate_work, 1887 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1888 } 1889 1890 void ufshcd_release(struct ufs_hba *hba) 1891 { 1892 unsigned long flags; 1893 1894 spin_lock_irqsave(hba->host->host_lock, flags); 1895 __ufshcd_release(hba); 1896 spin_unlock_irqrestore(hba->host->host_lock, flags); 1897 } 1898 EXPORT_SYMBOL_GPL(ufshcd_release); 1899 1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1901 struct device_attribute *attr, char *buf) 1902 { 1903 struct ufs_hba *hba = dev_get_drvdata(dev); 1904 1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 1906 } 1907 1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 1909 { 1910 struct ufs_hba *hba = dev_get_drvdata(dev); 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(hba->host->host_lock, flags); 1914 hba->clk_gating.delay_ms = value; 1915 spin_unlock_irqrestore(hba->host->host_lock, flags); 1916 } 1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 1918 1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1920 struct device_attribute *attr, const char *buf, size_t count) 1921 { 1922 unsigned long value; 1923 1924 if (kstrtoul(buf, 0, &value)) 1925 return -EINVAL; 1926 1927 ufshcd_clkgate_delay_set(dev, value); 1928 return count; 1929 } 1930 1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1932 struct device_attribute *attr, char *buf) 1933 { 1934 struct ufs_hba *hba = dev_get_drvdata(dev); 1935 1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 1937 } 1938 1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1940 struct device_attribute *attr, const char *buf, size_t count) 1941 { 1942 struct ufs_hba *hba = dev_get_drvdata(dev); 1943 unsigned long flags; 1944 u32 value; 1945 1946 if (kstrtou32(buf, 0, &value)) 1947 return -EINVAL; 1948 1949 value = !!value; 1950 1951 spin_lock_irqsave(hba->host->host_lock, flags); 1952 if (value == hba->clk_gating.is_enabled) 1953 goto out; 1954 1955 if (value) 1956 __ufshcd_release(hba); 1957 else 1958 hba->clk_gating.active_reqs++; 1959 1960 hba->clk_gating.is_enabled = value; 1961 out: 1962 spin_unlock_irqrestore(hba->host->host_lock, flags); 1963 return count; 1964 } 1965 1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 1967 { 1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 1972 hba->clk_gating.delay_attr.attr.mode = 0644; 1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 1975 1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 1980 hba->clk_gating.enable_attr.attr.mode = 0644; 1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 1983 } 1984 1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 1986 { 1987 if (hba->clk_gating.delay_attr.attr.name) 1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 1989 if (hba->clk_gating.enable_attr.attr.name) 1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 1991 } 1992 1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 1994 { 1995 char wq_name[sizeof("ufs_clk_gating_00")]; 1996 1997 if (!ufshcd_is_clkgating_allowed(hba)) 1998 return; 1999 2000 hba->clk_gating.state = CLKS_ON; 2001 2002 hba->clk_gating.delay_ms = 150; 2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2005 2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 2007 hba->host->host_no); 2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 2009 WQ_MEM_RECLAIM | WQ_HIGHPRI); 2010 2011 ufshcd_init_clk_gating_sysfs(hba); 2012 2013 hba->clk_gating.is_enabled = true; 2014 hba->clk_gating.is_initialized = true; 2015 } 2016 2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2018 { 2019 if (!hba->clk_gating.is_initialized) 2020 return; 2021 2022 ufshcd_remove_clk_gating_sysfs(hba); 2023 2024 /* Ungate the clock if necessary. */ 2025 ufshcd_hold(hba); 2026 hba->clk_gating.is_initialized = false; 2027 ufshcd_release(hba); 2028 2029 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2030 } 2031 2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2033 { 2034 bool queue_resume_work = false; 2035 ktime_t curr_t = ktime_get(); 2036 unsigned long flags; 2037 2038 if (!ufshcd_is_clkscaling_supported(hba)) 2039 return; 2040 2041 spin_lock_irqsave(hba->host->host_lock, flags); 2042 if (!hba->clk_scaling.active_reqs++) 2043 queue_resume_work = true; 2044 2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2046 spin_unlock_irqrestore(hba->host->host_lock, flags); 2047 return; 2048 } 2049 2050 if (queue_resume_work) 2051 queue_work(hba->clk_scaling.workq, 2052 &hba->clk_scaling.resume_work); 2053 2054 if (!hba->clk_scaling.window_start_t) { 2055 hba->clk_scaling.window_start_t = curr_t; 2056 hba->clk_scaling.tot_busy_t = 0; 2057 hba->clk_scaling.is_busy_started = false; 2058 } 2059 2060 if (!hba->clk_scaling.is_busy_started) { 2061 hba->clk_scaling.busy_start_t = curr_t; 2062 hba->clk_scaling.is_busy_started = true; 2063 } 2064 spin_unlock_irqrestore(hba->host->host_lock, flags); 2065 } 2066 2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2068 { 2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2070 unsigned long flags; 2071 2072 if (!ufshcd_is_clkscaling_supported(hba)) 2073 return; 2074 2075 spin_lock_irqsave(hba->host->host_lock, flags); 2076 hba->clk_scaling.active_reqs--; 2077 if (!scaling->active_reqs && scaling->is_busy_started) { 2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2079 scaling->busy_start_t)); 2080 scaling->busy_start_t = 0; 2081 scaling->is_busy_started = false; 2082 } 2083 spin_unlock_irqrestore(hba->host->host_lock, flags); 2084 } 2085 2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2087 { 2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2089 return READ; 2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2091 return WRITE; 2092 else 2093 return -EINVAL; 2094 } 2095 2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2097 struct ufshcd_lrb *lrbp) 2098 { 2099 const struct ufs_hba_monitor *m = &hba->monitor; 2100 2101 return (m->enabled && lrbp && lrbp->cmd && 2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2104 } 2105 2106 static void ufshcd_start_monitor(struct ufs_hba *hba, 2107 const struct ufshcd_lrb *lrbp) 2108 { 2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2110 unsigned long flags; 2111 2112 spin_lock_irqsave(hba->host->host_lock, flags); 2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2114 hba->monitor.busy_start_ts[dir] = ktime_get(); 2115 spin_unlock_irqrestore(hba->host->host_lock, flags); 2116 } 2117 2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2119 { 2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2121 unsigned long flags; 2122 2123 spin_lock_irqsave(hba->host->host_lock, flags); 2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2126 struct ufs_hba_monitor *m = &hba->monitor; 2127 ktime_t now, inc, lat; 2128 2129 now = lrbp->compl_time_stamp; 2130 inc = ktime_sub(now, m->busy_start_ts[dir]); 2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2132 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2133 2134 /* Update latencies */ 2135 m->nr_req[dir]++; 2136 lat = ktime_sub(now, lrbp->issue_time_stamp); 2137 m->lat_sum[dir] += lat; 2138 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2139 m->lat_max[dir] = lat; 2140 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2141 m->lat_min[dir] = lat; 2142 2143 m->nr_queued[dir]--; 2144 /* Push forward the busy start of monitor */ 2145 m->busy_start_ts[dir] = now; 2146 } 2147 spin_unlock_irqrestore(hba->host->host_lock, flags); 2148 } 2149 2150 /** 2151 * ufshcd_send_command - Send SCSI or device management commands 2152 * @hba: per adapter instance 2153 * @task_tag: Task tag of the command 2154 * @hwq: pointer to hardware queue instance 2155 */ 2156 static inline 2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2158 struct ufs_hw_queue *hwq) 2159 { 2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2161 unsigned long flags; 2162 2163 lrbp->issue_time_stamp = ktime_get(); 2164 lrbp->issue_time_stamp_local_clock = local_clock(); 2165 lrbp->compl_time_stamp = ktime_set(0, 0); 2166 lrbp->compl_time_stamp_local_clock = 0; 2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2168 ufshcd_clk_scaling_start_busy(hba); 2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2170 ufshcd_start_monitor(hba, lrbp); 2171 2172 if (is_mcq_enabled(hba)) { 2173 int utrd_size = sizeof(struct utp_transfer_req_desc); 2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2175 struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2176 2177 spin_lock(&hwq->sq_lock); 2178 memcpy(dest, src, utrd_size); 2179 ufshcd_inc_sq_tail(hwq); 2180 spin_unlock(&hwq->sq_lock); 2181 } else { 2182 spin_lock_irqsave(&hba->outstanding_lock, flags); 2183 if (hba->vops && hba->vops->setup_xfer_req) 2184 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2185 !!lrbp->cmd); 2186 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2187 ufshcd_writel(hba, 1 << lrbp->task_tag, 2188 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2189 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2190 } 2191 } 2192 2193 /** 2194 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2195 * @lrbp: pointer to local reference block 2196 */ 2197 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2198 { 2199 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2200 u16 resp_len; 2201 int len; 2202 2203 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2204 if (sense_buffer && resp_len) { 2205 int len_to_copy; 2206 2207 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2208 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2209 2210 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2211 len_to_copy); 2212 } 2213 } 2214 2215 /** 2216 * ufshcd_copy_query_response() - Copy the Query Response and the data 2217 * descriptor 2218 * @hba: per adapter instance 2219 * @lrbp: pointer to local reference block 2220 * 2221 * Return: 0 upon success; < 0 upon failure. 2222 */ 2223 static 2224 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2225 { 2226 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2227 2228 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2229 2230 /* Get the descriptor */ 2231 if (hba->dev_cmd.query.descriptor && 2232 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2233 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2234 GENERAL_UPIU_REQUEST_SIZE; 2235 u16 resp_len; 2236 u16 buf_len; 2237 2238 /* data segment length */ 2239 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2240 .data_segment_length); 2241 buf_len = be16_to_cpu( 2242 hba->dev_cmd.query.request.upiu_req.length); 2243 if (likely(buf_len >= resp_len)) { 2244 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2245 } else { 2246 dev_warn(hba->dev, 2247 "%s: rsp size %d is bigger than buffer size %d", 2248 __func__, resp_len, buf_len); 2249 return -EINVAL; 2250 } 2251 } 2252 2253 return 0; 2254 } 2255 2256 /** 2257 * ufshcd_hba_capabilities - Read controller capabilities 2258 * @hba: per adapter instance 2259 * 2260 * Return: 0 on success, negative on error. 2261 */ 2262 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2263 { 2264 int err; 2265 2266 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2267 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) 2268 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; 2269 2270 /* nutrs and nutmrs are 0 based values */ 2271 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2272 hba->nutmrs = 2273 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2274 hba->reserved_slot = hba->nutrs - 1; 2275 2276 /* Read crypto capabilities */ 2277 err = ufshcd_hba_init_crypto_capabilities(hba); 2278 if (err) { 2279 dev_err(hba->dev, "crypto setup failed\n"); 2280 return err; 2281 } 2282 2283 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2284 if (!hba->mcq_sup) 2285 return 0; 2286 2287 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2288 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2289 hba->mcq_capabilities); 2290 2291 return 0; 2292 } 2293 2294 /** 2295 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2296 * to accept UIC commands 2297 * @hba: per adapter instance 2298 * 2299 * Return: true on success, else false. 2300 */ 2301 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2302 { 2303 u32 val; 2304 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2305 500, UIC_CMD_TIMEOUT * 1000, false, hba, 2306 REG_CONTROLLER_STATUS); 2307 return ret == 0 ? true : false; 2308 } 2309 2310 /** 2311 * ufshcd_get_upmcrs - Get the power mode change request status 2312 * @hba: Pointer to adapter instance 2313 * 2314 * This function gets the UPMCRS field of HCS register 2315 * 2316 * Return: value of UPMCRS field. 2317 */ 2318 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2319 { 2320 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2321 } 2322 2323 /** 2324 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2325 * @hba: per adapter instance 2326 * @uic_cmd: UIC command 2327 */ 2328 static inline void 2329 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2330 { 2331 lockdep_assert_held(&hba->uic_cmd_mutex); 2332 2333 WARN_ON(hba->active_uic_cmd); 2334 2335 hba->active_uic_cmd = uic_cmd; 2336 2337 /* Write Args */ 2338 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2339 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2340 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2341 2342 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2343 2344 /* Write UIC Cmd */ 2345 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2346 REG_UIC_COMMAND); 2347 } 2348 2349 /** 2350 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2351 * @hba: per adapter instance 2352 * @uic_cmd: UIC command 2353 * 2354 * Return: 0 only if success. 2355 */ 2356 static int 2357 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2358 { 2359 int ret; 2360 unsigned long flags; 2361 2362 lockdep_assert_held(&hba->uic_cmd_mutex); 2363 2364 if (wait_for_completion_timeout(&uic_cmd->done, 2365 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2366 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2367 } else { 2368 ret = -ETIMEDOUT; 2369 dev_err(hba->dev, 2370 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2371 uic_cmd->command, uic_cmd->argument3); 2372 2373 if (!uic_cmd->cmd_active) { 2374 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2375 __func__); 2376 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2377 } 2378 } 2379 2380 spin_lock_irqsave(hba->host->host_lock, flags); 2381 hba->active_uic_cmd = NULL; 2382 spin_unlock_irqrestore(hba->host->host_lock, flags); 2383 2384 return ret; 2385 } 2386 2387 /** 2388 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2389 * @hba: per adapter instance 2390 * @uic_cmd: UIC command 2391 * @completion: initialize the completion only if this is set to true 2392 * 2393 * Return: 0 only if success. 2394 */ 2395 static int 2396 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, 2397 bool completion) 2398 { 2399 lockdep_assert_held(&hba->uic_cmd_mutex); 2400 2401 if (!ufshcd_ready_for_uic_cmd(hba)) { 2402 dev_err(hba->dev, 2403 "Controller not ready to accept UIC commands\n"); 2404 return -EIO; 2405 } 2406 2407 if (completion) 2408 init_completion(&uic_cmd->done); 2409 2410 uic_cmd->cmd_active = 1; 2411 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2412 2413 return 0; 2414 } 2415 2416 /** 2417 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2418 * @hba: per adapter instance 2419 * @uic_cmd: UIC command 2420 * 2421 * Return: 0 only if success. 2422 */ 2423 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2424 { 2425 int ret; 2426 2427 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2428 return 0; 2429 2430 ufshcd_hold(hba); 2431 mutex_lock(&hba->uic_cmd_mutex); 2432 ufshcd_add_delay_before_dme_cmd(hba); 2433 2434 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); 2435 if (!ret) 2436 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2437 2438 mutex_unlock(&hba->uic_cmd_mutex); 2439 2440 ufshcd_release(hba); 2441 return ret; 2442 } 2443 2444 /** 2445 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2446 * @hba: per-adapter instance 2447 * @lrbp: pointer to local reference block 2448 * @sg_entries: The number of sg lists actually used 2449 * @sg_list: Pointer to SG list 2450 */ 2451 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2452 struct scatterlist *sg_list) 2453 { 2454 struct ufshcd_sg_entry *prd; 2455 struct scatterlist *sg; 2456 int i; 2457 2458 if (sg_entries) { 2459 2460 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2461 lrbp->utr_descriptor_ptr->prd_table_length = 2462 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2463 else 2464 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2465 2466 prd = lrbp->ucd_prdt_ptr; 2467 2468 for_each_sg(sg_list, sg, sg_entries, i) { 2469 const unsigned int len = sg_dma_len(sg); 2470 2471 /* 2472 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2473 * based value that indicates the length, in bytes, of 2474 * the data block. A maximum of length of 256KB may 2475 * exist for any entry. Bits 1:0 of this field shall be 2476 * 11b to indicate Dword granularity. A value of '3' 2477 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2478 */ 2479 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2480 prd->size = cpu_to_le32(len - 1); 2481 prd->addr = cpu_to_le64(sg->dma_address); 2482 prd->reserved = 0; 2483 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2484 } 2485 } else { 2486 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2487 } 2488 } 2489 2490 /** 2491 * ufshcd_map_sg - Map scatter-gather list to prdt 2492 * @hba: per adapter instance 2493 * @lrbp: pointer to local reference block 2494 * 2495 * Return: 0 in case of success, non-zero value in case of failure. 2496 */ 2497 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2498 { 2499 struct scsi_cmnd *cmd = lrbp->cmd; 2500 int sg_segments = scsi_dma_map(cmd); 2501 2502 if (sg_segments < 0) 2503 return sg_segments; 2504 2505 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2506 2507 return 0; 2508 } 2509 2510 /** 2511 * ufshcd_enable_intr - enable interrupts 2512 * @hba: per adapter instance 2513 * @intrs: interrupt bits 2514 */ 2515 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2516 { 2517 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2518 2519 if (hba->ufs_version == ufshci_version(1, 0)) { 2520 u32 rw; 2521 rw = set & INTERRUPT_MASK_RW_VER_10; 2522 set = rw | ((set ^ intrs) & intrs); 2523 } else { 2524 set |= intrs; 2525 } 2526 2527 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2528 } 2529 2530 /** 2531 * ufshcd_disable_intr - disable interrupts 2532 * @hba: per adapter instance 2533 * @intrs: interrupt bits 2534 */ 2535 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2536 { 2537 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2538 2539 if (hba->ufs_version == ufshci_version(1, 0)) { 2540 u32 rw; 2541 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2542 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2543 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2544 2545 } else { 2546 set &= ~intrs; 2547 } 2548 2549 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2550 } 2551 2552 /** 2553 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2554 * descriptor according to request 2555 * @lrbp: pointer to local reference block 2556 * @upiu_flags: flags required in the header 2557 * @cmd_dir: requests data direction 2558 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2559 */ 2560 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags, 2561 enum dma_data_direction cmd_dir, int ehs_length) 2562 { 2563 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2564 struct request_desc_header *h = &req_desc->header; 2565 enum utp_data_direction data_direction; 2566 2567 *h = (typeof(*h)){ }; 2568 2569 if (cmd_dir == DMA_FROM_DEVICE) { 2570 data_direction = UTP_DEVICE_TO_HOST; 2571 *upiu_flags = UPIU_CMD_FLAGS_READ; 2572 } else if (cmd_dir == DMA_TO_DEVICE) { 2573 data_direction = UTP_HOST_TO_DEVICE; 2574 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2575 } else { 2576 data_direction = UTP_NO_DATA_TRANSFER; 2577 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2578 } 2579 2580 h->command_type = lrbp->command_type; 2581 h->data_direction = data_direction; 2582 h->ehs_length = ehs_length; 2583 2584 if (lrbp->intr_cmd) 2585 h->interrupt = 1; 2586 2587 /* Prepare crypto related dwords */ 2588 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2589 2590 /* 2591 * assigning invalid value for command status. Controller 2592 * updates OCS on command completion, with the command 2593 * status 2594 */ 2595 h->ocs = OCS_INVALID_COMMAND_STATUS; 2596 2597 req_desc->prd_table_length = 0; 2598 } 2599 2600 /** 2601 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2602 * for scsi commands 2603 * @lrbp: local reference block pointer 2604 * @upiu_flags: flags 2605 */ 2606 static 2607 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2608 { 2609 struct scsi_cmnd *cmd = lrbp->cmd; 2610 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2611 unsigned short cdb_len; 2612 2613 ucd_req_ptr->header = (struct utp_upiu_header){ 2614 .transaction_code = UPIU_TRANSACTION_COMMAND, 2615 .flags = upiu_flags, 2616 .lun = lrbp->lun, 2617 .task_tag = lrbp->task_tag, 2618 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2619 }; 2620 2621 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2622 2623 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2624 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2625 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2626 2627 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2628 } 2629 2630 /** 2631 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2632 * @hba: UFS hba 2633 * @lrbp: local reference block pointer 2634 * @upiu_flags: flags 2635 */ 2636 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2637 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2638 { 2639 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2640 struct ufs_query *query = &hba->dev_cmd.query; 2641 u16 len = be16_to_cpu(query->request.upiu_req.length); 2642 2643 /* Query request header */ 2644 ucd_req_ptr->header = (struct utp_upiu_header){ 2645 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2646 .flags = upiu_flags, 2647 .lun = lrbp->lun, 2648 .task_tag = lrbp->task_tag, 2649 .query_function = query->request.query_func, 2650 /* Data segment length only need for WRITE_DESC */ 2651 .data_segment_length = 2652 query->request.upiu_req.opcode == 2653 UPIU_QUERY_OPCODE_WRITE_DESC ? 2654 cpu_to_be16(len) : 2655 0, 2656 }; 2657 2658 /* Copy the Query Request buffer as is */ 2659 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2660 QUERY_OSF_SIZE); 2661 2662 /* Copy the Descriptor */ 2663 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2664 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2665 2666 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2667 } 2668 2669 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2670 { 2671 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2672 2673 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2674 2675 ucd_req_ptr->header = (struct utp_upiu_header){ 2676 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2677 .task_tag = lrbp->task_tag, 2678 }; 2679 2680 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2681 } 2682 2683 /** 2684 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2685 * for Device Management Purposes 2686 * @hba: per adapter instance 2687 * @lrbp: pointer to local reference block 2688 * 2689 * Return: 0 upon success; < 0 upon failure. 2690 */ 2691 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2692 struct ufshcd_lrb *lrbp) 2693 { 2694 u8 upiu_flags; 2695 int ret = 0; 2696 2697 if (hba->ufs_version <= ufshci_version(1, 1)) 2698 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2699 else 2700 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2701 2702 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 2703 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2704 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2705 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2706 ufshcd_prepare_utp_nop_upiu(lrbp); 2707 else 2708 ret = -EINVAL; 2709 2710 return ret; 2711 } 2712 2713 /** 2714 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2715 * for SCSI Purposes 2716 * @hba: per adapter instance 2717 * @lrbp: pointer to local reference block 2718 * 2719 * Return: 0 upon success; < 0 upon failure. 2720 */ 2721 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2722 { 2723 u8 upiu_flags; 2724 int ret = 0; 2725 2726 if (hba->ufs_version <= ufshci_version(1, 1)) 2727 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2728 else 2729 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2730 2731 if (likely(lrbp->cmd)) { 2732 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2733 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2734 } else { 2735 ret = -EINVAL; 2736 } 2737 2738 return ret; 2739 } 2740 2741 /** 2742 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2743 * @upiu_wlun_id: UPIU W-LUN id 2744 * 2745 * Return: SCSI W-LUN id. 2746 */ 2747 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2748 { 2749 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2750 } 2751 2752 static inline bool is_device_wlun(struct scsi_device *sdev) 2753 { 2754 return sdev->lun == 2755 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2756 } 2757 2758 /* 2759 * Associate the UFS controller queue with the default and poll HCTX types. 2760 * Initialize the mq_map[] arrays. 2761 */ 2762 static void ufshcd_map_queues(struct Scsi_Host *shost) 2763 { 2764 struct ufs_hba *hba = shost_priv(shost); 2765 int i, queue_offset = 0; 2766 2767 if (!is_mcq_supported(hba)) { 2768 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2769 hba->nr_queues[HCTX_TYPE_READ] = 0; 2770 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2771 hba->nr_hw_queues = 1; 2772 } 2773 2774 for (i = 0; i < shost->nr_maps; i++) { 2775 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2776 2777 map->nr_queues = hba->nr_queues[i]; 2778 if (!map->nr_queues) 2779 continue; 2780 map->queue_offset = queue_offset; 2781 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2782 map->queue_offset = 0; 2783 2784 blk_mq_map_queues(map); 2785 queue_offset += map->nr_queues; 2786 } 2787 } 2788 2789 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2790 { 2791 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2792 i * ufshcd_get_ucd_size(hba); 2793 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2794 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2795 i * ufshcd_get_ucd_size(hba); 2796 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2797 response_upiu); 2798 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2799 2800 lrb->utr_descriptor_ptr = utrdlp + i; 2801 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2802 i * sizeof(struct utp_transfer_req_desc); 2803 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2804 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2805 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2806 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2807 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2808 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2809 } 2810 2811 /** 2812 * ufshcd_queuecommand - main entry point for SCSI requests 2813 * @host: SCSI host pointer 2814 * @cmd: command from SCSI Midlayer 2815 * 2816 * Return: 0 for success, non-zero in case of failure. 2817 */ 2818 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2819 { 2820 struct ufs_hba *hba = shost_priv(host); 2821 int tag = scsi_cmd_to_rq(cmd)->tag; 2822 struct ufshcd_lrb *lrbp; 2823 int err = 0; 2824 struct ufs_hw_queue *hwq = NULL; 2825 2826 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); 2827 2828 switch (hba->ufshcd_state) { 2829 case UFSHCD_STATE_OPERATIONAL: 2830 break; 2831 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2832 /* 2833 * SCSI error handler can call ->queuecommand() while UFS error 2834 * handler is in progress. Error interrupts could change the 2835 * state from UFSHCD_STATE_RESET to 2836 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2837 * being issued in that case. 2838 */ 2839 if (ufshcd_eh_in_progress(hba)) { 2840 err = SCSI_MLQUEUE_HOST_BUSY; 2841 goto out; 2842 } 2843 break; 2844 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2845 /* 2846 * pm_runtime_get_sync() is used at error handling preparation 2847 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2848 * PM ops, it can never be finished if we let SCSI layer keep 2849 * retrying it, which gets err handler stuck forever. Neither 2850 * can we let the scsi cmd pass through, because UFS is in bad 2851 * state, the scsi cmd may eventually time out, which will get 2852 * err handler blocked for too long. So, just fail the scsi cmd 2853 * sent from PM ops, err handler can recover PM error anyways. 2854 */ 2855 if (hba->pm_op_in_progress) { 2856 hba->force_reset = true; 2857 set_host_byte(cmd, DID_BAD_TARGET); 2858 scsi_done(cmd); 2859 goto out; 2860 } 2861 fallthrough; 2862 case UFSHCD_STATE_RESET: 2863 err = SCSI_MLQUEUE_HOST_BUSY; 2864 goto out; 2865 case UFSHCD_STATE_ERROR: 2866 set_host_byte(cmd, DID_ERROR); 2867 scsi_done(cmd); 2868 goto out; 2869 } 2870 2871 hba->req_abort_count = 0; 2872 2873 ufshcd_hold(hba); 2874 2875 lrbp = &hba->lrb[tag]; 2876 lrbp->cmd = cmd; 2877 lrbp->task_tag = tag; 2878 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2879 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2880 2881 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 2882 2883 lrbp->req_abort_skip = false; 2884 2885 ufshcd_comp_scsi_upiu(hba, lrbp); 2886 2887 err = ufshcd_map_sg(hba, lrbp); 2888 if (err) { 2889 ufshcd_release(hba); 2890 goto out; 2891 } 2892 2893 if (is_mcq_enabled(hba)) 2894 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 2895 2896 ufshcd_send_command(hba, tag, hwq); 2897 2898 out: 2899 if (ufs_trigger_eh()) { 2900 unsigned long flags; 2901 2902 spin_lock_irqsave(hba->host->host_lock, flags); 2903 ufshcd_schedule_eh_work(hba); 2904 spin_unlock_irqrestore(hba->host->host_lock, flags); 2905 } 2906 2907 return err; 2908 } 2909 2910 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2911 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2912 { 2913 lrbp->cmd = NULL; 2914 lrbp->task_tag = tag; 2915 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2916 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2917 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2918 hba->dev_cmd.type = cmd_type; 2919 2920 return ufshcd_compose_devman_upiu(hba, lrbp); 2921 } 2922 2923 /* 2924 * Check with the block layer if the command is inflight 2925 * @cmd: command to check. 2926 * 2927 * Return: true if command is inflight; false if not. 2928 */ 2929 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 2930 { 2931 struct request *rq; 2932 2933 if (!cmd) 2934 return false; 2935 2936 rq = scsi_cmd_to_rq(cmd); 2937 if (!blk_mq_request_started(rq)) 2938 return false; 2939 2940 return true; 2941 } 2942 2943 /* 2944 * Clear the pending command in the controller and wait until 2945 * the controller confirms that the command has been cleared. 2946 * @hba: per adapter instance 2947 * @task_tag: The tag number of the command to be cleared. 2948 */ 2949 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 2950 { 2951 u32 mask = 1U << task_tag; 2952 unsigned long flags; 2953 int err; 2954 2955 if (is_mcq_enabled(hba)) { 2956 /* 2957 * MCQ mode. Clean up the MCQ resources similar to 2958 * what the ufshcd_utrl_clear() does for SDB mode. 2959 */ 2960 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 2961 if (err) { 2962 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 2963 __func__, task_tag, err); 2964 return err; 2965 } 2966 return 0; 2967 } 2968 2969 /* clear outstanding transaction before retry */ 2970 spin_lock_irqsave(hba->host->host_lock, flags); 2971 ufshcd_utrl_clear(hba, mask); 2972 spin_unlock_irqrestore(hba->host->host_lock, flags); 2973 2974 /* 2975 * wait for h/w to clear corresponding bit in door-bell. 2976 * max. wait is 1 sec. 2977 */ 2978 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 2979 mask, ~mask, 1000, 1000); 2980 } 2981 2982 /** 2983 * ufshcd_dev_cmd_completion() - handles device management command responses 2984 * @hba: per adapter instance 2985 * @lrbp: pointer to local reference block 2986 * 2987 * Return: 0 upon success; < 0 upon failure. 2988 */ 2989 static int 2990 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2991 { 2992 enum upiu_response_transaction resp; 2993 int err = 0; 2994 2995 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 2996 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 2997 2998 switch (resp) { 2999 case UPIU_TRANSACTION_NOP_IN: 3000 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3001 err = -EINVAL; 3002 dev_err(hba->dev, "%s: unexpected response %x\n", 3003 __func__, resp); 3004 } 3005 break; 3006 case UPIU_TRANSACTION_QUERY_RSP: { 3007 u8 response = lrbp->ucd_rsp_ptr->header.response; 3008 3009 if (response == 0) 3010 err = ufshcd_copy_query_response(hba, lrbp); 3011 break; 3012 } 3013 case UPIU_TRANSACTION_REJECT_UPIU: 3014 /* TODO: handle Reject UPIU Response */ 3015 err = -EPERM; 3016 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3017 __func__); 3018 break; 3019 case UPIU_TRANSACTION_RESPONSE: 3020 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3021 err = -EINVAL; 3022 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3023 } 3024 break; 3025 default: 3026 err = -EINVAL; 3027 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3028 __func__, resp); 3029 break; 3030 } 3031 3032 return err; 3033 } 3034 3035 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3036 struct ufshcd_lrb *lrbp, int max_timeout) 3037 { 3038 unsigned long time_left = msecs_to_jiffies(max_timeout); 3039 unsigned long flags; 3040 bool pending; 3041 int err; 3042 3043 retry: 3044 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3045 time_left); 3046 3047 if (likely(time_left)) { 3048 /* 3049 * The completion handler called complete() and the caller of 3050 * this function still owns the @lrbp tag so the code below does 3051 * not trigger any race conditions. 3052 */ 3053 hba->dev_cmd.complete = NULL; 3054 err = ufshcd_get_tr_ocs(lrbp, NULL); 3055 if (!err) 3056 err = ufshcd_dev_cmd_completion(hba, lrbp); 3057 } else { 3058 err = -ETIMEDOUT; 3059 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3060 __func__, lrbp->task_tag); 3061 3062 /* MCQ mode */ 3063 if (is_mcq_enabled(hba)) { 3064 err = ufshcd_clear_cmd(hba, lrbp->task_tag); 3065 hba->dev_cmd.complete = NULL; 3066 return err; 3067 } 3068 3069 /* SDB mode */ 3070 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3071 /* successfully cleared the command, retry if needed */ 3072 err = -EAGAIN; 3073 /* 3074 * Since clearing the command succeeded we also need to 3075 * clear the task tag bit from the outstanding_reqs 3076 * variable. 3077 */ 3078 spin_lock_irqsave(&hba->outstanding_lock, flags); 3079 pending = test_bit(lrbp->task_tag, 3080 &hba->outstanding_reqs); 3081 if (pending) { 3082 hba->dev_cmd.complete = NULL; 3083 __clear_bit(lrbp->task_tag, 3084 &hba->outstanding_reqs); 3085 } 3086 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3087 3088 if (!pending) { 3089 /* 3090 * The completion handler ran while we tried to 3091 * clear the command. 3092 */ 3093 time_left = 1; 3094 goto retry; 3095 } 3096 } else { 3097 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3098 __func__, lrbp->task_tag); 3099 3100 spin_lock_irqsave(&hba->outstanding_lock, flags); 3101 pending = test_bit(lrbp->task_tag, 3102 &hba->outstanding_reqs); 3103 if (pending) 3104 hba->dev_cmd.complete = NULL; 3105 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3106 3107 if (!pending) { 3108 /* 3109 * The completion handler ran while we tried to 3110 * clear the command. 3111 */ 3112 time_left = 1; 3113 goto retry; 3114 } 3115 } 3116 } 3117 3118 return err; 3119 } 3120 3121 /** 3122 * ufshcd_exec_dev_cmd - API for sending device management requests 3123 * @hba: UFS hba 3124 * @cmd_type: specifies the type (NOP, Query...) 3125 * @timeout: timeout in milliseconds 3126 * 3127 * Return: 0 upon success; < 0 upon failure. 3128 * 3129 * NOTE: Since there is only one available tag for device management commands, 3130 * it is expected you hold the hba->dev_cmd.lock mutex. 3131 */ 3132 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3133 enum dev_cmd_type cmd_type, int timeout) 3134 { 3135 DECLARE_COMPLETION_ONSTACK(wait); 3136 const u32 tag = hba->reserved_slot; 3137 struct ufshcd_lrb *lrbp; 3138 int err; 3139 3140 /* Protects use of hba->reserved_slot. */ 3141 lockdep_assert_held(&hba->dev_cmd.lock); 3142 3143 down_read(&hba->clk_scaling_lock); 3144 3145 lrbp = &hba->lrb[tag]; 3146 lrbp->cmd = NULL; 3147 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3148 if (unlikely(err)) 3149 goto out; 3150 3151 hba->dev_cmd.complete = &wait; 3152 3153 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3154 3155 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3156 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3157 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3158 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3159 3160 out: 3161 up_read(&hba->clk_scaling_lock); 3162 return err; 3163 } 3164 3165 /** 3166 * ufshcd_init_query() - init the query response and request parameters 3167 * @hba: per-adapter instance 3168 * @request: address of the request pointer to be initialized 3169 * @response: address of the response pointer to be initialized 3170 * @opcode: operation to perform 3171 * @idn: flag idn to access 3172 * @index: LU number to access 3173 * @selector: query/flag/descriptor further identification 3174 */ 3175 static inline void ufshcd_init_query(struct ufs_hba *hba, 3176 struct ufs_query_req **request, struct ufs_query_res **response, 3177 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3178 { 3179 *request = &hba->dev_cmd.query.request; 3180 *response = &hba->dev_cmd.query.response; 3181 memset(*request, 0, sizeof(struct ufs_query_req)); 3182 memset(*response, 0, sizeof(struct ufs_query_res)); 3183 (*request)->upiu_req.opcode = opcode; 3184 (*request)->upiu_req.idn = idn; 3185 (*request)->upiu_req.index = index; 3186 (*request)->upiu_req.selector = selector; 3187 } 3188 3189 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3190 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3191 { 3192 int ret; 3193 int retries; 3194 3195 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3196 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3197 if (ret) 3198 dev_dbg(hba->dev, 3199 "%s: failed with error %d, retries %d\n", 3200 __func__, ret, retries); 3201 else 3202 break; 3203 } 3204 3205 if (ret) 3206 dev_err(hba->dev, 3207 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3208 __func__, opcode, idn, ret, retries); 3209 return ret; 3210 } 3211 3212 /** 3213 * ufshcd_query_flag() - API function for sending flag query requests 3214 * @hba: per-adapter instance 3215 * @opcode: flag query to perform 3216 * @idn: flag idn to access 3217 * @index: flag index to access 3218 * @flag_res: the flag value after the query request completes 3219 * 3220 * Return: 0 for success, non-zero in case of failure. 3221 */ 3222 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3223 enum flag_idn idn, u8 index, bool *flag_res) 3224 { 3225 struct ufs_query_req *request = NULL; 3226 struct ufs_query_res *response = NULL; 3227 int err, selector = 0; 3228 int timeout = QUERY_REQ_TIMEOUT; 3229 3230 BUG_ON(!hba); 3231 3232 ufshcd_hold(hba); 3233 mutex_lock(&hba->dev_cmd.lock); 3234 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3235 selector); 3236 3237 switch (opcode) { 3238 case UPIU_QUERY_OPCODE_SET_FLAG: 3239 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3240 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3241 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3242 break; 3243 case UPIU_QUERY_OPCODE_READ_FLAG: 3244 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3245 if (!flag_res) { 3246 /* No dummy reads */ 3247 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3248 __func__); 3249 err = -EINVAL; 3250 goto out_unlock; 3251 } 3252 break; 3253 default: 3254 dev_err(hba->dev, 3255 "%s: Expected query flag opcode but got = %d\n", 3256 __func__, opcode); 3257 err = -EINVAL; 3258 goto out_unlock; 3259 } 3260 3261 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3262 3263 if (err) { 3264 dev_err(hba->dev, 3265 "%s: Sending flag query for idn %d failed, err = %d\n", 3266 __func__, idn, err); 3267 goto out_unlock; 3268 } 3269 3270 if (flag_res) 3271 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3272 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3273 3274 out_unlock: 3275 mutex_unlock(&hba->dev_cmd.lock); 3276 ufshcd_release(hba); 3277 return err; 3278 } 3279 3280 /** 3281 * ufshcd_query_attr - API function for sending attribute requests 3282 * @hba: per-adapter instance 3283 * @opcode: attribute opcode 3284 * @idn: attribute idn to access 3285 * @index: index field 3286 * @selector: selector field 3287 * @attr_val: the attribute value after the query request completes 3288 * 3289 * Return: 0 for success, non-zero in case of failure. 3290 */ 3291 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3292 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3293 { 3294 struct ufs_query_req *request = NULL; 3295 struct ufs_query_res *response = NULL; 3296 int err; 3297 3298 BUG_ON(!hba); 3299 3300 if (!attr_val) { 3301 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3302 __func__, opcode); 3303 return -EINVAL; 3304 } 3305 3306 ufshcd_hold(hba); 3307 3308 mutex_lock(&hba->dev_cmd.lock); 3309 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3310 selector); 3311 3312 switch (opcode) { 3313 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3314 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3315 request->upiu_req.value = cpu_to_be32(*attr_val); 3316 break; 3317 case UPIU_QUERY_OPCODE_READ_ATTR: 3318 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3319 break; 3320 default: 3321 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3322 __func__, opcode); 3323 err = -EINVAL; 3324 goto out_unlock; 3325 } 3326 3327 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3328 3329 if (err) { 3330 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3331 __func__, opcode, idn, index, err); 3332 goto out_unlock; 3333 } 3334 3335 *attr_val = be32_to_cpu(response->upiu_res.value); 3336 3337 out_unlock: 3338 mutex_unlock(&hba->dev_cmd.lock); 3339 ufshcd_release(hba); 3340 return err; 3341 } 3342 3343 /** 3344 * ufshcd_query_attr_retry() - API function for sending query 3345 * attribute with retries 3346 * @hba: per-adapter instance 3347 * @opcode: attribute opcode 3348 * @idn: attribute idn to access 3349 * @index: index field 3350 * @selector: selector field 3351 * @attr_val: the attribute value after the query request 3352 * completes 3353 * 3354 * Return: 0 for success, non-zero in case of failure. 3355 */ 3356 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3357 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3358 u32 *attr_val) 3359 { 3360 int ret = 0; 3361 u32 retries; 3362 3363 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3364 ret = ufshcd_query_attr(hba, opcode, idn, index, 3365 selector, attr_val); 3366 if (ret) 3367 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3368 __func__, ret, retries); 3369 else 3370 break; 3371 } 3372 3373 if (ret) 3374 dev_err(hba->dev, 3375 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3376 __func__, idn, ret, QUERY_REQ_RETRIES); 3377 return ret; 3378 } 3379 3380 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3381 enum query_opcode opcode, enum desc_idn idn, u8 index, 3382 u8 selector, u8 *desc_buf, int *buf_len) 3383 { 3384 struct ufs_query_req *request = NULL; 3385 struct ufs_query_res *response = NULL; 3386 int err; 3387 3388 BUG_ON(!hba); 3389 3390 if (!desc_buf) { 3391 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3392 __func__, opcode); 3393 return -EINVAL; 3394 } 3395 3396 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3397 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3398 __func__, *buf_len); 3399 return -EINVAL; 3400 } 3401 3402 ufshcd_hold(hba); 3403 3404 mutex_lock(&hba->dev_cmd.lock); 3405 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3406 selector); 3407 hba->dev_cmd.query.descriptor = desc_buf; 3408 request->upiu_req.length = cpu_to_be16(*buf_len); 3409 3410 switch (opcode) { 3411 case UPIU_QUERY_OPCODE_WRITE_DESC: 3412 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3413 break; 3414 case UPIU_QUERY_OPCODE_READ_DESC: 3415 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3416 break; 3417 default: 3418 dev_err(hba->dev, 3419 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3420 __func__, opcode); 3421 err = -EINVAL; 3422 goto out_unlock; 3423 } 3424 3425 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3426 3427 if (err) { 3428 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3429 __func__, opcode, idn, index, err); 3430 goto out_unlock; 3431 } 3432 3433 *buf_len = be16_to_cpu(response->upiu_res.length); 3434 3435 out_unlock: 3436 hba->dev_cmd.query.descriptor = NULL; 3437 mutex_unlock(&hba->dev_cmd.lock); 3438 ufshcd_release(hba); 3439 return err; 3440 } 3441 3442 /** 3443 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3444 * @hba: per-adapter instance 3445 * @opcode: attribute opcode 3446 * @idn: attribute idn to access 3447 * @index: index field 3448 * @selector: selector field 3449 * @desc_buf: the buffer that contains the descriptor 3450 * @buf_len: length parameter passed to the device 3451 * 3452 * The buf_len parameter will contain, on return, the length parameter 3453 * received on the response. 3454 * 3455 * Return: 0 for success, non-zero in case of failure. 3456 */ 3457 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3458 enum query_opcode opcode, 3459 enum desc_idn idn, u8 index, 3460 u8 selector, 3461 u8 *desc_buf, int *buf_len) 3462 { 3463 int err; 3464 int retries; 3465 3466 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3467 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3468 selector, desc_buf, buf_len); 3469 if (!err || err == -EINVAL) 3470 break; 3471 } 3472 3473 return err; 3474 } 3475 3476 /** 3477 * ufshcd_read_desc_param - read the specified descriptor parameter 3478 * @hba: Pointer to adapter instance 3479 * @desc_id: descriptor idn value 3480 * @desc_index: descriptor index 3481 * @param_offset: offset of the parameter to read 3482 * @param_read_buf: pointer to buffer where parameter would be read 3483 * @param_size: sizeof(param_read_buf) 3484 * 3485 * Return: 0 in case of success, non-zero otherwise. 3486 */ 3487 int ufshcd_read_desc_param(struct ufs_hba *hba, 3488 enum desc_idn desc_id, 3489 int desc_index, 3490 u8 param_offset, 3491 u8 *param_read_buf, 3492 u8 param_size) 3493 { 3494 int ret; 3495 u8 *desc_buf; 3496 int buff_len = QUERY_DESC_MAX_SIZE; 3497 bool is_kmalloc = true; 3498 3499 /* Safety check */ 3500 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3501 return -EINVAL; 3502 3503 /* Check whether we need temp memory */ 3504 if (param_offset != 0 || param_size < buff_len) { 3505 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3506 if (!desc_buf) 3507 return -ENOMEM; 3508 } else { 3509 desc_buf = param_read_buf; 3510 is_kmalloc = false; 3511 } 3512 3513 /* Request for full descriptor */ 3514 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3515 desc_id, desc_index, 0, 3516 desc_buf, &buff_len); 3517 if (ret) { 3518 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3519 __func__, desc_id, desc_index, param_offset, ret); 3520 goto out; 3521 } 3522 3523 /* Update descriptor length */ 3524 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3525 3526 if (param_offset >= buff_len) { 3527 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3528 __func__, param_offset, desc_id, buff_len); 3529 ret = -EINVAL; 3530 goto out; 3531 } 3532 3533 /* Sanity check */ 3534 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3535 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3536 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3537 ret = -EINVAL; 3538 goto out; 3539 } 3540 3541 if (is_kmalloc) { 3542 /* Make sure we don't copy more data than available */ 3543 if (param_offset >= buff_len) 3544 ret = -EINVAL; 3545 else 3546 memcpy(param_read_buf, &desc_buf[param_offset], 3547 min_t(u32, param_size, buff_len - param_offset)); 3548 } 3549 out: 3550 if (is_kmalloc) 3551 kfree(desc_buf); 3552 return ret; 3553 } 3554 3555 /** 3556 * struct uc_string_id - unicode string 3557 * 3558 * @len: size of this descriptor inclusive 3559 * @type: descriptor type 3560 * @uc: unicode string character 3561 */ 3562 struct uc_string_id { 3563 u8 len; 3564 u8 type; 3565 wchar_t uc[]; 3566 } __packed; 3567 3568 /* replace non-printable or non-ASCII characters with spaces */ 3569 static inline char ufshcd_remove_non_printable(u8 ch) 3570 { 3571 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3572 } 3573 3574 /** 3575 * ufshcd_read_string_desc - read string descriptor 3576 * @hba: pointer to adapter instance 3577 * @desc_index: descriptor index 3578 * @buf: pointer to buffer where descriptor would be read, 3579 * the caller should free the memory. 3580 * @ascii: if true convert from unicode to ascii characters 3581 * null terminated string. 3582 * 3583 * Return: 3584 * * string size on success. 3585 * * -ENOMEM: on allocation failure 3586 * * -EINVAL: on a wrong parameter 3587 */ 3588 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3589 u8 **buf, bool ascii) 3590 { 3591 struct uc_string_id *uc_str; 3592 u8 *str; 3593 int ret; 3594 3595 if (!buf) 3596 return -EINVAL; 3597 3598 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3599 if (!uc_str) 3600 return -ENOMEM; 3601 3602 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3603 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3604 if (ret < 0) { 3605 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3606 QUERY_REQ_RETRIES, ret); 3607 str = NULL; 3608 goto out; 3609 } 3610 3611 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3612 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3613 str = NULL; 3614 ret = 0; 3615 goto out; 3616 } 3617 3618 if (ascii) { 3619 ssize_t ascii_len; 3620 int i; 3621 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3622 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3623 str = kzalloc(ascii_len, GFP_KERNEL); 3624 if (!str) { 3625 ret = -ENOMEM; 3626 goto out; 3627 } 3628 3629 /* 3630 * the descriptor contains string in UTF16 format 3631 * we need to convert to utf-8 so it can be displayed 3632 */ 3633 ret = utf16s_to_utf8s(uc_str->uc, 3634 uc_str->len - QUERY_DESC_HDR_SIZE, 3635 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3636 3637 /* replace non-printable or non-ASCII characters with spaces */ 3638 for (i = 0; i < ret; i++) 3639 str[i] = ufshcd_remove_non_printable(str[i]); 3640 3641 str[ret++] = '\0'; 3642 3643 } else { 3644 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3645 if (!str) { 3646 ret = -ENOMEM; 3647 goto out; 3648 } 3649 ret = uc_str->len; 3650 } 3651 out: 3652 *buf = str; 3653 kfree(uc_str); 3654 return ret; 3655 } 3656 3657 /** 3658 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3659 * @hba: Pointer to adapter instance 3660 * @lun: lun id 3661 * @param_offset: offset of the parameter to read 3662 * @param_read_buf: pointer to buffer where parameter would be read 3663 * @param_size: sizeof(param_read_buf) 3664 * 3665 * Return: 0 in case of success, non-zero otherwise. 3666 */ 3667 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3668 int lun, 3669 enum unit_desc_param param_offset, 3670 u8 *param_read_buf, 3671 u32 param_size) 3672 { 3673 /* 3674 * Unit descriptors are only available for general purpose LUs (LUN id 3675 * from 0 to 7) and RPMB Well known LU. 3676 */ 3677 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3678 return -EOPNOTSUPP; 3679 3680 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3681 param_offset, param_read_buf, param_size); 3682 } 3683 3684 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3685 { 3686 int err = 0; 3687 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3688 3689 if (hba->dev_info.wspecversion >= 0x300) { 3690 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3691 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3692 &gating_wait); 3693 if (err) 3694 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3695 err, gating_wait); 3696 3697 if (gating_wait == 0) { 3698 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3699 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3700 gating_wait); 3701 } 3702 3703 hba->dev_info.clk_gating_wait_us = gating_wait; 3704 } 3705 3706 return err; 3707 } 3708 3709 /** 3710 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3711 * @hba: per adapter instance 3712 * 3713 * 1. Allocate DMA memory for Command Descriptor array 3714 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3715 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3716 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3717 * (UTMRDL) 3718 * 4. Allocate memory for local reference block(lrb). 3719 * 3720 * Return: 0 for success, non-zero in case of failure. 3721 */ 3722 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3723 { 3724 size_t utmrdl_size, utrdl_size, ucdl_size; 3725 3726 /* Allocate memory for UTP command descriptors */ 3727 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3728 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3729 ucdl_size, 3730 &hba->ucdl_dma_addr, 3731 GFP_KERNEL); 3732 3733 /* 3734 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3735 */ 3736 if (!hba->ucdl_base_addr || 3737 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3738 dev_err(hba->dev, 3739 "Command Descriptor Memory allocation failed\n"); 3740 goto out; 3741 } 3742 3743 /* 3744 * Allocate memory for UTP Transfer descriptors 3745 * UFSHCI requires 1KB alignment of UTRD 3746 */ 3747 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3748 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3749 utrdl_size, 3750 &hba->utrdl_dma_addr, 3751 GFP_KERNEL); 3752 if (!hba->utrdl_base_addr || 3753 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3754 dev_err(hba->dev, 3755 "Transfer Descriptor Memory allocation failed\n"); 3756 goto out; 3757 } 3758 3759 /* 3760 * Skip utmrdl allocation; it may have been 3761 * allocated during first pass and not released during 3762 * MCQ memory allocation. 3763 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3764 */ 3765 if (hba->utmrdl_base_addr) 3766 goto skip_utmrdl; 3767 /* 3768 * Allocate memory for UTP Task Management descriptors 3769 * UFSHCI requires 1KB alignment of UTMRD 3770 */ 3771 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3772 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3773 utmrdl_size, 3774 &hba->utmrdl_dma_addr, 3775 GFP_KERNEL); 3776 if (!hba->utmrdl_base_addr || 3777 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3778 dev_err(hba->dev, 3779 "Task Management Descriptor Memory allocation failed\n"); 3780 goto out; 3781 } 3782 3783 skip_utmrdl: 3784 /* Allocate memory for local reference block */ 3785 hba->lrb = devm_kcalloc(hba->dev, 3786 hba->nutrs, sizeof(struct ufshcd_lrb), 3787 GFP_KERNEL); 3788 if (!hba->lrb) { 3789 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3790 goto out; 3791 } 3792 return 0; 3793 out: 3794 return -ENOMEM; 3795 } 3796 3797 /** 3798 * ufshcd_host_memory_configure - configure local reference block with 3799 * memory offsets 3800 * @hba: per adapter instance 3801 * 3802 * Configure Host memory space 3803 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3804 * address. 3805 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3806 * and PRDT offset. 3807 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3808 * into local reference block. 3809 */ 3810 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3811 { 3812 struct utp_transfer_req_desc *utrdlp; 3813 dma_addr_t cmd_desc_dma_addr; 3814 dma_addr_t cmd_desc_element_addr; 3815 u16 response_offset; 3816 u16 prdt_offset; 3817 int cmd_desc_size; 3818 int i; 3819 3820 utrdlp = hba->utrdl_base_addr; 3821 3822 response_offset = 3823 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3824 prdt_offset = 3825 offsetof(struct utp_transfer_cmd_desc, prd_table); 3826 3827 cmd_desc_size = ufshcd_get_ucd_size(hba); 3828 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3829 3830 for (i = 0; i < hba->nutrs; i++) { 3831 /* Configure UTRD with command descriptor base address */ 3832 cmd_desc_element_addr = 3833 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3834 utrdlp[i].command_desc_base_addr = 3835 cpu_to_le64(cmd_desc_element_addr); 3836 3837 /* Response upiu and prdt offset should be in double words */ 3838 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3839 utrdlp[i].response_upiu_offset = 3840 cpu_to_le16(response_offset); 3841 utrdlp[i].prd_table_offset = 3842 cpu_to_le16(prdt_offset); 3843 utrdlp[i].response_upiu_length = 3844 cpu_to_le16(ALIGNED_UPIU_SIZE); 3845 } else { 3846 utrdlp[i].response_upiu_offset = 3847 cpu_to_le16(response_offset >> 2); 3848 utrdlp[i].prd_table_offset = 3849 cpu_to_le16(prdt_offset >> 2); 3850 utrdlp[i].response_upiu_length = 3851 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3852 } 3853 3854 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3855 } 3856 } 3857 3858 /** 3859 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3860 * @hba: per adapter instance 3861 * 3862 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3863 * in order to initialize the Unipro link startup procedure. 3864 * Once the Unipro links are up, the device connected to the controller 3865 * is detected. 3866 * 3867 * Return: 0 on success, non-zero value on failure. 3868 */ 3869 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3870 { 3871 struct uic_command uic_cmd = {0}; 3872 int ret; 3873 3874 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3875 3876 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3877 if (ret) 3878 dev_dbg(hba->dev, 3879 "dme-link-startup: error code %d\n", ret); 3880 return ret; 3881 } 3882 /** 3883 * ufshcd_dme_reset - UIC command for DME_RESET 3884 * @hba: per adapter instance 3885 * 3886 * DME_RESET command is issued in order to reset UniPro stack. 3887 * This function now deals with cold reset. 3888 * 3889 * Return: 0 on success, non-zero value on failure. 3890 */ 3891 static int ufshcd_dme_reset(struct ufs_hba *hba) 3892 { 3893 struct uic_command uic_cmd = {0}; 3894 int ret; 3895 3896 uic_cmd.command = UIC_CMD_DME_RESET; 3897 3898 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3899 if (ret) 3900 dev_err(hba->dev, 3901 "dme-reset: error code %d\n", ret); 3902 3903 return ret; 3904 } 3905 3906 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 3907 int agreed_gear, 3908 int adapt_val) 3909 { 3910 int ret; 3911 3912 if (agreed_gear < UFS_HS_G4) 3913 adapt_val = PA_NO_ADAPT; 3914 3915 ret = ufshcd_dme_set(hba, 3916 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 3917 adapt_val); 3918 return ret; 3919 } 3920 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 3921 3922 /** 3923 * ufshcd_dme_enable - UIC command for DME_ENABLE 3924 * @hba: per adapter instance 3925 * 3926 * DME_ENABLE command is issued in order to enable UniPro stack. 3927 * 3928 * Return: 0 on success, non-zero value on failure. 3929 */ 3930 static int ufshcd_dme_enable(struct ufs_hba *hba) 3931 { 3932 struct uic_command uic_cmd = {0}; 3933 int ret; 3934 3935 uic_cmd.command = UIC_CMD_DME_ENABLE; 3936 3937 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3938 if (ret) 3939 dev_err(hba->dev, 3940 "dme-enable: error code %d\n", ret); 3941 3942 return ret; 3943 } 3944 3945 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3946 { 3947 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3948 unsigned long min_sleep_time_us; 3949 3950 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3951 return; 3952 3953 /* 3954 * last_dme_cmd_tstamp will be 0 only for 1st call to 3955 * this function 3956 */ 3957 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3958 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3959 } else { 3960 unsigned long delta = 3961 (unsigned long) ktime_to_us( 3962 ktime_sub(ktime_get(), 3963 hba->last_dme_cmd_tstamp)); 3964 3965 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3966 min_sleep_time_us = 3967 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 3968 else 3969 return; /* no more delay required */ 3970 } 3971 3972 /* allow sleep for extra 50us if needed */ 3973 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 3974 } 3975 3976 /** 3977 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 3978 * @hba: per adapter instance 3979 * @attr_sel: uic command argument1 3980 * @attr_set: attribute set type as uic command argument2 3981 * @mib_val: setting value as uic command argument3 3982 * @peer: indicate whether peer or local 3983 * 3984 * Return: 0 on success, non-zero value on failure. 3985 */ 3986 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 3987 u8 attr_set, u32 mib_val, u8 peer) 3988 { 3989 struct uic_command uic_cmd = {0}; 3990 static const char *const action[] = { 3991 "dme-set", 3992 "dme-peer-set" 3993 }; 3994 const char *set = action[!!peer]; 3995 int ret; 3996 int retries = UFS_UIC_COMMAND_RETRIES; 3997 3998 uic_cmd.command = peer ? 3999 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 4000 uic_cmd.argument1 = attr_sel; 4001 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 4002 uic_cmd.argument3 = mib_val; 4003 4004 do { 4005 /* for peer attributes we retry upon failure */ 4006 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4007 if (ret) 4008 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4009 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4010 } while (ret && peer && --retries); 4011 4012 if (ret) 4013 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4014 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4015 UFS_UIC_COMMAND_RETRIES - retries); 4016 4017 return ret; 4018 } 4019 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4020 4021 /** 4022 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4023 * @hba: per adapter instance 4024 * @attr_sel: uic command argument1 4025 * @mib_val: the value of the attribute as returned by the UIC command 4026 * @peer: indicate whether peer or local 4027 * 4028 * Return: 0 on success, non-zero value on failure. 4029 */ 4030 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4031 u32 *mib_val, u8 peer) 4032 { 4033 struct uic_command uic_cmd = {0}; 4034 static const char *const action[] = { 4035 "dme-get", 4036 "dme-peer-get" 4037 }; 4038 const char *get = action[!!peer]; 4039 int ret; 4040 int retries = UFS_UIC_COMMAND_RETRIES; 4041 struct ufs_pa_layer_attr orig_pwr_info; 4042 struct ufs_pa_layer_attr temp_pwr_info; 4043 bool pwr_mode_change = false; 4044 4045 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4046 orig_pwr_info = hba->pwr_info; 4047 temp_pwr_info = orig_pwr_info; 4048 4049 if (orig_pwr_info.pwr_tx == FAST_MODE || 4050 orig_pwr_info.pwr_rx == FAST_MODE) { 4051 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4052 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4053 pwr_mode_change = true; 4054 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4055 orig_pwr_info.pwr_rx == SLOW_MODE) { 4056 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4057 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4058 pwr_mode_change = true; 4059 } 4060 if (pwr_mode_change) { 4061 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4062 if (ret) 4063 goto out; 4064 } 4065 } 4066 4067 uic_cmd.command = peer ? 4068 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 4069 uic_cmd.argument1 = attr_sel; 4070 4071 do { 4072 /* for peer attributes we retry upon failure */ 4073 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4074 if (ret) 4075 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4076 get, UIC_GET_ATTR_ID(attr_sel), ret); 4077 } while (ret && peer && --retries); 4078 4079 if (ret) 4080 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4081 get, UIC_GET_ATTR_ID(attr_sel), 4082 UFS_UIC_COMMAND_RETRIES - retries); 4083 4084 if (mib_val && !ret) 4085 *mib_val = uic_cmd.argument3; 4086 4087 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4088 && pwr_mode_change) 4089 ufshcd_change_power_mode(hba, &orig_pwr_info); 4090 out: 4091 return ret; 4092 } 4093 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4094 4095 /** 4096 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4097 * state) and waits for it to take effect. 4098 * 4099 * @hba: per adapter instance 4100 * @cmd: UIC command to execute 4101 * 4102 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4103 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4104 * and device UniPro link and hence it's final completion would be indicated by 4105 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4106 * addition to normal UIC command completion Status (UCCS). This function only 4107 * returns after the relevant status bits indicate the completion. 4108 * 4109 * Return: 0 on success, non-zero value on failure. 4110 */ 4111 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4112 { 4113 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4114 unsigned long flags; 4115 u8 status; 4116 int ret; 4117 bool reenable_intr = false; 4118 4119 mutex_lock(&hba->uic_cmd_mutex); 4120 ufshcd_add_delay_before_dme_cmd(hba); 4121 4122 spin_lock_irqsave(hba->host->host_lock, flags); 4123 if (ufshcd_is_link_broken(hba)) { 4124 ret = -ENOLINK; 4125 goto out_unlock; 4126 } 4127 hba->uic_async_done = &uic_async_done; 4128 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4129 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4130 /* 4131 * Make sure UIC command completion interrupt is disabled before 4132 * issuing UIC command. 4133 */ 4134 wmb(); 4135 reenable_intr = true; 4136 } 4137 spin_unlock_irqrestore(hba->host->host_lock, flags); 4138 ret = __ufshcd_send_uic_cmd(hba, cmd, false); 4139 if (ret) { 4140 dev_err(hba->dev, 4141 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4142 cmd->command, cmd->argument3, ret); 4143 goto out; 4144 } 4145 4146 if (!wait_for_completion_timeout(hba->uic_async_done, 4147 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4148 dev_err(hba->dev, 4149 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4150 cmd->command, cmd->argument3); 4151 4152 if (!cmd->cmd_active) { 4153 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4154 __func__); 4155 goto check_upmcrs; 4156 } 4157 4158 ret = -ETIMEDOUT; 4159 goto out; 4160 } 4161 4162 check_upmcrs: 4163 status = ufshcd_get_upmcrs(hba); 4164 if (status != PWR_LOCAL) { 4165 dev_err(hba->dev, 4166 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4167 cmd->command, status); 4168 ret = (status != PWR_OK) ? status : -1; 4169 } 4170 out: 4171 if (ret) { 4172 ufshcd_print_host_state(hba); 4173 ufshcd_print_pwr_info(hba); 4174 ufshcd_print_evt_hist(hba); 4175 } 4176 4177 spin_lock_irqsave(hba->host->host_lock, flags); 4178 hba->active_uic_cmd = NULL; 4179 hba->uic_async_done = NULL; 4180 if (reenable_intr) 4181 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4182 if (ret) { 4183 ufshcd_set_link_broken(hba); 4184 ufshcd_schedule_eh_work(hba); 4185 } 4186 out_unlock: 4187 spin_unlock_irqrestore(hba->host->host_lock, flags); 4188 mutex_unlock(&hba->uic_cmd_mutex); 4189 4190 return ret; 4191 } 4192 4193 /** 4194 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4195 * using DME_SET primitives. 4196 * @hba: per adapter instance 4197 * @mode: powr mode value 4198 * 4199 * Return: 0 on success, non-zero value on failure. 4200 */ 4201 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4202 { 4203 struct uic_command uic_cmd = {0}; 4204 int ret; 4205 4206 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4207 ret = ufshcd_dme_set(hba, 4208 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4209 if (ret) { 4210 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4211 __func__, ret); 4212 goto out; 4213 } 4214 } 4215 4216 uic_cmd.command = UIC_CMD_DME_SET; 4217 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 4218 uic_cmd.argument3 = mode; 4219 ufshcd_hold(hba); 4220 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4221 ufshcd_release(hba); 4222 4223 out: 4224 return ret; 4225 } 4226 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4227 4228 int ufshcd_link_recovery(struct ufs_hba *hba) 4229 { 4230 int ret; 4231 unsigned long flags; 4232 4233 spin_lock_irqsave(hba->host->host_lock, flags); 4234 hba->ufshcd_state = UFSHCD_STATE_RESET; 4235 ufshcd_set_eh_in_progress(hba); 4236 spin_unlock_irqrestore(hba->host->host_lock, flags); 4237 4238 /* Reset the attached device */ 4239 ufshcd_device_reset(hba); 4240 4241 ret = ufshcd_host_reset_and_restore(hba); 4242 4243 spin_lock_irqsave(hba->host->host_lock, flags); 4244 if (ret) 4245 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4246 ufshcd_clear_eh_in_progress(hba); 4247 spin_unlock_irqrestore(hba->host->host_lock, flags); 4248 4249 if (ret) 4250 dev_err(hba->dev, "%s: link recovery failed, err %d", 4251 __func__, ret); 4252 4253 return ret; 4254 } 4255 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4256 4257 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4258 { 4259 int ret; 4260 struct uic_command uic_cmd = {0}; 4261 ktime_t start = ktime_get(); 4262 4263 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4264 4265 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 4266 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4267 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4268 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4269 4270 if (ret) 4271 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4272 __func__, ret); 4273 else 4274 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4275 POST_CHANGE); 4276 4277 return ret; 4278 } 4279 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4280 4281 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4282 { 4283 struct uic_command uic_cmd = {0}; 4284 int ret; 4285 ktime_t start = ktime_get(); 4286 4287 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4288 4289 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 4290 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4291 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4292 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4293 4294 if (ret) { 4295 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4296 __func__, ret); 4297 } else { 4298 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4299 POST_CHANGE); 4300 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4301 hba->ufs_stats.hibern8_exit_cnt++; 4302 } 4303 4304 return ret; 4305 } 4306 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4307 4308 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4309 { 4310 unsigned long flags; 4311 bool update = false; 4312 4313 if (!ufshcd_is_auto_hibern8_supported(hba)) 4314 return; 4315 4316 spin_lock_irqsave(hba->host->host_lock, flags); 4317 if (hba->ahit != ahit) { 4318 hba->ahit = ahit; 4319 update = true; 4320 } 4321 spin_unlock_irqrestore(hba->host->host_lock, flags); 4322 4323 if (update && 4324 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4325 ufshcd_rpm_get_sync(hba); 4326 ufshcd_hold(hba); 4327 ufshcd_auto_hibern8_enable(hba); 4328 ufshcd_release(hba); 4329 ufshcd_rpm_put_sync(hba); 4330 } 4331 } 4332 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4333 4334 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4335 { 4336 if (!ufshcd_is_auto_hibern8_supported(hba)) 4337 return; 4338 4339 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4340 } 4341 4342 /** 4343 * ufshcd_init_pwr_info - setting the POR (power on reset) 4344 * values in hba power info 4345 * @hba: per-adapter instance 4346 */ 4347 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4348 { 4349 hba->pwr_info.gear_rx = UFS_PWM_G1; 4350 hba->pwr_info.gear_tx = UFS_PWM_G1; 4351 hba->pwr_info.lane_rx = UFS_LANE_1; 4352 hba->pwr_info.lane_tx = UFS_LANE_1; 4353 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4354 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4355 hba->pwr_info.hs_rate = 0; 4356 } 4357 4358 /** 4359 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4360 * @hba: per-adapter instance 4361 * 4362 * Return: 0 upon success; < 0 upon failure. 4363 */ 4364 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4365 { 4366 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4367 4368 if (hba->max_pwr_info.is_valid) 4369 return 0; 4370 4371 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4372 pwr_info->pwr_tx = FASTAUTO_MODE; 4373 pwr_info->pwr_rx = FASTAUTO_MODE; 4374 } else { 4375 pwr_info->pwr_tx = FAST_MODE; 4376 pwr_info->pwr_rx = FAST_MODE; 4377 } 4378 pwr_info->hs_rate = PA_HS_MODE_B; 4379 4380 /* Get the connected lane count */ 4381 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4382 &pwr_info->lane_rx); 4383 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4384 &pwr_info->lane_tx); 4385 4386 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4387 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4388 __func__, 4389 pwr_info->lane_rx, 4390 pwr_info->lane_tx); 4391 return -EINVAL; 4392 } 4393 4394 /* 4395 * First, get the maximum gears of HS speed. 4396 * If a zero value, it means there is no HSGEAR capability. 4397 * Then, get the maximum gears of PWM speed. 4398 */ 4399 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4400 if (!pwr_info->gear_rx) { 4401 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4402 &pwr_info->gear_rx); 4403 if (!pwr_info->gear_rx) { 4404 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4405 __func__, pwr_info->gear_rx); 4406 return -EINVAL; 4407 } 4408 pwr_info->pwr_rx = SLOW_MODE; 4409 } 4410 4411 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4412 &pwr_info->gear_tx); 4413 if (!pwr_info->gear_tx) { 4414 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4415 &pwr_info->gear_tx); 4416 if (!pwr_info->gear_tx) { 4417 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4418 __func__, pwr_info->gear_tx); 4419 return -EINVAL; 4420 } 4421 pwr_info->pwr_tx = SLOW_MODE; 4422 } 4423 4424 hba->max_pwr_info.is_valid = true; 4425 return 0; 4426 } 4427 4428 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4429 struct ufs_pa_layer_attr *pwr_mode) 4430 { 4431 int ret; 4432 4433 /* if already configured to the requested pwr_mode */ 4434 if (!hba->force_pmc && 4435 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4436 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4437 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4438 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4439 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4440 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4441 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4442 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4443 return 0; 4444 } 4445 4446 /* 4447 * Configure attributes for power mode change with below. 4448 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4449 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4450 * - PA_HSSERIES 4451 */ 4452 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4453 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4454 pwr_mode->lane_rx); 4455 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4456 pwr_mode->pwr_rx == FAST_MODE) 4457 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4458 else 4459 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4460 4461 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4462 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4463 pwr_mode->lane_tx); 4464 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4465 pwr_mode->pwr_tx == FAST_MODE) 4466 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4467 else 4468 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4469 4470 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4471 pwr_mode->pwr_tx == FASTAUTO_MODE || 4472 pwr_mode->pwr_rx == FAST_MODE || 4473 pwr_mode->pwr_tx == FAST_MODE) 4474 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4475 pwr_mode->hs_rate); 4476 4477 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4478 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4479 DL_FC0ProtectionTimeOutVal_Default); 4480 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4481 DL_TC0ReplayTimeOutVal_Default); 4482 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4483 DL_AFC0ReqTimeOutVal_Default); 4484 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4485 DL_FC1ProtectionTimeOutVal_Default); 4486 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4487 DL_TC1ReplayTimeOutVal_Default); 4488 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4489 DL_AFC1ReqTimeOutVal_Default); 4490 4491 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4492 DL_FC0ProtectionTimeOutVal_Default); 4493 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4494 DL_TC0ReplayTimeOutVal_Default); 4495 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4496 DL_AFC0ReqTimeOutVal_Default); 4497 } 4498 4499 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4500 | pwr_mode->pwr_tx); 4501 4502 if (ret) { 4503 dev_err(hba->dev, 4504 "%s: power mode change failed %d\n", __func__, ret); 4505 } else { 4506 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4507 pwr_mode); 4508 4509 memcpy(&hba->pwr_info, pwr_mode, 4510 sizeof(struct ufs_pa_layer_attr)); 4511 } 4512 4513 return ret; 4514 } 4515 4516 /** 4517 * ufshcd_config_pwr_mode - configure a new power mode 4518 * @hba: per-adapter instance 4519 * @desired_pwr_mode: desired power configuration 4520 * 4521 * Return: 0 upon success; < 0 upon failure. 4522 */ 4523 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4524 struct ufs_pa_layer_attr *desired_pwr_mode) 4525 { 4526 struct ufs_pa_layer_attr final_params = { 0 }; 4527 int ret; 4528 4529 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4530 desired_pwr_mode, &final_params); 4531 4532 if (ret) 4533 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4534 4535 ret = ufshcd_change_power_mode(hba, &final_params); 4536 4537 return ret; 4538 } 4539 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4540 4541 /** 4542 * ufshcd_complete_dev_init() - checks device readiness 4543 * @hba: per-adapter instance 4544 * 4545 * Set fDeviceInit flag and poll until device toggles it. 4546 * 4547 * Return: 0 upon success; < 0 upon failure. 4548 */ 4549 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4550 { 4551 int err; 4552 bool flag_res = true; 4553 ktime_t timeout; 4554 4555 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4556 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4557 if (err) { 4558 dev_err(hba->dev, 4559 "%s: setting fDeviceInit flag failed with error %d\n", 4560 __func__, err); 4561 goto out; 4562 } 4563 4564 /* Poll fDeviceInit flag to be cleared */ 4565 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4566 do { 4567 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4568 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4569 if (!flag_res) 4570 break; 4571 usleep_range(500, 1000); 4572 } while (ktime_before(ktime_get(), timeout)); 4573 4574 if (err) { 4575 dev_err(hba->dev, 4576 "%s: reading fDeviceInit flag failed with error %d\n", 4577 __func__, err); 4578 } else if (flag_res) { 4579 dev_err(hba->dev, 4580 "%s: fDeviceInit was not cleared by the device\n", 4581 __func__); 4582 err = -EBUSY; 4583 } 4584 out: 4585 return err; 4586 } 4587 4588 /** 4589 * ufshcd_make_hba_operational - Make UFS controller operational 4590 * @hba: per adapter instance 4591 * 4592 * To bring UFS host controller to operational state, 4593 * 1. Enable required interrupts 4594 * 2. Configure interrupt aggregation 4595 * 3. Program UTRL and UTMRL base address 4596 * 4. Configure run-stop-registers 4597 * 4598 * Return: 0 on success, non-zero value on failure. 4599 */ 4600 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4601 { 4602 int err = 0; 4603 u32 reg; 4604 4605 /* Enable required interrupts */ 4606 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4607 4608 /* Configure interrupt aggregation */ 4609 if (ufshcd_is_intr_aggr_allowed(hba)) 4610 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4611 else 4612 ufshcd_disable_intr_aggr(hba); 4613 4614 /* Configure UTRL and UTMRL base address registers */ 4615 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4616 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4617 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4618 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4619 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4620 REG_UTP_TASK_REQ_LIST_BASE_L); 4621 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4622 REG_UTP_TASK_REQ_LIST_BASE_H); 4623 4624 /* 4625 * Make sure base address and interrupt setup are updated before 4626 * enabling the run/stop registers below. 4627 */ 4628 wmb(); 4629 4630 /* 4631 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4632 */ 4633 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4634 if (!(ufshcd_get_lists_status(reg))) { 4635 ufshcd_enable_run_stop_reg(hba); 4636 } else { 4637 dev_err(hba->dev, 4638 "Host controller not ready to process requests"); 4639 err = -EIO; 4640 } 4641 4642 return err; 4643 } 4644 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4645 4646 /** 4647 * ufshcd_hba_stop - Send controller to reset state 4648 * @hba: per adapter instance 4649 */ 4650 void ufshcd_hba_stop(struct ufs_hba *hba) 4651 { 4652 unsigned long flags; 4653 int err; 4654 4655 /* 4656 * Obtain the host lock to prevent that the controller is disabled 4657 * while the UFS interrupt handler is active on another CPU. 4658 */ 4659 spin_lock_irqsave(hba->host->host_lock, flags); 4660 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4661 spin_unlock_irqrestore(hba->host->host_lock, flags); 4662 4663 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4664 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4665 10, 1); 4666 if (err) 4667 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4668 } 4669 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4670 4671 /** 4672 * ufshcd_hba_execute_hce - initialize the controller 4673 * @hba: per adapter instance 4674 * 4675 * The controller resets itself and controller firmware initialization 4676 * sequence kicks off. When controller is ready it will set 4677 * the Host Controller Enable bit to 1. 4678 * 4679 * Return: 0 on success, non-zero value on failure. 4680 */ 4681 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4682 { 4683 int retry_outer = 3; 4684 int retry_inner; 4685 4686 start: 4687 if (ufshcd_is_hba_active(hba)) 4688 /* change controller state to "reset state" */ 4689 ufshcd_hba_stop(hba); 4690 4691 /* UniPro link is disabled at this point */ 4692 ufshcd_set_link_off(hba); 4693 4694 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4695 4696 /* start controller initialization sequence */ 4697 ufshcd_hba_start(hba); 4698 4699 /* 4700 * To initialize a UFS host controller HCE bit must be set to 1. 4701 * During initialization the HCE bit value changes from 1->0->1. 4702 * When the host controller completes initialization sequence 4703 * it sets the value of HCE bit to 1. The same HCE bit is read back 4704 * to check if the controller has completed initialization sequence. 4705 * So without this delay the value HCE = 1, set in the previous 4706 * instruction might be read back. 4707 * This delay can be changed based on the controller. 4708 */ 4709 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4710 4711 /* wait for the host controller to complete initialization */ 4712 retry_inner = 50; 4713 while (!ufshcd_is_hba_active(hba)) { 4714 if (retry_inner) { 4715 retry_inner--; 4716 } else { 4717 dev_err(hba->dev, 4718 "Controller enable failed\n"); 4719 if (retry_outer) { 4720 retry_outer--; 4721 goto start; 4722 } 4723 return -EIO; 4724 } 4725 usleep_range(1000, 1100); 4726 } 4727 4728 /* enable UIC related interrupts */ 4729 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4730 4731 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4732 4733 return 0; 4734 } 4735 4736 int ufshcd_hba_enable(struct ufs_hba *hba) 4737 { 4738 int ret; 4739 4740 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4741 ufshcd_set_link_off(hba); 4742 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4743 4744 /* enable UIC related interrupts */ 4745 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4746 ret = ufshcd_dme_reset(hba); 4747 if (ret) { 4748 dev_err(hba->dev, "DME_RESET failed\n"); 4749 return ret; 4750 } 4751 4752 ret = ufshcd_dme_enable(hba); 4753 if (ret) { 4754 dev_err(hba->dev, "Enabling DME failed\n"); 4755 return ret; 4756 } 4757 4758 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4759 } else { 4760 ret = ufshcd_hba_execute_hce(hba); 4761 } 4762 4763 return ret; 4764 } 4765 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4766 4767 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4768 { 4769 int tx_lanes = 0, i, err = 0; 4770 4771 if (!peer) 4772 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4773 &tx_lanes); 4774 else 4775 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4776 &tx_lanes); 4777 for (i = 0; i < tx_lanes; i++) { 4778 if (!peer) 4779 err = ufshcd_dme_set(hba, 4780 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4781 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4782 0); 4783 else 4784 err = ufshcd_dme_peer_set(hba, 4785 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4786 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4787 0); 4788 if (err) { 4789 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4790 __func__, peer, i, err); 4791 break; 4792 } 4793 } 4794 4795 return err; 4796 } 4797 4798 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4799 { 4800 return ufshcd_disable_tx_lcc(hba, true); 4801 } 4802 4803 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4804 { 4805 struct ufs_event_hist *e; 4806 4807 if (id >= UFS_EVT_CNT) 4808 return; 4809 4810 e = &hba->ufs_stats.event[id]; 4811 e->val[e->pos] = val; 4812 e->tstamp[e->pos] = local_clock(); 4813 e->cnt += 1; 4814 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4815 4816 ufshcd_vops_event_notify(hba, id, &val); 4817 } 4818 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4819 4820 /** 4821 * ufshcd_link_startup - Initialize unipro link startup 4822 * @hba: per adapter instance 4823 * 4824 * Return: 0 for success, non-zero in case of failure. 4825 */ 4826 static int ufshcd_link_startup(struct ufs_hba *hba) 4827 { 4828 int ret; 4829 int retries = DME_LINKSTARTUP_RETRIES; 4830 bool link_startup_again = false; 4831 4832 /* 4833 * If UFS device isn't active then we will have to issue link startup 4834 * 2 times to make sure the device state move to active. 4835 */ 4836 if (!ufshcd_is_ufs_dev_active(hba)) 4837 link_startup_again = true; 4838 4839 link_startup: 4840 do { 4841 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4842 4843 ret = ufshcd_dme_link_startup(hba); 4844 4845 /* check if device is detected by inter-connect layer */ 4846 if (!ret && !ufshcd_is_device_present(hba)) { 4847 ufshcd_update_evt_hist(hba, 4848 UFS_EVT_LINK_STARTUP_FAIL, 4849 0); 4850 dev_err(hba->dev, "%s: Device not present\n", __func__); 4851 ret = -ENXIO; 4852 goto out; 4853 } 4854 4855 /* 4856 * DME link lost indication is only received when link is up, 4857 * but we can't be sure if the link is up until link startup 4858 * succeeds. So reset the local Uni-Pro and try again. 4859 */ 4860 if (ret && retries && ufshcd_hba_enable(hba)) { 4861 ufshcd_update_evt_hist(hba, 4862 UFS_EVT_LINK_STARTUP_FAIL, 4863 (u32)ret); 4864 goto out; 4865 } 4866 } while (ret && retries--); 4867 4868 if (ret) { 4869 /* failed to get the link up... retire */ 4870 ufshcd_update_evt_hist(hba, 4871 UFS_EVT_LINK_STARTUP_FAIL, 4872 (u32)ret); 4873 goto out; 4874 } 4875 4876 if (link_startup_again) { 4877 link_startup_again = false; 4878 retries = DME_LINKSTARTUP_RETRIES; 4879 goto link_startup; 4880 } 4881 4882 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4883 ufshcd_init_pwr_info(hba); 4884 ufshcd_print_pwr_info(hba); 4885 4886 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4887 ret = ufshcd_disable_device_tx_lcc(hba); 4888 if (ret) 4889 goto out; 4890 } 4891 4892 /* Include any host controller configuration via UIC commands */ 4893 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4894 if (ret) 4895 goto out; 4896 4897 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4898 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4899 ret = ufshcd_make_hba_operational(hba); 4900 out: 4901 if (ret) { 4902 dev_err(hba->dev, "link startup failed %d\n", ret); 4903 ufshcd_print_host_state(hba); 4904 ufshcd_print_pwr_info(hba); 4905 ufshcd_print_evt_hist(hba); 4906 } 4907 return ret; 4908 } 4909 4910 /** 4911 * ufshcd_verify_dev_init() - Verify device initialization 4912 * @hba: per-adapter instance 4913 * 4914 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4915 * device Transport Protocol (UTP) layer is ready after a reset. 4916 * If the UTP layer at the device side is not initialized, it may 4917 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4918 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4919 * 4920 * Return: 0 upon success; < 0 upon failure. 4921 */ 4922 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4923 { 4924 int err = 0; 4925 int retries; 4926 4927 ufshcd_hold(hba); 4928 mutex_lock(&hba->dev_cmd.lock); 4929 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4930 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4931 hba->nop_out_timeout); 4932 4933 if (!err || err == -ETIMEDOUT) 4934 break; 4935 4936 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4937 } 4938 mutex_unlock(&hba->dev_cmd.lock); 4939 ufshcd_release(hba); 4940 4941 if (err) 4942 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4943 return err; 4944 } 4945 4946 /** 4947 * ufshcd_setup_links - associate link b/w device wlun and other luns 4948 * @sdev: pointer to SCSI device 4949 * @hba: pointer to ufs hba 4950 */ 4951 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 4952 { 4953 struct device_link *link; 4954 4955 /* 4956 * Device wlun is the supplier & rest of the luns are consumers. 4957 * This ensures that device wlun suspends after all other luns. 4958 */ 4959 if (hba->ufs_device_wlun) { 4960 link = device_link_add(&sdev->sdev_gendev, 4961 &hba->ufs_device_wlun->sdev_gendev, 4962 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 4963 if (!link) { 4964 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 4965 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 4966 return; 4967 } 4968 hba->luns_avail--; 4969 /* Ignore REPORT_LUN wlun probing */ 4970 if (hba->luns_avail == 1) { 4971 ufshcd_rpm_put(hba); 4972 return; 4973 } 4974 } else { 4975 /* 4976 * Device wlun is probed. The assumption is that WLUNs are 4977 * scanned before other LUNs. 4978 */ 4979 hba->luns_avail--; 4980 } 4981 } 4982 4983 /** 4984 * ufshcd_lu_init - Initialize the relevant parameters of the LU 4985 * @hba: per-adapter instance 4986 * @sdev: pointer to SCSI device 4987 */ 4988 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 4989 { 4990 int len = QUERY_DESC_MAX_SIZE; 4991 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 4992 u8 lun_qdepth = hba->nutrs; 4993 u8 *desc_buf; 4994 int ret; 4995 4996 desc_buf = kzalloc(len, GFP_KERNEL); 4997 if (!desc_buf) 4998 goto set_qdepth; 4999 5000 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5001 if (ret < 0) { 5002 if (ret == -EOPNOTSUPP) 5003 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5004 lun_qdepth = 1; 5005 kfree(desc_buf); 5006 goto set_qdepth; 5007 } 5008 5009 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5010 /* 5011 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5012 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5013 */ 5014 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5015 } 5016 /* 5017 * According to UFS device specification, the write protection mode is only supported by 5018 * normal LU, not supported by WLUN. 5019 */ 5020 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5021 !hba->dev_info.is_lu_power_on_wp && 5022 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5023 hba->dev_info.is_lu_power_on_wp = true; 5024 5025 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5026 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5027 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5028 hba->dev_info.b_advanced_rpmb_en = true; 5029 5030 5031 kfree(desc_buf); 5032 set_qdepth: 5033 /* 5034 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5035 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5036 */ 5037 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5038 scsi_change_queue_depth(sdev, lun_qdepth); 5039 } 5040 5041 /** 5042 * ufshcd_slave_alloc - handle initial SCSI device configurations 5043 * @sdev: pointer to SCSI device 5044 * 5045 * Return: success. 5046 */ 5047 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5048 { 5049 struct ufs_hba *hba; 5050 5051 hba = shost_priv(sdev->host); 5052 5053 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5054 sdev->use_10_for_ms = 1; 5055 5056 /* DBD field should be set to 1 in mode sense(10) */ 5057 sdev->set_dbd_for_ms = 1; 5058 5059 /* allow SCSI layer to restart the device in case of errors */ 5060 sdev->allow_restart = 1; 5061 5062 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5063 sdev->no_report_opcodes = 1; 5064 5065 /* WRITE_SAME command is not supported */ 5066 sdev->no_write_same = 1; 5067 5068 ufshcd_lu_init(hba, sdev); 5069 5070 ufshcd_setup_links(hba, sdev); 5071 5072 return 0; 5073 } 5074 5075 /** 5076 * ufshcd_change_queue_depth - change queue depth 5077 * @sdev: pointer to SCSI device 5078 * @depth: required depth to set 5079 * 5080 * Change queue depth and make sure the max. limits are not crossed. 5081 * 5082 * Return: new queue depth. 5083 */ 5084 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5085 { 5086 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5087 } 5088 5089 /** 5090 * ufshcd_slave_configure - adjust SCSI device configurations 5091 * @sdev: pointer to SCSI device 5092 * 5093 * Return: 0 (success). 5094 */ 5095 static int ufshcd_slave_configure(struct scsi_device *sdev) 5096 { 5097 struct ufs_hba *hba = shost_priv(sdev->host); 5098 struct request_queue *q = sdev->request_queue; 5099 5100 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 5101 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT) 5102 blk_queue_update_dma_alignment(q, SZ_4K - 1); 5103 /* 5104 * Block runtime-pm until all consumers are added. 5105 * Refer ufshcd_setup_links(). 5106 */ 5107 if (is_device_wlun(sdev)) 5108 pm_runtime_get_noresume(&sdev->sdev_gendev); 5109 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5110 sdev->rpm_autosuspend = 1; 5111 /* 5112 * Do not print messages during runtime PM to avoid never-ending cycles 5113 * of messages written back to storage by user space causing runtime 5114 * resume, causing more messages and so on. 5115 */ 5116 sdev->silence_suspend = 1; 5117 5118 ufshcd_crypto_register(hba, q); 5119 5120 return 0; 5121 } 5122 5123 /** 5124 * ufshcd_slave_destroy - remove SCSI device configurations 5125 * @sdev: pointer to SCSI device 5126 */ 5127 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5128 { 5129 struct ufs_hba *hba; 5130 unsigned long flags; 5131 5132 hba = shost_priv(sdev->host); 5133 5134 /* Drop the reference as it won't be needed anymore */ 5135 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5136 spin_lock_irqsave(hba->host->host_lock, flags); 5137 hba->ufs_device_wlun = NULL; 5138 spin_unlock_irqrestore(hba->host->host_lock, flags); 5139 } else if (hba->ufs_device_wlun) { 5140 struct device *supplier = NULL; 5141 5142 /* Ensure UFS Device WLUN exists and does not disappear */ 5143 spin_lock_irqsave(hba->host->host_lock, flags); 5144 if (hba->ufs_device_wlun) { 5145 supplier = &hba->ufs_device_wlun->sdev_gendev; 5146 get_device(supplier); 5147 } 5148 spin_unlock_irqrestore(hba->host->host_lock, flags); 5149 5150 if (supplier) { 5151 /* 5152 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5153 * device will not have been registered but can still 5154 * have a device link holding a reference to the device. 5155 */ 5156 device_link_remove(&sdev->sdev_gendev, supplier); 5157 put_device(supplier); 5158 } 5159 } 5160 } 5161 5162 /** 5163 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5164 * @lrbp: pointer to local reference block of completed command 5165 * @scsi_status: SCSI command status 5166 * 5167 * Return: value base on SCSI command status. 5168 */ 5169 static inline int 5170 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5171 { 5172 int result = 0; 5173 5174 switch (scsi_status) { 5175 case SAM_STAT_CHECK_CONDITION: 5176 ufshcd_copy_sense_data(lrbp); 5177 fallthrough; 5178 case SAM_STAT_GOOD: 5179 result |= DID_OK << 16 | scsi_status; 5180 break; 5181 case SAM_STAT_TASK_SET_FULL: 5182 case SAM_STAT_BUSY: 5183 case SAM_STAT_TASK_ABORTED: 5184 ufshcd_copy_sense_data(lrbp); 5185 result |= scsi_status; 5186 break; 5187 default: 5188 result |= DID_ERROR << 16; 5189 break; 5190 } /* end of switch */ 5191 5192 return result; 5193 } 5194 5195 /** 5196 * ufshcd_transfer_rsp_status - Get overall status of the response 5197 * @hba: per adapter instance 5198 * @lrbp: pointer to local reference block of completed command 5199 * @cqe: pointer to the completion queue entry 5200 * 5201 * Return: result of the command to notify SCSI midlayer. 5202 */ 5203 static inline int 5204 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5205 struct cq_entry *cqe) 5206 { 5207 int result = 0; 5208 int scsi_status; 5209 enum utp_ocs ocs; 5210 u8 upiu_flags; 5211 u32 resid; 5212 5213 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5214 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5215 /* 5216 * Test !overflow instead of underflow to support UFS devices that do 5217 * not set either flag. 5218 */ 5219 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5220 scsi_set_resid(lrbp->cmd, resid); 5221 5222 /* overall command status of utrd */ 5223 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5224 5225 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5226 if (lrbp->ucd_rsp_ptr->header.response || 5227 lrbp->ucd_rsp_ptr->header.status) 5228 ocs = OCS_SUCCESS; 5229 } 5230 5231 switch (ocs) { 5232 case OCS_SUCCESS: 5233 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5234 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5235 case UPIU_TRANSACTION_RESPONSE: 5236 /* 5237 * get the result based on SCSI status response 5238 * to notify the SCSI midlayer of the command status 5239 */ 5240 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5241 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5242 5243 /* 5244 * Currently we are only supporting BKOPs exception 5245 * events hence we can ignore BKOPs exception event 5246 * during power management callbacks. BKOPs exception 5247 * event is not expected to be raised in runtime suspend 5248 * callback as it allows the urgent bkops. 5249 * During system suspend, we are anyway forcefully 5250 * disabling the bkops and if urgent bkops is needed 5251 * it will be enabled on system resume. Long term 5252 * solution could be to abort the system suspend if 5253 * UFS device needs urgent BKOPs. 5254 */ 5255 if (!hba->pm_op_in_progress && 5256 !ufshcd_eh_in_progress(hba) && 5257 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5258 /* Flushed in suspend */ 5259 schedule_work(&hba->eeh_work); 5260 break; 5261 case UPIU_TRANSACTION_REJECT_UPIU: 5262 /* TODO: handle Reject UPIU Response */ 5263 result = DID_ERROR << 16; 5264 dev_err(hba->dev, 5265 "Reject UPIU not fully implemented\n"); 5266 break; 5267 default: 5268 dev_err(hba->dev, 5269 "Unexpected request response code = %x\n", 5270 result); 5271 result = DID_ERROR << 16; 5272 break; 5273 } 5274 break; 5275 case OCS_ABORTED: 5276 result |= DID_ABORT << 16; 5277 break; 5278 case OCS_INVALID_COMMAND_STATUS: 5279 result |= DID_REQUEUE << 16; 5280 break; 5281 case OCS_INVALID_CMD_TABLE_ATTR: 5282 case OCS_INVALID_PRDT_ATTR: 5283 case OCS_MISMATCH_DATA_BUF_SIZE: 5284 case OCS_MISMATCH_RESP_UPIU_SIZE: 5285 case OCS_PEER_COMM_FAILURE: 5286 case OCS_FATAL_ERROR: 5287 case OCS_DEVICE_FATAL_ERROR: 5288 case OCS_INVALID_CRYPTO_CONFIG: 5289 case OCS_GENERAL_CRYPTO_ERROR: 5290 default: 5291 result |= DID_ERROR << 16; 5292 dev_err(hba->dev, 5293 "OCS error from controller = %x for tag %d\n", 5294 ocs, lrbp->task_tag); 5295 ufshcd_print_evt_hist(hba); 5296 ufshcd_print_host_state(hba); 5297 break; 5298 } /* end of switch */ 5299 5300 if ((host_byte(result) != DID_OK) && 5301 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5302 ufshcd_print_tr(hba, lrbp->task_tag, true); 5303 return result; 5304 } 5305 5306 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5307 u32 intr_mask) 5308 { 5309 if (!ufshcd_is_auto_hibern8_supported(hba) || 5310 !ufshcd_is_auto_hibern8_enabled(hba)) 5311 return false; 5312 5313 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5314 return false; 5315 5316 if (hba->active_uic_cmd && 5317 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5318 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5319 return false; 5320 5321 return true; 5322 } 5323 5324 /** 5325 * ufshcd_uic_cmd_compl - handle completion of uic command 5326 * @hba: per adapter instance 5327 * @intr_status: interrupt status generated by the controller 5328 * 5329 * Return: 5330 * IRQ_HANDLED - If interrupt is valid 5331 * IRQ_NONE - If invalid interrupt 5332 */ 5333 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5334 { 5335 irqreturn_t retval = IRQ_NONE; 5336 5337 spin_lock(hba->host->host_lock); 5338 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5339 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5340 5341 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5342 hba->active_uic_cmd->argument2 |= 5343 ufshcd_get_uic_cmd_result(hba); 5344 hba->active_uic_cmd->argument3 = 5345 ufshcd_get_dme_attr_val(hba); 5346 if (!hba->uic_async_done) 5347 hba->active_uic_cmd->cmd_active = 0; 5348 complete(&hba->active_uic_cmd->done); 5349 retval = IRQ_HANDLED; 5350 } 5351 5352 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5353 hba->active_uic_cmd->cmd_active = 0; 5354 complete(hba->uic_async_done); 5355 retval = IRQ_HANDLED; 5356 } 5357 5358 if (retval == IRQ_HANDLED) 5359 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5360 UFS_CMD_COMP); 5361 spin_unlock(hba->host->host_lock); 5362 return retval; 5363 } 5364 5365 /* Release the resources allocated for processing a SCSI command. */ 5366 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5367 struct ufshcd_lrb *lrbp) 5368 { 5369 struct scsi_cmnd *cmd = lrbp->cmd; 5370 5371 scsi_dma_unmap(cmd); 5372 ufshcd_release(hba); 5373 ufshcd_clk_scaling_update_busy(hba); 5374 } 5375 5376 /** 5377 * ufshcd_compl_one_cqe - handle a completion queue entry 5378 * @hba: per adapter instance 5379 * @task_tag: the task tag of the request to be completed 5380 * @cqe: pointer to the completion queue entry 5381 */ 5382 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5383 struct cq_entry *cqe) 5384 { 5385 struct ufshcd_lrb *lrbp; 5386 struct scsi_cmnd *cmd; 5387 enum utp_ocs ocs; 5388 5389 lrbp = &hba->lrb[task_tag]; 5390 lrbp->compl_time_stamp = ktime_get(); 5391 cmd = lrbp->cmd; 5392 if (cmd) { 5393 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5394 ufshcd_update_monitor(hba, lrbp); 5395 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5396 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5397 ufshcd_release_scsi_cmd(hba, lrbp); 5398 /* Do not touch lrbp after scsi done */ 5399 scsi_done(cmd); 5400 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 5401 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 5402 if (hba->dev_cmd.complete) { 5403 if (cqe) { 5404 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5405 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5406 } 5407 complete(hba->dev_cmd.complete); 5408 ufshcd_clk_scaling_update_busy(hba); 5409 } 5410 } 5411 } 5412 5413 /** 5414 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5415 * @hba: per adapter instance 5416 * @completed_reqs: bitmask that indicates which requests to complete 5417 */ 5418 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5419 unsigned long completed_reqs) 5420 { 5421 int tag; 5422 5423 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5424 ufshcd_compl_one_cqe(hba, tag, NULL); 5425 } 5426 5427 /* Any value that is not an existing queue number is fine for this constant. */ 5428 enum { 5429 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5430 }; 5431 5432 static void ufshcd_clear_polled(struct ufs_hba *hba, 5433 unsigned long *completed_reqs) 5434 { 5435 int tag; 5436 5437 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5438 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5439 5440 if (!cmd) 5441 continue; 5442 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5443 __clear_bit(tag, completed_reqs); 5444 } 5445 } 5446 5447 /* 5448 * Return: > 0 if one or more commands have been completed or 0 if no 5449 * requests have been completed. 5450 */ 5451 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5452 { 5453 struct ufs_hba *hba = shost_priv(shost); 5454 unsigned long completed_reqs, flags; 5455 u32 tr_doorbell; 5456 struct ufs_hw_queue *hwq; 5457 5458 if (is_mcq_enabled(hba)) { 5459 hwq = &hba->uhq[queue_num]; 5460 5461 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5462 } 5463 5464 spin_lock_irqsave(&hba->outstanding_lock, flags); 5465 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5466 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5467 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5468 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5469 hba->outstanding_reqs); 5470 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5471 /* Do not complete polled requests from interrupt context. */ 5472 ufshcd_clear_polled(hba, &completed_reqs); 5473 } 5474 hba->outstanding_reqs &= ~completed_reqs; 5475 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5476 5477 if (completed_reqs) 5478 __ufshcd_transfer_req_compl(hba, completed_reqs); 5479 5480 return completed_reqs != 0; 5481 } 5482 5483 /** 5484 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5485 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5486 * to complete the pending transfers and free the resources associated with 5487 * the scsi command. 5488 * 5489 * @hba: per adapter instance 5490 * @force_compl: This flag is set to true when invoked 5491 * from ufshcd_host_reset_and_restore() in which case it requires special 5492 * handling because the host controller has been reset by ufshcd_hba_stop(). 5493 */ 5494 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5495 bool force_compl) 5496 { 5497 struct ufs_hw_queue *hwq; 5498 struct ufshcd_lrb *lrbp; 5499 struct scsi_cmnd *cmd; 5500 unsigned long flags; 5501 u32 hwq_num, utag; 5502 int tag; 5503 5504 for (tag = 0; tag < hba->nutrs; tag++) { 5505 lrbp = &hba->lrb[tag]; 5506 cmd = lrbp->cmd; 5507 if (!ufshcd_cmd_inflight(cmd) || 5508 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5509 continue; 5510 5511 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd)); 5512 hwq_num = blk_mq_unique_tag_to_hwq(utag); 5513 hwq = &hba->uhq[hwq_num]; 5514 5515 if (force_compl) { 5516 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5517 /* 5518 * For those cmds of which the cqes are not present 5519 * in the cq, complete them explicitly. 5520 */ 5521 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5522 spin_lock_irqsave(&hwq->cq_lock, flags); 5523 set_host_byte(cmd, DID_REQUEUE); 5524 ufshcd_release_scsi_cmd(hba, lrbp); 5525 scsi_done(cmd); 5526 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5527 } 5528 } else { 5529 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5530 } 5531 } 5532 } 5533 5534 /** 5535 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5536 * @hba: per adapter instance 5537 * 5538 * Return: 5539 * IRQ_HANDLED - If interrupt is valid 5540 * IRQ_NONE - If invalid interrupt 5541 */ 5542 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5543 { 5544 /* Resetting interrupt aggregation counters first and reading the 5545 * DOOR_BELL afterward allows us to handle all the completed requests. 5546 * In order to prevent other interrupts starvation the DB is read once 5547 * after reset. The down side of this solution is the possibility of 5548 * false interrupt if device completes another request after resetting 5549 * aggregation and before reading the DB. 5550 */ 5551 if (ufshcd_is_intr_aggr_allowed(hba) && 5552 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5553 ufshcd_reset_intr_aggr(hba); 5554 5555 if (ufs_fail_completion()) 5556 return IRQ_HANDLED; 5557 5558 /* 5559 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5560 * do not want polling to trigger spurious interrupt complaints. 5561 */ 5562 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5563 5564 return IRQ_HANDLED; 5565 } 5566 5567 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5568 { 5569 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5570 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5571 &ee_ctrl_mask); 5572 } 5573 5574 int ufshcd_write_ee_control(struct ufs_hba *hba) 5575 { 5576 int err; 5577 5578 mutex_lock(&hba->ee_ctrl_mutex); 5579 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5580 mutex_unlock(&hba->ee_ctrl_mutex); 5581 if (err) 5582 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5583 __func__, err); 5584 return err; 5585 } 5586 5587 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5588 const u16 *other_mask, u16 set, u16 clr) 5589 { 5590 u16 new_mask, ee_ctrl_mask; 5591 int err = 0; 5592 5593 mutex_lock(&hba->ee_ctrl_mutex); 5594 new_mask = (*mask & ~clr) | set; 5595 ee_ctrl_mask = new_mask | *other_mask; 5596 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5597 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5598 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5599 if (!err) { 5600 hba->ee_ctrl_mask = ee_ctrl_mask; 5601 *mask = new_mask; 5602 } 5603 mutex_unlock(&hba->ee_ctrl_mutex); 5604 return err; 5605 } 5606 5607 /** 5608 * ufshcd_disable_ee - disable exception event 5609 * @hba: per-adapter instance 5610 * @mask: exception event to disable 5611 * 5612 * Disables exception event in the device so that the EVENT_ALERT 5613 * bit is not set. 5614 * 5615 * Return: zero on success, non-zero error value on failure. 5616 */ 5617 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5618 { 5619 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5620 } 5621 5622 /** 5623 * ufshcd_enable_ee - enable exception event 5624 * @hba: per-adapter instance 5625 * @mask: exception event to enable 5626 * 5627 * Enable corresponding exception event in the device to allow 5628 * device to alert host in critical scenarios. 5629 * 5630 * Return: zero on success, non-zero error value on failure. 5631 */ 5632 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5633 { 5634 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5635 } 5636 5637 /** 5638 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5639 * @hba: per-adapter instance 5640 * 5641 * Allow device to manage background operations on its own. Enabling 5642 * this might lead to inconsistent latencies during normal data transfers 5643 * as the device is allowed to manage its own way of handling background 5644 * operations. 5645 * 5646 * Return: zero on success, non-zero on failure. 5647 */ 5648 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5649 { 5650 int err = 0; 5651 5652 if (hba->auto_bkops_enabled) 5653 goto out; 5654 5655 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5656 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5657 if (err) { 5658 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5659 __func__, err); 5660 goto out; 5661 } 5662 5663 hba->auto_bkops_enabled = true; 5664 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5665 5666 /* No need of URGENT_BKOPS exception from the device */ 5667 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5668 if (err) 5669 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5670 __func__, err); 5671 out: 5672 return err; 5673 } 5674 5675 /** 5676 * ufshcd_disable_auto_bkops - block device in doing background operations 5677 * @hba: per-adapter instance 5678 * 5679 * Disabling background operations improves command response latency but 5680 * has drawback of device moving into critical state where the device is 5681 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5682 * host is idle so that BKOPS are managed effectively without any negative 5683 * impacts. 5684 * 5685 * Return: zero on success, non-zero on failure. 5686 */ 5687 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5688 { 5689 int err = 0; 5690 5691 if (!hba->auto_bkops_enabled) 5692 goto out; 5693 5694 /* 5695 * If host assisted BKOPs is to be enabled, make sure 5696 * urgent bkops exception is allowed. 5697 */ 5698 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5699 if (err) { 5700 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5701 __func__, err); 5702 goto out; 5703 } 5704 5705 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5706 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5707 if (err) { 5708 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5709 __func__, err); 5710 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5711 goto out; 5712 } 5713 5714 hba->auto_bkops_enabled = false; 5715 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5716 hba->is_urgent_bkops_lvl_checked = false; 5717 out: 5718 return err; 5719 } 5720 5721 /** 5722 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5723 * @hba: per adapter instance 5724 * 5725 * After a device reset the device may toggle the BKOPS_EN flag 5726 * to default value. The s/w tracking variables should be updated 5727 * as well. This function would change the auto-bkops state based on 5728 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5729 */ 5730 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5731 { 5732 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5733 hba->auto_bkops_enabled = false; 5734 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5735 ufshcd_enable_auto_bkops(hba); 5736 } else { 5737 hba->auto_bkops_enabled = true; 5738 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5739 ufshcd_disable_auto_bkops(hba); 5740 } 5741 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5742 hba->is_urgent_bkops_lvl_checked = false; 5743 } 5744 5745 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5746 { 5747 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5748 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5749 } 5750 5751 /** 5752 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5753 * @hba: per-adapter instance 5754 * @status: bkops_status value 5755 * 5756 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5757 * flag in the device to permit background operations if the device 5758 * bkops_status is greater than or equal to "status" argument passed to 5759 * this function, disable otherwise. 5760 * 5761 * Return: 0 for success, non-zero in case of failure. 5762 * 5763 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5764 * to know whether auto bkops is enabled or disabled after this function 5765 * returns control to it. 5766 */ 5767 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5768 enum bkops_status status) 5769 { 5770 int err; 5771 u32 curr_status = 0; 5772 5773 err = ufshcd_get_bkops_status(hba, &curr_status); 5774 if (err) { 5775 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5776 __func__, err); 5777 goto out; 5778 } else if (curr_status > BKOPS_STATUS_MAX) { 5779 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5780 __func__, curr_status); 5781 err = -EINVAL; 5782 goto out; 5783 } 5784 5785 if (curr_status >= status) 5786 err = ufshcd_enable_auto_bkops(hba); 5787 else 5788 err = ufshcd_disable_auto_bkops(hba); 5789 out: 5790 return err; 5791 } 5792 5793 /** 5794 * ufshcd_urgent_bkops - handle urgent bkops exception event 5795 * @hba: per-adapter instance 5796 * 5797 * Enable fBackgroundOpsEn flag in the device to permit background 5798 * operations. 5799 * 5800 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5801 * and negative error value for any other failure. 5802 * 5803 * Return: 0 upon success; < 0 upon failure. 5804 */ 5805 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5806 { 5807 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5808 } 5809 5810 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5811 { 5812 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5813 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5814 } 5815 5816 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5817 { 5818 int err; 5819 u32 curr_status = 0; 5820 5821 if (hba->is_urgent_bkops_lvl_checked) 5822 goto enable_auto_bkops; 5823 5824 err = ufshcd_get_bkops_status(hba, &curr_status); 5825 if (err) { 5826 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5827 __func__, err); 5828 goto out; 5829 } 5830 5831 /* 5832 * We are seeing that some devices are raising the urgent bkops 5833 * exception events even when BKOPS status doesn't indicate performace 5834 * impacted or critical. Handle these device by determining their urgent 5835 * bkops status at runtime. 5836 */ 5837 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5838 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5839 __func__, curr_status); 5840 /* update the current status as the urgent bkops level */ 5841 hba->urgent_bkops_lvl = curr_status; 5842 hba->is_urgent_bkops_lvl_checked = true; 5843 } 5844 5845 enable_auto_bkops: 5846 err = ufshcd_enable_auto_bkops(hba); 5847 out: 5848 if (err < 0) 5849 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5850 __func__, err); 5851 } 5852 5853 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5854 { 5855 u32 value; 5856 5857 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5858 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5859 return; 5860 5861 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5862 5863 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5864 5865 /* 5866 * A placeholder for the platform vendors to add whatever additional 5867 * steps required 5868 */ 5869 } 5870 5871 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5872 { 5873 u8 index; 5874 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5875 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5876 5877 index = ufshcd_wb_get_query_index(hba); 5878 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5879 } 5880 5881 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5882 { 5883 int ret; 5884 5885 if (!ufshcd_is_wb_allowed(hba) || 5886 hba->dev_info.wb_enabled == enable) 5887 return 0; 5888 5889 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5890 if (ret) { 5891 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5892 __func__, enable ? "enabling" : "disabling", ret); 5893 return ret; 5894 } 5895 5896 hba->dev_info.wb_enabled = enable; 5897 dev_dbg(hba->dev, "%s: Write Booster %s\n", 5898 __func__, enable ? "enabled" : "disabled"); 5899 5900 return ret; 5901 } 5902 5903 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 5904 bool enable) 5905 { 5906 int ret; 5907 5908 ret = __ufshcd_wb_toggle(hba, enable, 5909 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 5910 if (ret) { 5911 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 5912 __func__, enable ? "enabling" : "disabling", ret); 5913 return; 5914 } 5915 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 5916 __func__, enable ? "enabled" : "disabled"); 5917 } 5918 5919 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 5920 { 5921 int ret; 5922 5923 if (!ufshcd_is_wb_allowed(hba) || 5924 hba->dev_info.wb_buf_flush_enabled == enable) 5925 return 0; 5926 5927 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 5928 if (ret) { 5929 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 5930 __func__, enable ? "enabling" : "disabling", ret); 5931 return ret; 5932 } 5933 5934 hba->dev_info.wb_buf_flush_enabled = enable; 5935 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 5936 __func__, enable ? "enabled" : "disabled"); 5937 5938 return ret; 5939 } 5940 5941 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5942 u32 avail_buf) 5943 { 5944 u32 cur_buf; 5945 int ret; 5946 u8 index; 5947 5948 index = ufshcd_wb_get_query_index(hba); 5949 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5950 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 5951 index, 0, &cur_buf); 5952 if (ret) { 5953 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 5954 __func__, ret); 5955 return false; 5956 } 5957 5958 if (!cur_buf) { 5959 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 5960 cur_buf); 5961 return false; 5962 } 5963 /* Let it continue to flush when available buffer exceeds threshold */ 5964 return avail_buf < hba->vps->wb_flush_threshold; 5965 } 5966 5967 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 5968 { 5969 if (ufshcd_is_wb_buf_flush_allowed(hba)) 5970 ufshcd_wb_toggle_buf_flush(hba, false); 5971 5972 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 5973 ufshcd_wb_toggle(hba, false); 5974 hba->caps &= ~UFSHCD_CAP_WB_EN; 5975 5976 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 5977 } 5978 5979 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 5980 { 5981 u32 lifetime; 5982 int ret; 5983 u8 index; 5984 5985 index = ufshcd_wb_get_query_index(hba); 5986 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5987 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 5988 index, 0, &lifetime); 5989 if (ret) { 5990 dev_err(hba->dev, 5991 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 5992 __func__, ret); 5993 return false; 5994 } 5995 5996 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 5997 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 5998 __func__, lifetime); 5999 return false; 6000 } 6001 6002 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6003 __func__, lifetime); 6004 6005 return true; 6006 } 6007 6008 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6009 { 6010 int ret; 6011 u32 avail_buf; 6012 u8 index; 6013 6014 if (!ufshcd_is_wb_allowed(hba)) 6015 return false; 6016 6017 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6018 ufshcd_wb_force_disable(hba); 6019 return false; 6020 } 6021 6022 /* 6023 * The ufs device needs the vcc to be ON to flush. 6024 * With user-space reduction enabled, it's enough to enable flush 6025 * by checking only the available buffer. The threshold 6026 * defined here is > 90% full. 6027 * With user-space preserved enabled, the current-buffer 6028 * should be checked too because the wb buffer size can reduce 6029 * when disk tends to be full. This info is provided by current 6030 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6031 * keeping vcc on when current buffer is empty. 6032 */ 6033 index = ufshcd_wb_get_query_index(hba); 6034 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6035 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6036 index, 0, &avail_buf); 6037 if (ret) { 6038 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6039 __func__, ret); 6040 return false; 6041 } 6042 6043 if (!hba->dev_info.b_presrv_uspc_en) 6044 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6045 6046 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6047 } 6048 6049 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6050 { 6051 struct ufs_hba *hba = container_of(to_delayed_work(work), 6052 struct ufs_hba, 6053 rpm_dev_flush_recheck_work); 6054 /* 6055 * To prevent unnecessary VCC power drain after device finishes 6056 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6057 * after a certain delay to recheck the threshold by next runtime 6058 * suspend. 6059 */ 6060 ufshcd_rpm_get_sync(hba); 6061 ufshcd_rpm_put_sync(hba); 6062 } 6063 6064 /** 6065 * ufshcd_exception_event_handler - handle exceptions raised by device 6066 * @work: pointer to work data 6067 * 6068 * Read bExceptionEventStatus attribute from the device and handle the 6069 * exception event accordingly. 6070 */ 6071 static void ufshcd_exception_event_handler(struct work_struct *work) 6072 { 6073 struct ufs_hba *hba; 6074 int err; 6075 u32 status = 0; 6076 hba = container_of(work, struct ufs_hba, eeh_work); 6077 6078 ufshcd_scsi_block_requests(hba); 6079 err = ufshcd_get_ee_status(hba, &status); 6080 if (err) { 6081 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6082 __func__, err); 6083 goto out; 6084 } 6085 6086 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6087 6088 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6089 ufshcd_bkops_exception_event_handler(hba); 6090 6091 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6092 ufshcd_temp_exception_event_handler(hba, status); 6093 6094 ufs_debugfs_exception_event(hba, status); 6095 out: 6096 ufshcd_scsi_unblock_requests(hba); 6097 } 6098 6099 /* Complete requests that have door-bell cleared */ 6100 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6101 { 6102 if (is_mcq_enabled(hba)) 6103 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6104 else 6105 ufshcd_transfer_req_compl(hba); 6106 6107 ufshcd_tmc_handler(hba); 6108 } 6109 6110 /** 6111 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6112 * to recover from the DL NAC errors or not. 6113 * @hba: per-adapter instance 6114 * 6115 * Return: true if error handling is required, false otherwise. 6116 */ 6117 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6118 { 6119 unsigned long flags; 6120 bool err_handling = true; 6121 6122 spin_lock_irqsave(hba->host->host_lock, flags); 6123 /* 6124 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6125 * device fatal error and/or DL NAC & REPLAY timeout errors. 6126 */ 6127 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6128 goto out; 6129 6130 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6131 ((hba->saved_err & UIC_ERROR) && 6132 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6133 goto out; 6134 6135 if ((hba->saved_err & UIC_ERROR) && 6136 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6137 int err; 6138 /* 6139 * wait for 50ms to see if we can get any other errors or not. 6140 */ 6141 spin_unlock_irqrestore(hba->host->host_lock, flags); 6142 msleep(50); 6143 spin_lock_irqsave(hba->host->host_lock, flags); 6144 6145 /* 6146 * now check if we have got any other severe errors other than 6147 * DL NAC error? 6148 */ 6149 if ((hba->saved_err & INT_FATAL_ERRORS) || 6150 ((hba->saved_err & UIC_ERROR) && 6151 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6152 goto out; 6153 6154 /* 6155 * As DL NAC is the only error received so far, send out NOP 6156 * command to confirm if link is still active or not. 6157 * - If we don't get any response then do error recovery. 6158 * - If we get response then clear the DL NAC error bit. 6159 */ 6160 6161 spin_unlock_irqrestore(hba->host->host_lock, flags); 6162 err = ufshcd_verify_dev_init(hba); 6163 spin_lock_irqsave(hba->host->host_lock, flags); 6164 6165 if (err) 6166 goto out; 6167 6168 /* Link seems to be alive hence ignore the DL NAC errors */ 6169 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6170 hba->saved_err &= ~UIC_ERROR; 6171 /* clear NAC error */ 6172 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6173 if (!hba->saved_uic_err) 6174 err_handling = false; 6175 } 6176 out: 6177 spin_unlock_irqrestore(hba->host->host_lock, flags); 6178 return err_handling; 6179 } 6180 6181 /* host lock must be held before calling this func */ 6182 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6183 { 6184 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6185 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6186 } 6187 6188 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6189 { 6190 lockdep_assert_held(hba->host->host_lock); 6191 6192 /* handle fatal errors only when link is not in error state */ 6193 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6194 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6195 ufshcd_is_saved_err_fatal(hba)) 6196 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6197 else 6198 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6199 queue_work(hba->eh_wq, &hba->eh_work); 6200 } 6201 } 6202 6203 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6204 { 6205 spin_lock_irq(hba->host->host_lock); 6206 hba->force_reset = true; 6207 ufshcd_schedule_eh_work(hba); 6208 spin_unlock_irq(hba->host->host_lock); 6209 } 6210 6211 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6212 { 6213 mutex_lock(&hba->wb_mutex); 6214 down_write(&hba->clk_scaling_lock); 6215 hba->clk_scaling.is_allowed = allow; 6216 up_write(&hba->clk_scaling_lock); 6217 mutex_unlock(&hba->wb_mutex); 6218 } 6219 6220 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6221 { 6222 if (suspend) { 6223 if (hba->clk_scaling.is_enabled) 6224 ufshcd_suspend_clkscaling(hba); 6225 ufshcd_clk_scaling_allow(hba, false); 6226 } else { 6227 ufshcd_clk_scaling_allow(hba, true); 6228 if (hba->clk_scaling.is_enabled) 6229 ufshcd_resume_clkscaling(hba); 6230 } 6231 } 6232 6233 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6234 { 6235 ufshcd_rpm_get_sync(hba); 6236 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6237 hba->is_sys_suspended) { 6238 enum ufs_pm_op pm_op; 6239 6240 /* 6241 * Don't assume anything of resume, if 6242 * resume fails, irq and clocks can be OFF, and powers 6243 * can be OFF or in LPM. 6244 */ 6245 ufshcd_setup_hba_vreg(hba, true); 6246 ufshcd_enable_irq(hba); 6247 ufshcd_setup_vreg(hba, true); 6248 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6249 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6250 ufshcd_hold(hba); 6251 if (!ufshcd_is_clkgating_allowed(hba)) 6252 ufshcd_setup_clocks(hba, true); 6253 ufshcd_release(hba); 6254 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6255 ufshcd_vops_resume(hba, pm_op); 6256 } else { 6257 ufshcd_hold(hba); 6258 if (ufshcd_is_clkscaling_supported(hba) && 6259 hba->clk_scaling.is_enabled) 6260 ufshcd_suspend_clkscaling(hba); 6261 ufshcd_clk_scaling_allow(hba, false); 6262 } 6263 ufshcd_scsi_block_requests(hba); 6264 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6265 blk_mq_wait_quiesce_done(&hba->host->tag_set); 6266 cancel_work_sync(&hba->eeh_work); 6267 } 6268 6269 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6270 { 6271 ufshcd_scsi_unblock_requests(hba); 6272 ufshcd_release(hba); 6273 if (ufshcd_is_clkscaling_supported(hba)) 6274 ufshcd_clk_scaling_suspend(hba, false); 6275 ufshcd_rpm_put(hba); 6276 } 6277 6278 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6279 { 6280 return (!hba->is_powered || hba->shutting_down || 6281 !hba->ufs_device_wlun || 6282 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6283 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6284 ufshcd_is_link_broken(hba)))); 6285 } 6286 6287 #ifdef CONFIG_PM 6288 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6289 { 6290 struct Scsi_Host *shost = hba->host; 6291 struct scsi_device *sdev; 6292 struct request_queue *q; 6293 int ret; 6294 6295 hba->is_sys_suspended = false; 6296 /* 6297 * Set RPM status of wlun device to RPM_ACTIVE, 6298 * this also clears its runtime error. 6299 */ 6300 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6301 6302 /* hba device might have a runtime error otherwise */ 6303 if (ret) 6304 ret = pm_runtime_set_active(hba->dev); 6305 /* 6306 * If wlun device had runtime error, we also need to resume those 6307 * consumer scsi devices in case any of them has failed to be 6308 * resumed due to supplier runtime resume failure. This is to unblock 6309 * blk_queue_enter in case there are bios waiting inside it. 6310 */ 6311 if (!ret) { 6312 shost_for_each_device(sdev, shost) { 6313 q = sdev->request_queue; 6314 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6315 q->rpm_status == RPM_SUSPENDING)) 6316 pm_request_resume(q->dev); 6317 } 6318 } 6319 } 6320 #else 6321 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6322 { 6323 } 6324 #endif 6325 6326 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6327 { 6328 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6329 u32 mode; 6330 6331 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6332 6333 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6334 return true; 6335 6336 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6337 return true; 6338 6339 return false; 6340 } 6341 6342 static bool ufshcd_abort_one(struct request *rq, void *priv) 6343 { 6344 int *ret = priv; 6345 u32 tag = rq->tag; 6346 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6347 struct scsi_device *sdev = cmd->device; 6348 struct Scsi_Host *shost = sdev->host; 6349 struct ufs_hba *hba = shost_priv(shost); 6350 6351 *ret = ufshcd_try_to_abort_task(hba, tag); 6352 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6353 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6354 *ret ? "failed" : "succeeded"); 6355 return *ret == 0; 6356 } 6357 6358 /** 6359 * ufshcd_abort_all - Abort all pending commands. 6360 * @hba: Host bus adapter pointer. 6361 * 6362 * Return: true if and only if the host controller needs to be reset. 6363 */ 6364 static bool ufshcd_abort_all(struct ufs_hba *hba) 6365 { 6366 int tag, ret = 0; 6367 6368 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6369 if (ret) 6370 goto out; 6371 6372 /* Clear pending task management requests */ 6373 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6374 ret = ufshcd_clear_tm_cmd(hba, tag); 6375 if (ret) 6376 goto out; 6377 } 6378 6379 out: 6380 /* Complete the requests that are cleared by s/w */ 6381 ufshcd_complete_requests(hba, false); 6382 6383 return ret != 0; 6384 } 6385 6386 /** 6387 * ufshcd_err_handler - handle UFS errors that require s/w attention 6388 * @work: pointer to work structure 6389 */ 6390 static void ufshcd_err_handler(struct work_struct *work) 6391 { 6392 int retries = MAX_ERR_HANDLER_RETRIES; 6393 struct ufs_hba *hba; 6394 unsigned long flags; 6395 bool needs_restore; 6396 bool needs_reset; 6397 int pmc_err; 6398 6399 hba = container_of(work, struct ufs_hba, eh_work); 6400 6401 dev_info(hba->dev, 6402 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6403 __func__, ufshcd_state_name[hba->ufshcd_state], 6404 hba->is_powered, hba->shutting_down, hba->saved_err, 6405 hba->saved_uic_err, hba->force_reset, 6406 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6407 6408 down(&hba->host_sem); 6409 spin_lock_irqsave(hba->host->host_lock, flags); 6410 if (ufshcd_err_handling_should_stop(hba)) { 6411 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6412 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6413 spin_unlock_irqrestore(hba->host->host_lock, flags); 6414 up(&hba->host_sem); 6415 return; 6416 } 6417 ufshcd_set_eh_in_progress(hba); 6418 spin_unlock_irqrestore(hba->host->host_lock, flags); 6419 ufshcd_err_handling_prepare(hba); 6420 /* Complete requests that have door-bell cleared by h/w */ 6421 ufshcd_complete_requests(hba, false); 6422 spin_lock_irqsave(hba->host->host_lock, flags); 6423 again: 6424 needs_restore = false; 6425 needs_reset = false; 6426 6427 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6428 hba->ufshcd_state = UFSHCD_STATE_RESET; 6429 /* 6430 * A full reset and restore might have happened after preparation 6431 * is finished, double check whether we should stop. 6432 */ 6433 if (ufshcd_err_handling_should_stop(hba)) 6434 goto skip_err_handling; 6435 6436 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6437 bool ret; 6438 6439 spin_unlock_irqrestore(hba->host->host_lock, flags); 6440 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6441 ret = ufshcd_quirk_dl_nac_errors(hba); 6442 spin_lock_irqsave(hba->host->host_lock, flags); 6443 if (!ret && ufshcd_err_handling_should_stop(hba)) 6444 goto skip_err_handling; 6445 } 6446 6447 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6448 (hba->saved_uic_err && 6449 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6450 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6451 6452 spin_unlock_irqrestore(hba->host->host_lock, flags); 6453 ufshcd_print_host_state(hba); 6454 ufshcd_print_pwr_info(hba); 6455 ufshcd_print_evt_hist(hba); 6456 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6457 ufshcd_print_trs_all(hba, pr_prdt); 6458 spin_lock_irqsave(hba->host->host_lock, flags); 6459 } 6460 6461 /* 6462 * if host reset is required then skip clearing the pending 6463 * transfers forcefully because they will get cleared during 6464 * host reset and restore 6465 */ 6466 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6467 ufshcd_is_saved_err_fatal(hba) || 6468 ((hba->saved_err & UIC_ERROR) && 6469 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6470 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6471 needs_reset = true; 6472 goto do_reset; 6473 } 6474 6475 /* 6476 * If LINERESET was caught, UFS might have been put to PWM mode, 6477 * check if power mode restore is needed. 6478 */ 6479 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6480 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6481 if (!hba->saved_uic_err) 6482 hba->saved_err &= ~UIC_ERROR; 6483 spin_unlock_irqrestore(hba->host->host_lock, flags); 6484 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6485 needs_restore = true; 6486 spin_lock_irqsave(hba->host->host_lock, flags); 6487 if (!hba->saved_err && !needs_restore) 6488 goto skip_err_handling; 6489 } 6490 6491 hba->silence_err_logs = true; 6492 /* release lock as clear command might sleep */ 6493 spin_unlock_irqrestore(hba->host->host_lock, flags); 6494 6495 needs_reset = ufshcd_abort_all(hba); 6496 6497 spin_lock_irqsave(hba->host->host_lock, flags); 6498 hba->silence_err_logs = false; 6499 if (needs_reset) 6500 goto do_reset; 6501 6502 /* 6503 * After all reqs and tasks are cleared from doorbell, 6504 * now it is safe to retore power mode. 6505 */ 6506 if (needs_restore) { 6507 spin_unlock_irqrestore(hba->host->host_lock, flags); 6508 /* 6509 * Hold the scaling lock just in case dev cmds 6510 * are sent via bsg and/or sysfs. 6511 */ 6512 down_write(&hba->clk_scaling_lock); 6513 hba->force_pmc = true; 6514 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6515 if (pmc_err) { 6516 needs_reset = true; 6517 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6518 __func__, pmc_err); 6519 } 6520 hba->force_pmc = false; 6521 ufshcd_print_pwr_info(hba); 6522 up_write(&hba->clk_scaling_lock); 6523 spin_lock_irqsave(hba->host->host_lock, flags); 6524 } 6525 6526 do_reset: 6527 /* Fatal errors need reset */ 6528 if (needs_reset) { 6529 int err; 6530 6531 hba->force_reset = false; 6532 spin_unlock_irqrestore(hba->host->host_lock, flags); 6533 err = ufshcd_reset_and_restore(hba); 6534 if (err) 6535 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6536 __func__, err); 6537 else 6538 ufshcd_recover_pm_error(hba); 6539 spin_lock_irqsave(hba->host->host_lock, flags); 6540 } 6541 6542 skip_err_handling: 6543 if (!needs_reset) { 6544 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6545 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6546 if (hba->saved_err || hba->saved_uic_err) 6547 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6548 __func__, hba->saved_err, hba->saved_uic_err); 6549 } 6550 /* Exit in an operational state or dead */ 6551 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6552 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6553 if (--retries) 6554 goto again; 6555 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6556 } 6557 ufshcd_clear_eh_in_progress(hba); 6558 spin_unlock_irqrestore(hba->host->host_lock, flags); 6559 ufshcd_err_handling_unprepare(hba); 6560 up(&hba->host_sem); 6561 6562 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6563 ufshcd_state_name[hba->ufshcd_state]); 6564 } 6565 6566 /** 6567 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6568 * @hba: per-adapter instance 6569 * 6570 * Return: 6571 * IRQ_HANDLED - If interrupt is valid 6572 * IRQ_NONE - If invalid interrupt 6573 */ 6574 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6575 { 6576 u32 reg; 6577 irqreturn_t retval = IRQ_NONE; 6578 6579 /* PHY layer error */ 6580 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6581 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6582 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6583 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6584 /* 6585 * To know whether this error is fatal or not, DB timeout 6586 * must be checked but this error is handled separately. 6587 */ 6588 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6589 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6590 __func__); 6591 6592 /* Got a LINERESET indication. */ 6593 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6594 struct uic_command *cmd = NULL; 6595 6596 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6597 if (hba->uic_async_done && hba->active_uic_cmd) 6598 cmd = hba->active_uic_cmd; 6599 /* 6600 * Ignore the LINERESET during power mode change 6601 * operation via DME_SET command. 6602 */ 6603 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6604 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6605 } 6606 retval |= IRQ_HANDLED; 6607 } 6608 6609 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6610 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6611 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6612 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6613 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6614 6615 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6616 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6617 else if (hba->dev_quirks & 6618 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6619 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6620 hba->uic_error |= 6621 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6622 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6623 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6624 } 6625 retval |= IRQ_HANDLED; 6626 } 6627 6628 /* UIC NL/TL/DME errors needs software retry */ 6629 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6630 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6631 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6632 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6633 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6634 retval |= IRQ_HANDLED; 6635 } 6636 6637 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6638 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6639 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6640 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6641 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6642 retval |= IRQ_HANDLED; 6643 } 6644 6645 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6646 if ((reg & UIC_DME_ERROR) && 6647 (reg & UIC_DME_ERROR_CODE_MASK)) { 6648 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6649 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6650 retval |= IRQ_HANDLED; 6651 } 6652 6653 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6654 __func__, hba->uic_error); 6655 return retval; 6656 } 6657 6658 /** 6659 * ufshcd_check_errors - Check for errors that need s/w attention 6660 * @hba: per-adapter instance 6661 * @intr_status: interrupt status generated by the controller 6662 * 6663 * Return: 6664 * IRQ_HANDLED - If interrupt is valid 6665 * IRQ_NONE - If invalid interrupt 6666 */ 6667 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6668 { 6669 bool queue_eh_work = false; 6670 irqreturn_t retval = IRQ_NONE; 6671 6672 spin_lock(hba->host->host_lock); 6673 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6674 6675 if (hba->errors & INT_FATAL_ERRORS) { 6676 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6677 hba->errors); 6678 queue_eh_work = true; 6679 } 6680 6681 if (hba->errors & UIC_ERROR) { 6682 hba->uic_error = 0; 6683 retval = ufshcd_update_uic_error(hba); 6684 if (hba->uic_error) 6685 queue_eh_work = true; 6686 } 6687 6688 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6689 dev_err(hba->dev, 6690 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6691 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6692 "Enter" : "Exit", 6693 hba->errors, ufshcd_get_upmcrs(hba)); 6694 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6695 hba->errors); 6696 ufshcd_set_link_broken(hba); 6697 queue_eh_work = true; 6698 } 6699 6700 if (queue_eh_work) { 6701 /* 6702 * update the transfer error masks to sticky bits, let's do this 6703 * irrespective of current ufshcd_state. 6704 */ 6705 hba->saved_err |= hba->errors; 6706 hba->saved_uic_err |= hba->uic_error; 6707 6708 /* dump controller state before resetting */ 6709 if ((hba->saved_err & 6710 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6711 (hba->saved_uic_err && 6712 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6713 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6714 __func__, hba->saved_err, 6715 hba->saved_uic_err); 6716 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6717 "host_regs: "); 6718 ufshcd_print_pwr_info(hba); 6719 } 6720 ufshcd_schedule_eh_work(hba); 6721 retval |= IRQ_HANDLED; 6722 } 6723 /* 6724 * if (!queue_eh_work) - 6725 * Other errors are either non-fatal where host recovers 6726 * itself without s/w intervention or errors that will be 6727 * handled by the SCSI core layer. 6728 */ 6729 hba->errors = 0; 6730 hba->uic_error = 0; 6731 spin_unlock(hba->host->host_lock); 6732 return retval; 6733 } 6734 6735 /** 6736 * ufshcd_tmc_handler - handle task management function completion 6737 * @hba: per adapter instance 6738 * 6739 * Return: 6740 * IRQ_HANDLED - If interrupt is valid 6741 * IRQ_NONE - If invalid interrupt 6742 */ 6743 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6744 { 6745 unsigned long flags, pending, issued; 6746 irqreturn_t ret = IRQ_NONE; 6747 int tag; 6748 6749 spin_lock_irqsave(hba->host->host_lock, flags); 6750 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6751 issued = hba->outstanding_tasks & ~pending; 6752 for_each_set_bit(tag, &issued, hba->nutmrs) { 6753 struct request *req = hba->tmf_rqs[tag]; 6754 struct completion *c = req->end_io_data; 6755 6756 complete(c); 6757 ret = IRQ_HANDLED; 6758 } 6759 spin_unlock_irqrestore(hba->host->host_lock, flags); 6760 6761 return ret; 6762 } 6763 6764 /** 6765 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6766 * @hba: per adapter instance 6767 * 6768 * Return: IRQ_HANDLED if interrupt is handled. 6769 */ 6770 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6771 { 6772 struct ufs_hw_queue *hwq; 6773 unsigned long outstanding_cqs; 6774 unsigned int nr_queues; 6775 int i, ret; 6776 u32 events; 6777 6778 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6779 if (ret) 6780 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6781 6782 /* Exclude the poll queues */ 6783 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6784 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6785 hwq = &hba->uhq[i]; 6786 6787 events = ufshcd_mcq_read_cqis(hba, i); 6788 if (events) 6789 ufshcd_mcq_write_cqis(hba, events, i); 6790 6791 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6792 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6793 } 6794 6795 return IRQ_HANDLED; 6796 } 6797 6798 /** 6799 * ufshcd_sl_intr - Interrupt service routine 6800 * @hba: per adapter instance 6801 * @intr_status: contains interrupts generated by the controller 6802 * 6803 * Return: 6804 * IRQ_HANDLED - If interrupt is valid 6805 * IRQ_NONE - If invalid interrupt 6806 */ 6807 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6808 { 6809 irqreturn_t retval = IRQ_NONE; 6810 6811 if (intr_status & UFSHCD_UIC_MASK) 6812 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6813 6814 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6815 retval |= ufshcd_check_errors(hba, intr_status); 6816 6817 if (intr_status & UTP_TASK_REQ_COMPL) 6818 retval |= ufshcd_tmc_handler(hba); 6819 6820 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6821 retval |= ufshcd_transfer_req_compl(hba); 6822 6823 if (intr_status & MCQ_CQ_EVENT_STATUS) 6824 retval |= ufshcd_handle_mcq_cq_events(hba); 6825 6826 return retval; 6827 } 6828 6829 /** 6830 * ufshcd_intr - Main interrupt service routine 6831 * @irq: irq number 6832 * @__hba: pointer to adapter instance 6833 * 6834 * Return: 6835 * IRQ_HANDLED - If interrupt is valid 6836 * IRQ_NONE - If invalid interrupt 6837 */ 6838 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6839 { 6840 u32 intr_status, enabled_intr_status = 0; 6841 irqreturn_t retval = IRQ_NONE; 6842 struct ufs_hba *hba = __hba; 6843 int retries = hba->nutrs; 6844 6845 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6846 hba->ufs_stats.last_intr_status = intr_status; 6847 hba->ufs_stats.last_intr_ts = local_clock(); 6848 6849 /* 6850 * There could be max of hba->nutrs reqs in flight and in worst case 6851 * if the reqs get finished 1 by 1 after the interrupt status is 6852 * read, make sure we handle them by checking the interrupt status 6853 * again in a loop until we process all of the reqs before returning. 6854 */ 6855 while (intr_status && retries--) { 6856 enabled_intr_status = 6857 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6858 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6859 if (enabled_intr_status) 6860 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6861 6862 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6863 } 6864 6865 if (enabled_intr_status && retval == IRQ_NONE && 6866 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6867 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6868 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6869 __func__, 6870 intr_status, 6871 hba->ufs_stats.last_intr_status, 6872 enabled_intr_status); 6873 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6874 } 6875 6876 return retval; 6877 } 6878 6879 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6880 { 6881 int err = 0; 6882 u32 mask = 1 << tag; 6883 unsigned long flags; 6884 6885 if (!test_bit(tag, &hba->outstanding_tasks)) 6886 goto out; 6887 6888 spin_lock_irqsave(hba->host->host_lock, flags); 6889 ufshcd_utmrl_clear(hba, tag); 6890 spin_unlock_irqrestore(hba->host->host_lock, flags); 6891 6892 /* poll for max. 1 sec to clear door bell register by h/w */ 6893 err = ufshcd_wait_for_register(hba, 6894 REG_UTP_TASK_REQ_DOOR_BELL, 6895 mask, 0, 1000, 1000); 6896 6897 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6898 tag, err < 0 ? "failed" : "succeeded"); 6899 6900 out: 6901 return err; 6902 } 6903 6904 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6905 struct utp_task_req_desc *treq, u8 tm_function) 6906 { 6907 struct request_queue *q = hba->tmf_queue; 6908 struct Scsi_Host *host = hba->host; 6909 DECLARE_COMPLETION_ONSTACK(wait); 6910 struct request *req; 6911 unsigned long flags; 6912 int task_tag, err; 6913 6914 /* 6915 * blk_mq_alloc_request() is used here only to get a free tag. 6916 */ 6917 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 6918 if (IS_ERR(req)) 6919 return PTR_ERR(req); 6920 6921 req->end_io_data = &wait; 6922 ufshcd_hold(hba); 6923 6924 spin_lock_irqsave(host->host_lock, flags); 6925 6926 task_tag = req->tag; 6927 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", 6928 task_tag); 6929 hba->tmf_rqs[req->tag] = req; 6930 treq->upiu_req.req_header.task_tag = task_tag; 6931 6932 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 6933 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 6934 6935 /* send command to the controller */ 6936 __set_bit(task_tag, &hba->outstanding_tasks); 6937 6938 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 6939 /* Make sure that doorbell is committed immediately */ 6940 wmb(); 6941 6942 spin_unlock_irqrestore(host->host_lock, flags); 6943 6944 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 6945 6946 /* wait until the task management command is completed */ 6947 err = wait_for_completion_io_timeout(&wait, 6948 msecs_to_jiffies(TM_CMD_TIMEOUT)); 6949 if (!err) { 6950 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 6951 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 6952 __func__, tm_function); 6953 if (ufshcd_clear_tm_cmd(hba, task_tag)) 6954 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 6955 __func__, task_tag); 6956 err = -ETIMEDOUT; 6957 } else { 6958 err = 0; 6959 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 6960 6961 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 6962 } 6963 6964 spin_lock_irqsave(hba->host->host_lock, flags); 6965 hba->tmf_rqs[req->tag] = NULL; 6966 __clear_bit(task_tag, &hba->outstanding_tasks); 6967 spin_unlock_irqrestore(hba->host->host_lock, flags); 6968 6969 ufshcd_release(hba); 6970 blk_mq_free_request(req); 6971 6972 return err; 6973 } 6974 6975 /** 6976 * ufshcd_issue_tm_cmd - issues task management commands to controller 6977 * @hba: per adapter instance 6978 * @lun_id: LUN ID to which TM command is sent 6979 * @task_id: task ID to which the TM command is applicable 6980 * @tm_function: task management function opcode 6981 * @tm_response: task management service response return value 6982 * 6983 * Return: non-zero value on error, zero on success. 6984 */ 6985 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 6986 u8 tm_function, u8 *tm_response) 6987 { 6988 struct utp_task_req_desc treq = { }; 6989 enum utp_ocs ocs_value; 6990 int err; 6991 6992 /* Configure task request descriptor */ 6993 treq.header.interrupt = 1; 6994 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 6995 6996 /* Configure task request UPIU */ 6997 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 6998 treq.upiu_req.req_header.lun = lun_id; 6999 treq.upiu_req.req_header.tm_function = tm_function; 7000 7001 /* 7002 * The host shall provide the same value for LUN field in the basic 7003 * header and for Input Parameter. 7004 */ 7005 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7006 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7007 7008 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7009 if (err == -ETIMEDOUT) 7010 return err; 7011 7012 ocs_value = treq.header.ocs & MASK_OCS; 7013 if (ocs_value != OCS_SUCCESS) 7014 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7015 __func__, ocs_value); 7016 else if (tm_response) 7017 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7018 MASK_TM_SERVICE_RESP; 7019 return err; 7020 } 7021 7022 /** 7023 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7024 * @hba: per-adapter instance 7025 * @req_upiu: upiu request 7026 * @rsp_upiu: upiu reply 7027 * @desc_buff: pointer to descriptor buffer, NULL if NA 7028 * @buff_len: descriptor size, 0 if NA 7029 * @cmd_type: specifies the type (NOP, Query...) 7030 * @desc_op: descriptor operation 7031 * 7032 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7033 * Therefore, it "rides" the device management infrastructure: uses its tag and 7034 * tasks work queues. 7035 * 7036 * Since there is only one available tag for device management commands, 7037 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7038 * 7039 * Return: 0 upon success; < 0 upon failure. 7040 */ 7041 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7042 struct utp_upiu_req *req_upiu, 7043 struct utp_upiu_req *rsp_upiu, 7044 u8 *desc_buff, int *buff_len, 7045 enum dev_cmd_type cmd_type, 7046 enum query_opcode desc_op) 7047 { 7048 DECLARE_COMPLETION_ONSTACK(wait); 7049 const u32 tag = hba->reserved_slot; 7050 struct ufshcd_lrb *lrbp; 7051 int err = 0; 7052 u8 upiu_flags; 7053 7054 /* Protects use of hba->reserved_slot. */ 7055 lockdep_assert_held(&hba->dev_cmd.lock); 7056 7057 down_read(&hba->clk_scaling_lock); 7058 7059 lrbp = &hba->lrb[tag]; 7060 lrbp->cmd = NULL; 7061 lrbp->task_tag = tag; 7062 lrbp->lun = 0; 7063 lrbp->intr_cmd = true; 7064 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7065 hba->dev_cmd.type = cmd_type; 7066 7067 if (hba->ufs_version <= ufshci_version(1, 1)) 7068 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 7069 else 7070 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7071 7072 /* update the task tag in the request upiu */ 7073 req_upiu->header.task_tag = tag; 7074 7075 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 7076 7077 /* just copy the upiu request as it is */ 7078 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7079 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7080 /* The Data Segment Area is optional depending upon the query 7081 * function value. for WRITE DESCRIPTOR, the data segment 7082 * follows right after the tsf. 7083 */ 7084 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7085 *buff_len = 0; 7086 } 7087 7088 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7089 7090 hba->dev_cmd.complete = &wait; 7091 7092 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 7093 7094 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7095 /* 7096 * ignore the returning value here - ufshcd_check_query_response is 7097 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7098 * read the response directly ignoring all errors. 7099 */ 7100 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 7101 7102 /* just copy the upiu response as it is */ 7103 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7104 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7105 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7106 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7107 .data_segment_length); 7108 7109 if (*buff_len >= resp_len) { 7110 memcpy(desc_buff, descp, resp_len); 7111 *buff_len = resp_len; 7112 } else { 7113 dev_warn(hba->dev, 7114 "%s: rsp size %d is bigger than buffer size %d", 7115 __func__, resp_len, *buff_len); 7116 *buff_len = 0; 7117 err = -EINVAL; 7118 } 7119 } 7120 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7121 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7122 7123 up_read(&hba->clk_scaling_lock); 7124 return err; 7125 } 7126 7127 /** 7128 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7129 * @hba: per-adapter instance 7130 * @req_upiu: upiu request 7131 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7132 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7133 * @desc_buff: pointer to descriptor buffer, NULL if NA 7134 * @buff_len: descriptor size, 0 if NA 7135 * @desc_op: descriptor operation 7136 * 7137 * Supports UTP Transfer requests (nop and query), and UTP Task 7138 * Management requests. 7139 * It is up to the caller to fill the upiu conent properly, as it will 7140 * be copied without any further input validations. 7141 * 7142 * Return: 0 upon success; < 0 upon failure. 7143 */ 7144 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7145 struct utp_upiu_req *req_upiu, 7146 struct utp_upiu_req *rsp_upiu, 7147 enum upiu_request_transaction msgcode, 7148 u8 *desc_buff, int *buff_len, 7149 enum query_opcode desc_op) 7150 { 7151 int err; 7152 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7153 struct utp_task_req_desc treq = { }; 7154 enum utp_ocs ocs_value; 7155 u8 tm_f = req_upiu->header.tm_function; 7156 7157 switch (msgcode) { 7158 case UPIU_TRANSACTION_NOP_OUT: 7159 cmd_type = DEV_CMD_TYPE_NOP; 7160 fallthrough; 7161 case UPIU_TRANSACTION_QUERY_REQ: 7162 ufshcd_hold(hba); 7163 mutex_lock(&hba->dev_cmd.lock); 7164 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7165 desc_buff, buff_len, 7166 cmd_type, desc_op); 7167 mutex_unlock(&hba->dev_cmd.lock); 7168 ufshcd_release(hba); 7169 7170 break; 7171 case UPIU_TRANSACTION_TASK_REQ: 7172 treq.header.interrupt = 1; 7173 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7174 7175 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7176 7177 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7178 if (err == -ETIMEDOUT) 7179 break; 7180 7181 ocs_value = treq.header.ocs & MASK_OCS; 7182 if (ocs_value != OCS_SUCCESS) { 7183 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7184 ocs_value); 7185 break; 7186 } 7187 7188 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7189 7190 break; 7191 default: 7192 err = -EINVAL; 7193 7194 break; 7195 } 7196 7197 return err; 7198 } 7199 7200 /** 7201 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7202 * @hba: per adapter instance 7203 * @req_upiu: upiu request 7204 * @rsp_upiu: upiu reply 7205 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7206 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7207 * @sg_cnt: The number of sg lists actually used 7208 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7209 * @dir: DMA direction 7210 * 7211 * Return: zero on success, non-zero on failure. 7212 */ 7213 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7214 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7215 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7216 enum dma_data_direction dir) 7217 { 7218 DECLARE_COMPLETION_ONSTACK(wait); 7219 const u32 tag = hba->reserved_slot; 7220 struct ufshcd_lrb *lrbp; 7221 int err = 0; 7222 int result; 7223 u8 upiu_flags; 7224 u8 *ehs_data; 7225 u16 ehs_len; 7226 7227 /* Protects use of hba->reserved_slot. */ 7228 ufshcd_hold(hba); 7229 mutex_lock(&hba->dev_cmd.lock); 7230 down_read(&hba->clk_scaling_lock); 7231 7232 lrbp = &hba->lrb[tag]; 7233 lrbp->cmd = NULL; 7234 lrbp->task_tag = tag; 7235 lrbp->lun = UFS_UPIU_RPMB_WLUN; 7236 7237 lrbp->intr_cmd = true; 7238 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7239 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB; 7240 7241 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */ 7242 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7243 7244 /* 7245 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes 7246 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1, 7247 * HW controller takes EHS length from UTRD. 7248 */ 7249 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) 7250 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2); 7251 else 7252 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0); 7253 7254 /* update the task tag */ 7255 req_upiu->header.task_tag = tag; 7256 7257 /* copy the UPIU(contains CDB) request as it is */ 7258 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7259 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7260 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7261 7262 if (dir != DMA_NONE && sg_list) 7263 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7264 7265 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7266 7267 hba->dev_cmd.complete = &wait; 7268 7269 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7270 7271 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT); 7272 7273 if (!err) { 7274 /* Just copy the upiu response as it is */ 7275 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7276 /* Get the response UPIU result */ 7277 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7278 lrbp->ucd_rsp_ptr->header.status; 7279 7280 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7281 /* 7282 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7283 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7284 * Message is 02h 7285 */ 7286 if (ehs_len == 2 && rsp_ehs) { 7287 /* 7288 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7289 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7290 */ 7291 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7292 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7293 } 7294 } 7295 7296 up_read(&hba->clk_scaling_lock); 7297 mutex_unlock(&hba->dev_cmd.lock); 7298 ufshcd_release(hba); 7299 return err ? : result; 7300 } 7301 7302 /** 7303 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7304 * @cmd: SCSI command pointer 7305 * 7306 * Return: SUCCESS or FAILED. 7307 */ 7308 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7309 { 7310 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7311 struct Scsi_Host *host; 7312 struct ufs_hba *hba; 7313 struct ufs_hw_queue *hwq; 7314 struct ufshcd_lrb *lrbp; 7315 u32 pos, not_cleared_mask = 0; 7316 int err; 7317 u8 resp = 0xF, lun; 7318 7319 host = cmd->device->host; 7320 hba = shost_priv(host); 7321 7322 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7323 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7324 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7325 if (!err) 7326 err = resp; 7327 goto out; 7328 } 7329 7330 if (is_mcq_enabled(hba)) { 7331 for (pos = 0; pos < hba->nutrs; pos++) { 7332 lrbp = &hba->lrb[pos]; 7333 if (ufshcd_cmd_inflight(lrbp->cmd) && 7334 lrbp->lun == lun) { 7335 ufshcd_clear_cmd(hba, pos); 7336 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7337 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7338 } 7339 } 7340 err = 0; 7341 goto out; 7342 } 7343 7344 /* clear the commands that were pending for corresponding LUN */ 7345 spin_lock_irqsave(&hba->outstanding_lock, flags); 7346 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7347 if (hba->lrb[pos].lun == lun) 7348 __set_bit(pos, &pending_reqs); 7349 hba->outstanding_reqs &= ~pending_reqs; 7350 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7351 7352 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7353 if (ufshcd_clear_cmd(hba, pos) < 0) { 7354 spin_lock_irqsave(&hba->outstanding_lock, flags); 7355 not_cleared = 1U << pos & 7356 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7357 hba->outstanding_reqs |= not_cleared; 7358 not_cleared_mask |= not_cleared; 7359 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7360 7361 dev_err(hba->dev, "%s: failed to clear request %d\n", 7362 __func__, pos); 7363 } 7364 } 7365 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7366 7367 out: 7368 hba->req_abort_count = 0; 7369 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7370 if (!err) { 7371 err = SUCCESS; 7372 } else { 7373 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7374 err = FAILED; 7375 } 7376 return err; 7377 } 7378 7379 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7380 { 7381 struct ufshcd_lrb *lrbp; 7382 int tag; 7383 7384 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7385 lrbp = &hba->lrb[tag]; 7386 lrbp->req_abort_skip = true; 7387 } 7388 } 7389 7390 /** 7391 * ufshcd_try_to_abort_task - abort a specific task 7392 * @hba: Pointer to adapter instance 7393 * @tag: Task tag/index to be aborted 7394 * 7395 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7396 * command, and in host controller by clearing the door-bell register. There can 7397 * be race between controller sending the command to the device while abort is 7398 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7399 * really issued and then try to abort it. 7400 * 7401 * Return: zero on success, non-zero on failure. 7402 */ 7403 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7404 { 7405 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7406 int err = 0; 7407 int poll_cnt; 7408 u8 resp = 0xF; 7409 u32 reg; 7410 7411 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7412 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7413 UFS_QUERY_TASK, &resp); 7414 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7415 /* cmd pending in the device */ 7416 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7417 __func__, tag); 7418 break; 7419 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7420 /* 7421 * cmd not pending in the device, check if it is 7422 * in transition. 7423 */ 7424 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7425 __func__, tag); 7426 if (is_mcq_enabled(hba)) { 7427 /* MCQ mode */ 7428 if (ufshcd_cmd_inflight(lrbp->cmd)) { 7429 /* sleep for max. 200us same delay as in SDB mode */ 7430 usleep_range(100, 200); 7431 continue; 7432 } 7433 /* command completed already */ 7434 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", 7435 __func__, tag); 7436 goto out; 7437 } 7438 7439 /* Single Doorbell Mode */ 7440 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7441 if (reg & (1 << tag)) { 7442 /* sleep for max. 200us to stabilize */ 7443 usleep_range(100, 200); 7444 continue; 7445 } 7446 /* command completed already */ 7447 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7448 __func__, tag); 7449 goto out; 7450 } else { 7451 dev_err(hba->dev, 7452 "%s: no response from device. tag = %d, err %d\n", 7453 __func__, tag, err); 7454 if (!err) 7455 err = resp; /* service response error */ 7456 goto out; 7457 } 7458 } 7459 7460 if (!poll_cnt) { 7461 err = -EBUSY; 7462 goto out; 7463 } 7464 7465 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7466 UFS_ABORT_TASK, &resp); 7467 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7468 if (!err) { 7469 err = resp; /* service response error */ 7470 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7471 __func__, tag, err); 7472 } 7473 goto out; 7474 } 7475 7476 err = ufshcd_clear_cmd(hba, tag); 7477 if (err) 7478 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7479 __func__, tag, err); 7480 7481 out: 7482 return err; 7483 } 7484 7485 /** 7486 * ufshcd_abort - scsi host template eh_abort_handler callback 7487 * @cmd: SCSI command pointer 7488 * 7489 * Return: SUCCESS or FAILED. 7490 */ 7491 static int ufshcd_abort(struct scsi_cmnd *cmd) 7492 { 7493 struct Scsi_Host *host = cmd->device->host; 7494 struct ufs_hba *hba = shost_priv(host); 7495 int tag = scsi_cmd_to_rq(cmd)->tag; 7496 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7497 unsigned long flags; 7498 int err = FAILED; 7499 bool outstanding; 7500 u32 reg; 7501 7502 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); 7503 7504 ufshcd_hold(hba); 7505 7506 if (!is_mcq_enabled(hba)) { 7507 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7508 if (!test_bit(tag, &hba->outstanding_reqs)) { 7509 /* If command is already aborted/completed, return FAILED. */ 7510 dev_err(hba->dev, 7511 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7512 __func__, tag, hba->outstanding_reqs, reg); 7513 goto release; 7514 } 7515 } 7516 7517 /* Print Transfer Request of aborted task */ 7518 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7519 7520 /* 7521 * Print detailed info about aborted request. 7522 * As more than one request might get aborted at the same time, 7523 * print full information only for the first aborted request in order 7524 * to reduce repeated printouts. For other aborted requests only print 7525 * basic details. 7526 */ 7527 scsi_print_command(cmd); 7528 if (!hba->req_abort_count) { 7529 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7530 ufshcd_print_evt_hist(hba); 7531 ufshcd_print_host_state(hba); 7532 ufshcd_print_pwr_info(hba); 7533 ufshcd_print_tr(hba, tag, true); 7534 } else { 7535 ufshcd_print_tr(hba, tag, false); 7536 } 7537 hba->req_abort_count++; 7538 7539 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) { 7540 /* only execute this code in single doorbell mode */ 7541 dev_err(hba->dev, 7542 "%s: cmd was completed, but without a notifying intr, tag = %d", 7543 __func__, tag); 7544 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7545 goto release; 7546 } 7547 7548 /* 7549 * Task abort to the device W-LUN is illegal. When this command 7550 * will fail, due to spec violation, scsi err handling next step 7551 * will be to send LU reset which, again, is a spec violation. 7552 * To avoid these unnecessary/illegal steps, first we clean up 7553 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7554 * then queue the eh_work and bail. 7555 */ 7556 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7557 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7558 7559 spin_lock_irqsave(host->host_lock, flags); 7560 hba->force_reset = true; 7561 ufshcd_schedule_eh_work(hba); 7562 spin_unlock_irqrestore(host->host_lock, flags); 7563 goto release; 7564 } 7565 7566 if (is_mcq_enabled(hba)) { 7567 /* MCQ mode. Branch off to handle abort for mcq mode */ 7568 err = ufshcd_mcq_abort(cmd); 7569 goto release; 7570 } 7571 7572 /* Skip task abort in case previous aborts failed and report failure */ 7573 if (lrbp->req_abort_skip) { 7574 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7575 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7576 goto release; 7577 } 7578 7579 err = ufshcd_try_to_abort_task(hba, tag); 7580 if (err) { 7581 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7582 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7583 err = FAILED; 7584 goto release; 7585 } 7586 7587 /* 7588 * Clear the corresponding bit from outstanding_reqs since the command 7589 * has been aborted successfully. 7590 */ 7591 spin_lock_irqsave(&hba->outstanding_lock, flags); 7592 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7593 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7594 7595 if (outstanding) 7596 ufshcd_release_scsi_cmd(hba, lrbp); 7597 7598 err = SUCCESS; 7599 7600 release: 7601 /* Matches the ufshcd_hold() call at the start of this function. */ 7602 ufshcd_release(hba); 7603 return err; 7604 } 7605 7606 /** 7607 * ufshcd_host_reset_and_restore - reset and restore host controller 7608 * @hba: per-adapter instance 7609 * 7610 * Note that host controller reset may issue DME_RESET to 7611 * local and remote (device) Uni-Pro stack and the attributes 7612 * are reset to default state. 7613 * 7614 * Return: zero on success, non-zero on failure. 7615 */ 7616 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7617 { 7618 int err; 7619 7620 /* 7621 * Stop the host controller and complete the requests 7622 * cleared by h/w 7623 */ 7624 ufshcd_hba_stop(hba); 7625 hba->silence_err_logs = true; 7626 ufshcd_complete_requests(hba, true); 7627 hba->silence_err_logs = false; 7628 7629 /* scale up clocks to max frequency before full reinitialization */ 7630 ufshcd_scale_clks(hba, true); 7631 7632 err = ufshcd_hba_enable(hba); 7633 7634 /* Establish the link again and restore the device */ 7635 if (!err) 7636 err = ufshcd_probe_hba(hba, false); 7637 7638 if (err) 7639 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7640 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7641 return err; 7642 } 7643 7644 /** 7645 * ufshcd_reset_and_restore - reset and re-initialize host/device 7646 * @hba: per-adapter instance 7647 * 7648 * Reset and recover device, host and re-establish link. This 7649 * is helpful to recover the communication in fatal error conditions. 7650 * 7651 * Return: zero on success, non-zero on failure. 7652 */ 7653 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7654 { 7655 u32 saved_err = 0; 7656 u32 saved_uic_err = 0; 7657 int err = 0; 7658 unsigned long flags; 7659 int retries = MAX_HOST_RESET_RETRIES; 7660 7661 spin_lock_irqsave(hba->host->host_lock, flags); 7662 do { 7663 /* 7664 * This is a fresh start, cache and clear saved error first, 7665 * in case new error generated during reset and restore. 7666 */ 7667 saved_err |= hba->saved_err; 7668 saved_uic_err |= hba->saved_uic_err; 7669 hba->saved_err = 0; 7670 hba->saved_uic_err = 0; 7671 hba->force_reset = false; 7672 hba->ufshcd_state = UFSHCD_STATE_RESET; 7673 spin_unlock_irqrestore(hba->host->host_lock, flags); 7674 7675 /* Reset the attached device */ 7676 ufshcd_device_reset(hba); 7677 7678 err = ufshcd_host_reset_and_restore(hba); 7679 7680 spin_lock_irqsave(hba->host->host_lock, flags); 7681 if (err) 7682 continue; 7683 /* Do not exit unless operational or dead */ 7684 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7685 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7686 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7687 err = -EAGAIN; 7688 } while (err && --retries); 7689 7690 /* 7691 * Inform scsi mid-layer that we did reset and allow to handle 7692 * Unit Attention properly. 7693 */ 7694 scsi_report_bus_reset(hba->host, 0); 7695 if (err) { 7696 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7697 hba->saved_err |= saved_err; 7698 hba->saved_uic_err |= saved_uic_err; 7699 } 7700 spin_unlock_irqrestore(hba->host->host_lock, flags); 7701 7702 return err; 7703 } 7704 7705 /** 7706 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7707 * @cmd: SCSI command pointer 7708 * 7709 * Return: SUCCESS or FAILED. 7710 */ 7711 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7712 { 7713 int err = SUCCESS; 7714 unsigned long flags; 7715 struct ufs_hba *hba; 7716 7717 hba = shost_priv(cmd->device->host); 7718 7719 spin_lock_irqsave(hba->host->host_lock, flags); 7720 hba->force_reset = true; 7721 ufshcd_schedule_eh_work(hba); 7722 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7723 spin_unlock_irqrestore(hba->host->host_lock, flags); 7724 7725 flush_work(&hba->eh_work); 7726 7727 spin_lock_irqsave(hba->host->host_lock, flags); 7728 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7729 err = FAILED; 7730 spin_unlock_irqrestore(hba->host->host_lock, flags); 7731 7732 return err; 7733 } 7734 7735 /** 7736 * ufshcd_get_max_icc_level - calculate the ICC level 7737 * @sup_curr_uA: max. current supported by the regulator 7738 * @start_scan: row at the desc table to start scan from 7739 * @buff: power descriptor buffer 7740 * 7741 * Return: calculated max ICC level for specific regulator. 7742 */ 7743 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7744 const char *buff) 7745 { 7746 int i; 7747 int curr_uA; 7748 u16 data; 7749 u16 unit; 7750 7751 for (i = start_scan; i >= 0; i--) { 7752 data = get_unaligned_be16(&buff[2 * i]); 7753 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7754 ATTR_ICC_LVL_UNIT_OFFSET; 7755 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7756 switch (unit) { 7757 case UFSHCD_NANO_AMP: 7758 curr_uA = curr_uA / 1000; 7759 break; 7760 case UFSHCD_MILI_AMP: 7761 curr_uA = curr_uA * 1000; 7762 break; 7763 case UFSHCD_AMP: 7764 curr_uA = curr_uA * 1000 * 1000; 7765 break; 7766 case UFSHCD_MICRO_AMP: 7767 default: 7768 break; 7769 } 7770 if (sup_curr_uA >= curr_uA) 7771 break; 7772 } 7773 if (i < 0) { 7774 i = 0; 7775 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7776 } 7777 7778 return (u32)i; 7779 } 7780 7781 /** 7782 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7783 * In case regulators are not initialized we'll return 0 7784 * @hba: per-adapter instance 7785 * @desc_buf: power descriptor buffer to extract ICC levels from. 7786 * 7787 * Return: calculated ICC level. 7788 */ 7789 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7790 const u8 *desc_buf) 7791 { 7792 u32 icc_level = 0; 7793 7794 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7795 !hba->vreg_info.vccq2) { 7796 /* 7797 * Using dev_dbg to avoid messages during runtime PM to avoid 7798 * never-ending cycles of messages written back to storage by 7799 * user space causing runtime resume, causing more messages and 7800 * so on. 7801 */ 7802 dev_dbg(hba->dev, 7803 "%s: Regulator capability was not set, actvIccLevel=%d", 7804 __func__, icc_level); 7805 goto out; 7806 } 7807 7808 if (hba->vreg_info.vcc->max_uA) 7809 icc_level = ufshcd_get_max_icc_level( 7810 hba->vreg_info.vcc->max_uA, 7811 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7812 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7813 7814 if (hba->vreg_info.vccq->max_uA) 7815 icc_level = ufshcd_get_max_icc_level( 7816 hba->vreg_info.vccq->max_uA, 7817 icc_level, 7818 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7819 7820 if (hba->vreg_info.vccq2->max_uA) 7821 icc_level = ufshcd_get_max_icc_level( 7822 hba->vreg_info.vccq2->max_uA, 7823 icc_level, 7824 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7825 out: 7826 return icc_level; 7827 } 7828 7829 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7830 { 7831 int ret; 7832 u8 *desc_buf; 7833 u32 icc_level; 7834 7835 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7836 if (!desc_buf) 7837 return; 7838 7839 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7840 desc_buf, QUERY_DESC_MAX_SIZE); 7841 if (ret) { 7842 dev_err(hba->dev, 7843 "%s: Failed reading power descriptor ret = %d", 7844 __func__, ret); 7845 goto out; 7846 } 7847 7848 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7849 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7850 7851 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7852 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7853 7854 if (ret) 7855 dev_err(hba->dev, 7856 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7857 __func__, icc_level, ret); 7858 7859 out: 7860 kfree(desc_buf); 7861 } 7862 7863 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7864 { 7865 scsi_autopm_get_device(sdev); 7866 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7867 if (sdev->rpm_autosuspend) 7868 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7869 RPM_AUTOSUSPEND_DELAY_MS); 7870 scsi_autopm_put_device(sdev); 7871 } 7872 7873 /** 7874 * ufshcd_scsi_add_wlus - Adds required W-LUs 7875 * @hba: per-adapter instance 7876 * 7877 * UFS device specification requires the UFS devices to support 4 well known 7878 * logical units: 7879 * "REPORT_LUNS" (address: 01h) 7880 * "UFS Device" (address: 50h) 7881 * "RPMB" (address: 44h) 7882 * "BOOT" (address: 30h) 7883 * UFS device's power management needs to be controlled by "POWER CONDITION" 7884 * field of SSU (START STOP UNIT) command. But this "power condition" field 7885 * will take effect only when its sent to "UFS device" well known logical unit 7886 * hence we require the scsi_device instance to represent this logical unit in 7887 * order for the UFS host driver to send the SSU command for power management. 7888 * 7889 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7890 * Block) LU so user space process can control this LU. User space may also 7891 * want to have access to BOOT LU. 7892 * 7893 * This function adds scsi device instances for each of all well known LUs 7894 * (except "REPORT LUNS" LU). 7895 * 7896 * Return: zero on success (all required W-LUs are added successfully), 7897 * non-zero error value on failure (if failed to add any of the required W-LU). 7898 */ 7899 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7900 { 7901 int ret = 0; 7902 struct scsi_device *sdev_boot, *sdev_rpmb; 7903 7904 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7905 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7906 if (IS_ERR(hba->ufs_device_wlun)) { 7907 ret = PTR_ERR(hba->ufs_device_wlun); 7908 hba->ufs_device_wlun = NULL; 7909 goto out; 7910 } 7911 scsi_device_put(hba->ufs_device_wlun); 7912 7913 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7914 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7915 if (IS_ERR(sdev_rpmb)) { 7916 ret = PTR_ERR(sdev_rpmb); 7917 goto remove_ufs_device_wlun; 7918 } 7919 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7920 scsi_device_put(sdev_rpmb); 7921 7922 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7923 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7924 if (IS_ERR(sdev_boot)) { 7925 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7926 } else { 7927 ufshcd_blk_pm_runtime_init(sdev_boot); 7928 scsi_device_put(sdev_boot); 7929 } 7930 goto out; 7931 7932 remove_ufs_device_wlun: 7933 scsi_remove_device(hba->ufs_device_wlun); 7934 out: 7935 return ret; 7936 } 7937 7938 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 7939 { 7940 struct ufs_dev_info *dev_info = &hba->dev_info; 7941 u8 lun; 7942 u32 d_lu_wb_buf_alloc; 7943 u32 ext_ufs_feature; 7944 7945 if (!ufshcd_is_wb_allowed(hba)) 7946 return; 7947 7948 /* 7949 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 7950 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 7951 * enabled 7952 */ 7953 if (!(dev_info->wspecversion >= 0x310 || 7954 dev_info->wspecversion == 0x220 || 7955 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 7956 goto wb_disabled; 7957 7958 ext_ufs_feature = get_unaligned_be32(desc_buf + 7959 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 7960 7961 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 7962 goto wb_disabled; 7963 7964 /* 7965 * WB may be supported but not configured while provisioning. The spec 7966 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 7967 * buffer configured. 7968 */ 7969 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 7970 7971 dev_info->b_presrv_uspc_en = 7972 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 7973 7974 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 7975 if (!get_unaligned_be32(desc_buf + 7976 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 7977 goto wb_disabled; 7978 } else { 7979 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 7980 d_lu_wb_buf_alloc = 0; 7981 ufshcd_read_unit_desc_param(hba, 7982 lun, 7983 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 7984 (u8 *)&d_lu_wb_buf_alloc, 7985 sizeof(d_lu_wb_buf_alloc)); 7986 if (d_lu_wb_buf_alloc) { 7987 dev_info->wb_dedicated_lu = lun; 7988 break; 7989 } 7990 } 7991 7992 if (!d_lu_wb_buf_alloc) 7993 goto wb_disabled; 7994 } 7995 7996 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 7997 goto wb_disabled; 7998 7999 return; 8000 8001 wb_disabled: 8002 hba->caps &= ~UFSHCD_CAP_WB_EN; 8003 } 8004 8005 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8006 { 8007 struct ufs_dev_info *dev_info = &hba->dev_info; 8008 u32 ext_ufs_feature; 8009 u8 mask = 0; 8010 8011 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8012 return; 8013 8014 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8015 8016 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8017 mask |= MASK_EE_TOO_LOW_TEMP; 8018 8019 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8020 mask |= MASK_EE_TOO_HIGH_TEMP; 8021 8022 if (mask) { 8023 ufshcd_enable_ee(hba, mask); 8024 ufs_hwmon_probe(hba, mask); 8025 } 8026 } 8027 8028 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8029 { 8030 struct ufs_dev_info *dev_info = &hba->dev_info; 8031 u32 ext_ufs_feature; 8032 u32 ext_iid_en = 0; 8033 int err; 8034 8035 /* Only UFS-4.0 and above may support EXT_IID */ 8036 if (dev_info->wspecversion < 0x400) 8037 goto out; 8038 8039 ext_ufs_feature = get_unaligned_be32(desc_buf + 8040 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8041 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8042 goto out; 8043 8044 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8045 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8046 if (err) 8047 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8048 8049 out: 8050 dev_info->b_ext_iid_en = ext_iid_en; 8051 } 8052 8053 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8054 const struct ufs_dev_quirk *fixups) 8055 { 8056 const struct ufs_dev_quirk *f; 8057 struct ufs_dev_info *dev_info = &hba->dev_info; 8058 8059 if (!fixups) 8060 return; 8061 8062 for (f = fixups; f->quirk; f++) { 8063 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8064 f->wmanufacturerid == UFS_ANY_VENDOR) && 8065 ((dev_info->model && 8066 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8067 !strcmp(f->model, UFS_ANY_MODEL))) 8068 hba->dev_quirks |= f->quirk; 8069 } 8070 } 8071 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8072 8073 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8074 { 8075 /* fix by general quirk table */ 8076 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8077 8078 /* allow vendors to fix quirks */ 8079 ufshcd_vops_fixup_dev_quirks(hba); 8080 } 8081 8082 static int ufs_get_device_desc(struct ufs_hba *hba) 8083 { 8084 int err; 8085 u8 model_index; 8086 u8 *desc_buf; 8087 struct ufs_dev_info *dev_info = &hba->dev_info; 8088 8089 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8090 if (!desc_buf) { 8091 err = -ENOMEM; 8092 goto out; 8093 } 8094 8095 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8096 QUERY_DESC_MAX_SIZE); 8097 if (err) { 8098 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8099 __func__, err); 8100 goto out; 8101 } 8102 8103 /* 8104 * getting vendor (manufacturerID) and Bank Index in big endian 8105 * format 8106 */ 8107 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8108 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8109 8110 /* getting Specification Version in big endian format */ 8111 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8112 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8113 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8114 8115 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8116 8117 err = ufshcd_read_string_desc(hba, model_index, 8118 &dev_info->model, SD_ASCII_STD); 8119 if (err < 0) { 8120 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8121 __func__, err); 8122 goto out; 8123 } 8124 8125 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8126 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8127 8128 ufs_fixup_device_setup(hba); 8129 8130 ufshcd_wb_probe(hba, desc_buf); 8131 8132 ufshcd_temp_notif_probe(hba, desc_buf); 8133 8134 if (hba->ext_iid_sup) 8135 ufshcd_ext_iid_probe(hba, desc_buf); 8136 8137 /* 8138 * ufshcd_read_string_desc returns size of the string 8139 * reset the error value 8140 */ 8141 err = 0; 8142 8143 out: 8144 kfree(desc_buf); 8145 return err; 8146 } 8147 8148 static void ufs_put_device_desc(struct ufs_hba *hba) 8149 { 8150 struct ufs_dev_info *dev_info = &hba->dev_info; 8151 8152 kfree(dev_info->model); 8153 dev_info->model = NULL; 8154 } 8155 8156 /** 8157 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 8158 * @hba: per-adapter instance 8159 * 8160 * PA_TActivate parameter can be tuned manually if UniPro version is less than 8161 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 8162 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 8163 * the hibern8 exit latency. 8164 * 8165 * Return: zero on success, non-zero error value on failure. 8166 */ 8167 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 8168 { 8169 int ret = 0; 8170 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 8171 8172 ret = ufshcd_dme_peer_get(hba, 8173 UIC_ARG_MIB_SEL( 8174 RX_MIN_ACTIVATETIME_CAPABILITY, 8175 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8176 &peer_rx_min_activatetime); 8177 if (ret) 8178 goto out; 8179 8180 /* make sure proper unit conversion is applied */ 8181 tuned_pa_tactivate = 8182 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 8183 / PA_TACTIVATE_TIME_UNIT_US); 8184 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8185 tuned_pa_tactivate); 8186 8187 out: 8188 return ret; 8189 } 8190 8191 /** 8192 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 8193 * @hba: per-adapter instance 8194 * 8195 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 8196 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 8197 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 8198 * This optimal value can help reduce the hibern8 exit latency. 8199 * 8200 * Return: zero on success, non-zero error value on failure. 8201 */ 8202 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 8203 { 8204 int ret = 0; 8205 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 8206 u32 max_hibern8_time, tuned_pa_hibern8time; 8207 8208 ret = ufshcd_dme_get(hba, 8209 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 8210 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 8211 &local_tx_hibern8_time_cap); 8212 if (ret) 8213 goto out; 8214 8215 ret = ufshcd_dme_peer_get(hba, 8216 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 8217 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8218 &peer_rx_hibern8_time_cap); 8219 if (ret) 8220 goto out; 8221 8222 max_hibern8_time = max(local_tx_hibern8_time_cap, 8223 peer_rx_hibern8_time_cap); 8224 /* make sure proper unit conversion is applied */ 8225 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 8226 / PA_HIBERN8_TIME_UNIT_US); 8227 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 8228 tuned_pa_hibern8time); 8229 out: 8230 return ret; 8231 } 8232 8233 /** 8234 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8235 * less than device PA_TACTIVATE time. 8236 * @hba: per-adapter instance 8237 * 8238 * Some UFS devices require host PA_TACTIVATE to be lower than device 8239 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8240 * for such devices. 8241 * 8242 * Return: zero on success, non-zero error value on failure. 8243 */ 8244 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8245 { 8246 int ret = 0; 8247 u32 granularity, peer_granularity; 8248 u32 pa_tactivate, peer_pa_tactivate; 8249 u32 pa_tactivate_us, peer_pa_tactivate_us; 8250 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8251 8252 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8253 &granularity); 8254 if (ret) 8255 goto out; 8256 8257 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8258 &peer_granularity); 8259 if (ret) 8260 goto out; 8261 8262 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8263 (granularity > PA_GRANULARITY_MAX_VAL)) { 8264 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8265 __func__, granularity); 8266 return -EINVAL; 8267 } 8268 8269 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8270 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8271 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8272 __func__, peer_granularity); 8273 return -EINVAL; 8274 } 8275 8276 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8277 if (ret) 8278 goto out; 8279 8280 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8281 &peer_pa_tactivate); 8282 if (ret) 8283 goto out; 8284 8285 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8286 peer_pa_tactivate_us = peer_pa_tactivate * 8287 gran_to_us_table[peer_granularity - 1]; 8288 8289 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8290 u32 new_peer_pa_tactivate; 8291 8292 new_peer_pa_tactivate = pa_tactivate_us / 8293 gran_to_us_table[peer_granularity - 1]; 8294 new_peer_pa_tactivate++; 8295 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8296 new_peer_pa_tactivate); 8297 } 8298 8299 out: 8300 return ret; 8301 } 8302 8303 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8304 { 8305 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 8306 ufshcd_tune_pa_tactivate(hba); 8307 ufshcd_tune_pa_hibern8time(hba); 8308 } 8309 8310 ufshcd_vops_apply_dev_quirks(hba); 8311 8312 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8313 /* set 1ms timeout for PA_TACTIVATE */ 8314 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8315 8316 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8317 ufshcd_quirk_tune_host_pa_tactivate(hba); 8318 } 8319 8320 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8321 { 8322 hba->ufs_stats.hibern8_exit_cnt = 0; 8323 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8324 hba->req_abort_count = 0; 8325 } 8326 8327 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8328 { 8329 int err; 8330 u8 *desc_buf; 8331 8332 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8333 if (!desc_buf) { 8334 err = -ENOMEM; 8335 goto out; 8336 } 8337 8338 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8339 desc_buf, QUERY_DESC_MAX_SIZE); 8340 if (err) { 8341 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8342 __func__, err); 8343 goto out; 8344 } 8345 8346 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8347 hba->dev_info.max_lu_supported = 32; 8348 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8349 hba->dev_info.max_lu_supported = 8; 8350 8351 out: 8352 kfree(desc_buf); 8353 return err; 8354 } 8355 8356 struct ufs_ref_clk { 8357 unsigned long freq_hz; 8358 enum ufs_ref_clk_freq val; 8359 }; 8360 8361 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8362 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8363 {26000000, REF_CLK_FREQ_26_MHZ}, 8364 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8365 {52000000, REF_CLK_FREQ_52_MHZ}, 8366 {0, REF_CLK_FREQ_INVAL}, 8367 }; 8368 8369 static enum ufs_ref_clk_freq 8370 ufs_get_bref_clk_from_hz(unsigned long freq) 8371 { 8372 int i; 8373 8374 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8375 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8376 return ufs_ref_clk_freqs[i].val; 8377 8378 return REF_CLK_FREQ_INVAL; 8379 } 8380 8381 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8382 { 8383 unsigned long freq; 8384 8385 freq = clk_get_rate(refclk); 8386 8387 hba->dev_ref_clk_freq = 8388 ufs_get_bref_clk_from_hz(freq); 8389 8390 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8391 dev_err(hba->dev, 8392 "invalid ref_clk setting = %ld\n", freq); 8393 } 8394 8395 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8396 { 8397 int err; 8398 u32 ref_clk; 8399 u32 freq = hba->dev_ref_clk_freq; 8400 8401 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8402 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8403 8404 if (err) { 8405 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8406 err); 8407 goto out; 8408 } 8409 8410 if (ref_clk == freq) 8411 goto out; /* nothing to update */ 8412 8413 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8414 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8415 8416 if (err) { 8417 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8418 ufs_ref_clk_freqs[freq].freq_hz); 8419 goto out; 8420 } 8421 8422 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8423 ufs_ref_clk_freqs[freq].freq_hz); 8424 8425 out: 8426 return err; 8427 } 8428 8429 static int ufshcd_device_params_init(struct ufs_hba *hba) 8430 { 8431 bool flag; 8432 int ret; 8433 8434 /* Init UFS geometry descriptor related parameters */ 8435 ret = ufshcd_device_geo_params_init(hba); 8436 if (ret) 8437 goto out; 8438 8439 /* Check and apply UFS device quirks */ 8440 ret = ufs_get_device_desc(hba); 8441 if (ret) { 8442 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8443 __func__, ret); 8444 goto out; 8445 } 8446 8447 ufshcd_get_ref_clk_gating_wait(hba); 8448 8449 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8450 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8451 hba->dev_info.f_power_on_wp_en = flag; 8452 8453 /* Probe maximum power mode co-supported by both UFS host and device */ 8454 if (ufshcd_get_max_pwr_mode(hba)) 8455 dev_err(hba->dev, 8456 "%s: Failed getting max supported power mode\n", 8457 __func__); 8458 out: 8459 return ret; 8460 } 8461 8462 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8463 { 8464 int err; 8465 struct ufs_query_req *request = NULL; 8466 struct ufs_query_res *response = NULL; 8467 struct ufs_dev_info *dev_info = &hba->dev_info; 8468 struct utp_upiu_query_v4_0 *upiu_data; 8469 8470 if (dev_info->wspecversion < 0x400) 8471 return; 8472 8473 ufshcd_hold(hba); 8474 8475 mutex_lock(&hba->dev_cmd.lock); 8476 8477 ufshcd_init_query(hba, &request, &response, 8478 UPIU_QUERY_OPCODE_WRITE_ATTR, 8479 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8480 8481 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8482 8483 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8484 8485 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8486 8487 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8488 8489 if (err) 8490 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8491 __func__, err); 8492 8493 mutex_unlock(&hba->dev_cmd.lock); 8494 ufshcd_release(hba); 8495 } 8496 8497 /** 8498 * ufshcd_add_lus - probe and add UFS logical units 8499 * @hba: per-adapter instance 8500 * 8501 * Return: 0 upon success; < 0 upon failure. 8502 */ 8503 static int ufshcd_add_lus(struct ufs_hba *hba) 8504 { 8505 int ret; 8506 8507 /* Add required well known logical units to scsi mid layer */ 8508 ret = ufshcd_scsi_add_wlus(hba); 8509 if (ret) 8510 goto out; 8511 8512 /* Initialize devfreq after UFS device is detected */ 8513 if (ufshcd_is_clkscaling_supported(hba)) { 8514 memcpy(&hba->clk_scaling.saved_pwr_info, 8515 &hba->pwr_info, 8516 sizeof(struct ufs_pa_layer_attr)); 8517 hba->clk_scaling.is_allowed = true; 8518 8519 ret = ufshcd_devfreq_init(hba); 8520 if (ret) 8521 goto out; 8522 8523 hba->clk_scaling.is_enabled = true; 8524 ufshcd_init_clk_scaling_sysfs(hba); 8525 } 8526 8527 ufs_bsg_probe(hba); 8528 scsi_scan_host(hba->host); 8529 pm_runtime_put_sync(hba->dev); 8530 8531 out: 8532 return ret; 8533 } 8534 8535 /* SDB - Single Doorbell */ 8536 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8537 { 8538 size_t ucdl_size, utrdl_size; 8539 8540 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8541 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8542 hba->ucdl_dma_addr); 8543 8544 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8545 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8546 hba->utrdl_dma_addr); 8547 8548 devm_kfree(hba->dev, hba->lrb); 8549 } 8550 8551 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8552 { 8553 int ret; 8554 int old_nutrs = hba->nutrs; 8555 8556 ret = ufshcd_mcq_decide_queue_depth(hba); 8557 if (ret < 0) 8558 return ret; 8559 8560 hba->nutrs = ret; 8561 ret = ufshcd_mcq_init(hba); 8562 if (ret) 8563 goto err; 8564 8565 /* 8566 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8567 * Number of supported tags in MCQ mode may be larger than SDB mode. 8568 */ 8569 if (hba->nutrs != old_nutrs) { 8570 ufshcd_release_sdb_queue(hba, old_nutrs); 8571 ret = ufshcd_memory_alloc(hba); 8572 if (ret) 8573 goto err; 8574 ufshcd_host_memory_configure(hba); 8575 } 8576 8577 ret = ufshcd_mcq_memory_alloc(hba); 8578 if (ret) 8579 goto err; 8580 8581 return 0; 8582 err: 8583 hba->nutrs = old_nutrs; 8584 return ret; 8585 } 8586 8587 static void ufshcd_config_mcq(struct ufs_hba *hba) 8588 { 8589 int ret; 8590 u32 intrs; 8591 8592 ret = ufshcd_mcq_vops_config_esi(hba); 8593 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8594 8595 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8596 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8597 intrs &= ~MCQ_CQ_EVENT_STATUS; 8598 ufshcd_enable_intr(hba, intrs); 8599 ufshcd_mcq_make_queues_operational(hba); 8600 ufshcd_mcq_config_mac(hba, hba->nutrs); 8601 8602 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8603 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8604 8605 /* Select MCQ mode */ 8606 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1, 8607 REG_UFS_MEM_CFG); 8608 hba->mcq_enabled = true; 8609 8610 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8611 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8612 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8613 hba->nutrs); 8614 } 8615 8616 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8617 { 8618 int ret; 8619 struct Scsi_Host *host = hba->host; 8620 8621 hba->ufshcd_state = UFSHCD_STATE_RESET; 8622 8623 ret = ufshcd_link_startup(hba); 8624 if (ret) 8625 return ret; 8626 8627 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8628 return ret; 8629 8630 /* Debug counters initialization */ 8631 ufshcd_clear_dbg_ufs_stats(hba); 8632 8633 /* UniPro link is active now */ 8634 ufshcd_set_link_active(hba); 8635 8636 /* Reconfigure MCQ upon reset */ 8637 if (is_mcq_enabled(hba) && !init_dev_params) 8638 ufshcd_config_mcq(hba); 8639 8640 /* Verify device initialization by sending NOP OUT UPIU */ 8641 ret = ufshcd_verify_dev_init(hba); 8642 if (ret) 8643 return ret; 8644 8645 /* Initiate UFS initialization, and waiting until completion */ 8646 ret = ufshcd_complete_dev_init(hba); 8647 if (ret) 8648 return ret; 8649 8650 /* 8651 * Initialize UFS device parameters used by driver, these 8652 * parameters are associated with UFS descriptors. 8653 */ 8654 if (init_dev_params) { 8655 ret = ufshcd_device_params_init(hba); 8656 if (ret) 8657 return ret; 8658 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8659 ret = ufshcd_alloc_mcq(hba); 8660 if (!ret) { 8661 ufshcd_config_mcq(hba); 8662 } else { 8663 /* Continue with SDB mode */ 8664 use_mcq_mode = false; 8665 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8666 ret); 8667 } 8668 ret = scsi_add_host(host, hba->dev); 8669 if (ret) { 8670 dev_err(hba->dev, "scsi_add_host failed\n"); 8671 return ret; 8672 } 8673 hba->scsi_host_added = true; 8674 } else if (is_mcq_supported(hba)) { 8675 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ 8676 ufshcd_config_mcq(hba); 8677 } 8678 } 8679 8680 ufshcd_tune_unipro_params(hba); 8681 8682 /* UFS device is also active now */ 8683 ufshcd_set_ufs_dev_active(hba); 8684 ufshcd_force_reset_auto_bkops(hba); 8685 8686 ufshcd_set_timestamp_attr(hba); 8687 8688 /* Gear up to HS gear if supported */ 8689 if (hba->max_pwr_info.is_valid) { 8690 /* 8691 * Set the right value to bRefClkFreq before attempting to 8692 * switch to HS gears. 8693 */ 8694 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8695 ufshcd_set_dev_ref_clk(hba); 8696 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8697 if (ret) { 8698 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8699 __func__, ret); 8700 return ret; 8701 } 8702 } 8703 8704 return 0; 8705 } 8706 8707 /** 8708 * ufshcd_probe_hba - probe hba to detect device and initialize it 8709 * @hba: per-adapter instance 8710 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8711 * 8712 * Execute link-startup and verify device initialization 8713 * 8714 * Return: 0 upon success; < 0 upon failure. 8715 */ 8716 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8717 { 8718 ktime_t start = ktime_get(); 8719 unsigned long flags; 8720 int ret; 8721 8722 ret = ufshcd_device_init(hba, init_dev_params); 8723 if (ret) 8724 goto out; 8725 8726 if (!hba->pm_op_in_progress && 8727 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8728 /* Reset the device and controller before doing reinit */ 8729 ufshcd_device_reset(hba); 8730 ufshcd_hba_stop(hba); 8731 ufshcd_vops_reinit_notify(hba); 8732 ret = ufshcd_hba_enable(hba); 8733 if (ret) { 8734 dev_err(hba->dev, "Host controller enable failed\n"); 8735 ufshcd_print_evt_hist(hba); 8736 ufshcd_print_host_state(hba); 8737 goto out; 8738 } 8739 8740 /* Reinit the device */ 8741 ret = ufshcd_device_init(hba, init_dev_params); 8742 if (ret) 8743 goto out; 8744 } 8745 8746 ufshcd_print_pwr_info(hba); 8747 8748 /* 8749 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8750 * and for removable UFS card as well, hence always set the parameter. 8751 * Note: Error handler may issue the device reset hence resetting 8752 * bActiveICCLevel as well so it is always safe to set this here. 8753 */ 8754 ufshcd_set_active_icc_lvl(hba); 8755 8756 /* Enable UFS Write Booster if supported */ 8757 ufshcd_configure_wb(hba); 8758 8759 if (hba->ee_usr_mask) 8760 ufshcd_write_ee_control(hba); 8761 /* Enable Auto-Hibernate if configured */ 8762 ufshcd_auto_hibern8_enable(hba); 8763 8764 out: 8765 spin_lock_irqsave(hba->host->host_lock, flags); 8766 if (ret) 8767 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8768 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8769 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8770 spin_unlock_irqrestore(hba->host->host_lock, flags); 8771 8772 trace_ufshcd_init(dev_name(hba->dev), ret, 8773 ktime_to_us(ktime_sub(ktime_get(), start)), 8774 hba->curr_dev_pwr_mode, hba->uic_link_state); 8775 return ret; 8776 } 8777 8778 /** 8779 * ufshcd_async_scan - asynchronous execution for probing hba 8780 * @data: data pointer to pass to this function 8781 * @cookie: cookie data 8782 */ 8783 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8784 { 8785 struct ufs_hba *hba = (struct ufs_hba *)data; 8786 int ret; 8787 8788 down(&hba->host_sem); 8789 /* Initialize hba, detect and initialize UFS device */ 8790 ret = ufshcd_probe_hba(hba, true); 8791 up(&hba->host_sem); 8792 if (ret) 8793 goto out; 8794 8795 /* Probe and add UFS logical units */ 8796 ret = ufshcd_add_lus(hba); 8797 out: 8798 /* 8799 * If we failed to initialize the device or the device is not 8800 * present, turn off the power/clocks etc. 8801 */ 8802 if (ret) { 8803 pm_runtime_put_sync(hba->dev); 8804 ufshcd_hba_exit(hba); 8805 } 8806 } 8807 8808 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8809 { 8810 struct ufs_hba *hba = shost_priv(scmd->device->host); 8811 8812 if (!hba->system_suspending) { 8813 /* Activate the error handler in the SCSI core. */ 8814 return SCSI_EH_NOT_HANDLED; 8815 } 8816 8817 /* 8818 * If we get here we know that no TMFs are outstanding and also that 8819 * the only pending command is a START STOP UNIT command. Handle the 8820 * timeout of that command directly to prevent a deadlock between 8821 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8822 */ 8823 ufshcd_link_recovery(hba); 8824 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8825 __func__, hba->outstanding_tasks); 8826 8827 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8828 } 8829 8830 static const struct attribute_group *ufshcd_driver_groups[] = { 8831 &ufs_sysfs_unit_descriptor_group, 8832 &ufs_sysfs_lun_attributes_group, 8833 NULL, 8834 }; 8835 8836 static struct ufs_hba_variant_params ufs_hba_vps = { 8837 .hba_enable_delay_us = 1000, 8838 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8839 .devfreq_profile.polling_ms = 100, 8840 .devfreq_profile.target = ufshcd_devfreq_target, 8841 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8842 .ondemand_data.upthreshold = 70, 8843 .ondemand_data.downdifferential = 5, 8844 }; 8845 8846 static const struct scsi_host_template ufshcd_driver_template = { 8847 .module = THIS_MODULE, 8848 .name = UFSHCD, 8849 .proc_name = UFSHCD, 8850 .map_queues = ufshcd_map_queues, 8851 .queuecommand = ufshcd_queuecommand, 8852 .mq_poll = ufshcd_poll, 8853 .slave_alloc = ufshcd_slave_alloc, 8854 .slave_configure = ufshcd_slave_configure, 8855 .slave_destroy = ufshcd_slave_destroy, 8856 .change_queue_depth = ufshcd_change_queue_depth, 8857 .eh_abort_handler = ufshcd_abort, 8858 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8859 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8860 .eh_timed_out = ufshcd_eh_timed_out, 8861 .this_id = -1, 8862 .sg_tablesize = SG_ALL, 8863 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 8864 .can_queue = UFSHCD_CAN_QUEUE, 8865 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8866 .max_sectors = SZ_1M / SECTOR_SIZE, 8867 .max_host_blocked = 1, 8868 .track_queue_depth = 1, 8869 .skip_settle_delay = 1, 8870 .sdev_groups = ufshcd_driver_groups, 8871 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 8872 }; 8873 8874 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8875 int ua) 8876 { 8877 int ret; 8878 8879 if (!vreg) 8880 return 0; 8881 8882 /* 8883 * "set_load" operation shall be required on those regulators 8884 * which specifically configured current limitation. Otherwise 8885 * zero max_uA may cause unexpected behavior when regulator is 8886 * enabled or set as high power mode. 8887 */ 8888 if (!vreg->max_uA) 8889 return 0; 8890 8891 ret = regulator_set_load(vreg->reg, ua); 8892 if (ret < 0) { 8893 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8894 __func__, vreg->name, ua, ret); 8895 } 8896 8897 return ret; 8898 } 8899 8900 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8901 struct ufs_vreg *vreg) 8902 { 8903 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8904 } 8905 8906 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8907 struct ufs_vreg *vreg) 8908 { 8909 if (!vreg) 8910 return 0; 8911 8912 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8913 } 8914 8915 static int ufshcd_config_vreg(struct device *dev, 8916 struct ufs_vreg *vreg, bool on) 8917 { 8918 if (regulator_count_voltages(vreg->reg) <= 0) 8919 return 0; 8920 8921 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8922 } 8923 8924 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8925 { 8926 int ret = 0; 8927 8928 if (!vreg || vreg->enabled) 8929 goto out; 8930 8931 ret = ufshcd_config_vreg(dev, vreg, true); 8932 if (!ret) 8933 ret = regulator_enable(vreg->reg); 8934 8935 if (!ret) 8936 vreg->enabled = true; 8937 else 8938 dev_err(dev, "%s: %s enable failed, err=%d\n", 8939 __func__, vreg->name, ret); 8940 out: 8941 return ret; 8942 } 8943 8944 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 8945 { 8946 int ret = 0; 8947 8948 if (!vreg || !vreg->enabled || vreg->always_on) 8949 goto out; 8950 8951 ret = regulator_disable(vreg->reg); 8952 8953 if (!ret) { 8954 /* ignore errors on applying disable config */ 8955 ufshcd_config_vreg(dev, vreg, false); 8956 vreg->enabled = false; 8957 } else { 8958 dev_err(dev, "%s: %s disable failed, err=%d\n", 8959 __func__, vreg->name, ret); 8960 } 8961 out: 8962 return ret; 8963 } 8964 8965 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 8966 { 8967 int ret = 0; 8968 struct device *dev = hba->dev; 8969 struct ufs_vreg_info *info = &hba->vreg_info; 8970 8971 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 8972 if (ret) 8973 goto out; 8974 8975 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 8976 if (ret) 8977 goto out; 8978 8979 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 8980 8981 out: 8982 if (ret) { 8983 ufshcd_toggle_vreg(dev, info->vccq2, false); 8984 ufshcd_toggle_vreg(dev, info->vccq, false); 8985 ufshcd_toggle_vreg(dev, info->vcc, false); 8986 } 8987 return ret; 8988 } 8989 8990 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 8991 { 8992 struct ufs_vreg_info *info = &hba->vreg_info; 8993 8994 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 8995 } 8996 8997 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 8998 { 8999 int ret = 0; 9000 9001 if (!vreg) 9002 goto out; 9003 9004 vreg->reg = devm_regulator_get(dev, vreg->name); 9005 if (IS_ERR(vreg->reg)) { 9006 ret = PTR_ERR(vreg->reg); 9007 dev_err(dev, "%s: %s get failed, err=%d\n", 9008 __func__, vreg->name, ret); 9009 } 9010 out: 9011 return ret; 9012 } 9013 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9014 9015 static int ufshcd_init_vreg(struct ufs_hba *hba) 9016 { 9017 int ret = 0; 9018 struct device *dev = hba->dev; 9019 struct ufs_vreg_info *info = &hba->vreg_info; 9020 9021 ret = ufshcd_get_vreg(dev, info->vcc); 9022 if (ret) 9023 goto out; 9024 9025 ret = ufshcd_get_vreg(dev, info->vccq); 9026 if (!ret) 9027 ret = ufshcd_get_vreg(dev, info->vccq2); 9028 out: 9029 return ret; 9030 } 9031 9032 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9033 { 9034 struct ufs_vreg_info *info = &hba->vreg_info; 9035 9036 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9037 } 9038 9039 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9040 { 9041 int ret = 0; 9042 struct ufs_clk_info *clki; 9043 struct list_head *head = &hba->clk_list_head; 9044 unsigned long flags; 9045 ktime_t start = ktime_get(); 9046 bool clk_state_changed = false; 9047 9048 if (list_empty(head)) 9049 goto out; 9050 9051 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9052 if (ret) 9053 return ret; 9054 9055 list_for_each_entry(clki, head, list) { 9056 if (!IS_ERR_OR_NULL(clki->clk)) { 9057 /* 9058 * Don't disable clocks which are needed 9059 * to keep the link active. 9060 */ 9061 if (ufshcd_is_link_active(hba) && 9062 clki->keep_link_active) 9063 continue; 9064 9065 clk_state_changed = on ^ clki->enabled; 9066 if (on && !clki->enabled) { 9067 ret = clk_prepare_enable(clki->clk); 9068 if (ret) { 9069 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9070 __func__, clki->name, ret); 9071 goto out; 9072 } 9073 } else if (!on && clki->enabled) { 9074 clk_disable_unprepare(clki->clk); 9075 } 9076 clki->enabled = on; 9077 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9078 clki->name, on ? "en" : "dis"); 9079 } 9080 } 9081 9082 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9083 if (ret) 9084 return ret; 9085 9086 out: 9087 if (ret) { 9088 list_for_each_entry(clki, head, list) { 9089 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9090 clk_disable_unprepare(clki->clk); 9091 } 9092 } else if (!ret && on) { 9093 spin_lock_irqsave(hba->host->host_lock, flags); 9094 hba->clk_gating.state = CLKS_ON; 9095 trace_ufshcd_clk_gating(dev_name(hba->dev), 9096 hba->clk_gating.state); 9097 spin_unlock_irqrestore(hba->host->host_lock, flags); 9098 } 9099 9100 if (clk_state_changed) 9101 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9102 (on ? "on" : "off"), 9103 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9104 return ret; 9105 } 9106 9107 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9108 { 9109 u32 freq; 9110 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9111 9112 if (ret) { 9113 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9114 return REF_CLK_FREQ_INVAL; 9115 } 9116 9117 return ufs_get_bref_clk_from_hz(freq); 9118 } 9119 9120 static int ufshcd_init_clocks(struct ufs_hba *hba) 9121 { 9122 int ret = 0; 9123 struct ufs_clk_info *clki; 9124 struct device *dev = hba->dev; 9125 struct list_head *head = &hba->clk_list_head; 9126 9127 if (list_empty(head)) 9128 goto out; 9129 9130 list_for_each_entry(clki, head, list) { 9131 if (!clki->name) 9132 continue; 9133 9134 clki->clk = devm_clk_get(dev, clki->name); 9135 if (IS_ERR(clki->clk)) { 9136 ret = PTR_ERR(clki->clk); 9137 dev_err(dev, "%s: %s clk get failed, %d\n", 9138 __func__, clki->name, ret); 9139 goto out; 9140 } 9141 9142 /* 9143 * Parse device ref clk freq as per device tree "ref_clk". 9144 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9145 * in ufshcd_alloc_host(). 9146 */ 9147 if (!strcmp(clki->name, "ref_clk")) 9148 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9149 9150 if (clki->max_freq) { 9151 ret = clk_set_rate(clki->clk, clki->max_freq); 9152 if (ret) { 9153 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9154 __func__, clki->name, 9155 clki->max_freq, ret); 9156 goto out; 9157 } 9158 clki->curr_freq = clki->max_freq; 9159 } 9160 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9161 clki->name, clk_get_rate(clki->clk)); 9162 } 9163 out: 9164 return ret; 9165 } 9166 9167 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9168 { 9169 int err = 0; 9170 9171 if (!hba->vops) 9172 goto out; 9173 9174 err = ufshcd_vops_init(hba); 9175 if (err) 9176 dev_err_probe(hba->dev, err, 9177 "%s: variant %s init failed with err %d\n", 9178 __func__, ufshcd_get_var_name(hba), err); 9179 out: 9180 return err; 9181 } 9182 9183 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9184 { 9185 if (!hba->vops) 9186 return; 9187 9188 ufshcd_vops_exit(hba); 9189 } 9190 9191 static int ufshcd_hba_init(struct ufs_hba *hba) 9192 { 9193 int err; 9194 9195 /* 9196 * Handle host controller power separately from the UFS device power 9197 * rails as it will help controlling the UFS host controller power 9198 * collapse easily which is different than UFS device power collapse. 9199 * Also, enable the host controller power before we go ahead with rest 9200 * of the initialization here. 9201 */ 9202 err = ufshcd_init_hba_vreg(hba); 9203 if (err) 9204 goto out; 9205 9206 err = ufshcd_setup_hba_vreg(hba, true); 9207 if (err) 9208 goto out; 9209 9210 err = ufshcd_init_clocks(hba); 9211 if (err) 9212 goto out_disable_hba_vreg; 9213 9214 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9215 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9216 9217 err = ufshcd_setup_clocks(hba, true); 9218 if (err) 9219 goto out_disable_hba_vreg; 9220 9221 err = ufshcd_init_vreg(hba); 9222 if (err) 9223 goto out_disable_clks; 9224 9225 err = ufshcd_setup_vreg(hba, true); 9226 if (err) 9227 goto out_disable_clks; 9228 9229 err = ufshcd_variant_hba_init(hba); 9230 if (err) 9231 goto out_disable_vreg; 9232 9233 ufs_debugfs_hba_init(hba); 9234 9235 hba->is_powered = true; 9236 goto out; 9237 9238 out_disable_vreg: 9239 ufshcd_setup_vreg(hba, false); 9240 out_disable_clks: 9241 ufshcd_setup_clocks(hba, false); 9242 out_disable_hba_vreg: 9243 ufshcd_setup_hba_vreg(hba, false); 9244 out: 9245 return err; 9246 } 9247 9248 static void ufshcd_hba_exit(struct ufs_hba *hba) 9249 { 9250 if (hba->is_powered) { 9251 ufshcd_exit_clk_scaling(hba); 9252 ufshcd_exit_clk_gating(hba); 9253 if (hba->eh_wq) 9254 destroy_workqueue(hba->eh_wq); 9255 ufs_debugfs_hba_exit(hba); 9256 ufshcd_variant_hba_exit(hba); 9257 ufshcd_setup_vreg(hba, false); 9258 ufshcd_setup_clocks(hba, false); 9259 ufshcd_setup_hba_vreg(hba, false); 9260 hba->is_powered = false; 9261 ufs_put_device_desc(hba); 9262 } 9263 } 9264 9265 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9266 enum ufs_dev_pwr_mode pwr_mode, 9267 struct scsi_sense_hdr *sshdr) 9268 { 9269 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9270 const struct scsi_exec_args args = { 9271 .sshdr = sshdr, 9272 .req_flags = BLK_MQ_REQ_PM, 9273 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9274 }; 9275 9276 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9277 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9278 &args); 9279 } 9280 9281 /** 9282 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9283 * power mode 9284 * @hba: per adapter instance 9285 * @pwr_mode: device power mode to set 9286 * 9287 * Return: 0 if requested power mode is set successfully; 9288 * < 0 if failed to set the requested power mode. 9289 */ 9290 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9291 enum ufs_dev_pwr_mode pwr_mode) 9292 { 9293 struct scsi_sense_hdr sshdr; 9294 struct scsi_device *sdp; 9295 unsigned long flags; 9296 int ret, retries; 9297 9298 spin_lock_irqsave(hba->host->host_lock, flags); 9299 sdp = hba->ufs_device_wlun; 9300 if (sdp && scsi_device_online(sdp)) 9301 ret = scsi_device_get(sdp); 9302 else 9303 ret = -ENODEV; 9304 spin_unlock_irqrestore(hba->host->host_lock, flags); 9305 9306 if (ret) 9307 return ret; 9308 9309 /* 9310 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9311 * handling, which would wait for host to be resumed. Since we know 9312 * we are functional while we are here, skip host resume in error 9313 * handling context. 9314 */ 9315 hba->host->eh_noresume = 1; 9316 9317 /* 9318 * Current function would be generally called from the power management 9319 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9320 * already suspended childs. 9321 */ 9322 for (retries = 3; retries > 0; --retries) { 9323 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9324 /* 9325 * scsi_execute() only returns a negative value if the request 9326 * queue is dying. 9327 */ 9328 if (ret <= 0) 9329 break; 9330 } 9331 if (ret) { 9332 sdev_printk(KERN_WARNING, sdp, 9333 "START_STOP failed for power mode: %d, result %x\n", 9334 pwr_mode, ret); 9335 if (ret > 0) { 9336 if (scsi_sense_valid(&sshdr)) 9337 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9338 ret = -EIO; 9339 } 9340 } else { 9341 hba->curr_dev_pwr_mode = pwr_mode; 9342 } 9343 9344 scsi_device_put(sdp); 9345 hba->host->eh_noresume = 0; 9346 return ret; 9347 } 9348 9349 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9350 enum uic_link_state req_link_state, 9351 bool check_for_bkops) 9352 { 9353 int ret = 0; 9354 9355 if (req_link_state == hba->uic_link_state) 9356 return 0; 9357 9358 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9359 ret = ufshcd_uic_hibern8_enter(hba); 9360 if (!ret) { 9361 ufshcd_set_link_hibern8(hba); 9362 } else { 9363 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9364 __func__, ret); 9365 goto out; 9366 } 9367 } 9368 /* 9369 * If autobkops is enabled, link can't be turned off because 9370 * turning off the link would also turn off the device, except in the 9371 * case of DeepSleep where the device is expected to remain powered. 9372 */ 9373 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9374 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9375 /* 9376 * Let's make sure that link is in low power mode, we are doing 9377 * this currently by putting the link in Hibern8. Otherway to 9378 * put the link in low power mode is to send the DME end point 9379 * to device and then send the DME reset command to local 9380 * unipro. But putting the link in hibern8 is much faster. 9381 * 9382 * Note also that putting the link in Hibern8 is a requirement 9383 * for entering DeepSleep. 9384 */ 9385 ret = ufshcd_uic_hibern8_enter(hba); 9386 if (ret) { 9387 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9388 __func__, ret); 9389 goto out; 9390 } 9391 /* 9392 * Change controller state to "reset state" which 9393 * should also put the link in off/reset state 9394 */ 9395 ufshcd_hba_stop(hba); 9396 /* 9397 * TODO: Check if we need any delay to make sure that 9398 * controller is reset 9399 */ 9400 ufshcd_set_link_off(hba); 9401 } 9402 9403 out: 9404 return ret; 9405 } 9406 9407 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9408 { 9409 bool vcc_off = false; 9410 9411 /* 9412 * It seems some UFS devices may keep drawing more than sleep current 9413 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9414 * To avoid this situation, add 2ms delay before putting these UFS 9415 * rails in LPM mode. 9416 */ 9417 if (!ufshcd_is_link_active(hba) && 9418 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9419 usleep_range(2000, 2100); 9420 9421 /* 9422 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9423 * power. 9424 * 9425 * If UFS device and link is in OFF state, all power supplies (VCC, 9426 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9427 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9428 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9429 * 9430 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9431 * in low power state which would save some power. 9432 * 9433 * If Write Booster is enabled and the device needs to flush the WB 9434 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9435 */ 9436 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9437 !hba->dev_info.is_lu_power_on_wp) { 9438 ufshcd_setup_vreg(hba, false); 9439 vcc_off = true; 9440 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9441 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9442 vcc_off = true; 9443 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9444 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9445 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9446 } 9447 } 9448 9449 /* 9450 * Some UFS devices require delay after VCC power rail is turned-off. 9451 */ 9452 if (vcc_off && hba->vreg_info.vcc && 9453 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9454 usleep_range(5000, 5100); 9455 } 9456 9457 #ifdef CONFIG_PM 9458 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9459 { 9460 int ret = 0; 9461 9462 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9463 !hba->dev_info.is_lu_power_on_wp) { 9464 ret = ufshcd_setup_vreg(hba, true); 9465 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9466 if (!ufshcd_is_link_active(hba)) { 9467 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9468 if (ret) 9469 goto vcc_disable; 9470 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9471 if (ret) 9472 goto vccq_lpm; 9473 } 9474 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9475 } 9476 goto out; 9477 9478 vccq_lpm: 9479 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9480 vcc_disable: 9481 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9482 out: 9483 return ret; 9484 } 9485 #endif /* CONFIG_PM */ 9486 9487 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9488 { 9489 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9490 ufshcd_setup_hba_vreg(hba, false); 9491 } 9492 9493 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9494 { 9495 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9496 ufshcd_setup_hba_vreg(hba, true); 9497 } 9498 9499 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9500 { 9501 int ret = 0; 9502 bool check_for_bkops; 9503 enum ufs_pm_level pm_lvl; 9504 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9505 enum uic_link_state req_link_state; 9506 9507 hba->pm_op_in_progress = true; 9508 if (pm_op != UFS_SHUTDOWN_PM) { 9509 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9510 hba->rpm_lvl : hba->spm_lvl; 9511 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9512 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9513 } else { 9514 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9515 req_link_state = UIC_LINK_OFF_STATE; 9516 } 9517 9518 /* 9519 * If we can't transition into any of the low power modes 9520 * just gate the clocks. 9521 */ 9522 ufshcd_hold(hba); 9523 hba->clk_gating.is_suspended = true; 9524 9525 if (ufshcd_is_clkscaling_supported(hba)) 9526 ufshcd_clk_scaling_suspend(hba, true); 9527 9528 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9529 req_link_state == UIC_LINK_ACTIVE_STATE) { 9530 goto vops_suspend; 9531 } 9532 9533 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9534 (req_link_state == hba->uic_link_state)) 9535 goto enable_scaling; 9536 9537 /* UFS device & link must be active before we enter in this function */ 9538 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9539 ret = -EINVAL; 9540 goto enable_scaling; 9541 } 9542 9543 if (pm_op == UFS_RUNTIME_PM) { 9544 if (ufshcd_can_autobkops_during_suspend(hba)) { 9545 /* 9546 * The device is idle with no requests in the queue, 9547 * allow background operations if bkops status shows 9548 * that performance might be impacted. 9549 */ 9550 ret = ufshcd_urgent_bkops(hba); 9551 if (ret) { 9552 /* 9553 * If return err in suspend flow, IO will hang. 9554 * Trigger error handler and break suspend for 9555 * error recovery. 9556 */ 9557 ufshcd_force_error_recovery(hba); 9558 ret = -EBUSY; 9559 goto enable_scaling; 9560 } 9561 } else { 9562 /* make sure that auto bkops is disabled */ 9563 ufshcd_disable_auto_bkops(hba); 9564 } 9565 /* 9566 * If device needs to do BKOP or WB buffer flush during 9567 * Hibern8, keep device power mode as "active power mode" 9568 * and VCC supply. 9569 */ 9570 hba->dev_info.b_rpm_dev_flush_capable = 9571 hba->auto_bkops_enabled || 9572 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9573 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9574 ufshcd_is_auto_hibern8_enabled(hba))) && 9575 ufshcd_wb_need_flush(hba)); 9576 } 9577 9578 flush_work(&hba->eeh_work); 9579 9580 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9581 if (ret) 9582 goto enable_scaling; 9583 9584 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9585 if (pm_op != UFS_RUNTIME_PM) 9586 /* ensure that bkops is disabled */ 9587 ufshcd_disable_auto_bkops(hba); 9588 9589 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9590 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9591 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9592 /* 9593 * If return err in suspend flow, IO will hang. 9594 * Trigger error handler and break suspend for 9595 * error recovery. 9596 */ 9597 ufshcd_force_error_recovery(hba); 9598 ret = -EBUSY; 9599 } 9600 if (ret) 9601 goto enable_scaling; 9602 } 9603 } 9604 9605 /* 9606 * In the case of DeepSleep, the device is expected to remain powered 9607 * with the link off, so do not check for bkops. 9608 */ 9609 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9610 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9611 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9612 /* 9613 * If return err in suspend flow, IO will hang. 9614 * Trigger error handler and break suspend for 9615 * error recovery. 9616 */ 9617 ufshcd_force_error_recovery(hba); 9618 ret = -EBUSY; 9619 } 9620 if (ret) 9621 goto set_dev_active; 9622 9623 vops_suspend: 9624 /* 9625 * Call vendor specific suspend callback. As these callbacks may access 9626 * vendor specific host controller register space call them before the 9627 * host clocks are ON. 9628 */ 9629 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9630 if (ret) 9631 goto set_link_active; 9632 goto out; 9633 9634 set_link_active: 9635 /* 9636 * Device hardware reset is required to exit DeepSleep. Also, for 9637 * DeepSleep, the link is off so host reset and restore will be done 9638 * further below. 9639 */ 9640 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9641 ufshcd_device_reset(hba); 9642 WARN_ON(!ufshcd_is_link_off(hba)); 9643 } 9644 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9645 ufshcd_set_link_active(hba); 9646 else if (ufshcd_is_link_off(hba)) 9647 ufshcd_host_reset_and_restore(hba); 9648 set_dev_active: 9649 /* Can also get here needing to exit DeepSleep */ 9650 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9651 ufshcd_device_reset(hba); 9652 ufshcd_host_reset_and_restore(hba); 9653 } 9654 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9655 ufshcd_disable_auto_bkops(hba); 9656 enable_scaling: 9657 if (ufshcd_is_clkscaling_supported(hba)) 9658 ufshcd_clk_scaling_suspend(hba, false); 9659 9660 hba->dev_info.b_rpm_dev_flush_capable = false; 9661 out: 9662 if (hba->dev_info.b_rpm_dev_flush_capable) { 9663 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9664 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9665 } 9666 9667 if (ret) { 9668 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9669 hba->clk_gating.is_suspended = false; 9670 ufshcd_release(hba); 9671 } 9672 hba->pm_op_in_progress = false; 9673 return ret; 9674 } 9675 9676 #ifdef CONFIG_PM 9677 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9678 { 9679 int ret; 9680 enum uic_link_state old_link_state = hba->uic_link_state; 9681 9682 hba->pm_op_in_progress = true; 9683 9684 /* 9685 * Call vendor specific resume callback. As these callbacks may access 9686 * vendor specific host controller register space call them when the 9687 * host clocks are ON. 9688 */ 9689 ret = ufshcd_vops_resume(hba, pm_op); 9690 if (ret) 9691 goto out; 9692 9693 /* For DeepSleep, the only supported option is to have the link off */ 9694 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9695 9696 if (ufshcd_is_link_hibern8(hba)) { 9697 ret = ufshcd_uic_hibern8_exit(hba); 9698 if (!ret) { 9699 ufshcd_set_link_active(hba); 9700 } else { 9701 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9702 __func__, ret); 9703 goto vendor_suspend; 9704 } 9705 } else if (ufshcd_is_link_off(hba)) { 9706 /* 9707 * A full initialization of the host and the device is 9708 * required since the link was put to off during suspend. 9709 * Note, in the case of DeepSleep, the device will exit 9710 * DeepSleep due to device reset. 9711 */ 9712 ret = ufshcd_reset_and_restore(hba); 9713 /* 9714 * ufshcd_reset_and_restore() should have already 9715 * set the link state as active 9716 */ 9717 if (ret || !ufshcd_is_link_active(hba)) 9718 goto vendor_suspend; 9719 } 9720 9721 if (!ufshcd_is_ufs_dev_active(hba)) { 9722 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9723 if (ret) 9724 goto set_old_link_state; 9725 ufshcd_set_timestamp_attr(hba); 9726 } 9727 9728 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9729 ufshcd_enable_auto_bkops(hba); 9730 else 9731 /* 9732 * If BKOPs operations are urgently needed at this moment then 9733 * keep auto-bkops enabled or else disable it. 9734 */ 9735 ufshcd_urgent_bkops(hba); 9736 9737 if (hba->ee_usr_mask) 9738 ufshcd_write_ee_control(hba); 9739 9740 if (ufshcd_is_clkscaling_supported(hba)) 9741 ufshcd_clk_scaling_suspend(hba, false); 9742 9743 if (hba->dev_info.b_rpm_dev_flush_capable) { 9744 hba->dev_info.b_rpm_dev_flush_capable = false; 9745 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9746 } 9747 9748 /* Enable Auto-Hibernate if configured */ 9749 ufshcd_auto_hibern8_enable(hba); 9750 9751 goto out; 9752 9753 set_old_link_state: 9754 ufshcd_link_state_transition(hba, old_link_state, 0); 9755 vendor_suspend: 9756 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9757 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9758 out: 9759 if (ret) 9760 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9761 hba->clk_gating.is_suspended = false; 9762 ufshcd_release(hba); 9763 hba->pm_op_in_progress = false; 9764 return ret; 9765 } 9766 9767 static int ufshcd_wl_runtime_suspend(struct device *dev) 9768 { 9769 struct scsi_device *sdev = to_scsi_device(dev); 9770 struct ufs_hba *hba; 9771 int ret; 9772 ktime_t start = ktime_get(); 9773 9774 hba = shost_priv(sdev->host); 9775 9776 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9777 if (ret) 9778 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9779 9780 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9781 ktime_to_us(ktime_sub(ktime_get(), start)), 9782 hba->curr_dev_pwr_mode, hba->uic_link_state); 9783 9784 return ret; 9785 } 9786 9787 static int ufshcd_wl_runtime_resume(struct device *dev) 9788 { 9789 struct scsi_device *sdev = to_scsi_device(dev); 9790 struct ufs_hba *hba; 9791 int ret = 0; 9792 ktime_t start = ktime_get(); 9793 9794 hba = shost_priv(sdev->host); 9795 9796 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9797 if (ret) 9798 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9799 9800 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9801 ktime_to_us(ktime_sub(ktime_get(), start)), 9802 hba->curr_dev_pwr_mode, hba->uic_link_state); 9803 9804 return ret; 9805 } 9806 #endif 9807 9808 #ifdef CONFIG_PM_SLEEP 9809 static int ufshcd_wl_suspend(struct device *dev) 9810 { 9811 struct scsi_device *sdev = to_scsi_device(dev); 9812 struct ufs_hba *hba; 9813 int ret = 0; 9814 ktime_t start = ktime_get(); 9815 9816 hba = shost_priv(sdev->host); 9817 down(&hba->host_sem); 9818 hba->system_suspending = true; 9819 9820 if (pm_runtime_suspended(dev)) 9821 goto out; 9822 9823 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9824 if (ret) { 9825 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9826 up(&hba->host_sem); 9827 } 9828 9829 out: 9830 if (!ret) 9831 hba->is_sys_suspended = true; 9832 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9833 ktime_to_us(ktime_sub(ktime_get(), start)), 9834 hba->curr_dev_pwr_mode, hba->uic_link_state); 9835 9836 return ret; 9837 } 9838 9839 static int ufshcd_wl_resume(struct device *dev) 9840 { 9841 struct scsi_device *sdev = to_scsi_device(dev); 9842 struct ufs_hba *hba; 9843 int ret = 0; 9844 ktime_t start = ktime_get(); 9845 9846 hba = shost_priv(sdev->host); 9847 9848 if (pm_runtime_suspended(dev)) 9849 goto out; 9850 9851 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9852 if (ret) 9853 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9854 out: 9855 trace_ufshcd_wl_resume(dev_name(dev), ret, 9856 ktime_to_us(ktime_sub(ktime_get(), start)), 9857 hba->curr_dev_pwr_mode, hba->uic_link_state); 9858 if (!ret) 9859 hba->is_sys_suspended = false; 9860 hba->system_suspending = false; 9861 up(&hba->host_sem); 9862 return ret; 9863 } 9864 #endif 9865 9866 /** 9867 * ufshcd_suspend - helper function for suspend operations 9868 * @hba: per adapter instance 9869 * 9870 * This function will put disable irqs, turn off clocks 9871 * and set vreg and hba-vreg in lpm mode. 9872 * 9873 * Return: 0 upon success; < 0 upon failure. 9874 */ 9875 static int ufshcd_suspend(struct ufs_hba *hba) 9876 { 9877 int ret; 9878 9879 if (!hba->is_powered) 9880 return 0; 9881 /* 9882 * Disable the host irq as host controller as there won't be any 9883 * host controller transaction expected till resume. 9884 */ 9885 ufshcd_disable_irq(hba); 9886 ret = ufshcd_setup_clocks(hba, false); 9887 if (ret) { 9888 ufshcd_enable_irq(hba); 9889 return ret; 9890 } 9891 if (ufshcd_is_clkgating_allowed(hba)) { 9892 hba->clk_gating.state = CLKS_OFF; 9893 trace_ufshcd_clk_gating(dev_name(hba->dev), 9894 hba->clk_gating.state); 9895 } 9896 9897 ufshcd_vreg_set_lpm(hba); 9898 /* Put the host controller in low power mode if possible */ 9899 ufshcd_hba_vreg_set_lpm(hba); 9900 return ret; 9901 } 9902 9903 #ifdef CONFIG_PM 9904 /** 9905 * ufshcd_resume - helper function for resume operations 9906 * @hba: per adapter instance 9907 * 9908 * This function basically turns on the regulators, clocks and 9909 * irqs of the hba. 9910 * 9911 * Return: 0 for success and non-zero for failure. 9912 */ 9913 static int ufshcd_resume(struct ufs_hba *hba) 9914 { 9915 int ret; 9916 9917 if (!hba->is_powered) 9918 return 0; 9919 9920 ufshcd_hba_vreg_set_hpm(hba); 9921 ret = ufshcd_vreg_set_hpm(hba); 9922 if (ret) 9923 goto out; 9924 9925 /* Make sure clocks are enabled before accessing controller */ 9926 ret = ufshcd_setup_clocks(hba, true); 9927 if (ret) 9928 goto disable_vreg; 9929 9930 /* enable the host irq as host controller would be active soon */ 9931 ufshcd_enable_irq(hba); 9932 9933 goto out; 9934 9935 disable_vreg: 9936 ufshcd_vreg_set_lpm(hba); 9937 out: 9938 if (ret) 9939 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 9940 return ret; 9941 } 9942 #endif /* CONFIG_PM */ 9943 9944 #ifdef CONFIG_PM_SLEEP 9945 /** 9946 * ufshcd_system_suspend - system suspend callback 9947 * @dev: Device associated with the UFS controller. 9948 * 9949 * Executed before putting the system into a sleep state in which the contents 9950 * of main memory are preserved. 9951 * 9952 * Return: 0 for success and non-zero for failure. 9953 */ 9954 int ufshcd_system_suspend(struct device *dev) 9955 { 9956 struct ufs_hba *hba = dev_get_drvdata(dev); 9957 int ret = 0; 9958 ktime_t start = ktime_get(); 9959 9960 if (pm_runtime_suspended(hba->dev)) 9961 goto out; 9962 9963 ret = ufshcd_suspend(hba); 9964 out: 9965 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 9966 ktime_to_us(ktime_sub(ktime_get(), start)), 9967 hba->curr_dev_pwr_mode, hba->uic_link_state); 9968 return ret; 9969 } 9970 EXPORT_SYMBOL(ufshcd_system_suspend); 9971 9972 /** 9973 * ufshcd_system_resume - system resume callback 9974 * @dev: Device associated with the UFS controller. 9975 * 9976 * Executed after waking the system up from a sleep state in which the contents 9977 * of main memory were preserved. 9978 * 9979 * Return: 0 for success and non-zero for failure. 9980 */ 9981 int ufshcd_system_resume(struct device *dev) 9982 { 9983 struct ufs_hba *hba = dev_get_drvdata(dev); 9984 ktime_t start = ktime_get(); 9985 int ret = 0; 9986 9987 if (pm_runtime_suspended(hba->dev)) 9988 goto out; 9989 9990 ret = ufshcd_resume(hba); 9991 9992 out: 9993 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 9994 ktime_to_us(ktime_sub(ktime_get(), start)), 9995 hba->curr_dev_pwr_mode, hba->uic_link_state); 9996 9997 return ret; 9998 } 9999 EXPORT_SYMBOL(ufshcd_system_resume); 10000 #endif /* CONFIG_PM_SLEEP */ 10001 10002 #ifdef CONFIG_PM 10003 /** 10004 * ufshcd_runtime_suspend - runtime suspend callback 10005 * @dev: Device associated with the UFS controller. 10006 * 10007 * Check the description of ufshcd_suspend() function for more details. 10008 * 10009 * Return: 0 for success and non-zero for failure. 10010 */ 10011 int ufshcd_runtime_suspend(struct device *dev) 10012 { 10013 struct ufs_hba *hba = dev_get_drvdata(dev); 10014 int ret; 10015 ktime_t start = ktime_get(); 10016 10017 ret = ufshcd_suspend(hba); 10018 10019 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10020 ktime_to_us(ktime_sub(ktime_get(), start)), 10021 hba->curr_dev_pwr_mode, hba->uic_link_state); 10022 return ret; 10023 } 10024 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10025 10026 /** 10027 * ufshcd_runtime_resume - runtime resume routine 10028 * @dev: Device associated with the UFS controller. 10029 * 10030 * This function basically brings controller 10031 * to active state. Following operations are done in this function: 10032 * 10033 * 1. Turn on all the controller related clocks 10034 * 2. Turn ON VCC rail 10035 * 10036 * Return: 0 upon success; < 0 upon failure. 10037 */ 10038 int ufshcd_runtime_resume(struct device *dev) 10039 { 10040 struct ufs_hba *hba = dev_get_drvdata(dev); 10041 int ret; 10042 ktime_t start = ktime_get(); 10043 10044 ret = ufshcd_resume(hba); 10045 10046 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10047 ktime_to_us(ktime_sub(ktime_get(), start)), 10048 hba->curr_dev_pwr_mode, hba->uic_link_state); 10049 return ret; 10050 } 10051 EXPORT_SYMBOL(ufshcd_runtime_resume); 10052 #endif /* CONFIG_PM */ 10053 10054 static void ufshcd_wl_shutdown(struct device *dev) 10055 { 10056 struct scsi_device *sdev = to_scsi_device(dev); 10057 struct ufs_hba *hba = shost_priv(sdev->host); 10058 10059 down(&hba->host_sem); 10060 hba->shutting_down = true; 10061 up(&hba->host_sem); 10062 10063 /* Turn on everything while shutting down */ 10064 ufshcd_rpm_get_sync(hba); 10065 scsi_device_quiesce(sdev); 10066 shost_for_each_device(sdev, hba->host) { 10067 if (sdev == hba->ufs_device_wlun) 10068 continue; 10069 scsi_device_quiesce(sdev); 10070 } 10071 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10072 10073 /* 10074 * Next, turn off the UFS controller and the UFS regulators. Disable 10075 * clocks. 10076 */ 10077 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10078 ufshcd_suspend(hba); 10079 10080 hba->is_powered = false; 10081 } 10082 10083 /** 10084 * ufshcd_remove - de-allocate SCSI host and host memory space 10085 * data structure memory 10086 * @hba: per adapter instance 10087 */ 10088 void ufshcd_remove(struct ufs_hba *hba) 10089 { 10090 if (hba->ufs_device_wlun) 10091 ufshcd_rpm_get_sync(hba); 10092 ufs_hwmon_remove(hba); 10093 ufs_bsg_remove(hba); 10094 ufs_sysfs_remove_nodes(hba->dev); 10095 blk_mq_destroy_queue(hba->tmf_queue); 10096 blk_put_queue(hba->tmf_queue); 10097 blk_mq_free_tag_set(&hba->tmf_tag_set); 10098 scsi_remove_host(hba->host); 10099 /* disable interrupts */ 10100 ufshcd_disable_intr(hba, hba->intr_mask); 10101 ufshcd_hba_stop(hba); 10102 ufshcd_hba_exit(hba); 10103 } 10104 EXPORT_SYMBOL_GPL(ufshcd_remove); 10105 10106 #ifdef CONFIG_PM_SLEEP 10107 int ufshcd_system_freeze(struct device *dev) 10108 { 10109 10110 return ufshcd_system_suspend(dev); 10111 10112 } 10113 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10114 10115 int ufshcd_system_restore(struct device *dev) 10116 { 10117 10118 struct ufs_hba *hba = dev_get_drvdata(dev); 10119 int ret; 10120 10121 ret = ufshcd_system_resume(dev); 10122 if (ret) 10123 return ret; 10124 10125 /* Configure UTRL and UTMRL base address registers */ 10126 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10127 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10128 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10129 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10130 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10131 REG_UTP_TASK_REQ_LIST_BASE_L); 10132 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10133 REG_UTP_TASK_REQ_LIST_BASE_H); 10134 /* 10135 * Make sure that UTRL and UTMRL base address registers 10136 * are updated with the latest queue addresses. Only after 10137 * updating these addresses, we can queue the new commands. 10138 */ 10139 mb(); 10140 10141 /* Resuming from hibernate, assume that link was OFF */ 10142 ufshcd_set_link_off(hba); 10143 10144 return 0; 10145 10146 } 10147 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10148 10149 int ufshcd_system_thaw(struct device *dev) 10150 { 10151 return ufshcd_system_resume(dev); 10152 } 10153 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10154 #endif /* CONFIG_PM_SLEEP */ 10155 10156 /** 10157 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10158 * @hba: pointer to Host Bus Adapter (HBA) 10159 */ 10160 void ufshcd_dealloc_host(struct ufs_hba *hba) 10161 { 10162 scsi_host_put(hba->host); 10163 } 10164 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10165 10166 /** 10167 * ufshcd_set_dma_mask - Set dma mask based on the controller 10168 * addressing capability 10169 * @hba: per adapter instance 10170 * 10171 * Return: 0 for success, non-zero for failure. 10172 */ 10173 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10174 { 10175 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10176 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10177 return 0; 10178 } 10179 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10180 } 10181 10182 /** 10183 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10184 * @dev: pointer to device handle 10185 * @hba_handle: driver private handle 10186 * 10187 * Return: 0 on success, non-zero value on failure. 10188 */ 10189 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10190 { 10191 struct Scsi_Host *host; 10192 struct ufs_hba *hba; 10193 int err = 0; 10194 10195 if (!dev) { 10196 dev_err(dev, 10197 "Invalid memory reference for dev is NULL\n"); 10198 err = -ENODEV; 10199 goto out_error; 10200 } 10201 10202 host = scsi_host_alloc(&ufshcd_driver_template, 10203 sizeof(struct ufs_hba)); 10204 if (!host) { 10205 dev_err(dev, "scsi_host_alloc failed\n"); 10206 err = -ENOMEM; 10207 goto out_error; 10208 } 10209 host->nr_maps = HCTX_TYPE_POLL + 1; 10210 hba = shost_priv(host); 10211 hba->host = host; 10212 hba->dev = dev; 10213 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10214 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10215 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10216 INIT_LIST_HEAD(&hba->clk_list_head); 10217 spin_lock_init(&hba->outstanding_lock); 10218 10219 *hba_handle = hba; 10220 10221 out_error: 10222 return err; 10223 } 10224 EXPORT_SYMBOL(ufshcd_alloc_host); 10225 10226 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10227 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10228 const struct blk_mq_queue_data *qd) 10229 { 10230 WARN_ON_ONCE(true); 10231 return BLK_STS_NOTSUPP; 10232 } 10233 10234 static const struct blk_mq_ops ufshcd_tmf_ops = { 10235 .queue_rq = ufshcd_queue_tmf, 10236 }; 10237 10238 /** 10239 * ufshcd_init - Driver initialization routine 10240 * @hba: per-adapter instance 10241 * @mmio_base: base register address 10242 * @irq: Interrupt line of device 10243 * 10244 * Return: 0 on success, non-zero value on failure. 10245 */ 10246 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10247 { 10248 int err; 10249 struct Scsi_Host *host = hba->host; 10250 struct device *dev = hba->dev; 10251 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 10252 10253 /* 10254 * dev_set_drvdata() must be called before any callbacks are registered 10255 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10256 * sysfs). 10257 */ 10258 dev_set_drvdata(dev, hba); 10259 10260 if (!mmio_base) { 10261 dev_err(hba->dev, 10262 "Invalid memory reference for mmio_base is NULL\n"); 10263 err = -ENODEV; 10264 goto out_error; 10265 } 10266 10267 hba->mmio_base = mmio_base; 10268 hba->irq = irq; 10269 hba->vps = &ufs_hba_vps; 10270 10271 err = ufshcd_hba_init(hba); 10272 if (err) 10273 goto out_error; 10274 10275 /* Read capabilities registers */ 10276 err = ufshcd_hba_capabilities(hba); 10277 if (err) 10278 goto out_disable; 10279 10280 /* Get UFS version supported by the controller */ 10281 hba->ufs_version = ufshcd_get_ufs_version(hba); 10282 10283 /* Get Interrupt bit mask per version */ 10284 hba->intr_mask = ufshcd_get_intr_mask(hba); 10285 10286 err = ufshcd_set_dma_mask(hba); 10287 if (err) { 10288 dev_err(hba->dev, "set dma mask failed\n"); 10289 goto out_disable; 10290 } 10291 10292 /* Allocate memory for host memory space */ 10293 err = ufshcd_memory_alloc(hba); 10294 if (err) { 10295 dev_err(hba->dev, "Memory allocation failed\n"); 10296 goto out_disable; 10297 } 10298 10299 /* Configure LRB */ 10300 ufshcd_host_memory_configure(hba); 10301 10302 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10303 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10304 host->max_id = UFSHCD_MAX_ID; 10305 host->max_lun = UFS_MAX_LUNS; 10306 host->max_channel = UFSHCD_MAX_CHANNEL; 10307 host->unique_id = host->host_no; 10308 host->max_cmd_len = UFS_CDB_SIZE; 10309 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10310 10311 hba->max_pwr_info.is_valid = false; 10312 10313 /* Initialize work queues */ 10314 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 10315 hba->host->host_no); 10316 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 10317 if (!hba->eh_wq) { 10318 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10319 __func__); 10320 err = -ENOMEM; 10321 goto out_disable; 10322 } 10323 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10324 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10325 10326 sema_init(&hba->host_sem, 1); 10327 10328 /* Initialize UIC command mutex */ 10329 mutex_init(&hba->uic_cmd_mutex); 10330 10331 /* Initialize mutex for device management commands */ 10332 mutex_init(&hba->dev_cmd.lock); 10333 10334 /* Initialize mutex for exception event control */ 10335 mutex_init(&hba->ee_ctrl_mutex); 10336 10337 mutex_init(&hba->wb_mutex); 10338 init_rwsem(&hba->clk_scaling_lock); 10339 10340 ufshcd_init_clk_gating(hba); 10341 10342 ufshcd_init_clk_scaling(hba); 10343 10344 /* 10345 * In order to avoid any spurious interrupt immediately after 10346 * registering UFS controller interrupt handler, clear any pending UFS 10347 * interrupt status and disable all the UFS interrupts. 10348 */ 10349 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10350 REG_INTERRUPT_STATUS); 10351 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10352 /* 10353 * Make sure that UFS interrupts are disabled and any pending interrupt 10354 * status is cleared before registering UFS interrupt handler. 10355 */ 10356 mb(); 10357 10358 /* IRQ registration */ 10359 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10360 if (err) { 10361 dev_err(hba->dev, "request irq failed\n"); 10362 goto out_disable; 10363 } else { 10364 hba->is_irq_enabled = true; 10365 } 10366 10367 if (!is_mcq_supported(hba)) { 10368 err = scsi_add_host(host, hba->dev); 10369 if (err) { 10370 dev_err(hba->dev, "scsi_add_host failed\n"); 10371 goto out_disable; 10372 } 10373 } 10374 10375 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10376 .nr_hw_queues = 1, 10377 .queue_depth = hba->nutmrs, 10378 .ops = &ufshcd_tmf_ops, 10379 .flags = BLK_MQ_F_NO_SCHED, 10380 }; 10381 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10382 if (err < 0) 10383 goto out_remove_scsi_host; 10384 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 10385 if (IS_ERR(hba->tmf_queue)) { 10386 err = PTR_ERR(hba->tmf_queue); 10387 goto free_tmf_tag_set; 10388 } 10389 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10390 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10391 if (!hba->tmf_rqs) { 10392 err = -ENOMEM; 10393 goto free_tmf_queue; 10394 } 10395 10396 /* Reset the attached device */ 10397 ufshcd_device_reset(hba); 10398 10399 ufshcd_init_crypto(hba); 10400 10401 /* Host controller enable */ 10402 err = ufshcd_hba_enable(hba); 10403 if (err) { 10404 dev_err(hba->dev, "Host controller enable failed\n"); 10405 ufshcd_print_evt_hist(hba); 10406 ufshcd_print_host_state(hba); 10407 goto free_tmf_queue; 10408 } 10409 10410 /* 10411 * Set the default power management level for runtime and system PM. 10412 * Default power saving mode is to keep UFS link in Hibern8 state 10413 * and UFS device in sleep state. 10414 */ 10415 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10416 UFS_SLEEP_PWR_MODE, 10417 UIC_LINK_HIBERN8_STATE); 10418 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10419 UFS_SLEEP_PWR_MODE, 10420 UIC_LINK_HIBERN8_STATE); 10421 10422 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 10423 ufshcd_rpm_dev_flush_recheck_work); 10424 10425 /* Set the default auto-hiberate idle timer value to 150 ms */ 10426 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10427 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10428 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10429 } 10430 10431 /* Hold auto suspend until async scan completes */ 10432 pm_runtime_get_sync(dev); 10433 atomic_set(&hba->scsi_block_reqs_cnt, 0); 10434 /* 10435 * We are assuming that device wasn't put in sleep/power-down 10436 * state exclusively during the boot stage before kernel. 10437 * This assumption helps avoid doing link startup twice during 10438 * ufshcd_probe_hba(). 10439 */ 10440 ufshcd_set_ufs_dev_active(hba); 10441 10442 async_schedule(ufshcd_async_scan, hba); 10443 ufs_sysfs_add_nodes(hba->dev); 10444 10445 device_enable_async_suspend(dev); 10446 return 0; 10447 10448 free_tmf_queue: 10449 blk_mq_destroy_queue(hba->tmf_queue); 10450 blk_put_queue(hba->tmf_queue); 10451 free_tmf_tag_set: 10452 blk_mq_free_tag_set(&hba->tmf_tag_set); 10453 out_remove_scsi_host: 10454 scsi_remove_host(hba->host); 10455 out_disable: 10456 hba->is_irq_enabled = false; 10457 ufshcd_hba_exit(hba); 10458 out_error: 10459 return err; 10460 } 10461 EXPORT_SYMBOL_GPL(ufshcd_init); 10462 10463 void ufshcd_resume_complete(struct device *dev) 10464 { 10465 struct ufs_hba *hba = dev_get_drvdata(dev); 10466 10467 if (hba->complete_put) { 10468 ufshcd_rpm_put(hba); 10469 hba->complete_put = false; 10470 } 10471 } 10472 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10473 10474 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10475 { 10476 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10477 enum ufs_dev_pwr_mode dev_pwr_mode; 10478 enum uic_link_state link_state; 10479 unsigned long flags; 10480 bool res; 10481 10482 spin_lock_irqsave(&dev->power.lock, flags); 10483 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10484 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10485 res = pm_runtime_suspended(dev) && 10486 hba->curr_dev_pwr_mode == dev_pwr_mode && 10487 hba->uic_link_state == link_state && 10488 !hba->dev_info.b_rpm_dev_flush_capable; 10489 spin_unlock_irqrestore(&dev->power.lock, flags); 10490 10491 return res; 10492 } 10493 10494 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10495 { 10496 struct ufs_hba *hba = dev_get_drvdata(dev); 10497 int ret; 10498 10499 /* 10500 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10501 * are same. And it doesn't wake up the device for system-suspend 10502 * if it's runtime suspended. But ufs doesn't follow that. 10503 * Refer ufshcd_resume_complete() 10504 */ 10505 if (hba->ufs_device_wlun) { 10506 /* Prevent runtime suspend */ 10507 ufshcd_rpm_get_noresume(hba); 10508 /* 10509 * Check if already runtime suspended in same state as system 10510 * suspend would be. 10511 */ 10512 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10513 /* RPM state is not ok for SPM, so runtime resume */ 10514 ret = ufshcd_rpm_resume(hba); 10515 if (ret < 0 && ret != -EACCES) { 10516 ufshcd_rpm_put(hba); 10517 return ret; 10518 } 10519 } 10520 hba->complete_put = true; 10521 } 10522 return 0; 10523 } 10524 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10525 10526 int ufshcd_suspend_prepare(struct device *dev) 10527 { 10528 return __ufshcd_suspend_prepare(dev, true); 10529 } 10530 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10531 10532 #ifdef CONFIG_PM_SLEEP 10533 static int ufshcd_wl_poweroff(struct device *dev) 10534 { 10535 struct scsi_device *sdev = to_scsi_device(dev); 10536 struct ufs_hba *hba = shost_priv(sdev->host); 10537 10538 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10539 return 0; 10540 } 10541 #endif 10542 10543 static int ufshcd_wl_probe(struct device *dev) 10544 { 10545 struct scsi_device *sdev = to_scsi_device(dev); 10546 10547 if (!is_device_wlun(sdev)) 10548 return -ENODEV; 10549 10550 blk_pm_runtime_init(sdev->request_queue, dev); 10551 pm_runtime_set_autosuspend_delay(dev, 0); 10552 pm_runtime_allow(dev); 10553 10554 return 0; 10555 } 10556 10557 static int ufshcd_wl_remove(struct device *dev) 10558 { 10559 pm_runtime_forbid(dev); 10560 return 0; 10561 } 10562 10563 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10564 #ifdef CONFIG_PM_SLEEP 10565 .suspend = ufshcd_wl_suspend, 10566 .resume = ufshcd_wl_resume, 10567 .freeze = ufshcd_wl_suspend, 10568 .thaw = ufshcd_wl_resume, 10569 .poweroff = ufshcd_wl_poweroff, 10570 .restore = ufshcd_wl_resume, 10571 #endif 10572 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10573 }; 10574 10575 static void ufshcd_check_header_layout(void) 10576 { 10577 /* 10578 * gcc compilers before version 10 cannot do constant-folding for 10579 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10580 * before. 10581 */ 10582 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10583 return; 10584 10585 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10586 .cci = 3})[0] != 3); 10587 10588 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10589 .ehs_length = 2})[1] != 2); 10590 10591 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10592 .enable_crypto = 1})[2] 10593 != 0x80); 10594 10595 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10596 .command_type = 5, 10597 .data_direction = 3, 10598 .interrupt = 1, 10599 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10600 10601 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10602 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10603 cpu_to_le32(0xdeadbeef)); 10604 10605 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10606 .ocs = 4})[8] != 4); 10607 10608 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10609 .cds = 5})[9] != 5); 10610 10611 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10612 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10613 cpu_to_le32(0xbadcafe)); 10614 10615 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10616 .iid = 0xf })[4] != 0xf0); 10617 10618 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10619 .command_set_type = 0xf })[4] != 0xf); 10620 } 10621 10622 /* 10623 * ufs_dev_wlun_template - describes ufs device wlun 10624 * ufs-device wlun - used to send pm commands 10625 * All luns are consumers of ufs-device wlun. 10626 * 10627 * Currently, no sd driver is present for wluns. 10628 * Hence the no specific pm operations are performed. 10629 * With ufs design, SSU should be sent to ufs-device wlun. 10630 * Hence register a scsi driver for ufs wluns only. 10631 */ 10632 static struct scsi_driver ufs_dev_wlun_template = { 10633 .gendrv = { 10634 .name = "ufs_device_wlun", 10635 .owner = THIS_MODULE, 10636 .probe = ufshcd_wl_probe, 10637 .remove = ufshcd_wl_remove, 10638 .pm = &ufshcd_wl_pm_ops, 10639 .shutdown = ufshcd_wl_shutdown, 10640 }, 10641 }; 10642 10643 static int __init ufshcd_core_init(void) 10644 { 10645 int ret; 10646 10647 ufshcd_check_header_layout(); 10648 10649 ufs_debugfs_init(); 10650 10651 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10652 if (ret) 10653 ufs_debugfs_exit(); 10654 return ret; 10655 } 10656 10657 static void __exit ufshcd_core_exit(void) 10658 { 10659 ufs_debugfs_exit(); 10660 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10661 } 10662 10663 module_init(ufshcd_core_init); 10664 module_exit(ufshcd_core_exit); 10665 10666 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10667 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10668 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10669 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10670 MODULE_LICENSE("GPL"); 10671