xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 479965a2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include <asm/unaligned.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/ufs.h>
41 
42 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
43 				 UTP_TASK_REQ_COMPL |\
44 				 UFSHCD_ERROR_MASK)
45 
46 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
47 				 UFSHCD_ERROR_MASK |\
48 				 MCQ_CQ_EVENT_STATUS)
49 
50 
51 /* UIC command timeout, unit: ms */
52 #define UIC_CMD_TIMEOUT	500
53 
54 /* NOP OUT retries waiting for NOP IN response */
55 #define NOP_OUT_RETRIES    10
56 /* Timeout after 50 msecs if NOP OUT hangs without response */
57 #define NOP_OUT_TIMEOUT    50 /* msecs */
58 
59 /* Query request retries */
60 #define QUERY_REQ_RETRIES 3
61 /* Query request timeout */
62 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
63 
64 /* Advanced RPMB request timeout */
65 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
66 
67 /* Task management command timeout */
68 #define TM_CMD_TIMEOUT	100 /* msecs */
69 
70 /* maximum number of retries for a general UIC command  */
71 #define UFS_UIC_COMMAND_RETRIES 3
72 
73 /* maximum number of link-startup retries */
74 #define DME_LINKSTARTUP_RETRIES 3
75 
76 /* maximum number of reset retries before giving up */
77 #define MAX_HOST_RESET_RETRIES 5
78 
79 /* Maximum number of error handler retries before giving up */
80 #define MAX_ERR_HANDLER_RETRIES 5
81 
82 /* Expose the flag value from utp_upiu_query.value */
83 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
84 
85 /* Interrupt aggregation default timeout, unit: 40us */
86 #define INT_AGGR_DEF_TO	0x02
87 
88 /* default delay of autosuspend: 2000 ms */
89 #define RPM_AUTOSUSPEND_DELAY_MS 2000
90 
91 /* Default delay of RPM device flush delayed work */
92 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
93 
94 /* Default value of wait time before gating device ref clock */
95 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
96 
97 /* Polling time to wait for fDeviceInit */
98 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
99 
100 /* UFSHC 4.0 compliant HC support this mode. */
101 static bool use_mcq_mode = true;
102 
103 static bool is_mcq_supported(struct ufs_hba *hba)
104 {
105 	return hba->mcq_sup && use_mcq_mode;
106 }
107 
108 module_param(use_mcq_mode, bool, 0644);
109 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
110 
111 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
112 	({                                                              \
113 		int _ret;                                               \
114 		if (_on)                                                \
115 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
116 		else                                                    \
117 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
118 		_ret;                                                   \
119 	})
120 
121 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
122 	size_t __len = (len);                                            \
123 	print_hex_dump(KERN_ERR, prefix_str,                             \
124 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
125 		       16, 4, buf, __len, false);                        \
126 } while (0)
127 
128 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
129 		     const char *prefix)
130 {
131 	u32 *regs;
132 	size_t pos;
133 
134 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
135 		return -EINVAL;
136 
137 	regs = kzalloc(len, GFP_ATOMIC);
138 	if (!regs)
139 		return -ENOMEM;
140 
141 	for (pos = 0; pos < len; pos += 4) {
142 		if (offset == 0 &&
143 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
144 		    pos <= REG_UIC_ERROR_CODE_DME)
145 			continue;
146 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
147 	}
148 
149 	ufshcd_hex_dump(prefix, regs, len);
150 	kfree(regs);
151 
152 	return 0;
153 }
154 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
155 
156 enum {
157 	UFSHCD_MAX_CHANNEL	= 0,
158 	UFSHCD_MAX_ID		= 1,
159 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
160 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
161 };
162 
163 static const char *const ufshcd_state_name[] = {
164 	[UFSHCD_STATE_RESET]			= "reset",
165 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
166 	[UFSHCD_STATE_ERROR]			= "error",
167 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
168 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
169 };
170 
171 /* UFSHCD error handling flags */
172 enum {
173 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
174 };
175 
176 /* UFSHCD UIC layer error flags */
177 enum {
178 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
179 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
180 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
181 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
182 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
183 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
184 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
185 };
186 
187 #define ufshcd_set_eh_in_progress(h) \
188 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
189 #define ufshcd_eh_in_progress(h) \
190 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
191 #define ufshcd_clear_eh_in_progress(h) \
192 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
193 
194 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
195 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
196 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
197 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
198 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
199 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
201 	/*
202 	 * For DeepSleep, the link is first put in hibern8 and then off.
203 	 * Leaving the link in hibern8 is not supported.
204 	 */
205 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
206 };
207 
208 static inline enum ufs_dev_pwr_mode
209 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
210 {
211 	return ufs_pm_lvl_states[lvl].dev_state;
212 }
213 
214 static inline enum uic_link_state
215 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
216 {
217 	return ufs_pm_lvl_states[lvl].link_state;
218 }
219 
220 static inline enum ufs_pm_level
221 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
222 					enum uic_link_state link_state)
223 {
224 	enum ufs_pm_level lvl;
225 
226 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
227 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
228 			(ufs_pm_lvl_states[lvl].link_state == link_state))
229 			return lvl;
230 	}
231 
232 	/* if no match found, return the level 0 */
233 	return UFS_PM_LVL_0;
234 }
235 
236 static const struct ufs_dev_quirk ufs_fixups[] = {
237 	/* UFS cards deviations table */
238 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
239 	  .model = UFS_ANY_MODEL,
240 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
241 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
242 	  .model = UFS_ANY_MODEL,
243 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
244 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
245 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
246 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
247 	  .model = UFS_ANY_MODEL,
248 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
249 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
250 	  .model = "hB8aL1" /*H28U62301AMR*/,
251 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
252 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
253 	  .model = UFS_ANY_MODEL,
254 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
255 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
256 	  .model = "THGLF2G9C8KBADG",
257 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
258 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
259 	  .model = "THGLF2G9D8KBADG",
260 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
261 	{}
262 };
263 
264 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
265 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
266 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
267 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
268 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
269 static void ufshcd_hba_exit(struct ufs_hba *hba);
270 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
271 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
272 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
273 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
274 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
275 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
276 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
278 static irqreturn_t ufshcd_intr(int irq, void *__hba);
279 static int ufshcd_change_power_mode(struct ufs_hba *hba,
280 			     struct ufs_pa_layer_attr *pwr_mode);
281 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
282 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
283 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
284 					 struct ufs_vreg *vreg);
285 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
286 						 bool enable);
287 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
288 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
289 
290 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
291 {
292 	if (!hba->is_irq_enabled) {
293 		enable_irq(hba->irq);
294 		hba->is_irq_enabled = true;
295 	}
296 }
297 
298 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
299 {
300 	if (hba->is_irq_enabled) {
301 		disable_irq(hba->irq);
302 		hba->is_irq_enabled = false;
303 	}
304 }
305 
306 static void ufshcd_configure_wb(struct ufs_hba *hba)
307 {
308 	if (!ufshcd_is_wb_allowed(hba))
309 		return;
310 
311 	ufshcd_wb_toggle(hba, true);
312 
313 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
314 
315 	if (ufshcd_is_wb_buf_flush_allowed(hba))
316 		ufshcd_wb_toggle_buf_flush(hba, true);
317 }
318 
319 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
320 {
321 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
322 		scsi_unblock_requests(hba->host);
323 }
324 
325 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
326 {
327 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
328 		scsi_block_requests(hba->host);
329 }
330 
331 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
332 				      enum ufs_trace_str_t str_t)
333 {
334 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
335 	struct utp_upiu_header *header;
336 
337 	if (!trace_ufshcd_upiu_enabled())
338 		return;
339 
340 	if (str_t == UFS_CMD_SEND)
341 		header = &rq->header;
342 	else
343 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
344 
345 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
346 			  UFS_TSF_CDB);
347 }
348 
349 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
350 					enum ufs_trace_str_t str_t,
351 					struct utp_upiu_req *rq_rsp)
352 {
353 	if (!trace_ufshcd_upiu_enabled())
354 		return;
355 
356 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
357 			  &rq_rsp->qr, UFS_TSF_OSF);
358 }
359 
360 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
361 				     enum ufs_trace_str_t str_t)
362 {
363 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
364 
365 	if (!trace_ufshcd_upiu_enabled())
366 		return;
367 
368 	if (str_t == UFS_TM_SEND)
369 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
370 				  &descp->upiu_req.req_header,
371 				  &descp->upiu_req.input_param1,
372 				  UFS_TSF_TM_INPUT);
373 	else
374 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
375 				  &descp->upiu_rsp.rsp_header,
376 				  &descp->upiu_rsp.output_param1,
377 				  UFS_TSF_TM_OUTPUT);
378 }
379 
380 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
381 					 const struct uic_command *ucmd,
382 					 enum ufs_trace_str_t str_t)
383 {
384 	u32 cmd;
385 
386 	if (!trace_ufshcd_uic_command_enabled())
387 		return;
388 
389 	if (str_t == UFS_CMD_SEND)
390 		cmd = ucmd->command;
391 	else
392 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
393 
394 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
395 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
398 }
399 
400 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
401 				     enum ufs_trace_str_t str_t)
402 {
403 	u64 lba = 0;
404 	u8 opcode = 0, group_id = 0;
405 	u32 doorbell = 0;
406 	u32 intr;
407 	int hwq_id = -1;
408 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
409 	struct scsi_cmnd *cmd = lrbp->cmd;
410 	struct request *rq = scsi_cmd_to_rq(cmd);
411 	int transfer_len = -1;
412 
413 	if (!cmd)
414 		return;
415 
416 	/* trace UPIU also */
417 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
418 	if (!trace_ufshcd_command_enabled())
419 		return;
420 
421 	opcode = cmd->cmnd[0];
422 
423 	if (opcode == READ_10 || opcode == WRITE_10) {
424 		/*
425 		 * Currently we only fully trace read(10) and write(10) commands
426 		 */
427 		transfer_len =
428 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
429 		lba = scsi_get_lba(cmd);
430 		if (opcode == WRITE_10)
431 			group_id = lrbp->cmd->cmnd[6];
432 	} else if (opcode == UNMAP) {
433 		/*
434 		 * The number of Bytes to be unmapped beginning with the lba.
435 		 */
436 		transfer_len = blk_rq_bytes(rq);
437 		lba = scsi_get_lba(cmd);
438 	}
439 
440 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
441 
442 	if (is_mcq_enabled(hba)) {
443 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
444 
445 		hwq_id = hwq->id;
446 	} else {
447 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
448 	}
449 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
450 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
451 }
452 
453 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
454 {
455 	struct ufs_clk_info *clki;
456 	struct list_head *head = &hba->clk_list_head;
457 
458 	if (list_empty(head))
459 		return;
460 
461 	list_for_each_entry(clki, head, list) {
462 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
463 				clki->max_freq)
464 			dev_err(hba->dev, "clk: %s, rate: %u\n",
465 					clki->name, clki->curr_freq);
466 	}
467 }
468 
469 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
470 			     const char *err_name)
471 {
472 	int i;
473 	bool found = false;
474 	const struct ufs_event_hist *e;
475 
476 	if (id >= UFS_EVT_CNT)
477 		return;
478 
479 	e = &hba->ufs_stats.event[id];
480 
481 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
482 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
483 
484 		if (e->tstamp[p] == 0)
485 			continue;
486 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
487 			e->val[p], div_u64(e->tstamp[p], 1000));
488 		found = true;
489 	}
490 
491 	if (!found)
492 		dev_err(hba->dev, "No record of %s\n", err_name);
493 	else
494 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
495 }
496 
497 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
498 {
499 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
500 
501 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
502 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
503 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
506 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
507 			 "auto_hibern8_err");
508 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
509 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
510 			 "link_startup_fail");
511 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
513 			 "suspend_fail");
514 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
516 			 "wlun suspend_fail");
517 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
518 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
520 
521 	ufshcd_vops_dbg_register_dump(hba);
522 }
523 
524 static
525 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
526 {
527 	const struct ufshcd_lrb *lrbp;
528 	int prdt_length;
529 
530 	lrbp = &hba->lrb[tag];
531 
532 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
533 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
534 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
535 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
536 	dev_err(hba->dev,
537 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
538 		tag, (u64)lrbp->utrd_dma_addr);
539 
540 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
541 			sizeof(struct utp_transfer_req_desc));
542 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
543 		(u64)lrbp->ucd_req_dma_addr);
544 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
545 			sizeof(struct utp_upiu_req));
546 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
547 		(u64)lrbp->ucd_rsp_dma_addr);
548 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
549 			sizeof(struct utp_upiu_rsp));
550 
551 	prdt_length = le16_to_cpu(
552 		lrbp->utr_descriptor_ptr->prd_table_length);
553 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
554 		prdt_length /= ufshcd_sg_entry_size(hba);
555 
556 	dev_err(hba->dev,
557 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
558 		tag, prdt_length,
559 		(u64)lrbp->ucd_prdt_dma_addr);
560 
561 	if (pr_prdt)
562 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
563 			ufshcd_sg_entry_size(hba) * prdt_length);
564 }
565 
566 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
567 {
568 	struct scsi_device *sdev = req->q->queuedata;
569 	struct Scsi_Host *shost = sdev->host;
570 	struct ufs_hba *hba = shost_priv(shost);
571 
572 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
573 
574 	return true;
575 }
576 
577 /**
578  * ufshcd_print_trs_all - print trs for all started requests.
579  * @hba: per-adapter instance.
580  * @pr_prdt: need to print prdt or not.
581  */
582 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
583 {
584 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
585 }
586 
587 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
588 {
589 	int tag;
590 
591 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
592 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
593 
594 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
595 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
596 	}
597 }
598 
599 static void ufshcd_print_host_state(struct ufs_hba *hba)
600 {
601 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
602 
603 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
604 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
605 		hba->outstanding_reqs, hba->outstanding_tasks);
606 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
607 		hba->saved_err, hba->saved_uic_err);
608 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
609 		hba->curr_dev_pwr_mode, hba->uic_link_state);
610 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
611 		hba->pm_op_in_progress, hba->is_sys_suspended);
612 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
613 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
614 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
615 	dev_err(hba->dev,
616 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
617 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
618 		hba->ufs_stats.hibern8_exit_cnt);
619 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
620 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
621 		hba->ufs_stats.last_intr_status);
622 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
623 		hba->eh_flags, hba->req_abort_count);
624 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
625 		hba->ufs_version, hba->capabilities, hba->caps);
626 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
627 		hba->dev_quirks);
628 	if (sdev_ufs)
629 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
630 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
631 
632 	ufshcd_print_clk_freqs(hba);
633 }
634 
635 /**
636  * ufshcd_print_pwr_info - print power params as saved in hba
637  * power info
638  * @hba: per-adapter instance
639  */
640 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
641 {
642 	static const char * const names[] = {
643 		"INVALID MODE",
644 		"FAST MODE",
645 		"SLOW_MODE",
646 		"INVALID MODE",
647 		"FASTAUTO_MODE",
648 		"SLOWAUTO_MODE",
649 		"INVALID MODE",
650 	};
651 
652 	/*
653 	 * Using dev_dbg to avoid messages during runtime PM to avoid
654 	 * never-ending cycles of messages written back to storage by user space
655 	 * causing runtime resume, causing more messages and so on.
656 	 */
657 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
658 		 __func__,
659 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
660 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
661 		 names[hba->pwr_info.pwr_rx],
662 		 names[hba->pwr_info.pwr_tx],
663 		 hba->pwr_info.hs_rate);
664 }
665 
666 static void ufshcd_device_reset(struct ufs_hba *hba)
667 {
668 	int err;
669 
670 	err = ufshcd_vops_device_reset(hba);
671 
672 	if (!err) {
673 		ufshcd_set_ufs_dev_active(hba);
674 		if (ufshcd_is_wb_allowed(hba)) {
675 			hba->dev_info.wb_enabled = false;
676 			hba->dev_info.wb_buf_flush_enabled = false;
677 		}
678 	}
679 	if (err != -EOPNOTSUPP)
680 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
681 }
682 
683 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
684 {
685 	if (!us)
686 		return;
687 
688 	if (us < 10)
689 		udelay(us);
690 	else
691 		usleep_range(us, us + tolerance);
692 }
693 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
694 
695 /**
696  * ufshcd_wait_for_register - wait for register value to change
697  * @hba: per-adapter interface
698  * @reg: mmio register offset
699  * @mask: mask to apply to the read register value
700  * @val: value to wait for
701  * @interval_us: polling interval in microseconds
702  * @timeout_ms: timeout in milliseconds
703  *
704  * Return: -ETIMEDOUT on error, zero on success.
705  */
706 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
707 				u32 val, unsigned long interval_us,
708 				unsigned long timeout_ms)
709 {
710 	int err = 0;
711 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
712 
713 	/* ignore bits that we don't intend to wait on */
714 	val = val & mask;
715 
716 	while ((ufshcd_readl(hba, reg) & mask) != val) {
717 		usleep_range(interval_us, interval_us + 50);
718 		if (time_after(jiffies, timeout)) {
719 			if ((ufshcd_readl(hba, reg) & mask) != val)
720 				err = -ETIMEDOUT;
721 			break;
722 		}
723 	}
724 
725 	return err;
726 }
727 
728 /**
729  * ufshcd_get_intr_mask - Get the interrupt bit mask
730  * @hba: Pointer to adapter instance
731  *
732  * Return: interrupt bit mask per version
733  */
734 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
735 {
736 	if (hba->ufs_version == ufshci_version(1, 0))
737 		return INTERRUPT_MASK_ALL_VER_10;
738 	if (hba->ufs_version <= ufshci_version(2, 0))
739 		return INTERRUPT_MASK_ALL_VER_11;
740 
741 	return INTERRUPT_MASK_ALL_VER_21;
742 }
743 
744 /**
745  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
746  * @hba: Pointer to adapter instance
747  *
748  * Return: UFSHCI version supported by the controller
749  */
750 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
751 {
752 	u32 ufshci_ver;
753 
754 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
755 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
756 	else
757 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
758 
759 	/*
760 	 * UFSHCI v1.x uses a different version scheme, in order
761 	 * to allow the use of comparisons with the ufshci_version
762 	 * function, we convert it to the same scheme as ufs 2.0+.
763 	 */
764 	if (ufshci_ver & 0x00010000)
765 		return ufshci_version(1, ufshci_ver & 0x00000100);
766 
767 	return ufshci_ver;
768 }
769 
770 /**
771  * ufshcd_is_device_present - Check if any device connected to
772  *			      the host controller
773  * @hba: pointer to adapter instance
774  *
775  * Return: true if device present, false if no device detected
776  */
777 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
778 {
779 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
780 }
781 
782 /**
783  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
784  * @lrbp: pointer to local command reference block
785  * @cqe: pointer to the completion queue entry
786  *
787  * This function is used to get the OCS field from UTRD
788  *
789  * Return: the OCS field in the UTRD.
790  */
791 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
792 				      struct cq_entry *cqe)
793 {
794 	if (cqe)
795 		return le32_to_cpu(cqe->status) & MASK_OCS;
796 
797 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
798 }
799 
800 /**
801  * ufshcd_utrl_clear() - Clear requests from the controller request list.
802  * @hba: per adapter instance
803  * @mask: mask with one bit set for each request to be cleared
804  */
805 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
806 {
807 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
808 		mask = ~mask;
809 	/*
810 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
811 	 * Register (UTRLCLR): This field is bit significant. Each bit
812 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
813 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
814 	 * by host software to indicate to the host controller that a transfer
815 	 * request slot is cleared. The host controller
816 	 * shall free up any resources associated to the request slot
817 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
818 	 * host software indicates no change to request slots by setting the
819 	 * associated bits in this field to ‘1’. Bits in this field shall only
820 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
821 	 */
822 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
823 }
824 
825 /**
826  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
827  * @hba: per adapter instance
828  * @pos: position of the bit to be cleared
829  */
830 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
831 {
832 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
833 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
834 	else
835 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
836 }
837 
838 /**
839  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
840  * @reg: Register value of host controller status
841  *
842  * Return: 0 on success; a positive value if failed.
843  */
844 static inline int ufshcd_get_lists_status(u32 reg)
845 {
846 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
847 }
848 
849 /**
850  * ufshcd_get_uic_cmd_result - Get the UIC command result
851  * @hba: Pointer to adapter instance
852  *
853  * This function gets the result of UIC command completion
854  *
855  * Return: 0 on success; non-zero value on error.
856  */
857 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
858 {
859 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
860 	       MASK_UIC_COMMAND_RESULT;
861 }
862 
863 /**
864  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
865  * @hba: Pointer to adapter instance
866  *
867  * This function gets UIC command argument3
868  *
869  * Return: 0 on success; non-zero value on error.
870  */
871 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
872 {
873 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
874 }
875 
876 /**
877  * ufshcd_get_req_rsp - returns the TR response transaction type
878  * @ucd_rsp_ptr: pointer to response UPIU
879  *
880  * Return: UPIU type.
881  */
882 static inline enum upiu_response_transaction
883 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
884 {
885 	return ucd_rsp_ptr->header.transaction_code;
886 }
887 
888 /**
889  * ufshcd_is_exception_event - Check if the device raised an exception event
890  * @ucd_rsp_ptr: pointer to response UPIU
891  *
892  * The function checks if the device raised an exception event indicated in
893  * the Device Information field of response UPIU.
894  *
895  * Return: true if exception is raised, false otherwise.
896  */
897 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
898 {
899 	return ucd_rsp_ptr->header.device_information & 1;
900 }
901 
902 /**
903  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
904  * @hba: per adapter instance
905  */
906 static inline void
907 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
908 {
909 	ufshcd_writel(hba, INT_AGGR_ENABLE |
910 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
911 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
912 }
913 
914 /**
915  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
916  * @hba: per adapter instance
917  * @cnt: Interrupt aggregation counter threshold
918  * @tmout: Interrupt aggregation timeout value
919  */
920 static inline void
921 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
922 {
923 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
924 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
925 		      INT_AGGR_TIMEOUT_VAL(tmout),
926 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
927 }
928 
929 /**
930  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
931  * @hba: per adapter instance
932  */
933 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
934 {
935 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
936 }
937 
938 /**
939  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
940  *			When run-stop registers are set to 1, it indicates the
941  *			host controller that it can process the requests
942  * @hba: per adapter instance
943  */
944 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
945 {
946 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
947 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
948 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
949 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
950 }
951 
952 /**
953  * ufshcd_hba_start - Start controller initialization sequence
954  * @hba: per adapter instance
955  */
956 static inline void ufshcd_hba_start(struct ufs_hba *hba)
957 {
958 	u32 val = CONTROLLER_ENABLE;
959 
960 	if (ufshcd_crypto_enable(hba))
961 		val |= CRYPTO_GENERAL_ENABLE;
962 
963 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
964 }
965 
966 /**
967  * ufshcd_is_hba_active - Get controller state
968  * @hba: per adapter instance
969  *
970  * Return: true if and only if the controller is active.
971  */
972 bool ufshcd_is_hba_active(struct ufs_hba *hba)
973 {
974 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
975 }
976 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
977 
978 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
979 {
980 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
981 	if (hba->ufs_version <= ufshci_version(1, 1))
982 		return UFS_UNIPRO_VER_1_41;
983 	else
984 		return UFS_UNIPRO_VER_1_6;
985 }
986 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
987 
988 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
989 {
990 	/*
991 	 * If both host and device support UniPro ver1.6 or later, PA layer
992 	 * parameters tuning happens during link startup itself.
993 	 *
994 	 * We can manually tune PA layer parameters if either host or device
995 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
996 	 * logic simple, we will only do manual tuning if local unipro version
997 	 * doesn't support ver1.6 or later.
998 	 */
999 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1000 }
1001 
1002 /**
1003  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1004  * @hba: per adapter instance
1005  * @scale_up: If True, set max possible frequency othewise set low frequency
1006  *
1007  * Return: 0 if successful; < 0 upon failure.
1008  */
1009 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1010 {
1011 	int ret = 0;
1012 	struct ufs_clk_info *clki;
1013 	struct list_head *head = &hba->clk_list_head;
1014 
1015 	if (list_empty(head))
1016 		goto out;
1017 
1018 	list_for_each_entry(clki, head, list) {
1019 		if (!IS_ERR_OR_NULL(clki->clk)) {
1020 			if (scale_up && clki->max_freq) {
1021 				if (clki->curr_freq == clki->max_freq)
1022 					continue;
1023 
1024 				ret = clk_set_rate(clki->clk, clki->max_freq);
1025 				if (ret) {
1026 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1027 						__func__, clki->name,
1028 						clki->max_freq, ret);
1029 					break;
1030 				}
1031 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1032 						"scaled up", clki->name,
1033 						clki->curr_freq,
1034 						clki->max_freq);
1035 
1036 				clki->curr_freq = clki->max_freq;
1037 
1038 			} else if (!scale_up && clki->min_freq) {
1039 				if (clki->curr_freq == clki->min_freq)
1040 					continue;
1041 
1042 				ret = clk_set_rate(clki->clk, clki->min_freq);
1043 				if (ret) {
1044 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1045 						__func__, clki->name,
1046 						clki->min_freq, ret);
1047 					break;
1048 				}
1049 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1050 						"scaled down", clki->name,
1051 						clki->curr_freq,
1052 						clki->min_freq);
1053 				clki->curr_freq = clki->min_freq;
1054 			}
1055 		}
1056 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1057 				clki->name, clk_get_rate(clki->clk));
1058 	}
1059 
1060 out:
1061 	return ret;
1062 }
1063 
1064 /**
1065  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1066  * @hba: per adapter instance
1067  * @scale_up: True if scaling up and false if scaling down
1068  *
1069  * Return: 0 if successful; < 0 upon failure.
1070  */
1071 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1072 {
1073 	int ret = 0;
1074 	ktime_t start = ktime_get();
1075 
1076 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1077 	if (ret)
1078 		goto out;
1079 
1080 	ret = ufshcd_set_clk_freq(hba, scale_up);
1081 	if (ret)
1082 		goto out;
1083 
1084 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1085 	if (ret)
1086 		ufshcd_set_clk_freq(hba, !scale_up);
1087 
1088 out:
1089 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1090 			(scale_up ? "up" : "down"),
1091 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1092 	return ret;
1093 }
1094 
1095 /**
1096  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1097  * @hba: per adapter instance
1098  * @scale_up: True if scaling up and false if scaling down
1099  *
1100  * Return: true if scaling is required, false otherwise.
1101  */
1102 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1103 					       bool scale_up)
1104 {
1105 	struct ufs_clk_info *clki;
1106 	struct list_head *head = &hba->clk_list_head;
1107 
1108 	if (list_empty(head))
1109 		return false;
1110 
1111 	list_for_each_entry(clki, head, list) {
1112 		if (!IS_ERR_OR_NULL(clki->clk)) {
1113 			if (scale_up && clki->max_freq) {
1114 				if (clki->curr_freq == clki->max_freq)
1115 					continue;
1116 				return true;
1117 			} else if (!scale_up && clki->min_freq) {
1118 				if (clki->curr_freq == clki->min_freq)
1119 					continue;
1120 				return true;
1121 			}
1122 		}
1123 	}
1124 
1125 	return false;
1126 }
1127 
1128 /*
1129  * Determine the number of pending commands by counting the bits in the SCSI
1130  * device budget maps. This approach has been selected because a bit is set in
1131  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1132  * flag. The host_self_blocked flag can be modified by calling
1133  * scsi_block_requests() or scsi_unblock_requests().
1134  */
1135 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1136 {
1137 	const struct scsi_device *sdev;
1138 	u32 pending = 0;
1139 
1140 	lockdep_assert_held(hba->host->host_lock);
1141 	__shost_for_each_device(sdev, hba->host)
1142 		pending += sbitmap_weight(&sdev->budget_map);
1143 
1144 	return pending;
1145 }
1146 
1147 /*
1148  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1149  * has expired.
1150  *
1151  * Return: 0 upon success; -EBUSY upon timeout.
1152  */
1153 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1154 					u64 wait_timeout_us)
1155 {
1156 	unsigned long flags;
1157 	int ret = 0;
1158 	u32 tm_doorbell;
1159 	u32 tr_pending;
1160 	bool timeout = false, do_last_check = false;
1161 	ktime_t start;
1162 
1163 	ufshcd_hold(hba);
1164 	spin_lock_irqsave(hba->host->host_lock, flags);
1165 	/*
1166 	 * Wait for all the outstanding tasks/transfer requests.
1167 	 * Verify by checking the doorbell registers are clear.
1168 	 */
1169 	start = ktime_get();
1170 	do {
1171 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1172 			ret = -EBUSY;
1173 			goto out;
1174 		}
1175 
1176 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1177 		tr_pending = ufshcd_pending_cmds(hba);
1178 		if (!tm_doorbell && !tr_pending) {
1179 			timeout = false;
1180 			break;
1181 		} else if (do_last_check) {
1182 			break;
1183 		}
1184 
1185 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1186 		io_schedule_timeout(msecs_to_jiffies(20));
1187 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1188 		    wait_timeout_us) {
1189 			timeout = true;
1190 			/*
1191 			 * We might have scheduled out for long time so make
1192 			 * sure to check if doorbells are cleared by this time
1193 			 * or not.
1194 			 */
1195 			do_last_check = true;
1196 		}
1197 		spin_lock_irqsave(hba->host->host_lock, flags);
1198 	} while (tm_doorbell || tr_pending);
1199 
1200 	if (timeout) {
1201 		dev_err(hba->dev,
1202 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1203 			__func__, tm_doorbell, tr_pending);
1204 		ret = -EBUSY;
1205 	}
1206 out:
1207 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1208 	ufshcd_release(hba);
1209 	return ret;
1210 }
1211 
1212 /**
1213  * ufshcd_scale_gear - scale up/down UFS gear
1214  * @hba: per adapter instance
1215  * @scale_up: True for scaling up gear and false for scaling down
1216  *
1217  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1218  * non-zero for any other errors.
1219  */
1220 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1221 {
1222 	int ret = 0;
1223 	struct ufs_pa_layer_attr new_pwr_info;
1224 
1225 	if (scale_up) {
1226 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1227 		       sizeof(struct ufs_pa_layer_attr));
1228 	} else {
1229 		memcpy(&new_pwr_info, &hba->pwr_info,
1230 		       sizeof(struct ufs_pa_layer_attr));
1231 
1232 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1233 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1234 			/* save the current power mode */
1235 			memcpy(&hba->clk_scaling.saved_pwr_info,
1236 				&hba->pwr_info,
1237 				sizeof(struct ufs_pa_layer_attr));
1238 
1239 			/* scale down gear */
1240 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1241 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1242 		}
1243 	}
1244 
1245 	/* check if the power mode needs to be changed or not? */
1246 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1247 	if (ret)
1248 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1249 			__func__, ret,
1250 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1251 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1252 
1253 	return ret;
1254 }
1255 
1256 /*
1257  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1258  * has expired.
1259  *
1260  * Return: 0 upon success; -EBUSY upon timeout.
1261  */
1262 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1263 {
1264 	int ret = 0;
1265 	/*
1266 	 * make sure that there are no outstanding requests when
1267 	 * clock scaling is in progress
1268 	 */
1269 	ufshcd_scsi_block_requests(hba);
1270 	mutex_lock(&hba->wb_mutex);
1271 	down_write(&hba->clk_scaling_lock);
1272 
1273 	if (!hba->clk_scaling.is_allowed ||
1274 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1275 		ret = -EBUSY;
1276 		up_write(&hba->clk_scaling_lock);
1277 		mutex_unlock(&hba->wb_mutex);
1278 		ufshcd_scsi_unblock_requests(hba);
1279 		goto out;
1280 	}
1281 
1282 	/* let's not get into low power until clock scaling is completed */
1283 	ufshcd_hold(hba);
1284 
1285 out:
1286 	return ret;
1287 }
1288 
1289 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1290 {
1291 	up_write(&hba->clk_scaling_lock);
1292 
1293 	/* Enable Write Booster if we have scaled up else disable it */
1294 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1295 		ufshcd_wb_toggle(hba, scale_up);
1296 
1297 	mutex_unlock(&hba->wb_mutex);
1298 
1299 	ufshcd_scsi_unblock_requests(hba);
1300 	ufshcd_release(hba);
1301 }
1302 
1303 /**
1304  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1305  * @hba: per adapter instance
1306  * @scale_up: True for scaling up and false for scalin down
1307  *
1308  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1309  * for any other errors.
1310  */
1311 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1312 {
1313 	int ret = 0;
1314 
1315 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1316 	if (ret)
1317 		return ret;
1318 
1319 	/* scale down the gear before scaling down clocks */
1320 	if (!scale_up) {
1321 		ret = ufshcd_scale_gear(hba, false);
1322 		if (ret)
1323 			goto out_unprepare;
1324 	}
1325 
1326 	ret = ufshcd_scale_clks(hba, scale_up);
1327 	if (ret) {
1328 		if (!scale_up)
1329 			ufshcd_scale_gear(hba, true);
1330 		goto out_unprepare;
1331 	}
1332 
1333 	/* scale up the gear after scaling up clocks */
1334 	if (scale_up) {
1335 		ret = ufshcd_scale_gear(hba, true);
1336 		if (ret) {
1337 			ufshcd_scale_clks(hba, false);
1338 			goto out_unprepare;
1339 		}
1340 	}
1341 
1342 out_unprepare:
1343 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1344 	return ret;
1345 }
1346 
1347 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1348 {
1349 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1350 					   clk_scaling.suspend_work);
1351 	unsigned long irq_flags;
1352 
1353 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1354 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1355 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1356 		return;
1357 	}
1358 	hba->clk_scaling.is_suspended = true;
1359 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1360 
1361 	__ufshcd_suspend_clkscaling(hba);
1362 }
1363 
1364 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1365 {
1366 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1367 					   clk_scaling.resume_work);
1368 	unsigned long irq_flags;
1369 
1370 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1371 	if (!hba->clk_scaling.is_suspended) {
1372 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1373 		return;
1374 	}
1375 	hba->clk_scaling.is_suspended = false;
1376 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1377 
1378 	devfreq_resume_device(hba->devfreq);
1379 }
1380 
1381 static int ufshcd_devfreq_target(struct device *dev,
1382 				unsigned long *freq, u32 flags)
1383 {
1384 	int ret = 0;
1385 	struct ufs_hba *hba = dev_get_drvdata(dev);
1386 	ktime_t start;
1387 	bool scale_up, sched_clk_scaling_suspend_work = false;
1388 	struct list_head *clk_list = &hba->clk_list_head;
1389 	struct ufs_clk_info *clki;
1390 	unsigned long irq_flags;
1391 
1392 	if (!ufshcd_is_clkscaling_supported(hba))
1393 		return -EINVAL;
1394 
1395 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1396 	/* Override with the closest supported frequency */
1397 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1398 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1399 	if (ufshcd_eh_in_progress(hba)) {
1400 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1401 		return 0;
1402 	}
1403 
1404 	if (!hba->clk_scaling.active_reqs)
1405 		sched_clk_scaling_suspend_work = true;
1406 
1407 	if (list_empty(clk_list)) {
1408 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1409 		goto out;
1410 	}
1411 
1412 	/* Decide based on the rounded-off frequency and update */
1413 	scale_up = *freq == clki->max_freq;
1414 	if (!scale_up)
1415 		*freq = clki->min_freq;
1416 	/* Update the frequency */
1417 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1418 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1419 		ret = 0;
1420 		goto out; /* no state change required */
1421 	}
1422 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1423 
1424 	start = ktime_get();
1425 	ret = ufshcd_devfreq_scale(hba, scale_up);
1426 
1427 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1428 		(scale_up ? "up" : "down"),
1429 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1430 
1431 out:
1432 	if (sched_clk_scaling_suspend_work)
1433 		queue_work(hba->clk_scaling.workq,
1434 			   &hba->clk_scaling.suspend_work);
1435 
1436 	return ret;
1437 }
1438 
1439 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1440 		struct devfreq_dev_status *stat)
1441 {
1442 	struct ufs_hba *hba = dev_get_drvdata(dev);
1443 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1444 	unsigned long flags;
1445 	struct list_head *clk_list = &hba->clk_list_head;
1446 	struct ufs_clk_info *clki;
1447 	ktime_t curr_t;
1448 
1449 	if (!ufshcd_is_clkscaling_supported(hba))
1450 		return -EINVAL;
1451 
1452 	memset(stat, 0, sizeof(*stat));
1453 
1454 	spin_lock_irqsave(hba->host->host_lock, flags);
1455 	curr_t = ktime_get();
1456 	if (!scaling->window_start_t)
1457 		goto start_window;
1458 
1459 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1460 	/*
1461 	 * If current frequency is 0, then the ondemand governor considers
1462 	 * there's no initial frequency set. And it always requests to set
1463 	 * to max. frequency.
1464 	 */
1465 	stat->current_frequency = clki->curr_freq;
1466 	if (scaling->is_busy_started)
1467 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1468 				scaling->busy_start_t);
1469 
1470 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1471 	stat->busy_time = scaling->tot_busy_t;
1472 start_window:
1473 	scaling->window_start_t = curr_t;
1474 	scaling->tot_busy_t = 0;
1475 
1476 	if (scaling->active_reqs) {
1477 		scaling->busy_start_t = curr_t;
1478 		scaling->is_busy_started = true;
1479 	} else {
1480 		scaling->busy_start_t = 0;
1481 		scaling->is_busy_started = false;
1482 	}
1483 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1484 	return 0;
1485 }
1486 
1487 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1488 {
1489 	struct list_head *clk_list = &hba->clk_list_head;
1490 	struct ufs_clk_info *clki;
1491 	struct devfreq *devfreq;
1492 	int ret;
1493 
1494 	/* Skip devfreq if we don't have any clocks in the list */
1495 	if (list_empty(clk_list))
1496 		return 0;
1497 
1498 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1499 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1500 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1501 
1502 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1503 					 &hba->vps->ondemand_data);
1504 	devfreq = devfreq_add_device(hba->dev,
1505 			&hba->vps->devfreq_profile,
1506 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1507 			&hba->vps->ondemand_data);
1508 	if (IS_ERR(devfreq)) {
1509 		ret = PTR_ERR(devfreq);
1510 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1511 
1512 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1513 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1514 		return ret;
1515 	}
1516 
1517 	hba->devfreq = devfreq;
1518 
1519 	return 0;
1520 }
1521 
1522 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1523 {
1524 	struct list_head *clk_list = &hba->clk_list_head;
1525 	struct ufs_clk_info *clki;
1526 
1527 	if (!hba->devfreq)
1528 		return;
1529 
1530 	devfreq_remove_device(hba->devfreq);
1531 	hba->devfreq = NULL;
1532 
1533 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1534 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1535 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1536 }
1537 
1538 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1539 {
1540 	unsigned long flags;
1541 
1542 	devfreq_suspend_device(hba->devfreq);
1543 	spin_lock_irqsave(hba->host->host_lock, flags);
1544 	hba->clk_scaling.window_start_t = 0;
1545 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1546 }
1547 
1548 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1549 {
1550 	unsigned long flags;
1551 	bool suspend = false;
1552 
1553 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1554 	cancel_work_sync(&hba->clk_scaling.resume_work);
1555 
1556 	spin_lock_irqsave(hba->host->host_lock, flags);
1557 	if (!hba->clk_scaling.is_suspended) {
1558 		suspend = true;
1559 		hba->clk_scaling.is_suspended = true;
1560 	}
1561 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1562 
1563 	if (suspend)
1564 		__ufshcd_suspend_clkscaling(hba);
1565 }
1566 
1567 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1568 {
1569 	unsigned long flags;
1570 	bool resume = false;
1571 
1572 	spin_lock_irqsave(hba->host->host_lock, flags);
1573 	if (hba->clk_scaling.is_suspended) {
1574 		resume = true;
1575 		hba->clk_scaling.is_suspended = false;
1576 	}
1577 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1578 
1579 	if (resume)
1580 		devfreq_resume_device(hba->devfreq);
1581 }
1582 
1583 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1584 		struct device_attribute *attr, char *buf)
1585 {
1586 	struct ufs_hba *hba = dev_get_drvdata(dev);
1587 
1588 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1589 }
1590 
1591 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1592 		struct device_attribute *attr, const char *buf, size_t count)
1593 {
1594 	struct ufs_hba *hba = dev_get_drvdata(dev);
1595 	u32 value;
1596 	int err = 0;
1597 
1598 	if (kstrtou32(buf, 0, &value))
1599 		return -EINVAL;
1600 
1601 	down(&hba->host_sem);
1602 	if (!ufshcd_is_user_access_allowed(hba)) {
1603 		err = -EBUSY;
1604 		goto out;
1605 	}
1606 
1607 	value = !!value;
1608 	if (value == hba->clk_scaling.is_enabled)
1609 		goto out;
1610 
1611 	ufshcd_rpm_get_sync(hba);
1612 	ufshcd_hold(hba);
1613 
1614 	hba->clk_scaling.is_enabled = value;
1615 
1616 	if (value) {
1617 		ufshcd_resume_clkscaling(hba);
1618 	} else {
1619 		ufshcd_suspend_clkscaling(hba);
1620 		err = ufshcd_devfreq_scale(hba, true);
1621 		if (err)
1622 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1623 					__func__, err);
1624 	}
1625 
1626 	ufshcd_release(hba);
1627 	ufshcd_rpm_put_sync(hba);
1628 out:
1629 	up(&hba->host_sem);
1630 	return err ? err : count;
1631 }
1632 
1633 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1634 {
1635 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1636 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1637 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1638 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1639 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1640 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1641 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1642 }
1643 
1644 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1645 {
1646 	if (hba->clk_scaling.enable_attr.attr.name)
1647 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1648 }
1649 
1650 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1651 {
1652 	char wq_name[sizeof("ufs_clkscaling_00")];
1653 
1654 	if (!ufshcd_is_clkscaling_supported(hba))
1655 		return;
1656 
1657 	if (!hba->clk_scaling.min_gear)
1658 		hba->clk_scaling.min_gear = UFS_HS_G1;
1659 
1660 	INIT_WORK(&hba->clk_scaling.suspend_work,
1661 		  ufshcd_clk_scaling_suspend_work);
1662 	INIT_WORK(&hba->clk_scaling.resume_work,
1663 		  ufshcd_clk_scaling_resume_work);
1664 
1665 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1666 		 hba->host->host_no);
1667 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1668 
1669 	hba->clk_scaling.is_initialized = true;
1670 }
1671 
1672 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1673 {
1674 	if (!hba->clk_scaling.is_initialized)
1675 		return;
1676 
1677 	ufshcd_remove_clk_scaling_sysfs(hba);
1678 	destroy_workqueue(hba->clk_scaling.workq);
1679 	ufshcd_devfreq_remove(hba);
1680 	hba->clk_scaling.is_initialized = false;
1681 }
1682 
1683 static void ufshcd_ungate_work(struct work_struct *work)
1684 {
1685 	int ret;
1686 	unsigned long flags;
1687 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1688 			clk_gating.ungate_work);
1689 
1690 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1691 
1692 	spin_lock_irqsave(hba->host->host_lock, flags);
1693 	if (hba->clk_gating.state == CLKS_ON) {
1694 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1695 		return;
1696 	}
1697 
1698 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1699 	ufshcd_hba_vreg_set_hpm(hba);
1700 	ufshcd_setup_clocks(hba, true);
1701 
1702 	ufshcd_enable_irq(hba);
1703 
1704 	/* Exit from hibern8 */
1705 	if (ufshcd_can_hibern8_during_gating(hba)) {
1706 		/* Prevent gating in this path */
1707 		hba->clk_gating.is_suspended = true;
1708 		if (ufshcd_is_link_hibern8(hba)) {
1709 			ret = ufshcd_uic_hibern8_exit(hba);
1710 			if (ret)
1711 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1712 					__func__, ret);
1713 			else
1714 				ufshcd_set_link_active(hba);
1715 		}
1716 		hba->clk_gating.is_suspended = false;
1717 	}
1718 }
1719 
1720 /**
1721  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1722  * Also, exit from hibern8 mode and set the link as active.
1723  * @hba: per adapter instance
1724  */
1725 void ufshcd_hold(struct ufs_hba *hba)
1726 {
1727 	bool flush_result;
1728 	unsigned long flags;
1729 
1730 	if (!ufshcd_is_clkgating_allowed(hba) ||
1731 	    !hba->clk_gating.is_initialized)
1732 		return;
1733 	spin_lock_irqsave(hba->host->host_lock, flags);
1734 	hba->clk_gating.active_reqs++;
1735 
1736 start:
1737 	switch (hba->clk_gating.state) {
1738 	case CLKS_ON:
1739 		/*
1740 		 * Wait for the ungate work to complete if in progress.
1741 		 * Though the clocks may be in ON state, the link could
1742 		 * still be in hibner8 state if hibern8 is allowed
1743 		 * during clock gating.
1744 		 * Make sure we exit hibern8 state also in addition to
1745 		 * clocks being ON.
1746 		 */
1747 		if (ufshcd_can_hibern8_during_gating(hba) &&
1748 		    ufshcd_is_link_hibern8(hba)) {
1749 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1750 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1751 			if (hba->clk_gating.is_suspended && !flush_result)
1752 				return;
1753 			spin_lock_irqsave(hba->host->host_lock, flags);
1754 			goto start;
1755 		}
1756 		break;
1757 	case REQ_CLKS_OFF:
1758 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1759 			hba->clk_gating.state = CLKS_ON;
1760 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1761 						hba->clk_gating.state);
1762 			break;
1763 		}
1764 		/*
1765 		 * If we are here, it means gating work is either done or
1766 		 * currently running. Hence, fall through to cancel gating
1767 		 * work and to enable clocks.
1768 		 */
1769 		fallthrough;
1770 	case CLKS_OFF:
1771 		hba->clk_gating.state = REQ_CLKS_ON;
1772 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1773 					hba->clk_gating.state);
1774 		queue_work(hba->clk_gating.clk_gating_workq,
1775 			   &hba->clk_gating.ungate_work);
1776 		/*
1777 		 * fall through to check if we should wait for this
1778 		 * work to be done or not.
1779 		 */
1780 		fallthrough;
1781 	case REQ_CLKS_ON:
1782 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1783 		flush_work(&hba->clk_gating.ungate_work);
1784 		/* Make sure state is CLKS_ON before returning */
1785 		spin_lock_irqsave(hba->host->host_lock, flags);
1786 		goto start;
1787 	default:
1788 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1789 				__func__, hba->clk_gating.state);
1790 		break;
1791 	}
1792 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1793 }
1794 EXPORT_SYMBOL_GPL(ufshcd_hold);
1795 
1796 static void ufshcd_gate_work(struct work_struct *work)
1797 {
1798 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1799 			clk_gating.gate_work.work);
1800 	unsigned long flags;
1801 	int ret;
1802 
1803 	spin_lock_irqsave(hba->host->host_lock, flags);
1804 	/*
1805 	 * In case you are here to cancel this work the gating state
1806 	 * would be marked as REQ_CLKS_ON. In this case save time by
1807 	 * skipping the gating work and exit after changing the clock
1808 	 * state to CLKS_ON.
1809 	 */
1810 	if (hba->clk_gating.is_suspended ||
1811 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1812 		hba->clk_gating.state = CLKS_ON;
1813 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1814 					hba->clk_gating.state);
1815 		goto rel_lock;
1816 	}
1817 
1818 	if (hba->clk_gating.active_reqs
1819 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1820 		|| hba->outstanding_reqs || hba->outstanding_tasks
1821 		|| hba->active_uic_cmd || hba->uic_async_done)
1822 		goto rel_lock;
1823 
1824 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1825 
1826 	/* put the link into hibern8 mode before turning off clocks */
1827 	if (ufshcd_can_hibern8_during_gating(hba)) {
1828 		ret = ufshcd_uic_hibern8_enter(hba);
1829 		if (ret) {
1830 			hba->clk_gating.state = CLKS_ON;
1831 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1832 					__func__, ret);
1833 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1834 						hba->clk_gating.state);
1835 			goto out;
1836 		}
1837 		ufshcd_set_link_hibern8(hba);
1838 	}
1839 
1840 	ufshcd_disable_irq(hba);
1841 
1842 	ufshcd_setup_clocks(hba, false);
1843 
1844 	/* Put the host controller in low power mode if possible */
1845 	ufshcd_hba_vreg_set_lpm(hba);
1846 	/*
1847 	 * In case you are here to cancel this work the gating state
1848 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1849 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1850 	 * and a request to turn them on is pending. By doing this way,
1851 	 * we keep the state machine in tact and this would ultimately
1852 	 * prevent from doing cancel work multiple times when there are
1853 	 * new requests arriving before the current cancel work is done.
1854 	 */
1855 	spin_lock_irqsave(hba->host->host_lock, flags);
1856 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1857 		hba->clk_gating.state = CLKS_OFF;
1858 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1859 					hba->clk_gating.state);
1860 	}
1861 rel_lock:
1862 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1863 out:
1864 	return;
1865 }
1866 
1867 /* host lock must be held before calling this variant */
1868 static void __ufshcd_release(struct ufs_hba *hba)
1869 {
1870 	if (!ufshcd_is_clkgating_allowed(hba))
1871 		return;
1872 
1873 	hba->clk_gating.active_reqs--;
1874 
1875 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1876 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1877 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1878 	    hba->active_uic_cmd || hba->uic_async_done ||
1879 	    hba->clk_gating.state == CLKS_OFF)
1880 		return;
1881 
1882 	hba->clk_gating.state = REQ_CLKS_OFF;
1883 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1884 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1885 			   &hba->clk_gating.gate_work,
1886 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1887 }
1888 
1889 void ufshcd_release(struct ufs_hba *hba)
1890 {
1891 	unsigned long flags;
1892 
1893 	spin_lock_irqsave(hba->host->host_lock, flags);
1894 	__ufshcd_release(hba);
1895 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1896 }
1897 EXPORT_SYMBOL_GPL(ufshcd_release);
1898 
1899 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1900 		struct device_attribute *attr, char *buf)
1901 {
1902 	struct ufs_hba *hba = dev_get_drvdata(dev);
1903 
1904 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1905 }
1906 
1907 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1908 {
1909 	struct ufs_hba *hba = dev_get_drvdata(dev);
1910 	unsigned long flags;
1911 
1912 	spin_lock_irqsave(hba->host->host_lock, flags);
1913 	hba->clk_gating.delay_ms = value;
1914 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1915 }
1916 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1917 
1918 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1919 		struct device_attribute *attr, const char *buf, size_t count)
1920 {
1921 	unsigned long value;
1922 
1923 	if (kstrtoul(buf, 0, &value))
1924 		return -EINVAL;
1925 
1926 	ufshcd_clkgate_delay_set(dev, value);
1927 	return count;
1928 }
1929 
1930 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1931 		struct device_attribute *attr, char *buf)
1932 {
1933 	struct ufs_hba *hba = dev_get_drvdata(dev);
1934 
1935 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1936 }
1937 
1938 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1939 		struct device_attribute *attr, const char *buf, size_t count)
1940 {
1941 	struct ufs_hba *hba = dev_get_drvdata(dev);
1942 	unsigned long flags;
1943 	u32 value;
1944 
1945 	if (kstrtou32(buf, 0, &value))
1946 		return -EINVAL;
1947 
1948 	value = !!value;
1949 
1950 	spin_lock_irqsave(hba->host->host_lock, flags);
1951 	if (value == hba->clk_gating.is_enabled)
1952 		goto out;
1953 
1954 	if (value)
1955 		__ufshcd_release(hba);
1956 	else
1957 		hba->clk_gating.active_reqs++;
1958 
1959 	hba->clk_gating.is_enabled = value;
1960 out:
1961 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1962 	return count;
1963 }
1964 
1965 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1966 {
1967 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1968 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1969 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1970 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1971 	hba->clk_gating.delay_attr.attr.mode = 0644;
1972 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1973 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1974 
1975 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1976 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1977 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1978 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1979 	hba->clk_gating.enable_attr.attr.mode = 0644;
1980 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1981 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1982 }
1983 
1984 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1985 {
1986 	if (hba->clk_gating.delay_attr.attr.name)
1987 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1988 	if (hba->clk_gating.enable_attr.attr.name)
1989 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1990 }
1991 
1992 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1993 {
1994 	char wq_name[sizeof("ufs_clk_gating_00")];
1995 
1996 	if (!ufshcd_is_clkgating_allowed(hba))
1997 		return;
1998 
1999 	hba->clk_gating.state = CLKS_ON;
2000 
2001 	hba->clk_gating.delay_ms = 150;
2002 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2003 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2004 
2005 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2006 		 hba->host->host_no);
2007 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2008 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2009 
2010 	ufshcd_init_clk_gating_sysfs(hba);
2011 
2012 	hba->clk_gating.is_enabled = true;
2013 	hba->clk_gating.is_initialized = true;
2014 }
2015 
2016 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2017 {
2018 	if (!hba->clk_gating.is_initialized)
2019 		return;
2020 
2021 	ufshcd_remove_clk_gating_sysfs(hba);
2022 
2023 	/* Ungate the clock if necessary. */
2024 	ufshcd_hold(hba);
2025 	hba->clk_gating.is_initialized = false;
2026 	ufshcd_release(hba);
2027 
2028 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2029 }
2030 
2031 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2032 {
2033 	bool queue_resume_work = false;
2034 	ktime_t curr_t = ktime_get();
2035 	unsigned long flags;
2036 
2037 	if (!ufshcd_is_clkscaling_supported(hba))
2038 		return;
2039 
2040 	spin_lock_irqsave(hba->host->host_lock, flags);
2041 	if (!hba->clk_scaling.active_reqs++)
2042 		queue_resume_work = true;
2043 
2044 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2045 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2046 		return;
2047 	}
2048 
2049 	if (queue_resume_work)
2050 		queue_work(hba->clk_scaling.workq,
2051 			   &hba->clk_scaling.resume_work);
2052 
2053 	if (!hba->clk_scaling.window_start_t) {
2054 		hba->clk_scaling.window_start_t = curr_t;
2055 		hba->clk_scaling.tot_busy_t = 0;
2056 		hba->clk_scaling.is_busy_started = false;
2057 	}
2058 
2059 	if (!hba->clk_scaling.is_busy_started) {
2060 		hba->clk_scaling.busy_start_t = curr_t;
2061 		hba->clk_scaling.is_busy_started = true;
2062 	}
2063 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2064 }
2065 
2066 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2067 {
2068 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2069 	unsigned long flags;
2070 
2071 	if (!ufshcd_is_clkscaling_supported(hba))
2072 		return;
2073 
2074 	spin_lock_irqsave(hba->host->host_lock, flags);
2075 	hba->clk_scaling.active_reqs--;
2076 	if (!scaling->active_reqs && scaling->is_busy_started) {
2077 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2078 					scaling->busy_start_t));
2079 		scaling->busy_start_t = 0;
2080 		scaling->is_busy_started = false;
2081 	}
2082 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2083 }
2084 
2085 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2086 {
2087 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2088 		return READ;
2089 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2090 		return WRITE;
2091 	else
2092 		return -EINVAL;
2093 }
2094 
2095 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2096 						struct ufshcd_lrb *lrbp)
2097 {
2098 	const struct ufs_hba_monitor *m = &hba->monitor;
2099 
2100 	return (m->enabled && lrbp && lrbp->cmd &&
2101 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2102 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2103 }
2104 
2105 static void ufshcd_start_monitor(struct ufs_hba *hba,
2106 				 const struct ufshcd_lrb *lrbp)
2107 {
2108 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2109 	unsigned long flags;
2110 
2111 	spin_lock_irqsave(hba->host->host_lock, flags);
2112 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2113 		hba->monitor.busy_start_ts[dir] = ktime_get();
2114 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2115 }
2116 
2117 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2118 {
2119 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2120 	unsigned long flags;
2121 
2122 	spin_lock_irqsave(hba->host->host_lock, flags);
2123 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2124 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2125 		struct ufs_hba_monitor *m = &hba->monitor;
2126 		ktime_t now, inc, lat;
2127 
2128 		now = lrbp->compl_time_stamp;
2129 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2130 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2131 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2132 
2133 		/* Update latencies */
2134 		m->nr_req[dir]++;
2135 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2136 		m->lat_sum[dir] += lat;
2137 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2138 			m->lat_max[dir] = lat;
2139 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2140 			m->lat_min[dir] = lat;
2141 
2142 		m->nr_queued[dir]--;
2143 		/* Push forward the busy start of monitor */
2144 		m->busy_start_ts[dir] = now;
2145 	}
2146 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2147 }
2148 
2149 /**
2150  * ufshcd_send_command - Send SCSI or device management commands
2151  * @hba: per adapter instance
2152  * @task_tag: Task tag of the command
2153  * @hwq: pointer to hardware queue instance
2154  */
2155 static inline
2156 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2157 			 struct ufs_hw_queue *hwq)
2158 {
2159 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2160 	unsigned long flags;
2161 
2162 	lrbp->issue_time_stamp = ktime_get();
2163 	lrbp->issue_time_stamp_local_clock = local_clock();
2164 	lrbp->compl_time_stamp = ktime_set(0, 0);
2165 	lrbp->compl_time_stamp_local_clock = 0;
2166 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2167 	ufshcd_clk_scaling_start_busy(hba);
2168 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2169 		ufshcd_start_monitor(hba, lrbp);
2170 
2171 	if (is_mcq_enabled(hba)) {
2172 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2173 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2174 		struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2175 
2176 		spin_lock(&hwq->sq_lock);
2177 		memcpy(dest, src, utrd_size);
2178 		ufshcd_inc_sq_tail(hwq);
2179 		spin_unlock(&hwq->sq_lock);
2180 	} else {
2181 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2182 		if (hba->vops && hba->vops->setup_xfer_req)
2183 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2184 						  !!lrbp->cmd);
2185 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2186 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2187 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2188 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2189 	}
2190 }
2191 
2192 /**
2193  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2194  * @lrbp: pointer to local reference block
2195  */
2196 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2197 {
2198 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2199 	u16 resp_len;
2200 	int len;
2201 
2202 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2203 	if (sense_buffer && resp_len) {
2204 		int len_to_copy;
2205 
2206 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2207 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2208 
2209 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2210 		       len_to_copy);
2211 	}
2212 }
2213 
2214 /**
2215  * ufshcd_copy_query_response() - Copy the Query Response and the data
2216  * descriptor
2217  * @hba: per adapter instance
2218  * @lrbp: pointer to local reference block
2219  *
2220  * Return: 0 upon success; < 0 upon failure.
2221  */
2222 static
2223 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2224 {
2225 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2226 
2227 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2228 
2229 	/* Get the descriptor */
2230 	if (hba->dev_cmd.query.descriptor &&
2231 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2232 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2233 				GENERAL_UPIU_REQUEST_SIZE;
2234 		u16 resp_len;
2235 		u16 buf_len;
2236 
2237 		/* data segment length */
2238 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2239 				       .data_segment_length);
2240 		buf_len = be16_to_cpu(
2241 				hba->dev_cmd.query.request.upiu_req.length);
2242 		if (likely(buf_len >= resp_len)) {
2243 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2244 		} else {
2245 			dev_warn(hba->dev,
2246 				 "%s: rsp size %d is bigger than buffer size %d",
2247 				 __func__, resp_len, buf_len);
2248 			return -EINVAL;
2249 		}
2250 	}
2251 
2252 	return 0;
2253 }
2254 
2255 /**
2256  * ufshcd_hba_capabilities - Read controller capabilities
2257  * @hba: per adapter instance
2258  *
2259  * Return: 0 on success, negative on error.
2260  */
2261 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2262 {
2263 	int err;
2264 
2265 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2266 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2267 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2268 
2269 	/* nutrs and nutmrs are 0 based values */
2270 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2271 	hba->nutmrs =
2272 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2273 	hba->reserved_slot = hba->nutrs - 1;
2274 
2275 	/* Read crypto capabilities */
2276 	err = ufshcd_hba_init_crypto_capabilities(hba);
2277 	if (err) {
2278 		dev_err(hba->dev, "crypto setup failed\n");
2279 		return err;
2280 	}
2281 
2282 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2283 	if (!hba->mcq_sup)
2284 		return 0;
2285 
2286 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2287 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2288 				     hba->mcq_capabilities);
2289 
2290 	return 0;
2291 }
2292 
2293 /**
2294  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2295  *                            to accept UIC commands
2296  * @hba: per adapter instance
2297  *
2298  * Return: true on success, else false.
2299  */
2300 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2301 {
2302 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2303 }
2304 
2305 /**
2306  * ufshcd_get_upmcrs - Get the power mode change request status
2307  * @hba: Pointer to adapter instance
2308  *
2309  * This function gets the UPMCRS field of HCS register
2310  *
2311  * Return: value of UPMCRS field.
2312  */
2313 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2314 {
2315 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2316 }
2317 
2318 /**
2319  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2320  * @hba: per adapter instance
2321  * @uic_cmd: UIC command
2322  */
2323 static inline void
2324 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2325 {
2326 	lockdep_assert_held(&hba->uic_cmd_mutex);
2327 
2328 	WARN_ON(hba->active_uic_cmd);
2329 
2330 	hba->active_uic_cmd = uic_cmd;
2331 
2332 	/* Write Args */
2333 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2334 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2335 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2336 
2337 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2338 
2339 	/* Write UIC Cmd */
2340 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2341 		      REG_UIC_COMMAND);
2342 }
2343 
2344 /**
2345  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2346  * @hba: per adapter instance
2347  * @uic_cmd: UIC command
2348  *
2349  * Return: 0 only if success.
2350  */
2351 static int
2352 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2353 {
2354 	int ret;
2355 	unsigned long flags;
2356 
2357 	lockdep_assert_held(&hba->uic_cmd_mutex);
2358 
2359 	if (wait_for_completion_timeout(&uic_cmd->done,
2360 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2361 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2362 	} else {
2363 		ret = -ETIMEDOUT;
2364 		dev_err(hba->dev,
2365 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2366 			uic_cmd->command, uic_cmd->argument3);
2367 
2368 		if (!uic_cmd->cmd_active) {
2369 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2370 				__func__);
2371 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2372 		}
2373 	}
2374 
2375 	spin_lock_irqsave(hba->host->host_lock, flags);
2376 	hba->active_uic_cmd = NULL;
2377 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2378 
2379 	return ret;
2380 }
2381 
2382 /**
2383  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2384  * @hba: per adapter instance
2385  * @uic_cmd: UIC command
2386  * @completion: initialize the completion only if this is set to true
2387  *
2388  * Return: 0 only if success.
2389  */
2390 static int
2391 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2392 		      bool completion)
2393 {
2394 	lockdep_assert_held(&hba->uic_cmd_mutex);
2395 	lockdep_assert_held(hba->host->host_lock);
2396 
2397 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2398 		dev_err(hba->dev,
2399 			"Controller not ready to accept UIC commands\n");
2400 		return -EIO;
2401 	}
2402 
2403 	if (completion)
2404 		init_completion(&uic_cmd->done);
2405 
2406 	uic_cmd->cmd_active = 1;
2407 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2408 
2409 	return 0;
2410 }
2411 
2412 /**
2413  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2414  * @hba: per adapter instance
2415  * @uic_cmd: UIC command
2416  *
2417  * Return: 0 only if success.
2418  */
2419 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2420 {
2421 	int ret;
2422 	unsigned long flags;
2423 
2424 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2425 		return 0;
2426 
2427 	ufshcd_hold(hba);
2428 	mutex_lock(&hba->uic_cmd_mutex);
2429 	ufshcd_add_delay_before_dme_cmd(hba);
2430 
2431 	spin_lock_irqsave(hba->host->host_lock, flags);
2432 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2433 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2434 	if (!ret)
2435 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2436 
2437 	mutex_unlock(&hba->uic_cmd_mutex);
2438 
2439 	ufshcd_release(hba);
2440 	return ret;
2441 }
2442 
2443 /**
2444  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2445  * @hba:	per-adapter instance
2446  * @lrbp:	pointer to local reference block
2447  * @sg_entries:	The number of sg lists actually used
2448  * @sg_list:	Pointer to SG list
2449  */
2450 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2451 			       struct scatterlist *sg_list)
2452 {
2453 	struct ufshcd_sg_entry *prd;
2454 	struct scatterlist *sg;
2455 	int i;
2456 
2457 	if (sg_entries) {
2458 
2459 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2460 			lrbp->utr_descriptor_ptr->prd_table_length =
2461 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2462 		else
2463 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2464 
2465 		prd = lrbp->ucd_prdt_ptr;
2466 
2467 		for_each_sg(sg_list, sg, sg_entries, i) {
2468 			const unsigned int len = sg_dma_len(sg);
2469 
2470 			/*
2471 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2472 			 * based value that indicates the length, in bytes, of
2473 			 * the data block. A maximum of length of 256KB may
2474 			 * exist for any entry. Bits 1:0 of this field shall be
2475 			 * 11b to indicate Dword granularity. A value of '3'
2476 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2477 			 */
2478 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2479 			prd->size = cpu_to_le32(len - 1);
2480 			prd->addr = cpu_to_le64(sg->dma_address);
2481 			prd->reserved = 0;
2482 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2483 		}
2484 	} else {
2485 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2486 	}
2487 }
2488 
2489 /**
2490  * ufshcd_map_sg - Map scatter-gather list to prdt
2491  * @hba: per adapter instance
2492  * @lrbp: pointer to local reference block
2493  *
2494  * Return: 0 in case of success, non-zero value in case of failure.
2495  */
2496 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2497 {
2498 	struct scsi_cmnd *cmd = lrbp->cmd;
2499 	int sg_segments = scsi_dma_map(cmd);
2500 
2501 	if (sg_segments < 0)
2502 		return sg_segments;
2503 
2504 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2505 
2506 	return 0;
2507 }
2508 
2509 /**
2510  * ufshcd_enable_intr - enable interrupts
2511  * @hba: per adapter instance
2512  * @intrs: interrupt bits
2513  */
2514 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2515 {
2516 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2517 
2518 	if (hba->ufs_version == ufshci_version(1, 0)) {
2519 		u32 rw;
2520 		rw = set & INTERRUPT_MASK_RW_VER_10;
2521 		set = rw | ((set ^ intrs) & intrs);
2522 	} else {
2523 		set |= intrs;
2524 	}
2525 
2526 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2527 }
2528 
2529 /**
2530  * ufshcd_disable_intr - disable interrupts
2531  * @hba: per adapter instance
2532  * @intrs: interrupt bits
2533  */
2534 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2535 {
2536 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2537 
2538 	if (hba->ufs_version == ufshci_version(1, 0)) {
2539 		u32 rw;
2540 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2541 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2542 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2543 
2544 	} else {
2545 		set &= ~intrs;
2546 	}
2547 
2548 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2549 }
2550 
2551 /**
2552  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2553  * descriptor according to request
2554  * @lrbp: pointer to local reference block
2555  * @upiu_flags: flags required in the header
2556  * @cmd_dir: requests data direction
2557  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2558  */
2559 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2560 					enum dma_data_direction cmd_dir, int ehs_length)
2561 {
2562 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2563 	struct request_desc_header *h = &req_desc->header;
2564 	enum utp_data_direction data_direction;
2565 
2566 	*h = (typeof(*h)){ };
2567 
2568 	if (cmd_dir == DMA_FROM_DEVICE) {
2569 		data_direction = UTP_DEVICE_TO_HOST;
2570 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2571 	} else if (cmd_dir == DMA_TO_DEVICE) {
2572 		data_direction = UTP_HOST_TO_DEVICE;
2573 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2574 	} else {
2575 		data_direction = UTP_NO_DATA_TRANSFER;
2576 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2577 	}
2578 
2579 	h->command_type = lrbp->command_type;
2580 	h->data_direction = data_direction;
2581 	h->ehs_length = ehs_length;
2582 
2583 	if (lrbp->intr_cmd)
2584 		h->interrupt = 1;
2585 
2586 	/* Prepare crypto related dwords */
2587 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2588 
2589 	/*
2590 	 * assigning invalid value for command status. Controller
2591 	 * updates OCS on command completion, with the command
2592 	 * status
2593 	 */
2594 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2595 
2596 	req_desc->prd_table_length = 0;
2597 }
2598 
2599 /**
2600  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2601  * for scsi commands
2602  * @lrbp: local reference block pointer
2603  * @upiu_flags: flags
2604  */
2605 static
2606 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2607 {
2608 	struct scsi_cmnd *cmd = lrbp->cmd;
2609 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2610 	unsigned short cdb_len;
2611 
2612 	ucd_req_ptr->header = (struct utp_upiu_header){
2613 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2614 		.flags = upiu_flags,
2615 		.lun = lrbp->lun,
2616 		.task_tag = lrbp->task_tag,
2617 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2618 	};
2619 
2620 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2621 
2622 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2623 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2624 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2625 
2626 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2627 }
2628 
2629 /**
2630  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2631  * @hba: UFS hba
2632  * @lrbp: local reference block pointer
2633  * @upiu_flags: flags
2634  */
2635 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2636 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2637 {
2638 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2639 	struct ufs_query *query = &hba->dev_cmd.query;
2640 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2641 
2642 	/* Query request header */
2643 	ucd_req_ptr->header = (struct utp_upiu_header){
2644 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2645 		.flags = upiu_flags,
2646 		.lun = lrbp->lun,
2647 		.task_tag = lrbp->task_tag,
2648 		.query_function = query->request.query_func,
2649 		/* Data segment length only need for WRITE_DESC */
2650 		.data_segment_length =
2651 			query->request.upiu_req.opcode ==
2652 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2653 				cpu_to_be16(len) :
2654 				0,
2655 	};
2656 
2657 	/* Copy the Query Request buffer as is */
2658 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2659 			QUERY_OSF_SIZE);
2660 
2661 	/* Copy the Descriptor */
2662 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2663 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2664 
2665 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2666 }
2667 
2668 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2669 {
2670 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2671 
2672 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2673 
2674 	ucd_req_ptr->header = (struct utp_upiu_header){
2675 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2676 		.task_tag = lrbp->task_tag,
2677 	};
2678 
2679 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2680 }
2681 
2682 /**
2683  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2684  *			     for Device Management Purposes
2685  * @hba: per adapter instance
2686  * @lrbp: pointer to local reference block
2687  *
2688  * Return: 0 upon success; < 0 upon failure.
2689  */
2690 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2691 				      struct ufshcd_lrb *lrbp)
2692 {
2693 	u8 upiu_flags;
2694 	int ret = 0;
2695 
2696 	if (hba->ufs_version <= ufshci_version(1, 1))
2697 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2698 	else
2699 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2700 
2701 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2702 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2703 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2704 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2705 		ufshcd_prepare_utp_nop_upiu(lrbp);
2706 	else
2707 		ret = -EINVAL;
2708 
2709 	return ret;
2710 }
2711 
2712 /**
2713  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2714  *			   for SCSI Purposes
2715  * @hba: per adapter instance
2716  * @lrbp: pointer to local reference block
2717  *
2718  * Return: 0 upon success; < 0 upon failure.
2719  */
2720 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2721 {
2722 	u8 upiu_flags;
2723 	int ret = 0;
2724 
2725 	if (hba->ufs_version <= ufshci_version(1, 1))
2726 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2727 	else
2728 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2729 
2730 	if (likely(lrbp->cmd)) {
2731 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2732 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2733 	} else {
2734 		ret = -EINVAL;
2735 	}
2736 
2737 	return ret;
2738 }
2739 
2740 /**
2741  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2742  * @upiu_wlun_id: UPIU W-LUN id
2743  *
2744  * Return: SCSI W-LUN id.
2745  */
2746 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2747 {
2748 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2749 }
2750 
2751 static inline bool is_device_wlun(struct scsi_device *sdev)
2752 {
2753 	return sdev->lun ==
2754 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2755 }
2756 
2757 /*
2758  * Associate the UFS controller queue with the default and poll HCTX types.
2759  * Initialize the mq_map[] arrays.
2760  */
2761 static void ufshcd_map_queues(struct Scsi_Host *shost)
2762 {
2763 	struct ufs_hba *hba = shost_priv(shost);
2764 	int i, queue_offset = 0;
2765 
2766 	if (!is_mcq_supported(hba)) {
2767 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2768 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2769 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2770 		hba->nr_hw_queues = 1;
2771 	}
2772 
2773 	for (i = 0; i < shost->nr_maps; i++) {
2774 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2775 
2776 		map->nr_queues = hba->nr_queues[i];
2777 		if (!map->nr_queues)
2778 			continue;
2779 		map->queue_offset = queue_offset;
2780 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2781 			map->queue_offset = 0;
2782 
2783 		blk_mq_map_queues(map);
2784 		queue_offset += map->nr_queues;
2785 	}
2786 }
2787 
2788 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2789 {
2790 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2791 		i * ufshcd_get_ucd_size(hba);
2792 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2793 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2794 		i * ufshcd_get_ucd_size(hba);
2795 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2796 				       response_upiu);
2797 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2798 
2799 	lrb->utr_descriptor_ptr = utrdlp + i;
2800 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2801 		i * sizeof(struct utp_transfer_req_desc);
2802 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2803 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2804 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2805 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2806 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2807 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2808 }
2809 
2810 /**
2811  * ufshcd_queuecommand - main entry point for SCSI requests
2812  * @host: SCSI host pointer
2813  * @cmd: command from SCSI Midlayer
2814  *
2815  * Return: 0 for success, non-zero in case of failure.
2816  */
2817 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2818 {
2819 	struct ufs_hba *hba = shost_priv(host);
2820 	int tag = scsi_cmd_to_rq(cmd)->tag;
2821 	struct ufshcd_lrb *lrbp;
2822 	int err = 0;
2823 	struct ufs_hw_queue *hwq = NULL;
2824 
2825 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2826 
2827 	switch (hba->ufshcd_state) {
2828 	case UFSHCD_STATE_OPERATIONAL:
2829 		break;
2830 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2831 		/*
2832 		 * SCSI error handler can call ->queuecommand() while UFS error
2833 		 * handler is in progress. Error interrupts could change the
2834 		 * state from UFSHCD_STATE_RESET to
2835 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2836 		 * being issued in that case.
2837 		 */
2838 		if (ufshcd_eh_in_progress(hba)) {
2839 			err = SCSI_MLQUEUE_HOST_BUSY;
2840 			goto out;
2841 		}
2842 		break;
2843 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2844 		/*
2845 		 * pm_runtime_get_sync() is used at error handling preparation
2846 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2847 		 * PM ops, it can never be finished if we let SCSI layer keep
2848 		 * retrying it, which gets err handler stuck forever. Neither
2849 		 * can we let the scsi cmd pass through, because UFS is in bad
2850 		 * state, the scsi cmd may eventually time out, which will get
2851 		 * err handler blocked for too long. So, just fail the scsi cmd
2852 		 * sent from PM ops, err handler can recover PM error anyways.
2853 		 */
2854 		if (hba->pm_op_in_progress) {
2855 			hba->force_reset = true;
2856 			set_host_byte(cmd, DID_BAD_TARGET);
2857 			scsi_done(cmd);
2858 			goto out;
2859 		}
2860 		fallthrough;
2861 	case UFSHCD_STATE_RESET:
2862 		err = SCSI_MLQUEUE_HOST_BUSY;
2863 		goto out;
2864 	case UFSHCD_STATE_ERROR:
2865 		set_host_byte(cmd, DID_ERROR);
2866 		scsi_done(cmd);
2867 		goto out;
2868 	}
2869 
2870 	hba->req_abort_count = 0;
2871 
2872 	ufshcd_hold(hba);
2873 
2874 	lrbp = &hba->lrb[tag];
2875 	lrbp->cmd = cmd;
2876 	lrbp->task_tag = tag;
2877 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2878 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2879 
2880 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2881 
2882 	lrbp->req_abort_skip = false;
2883 
2884 	ufshcd_comp_scsi_upiu(hba, lrbp);
2885 
2886 	err = ufshcd_map_sg(hba, lrbp);
2887 	if (err) {
2888 		ufshcd_release(hba);
2889 		goto out;
2890 	}
2891 
2892 	if (is_mcq_enabled(hba))
2893 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2894 
2895 	ufshcd_send_command(hba, tag, hwq);
2896 
2897 out:
2898 	if (ufs_trigger_eh()) {
2899 		unsigned long flags;
2900 
2901 		spin_lock_irqsave(hba->host->host_lock, flags);
2902 		ufshcd_schedule_eh_work(hba);
2903 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2904 	}
2905 
2906 	return err;
2907 }
2908 
2909 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2910 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2911 {
2912 	lrbp->cmd = NULL;
2913 	lrbp->task_tag = tag;
2914 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2915 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2916 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2917 	hba->dev_cmd.type = cmd_type;
2918 
2919 	return ufshcd_compose_devman_upiu(hba, lrbp);
2920 }
2921 
2922 /*
2923  * Check with the block layer if the command is inflight
2924  * @cmd: command to check.
2925  *
2926  * Return: true if command is inflight; false if not.
2927  */
2928 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2929 {
2930 	struct request *rq;
2931 
2932 	if (!cmd)
2933 		return false;
2934 
2935 	rq = scsi_cmd_to_rq(cmd);
2936 	if (!blk_mq_request_started(rq))
2937 		return false;
2938 
2939 	return true;
2940 }
2941 
2942 /*
2943  * Clear the pending command in the controller and wait until
2944  * the controller confirms that the command has been cleared.
2945  * @hba: per adapter instance
2946  * @task_tag: The tag number of the command to be cleared.
2947  */
2948 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2949 {
2950 	u32 mask = 1U << task_tag;
2951 	unsigned long flags;
2952 	int err;
2953 
2954 	if (is_mcq_enabled(hba)) {
2955 		/*
2956 		 * MCQ mode. Clean up the MCQ resources similar to
2957 		 * what the ufshcd_utrl_clear() does for SDB mode.
2958 		 */
2959 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2960 		if (err) {
2961 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2962 				__func__, task_tag, err);
2963 			return err;
2964 		}
2965 		return 0;
2966 	}
2967 
2968 	/* clear outstanding transaction before retry */
2969 	spin_lock_irqsave(hba->host->host_lock, flags);
2970 	ufshcd_utrl_clear(hba, mask);
2971 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2972 
2973 	/*
2974 	 * wait for h/w to clear corresponding bit in door-bell.
2975 	 * max. wait is 1 sec.
2976 	 */
2977 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2978 					mask, ~mask, 1000, 1000);
2979 }
2980 
2981 /**
2982  * ufshcd_dev_cmd_completion() - handles device management command responses
2983  * @hba: per adapter instance
2984  * @lrbp: pointer to local reference block
2985  *
2986  * Return: 0 upon success; < 0 upon failure.
2987  */
2988 static int
2989 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2990 {
2991 	enum upiu_response_transaction resp;
2992 	int err = 0;
2993 
2994 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2995 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2996 
2997 	switch (resp) {
2998 	case UPIU_TRANSACTION_NOP_IN:
2999 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3000 			err = -EINVAL;
3001 			dev_err(hba->dev, "%s: unexpected response %x\n",
3002 					__func__, resp);
3003 		}
3004 		break;
3005 	case UPIU_TRANSACTION_QUERY_RSP: {
3006 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3007 
3008 		if (response == 0)
3009 			err = ufshcd_copy_query_response(hba, lrbp);
3010 		break;
3011 	}
3012 	case UPIU_TRANSACTION_REJECT_UPIU:
3013 		/* TODO: handle Reject UPIU Response */
3014 		err = -EPERM;
3015 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3016 				__func__);
3017 		break;
3018 	case UPIU_TRANSACTION_RESPONSE:
3019 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3020 			err = -EINVAL;
3021 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3022 		}
3023 		break;
3024 	default:
3025 		err = -EINVAL;
3026 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3027 				__func__, resp);
3028 		break;
3029 	}
3030 
3031 	return err;
3032 }
3033 
3034 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3035 		struct ufshcd_lrb *lrbp, int max_timeout)
3036 {
3037 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3038 	unsigned long flags;
3039 	bool pending;
3040 	int err;
3041 
3042 retry:
3043 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3044 						time_left);
3045 
3046 	if (likely(time_left)) {
3047 		/*
3048 		 * The completion handler called complete() and the caller of
3049 		 * this function still owns the @lrbp tag so the code below does
3050 		 * not trigger any race conditions.
3051 		 */
3052 		hba->dev_cmd.complete = NULL;
3053 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3054 		if (!err)
3055 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3056 	} else {
3057 		err = -ETIMEDOUT;
3058 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3059 			__func__, lrbp->task_tag);
3060 
3061 		/* MCQ mode */
3062 		if (is_mcq_enabled(hba)) {
3063 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3064 			hba->dev_cmd.complete = NULL;
3065 			return err;
3066 		}
3067 
3068 		/* SDB mode */
3069 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3070 			/* successfully cleared the command, retry if needed */
3071 			err = -EAGAIN;
3072 			/*
3073 			 * Since clearing the command succeeded we also need to
3074 			 * clear the task tag bit from the outstanding_reqs
3075 			 * variable.
3076 			 */
3077 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3078 			pending = test_bit(lrbp->task_tag,
3079 					   &hba->outstanding_reqs);
3080 			if (pending) {
3081 				hba->dev_cmd.complete = NULL;
3082 				__clear_bit(lrbp->task_tag,
3083 					    &hba->outstanding_reqs);
3084 			}
3085 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3086 
3087 			if (!pending) {
3088 				/*
3089 				 * The completion handler ran while we tried to
3090 				 * clear the command.
3091 				 */
3092 				time_left = 1;
3093 				goto retry;
3094 			}
3095 		} else {
3096 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3097 				__func__, lrbp->task_tag);
3098 
3099 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3100 			pending = test_bit(lrbp->task_tag,
3101 					   &hba->outstanding_reqs);
3102 			if (pending)
3103 				hba->dev_cmd.complete = NULL;
3104 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3105 
3106 			if (!pending) {
3107 				/*
3108 				 * The completion handler ran while we tried to
3109 				 * clear the command.
3110 				 */
3111 				time_left = 1;
3112 				goto retry;
3113 			}
3114 		}
3115 	}
3116 
3117 	return err;
3118 }
3119 
3120 /**
3121  * ufshcd_exec_dev_cmd - API for sending device management requests
3122  * @hba: UFS hba
3123  * @cmd_type: specifies the type (NOP, Query...)
3124  * @timeout: timeout in milliseconds
3125  *
3126  * Return: 0 upon success; < 0 upon failure.
3127  *
3128  * NOTE: Since there is only one available tag for device management commands,
3129  * it is expected you hold the hba->dev_cmd.lock mutex.
3130  */
3131 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3132 		enum dev_cmd_type cmd_type, int timeout)
3133 {
3134 	DECLARE_COMPLETION_ONSTACK(wait);
3135 	const u32 tag = hba->reserved_slot;
3136 	struct ufshcd_lrb *lrbp;
3137 	int err;
3138 
3139 	/* Protects use of hba->reserved_slot. */
3140 	lockdep_assert_held(&hba->dev_cmd.lock);
3141 
3142 	down_read(&hba->clk_scaling_lock);
3143 
3144 	lrbp = &hba->lrb[tag];
3145 	lrbp->cmd = NULL;
3146 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3147 	if (unlikely(err))
3148 		goto out;
3149 
3150 	hba->dev_cmd.complete = &wait;
3151 
3152 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3153 
3154 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3155 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3156 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3157 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3158 
3159 out:
3160 	up_read(&hba->clk_scaling_lock);
3161 	return err;
3162 }
3163 
3164 /**
3165  * ufshcd_init_query() - init the query response and request parameters
3166  * @hba: per-adapter instance
3167  * @request: address of the request pointer to be initialized
3168  * @response: address of the response pointer to be initialized
3169  * @opcode: operation to perform
3170  * @idn: flag idn to access
3171  * @index: LU number to access
3172  * @selector: query/flag/descriptor further identification
3173  */
3174 static inline void ufshcd_init_query(struct ufs_hba *hba,
3175 		struct ufs_query_req **request, struct ufs_query_res **response,
3176 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3177 {
3178 	*request = &hba->dev_cmd.query.request;
3179 	*response = &hba->dev_cmd.query.response;
3180 	memset(*request, 0, sizeof(struct ufs_query_req));
3181 	memset(*response, 0, sizeof(struct ufs_query_res));
3182 	(*request)->upiu_req.opcode = opcode;
3183 	(*request)->upiu_req.idn = idn;
3184 	(*request)->upiu_req.index = index;
3185 	(*request)->upiu_req.selector = selector;
3186 }
3187 
3188 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3189 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3190 {
3191 	int ret;
3192 	int retries;
3193 
3194 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3195 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3196 		if (ret)
3197 			dev_dbg(hba->dev,
3198 				"%s: failed with error %d, retries %d\n",
3199 				__func__, ret, retries);
3200 		else
3201 			break;
3202 	}
3203 
3204 	if (ret)
3205 		dev_err(hba->dev,
3206 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3207 			__func__, opcode, idn, ret, retries);
3208 	return ret;
3209 }
3210 
3211 /**
3212  * ufshcd_query_flag() - API function for sending flag query requests
3213  * @hba: per-adapter instance
3214  * @opcode: flag query to perform
3215  * @idn: flag idn to access
3216  * @index: flag index to access
3217  * @flag_res: the flag value after the query request completes
3218  *
3219  * Return: 0 for success, non-zero in case of failure.
3220  */
3221 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3222 			enum flag_idn idn, u8 index, bool *flag_res)
3223 {
3224 	struct ufs_query_req *request = NULL;
3225 	struct ufs_query_res *response = NULL;
3226 	int err, selector = 0;
3227 	int timeout = QUERY_REQ_TIMEOUT;
3228 
3229 	BUG_ON(!hba);
3230 
3231 	ufshcd_hold(hba);
3232 	mutex_lock(&hba->dev_cmd.lock);
3233 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3234 			selector);
3235 
3236 	switch (opcode) {
3237 	case UPIU_QUERY_OPCODE_SET_FLAG:
3238 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3239 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3240 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3241 		break;
3242 	case UPIU_QUERY_OPCODE_READ_FLAG:
3243 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3244 		if (!flag_res) {
3245 			/* No dummy reads */
3246 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3247 					__func__);
3248 			err = -EINVAL;
3249 			goto out_unlock;
3250 		}
3251 		break;
3252 	default:
3253 		dev_err(hba->dev,
3254 			"%s: Expected query flag opcode but got = %d\n",
3255 			__func__, opcode);
3256 		err = -EINVAL;
3257 		goto out_unlock;
3258 	}
3259 
3260 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3261 
3262 	if (err) {
3263 		dev_err(hba->dev,
3264 			"%s: Sending flag query for idn %d failed, err = %d\n",
3265 			__func__, idn, err);
3266 		goto out_unlock;
3267 	}
3268 
3269 	if (flag_res)
3270 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3271 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3272 
3273 out_unlock:
3274 	mutex_unlock(&hba->dev_cmd.lock);
3275 	ufshcd_release(hba);
3276 	return err;
3277 }
3278 
3279 /**
3280  * ufshcd_query_attr - API function for sending attribute requests
3281  * @hba: per-adapter instance
3282  * @opcode: attribute opcode
3283  * @idn: attribute idn to access
3284  * @index: index field
3285  * @selector: selector field
3286  * @attr_val: the attribute value after the query request completes
3287  *
3288  * Return: 0 for success, non-zero in case of failure.
3289 */
3290 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3291 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3292 {
3293 	struct ufs_query_req *request = NULL;
3294 	struct ufs_query_res *response = NULL;
3295 	int err;
3296 
3297 	BUG_ON(!hba);
3298 
3299 	if (!attr_val) {
3300 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3301 				__func__, opcode);
3302 		return -EINVAL;
3303 	}
3304 
3305 	ufshcd_hold(hba);
3306 
3307 	mutex_lock(&hba->dev_cmd.lock);
3308 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3309 			selector);
3310 
3311 	switch (opcode) {
3312 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3313 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3314 		request->upiu_req.value = cpu_to_be32(*attr_val);
3315 		break;
3316 	case UPIU_QUERY_OPCODE_READ_ATTR:
3317 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3318 		break;
3319 	default:
3320 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3321 				__func__, opcode);
3322 		err = -EINVAL;
3323 		goto out_unlock;
3324 	}
3325 
3326 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3327 
3328 	if (err) {
3329 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3330 				__func__, opcode, idn, index, err);
3331 		goto out_unlock;
3332 	}
3333 
3334 	*attr_val = be32_to_cpu(response->upiu_res.value);
3335 
3336 out_unlock:
3337 	mutex_unlock(&hba->dev_cmd.lock);
3338 	ufshcd_release(hba);
3339 	return err;
3340 }
3341 
3342 /**
3343  * ufshcd_query_attr_retry() - API function for sending query
3344  * attribute with retries
3345  * @hba: per-adapter instance
3346  * @opcode: attribute opcode
3347  * @idn: attribute idn to access
3348  * @index: index field
3349  * @selector: selector field
3350  * @attr_val: the attribute value after the query request
3351  * completes
3352  *
3353  * Return: 0 for success, non-zero in case of failure.
3354 */
3355 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3356 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3357 	u32 *attr_val)
3358 {
3359 	int ret = 0;
3360 	u32 retries;
3361 
3362 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3363 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3364 						selector, attr_val);
3365 		if (ret)
3366 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3367 				__func__, ret, retries);
3368 		else
3369 			break;
3370 	}
3371 
3372 	if (ret)
3373 		dev_err(hba->dev,
3374 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3375 			__func__, idn, ret, QUERY_REQ_RETRIES);
3376 	return ret;
3377 }
3378 
3379 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3380 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3381 			u8 selector, u8 *desc_buf, int *buf_len)
3382 {
3383 	struct ufs_query_req *request = NULL;
3384 	struct ufs_query_res *response = NULL;
3385 	int err;
3386 
3387 	BUG_ON(!hba);
3388 
3389 	if (!desc_buf) {
3390 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3391 				__func__, opcode);
3392 		return -EINVAL;
3393 	}
3394 
3395 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3396 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3397 				__func__, *buf_len);
3398 		return -EINVAL;
3399 	}
3400 
3401 	ufshcd_hold(hba);
3402 
3403 	mutex_lock(&hba->dev_cmd.lock);
3404 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3405 			selector);
3406 	hba->dev_cmd.query.descriptor = desc_buf;
3407 	request->upiu_req.length = cpu_to_be16(*buf_len);
3408 
3409 	switch (opcode) {
3410 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3411 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3412 		break;
3413 	case UPIU_QUERY_OPCODE_READ_DESC:
3414 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3415 		break;
3416 	default:
3417 		dev_err(hba->dev,
3418 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3419 				__func__, opcode);
3420 		err = -EINVAL;
3421 		goto out_unlock;
3422 	}
3423 
3424 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3425 
3426 	if (err) {
3427 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3428 				__func__, opcode, idn, index, err);
3429 		goto out_unlock;
3430 	}
3431 
3432 	*buf_len = be16_to_cpu(response->upiu_res.length);
3433 
3434 out_unlock:
3435 	hba->dev_cmd.query.descriptor = NULL;
3436 	mutex_unlock(&hba->dev_cmd.lock);
3437 	ufshcd_release(hba);
3438 	return err;
3439 }
3440 
3441 /**
3442  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3443  * @hba: per-adapter instance
3444  * @opcode: attribute opcode
3445  * @idn: attribute idn to access
3446  * @index: index field
3447  * @selector: selector field
3448  * @desc_buf: the buffer that contains the descriptor
3449  * @buf_len: length parameter passed to the device
3450  *
3451  * The buf_len parameter will contain, on return, the length parameter
3452  * received on the response.
3453  *
3454  * Return: 0 for success, non-zero in case of failure.
3455  */
3456 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3457 				  enum query_opcode opcode,
3458 				  enum desc_idn idn, u8 index,
3459 				  u8 selector,
3460 				  u8 *desc_buf, int *buf_len)
3461 {
3462 	int err;
3463 	int retries;
3464 
3465 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3466 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3467 						selector, desc_buf, buf_len);
3468 		if (!err || err == -EINVAL)
3469 			break;
3470 	}
3471 
3472 	return err;
3473 }
3474 
3475 /**
3476  * ufshcd_read_desc_param - read the specified descriptor parameter
3477  * @hba: Pointer to adapter instance
3478  * @desc_id: descriptor idn value
3479  * @desc_index: descriptor index
3480  * @param_offset: offset of the parameter to read
3481  * @param_read_buf: pointer to buffer where parameter would be read
3482  * @param_size: sizeof(param_read_buf)
3483  *
3484  * Return: 0 in case of success, non-zero otherwise.
3485  */
3486 int ufshcd_read_desc_param(struct ufs_hba *hba,
3487 			   enum desc_idn desc_id,
3488 			   int desc_index,
3489 			   u8 param_offset,
3490 			   u8 *param_read_buf,
3491 			   u8 param_size)
3492 {
3493 	int ret;
3494 	u8 *desc_buf;
3495 	int buff_len = QUERY_DESC_MAX_SIZE;
3496 	bool is_kmalloc = true;
3497 
3498 	/* Safety check */
3499 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3500 		return -EINVAL;
3501 
3502 	/* Check whether we need temp memory */
3503 	if (param_offset != 0 || param_size < buff_len) {
3504 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3505 		if (!desc_buf)
3506 			return -ENOMEM;
3507 	} else {
3508 		desc_buf = param_read_buf;
3509 		is_kmalloc = false;
3510 	}
3511 
3512 	/* Request for full descriptor */
3513 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3514 					    desc_id, desc_index, 0,
3515 					    desc_buf, &buff_len);
3516 	if (ret) {
3517 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3518 			__func__, desc_id, desc_index, param_offset, ret);
3519 		goto out;
3520 	}
3521 
3522 	/* Update descriptor length */
3523 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3524 
3525 	if (param_offset >= buff_len) {
3526 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3527 			__func__, param_offset, desc_id, buff_len);
3528 		ret = -EINVAL;
3529 		goto out;
3530 	}
3531 
3532 	/* Sanity check */
3533 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3534 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3535 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3536 		ret = -EINVAL;
3537 		goto out;
3538 	}
3539 
3540 	if (is_kmalloc) {
3541 		/* Make sure we don't copy more data than available */
3542 		if (param_offset >= buff_len)
3543 			ret = -EINVAL;
3544 		else
3545 			memcpy(param_read_buf, &desc_buf[param_offset],
3546 			       min_t(u32, param_size, buff_len - param_offset));
3547 	}
3548 out:
3549 	if (is_kmalloc)
3550 		kfree(desc_buf);
3551 	return ret;
3552 }
3553 
3554 /**
3555  * struct uc_string_id - unicode string
3556  *
3557  * @len: size of this descriptor inclusive
3558  * @type: descriptor type
3559  * @uc: unicode string character
3560  */
3561 struct uc_string_id {
3562 	u8 len;
3563 	u8 type;
3564 	wchar_t uc[];
3565 } __packed;
3566 
3567 /* replace non-printable or non-ASCII characters with spaces */
3568 static inline char ufshcd_remove_non_printable(u8 ch)
3569 {
3570 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3571 }
3572 
3573 /**
3574  * ufshcd_read_string_desc - read string descriptor
3575  * @hba: pointer to adapter instance
3576  * @desc_index: descriptor index
3577  * @buf: pointer to buffer where descriptor would be read,
3578  *       the caller should free the memory.
3579  * @ascii: if true convert from unicode to ascii characters
3580  *         null terminated string.
3581  *
3582  * Return:
3583  * *      string size on success.
3584  * *      -ENOMEM: on allocation failure
3585  * *      -EINVAL: on a wrong parameter
3586  */
3587 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3588 			    u8 **buf, bool ascii)
3589 {
3590 	struct uc_string_id *uc_str;
3591 	u8 *str;
3592 	int ret;
3593 
3594 	if (!buf)
3595 		return -EINVAL;
3596 
3597 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3598 	if (!uc_str)
3599 		return -ENOMEM;
3600 
3601 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3602 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3603 	if (ret < 0) {
3604 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3605 			QUERY_REQ_RETRIES, ret);
3606 		str = NULL;
3607 		goto out;
3608 	}
3609 
3610 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3611 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3612 		str = NULL;
3613 		ret = 0;
3614 		goto out;
3615 	}
3616 
3617 	if (ascii) {
3618 		ssize_t ascii_len;
3619 		int i;
3620 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3621 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3622 		str = kzalloc(ascii_len, GFP_KERNEL);
3623 		if (!str) {
3624 			ret = -ENOMEM;
3625 			goto out;
3626 		}
3627 
3628 		/*
3629 		 * the descriptor contains string in UTF16 format
3630 		 * we need to convert to utf-8 so it can be displayed
3631 		 */
3632 		ret = utf16s_to_utf8s(uc_str->uc,
3633 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3634 				      UTF16_BIG_ENDIAN, str, ascii_len);
3635 
3636 		/* replace non-printable or non-ASCII characters with spaces */
3637 		for (i = 0; i < ret; i++)
3638 			str[i] = ufshcd_remove_non_printable(str[i]);
3639 
3640 		str[ret++] = '\0';
3641 
3642 	} else {
3643 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3644 		if (!str) {
3645 			ret = -ENOMEM;
3646 			goto out;
3647 		}
3648 		ret = uc_str->len;
3649 	}
3650 out:
3651 	*buf = str;
3652 	kfree(uc_str);
3653 	return ret;
3654 }
3655 
3656 /**
3657  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3658  * @hba: Pointer to adapter instance
3659  * @lun: lun id
3660  * @param_offset: offset of the parameter to read
3661  * @param_read_buf: pointer to buffer where parameter would be read
3662  * @param_size: sizeof(param_read_buf)
3663  *
3664  * Return: 0 in case of success, non-zero otherwise.
3665  */
3666 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3667 					      int lun,
3668 					      enum unit_desc_param param_offset,
3669 					      u8 *param_read_buf,
3670 					      u32 param_size)
3671 {
3672 	/*
3673 	 * Unit descriptors are only available for general purpose LUs (LUN id
3674 	 * from 0 to 7) and RPMB Well known LU.
3675 	 */
3676 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3677 		return -EOPNOTSUPP;
3678 
3679 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3680 				      param_offset, param_read_buf, param_size);
3681 }
3682 
3683 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3684 {
3685 	int err = 0;
3686 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3687 
3688 	if (hba->dev_info.wspecversion >= 0x300) {
3689 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3690 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3691 				&gating_wait);
3692 		if (err)
3693 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3694 					 err, gating_wait);
3695 
3696 		if (gating_wait == 0) {
3697 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3698 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3699 					 gating_wait);
3700 		}
3701 
3702 		hba->dev_info.clk_gating_wait_us = gating_wait;
3703 	}
3704 
3705 	return err;
3706 }
3707 
3708 /**
3709  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3710  * @hba: per adapter instance
3711  *
3712  * 1. Allocate DMA memory for Command Descriptor array
3713  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3714  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3715  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3716  *	(UTMRDL)
3717  * 4. Allocate memory for local reference block(lrb).
3718  *
3719  * Return: 0 for success, non-zero in case of failure.
3720  */
3721 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3722 {
3723 	size_t utmrdl_size, utrdl_size, ucdl_size;
3724 
3725 	/* Allocate memory for UTP command descriptors */
3726 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3727 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3728 						  ucdl_size,
3729 						  &hba->ucdl_dma_addr,
3730 						  GFP_KERNEL);
3731 
3732 	/*
3733 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3734 	 */
3735 	if (!hba->ucdl_base_addr ||
3736 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3737 		dev_err(hba->dev,
3738 			"Command Descriptor Memory allocation failed\n");
3739 		goto out;
3740 	}
3741 
3742 	/*
3743 	 * Allocate memory for UTP Transfer descriptors
3744 	 * UFSHCI requires 1KB alignment of UTRD
3745 	 */
3746 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3747 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3748 						   utrdl_size,
3749 						   &hba->utrdl_dma_addr,
3750 						   GFP_KERNEL);
3751 	if (!hba->utrdl_base_addr ||
3752 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3753 		dev_err(hba->dev,
3754 			"Transfer Descriptor Memory allocation failed\n");
3755 		goto out;
3756 	}
3757 
3758 	/*
3759 	 * Skip utmrdl allocation; it may have been
3760 	 * allocated during first pass and not released during
3761 	 * MCQ memory allocation.
3762 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3763 	 */
3764 	if (hba->utmrdl_base_addr)
3765 		goto skip_utmrdl;
3766 	/*
3767 	 * Allocate memory for UTP Task Management descriptors
3768 	 * UFSHCI requires 1KB alignment of UTMRD
3769 	 */
3770 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3771 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3772 						    utmrdl_size,
3773 						    &hba->utmrdl_dma_addr,
3774 						    GFP_KERNEL);
3775 	if (!hba->utmrdl_base_addr ||
3776 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3777 		dev_err(hba->dev,
3778 		"Task Management Descriptor Memory allocation failed\n");
3779 		goto out;
3780 	}
3781 
3782 skip_utmrdl:
3783 	/* Allocate memory for local reference block */
3784 	hba->lrb = devm_kcalloc(hba->dev,
3785 				hba->nutrs, sizeof(struct ufshcd_lrb),
3786 				GFP_KERNEL);
3787 	if (!hba->lrb) {
3788 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3789 		goto out;
3790 	}
3791 	return 0;
3792 out:
3793 	return -ENOMEM;
3794 }
3795 
3796 /**
3797  * ufshcd_host_memory_configure - configure local reference block with
3798  *				memory offsets
3799  * @hba: per adapter instance
3800  *
3801  * Configure Host memory space
3802  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3803  * address.
3804  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3805  * and PRDT offset.
3806  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3807  * into local reference block.
3808  */
3809 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3810 {
3811 	struct utp_transfer_req_desc *utrdlp;
3812 	dma_addr_t cmd_desc_dma_addr;
3813 	dma_addr_t cmd_desc_element_addr;
3814 	u16 response_offset;
3815 	u16 prdt_offset;
3816 	int cmd_desc_size;
3817 	int i;
3818 
3819 	utrdlp = hba->utrdl_base_addr;
3820 
3821 	response_offset =
3822 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3823 	prdt_offset =
3824 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3825 
3826 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3827 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3828 
3829 	for (i = 0; i < hba->nutrs; i++) {
3830 		/* Configure UTRD with command descriptor base address */
3831 		cmd_desc_element_addr =
3832 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3833 		utrdlp[i].command_desc_base_addr =
3834 				cpu_to_le64(cmd_desc_element_addr);
3835 
3836 		/* Response upiu and prdt offset should be in double words */
3837 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3838 			utrdlp[i].response_upiu_offset =
3839 				cpu_to_le16(response_offset);
3840 			utrdlp[i].prd_table_offset =
3841 				cpu_to_le16(prdt_offset);
3842 			utrdlp[i].response_upiu_length =
3843 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3844 		} else {
3845 			utrdlp[i].response_upiu_offset =
3846 				cpu_to_le16(response_offset >> 2);
3847 			utrdlp[i].prd_table_offset =
3848 				cpu_to_le16(prdt_offset >> 2);
3849 			utrdlp[i].response_upiu_length =
3850 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3851 		}
3852 
3853 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3854 	}
3855 }
3856 
3857 /**
3858  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3859  * @hba: per adapter instance
3860  *
3861  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3862  * in order to initialize the Unipro link startup procedure.
3863  * Once the Unipro links are up, the device connected to the controller
3864  * is detected.
3865  *
3866  * Return: 0 on success, non-zero value on failure.
3867  */
3868 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3869 {
3870 	struct uic_command uic_cmd = {0};
3871 	int ret;
3872 
3873 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3874 
3875 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3876 	if (ret)
3877 		dev_dbg(hba->dev,
3878 			"dme-link-startup: error code %d\n", ret);
3879 	return ret;
3880 }
3881 /**
3882  * ufshcd_dme_reset - UIC command for DME_RESET
3883  * @hba: per adapter instance
3884  *
3885  * DME_RESET command is issued in order to reset UniPro stack.
3886  * This function now deals with cold reset.
3887  *
3888  * Return: 0 on success, non-zero value on failure.
3889  */
3890 static int ufshcd_dme_reset(struct ufs_hba *hba)
3891 {
3892 	struct uic_command uic_cmd = {0};
3893 	int ret;
3894 
3895 	uic_cmd.command = UIC_CMD_DME_RESET;
3896 
3897 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3898 	if (ret)
3899 		dev_err(hba->dev,
3900 			"dme-reset: error code %d\n", ret);
3901 
3902 	return ret;
3903 }
3904 
3905 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3906 			       int agreed_gear,
3907 			       int adapt_val)
3908 {
3909 	int ret;
3910 
3911 	if (agreed_gear < UFS_HS_G4)
3912 		adapt_val = PA_NO_ADAPT;
3913 
3914 	ret = ufshcd_dme_set(hba,
3915 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3916 			     adapt_val);
3917 	return ret;
3918 }
3919 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3920 
3921 /**
3922  * ufshcd_dme_enable - UIC command for DME_ENABLE
3923  * @hba: per adapter instance
3924  *
3925  * DME_ENABLE command is issued in order to enable UniPro stack.
3926  *
3927  * Return: 0 on success, non-zero value on failure.
3928  */
3929 static int ufshcd_dme_enable(struct ufs_hba *hba)
3930 {
3931 	struct uic_command uic_cmd = {0};
3932 	int ret;
3933 
3934 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3935 
3936 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3937 	if (ret)
3938 		dev_err(hba->dev,
3939 			"dme-enable: error code %d\n", ret);
3940 
3941 	return ret;
3942 }
3943 
3944 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3945 {
3946 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3947 	unsigned long min_sleep_time_us;
3948 
3949 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3950 		return;
3951 
3952 	/*
3953 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3954 	 * this function
3955 	 */
3956 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3957 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3958 	} else {
3959 		unsigned long delta =
3960 			(unsigned long) ktime_to_us(
3961 				ktime_sub(ktime_get(),
3962 				hba->last_dme_cmd_tstamp));
3963 
3964 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3965 			min_sleep_time_us =
3966 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3967 		else
3968 			return; /* no more delay required */
3969 	}
3970 
3971 	/* allow sleep for extra 50us if needed */
3972 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3973 }
3974 
3975 /**
3976  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3977  * @hba: per adapter instance
3978  * @attr_sel: uic command argument1
3979  * @attr_set: attribute set type as uic command argument2
3980  * @mib_val: setting value as uic command argument3
3981  * @peer: indicate whether peer or local
3982  *
3983  * Return: 0 on success, non-zero value on failure.
3984  */
3985 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3986 			u8 attr_set, u32 mib_val, u8 peer)
3987 {
3988 	struct uic_command uic_cmd = {0};
3989 	static const char *const action[] = {
3990 		"dme-set",
3991 		"dme-peer-set"
3992 	};
3993 	const char *set = action[!!peer];
3994 	int ret;
3995 	int retries = UFS_UIC_COMMAND_RETRIES;
3996 
3997 	uic_cmd.command = peer ?
3998 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3999 	uic_cmd.argument1 = attr_sel;
4000 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4001 	uic_cmd.argument3 = mib_val;
4002 
4003 	do {
4004 		/* for peer attributes we retry upon failure */
4005 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4006 		if (ret)
4007 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4008 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4009 	} while (ret && peer && --retries);
4010 
4011 	if (ret)
4012 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4013 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4014 			UFS_UIC_COMMAND_RETRIES - retries);
4015 
4016 	return ret;
4017 }
4018 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4019 
4020 /**
4021  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4022  * @hba: per adapter instance
4023  * @attr_sel: uic command argument1
4024  * @mib_val: the value of the attribute as returned by the UIC command
4025  * @peer: indicate whether peer or local
4026  *
4027  * Return: 0 on success, non-zero value on failure.
4028  */
4029 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4030 			u32 *mib_val, u8 peer)
4031 {
4032 	struct uic_command uic_cmd = {0};
4033 	static const char *const action[] = {
4034 		"dme-get",
4035 		"dme-peer-get"
4036 	};
4037 	const char *get = action[!!peer];
4038 	int ret;
4039 	int retries = UFS_UIC_COMMAND_RETRIES;
4040 	struct ufs_pa_layer_attr orig_pwr_info;
4041 	struct ufs_pa_layer_attr temp_pwr_info;
4042 	bool pwr_mode_change = false;
4043 
4044 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4045 		orig_pwr_info = hba->pwr_info;
4046 		temp_pwr_info = orig_pwr_info;
4047 
4048 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4049 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4050 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4051 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4052 			pwr_mode_change = true;
4053 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4054 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4055 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4056 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4057 			pwr_mode_change = true;
4058 		}
4059 		if (pwr_mode_change) {
4060 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4061 			if (ret)
4062 				goto out;
4063 		}
4064 	}
4065 
4066 	uic_cmd.command = peer ?
4067 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4068 	uic_cmd.argument1 = attr_sel;
4069 
4070 	do {
4071 		/* for peer attributes we retry upon failure */
4072 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4073 		if (ret)
4074 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4075 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4076 	} while (ret && peer && --retries);
4077 
4078 	if (ret)
4079 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4080 			get, UIC_GET_ATTR_ID(attr_sel),
4081 			UFS_UIC_COMMAND_RETRIES - retries);
4082 
4083 	if (mib_val && !ret)
4084 		*mib_val = uic_cmd.argument3;
4085 
4086 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4087 	    && pwr_mode_change)
4088 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4089 out:
4090 	return ret;
4091 }
4092 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4093 
4094 /**
4095  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4096  * state) and waits for it to take effect.
4097  *
4098  * @hba: per adapter instance
4099  * @cmd: UIC command to execute
4100  *
4101  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4102  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4103  * and device UniPro link and hence it's final completion would be indicated by
4104  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4105  * addition to normal UIC command completion Status (UCCS). This function only
4106  * returns after the relevant status bits indicate the completion.
4107  *
4108  * Return: 0 on success, non-zero value on failure.
4109  */
4110 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4111 {
4112 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4113 	unsigned long flags;
4114 	u8 status;
4115 	int ret;
4116 	bool reenable_intr = false;
4117 
4118 	mutex_lock(&hba->uic_cmd_mutex);
4119 	ufshcd_add_delay_before_dme_cmd(hba);
4120 
4121 	spin_lock_irqsave(hba->host->host_lock, flags);
4122 	if (ufshcd_is_link_broken(hba)) {
4123 		ret = -ENOLINK;
4124 		goto out_unlock;
4125 	}
4126 	hba->uic_async_done = &uic_async_done;
4127 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4128 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4129 		/*
4130 		 * Make sure UIC command completion interrupt is disabled before
4131 		 * issuing UIC command.
4132 		 */
4133 		wmb();
4134 		reenable_intr = true;
4135 	}
4136 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4137 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4138 	if (ret) {
4139 		dev_err(hba->dev,
4140 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4141 			cmd->command, cmd->argument3, ret);
4142 		goto out;
4143 	}
4144 
4145 	if (!wait_for_completion_timeout(hba->uic_async_done,
4146 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4147 		dev_err(hba->dev,
4148 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4149 			cmd->command, cmd->argument3);
4150 
4151 		if (!cmd->cmd_active) {
4152 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4153 				__func__);
4154 			goto check_upmcrs;
4155 		}
4156 
4157 		ret = -ETIMEDOUT;
4158 		goto out;
4159 	}
4160 
4161 check_upmcrs:
4162 	status = ufshcd_get_upmcrs(hba);
4163 	if (status != PWR_LOCAL) {
4164 		dev_err(hba->dev,
4165 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4166 			cmd->command, status);
4167 		ret = (status != PWR_OK) ? status : -1;
4168 	}
4169 out:
4170 	if (ret) {
4171 		ufshcd_print_host_state(hba);
4172 		ufshcd_print_pwr_info(hba);
4173 		ufshcd_print_evt_hist(hba);
4174 	}
4175 
4176 	spin_lock_irqsave(hba->host->host_lock, flags);
4177 	hba->active_uic_cmd = NULL;
4178 	hba->uic_async_done = NULL;
4179 	if (reenable_intr)
4180 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4181 	if (ret) {
4182 		ufshcd_set_link_broken(hba);
4183 		ufshcd_schedule_eh_work(hba);
4184 	}
4185 out_unlock:
4186 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4187 	mutex_unlock(&hba->uic_cmd_mutex);
4188 
4189 	return ret;
4190 }
4191 
4192 /**
4193  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4194  *				using DME_SET primitives.
4195  * @hba: per adapter instance
4196  * @mode: powr mode value
4197  *
4198  * Return: 0 on success, non-zero value on failure.
4199  */
4200 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4201 {
4202 	struct uic_command uic_cmd = {0};
4203 	int ret;
4204 
4205 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4206 		ret = ufshcd_dme_set(hba,
4207 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4208 		if (ret) {
4209 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4210 						__func__, ret);
4211 			goto out;
4212 		}
4213 	}
4214 
4215 	uic_cmd.command = UIC_CMD_DME_SET;
4216 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4217 	uic_cmd.argument3 = mode;
4218 	ufshcd_hold(hba);
4219 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4220 	ufshcd_release(hba);
4221 
4222 out:
4223 	return ret;
4224 }
4225 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4226 
4227 int ufshcd_link_recovery(struct ufs_hba *hba)
4228 {
4229 	int ret;
4230 	unsigned long flags;
4231 
4232 	spin_lock_irqsave(hba->host->host_lock, flags);
4233 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4234 	ufshcd_set_eh_in_progress(hba);
4235 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4236 
4237 	/* Reset the attached device */
4238 	ufshcd_device_reset(hba);
4239 
4240 	ret = ufshcd_host_reset_and_restore(hba);
4241 
4242 	spin_lock_irqsave(hba->host->host_lock, flags);
4243 	if (ret)
4244 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4245 	ufshcd_clear_eh_in_progress(hba);
4246 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4247 
4248 	if (ret)
4249 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4250 			__func__, ret);
4251 
4252 	return ret;
4253 }
4254 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4255 
4256 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4257 {
4258 	int ret;
4259 	struct uic_command uic_cmd = {0};
4260 	ktime_t start = ktime_get();
4261 
4262 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4263 
4264 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4265 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4266 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4267 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4268 
4269 	if (ret)
4270 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4271 			__func__, ret);
4272 	else
4273 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4274 								POST_CHANGE);
4275 
4276 	return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4279 
4280 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4281 {
4282 	struct uic_command uic_cmd = {0};
4283 	int ret;
4284 	ktime_t start = ktime_get();
4285 
4286 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4287 
4288 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4289 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4290 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4291 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4292 
4293 	if (ret) {
4294 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4295 			__func__, ret);
4296 	} else {
4297 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4298 								POST_CHANGE);
4299 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4300 		hba->ufs_stats.hibern8_exit_cnt++;
4301 	}
4302 
4303 	return ret;
4304 }
4305 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4306 
4307 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4308 {
4309 	unsigned long flags;
4310 	bool update = false;
4311 
4312 	if (!ufshcd_is_auto_hibern8_supported(hba))
4313 		return;
4314 
4315 	spin_lock_irqsave(hba->host->host_lock, flags);
4316 	if (hba->ahit != ahit) {
4317 		hba->ahit = ahit;
4318 		update = true;
4319 	}
4320 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4321 
4322 	if (update &&
4323 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4324 		ufshcd_rpm_get_sync(hba);
4325 		ufshcd_hold(hba);
4326 		ufshcd_auto_hibern8_enable(hba);
4327 		ufshcd_release(hba);
4328 		ufshcd_rpm_put_sync(hba);
4329 	}
4330 }
4331 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4332 
4333 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4334 {
4335 	if (!ufshcd_is_auto_hibern8_supported(hba))
4336 		return;
4337 
4338 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4339 }
4340 
4341  /**
4342  * ufshcd_init_pwr_info - setting the POR (power on reset)
4343  * values in hba power info
4344  * @hba: per-adapter instance
4345  */
4346 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4347 {
4348 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4349 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4350 	hba->pwr_info.lane_rx = UFS_LANE_1;
4351 	hba->pwr_info.lane_tx = UFS_LANE_1;
4352 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4353 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4354 	hba->pwr_info.hs_rate = 0;
4355 }
4356 
4357 /**
4358  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4359  * @hba: per-adapter instance
4360  *
4361  * Return: 0 upon success; < 0 upon failure.
4362  */
4363 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4364 {
4365 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4366 
4367 	if (hba->max_pwr_info.is_valid)
4368 		return 0;
4369 
4370 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4371 		pwr_info->pwr_tx = FASTAUTO_MODE;
4372 		pwr_info->pwr_rx = FASTAUTO_MODE;
4373 	} else {
4374 		pwr_info->pwr_tx = FAST_MODE;
4375 		pwr_info->pwr_rx = FAST_MODE;
4376 	}
4377 	pwr_info->hs_rate = PA_HS_MODE_B;
4378 
4379 	/* Get the connected lane count */
4380 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4381 			&pwr_info->lane_rx);
4382 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4383 			&pwr_info->lane_tx);
4384 
4385 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4386 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4387 				__func__,
4388 				pwr_info->lane_rx,
4389 				pwr_info->lane_tx);
4390 		return -EINVAL;
4391 	}
4392 
4393 	/*
4394 	 * First, get the maximum gears of HS speed.
4395 	 * If a zero value, it means there is no HSGEAR capability.
4396 	 * Then, get the maximum gears of PWM speed.
4397 	 */
4398 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4399 	if (!pwr_info->gear_rx) {
4400 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4401 				&pwr_info->gear_rx);
4402 		if (!pwr_info->gear_rx) {
4403 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4404 				__func__, pwr_info->gear_rx);
4405 			return -EINVAL;
4406 		}
4407 		pwr_info->pwr_rx = SLOW_MODE;
4408 	}
4409 
4410 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4411 			&pwr_info->gear_tx);
4412 	if (!pwr_info->gear_tx) {
4413 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4414 				&pwr_info->gear_tx);
4415 		if (!pwr_info->gear_tx) {
4416 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4417 				__func__, pwr_info->gear_tx);
4418 			return -EINVAL;
4419 		}
4420 		pwr_info->pwr_tx = SLOW_MODE;
4421 	}
4422 
4423 	hba->max_pwr_info.is_valid = true;
4424 	return 0;
4425 }
4426 
4427 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4428 			     struct ufs_pa_layer_attr *pwr_mode)
4429 {
4430 	int ret;
4431 
4432 	/* if already configured to the requested pwr_mode */
4433 	if (!hba->force_pmc &&
4434 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4435 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4436 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4437 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4438 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4439 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4440 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4441 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4442 		return 0;
4443 	}
4444 
4445 	/*
4446 	 * Configure attributes for power mode change with below.
4447 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4448 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4449 	 * - PA_HSSERIES
4450 	 */
4451 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4452 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4453 			pwr_mode->lane_rx);
4454 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4455 			pwr_mode->pwr_rx == FAST_MODE)
4456 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4457 	else
4458 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4459 
4460 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4461 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4462 			pwr_mode->lane_tx);
4463 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4464 			pwr_mode->pwr_tx == FAST_MODE)
4465 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4466 	else
4467 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4468 
4469 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4470 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4471 	    pwr_mode->pwr_rx == FAST_MODE ||
4472 	    pwr_mode->pwr_tx == FAST_MODE)
4473 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4474 						pwr_mode->hs_rate);
4475 
4476 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4477 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4478 				DL_FC0ProtectionTimeOutVal_Default);
4479 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4480 				DL_TC0ReplayTimeOutVal_Default);
4481 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4482 				DL_AFC0ReqTimeOutVal_Default);
4483 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4484 				DL_FC1ProtectionTimeOutVal_Default);
4485 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4486 				DL_TC1ReplayTimeOutVal_Default);
4487 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4488 				DL_AFC1ReqTimeOutVal_Default);
4489 
4490 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4491 				DL_FC0ProtectionTimeOutVal_Default);
4492 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4493 				DL_TC0ReplayTimeOutVal_Default);
4494 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4495 				DL_AFC0ReqTimeOutVal_Default);
4496 	}
4497 
4498 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4499 			| pwr_mode->pwr_tx);
4500 
4501 	if (ret) {
4502 		dev_err(hba->dev,
4503 			"%s: power mode change failed %d\n", __func__, ret);
4504 	} else {
4505 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4506 								pwr_mode);
4507 
4508 		memcpy(&hba->pwr_info, pwr_mode,
4509 			sizeof(struct ufs_pa_layer_attr));
4510 	}
4511 
4512 	return ret;
4513 }
4514 
4515 /**
4516  * ufshcd_config_pwr_mode - configure a new power mode
4517  * @hba: per-adapter instance
4518  * @desired_pwr_mode: desired power configuration
4519  *
4520  * Return: 0 upon success; < 0 upon failure.
4521  */
4522 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4523 		struct ufs_pa_layer_attr *desired_pwr_mode)
4524 {
4525 	struct ufs_pa_layer_attr final_params = { 0 };
4526 	int ret;
4527 
4528 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4529 					desired_pwr_mode, &final_params);
4530 
4531 	if (ret)
4532 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4533 
4534 	ret = ufshcd_change_power_mode(hba, &final_params);
4535 
4536 	return ret;
4537 }
4538 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4539 
4540 /**
4541  * ufshcd_complete_dev_init() - checks device readiness
4542  * @hba: per-adapter instance
4543  *
4544  * Set fDeviceInit flag and poll until device toggles it.
4545  *
4546  * Return: 0 upon success; < 0 upon failure.
4547  */
4548 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4549 {
4550 	int err;
4551 	bool flag_res = true;
4552 	ktime_t timeout;
4553 
4554 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4555 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4556 	if (err) {
4557 		dev_err(hba->dev,
4558 			"%s: setting fDeviceInit flag failed with error %d\n",
4559 			__func__, err);
4560 		goto out;
4561 	}
4562 
4563 	/* Poll fDeviceInit flag to be cleared */
4564 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4565 	do {
4566 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4567 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4568 		if (!flag_res)
4569 			break;
4570 		usleep_range(500, 1000);
4571 	} while (ktime_before(ktime_get(), timeout));
4572 
4573 	if (err) {
4574 		dev_err(hba->dev,
4575 				"%s: reading fDeviceInit flag failed with error %d\n",
4576 				__func__, err);
4577 	} else if (flag_res) {
4578 		dev_err(hba->dev,
4579 				"%s: fDeviceInit was not cleared by the device\n",
4580 				__func__);
4581 		err = -EBUSY;
4582 	}
4583 out:
4584 	return err;
4585 }
4586 
4587 /**
4588  * ufshcd_make_hba_operational - Make UFS controller operational
4589  * @hba: per adapter instance
4590  *
4591  * To bring UFS host controller to operational state,
4592  * 1. Enable required interrupts
4593  * 2. Configure interrupt aggregation
4594  * 3. Program UTRL and UTMRL base address
4595  * 4. Configure run-stop-registers
4596  *
4597  * Return: 0 on success, non-zero value on failure.
4598  */
4599 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4600 {
4601 	int err = 0;
4602 	u32 reg;
4603 
4604 	/* Enable required interrupts */
4605 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4606 
4607 	/* Configure interrupt aggregation */
4608 	if (ufshcd_is_intr_aggr_allowed(hba))
4609 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4610 	else
4611 		ufshcd_disable_intr_aggr(hba);
4612 
4613 	/* Configure UTRL and UTMRL base address registers */
4614 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4615 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4616 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4617 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4618 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4619 			REG_UTP_TASK_REQ_LIST_BASE_L);
4620 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4621 			REG_UTP_TASK_REQ_LIST_BASE_H);
4622 
4623 	/*
4624 	 * Make sure base address and interrupt setup are updated before
4625 	 * enabling the run/stop registers below.
4626 	 */
4627 	wmb();
4628 
4629 	/*
4630 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4631 	 */
4632 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4633 	if (!(ufshcd_get_lists_status(reg))) {
4634 		ufshcd_enable_run_stop_reg(hba);
4635 	} else {
4636 		dev_err(hba->dev,
4637 			"Host controller not ready to process requests");
4638 		err = -EIO;
4639 	}
4640 
4641 	return err;
4642 }
4643 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4644 
4645 /**
4646  * ufshcd_hba_stop - Send controller to reset state
4647  * @hba: per adapter instance
4648  */
4649 void ufshcd_hba_stop(struct ufs_hba *hba)
4650 {
4651 	unsigned long flags;
4652 	int err;
4653 
4654 	/*
4655 	 * Obtain the host lock to prevent that the controller is disabled
4656 	 * while the UFS interrupt handler is active on another CPU.
4657 	 */
4658 	spin_lock_irqsave(hba->host->host_lock, flags);
4659 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4660 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4661 
4662 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4663 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4664 					10, 1);
4665 	if (err)
4666 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4667 }
4668 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4669 
4670 /**
4671  * ufshcd_hba_execute_hce - initialize the controller
4672  * @hba: per adapter instance
4673  *
4674  * The controller resets itself and controller firmware initialization
4675  * sequence kicks off. When controller is ready it will set
4676  * the Host Controller Enable bit to 1.
4677  *
4678  * Return: 0 on success, non-zero value on failure.
4679  */
4680 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4681 {
4682 	int retry_outer = 3;
4683 	int retry_inner;
4684 
4685 start:
4686 	if (ufshcd_is_hba_active(hba))
4687 		/* change controller state to "reset state" */
4688 		ufshcd_hba_stop(hba);
4689 
4690 	/* UniPro link is disabled at this point */
4691 	ufshcd_set_link_off(hba);
4692 
4693 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4694 
4695 	/* start controller initialization sequence */
4696 	ufshcd_hba_start(hba);
4697 
4698 	/*
4699 	 * To initialize a UFS host controller HCE bit must be set to 1.
4700 	 * During initialization the HCE bit value changes from 1->0->1.
4701 	 * When the host controller completes initialization sequence
4702 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4703 	 * to check if the controller has completed initialization sequence.
4704 	 * So without this delay the value HCE = 1, set in the previous
4705 	 * instruction might be read back.
4706 	 * This delay can be changed based on the controller.
4707 	 */
4708 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4709 
4710 	/* wait for the host controller to complete initialization */
4711 	retry_inner = 50;
4712 	while (!ufshcd_is_hba_active(hba)) {
4713 		if (retry_inner) {
4714 			retry_inner--;
4715 		} else {
4716 			dev_err(hba->dev,
4717 				"Controller enable failed\n");
4718 			if (retry_outer) {
4719 				retry_outer--;
4720 				goto start;
4721 			}
4722 			return -EIO;
4723 		}
4724 		usleep_range(1000, 1100);
4725 	}
4726 
4727 	/* enable UIC related interrupts */
4728 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4729 
4730 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4731 
4732 	return 0;
4733 }
4734 
4735 int ufshcd_hba_enable(struct ufs_hba *hba)
4736 {
4737 	int ret;
4738 
4739 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4740 		ufshcd_set_link_off(hba);
4741 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4742 
4743 		/* enable UIC related interrupts */
4744 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4745 		ret = ufshcd_dme_reset(hba);
4746 		if (ret) {
4747 			dev_err(hba->dev, "DME_RESET failed\n");
4748 			return ret;
4749 		}
4750 
4751 		ret = ufshcd_dme_enable(hba);
4752 		if (ret) {
4753 			dev_err(hba->dev, "Enabling DME failed\n");
4754 			return ret;
4755 		}
4756 
4757 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4758 	} else {
4759 		ret = ufshcd_hba_execute_hce(hba);
4760 	}
4761 
4762 	return ret;
4763 }
4764 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4765 
4766 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4767 {
4768 	int tx_lanes = 0, i, err = 0;
4769 
4770 	if (!peer)
4771 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4772 			       &tx_lanes);
4773 	else
4774 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4775 				    &tx_lanes);
4776 	for (i = 0; i < tx_lanes; i++) {
4777 		if (!peer)
4778 			err = ufshcd_dme_set(hba,
4779 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4780 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4781 					0);
4782 		else
4783 			err = ufshcd_dme_peer_set(hba,
4784 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4785 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4786 					0);
4787 		if (err) {
4788 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4789 				__func__, peer, i, err);
4790 			break;
4791 		}
4792 	}
4793 
4794 	return err;
4795 }
4796 
4797 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4798 {
4799 	return ufshcd_disable_tx_lcc(hba, true);
4800 }
4801 
4802 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4803 {
4804 	struct ufs_event_hist *e;
4805 
4806 	if (id >= UFS_EVT_CNT)
4807 		return;
4808 
4809 	e = &hba->ufs_stats.event[id];
4810 	e->val[e->pos] = val;
4811 	e->tstamp[e->pos] = local_clock();
4812 	e->cnt += 1;
4813 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4814 
4815 	ufshcd_vops_event_notify(hba, id, &val);
4816 }
4817 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4818 
4819 /**
4820  * ufshcd_link_startup - Initialize unipro link startup
4821  * @hba: per adapter instance
4822  *
4823  * Return: 0 for success, non-zero in case of failure.
4824  */
4825 static int ufshcd_link_startup(struct ufs_hba *hba)
4826 {
4827 	int ret;
4828 	int retries = DME_LINKSTARTUP_RETRIES;
4829 	bool link_startup_again = false;
4830 
4831 	/*
4832 	 * If UFS device isn't active then we will have to issue link startup
4833 	 * 2 times to make sure the device state move to active.
4834 	 */
4835 	if (!ufshcd_is_ufs_dev_active(hba))
4836 		link_startup_again = true;
4837 
4838 link_startup:
4839 	do {
4840 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4841 
4842 		ret = ufshcd_dme_link_startup(hba);
4843 
4844 		/* check if device is detected by inter-connect layer */
4845 		if (!ret && !ufshcd_is_device_present(hba)) {
4846 			ufshcd_update_evt_hist(hba,
4847 					       UFS_EVT_LINK_STARTUP_FAIL,
4848 					       0);
4849 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4850 			ret = -ENXIO;
4851 			goto out;
4852 		}
4853 
4854 		/*
4855 		 * DME link lost indication is only received when link is up,
4856 		 * but we can't be sure if the link is up until link startup
4857 		 * succeeds. So reset the local Uni-Pro and try again.
4858 		 */
4859 		if (ret && retries && ufshcd_hba_enable(hba)) {
4860 			ufshcd_update_evt_hist(hba,
4861 					       UFS_EVT_LINK_STARTUP_FAIL,
4862 					       (u32)ret);
4863 			goto out;
4864 		}
4865 	} while (ret && retries--);
4866 
4867 	if (ret) {
4868 		/* failed to get the link up... retire */
4869 		ufshcd_update_evt_hist(hba,
4870 				       UFS_EVT_LINK_STARTUP_FAIL,
4871 				       (u32)ret);
4872 		goto out;
4873 	}
4874 
4875 	if (link_startup_again) {
4876 		link_startup_again = false;
4877 		retries = DME_LINKSTARTUP_RETRIES;
4878 		goto link_startup;
4879 	}
4880 
4881 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4882 	ufshcd_init_pwr_info(hba);
4883 	ufshcd_print_pwr_info(hba);
4884 
4885 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4886 		ret = ufshcd_disable_device_tx_lcc(hba);
4887 		if (ret)
4888 			goto out;
4889 	}
4890 
4891 	/* Include any host controller configuration via UIC commands */
4892 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4893 	if (ret)
4894 		goto out;
4895 
4896 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4897 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4898 	ret = ufshcd_make_hba_operational(hba);
4899 out:
4900 	if (ret) {
4901 		dev_err(hba->dev, "link startup failed %d\n", ret);
4902 		ufshcd_print_host_state(hba);
4903 		ufshcd_print_pwr_info(hba);
4904 		ufshcd_print_evt_hist(hba);
4905 	}
4906 	return ret;
4907 }
4908 
4909 /**
4910  * ufshcd_verify_dev_init() - Verify device initialization
4911  * @hba: per-adapter instance
4912  *
4913  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4914  * device Transport Protocol (UTP) layer is ready after a reset.
4915  * If the UTP layer at the device side is not initialized, it may
4916  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4917  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4918  *
4919  * Return: 0 upon success; < 0 upon failure.
4920  */
4921 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4922 {
4923 	int err = 0;
4924 	int retries;
4925 
4926 	ufshcd_hold(hba);
4927 	mutex_lock(&hba->dev_cmd.lock);
4928 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4929 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4930 					  hba->nop_out_timeout);
4931 
4932 		if (!err || err == -ETIMEDOUT)
4933 			break;
4934 
4935 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4936 	}
4937 	mutex_unlock(&hba->dev_cmd.lock);
4938 	ufshcd_release(hba);
4939 
4940 	if (err)
4941 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4942 	return err;
4943 }
4944 
4945 /**
4946  * ufshcd_setup_links - associate link b/w device wlun and other luns
4947  * @sdev: pointer to SCSI device
4948  * @hba: pointer to ufs hba
4949  */
4950 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4951 {
4952 	struct device_link *link;
4953 
4954 	/*
4955 	 * Device wlun is the supplier & rest of the luns are consumers.
4956 	 * This ensures that device wlun suspends after all other luns.
4957 	 */
4958 	if (hba->ufs_device_wlun) {
4959 		link = device_link_add(&sdev->sdev_gendev,
4960 				       &hba->ufs_device_wlun->sdev_gendev,
4961 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4962 		if (!link) {
4963 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4964 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4965 			return;
4966 		}
4967 		hba->luns_avail--;
4968 		/* Ignore REPORT_LUN wlun probing */
4969 		if (hba->luns_avail == 1) {
4970 			ufshcd_rpm_put(hba);
4971 			return;
4972 		}
4973 	} else {
4974 		/*
4975 		 * Device wlun is probed. The assumption is that WLUNs are
4976 		 * scanned before other LUNs.
4977 		 */
4978 		hba->luns_avail--;
4979 	}
4980 }
4981 
4982 /**
4983  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4984  * @hba: per-adapter instance
4985  * @sdev: pointer to SCSI device
4986  */
4987 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4988 {
4989 	int len = QUERY_DESC_MAX_SIZE;
4990 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4991 	u8 lun_qdepth = hba->nutrs;
4992 	u8 *desc_buf;
4993 	int ret;
4994 
4995 	desc_buf = kzalloc(len, GFP_KERNEL);
4996 	if (!desc_buf)
4997 		goto set_qdepth;
4998 
4999 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5000 	if (ret < 0) {
5001 		if (ret == -EOPNOTSUPP)
5002 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5003 			lun_qdepth = 1;
5004 		kfree(desc_buf);
5005 		goto set_qdepth;
5006 	}
5007 
5008 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5009 		/*
5010 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5011 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5012 		 */
5013 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5014 	}
5015 	/*
5016 	 * According to UFS device specification, the write protection mode is only supported by
5017 	 * normal LU, not supported by WLUN.
5018 	 */
5019 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5020 	    !hba->dev_info.is_lu_power_on_wp &&
5021 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5022 		hba->dev_info.is_lu_power_on_wp = true;
5023 
5024 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5025 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5026 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5027 		hba->dev_info.b_advanced_rpmb_en = true;
5028 
5029 
5030 	kfree(desc_buf);
5031 set_qdepth:
5032 	/*
5033 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5034 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5035 	 */
5036 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5037 	scsi_change_queue_depth(sdev, lun_qdepth);
5038 }
5039 
5040 /**
5041  * ufshcd_slave_alloc - handle initial SCSI device configurations
5042  * @sdev: pointer to SCSI device
5043  *
5044  * Return: success.
5045  */
5046 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5047 {
5048 	struct ufs_hba *hba;
5049 
5050 	hba = shost_priv(sdev->host);
5051 
5052 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5053 	sdev->use_10_for_ms = 1;
5054 
5055 	/* DBD field should be set to 1 in mode sense(10) */
5056 	sdev->set_dbd_for_ms = 1;
5057 
5058 	/* allow SCSI layer to restart the device in case of errors */
5059 	sdev->allow_restart = 1;
5060 
5061 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5062 	sdev->no_report_opcodes = 1;
5063 
5064 	/* WRITE_SAME command is not supported */
5065 	sdev->no_write_same = 1;
5066 
5067 	ufshcd_lu_init(hba, sdev);
5068 
5069 	ufshcd_setup_links(hba, sdev);
5070 
5071 	return 0;
5072 }
5073 
5074 /**
5075  * ufshcd_change_queue_depth - change queue depth
5076  * @sdev: pointer to SCSI device
5077  * @depth: required depth to set
5078  *
5079  * Change queue depth and make sure the max. limits are not crossed.
5080  *
5081  * Return: new queue depth.
5082  */
5083 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5084 {
5085 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5086 }
5087 
5088 /**
5089  * ufshcd_slave_configure - adjust SCSI device configurations
5090  * @sdev: pointer to SCSI device
5091  *
5092  * Return: 0 (success).
5093  */
5094 static int ufshcd_slave_configure(struct scsi_device *sdev)
5095 {
5096 	struct ufs_hba *hba = shost_priv(sdev->host);
5097 	struct request_queue *q = sdev->request_queue;
5098 
5099 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5100 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5101 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5102 	/*
5103 	 * Block runtime-pm until all consumers are added.
5104 	 * Refer ufshcd_setup_links().
5105 	 */
5106 	if (is_device_wlun(sdev))
5107 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5108 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5109 		sdev->rpm_autosuspend = 1;
5110 	/*
5111 	 * Do not print messages during runtime PM to avoid never-ending cycles
5112 	 * of messages written back to storage by user space causing runtime
5113 	 * resume, causing more messages and so on.
5114 	 */
5115 	sdev->silence_suspend = 1;
5116 
5117 	ufshcd_crypto_register(hba, q);
5118 
5119 	return 0;
5120 }
5121 
5122 /**
5123  * ufshcd_slave_destroy - remove SCSI device configurations
5124  * @sdev: pointer to SCSI device
5125  */
5126 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5127 {
5128 	struct ufs_hba *hba;
5129 	unsigned long flags;
5130 
5131 	hba = shost_priv(sdev->host);
5132 
5133 	/* Drop the reference as it won't be needed anymore */
5134 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5135 		spin_lock_irqsave(hba->host->host_lock, flags);
5136 		hba->ufs_device_wlun = NULL;
5137 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5138 	} else if (hba->ufs_device_wlun) {
5139 		struct device *supplier = NULL;
5140 
5141 		/* Ensure UFS Device WLUN exists and does not disappear */
5142 		spin_lock_irqsave(hba->host->host_lock, flags);
5143 		if (hba->ufs_device_wlun) {
5144 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5145 			get_device(supplier);
5146 		}
5147 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5148 
5149 		if (supplier) {
5150 			/*
5151 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5152 			 * device will not have been registered but can still
5153 			 * have a device link holding a reference to the device.
5154 			 */
5155 			device_link_remove(&sdev->sdev_gendev, supplier);
5156 			put_device(supplier);
5157 		}
5158 	}
5159 }
5160 
5161 /**
5162  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5163  * @lrbp: pointer to local reference block of completed command
5164  * @scsi_status: SCSI command status
5165  *
5166  * Return: value base on SCSI command status.
5167  */
5168 static inline int
5169 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5170 {
5171 	int result = 0;
5172 
5173 	switch (scsi_status) {
5174 	case SAM_STAT_CHECK_CONDITION:
5175 		ufshcd_copy_sense_data(lrbp);
5176 		fallthrough;
5177 	case SAM_STAT_GOOD:
5178 		result |= DID_OK << 16 | scsi_status;
5179 		break;
5180 	case SAM_STAT_TASK_SET_FULL:
5181 	case SAM_STAT_BUSY:
5182 	case SAM_STAT_TASK_ABORTED:
5183 		ufshcd_copy_sense_data(lrbp);
5184 		result |= scsi_status;
5185 		break;
5186 	default:
5187 		result |= DID_ERROR << 16;
5188 		break;
5189 	} /* end of switch */
5190 
5191 	return result;
5192 }
5193 
5194 /**
5195  * ufshcd_transfer_rsp_status - Get overall status of the response
5196  * @hba: per adapter instance
5197  * @lrbp: pointer to local reference block of completed command
5198  * @cqe: pointer to the completion queue entry
5199  *
5200  * Return: result of the command to notify SCSI midlayer.
5201  */
5202 static inline int
5203 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5204 			   struct cq_entry *cqe)
5205 {
5206 	int result = 0;
5207 	int scsi_status;
5208 	enum utp_ocs ocs;
5209 	u8 upiu_flags;
5210 	u32 resid;
5211 
5212 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5213 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5214 	/*
5215 	 * Test !overflow instead of underflow to support UFS devices that do
5216 	 * not set either flag.
5217 	 */
5218 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5219 		scsi_set_resid(lrbp->cmd, resid);
5220 
5221 	/* overall command status of utrd */
5222 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5223 
5224 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5225 		if (lrbp->ucd_rsp_ptr->header.response ||
5226 		    lrbp->ucd_rsp_ptr->header.status)
5227 			ocs = OCS_SUCCESS;
5228 	}
5229 
5230 	switch (ocs) {
5231 	case OCS_SUCCESS:
5232 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5233 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5234 		case UPIU_TRANSACTION_RESPONSE:
5235 			/*
5236 			 * get the result based on SCSI status response
5237 			 * to notify the SCSI midlayer of the command status
5238 			 */
5239 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5240 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5241 
5242 			/*
5243 			 * Currently we are only supporting BKOPs exception
5244 			 * events hence we can ignore BKOPs exception event
5245 			 * during power management callbacks. BKOPs exception
5246 			 * event is not expected to be raised in runtime suspend
5247 			 * callback as it allows the urgent bkops.
5248 			 * During system suspend, we are anyway forcefully
5249 			 * disabling the bkops and if urgent bkops is needed
5250 			 * it will be enabled on system resume. Long term
5251 			 * solution could be to abort the system suspend if
5252 			 * UFS device needs urgent BKOPs.
5253 			 */
5254 			if (!hba->pm_op_in_progress &&
5255 			    !ufshcd_eh_in_progress(hba) &&
5256 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5257 				/* Flushed in suspend */
5258 				schedule_work(&hba->eeh_work);
5259 			break;
5260 		case UPIU_TRANSACTION_REJECT_UPIU:
5261 			/* TODO: handle Reject UPIU Response */
5262 			result = DID_ERROR << 16;
5263 			dev_err(hba->dev,
5264 				"Reject UPIU not fully implemented\n");
5265 			break;
5266 		default:
5267 			dev_err(hba->dev,
5268 				"Unexpected request response code = %x\n",
5269 				result);
5270 			result = DID_ERROR << 16;
5271 			break;
5272 		}
5273 		break;
5274 	case OCS_ABORTED:
5275 		result |= DID_ABORT << 16;
5276 		break;
5277 	case OCS_INVALID_COMMAND_STATUS:
5278 		result |= DID_REQUEUE << 16;
5279 		break;
5280 	case OCS_INVALID_CMD_TABLE_ATTR:
5281 	case OCS_INVALID_PRDT_ATTR:
5282 	case OCS_MISMATCH_DATA_BUF_SIZE:
5283 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5284 	case OCS_PEER_COMM_FAILURE:
5285 	case OCS_FATAL_ERROR:
5286 	case OCS_DEVICE_FATAL_ERROR:
5287 	case OCS_INVALID_CRYPTO_CONFIG:
5288 	case OCS_GENERAL_CRYPTO_ERROR:
5289 	default:
5290 		result |= DID_ERROR << 16;
5291 		dev_err(hba->dev,
5292 				"OCS error from controller = %x for tag %d\n",
5293 				ocs, lrbp->task_tag);
5294 		ufshcd_print_evt_hist(hba);
5295 		ufshcd_print_host_state(hba);
5296 		break;
5297 	} /* end of switch */
5298 
5299 	if ((host_byte(result) != DID_OK) &&
5300 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5301 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5302 	return result;
5303 }
5304 
5305 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5306 					 u32 intr_mask)
5307 {
5308 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5309 	    !ufshcd_is_auto_hibern8_enabled(hba))
5310 		return false;
5311 
5312 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5313 		return false;
5314 
5315 	if (hba->active_uic_cmd &&
5316 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5317 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5318 		return false;
5319 
5320 	return true;
5321 }
5322 
5323 /**
5324  * ufshcd_uic_cmd_compl - handle completion of uic command
5325  * @hba: per adapter instance
5326  * @intr_status: interrupt status generated by the controller
5327  *
5328  * Return:
5329  *  IRQ_HANDLED - If interrupt is valid
5330  *  IRQ_NONE    - If invalid interrupt
5331  */
5332 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5333 {
5334 	irqreturn_t retval = IRQ_NONE;
5335 
5336 	spin_lock(hba->host->host_lock);
5337 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5338 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5339 
5340 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5341 		hba->active_uic_cmd->argument2 |=
5342 			ufshcd_get_uic_cmd_result(hba);
5343 		hba->active_uic_cmd->argument3 =
5344 			ufshcd_get_dme_attr_val(hba);
5345 		if (!hba->uic_async_done)
5346 			hba->active_uic_cmd->cmd_active = 0;
5347 		complete(&hba->active_uic_cmd->done);
5348 		retval = IRQ_HANDLED;
5349 	}
5350 
5351 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5352 		hba->active_uic_cmd->cmd_active = 0;
5353 		complete(hba->uic_async_done);
5354 		retval = IRQ_HANDLED;
5355 	}
5356 
5357 	if (retval == IRQ_HANDLED)
5358 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5359 					     UFS_CMD_COMP);
5360 	spin_unlock(hba->host->host_lock);
5361 	return retval;
5362 }
5363 
5364 /* Release the resources allocated for processing a SCSI command. */
5365 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5366 			     struct ufshcd_lrb *lrbp)
5367 {
5368 	struct scsi_cmnd *cmd = lrbp->cmd;
5369 
5370 	scsi_dma_unmap(cmd);
5371 	ufshcd_release(hba);
5372 	ufshcd_clk_scaling_update_busy(hba);
5373 }
5374 
5375 /**
5376  * ufshcd_compl_one_cqe - handle a completion queue entry
5377  * @hba: per adapter instance
5378  * @task_tag: the task tag of the request to be completed
5379  * @cqe: pointer to the completion queue entry
5380  */
5381 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5382 			  struct cq_entry *cqe)
5383 {
5384 	struct ufshcd_lrb *lrbp;
5385 	struct scsi_cmnd *cmd;
5386 	enum utp_ocs ocs;
5387 
5388 	lrbp = &hba->lrb[task_tag];
5389 	lrbp->compl_time_stamp = ktime_get();
5390 	cmd = lrbp->cmd;
5391 	if (cmd) {
5392 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5393 			ufshcd_update_monitor(hba, lrbp);
5394 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5395 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5396 		ufshcd_release_scsi_cmd(hba, lrbp);
5397 		/* Do not touch lrbp after scsi done */
5398 		scsi_done(cmd);
5399 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5400 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5401 		if (hba->dev_cmd.complete) {
5402 			if (cqe) {
5403 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5404 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5405 			}
5406 			complete(hba->dev_cmd.complete);
5407 			ufshcd_clk_scaling_update_busy(hba);
5408 		}
5409 	}
5410 }
5411 
5412 /**
5413  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5414  * @hba: per adapter instance
5415  * @completed_reqs: bitmask that indicates which requests to complete
5416  */
5417 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5418 					unsigned long completed_reqs)
5419 {
5420 	int tag;
5421 
5422 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5423 		ufshcd_compl_one_cqe(hba, tag, NULL);
5424 }
5425 
5426 /* Any value that is not an existing queue number is fine for this constant. */
5427 enum {
5428 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5429 };
5430 
5431 static void ufshcd_clear_polled(struct ufs_hba *hba,
5432 				unsigned long *completed_reqs)
5433 {
5434 	int tag;
5435 
5436 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5437 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5438 
5439 		if (!cmd)
5440 			continue;
5441 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5442 			__clear_bit(tag, completed_reqs);
5443 	}
5444 }
5445 
5446 /*
5447  * Return: > 0 if one or more commands have been completed or 0 if no
5448  * requests have been completed.
5449  */
5450 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5451 {
5452 	struct ufs_hba *hba = shost_priv(shost);
5453 	unsigned long completed_reqs, flags;
5454 	u32 tr_doorbell;
5455 	struct ufs_hw_queue *hwq;
5456 
5457 	if (is_mcq_enabled(hba)) {
5458 		hwq = &hba->uhq[queue_num];
5459 
5460 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5461 	}
5462 
5463 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5464 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5465 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5466 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5467 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5468 		  hba->outstanding_reqs);
5469 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5470 		/* Do not complete polled requests from interrupt context. */
5471 		ufshcd_clear_polled(hba, &completed_reqs);
5472 	}
5473 	hba->outstanding_reqs &= ~completed_reqs;
5474 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5475 
5476 	if (completed_reqs)
5477 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5478 
5479 	return completed_reqs != 0;
5480 }
5481 
5482 /**
5483  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5484  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5485  * to complete the pending transfers and free the resources associated with
5486  * the scsi command.
5487  *
5488  * @hba: per adapter instance
5489  * @force_compl: This flag is set to true when invoked
5490  * from ufshcd_host_reset_and_restore() in which case it requires special
5491  * handling because the host controller has been reset by ufshcd_hba_stop().
5492  */
5493 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5494 					      bool force_compl)
5495 {
5496 	struct ufs_hw_queue *hwq;
5497 	struct ufshcd_lrb *lrbp;
5498 	struct scsi_cmnd *cmd;
5499 	unsigned long flags;
5500 	u32 hwq_num, utag;
5501 	int tag;
5502 
5503 	for (tag = 0; tag < hba->nutrs; tag++) {
5504 		lrbp = &hba->lrb[tag];
5505 		cmd = lrbp->cmd;
5506 		if (!ufshcd_cmd_inflight(cmd) ||
5507 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5508 			continue;
5509 
5510 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5511 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5512 		hwq = &hba->uhq[hwq_num];
5513 
5514 		if (force_compl) {
5515 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5516 			/*
5517 			 * For those cmds of which the cqes are not present
5518 			 * in the cq, complete them explicitly.
5519 			 */
5520 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5521 				spin_lock_irqsave(&hwq->cq_lock, flags);
5522 				set_host_byte(cmd, DID_REQUEUE);
5523 				ufshcd_release_scsi_cmd(hba, lrbp);
5524 				scsi_done(cmd);
5525 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5526 			}
5527 		} else {
5528 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5529 		}
5530 	}
5531 }
5532 
5533 /**
5534  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5535  * @hba: per adapter instance
5536  *
5537  * Return:
5538  *  IRQ_HANDLED - If interrupt is valid
5539  *  IRQ_NONE    - If invalid interrupt
5540  */
5541 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5542 {
5543 	/* Resetting interrupt aggregation counters first and reading the
5544 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5545 	 * In order to prevent other interrupts starvation the DB is read once
5546 	 * after reset. The down side of this solution is the possibility of
5547 	 * false interrupt if device completes another request after resetting
5548 	 * aggregation and before reading the DB.
5549 	 */
5550 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5551 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5552 		ufshcd_reset_intr_aggr(hba);
5553 
5554 	if (ufs_fail_completion())
5555 		return IRQ_HANDLED;
5556 
5557 	/*
5558 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5559 	 * do not want polling to trigger spurious interrupt complaints.
5560 	 */
5561 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5562 
5563 	return IRQ_HANDLED;
5564 }
5565 
5566 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5567 {
5568 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5569 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5570 				       &ee_ctrl_mask);
5571 }
5572 
5573 int ufshcd_write_ee_control(struct ufs_hba *hba)
5574 {
5575 	int err;
5576 
5577 	mutex_lock(&hba->ee_ctrl_mutex);
5578 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5579 	mutex_unlock(&hba->ee_ctrl_mutex);
5580 	if (err)
5581 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5582 			__func__, err);
5583 	return err;
5584 }
5585 
5586 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5587 			     const u16 *other_mask, u16 set, u16 clr)
5588 {
5589 	u16 new_mask, ee_ctrl_mask;
5590 	int err = 0;
5591 
5592 	mutex_lock(&hba->ee_ctrl_mutex);
5593 	new_mask = (*mask & ~clr) | set;
5594 	ee_ctrl_mask = new_mask | *other_mask;
5595 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5596 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5597 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5598 	if (!err) {
5599 		hba->ee_ctrl_mask = ee_ctrl_mask;
5600 		*mask = new_mask;
5601 	}
5602 	mutex_unlock(&hba->ee_ctrl_mutex);
5603 	return err;
5604 }
5605 
5606 /**
5607  * ufshcd_disable_ee - disable exception event
5608  * @hba: per-adapter instance
5609  * @mask: exception event to disable
5610  *
5611  * Disables exception event in the device so that the EVENT_ALERT
5612  * bit is not set.
5613  *
5614  * Return: zero on success, non-zero error value on failure.
5615  */
5616 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5617 {
5618 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5619 }
5620 
5621 /**
5622  * ufshcd_enable_ee - enable exception event
5623  * @hba: per-adapter instance
5624  * @mask: exception event to enable
5625  *
5626  * Enable corresponding exception event in the device to allow
5627  * device to alert host in critical scenarios.
5628  *
5629  * Return: zero on success, non-zero error value on failure.
5630  */
5631 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5632 {
5633 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5634 }
5635 
5636 /**
5637  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5638  * @hba: per-adapter instance
5639  *
5640  * Allow device to manage background operations on its own. Enabling
5641  * this might lead to inconsistent latencies during normal data transfers
5642  * as the device is allowed to manage its own way of handling background
5643  * operations.
5644  *
5645  * Return: zero on success, non-zero on failure.
5646  */
5647 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5648 {
5649 	int err = 0;
5650 
5651 	if (hba->auto_bkops_enabled)
5652 		goto out;
5653 
5654 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5655 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5656 	if (err) {
5657 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5658 				__func__, err);
5659 		goto out;
5660 	}
5661 
5662 	hba->auto_bkops_enabled = true;
5663 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5664 
5665 	/* No need of URGENT_BKOPS exception from the device */
5666 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5667 	if (err)
5668 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5669 				__func__, err);
5670 out:
5671 	return err;
5672 }
5673 
5674 /**
5675  * ufshcd_disable_auto_bkops - block device in doing background operations
5676  * @hba: per-adapter instance
5677  *
5678  * Disabling background operations improves command response latency but
5679  * has drawback of device moving into critical state where the device is
5680  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5681  * host is idle so that BKOPS are managed effectively without any negative
5682  * impacts.
5683  *
5684  * Return: zero on success, non-zero on failure.
5685  */
5686 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5687 {
5688 	int err = 0;
5689 
5690 	if (!hba->auto_bkops_enabled)
5691 		goto out;
5692 
5693 	/*
5694 	 * If host assisted BKOPs is to be enabled, make sure
5695 	 * urgent bkops exception is allowed.
5696 	 */
5697 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5698 	if (err) {
5699 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5700 				__func__, err);
5701 		goto out;
5702 	}
5703 
5704 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5705 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5706 	if (err) {
5707 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5708 				__func__, err);
5709 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5710 		goto out;
5711 	}
5712 
5713 	hba->auto_bkops_enabled = false;
5714 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5715 	hba->is_urgent_bkops_lvl_checked = false;
5716 out:
5717 	return err;
5718 }
5719 
5720 /**
5721  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5722  * @hba: per adapter instance
5723  *
5724  * After a device reset the device may toggle the BKOPS_EN flag
5725  * to default value. The s/w tracking variables should be updated
5726  * as well. This function would change the auto-bkops state based on
5727  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5728  */
5729 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5730 {
5731 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5732 		hba->auto_bkops_enabled = false;
5733 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5734 		ufshcd_enable_auto_bkops(hba);
5735 	} else {
5736 		hba->auto_bkops_enabled = true;
5737 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5738 		ufshcd_disable_auto_bkops(hba);
5739 	}
5740 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5741 	hba->is_urgent_bkops_lvl_checked = false;
5742 }
5743 
5744 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5745 {
5746 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5747 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5748 }
5749 
5750 /**
5751  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5752  * @hba: per-adapter instance
5753  * @status: bkops_status value
5754  *
5755  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5756  * flag in the device to permit background operations if the device
5757  * bkops_status is greater than or equal to "status" argument passed to
5758  * this function, disable otherwise.
5759  *
5760  * Return: 0 for success, non-zero in case of failure.
5761  *
5762  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5763  * to know whether auto bkops is enabled or disabled after this function
5764  * returns control to it.
5765  */
5766 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5767 			     enum bkops_status status)
5768 {
5769 	int err;
5770 	u32 curr_status = 0;
5771 
5772 	err = ufshcd_get_bkops_status(hba, &curr_status);
5773 	if (err) {
5774 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5775 				__func__, err);
5776 		goto out;
5777 	} else if (curr_status > BKOPS_STATUS_MAX) {
5778 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5779 				__func__, curr_status);
5780 		err = -EINVAL;
5781 		goto out;
5782 	}
5783 
5784 	if (curr_status >= status)
5785 		err = ufshcd_enable_auto_bkops(hba);
5786 	else
5787 		err = ufshcd_disable_auto_bkops(hba);
5788 out:
5789 	return err;
5790 }
5791 
5792 /**
5793  * ufshcd_urgent_bkops - handle urgent bkops exception event
5794  * @hba: per-adapter instance
5795  *
5796  * Enable fBackgroundOpsEn flag in the device to permit background
5797  * operations.
5798  *
5799  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5800  * and negative error value for any other failure.
5801  *
5802  * Return: 0 upon success; < 0 upon failure.
5803  */
5804 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5805 {
5806 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5807 }
5808 
5809 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5810 {
5811 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5812 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5813 }
5814 
5815 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5816 {
5817 	int err;
5818 	u32 curr_status = 0;
5819 
5820 	if (hba->is_urgent_bkops_lvl_checked)
5821 		goto enable_auto_bkops;
5822 
5823 	err = ufshcd_get_bkops_status(hba, &curr_status);
5824 	if (err) {
5825 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5826 				__func__, err);
5827 		goto out;
5828 	}
5829 
5830 	/*
5831 	 * We are seeing that some devices are raising the urgent bkops
5832 	 * exception events even when BKOPS status doesn't indicate performace
5833 	 * impacted or critical. Handle these device by determining their urgent
5834 	 * bkops status at runtime.
5835 	 */
5836 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5837 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5838 				__func__, curr_status);
5839 		/* update the current status as the urgent bkops level */
5840 		hba->urgent_bkops_lvl = curr_status;
5841 		hba->is_urgent_bkops_lvl_checked = true;
5842 	}
5843 
5844 enable_auto_bkops:
5845 	err = ufshcd_enable_auto_bkops(hba);
5846 out:
5847 	if (err < 0)
5848 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5849 				__func__, err);
5850 }
5851 
5852 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5853 {
5854 	u32 value;
5855 
5856 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5857 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5858 		return;
5859 
5860 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5861 
5862 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5863 
5864 	/*
5865 	 * A placeholder for the platform vendors to add whatever additional
5866 	 * steps required
5867 	 */
5868 }
5869 
5870 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5871 {
5872 	u8 index;
5873 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5874 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5875 
5876 	index = ufshcd_wb_get_query_index(hba);
5877 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5878 }
5879 
5880 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5881 {
5882 	int ret;
5883 
5884 	if (!ufshcd_is_wb_allowed(hba) ||
5885 	    hba->dev_info.wb_enabled == enable)
5886 		return 0;
5887 
5888 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5889 	if (ret) {
5890 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5891 			__func__, enable ? "enabling" : "disabling", ret);
5892 		return ret;
5893 	}
5894 
5895 	hba->dev_info.wb_enabled = enable;
5896 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5897 			__func__, enable ? "enabled" : "disabled");
5898 
5899 	return ret;
5900 }
5901 
5902 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5903 						 bool enable)
5904 {
5905 	int ret;
5906 
5907 	ret = __ufshcd_wb_toggle(hba, enable,
5908 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5909 	if (ret) {
5910 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5911 			__func__, enable ? "enabling" : "disabling", ret);
5912 		return;
5913 	}
5914 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5915 			__func__, enable ? "enabled" : "disabled");
5916 }
5917 
5918 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5919 {
5920 	int ret;
5921 
5922 	if (!ufshcd_is_wb_allowed(hba) ||
5923 	    hba->dev_info.wb_buf_flush_enabled == enable)
5924 		return 0;
5925 
5926 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5927 	if (ret) {
5928 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5929 			__func__, enable ? "enabling" : "disabling", ret);
5930 		return ret;
5931 	}
5932 
5933 	hba->dev_info.wb_buf_flush_enabled = enable;
5934 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5935 			__func__, enable ? "enabled" : "disabled");
5936 
5937 	return ret;
5938 }
5939 
5940 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5941 						u32 avail_buf)
5942 {
5943 	u32 cur_buf;
5944 	int ret;
5945 	u8 index;
5946 
5947 	index = ufshcd_wb_get_query_index(hba);
5948 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5949 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5950 					      index, 0, &cur_buf);
5951 	if (ret) {
5952 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5953 			__func__, ret);
5954 		return false;
5955 	}
5956 
5957 	if (!cur_buf) {
5958 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5959 			 cur_buf);
5960 		return false;
5961 	}
5962 	/* Let it continue to flush when available buffer exceeds threshold */
5963 	return avail_buf < hba->vps->wb_flush_threshold;
5964 }
5965 
5966 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5967 {
5968 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5969 		ufshcd_wb_toggle_buf_flush(hba, false);
5970 
5971 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5972 	ufshcd_wb_toggle(hba, false);
5973 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5974 
5975 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5976 }
5977 
5978 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5979 {
5980 	u32 lifetime;
5981 	int ret;
5982 	u8 index;
5983 
5984 	index = ufshcd_wb_get_query_index(hba);
5985 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5986 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5987 				      index, 0, &lifetime);
5988 	if (ret) {
5989 		dev_err(hba->dev,
5990 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5991 			__func__, ret);
5992 		return false;
5993 	}
5994 
5995 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5996 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5997 			__func__, lifetime);
5998 		return false;
5999 	}
6000 
6001 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6002 		__func__, lifetime);
6003 
6004 	return true;
6005 }
6006 
6007 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6008 {
6009 	int ret;
6010 	u32 avail_buf;
6011 	u8 index;
6012 
6013 	if (!ufshcd_is_wb_allowed(hba))
6014 		return false;
6015 
6016 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6017 		ufshcd_wb_force_disable(hba);
6018 		return false;
6019 	}
6020 
6021 	/*
6022 	 * The ufs device needs the vcc to be ON to flush.
6023 	 * With user-space reduction enabled, it's enough to enable flush
6024 	 * by checking only the available buffer. The threshold
6025 	 * defined here is > 90% full.
6026 	 * With user-space preserved enabled, the current-buffer
6027 	 * should be checked too because the wb buffer size can reduce
6028 	 * when disk tends to be full. This info is provided by current
6029 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6030 	 * keeping vcc on when current buffer is empty.
6031 	 */
6032 	index = ufshcd_wb_get_query_index(hba);
6033 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6034 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6035 				      index, 0, &avail_buf);
6036 	if (ret) {
6037 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6038 			 __func__, ret);
6039 		return false;
6040 	}
6041 
6042 	if (!hba->dev_info.b_presrv_uspc_en)
6043 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6044 
6045 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6046 }
6047 
6048 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6049 {
6050 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6051 					   struct ufs_hba,
6052 					   rpm_dev_flush_recheck_work);
6053 	/*
6054 	 * To prevent unnecessary VCC power drain after device finishes
6055 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6056 	 * after a certain delay to recheck the threshold by next runtime
6057 	 * suspend.
6058 	 */
6059 	ufshcd_rpm_get_sync(hba);
6060 	ufshcd_rpm_put_sync(hba);
6061 }
6062 
6063 /**
6064  * ufshcd_exception_event_handler - handle exceptions raised by device
6065  * @work: pointer to work data
6066  *
6067  * Read bExceptionEventStatus attribute from the device and handle the
6068  * exception event accordingly.
6069  */
6070 static void ufshcd_exception_event_handler(struct work_struct *work)
6071 {
6072 	struct ufs_hba *hba;
6073 	int err;
6074 	u32 status = 0;
6075 	hba = container_of(work, struct ufs_hba, eeh_work);
6076 
6077 	ufshcd_scsi_block_requests(hba);
6078 	err = ufshcd_get_ee_status(hba, &status);
6079 	if (err) {
6080 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6081 				__func__, err);
6082 		goto out;
6083 	}
6084 
6085 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6086 
6087 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6088 		ufshcd_bkops_exception_event_handler(hba);
6089 
6090 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6091 		ufshcd_temp_exception_event_handler(hba, status);
6092 
6093 	ufs_debugfs_exception_event(hba, status);
6094 out:
6095 	ufshcd_scsi_unblock_requests(hba);
6096 }
6097 
6098 /* Complete requests that have door-bell cleared */
6099 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6100 {
6101 	if (is_mcq_enabled(hba))
6102 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6103 	else
6104 		ufshcd_transfer_req_compl(hba);
6105 
6106 	ufshcd_tmc_handler(hba);
6107 }
6108 
6109 /**
6110  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6111  *				to recover from the DL NAC errors or not.
6112  * @hba: per-adapter instance
6113  *
6114  * Return: true if error handling is required, false otherwise.
6115  */
6116 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6117 {
6118 	unsigned long flags;
6119 	bool err_handling = true;
6120 
6121 	spin_lock_irqsave(hba->host->host_lock, flags);
6122 	/*
6123 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6124 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6125 	 */
6126 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6127 		goto out;
6128 
6129 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6130 	    ((hba->saved_err & UIC_ERROR) &&
6131 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6132 		goto out;
6133 
6134 	if ((hba->saved_err & UIC_ERROR) &&
6135 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6136 		int err;
6137 		/*
6138 		 * wait for 50ms to see if we can get any other errors or not.
6139 		 */
6140 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6141 		msleep(50);
6142 		spin_lock_irqsave(hba->host->host_lock, flags);
6143 
6144 		/*
6145 		 * now check if we have got any other severe errors other than
6146 		 * DL NAC error?
6147 		 */
6148 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6149 		    ((hba->saved_err & UIC_ERROR) &&
6150 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6151 			goto out;
6152 
6153 		/*
6154 		 * As DL NAC is the only error received so far, send out NOP
6155 		 * command to confirm if link is still active or not.
6156 		 *   - If we don't get any response then do error recovery.
6157 		 *   - If we get response then clear the DL NAC error bit.
6158 		 */
6159 
6160 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6161 		err = ufshcd_verify_dev_init(hba);
6162 		spin_lock_irqsave(hba->host->host_lock, flags);
6163 
6164 		if (err)
6165 			goto out;
6166 
6167 		/* Link seems to be alive hence ignore the DL NAC errors */
6168 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6169 			hba->saved_err &= ~UIC_ERROR;
6170 		/* clear NAC error */
6171 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6172 		if (!hba->saved_uic_err)
6173 			err_handling = false;
6174 	}
6175 out:
6176 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6177 	return err_handling;
6178 }
6179 
6180 /* host lock must be held before calling this func */
6181 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6182 {
6183 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6184 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6185 }
6186 
6187 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6188 {
6189 	lockdep_assert_held(hba->host->host_lock);
6190 
6191 	/* handle fatal errors only when link is not in error state */
6192 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6193 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6194 		    ufshcd_is_saved_err_fatal(hba))
6195 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6196 		else
6197 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6198 		queue_work(hba->eh_wq, &hba->eh_work);
6199 	}
6200 }
6201 
6202 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6203 {
6204 	spin_lock_irq(hba->host->host_lock);
6205 	hba->force_reset = true;
6206 	ufshcd_schedule_eh_work(hba);
6207 	spin_unlock_irq(hba->host->host_lock);
6208 }
6209 
6210 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6211 {
6212 	mutex_lock(&hba->wb_mutex);
6213 	down_write(&hba->clk_scaling_lock);
6214 	hba->clk_scaling.is_allowed = allow;
6215 	up_write(&hba->clk_scaling_lock);
6216 	mutex_unlock(&hba->wb_mutex);
6217 }
6218 
6219 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6220 {
6221 	if (suspend) {
6222 		if (hba->clk_scaling.is_enabled)
6223 			ufshcd_suspend_clkscaling(hba);
6224 		ufshcd_clk_scaling_allow(hba, false);
6225 	} else {
6226 		ufshcd_clk_scaling_allow(hba, true);
6227 		if (hba->clk_scaling.is_enabled)
6228 			ufshcd_resume_clkscaling(hba);
6229 	}
6230 }
6231 
6232 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6233 {
6234 	ufshcd_rpm_get_sync(hba);
6235 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6236 	    hba->is_sys_suspended) {
6237 		enum ufs_pm_op pm_op;
6238 
6239 		/*
6240 		 * Don't assume anything of resume, if
6241 		 * resume fails, irq and clocks can be OFF, and powers
6242 		 * can be OFF or in LPM.
6243 		 */
6244 		ufshcd_setup_hba_vreg(hba, true);
6245 		ufshcd_enable_irq(hba);
6246 		ufshcd_setup_vreg(hba, true);
6247 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6248 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6249 		ufshcd_hold(hba);
6250 		if (!ufshcd_is_clkgating_allowed(hba))
6251 			ufshcd_setup_clocks(hba, true);
6252 		ufshcd_release(hba);
6253 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6254 		ufshcd_vops_resume(hba, pm_op);
6255 	} else {
6256 		ufshcd_hold(hba);
6257 		if (ufshcd_is_clkscaling_supported(hba) &&
6258 		    hba->clk_scaling.is_enabled)
6259 			ufshcd_suspend_clkscaling(hba);
6260 		ufshcd_clk_scaling_allow(hba, false);
6261 	}
6262 	ufshcd_scsi_block_requests(hba);
6263 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6264 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6265 	cancel_work_sync(&hba->eeh_work);
6266 }
6267 
6268 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6269 {
6270 	ufshcd_scsi_unblock_requests(hba);
6271 	ufshcd_release(hba);
6272 	if (ufshcd_is_clkscaling_supported(hba))
6273 		ufshcd_clk_scaling_suspend(hba, false);
6274 	ufshcd_rpm_put(hba);
6275 }
6276 
6277 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6278 {
6279 	return (!hba->is_powered || hba->shutting_down ||
6280 		!hba->ufs_device_wlun ||
6281 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6282 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6283 		   ufshcd_is_link_broken(hba))));
6284 }
6285 
6286 #ifdef CONFIG_PM
6287 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6288 {
6289 	struct Scsi_Host *shost = hba->host;
6290 	struct scsi_device *sdev;
6291 	struct request_queue *q;
6292 	int ret;
6293 
6294 	hba->is_sys_suspended = false;
6295 	/*
6296 	 * Set RPM status of wlun device to RPM_ACTIVE,
6297 	 * this also clears its runtime error.
6298 	 */
6299 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6300 
6301 	/* hba device might have a runtime error otherwise */
6302 	if (ret)
6303 		ret = pm_runtime_set_active(hba->dev);
6304 	/*
6305 	 * If wlun device had runtime error, we also need to resume those
6306 	 * consumer scsi devices in case any of them has failed to be
6307 	 * resumed due to supplier runtime resume failure. This is to unblock
6308 	 * blk_queue_enter in case there are bios waiting inside it.
6309 	 */
6310 	if (!ret) {
6311 		shost_for_each_device(sdev, shost) {
6312 			q = sdev->request_queue;
6313 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6314 				       q->rpm_status == RPM_SUSPENDING))
6315 				pm_request_resume(q->dev);
6316 		}
6317 	}
6318 }
6319 #else
6320 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6321 {
6322 }
6323 #endif
6324 
6325 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6326 {
6327 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6328 	u32 mode;
6329 
6330 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6331 
6332 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6333 		return true;
6334 
6335 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6336 		return true;
6337 
6338 	return false;
6339 }
6340 
6341 static bool ufshcd_abort_one(struct request *rq, void *priv)
6342 {
6343 	int *ret = priv;
6344 	u32 tag = rq->tag;
6345 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6346 	struct scsi_device *sdev = cmd->device;
6347 	struct Scsi_Host *shost = sdev->host;
6348 	struct ufs_hba *hba = shost_priv(shost);
6349 
6350 	*ret = ufshcd_try_to_abort_task(hba, tag);
6351 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6352 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6353 		*ret ? "failed" : "succeeded");
6354 	return *ret == 0;
6355 }
6356 
6357 /**
6358  * ufshcd_abort_all - Abort all pending commands.
6359  * @hba: Host bus adapter pointer.
6360  *
6361  * Return: true if and only if the host controller needs to be reset.
6362  */
6363 static bool ufshcd_abort_all(struct ufs_hba *hba)
6364 {
6365 	int tag, ret = 0;
6366 
6367 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6368 	if (ret)
6369 		goto out;
6370 
6371 	/* Clear pending task management requests */
6372 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6373 		ret = ufshcd_clear_tm_cmd(hba, tag);
6374 		if (ret)
6375 			goto out;
6376 	}
6377 
6378 out:
6379 	/* Complete the requests that are cleared by s/w */
6380 	ufshcd_complete_requests(hba, false);
6381 
6382 	return ret != 0;
6383 }
6384 
6385 /**
6386  * ufshcd_err_handler - handle UFS errors that require s/w attention
6387  * @work: pointer to work structure
6388  */
6389 static void ufshcd_err_handler(struct work_struct *work)
6390 {
6391 	int retries = MAX_ERR_HANDLER_RETRIES;
6392 	struct ufs_hba *hba;
6393 	unsigned long flags;
6394 	bool needs_restore;
6395 	bool needs_reset;
6396 	int pmc_err;
6397 
6398 	hba = container_of(work, struct ufs_hba, eh_work);
6399 
6400 	dev_info(hba->dev,
6401 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6402 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6403 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6404 		 hba->saved_uic_err, hba->force_reset,
6405 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6406 
6407 	down(&hba->host_sem);
6408 	spin_lock_irqsave(hba->host->host_lock, flags);
6409 	if (ufshcd_err_handling_should_stop(hba)) {
6410 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6411 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6412 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6413 		up(&hba->host_sem);
6414 		return;
6415 	}
6416 	ufshcd_set_eh_in_progress(hba);
6417 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6418 	ufshcd_err_handling_prepare(hba);
6419 	/* Complete requests that have door-bell cleared by h/w */
6420 	ufshcd_complete_requests(hba, false);
6421 	spin_lock_irqsave(hba->host->host_lock, flags);
6422 again:
6423 	needs_restore = false;
6424 	needs_reset = false;
6425 
6426 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6427 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6428 	/*
6429 	 * A full reset and restore might have happened after preparation
6430 	 * is finished, double check whether we should stop.
6431 	 */
6432 	if (ufshcd_err_handling_should_stop(hba))
6433 		goto skip_err_handling;
6434 
6435 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6436 		bool ret;
6437 
6438 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6439 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6440 		ret = ufshcd_quirk_dl_nac_errors(hba);
6441 		spin_lock_irqsave(hba->host->host_lock, flags);
6442 		if (!ret && ufshcd_err_handling_should_stop(hba))
6443 			goto skip_err_handling;
6444 	}
6445 
6446 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6447 	    (hba->saved_uic_err &&
6448 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6449 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6450 
6451 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6452 		ufshcd_print_host_state(hba);
6453 		ufshcd_print_pwr_info(hba);
6454 		ufshcd_print_evt_hist(hba);
6455 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6456 		ufshcd_print_trs_all(hba, pr_prdt);
6457 		spin_lock_irqsave(hba->host->host_lock, flags);
6458 	}
6459 
6460 	/*
6461 	 * if host reset is required then skip clearing the pending
6462 	 * transfers forcefully because they will get cleared during
6463 	 * host reset and restore
6464 	 */
6465 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6466 	    ufshcd_is_saved_err_fatal(hba) ||
6467 	    ((hba->saved_err & UIC_ERROR) &&
6468 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6469 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6470 		needs_reset = true;
6471 		goto do_reset;
6472 	}
6473 
6474 	/*
6475 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6476 	 * check if power mode restore is needed.
6477 	 */
6478 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6479 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6480 		if (!hba->saved_uic_err)
6481 			hba->saved_err &= ~UIC_ERROR;
6482 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6483 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6484 			needs_restore = true;
6485 		spin_lock_irqsave(hba->host->host_lock, flags);
6486 		if (!hba->saved_err && !needs_restore)
6487 			goto skip_err_handling;
6488 	}
6489 
6490 	hba->silence_err_logs = true;
6491 	/* release lock as clear command might sleep */
6492 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6493 
6494 	needs_reset = ufshcd_abort_all(hba);
6495 
6496 	spin_lock_irqsave(hba->host->host_lock, flags);
6497 	hba->silence_err_logs = false;
6498 	if (needs_reset)
6499 		goto do_reset;
6500 
6501 	/*
6502 	 * After all reqs and tasks are cleared from doorbell,
6503 	 * now it is safe to retore power mode.
6504 	 */
6505 	if (needs_restore) {
6506 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6507 		/*
6508 		 * Hold the scaling lock just in case dev cmds
6509 		 * are sent via bsg and/or sysfs.
6510 		 */
6511 		down_write(&hba->clk_scaling_lock);
6512 		hba->force_pmc = true;
6513 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6514 		if (pmc_err) {
6515 			needs_reset = true;
6516 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6517 					__func__, pmc_err);
6518 		}
6519 		hba->force_pmc = false;
6520 		ufshcd_print_pwr_info(hba);
6521 		up_write(&hba->clk_scaling_lock);
6522 		spin_lock_irqsave(hba->host->host_lock, flags);
6523 	}
6524 
6525 do_reset:
6526 	/* Fatal errors need reset */
6527 	if (needs_reset) {
6528 		int err;
6529 
6530 		hba->force_reset = false;
6531 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6532 		err = ufshcd_reset_and_restore(hba);
6533 		if (err)
6534 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6535 					__func__, err);
6536 		else
6537 			ufshcd_recover_pm_error(hba);
6538 		spin_lock_irqsave(hba->host->host_lock, flags);
6539 	}
6540 
6541 skip_err_handling:
6542 	if (!needs_reset) {
6543 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6544 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6545 		if (hba->saved_err || hba->saved_uic_err)
6546 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6547 			    __func__, hba->saved_err, hba->saved_uic_err);
6548 	}
6549 	/* Exit in an operational state or dead */
6550 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6551 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6552 		if (--retries)
6553 			goto again;
6554 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6555 	}
6556 	ufshcd_clear_eh_in_progress(hba);
6557 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6558 	ufshcd_err_handling_unprepare(hba);
6559 	up(&hba->host_sem);
6560 
6561 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6562 		 ufshcd_state_name[hba->ufshcd_state]);
6563 }
6564 
6565 /**
6566  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6567  * @hba: per-adapter instance
6568  *
6569  * Return:
6570  *  IRQ_HANDLED - If interrupt is valid
6571  *  IRQ_NONE    - If invalid interrupt
6572  */
6573 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6574 {
6575 	u32 reg;
6576 	irqreturn_t retval = IRQ_NONE;
6577 
6578 	/* PHY layer error */
6579 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6580 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6581 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6582 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6583 		/*
6584 		 * To know whether this error is fatal or not, DB timeout
6585 		 * must be checked but this error is handled separately.
6586 		 */
6587 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6588 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6589 					__func__);
6590 
6591 		/* Got a LINERESET indication. */
6592 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6593 			struct uic_command *cmd = NULL;
6594 
6595 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6596 			if (hba->uic_async_done && hba->active_uic_cmd)
6597 				cmd = hba->active_uic_cmd;
6598 			/*
6599 			 * Ignore the LINERESET during power mode change
6600 			 * operation via DME_SET command.
6601 			 */
6602 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6603 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6604 		}
6605 		retval |= IRQ_HANDLED;
6606 	}
6607 
6608 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6609 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6610 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6611 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6612 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6613 
6614 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6615 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6616 		else if (hba->dev_quirks &
6617 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6618 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6619 				hba->uic_error |=
6620 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6621 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6622 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6623 		}
6624 		retval |= IRQ_HANDLED;
6625 	}
6626 
6627 	/* UIC NL/TL/DME errors needs software retry */
6628 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6629 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6630 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6631 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6632 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6633 		retval |= IRQ_HANDLED;
6634 	}
6635 
6636 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6637 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6638 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6639 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6640 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6641 		retval |= IRQ_HANDLED;
6642 	}
6643 
6644 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6645 	if ((reg & UIC_DME_ERROR) &&
6646 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6647 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6648 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6649 		retval |= IRQ_HANDLED;
6650 	}
6651 
6652 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6653 			__func__, hba->uic_error);
6654 	return retval;
6655 }
6656 
6657 /**
6658  * ufshcd_check_errors - Check for errors that need s/w attention
6659  * @hba: per-adapter instance
6660  * @intr_status: interrupt status generated by the controller
6661  *
6662  * Return:
6663  *  IRQ_HANDLED - If interrupt is valid
6664  *  IRQ_NONE    - If invalid interrupt
6665  */
6666 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6667 {
6668 	bool queue_eh_work = false;
6669 	irqreturn_t retval = IRQ_NONE;
6670 
6671 	spin_lock(hba->host->host_lock);
6672 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6673 
6674 	if (hba->errors & INT_FATAL_ERRORS) {
6675 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6676 				       hba->errors);
6677 		queue_eh_work = true;
6678 	}
6679 
6680 	if (hba->errors & UIC_ERROR) {
6681 		hba->uic_error = 0;
6682 		retval = ufshcd_update_uic_error(hba);
6683 		if (hba->uic_error)
6684 			queue_eh_work = true;
6685 	}
6686 
6687 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6688 		dev_err(hba->dev,
6689 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6690 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6691 			"Enter" : "Exit",
6692 			hba->errors, ufshcd_get_upmcrs(hba));
6693 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6694 				       hba->errors);
6695 		ufshcd_set_link_broken(hba);
6696 		queue_eh_work = true;
6697 	}
6698 
6699 	if (queue_eh_work) {
6700 		/*
6701 		 * update the transfer error masks to sticky bits, let's do this
6702 		 * irrespective of current ufshcd_state.
6703 		 */
6704 		hba->saved_err |= hba->errors;
6705 		hba->saved_uic_err |= hba->uic_error;
6706 
6707 		/* dump controller state before resetting */
6708 		if ((hba->saved_err &
6709 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6710 		    (hba->saved_uic_err &&
6711 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6712 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6713 					__func__, hba->saved_err,
6714 					hba->saved_uic_err);
6715 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6716 					 "host_regs: ");
6717 			ufshcd_print_pwr_info(hba);
6718 		}
6719 		ufshcd_schedule_eh_work(hba);
6720 		retval |= IRQ_HANDLED;
6721 	}
6722 	/*
6723 	 * if (!queue_eh_work) -
6724 	 * Other errors are either non-fatal where host recovers
6725 	 * itself without s/w intervention or errors that will be
6726 	 * handled by the SCSI core layer.
6727 	 */
6728 	hba->errors = 0;
6729 	hba->uic_error = 0;
6730 	spin_unlock(hba->host->host_lock);
6731 	return retval;
6732 }
6733 
6734 /**
6735  * ufshcd_tmc_handler - handle task management function completion
6736  * @hba: per adapter instance
6737  *
6738  * Return:
6739  *  IRQ_HANDLED - If interrupt is valid
6740  *  IRQ_NONE    - If invalid interrupt
6741  */
6742 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6743 {
6744 	unsigned long flags, pending, issued;
6745 	irqreturn_t ret = IRQ_NONE;
6746 	int tag;
6747 
6748 	spin_lock_irqsave(hba->host->host_lock, flags);
6749 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6750 	issued = hba->outstanding_tasks & ~pending;
6751 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6752 		struct request *req = hba->tmf_rqs[tag];
6753 		struct completion *c = req->end_io_data;
6754 
6755 		complete(c);
6756 		ret = IRQ_HANDLED;
6757 	}
6758 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6759 
6760 	return ret;
6761 }
6762 
6763 /**
6764  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6765  * @hba: per adapter instance
6766  *
6767  * Return: IRQ_HANDLED if interrupt is handled.
6768  */
6769 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6770 {
6771 	struct ufs_hw_queue *hwq;
6772 	unsigned long outstanding_cqs;
6773 	unsigned int nr_queues;
6774 	int i, ret;
6775 	u32 events;
6776 
6777 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6778 	if (ret)
6779 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6780 
6781 	/* Exclude the poll queues */
6782 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6783 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6784 		hwq = &hba->uhq[i];
6785 
6786 		events = ufshcd_mcq_read_cqis(hba, i);
6787 		if (events)
6788 			ufshcd_mcq_write_cqis(hba, events, i);
6789 
6790 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6791 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6792 	}
6793 
6794 	return IRQ_HANDLED;
6795 }
6796 
6797 /**
6798  * ufshcd_sl_intr - Interrupt service routine
6799  * @hba: per adapter instance
6800  * @intr_status: contains interrupts generated by the controller
6801  *
6802  * Return:
6803  *  IRQ_HANDLED - If interrupt is valid
6804  *  IRQ_NONE    - If invalid interrupt
6805  */
6806 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6807 {
6808 	irqreturn_t retval = IRQ_NONE;
6809 
6810 	if (intr_status & UFSHCD_UIC_MASK)
6811 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6812 
6813 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6814 		retval |= ufshcd_check_errors(hba, intr_status);
6815 
6816 	if (intr_status & UTP_TASK_REQ_COMPL)
6817 		retval |= ufshcd_tmc_handler(hba);
6818 
6819 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6820 		retval |= ufshcd_transfer_req_compl(hba);
6821 
6822 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6823 		retval |= ufshcd_handle_mcq_cq_events(hba);
6824 
6825 	return retval;
6826 }
6827 
6828 /**
6829  * ufshcd_intr - Main interrupt service routine
6830  * @irq: irq number
6831  * @__hba: pointer to adapter instance
6832  *
6833  * Return:
6834  *  IRQ_HANDLED - If interrupt is valid
6835  *  IRQ_NONE    - If invalid interrupt
6836  */
6837 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6838 {
6839 	u32 intr_status, enabled_intr_status = 0;
6840 	irqreturn_t retval = IRQ_NONE;
6841 	struct ufs_hba *hba = __hba;
6842 	int retries = hba->nutrs;
6843 
6844 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6845 	hba->ufs_stats.last_intr_status = intr_status;
6846 	hba->ufs_stats.last_intr_ts = local_clock();
6847 
6848 	/*
6849 	 * There could be max of hba->nutrs reqs in flight and in worst case
6850 	 * if the reqs get finished 1 by 1 after the interrupt status is
6851 	 * read, make sure we handle them by checking the interrupt status
6852 	 * again in a loop until we process all of the reqs before returning.
6853 	 */
6854 	while (intr_status && retries--) {
6855 		enabled_intr_status =
6856 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6857 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6858 		if (enabled_intr_status)
6859 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6860 
6861 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6862 	}
6863 
6864 	if (enabled_intr_status && retval == IRQ_NONE &&
6865 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6866 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6867 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6868 					__func__,
6869 					intr_status,
6870 					hba->ufs_stats.last_intr_status,
6871 					enabled_intr_status);
6872 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6873 	}
6874 
6875 	return retval;
6876 }
6877 
6878 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6879 {
6880 	int err = 0;
6881 	u32 mask = 1 << tag;
6882 	unsigned long flags;
6883 
6884 	if (!test_bit(tag, &hba->outstanding_tasks))
6885 		goto out;
6886 
6887 	spin_lock_irqsave(hba->host->host_lock, flags);
6888 	ufshcd_utmrl_clear(hba, tag);
6889 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6890 
6891 	/* poll for max. 1 sec to clear door bell register by h/w */
6892 	err = ufshcd_wait_for_register(hba,
6893 			REG_UTP_TASK_REQ_DOOR_BELL,
6894 			mask, 0, 1000, 1000);
6895 
6896 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6897 		tag, err ? "succeeded" : "failed");
6898 
6899 out:
6900 	return err;
6901 }
6902 
6903 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6904 		struct utp_task_req_desc *treq, u8 tm_function)
6905 {
6906 	struct request_queue *q = hba->tmf_queue;
6907 	struct Scsi_Host *host = hba->host;
6908 	DECLARE_COMPLETION_ONSTACK(wait);
6909 	struct request *req;
6910 	unsigned long flags;
6911 	int task_tag, err;
6912 
6913 	/*
6914 	 * blk_mq_alloc_request() is used here only to get a free tag.
6915 	 */
6916 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6917 	if (IS_ERR(req))
6918 		return PTR_ERR(req);
6919 
6920 	req->end_io_data = &wait;
6921 	ufshcd_hold(hba);
6922 
6923 	spin_lock_irqsave(host->host_lock, flags);
6924 
6925 	task_tag = req->tag;
6926 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6927 		  task_tag);
6928 	hba->tmf_rqs[req->tag] = req;
6929 	treq->upiu_req.req_header.task_tag = task_tag;
6930 
6931 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6932 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6933 
6934 	/* send command to the controller */
6935 	__set_bit(task_tag, &hba->outstanding_tasks);
6936 
6937 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6938 	/* Make sure that doorbell is committed immediately */
6939 	wmb();
6940 
6941 	spin_unlock_irqrestore(host->host_lock, flags);
6942 
6943 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6944 
6945 	/* wait until the task management command is completed */
6946 	err = wait_for_completion_io_timeout(&wait,
6947 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6948 	if (!err) {
6949 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6950 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6951 				__func__, tm_function);
6952 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6953 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6954 					__func__, task_tag);
6955 		err = -ETIMEDOUT;
6956 	} else {
6957 		err = 0;
6958 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6959 
6960 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6961 	}
6962 
6963 	spin_lock_irqsave(hba->host->host_lock, flags);
6964 	hba->tmf_rqs[req->tag] = NULL;
6965 	__clear_bit(task_tag, &hba->outstanding_tasks);
6966 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6967 
6968 	ufshcd_release(hba);
6969 	blk_mq_free_request(req);
6970 
6971 	return err;
6972 }
6973 
6974 /**
6975  * ufshcd_issue_tm_cmd - issues task management commands to controller
6976  * @hba: per adapter instance
6977  * @lun_id: LUN ID to which TM command is sent
6978  * @task_id: task ID to which the TM command is applicable
6979  * @tm_function: task management function opcode
6980  * @tm_response: task management service response return value
6981  *
6982  * Return: non-zero value on error, zero on success.
6983  */
6984 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6985 		u8 tm_function, u8 *tm_response)
6986 {
6987 	struct utp_task_req_desc treq = { };
6988 	enum utp_ocs ocs_value;
6989 	int err;
6990 
6991 	/* Configure task request descriptor */
6992 	treq.header.interrupt = 1;
6993 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
6994 
6995 	/* Configure task request UPIU */
6996 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
6997 	treq.upiu_req.req_header.lun = lun_id;
6998 	treq.upiu_req.req_header.tm_function = tm_function;
6999 
7000 	/*
7001 	 * The host shall provide the same value for LUN field in the basic
7002 	 * header and for Input Parameter.
7003 	 */
7004 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7005 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7006 
7007 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7008 	if (err == -ETIMEDOUT)
7009 		return err;
7010 
7011 	ocs_value = treq.header.ocs & MASK_OCS;
7012 	if (ocs_value != OCS_SUCCESS)
7013 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7014 				__func__, ocs_value);
7015 	else if (tm_response)
7016 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7017 				MASK_TM_SERVICE_RESP;
7018 	return err;
7019 }
7020 
7021 /**
7022  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7023  * @hba:	per-adapter instance
7024  * @req_upiu:	upiu request
7025  * @rsp_upiu:	upiu reply
7026  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7027  * @buff_len:	descriptor size, 0 if NA
7028  * @cmd_type:	specifies the type (NOP, Query...)
7029  * @desc_op:	descriptor operation
7030  *
7031  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7032  * Therefore, it "rides" the device management infrastructure: uses its tag and
7033  * tasks work queues.
7034  *
7035  * Since there is only one available tag for device management commands,
7036  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7037  *
7038  * Return: 0 upon success; < 0 upon failure.
7039  */
7040 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7041 					struct utp_upiu_req *req_upiu,
7042 					struct utp_upiu_req *rsp_upiu,
7043 					u8 *desc_buff, int *buff_len,
7044 					enum dev_cmd_type cmd_type,
7045 					enum query_opcode desc_op)
7046 {
7047 	DECLARE_COMPLETION_ONSTACK(wait);
7048 	const u32 tag = hba->reserved_slot;
7049 	struct ufshcd_lrb *lrbp;
7050 	int err = 0;
7051 	u8 upiu_flags;
7052 
7053 	/* Protects use of hba->reserved_slot. */
7054 	lockdep_assert_held(&hba->dev_cmd.lock);
7055 
7056 	down_read(&hba->clk_scaling_lock);
7057 
7058 	lrbp = &hba->lrb[tag];
7059 	lrbp->cmd = NULL;
7060 	lrbp->task_tag = tag;
7061 	lrbp->lun = 0;
7062 	lrbp->intr_cmd = true;
7063 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7064 	hba->dev_cmd.type = cmd_type;
7065 
7066 	if (hba->ufs_version <= ufshci_version(1, 1))
7067 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7068 	else
7069 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7070 
7071 	/* update the task tag in the request upiu */
7072 	req_upiu->header.task_tag = tag;
7073 
7074 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7075 
7076 	/* just copy the upiu request as it is */
7077 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7078 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7079 		/* The Data Segment Area is optional depending upon the query
7080 		 * function value. for WRITE DESCRIPTOR, the data segment
7081 		 * follows right after the tsf.
7082 		 */
7083 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7084 		*buff_len = 0;
7085 	}
7086 
7087 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7088 
7089 	hba->dev_cmd.complete = &wait;
7090 
7091 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7092 
7093 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7094 	/*
7095 	 * ignore the returning value here - ufshcd_check_query_response is
7096 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7097 	 * read the response directly ignoring all errors.
7098 	 */
7099 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7100 
7101 	/* just copy the upiu response as it is */
7102 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7103 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7104 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7105 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7106 					   .data_segment_length);
7107 
7108 		if (*buff_len >= resp_len) {
7109 			memcpy(desc_buff, descp, resp_len);
7110 			*buff_len = resp_len;
7111 		} else {
7112 			dev_warn(hba->dev,
7113 				 "%s: rsp size %d is bigger than buffer size %d",
7114 				 __func__, resp_len, *buff_len);
7115 			*buff_len = 0;
7116 			err = -EINVAL;
7117 		}
7118 	}
7119 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7120 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7121 
7122 	up_read(&hba->clk_scaling_lock);
7123 	return err;
7124 }
7125 
7126 /**
7127  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7128  * @hba:	per-adapter instance
7129  * @req_upiu:	upiu request
7130  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7131  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7132  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7133  * @buff_len:	descriptor size, 0 if NA
7134  * @desc_op:	descriptor operation
7135  *
7136  * Supports UTP Transfer requests (nop and query), and UTP Task
7137  * Management requests.
7138  * It is up to the caller to fill the upiu conent properly, as it will
7139  * be copied without any further input validations.
7140  *
7141  * Return: 0 upon success; < 0 upon failure.
7142  */
7143 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7144 			     struct utp_upiu_req *req_upiu,
7145 			     struct utp_upiu_req *rsp_upiu,
7146 			     enum upiu_request_transaction msgcode,
7147 			     u8 *desc_buff, int *buff_len,
7148 			     enum query_opcode desc_op)
7149 {
7150 	int err;
7151 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7152 	struct utp_task_req_desc treq = { };
7153 	enum utp_ocs ocs_value;
7154 	u8 tm_f = req_upiu->header.tm_function;
7155 
7156 	switch (msgcode) {
7157 	case UPIU_TRANSACTION_NOP_OUT:
7158 		cmd_type = DEV_CMD_TYPE_NOP;
7159 		fallthrough;
7160 	case UPIU_TRANSACTION_QUERY_REQ:
7161 		ufshcd_hold(hba);
7162 		mutex_lock(&hba->dev_cmd.lock);
7163 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7164 						   desc_buff, buff_len,
7165 						   cmd_type, desc_op);
7166 		mutex_unlock(&hba->dev_cmd.lock);
7167 		ufshcd_release(hba);
7168 
7169 		break;
7170 	case UPIU_TRANSACTION_TASK_REQ:
7171 		treq.header.interrupt = 1;
7172 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7173 
7174 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7175 
7176 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7177 		if (err == -ETIMEDOUT)
7178 			break;
7179 
7180 		ocs_value = treq.header.ocs & MASK_OCS;
7181 		if (ocs_value != OCS_SUCCESS) {
7182 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7183 				ocs_value);
7184 			break;
7185 		}
7186 
7187 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7188 
7189 		break;
7190 	default:
7191 		err = -EINVAL;
7192 
7193 		break;
7194 	}
7195 
7196 	return err;
7197 }
7198 
7199 /**
7200  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7201  * @hba:	per adapter instance
7202  * @req_upiu:	upiu request
7203  * @rsp_upiu:	upiu reply
7204  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7205  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7206  * @sg_cnt:	The number of sg lists actually used
7207  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7208  * @dir:	DMA direction
7209  *
7210  * Return: zero on success, non-zero on failure.
7211  */
7212 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7213 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7214 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7215 			 enum dma_data_direction dir)
7216 {
7217 	DECLARE_COMPLETION_ONSTACK(wait);
7218 	const u32 tag = hba->reserved_slot;
7219 	struct ufshcd_lrb *lrbp;
7220 	int err = 0;
7221 	int result;
7222 	u8 upiu_flags;
7223 	u8 *ehs_data;
7224 	u16 ehs_len;
7225 
7226 	/* Protects use of hba->reserved_slot. */
7227 	ufshcd_hold(hba);
7228 	mutex_lock(&hba->dev_cmd.lock);
7229 	down_read(&hba->clk_scaling_lock);
7230 
7231 	lrbp = &hba->lrb[tag];
7232 	lrbp->cmd = NULL;
7233 	lrbp->task_tag = tag;
7234 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7235 
7236 	lrbp->intr_cmd = true;
7237 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7238 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7239 
7240 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7241 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7242 
7243 	/*
7244 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7245 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7246 	 * HW controller takes EHS length from UTRD.
7247 	 */
7248 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7249 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7250 	else
7251 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7252 
7253 	/* update the task tag */
7254 	req_upiu->header.task_tag = tag;
7255 
7256 	/* copy the UPIU(contains CDB) request as it is */
7257 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7258 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7259 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7260 
7261 	if (dir != DMA_NONE && sg_list)
7262 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7263 
7264 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7265 
7266 	hba->dev_cmd.complete = &wait;
7267 
7268 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7269 
7270 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7271 
7272 	if (!err) {
7273 		/* Just copy the upiu response as it is */
7274 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7275 		/* Get the response UPIU result */
7276 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7277 			lrbp->ucd_rsp_ptr->header.status;
7278 
7279 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7280 		/*
7281 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7282 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7283 		 * Message is 02h
7284 		 */
7285 		if (ehs_len == 2 && rsp_ehs) {
7286 			/*
7287 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7288 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7289 			 */
7290 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7291 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7292 		}
7293 	}
7294 
7295 	up_read(&hba->clk_scaling_lock);
7296 	mutex_unlock(&hba->dev_cmd.lock);
7297 	ufshcd_release(hba);
7298 	return err ? : result;
7299 }
7300 
7301 /**
7302  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7303  * @cmd: SCSI command pointer
7304  *
7305  * Return: SUCCESS or FAILED.
7306  */
7307 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7308 {
7309 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7310 	struct Scsi_Host *host;
7311 	struct ufs_hba *hba;
7312 	struct ufs_hw_queue *hwq;
7313 	struct ufshcd_lrb *lrbp;
7314 	u32 pos, not_cleared_mask = 0;
7315 	int err;
7316 	u8 resp = 0xF, lun;
7317 
7318 	host = cmd->device->host;
7319 	hba = shost_priv(host);
7320 
7321 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7322 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7323 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7324 		if (!err)
7325 			err = resp;
7326 		goto out;
7327 	}
7328 
7329 	if (is_mcq_enabled(hba)) {
7330 		for (pos = 0; pos < hba->nutrs; pos++) {
7331 			lrbp = &hba->lrb[pos];
7332 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7333 			    lrbp->lun == lun) {
7334 				ufshcd_clear_cmd(hba, pos);
7335 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7336 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7337 			}
7338 		}
7339 		err = 0;
7340 		goto out;
7341 	}
7342 
7343 	/* clear the commands that were pending for corresponding LUN */
7344 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7345 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7346 		if (hba->lrb[pos].lun == lun)
7347 			__set_bit(pos, &pending_reqs);
7348 	hba->outstanding_reqs &= ~pending_reqs;
7349 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7350 
7351 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7352 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7353 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7354 			not_cleared = 1U << pos &
7355 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7356 			hba->outstanding_reqs |= not_cleared;
7357 			not_cleared_mask |= not_cleared;
7358 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7359 
7360 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7361 				__func__, pos);
7362 		}
7363 	}
7364 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7365 
7366 out:
7367 	hba->req_abort_count = 0;
7368 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7369 	if (!err) {
7370 		err = SUCCESS;
7371 	} else {
7372 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7373 		err = FAILED;
7374 	}
7375 	return err;
7376 }
7377 
7378 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7379 {
7380 	struct ufshcd_lrb *lrbp;
7381 	int tag;
7382 
7383 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7384 		lrbp = &hba->lrb[tag];
7385 		lrbp->req_abort_skip = true;
7386 	}
7387 }
7388 
7389 /**
7390  * ufshcd_try_to_abort_task - abort a specific task
7391  * @hba: Pointer to adapter instance
7392  * @tag: Task tag/index to be aborted
7393  *
7394  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7395  * command, and in host controller by clearing the door-bell register. There can
7396  * be race between controller sending the command to the device while abort is
7397  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7398  * really issued and then try to abort it.
7399  *
7400  * Return: zero on success, non-zero on failure.
7401  */
7402 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7403 {
7404 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7405 	int err = 0;
7406 	int poll_cnt;
7407 	u8 resp = 0xF;
7408 	u32 reg;
7409 
7410 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7411 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7412 				UFS_QUERY_TASK, &resp);
7413 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7414 			/* cmd pending in the device */
7415 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7416 				__func__, tag);
7417 			break;
7418 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7419 			/*
7420 			 * cmd not pending in the device, check if it is
7421 			 * in transition.
7422 			 */
7423 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7424 				__func__, tag);
7425 			if (is_mcq_enabled(hba)) {
7426 				/* MCQ mode */
7427 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7428 					/* sleep for max. 200us same delay as in SDB mode */
7429 					usleep_range(100, 200);
7430 					continue;
7431 				}
7432 				/* command completed already */
7433 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7434 					__func__, tag);
7435 				goto out;
7436 			}
7437 
7438 			/* Single Doorbell Mode */
7439 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7440 			if (reg & (1 << tag)) {
7441 				/* sleep for max. 200us to stabilize */
7442 				usleep_range(100, 200);
7443 				continue;
7444 			}
7445 			/* command completed already */
7446 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7447 				__func__, tag);
7448 			goto out;
7449 		} else {
7450 			dev_err(hba->dev,
7451 				"%s: no response from device. tag = %d, err %d\n",
7452 				__func__, tag, err);
7453 			if (!err)
7454 				err = resp; /* service response error */
7455 			goto out;
7456 		}
7457 	}
7458 
7459 	if (!poll_cnt) {
7460 		err = -EBUSY;
7461 		goto out;
7462 	}
7463 
7464 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7465 			UFS_ABORT_TASK, &resp);
7466 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7467 		if (!err) {
7468 			err = resp; /* service response error */
7469 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7470 				__func__, tag, err);
7471 		}
7472 		goto out;
7473 	}
7474 
7475 	err = ufshcd_clear_cmd(hba, tag);
7476 	if (err)
7477 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7478 			__func__, tag, err);
7479 
7480 out:
7481 	return err;
7482 }
7483 
7484 /**
7485  * ufshcd_abort - scsi host template eh_abort_handler callback
7486  * @cmd: SCSI command pointer
7487  *
7488  * Return: SUCCESS or FAILED.
7489  */
7490 static int ufshcd_abort(struct scsi_cmnd *cmd)
7491 {
7492 	struct Scsi_Host *host = cmd->device->host;
7493 	struct ufs_hba *hba = shost_priv(host);
7494 	int tag = scsi_cmd_to_rq(cmd)->tag;
7495 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7496 	unsigned long flags;
7497 	int err = FAILED;
7498 	bool outstanding;
7499 	u32 reg;
7500 
7501 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7502 
7503 	ufshcd_hold(hba);
7504 
7505 	if (!is_mcq_enabled(hba)) {
7506 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7507 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7508 			/* If command is already aborted/completed, return FAILED. */
7509 			dev_err(hba->dev,
7510 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7511 				__func__, tag, hba->outstanding_reqs, reg);
7512 			goto release;
7513 		}
7514 	}
7515 
7516 	/* Print Transfer Request of aborted task */
7517 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7518 
7519 	/*
7520 	 * Print detailed info about aborted request.
7521 	 * As more than one request might get aborted at the same time,
7522 	 * print full information only for the first aborted request in order
7523 	 * to reduce repeated printouts. For other aborted requests only print
7524 	 * basic details.
7525 	 */
7526 	scsi_print_command(cmd);
7527 	if (!hba->req_abort_count) {
7528 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7529 		ufshcd_print_evt_hist(hba);
7530 		ufshcd_print_host_state(hba);
7531 		ufshcd_print_pwr_info(hba);
7532 		ufshcd_print_tr(hba, tag, true);
7533 	} else {
7534 		ufshcd_print_tr(hba, tag, false);
7535 	}
7536 	hba->req_abort_count++;
7537 
7538 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7539 		/* only execute this code in single doorbell mode */
7540 		dev_err(hba->dev,
7541 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7542 		__func__, tag);
7543 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7544 		goto release;
7545 	}
7546 
7547 	/*
7548 	 * Task abort to the device W-LUN is illegal. When this command
7549 	 * will fail, due to spec violation, scsi err handling next step
7550 	 * will be to send LU reset which, again, is a spec violation.
7551 	 * To avoid these unnecessary/illegal steps, first we clean up
7552 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7553 	 * then queue the eh_work and bail.
7554 	 */
7555 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7556 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7557 
7558 		spin_lock_irqsave(host->host_lock, flags);
7559 		hba->force_reset = true;
7560 		ufshcd_schedule_eh_work(hba);
7561 		spin_unlock_irqrestore(host->host_lock, flags);
7562 		goto release;
7563 	}
7564 
7565 	if (is_mcq_enabled(hba)) {
7566 		/* MCQ mode. Branch off to handle abort for mcq mode */
7567 		err = ufshcd_mcq_abort(cmd);
7568 		goto release;
7569 	}
7570 
7571 	/* Skip task abort in case previous aborts failed and report failure */
7572 	if (lrbp->req_abort_skip) {
7573 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7574 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7575 		goto release;
7576 	}
7577 
7578 	err = ufshcd_try_to_abort_task(hba, tag);
7579 	if (err) {
7580 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7581 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7582 		err = FAILED;
7583 		goto release;
7584 	}
7585 
7586 	/*
7587 	 * Clear the corresponding bit from outstanding_reqs since the command
7588 	 * has been aborted successfully.
7589 	 */
7590 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7591 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7592 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7593 
7594 	if (outstanding)
7595 		ufshcd_release_scsi_cmd(hba, lrbp);
7596 
7597 	err = SUCCESS;
7598 
7599 release:
7600 	/* Matches the ufshcd_hold() call at the start of this function. */
7601 	ufshcd_release(hba);
7602 	return err;
7603 }
7604 
7605 /**
7606  * ufshcd_host_reset_and_restore - reset and restore host controller
7607  * @hba: per-adapter instance
7608  *
7609  * Note that host controller reset may issue DME_RESET to
7610  * local and remote (device) Uni-Pro stack and the attributes
7611  * are reset to default state.
7612  *
7613  * Return: zero on success, non-zero on failure.
7614  */
7615 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7616 {
7617 	int err;
7618 
7619 	/*
7620 	 * Stop the host controller and complete the requests
7621 	 * cleared by h/w
7622 	 */
7623 	ufshcd_hba_stop(hba);
7624 	hba->silence_err_logs = true;
7625 	ufshcd_complete_requests(hba, true);
7626 	hba->silence_err_logs = false;
7627 
7628 	/* scale up clocks to max frequency before full reinitialization */
7629 	ufshcd_scale_clks(hba, true);
7630 
7631 	err = ufshcd_hba_enable(hba);
7632 
7633 	/* Establish the link again and restore the device */
7634 	if (!err)
7635 		err = ufshcd_probe_hba(hba, false);
7636 
7637 	if (err)
7638 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7639 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7640 	return err;
7641 }
7642 
7643 /**
7644  * ufshcd_reset_and_restore - reset and re-initialize host/device
7645  * @hba: per-adapter instance
7646  *
7647  * Reset and recover device, host and re-establish link. This
7648  * is helpful to recover the communication in fatal error conditions.
7649  *
7650  * Return: zero on success, non-zero on failure.
7651  */
7652 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7653 {
7654 	u32 saved_err = 0;
7655 	u32 saved_uic_err = 0;
7656 	int err = 0;
7657 	unsigned long flags;
7658 	int retries = MAX_HOST_RESET_RETRIES;
7659 
7660 	spin_lock_irqsave(hba->host->host_lock, flags);
7661 	do {
7662 		/*
7663 		 * This is a fresh start, cache and clear saved error first,
7664 		 * in case new error generated during reset and restore.
7665 		 */
7666 		saved_err |= hba->saved_err;
7667 		saved_uic_err |= hba->saved_uic_err;
7668 		hba->saved_err = 0;
7669 		hba->saved_uic_err = 0;
7670 		hba->force_reset = false;
7671 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7672 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7673 
7674 		/* Reset the attached device */
7675 		ufshcd_device_reset(hba);
7676 
7677 		err = ufshcd_host_reset_and_restore(hba);
7678 
7679 		spin_lock_irqsave(hba->host->host_lock, flags);
7680 		if (err)
7681 			continue;
7682 		/* Do not exit unless operational or dead */
7683 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7684 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7685 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7686 			err = -EAGAIN;
7687 	} while (err && --retries);
7688 
7689 	/*
7690 	 * Inform scsi mid-layer that we did reset and allow to handle
7691 	 * Unit Attention properly.
7692 	 */
7693 	scsi_report_bus_reset(hba->host, 0);
7694 	if (err) {
7695 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7696 		hba->saved_err |= saved_err;
7697 		hba->saved_uic_err |= saved_uic_err;
7698 	}
7699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7700 
7701 	return err;
7702 }
7703 
7704 /**
7705  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7706  * @cmd: SCSI command pointer
7707  *
7708  * Return: SUCCESS or FAILED.
7709  */
7710 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7711 {
7712 	int err = SUCCESS;
7713 	unsigned long flags;
7714 	struct ufs_hba *hba;
7715 
7716 	hba = shost_priv(cmd->device->host);
7717 
7718 	spin_lock_irqsave(hba->host->host_lock, flags);
7719 	hba->force_reset = true;
7720 	ufshcd_schedule_eh_work(hba);
7721 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7722 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7723 
7724 	flush_work(&hba->eh_work);
7725 
7726 	spin_lock_irqsave(hba->host->host_lock, flags);
7727 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7728 		err = FAILED;
7729 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7730 
7731 	return err;
7732 }
7733 
7734 /**
7735  * ufshcd_get_max_icc_level - calculate the ICC level
7736  * @sup_curr_uA: max. current supported by the regulator
7737  * @start_scan: row at the desc table to start scan from
7738  * @buff: power descriptor buffer
7739  *
7740  * Return: calculated max ICC level for specific regulator.
7741  */
7742 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7743 				    const char *buff)
7744 {
7745 	int i;
7746 	int curr_uA;
7747 	u16 data;
7748 	u16 unit;
7749 
7750 	for (i = start_scan; i >= 0; i--) {
7751 		data = get_unaligned_be16(&buff[2 * i]);
7752 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7753 						ATTR_ICC_LVL_UNIT_OFFSET;
7754 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7755 		switch (unit) {
7756 		case UFSHCD_NANO_AMP:
7757 			curr_uA = curr_uA / 1000;
7758 			break;
7759 		case UFSHCD_MILI_AMP:
7760 			curr_uA = curr_uA * 1000;
7761 			break;
7762 		case UFSHCD_AMP:
7763 			curr_uA = curr_uA * 1000 * 1000;
7764 			break;
7765 		case UFSHCD_MICRO_AMP:
7766 		default:
7767 			break;
7768 		}
7769 		if (sup_curr_uA >= curr_uA)
7770 			break;
7771 	}
7772 	if (i < 0) {
7773 		i = 0;
7774 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7775 	}
7776 
7777 	return (u32)i;
7778 }
7779 
7780 /**
7781  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7782  * In case regulators are not initialized we'll return 0
7783  * @hba: per-adapter instance
7784  * @desc_buf: power descriptor buffer to extract ICC levels from.
7785  *
7786  * Return: calculated ICC level.
7787  */
7788 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7789 						const u8 *desc_buf)
7790 {
7791 	u32 icc_level = 0;
7792 
7793 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7794 						!hba->vreg_info.vccq2) {
7795 		/*
7796 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7797 		 * never-ending cycles of messages written back to storage by
7798 		 * user space causing runtime resume, causing more messages and
7799 		 * so on.
7800 		 */
7801 		dev_dbg(hba->dev,
7802 			"%s: Regulator capability was not set, actvIccLevel=%d",
7803 							__func__, icc_level);
7804 		goto out;
7805 	}
7806 
7807 	if (hba->vreg_info.vcc->max_uA)
7808 		icc_level = ufshcd_get_max_icc_level(
7809 				hba->vreg_info.vcc->max_uA,
7810 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7811 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7812 
7813 	if (hba->vreg_info.vccq->max_uA)
7814 		icc_level = ufshcd_get_max_icc_level(
7815 				hba->vreg_info.vccq->max_uA,
7816 				icc_level,
7817 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7818 
7819 	if (hba->vreg_info.vccq2->max_uA)
7820 		icc_level = ufshcd_get_max_icc_level(
7821 				hba->vreg_info.vccq2->max_uA,
7822 				icc_level,
7823 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7824 out:
7825 	return icc_level;
7826 }
7827 
7828 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7829 {
7830 	int ret;
7831 	u8 *desc_buf;
7832 	u32 icc_level;
7833 
7834 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7835 	if (!desc_buf)
7836 		return;
7837 
7838 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7839 				     desc_buf, QUERY_DESC_MAX_SIZE);
7840 	if (ret) {
7841 		dev_err(hba->dev,
7842 			"%s: Failed reading power descriptor ret = %d",
7843 			__func__, ret);
7844 		goto out;
7845 	}
7846 
7847 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7848 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7849 
7850 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7851 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7852 
7853 	if (ret)
7854 		dev_err(hba->dev,
7855 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7856 			__func__, icc_level, ret);
7857 
7858 out:
7859 	kfree(desc_buf);
7860 }
7861 
7862 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7863 {
7864 	scsi_autopm_get_device(sdev);
7865 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7866 	if (sdev->rpm_autosuspend)
7867 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7868 						 RPM_AUTOSUSPEND_DELAY_MS);
7869 	scsi_autopm_put_device(sdev);
7870 }
7871 
7872 /**
7873  * ufshcd_scsi_add_wlus - Adds required W-LUs
7874  * @hba: per-adapter instance
7875  *
7876  * UFS device specification requires the UFS devices to support 4 well known
7877  * logical units:
7878  *	"REPORT_LUNS" (address: 01h)
7879  *	"UFS Device" (address: 50h)
7880  *	"RPMB" (address: 44h)
7881  *	"BOOT" (address: 30h)
7882  * UFS device's power management needs to be controlled by "POWER CONDITION"
7883  * field of SSU (START STOP UNIT) command. But this "power condition" field
7884  * will take effect only when its sent to "UFS device" well known logical unit
7885  * hence we require the scsi_device instance to represent this logical unit in
7886  * order for the UFS host driver to send the SSU command for power management.
7887  *
7888  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7889  * Block) LU so user space process can control this LU. User space may also
7890  * want to have access to BOOT LU.
7891  *
7892  * This function adds scsi device instances for each of all well known LUs
7893  * (except "REPORT LUNS" LU).
7894  *
7895  * Return: zero on success (all required W-LUs are added successfully),
7896  * non-zero error value on failure (if failed to add any of the required W-LU).
7897  */
7898 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7899 {
7900 	int ret = 0;
7901 	struct scsi_device *sdev_boot, *sdev_rpmb;
7902 
7903 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7904 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7905 	if (IS_ERR(hba->ufs_device_wlun)) {
7906 		ret = PTR_ERR(hba->ufs_device_wlun);
7907 		hba->ufs_device_wlun = NULL;
7908 		goto out;
7909 	}
7910 	scsi_device_put(hba->ufs_device_wlun);
7911 
7912 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7913 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7914 	if (IS_ERR(sdev_rpmb)) {
7915 		ret = PTR_ERR(sdev_rpmb);
7916 		goto remove_ufs_device_wlun;
7917 	}
7918 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7919 	scsi_device_put(sdev_rpmb);
7920 
7921 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7922 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7923 	if (IS_ERR(sdev_boot)) {
7924 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7925 	} else {
7926 		ufshcd_blk_pm_runtime_init(sdev_boot);
7927 		scsi_device_put(sdev_boot);
7928 	}
7929 	goto out;
7930 
7931 remove_ufs_device_wlun:
7932 	scsi_remove_device(hba->ufs_device_wlun);
7933 out:
7934 	return ret;
7935 }
7936 
7937 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7938 {
7939 	struct ufs_dev_info *dev_info = &hba->dev_info;
7940 	u8 lun;
7941 	u32 d_lu_wb_buf_alloc;
7942 	u32 ext_ufs_feature;
7943 
7944 	if (!ufshcd_is_wb_allowed(hba))
7945 		return;
7946 
7947 	/*
7948 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7949 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7950 	 * enabled
7951 	 */
7952 	if (!(dev_info->wspecversion >= 0x310 ||
7953 	      dev_info->wspecversion == 0x220 ||
7954 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7955 		goto wb_disabled;
7956 
7957 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7958 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7959 
7960 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7961 		goto wb_disabled;
7962 
7963 	/*
7964 	 * WB may be supported but not configured while provisioning. The spec
7965 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7966 	 * buffer configured.
7967 	 */
7968 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7969 
7970 	dev_info->b_presrv_uspc_en =
7971 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7972 
7973 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7974 		if (!get_unaligned_be32(desc_buf +
7975 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7976 			goto wb_disabled;
7977 	} else {
7978 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7979 			d_lu_wb_buf_alloc = 0;
7980 			ufshcd_read_unit_desc_param(hba,
7981 					lun,
7982 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7983 					(u8 *)&d_lu_wb_buf_alloc,
7984 					sizeof(d_lu_wb_buf_alloc));
7985 			if (d_lu_wb_buf_alloc) {
7986 				dev_info->wb_dedicated_lu = lun;
7987 				break;
7988 			}
7989 		}
7990 
7991 		if (!d_lu_wb_buf_alloc)
7992 			goto wb_disabled;
7993 	}
7994 
7995 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7996 		goto wb_disabled;
7997 
7998 	return;
7999 
8000 wb_disabled:
8001 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8002 }
8003 
8004 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8005 {
8006 	struct ufs_dev_info *dev_info = &hba->dev_info;
8007 	u32 ext_ufs_feature;
8008 	u8 mask = 0;
8009 
8010 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8011 		return;
8012 
8013 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8014 
8015 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8016 		mask |= MASK_EE_TOO_LOW_TEMP;
8017 
8018 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8019 		mask |= MASK_EE_TOO_HIGH_TEMP;
8020 
8021 	if (mask) {
8022 		ufshcd_enable_ee(hba, mask);
8023 		ufs_hwmon_probe(hba, mask);
8024 	}
8025 }
8026 
8027 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8028 {
8029 	struct ufs_dev_info *dev_info = &hba->dev_info;
8030 	u32 ext_ufs_feature;
8031 	u32 ext_iid_en = 0;
8032 	int err;
8033 
8034 	/* Only UFS-4.0 and above may support EXT_IID */
8035 	if (dev_info->wspecversion < 0x400)
8036 		goto out;
8037 
8038 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8039 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8040 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8041 		goto out;
8042 
8043 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8044 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8045 	if (err)
8046 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8047 
8048 out:
8049 	dev_info->b_ext_iid_en = ext_iid_en;
8050 }
8051 
8052 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8053 			     const struct ufs_dev_quirk *fixups)
8054 {
8055 	const struct ufs_dev_quirk *f;
8056 	struct ufs_dev_info *dev_info = &hba->dev_info;
8057 
8058 	if (!fixups)
8059 		return;
8060 
8061 	for (f = fixups; f->quirk; f++) {
8062 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8063 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8064 		     ((dev_info->model &&
8065 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8066 		      !strcmp(f->model, UFS_ANY_MODEL)))
8067 			hba->dev_quirks |= f->quirk;
8068 	}
8069 }
8070 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8071 
8072 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8073 {
8074 	/* fix by general quirk table */
8075 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8076 
8077 	/* allow vendors to fix quirks */
8078 	ufshcd_vops_fixup_dev_quirks(hba);
8079 }
8080 
8081 static int ufs_get_device_desc(struct ufs_hba *hba)
8082 {
8083 	int err;
8084 	u8 model_index;
8085 	u8 *desc_buf;
8086 	struct ufs_dev_info *dev_info = &hba->dev_info;
8087 
8088 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8089 	if (!desc_buf) {
8090 		err = -ENOMEM;
8091 		goto out;
8092 	}
8093 
8094 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8095 				     QUERY_DESC_MAX_SIZE);
8096 	if (err) {
8097 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8098 			__func__, err);
8099 		goto out;
8100 	}
8101 
8102 	/*
8103 	 * getting vendor (manufacturerID) and Bank Index in big endian
8104 	 * format
8105 	 */
8106 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8107 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8108 
8109 	/* getting Specification Version in big endian format */
8110 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8111 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8112 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8113 
8114 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8115 
8116 	err = ufshcd_read_string_desc(hba, model_index,
8117 				      &dev_info->model, SD_ASCII_STD);
8118 	if (err < 0) {
8119 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8120 			__func__, err);
8121 		goto out;
8122 	}
8123 
8124 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8125 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8126 
8127 	ufs_fixup_device_setup(hba);
8128 
8129 	ufshcd_wb_probe(hba, desc_buf);
8130 
8131 	ufshcd_temp_notif_probe(hba, desc_buf);
8132 
8133 	if (hba->ext_iid_sup)
8134 		ufshcd_ext_iid_probe(hba, desc_buf);
8135 
8136 	/*
8137 	 * ufshcd_read_string_desc returns size of the string
8138 	 * reset the error value
8139 	 */
8140 	err = 0;
8141 
8142 out:
8143 	kfree(desc_buf);
8144 	return err;
8145 }
8146 
8147 static void ufs_put_device_desc(struct ufs_hba *hba)
8148 {
8149 	struct ufs_dev_info *dev_info = &hba->dev_info;
8150 
8151 	kfree(dev_info->model);
8152 	dev_info->model = NULL;
8153 }
8154 
8155 /**
8156  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8157  * @hba: per-adapter instance
8158  *
8159  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8160  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8161  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8162  * the hibern8 exit latency.
8163  *
8164  * Return: zero on success, non-zero error value on failure.
8165  */
8166 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8167 {
8168 	int ret = 0;
8169 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8170 
8171 	ret = ufshcd_dme_peer_get(hba,
8172 				  UIC_ARG_MIB_SEL(
8173 					RX_MIN_ACTIVATETIME_CAPABILITY,
8174 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8175 				  &peer_rx_min_activatetime);
8176 	if (ret)
8177 		goto out;
8178 
8179 	/* make sure proper unit conversion is applied */
8180 	tuned_pa_tactivate =
8181 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8182 		 / PA_TACTIVATE_TIME_UNIT_US);
8183 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8184 			     tuned_pa_tactivate);
8185 
8186 out:
8187 	return ret;
8188 }
8189 
8190 /**
8191  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8192  * @hba: per-adapter instance
8193  *
8194  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8195  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8196  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8197  * This optimal value can help reduce the hibern8 exit latency.
8198  *
8199  * Return: zero on success, non-zero error value on failure.
8200  */
8201 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8202 {
8203 	int ret = 0;
8204 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8205 	u32 max_hibern8_time, tuned_pa_hibern8time;
8206 
8207 	ret = ufshcd_dme_get(hba,
8208 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8209 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8210 				  &local_tx_hibern8_time_cap);
8211 	if (ret)
8212 		goto out;
8213 
8214 	ret = ufshcd_dme_peer_get(hba,
8215 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8216 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8217 				  &peer_rx_hibern8_time_cap);
8218 	if (ret)
8219 		goto out;
8220 
8221 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8222 			       peer_rx_hibern8_time_cap);
8223 	/* make sure proper unit conversion is applied */
8224 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8225 				/ PA_HIBERN8_TIME_UNIT_US);
8226 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8227 			     tuned_pa_hibern8time);
8228 out:
8229 	return ret;
8230 }
8231 
8232 /**
8233  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8234  * less than device PA_TACTIVATE time.
8235  * @hba: per-adapter instance
8236  *
8237  * Some UFS devices require host PA_TACTIVATE to be lower than device
8238  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8239  * for such devices.
8240  *
8241  * Return: zero on success, non-zero error value on failure.
8242  */
8243 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8244 {
8245 	int ret = 0;
8246 	u32 granularity, peer_granularity;
8247 	u32 pa_tactivate, peer_pa_tactivate;
8248 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8249 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8250 
8251 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8252 				  &granularity);
8253 	if (ret)
8254 		goto out;
8255 
8256 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8257 				  &peer_granularity);
8258 	if (ret)
8259 		goto out;
8260 
8261 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8262 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8263 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8264 			__func__, granularity);
8265 		return -EINVAL;
8266 	}
8267 
8268 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8269 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8270 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8271 			__func__, peer_granularity);
8272 		return -EINVAL;
8273 	}
8274 
8275 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8276 	if (ret)
8277 		goto out;
8278 
8279 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8280 				  &peer_pa_tactivate);
8281 	if (ret)
8282 		goto out;
8283 
8284 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8285 	peer_pa_tactivate_us = peer_pa_tactivate *
8286 			     gran_to_us_table[peer_granularity - 1];
8287 
8288 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8289 		u32 new_peer_pa_tactivate;
8290 
8291 		new_peer_pa_tactivate = pa_tactivate_us /
8292 				      gran_to_us_table[peer_granularity - 1];
8293 		new_peer_pa_tactivate++;
8294 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8295 					  new_peer_pa_tactivate);
8296 	}
8297 
8298 out:
8299 	return ret;
8300 }
8301 
8302 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8303 {
8304 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8305 		ufshcd_tune_pa_tactivate(hba);
8306 		ufshcd_tune_pa_hibern8time(hba);
8307 	}
8308 
8309 	ufshcd_vops_apply_dev_quirks(hba);
8310 
8311 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8312 		/* set 1ms timeout for PA_TACTIVATE */
8313 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8314 
8315 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8316 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8317 }
8318 
8319 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8320 {
8321 	hba->ufs_stats.hibern8_exit_cnt = 0;
8322 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8323 	hba->req_abort_count = 0;
8324 }
8325 
8326 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8327 {
8328 	int err;
8329 	u8 *desc_buf;
8330 
8331 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8332 	if (!desc_buf) {
8333 		err = -ENOMEM;
8334 		goto out;
8335 	}
8336 
8337 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8338 				     desc_buf, QUERY_DESC_MAX_SIZE);
8339 	if (err) {
8340 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8341 				__func__, err);
8342 		goto out;
8343 	}
8344 
8345 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8346 		hba->dev_info.max_lu_supported = 32;
8347 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8348 		hba->dev_info.max_lu_supported = 8;
8349 
8350 out:
8351 	kfree(desc_buf);
8352 	return err;
8353 }
8354 
8355 struct ufs_ref_clk {
8356 	unsigned long freq_hz;
8357 	enum ufs_ref_clk_freq val;
8358 };
8359 
8360 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8361 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8362 	{26000000, REF_CLK_FREQ_26_MHZ},
8363 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8364 	{52000000, REF_CLK_FREQ_52_MHZ},
8365 	{0, REF_CLK_FREQ_INVAL},
8366 };
8367 
8368 static enum ufs_ref_clk_freq
8369 ufs_get_bref_clk_from_hz(unsigned long freq)
8370 {
8371 	int i;
8372 
8373 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8374 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8375 			return ufs_ref_clk_freqs[i].val;
8376 
8377 	return REF_CLK_FREQ_INVAL;
8378 }
8379 
8380 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8381 {
8382 	unsigned long freq;
8383 
8384 	freq = clk_get_rate(refclk);
8385 
8386 	hba->dev_ref_clk_freq =
8387 		ufs_get_bref_clk_from_hz(freq);
8388 
8389 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8390 		dev_err(hba->dev,
8391 		"invalid ref_clk setting = %ld\n", freq);
8392 }
8393 
8394 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8395 {
8396 	int err;
8397 	u32 ref_clk;
8398 	u32 freq = hba->dev_ref_clk_freq;
8399 
8400 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8401 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8402 
8403 	if (err) {
8404 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8405 			err);
8406 		goto out;
8407 	}
8408 
8409 	if (ref_clk == freq)
8410 		goto out; /* nothing to update */
8411 
8412 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8413 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8414 
8415 	if (err) {
8416 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8417 			ufs_ref_clk_freqs[freq].freq_hz);
8418 		goto out;
8419 	}
8420 
8421 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8422 			ufs_ref_clk_freqs[freq].freq_hz);
8423 
8424 out:
8425 	return err;
8426 }
8427 
8428 static int ufshcd_device_params_init(struct ufs_hba *hba)
8429 {
8430 	bool flag;
8431 	int ret;
8432 
8433 	/* Init UFS geometry descriptor related parameters */
8434 	ret = ufshcd_device_geo_params_init(hba);
8435 	if (ret)
8436 		goto out;
8437 
8438 	/* Check and apply UFS device quirks */
8439 	ret = ufs_get_device_desc(hba);
8440 	if (ret) {
8441 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8442 			__func__, ret);
8443 		goto out;
8444 	}
8445 
8446 	ufshcd_get_ref_clk_gating_wait(hba);
8447 
8448 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8449 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8450 		hba->dev_info.f_power_on_wp_en = flag;
8451 
8452 	/* Probe maximum power mode co-supported by both UFS host and device */
8453 	if (ufshcd_get_max_pwr_mode(hba))
8454 		dev_err(hba->dev,
8455 			"%s: Failed getting max supported power mode\n",
8456 			__func__);
8457 out:
8458 	return ret;
8459 }
8460 
8461 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8462 {
8463 	int err;
8464 	struct ufs_query_req *request = NULL;
8465 	struct ufs_query_res *response = NULL;
8466 	struct ufs_dev_info *dev_info = &hba->dev_info;
8467 	struct utp_upiu_query_v4_0 *upiu_data;
8468 
8469 	if (dev_info->wspecversion < 0x400)
8470 		return;
8471 
8472 	ufshcd_hold(hba);
8473 
8474 	mutex_lock(&hba->dev_cmd.lock);
8475 
8476 	ufshcd_init_query(hba, &request, &response,
8477 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8478 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8479 
8480 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8481 
8482 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8483 
8484 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8485 
8486 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8487 
8488 	if (err)
8489 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8490 			__func__, err);
8491 
8492 	mutex_unlock(&hba->dev_cmd.lock);
8493 	ufshcd_release(hba);
8494 }
8495 
8496 /**
8497  * ufshcd_add_lus - probe and add UFS logical units
8498  * @hba: per-adapter instance
8499  *
8500  * Return: 0 upon success; < 0 upon failure.
8501  */
8502 static int ufshcd_add_lus(struct ufs_hba *hba)
8503 {
8504 	int ret;
8505 
8506 	/* Add required well known logical units to scsi mid layer */
8507 	ret = ufshcd_scsi_add_wlus(hba);
8508 	if (ret)
8509 		goto out;
8510 
8511 	/* Initialize devfreq after UFS device is detected */
8512 	if (ufshcd_is_clkscaling_supported(hba)) {
8513 		memcpy(&hba->clk_scaling.saved_pwr_info,
8514 			&hba->pwr_info,
8515 			sizeof(struct ufs_pa_layer_attr));
8516 		hba->clk_scaling.is_allowed = true;
8517 
8518 		ret = ufshcd_devfreq_init(hba);
8519 		if (ret)
8520 			goto out;
8521 
8522 		hba->clk_scaling.is_enabled = true;
8523 		ufshcd_init_clk_scaling_sysfs(hba);
8524 	}
8525 
8526 	ufs_bsg_probe(hba);
8527 	scsi_scan_host(hba->host);
8528 	pm_runtime_put_sync(hba->dev);
8529 
8530 out:
8531 	return ret;
8532 }
8533 
8534 /* SDB - Single Doorbell */
8535 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8536 {
8537 	size_t ucdl_size, utrdl_size;
8538 
8539 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8540 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8541 			   hba->ucdl_dma_addr);
8542 
8543 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8544 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8545 			   hba->utrdl_dma_addr);
8546 
8547 	devm_kfree(hba->dev, hba->lrb);
8548 }
8549 
8550 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8551 {
8552 	int ret;
8553 	int old_nutrs = hba->nutrs;
8554 
8555 	ret = ufshcd_mcq_decide_queue_depth(hba);
8556 	if (ret < 0)
8557 		return ret;
8558 
8559 	hba->nutrs = ret;
8560 	ret = ufshcd_mcq_init(hba);
8561 	if (ret)
8562 		goto err;
8563 
8564 	/*
8565 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8566 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8567 	 */
8568 	if (hba->nutrs != old_nutrs) {
8569 		ufshcd_release_sdb_queue(hba, old_nutrs);
8570 		ret = ufshcd_memory_alloc(hba);
8571 		if (ret)
8572 			goto err;
8573 		ufshcd_host_memory_configure(hba);
8574 	}
8575 
8576 	ret = ufshcd_mcq_memory_alloc(hba);
8577 	if (ret)
8578 		goto err;
8579 
8580 	return 0;
8581 err:
8582 	hba->nutrs = old_nutrs;
8583 	return ret;
8584 }
8585 
8586 static void ufshcd_config_mcq(struct ufs_hba *hba)
8587 {
8588 	int ret;
8589 	u32 intrs;
8590 
8591 	ret = ufshcd_mcq_vops_config_esi(hba);
8592 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8593 
8594 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8595 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8596 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8597 	ufshcd_enable_intr(hba, intrs);
8598 	ufshcd_mcq_make_queues_operational(hba);
8599 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8600 
8601 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8602 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8603 
8604 	/* Select MCQ mode */
8605 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8606 		      REG_UFS_MEM_CFG);
8607 	hba->mcq_enabled = true;
8608 
8609 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8610 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8611 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8612 		 hba->nutrs);
8613 }
8614 
8615 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8616 {
8617 	int ret;
8618 	struct Scsi_Host *host = hba->host;
8619 
8620 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8621 
8622 	ret = ufshcd_link_startup(hba);
8623 	if (ret)
8624 		return ret;
8625 
8626 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8627 		return ret;
8628 
8629 	/* Debug counters initialization */
8630 	ufshcd_clear_dbg_ufs_stats(hba);
8631 
8632 	/* UniPro link is active now */
8633 	ufshcd_set_link_active(hba);
8634 
8635 	/* Reconfigure MCQ upon reset */
8636 	if (is_mcq_enabled(hba) && !init_dev_params)
8637 		ufshcd_config_mcq(hba);
8638 
8639 	/* Verify device initialization by sending NOP OUT UPIU */
8640 	ret = ufshcd_verify_dev_init(hba);
8641 	if (ret)
8642 		return ret;
8643 
8644 	/* Initiate UFS initialization, and waiting until completion */
8645 	ret = ufshcd_complete_dev_init(hba);
8646 	if (ret)
8647 		return ret;
8648 
8649 	/*
8650 	 * Initialize UFS device parameters used by driver, these
8651 	 * parameters are associated with UFS descriptors.
8652 	 */
8653 	if (init_dev_params) {
8654 		ret = ufshcd_device_params_init(hba);
8655 		if (ret)
8656 			return ret;
8657 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8658 			ret = ufshcd_alloc_mcq(hba);
8659 			if (!ret) {
8660 				ufshcd_config_mcq(hba);
8661 			} else {
8662 				/* Continue with SDB mode */
8663 				use_mcq_mode = false;
8664 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8665 					 ret);
8666 			}
8667 			ret = scsi_add_host(host, hba->dev);
8668 			if (ret) {
8669 				dev_err(hba->dev, "scsi_add_host failed\n");
8670 				return ret;
8671 			}
8672 			hba->scsi_host_added = true;
8673 		} else if (is_mcq_supported(hba)) {
8674 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8675 			ufshcd_config_mcq(hba);
8676 		}
8677 	}
8678 
8679 	ufshcd_tune_unipro_params(hba);
8680 
8681 	/* UFS device is also active now */
8682 	ufshcd_set_ufs_dev_active(hba);
8683 	ufshcd_force_reset_auto_bkops(hba);
8684 
8685 	ufshcd_set_timestamp_attr(hba);
8686 
8687 	/* Gear up to HS gear if supported */
8688 	if (hba->max_pwr_info.is_valid) {
8689 		/*
8690 		 * Set the right value to bRefClkFreq before attempting to
8691 		 * switch to HS gears.
8692 		 */
8693 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8694 			ufshcd_set_dev_ref_clk(hba);
8695 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8696 		if (ret) {
8697 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8698 					__func__, ret);
8699 			return ret;
8700 		}
8701 	}
8702 
8703 	return 0;
8704 }
8705 
8706 /**
8707  * ufshcd_probe_hba - probe hba to detect device and initialize it
8708  * @hba: per-adapter instance
8709  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8710  *
8711  * Execute link-startup and verify device initialization
8712  *
8713  * Return: 0 upon success; < 0 upon failure.
8714  */
8715 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8716 {
8717 	ktime_t start = ktime_get();
8718 	unsigned long flags;
8719 	int ret;
8720 
8721 	ret = ufshcd_device_init(hba, init_dev_params);
8722 	if (ret)
8723 		goto out;
8724 
8725 	if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8726 		/* Reset the device and controller before doing reinit */
8727 		ufshcd_device_reset(hba);
8728 		ufshcd_hba_stop(hba);
8729 		ufshcd_vops_reinit_notify(hba);
8730 		ret = ufshcd_hba_enable(hba);
8731 		if (ret) {
8732 			dev_err(hba->dev, "Host controller enable failed\n");
8733 			ufshcd_print_evt_hist(hba);
8734 			ufshcd_print_host_state(hba);
8735 			goto out;
8736 		}
8737 
8738 		/* Reinit the device */
8739 		ret = ufshcd_device_init(hba, init_dev_params);
8740 		if (ret)
8741 			goto out;
8742 	}
8743 
8744 	ufshcd_print_pwr_info(hba);
8745 
8746 	/*
8747 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8748 	 * and for removable UFS card as well, hence always set the parameter.
8749 	 * Note: Error handler may issue the device reset hence resetting
8750 	 * bActiveICCLevel as well so it is always safe to set this here.
8751 	 */
8752 	ufshcd_set_active_icc_lvl(hba);
8753 
8754 	/* Enable UFS Write Booster if supported */
8755 	ufshcd_configure_wb(hba);
8756 
8757 	if (hba->ee_usr_mask)
8758 		ufshcd_write_ee_control(hba);
8759 	/* Enable Auto-Hibernate if configured */
8760 	ufshcd_auto_hibern8_enable(hba);
8761 
8762 out:
8763 	spin_lock_irqsave(hba->host->host_lock, flags);
8764 	if (ret)
8765 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8766 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8767 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8768 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8769 
8770 	trace_ufshcd_init(dev_name(hba->dev), ret,
8771 		ktime_to_us(ktime_sub(ktime_get(), start)),
8772 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8773 	return ret;
8774 }
8775 
8776 /**
8777  * ufshcd_async_scan - asynchronous execution for probing hba
8778  * @data: data pointer to pass to this function
8779  * @cookie: cookie data
8780  */
8781 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8782 {
8783 	struct ufs_hba *hba = (struct ufs_hba *)data;
8784 	int ret;
8785 
8786 	down(&hba->host_sem);
8787 	/* Initialize hba, detect and initialize UFS device */
8788 	ret = ufshcd_probe_hba(hba, true);
8789 	up(&hba->host_sem);
8790 	if (ret)
8791 		goto out;
8792 
8793 	/* Probe and add UFS logical units  */
8794 	ret = ufshcd_add_lus(hba);
8795 out:
8796 	/*
8797 	 * If we failed to initialize the device or the device is not
8798 	 * present, turn off the power/clocks etc.
8799 	 */
8800 	if (ret) {
8801 		pm_runtime_put_sync(hba->dev);
8802 		ufshcd_hba_exit(hba);
8803 	}
8804 }
8805 
8806 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8807 {
8808 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8809 
8810 	if (!hba->system_suspending) {
8811 		/* Activate the error handler in the SCSI core. */
8812 		return SCSI_EH_NOT_HANDLED;
8813 	}
8814 
8815 	/*
8816 	 * If we get here we know that no TMFs are outstanding and also that
8817 	 * the only pending command is a START STOP UNIT command. Handle the
8818 	 * timeout of that command directly to prevent a deadlock between
8819 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8820 	 */
8821 	ufshcd_link_recovery(hba);
8822 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8823 		 __func__, hba->outstanding_tasks);
8824 
8825 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8826 }
8827 
8828 static const struct attribute_group *ufshcd_driver_groups[] = {
8829 	&ufs_sysfs_unit_descriptor_group,
8830 	&ufs_sysfs_lun_attributes_group,
8831 	NULL,
8832 };
8833 
8834 static struct ufs_hba_variant_params ufs_hba_vps = {
8835 	.hba_enable_delay_us		= 1000,
8836 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8837 	.devfreq_profile.polling_ms	= 100,
8838 	.devfreq_profile.target		= ufshcd_devfreq_target,
8839 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8840 	.ondemand_data.upthreshold	= 70,
8841 	.ondemand_data.downdifferential	= 5,
8842 };
8843 
8844 static const struct scsi_host_template ufshcd_driver_template = {
8845 	.module			= THIS_MODULE,
8846 	.name			= UFSHCD,
8847 	.proc_name		= UFSHCD,
8848 	.map_queues		= ufshcd_map_queues,
8849 	.queuecommand		= ufshcd_queuecommand,
8850 	.mq_poll		= ufshcd_poll,
8851 	.slave_alloc		= ufshcd_slave_alloc,
8852 	.slave_configure	= ufshcd_slave_configure,
8853 	.slave_destroy		= ufshcd_slave_destroy,
8854 	.change_queue_depth	= ufshcd_change_queue_depth,
8855 	.eh_abort_handler	= ufshcd_abort,
8856 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8857 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8858 	.eh_timed_out		= ufshcd_eh_timed_out,
8859 	.this_id		= -1,
8860 	.sg_tablesize		= SG_ALL,
8861 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8862 	.can_queue		= UFSHCD_CAN_QUEUE,
8863 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8864 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8865 	.max_host_blocked	= 1,
8866 	.track_queue_depth	= 1,
8867 	.skip_settle_delay	= 1,
8868 	.sdev_groups		= ufshcd_driver_groups,
8869 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8870 };
8871 
8872 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8873 				   int ua)
8874 {
8875 	int ret;
8876 
8877 	if (!vreg)
8878 		return 0;
8879 
8880 	/*
8881 	 * "set_load" operation shall be required on those regulators
8882 	 * which specifically configured current limitation. Otherwise
8883 	 * zero max_uA may cause unexpected behavior when regulator is
8884 	 * enabled or set as high power mode.
8885 	 */
8886 	if (!vreg->max_uA)
8887 		return 0;
8888 
8889 	ret = regulator_set_load(vreg->reg, ua);
8890 	if (ret < 0) {
8891 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8892 				__func__, vreg->name, ua, ret);
8893 	}
8894 
8895 	return ret;
8896 }
8897 
8898 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8899 					 struct ufs_vreg *vreg)
8900 {
8901 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8902 }
8903 
8904 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8905 					 struct ufs_vreg *vreg)
8906 {
8907 	if (!vreg)
8908 		return 0;
8909 
8910 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8911 }
8912 
8913 static int ufshcd_config_vreg(struct device *dev,
8914 		struct ufs_vreg *vreg, bool on)
8915 {
8916 	if (regulator_count_voltages(vreg->reg) <= 0)
8917 		return 0;
8918 
8919 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8920 }
8921 
8922 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8923 {
8924 	int ret = 0;
8925 
8926 	if (!vreg || vreg->enabled)
8927 		goto out;
8928 
8929 	ret = ufshcd_config_vreg(dev, vreg, true);
8930 	if (!ret)
8931 		ret = regulator_enable(vreg->reg);
8932 
8933 	if (!ret)
8934 		vreg->enabled = true;
8935 	else
8936 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8937 				__func__, vreg->name, ret);
8938 out:
8939 	return ret;
8940 }
8941 
8942 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8943 {
8944 	int ret = 0;
8945 
8946 	if (!vreg || !vreg->enabled || vreg->always_on)
8947 		goto out;
8948 
8949 	ret = regulator_disable(vreg->reg);
8950 
8951 	if (!ret) {
8952 		/* ignore errors on applying disable config */
8953 		ufshcd_config_vreg(dev, vreg, false);
8954 		vreg->enabled = false;
8955 	} else {
8956 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8957 				__func__, vreg->name, ret);
8958 	}
8959 out:
8960 	return ret;
8961 }
8962 
8963 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8964 {
8965 	int ret = 0;
8966 	struct device *dev = hba->dev;
8967 	struct ufs_vreg_info *info = &hba->vreg_info;
8968 
8969 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8970 	if (ret)
8971 		goto out;
8972 
8973 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8974 	if (ret)
8975 		goto out;
8976 
8977 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8978 
8979 out:
8980 	if (ret) {
8981 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8982 		ufshcd_toggle_vreg(dev, info->vccq, false);
8983 		ufshcd_toggle_vreg(dev, info->vcc, false);
8984 	}
8985 	return ret;
8986 }
8987 
8988 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8989 {
8990 	struct ufs_vreg_info *info = &hba->vreg_info;
8991 
8992 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8993 }
8994 
8995 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8996 {
8997 	int ret = 0;
8998 
8999 	if (!vreg)
9000 		goto out;
9001 
9002 	vreg->reg = devm_regulator_get(dev, vreg->name);
9003 	if (IS_ERR(vreg->reg)) {
9004 		ret = PTR_ERR(vreg->reg);
9005 		dev_err(dev, "%s: %s get failed, err=%d\n",
9006 				__func__, vreg->name, ret);
9007 	}
9008 out:
9009 	return ret;
9010 }
9011 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9012 
9013 static int ufshcd_init_vreg(struct ufs_hba *hba)
9014 {
9015 	int ret = 0;
9016 	struct device *dev = hba->dev;
9017 	struct ufs_vreg_info *info = &hba->vreg_info;
9018 
9019 	ret = ufshcd_get_vreg(dev, info->vcc);
9020 	if (ret)
9021 		goto out;
9022 
9023 	ret = ufshcd_get_vreg(dev, info->vccq);
9024 	if (!ret)
9025 		ret = ufshcd_get_vreg(dev, info->vccq2);
9026 out:
9027 	return ret;
9028 }
9029 
9030 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9031 {
9032 	struct ufs_vreg_info *info = &hba->vreg_info;
9033 
9034 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9035 }
9036 
9037 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9038 {
9039 	int ret = 0;
9040 	struct ufs_clk_info *clki;
9041 	struct list_head *head = &hba->clk_list_head;
9042 	unsigned long flags;
9043 	ktime_t start = ktime_get();
9044 	bool clk_state_changed = false;
9045 
9046 	if (list_empty(head))
9047 		goto out;
9048 
9049 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9050 	if (ret)
9051 		return ret;
9052 
9053 	list_for_each_entry(clki, head, list) {
9054 		if (!IS_ERR_OR_NULL(clki->clk)) {
9055 			/*
9056 			 * Don't disable clocks which are needed
9057 			 * to keep the link active.
9058 			 */
9059 			if (ufshcd_is_link_active(hba) &&
9060 			    clki->keep_link_active)
9061 				continue;
9062 
9063 			clk_state_changed = on ^ clki->enabled;
9064 			if (on && !clki->enabled) {
9065 				ret = clk_prepare_enable(clki->clk);
9066 				if (ret) {
9067 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9068 						__func__, clki->name, ret);
9069 					goto out;
9070 				}
9071 			} else if (!on && clki->enabled) {
9072 				clk_disable_unprepare(clki->clk);
9073 			}
9074 			clki->enabled = on;
9075 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9076 					clki->name, on ? "en" : "dis");
9077 		}
9078 	}
9079 
9080 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9081 	if (ret)
9082 		return ret;
9083 
9084 out:
9085 	if (ret) {
9086 		list_for_each_entry(clki, head, list) {
9087 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9088 				clk_disable_unprepare(clki->clk);
9089 		}
9090 	} else if (!ret && on) {
9091 		spin_lock_irqsave(hba->host->host_lock, flags);
9092 		hba->clk_gating.state = CLKS_ON;
9093 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9094 					hba->clk_gating.state);
9095 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9096 	}
9097 
9098 	if (clk_state_changed)
9099 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9100 			(on ? "on" : "off"),
9101 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9102 	return ret;
9103 }
9104 
9105 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9106 {
9107 	u32 freq;
9108 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9109 
9110 	if (ret) {
9111 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9112 		return REF_CLK_FREQ_INVAL;
9113 	}
9114 
9115 	return ufs_get_bref_clk_from_hz(freq);
9116 }
9117 
9118 static int ufshcd_init_clocks(struct ufs_hba *hba)
9119 {
9120 	int ret = 0;
9121 	struct ufs_clk_info *clki;
9122 	struct device *dev = hba->dev;
9123 	struct list_head *head = &hba->clk_list_head;
9124 
9125 	if (list_empty(head))
9126 		goto out;
9127 
9128 	list_for_each_entry(clki, head, list) {
9129 		if (!clki->name)
9130 			continue;
9131 
9132 		clki->clk = devm_clk_get(dev, clki->name);
9133 		if (IS_ERR(clki->clk)) {
9134 			ret = PTR_ERR(clki->clk);
9135 			dev_err(dev, "%s: %s clk get failed, %d\n",
9136 					__func__, clki->name, ret);
9137 			goto out;
9138 		}
9139 
9140 		/*
9141 		 * Parse device ref clk freq as per device tree "ref_clk".
9142 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9143 		 * in ufshcd_alloc_host().
9144 		 */
9145 		if (!strcmp(clki->name, "ref_clk"))
9146 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9147 
9148 		if (clki->max_freq) {
9149 			ret = clk_set_rate(clki->clk, clki->max_freq);
9150 			if (ret) {
9151 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9152 					__func__, clki->name,
9153 					clki->max_freq, ret);
9154 				goto out;
9155 			}
9156 			clki->curr_freq = clki->max_freq;
9157 		}
9158 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9159 				clki->name, clk_get_rate(clki->clk));
9160 	}
9161 out:
9162 	return ret;
9163 }
9164 
9165 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9166 {
9167 	int err = 0;
9168 
9169 	if (!hba->vops)
9170 		goto out;
9171 
9172 	err = ufshcd_vops_init(hba);
9173 	if (err)
9174 		dev_err_probe(hba->dev, err,
9175 			      "%s: variant %s init failed with err %d\n",
9176 			      __func__, ufshcd_get_var_name(hba), err);
9177 out:
9178 	return err;
9179 }
9180 
9181 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9182 {
9183 	if (!hba->vops)
9184 		return;
9185 
9186 	ufshcd_vops_exit(hba);
9187 }
9188 
9189 static int ufshcd_hba_init(struct ufs_hba *hba)
9190 {
9191 	int err;
9192 
9193 	/*
9194 	 * Handle host controller power separately from the UFS device power
9195 	 * rails as it will help controlling the UFS host controller power
9196 	 * collapse easily which is different than UFS device power collapse.
9197 	 * Also, enable the host controller power before we go ahead with rest
9198 	 * of the initialization here.
9199 	 */
9200 	err = ufshcd_init_hba_vreg(hba);
9201 	if (err)
9202 		goto out;
9203 
9204 	err = ufshcd_setup_hba_vreg(hba, true);
9205 	if (err)
9206 		goto out;
9207 
9208 	err = ufshcd_init_clocks(hba);
9209 	if (err)
9210 		goto out_disable_hba_vreg;
9211 
9212 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9213 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9214 
9215 	err = ufshcd_setup_clocks(hba, true);
9216 	if (err)
9217 		goto out_disable_hba_vreg;
9218 
9219 	err = ufshcd_init_vreg(hba);
9220 	if (err)
9221 		goto out_disable_clks;
9222 
9223 	err = ufshcd_setup_vreg(hba, true);
9224 	if (err)
9225 		goto out_disable_clks;
9226 
9227 	err = ufshcd_variant_hba_init(hba);
9228 	if (err)
9229 		goto out_disable_vreg;
9230 
9231 	ufs_debugfs_hba_init(hba);
9232 
9233 	hba->is_powered = true;
9234 	goto out;
9235 
9236 out_disable_vreg:
9237 	ufshcd_setup_vreg(hba, false);
9238 out_disable_clks:
9239 	ufshcd_setup_clocks(hba, false);
9240 out_disable_hba_vreg:
9241 	ufshcd_setup_hba_vreg(hba, false);
9242 out:
9243 	return err;
9244 }
9245 
9246 static void ufshcd_hba_exit(struct ufs_hba *hba)
9247 {
9248 	if (hba->is_powered) {
9249 		ufshcd_exit_clk_scaling(hba);
9250 		ufshcd_exit_clk_gating(hba);
9251 		if (hba->eh_wq)
9252 			destroy_workqueue(hba->eh_wq);
9253 		ufs_debugfs_hba_exit(hba);
9254 		ufshcd_variant_hba_exit(hba);
9255 		ufshcd_setup_vreg(hba, false);
9256 		ufshcd_setup_clocks(hba, false);
9257 		ufshcd_setup_hba_vreg(hba, false);
9258 		hba->is_powered = false;
9259 		ufs_put_device_desc(hba);
9260 	}
9261 }
9262 
9263 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9264 				     enum ufs_dev_pwr_mode pwr_mode,
9265 				     struct scsi_sense_hdr *sshdr)
9266 {
9267 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9268 	const struct scsi_exec_args args = {
9269 		.sshdr = sshdr,
9270 		.req_flags = BLK_MQ_REQ_PM,
9271 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9272 	};
9273 
9274 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9275 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9276 			&args);
9277 }
9278 
9279 /**
9280  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9281  *			     power mode
9282  * @hba: per adapter instance
9283  * @pwr_mode: device power mode to set
9284  *
9285  * Return: 0 if requested power mode is set successfully;
9286  *         < 0 if failed to set the requested power mode.
9287  */
9288 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9289 				     enum ufs_dev_pwr_mode pwr_mode)
9290 {
9291 	struct scsi_sense_hdr sshdr;
9292 	struct scsi_device *sdp;
9293 	unsigned long flags;
9294 	int ret, retries;
9295 
9296 	spin_lock_irqsave(hba->host->host_lock, flags);
9297 	sdp = hba->ufs_device_wlun;
9298 	if (sdp && scsi_device_online(sdp))
9299 		ret = scsi_device_get(sdp);
9300 	else
9301 		ret = -ENODEV;
9302 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9303 
9304 	if (ret)
9305 		return ret;
9306 
9307 	/*
9308 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9309 	 * handling, which would wait for host to be resumed. Since we know
9310 	 * we are functional while we are here, skip host resume in error
9311 	 * handling context.
9312 	 */
9313 	hba->host->eh_noresume = 1;
9314 
9315 	/*
9316 	 * Current function would be generally called from the power management
9317 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9318 	 * already suspended childs.
9319 	 */
9320 	for (retries = 3; retries > 0; --retries) {
9321 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9322 		/*
9323 		 * scsi_execute() only returns a negative value if the request
9324 		 * queue is dying.
9325 		 */
9326 		if (ret <= 0)
9327 			break;
9328 	}
9329 	if (ret) {
9330 		sdev_printk(KERN_WARNING, sdp,
9331 			    "START_STOP failed for power mode: %d, result %x\n",
9332 			    pwr_mode, ret);
9333 		if (ret > 0) {
9334 			if (scsi_sense_valid(&sshdr))
9335 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9336 			ret = -EIO;
9337 		}
9338 	} else {
9339 		hba->curr_dev_pwr_mode = pwr_mode;
9340 	}
9341 
9342 	scsi_device_put(sdp);
9343 	hba->host->eh_noresume = 0;
9344 	return ret;
9345 }
9346 
9347 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9348 					enum uic_link_state req_link_state,
9349 					bool check_for_bkops)
9350 {
9351 	int ret = 0;
9352 
9353 	if (req_link_state == hba->uic_link_state)
9354 		return 0;
9355 
9356 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9357 		ret = ufshcd_uic_hibern8_enter(hba);
9358 		if (!ret) {
9359 			ufshcd_set_link_hibern8(hba);
9360 		} else {
9361 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9362 					__func__, ret);
9363 			goto out;
9364 		}
9365 	}
9366 	/*
9367 	 * If autobkops is enabled, link can't be turned off because
9368 	 * turning off the link would also turn off the device, except in the
9369 	 * case of DeepSleep where the device is expected to remain powered.
9370 	 */
9371 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9372 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9373 		/*
9374 		 * Let's make sure that link is in low power mode, we are doing
9375 		 * this currently by putting the link in Hibern8. Otherway to
9376 		 * put the link in low power mode is to send the DME end point
9377 		 * to device and then send the DME reset command to local
9378 		 * unipro. But putting the link in hibern8 is much faster.
9379 		 *
9380 		 * Note also that putting the link in Hibern8 is a requirement
9381 		 * for entering DeepSleep.
9382 		 */
9383 		ret = ufshcd_uic_hibern8_enter(hba);
9384 		if (ret) {
9385 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9386 					__func__, ret);
9387 			goto out;
9388 		}
9389 		/*
9390 		 * Change controller state to "reset state" which
9391 		 * should also put the link in off/reset state
9392 		 */
9393 		ufshcd_hba_stop(hba);
9394 		/*
9395 		 * TODO: Check if we need any delay to make sure that
9396 		 * controller is reset
9397 		 */
9398 		ufshcd_set_link_off(hba);
9399 	}
9400 
9401 out:
9402 	return ret;
9403 }
9404 
9405 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9406 {
9407 	bool vcc_off = false;
9408 
9409 	/*
9410 	 * It seems some UFS devices may keep drawing more than sleep current
9411 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9412 	 * To avoid this situation, add 2ms delay before putting these UFS
9413 	 * rails in LPM mode.
9414 	 */
9415 	if (!ufshcd_is_link_active(hba) &&
9416 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9417 		usleep_range(2000, 2100);
9418 
9419 	/*
9420 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9421 	 * power.
9422 	 *
9423 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9424 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9425 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9426 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9427 	 *
9428 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9429 	 * in low power state which would save some power.
9430 	 *
9431 	 * If Write Booster is enabled and the device needs to flush the WB
9432 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9433 	 */
9434 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9435 	    !hba->dev_info.is_lu_power_on_wp) {
9436 		ufshcd_setup_vreg(hba, false);
9437 		vcc_off = true;
9438 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9439 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9440 		vcc_off = true;
9441 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9442 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9443 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9444 		}
9445 	}
9446 
9447 	/*
9448 	 * Some UFS devices require delay after VCC power rail is turned-off.
9449 	 */
9450 	if (vcc_off && hba->vreg_info.vcc &&
9451 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9452 		usleep_range(5000, 5100);
9453 }
9454 
9455 #ifdef CONFIG_PM
9456 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9457 {
9458 	int ret = 0;
9459 
9460 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9461 	    !hba->dev_info.is_lu_power_on_wp) {
9462 		ret = ufshcd_setup_vreg(hba, true);
9463 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9464 		if (!ufshcd_is_link_active(hba)) {
9465 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9466 			if (ret)
9467 				goto vcc_disable;
9468 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9469 			if (ret)
9470 				goto vccq_lpm;
9471 		}
9472 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9473 	}
9474 	goto out;
9475 
9476 vccq_lpm:
9477 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9478 vcc_disable:
9479 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9480 out:
9481 	return ret;
9482 }
9483 #endif /* CONFIG_PM */
9484 
9485 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9486 {
9487 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9488 		ufshcd_setup_hba_vreg(hba, false);
9489 }
9490 
9491 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9492 {
9493 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9494 		ufshcd_setup_hba_vreg(hba, true);
9495 }
9496 
9497 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9498 {
9499 	int ret = 0;
9500 	bool check_for_bkops;
9501 	enum ufs_pm_level pm_lvl;
9502 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9503 	enum uic_link_state req_link_state;
9504 
9505 	hba->pm_op_in_progress = true;
9506 	if (pm_op != UFS_SHUTDOWN_PM) {
9507 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9508 			 hba->rpm_lvl : hba->spm_lvl;
9509 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9510 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9511 	} else {
9512 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9513 		req_link_state = UIC_LINK_OFF_STATE;
9514 	}
9515 
9516 	/*
9517 	 * If we can't transition into any of the low power modes
9518 	 * just gate the clocks.
9519 	 */
9520 	ufshcd_hold(hba);
9521 	hba->clk_gating.is_suspended = true;
9522 
9523 	if (ufshcd_is_clkscaling_supported(hba))
9524 		ufshcd_clk_scaling_suspend(hba, true);
9525 
9526 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9527 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9528 		goto vops_suspend;
9529 	}
9530 
9531 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9532 	    (req_link_state == hba->uic_link_state))
9533 		goto enable_scaling;
9534 
9535 	/* UFS device & link must be active before we enter in this function */
9536 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9537 		ret = -EINVAL;
9538 		goto enable_scaling;
9539 	}
9540 
9541 	if (pm_op == UFS_RUNTIME_PM) {
9542 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9543 			/*
9544 			 * The device is idle with no requests in the queue,
9545 			 * allow background operations if bkops status shows
9546 			 * that performance might be impacted.
9547 			 */
9548 			ret = ufshcd_urgent_bkops(hba);
9549 			if (ret) {
9550 				/*
9551 				 * If return err in suspend flow, IO will hang.
9552 				 * Trigger error handler and break suspend for
9553 				 * error recovery.
9554 				 */
9555 				ufshcd_force_error_recovery(hba);
9556 				ret = -EBUSY;
9557 				goto enable_scaling;
9558 			}
9559 		} else {
9560 			/* make sure that auto bkops is disabled */
9561 			ufshcd_disable_auto_bkops(hba);
9562 		}
9563 		/*
9564 		 * If device needs to do BKOP or WB buffer flush during
9565 		 * Hibern8, keep device power mode as "active power mode"
9566 		 * and VCC supply.
9567 		 */
9568 		hba->dev_info.b_rpm_dev_flush_capable =
9569 			hba->auto_bkops_enabled ||
9570 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9571 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9572 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9573 			ufshcd_wb_need_flush(hba));
9574 	}
9575 
9576 	flush_work(&hba->eeh_work);
9577 
9578 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9579 	if (ret)
9580 		goto enable_scaling;
9581 
9582 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9583 		if (pm_op != UFS_RUNTIME_PM)
9584 			/* ensure that bkops is disabled */
9585 			ufshcd_disable_auto_bkops(hba);
9586 
9587 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9588 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9589 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9590 				/*
9591 				 * If return err in suspend flow, IO will hang.
9592 				 * Trigger error handler and break suspend for
9593 				 * error recovery.
9594 				 */
9595 				ufshcd_force_error_recovery(hba);
9596 				ret = -EBUSY;
9597 			}
9598 			if (ret)
9599 				goto enable_scaling;
9600 		}
9601 	}
9602 
9603 	/*
9604 	 * In the case of DeepSleep, the device is expected to remain powered
9605 	 * with the link off, so do not check for bkops.
9606 	 */
9607 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9608 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9609 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9610 		/*
9611 		 * If return err in suspend flow, IO will hang.
9612 		 * Trigger error handler and break suspend for
9613 		 * error recovery.
9614 		 */
9615 		ufshcd_force_error_recovery(hba);
9616 		ret = -EBUSY;
9617 	}
9618 	if (ret)
9619 		goto set_dev_active;
9620 
9621 vops_suspend:
9622 	/*
9623 	 * Call vendor specific suspend callback. As these callbacks may access
9624 	 * vendor specific host controller register space call them before the
9625 	 * host clocks are ON.
9626 	 */
9627 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9628 	if (ret)
9629 		goto set_link_active;
9630 	goto out;
9631 
9632 set_link_active:
9633 	/*
9634 	 * Device hardware reset is required to exit DeepSleep. Also, for
9635 	 * DeepSleep, the link is off so host reset and restore will be done
9636 	 * further below.
9637 	 */
9638 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9639 		ufshcd_device_reset(hba);
9640 		WARN_ON(!ufshcd_is_link_off(hba));
9641 	}
9642 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9643 		ufshcd_set_link_active(hba);
9644 	else if (ufshcd_is_link_off(hba))
9645 		ufshcd_host_reset_and_restore(hba);
9646 set_dev_active:
9647 	/* Can also get here needing to exit DeepSleep */
9648 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9649 		ufshcd_device_reset(hba);
9650 		ufshcd_host_reset_and_restore(hba);
9651 	}
9652 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9653 		ufshcd_disable_auto_bkops(hba);
9654 enable_scaling:
9655 	if (ufshcd_is_clkscaling_supported(hba))
9656 		ufshcd_clk_scaling_suspend(hba, false);
9657 
9658 	hba->dev_info.b_rpm_dev_flush_capable = false;
9659 out:
9660 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9661 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9662 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9663 	}
9664 
9665 	if (ret) {
9666 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9667 		hba->clk_gating.is_suspended = false;
9668 		ufshcd_release(hba);
9669 	}
9670 	hba->pm_op_in_progress = false;
9671 	return ret;
9672 }
9673 
9674 #ifdef CONFIG_PM
9675 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9676 {
9677 	int ret;
9678 	enum uic_link_state old_link_state = hba->uic_link_state;
9679 
9680 	hba->pm_op_in_progress = true;
9681 
9682 	/*
9683 	 * Call vendor specific resume callback. As these callbacks may access
9684 	 * vendor specific host controller register space call them when the
9685 	 * host clocks are ON.
9686 	 */
9687 	ret = ufshcd_vops_resume(hba, pm_op);
9688 	if (ret)
9689 		goto out;
9690 
9691 	/* For DeepSleep, the only supported option is to have the link off */
9692 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9693 
9694 	if (ufshcd_is_link_hibern8(hba)) {
9695 		ret = ufshcd_uic_hibern8_exit(hba);
9696 		if (!ret) {
9697 			ufshcd_set_link_active(hba);
9698 		} else {
9699 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9700 					__func__, ret);
9701 			goto vendor_suspend;
9702 		}
9703 	} else if (ufshcd_is_link_off(hba)) {
9704 		/*
9705 		 * A full initialization of the host and the device is
9706 		 * required since the link was put to off during suspend.
9707 		 * Note, in the case of DeepSleep, the device will exit
9708 		 * DeepSleep due to device reset.
9709 		 */
9710 		ret = ufshcd_reset_and_restore(hba);
9711 		/*
9712 		 * ufshcd_reset_and_restore() should have already
9713 		 * set the link state as active
9714 		 */
9715 		if (ret || !ufshcd_is_link_active(hba))
9716 			goto vendor_suspend;
9717 	}
9718 
9719 	if (!ufshcd_is_ufs_dev_active(hba)) {
9720 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9721 		if (ret)
9722 			goto set_old_link_state;
9723 		ufshcd_set_timestamp_attr(hba);
9724 	}
9725 
9726 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9727 		ufshcd_enable_auto_bkops(hba);
9728 	else
9729 		/*
9730 		 * If BKOPs operations are urgently needed at this moment then
9731 		 * keep auto-bkops enabled or else disable it.
9732 		 */
9733 		ufshcd_urgent_bkops(hba);
9734 
9735 	if (hba->ee_usr_mask)
9736 		ufshcd_write_ee_control(hba);
9737 
9738 	if (ufshcd_is_clkscaling_supported(hba))
9739 		ufshcd_clk_scaling_suspend(hba, false);
9740 
9741 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9742 		hba->dev_info.b_rpm_dev_flush_capable = false;
9743 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9744 	}
9745 
9746 	/* Enable Auto-Hibernate if configured */
9747 	ufshcd_auto_hibern8_enable(hba);
9748 
9749 	goto out;
9750 
9751 set_old_link_state:
9752 	ufshcd_link_state_transition(hba, old_link_state, 0);
9753 vendor_suspend:
9754 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9755 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9756 out:
9757 	if (ret)
9758 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9759 	hba->clk_gating.is_suspended = false;
9760 	ufshcd_release(hba);
9761 	hba->pm_op_in_progress = false;
9762 	return ret;
9763 }
9764 
9765 static int ufshcd_wl_runtime_suspend(struct device *dev)
9766 {
9767 	struct scsi_device *sdev = to_scsi_device(dev);
9768 	struct ufs_hba *hba;
9769 	int ret;
9770 	ktime_t start = ktime_get();
9771 
9772 	hba = shost_priv(sdev->host);
9773 
9774 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9775 	if (ret)
9776 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9777 
9778 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9779 		ktime_to_us(ktime_sub(ktime_get(), start)),
9780 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9781 
9782 	return ret;
9783 }
9784 
9785 static int ufshcd_wl_runtime_resume(struct device *dev)
9786 {
9787 	struct scsi_device *sdev = to_scsi_device(dev);
9788 	struct ufs_hba *hba;
9789 	int ret = 0;
9790 	ktime_t start = ktime_get();
9791 
9792 	hba = shost_priv(sdev->host);
9793 
9794 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9795 	if (ret)
9796 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9797 
9798 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9799 		ktime_to_us(ktime_sub(ktime_get(), start)),
9800 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9801 
9802 	return ret;
9803 }
9804 #endif
9805 
9806 #ifdef CONFIG_PM_SLEEP
9807 static int ufshcd_wl_suspend(struct device *dev)
9808 {
9809 	struct scsi_device *sdev = to_scsi_device(dev);
9810 	struct ufs_hba *hba;
9811 	int ret = 0;
9812 	ktime_t start = ktime_get();
9813 
9814 	hba = shost_priv(sdev->host);
9815 	down(&hba->host_sem);
9816 	hba->system_suspending = true;
9817 
9818 	if (pm_runtime_suspended(dev))
9819 		goto out;
9820 
9821 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9822 	if (ret) {
9823 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9824 		up(&hba->host_sem);
9825 	}
9826 
9827 out:
9828 	if (!ret)
9829 		hba->is_sys_suspended = true;
9830 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9831 		ktime_to_us(ktime_sub(ktime_get(), start)),
9832 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9833 
9834 	return ret;
9835 }
9836 
9837 static int ufshcd_wl_resume(struct device *dev)
9838 {
9839 	struct scsi_device *sdev = to_scsi_device(dev);
9840 	struct ufs_hba *hba;
9841 	int ret = 0;
9842 	ktime_t start = ktime_get();
9843 
9844 	hba = shost_priv(sdev->host);
9845 
9846 	if (pm_runtime_suspended(dev))
9847 		goto out;
9848 
9849 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9850 	if (ret)
9851 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9852 out:
9853 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9854 		ktime_to_us(ktime_sub(ktime_get(), start)),
9855 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9856 	if (!ret)
9857 		hba->is_sys_suspended = false;
9858 	hba->system_suspending = false;
9859 	up(&hba->host_sem);
9860 	return ret;
9861 }
9862 #endif
9863 
9864 /**
9865  * ufshcd_suspend - helper function for suspend operations
9866  * @hba: per adapter instance
9867  *
9868  * This function will put disable irqs, turn off clocks
9869  * and set vreg and hba-vreg in lpm mode.
9870  *
9871  * Return: 0 upon success; < 0 upon failure.
9872  */
9873 static int ufshcd_suspend(struct ufs_hba *hba)
9874 {
9875 	int ret;
9876 
9877 	if (!hba->is_powered)
9878 		return 0;
9879 	/*
9880 	 * Disable the host irq as host controller as there won't be any
9881 	 * host controller transaction expected till resume.
9882 	 */
9883 	ufshcd_disable_irq(hba);
9884 	ret = ufshcd_setup_clocks(hba, false);
9885 	if (ret) {
9886 		ufshcd_enable_irq(hba);
9887 		return ret;
9888 	}
9889 	if (ufshcd_is_clkgating_allowed(hba)) {
9890 		hba->clk_gating.state = CLKS_OFF;
9891 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9892 					hba->clk_gating.state);
9893 	}
9894 
9895 	ufshcd_vreg_set_lpm(hba);
9896 	/* Put the host controller in low power mode if possible */
9897 	ufshcd_hba_vreg_set_lpm(hba);
9898 	return ret;
9899 }
9900 
9901 #ifdef CONFIG_PM
9902 /**
9903  * ufshcd_resume - helper function for resume operations
9904  * @hba: per adapter instance
9905  *
9906  * This function basically turns on the regulators, clocks and
9907  * irqs of the hba.
9908  *
9909  * Return: 0 for success and non-zero for failure.
9910  */
9911 static int ufshcd_resume(struct ufs_hba *hba)
9912 {
9913 	int ret;
9914 
9915 	if (!hba->is_powered)
9916 		return 0;
9917 
9918 	ufshcd_hba_vreg_set_hpm(hba);
9919 	ret = ufshcd_vreg_set_hpm(hba);
9920 	if (ret)
9921 		goto out;
9922 
9923 	/* Make sure clocks are enabled before accessing controller */
9924 	ret = ufshcd_setup_clocks(hba, true);
9925 	if (ret)
9926 		goto disable_vreg;
9927 
9928 	/* enable the host irq as host controller would be active soon */
9929 	ufshcd_enable_irq(hba);
9930 
9931 	goto out;
9932 
9933 disable_vreg:
9934 	ufshcd_vreg_set_lpm(hba);
9935 out:
9936 	if (ret)
9937 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9938 	return ret;
9939 }
9940 #endif /* CONFIG_PM */
9941 
9942 #ifdef CONFIG_PM_SLEEP
9943 /**
9944  * ufshcd_system_suspend - system suspend callback
9945  * @dev: Device associated with the UFS controller.
9946  *
9947  * Executed before putting the system into a sleep state in which the contents
9948  * of main memory are preserved.
9949  *
9950  * Return: 0 for success and non-zero for failure.
9951  */
9952 int ufshcd_system_suspend(struct device *dev)
9953 {
9954 	struct ufs_hba *hba = dev_get_drvdata(dev);
9955 	int ret = 0;
9956 	ktime_t start = ktime_get();
9957 
9958 	if (pm_runtime_suspended(hba->dev))
9959 		goto out;
9960 
9961 	ret = ufshcd_suspend(hba);
9962 out:
9963 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9964 		ktime_to_us(ktime_sub(ktime_get(), start)),
9965 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9966 	return ret;
9967 }
9968 EXPORT_SYMBOL(ufshcd_system_suspend);
9969 
9970 /**
9971  * ufshcd_system_resume - system resume callback
9972  * @dev: Device associated with the UFS controller.
9973  *
9974  * Executed after waking the system up from a sleep state in which the contents
9975  * of main memory were preserved.
9976  *
9977  * Return: 0 for success and non-zero for failure.
9978  */
9979 int ufshcd_system_resume(struct device *dev)
9980 {
9981 	struct ufs_hba *hba = dev_get_drvdata(dev);
9982 	ktime_t start = ktime_get();
9983 	int ret = 0;
9984 
9985 	if (pm_runtime_suspended(hba->dev))
9986 		goto out;
9987 
9988 	ret = ufshcd_resume(hba);
9989 
9990 out:
9991 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9992 		ktime_to_us(ktime_sub(ktime_get(), start)),
9993 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9994 
9995 	return ret;
9996 }
9997 EXPORT_SYMBOL(ufshcd_system_resume);
9998 #endif /* CONFIG_PM_SLEEP */
9999 
10000 #ifdef CONFIG_PM
10001 /**
10002  * ufshcd_runtime_suspend - runtime suspend callback
10003  * @dev: Device associated with the UFS controller.
10004  *
10005  * Check the description of ufshcd_suspend() function for more details.
10006  *
10007  * Return: 0 for success and non-zero for failure.
10008  */
10009 int ufshcd_runtime_suspend(struct device *dev)
10010 {
10011 	struct ufs_hba *hba = dev_get_drvdata(dev);
10012 	int ret;
10013 	ktime_t start = ktime_get();
10014 
10015 	ret = ufshcd_suspend(hba);
10016 
10017 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10018 		ktime_to_us(ktime_sub(ktime_get(), start)),
10019 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10020 	return ret;
10021 }
10022 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10023 
10024 /**
10025  * ufshcd_runtime_resume - runtime resume routine
10026  * @dev: Device associated with the UFS controller.
10027  *
10028  * This function basically brings controller
10029  * to active state. Following operations are done in this function:
10030  *
10031  * 1. Turn on all the controller related clocks
10032  * 2. Turn ON VCC rail
10033  *
10034  * Return: 0 upon success; < 0 upon failure.
10035  */
10036 int ufshcd_runtime_resume(struct device *dev)
10037 {
10038 	struct ufs_hba *hba = dev_get_drvdata(dev);
10039 	int ret;
10040 	ktime_t start = ktime_get();
10041 
10042 	ret = ufshcd_resume(hba);
10043 
10044 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10045 		ktime_to_us(ktime_sub(ktime_get(), start)),
10046 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10047 	return ret;
10048 }
10049 EXPORT_SYMBOL(ufshcd_runtime_resume);
10050 #endif /* CONFIG_PM */
10051 
10052 static void ufshcd_wl_shutdown(struct device *dev)
10053 {
10054 	struct scsi_device *sdev = to_scsi_device(dev);
10055 	struct ufs_hba *hba = shost_priv(sdev->host);
10056 
10057 	down(&hba->host_sem);
10058 	hba->shutting_down = true;
10059 	up(&hba->host_sem);
10060 
10061 	/* Turn on everything while shutting down */
10062 	ufshcd_rpm_get_sync(hba);
10063 	scsi_device_quiesce(sdev);
10064 	shost_for_each_device(sdev, hba->host) {
10065 		if (sdev == hba->ufs_device_wlun)
10066 			continue;
10067 		scsi_device_quiesce(sdev);
10068 	}
10069 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10070 
10071 	/*
10072 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10073 	 * clocks.
10074 	 */
10075 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10076 		ufshcd_suspend(hba);
10077 
10078 	hba->is_powered = false;
10079 }
10080 
10081 /**
10082  * ufshcd_remove - de-allocate SCSI host and host memory space
10083  *		data structure memory
10084  * @hba: per adapter instance
10085  */
10086 void ufshcd_remove(struct ufs_hba *hba)
10087 {
10088 	if (hba->ufs_device_wlun)
10089 		ufshcd_rpm_get_sync(hba);
10090 	ufs_hwmon_remove(hba);
10091 	ufs_bsg_remove(hba);
10092 	ufs_sysfs_remove_nodes(hba->dev);
10093 	blk_mq_destroy_queue(hba->tmf_queue);
10094 	blk_put_queue(hba->tmf_queue);
10095 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10096 	scsi_remove_host(hba->host);
10097 	/* disable interrupts */
10098 	ufshcd_disable_intr(hba, hba->intr_mask);
10099 	ufshcd_hba_stop(hba);
10100 	ufshcd_hba_exit(hba);
10101 }
10102 EXPORT_SYMBOL_GPL(ufshcd_remove);
10103 
10104 #ifdef CONFIG_PM_SLEEP
10105 int ufshcd_system_freeze(struct device *dev)
10106 {
10107 
10108 	return ufshcd_system_suspend(dev);
10109 
10110 }
10111 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10112 
10113 int ufshcd_system_restore(struct device *dev)
10114 {
10115 
10116 	struct ufs_hba *hba = dev_get_drvdata(dev);
10117 	int ret;
10118 
10119 	ret = ufshcd_system_resume(dev);
10120 	if (ret)
10121 		return ret;
10122 
10123 	/* Configure UTRL and UTMRL base address registers */
10124 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10125 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10126 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10127 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10128 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10129 			REG_UTP_TASK_REQ_LIST_BASE_L);
10130 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10131 			REG_UTP_TASK_REQ_LIST_BASE_H);
10132 	/*
10133 	 * Make sure that UTRL and UTMRL base address registers
10134 	 * are updated with the latest queue addresses. Only after
10135 	 * updating these addresses, we can queue the new commands.
10136 	 */
10137 	mb();
10138 
10139 	/* Resuming from hibernate, assume that link was OFF */
10140 	ufshcd_set_link_off(hba);
10141 
10142 	return 0;
10143 
10144 }
10145 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10146 
10147 int ufshcd_system_thaw(struct device *dev)
10148 {
10149 	return ufshcd_system_resume(dev);
10150 }
10151 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10152 #endif /* CONFIG_PM_SLEEP  */
10153 
10154 /**
10155  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10156  * @hba: pointer to Host Bus Adapter (HBA)
10157  */
10158 void ufshcd_dealloc_host(struct ufs_hba *hba)
10159 {
10160 	scsi_host_put(hba->host);
10161 }
10162 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10163 
10164 /**
10165  * ufshcd_set_dma_mask - Set dma mask based on the controller
10166  *			 addressing capability
10167  * @hba: per adapter instance
10168  *
10169  * Return: 0 for success, non-zero for failure.
10170  */
10171 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10172 {
10173 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10174 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10175 			return 0;
10176 	}
10177 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10178 }
10179 
10180 /**
10181  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10182  * @dev: pointer to device handle
10183  * @hba_handle: driver private handle
10184  *
10185  * Return: 0 on success, non-zero value on failure.
10186  */
10187 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10188 {
10189 	struct Scsi_Host *host;
10190 	struct ufs_hba *hba;
10191 	int err = 0;
10192 
10193 	if (!dev) {
10194 		dev_err(dev,
10195 		"Invalid memory reference for dev is NULL\n");
10196 		err = -ENODEV;
10197 		goto out_error;
10198 	}
10199 
10200 	host = scsi_host_alloc(&ufshcd_driver_template,
10201 				sizeof(struct ufs_hba));
10202 	if (!host) {
10203 		dev_err(dev, "scsi_host_alloc failed\n");
10204 		err = -ENOMEM;
10205 		goto out_error;
10206 	}
10207 	host->nr_maps = HCTX_TYPE_POLL + 1;
10208 	hba = shost_priv(host);
10209 	hba->host = host;
10210 	hba->dev = dev;
10211 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10212 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10213 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10214 	INIT_LIST_HEAD(&hba->clk_list_head);
10215 	spin_lock_init(&hba->outstanding_lock);
10216 
10217 	*hba_handle = hba;
10218 
10219 out_error:
10220 	return err;
10221 }
10222 EXPORT_SYMBOL(ufshcd_alloc_host);
10223 
10224 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10225 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10226 				     const struct blk_mq_queue_data *qd)
10227 {
10228 	WARN_ON_ONCE(true);
10229 	return BLK_STS_NOTSUPP;
10230 }
10231 
10232 static const struct blk_mq_ops ufshcd_tmf_ops = {
10233 	.queue_rq = ufshcd_queue_tmf,
10234 };
10235 
10236 /**
10237  * ufshcd_init - Driver initialization routine
10238  * @hba: per-adapter instance
10239  * @mmio_base: base register address
10240  * @irq: Interrupt line of device
10241  *
10242  * Return: 0 on success, non-zero value on failure.
10243  */
10244 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10245 {
10246 	int err;
10247 	struct Scsi_Host *host = hba->host;
10248 	struct device *dev = hba->dev;
10249 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10250 
10251 	/*
10252 	 * dev_set_drvdata() must be called before any callbacks are registered
10253 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10254 	 * sysfs).
10255 	 */
10256 	dev_set_drvdata(dev, hba);
10257 
10258 	if (!mmio_base) {
10259 		dev_err(hba->dev,
10260 		"Invalid memory reference for mmio_base is NULL\n");
10261 		err = -ENODEV;
10262 		goto out_error;
10263 	}
10264 
10265 	hba->mmio_base = mmio_base;
10266 	hba->irq = irq;
10267 	hba->vps = &ufs_hba_vps;
10268 
10269 	err = ufshcd_hba_init(hba);
10270 	if (err)
10271 		goto out_error;
10272 
10273 	/* Read capabilities registers */
10274 	err = ufshcd_hba_capabilities(hba);
10275 	if (err)
10276 		goto out_disable;
10277 
10278 	/* Get UFS version supported by the controller */
10279 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10280 
10281 	/* Get Interrupt bit mask per version */
10282 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10283 
10284 	err = ufshcd_set_dma_mask(hba);
10285 	if (err) {
10286 		dev_err(hba->dev, "set dma mask failed\n");
10287 		goto out_disable;
10288 	}
10289 
10290 	/* Allocate memory for host memory space */
10291 	err = ufshcd_memory_alloc(hba);
10292 	if (err) {
10293 		dev_err(hba->dev, "Memory allocation failed\n");
10294 		goto out_disable;
10295 	}
10296 
10297 	/* Configure LRB */
10298 	ufshcd_host_memory_configure(hba);
10299 
10300 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10301 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10302 	host->max_id = UFSHCD_MAX_ID;
10303 	host->max_lun = UFS_MAX_LUNS;
10304 	host->max_channel = UFSHCD_MAX_CHANNEL;
10305 	host->unique_id = host->host_no;
10306 	host->max_cmd_len = UFS_CDB_SIZE;
10307 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10308 
10309 	hba->max_pwr_info.is_valid = false;
10310 
10311 	/* Initialize work queues */
10312 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10313 		 hba->host->host_no);
10314 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10315 	if (!hba->eh_wq) {
10316 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10317 			__func__);
10318 		err = -ENOMEM;
10319 		goto out_disable;
10320 	}
10321 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10322 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10323 
10324 	sema_init(&hba->host_sem, 1);
10325 
10326 	/* Initialize UIC command mutex */
10327 	mutex_init(&hba->uic_cmd_mutex);
10328 
10329 	/* Initialize mutex for device management commands */
10330 	mutex_init(&hba->dev_cmd.lock);
10331 
10332 	/* Initialize mutex for exception event control */
10333 	mutex_init(&hba->ee_ctrl_mutex);
10334 
10335 	mutex_init(&hba->wb_mutex);
10336 	init_rwsem(&hba->clk_scaling_lock);
10337 
10338 	ufshcd_init_clk_gating(hba);
10339 
10340 	ufshcd_init_clk_scaling(hba);
10341 
10342 	/*
10343 	 * In order to avoid any spurious interrupt immediately after
10344 	 * registering UFS controller interrupt handler, clear any pending UFS
10345 	 * interrupt status and disable all the UFS interrupts.
10346 	 */
10347 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10348 		      REG_INTERRUPT_STATUS);
10349 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10350 	/*
10351 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10352 	 * status is cleared before registering UFS interrupt handler.
10353 	 */
10354 	mb();
10355 
10356 	/* IRQ registration */
10357 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10358 	if (err) {
10359 		dev_err(hba->dev, "request irq failed\n");
10360 		goto out_disable;
10361 	} else {
10362 		hba->is_irq_enabled = true;
10363 	}
10364 
10365 	if (!is_mcq_supported(hba)) {
10366 		err = scsi_add_host(host, hba->dev);
10367 		if (err) {
10368 			dev_err(hba->dev, "scsi_add_host failed\n");
10369 			goto out_disable;
10370 		}
10371 	}
10372 
10373 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10374 		.nr_hw_queues	= 1,
10375 		.queue_depth	= hba->nutmrs,
10376 		.ops		= &ufshcd_tmf_ops,
10377 		.flags		= BLK_MQ_F_NO_SCHED,
10378 	};
10379 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10380 	if (err < 0)
10381 		goto out_remove_scsi_host;
10382 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10383 	if (IS_ERR(hba->tmf_queue)) {
10384 		err = PTR_ERR(hba->tmf_queue);
10385 		goto free_tmf_tag_set;
10386 	}
10387 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10388 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10389 	if (!hba->tmf_rqs) {
10390 		err = -ENOMEM;
10391 		goto free_tmf_queue;
10392 	}
10393 
10394 	/* Reset the attached device */
10395 	ufshcd_device_reset(hba);
10396 
10397 	ufshcd_init_crypto(hba);
10398 
10399 	/* Host controller enable */
10400 	err = ufshcd_hba_enable(hba);
10401 	if (err) {
10402 		dev_err(hba->dev, "Host controller enable failed\n");
10403 		ufshcd_print_evt_hist(hba);
10404 		ufshcd_print_host_state(hba);
10405 		goto free_tmf_queue;
10406 	}
10407 
10408 	/*
10409 	 * Set the default power management level for runtime and system PM.
10410 	 * Default power saving mode is to keep UFS link in Hibern8 state
10411 	 * and UFS device in sleep state.
10412 	 */
10413 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10414 						UFS_SLEEP_PWR_MODE,
10415 						UIC_LINK_HIBERN8_STATE);
10416 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10417 						UFS_SLEEP_PWR_MODE,
10418 						UIC_LINK_HIBERN8_STATE);
10419 
10420 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10421 			  ufshcd_rpm_dev_flush_recheck_work);
10422 
10423 	/* Set the default auto-hiberate idle timer value to 150 ms */
10424 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10425 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10426 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10427 	}
10428 
10429 	/* Hold auto suspend until async scan completes */
10430 	pm_runtime_get_sync(dev);
10431 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10432 	/*
10433 	 * We are assuming that device wasn't put in sleep/power-down
10434 	 * state exclusively during the boot stage before kernel.
10435 	 * This assumption helps avoid doing link startup twice during
10436 	 * ufshcd_probe_hba().
10437 	 */
10438 	ufshcd_set_ufs_dev_active(hba);
10439 
10440 	async_schedule(ufshcd_async_scan, hba);
10441 	ufs_sysfs_add_nodes(hba->dev);
10442 
10443 	device_enable_async_suspend(dev);
10444 	return 0;
10445 
10446 free_tmf_queue:
10447 	blk_mq_destroy_queue(hba->tmf_queue);
10448 	blk_put_queue(hba->tmf_queue);
10449 free_tmf_tag_set:
10450 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10451 out_remove_scsi_host:
10452 	scsi_remove_host(hba->host);
10453 out_disable:
10454 	hba->is_irq_enabled = false;
10455 	ufshcd_hba_exit(hba);
10456 out_error:
10457 	return err;
10458 }
10459 EXPORT_SYMBOL_GPL(ufshcd_init);
10460 
10461 void ufshcd_resume_complete(struct device *dev)
10462 {
10463 	struct ufs_hba *hba = dev_get_drvdata(dev);
10464 
10465 	if (hba->complete_put) {
10466 		ufshcd_rpm_put(hba);
10467 		hba->complete_put = false;
10468 	}
10469 }
10470 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10471 
10472 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10473 {
10474 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10475 	enum ufs_dev_pwr_mode dev_pwr_mode;
10476 	enum uic_link_state link_state;
10477 	unsigned long flags;
10478 	bool res;
10479 
10480 	spin_lock_irqsave(&dev->power.lock, flags);
10481 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10482 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10483 	res = pm_runtime_suspended(dev) &&
10484 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10485 	      hba->uic_link_state == link_state &&
10486 	      !hba->dev_info.b_rpm_dev_flush_capable;
10487 	spin_unlock_irqrestore(&dev->power.lock, flags);
10488 
10489 	return res;
10490 }
10491 
10492 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10493 {
10494 	struct ufs_hba *hba = dev_get_drvdata(dev);
10495 	int ret;
10496 
10497 	/*
10498 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10499 	 * are same. And it doesn't wake up the device for system-suspend
10500 	 * if it's runtime suspended. But ufs doesn't follow that.
10501 	 * Refer ufshcd_resume_complete()
10502 	 */
10503 	if (hba->ufs_device_wlun) {
10504 		/* Prevent runtime suspend */
10505 		ufshcd_rpm_get_noresume(hba);
10506 		/*
10507 		 * Check if already runtime suspended in same state as system
10508 		 * suspend would be.
10509 		 */
10510 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10511 			/* RPM state is not ok for SPM, so runtime resume */
10512 			ret = ufshcd_rpm_resume(hba);
10513 			if (ret < 0 && ret != -EACCES) {
10514 				ufshcd_rpm_put(hba);
10515 				return ret;
10516 			}
10517 		}
10518 		hba->complete_put = true;
10519 	}
10520 	return 0;
10521 }
10522 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10523 
10524 int ufshcd_suspend_prepare(struct device *dev)
10525 {
10526 	return __ufshcd_suspend_prepare(dev, true);
10527 }
10528 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10529 
10530 #ifdef CONFIG_PM_SLEEP
10531 static int ufshcd_wl_poweroff(struct device *dev)
10532 {
10533 	struct scsi_device *sdev = to_scsi_device(dev);
10534 	struct ufs_hba *hba = shost_priv(sdev->host);
10535 
10536 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10537 	return 0;
10538 }
10539 #endif
10540 
10541 static int ufshcd_wl_probe(struct device *dev)
10542 {
10543 	struct scsi_device *sdev = to_scsi_device(dev);
10544 
10545 	if (!is_device_wlun(sdev))
10546 		return -ENODEV;
10547 
10548 	blk_pm_runtime_init(sdev->request_queue, dev);
10549 	pm_runtime_set_autosuspend_delay(dev, 0);
10550 	pm_runtime_allow(dev);
10551 
10552 	return  0;
10553 }
10554 
10555 static int ufshcd_wl_remove(struct device *dev)
10556 {
10557 	pm_runtime_forbid(dev);
10558 	return 0;
10559 }
10560 
10561 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10562 #ifdef CONFIG_PM_SLEEP
10563 	.suspend = ufshcd_wl_suspend,
10564 	.resume = ufshcd_wl_resume,
10565 	.freeze = ufshcd_wl_suspend,
10566 	.thaw = ufshcd_wl_resume,
10567 	.poweroff = ufshcd_wl_poweroff,
10568 	.restore = ufshcd_wl_resume,
10569 #endif
10570 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10571 };
10572 
10573 static void ufshcd_check_header_layout(void)
10574 {
10575 	/*
10576 	 * gcc compilers before version 10 cannot do constant-folding for
10577 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10578 	 * before.
10579 	 */
10580 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10581 		return;
10582 
10583 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10584 				.cci = 3})[0] != 3);
10585 
10586 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10587 				.ehs_length = 2})[1] != 2);
10588 
10589 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10590 				.enable_crypto = 1})[2]
10591 		     != 0x80);
10592 
10593 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10594 					.command_type = 5,
10595 					.data_direction = 3,
10596 					.interrupt = 1,
10597 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10598 
10599 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10600 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10601 		cpu_to_le32(0xdeadbeef));
10602 
10603 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10604 				.ocs = 4})[8] != 4);
10605 
10606 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10607 				.cds = 5})[9] != 5);
10608 
10609 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10610 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10611 		cpu_to_le32(0xbadcafe));
10612 
10613 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10614 			     .iid = 0xf })[4] != 0xf0);
10615 
10616 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10617 			     .command_set_type = 0xf })[4] != 0xf);
10618 }
10619 
10620 /*
10621  * ufs_dev_wlun_template - describes ufs device wlun
10622  * ufs-device wlun - used to send pm commands
10623  * All luns are consumers of ufs-device wlun.
10624  *
10625  * Currently, no sd driver is present for wluns.
10626  * Hence the no specific pm operations are performed.
10627  * With ufs design, SSU should be sent to ufs-device wlun.
10628  * Hence register a scsi driver for ufs wluns only.
10629  */
10630 static struct scsi_driver ufs_dev_wlun_template = {
10631 	.gendrv = {
10632 		.name = "ufs_device_wlun",
10633 		.owner = THIS_MODULE,
10634 		.probe = ufshcd_wl_probe,
10635 		.remove = ufshcd_wl_remove,
10636 		.pm = &ufshcd_wl_pm_ops,
10637 		.shutdown = ufshcd_wl_shutdown,
10638 	},
10639 };
10640 
10641 static int __init ufshcd_core_init(void)
10642 {
10643 	int ret;
10644 
10645 	ufshcd_check_header_layout();
10646 
10647 	ufs_debugfs_init();
10648 
10649 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10650 	if (ret)
10651 		ufs_debugfs_exit();
10652 	return ret;
10653 }
10654 
10655 static void __exit ufshcd_core_exit(void)
10656 {
10657 	ufs_debugfs_exit();
10658 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10659 }
10660 
10661 module_init(ufshcd_core_init);
10662 module_exit(ufshcd_core_exit);
10663 
10664 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10665 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10666 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10667 MODULE_SOFTDEP("pre: governor_simpleondemand");
10668 MODULE_LICENSE("GPL");
10669