xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 3b73c45e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 /* UIC command timeout, unit: ms */
47 #define UIC_CMD_TIMEOUT	500
48 
49 /* NOP OUT retries waiting for NOP IN response */
50 #define NOP_OUT_RETRIES    10
51 /* Timeout after 50 msecs if NOP OUT hangs without response */
52 #define NOP_OUT_TIMEOUT    50 /* msecs */
53 
54 /* Query request retries */
55 #define QUERY_REQ_RETRIES 3
56 /* Query request timeout */
57 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
58 
59 /* Task management command timeout */
60 #define TM_CMD_TIMEOUT	100 /* msecs */
61 
62 /* maximum number of retries for a general UIC command  */
63 #define UFS_UIC_COMMAND_RETRIES 3
64 
65 /* maximum number of link-startup retries */
66 #define DME_LINKSTARTUP_RETRIES 3
67 
68 /* maximum number of reset retries before giving up */
69 #define MAX_HOST_RESET_RETRIES 5
70 
71 /* Maximum number of error handler retries before giving up */
72 #define MAX_ERR_HANDLER_RETRIES 5
73 
74 /* Expose the flag value from utp_upiu_query.value */
75 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
76 
77 /* Interrupt aggregation default timeout, unit: 40us */
78 #define INT_AGGR_DEF_TO	0x02
79 
80 /* default delay of autosuspend: 2000 ms */
81 #define RPM_AUTOSUSPEND_DELAY_MS 2000
82 
83 /* Default delay of RPM device flush delayed work */
84 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
85 
86 /* Default value of wait time before gating device ref clock */
87 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
88 
89 /* Polling time to wait for fDeviceInit */
90 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
91 
92 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
93 	({                                                              \
94 		int _ret;                                               \
95 		if (_on)                                                \
96 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
97 		else                                                    \
98 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
99 		_ret;                                                   \
100 	})
101 
102 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
103 	size_t __len = (len);                                            \
104 	print_hex_dump(KERN_ERR, prefix_str,                             \
105 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
106 		       16, 4, buf, __len, false);                        \
107 } while (0)
108 
109 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
110 		     const char *prefix)
111 {
112 	u32 *regs;
113 	size_t pos;
114 
115 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
116 		return -EINVAL;
117 
118 	regs = kzalloc(len, GFP_ATOMIC);
119 	if (!regs)
120 		return -ENOMEM;
121 
122 	for (pos = 0; pos < len; pos += 4) {
123 		if (offset == 0 &&
124 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
125 		    pos <= REG_UIC_ERROR_CODE_DME)
126 			continue;
127 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
128 	}
129 
130 	ufshcd_hex_dump(prefix, regs, len);
131 	kfree(regs);
132 
133 	return 0;
134 }
135 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
136 
137 enum {
138 	UFSHCD_MAX_CHANNEL	= 0,
139 	UFSHCD_MAX_ID		= 1,
140 	UFSHCD_NUM_RESERVED	= 1,
141 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
142 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
143 };
144 
145 static const char *const ufshcd_state_name[] = {
146 	[UFSHCD_STATE_RESET]			= "reset",
147 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
148 	[UFSHCD_STATE_ERROR]			= "error",
149 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
150 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
151 };
152 
153 /* UFSHCD error handling flags */
154 enum {
155 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
156 };
157 
158 /* UFSHCD UIC layer error flags */
159 enum {
160 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
161 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
162 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
163 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
164 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
165 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
166 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
167 };
168 
169 #define ufshcd_set_eh_in_progress(h) \
170 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
171 #define ufshcd_eh_in_progress(h) \
172 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
173 #define ufshcd_clear_eh_in_progress(h) \
174 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
175 
176 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
177 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
178 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
179 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
180 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
181 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
182 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
183 	/*
184 	 * For DeepSleep, the link is first put in hibern8 and then off.
185 	 * Leaving the link in hibern8 is not supported.
186 	 */
187 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
188 };
189 
190 static inline enum ufs_dev_pwr_mode
191 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
192 {
193 	return ufs_pm_lvl_states[lvl].dev_state;
194 }
195 
196 static inline enum uic_link_state
197 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
198 {
199 	return ufs_pm_lvl_states[lvl].link_state;
200 }
201 
202 static inline enum ufs_pm_level
203 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
204 					enum uic_link_state link_state)
205 {
206 	enum ufs_pm_level lvl;
207 
208 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
209 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
210 			(ufs_pm_lvl_states[lvl].link_state == link_state))
211 			return lvl;
212 	}
213 
214 	/* if no match found, return the level 0 */
215 	return UFS_PM_LVL_0;
216 }
217 
218 static const struct ufs_dev_quirk ufs_fixups[] = {
219 	/* UFS cards deviations table */
220 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
221 	  .model = UFS_ANY_MODEL,
222 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
223 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
224 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
225 	  .model = UFS_ANY_MODEL,
226 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
227 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
228 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
229 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
230 	  .model = UFS_ANY_MODEL,
231 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
232 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
233 	  .model = "hB8aL1" /*H28U62301AMR*/,
234 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
235 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
236 	  .model = UFS_ANY_MODEL,
237 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
238 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
239 	  .model = "THGLF2G9C8KBADG",
240 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
241 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
242 	  .model = "THGLF2G9D8KBADG",
243 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
244 	{}
245 };
246 
247 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
248 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
249 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
250 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
251 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
252 static void ufshcd_hba_exit(struct ufs_hba *hba);
253 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
254 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
255 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
256 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
257 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
258 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
259 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
260 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
261 static irqreturn_t ufshcd_intr(int irq, void *__hba);
262 static int ufshcd_change_power_mode(struct ufs_hba *hba,
263 			     struct ufs_pa_layer_attr *pwr_mode);
264 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
265 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
266 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
267 					 struct ufs_vreg *vreg);
268 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
269 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
270 						 bool enable);
271 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
272 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
273 
274 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
275 {
276 	if (!hba->is_irq_enabled) {
277 		enable_irq(hba->irq);
278 		hba->is_irq_enabled = true;
279 	}
280 }
281 
282 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
283 {
284 	if (hba->is_irq_enabled) {
285 		disable_irq(hba->irq);
286 		hba->is_irq_enabled = false;
287 	}
288 }
289 
290 static void ufshcd_configure_wb(struct ufs_hba *hba)
291 {
292 	if (!ufshcd_is_wb_allowed(hba))
293 		return;
294 
295 	ufshcd_wb_toggle(hba, true);
296 
297 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
298 
299 	if (ufshcd_is_wb_buf_flush_allowed(hba))
300 		ufshcd_wb_toggle_buf_flush(hba, true);
301 }
302 
303 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
304 {
305 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
306 		scsi_unblock_requests(hba->host);
307 }
308 
309 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
310 {
311 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
312 		scsi_block_requests(hba->host);
313 }
314 
315 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
316 				      enum ufs_trace_str_t str_t)
317 {
318 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
319 	struct utp_upiu_header *header;
320 
321 	if (!trace_ufshcd_upiu_enabled())
322 		return;
323 
324 	if (str_t == UFS_CMD_SEND)
325 		header = &rq->header;
326 	else
327 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
328 
329 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
330 			  UFS_TSF_CDB);
331 }
332 
333 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
334 					enum ufs_trace_str_t str_t,
335 					struct utp_upiu_req *rq_rsp)
336 {
337 	if (!trace_ufshcd_upiu_enabled())
338 		return;
339 
340 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
341 			  &rq_rsp->qr, UFS_TSF_OSF);
342 }
343 
344 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
345 				     enum ufs_trace_str_t str_t)
346 {
347 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
348 
349 	if (!trace_ufshcd_upiu_enabled())
350 		return;
351 
352 	if (str_t == UFS_TM_SEND)
353 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
354 				  &descp->upiu_req.req_header,
355 				  &descp->upiu_req.input_param1,
356 				  UFS_TSF_TM_INPUT);
357 	else
358 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
359 				  &descp->upiu_rsp.rsp_header,
360 				  &descp->upiu_rsp.output_param1,
361 				  UFS_TSF_TM_OUTPUT);
362 }
363 
364 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
365 					 const struct uic_command *ucmd,
366 					 enum ufs_trace_str_t str_t)
367 {
368 	u32 cmd;
369 
370 	if (!trace_ufshcd_uic_command_enabled())
371 		return;
372 
373 	if (str_t == UFS_CMD_SEND)
374 		cmd = ucmd->command;
375 	else
376 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
377 
378 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
379 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
380 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
381 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
382 }
383 
384 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
385 				     enum ufs_trace_str_t str_t)
386 {
387 	u64 lba = 0;
388 	u8 opcode = 0, group_id = 0;
389 	u32 intr, doorbell;
390 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
391 	struct scsi_cmnd *cmd = lrbp->cmd;
392 	struct request *rq = scsi_cmd_to_rq(cmd);
393 	int transfer_len = -1;
394 
395 	if (!cmd)
396 		return;
397 
398 	/* trace UPIU also */
399 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
400 	if (!trace_ufshcd_command_enabled())
401 		return;
402 
403 	opcode = cmd->cmnd[0];
404 
405 	if (opcode == READ_10 || opcode == WRITE_10) {
406 		/*
407 		 * Currently we only fully trace read(10) and write(10) commands
408 		 */
409 		transfer_len =
410 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
411 		lba = scsi_get_lba(cmd);
412 		if (opcode == WRITE_10)
413 			group_id = lrbp->cmd->cmnd[6];
414 	} else if (opcode == UNMAP) {
415 		/*
416 		 * The number of Bytes to be unmapped beginning with the lba.
417 		 */
418 		transfer_len = blk_rq_bytes(rq);
419 		lba = scsi_get_lba(cmd);
420 	}
421 
422 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
423 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
424 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
425 			doorbell, transfer_len, intr, lba, opcode, group_id);
426 }
427 
428 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
429 {
430 	struct ufs_clk_info *clki;
431 	struct list_head *head = &hba->clk_list_head;
432 
433 	if (list_empty(head))
434 		return;
435 
436 	list_for_each_entry(clki, head, list) {
437 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
438 				clki->max_freq)
439 			dev_err(hba->dev, "clk: %s, rate: %u\n",
440 					clki->name, clki->curr_freq);
441 	}
442 }
443 
444 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
445 			     const char *err_name)
446 {
447 	int i;
448 	bool found = false;
449 	const struct ufs_event_hist *e;
450 
451 	if (id >= UFS_EVT_CNT)
452 		return;
453 
454 	e = &hba->ufs_stats.event[id];
455 
456 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
457 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
458 
459 		if (e->tstamp[p] == 0)
460 			continue;
461 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
462 			e->val[p], div_u64(e->tstamp[p], 1000));
463 		found = true;
464 	}
465 
466 	if (!found)
467 		dev_err(hba->dev, "No record of %s\n", err_name);
468 	else
469 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
470 }
471 
472 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
473 {
474 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
475 
476 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
477 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
478 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
479 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
480 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
481 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
482 			 "auto_hibern8_err");
483 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
484 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
485 			 "link_startup_fail");
486 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
487 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
488 			 "suspend_fail");
489 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
490 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
491 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
492 
493 	ufshcd_vops_dbg_register_dump(hba);
494 }
495 
496 static
497 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
498 {
499 	const struct ufshcd_lrb *lrbp;
500 	int prdt_length;
501 	int tag;
502 
503 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
504 		lrbp = &hba->lrb[tag];
505 
506 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
507 				tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
508 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
509 				tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
510 		dev_err(hba->dev,
511 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
512 			tag, (u64)lrbp->utrd_dma_addr);
513 
514 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
515 				sizeof(struct utp_transfer_req_desc));
516 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
517 			(u64)lrbp->ucd_req_dma_addr);
518 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
519 				sizeof(struct utp_upiu_req));
520 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
521 			(u64)lrbp->ucd_rsp_dma_addr);
522 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
523 				sizeof(struct utp_upiu_rsp));
524 
525 		prdt_length = le16_to_cpu(
526 			lrbp->utr_descriptor_ptr->prd_table_length);
527 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
528 			prdt_length /= sizeof(struct ufshcd_sg_entry);
529 
530 		dev_err(hba->dev,
531 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
532 			tag, prdt_length,
533 			(u64)lrbp->ucd_prdt_dma_addr);
534 
535 		if (pr_prdt)
536 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
537 				sizeof(struct ufshcd_sg_entry) * prdt_length);
538 	}
539 }
540 
541 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
542 {
543 	int tag;
544 
545 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
546 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
547 
548 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
549 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
550 	}
551 }
552 
553 static void ufshcd_print_host_state(struct ufs_hba *hba)
554 {
555 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
556 
557 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
558 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
559 		hba->outstanding_reqs, hba->outstanding_tasks);
560 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
561 		hba->saved_err, hba->saved_uic_err);
562 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
563 		hba->curr_dev_pwr_mode, hba->uic_link_state);
564 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
565 		hba->pm_op_in_progress, hba->is_sys_suspended);
566 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
567 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
568 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
569 	dev_err(hba->dev,
570 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
571 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
572 		hba->ufs_stats.hibern8_exit_cnt);
573 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
574 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
575 		hba->ufs_stats.last_intr_status);
576 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
577 		hba->eh_flags, hba->req_abort_count);
578 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
579 		hba->ufs_version, hba->capabilities, hba->caps);
580 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
581 		hba->dev_quirks);
582 	if (sdev_ufs)
583 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
584 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
585 
586 	ufshcd_print_clk_freqs(hba);
587 }
588 
589 /**
590  * ufshcd_print_pwr_info - print power params as saved in hba
591  * power info
592  * @hba: per-adapter instance
593  */
594 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
595 {
596 	static const char * const names[] = {
597 		"INVALID MODE",
598 		"FAST MODE",
599 		"SLOW_MODE",
600 		"INVALID MODE",
601 		"FASTAUTO_MODE",
602 		"SLOWAUTO_MODE",
603 		"INVALID MODE",
604 	};
605 
606 	/*
607 	 * Using dev_dbg to avoid messages during runtime PM to avoid
608 	 * never-ending cycles of messages written back to storage by user space
609 	 * causing runtime resume, causing more messages and so on.
610 	 */
611 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
612 		 __func__,
613 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
614 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
615 		 names[hba->pwr_info.pwr_rx],
616 		 names[hba->pwr_info.pwr_tx],
617 		 hba->pwr_info.hs_rate);
618 }
619 
620 static void ufshcd_device_reset(struct ufs_hba *hba)
621 {
622 	int err;
623 
624 	err = ufshcd_vops_device_reset(hba);
625 
626 	if (!err) {
627 		ufshcd_set_ufs_dev_active(hba);
628 		if (ufshcd_is_wb_allowed(hba)) {
629 			hba->dev_info.wb_enabled = false;
630 			hba->dev_info.wb_buf_flush_enabled = false;
631 		}
632 	}
633 	if (err != -EOPNOTSUPP)
634 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
635 }
636 
637 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
638 {
639 	if (!us)
640 		return;
641 
642 	if (us < 10)
643 		udelay(us);
644 	else
645 		usleep_range(us, us + tolerance);
646 }
647 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
648 
649 /**
650  * ufshcd_wait_for_register - wait for register value to change
651  * @hba: per-adapter interface
652  * @reg: mmio register offset
653  * @mask: mask to apply to the read register value
654  * @val: value to wait for
655  * @interval_us: polling interval in microseconds
656  * @timeout_ms: timeout in milliseconds
657  *
658  * Return:
659  * -ETIMEDOUT on error, zero on success.
660  */
661 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
662 				u32 val, unsigned long interval_us,
663 				unsigned long timeout_ms)
664 {
665 	int err = 0;
666 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
667 
668 	/* ignore bits that we don't intend to wait on */
669 	val = val & mask;
670 
671 	while ((ufshcd_readl(hba, reg) & mask) != val) {
672 		usleep_range(interval_us, interval_us + 50);
673 		if (time_after(jiffies, timeout)) {
674 			if ((ufshcd_readl(hba, reg) & mask) != val)
675 				err = -ETIMEDOUT;
676 			break;
677 		}
678 	}
679 
680 	return err;
681 }
682 
683 /**
684  * ufshcd_get_intr_mask - Get the interrupt bit mask
685  * @hba: Pointer to adapter instance
686  *
687  * Returns interrupt bit mask per version
688  */
689 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
690 {
691 	if (hba->ufs_version == ufshci_version(1, 0))
692 		return INTERRUPT_MASK_ALL_VER_10;
693 	if (hba->ufs_version <= ufshci_version(2, 0))
694 		return INTERRUPT_MASK_ALL_VER_11;
695 
696 	return INTERRUPT_MASK_ALL_VER_21;
697 }
698 
699 /**
700  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
701  * @hba: Pointer to adapter instance
702  *
703  * Returns UFSHCI version supported by the controller
704  */
705 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
706 {
707 	u32 ufshci_ver;
708 
709 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
710 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
711 	else
712 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
713 
714 	/*
715 	 * UFSHCI v1.x uses a different version scheme, in order
716 	 * to allow the use of comparisons with the ufshci_version
717 	 * function, we convert it to the same scheme as ufs 2.0+.
718 	 */
719 	if (ufshci_ver & 0x00010000)
720 		return ufshci_version(1, ufshci_ver & 0x00000100);
721 
722 	return ufshci_ver;
723 }
724 
725 /**
726  * ufshcd_is_device_present - Check if any device connected to
727  *			      the host controller
728  * @hba: pointer to adapter instance
729  *
730  * Returns true if device present, false if no device detected
731  */
732 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
733 {
734 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
735 }
736 
737 /**
738  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
739  * @lrbp: pointer to local command reference block
740  *
741  * This function is used to get the OCS field from UTRD
742  * Returns the OCS field in the UTRD
743  */
744 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
745 {
746 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
747 }
748 
749 /**
750  * ufshcd_utrl_clear() - Clear requests from the controller request list.
751  * @hba: per adapter instance
752  * @mask: mask with one bit set for each request to be cleared
753  */
754 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
755 {
756 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
757 		mask = ~mask;
758 	/*
759 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
760 	 * Register (UTRLCLR): This field is bit significant. Each bit
761 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
762 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
763 	 * by host software to indicate to the host controller that a transfer
764 	 * request slot is cleared. The host controller
765 	 * shall free up any resources associated to the request slot
766 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
767 	 * host software indicates no change to request slots by setting the
768 	 * associated bits in this field to ‘1’. Bits in this field shall only
769 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
770 	 */
771 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
772 }
773 
774 /**
775  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
776  * @hba: per adapter instance
777  * @pos: position of the bit to be cleared
778  */
779 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
780 {
781 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
782 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
783 	else
784 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
785 }
786 
787 /**
788  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
789  * @reg: Register value of host controller status
790  *
791  * Returns integer, 0 on Success and positive value if failed
792  */
793 static inline int ufshcd_get_lists_status(u32 reg)
794 {
795 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
796 }
797 
798 /**
799  * ufshcd_get_uic_cmd_result - Get the UIC command result
800  * @hba: Pointer to adapter instance
801  *
802  * This function gets the result of UIC command completion
803  * Returns 0 on success, non zero value on error
804  */
805 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
806 {
807 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
808 	       MASK_UIC_COMMAND_RESULT;
809 }
810 
811 /**
812  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
813  * @hba: Pointer to adapter instance
814  *
815  * This function gets UIC command argument3
816  * Returns 0 on success, non zero value on error
817  */
818 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
819 {
820 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
821 }
822 
823 /**
824  * ufshcd_get_req_rsp - returns the TR response transaction type
825  * @ucd_rsp_ptr: pointer to response UPIU
826  */
827 static inline int
828 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
829 {
830 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
831 }
832 
833 /**
834  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
835  * @ucd_rsp_ptr: pointer to response UPIU
836  *
837  * This function gets the response status and scsi_status from response UPIU
838  * Returns the response result code.
839  */
840 static inline int
841 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
842 {
843 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
844 }
845 
846 /*
847  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
848  *				from response UPIU
849  * @ucd_rsp_ptr: pointer to response UPIU
850  *
851  * Return the data segment length.
852  */
853 static inline unsigned int
854 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
855 {
856 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
857 		MASK_RSP_UPIU_DATA_SEG_LEN;
858 }
859 
860 /**
861  * ufshcd_is_exception_event - Check if the device raised an exception event
862  * @ucd_rsp_ptr: pointer to response UPIU
863  *
864  * The function checks if the device raised an exception event indicated in
865  * the Device Information field of response UPIU.
866  *
867  * Returns true if exception is raised, false otherwise.
868  */
869 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
870 {
871 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
872 			MASK_RSP_EXCEPTION_EVENT;
873 }
874 
875 /**
876  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
877  * @hba: per adapter instance
878  */
879 static inline void
880 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
881 {
882 	ufshcd_writel(hba, INT_AGGR_ENABLE |
883 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
884 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
885 }
886 
887 /**
888  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
889  * @hba: per adapter instance
890  * @cnt: Interrupt aggregation counter threshold
891  * @tmout: Interrupt aggregation timeout value
892  */
893 static inline void
894 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
895 {
896 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
897 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
898 		      INT_AGGR_TIMEOUT_VAL(tmout),
899 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
900 }
901 
902 /**
903  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
904  * @hba: per adapter instance
905  */
906 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
907 {
908 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
909 }
910 
911 /**
912  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
913  *			When run-stop registers are set to 1, it indicates the
914  *			host controller that it can process the requests
915  * @hba: per adapter instance
916  */
917 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
918 {
919 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
920 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
921 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
922 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
923 }
924 
925 /**
926  * ufshcd_hba_start - Start controller initialization sequence
927  * @hba: per adapter instance
928  */
929 static inline void ufshcd_hba_start(struct ufs_hba *hba)
930 {
931 	u32 val = CONTROLLER_ENABLE;
932 
933 	if (ufshcd_crypto_enable(hba))
934 		val |= CRYPTO_GENERAL_ENABLE;
935 
936 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
937 }
938 
939 /**
940  * ufshcd_is_hba_active - Get controller state
941  * @hba: per adapter instance
942  *
943  * Returns true if and only if the controller is active.
944  */
945 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
946 {
947 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
948 }
949 
950 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
951 {
952 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
953 	if (hba->ufs_version <= ufshci_version(1, 1))
954 		return UFS_UNIPRO_VER_1_41;
955 	else
956 		return UFS_UNIPRO_VER_1_6;
957 }
958 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
959 
960 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
961 {
962 	/*
963 	 * If both host and device support UniPro ver1.6 or later, PA layer
964 	 * parameters tuning happens during link startup itself.
965 	 *
966 	 * We can manually tune PA layer parameters if either host or device
967 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
968 	 * logic simple, we will only do manual tuning if local unipro version
969 	 * doesn't support ver1.6 or later.
970 	 */
971 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
972 }
973 
974 /**
975  * ufshcd_set_clk_freq - set UFS controller clock frequencies
976  * @hba: per adapter instance
977  * @scale_up: If True, set max possible frequency othewise set low frequency
978  *
979  * Returns 0 if successful
980  * Returns < 0 for any other errors
981  */
982 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
983 {
984 	int ret = 0;
985 	struct ufs_clk_info *clki;
986 	struct list_head *head = &hba->clk_list_head;
987 
988 	if (list_empty(head))
989 		goto out;
990 
991 	list_for_each_entry(clki, head, list) {
992 		if (!IS_ERR_OR_NULL(clki->clk)) {
993 			if (scale_up && clki->max_freq) {
994 				if (clki->curr_freq == clki->max_freq)
995 					continue;
996 
997 				ret = clk_set_rate(clki->clk, clki->max_freq);
998 				if (ret) {
999 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1000 						__func__, clki->name,
1001 						clki->max_freq, ret);
1002 					break;
1003 				}
1004 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1005 						"scaled up", clki->name,
1006 						clki->curr_freq,
1007 						clki->max_freq);
1008 
1009 				clki->curr_freq = clki->max_freq;
1010 
1011 			} else if (!scale_up && clki->min_freq) {
1012 				if (clki->curr_freq == clki->min_freq)
1013 					continue;
1014 
1015 				ret = clk_set_rate(clki->clk, clki->min_freq);
1016 				if (ret) {
1017 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1018 						__func__, clki->name,
1019 						clki->min_freq, ret);
1020 					break;
1021 				}
1022 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1023 						"scaled down", clki->name,
1024 						clki->curr_freq,
1025 						clki->min_freq);
1026 				clki->curr_freq = clki->min_freq;
1027 			}
1028 		}
1029 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1030 				clki->name, clk_get_rate(clki->clk));
1031 	}
1032 
1033 out:
1034 	return ret;
1035 }
1036 
1037 /**
1038  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1039  * @hba: per adapter instance
1040  * @scale_up: True if scaling up and false if scaling down
1041  *
1042  * Returns 0 if successful
1043  * Returns < 0 for any other errors
1044  */
1045 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1046 {
1047 	int ret = 0;
1048 	ktime_t start = ktime_get();
1049 
1050 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1051 	if (ret)
1052 		goto out;
1053 
1054 	ret = ufshcd_set_clk_freq(hba, scale_up);
1055 	if (ret)
1056 		goto out;
1057 
1058 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1059 	if (ret)
1060 		ufshcd_set_clk_freq(hba, !scale_up);
1061 
1062 out:
1063 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1064 			(scale_up ? "up" : "down"),
1065 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1066 	return ret;
1067 }
1068 
1069 /**
1070  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1071  * @hba: per adapter instance
1072  * @scale_up: True if scaling up and false if scaling down
1073  *
1074  * Returns true if scaling is required, false otherwise.
1075  */
1076 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1077 					       bool scale_up)
1078 {
1079 	struct ufs_clk_info *clki;
1080 	struct list_head *head = &hba->clk_list_head;
1081 
1082 	if (list_empty(head))
1083 		return false;
1084 
1085 	list_for_each_entry(clki, head, list) {
1086 		if (!IS_ERR_OR_NULL(clki->clk)) {
1087 			if (scale_up && clki->max_freq) {
1088 				if (clki->curr_freq == clki->max_freq)
1089 					continue;
1090 				return true;
1091 			} else if (!scale_up && clki->min_freq) {
1092 				if (clki->curr_freq == clki->min_freq)
1093 					continue;
1094 				return true;
1095 			}
1096 		}
1097 	}
1098 
1099 	return false;
1100 }
1101 
1102 /*
1103  * Determine the number of pending commands by counting the bits in the SCSI
1104  * device budget maps. This approach has been selected because a bit is set in
1105  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1106  * flag. The host_self_blocked flag can be modified by calling
1107  * scsi_block_requests() or scsi_unblock_requests().
1108  */
1109 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1110 {
1111 	const struct scsi_device *sdev;
1112 	u32 pending = 0;
1113 
1114 	lockdep_assert_held(hba->host->host_lock);
1115 	__shost_for_each_device(sdev, hba->host)
1116 		pending += sbitmap_weight(&sdev->budget_map);
1117 
1118 	return pending;
1119 }
1120 
1121 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1122 					u64 wait_timeout_us)
1123 {
1124 	unsigned long flags;
1125 	int ret = 0;
1126 	u32 tm_doorbell;
1127 	u32 tr_pending;
1128 	bool timeout = false, do_last_check = false;
1129 	ktime_t start;
1130 
1131 	ufshcd_hold(hba, false);
1132 	spin_lock_irqsave(hba->host->host_lock, flags);
1133 	/*
1134 	 * Wait for all the outstanding tasks/transfer requests.
1135 	 * Verify by checking the doorbell registers are clear.
1136 	 */
1137 	start = ktime_get();
1138 	do {
1139 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1140 			ret = -EBUSY;
1141 			goto out;
1142 		}
1143 
1144 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1145 		tr_pending = ufshcd_pending_cmds(hba);
1146 		if (!tm_doorbell && !tr_pending) {
1147 			timeout = false;
1148 			break;
1149 		} else if (do_last_check) {
1150 			break;
1151 		}
1152 
1153 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1154 		schedule();
1155 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1156 		    wait_timeout_us) {
1157 			timeout = true;
1158 			/*
1159 			 * We might have scheduled out for long time so make
1160 			 * sure to check if doorbells are cleared by this time
1161 			 * or not.
1162 			 */
1163 			do_last_check = true;
1164 		}
1165 		spin_lock_irqsave(hba->host->host_lock, flags);
1166 	} while (tm_doorbell || tr_pending);
1167 
1168 	if (timeout) {
1169 		dev_err(hba->dev,
1170 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1171 			__func__, tm_doorbell, tr_pending);
1172 		ret = -EBUSY;
1173 	}
1174 out:
1175 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1176 	ufshcd_release(hba);
1177 	return ret;
1178 }
1179 
1180 /**
1181  * ufshcd_scale_gear - scale up/down UFS gear
1182  * @hba: per adapter instance
1183  * @scale_up: True for scaling up gear and false for scaling down
1184  *
1185  * Returns 0 for success,
1186  * Returns -EBUSY if scaling can't happen at this time
1187  * Returns non-zero for any other errors
1188  */
1189 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1190 {
1191 	int ret = 0;
1192 	struct ufs_pa_layer_attr new_pwr_info;
1193 
1194 	if (scale_up) {
1195 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1196 		       sizeof(struct ufs_pa_layer_attr));
1197 	} else {
1198 		memcpy(&new_pwr_info, &hba->pwr_info,
1199 		       sizeof(struct ufs_pa_layer_attr));
1200 
1201 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1202 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1203 			/* save the current power mode */
1204 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1205 				&hba->pwr_info,
1206 				sizeof(struct ufs_pa_layer_attr));
1207 
1208 			/* scale down gear */
1209 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1210 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1211 		}
1212 	}
1213 
1214 	/* check if the power mode needs to be changed or not? */
1215 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1216 	if (ret)
1217 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1218 			__func__, ret,
1219 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1220 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1221 
1222 	return ret;
1223 }
1224 
1225 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1226 {
1227 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1228 	int ret = 0;
1229 	/*
1230 	 * make sure that there are no outstanding requests when
1231 	 * clock scaling is in progress
1232 	 */
1233 	ufshcd_scsi_block_requests(hba);
1234 	down_write(&hba->clk_scaling_lock);
1235 
1236 	if (!hba->clk_scaling.is_allowed ||
1237 	    ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1238 		ret = -EBUSY;
1239 		up_write(&hba->clk_scaling_lock);
1240 		ufshcd_scsi_unblock_requests(hba);
1241 		goto out;
1242 	}
1243 
1244 	/* let's not get into low power until clock scaling is completed */
1245 	ufshcd_hold(hba, false);
1246 
1247 out:
1248 	return ret;
1249 }
1250 
1251 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1252 {
1253 	if (writelock)
1254 		up_write(&hba->clk_scaling_lock);
1255 	else
1256 		up_read(&hba->clk_scaling_lock);
1257 	ufshcd_scsi_unblock_requests(hba);
1258 	ufshcd_release(hba);
1259 }
1260 
1261 /**
1262  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1263  * @hba: per adapter instance
1264  * @scale_up: True for scaling up and false for scalin down
1265  *
1266  * Returns 0 for success,
1267  * Returns -EBUSY if scaling can't happen at this time
1268  * Returns non-zero for any other errors
1269  */
1270 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1271 {
1272 	int ret = 0;
1273 	bool is_writelock = true;
1274 
1275 	ret = ufshcd_clock_scaling_prepare(hba);
1276 	if (ret)
1277 		return ret;
1278 
1279 	/* scale down the gear before scaling down clocks */
1280 	if (!scale_up) {
1281 		ret = ufshcd_scale_gear(hba, false);
1282 		if (ret)
1283 			goto out_unprepare;
1284 	}
1285 
1286 	ret = ufshcd_scale_clks(hba, scale_up);
1287 	if (ret) {
1288 		if (!scale_up)
1289 			ufshcd_scale_gear(hba, true);
1290 		goto out_unprepare;
1291 	}
1292 
1293 	/* scale up the gear after scaling up clocks */
1294 	if (scale_up) {
1295 		ret = ufshcd_scale_gear(hba, true);
1296 		if (ret) {
1297 			ufshcd_scale_clks(hba, false);
1298 			goto out_unprepare;
1299 		}
1300 	}
1301 
1302 	/* Enable Write Booster if we have scaled up else disable it */
1303 	if (ufshcd_enable_wb_if_scaling_up(hba)) {
1304 		downgrade_write(&hba->clk_scaling_lock);
1305 		is_writelock = false;
1306 		ufshcd_wb_toggle(hba, scale_up);
1307 	}
1308 
1309 out_unprepare:
1310 	ufshcd_clock_scaling_unprepare(hba, is_writelock);
1311 	return ret;
1312 }
1313 
1314 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1315 {
1316 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1317 					   clk_scaling.suspend_work);
1318 	unsigned long irq_flags;
1319 
1320 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1321 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1322 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1323 		return;
1324 	}
1325 	hba->clk_scaling.is_suspended = true;
1326 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1327 
1328 	__ufshcd_suspend_clkscaling(hba);
1329 }
1330 
1331 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1332 {
1333 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1334 					   clk_scaling.resume_work);
1335 	unsigned long irq_flags;
1336 
1337 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1338 	if (!hba->clk_scaling.is_suspended) {
1339 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1340 		return;
1341 	}
1342 	hba->clk_scaling.is_suspended = false;
1343 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1344 
1345 	devfreq_resume_device(hba->devfreq);
1346 }
1347 
1348 static int ufshcd_devfreq_target(struct device *dev,
1349 				unsigned long *freq, u32 flags)
1350 {
1351 	int ret = 0;
1352 	struct ufs_hba *hba = dev_get_drvdata(dev);
1353 	ktime_t start;
1354 	bool scale_up, sched_clk_scaling_suspend_work = false;
1355 	struct list_head *clk_list = &hba->clk_list_head;
1356 	struct ufs_clk_info *clki;
1357 	unsigned long irq_flags;
1358 
1359 	if (!ufshcd_is_clkscaling_supported(hba))
1360 		return -EINVAL;
1361 
1362 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1363 	/* Override with the closest supported frequency */
1364 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1365 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1366 	if (ufshcd_eh_in_progress(hba)) {
1367 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1368 		return 0;
1369 	}
1370 
1371 	if (!hba->clk_scaling.active_reqs)
1372 		sched_clk_scaling_suspend_work = true;
1373 
1374 	if (list_empty(clk_list)) {
1375 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1376 		goto out;
1377 	}
1378 
1379 	/* Decide based on the rounded-off frequency and update */
1380 	scale_up = *freq == clki->max_freq;
1381 	if (!scale_up)
1382 		*freq = clki->min_freq;
1383 	/* Update the frequency */
1384 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1385 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1386 		ret = 0;
1387 		goto out; /* no state change required */
1388 	}
1389 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1390 
1391 	start = ktime_get();
1392 	ret = ufshcd_devfreq_scale(hba, scale_up);
1393 
1394 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1395 		(scale_up ? "up" : "down"),
1396 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1397 
1398 out:
1399 	if (sched_clk_scaling_suspend_work)
1400 		queue_work(hba->clk_scaling.workq,
1401 			   &hba->clk_scaling.suspend_work);
1402 
1403 	return ret;
1404 }
1405 
1406 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1407 		struct devfreq_dev_status *stat)
1408 {
1409 	struct ufs_hba *hba = dev_get_drvdata(dev);
1410 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1411 	unsigned long flags;
1412 	struct list_head *clk_list = &hba->clk_list_head;
1413 	struct ufs_clk_info *clki;
1414 	ktime_t curr_t;
1415 
1416 	if (!ufshcd_is_clkscaling_supported(hba))
1417 		return -EINVAL;
1418 
1419 	memset(stat, 0, sizeof(*stat));
1420 
1421 	spin_lock_irqsave(hba->host->host_lock, flags);
1422 	curr_t = ktime_get();
1423 	if (!scaling->window_start_t)
1424 		goto start_window;
1425 
1426 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1427 	/*
1428 	 * If current frequency is 0, then the ondemand governor considers
1429 	 * there's no initial frequency set. And it always requests to set
1430 	 * to max. frequency.
1431 	 */
1432 	stat->current_frequency = clki->curr_freq;
1433 	if (scaling->is_busy_started)
1434 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1435 				scaling->busy_start_t);
1436 
1437 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1438 	stat->busy_time = scaling->tot_busy_t;
1439 start_window:
1440 	scaling->window_start_t = curr_t;
1441 	scaling->tot_busy_t = 0;
1442 
1443 	if (hba->outstanding_reqs) {
1444 		scaling->busy_start_t = curr_t;
1445 		scaling->is_busy_started = true;
1446 	} else {
1447 		scaling->busy_start_t = 0;
1448 		scaling->is_busy_started = false;
1449 	}
1450 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1451 	return 0;
1452 }
1453 
1454 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1455 {
1456 	struct list_head *clk_list = &hba->clk_list_head;
1457 	struct ufs_clk_info *clki;
1458 	struct devfreq *devfreq;
1459 	int ret;
1460 
1461 	/* Skip devfreq if we don't have any clocks in the list */
1462 	if (list_empty(clk_list))
1463 		return 0;
1464 
1465 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1466 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1467 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1468 
1469 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1470 					 &hba->vps->ondemand_data);
1471 	devfreq = devfreq_add_device(hba->dev,
1472 			&hba->vps->devfreq_profile,
1473 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1474 			&hba->vps->ondemand_data);
1475 	if (IS_ERR(devfreq)) {
1476 		ret = PTR_ERR(devfreq);
1477 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1478 
1479 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1480 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1481 		return ret;
1482 	}
1483 
1484 	hba->devfreq = devfreq;
1485 
1486 	return 0;
1487 }
1488 
1489 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1490 {
1491 	struct list_head *clk_list = &hba->clk_list_head;
1492 	struct ufs_clk_info *clki;
1493 
1494 	if (!hba->devfreq)
1495 		return;
1496 
1497 	devfreq_remove_device(hba->devfreq);
1498 	hba->devfreq = NULL;
1499 
1500 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1501 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1502 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1503 }
1504 
1505 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1506 {
1507 	unsigned long flags;
1508 
1509 	devfreq_suspend_device(hba->devfreq);
1510 	spin_lock_irqsave(hba->host->host_lock, flags);
1511 	hba->clk_scaling.window_start_t = 0;
1512 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1513 }
1514 
1515 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1516 {
1517 	unsigned long flags;
1518 	bool suspend = false;
1519 
1520 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1521 	cancel_work_sync(&hba->clk_scaling.resume_work);
1522 
1523 	spin_lock_irqsave(hba->host->host_lock, flags);
1524 	if (!hba->clk_scaling.is_suspended) {
1525 		suspend = true;
1526 		hba->clk_scaling.is_suspended = true;
1527 	}
1528 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1529 
1530 	if (suspend)
1531 		__ufshcd_suspend_clkscaling(hba);
1532 }
1533 
1534 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1535 {
1536 	unsigned long flags;
1537 	bool resume = false;
1538 
1539 	spin_lock_irqsave(hba->host->host_lock, flags);
1540 	if (hba->clk_scaling.is_suspended) {
1541 		resume = true;
1542 		hba->clk_scaling.is_suspended = false;
1543 	}
1544 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1545 
1546 	if (resume)
1547 		devfreq_resume_device(hba->devfreq);
1548 }
1549 
1550 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1551 		struct device_attribute *attr, char *buf)
1552 {
1553 	struct ufs_hba *hba = dev_get_drvdata(dev);
1554 
1555 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1556 }
1557 
1558 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1559 		struct device_attribute *attr, const char *buf, size_t count)
1560 {
1561 	struct ufs_hba *hba = dev_get_drvdata(dev);
1562 	u32 value;
1563 	int err = 0;
1564 
1565 	if (kstrtou32(buf, 0, &value))
1566 		return -EINVAL;
1567 
1568 	down(&hba->host_sem);
1569 	if (!ufshcd_is_user_access_allowed(hba)) {
1570 		err = -EBUSY;
1571 		goto out;
1572 	}
1573 
1574 	value = !!value;
1575 	if (value == hba->clk_scaling.is_enabled)
1576 		goto out;
1577 
1578 	ufshcd_rpm_get_sync(hba);
1579 	ufshcd_hold(hba, false);
1580 
1581 	hba->clk_scaling.is_enabled = value;
1582 
1583 	if (value) {
1584 		ufshcd_resume_clkscaling(hba);
1585 	} else {
1586 		ufshcd_suspend_clkscaling(hba);
1587 		err = ufshcd_devfreq_scale(hba, true);
1588 		if (err)
1589 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1590 					__func__, err);
1591 	}
1592 
1593 	ufshcd_release(hba);
1594 	ufshcd_rpm_put_sync(hba);
1595 out:
1596 	up(&hba->host_sem);
1597 	return err ? err : count;
1598 }
1599 
1600 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1601 {
1602 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1603 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1604 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1605 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1606 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1607 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1608 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1609 }
1610 
1611 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1612 {
1613 	if (hba->clk_scaling.enable_attr.attr.name)
1614 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1615 }
1616 
1617 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1618 {
1619 	char wq_name[sizeof("ufs_clkscaling_00")];
1620 
1621 	if (!ufshcd_is_clkscaling_supported(hba))
1622 		return;
1623 
1624 	if (!hba->clk_scaling.min_gear)
1625 		hba->clk_scaling.min_gear = UFS_HS_G1;
1626 
1627 	INIT_WORK(&hba->clk_scaling.suspend_work,
1628 		  ufshcd_clk_scaling_suspend_work);
1629 	INIT_WORK(&hba->clk_scaling.resume_work,
1630 		  ufshcd_clk_scaling_resume_work);
1631 
1632 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1633 		 hba->host->host_no);
1634 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1635 
1636 	hba->clk_scaling.is_initialized = true;
1637 }
1638 
1639 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1640 {
1641 	if (!hba->clk_scaling.is_initialized)
1642 		return;
1643 
1644 	ufshcd_remove_clk_scaling_sysfs(hba);
1645 	destroy_workqueue(hba->clk_scaling.workq);
1646 	ufshcd_devfreq_remove(hba);
1647 	hba->clk_scaling.is_initialized = false;
1648 }
1649 
1650 static void ufshcd_ungate_work(struct work_struct *work)
1651 {
1652 	int ret;
1653 	unsigned long flags;
1654 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1655 			clk_gating.ungate_work);
1656 
1657 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1658 
1659 	spin_lock_irqsave(hba->host->host_lock, flags);
1660 	if (hba->clk_gating.state == CLKS_ON) {
1661 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1662 		goto unblock_reqs;
1663 	}
1664 
1665 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1666 	ufshcd_hba_vreg_set_hpm(hba);
1667 	ufshcd_setup_clocks(hba, true);
1668 
1669 	ufshcd_enable_irq(hba);
1670 
1671 	/* Exit from hibern8 */
1672 	if (ufshcd_can_hibern8_during_gating(hba)) {
1673 		/* Prevent gating in this path */
1674 		hba->clk_gating.is_suspended = true;
1675 		if (ufshcd_is_link_hibern8(hba)) {
1676 			ret = ufshcd_uic_hibern8_exit(hba);
1677 			if (ret)
1678 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1679 					__func__, ret);
1680 			else
1681 				ufshcd_set_link_active(hba);
1682 		}
1683 		hba->clk_gating.is_suspended = false;
1684 	}
1685 unblock_reqs:
1686 	ufshcd_scsi_unblock_requests(hba);
1687 }
1688 
1689 /**
1690  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1691  * Also, exit from hibern8 mode and set the link as active.
1692  * @hba: per adapter instance
1693  * @async: This indicates whether caller should ungate clocks asynchronously.
1694  */
1695 int ufshcd_hold(struct ufs_hba *hba, bool async)
1696 {
1697 	int rc = 0;
1698 	bool flush_result;
1699 	unsigned long flags;
1700 
1701 	if (!ufshcd_is_clkgating_allowed(hba) ||
1702 	    !hba->clk_gating.is_initialized)
1703 		goto out;
1704 	spin_lock_irqsave(hba->host->host_lock, flags);
1705 	hba->clk_gating.active_reqs++;
1706 
1707 start:
1708 	switch (hba->clk_gating.state) {
1709 	case CLKS_ON:
1710 		/*
1711 		 * Wait for the ungate work to complete if in progress.
1712 		 * Though the clocks may be in ON state, the link could
1713 		 * still be in hibner8 state if hibern8 is allowed
1714 		 * during clock gating.
1715 		 * Make sure we exit hibern8 state also in addition to
1716 		 * clocks being ON.
1717 		 */
1718 		if (ufshcd_can_hibern8_during_gating(hba) &&
1719 		    ufshcd_is_link_hibern8(hba)) {
1720 			if (async) {
1721 				rc = -EAGAIN;
1722 				hba->clk_gating.active_reqs--;
1723 				break;
1724 			}
1725 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1726 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1727 			if (hba->clk_gating.is_suspended && !flush_result)
1728 				goto out;
1729 			spin_lock_irqsave(hba->host->host_lock, flags);
1730 			goto start;
1731 		}
1732 		break;
1733 	case REQ_CLKS_OFF:
1734 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1735 			hba->clk_gating.state = CLKS_ON;
1736 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1737 						hba->clk_gating.state);
1738 			break;
1739 		}
1740 		/*
1741 		 * If we are here, it means gating work is either done or
1742 		 * currently running. Hence, fall through to cancel gating
1743 		 * work and to enable clocks.
1744 		 */
1745 		fallthrough;
1746 	case CLKS_OFF:
1747 		hba->clk_gating.state = REQ_CLKS_ON;
1748 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1749 					hba->clk_gating.state);
1750 		if (queue_work(hba->clk_gating.clk_gating_workq,
1751 			       &hba->clk_gating.ungate_work))
1752 			ufshcd_scsi_block_requests(hba);
1753 		/*
1754 		 * fall through to check if we should wait for this
1755 		 * work to be done or not.
1756 		 */
1757 		fallthrough;
1758 	case REQ_CLKS_ON:
1759 		if (async) {
1760 			rc = -EAGAIN;
1761 			hba->clk_gating.active_reqs--;
1762 			break;
1763 		}
1764 
1765 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1766 		flush_work(&hba->clk_gating.ungate_work);
1767 		/* Make sure state is CLKS_ON before returning */
1768 		spin_lock_irqsave(hba->host->host_lock, flags);
1769 		goto start;
1770 	default:
1771 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1772 				__func__, hba->clk_gating.state);
1773 		break;
1774 	}
1775 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1776 out:
1777 	return rc;
1778 }
1779 EXPORT_SYMBOL_GPL(ufshcd_hold);
1780 
1781 static void ufshcd_gate_work(struct work_struct *work)
1782 {
1783 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1784 			clk_gating.gate_work.work);
1785 	unsigned long flags;
1786 	int ret;
1787 
1788 	spin_lock_irqsave(hba->host->host_lock, flags);
1789 	/*
1790 	 * In case you are here to cancel this work the gating state
1791 	 * would be marked as REQ_CLKS_ON. In this case save time by
1792 	 * skipping the gating work and exit after changing the clock
1793 	 * state to CLKS_ON.
1794 	 */
1795 	if (hba->clk_gating.is_suspended ||
1796 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1797 		hba->clk_gating.state = CLKS_ON;
1798 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1799 					hba->clk_gating.state);
1800 		goto rel_lock;
1801 	}
1802 
1803 	if (hba->clk_gating.active_reqs
1804 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1805 		|| hba->outstanding_reqs || hba->outstanding_tasks
1806 		|| hba->active_uic_cmd || hba->uic_async_done)
1807 		goto rel_lock;
1808 
1809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1810 
1811 	/* put the link into hibern8 mode before turning off clocks */
1812 	if (ufshcd_can_hibern8_during_gating(hba)) {
1813 		ret = ufshcd_uic_hibern8_enter(hba);
1814 		if (ret) {
1815 			hba->clk_gating.state = CLKS_ON;
1816 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1817 					__func__, ret);
1818 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1819 						hba->clk_gating.state);
1820 			goto out;
1821 		}
1822 		ufshcd_set_link_hibern8(hba);
1823 	}
1824 
1825 	ufshcd_disable_irq(hba);
1826 
1827 	ufshcd_setup_clocks(hba, false);
1828 
1829 	/* Put the host controller in low power mode if possible */
1830 	ufshcd_hba_vreg_set_lpm(hba);
1831 	/*
1832 	 * In case you are here to cancel this work the gating state
1833 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1834 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1835 	 * and a request to turn them on is pending. By doing this way,
1836 	 * we keep the state machine in tact and this would ultimately
1837 	 * prevent from doing cancel work multiple times when there are
1838 	 * new requests arriving before the current cancel work is done.
1839 	 */
1840 	spin_lock_irqsave(hba->host->host_lock, flags);
1841 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1842 		hba->clk_gating.state = CLKS_OFF;
1843 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1844 					hba->clk_gating.state);
1845 	}
1846 rel_lock:
1847 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1848 out:
1849 	return;
1850 }
1851 
1852 /* host lock must be held before calling this variant */
1853 static void __ufshcd_release(struct ufs_hba *hba)
1854 {
1855 	if (!ufshcd_is_clkgating_allowed(hba))
1856 		return;
1857 
1858 	hba->clk_gating.active_reqs--;
1859 
1860 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1861 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1862 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1863 	    hba->active_uic_cmd || hba->uic_async_done ||
1864 	    hba->clk_gating.state == CLKS_OFF)
1865 		return;
1866 
1867 	hba->clk_gating.state = REQ_CLKS_OFF;
1868 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1869 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1870 			   &hba->clk_gating.gate_work,
1871 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1872 }
1873 
1874 void ufshcd_release(struct ufs_hba *hba)
1875 {
1876 	unsigned long flags;
1877 
1878 	spin_lock_irqsave(hba->host->host_lock, flags);
1879 	__ufshcd_release(hba);
1880 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1881 }
1882 EXPORT_SYMBOL_GPL(ufshcd_release);
1883 
1884 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1885 		struct device_attribute *attr, char *buf)
1886 {
1887 	struct ufs_hba *hba = dev_get_drvdata(dev);
1888 
1889 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1890 }
1891 
1892 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1893 {
1894 	struct ufs_hba *hba = dev_get_drvdata(dev);
1895 	unsigned long flags;
1896 
1897 	spin_lock_irqsave(hba->host->host_lock, flags);
1898 	hba->clk_gating.delay_ms = value;
1899 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1900 }
1901 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1902 
1903 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1904 		struct device_attribute *attr, const char *buf, size_t count)
1905 {
1906 	unsigned long value;
1907 
1908 	if (kstrtoul(buf, 0, &value))
1909 		return -EINVAL;
1910 
1911 	ufshcd_clkgate_delay_set(dev, value);
1912 	return count;
1913 }
1914 
1915 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1916 		struct device_attribute *attr, char *buf)
1917 {
1918 	struct ufs_hba *hba = dev_get_drvdata(dev);
1919 
1920 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1921 }
1922 
1923 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1924 		struct device_attribute *attr, const char *buf, size_t count)
1925 {
1926 	struct ufs_hba *hba = dev_get_drvdata(dev);
1927 	unsigned long flags;
1928 	u32 value;
1929 
1930 	if (kstrtou32(buf, 0, &value))
1931 		return -EINVAL;
1932 
1933 	value = !!value;
1934 
1935 	spin_lock_irqsave(hba->host->host_lock, flags);
1936 	if (value == hba->clk_gating.is_enabled)
1937 		goto out;
1938 
1939 	if (value)
1940 		__ufshcd_release(hba);
1941 	else
1942 		hba->clk_gating.active_reqs++;
1943 
1944 	hba->clk_gating.is_enabled = value;
1945 out:
1946 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1947 	return count;
1948 }
1949 
1950 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1951 {
1952 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1953 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1954 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1955 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1956 	hba->clk_gating.delay_attr.attr.mode = 0644;
1957 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1958 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1959 
1960 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1961 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1962 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1963 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1964 	hba->clk_gating.enable_attr.attr.mode = 0644;
1965 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1966 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1967 }
1968 
1969 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1970 {
1971 	if (hba->clk_gating.delay_attr.attr.name)
1972 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1973 	if (hba->clk_gating.enable_attr.attr.name)
1974 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1975 }
1976 
1977 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1978 {
1979 	char wq_name[sizeof("ufs_clk_gating_00")];
1980 
1981 	if (!ufshcd_is_clkgating_allowed(hba))
1982 		return;
1983 
1984 	hba->clk_gating.state = CLKS_ON;
1985 
1986 	hba->clk_gating.delay_ms = 150;
1987 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1988 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1989 
1990 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1991 		 hba->host->host_no);
1992 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1993 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
1994 
1995 	ufshcd_init_clk_gating_sysfs(hba);
1996 
1997 	hba->clk_gating.is_enabled = true;
1998 	hba->clk_gating.is_initialized = true;
1999 }
2000 
2001 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2002 {
2003 	if (!hba->clk_gating.is_initialized)
2004 		return;
2005 
2006 	ufshcd_remove_clk_gating_sysfs(hba);
2007 
2008 	/* Ungate the clock if necessary. */
2009 	ufshcd_hold(hba, false);
2010 	hba->clk_gating.is_initialized = false;
2011 	ufshcd_release(hba);
2012 
2013 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2014 }
2015 
2016 /* Must be called with host lock acquired */
2017 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2018 {
2019 	bool queue_resume_work = false;
2020 	ktime_t curr_t = ktime_get();
2021 	unsigned long flags;
2022 
2023 	if (!ufshcd_is_clkscaling_supported(hba))
2024 		return;
2025 
2026 	spin_lock_irqsave(hba->host->host_lock, flags);
2027 	if (!hba->clk_scaling.active_reqs++)
2028 		queue_resume_work = true;
2029 
2030 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2031 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2032 		return;
2033 	}
2034 
2035 	if (queue_resume_work)
2036 		queue_work(hba->clk_scaling.workq,
2037 			   &hba->clk_scaling.resume_work);
2038 
2039 	if (!hba->clk_scaling.window_start_t) {
2040 		hba->clk_scaling.window_start_t = curr_t;
2041 		hba->clk_scaling.tot_busy_t = 0;
2042 		hba->clk_scaling.is_busy_started = false;
2043 	}
2044 
2045 	if (!hba->clk_scaling.is_busy_started) {
2046 		hba->clk_scaling.busy_start_t = curr_t;
2047 		hba->clk_scaling.is_busy_started = true;
2048 	}
2049 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2050 }
2051 
2052 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2053 {
2054 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2055 	unsigned long flags;
2056 
2057 	if (!ufshcd_is_clkscaling_supported(hba))
2058 		return;
2059 
2060 	spin_lock_irqsave(hba->host->host_lock, flags);
2061 	hba->clk_scaling.active_reqs--;
2062 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
2063 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2064 					scaling->busy_start_t));
2065 		scaling->busy_start_t = 0;
2066 		scaling->is_busy_started = false;
2067 	}
2068 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2069 }
2070 
2071 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2072 {
2073 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2074 		return READ;
2075 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2076 		return WRITE;
2077 	else
2078 		return -EINVAL;
2079 }
2080 
2081 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2082 						struct ufshcd_lrb *lrbp)
2083 {
2084 	const struct ufs_hba_monitor *m = &hba->monitor;
2085 
2086 	return (m->enabled && lrbp && lrbp->cmd &&
2087 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2088 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2089 }
2090 
2091 static void ufshcd_start_monitor(struct ufs_hba *hba,
2092 				 const struct ufshcd_lrb *lrbp)
2093 {
2094 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2095 	unsigned long flags;
2096 
2097 	spin_lock_irqsave(hba->host->host_lock, flags);
2098 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2099 		hba->monitor.busy_start_ts[dir] = ktime_get();
2100 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2101 }
2102 
2103 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2104 {
2105 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2106 	unsigned long flags;
2107 
2108 	spin_lock_irqsave(hba->host->host_lock, flags);
2109 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2110 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2111 		struct ufs_hba_monitor *m = &hba->monitor;
2112 		ktime_t now, inc, lat;
2113 
2114 		now = lrbp->compl_time_stamp;
2115 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2116 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2117 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2118 
2119 		/* Update latencies */
2120 		m->nr_req[dir]++;
2121 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2122 		m->lat_sum[dir] += lat;
2123 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2124 			m->lat_max[dir] = lat;
2125 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2126 			m->lat_min[dir] = lat;
2127 
2128 		m->nr_queued[dir]--;
2129 		/* Push forward the busy start of monitor */
2130 		m->busy_start_ts[dir] = now;
2131 	}
2132 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2133 }
2134 
2135 /**
2136  * ufshcd_send_command - Send SCSI or device management commands
2137  * @hba: per adapter instance
2138  * @task_tag: Task tag of the command
2139  */
2140 static inline
2141 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2142 {
2143 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2144 	unsigned long flags;
2145 
2146 	lrbp->issue_time_stamp = ktime_get();
2147 	lrbp->issue_time_stamp_local_clock = local_clock();
2148 	lrbp->compl_time_stamp = ktime_set(0, 0);
2149 	lrbp->compl_time_stamp_local_clock = 0;
2150 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2151 	ufshcd_clk_scaling_start_busy(hba);
2152 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2153 		ufshcd_start_monitor(hba, lrbp);
2154 
2155 	spin_lock_irqsave(&hba->outstanding_lock, flags);
2156 	if (hba->vops && hba->vops->setup_xfer_req)
2157 		hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2158 	__set_bit(task_tag, &hba->outstanding_reqs);
2159 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2160 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2161 }
2162 
2163 /**
2164  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2165  * @lrbp: pointer to local reference block
2166  */
2167 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2168 {
2169 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2170 	int len;
2171 
2172 	if (sense_buffer &&
2173 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2174 		int len_to_copy;
2175 
2176 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2177 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2178 
2179 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2180 		       len_to_copy);
2181 	}
2182 }
2183 
2184 /**
2185  * ufshcd_copy_query_response() - Copy the Query Response and the data
2186  * descriptor
2187  * @hba: per adapter instance
2188  * @lrbp: pointer to local reference block
2189  */
2190 static
2191 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2192 {
2193 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2194 
2195 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2196 
2197 	/* Get the descriptor */
2198 	if (hba->dev_cmd.query.descriptor &&
2199 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2200 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2201 				GENERAL_UPIU_REQUEST_SIZE;
2202 		u16 resp_len;
2203 		u16 buf_len;
2204 
2205 		/* data segment length */
2206 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2207 						MASK_QUERY_DATA_SEG_LEN;
2208 		buf_len = be16_to_cpu(
2209 				hba->dev_cmd.query.request.upiu_req.length);
2210 		if (likely(buf_len >= resp_len)) {
2211 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2212 		} else {
2213 			dev_warn(hba->dev,
2214 				 "%s: rsp size %d is bigger than buffer size %d",
2215 				 __func__, resp_len, buf_len);
2216 			return -EINVAL;
2217 		}
2218 	}
2219 
2220 	return 0;
2221 }
2222 
2223 /**
2224  * ufshcd_hba_capabilities - Read controller capabilities
2225  * @hba: per adapter instance
2226  *
2227  * Return: 0 on success, negative on error.
2228  */
2229 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2230 {
2231 	int err;
2232 
2233 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2234 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2235 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2236 
2237 	/* nutrs and nutmrs are 0 based values */
2238 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2239 	hba->nutmrs =
2240 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2241 	hba->reserved_slot = hba->nutrs - 1;
2242 
2243 	/* Read crypto capabilities */
2244 	err = ufshcd_hba_init_crypto_capabilities(hba);
2245 	if (err)
2246 		dev_err(hba->dev, "crypto setup failed\n");
2247 
2248 	return err;
2249 }
2250 
2251 /**
2252  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2253  *                            to accept UIC commands
2254  * @hba: per adapter instance
2255  * Return true on success, else false
2256  */
2257 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2258 {
2259 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2260 }
2261 
2262 /**
2263  * ufshcd_get_upmcrs - Get the power mode change request status
2264  * @hba: Pointer to adapter instance
2265  *
2266  * This function gets the UPMCRS field of HCS register
2267  * Returns value of UPMCRS field
2268  */
2269 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2270 {
2271 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2272 }
2273 
2274 /**
2275  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2276  * @hba: per adapter instance
2277  * @uic_cmd: UIC command
2278  */
2279 static inline void
2280 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2281 {
2282 	lockdep_assert_held(&hba->uic_cmd_mutex);
2283 
2284 	WARN_ON(hba->active_uic_cmd);
2285 
2286 	hba->active_uic_cmd = uic_cmd;
2287 
2288 	/* Write Args */
2289 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2290 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2291 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2292 
2293 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2294 
2295 	/* Write UIC Cmd */
2296 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2297 		      REG_UIC_COMMAND);
2298 }
2299 
2300 /**
2301  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2302  * @hba: per adapter instance
2303  * @uic_cmd: UIC command
2304  *
2305  * Returns 0 only if success.
2306  */
2307 static int
2308 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2309 {
2310 	int ret;
2311 	unsigned long flags;
2312 
2313 	lockdep_assert_held(&hba->uic_cmd_mutex);
2314 
2315 	if (wait_for_completion_timeout(&uic_cmd->done,
2316 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2317 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2318 	} else {
2319 		ret = -ETIMEDOUT;
2320 		dev_err(hba->dev,
2321 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2322 			uic_cmd->command, uic_cmd->argument3);
2323 
2324 		if (!uic_cmd->cmd_active) {
2325 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2326 				__func__);
2327 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2328 		}
2329 	}
2330 
2331 	spin_lock_irqsave(hba->host->host_lock, flags);
2332 	hba->active_uic_cmd = NULL;
2333 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2334 
2335 	return ret;
2336 }
2337 
2338 /**
2339  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2340  * @hba: per adapter instance
2341  * @uic_cmd: UIC command
2342  * @completion: initialize the completion only if this is set to true
2343  *
2344  * Returns 0 only if success.
2345  */
2346 static int
2347 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2348 		      bool completion)
2349 {
2350 	lockdep_assert_held(&hba->uic_cmd_mutex);
2351 	lockdep_assert_held(hba->host->host_lock);
2352 
2353 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2354 		dev_err(hba->dev,
2355 			"Controller not ready to accept UIC commands\n");
2356 		return -EIO;
2357 	}
2358 
2359 	if (completion)
2360 		init_completion(&uic_cmd->done);
2361 
2362 	uic_cmd->cmd_active = 1;
2363 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2364 
2365 	return 0;
2366 }
2367 
2368 /**
2369  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2370  * @hba: per adapter instance
2371  * @uic_cmd: UIC command
2372  *
2373  * Returns 0 only if success.
2374  */
2375 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2376 {
2377 	int ret;
2378 	unsigned long flags;
2379 
2380 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2381 		return 0;
2382 
2383 	ufshcd_hold(hba, false);
2384 	mutex_lock(&hba->uic_cmd_mutex);
2385 	ufshcd_add_delay_before_dme_cmd(hba);
2386 
2387 	spin_lock_irqsave(hba->host->host_lock, flags);
2388 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2389 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2390 	if (!ret)
2391 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2392 
2393 	mutex_unlock(&hba->uic_cmd_mutex);
2394 
2395 	ufshcd_release(hba);
2396 	return ret;
2397 }
2398 
2399 /**
2400  * ufshcd_map_sg - Map scatter-gather list to prdt
2401  * @hba: per adapter instance
2402  * @lrbp: pointer to local reference block
2403  *
2404  * Returns 0 in case of success, non-zero value in case of failure
2405  */
2406 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2407 {
2408 	struct ufshcd_sg_entry *prd_table;
2409 	struct scatterlist *sg;
2410 	struct scsi_cmnd *cmd;
2411 	int sg_segments;
2412 	int i;
2413 
2414 	cmd = lrbp->cmd;
2415 	sg_segments = scsi_dma_map(cmd);
2416 	if (sg_segments < 0)
2417 		return sg_segments;
2418 
2419 	if (sg_segments) {
2420 
2421 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2422 			lrbp->utr_descriptor_ptr->prd_table_length =
2423 				cpu_to_le16((sg_segments *
2424 					sizeof(struct ufshcd_sg_entry)));
2425 		else
2426 			lrbp->utr_descriptor_ptr->prd_table_length =
2427 				cpu_to_le16(sg_segments);
2428 
2429 		prd_table = lrbp->ucd_prdt_ptr;
2430 
2431 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2432 			const unsigned int len = sg_dma_len(sg);
2433 
2434 			/*
2435 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2436 			 * based value that indicates the length, in bytes, of
2437 			 * the data block. A maximum of length of 256KB may
2438 			 * exist for any entry. Bits 1:0 of this field shall be
2439 			 * 11b to indicate Dword granularity. A value of '3'
2440 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2441 			 */
2442 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2443 			prd_table[i].size = cpu_to_le32(len - 1);
2444 			prd_table[i].addr = cpu_to_le64(sg->dma_address);
2445 			prd_table[i].reserved = 0;
2446 		}
2447 	} else {
2448 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2449 	}
2450 
2451 	return 0;
2452 }
2453 
2454 /**
2455  * ufshcd_enable_intr - enable interrupts
2456  * @hba: per adapter instance
2457  * @intrs: interrupt bits
2458  */
2459 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2460 {
2461 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2462 
2463 	if (hba->ufs_version == ufshci_version(1, 0)) {
2464 		u32 rw;
2465 		rw = set & INTERRUPT_MASK_RW_VER_10;
2466 		set = rw | ((set ^ intrs) & intrs);
2467 	} else {
2468 		set |= intrs;
2469 	}
2470 
2471 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2472 }
2473 
2474 /**
2475  * ufshcd_disable_intr - disable interrupts
2476  * @hba: per adapter instance
2477  * @intrs: interrupt bits
2478  */
2479 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2480 {
2481 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2482 
2483 	if (hba->ufs_version == ufshci_version(1, 0)) {
2484 		u32 rw;
2485 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2486 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2487 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2488 
2489 	} else {
2490 		set &= ~intrs;
2491 	}
2492 
2493 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2494 }
2495 
2496 /**
2497  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2498  * descriptor according to request
2499  * @lrbp: pointer to local reference block
2500  * @upiu_flags: flags required in the header
2501  * @cmd_dir: requests data direction
2502  */
2503 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2504 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2505 {
2506 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2507 	u32 data_direction;
2508 	u32 dword_0;
2509 	u32 dword_1 = 0;
2510 	u32 dword_3 = 0;
2511 
2512 	if (cmd_dir == DMA_FROM_DEVICE) {
2513 		data_direction = UTP_DEVICE_TO_HOST;
2514 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2515 	} else if (cmd_dir == DMA_TO_DEVICE) {
2516 		data_direction = UTP_HOST_TO_DEVICE;
2517 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2518 	} else {
2519 		data_direction = UTP_NO_DATA_TRANSFER;
2520 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2521 	}
2522 
2523 	dword_0 = data_direction | (lrbp->command_type
2524 				<< UPIU_COMMAND_TYPE_OFFSET);
2525 	if (lrbp->intr_cmd)
2526 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2527 
2528 	/* Prepare crypto related dwords */
2529 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2530 
2531 	/* Transfer request descriptor header fields */
2532 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2533 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2534 	/*
2535 	 * assigning invalid value for command status. Controller
2536 	 * updates OCS on command completion, with the command
2537 	 * status
2538 	 */
2539 	req_desc->header.dword_2 =
2540 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2541 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2542 
2543 	req_desc->prd_table_length = 0;
2544 }
2545 
2546 /**
2547  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2548  * for scsi commands
2549  * @lrbp: local reference block pointer
2550  * @upiu_flags: flags
2551  */
2552 static
2553 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2554 {
2555 	struct scsi_cmnd *cmd = lrbp->cmd;
2556 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2557 	unsigned short cdb_len;
2558 
2559 	/* command descriptor fields */
2560 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2561 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2562 				lrbp->lun, lrbp->task_tag);
2563 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2564 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2565 
2566 	/* Total EHS length and Data segment length will be zero */
2567 	ucd_req_ptr->header.dword_2 = 0;
2568 
2569 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2570 
2571 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2572 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2573 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2574 
2575 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2576 }
2577 
2578 /**
2579  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2580  * for query requsts
2581  * @hba: UFS hba
2582  * @lrbp: local reference block pointer
2583  * @upiu_flags: flags
2584  */
2585 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2586 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2587 {
2588 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2589 	struct ufs_query *query = &hba->dev_cmd.query;
2590 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2591 
2592 	/* Query request header */
2593 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2594 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2595 			lrbp->lun, lrbp->task_tag);
2596 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2597 			0, query->request.query_func, 0, 0);
2598 
2599 	/* Data segment length only need for WRITE_DESC */
2600 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2601 		ucd_req_ptr->header.dword_2 =
2602 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2603 	else
2604 		ucd_req_ptr->header.dword_2 = 0;
2605 
2606 	/* Copy the Query Request buffer as is */
2607 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2608 			QUERY_OSF_SIZE);
2609 
2610 	/* Copy the Descriptor */
2611 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2612 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2613 
2614 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2615 }
2616 
2617 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2618 {
2619 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2620 
2621 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2622 
2623 	/* command descriptor fields */
2624 	ucd_req_ptr->header.dword_0 =
2625 		UPIU_HEADER_DWORD(
2626 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2627 	/* clear rest of the fields of basic header */
2628 	ucd_req_ptr->header.dword_1 = 0;
2629 	ucd_req_ptr->header.dword_2 = 0;
2630 
2631 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2632 }
2633 
2634 /**
2635  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2636  *			     for Device Management Purposes
2637  * @hba: per adapter instance
2638  * @lrbp: pointer to local reference block
2639  */
2640 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2641 				      struct ufshcd_lrb *lrbp)
2642 {
2643 	u8 upiu_flags;
2644 	int ret = 0;
2645 
2646 	if (hba->ufs_version <= ufshci_version(1, 1))
2647 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2648 	else
2649 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2650 
2651 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2652 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2653 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2654 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2655 		ufshcd_prepare_utp_nop_upiu(lrbp);
2656 	else
2657 		ret = -EINVAL;
2658 
2659 	return ret;
2660 }
2661 
2662 /**
2663  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2664  *			   for SCSI Purposes
2665  * @hba: per adapter instance
2666  * @lrbp: pointer to local reference block
2667  */
2668 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2669 {
2670 	u8 upiu_flags;
2671 	int ret = 0;
2672 
2673 	if (hba->ufs_version <= ufshci_version(1, 1))
2674 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2675 	else
2676 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2677 
2678 	if (likely(lrbp->cmd)) {
2679 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2680 						lrbp->cmd->sc_data_direction);
2681 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2682 	} else {
2683 		ret = -EINVAL;
2684 	}
2685 
2686 	return ret;
2687 }
2688 
2689 /**
2690  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2691  * @upiu_wlun_id: UPIU W-LUN id
2692  *
2693  * Returns SCSI W-LUN id
2694  */
2695 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2696 {
2697 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2698 }
2699 
2700 static inline bool is_device_wlun(struct scsi_device *sdev)
2701 {
2702 	return sdev->lun ==
2703 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2704 }
2705 
2706 /*
2707  * Associate the UFS controller queue with the default and poll HCTX types.
2708  * Initialize the mq_map[] arrays.
2709  */
2710 static int ufshcd_map_queues(struct Scsi_Host *shost)
2711 {
2712 	int i, ret;
2713 
2714 	for (i = 0; i < shost->nr_maps; i++) {
2715 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2716 
2717 		switch (i) {
2718 		case HCTX_TYPE_DEFAULT:
2719 		case HCTX_TYPE_POLL:
2720 			map->nr_queues = 1;
2721 			break;
2722 		case HCTX_TYPE_READ:
2723 			map->nr_queues = 0;
2724 			continue;
2725 		default:
2726 			WARN_ON_ONCE(true);
2727 		}
2728 		map->queue_offset = 0;
2729 		ret = blk_mq_map_queues(map);
2730 		WARN_ON_ONCE(ret);
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2737 {
2738 	struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2739 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2740 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2741 		i * sizeof(struct utp_transfer_cmd_desc);
2742 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2743 				       response_upiu);
2744 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2745 
2746 	lrb->utr_descriptor_ptr = utrdlp + i;
2747 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2748 		i * sizeof(struct utp_transfer_req_desc);
2749 	lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2750 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2751 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2752 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2753 	lrb->ucd_prdt_ptr = cmd_descp[i].prd_table;
2754 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2755 }
2756 
2757 /**
2758  * ufshcd_queuecommand - main entry point for SCSI requests
2759  * @host: SCSI host pointer
2760  * @cmd: command from SCSI Midlayer
2761  *
2762  * Returns 0 for success, non-zero in case of failure
2763  */
2764 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2765 {
2766 	struct ufs_hba *hba = shost_priv(host);
2767 	int tag = scsi_cmd_to_rq(cmd)->tag;
2768 	struct ufshcd_lrb *lrbp;
2769 	int err = 0;
2770 
2771 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2772 
2773 	/*
2774 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2775 	 * calls.
2776 	 */
2777 	rcu_read_lock();
2778 
2779 	switch (hba->ufshcd_state) {
2780 	case UFSHCD_STATE_OPERATIONAL:
2781 		break;
2782 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2783 		/*
2784 		 * SCSI error handler can call ->queuecommand() while UFS error
2785 		 * handler is in progress. Error interrupts could change the
2786 		 * state from UFSHCD_STATE_RESET to
2787 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2788 		 * being issued in that case.
2789 		 */
2790 		if (ufshcd_eh_in_progress(hba)) {
2791 			err = SCSI_MLQUEUE_HOST_BUSY;
2792 			goto out;
2793 		}
2794 		break;
2795 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2796 		/*
2797 		 * pm_runtime_get_sync() is used at error handling preparation
2798 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2799 		 * PM ops, it can never be finished if we let SCSI layer keep
2800 		 * retrying it, which gets err handler stuck forever. Neither
2801 		 * can we let the scsi cmd pass through, because UFS is in bad
2802 		 * state, the scsi cmd may eventually time out, which will get
2803 		 * err handler blocked for too long. So, just fail the scsi cmd
2804 		 * sent from PM ops, err handler can recover PM error anyways.
2805 		 */
2806 		if (hba->pm_op_in_progress) {
2807 			hba->force_reset = true;
2808 			set_host_byte(cmd, DID_BAD_TARGET);
2809 			scsi_done(cmd);
2810 			goto out;
2811 		}
2812 		fallthrough;
2813 	case UFSHCD_STATE_RESET:
2814 		err = SCSI_MLQUEUE_HOST_BUSY;
2815 		goto out;
2816 	case UFSHCD_STATE_ERROR:
2817 		set_host_byte(cmd, DID_ERROR);
2818 		scsi_done(cmd);
2819 		goto out;
2820 	}
2821 
2822 	hba->req_abort_count = 0;
2823 
2824 	err = ufshcd_hold(hba, true);
2825 	if (err) {
2826 		err = SCSI_MLQUEUE_HOST_BUSY;
2827 		goto out;
2828 	}
2829 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2830 		(hba->clk_gating.state != CLKS_ON));
2831 
2832 	lrbp = &hba->lrb[tag];
2833 	WARN_ON(lrbp->cmd);
2834 	lrbp->cmd = cmd;
2835 	lrbp->task_tag = tag;
2836 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2837 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2838 
2839 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2840 
2841 	lrbp->req_abort_skip = false;
2842 
2843 	ufshpb_prep(hba, lrbp);
2844 
2845 	ufshcd_comp_scsi_upiu(hba, lrbp);
2846 
2847 	err = ufshcd_map_sg(hba, lrbp);
2848 	if (err) {
2849 		lrbp->cmd = NULL;
2850 		ufshcd_release(hba);
2851 		goto out;
2852 	}
2853 
2854 	ufshcd_send_command(hba, tag);
2855 
2856 out:
2857 	rcu_read_unlock();
2858 
2859 	if (ufs_trigger_eh()) {
2860 		unsigned long flags;
2861 
2862 		spin_lock_irqsave(hba->host->host_lock, flags);
2863 		ufshcd_schedule_eh_work(hba);
2864 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2865 	}
2866 
2867 	return err;
2868 }
2869 
2870 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2871 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2872 {
2873 	lrbp->cmd = NULL;
2874 	lrbp->task_tag = tag;
2875 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2876 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2877 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2878 	hba->dev_cmd.type = cmd_type;
2879 
2880 	return ufshcd_compose_devman_upiu(hba, lrbp);
2881 }
2882 
2883 /*
2884  * Clear all the requests from the controller for which a bit has been set in
2885  * @mask and wait until the controller confirms that these requests have been
2886  * cleared.
2887  */
2888 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2889 {
2890 	unsigned long flags;
2891 
2892 	/* clear outstanding transaction before retry */
2893 	spin_lock_irqsave(hba->host->host_lock, flags);
2894 	ufshcd_utrl_clear(hba, mask);
2895 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2896 
2897 	/*
2898 	 * wait for h/w to clear corresponding bit in door-bell.
2899 	 * max. wait is 1 sec.
2900 	 */
2901 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2902 					mask, ~mask, 1000, 1000);
2903 }
2904 
2905 static int
2906 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2907 {
2908 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2909 
2910 	/* Get the UPIU response */
2911 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2912 				UPIU_RSP_CODE_OFFSET;
2913 	return query_res->response;
2914 }
2915 
2916 /**
2917  * ufshcd_dev_cmd_completion() - handles device management command responses
2918  * @hba: per adapter instance
2919  * @lrbp: pointer to local reference block
2920  */
2921 static int
2922 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2923 {
2924 	int resp;
2925 	int err = 0;
2926 
2927 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2928 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2929 
2930 	switch (resp) {
2931 	case UPIU_TRANSACTION_NOP_IN:
2932 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2933 			err = -EINVAL;
2934 			dev_err(hba->dev, "%s: unexpected response %x\n",
2935 					__func__, resp);
2936 		}
2937 		break;
2938 	case UPIU_TRANSACTION_QUERY_RSP:
2939 		err = ufshcd_check_query_response(hba, lrbp);
2940 		if (!err)
2941 			err = ufshcd_copy_query_response(hba, lrbp);
2942 		break;
2943 	case UPIU_TRANSACTION_REJECT_UPIU:
2944 		/* TODO: handle Reject UPIU Response */
2945 		err = -EPERM;
2946 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2947 				__func__);
2948 		break;
2949 	default:
2950 		err = -EINVAL;
2951 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2952 				__func__, resp);
2953 		break;
2954 	}
2955 
2956 	return err;
2957 }
2958 
2959 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2960 		struct ufshcd_lrb *lrbp, int max_timeout)
2961 {
2962 	unsigned long time_left = msecs_to_jiffies(max_timeout);
2963 	unsigned long flags;
2964 	bool pending;
2965 	int err;
2966 
2967 retry:
2968 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2969 						time_left);
2970 
2971 	if (likely(time_left)) {
2972 		/*
2973 		 * The completion handler called complete() and the caller of
2974 		 * this function still owns the @lrbp tag so the code below does
2975 		 * not trigger any race conditions.
2976 		 */
2977 		hba->dev_cmd.complete = NULL;
2978 		err = ufshcd_get_tr_ocs(lrbp);
2979 		if (!err)
2980 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2981 	} else {
2982 		err = -ETIMEDOUT;
2983 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2984 			__func__, lrbp->task_tag);
2985 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
2986 			/* successfully cleared the command, retry if needed */
2987 			err = -EAGAIN;
2988 			/*
2989 			 * Since clearing the command succeeded we also need to
2990 			 * clear the task tag bit from the outstanding_reqs
2991 			 * variable.
2992 			 */
2993 			spin_lock_irqsave(&hba->outstanding_lock, flags);
2994 			pending = test_bit(lrbp->task_tag,
2995 					   &hba->outstanding_reqs);
2996 			if (pending) {
2997 				hba->dev_cmd.complete = NULL;
2998 				__clear_bit(lrbp->task_tag,
2999 					    &hba->outstanding_reqs);
3000 			}
3001 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3002 
3003 			if (!pending) {
3004 				/*
3005 				 * The completion handler ran while we tried to
3006 				 * clear the command.
3007 				 */
3008 				time_left = 1;
3009 				goto retry;
3010 			}
3011 		} else {
3012 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3013 				__func__, lrbp->task_tag);
3014 		}
3015 	}
3016 
3017 	return err;
3018 }
3019 
3020 /**
3021  * ufshcd_exec_dev_cmd - API for sending device management requests
3022  * @hba: UFS hba
3023  * @cmd_type: specifies the type (NOP, Query...)
3024  * @timeout: timeout in milliseconds
3025  *
3026  * NOTE: Since there is only one available tag for device management commands,
3027  * it is expected you hold the hba->dev_cmd.lock mutex.
3028  */
3029 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3030 		enum dev_cmd_type cmd_type, int timeout)
3031 {
3032 	DECLARE_COMPLETION_ONSTACK(wait);
3033 	const u32 tag = hba->reserved_slot;
3034 	struct ufshcd_lrb *lrbp;
3035 	int err;
3036 
3037 	/* Protects use of hba->reserved_slot. */
3038 	lockdep_assert_held(&hba->dev_cmd.lock);
3039 
3040 	down_read(&hba->clk_scaling_lock);
3041 
3042 	lrbp = &hba->lrb[tag];
3043 	WARN_ON(lrbp->cmd);
3044 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3045 	if (unlikely(err))
3046 		goto out;
3047 
3048 	hba->dev_cmd.complete = &wait;
3049 
3050 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3051 
3052 	ufshcd_send_command(hba, tag);
3053 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3054 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3055 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3056 
3057 out:
3058 	up_read(&hba->clk_scaling_lock);
3059 	return err;
3060 }
3061 
3062 /**
3063  * ufshcd_init_query() - init the query response and request parameters
3064  * @hba: per-adapter instance
3065  * @request: address of the request pointer to be initialized
3066  * @response: address of the response pointer to be initialized
3067  * @opcode: operation to perform
3068  * @idn: flag idn to access
3069  * @index: LU number to access
3070  * @selector: query/flag/descriptor further identification
3071  */
3072 static inline void ufshcd_init_query(struct ufs_hba *hba,
3073 		struct ufs_query_req **request, struct ufs_query_res **response,
3074 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3075 {
3076 	*request = &hba->dev_cmd.query.request;
3077 	*response = &hba->dev_cmd.query.response;
3078 	memset(*request, 0, sizeof(struct ufs_query_req));
3079 	memset(*response, 0, sizeof(struct ufs_query_res));
3080 	(*request)->upiu_req.opcode = opcode;
3081 	(*request)->upiu_req.idn = idn;
3082 	(*request)->upiu_req.index = index;
3083 	(*request)->upiu_req.selector = selector;
3084 }
3085 
3086 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3087 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3088 {
3089 	int ret;
3090 	int retries;
3091 
3092 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3093 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3094 		if (ret)
3095 			dev_dbg(hba->dev,
3096 				"%s: failed with error %d, retries %d\n",
3097 				__func__, ret, retries);
3098 		else
3099 			break;
3100 	}
3101 
3102 	if (ret)
3103 		dev_err(hba->dev,
3104 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retries\n",
3105 			__func__, opcode, idn, ret, retries);
3106 	return ret;
3107 }
3108 
3109 /**
3110  * ufshcd_query_flag() - API function for sending flag query requests
3111  * @hba: per-adapter instance
3112  * @opcode: flag query to perform
3113  * @idn: flag idn to access
3114  * @index: flag index to access
3115  * @flag_res: the flag value after the query request completes
3116  *
3117  * Returns 0 for success, non-zero in case of failure
3118  */
3119 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3120 			enum flag_idn idn, u8 index, bool *flag_res)
3121 {
3122 	struct ufs_query_req *request = NULL;
3123 	struct ufs_query_res *response = NULL;
3124 	int err, selector = 0;
3125 	int timeout = QUERY_REQ_TIMEOUT;
3126 
3127 	BUG_ON(!hba);
3128 
3129 	ufshcd_hold(hba, false);
3130 	mutex_lock(&hba->dev_cmd.lock);
3131 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3132 			selector);
3133 
3134 	switch (opcode) {
3135 	case UPIU_QUERY_OPCODE_SET_FLAG:
3136 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3137 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3138 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3139 		break;
3140 	case UPIU_QUERY_OPCODE_READ_FLAG:
3141 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3142 		if (!flag_res) {
3143 			/* No dummy reads */
3144 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3145 					__func__);
3146 			err = -EINVAL;
3147 			goto out_unlock;
3148 		}
3149 		break;
3150 	default:
3151 		dev_err(hba->dev,
3152 			"%s: Expected query flag opcode but got = %d\n",
3153 			__func__, opcode);
3154 		err = -EINVAL;
3155 		goto out_unlock;
3156 	}
3157 
3158 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3159 
3160 	if (err) {
3161 		dev_err(hba->dev,
3162 			"%s: Sending flag query for idn %d failed, err = %d\n",
3163 			__func__, idn, err);
3164 		goto out_unlock;
3165 	}
3166 
3167 	if (flag_res)
3168 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3169 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3170 
3171 out_unlock:
3172 	mutex_unlock(&hba->dev_cmd.lock);
3173 	ufshcd_release(hba);
3174 	return err;
3175 }
3176 
3177 /**
3178  * ufshcd_query_attr - API function for sending attribute requests
3179  * @hba: per-adapter instance
3180  * @opcode: attribute opcode
3181  * @idn: attribute idn to access
3182  * @index: index field
3183  * @selector: selector field
3184  * @attr_val: the attribute value after the query request completes
3185  *
3186  * Returns 0 for success, non-zero in case of failure
3187 */
3188 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3189 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3190 {
3191 	struct ufs_query_req *request = NULL;
3192 	struct ufs_query_res *response = NULL;
3193 	int err;
3194 
3195 	BUG_ON(!hba);
3196 
3197 	if (!attr_val) {
3198 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3199 				__func__, opcode);
3200 		return -EINVAL;
3201 	}
3202 
3203 	ufshcd_hold(hba, false);
3204 
3205 	mutex_lock(&hba->dev_cmd.lock);
3206 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3207 			selector);
3208 
3209 	switch (opcode) {
3210 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3211 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3212 		request->upiu_req.value = cpu_to_be32(*attr_val);
3213 		break;
3214 	case UPIU_QUERY_OPCODE_READ_ATTR:
3215 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3216 		break;
3217 	default:
3218 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3219 				__func__, opcode);
3220 		err = -EINVAL;
3221 		goto out_unlock;
3222 	}
3223 
3224 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3225 
3226 	if (err) {
3227 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3228 				__func__, opcode, idn, index, err);
3229 		goto out_unlock;
3230 	}
3231 
3232 	*attr_val = be32_to_cpu(response->upiu_res.value);
3233 
3234 out_unlock:
3235 	mutex_unlock(&hba->dev_cmd.lock);
3236 	ufshcd_release(hba);
3237 	return err;
3238 }
3239 
3240 /**
3241  * ufshcd_query_attr_retry() - API function for sending query
3242  * attribute with retries
3243  * @hba: per-adapter instance
3244  * @opcode: attribute opcode
3245  * @idn: attribute idn to access
3246  * @index: index field
3247  * @selector: selector field
3248  * @attr_val: the attribute value after the query request
3249  * completes
3250  *
3251  * Returns 0 for success, non-zero in case of failure
3252 */
3253 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3254 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3255 	u32 *attr_val)
3256 {
3257 	int ret = 0;
3258 	u32 retries;
3259 
3260 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3261 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3262 						selector, attr_val);
3263 		if (ret)
3264 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3265 				__func__, ret, retries);
3266 		else
3267 			break;
3268 	}
3269 
3270 	if (ret)
3271 		dev_err(hba->dev,
3272 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3273 			__func__, idn, ret, QUERY_REQ_RETRIES);
3274 	return ret;
3275 }
3276 
3277 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3278 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3279 			u8 selector, u8 *desc_buf, int *buf_len)
3280 {
3281 	struct ufs_query_req *request = NULL;
3282 	struct ufs_query_res *response = NULL;
3283 	int err;
3284 
3285 	BUG_ON(!hba);
3286 
3287 	if (!desc_buf) {
3288 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3289 				__func__, opcode);
3290 		return -EINVAL;
3291 	}
3292 
3293 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3294 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3295 				__func__, *buf_len);
3296 		return -EINVAL;
3297 	}
3298 
3299 	ufshcd_hold(hba, false);
3300 
3301 	mutex_lock(&hba->dev_cmd.lock);
3302 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3303 			selector);
3304 	hba->dev_cmd.query.descriptor = desc_buf;
3305 	request->upiu_req.length = cpu_to_be16(*buf_len);
3306 
3307 	switch (opcode) {
3308 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3309 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3310 		break;
3311 	case UPIU_QUERY_OPCODE_READ_DESC:
3312 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3313 		break;
3314 	default:
3315 		dev_err(hba->dev,
3316 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3317 				__func__, opcode);
3318 		err = -EINVAL;
3319 		goto out_unlock;
3320 	}
3321 
3322 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3323 
3324 	if (err) {
3325 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3326 				__func__, opcode, idn, index, err);
3327 		goto out_unlock;
3328 	}
3329 
3330 	*buf_len = be16_to_cpu(response->upiu_res.length);
3331 
3332 out_unlock:
3333 	hba->dev_cmd.query.descriptor = NULL;
3334 	mutex_unlock(&hba->dev_cmd.lock);
3335 	ufshcd_release(hba);
3336 	return err;
3337 }
3338 
3339 /**
3340  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3341  * @hba: per-adapter instance
3342  * @opcode: attribute opcode
3343  * @idn: attribute idn to access
3344  * @index: index field
3345  * @selector: selector field
3346  * @desc_buf: the buffer that contains the descriptor
3347  * @buf_len: length parameter passed to the device
3348  *
3349  * Returns 0 for success, non-zero in case of failure.
3350  * The buf_len parameter will contain, on return, the length parameter
3351  * received on the response.
3352  */
3353 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3354 				  enum query_opcode opcode,
3355 				  enum desc_idn idn, u8 index,
3356 				  u8 selector,
3357 				  u8 *desc_buf, int *buf_len)
3358 {
3359 	int err;
3360 	int retries;
3361 
3362 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3363 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3364 						selector, desc_buf, buf_len);
3365 		if (!err || err == -EINVAL)
3366 			break;
3367 	}
3368 
3369 	return err;
3370 }
3371 
3372 /**
3373  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3374  * @hba: Pointer to adapter instance
3375  * @desc_id: descriptor idn value
3376  * @desc_len: mapped desc length (out)
3377  */
3378 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3379 				  int *desc_len)
3380 {
3381 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3382 	    desc_id == QUERY_DESC_IDN_RFU_1)
3383 		*desc_len = 0;
3384 	else
3385 		*desc_len = hba->desc_size[desc_id];
3386 }
3387 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3388 
3389 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3390 				      enum desc_idn desc_id, int desc_index,
3391 				      unsigned char desc_len)
3392 {
3393 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3394 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3395 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3396 		 * than the RPMB unit, however, both descriptors share the same
3397 		 * desc_idn, to cover both unit descriptors with one length, we
3398 		 * choose the normal unit descriptor length by desc_index.
3399 		 */
3400 		hba->desc_size[desc_id] = desc_len;
3401 }
3402 
3403 /**
3404  * ufshcd_read_desc_param - read the specified descriptor parameter
3405  * @hba: Pointer to adapter instance
3406  * @desc_id: descriptor idn value
3407  * @desc_index: descriptor index
3408  * @param_offset: offset of the parameter to read
3409  * @param_read_buf: pointer to buffer where parameter would be read
3410  * @param_size: sizeof(param_read_buf)
3411  *
3412  * Return 0 in case of success, non-zero otherwise
3413  */
3414 int ufshcd_read_desc_param(struct ufs_hba *hba,
3415 			   enum desc_idn desc_id,
3416 			   int desc_index,
3417 			   u8 param_offset,
3418 			   u8 *param_read_buf,
3419 			   u8 param_size)
3420 {
3421 	int ret;
3422 	u8 *desc_buf;
3423 	int buff_len;
3424 	bool is_kmalloc = true;
3425 
3426 	/* Safety check */
3427 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3428 		return -EINVAL;
3429 
3430 	/* Get the length of descriptor */
3431 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3432 	if (!buff_len) {
3433 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3434 		return -EINVAL;
3435 	}
3436 
3437 	if (param_offset >= buff_len) {
3438 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3439 			__func__, param_offset, desc_id, buff_len);
3440 		return -EINVAL;
3441 	}
3442 
3443 	/* Check whether we need temp memory */
3444 	if (param_offset != 0 || param_size < buff_len) {
3445 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3446 		if (!desc_buf)
3447 			return -ENOMEM;
3448 	} else {
3449 		desc_buf = param_read_buf;
3450 		is_kmalloc = false;
3451 	}
3452 
3453 	/* Request for full descriptor */
3454 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3455 					desc_id, desc_index, 0,
3456 					desc_buf, &buff_len);
3457 
3458 	if (ret) {
3459 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3460 			__func__, desc_id, desc_index, param_offset, ret);
3461 		goto out;
3462 	}
3463 
3464 	/* Sanity check */
3465 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3466 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3467 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3468 		ret = -EINVAL;
3469 		goto out;
3470 	}
3471 
3472 	/* Update descriptor length */
3473 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3474 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3475 
3476 	if (is_kmalloc) {
3477 		/* Make sure we don't copy more data than available */
3478 		if (param_offset >= buff_len)
3479 			ret = -EINVAL;
3480 		else
3481 			memcpy(param_read_buf, &desc_buf[param_offset],
3482 			       min_t(u32, param_size, buff_len - param_offset));
3483 	}
3484 out:
3485 	if (is_kmalloc)
3486 		kfree(desc_buf);
3487 	return ret;
3488 }
3489 
3490 /**
3491  * struct uc_string_id - unicode string
3492  *
3493  * @len: size of this descriptor inclusive
3494  * @type: descriptor type
3495  * @uc: unicode string character
3496  */
3497 struct uc_string_id {
3498 	u8 len;
3499 	u8 type;
3500 	wchar_t uc[];
3501 } __packed;
3502 
3503 /* replace non-printable or non-ASCII characters with spaces */
3504 static inline char ufshcd_remove_non_printable(u8 ch)
3505 {
3506 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3507 }
3508 
3509 /**
3510  * ufshcd_read_string_desc - read string descriptor
3511  * @hba: pointer to adapter instance
3512  * @desc_index: descriptor index
3513  * @buf: pointer to buffer where descriptor would be read,
3514  *       the caller should free the memory.
3515  * @ascii: if true convert from unicode to ascii characters
3516  *         null terminated string.
3517  *
3518  * Return:
3519  * *      string size on success.
3520  * *      -ENOMEM: on allocation failure
3521  * *      -EINVAL: on a wrong parameter
3522  */
3523 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3524 			    u8 **buf, bool ascii)
3525 {
3526 	struct uc_string_id *uc_str;
3527 	u8 *str;
3528 	int ret;
3529 
3530 	if (!buf)
3531 		return -EINVAL;
3532 
3533 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3534 	if (!uc_str)
3535 		return -ENOMEM;
3536 
3537 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3538 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3539 	if (ret < 0) {
3540 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3541 			QUERY_REQ_RETRIES, ret);
3542 		str = NULL;
3543 		goto out;
3544 	}
3545 
3546 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3547 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3548 		str = NULL;
3549 		ret = 0;
3550 		goto out;
3551 	}
3552 
3553 	if (ascii) {
3554 		ssize_t ascii_len;
3555 		int i;
3556 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3557 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3558 		str = kzalloc(ascii_len, GFP_KERNEL);
3559 		if (!str) {
3560 			ret = -ENOMEM;
3561 			goto out;
3562 		}
3563 
3564 		/*
3565 		 * the descriptor contains string in UTF16 format
3566 		 * we need to convert to utf-8 so it can be displayed
3567 		 */
3568 		ret = utf16s_to_utf8s(uc_str->uc,
3569 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3570 				      UTF16_BIG_ENDIAN, str, ascii_len);
3571 
3572 		/* replace non-printable or non-ASCII characters with spaces */
3573 		for (i = 0; i < ret; i++)
3574 			str[i] = ufshcd_remove_non_printable(str[i]);
3575 
3576 		str[ret++] = '\0';
3577 
3578 	} else {
3579 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3580 		if (!str) {
3581 			ret = -ENOMEM;
3582 			goto out;
3583 		}
3584 		ret = uc_str->len;
3585 	}
3586 out:
3587 	*buf = str;
3588 	kfree(uc_str);
3589 	return ret;
3590 }
3591 
3592 /**
3593  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3594  * @hba: Pointer to adapter instance
3595  * @lun: lun id
3596  * @param_offset: offset of the parameter to read
3597  * @param_read_buf: pointer to buffer where parameter would be read
3598  * @param_size: sizeof(param_read_buf)
3599  *
3600  * Return 0 in case of success, non-zero otherwise
3601  */
3602 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3603 					      int lun,
3604 					      enum unit_desc_param param_offset,
3605 					      u8 *param_read_buf,
3606 					      u32 param_size)
3607 {
3608 	/*
3609 	 * Unit descriptors are only available for general purpose LUs (LUN id
3610 	 * from 0 to 7) and RPMB Well known LU.
3611 	 */
3612 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3613 		return -EOPNOTSUPP;
3614 
3615 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3616 				      param_offset, param_read_buf, param_size);
3617 }
3618 
3619 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3620 {
3621 	int err = 0;
3622 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3623 
3624 	if (hba->dev_info.wspecversion >= 0x300) {
3625 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3626 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3627 				&gating_wait);
3628 		if (err)
3629 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3630 					 err, gating_wait);
3631 
3632 		if (gating_wait == 0) {
3633 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3634 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3635 					 gating_wait);
3636 		}
3637 
3638 		hba->dev_info.clk_gating_wait_us = gating_wait;
3639 	}
3640 
3641 	return err;
3642 }
3643 
3644 /**
3645  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3646  * @hba: per adapter instance
3647  *
3648  * 1. Allocate DMA memory for Command Descriptor array
3649  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3650  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3651  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3652  *	(UTMRDL)
3653  * 4. Allocate memory for local reference block(lrb).
3654  *
3655  * Returns 0 for success, non-zero in case of failure
3656  */
3657 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3658 {
3659 	size_t utmrdl_size, utrdl_size, ucdl_size;
3660 
3661 	/* Allocate memory for UTP command descriptors */
3662 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3663 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3664 						  ucdl_size,
3665 						  &hba->ucdl_dma_addr,
3666 						  GFP_KERNEL);
3667 
3668 	/*
3669 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3670 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3671 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3672 	 * be aligned to 128 bytes as well
3673 	 */
3674 	if (!hba->ucdl_base_addr ||
3675 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3676 		dev_err(hba->dev,
3677 			"Command Descriptor Memory allocation failed\n");
3678 		goto out;
3679 	}
3680 
3681 	/*
3682 	 * Allocate memory for UTP Transfer descriptors
3683 	 * UFSHCI requires 1024 byte alignment of UTRD
3684 	 */
3685 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3686 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3687 						   utrdl_size,
3688 						   &hba->utrdl_dma_addr,
3689 						   GFP_KERNEL);
3690 	if (!hba->utrdl_base_addr ||
3691 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3692 		dev_err(hba->dev,
3693 			"Transfer Descriptor Memory allocation failed\n");
3694 		goto out;
3695 	}
3696 
3697 	/*
3698 	 * Allocate memory for UTP Task Management descriptors
3699 	 * UFSHCI requires 1024 byte alignment of UTMRD
3700 	 */
3701 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3702 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3703 						    utmrdl_size,
3704 						    &hba->utmrdl_dma_addr,
3705 						    GFP_KERNEL);
3706 	if (!hba->utmrdl_base_addr ||
3707 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3708 		dev_err(hba->dev,
3709 		"Task Management Descriptor Memory allocation failed\n");
3710 		goto out;
3711 	}
3712 
3713 	/* Allocate memory for local reference block */
3714 	hba->lrb = devm_kcalloc(hba->dev,
3715 				hba->nutrs, sizeof(struct ufshcd_lrb),
3716 				GFP_KERNEL);
3717 	if (!hba->lrb) {
3718 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3719 		goto out;
3720 	}
3721 	return 0;
3722 out:
3723 	return -ENOMEM;
3724 }
3725 
3726 /**
3727  * ufshcd_host_memory_configure - configure local reference block with
3728  *				memory offsets
3729  * @hba: per adapter instance
3730  *
3731  * Configure Host memory space
3732  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3733  * address.
3734  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3735  * and PRDT offset.
3736  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3737  * into local reference block.
3738  */
3739 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3740 {
3741 	struct utp_transfer_req_desc *utrdlp;
3742 	dma_addr_t cmd_desc_dma_addr;
3743 	dma_addr_t cmd_desc_element_addr;
3744 	u16 response_offset;
3745 	u16 prdt_offset;
3746 	int cmd_desc_size;
3747 	int i;
3748 
3749 	utrdlp = hba->utrdl_base_addr;
3750 
3751 	response_offset =
3752 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3753 	prdt_offset =
3754 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3755 
3756 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3757 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3758 
3759 	for (i = 0; i < hba->nutrs; i++) {
3760 		/* Configure UTRD with command descriptor base address */
3761 		cmd_desc_element_addr =
3762 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3763 		utrdlp[i].command_desc_base_addr_lo =
3764 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3765 		utrdlp[i].command_desc_base_addr_hi =
3766 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3767 
3768 		/* Response upiu and prdt offset should be in double words */
3769 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3770 			utrdlp[i].response_upiu_offset =
3771 				cpu_to_le16(response_offset);
3772 			utrdlp[i].prd_table_offset =
3773 				cpu_to_le16(prdt_offset);
3774 			utrdlp[i].response_upiu_length =
3775 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3776 		} else {
3777 			utrdlp[i].response_upiu_offset =
3778 				cpu_to_le16(response_offset >> 2);
3779 			utrdlp[i].prd_table_offset =
3780 				cpu_to_le16(prdt_offset >> 2);
3781 			utrdlp[i].response_upiu_length =
3782 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3783 		}
3784 
3785 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3786 	}
3787 }
3788 
3789 /**
3790  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3791  * @hba: per adapter instance
3792  *
3793  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3794  * in order to initialize the Unipro link startup procedure.
3795  * Once the Unipro links are up, the device connected to the controller
3796  * is detected.
3797  *
3798  * Returns 0 on success, non-zero value on failure
3799  */
3800 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3801 {
3802 	struct uic_command uic_cmd = {0};
3803 	int ret;
3804 
3805 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3806 
3807 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3808 	if (ret)
3809 		dev_dbg(hba->dev,
3810 			"dme-link-startup: error code %d\n", ret);
3811 	return ret;
3812 }
3813 /**
3814  * ufshcd_dme_reset - UIC command for DME_RESET
3815  * @hba: per adapter instance
3816  *
3817  * DME_RESET command is issued in order to reset UniPro stack.
3818  * This function now deals with cold reset.
3819  *
3820  * Returns 0 on success, non-zero value on failure
3821  */
3822 static int ufshcd_dme_reset(struct ufs_hba *hba)
3823 {
3824 	struct uic_command uic_cmd = {0};
3825 	int ret;
3826 
3827 	uic_cmd.command = UIC_CMD_DME_RESET;
3828 
3829 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3830 	if (ret)
3831 		dev_err(hba->dev,
3832 			"dme-reset: error code %d\n", ret);
3833 
3834 	return ret;
3835 }
3836 
3837 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3838 			       int agreed_gear,
3839 			       int adapt_val)
3840 {
3841 	int ret;
3842 
3843 	if (agreed_gear < UFS_HS_G4)
3844 		adapt_val = PA_NO_ADAPT;
3845 
3846 	ret = ufshcd_dme_set(hba,
3847 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3848 			     adapt_val);
3849 	return ret;
3850 }
3851 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3852 
3853 /**
3854  * ufshcd_dme_enable - UIC command for DME_ENABLE
3855  * @hba: per adapter instance
3856  *
3857  * DME_ENABLE command is issued in order to enable UniPro stack.
3858  *
3859  * Returns 0 on success, non-zero value on failure
3860  */
3861 static int ufshcd_dme_enable(struct ufs_hba *hba)
3862 {
3863 	struct uic_command uic_cmd = {0};
3864 	int ret;
3865 
3866 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3867 
3868 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3869 	if (ret)
3870 		dev_err(hba->dev,
3871 			"dme-enable: error code %d\n", ret);
3872 
3873 	return ret;
3874 }
3875 
3876 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3877 {
3878 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3879 	unsigned long min_sleep_time_us;
3880 
3881 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3882 		return;
3883 
3884 	/*
3885 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3886 	 * this function
3887 	 */
3888 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3889 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3890 	} else {
3891 		unsigned long delta =
3892 			(unsigned long) ktime_to_us(
3893 				ktime_sub(ktime_get(),
3894 				hba->last_dme_cmd_tstamp));
3895 
3896 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3897 			min_sleep_time_us =
3898 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3899 		else
3900 			return; /* no more delay required */
3901 	}
3902 
3903 	/* allow sleep for extra 50us if needed */
3904 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3905 }
3906 
3907 /**
3908  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3909  * @hba: per adapter instance
3910  * @attr_sel: uic command argument1
3911  * @attr_set: attribute set type as uic command argument2
3912  * @mib_val: setting value as uic command argument3
3913  * @peer: indicate whether peer or local
3914  *
3915  * Returns 0 on success, non-zero value on failure
3916  */
3917 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3918 			u8 attr_set, u32 mib_val, u8 peer)
3919 {
3920 	struct uic_command uic_cmd = {0};
3921 	static const char *const action[] = {
3922 		"dme-set",
3923 		"dme-peer-set"
3924 	};
3925 	const char *set = action[!!peer];
3926 	int ret;
3927 	int retries = UFS_UIC_COMMAND_RETRIES;
3928 
3929 	uic_cmd.command = peer ?
3930 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3931 	uic_cmd.argument1 = attr_sel;
3932 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3933 	uic_cmd.argument3 = mib_val;
3934 
3935 	do {
3936 		/* for peer attributes we retry upon failure */
3937 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3938 		if (ret)
3939 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3940 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3941 	} while (ret && peer && --retries);
3942 
3943 	if (ret)
3944 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3945 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3946 			UFS_UIC_COMMAND_RETRIES - retries);
3947 
3948 	return ret;
3949 }
3950 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3951 
3952 /**
3953  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3954  * @hba: per adapter instance
3955  * @attr_sel: uic command argument1
3956  * @mib_val: the value of the attribute as returned by the UIC command
3957  * @peer: indicate whether peer or local
3958  *
3959  * Returns 0 on success, non-zero value on failure
3960  */
3961 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3962 			u32 *mib_val, u8 peer)
3963 {
3964 	struct uic_command uic_cmd = {0};
3965 	static const char *const action[] = {
3966 		"dme-get",
3967 		"dme-peer-get"
3968 	};
3969 	const char *get = action[!!peer];
3970 	int ret;
3971 	int retries = UFS_UIC_COMMAND_RETRIES;
3972 	struct ufs_pa_layer_attr orig_pwr_info;
3973 	struct ufs_pa_layer_attr temp_pwr_info;
3974 	bool pwr_mode_change = false;
3975 
3976 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3977 		orig_pwr_info = hba->pwr_info;
3978 		temp_pwr_info = orig_pwr_info;
3979 
3980 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3981 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3982 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3983 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3984 			pwr_mode_change = true;
3985 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3986 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3987 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3988 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3989 			pwr_mode_change = true;
3990 		}
3991 		if (pwr_mode_change) {
3992 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3993 			if (ret)
3994 				goto out;
3995 		}
3996 	}
3997 
3998 	uic_cmd.command = peer ?
3999 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4000 	uic_cmd.argument1 = attr_sel;
4001 
4002 	do {
4003 		/* for peer attributes we retry upon failure */
4004 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4005 		if (ret)
4006 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4007 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4008 	} while (ret && peer && --retries);
4009 
4010 	if (ret)
4011 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4012 			get, UIC_GET_ATTR_ID(attr_sel),
4013 			UFS_UIC_COMMAND_RETRIES - retries);
4014 
4015 	if (mib_val && !ret)
4016 		*mib_val = uic_cmd.argument3;
4017 
4018 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4019 	    && pwr_mode_change)
4020 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4021 out:
4022 	return ret;
4023 }
4024 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4025 
4026 /**
4027  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4028  * state) and waits for it to take effect.
4029  *
4030  * @hba: per adapter instance
4031  * @cmd: UIC command to execute
4032  *
4033  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4034  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4035  * and device UniPro link and hence it's final completion would be indicated by
4036  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4037  * addition to normal UIC command completion Status (UCCS). This function only
4038  * returns after the relevant status bits indicate the completion.
4039  *
4040  * Returns 0 on success, non-zero value on failure
4041  */
4042 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4043 {
4044 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4045 	unsigned long flags;
4046 	u8 status;
4047 	int ret;
4048 	bool reenable_intr = false;
4049 
4050 	mutex_lock(&hba->uic_cmd_mutex);
4051 	ufshcd_add_delay_before_dme_cmd(hba);
4052 
4053 	spin_lock_irqsave(hba->host->host_lock, flags);
4054 	if (ufshcd_is_link_broken(hba)) {
4055 		ret = -ENOLINK;
4056 		goto out_unlock;
4057 	}
4058 	hba->uic_async_done = &uic_async_done;
4059 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4060 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4061 		/*
4062 		 * Make sure UIC command completion interrupt is disabled before
4063 		 * issuing UIC command.
4064 		 */
4065 		wmb();
4066 		reenable_intr = true;
4067 	}
4068 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4069 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4070 	if (ret) {
4071 		dev_err(hba->dev,
4072 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4073 			cmd->command, cmd->argument3, ret);
4074 		goto out;
4075 	}
4076 
4077 	if (!wait_for_completion_timeout(hba->uic_async_done,
4078 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4079 		dev_err(hba->dev,
4080 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4081 			cmd->command, cmd->argument3);
4082 
4083 		if (!cmd->cmd_active) {
4084 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4085 				__func__);
4086 			goto check_upmcrs;
4087 		}
4088 
4089 		ret = -ETIMEDOUT;
4090 		goto out;
4091 	}
4092 
4093 check_upmcrs:
4094 	status = ufshcd_get_upmcrs(hba);
4095 	if (status != PWR_LOCAL) {
4096 		dev_err(hba->dev,
4097 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4098 			cmd->command, status);
4099 		ret = (status != PWR_OK) ? status : -1;
4100 	}
4101 out:
4102 	if (ret) {
4103 		ufshcd_print_host_state(hba);
4104 		ufshcd_print_pwr_info(hba);
4105 		ufshcd_print_evt_hist(hba);
4106 	}
4107 
4108 	spin_lock_irqsave(hba->host->host_lock, flags);
4109 	hba->active_uic_cmd = NULL;
4110 	hba->uic_async_done = NULL;
4111 	if (reenable_intr)
4112 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4113 	if (ret) {
4114 		ufshcd_set_link_broken(hba);
4115 		ufshcd_schedule_eh_work(hba);
4116 	}
4117 out_unlock:
4118 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4119 	mutex_unlock(&hba->uic_cmd_mutex);
4120 
4121 	return ret;
4122 }
4123 
4124 /**
4125  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4126  *				using DME_SET primitives.
4127  * @hba: per adapter instance
4128  * @mode: powr mode value
4129  *
4130  * Returns 0 on success, non-zero value on failure
4131  */
4132 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4133 {
4134 	struct uic_command uic_cmd = {0};
4135 	int ret;
4136 
4137 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4138 		ret = ufshcd_dme_set(hba,
4139 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4140 		if (ret) {
4141 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4142 						__func__, ret);
4143 			goto out;
4144 		}
4145 	}
4146 
4147 	uic_cmd.command = UIC_CMD_DME_SET;
4148 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4149 	uic_cmd.argument3 = mode;
4150 	ufshcd_hold(hba, false);
4151 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4152 	ufshcd_release(hba);
4153 
4154 out:
4155 	return ret;
4156 }
4157 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4158 
4159 int ufshcd_link_recovery(struct ufs_hba *hba)
4160 {
4161 	int ret;
4162 	unsigned long flags;
4163 
4164 	spin_lock_irqsave(hba->host->host_lock, flags);
4165 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4166 	ufshcd_set_eh_in_progress(hba);
4167 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4168 
4169 	/* Reset the attached device */
4170 	ufshcd_device_reset(hba);
4171 
4172 	ret = ufshcd_host_reset_and_restore(hba);
4173 
4174 	spin_lock_irqsave(hba->host->host_lock, flags);
4175 	if (ret)
4176 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4177 	ufshcd_clear_eh_in_progress(hba);
4178 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4179 
4180 	if (ret)
4181 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4182 			__func__, ret);
4183 
4184 	return ret;
4185 }
4186 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4187 
4188 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4189 {
4190 	int ret;
4191 	struct uic_command uic_cmd = {0};
4192 	ktime_t start = ktime_get();
4193 
4194 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4195 
4196 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4197 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4198 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4199 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4200 
4201 	if (ret)
4202 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4203 			__func__, ret);
4204 	else
4205 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4206 								POST_CHANGE);
4207 
4208 	return ret;
4209 }
4210 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4211 
4212 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4213 {
4214 	struct uic_command uic_cmd = {0};
4215 	int ret;
4216 	ktime_t start = ktime_get();
4217 
4218 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4219 
4220 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4221 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4222 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4223 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4224 
4225 	if (ret) {
4226 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4227 			__func__, ret);
4228 	} else {
4229 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4230 								POST_CHANGE);
4231 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4232 		hba->ufs_stats.hibern8_exit_cnt++;
4233 	}
4234 
4235 	return ret;
4236 }
4237 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4238 
4239 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4240 {
4241 	unsigned long flags;
4242 	bool update = false;
4243 
4244 	if (!ufshcd_is_auto_hibern8_supported(hba))
4245 		return;
4246 
4247 	spin_lock_irqsave(hba->host->host_lock, flags);
4248 	if (hba->ahit != ahit) {
4249 		hba->ahit = ahit;
4250 		update = true;
4251 	}
4252 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4253 
4254 	if (update &&
4255 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4256 		ufshcd_rpm_get_sync(hba);
4257 		ufshcd_hold(hba, false);
4258 		ufshcd_auto_hibern8_enable(hba);
4259 		ufshcd_release(hba);
4260 		ufshcd_rpm_put_sync(hba);
4261 	}
4262 }
4263 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4264 
4265 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4266 {
4267 	if (!ufshcd_is_auto_hibern8_supported(hba))
4268 		return;
4269 
4270 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4271 }
4272 
4273  /**
4274  * ufshcd_init_pwr_info - setting the POR (power on reset)
4275  * values in hba power info
4276  * @hba: per-adapter instance
4277  */
4278 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4279 {
4280 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4281 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4282 	hba->pwr_info.lane_rx = 1;
4283 	hba->pwr_info.lane_tx = 1;
4284 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4285 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4286 	hba->pwr_info.hs_rate = 0;
4287 }
4288 
4289 /**
4290  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4291  * @hba: per-adapter instance
4292  */
4293 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4294 {
4295 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4296 
4297 	if (hba->max_pwr_info.is_valid)
4298 		return 0;
4299 
4300 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4301 		pwr_info->pwr_tx = FASTAUTO_MODE;
4302 		pwr_info->pwr_rx = FASTAUTO_MODE;
4303 	} else {
4304 		pwr_info->pwr_tx = FAST_MODE;
4305 		pwr_info->pwr_rx = FAST_MODE;
4306 	}
4307 	pwr_info->hs_rate = PA_HS_MODE_B;
4308 
4309 	/* Get the connected lane count */
4310 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4311 			&pwr_info->lane_rx);
4312 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4313 			&pwr_info->lane_tx);
4314 
4315 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4316 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4317 				__func__,
4318 				pwr_info->lane_rx,
4319 				pwr_info->lane_tx);
4320 		return -EINVAL;
4321 	}
4322 
4323 	/*
4324 	 * First, get the maximum gears of HS speed.
4325 	 * If a zero value, it means there is no HSGEAR capability.
4326 	 * Then, get the maximum gears of PWM speed.
4327 	 */
4328 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4329 	if (!pwr_info->gear_rx) {
4330 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4331 				&pwr_info->gear_rx);
4332 		if (!pwr_info->gear_rx) {
4333 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4334 				__func__, pwr_info->gear_rx);
4335 			return -EINVAL;
4336 		}
4337 		pwr_info->pwr_rx = SLOW_MODE;
4338 	}
4339 
4340 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4341 			&pwr_info->gear_tx);
4342 	if (!pwr_info->gear_tx) {
4343 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4344 				&pwr_info->gear_tx);
4345 		if (!pwr_info->gear_tx) {
4346 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4347 				__func__, pwr_info->gear_tx);
4348 			return -EINVAL;
4349 		}
4350 		pwr_info->pwr_tx = SLOW_MODE;
4351 	}
4352 
4353 	hba->max_pwr_info.is_valid = true;
4354 	return 0;
4355 }
4356 
4357 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4358 			     struct ufs_pa_layer_attr *pwr_mode)
4359 {
4360 	int ret;
4361 
4362 	/* if already configured to the requested pwr_mode */
4363 	if (!hba->force_pmc &&
4364 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4365 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4366 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4367 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4368 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4369 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4370 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4371 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4372 		return 0;
4373 	}
4374 
4375 	/*
4376 	 * Configure attributes for power mode change with below.
4377 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4378 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4379 	 * - PA_HSSERIES
4380 	 */
4381 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4382 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4383 			pwr_mode->lane_rx);
4384 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4385 			pwr_mode->pwr_rx == FAST_MODE)
4386 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4387 	else
4388 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4389 
4390 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4391 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4392 			pwr_mode->lane_tx);
4393 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4394 			pwr_mode->pwr_tx == FAST_MODE)
4395 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4396 	else
4397 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4398 
4399 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4400 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4401 	    pwr_mode->pwr_rx == FAST_MODE ||
4402 	    pwr_mode->pwr_tx == FAST_MODE)
4403 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4404 						pwr_mode->hs_rate);
4405 
4406 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4407 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4408 				DL_FC0ProtectionTimeOutVal_Default);
4409 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4410 				DL_TC0ReplayTimeOutVal_Default);
4411 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4412 				DL_AFC0ReqTimeOutVal_Default);
4413 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4414 				DL_FC1ProtectionTimeOutVal_Default);
4415 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4416 				DL_TC1ReplayTimeOutVal_Default);
4417 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4418 				DL_AFC1ReqTimeOutVal_Default);
4419 
4420 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4421 				DL_FC0ProtectionTimeOutVal_Default);
4422 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4423 				DL_TC0ReplayTimeOutVal_Default);
4424 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4425 				DL_AFC0ReqTimeOutVal_Default);
4426 	}
4427 
4428 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4429 			| pwr_mode->pwr_tx);
4430 
4431 	if (ret) {
4432 		dev_err(hba->dev,
4433 			"%s: power mode change failed %d\n", __func__, ret);
4434 	} else {
4435 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4436 								pwr_mode);
4437 
4438 		memcpy(&hba->pwr_info, pwr_mode,
4439 			sizeof(struct ufs_pa_layer_attr));
4440 	}
4441 
4442 	return ret;
4443 }
4444 
4445 /**
4446  * ufshcd_config_pwr_mode - configure a new power mode
4447  * @hba: per-adapter instance
4448  * @desired_pwr_mode: desired power configuration
4449  */
4450 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4451 		struct ufs_pa_layer_attr *desired_pwr_mode)
4452 {
4453 	struct ufs_pa_layer_attr final_params = { 0 };
4454 	int ret;
4455 
4456 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4457 					desired_pwr_mode, &final_params);
4458 
4459 	if (ret)
4460 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4461 
4462 	ret = ufshcd_change_power_mode(hba, &final_params);
4463 
4464 	return ret;
4465 }
4466 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4467 
4468 /**
4469  * ufshcd_complete_dev_init() - checks device readiness
4470  * @hba: per-adapter instance
4471  *
4472  * Set fDeviceInit flag and poll until device toggles it.
4473  */
4474 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4475 {
4476 	int err;
4477 	bool flag_res = true;
4478 	ktime_t timeout;
4479 
4480 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4481 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4482 	if (err) {
4483 		dev_err(hba->dev,
4484 			"%s setting fDeviceInit flag failed with error %d\n",
4485 			__func__, err);
4486 		goto out;
4487 	}
4488 
4489 	/* Poll fDeviceInit flag to be cleared */
4490 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4491 	do {
4492 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4493 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4494 		if (!flag_res)
4495 			break;
4496 		usleep_range(500, 1000);
4497 	} while (ktime_before(ktime_get(), timeout));
4498 
4499 	if (err) {
4500 		dev_err(hba->dev,
4501 				"%s reading fDeviceInit flag failed with error %d\n",
4502 				__func__, err);
4503 	} else if (flag_res) {
4504 		dev_err(hba->dev,
4505 				"%s fDeviceInit was not cleared by the device\n",
4506 				__func__);
4507 		err = -EBUSY;
4508 	}
4509 out:
4510 	return err;
4511 }
4512 
4513 /**
4514  * ufshcd_make_hba_operational - Make UFS controller operational
4515  * @hba: per adapter instance
4516  *
4517  * To bring UFS host controller to operational state,
4518  * 1. Enable required interrupts
4519  * 2. Configure interrupt aggregation
4520  * 3. Program UTRL and UTMRL base address
4521  * 4. Configure run-stop-registers
4522  *
4523  * Returns 0 on success, non-zero value on failure
4524  */
4525 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4526 {
4527 	int err = 0;
4528 	u32 reg;
4529 
4530 	/* Enable required interrupts */
4531 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4532 
4533 	/* Configure interrupt aggregation */
4534 	if (ufshcd_is_intr_aggr_allowed(hba))
4535 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4536 	else
4537 		ufshcd_disable_intr_aggr(hba);
4538 
4539 	/* Configure UTRL and UTMRL base address registers */
4540 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4541 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4542 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4543 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4544 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4545 			REG_UTP_TASK_REQ_LIST_BASE_L);
4546 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4547 			REG_UTP_TASK_REQ_LIST_BASE_H);
4548 
4549 	/*
4550 	 * Make sure base address and interrupt setup are updated before
4551 	 * enabling the run/stop registers below.
4552 	 */
4553 	wmb();
4554 
4555 	/*
4556 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4557 	 */
4558 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4559 	if (!(ufshcd_get_lists_status(reg))) {
4560 		ufshcd_enable_run_stop_reg(hba);
4561 	} else {
4562 		dev_err(hba->dev,
4563 			"Host controller not ready to process requests");
4564 		err = -EIO;
4565 	}
4566 
4567 	return err;
4568 }
4569 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4570 
4571 /**
4572  * ufshcd_hba_stop - Send controller to reset state
4573  * @hba: per adapter instance
4574  */
4575 void ufshcd_hba_stop(struct ufs_hba *hba)
4576 {
4577 	unsigned long flags;
4578 	int err;
4579 
4580 	/*
4581 	 * Obtain the host lock to prevent that the controller is disabled
4582 	 * while the UFS interrupt handler is active on another CPU.
4583 	 */
4584 	spin_lock_irqsave(hba->host->host_lock, flags);
4585 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4586 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4587 
4588 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4589 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4590 					10, 1);
4591 	if (err)
4592 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4593 }
4594 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4595 
4596 /**
4597  * ufshcd_hba_execute_hce - initialize the controller
4598  * @hba: per adapter instance
4599  *
4600  * The controller resets itself and controller firmware initialization
4601  * sequence kicks off. When controller is ready it will set
4602  * the Host Controller Enable bit to 1.
4603  *
4604  * Returns 0 on success, non-zero value on failure
4605  */
4606 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4607 {
4608 	int retry_outer = 3;
4609 	int retry_inner;
4610 
4611 start:
4612 	if (ufshcd_is_hba_active(hba))
4613 		/* change controller state to "reset state" */
4614 		ufshcd_hba_stop(hba);
4615 
4616 	/* UniPro link is disabled at this point */
4617 	ufshcd_set_link_off(hba);
4618 
4619 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4620 
4621 	/* start controller initialization sequence */
4622 	ufshcd_hba_start(hba);
4623 
4624 	/*
4625 	 * To initialize a UFS host controller HCE bit must be set to 1.
4626 	 * During initialization the HCE bit value changes from 1->0->1.
4627 	 * When the host controller completes initialization sequence
4628 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4629 	 * to check if the controller has completed initialization sequence.
4630 	 * So without this delay the value HCE = 1, set in the previous
4631 	 * instruction might be read back.
4632 	 * This delay can be changed based on the controller.
4633 	 */
4634 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4635 
4636 	/* wait for the host controller to complete initialization */
4637 	retry_inner = 50;
4638 	while (!ufshcd_is_hba_active(hba)) {
4639 		if (retry_inner) {
4640 			retry_inner--;
4641 		} else {
4642 			dev_err(hba->dev,
4643 				"Controller enable failed\n");
4644 			if (retry_outer) {
4645 				retry_outer--;
4646 				goto start;
4647 			}
4648 			return -EIO;
4649 		}
4650 		usleep_range(1000, 1100);
4651 	}
4652 
4653 	/* enable UIC related interrupts */
4654 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4655 
4656 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4657 
4658 	return 0;
4659 }
4660 
4661 int ufshcd_hba_enable(struct ufs_hba *hba)
4662 {
4663 	int ret;
4664 
4665 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4666 		ufshcd_set_link_off(hba);
4667 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4668 
4669 		/* enable UIC related interrupts */
4670 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4671 		ret = ufshcd_dme_reset(hba);
4672 		if (!ret) {
4673 			ret = ufshcd_dme_enable(hba);
4674 			if (!ret)
4675 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4676 			if (ret)
4677 				dev_err(hba->dev,
4678 					"Host controller enable failed with non-hce\n");
4679 		}
4680 	} else {
4681 		ret = ufshcd_hba_execute_hce(hba);
4682 	}
4683 
4684 	return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4687 
4688 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4689 {
4690 	int tx_lanes = 0, i, err = 0;
4691 
4692 	if (!peer)
4693 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4694 			       &tx_lanes);
4695 	else
4696 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4697 				    &tx_lanes);
4698 	for (i = 0; i < tx_lanes; i++) {
4699 		if (!peer)
4700 			err = ufshcd_dme_set(hba,
4701 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4702 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4703 					0);
4704 		else
4705 			err = ufshcd_dme_peer_set(hba,
4706 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4707 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4708 					0);
4709 		if (err) {
4710 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4711 				__func__, peer, i, err);
4712 			break;
4713 		}
4714 	}
4715 
4716 	return err;
4717 }
4718 
4719 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4720 {
4721 	return ufshcd_disable_tx_lcc(hba, true);
4722 }
4723 
4724 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4725 {
4726 	struct ufs_event_hist *e;
4727 
4728 	if (id >= UFS_EVT_CNT)
4729 		return;
4730 
4731 	e = &hba->ufs_stats.event[id];
4732 	e->val[e->pos] = val;
4733 	e->tstamp[e->pos] = local_clock();
4734 	e->cnt += 1;
4735 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4736 
4737 	ufshcd_vops_event_notify(hba, id, &val);
4738 }
4739 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4740 
4741 /**
4742  * ufshcd_link_startup - Initialize unipro link startup
4743  * @hba: per adapter instance
4744  *
4745  * Returns 0 for success, non-zero in case of failure
4746  */
4747 static int ufshcd_link_startup(struct ufs_hba *hba)
4748 {
4749 	int ret;
4750 	int retries = DME_LINKSTARTUP_RETRIES;
4751 	bool link_startup_again = false;
4752 
4753 	/*
4754 	 * If UFS device isn't active then we will have to issue link startup
4755 	 * 2 times to make sure the device state move to active.
4756 	 */
4757 	if (!ufshcd_is_ufs_dev_active(hba))
4758 		link_startup_again = true;
4759 
4760 link_startup:
4761 	do {
4762 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4763 
4764 		ret = ufshcd_dme_link_startup(hba);
4765 
4766 		/* check if device is detected by inter-connect layer */
4767 		if (!ret && !ufshcd_is_device_present(hba)) {
4768 			ufshcd_update_evt_hist(hba,
4769 					       UFS_EVT_LINK_STARTUP_FAIL,
4770 					       0);
4771 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4772 			ret = -ENXIO;
4773 			goto out;
4774 		}
4775 
4776 		/*
4777 		 * DME link lost indication is only received when link is up,
4778 		 * but we can't be sure if the link is up until link startup
4779 		 * succeeds. So reset the local Uni-Pro and try again.
4780 		 */
4781 		if (ret && retries && ufshcd_hba_enable(hba)) {
4782 			ufshcd_update_evt_hist(hba,
4783 					       UFS_EVT_LINK_STARTUP_FAIL,
4784 					       (u32)ret);
4785 			goto out;
4786 		}
4787 	} while (ret && retries--);
4788 
4789 	if (ret) {
4790 		/* failed to get the link up... retire */
4791 		ufshcd_update_evt_hist(hba,
4792 				       UFS_EVT_LINK_STARTUP_FAIL,
4793 				       (u32)ret);
4794 		goto out;
4795 	}
4796 
4797 	if (link_startup_again) {
4798 		link_startup_again = false;
4799 		retries = DME_LINKSTARTUP_RETRIES;
4800 		goto link_startup;
4801 	}
4802 
4803 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4804 	ufshcd_init_pwr_info(hba);
4805 	ufshcd_print_pwr_info(hba);
4806 
4807 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4808 		ret = ufshcd_disable_device_tx_lcc(hba);
4809 		if (ret)
4810 			goto out;
4811 	}
4812 
4813 	/* Include any host controller configuration via UIC commands */
4814 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4815 	if (ret)
4816 		goto out;
4817 
4818 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4819 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4820 	ret = ufshcd_make_hba_operational(hba);
4821 out:
4822 	if (ret) {
4823 		dev_err(hba->dev, "link startup failed %d\n", ret);
4824 		ufshcd_print_host_state(hba);
4825 		ufshcd_print_pwr_info(hba);
4826 		ufshcd_print_evt_hist(hba);
4827 	}
4828 	return ret;
4829 }
4830 
4831 /**
4832  * ufshcd_verify_dev_init() - Verify device initialization
4833  * @hba: per-adapter instance
4834  *
4835  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4836  * device Transport Protocol (UTP) layer is ready after a reset.
4837  * If the UTP layer at the device side is not initialized, it may
4838  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4839  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4840  */
4841 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4842 {
4843 	int err = 0;
4844 	int retries;
4845 
4846 	ufshcd_hold(hba, false);
4847 	mutex_lock(&hba->dev_cmd.lock);
4848 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4849 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4850 					  hba->nop_out_timeout);
4851 
4852 		if (!err || err == -ETIMEDOUT)
4853 			break;
4854 
4855 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4856 	}
4857 	mutex_unlock(&hba->dev_cmd.lock);
4858 	ufshcd_release(hba);
4859 
4860 	if (err)
4861 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4862 	return err;
4863 }
4864 
4865 /**
4866  * ufshcd_set_queue_depth - set lun queue depth
4867  * @sdev: pointer to SCSI device
4868  *
4869  * Read bLUQueueDepth value and activate scsi tagged command
4870  * queueing. For WLUN, queue depth is set to 1. For best-effort
4871  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4872  * value that host can queue.
4873  */
4874 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4875 {
4876 	int ret = 0;
4877 	u8 lun_qdepth;
4878 	struct ufs_hba *hba;
4879 
4880 	hba = shost_priv(sdev->host);
4881 
4882 	lun_qdepth = hba->nutrs;
4883 	ret = ufshcd_read_unit_desc_param(hba,
4884 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4885 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4886 					  &lun_qdepth,
4887 					  sizeof(lun_qdepth));
4888 
4889 	/* Some WLUN doesn't support unit descriptor */
4890 	if (ret == -EOPNOTSUPP)
4891 		lun_qdepth = 1;
4892 	else if (!lun_qdepth)
4893 		/* eventually, we can figure out the real queue depth */
4894 		lun_qdepth = hba->nutrs;
4895 	else
4896 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4897 
4898 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4899 			__func__, lun_qdepth);
4900 	scsi_change_queue_depth(sdev, lun_qdepth);
4901 }
4902 
4903 /*
4904  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4905  * @hba: per-adapter instance
4906  * @lun: UFS device lun id
4907  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4908  *
4909  * Returns 0 in case of success and b_lu_write_protect status would be returned
4910  * @b_lu_write_protect parameter.
4911  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4912  * Returns -EINVAL in case of invalid parameters passed to this function.
4913  */
4914 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4915 			    u8 lun,
4916 			    u8 *b_lu_write_protect)
4917 {
4918 	int ret;
4919 
4920 	if (!b_lu_write_protect)
4921 		ret = -EINVAL;
4922 	/*
4923 	 * According to UFS device spec, RPMB LU can't be write
4924 	 * protected so skip reading bLUWriteProtect parameter for
4925 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4926 	 */
4927 	else if (lun >= hba->dev_info.max_lu_supported)
4928 		ret = -ENOTSUPP;
4929 	else
4930 		ret = ufshcd_read_unit_desc_param(hba,
4931 					  lun,
4932 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4933 					  b_lu_write_protect,
4934 					  sizeof(*b_lu_write_protect));
4935 	return ret;
4936 }
4937 
4938 /**
4939  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4940  * status
4941  * @hba: per-adapter instance
4942  * @sdev: pointer to SCSI device
4943  *
4944  */
4945 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4946 						    const struct scsi_device *sdev)
4947 {
4948 	if (hba->dev_info.f_power_on_wp_en &&
4949 	    !hba->dev_info.is_lu_power_on_wp) {
4950 		u8 b_lu_write_protect;
4951 
4952 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4953 				      &b_lu_write_protect) &&
4954 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4955 			hba->dev_info.is_lu_power_on_wp = true;
4956 	}
4957 }
4958 
4959 /**
4960  * ufshcd_setup_links - associate link b/w device wlun and other luns
4961  * @sdev: pointer to SCSI device
4962  * @hba: pointer to ufs hba
4963  */
4964 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4965 {
4966 	struct device_link *link;
4967 
4968 	/*
4969 	 * Device wlun is the supplier & rest of the luns are consumers.
4970 	 * This ensures that device wlun suspends after all other luns.
4971 	 */
4972 	if (hba->ufs_device_wlun) {
4973 		link = device_link_add(&sdev->sdev_gendev,
4974 				       &hba->ufs_device_wlun->sdev_gendev,
4975 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4976 		if (!link) {
4977 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4978 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4979 			return;
4980 		}
4981 		hba->luns_avail--;
4982 		/* Ignore REPORT_LUN wlun probing */
4983 		if (hba->luns_avail == 1) {
4984 			ufshcd_rpm_put(hba);
4985 			return;
4986 		}
4987 	} else {
4988 		/*
4989 		 * Device wlun is probed. The assumption is that WLUNs are
4990 		 * scanned before other LUNs.
4991 		 */
4992 		hba->luns_avail--;
4993 	}
4994 }
4995 
4996 /**
4997  * ufshcd_slave_alloc - handle initial SCSI device configurations
4998  * @sdev: pointer to SCSI device
4999  *
5000  * Returns success
5001  */
5002 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5003 {
5004 	struct ufs_hba *hba;
5005 
5006 	hba = shost_priv(sdev->host);
5007 
5008 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5009 	sdev->use_10_for_ms = 1;
5010 
5011 	/* DBD field should be set to 1 in mode sense(10) */
5012 	sdev->set_dbd_for_ms = 1;
5013 
5014 	/* allow SCSI layer to restart the device in case of errors */
5015 	sdev->allow_restart = 1;
5016 
5017 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5018 	sdev->no_report_opcodes = 1;
5019 
5020 	/* WRITE_SAME command is not supported */
5021 	sdev->no_write_same = 1;
5022 
5023 	ufshcd_set_queue_depth(sdev);
5024 
5025 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
5026 
5027 	ufshcd_setup_links(hba, sdev);
5028 
5029 	return 0;
5030 }
5031 
5032 /**
5033  * ufshcd_change_queue_depth - change queue depth
5034  * @sdev: pointer to SCSI device
5035  * @depth: required depth to set
5036  *
5037  * Change queue depth and make sure the max. limits are not crossed.
5038  */
5039 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5040 {
5041 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5042 }
5043 
5044 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5045 {
5046 	/* skip well-known LU */
5047 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5048 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5049 		return;
5050 
5051 	ufshpb_destroy_lu(hba, sdev);
5052 }
5053 
5054 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5055 {
5056 	/* skip well-known LU */
5057 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5058 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5059 		return;
5060 
5061 	ufshpb_init_hpb_lu(hba, sdev);
5062 }
5063 
5064 /**
5065  * ufshcd_slave_configure - adjust SCSI device configurations
5066  * @sdev: pointer to SCSI device
5067  */
5068 static int ufshcd_slave_configure(struct scsi_device *sdev)
5069 {
5070 	struct ufs_hba *hba = shost_priv(sdev->host);
5071 	struct request_queue *q = sdev->request_queue;
5072 
5073 	ufshcd_hpb_configure(hba, sdev);
5074 
5075 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5076 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
5077 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
5078 	/*
5079 	 * Block runtime-pm until all consumers are added.
5080 	 * Refer ufshcd_setup_links().
5081 	 */
5082 	if (is_device_wlun(sdev))
5083 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5084 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5085 		sdev->rpm_autosuspend = 1;
5086 	/*
5087 	 * Do not print messages during runtime PM to avoid never-ending cycles
5088 	 * of messages written back to storage by user space causing runtime
5089 	 * resume, causing more messages and so on.
5090 	 */
5091 	sdev->silence_suspend = 1;
5092 
5093 	ufshcd_crypto_register(hba, q);
5094 
5095 	return 0;
5096 }
5097 
5098 /**
5099  * ufshcd_slave_destroy - remove SCSI device configurations
5100  * @sdev: pointer to SCSI device
5101  */
5102 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5103 {
5104 	struct ufs_hba *hba;
5105 	unsigned long flags;
5106 
5107 	hba = shost_priv(sdev->host);
5108 
5109 	ufshcd_hpb_destroy(hba, sdev);
5110 
5111 	/* Drop the reference as it won't be needed anymore */
5112 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5113 		spin_lock_irqsave(hba->host->host_lock, flags);
5114 		hba->ufs_device_wlun = NULL;
5115 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5116 	} else if (hba->ufs_device_wlun) {
5117 		struct device *supplier = NULL;
5118 
5119 		/* Ensure UFS Device WLUN exists and does not disappear */
5120 		spin_lock_irqsave(hba->host->host_lock, flags);
5121 		if (hba->ufs_device_wlun) {
5122 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5123 			get_device(supplier);
5124 		}
5125 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5126 
5127 		if (supplier) {
5128 			/*
5129 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5130 			 * device will not have been registered but can still
5131 			 * have a device link holding a reference to the device.
5132 			 */
5133 			device_link_remove(&sdev->sdev_gendev, supplier);
5134 			put_device(supplier);
5135 		}
5136 	}
5137 }
5138 
5139 /**
5140  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5141  * @lrbp: pointer to local reference block of completed command
5142  * @scsi_status: SCSI command status
5143  *
5144  * Returns value base on SCSI command status
5145  */
5146 static inline int
5147 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5148 {
5149 	int result = 0;
5150 
5151 	switch (scsi_status) {
5152 	case SAM_STAT_CHECK_CONDITION:
5153 		ufshcd_copy_sense_data(lrbp);
5154 		fallthrough;
5155 	case SAM_STAT_GOOD:
5156 		result |= DID_OK << 16 | scsi_status;
5157 		break;
5158 	case SAM_STAT_TASK_SET_FULL:
5159 	case SAM_STAT_BUSY:
5160 	case SAM_STAT_TASK_ABORTED:
5161 		ufshcd_copy_sense_data(lrbp);
5162 		result |= scsi_status;
5163 		break;
5164 	default:
5165 		result |= DID_ERROR << 16;
5166 		break;
5167 	} /* end of switch */
5168 
5169 	return result;
5170 }
5171 
5172 /**
5173  * ufshcd_transfer_rsp_status - Get overall status of the response
5174  * @hba: per adapter instance
5175  * @lrbp: pointer to local reference block of completed command
5176  *
5177  * Returns result of the command to notify SCSI midlayer
5178  */
5179 static inline int
5180 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5181 {
5182 	int result = 0;
5183 	int scsi_status;
5184 	enum utp_ocs ocs;
5185 
5186 	/* overall command status of utrd */
5187 	ocs = ufshcd_get_tr_ocs(lrbp);
5188 
5189 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5190 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5191 					MASK_RSP_UPIU_RESULT)
5192 			ocs = OCS_SUCCESS;
5193 	}
5194 
5195 	switch (ocs) {
5196 	case OCS_SUCCESS:
5197 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5198 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5199 		switch (result) {
5200 		case UPIU_TRANSACTION_RESPONSE:
5201 			/*
5202 			 * get the response UPIU result to extract
5203 			 * the SCSI command status
5204 			 */
5205 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5206 
5207 			/*
5208 			 * get the result based on SCSI status response
5209 			 * to notify the SCSI midlayer of the command status
5210 			 */
5211 			scsi_status = result & MASK_SCSI_STATUS;
5212 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5213 
5214 			/*
5215 			 * Currently we are only supporting BKOPs exception
5216 			 * events hence we can ignore BKOPs exception event
5217 			 * during power management callbacks. BKOPs exception
5218 			 * event is not expected to be raised in runtime suspend
5219 			 * callback as it allows the urgent bkops.
5220 			 * During system suspend, we are anyway forcefully
5221 			 * disabling the bkops and if urgent bkops is needed
5222 			 * it will be enabled on system resume. Long term
5223 			 * solution could be to abort the system suspend if
5224 			 * UFS device needs urgent BKOPs.
5225 			 */
5226 			if (!hba->pm_op_in_progress &&
5227 			    !ufshcd_eh_in_progress(hba) &&
5228 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5229 				/* Flushed in suspend */
5230 				schedule_work(&hba->eeh_work);
5231 
5232 			if (scsi_status == SAM_STAT_GOOD)
5233 				ufshpb_rsp_upiu(hba, lrbp);
5234 			break;
5235 		case UPIU_TRANSACTION_REJECT_UPIU:
5236 			/* TODO: handle Reject UPIU Response */
5237 			result = DID_ERROR << 16;
5238 			dev_err(hba->dev,
5239 				"Reject UPIU not fully implemented\n");
5240 			break;
5241 		default:
5242 			dev_err(hba->dev,
5243 				"Unexpected request response code = %x\n",
5244 				result);
5245 			result = DID_ERROR << 16;
5246 			break;
5247 		}
5248 		break;
5249 	case OCS_ABORTED:
5250 		result |= DID_ABORT << 16;
5251 		break;
5252 	case OCS_INVALID_COMMAND_STATUS:
5253 		result |= DID_REQUEUE << 16;
5254 		break;
5255 	case OCS_INVALID_CMD_TABLE_ATTR:
5256 	case OCS_INVALID_PRDT_ATTR:
5257 	case OCS_MISMATCH_DATA_BUF_SIZE:
5258 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5259 	case OCS_PEER_COMM_FAILURE:
5260 	case OCS_FATAL_ERROR:
5261 	case OCS_DEVICE_FATAL_ERROR:
5262 	case OCS_INVALID_CRYPTO_CONFIG:
5263 	case OCS_GENERAL_CRYPTO_ERROR:
5264 	default:
5265 		result |= DID_ERROR << 16;
5266 		dev_err(hba->dev,
5267 				"OCS error from controller = %x for tag %d\n",
5268 				ocs, lrbp->task_tag);
5269 		ufshcd_print_evt_hist(hba);
5270 		ufshcd_print_host_state(hba);
5271 		break;
5272 	} /* end of switch */
5273 
5274 	if ((host_byte(result) != DID_OK) &&
5275 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5276 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5277 	return result;
5278 }
5279 
5280 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5281 					 u32 intr_mask)
5282 {
5283 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5284 	    !ufshcd_is_auto_hibern8_enabled(hba))
5285 		return false;
5286 
5287 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5288 		return false;
5289 
5290 	if (hba->active_uic_cmd &&
5291 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5292 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5293 		return false;
5294 
5295 	return true;
5296 }
5297 
5298 /**
5299  * ufshcd_uic_cmd_compl - handle completion of uic command
5300  * @hba: per adapter instance
5301  * @intr_status: interrupt status generated by the controller
5302  *
5303  * Returns
5304  *  IRQ_HANDLED - If interrupt is valid
5305  *  IRQ_NONE    - If invalid interrupt
5306  */
5307 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5308 {
5309 	irqreturn_t retval = IRQ_NONE;
5310 
5311 	spin_lock(hba->host->host_lock);
5312 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5313 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5314 
5315 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5316 		hba->active_uic_cmd->argument2 |=
5317 			ufshcd_get_uic_cmd_result(hba);
5318 		hba->active_uic_cmd->argument3 =
5319 			ufshcd_get_dme_attr_val(hba);
5320 		if (!hba->uic_async_done)
5321 			hba->active_uic_cmd->cmd_active = 0;
5322 		complete(&hba->active_uic_cmd->done);
5323 		retval = IRQ_HANDLED;
5324 	}
5325 
5326 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5327 		hba->active_uic_cmd->cmd_active = 0;
5328 		complete(hba->uic_async_done);
5329 		retval = IRQ_HANDLED;
5330 	}
5331 
5332 	if (retval == IRQ_HANDLED)
5333 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5334 					     UFS_CMD_COMP);
5335 	spin_unlock(hba->host->host_lock);
5336 	return retval;
5337 }
5338 
5339 /* Release the resources allocated for processing a SCSI command. */
5340 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5341 				    struct ufshcd_lrb *lrbp)
5342 {
5343 	struct scsi_cmnd *cmd = lrbp->cmd;
5344 
5345 	scsi_dma_unmap(cmd);
5346 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5347 	ufshcd_release(hba);
5348 	ufshcd_clk_scaling_update_busy(hba);
5349 }
5350 
5351 /**
5352  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5353  * @hba: per adapter instance
5354  * @completed_reqs: bitmask that indicates which requests to complete
5355  */
5356 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5357 					unsigned long completed_reqs)
5358 {
5359 	struct ufshcd_lrb *lrbp;
5360 	struct scsi_cmnd *cmd;
5361 	int index;
5362 
5363 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5364 		lrbp = &hba->lrb[index];
5365 		lrbp->compl_time_stamp = ktime_get();
5366 		lrbp->compl_time_stamp_local_clock = local_clock();
5367 		cmd = lrbp->cmd;
5368 		if (cmd) {
5369 			if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5370 				ufshcd_update_monitor(hba, lrbp);
5371 			ufshcd_add_command_trace(hba, index, UFS_CMD_COMP);
5372 			cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5373 			ufshcd_release_scsi_cmd(hba, lrbp);
5374 			/* Do not touch lrbp after scsi done */
5375 			scsi_done(cmd);
5376 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5377 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5378 			if (hba->dev_cmd.complete) {
5379 				ufshcd_add_command_trace(hba, index,
5380 							 UFS_DEV_COMP);
5381 				complete(hba->dev_cmd.complete);
5382 				ufshcd_clk_scaling_update_busy(hba);
5383 			}
5384 		}
5385 	}
5386 }
5387 
5388 /*
5389  * Returns > 0 if one or more commands have been completed or 0 if no
5390  * requests have been completed.
5391  */
5392 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5393 {
5394 	struct ufs_hba *hba = shost_priv(shost);
5395 	unsigned long completed_reqs, flags;
5396 	u32 tr_doorbell;
5397 
5398 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5399 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5400 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5401 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5402 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5403 		  hba->outstanding_reqs);
5404 	hba->outstanding_reqs &= ~completed_reqs;
5405 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5406 
5407 	if (completed_reqs)
5408 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5409 
5410 	return completed_reqs;
5411 }
5412 
5413 /**
5414  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5415  * @hba: per adapter instance
5416  *
5417  * Returns
5418  *  IRQ_HANDLED - If interrupt is valid
5419  *  IRQ_NONE    - If invalid interrupt
5420  */
5421 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5422 {
5423 	/* Resetting interrupt aggregation counters first and reading the
5424 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5425 	 * In order to prevent other interrupts starvation the DB is read once
5426 	 * after reset. The down side of this solution is the possibility of
5427 	 * false interrupt if device completes another request after resetting
5428 	 * aggregation and before reading the DB.
5429 	 */
5430 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5431 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5432 		ufshcd_reset_intr_aggr(hba);
5433 
5434 	if (ufs_fail_completion())
5435 		return IRQ_HANDLED;
5436 
5437 	/*
5438 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5439 	 * do not want polling to trigger spurious interrupt complaints.
5440 	 */
5441 	ufshcd_poll(hba->host, 0);
5442 
5443 	return IRQ_HANDLED;
5444 }
5445 
5446 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5447 {
5448 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5449 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5450 				       &ee_ctrl_mask);
5451 }
5452 
5453 int ufshcd_write_ee_control(struct ufs_hba *hba)
5454 {
5455 	int err;
5456 
5457 	mutex_lock(&hba->ee_ctrl_mutex);
5458 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5459 	mutex_unlock(&hba->ee_ctrl_mutex);
5460 	if (err)
5461 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5462 			__func__, err);
5463 	return err;
5464 }
5465 
5466 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5467 			     const u16 *other_mask, u16 set, u16 clr)
5468 {
5469 	u16 new_mask, ee_ctrl_mask;
5470 	int err = 0;
5471 
5472 	mutex_lock(&hba->ee_ctrl_mutex);
5473 	new_mask = (*mask & ~clr) | set;
5474 	ee_ctrl_mask = new_mask | *other_mask;
5475 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5476 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5477 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5478 	if (!err) {
5479 		hba->ee_ctrl_mask = ee_ctrl_mask;
5480 		*mask = new_mask;
5481 	}
5482 	mutex_unlock(&hba->ee_ctrl_mutex);
5483 	return err;
5484 }
5485 
5486 /**
5487  * ufshcd_disable_ee - disable exception event
5488  * @hba: per-adapter instance
5489  * @mask: exception event to disable
5490  *
5491  * Disables exception event in the device so that the EVENT_ALERT
5492  * bit is not set.
5493  *
5494  * Returns zero on success, non-zero error value on failure.
5495  */
5496 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5497 {
5498 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5499 }
5500 
5501 /**
5502  * ufshcd_enable_ee - enable exception event
5503  * @hba: per-adapter instance
5504  * @mask: exception event to enable
5505  *
5506  * Enable corresponding exception event in the device to allow
5507  * device to alert host in critical scenarios.
5508  *
5509  * Returns zero on success, non-zero error value on failure.
5510  */
5511 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5512 {
5513 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5514 }
5515 
5516 /**
5517  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5518  * @hba: per-adapter instance
5519  *
5520  * Allow device to manage background operations on its own. Enabling
5521  * this might lead to inconsistent latencies during normal data transfers
5522  * as the device is allowed to manage its own way of handling background
5523  * operations.
5524  *
5525  * Returns zero on success, non-zero on failure.
5526  */
5527 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5528 {
5529 	int err = 0;
5530 
5531 	if (hba->auto_bkops_enabled)
5532 		goto out;
5533 
5534 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5535 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5536 	if (err) {
5537 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5538 				__func__, err);
5539 		goto out;
5540 	}
5541 
5542 	hba->auto_bkops_enabled = true;
5543 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5544 
5545 	/* No need of URGENT_BKOPS exception from the device */
5546 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5547 	if (err)
5548 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5549 				__func__, err);
5550 out:
5551 	return err;
5552 }
5553 
5554 /**
5555  * ufshcd_disable_auto_bkops - block device in doing background operations
5556  * @hba: per-adapter instance
5557  *
5558  * Disabling background operations improves command response latency but
5559  * has drawback of device moving into critical state where the device is
5560  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5561  * host is idle so that BKOPS are managed effectively without any negative
5562  * impacts.
5563  *
5564  * Returns zero on success, non-zero on failure.
5565  */
5566 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5567 {
5568 	int err = 0;
5569 
5570 	if (!hba->auto_bkops_enabled)
5571 		goto out;
5572 
5573 	/*
5574 	 * If host assisted BKOPs is to be enabled, make sure
5575 	 * urgent bkops exception is allowed.
5576 	 */
5577 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5578 	if (err) {
5579 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5580 				__func__, err);
5581 		goto out;
5582 	}
5583 
5584 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5585 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5586 	if (err) {
5587 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5588 				__func__, err);
5589 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5590 		goto out;
5591 	}
5592 
5593 	hba->auto_bkops_enabled = false;
5594 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5595 	hba->is_urgent_bkops_lvl_checked = false;
5596 out:
5597 	return err;
5598 }
5599 
5600 /**
5601  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5602  * @hba: per adapter instance
5603  *
5604  * After a device reset the device may toggle the BKOPS_EN flag
5605  * to default value. The s/w tracking variables should be updated
5606  * as well. This function would change the auto-bkops state based on
5607  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5608  */
5609 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5610 {
5611 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5612 		hba->auto_bkops_enabled = false;
5613 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5614 		ufshcd_enable_auto_bkops(hba);
5615 	} else {
5616 		hba->auto_bkops_enabled = true;
5617 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5618 		ufshcd_disable_auto_bkops(hba);
5619 	}
5620 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5621 	hba->is_urgent_bkops_lvl_checked = false;
5622 }
5623 
5624 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5625 {
5626 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5627 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5628 }
5629 
5630 /**
5631  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5632  * @hba: per-adapter instance
5633  * @status: bkops_status value
5634  *
5635  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5636  * flag in the device to permit background operations if the device
5637  * bkops_status is greater than or equal to "status" argument passed to
5638  * this function, disable otherwise.
5639  *
5640  * Returns 0 for success, non-zero in case of failure.
5641  *
5642  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5643  * to know whether auto bkops is enabled or disabled after this function
5644  * returns control to it.
5645  */
5646 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5647 			     enum bkops_status status)
5648 {
5649 	int err;
5650 	u32 curr_status = 0;
5651 
5652 	err = ufshcd_get_bkops_status(hba, &curr_status);
5653 	if (err) {
5654 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5655 				__func__, err);
5656 		goto out;
5657 	} else if (curr_status > BKOPS_STATUS_MAX) {
5658 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5659 				__func__, curr_status);
5660 		err = -EINVAL;
5661 		goto out;
5662 	}
5663 
5664 	if (curr_status >= status)
5665 		err = ufshcd_enable_auto_bkops(hba);
5666 	else
5667 		err = ufshcd_disable_auto_bkops(hba);
5668 out:
5669 	return err;
5670 }
5671 
5672 /**
5673  * ufshcd_urgent_bkops - handle urgent bkops exception event
5674  * @hba: per-adapter instance
5675  *
5676  * Enable fBackgroundOpsEn flag in the device to permit background
5677  * operations.
5678  *
5679  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5680  * and negative error value for any other failure.
5681  */
5682 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5683 {
5684 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5685 }
5686 
5687 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5688 {
5689 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5690 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5691 }
5692 
5693 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5694 {
5695 	int err;
5696 	u32 curr_status = 0;
5697 
5698 	if (hba->is_urgent_bkops_lvl_checked)
5699 		goto enable_auto_bkops;
5700 
5701 	err = ufshcd_get_bkops_status(hba, &curr_status);
5702 	if (err) {
5703 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5704 				__func__, err);
5705 		goto out;
5706 	}
5707 
5708 	/*
5709 	 * We are seeing that some devices are raising the urgent bkops
5710 	 * exception events even when BKOPS status doesn't indicate performace
5711 	 * impacted or critical. Handle these device by determining their urgent
5712 	 * bkops status at runtime.
5713 	 */
5714 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5715 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5716 				__func__, curr_status);
5717 		/* update the current status as the urgent bkops level */
5718 		hba->urgent_bkops_lvl = curr_status;
5719 		hba->is_urgent_bkops_lvl_checked = true;
5720 	}
5721 
5722 enable_auto_bkops:
5723 	err = ufshcd_enable_auto_bkops(hba);
5724 out:
5725 	if (err < 0)
5726 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5727 				__func__, err);
5728 }
5729 
5730 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5731 {
5732 	u32 value;
5733 
5734 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5735 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5736 		return;
5737 
5738 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5739 
5740 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5741 
5742 	/*
5743 	 * A placeholder for the platform vendors to add whatever additional
5744 	 * steps required
5745 	 */
5746 }
5747 
5748 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5749 {
5750 	u8 index;
5751 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5752 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5753 
5754 	index = ufshcd_wb_get_query_index(hba);
5755 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5756 }
5757 
5758 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5759 {
5760 	int ret;
5761 
5762 	if (!ufshcd_is_wb_allowed(hba) ||
5763 	    hba->dev_info.wb_enabled == enable)
5764 		return 0;
5765 
5766 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5767 	if (ret) {
5768 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5769 			__func__, enable ? "enabling" : "disabling", ret);
5770 		return ret;
5771 	}
5772 
5773 	hba->dev_info.wb_enabled = enable;
5774 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5775 			__func__, enable ? "enabled" : "disabled");
5776 
5777 	return ret;
5778 }
5779 
5780 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5781 						 bool enable)
5782 {
5783 	int ret;
5784 
5785 	ret = __ufshcd_wb_toggle(hba, enable,
5786 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5787 	if (ret) {
5788 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5789 			__func__, enable ? "enabling" : "disabling", ret);
5790 		return;
5791 	}
5792 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5793 			__func__, enable ? "enabled" : "disabled");
5794 }
5795 
5796 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5797 {
5798 	int ret;
5799 
5800 	if (!ufshcd_is_wb_allowed(hba) ||
5801 	    hba->dev_info.wb_buf_flush_enabled == enable)
5802 		return 0;
5803 
5804 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5805 	if (ret) {
5806 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5807 			__func__, enable ? "enabling" : "disabling", ret);
5808 		return ret;
5809 	}
5810 
5811 	hba->dev_info.wb_buf_flush_enabled = enable;
5812 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5813 			__func__, enable ? "enabled" : "disabled");
5814 
5815 	return ret;
5816 }
5817 
5818 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5819 						u32 avail_buf)
5820 {
5821 	u32 cur_buf;
5822 	int ret;
5823 	u8 index;
5824 
5825 	index = ufshcd_wb_get_query_index(hba);
5826 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5827 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5828 					      index, 0, &cur_buf);
5829 	if (ret) {
5830 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5831 			__func__, ret);
5832 		return false;
5833 	}
5834 
5835 	if (!cur_buf) {
5836 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5837 			 cur_buf);
5838 		return false;
5839 	}
5840 	/* Let it continue to flush when available buffer exceeds threshold */
5841 	return avail_buf < hba->vps->wb_flush_threshold;
5842 }
5843 
5844 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5845 {
5846 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5847 		ufshcd_wb_toggle_buf_flush(hba, false);
5848 
5849 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5850 	ufshcd_wb_toggle(hba, false);
5851 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5852 
5853 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5854 }
5855 
5856 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5857 {
5858 	u32 lifetime;
5859 	int ret;
5860 	u8 index;
5861 
5862 	index = ufshcd_wb_get_query_index(hba);
5863 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5864 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5865 				      index, 0, &lifetime);
5866 	if (ret) {
5867 		dev_err(hba->dev,
5868 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5869 			__func__, ret);
5870 		return false;
5871 	}
5872 
5873 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5874 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5875 			__func__, lifetime);
5876 		return false;
5877 	}
5878 
5879 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5880 		__func__, lifetime);
5881 
5882 	return true;
5883 }
5884 
5885 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5886 {
5887 	int ret;
5888 	u32 avail_buf;
5889 	u8 index;
5890 
5891 	if (!ufshcd_is_wb_allowed(hba))
5892 		return false;
5893 
5894 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5895 		ufshcd_wb_force_disable(hba);
5896 		return false;
5897 	}
5898 
5899 	/*
5900 	 * The ufs device needs the vcc to be ON to flush.
5901 	 * With user-space reduction enabled, it's enough to enable flush
5902 	 * by checking only the available buffer. The threshold
5903 	 * defined here is > 90% full.
5904 	 * With user-space preserved enabled, the current-buffer
5905 	 * should be checked too because the wb buffer size can reduce
5906 	 * when disk tends to be full. This info is provided by current
5907 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5908 	 * keeping vcc on when current buffer is empty.
5909 	 */
5910 	index = ufshcd_wb_get_query_index(hba);
5911 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5912 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5913 				      index, 0, &avail_buf);
5914 	if (ret) {
5915 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
5916 			 __func__, ret);
5917 		return false;
5918 	}
5919 
5920 	if (!hba->dev_info.b_presrv_uspc_en)
5921 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
5922 
5923 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5924 }
5925 
5926 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5927 {
5928 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5929 					   struct ufs_hba,
5930 					   rpm_dev_flush_recheck_work);
5931 	/*
5932 	 * To prevent unnecessary VCC power drain after device finishes
5933 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5934 	 * after a certain delay to recheck the threshold by next runtime
5935 	 * suspend.
5936 	 */
5937 	ufshcd_rpm_get_sync(hba);
5938 	ufshcd_rpm_put_sync(hba);
5939 }
5940 
5941 /**
5942  * ufshcd_exception_event_handler - handle exceptions raised by device
5943  * @work: pointer to work data
5944  *
5945  * Read bExceptionEventStatus attribute from the device and handle the
5946  * exception event accordingly.
5947  */
5948 static void ufshcd_exception_event_handler(struct work_struct *work)
5949 {
5950 	struct ufs_hba *hba;
5951 	int err;
5952 	u32 status = 0;
5953 	hba = container_of(work, struct ufs_hba, eeh_work);
5954 
5955 	ufshcd_scsi_block_requests(hba);
5956 	err = ufshcd_get_ee_status(hba, &status);
5957 	if (err) {
5958 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5959 				__func__, err);
5960 		goto out;
5961 	}
5962 
5963 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
5964 
5965 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
5966 		ufshcd_bkops_exception_event_handler(hba);
5967 
5968 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
5969 		ufshcd_temp_exception_event_handler(hba, status);
5970 
5971 	ufs_debugfs_exception_event(hba, status);
5972 out:
5973 	ufshcd_scsi_unblock_requests(hba);
5974 }
5975 
5976 /* Complete requests that have door-bell cleared */
5977 static void ufshcd_complete_requests(struct ufs_hba *hba)
5978 {
5979 	ufshcd_transfer_req_compl(hba);
5980 	ufshcd_tmc_handler(hba);
5981 }
5982 
5983 /**
5984  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5985  *				to recover from the DL NAC errors or not.
5986  * @hba: per-adapter instance
5987  *
5988  * Returns true if error handling is required, false otherwise
5989  */
5990 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5991 {
5992 	unsigned long flags;
5993 	bool err_handling = true;
5994 
5995 	spin_lock_irqsave(hba->host->host_lock, flags);
5996 	/*
5997 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5998 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5999 	 */
6000 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6001 		goto out;
6002 
6003 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6004 	    ((hba->saved_err & UIC_ERROR) &&
6005 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6006 		goto out;
6007 
6008 	if ((hba->saved_err & UIC_ERROR) &&
6009 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6010 		int err;
6011 		/*
6012 		 * wait for 50ms to see if we can get any other errors or not.
6013 		 */
6014 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6015 		msleep(50);
6016 		spin_lock_irqsave(hba->host->host_lock, flags);
6017 
6018 		/*
6019 		 * now check if we have got any other severe errors other than
6020 		 * DL NAC error?
6021 		 */
6022 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6023 		    ((hba->saved_err & UIC_ERROR) &&
6024 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6025 			goto out;
6026 
6027 		/*
6028 		 * As DL NAC is the only error received so far, send out NOP
6029 		 * command to confirm if link is still active or not.
6030 		 *   - If we don't get any response then do error recovery.
6031 		 *   - If we get response then clear the DL NAC error bit.
6032 		 */
6033 
6034 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6035 		err = ufshcd_verify_dev_init(hba);
6036 		spin_lock_irqsave(hba->host->host_lock, flags);
6037 
6038 		if (err)
6039 			goto out;
6040 
6041 		/* Link seems to be alive hence ignore the DL NAC errors */
6042 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6043 			hba->saved_err &= ~UIC_ERROR;
6044 		/* clear NAC error */
6045 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6046 		if (!hba->saved_uic_err)
6047 			err_handling = false;
6048 	}
6049 out:
6050 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6051 	return err_handling;
6052 }
6053 
6054 /* host lock must be held before calling this func */
6055 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6056 {
6057 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6058 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6059 }
6060 
6061 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6062 {
6063 	lockdep_assert_held(hba->host->host_lock);
6064 
6065 	/* handle fatal errors only when link is not in error state */
6066 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6067 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6068 		    ufshcd_is_saved_err_fatal(hba))
6069 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6070 		else
6071 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6072 		queue_work(hba->eh_wq, &hba->eh_work);
6073 	}
6074 }
6075 
6076 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6077 {
6078 	down_write(&hba->clk_scaling_lock);
6079 	hba->clk_scaling.is_allowed = allow;
6080 	up_write(&hba->clk_scaling_lock);
6081 }
6082 
6083 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6084 {
6085 	if (suspend) {
6086 		if (hba->clk_scaling.is_enabled)
6087 			ufshcd_suspend_clkscaling(hba);
6088 		ufshcd_clk_scaling_allow(hba, false);
6089 	} else {
6090 		ufshcd_clk_scaling_allow(hba, true);
6091 		if (hba->clk_scaling.is_enabled)
6092 			ufshcd_resume_clkscaling(hba);
6093 	}
6094 }
6095 
6096 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6097 {
6098 	ufshcd_rpm_get_sync(hba);
6099 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6100 	    hba->is_sys_suspended) {
6101 		enum ufs_pm_op pm_op;
6102 
6103 		/*
6104 		 * Don't assume anything of resume, if
6105 		 * resume fails, irq and clocks can be OFF, and powers
6106 		 * can be OFF or in LPM.
6107 		 */
6108 		ufshcd_setup_hba_vreg(hba, true);
6109 		ufshcd_enable_irq(hba);
6110 		ufshcd_setup_vreg(hba, true);
6111 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6112 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6113 		ufshcd_hold(hba, false);
6114 		if (!ufshcd_is_clkgating_allowed(hba))
6115 			ufshcd_setup_clocks(hba, true);
6116 		ufshcd_release(hba);
6117 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6118 		ufshcd_vops_resume(hba, pm_op);
6119 	} else {
6120 		ufshcd_hold(hba, false);
6121 		if (ufshcd_is_clkscaling_supported(hba) &&
6122 		    hba->clk_scaling.is_enabled)
6123 			ufshcd_suspend_clkscaling(hba);
6124 		ufshcd_clk_scaling_allow(hba, false);
6125 	}
6126 	ufshcd_scsi_block_requests(hba);
6127 	/* Drain ufshcd_queuecommand() */
6128 	synchronize_rcu();
6129 	cancel_work_sync(&hba->eeh_work);
6130 }
6131 
6132 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6133 {
6134 	ufshcd_scsi_unblock_requests(hba);
6135 	ufshcd_release(hba);
6136 	if (ufshcd_is_clkscaling_supported(hba))
6137 		ufshcd_clk_scaling_suspend(hba, false);
6138 	ufshcd_rpm_put(hba);
6139 }
6140 
6141 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6142 {
6143 	return (!hba->is_powered || hba->shutting_down ||
6144 		!hba->ufs_device_wlun ||
6145 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6146 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6147 		   ufshcd_is_link_broken(hba))));
6148 }
6149 
6150 #ifdef CONFIG_PM
6151 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6152 {
6153 	struct Scsi_Host *shost = hba->host;
6154 	struct scsi_device *sdev;
6155 	struct request_queue *q;
6156 	int ret;
6157 
6158 	hba->is_sys_suspended = false;
6159 	/*
6160 	 * Set RPM status of wlun device to RPM_ACTIVE,
6161 	 * this also clears its runtime error.
6162 	 */
6163 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6164 
6165 	/* hba device might have a runtime error otherwise */
6166 	if (ret)
6167 		ret = pm_runtime_set_active(hba->dev);
6168 	/*
6169 	 * If wlun device had runtime error, we also need to resume those
6170 	 * consumer scsi devices in case any of them has failed to be
6171 	 * resumed due to supplier runtime resume failure. This is to unblock
6172 	 * blk_queue_enter in case there are bios waiting inside it.
6173 	 */
6174 	if (!ret) {
6175 		shost_for_each_device(sdev, shost) {
6176 			q = sdev->request_queue;
6177 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6178 				       q->rpm_status == RPM_SUSPENDING))
6179 				pm_request_resume(q->dev);
6180 		}
6181 	}
6182 }
6183 #else
6184 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6185 {
6186 }
6187 #endif
6188 
6189 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6190 {
6191 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6192 	u32 mode;
6193 
6194 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6195 
6196 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6197 		return true;
6198 
6199 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6200 		return true;
6201 
6202 	return false;
6203 }
6204 
6205 /**
6206  * ufshcd_err_handler - handle UFS errors that require s/w attention
6207  * @work: pointer to work structure
6208  */
6209 static void ufshcd_err_handler(struct work_struct *work)
6210 {
6211 	int retries = MAX_ERR_HANDLER_RETRIES;
6212 	struct ufs_hba *hba;
6213 	unsigned long flags;
6214 	bool needs_restore;
6215 	bool needs_reset;
6216 	bool err_xfer;
6217 	bool err_tm;
6218 	int pmc_err;
6219 	int tag;
6220 
6221 	hba = container_of(work, struct ufs_hba, eh_work);
6222 
6223 	dev_info(hba->dev,
6224 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6225 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6226 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6227 		 hba->saved_uic_err, hba->force_reset,
6228 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6229 
6230 	down(&hba->host_sem);
6231 	spin_lock_irqsave(hba->host->host_lock, flags);
6232 	if (ufshcd_err_handling_should_stop(hba)) {
6233 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6234 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6235 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6236 		up(&hba->host_sem);
6237 		return;
6238 	}
6239 	ufshcd_set_eh_in_progress(hba);
6240 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6241 	ufshcd_err_handling_prepare(hba);
6242 	/* Complete requests that have door-bell cleared by h/w */
6243 	ufshcd_complete_requests(hba);
6244 	spin_lock_irqsave(hba->host->host_lock, flags);
6245 again:
6246 	needs_restore = false;
6247 	needs_reset = false;
6248 	err_xfer = false;
6249 	err_tm = false;
6250 
6251 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6252 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6253 	/*
6254 	 * A full reset and restore might have happened after preparation
6255 	 * is finished, double check whether we should stop.
6256 	 */
6257 	if (ufshcd_err_handling_should_stop(hba))
6258 		goto skip_err_handling;
6259 
6260 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6261 		bool ret;
6262 
6263 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6264 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6265 		ret = ufshcd_quirk_dl_nac_errors(hba);
6266 		spin_lock_irqsave(hba->host->host_lock, flags);
6267 		if (!ret && ufshcd_err_handling_should_stop(hba))
6268 			goto skip_err_handling;
6269 	}
6270 
6271 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6272 	    (hba->saved_uic_err &&
6273 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6274 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6275 
6276 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6277 		ufshcd_print_host_state(hba);
6278 		ufshcd_print_pwr_info(hba);
6279 		ufshcd_print_evt_hist(hba);
6280 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6281 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6282 		spin_lock_irqsave(hba->host->host_lock, flags);
6283 	}
6284 
6285 	/*
6286 	 * if host reset is required then skip clearing the pending
6287 	 * transfers forcefully because they will get cleared during
6288 	 * host reset and restore
6289 	 */
6290 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6291 	    ufshcd_is_saved_err_fatal(hba) ||
6292 	    ((hba->saved_err & UIC_ERROR) &&
6293 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6294 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6295 		needs_reset = true;
6296 		goto do_reset;
6297 	}
6298 
6299 	/*
6300 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6301 	 * check if power mode restore is needed.
6302 	 */
6303 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6304 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6305 		if (!hba->saved_uic_err)
6306 			hba->saved_err &= ~UIC_ERROR;
6307 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6308 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6309 			needs_restore = true;
6310 		spin_lock_irqsave(hba->host->host_lock, flags);
6311 		if (!hba->saved_err && !needs_restore)
6312 			goto skip_err_handling;
6313 	}
6314 
6315 	hba->silence_err_logs = true;
6316 	/* release lock as clear command might sleep */
6317 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6318 	/* Clear pending transfer requests */
6319 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6320 		if (ufshcd_try_to_abort_task(hba, tag)) {
6321 			err_xfer = true;
6322 			goto lock_skip_pending_xfer_clear;
6323 		}
6324 		dev_err(hba->dev, "Aborted tag %d / CDB %#02x\n", tag,
6325 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1);
6326 	}
6327 
6328 	/* Clear pending task management requests */
6329 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6330 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6331 			err_tm = true;
6332 			goto lock_skip_pending_xfer_clear;
6333 		}
6334 	}
6335 
6336 lock_skip_pending_xfer_clear:
6337 	/* Complete the requests that are cleared by s/w */
6338 	ufshcd_complete_requests(hba);
6339 
6340 	spin_lock_irqsave(hba->host->host_lock, flags);
6341 	hba->silence_err_logs = false;
6342 	if (err_xfer || err_tm) {
6343 		needs_reset = true;
6344 		goto do_reset;
6345 	}
6346 
6347 	/*
6348 	 * After all reqs and tasks are cleared from doorbell,
6349 	 * now it is safe to retore power mode.
6350 	 */
6351 	if (needs_restore) {
6352 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6353 		/*
6354 		 * Hold the scaling lock just in case dev cmds
6355 		 * are sent via bsg and/or sysfs.
6356 		 */
6357 		down_write(&hba->clk_scaling_lock);
6358 		hba->force_pmc = true;
6359 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6360 		if (pmc_err) {
6361 			needs_reset = true;
6362 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6363 					__func__, pmc_err);
6364 		}
6365 		hba->force_pmc = false;
6366 		ufshcd_print_pwr_info(hba);
6367 		up_write(&hba->clk_scaling_lock);
6368 		spin_lock_irqsave(hba->host->host_lock, flags);
6369 	}
6370 
6371 do_reset:
6372 	/* Fatal errors need reset */
6373 	if (needs_reset) {
6374 		int err;
6375 
6376 		hba->force_reset = false;
6377 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6378 		err = ufshcd_reset_and_restore(hba);
6379 		if (err)
6380 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6381 					__func__, err);
6382 		else
6383 			ufshcd_recover_pm_error(hba);
6384 		spin_lock_irqsave(hba->host->host_lock, flags);
6385 	}
6386 
6387 skip_err_handling:
6388 	if (!needs_reset) {
6389 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6390 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6391 		if (hba->saved_err || hba->saved_uic_err)
6392 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6393 			    __func__, hba->saved_err, hba->saved_uic_err);
6394 	}
6395 	/* Exit in an operational state or dead */
6396 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6397 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6398 		if (--retries)
6399 			goto again;
6400 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6401 	}
6402 	ufshcd_clear_eh_in_progress(hba);
6403 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6404 	ufshcd_err_handling_unprepare(hba);
6405 	up(&hba->host_sem);
6406 
6407 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6408 		 ufshcd_state_name[hba->ufshcd_state]);
6409 }
6410 
6411 /**
6412  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6413  * @hba: per-adapter instance
6414  *
6415  * Returns
6416  *  IRQ_HANDLED - If interrupt is valid
6417  *  IRQ_NONE    - If invalid interrupt
6418  */
6419 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6420 {
6421 	u32 reg;
6422 	irqreturn_t retval = IRQ_NONE;
6423 
6424 	/* PHY layer error */
6425 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6426 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6427 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6428 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6429 		/*
6430 		 * To know whether this error is fatal or not, DB timeout
6431 		 * must be checked but this error is handled separately.
6432 		 */
6433 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6434 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6435 					__func__);
6436 
6437 		/* Got a LINERESET indication. */
6438 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6439 			struct uic_command *cmd = NULL;
6440 
6441 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6442 			if (hba->uic_async_done && hba->active_uic_cmd)
6443 				cmd = hba->active_uic_cmd;
6444 			/*
6445 			 * Ignore the LINERESET during power mode change
6446 			 * operation via DME_SET command.
6447 			 */
6448 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6449 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6450 		}
6451 		retval |= IRQ_HANDLED;
6452 	}
6453 
6454 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6455 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6456 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6457 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6458 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6459 
6460 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6461 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6462 		else if (hba->dev_quirks &
6463 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6464 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6465 				hba->uic_error |=
6466 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6467 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6468 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6469 		}
6470 		retval |= IRQ_HANDLED;
6471 	}
6472 
6473 	/* UIC NL/TL/DME errors needs software retry */
6474 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6475 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6476 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6477 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6478 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6479 		retval |= IRQ_HANDLED;
6480 	}
6481 
6482 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6483 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6484 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6485 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6486 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6487 		retval |= IRQ_HANDLED;
6488 	}
6489 
6490 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6491 	if ((reg & UIC_DME_ERROR) &&
6492 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6493 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6494 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6495 		retval |= IRQ_HANDLED;
6496 	}
6497 
6498 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6499 			__func__, hba->uic_error);
6500 	return retval;
6501 }
6502 
6503 /**
6504  * ufshcd_check_errors - Check for errors that need s/w attention
6505  * @hba: per-adapter instance
6506  * @intr_status: interrupt status generated by the controller
6507  *
6508  * Returns
6509  *  IRQ_HANDLED - If interrupt is valid
6510  *  IRQ_NONE    - If invalid interrupt
6511  */
6512 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6513 {
6514 	bool queue_eh_work = false;
6515 	irqreturn_t retval = IRQ_NONE;
6516 
6517 	spin_lock(hba->host->host_lock);
6518 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6519 
6520 	if (hba->errors & INT_FATAL_ERRORS) {
6521 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6522 				       hba->errors);
6523 		queue_eh_work = true;
6524 	}
6525 
6526 	if (hba->errors & UIC_ERROR) {
6527 		hba->uic_error = 0;
6528 		retval = ufshcd_update_uic_error(hba);
6529 		if (hba->uic_error)
6530 			queue_eh_work = true;
6531 	}
6532 
6533 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6534 		dev_err(hba->dev,
6535 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6536 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6537 			"Enter" : "Exit",
6538 			hba->errors, ufshcd_get_upmcrs(hba));
6539 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6540 				       hba->errors);
6541 		ufshcd_set_link_broken(hba);
6542 		queue_eh_work = true;
6543 	}
6544 
6545 	if (queue_eh_work) {
6546 		/*
6547 		 * update the transfer error masks to sticky bits, let's do this
6548 		 * irrespective of current ufshcd_state.
6549 		 */
6550 		hba->saved_err |= hba->errors;
6551 		hba->saved_uic_err |= hba->uic_error;
6552 
6553 		/* dump controller state before resetting */
6554 		if ((hba->saved_err &
6555 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6556 		    (hba->saved_uic_err &&
6557 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6558 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6559 					__func__, hba->saved_err,
6560 					hba->saved_uic_err);
6561 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6562 					 "host_regs: ");
6563 			ufshcd_print_pwr_info(hba);
6564 		}
6565 		ufshcd_schedule_eh_work(hba);
6566 		retval |= IRQ_HANDLED;
6567 	}
6568 	/*
6569 	 * if (!queue_eh_work) -
6570 	 * Other errors are either non-fatal where host recovers
6571 	 * itself without s/w intervention or errors that will be
6572 	 * handled by the SCSI core layer.
6573 	 */
6574 	hba->errors = 0;
6575 	hba->uic_error = 0;
6576 	spin_unlock(hba->host->host_lock);
6577 	return retval;
6578 }
6579 
6580 /**
6581  * ufshcd_tmc_handler - handle task management function completion
6582  * @hba: per adapter instance
6583  *
6584  * Returns
6585  *  IRQ_HANDLED - If interrupt is valid
6586  *  IRQ_NONE    - If invalid interrupt
6587  */
6588 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6589 {
6590 	unsigned long flags, pending, issued;
6591 	irqreturn_t ret = IRQ_NONE;
6592 	int tag;
6593 
6594 	spin_lock_irqsave(hba->host->host_lock, flags);
6595 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6596 	issued = hba->outstanding_tasks & ~pending;
6597 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6598 		struct request *req = hba->tmf_rqs[tag];
6599 		struct completion *c = req->end_io_data;
6600 
6601 		complete(c);
6602 		ret = IRQ_HANDLED;
6603 	}
6604 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6605 
6606 	return ret;
6607 }
6608 
6609 /**
6610  * ufshcd_sl_intr - Interrupt service routine
6611  * @hba: per adapter instance
6612  * @intr_status: contains interrupts generated by the controller
6613  *
6614  * Returns
6615  *  IRQ_HANDLED - If interrupt is valid
6616  *  IRQ_NONE    - If invalid interrupt
6617  */
6618 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6619 {
6620 	irqreturn_t retval = IRQ_NONE;
6621 
6622 	if (intr_status & UFSHCD_UIC_MASK)
6623 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6624 
6625 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6626 		retval |= ufshcd_check_errors(hba, intr_status);
6627 
6628 	if (intr_status & UTP_TASK_REQ_COMPL)
6629 		retval |= ufshcd_tmc_handler(hba);
6630 
6631 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6632 		retval |= ufshcd_transfer_req_compl(hba);
6633 
6634 	return retval;
6635 }
6636 
6637 /**
6638  * ufshcd_intr - Main interrupt service routine
6639  * @irq: irq number
6640  * @__hba: pointer to adapter instance
6641  *
6642  * Returns
6643  *  IRQ_HANDLED - If interrupt is valid
6644  *  IRQ_NONE    - If invalid interrupt
6645  */
6646 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6647 {
6648 	u32 intr_status, enabled_intr_status = 0;
6649 	irqreturn_t retval = IRQ_NONE;
6650 	struct ufs_hba *hba = __hba;
6651 	int retries = hba->nutrs;
6652 
6653 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6654 	hba->ufs_stats.last_intr_status = intr_status;
6655 	hba->ufs_stats.last_intr_ts = local_clock();
6656 
6657 	/*
6658 	 * There could be max of hba->nutrs reqs in flight and in worst case
6659 	 * if the reqs get finished 1 by 1 after the interrupt status is
6660 	 * read, make sure we handle them by checking the interrupt status
6661 	 * again in a loop until we process all of the reqs before returning.
6662 	 */
6663 	while (intr_status && retries--) {
6664 		enabled_intr_status =
6665 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6666 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6667 		if (enabled_intr_status)
6668 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6669 
6670 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6671 	}
6672 
6673 	if (enabled_intr_status && retval == IRQ_NONE &&
6674 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6675 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6676 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6677 					__func__,
6678 					intr_status,
6679 					hba->ufs_stats.last_intr_status,
6680 					enabled_intr_status);
6681 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6682 	}
6683 
6684 	return retval;
6685 }
6686 
6687 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6688 {
6689 	int err = 0;
6690 	u32 mask = 1 << tag;
6691 	unsigned long flags;
6692 
6693 	if (!test_bit(tag, &hba->outstanding_tasks))
6694 		goto out;
6695 
6696 	spin_lock_irqsave(hba->host->host_lock, flags);
6697 	ufshcd_utmrl_clear(hba, tag);
6698 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6699 
6700 	/* poll for max. 1 sec to clear door bell register by h/w */
6701 	err = ufshcd_wait_for_register(hba,
6702 			REG_UTP_TASK_REQ_DOOR_BELL,
6703 			mask, 0, 1000, 1000);
6704 
6705 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6706 		tag, err ? "succeeded" : "failed");
6707 
6708 out:
6709 	return err;
6710 }
6711 
6712 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6713 		struct utp_task_req_desc *treq, u8 tm_function)
6714 {
6715 	struct request_queue *q = hba->tmf_queue;
6716 	struct Scsi_Host *host = hba->host;
6717 	DECLARE_COMPLETION_ONSTACK(wait);
6718 	struct request *req;
6719 	unsigned long flags;
6720 	int task_tag, err;
6721 
6722 	/*
6723 	 * blk_mq_alloc_request() is used here only to get a free tag.
6724 	 */
6725 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6726 	if (IS_ERR(req))
6727 		return PTR_ERR(req);
6728 
6729 	req->end_io_data = &wait;
6730 	ufshcd_hold(hba, false);
6731 
6732 	spin_lock_irqsave(host->host_lock, flags);
6733 
6734 	task_tag = req->tag;
6735 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6736 		  task_tag);
6737 	hba->tmf_rqs[req->tag] = req;
6738 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6739 
6740 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6741 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6742 
6743 	/* send command to the controller */
6744 	__set_bit(task_tag, &hba->outstanding_tasks);
6745 
6746 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6747 	/* Make sure that doorbell is committed immediately */
6748 	wmb();
6749 
6750 	spin_unlock_irqrestore(host->host_lock, flags);
6751 
6752 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6753 
6754 	/* wait until the task management command is completed */
6755 	err = wait_for_completion_io_timeout(&wait,
6756 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6757 	if (!err) {
6758 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6759 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6760 				__func__, tm_function);
6761 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6762 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6763 					__func__, task_tag);
6764 		err = -ETIMEDOUT;
6765 	} else {
6766 		err = 0;
6767 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6768 
6769 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6770 	}
6771 
6772 	spin_lock_irqsave(hba->host->host_lock, flags);
6773 	hba->tmf_rqs[req->tag] = NULL;
6774 	__clear_bit(task_tag, &hba->outstanding_tasks);
6775 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6776 
6777 	ufshcd_release(hba);
6778 	blk_mq_free_request(req);
6779 
6780 	return err;
6781 }
6782 
6783 /**
6784  * ufshcd_issue_tm_cmd - issues task management commands to controller
6785  * @hba: per adapter instance
6786  * @lun_id: LUN ID to which TM command is sent
6787  * @task_id: task ID to which the TM command is applicable
6788  * @tm_function: task management function opcode
6789  * @tm_response: task management service response return value
6790  *
6791  * Returns non-zero value on error, zero on success.
6792  */
6793 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6794 		u8 tm_function, u8 *tm_response)
6795 {
6796 	struct utp_task_req_desc treq = { { 0 }, };
6797 	enum utp_ocs ocs_value;
6798 	int err;
6799 
6800 	/* Configure task request descriptor */
6801 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6802 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6803 
6804 	/* Configure task request UPIU */
6805 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6806 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6807 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6808 
6809 	/*
6810 	 * The host shall provide the same value for LUN field in the basic
6811 	 * header and for Input Parameter.
6812 	 */
6813 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6814 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6815 
6816 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6817 	if (err == -ETIMEDOUT)
6818 		return err;
6819 
6820 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6821 	if (ocs_value != OCS_SUCCESS)
6822 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6823 				__func__, ocs_value);
6824 	else if (tm_response)
6825 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6826 				MASK_TM_SERVICE_RESP;
6827 	return err;
6828 }
6829 
6830 /**
6831  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6832  * @hba:	per-adapter instance
6833  * @req_upiu:	upiu request
6834  * @rsp_upiu:	upiu reply
6835  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6836  * @buff_len:	descriptor size, 0 if NA
6837  * @cmd_type:	specifies the type (NOP, Query...)
6838  * @desc_op:	descriptor operation
6839  *
6840  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6841  * Therefore, it "rides" the device management infrastructure: uses its tag and
6842  * tasks work queues.
6843  *
6844  * Since there is only one available tag for device management commands,
6845  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6846  */
6847 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6848 					struct utp_upiu_req *req_upiu,
6849 					struct utp_upiu_req *rsp_upiu,
6850 					u8 *desc_buff, int *buff_len,
6851 					enum dev_cmd_type cmd_type,
6852 					enum query_opcode desc_op)
6853 {
6854 	DECLARE_COMPLETION_ONSTACK(wait);
6855 	const u32 tag = hba->reserved_slot;
6856 	struct ufshcd_lrb *lrbp;
6857 	int err = 0;
6858 	u8 upiu_flags;
6859 
6860 	/* Protects use of hba->reserved_slot. */
6861 	lockdep_assert_held(&hba->dev_cmd.lock);
6862 
6863 	down_read(&hba->clk_scaling_lock);
6864 
6865 	lrbp = &hba->lrb[tag];
6866 	WARN_ON(lrbp->cmd);
6867 	lrbp->cmd = NULL;
6868 	lrbp->task_tag = tag;
6869 	lrbp->lun = 0;
6870 	lrbp->intr_cmd = true;
6871 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6872 	hba->dev_cmd.type = cmd_type;
6873 
6874 	if (hba->ufs_version <= ufshci_version(1, 1))
6875 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6876 	else
6877 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6878 
6879 	/* update the task tag in the request upiu */
6880 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6881 
6882 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6883 
6884 	/* just copy the upiu request as it is */
6885 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6886 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6887 		/* The Data Segment Area is optional depending upon the query
6888 		 * function value. for WRITE DESCRIPTOR, the data segment
6889 		 * follows right after the tsf.
6890 		 */
6891 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6892 		*buff_len = 0;
6893 	}
6894 
6895 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6896 
6897 	hba->dev_cmd.complete = &wait;
6898 
6899 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
6900 
6901 	ufshcd_send_command(hba, tag);
6902 	/*
6903 	 * ignore the returning value here - ufshcd_check_query_response is
6904 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6905 	 * read the response directly ignoring all errors.
6906 	 */
6907 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6908 
6909 	/* just copy the upiu response as it is */
6910 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6911 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6912 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6913 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6914 			       MASK_QUERY_DATA_SEG_LEN;
6915 
6916 		if (*buff_len >= resp_len) {
6917 			memcpy(desc_buff, descp, resp_len);
6918 			*buff_len = resp_len;
6919 		} else {
6920 			dev_warn(hba->dev,
6921 				 "%s: rsp size %d is bigger than buffer size %d",
6922 				 __func__, resp_len, *buff_len);
6923 			*buff_len = 0;
6924 			err = -EINVAL;
6925 		}
6926 	}
6927 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
6928 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
6929 
6930 	up_read(&hba->clk_scaling_lock);
6931 	return err;
6932 }
6933 
6934 /**
6935  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6936  * @hba:	per-adapter instance
6937  * @req_upiu:	upiu request
6938  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6939  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6940  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6941  * @buff_len:	descriptor size, 0 if NA
6942  * @desc_op:	descriptor operation
6943  *
6944  * Supports UTP Transfer requests (nop and query), and UTP Task
6945  * Management requests.
6946  * It is up to the caller to fill the upiu conent properly, as it will
6947  * be copied without any further input validations.
6948  */
6949 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6950 			     struct utp_upiu_req *req_upiu,
6951 			     struct utp_upiu_req *rsp_upiu,
6952 			     int msgcode,
6953 			     u8 *desc_buff, int *buff_len,
6954 			     enum query_opcode desc_op)
6955 {
6956 	int err;
6957 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6958 	struct utp_task_req_desc treq = { { 0 }, };
6959 	enum utp_ocs ocs_value;
6960 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6961 
6962 	switch (msgcode) {
6963 	case UPIU_TRANSACTION_NOP_OUT:
6964 		cmd_type = DEV_CMD_TYPE_NOP;
6965 		fallthrough;
6966 	case UPIU_TRANSACTION_QUERY_REQ:
6967 		ufshcd_hold(hba, false);
6968 		mutex_lock(&hba->dev_cmd.lock);
6969 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6970 						   desc_buff, buff_len,
6971 						   cmd_type, desc_op);
6972 		mutex_unlock(&hba->dev_cmd.lock);
6973 		ufshcd_release(hba);
6974 
6975 		break;
6976 	case UPIU_TRANSACTION_TASK_REQ:
6977 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6978 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6979 
6980 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
6981 
6982 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6983 		if (err == -ETIMEDOUT)
6984 			break;
6985 
6986 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6987 		if (ocs_value != OCS_SUCCESS) {
6988 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6989 				ocs_value);
6990 			break;
6991 		}
6992 
6993 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
6994 
6995 		break;
6996 	default:
6997 		err = -EINVAL;
6998 
6999 		break;
7000 	}
7001 
7002 	return err;
7003 }
7004 
7005 /**
7006  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7007  * @cmd: SCSI command pointer
7008  *
7009  * Returns SUCCESS/FAILED
7010  */
7011 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7012 {
7013 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7014 	struct Scsi_Host *host;
7015 	struct ufs_hba *hba;
7016 	u32 pos;
7017 	int err;
7018 	u8 resp = 0xF, lun;
7019 
7020 	host = cmd->device->host;
7021 	hba = shost_priv(host);
7022 
7023 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7024 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7025 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7026 		if (!err)
7027 			err = resp;
7028 		goto out;
7029 	}
7030 
7031 	/* clear the commands that were pending for corresponding LUN */
7032 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7033 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7034 		if (hba->lrb[pos].lun == lun)
7035 			__set_bit(pos, &pending_reqs);
7036 	hba->outstanding_reqs &= ~pending_reqs;
7037 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7038 
7039 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7040 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7041 		not_cleared = pending_reqs &
7042 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7043 		hba->outstanding_reqs |= not_cleared;
7044 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7045 
7046 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7047 			__func__, not_cleared);
7048 	}
7049 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7050 
7051 out:
7052 	hba->req_abort_count = 0;
7053 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7054 	if (!err) {
7055 		err = SUCCESS;
7056 	} else {
7057 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7058 		err = FAILED;
7059 	}
7060 	return err;
7061 }
7062 
7063 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7064 {
7065 	struct ufshcd_lrb *lrbp;
7066 	int tag;
7067 
7068 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7069 		lrbp = &hba->lrb[tag];
7070 		lrbp->req_abort_skip = true;
7071 	}
7072 }
7073 
7074 /**
7075  * ufshcd_try_to_abort_task - abort a specific task
7076  * @hba: Pointer to adapter instance
7077  * @tag: Task tag/index to be aborted
7078  *
7079  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7080  * command, and in host controller by clearing the door-bell register. There can
7081  * be race between controller sending the command to the device while abort is
7082  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7083  * really issued and then try to abort it.
7084  *
7085  * Returns zero on success, non-zero on failure
7086  */
7087 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7088 {
7089 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7090 	int err = 0;
7091 	int poll_cnt;
7092 	u8 resp = 0xF;
7093 	u32 reg;
7094 
7095 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7096 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7097 				UFS_QUERY_TASK, &resp);
7098 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7099 			/* cmd pending in the device */
7100 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7101 				__func__, tag);
7102 			break;
7103 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7104 			/*
7105 			 * cmd not pending in the device, check if it is
7106 			 * in transition.
7107 			 */
7108 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7109 				__func__, tag);
7110 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7111 			if (reg & (1 << tag)) {
7112 				/* sleep for max. 200us to stabilize */
7113 				usleep_range(100, 200);
7114 				continue;
7115 			}
7116 			/* command completed already */
7117 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7118 				__func__, tag);
7119 			goto out;
7120 		} else {
7121 			dev_err(hba->dev,
7122 				"%s: no response from device. tag = %d, err %d\n",
7123 				__func__, tag, err);
7124 			if (!err)
7125 				err = resp; /* service response error */
7126 			goto out;
7127 		}
7128 	}
7129 
7130 	if (!poll_cnt) {
7131 		err = -EBUSY;
7132 		goto out;
7133 	}
7134 
7135 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7136 			UFS_ABORT_TASK, &resp);
7137 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7138 		if (!err) {
7139 			err = resp; /* service response error */
7140 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7141 				__func__, tag, err);
7142 		}
7143 		goto out;
7144 	}
7145 
7146 	err = ufshcd_clear_cmds(hba, 1U << tag);
7147 	if (err)
7148 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7149 			__func__, tag, err);
7150 
7151 out:
7152 	return err;
7153 }
7154 
7155 /**
7156  * ufshcd_abort - scsi host template eh_abort_handler callback
7157  * @cmd: SCSI command pointer
7158  *
7159  * Returns SUCCESS/FAILED
7160  */
7161 static int ufshcd_abort(struct scsi_cmnd *cmd)
7162 {
7163 	struct Scsi_Host *host = cmd->device->host;
7164 	struct ufs_hba *hba = shost_priv(host);
7165 	int tag = scsi_cmd_to_rq(cmd)->tag;
7166 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7167 	unsigned long flags;
7168 	int err = FAILED;
7169 	bool outstanding;
7170 	u32 reg;
7171 
7172 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7173 
7174 	ufshcd_hold(hba, false);
7175 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7176 	/* If command is already aborted/completed, return FAILED. */
7177 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7178 		dev_err(hba->dev,
7179 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7180 			__func__, tag, hba->outstanding_reqs, reg);
7181 		goto release;
7182 	}
7183 
7184 	/* Print Transfer Request of aborted task */
7185 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7186 
7187 	/*
7188 	 * Print detailed info about aborted request.
7189 	 * As more than one request might get aborted at the same time,
7190 	 * print full information only for the first aborted request in order
7191 	 * to reduce repeated printouts. For other aborted requests only print
7192 	 * basic details.
7193 	 */
7194 	scsi_print_command(cmd);
7195 	if (!hba->req_abort_count) {
7196 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7197 		ufshcd_print_evt_hist(hba);
7198 		ufshcd_print_host_state(hba);
7199 		ufshcd_print_pwr_info(hba);
7200 		ufshcd_print_trs(hba, 1 << tag, true);
7201 	} else {
7202 		ufshcd_print_trs(hba, 1 << tag, false);
7203 	}
7204 	hba->req_abort_count++;
7205 
7206 	if (!(reg & (1 << tag))) {
7207 		dev_err(hba->dev,
7208 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7209 		__func__, tag);
7210 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7211 		goto release;
7212 	}
7213 
7214 	/*
7215 	 * Task abort to the device W-LUN is illegal. When this command
7216 	 * will fail, due to spec violation, scsi err handling next step
7217 	 * will be to send LU reset which, again, is a spec violation.
7218 	 * To avoid these unnecessary/illegal steps, first we clean up
7219 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7220 	 * then queue the eh_work and bail.
7221 	 */
7222 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7223 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7224 
7225 		spin_lock_irqsave(host->host_lock, flags);
7226 		hba->force_reset = true;
7227 		ufshcd_schedule_eh_work(hba);
7228 		spin_unlock_irqrestore(host->host_lock, flags);
7229 		goto release;
7230 	}
7231 
7232 	/* Skip task abort in case previous aborts failed and report failure */
7233 	if (lrbp->req_abort_skip) {
7234 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7235 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7236 		goto release;
7237 	}
7238 
7239 	err = ufshcd_try_to_abort_task(hba, tag);
7240 	if (err) {
7241 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7242 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7243 		err = FAILED;
7244 		goto release;
7245 	}
7246 
7247 	/*
7248 	 * Clear the corresponding bit from outstanding_reqs since the command
7249 	 * has been aborted successfully.
7250 	 */
7251 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7252 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7253 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7254 
7255 	if (outstanding)
7256 		ufshcd_release_scsi_cmd(hba, lrbp);
7257 
7258 	err = SUCCESS;
7259 
7260 release:
7261 	/* Matches the ufshcd_hold() call at the start of this function. */
7262 	ufshcd_release(hba);
7263 	return err;
7264 }
7265 
7266 /**
7267  * ufshcd_host_reset_and_restore - reset and restore host controller
7268  * @hba: per-adapter instance
7269  *
7270  * Note that host controller reset may issue DME_RESET to
7271  * local and remote (device) Uni-Pro stack and the attributes
7272  * are reset to default state.
7273  *
7274  * Returns zero on success, non-zero on failure
7275  */
7276 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7277 {
7278 	int err;
7279 
7280 	/*
7281 	 * Stop the host controller and complete the requests
7282 	 * cleared by h/w
7283 	 */
7284 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7285 	ufshcd_hba_stop(hba);
7286 	hba->silence_err_logs = true;
7287 	ufshcd_complete_requests(hba);
7288 	hba->silence_err_logs = false;
7289 
7290 	/* scale up clocks to max frequency before full reinitialization */
7291 	ufshcd_scale_clks(hba, true);
7292 
7293 	err = ufshcd_hba_enable(hba);
7294 
7295 	/* Establish the link again and restore the device */
7296 	if (!err)
7297 		err = ufshcd_probe_hba(hba, false);
7298 
7299 	if (err)
7300 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7301 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7302 	return err;
7303 }
7304 
7305 /**
7306  * ufshcd_reset_and_restore - reset and re-initialize host/device
7307  * @hba: per-adapter instance
7308  *
7309  * Reset and recover device, host and re-establish link. This
7310  * is helpful to recover the communication in fatal error conditions.
7311  *
7312  * Returns zero on success, non-zero on failure
7313  */
7314 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7315 {
7316 	u32 saved_err = 0;
7317 	u32 saved_uic_err = 0;
7318 	int err = 0;
7319 	unsigned long flags;
7320 	int retries = MAX_HOST_RESET_RETRIES;
7321 
7322 	spin_lock_irqsave(hba->host->host_lock, flags);
7323 	do {
7324 		/*
7325 		 * This is a fresh start, cache and clear saved error first,
7326 		 * in case new error generated during reset and restore.
7327 		 */
7328 		saved_err |= hba->saved_err;
7329 		saved_uic_err |= hba->saved_uic_err;
7330 		hba->saved_err = 0;
7331 		hba->saved_uic_err = 0;
7332 		hba->force_reset = false;
7333 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7334 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7335 
7336 		/* Reset the attached device */
7337 		ufshcd_device_reset(hba);
7338 
7339 		err = ufshcd_host_reset_and_restore(hba);
7340 
7341 		spin_lock_irqsave(hba->host->host_lock, flags);
7342 		if (err)
7343 			continue;
7344 		/* Do not exit unless operational or dead */
7345 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7346 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7347 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7348 			err = -EAGAIN;
7349 	} while (err && --retries);
7350 
7351 	/*
7352 	 * Inform scsi mid-layer that we did reset and allow to handle
7353 	 * Unit Attention properly.
7354 	 */
7355 	scsi_report_bus_reset(hba->host, 0);
7356 	if (err) {
7357 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7358 		hba->saved_err |= saved_err;
7359 		hba->saved_uic_err |= saved_uic_err;
7360 	}
7361 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7362 
7363 	return err;
7364 }
7365 
7366 /**
7367  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7368  * @cmd: SCSI command pointer
7369  *
7370  * Returns SUCCESS/FAILED
7371  */
7372 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7373 {
7374 	int err = SUCCESS;
7375 	unsigned long flags;
7376 	struct ufs_hba *hba;
7377 
7378 	hba = shost_priv(cmd->device->host);
7379 
7380 	spin_lock_irqsave(hba->host->host_lock, flags);
7381 	hba->force_reset = true;
7382 	ufshcd_schedule_eh_work(hba);
7383 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7384 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7385 
7386 	flush_work(&hba->eh_work);
7387 
7388 	spin_lock_irqsave(hba->host->host_lock, flags);
7389 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7390 		err = FAILED;
7391 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7392 
7393 	return err;
7394 }
7395 
7396 /**
7397  * ufshcd_get_max_icc_level - calculate the ICC level
7398  * @sup_curr_uA: max. current supported by the regulator
7399  * @start_scan: row at the desc table to start scan from
7400  * @buff: power descriptor buffer
7401  *
7402  * Returns calculated max ICC level for specific regulator
7403  */
7404 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7405 				    const char *buff)
7406 {
7407 	int i;
7408 	int curr_uA;
7409 	u16 data;
7410 	u16 unit;
7411 
7412 	for (i = start_scan; i >= 0; i--) {
7413 		data = get_unaligned_be16(&buff[2 * i]);
7414 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7415 						ATTR_ICC_LVL_UNIT_OFFSET;
7416 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7417 		switch (unit) {
7418 		case UFSHCD_NANO_AMP:
7419 			curr_uA = curr_uA / 1000;
7420 			break;
7421 		case UFSHCD_MILI_AMP:
7422 			curr_uA = curr_uA * 1000;
7423 			break;
7424 		case UFSHCD_AMP:
7425 			curr_uA = curr_uA * 1000 * 1000;
7426 			break;
7427 		case UFSHCD_MICRO_AMP:
7428 		default:
7429 			break;
7430 		}
7431 		if (sup_curr_uA >= curr_uA)
7432 			break;
7433 	}
7434 	if (i < 0) {
7435 		i = 0;
7436 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7437 	}
7438 
7439 	return (u32)i;
7440 }
7441 
7442 /**
7443  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7444  * In case regulators are not initialized we'll return 0
7445  * @hba: per-adapter instance
7446  * @desc_buf: power descriptor buffer to extract ICC levels from.
7447  * @len: length of desc_buff
7448  *
7449  * Returns calculated ICC level
7450  */
7451 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7452 						const u8 *desc_buf, int len)
7453 {
7454 	u32 icc_level = 0;
7455 
7456 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7457 						!hba->vreg_info.vccq2) {
7458 		/*
7459 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7460 		 * never-ending cycles of messages written back to storage by
7461 		 * user space causing runtime resume, causing more messages and
7462 		 * so on.
7463 		 */
7464 		dev_dbg(hba->dev,
7465 			"%s: Regulator capability was not set, actvIccLevel=%d",
7466 							__func__, icc_level);
7467 		goto out;
7468 	}
7469 
7470 	if (hba->vreg_info.vcc->max_uA)
7471 		icc_level = ufshcd_get_max_icc_level(
7472 				hba->vreg_info.vcc->max_uA,
7473 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7474 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7475 
7476 	if (hba->vreg_info.vccq->max_uA)
7477 		icc_level = ufshcd_get_max_icc_level(
7478 				hba->vreg_info.vccq->max_uA,
7479 				icc_level,
7480 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7481 
7482 	if (hba->vreg_info.vccq2->max_uA)
7483 		icc_level = ufshcd_get_max_icc_level(
7484 				hba->vreg_info.vccq2->max_uA,
7485 				icc_level,
7486 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7487 out:
7488 	return icc_level;
7489 }
7490 
7491 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7492 {
7493 	int ret;
7494 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7495 	u8 *desc_buf;
7496 	u32 icc_level;
7497 
7498 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7499 	if (!desc_buf)
7500 		return;
7501 
7502 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7503 				     desc_buf, buff_len);
7504 	if (ret) {
7505 		dev_err(hba->dev,
7506 			"%s: Failed reading power descriptor.len = %d ret = %d",
7507 			__func__, buff_len, ret);
7508 		goto out;
7509 	}
7510 
7511 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7512 							 buff_len);
7513 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7514 
7515 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7516 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7517 
7518 	if (ret)
7519 		dev_err(hba->dev,
7520 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7521 			__func__, icc_level, ret);
7522 
7523 out:
7524 	kfree(desc_buf);
7525 }
7526 
7527 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7528 {
7529 	scsi_autopm_get_device(sdev);
7530 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7531 	if (sdev->rpm_autosuspend)
7532 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7533 						 RPM_AUTOSUSPEND_DELAY_MS);
7534 	scsi_autopm_put_device(sdev);
7535 }
7536 
7537 /**
7538  * ufshcd_scsi_add_wlus - Adds required W-LUs
7539  * @hba: per-adapter instance
7540  *
7541  * UFS device specification requires the UFS devices to support 4 well known
7542  * logical units:
7543  *	"REPORT_LUNS" (address: 01h)
7544  *	"UFS Device" (address: 50h)
7545  *	"RPMB" (address: 44h)
7546  *	"BOOT" (address: 30h)
7547  * UFS device's power management needs to be controlled by "POWER CONDITION"
7548  * field of SSU (START STOP UNIT) command. But this "power condition" field
7549  * will take effect only when its sent to "UFS device" well known logical unit
7550  * hence we require the scsi_device instance to represent this logical unit in
7551  * order for the UFS host driver to send the SSU command for power management.
7552  *
7553  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7554  * Block) LU so user space process can control this LU. User space may also
7555  * want to have access to BOOT LU.
7556  *
7557  * This function adds scsi device instances for each of all well known LUs
7558  * (except "REPORT LUNS" LU).
7559  *
7560  * Returns zero on success (all required W-LUs are added successfully),
7561  * non-zero error value on failure (if failed to add any of the required W-LU).
7562  */
7563 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7564 {
7565 	int ret = 0;
7566 	struct scsi_device *sdev_boot, *sdev_rpmb;
7567 
7568 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7569 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7570 	if (IS_ERR(hba->ufs_device_wlun)) {
7571 		ret = PTR_ERR(hba->ufs_device_wlun);
7572 		hba->ufs_device_wlun = NULL;
7573 		goto out;
7574 	}
7575 	scsi_device_put(hba->ufs_device_wlun);
7576 
7577 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7578 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7579 	if (IS_ERR(sdev_rpmb)) {
7580 		ret = PTR_ERR(sdev_rpmb);
7581 		goto remove_ufs_device_wlun;
7582 	}
7583 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7584 	scsi_device_put(sdev_rpmb);
7585 
7586 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7587 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7588 	if (IS_ERR(sdev_boot)) {
7589 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7590 	} else {
7591 		ufshcd_blk_pm_runtime_init(sdev_boot);
7592 		scsi_device_put(sdev_boot);
7593 	}
7594 	goto out;
7595 
7596 remove_ufs_device_wlun:
7597 	scsi_remove_device(hba->ufs_device_wlun);
7598 out:
7599 	return ret;
7600 }
7601 
7602 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7603 {
7604 	struct ufs_dev_info *dev_info = &hba->dev_info;
7605 	u8 lun;
7606 	u32 d_lu_wb_buf_alloc;
7607 	u32 ext_ufs_feature;
7608 
7609 	if (!ufshcd_is_wb_allowed(hba))
7610 		return;
7611 
7612 	/*
7613 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7614 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7615 	 * enabled
7616 	 */
7617 	if (!(dev_info->wspecversion >= 0x310 ||
7618 	      dev_info->wspecversion == 0x220 ||
7619 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7620 		goto wb_disabled;
7621 
7622 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7623 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7624 		goto wb_disabled;
7625 
7626 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7627 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7628 
7629 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7630 		goto wb_disabled;
7631 
7632 	/*
7633 	 * WB may be supported but not configured while provisioning. The spec
7634 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7635 	 * buffer configured.
7636 	 */
7637 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7638 
7639 	dev_info->b_presrv_uspc_en =
7640 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7641 
7642 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7643 		if (!get_unaligned_be32(desc_buf +
7644 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7645 			goto wb_disabled;
7646 	} else {
7647 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7648 			d_lu_wb_buf_alloc = 0;
7649 			ufshcd_read_unit_desc_param(hba,
7650 					lun,
7651 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7652 					(u8 *)&d_lu_wb_buf_alloc,
7653 					sizeof(d_lu_wb_buf_alloc));
7654 			if (d_lu_wb_buf_alloc) {
7655 				dev_info->wb_dedicated_lu = lun;
7656 				break;
7657 			}
7658 		}
7659 
7660 		if (!d_lu_wb_buf_alloc)
7661 			goto wb_disabled;
7662 	}
7663 
7664 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7665 		goto wb_disabled;
7666 
7667 	return;
7668 
7669 wb_disabled:
7670 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7671 }
7672 
7673 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7674 {
7675 	struct ufs_dev_info *dev_info = &hba->dev_info;
7676 	u32 ext_ufs_feature;
7677 	u8 mask = 0;
7678 
7679 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7680 		return;
7681 
7682 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7683 
7684 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7685 		mask |= MASK_EE_TOO_LOW_TEMP;
7686 
7687 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7688 		mask |= MASK_EE_TOO_HIGH_TEMP;
7689 
7690 	if (mask) {
7691 		ufshcd_enable_ee(hba, mask);
7692 		ufs_hwmon_probe(hba, mask);
7693 	}
7694 }
7695 
7696 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7697 			     const struct ufs_dev_quirk *fixups)
7698 {
7699 	const struct ufs_dev_quirk *f;
7700 	struct ufs_dev_info *dev_info = &hba->dev_info;
7701 
7702 	if (!fixups)
7703 		return;
7704 
7705 	for (f = fixups; f->quirk; f++) {
7706 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7707 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7708 		     ((dev_info->model &&
7709 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7710 		      !strcmp(f->model, UFS_ANY_MODEL)))
7711 			hba->dev_quirks |= f->quirk;
7712 	}
7713 }
7714 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7715 
7716 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7717 {
7718 	/* fix by general quirk table */
7719 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7720 
7721 	/* allow vendors to fix quirks */
7722 	ufshcd_vops_fixup_dev_quirks(hba);
7723 }
7724 
7725 static int ufs_get_device_desc(struct ufs_hba *hba)
7726 {
7727 	int err;
7728 	u8 model_index;
7729 	u8 b_ufs_feature_sup;
7730 	u8 *desc_buf;
7731 	struct ufs_dev_info *dev_info = &hba->dev_info;
7732 
7733 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7734 	if (!desc_buf) {
7735 		err = -ENOMEM;
7736 		goto out;
7737 	}
7738 
7739 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7740 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7741 	if (err) {
7742 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7743 			__func__, err);
7744 		goto out;
7745 	}
7746 
7747 	/*
7748 	 * getting vendor (manufacturerID) and Bank Index in big endian
7749 	 * format
7750 	 */
7751 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7752 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7753 
7754 	/* getting Specification Version in big endian format */
7755 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7756 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7757 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7758 
7759 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7760 
7761 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7762 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7763 		bool hpb_en = false;
7764 
7765 		ufshpb_get_dev_info(hba, desc_buf);
7766 
7767 		if (!ufshpb_is_legacy(hba))
7768 			err = ufshcd_query_flag_retry(hba,
7769 						      UPIU_QUERY_OPCODE_READ_FLAG,
7770 						      QUERY_FLAG_IDN_HPB_EN, 0,
7771 						      &hpb_en);
7772 
7773 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7774 			dev_info->hpb_enabled = true;
7775 	}
7776 
7777 	err = ufshcd_read_string_desc(hba, model_index,
7778 				      &dev_info->model, SD_ASCII_STD);
7779 	if (err < 0) {
7780 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7781 			__func__, err);
7782 		goto out;
7783 	}
7784 
7785 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
7786 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
7787 
7788 	ufs_fixup_device_setup(hba);
7789 
7790 	ufshcd_wb_probe(hba, desc_buf);
7791 
7792 	ufshcd_temp_notif_probe(hba, desc_buf);
7793 
7794 	/*
7795 	 * ufshcd_read_string_desc returns size of the string
7796 	 * reset the error value
7797 	 */
7798 	err = 0;
7799 
7800 out:
7801 	kfree(desc_buf);
7802 	return err;
7803 }
7804 
7805 static void ufs_put_device_desc(struct ufs_hba *hba)
7806 {
7807 	struct ufs_dev_info *dev_info = &hba->dev_info;
7808 
7809 	kfree(dev_info->model);
7810 	dev_info->model = NULL;
7811 }
7812 
7813 /**
7814  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7815  * @hba: per-adapter instance
7816  *
7817  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7818  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7819  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7820  * the hibern8 exit latency.
7821  *
7822  * Returns zero on success, non-zero error value on failure.
7823  */
7824 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7825 {
7826 	int ret = 0;
7827 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7828 
7829 	ret = ufshcd_dme_peer_get(hba,
7830 				  UIC_ARG_MIB_SEL(
7831 					RX_MIN_ACTIVATETIME_CAPABILITY,
7832 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7833 				  &peer_rx_min_activatetime);
7834 	if (ret)
7835 		goto out;
7836 
7837 	/* make sure proper unit conversion is applied */
7838 	tuned_pa_tactivate =
7839 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7840 		 / PA_TACTIVATE_TIME_UNIT_US);
7841 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7842 			     tuned_pa_tactivate);
7843 
7844 out:
7845 	return ret;
7846 }
7847 
7848 /**
7849  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7850  * @hba: per-adapter instance
7851  *
7852  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7853  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7854  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7855  * This optimal value can help reduce the hibern8 exit latency.
7856  *
7857  * Returns zero on success, non-zero error value on failure.
7858  */
7859 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7860 {
7861 	int ret = 0;
7862 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7863 	u32 max_hibern8_time, tuned_pa_hibern8time;
7864 
7865 	ret = ufshcd_dme_get(hba,
7866 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7867 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7868 				  &local_tx_hibern8_time_cap);
7869 	if (ret)
7870 		goto out;
7871 
7872 	ret = ufshcd_dme_peer_get(hba,
7873 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7874 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7875 				  &peer_rx_hibern8_time_cap);
7876 	if (ret)
7877 		goto out;
7878 
7879 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7880 			       peer_rx_hibern8_time_cap);
7881 	/* make sure proper unit conversion is applied */
7882 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7883 				/ PA_HIBERN8_TIME_UNIT_US);
7884 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7885 			     tuned_pa_hibern8time);
7886 out:
7887 	return ret;
7888 }
7889 
7890 /**
7891  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7892  * less than device PA_TACTIVATE time.
7893  * @hba: per-adapter instance
7894  *
7895  * Some UFS devices require host PA_TACTIVATE to be lower than device
7896  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7897  * for such devices.
7898  *
7899  * Returns zero on success, non-zero error value on failure.
7900  */
7901 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7902 {
7903 	int ret = 0;
7904 	u32 granularity, peer_granularity;
7905 	u32 pa_tactivate, peer_pa_tactivate;
7906 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7907 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7908 
7909 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7910 				  &granularity);
7911 	if (ret)
7912 		goto out;
7913 
7914 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7915 				  &peer_granularity);
7916 	if (ret)
7917 		goto out;
7918 
7919 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7920 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7921 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7922 			__func__, granularity);
7923 		return -EINVAL;
7924 	}
7925 
7926 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7927 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7928 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7929 			__func__, peer_granularity);
7930 		return -EINVAL;
7931 	}
7932 
7933 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7934 	if (ret)
7935 		goto out;
7936 
7937 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7938 				  &peer_pa_tactivate);
7939 	if (ret)
7940 		goto out;
7941 
7942 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7943 	peer_pa_tactivate_us = peer_pa_tactivate *
7944 			     gran_to_us_table[peer_granularity - 1];
7945 
7946 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
7947 		u32 new_peer_pa_tactivate;
7948 
7949 		new_peer_pa_tactivate = pa_tactivate_us /
7950 				      gran_to_us_table[peer_granularity - 1];
7951 		new_peer_pa_tactivate++;
7952 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7953 					  new_peer_pa_tactivate);
7954 	}
7955 
7956 out:
7957 	return ret;
7958 }
7959 
7960 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7961 {
7962 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7963 		ufshcd_tune_pa_tactivate(hba);
7964 		ufshcd_tune_pa_hibern8time(hba);
7965 	}
7966 
7967 	ufshcd_vops_apply_dev_quirks(hba);
7968 
7969 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7970 		/* set 1ms timeout for PA_TACTIVATE */
7971 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7972 
7973 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7974 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7975 }
7976 
7977 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7978 {
7979 	hba->ufs_stats.hibern8_exit_cnt = 0;
7980 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7981 	hba->req_abort_count = 0;
7982 }
7983 
7984 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7985 {
7986 	int err;
7987 	size_t buff_len;
7988 	u8 *desc_buf;
7989 
7990 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7991 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7992 	if (!desc_buf) {
7993 		err = -ENOMEM;
7994 		goto out;
7995 	}
7996 
7997 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7998 				     desc_buf, buff_len);
7999 	if (err) {
8000 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8001 				__func__, err);
8002 		goto out;
8003 	}
8004 
8005 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8006 		hba->dev_info.max_lu_supported = 32;
8007 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8008 		hba->dev_info.max_lu_supported = 8;
8009 
8010 	if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
8011 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8012 		ufshpb_get_geo_info(hba, desc_buf);
8013 
8014 out:
8015 	kfree(desc_buf);
8016 	return err;
8017 }
8018 
8019 struct ufs_ref_clk {
8020 	unsigned long freq_hz;
8021 	enum ufs_ref_clk_freq val;
8022 };
8023 
8024 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8025 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8026 	{26000000, REF_CLK_FREQ_26_MHZ},
8027 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8028 	{52000000, REF_CLK_FREQ_52_MHZ},
8029 	{0, REF_CLK_FREQ_INVAL},
8030 };
8031 
8032 static enum ufs_ref_clk_freq
8033 ufs_get_bref_clk_from_hz(unsigned long freq)
8034 {
8035 	int i;
8036 
8037 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8038 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8039 			return ufs_ref_clk_freqs[i].val;
8040 
8041 	return REF_CLK_FREQ_INVAL;
8042 }
8043 
8044 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8045 {
8046 	unsigned long freq;
8047 
8048 	freq = clk_get_rate(refclk);
8049 
8050 	hba->dev_ref_clk_freq =
8051 		ufs_get_bref_clk_from_hz(freq);
8052 
8053 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8054 		dev_err(hba->dev,
8055 		"invalid ref_clk setting = %ld\n", freq);
8056 }
8057 
8058 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8059 {
8060 	int err;
8061 	u32 ref_clk;
8062 	u32 freq = hba->dev_ref_clk_freq;
8063 
8064 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8065 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8066 
8067 	if (err) {
8068 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8069 			err);
8070 		goto out;
8071 	}
8072 
8073 	if (ref_clk == freq)
8074 		goto out; /* nothing to update */
8075 
8076 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8077 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8078 
8079 	if (err) {
8080 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8081 			ufs_ref_clk_freqs[freq].freq_hz);
8082 		goto out;
8083 	}
8084 
8085 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8086 			ufs_ref_clk_freqs[freq].freq_hz);
8087 
8088 out:
8089 	return err;
8090 }
8091 
8092 static int ufshcd_device_params_init(struct ufs_hba *hba)
8093 {
8094 	bool flag;
8095 	int ret, i;
8096 
8097 	 /* Init device descriptor sizes */
8098 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
8099 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
8100 
8101 	/* Init UFS geometry descriptor related parameters */
8102 	ret = ufshcd_device_geo_params_init(hba);
8103 	if (ret)
8104 		goto out;
8105 
8106 	/* Check and apply UFS device quirks */
8107 	ret = ufs_get_device_desc(hba);
8108 	if (ret) {
8109 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8110 			__func__, ret);
8111 		goto out;
8112 	}
8113 
8114 	ufshcd_get_ref_clk_gating_wait(hba);
8115 
8116 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8117 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8118 		hba->dev_info.f_power_on_wp_en = flag;
8119 
8120 	/* Probe maximum power mode co-supported by both UFS host and device */
8121 	if (ufshcd_get_max_pwr_mode(hba))
8122 		dev_err(hba->dev,
8123 			"%s: Failed getting max supported power mode\n",
8124 			__func__);
8125 out:
8126 	return ret;
8127 }
8128 
8129 /**
8130  * ufshcd_add_lus - probe and add UFS logical units
8131  * @hba: per-adapter instance
8132  */
8133 static int ufshcd_add_lus(struct ufs_hba *hba)
8134 {
8135 	int ret;
8136 
8137 	/* Add required well known logical units to scsi mid layer */
8138 	ret = ufshcd_scsi_add_wlus(hba);
8139 	if (ret)
8140 		goto out;
8141 
8142 	/* Initialize devfreq after UFS device is detected */
8143 	if (ufshcd_is_clkscaling_supported(hba)) {
8144 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
8145 			&hba->pwr_info,
8146 			sizeof(struct ufs_pa_layer_attr));
8147 		hba->clk_scaling.saved_pwr_info.is_valid = true;
8148 		hba->clk_scaling.is_allowed = true;
8149 
8150 		ret = ufshcd_devfreq_init(hba);
8151 		if (ret)
8152 			goto out;
8153 
8154 		hba->clk_scaling.is_enabled = true;
8155 		ufshcd_init_clk_scaling_sysfs(hba);
8156 	}
8157 
8158 	ufs_bsg_probe(hba);
8159 	ufshpb_init(hba);
8160 	scsi_scan_host(hba->host);
8161 	pm_runtime_put_sync(hba->dev);
8162 
8163 out:
8164 	return ret;
8165 }
8166 
8167 /**
8168  * ufshcd_probe_hba - probe hba to detect device and initialize it
8169  * @hba: per-adapter instance
8170  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8171  *
8172  * Execute link-startup and verify device initialization
8173  */
8174 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8175 {
8176 	int ret;
8177 	unsigned long flags;
8178 	ktime_t start = ktime_get();
8179 
8180 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8181 
8182 	ret = ufshcd_link_startup(hba);
8183 	if (ret)
8184 		goto out;
8185 
8186 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8187 		goto out;
8188 
8189 	/* Debug counters initialization */
8190 	ufshcd_clear_dbg_ufs_stats(hba);
8191 
8192 	/* UniPro link is active now */
8193 	ufshcd_set_link_active(hba);
8194 
8195 	/* Verify device initialization by sending NOP OUT UPIU */
8196 	ret = ufshcd_verify_dev_init(hba);
8197 	if (ret)
8198 		goto out;
8199 
8200 	/* Initiate UFS initialization, and waiting until completion */
8201 	ret = ufshcd_complete_dev_init(hba);
8202 	if (ret)
8203 		goto out;
8204 
8205 	/*
8206 	 * Initialize UFS device parameters used by driver, these
8207 	 * parameters are associated with UFS descriptors.
8208 	 */
8209 	if (init_dev_params) {
8210 		ret = ufshcd_device_params_init(hba);
8211 		if (ret)
8212 			goto out;
8213 	}
8214 
8215 	ufshcd_tune_unipro_params(hba);
8216 
8217 	/* UFS device is also active now */
8218 	ufshcd_set_ufs_dev_active(hba);
8219 	ufshcd_force_reset_auto_bkops(hba);
8220 
8221 	/* Gear up to HS gear if supported */
8222 	if (hba->max_pwr_info.is_valid) {
8223 		/*
8224 		 * Set the right value to bRefClkFreq before attempting to
8225 		 * switch to HS gears.
8226 		 */
8227 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8228 			ufshcd_set_dev_ref_clk(hba);
8229 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8230 		if (ret) {
8231 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8232 					__func__, ret);
8233 			goto out;
8234 		}
8235 		ufshcd_print_pwr_info(hba);
8236 	}
8237 
8238 	/*
8239 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8240 	 * and for removable UFS card as well, hence always set the parameter.
8241 	 * Note: Error handler may issue the device reset hence resetting
8242 	 * bActiveICCLevel as well so it is always safe to set this here.
8243 	 */
8244 	ufshcd_set_active_icc_lvl(hba);
8245 
8246 	/* Enable UFS Write Booster if supported */
8247 	ufshcd_configure_wb(hba);
8248 
8249 	if (hba->ee_usr_mask)
8250 		ufshcd_write_ee_control(hba);
8251 	/* Enable Auto-Hibernate if configured */
8252 	ufshcd_auto_hibern8_enable(hba);
8253 
8254 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8255 out:
8256 	spin_lock_irqsave(hba->host->host_lock, flags);
8257 	if (ret)
8258 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8259 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8260 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8261 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8262 
8263 	trace_ufshcd_init(dev_name(hba->dev), ret,
8264 		ktime_to_us(ktime_sub(ktime_get(), start)),
8265 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8266 	return ret;
8267 }
8268 
8269 /**
8270  * ufshcd_async_scan - asynchronous execution for probing hba
8271  * @data: data pointer to pass to this function
8272  * @cookie: cookie data
8273  */
8274 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8275 {
8276 	struct ufs_hba *hba = (struct ufs_hba *)data;
8277 	int ret;
8278 
8279 	down(&hba->host_sem);
8280 	/* Initialize hba, detect and initialize UFS device */
8281 	ret = ufshcd_probe_hba(hba, true);
8282 	up(&hba->host_sem);
8283 	if (ret)
8284 		goto out;
8285 
8286 	/* Probe and add UFS logical units  */
8287 	ret = ufshcd_add_lus(hba);
8288 out:
8289 	/*
8290 	 * If we failed to initialize the device or the device is not
8291 	 * present, turn off the power/clocks etc.
8292 	 */
8293 	if (ret) {
8294 		pm_runtime_put_sync(hba->dev);
8295 		ufshcd_hba_exit(hba);
8296 	}
8297 }
8298 
8299 static const struct attribute_group *ufshcd_driver_groups[] = {
8300 	&ufs_sysfs_unit_descriptor_group,
8301 	&ufs_sysfs_lun_attributes_group,
8302 #ifdef CONFIG_SCSI_UFS_HPB
8303 	&ufs_sysfs_hpb_stat_group,
8304 	&ufs_sysfs_hpb_param_group,
8305 #endif
8306 	NULL,
8307 };
8308 
8309 static struct ufs_hba_variant_params ufs_hba_vps = {
8310 	.hba_enable_delay_us		= 1000,
8311 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8312 	.devfreq_profile.polling_ms	= 100,
8313 	.devfreq_profile.target		= ufshcd_devfreq_target,
8314 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8315 	.ondemand_data.upthreshold	= 70,
8316 	.ondemand_data.downdifferential	= 5,
8317 };
8318 
8319 static struct scsi_host_template ufshcd_driver_template = {
8320 	.module			= THIS_MODULE,
8321 	.name			= UFSHCD,
8322 	.proc_name		= UFSHCD,
8323 	.map_queues		= ufshcd_map_queues,
8324 	.queuecommand		= ufshcd_queuecommand,
8325 	.mq_poll		= ufshcd_poll,
8326 	.slave_alloc		= ufshcd_slave_alloc,
8327 	.slave_configure	= ufshcd_slave_configure,
8328 	.slave_destroy		= ufshcd_slave_destroy,
8329 	.change_queue_depth	= ufshcd_change_queue_depth,
8330 	.eh_abort_handler	= ufshcd_abort,
8331 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8332 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8333 	.this_id		= -1,
8334 	.sg_tablesize		= SG_ALL,
8335 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8336 	.can_queue		= UFSHCD_CAN_QUEUE,
8337 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8338 	.max_sectors		= (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8339 	.max_host_blocked	= 1,
8340 	.track_queue_depth	= 1,
8341 	.sdev_groups		= ufshcd_driver_groups,
8342 	.dma_boundary		= PAGE_SIZE - 1,
8343 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8344 };
8345 
8346 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8347 				   int ua)
8348 {
8349 	int ret;
8350 
8351 	if (!vreg)
8352 		return 0;
8353 
8354 	/*
8355 	 * "set_load" operation shall be required on those regulators
8356 	 * which specifically configured current limitation. Otherwise
8357 	 * zero max_uA may cause unexpected behavior when regulator is
8358 	 * enabled or set as high power mode.
8359 	 */
8360 	if (!vreg->max_uA)
8361 		return 0;
8362 
8363 	ret = regulator_set_load(vreg->reg, ua);
8364 	if (ret < 0) {
8365 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8366 				__func__, vreg->name, ua, ret);
8367 	}
8368 
8369 	return ret;
8370 }
8371 
8372 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8373 					 struct ufs_vreg *vreg)
8374 {
8375 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8376 }
8377 
8378 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8379 					 struct ufs_vreg *vreg)
8380 {
8381 	if (!vreg)
8382 		return 0;
8383 
8384 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8385 }
8386 
8387 static int ufshcd_config_vreg(struct device *dev,
8388 		struct ufs_vreg *vreg, bool on)
8389 {
8390 	if (regulator_count_voltages(vreg->reg) <= 0)
8391 		return 0;
8392 
8393 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8394 }
8395 
8396 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8397 {
8398 	int ret = 0;
8399 
8400 	if (!vreg || vreg->enabled)
8401 		goto out;
8402 
8403 	ret = ufshcd_config_vreg(dev, vreg, true);
8404 	if (!ret)
8405 		ret = regulator_enable(vreg->reg);
8406 
8407 	if (!ret)
8408 		vreg->enabled = true;
8409 	else
8410 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8411 				__func__, vreg->name, ret);
8412 out:
8413 	return ret;
8414 }
8415 
8416 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8417 {
8418 	int ret = 0;
8419 
8420 	if (!vreg || !vreg->enabled || vreg->always_on)
8421 		goto out;
8422 
8423 	ret = regulator_disable(vreg->reg);
8424 
8425 	if (!ret) {
8426 		/* ignore errors on applying disable config */
8427 		ufshcd_config_vreg(dev, vreg, false);
8428 		vreg->enabled = false;
8429 	} else {
8430 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8431 				__func__, vreg->name, ret);
8432 	}
8433 out:
8434 	return ret;
8435 }
8436 
8437 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8438 {
8439 	int ret = 0;
8440 	struct device *dev = hba->dev;
8441 	struct ufs_vreg_info *info = &hba->vreg_info;
8442 
8443 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8444 	if (ret)
8445 		goto out;
8446 
8447 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8448 	if (ret)
8449 		goto out;
8450 
8451 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8452 
8453 out:
8454 	if (ret) {
8455 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8456 		ufshcd_toggle_vreg(dev, info->vccq, false);
8457 		ufshcd_toggle_vreg(dev, info->vcc, false);
8458 	}
8459 	return ret;
8460 }
8461 
8462 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8463 {
8464 	struct ufs_vreg_info *info = &hba->vreg_info;
8465 
8466 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8467 }
8468 
8469 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8470 {
8471 	int ret = 0;
8472 
8473 	if (!vreg)
8474 		goto out;
8475 
8476 	vreg->reg = devm_regulator_get(dev, vreg->name);
8477 	if (IS_ERR(vreg->reg)) {
8478 		ret = PTR_ERR(vreg->reg);
8479 		dev_err(dev, "%s: %s get failed, err=%d\n",
8480 				__func__, vreg->name, ret);
8481 	}
8482 out:
8483 	return ret;
8484 }
8485 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8486 
8487 static int ufshcd_init_vreg(struct ufs_hba *hba)
8488 {
8489 	int ret = 0;
8490 	struct device *dev = hba->dev;
8491 	struct ufs_vreg_info *info = &hba->vreg_info;
8492 
8493 	ret = ufshcd_get_vreg(dev, info->vcc);
8494 	if (ret)
8495 		goto out;
8496 
8497 	ret = ufshcd_get_vreg(dev, info->vccq);
8498 	if (!ret)
8499 		ret = ufshcd_get_vreg(dev, info->vccq2);
8500 out:
8501 	return ret;
8502 }
8503 
8504 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8505 {
8506 	struct ufs_vreg_info *info = &hba->vreg_info;
8507 
8508 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8509 }
8510 
8511 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8512 {
8513 	int ret = 0;
8514 	struct ufs_clk_info *clki;
8515 	struct list_head *head = &hba->clk_list_head;
8516 	unsigned long flags;
8517 	ktime_t start = ktime_get();
8518 	bool clk_state_changed = false;
8519 
8520 	if (list_empty(head))
8521 		goto out;
8522 
8523 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8524 	if (ret)
8525 		return ret;
8526 
8527 	list_for_each_entry(clki, head, list) {
8528 		if (!IS_ERR_OR_NULL(clki->clk)) {
8529 			/*
8530 			 * Don't disable clocks which are needed
8531 			 * to keep the link active.
8532 			 */
8533 			if (ufshcd_is_link_active(hba) &&
8534 			    clki->keep_link_active)
8535 				continue;
8536 
8537 			clk_state_changed = on ^ clki->enabled;
8538 			if (on && !clki->enabled) {
8539 				ret = clk_prepare_enable(clki->clk);
8540 				if (ret) {
8541 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8542 						__func__, clki->name, ret);
8543 					goto out;
8544 				}
8545 			} else if (!on && clki->enabled) {
8546 				clk_disable_unprepare(clki->clk);
8547 			}
8548 			clki->enabled = on;
8549 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8550 					clki->name, on ? "en" : "dis");
8551 		}
8552 	}
8553 
8554 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8555 	if (ret)
8556 		return ret;
8557 
8558 out:
8559 	if (ret) {
8560 		list_for_each_entry(clki, head, list) {
8561 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8562 				clk_disable_unprepare(clki->clk);
8563 		}
8564 	} else if (!ret && on) {
8565 		spin_lock_irqsave(hba->host->host_lock, flags);
8566 		hba->clk_gating.state = CLKS_ON;
8567 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8568 					hba->clk_gating.state);
8569 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8570 	}
8571 
8572 	if (clk_state_changed)
8573 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8574 			(on ? "on" : "off"),
8575 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8576 	return ret;
8577 }
8578 
8579 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
8580 {
8581 	u32 freq;
8582 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
8583 
8584 	if (ret) {
8585 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
8586 		return REF_CLK_FREQ_INVAL;
8587 	}
8588 
8589 	return ufs_get_bref_clk_from_hz(freq);
8590 }
8591 
8592 static int ufshcd_init_clocks(struct ufs_hba *hba)
8593 {
8594 	int ret = 0;
8595 	struct ufs_clk_info *clki;
8596 	struct device *dev = hba->dev;
8597 	struct list_head *head = &hba->clk_list_head;
8598 
8599 	if (list_empty(head))
8600 		goto out;
8601 
8602 	list_for_each_entry(clki, head, list) {
8603 		if (!clki->name)
8604 			continue;
8605 
8606 		clki->clk = devm_clk_get(dev, clki->name);
8607 		if (IS_ERR(clki->clk)) {
8608 			ret = PTR_ERR(clki->clk);
8609 			dev_err(dev, "%s: %s clk get failed, %d\n",
8610 					__func__, clki->name, ret);
8611 			goto out;
8612 		}
8613 
8614 		/*
8615 		 * Parse device ref clk freq as per device tree "ref_clk".
8616 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8617 		 * in ufshcd_alloc_host().
8618 		 */
8619 		if (!strcmp(clki->name, "ref_clk"))
8620 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8621 
8622 		if (clki->max_freq) {
8623 			ret = clk_set_rate(clki->clk, clki->max_freq);
8624 			if (ret) {
8625 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8626 					__func__, clki->name,
8627 					clki->max_freq, ret);
8628 				goto out;
8629 			}
8630 			clki->curr_freq = clki->max_freq;
8631 		}
8632 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8633 				clki->name, clk_get_rate(clki->clk));
8634 	}
8635 out:
8636 	return ret;
8637 }
8638 
8639 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8640 {
8641 	int err = 0;
8642 
8643 	if (!hba->vops)
8644 		goto out;
8645 
8646 	err = ufshcd_vops_init(hba);
8647 	if (err)
8648 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8649 			__func__, ufshcd_get_var_name(hba), err);
8650 out:
8651 	return err;
8652 }
8653 
8654 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8655 {
8656 	if (!hba->vops)
8657 		return;
8658 
8659 	ufshcd_vops_exit(hba);
8660 }
8661 
8662 static int ufshcd_hba_init(struct ufs_hba *hba)
8663 {
8664 	int err;
8665 
8666 	/*
8667 	 * Handle host controller power separately from the UFS device power
8668 	 * rails as it will help controlling the UFS host controller power
8669 	 * collapse easily which is different than UFS device power collapse.
8670 	 * Also, enable the host controller power before we go ahead with rest
8671 	 * of the initialization here.
8672 	 */
8673 	err = ufshcd_init_hba_vreg(hba);
8674 	if (err)
8675 		goto out;
8676 
8677 	err = ufshcd_setup_hba_vreg(hba, true);
8678 	if (err)
8679 		goto out;
8680 
8681 	err = ufshcd_init_clocks(hba);
8682 	if (err)
8683 		goto out_disable_hba_vreg;
8684 
8685 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8686 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
8687 
8688 	err = ufshcd_setup_clocks(hba, true);
8689 	if (err)
8690 		goto out_disable_hba_vreg;
8691 
8692 	err = ufshcd_init_vreg(hba);
8693 	if (err)
8694 		goto out_disable_clks;
8695 
8696 	err = ufshcd_setup_vreg(hba, true);
8697 	if (err)
8698 		goto out_disable_clks;
8699 
8700 	err = ufshcd_variant_hba_init(hba);
8701 	if (err)
8702 		goto out_disable_vreg;
8703 
8704 	ufs_debugfs_hba_init(hba);
8705 
8706 	hba->is_powered = true;
8707 	goto out;
8708 
8709 out_disable_vreg:
8710 	ufshcd_setup_vreg(hba, false);
8711 out_disable_clks:
8712 	ufshcd_setup_clocks(hba, false);
8713 out_disable_hba_vreg:
8714 	ufshcd_setup_hba_vreg(hba, false);
8715 out:
8716 	return err;
8717 }
8718 
8719 static void ufshcd_hba_exit(struct ufs_hba *hba)
8720 {
8721 	if (hba->is_powered) {
8722 		ufshcd_exit_clk_scaling(hba);
8723 		ufshcd_exit_clk_gating(hba);
8724 		if (hba->eh_wq)
8725 			destroy_workqueue(hba->eh_wq);
8726 		ufs_debugfs_hba_exit(hba);
8727 		ufshcd_variant_hba_exit(hba);
8728 		ufshcd_setup_vreg(hba, false);
8729 		ufshcd_setup_clocks(hba, false);
8730 		ufshcd_setup_hba_vreg(hba, false);
8731 		hba->is_powered = false;
8732 		ufs_put_device_desc(hba);
8733 	}
8734 }
8735 
8736 /**
8737  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8738  *			     power mode
8739  * @hba: per adapter instance
8740  * @pwr_mode: device power mode to set
8741  *
8742  * Returns 0 if requested power mode is set successfully
8743  * Returns < 0 if failed to set the requested power mode
8744  */
8745 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8746 				     enum ufs_dev_pwr_mode pwr_mode)
8747 {
8748 	unsigned char cmd[6] = { START_STOP };
8749 	struct scsi_sense_hdr sshdr;
8750 	struct scsi_device *sdp;
8751 	unsigned long flags;
8752 	int ret, retries;
8753 
8754 	spin_lock_irqsave(hba->host->host_lock, flags);
8755 	sdp = hba->ufs_device_wlun;
8756 	if (sdp) {
8757 		ret = scsi_device_get(sdp);
8758 		if (!ret && !scsi_device_online(sdp)) {
8759 			ret = -ENODEV;
8760 			scsi_device_put(sdp);
8761 		}
8762 	} else {
8763 		ret = -ENODEV;
8764 	}
8765 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8766 
8767 	if (ret)
8768 		return ret;
8769 
8770 	/*
8771 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8772 	 * handling, which would wait for host to be resumed. Since we know
8773 	 * we are functional while we are here, skip host resume in error
8774 	 * handling context.
8775 	 */
8776 	hba->host->eh_noresume = 1;
8777 
8778 	cmd[4] = pwr_mode << 4;
8779 
8780 	/*
8781 	 * Current function would be generally called from the power management
8782 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8783 	 * already suspended childs.
8784 	 */
8785 	for (retries = 3; retries > 0; --retries) {
8786 		ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8787 				START_STOP_TIMEOUT, 0, 0, RQF_PM, NULL);
8788 		if (!scsi_status_is_check_condition(ret) ||
8789 				!scsi_sense_valid(&sshdr) ||
8790 				sshdr.sense_key != UNIT_ATTENTION)
8791 			break;
8792 	}
8793 	if (ret) {
8794 		sdev_printk(KERN_WARNING, sdp,
8795 			    "START_STOP failed for power mode: %d, result %x\n",
8796 			    pwr_mode, ret);
8797 		if (ret > 0) {
8798 			if (scsi_sense_valid(&sshdr))
8799 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
8800 			ret = -EIO;
8801 		}
8802 	}
8803 
8804 	if (!ret)
8805 		hba->curr_dev_pwr_mode = pwr_mode;
8806 
8807 	scsi_device_put(sdp);
8808 	hba->host->eh_noresume = 0;
8809 	return ret;
8810 }
8811 
8812 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8813 					enum uic_link_state req_link_state,
8814 					int check_for_bkops)
8815 {
8816 	int ret = 0;
8817 
8818 	if (req_link_state == hba->uic_link_state)
8819 		return 0;
8820 
8821 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8822 		ret = ufshcd_uic_hibern8_enter(hba);
8823 		if (!ret) {
8824 			ufshcd_set_link_hibern8(hba);
8825 		} else {
8826 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8827 					__func__, ret);
8828 			goto out;
8829 		}
8830 	}
8831 	/*
8832 	 * If autobkops is enabled, link can't be turned off because
8833 	 * turning off the link would also turn off the device, except in the
8834 	 * case of DeepSleep where the device is expected to remain powered.
8835 	 */
8836 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8837 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8838 		/*
8839 		 * Let's make sure that link is in low power mode, we are doing
8840 		 * this currently by putting the link in Hibern8. Otherway to
8841 		 * put the link in low power mode is to send the DME end point
8842 		 * to device and then send the DME reset command to local
8843 		 * unipro. But putting the link in hibern8 is much faster.
8844 		 *
8845 		 * Note also that putting the link in Hibern8 is a requirement
8846 		 * for entering DeepSleep.
8847 		 */
8848 		ret = ufshcd_uic_hibern8_enter(hba);
8849 		if (ret) {
8850 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8851 					__func__, ret);
8852 			goto out;
8853 		}
8854 		/*
8855 		 * Change controller state to "reset state" which
8856 		 * should also put the link in off/reset state
8857 		 */
8858 		ufshcd_hba_stop(hba);
8859 		/*
8860 		 * TODO: Check if we need any delay to make sure that
8861 		 * controller is reset
8862 		 */
8863 		ufshcd_set_link_off(hba);
8864 	}
8865 
8866 out:
8867 	return ret;
8868 }
8869 
8870 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8871 {
8872 	bool vcc_off = false;
8873 
8874 	/*
8875 	 * It seems some UFS devices may keep drawing more than sleep current
8876 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8877 	 * To avoid this situation, add 2ms delay before putting these UFS
8878 	 * rails in LPM mode.
8879 	 */
8880 	if (!ufshcd_is_link_active(hba) &&
8881 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8882 		usleep_range(2000, 2100);
8883 
8884 	/*
8885 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8886 	 * power.
8887 	 *
8888 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8889 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8890 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8891 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8892 	 *
8893 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8894 	 * in low power state which would save some power.
8895 	 *
8896 	 * If Write Booster is enabled and the device needs to flush the WB
8897 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8898 	 */
8899 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8900 	    !hba->dev_info.is_lu_power_on_wp) {
8901 		ufshcd_setup_vreg(hba, false);
8902 		vcc_off = true;
8903 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8904 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8905 		vcc_off = true;
8906 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8907 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8908 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8909 		}
8910 	}
8911 
8912 	/*
8913 	 * Some UFS devices require delay after VCC power rail is turned-off.
8914 	 */
8915 	if (vcc_off && hba->vreg_info.vcc &&
8916 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8917 		usleep_range(5000, 5100);
8918 }
8919 
8920 #ifdef CONFIG_PM
8921 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8922 {
8923 	int ret = 0;
8924 
8925 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8926 	    !hba->dev_info.is_lu_power_on_wp) {
8927 		ret = ufshcd_setup_vreg(hba, true);
8928 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8929 		if (!ufshcd_is_link_active(hba)) {
8930 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8931 			if (ret)
8932 				goto vcc_disable;
8933 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8934 			if (ret)
8935 				goto vccq_lpm;
8936 		}
8937 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8938 	}
8939 	goto out;
8940 
8941 vccq_lpm:
8942 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8943 vcc_disable:
8944 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8945 out:
8946 	return ret;
8947 }
8948 #endif /* CONFIG_PM */
8949 
8950 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8951 {
8952 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8953 		ufshcd_setup_hba_vreg(hba, false);
8954 }
8955 
8956 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8957 {
8958 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8959 		ufshcd_setup_hba_vreg(hba, true);
8960 }
8961 
8962 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8963 {
8964 	int ret = 0;
8965 	int check_for_bkops;
8966 	enum ufs_pm_level pm_lvl;
8967 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8968 	enum uic_link_state req_link_state;
8969 
8970 	hba->pm_op_in_progress = true;
8971 	if (pm_op != UFS_SHUTDOWN_PM) {
8972 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
8973 			 hba->rpm_lvl : hba->spm_lvl;
8974 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8975 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8976 	} else {
8977 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8978 		req_link_state = UIC_LINK_OFF_STATE;
8979 	}
8980 
8981 	ufshpb_suspend(hba);
8982 
8983 	/*
8984 	 * If we can't transition into any of the low power modes
8985 	 * just gate the clocks.
8986 	 */
8987 	ufshcd_hold(hba, false);
8988 	hba->clk_gating.is_suspended = true;
8989 
8990 	if (ufshcd_is_clkscaling_supported(hba))
8991 		ufshcd_clk_scaling_suspend(hba, true);
8992 
8993 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8994 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8995 		goto vops_suspend;
8996 	}
8997 
8998 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8999 	    (req_link_state == hba->uic_link_state))
9000 		goto enable_scaling;
9001 
9002 	/* UFS device & link must be active before we enter in this function */
9003 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9004 		ret = -EINVAL;
9005 		goto enable_scaling;
9006 	}
9007 
9008 	if (pm_op == UFS_RUNTIME_PM) {
9009 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9010 			/*
9011 			 * The device is idle with no requests in the queue,
9012 			 * allow background operations if bkops status shows
9013 			 * that performance might be impacted.
9014 			 */
9015 			ret = ufshcd_urgent_bkops(hba);
9016 			if (ret)
9017 				goto enable_scaling;
9018 		} else {
9019 			/* make sure that auto bkops is disabled */
9020 			ufshcd_disable_auto_bkops(hba);
9021 		}
9022 		/*
9023 		 * If device needs to do BKOP or WB buffer flush during
9024 		 * Hibern8, keep device power mode as "active power mode"
9025 		 * and VCC supply.
9026 		 */
9027 		hba->dev_info.b_rpm_dev_flush_capable =
9028 			hba->auto_bkops_enabled ||
9029 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9030 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9031 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9032 			ufshcd_wb_need_flush(hba));
9033 	}
9034 
9035 	flush_work(&hba->eeh_work);
9036 
9037 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9038 	if (ret)
9039 		goto enable_scaling;
9040 
9041 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9042 		if (pm_op != UFS_RUNTIME_PM)
9043 			/* ensure that bkops is disabled */
9044 			ufshcd_disable_auto_bkops(hba);
9045 
9046 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9047 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9048 			if (ret)
9049 				goto enable_scaling;
9050 		}
9051 	}
9052 
9053 	/*
9054 	 * In the case of DeepSleep, the device is expected to remain powered
9055 	 * with the link off, so do not check for bkops.
9056 	 */
9057 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9058 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9059 	if (ret)
9060 		goto set_dev_active;
9061 
9062 vops_suspend:
9063 	/*
9064 	 * Call vendor specific suspend callback. As these callbacks may access
9065 	 * vendor specific host controller register space call them before the
9066 	 * host clocks are ON.
9067 	 */
9068 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9069 	if (ret)
9070 		goto set_link_active;
9071 	goto out;
9072 
9073 set_link_active:
9074 	/*
9075 	 * Device hardware reset is required to exit DeepSleep. Also, for
9076 	 * DeepSleep, the link is off so host reset and restore will be done
9077 	 * further below.
9078 	 */
9079 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9080 		ufshcd_device_reset(hba);
9081 		WARN_ON(!ufshcd_is_link_off(hba));
9082 	}
9083 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9084 		ufshcd_set_link_active(hba);
9085 	else if (ufshcd_is_link_off(hba))
9086 		ufshcd_host_reset_and_restore(hba);
9087 set_dev_active:
9088 	/* Can also get here needing to exit DeepSleep */
9089 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9090 		ufshcd_device_reset(hba);
9091 		ufshcd_host_reset_and_restore(hba);
9092 	}
9093 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9094 		ufshcd_disable_auto_bkops(hba);
9095 enable_scaling:
9096 	if (ufshcd_is_clkscaling_supported(hba))
9097 		ufshcd_clk_scaling_suspend(hba, false);
9098 
9099 	hba->dev_info.b_rpm_dev_flush_capable = false;
9100 out:
9101 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9102 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9103 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9104 	}
9105 
9106 	if (ret) {
9107 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9108 		hba->clk_gating.is_suspended = false;
9109 		ufshcd_release(hba);
9110 		ufshpb_resume(hba);
9111 	}
9112 	hba->pm_op_in_progress = false;
9113 	return ret;
9114 }
9115 
9116 #ifdef CONFIG_PM
9117 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9118 {
9119 	int ret;
9120 	enum uic_link_state old_link_state = hba->uic_link_state;
9121 
9122 	hba->pm_op_in_progress = true;
9123 
9124 	/*
9125 	 * Call vendor specific resume callback. As these callbacks may access
9126 	 * vendor specific host controller register space call them when the
9127 	 * host clocks are ON.
9128 	 */
9129 	ret = ufshcd_vops_resume(hba, pm_op);
9130 	if (ret)
9131 		goto out;
9132 
9133 	/* For DeepSleep, the only supported option is to have the link off */
9134 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9135 
9136 	if (ufshcd_is_link_hibern8(hba)) {
9137 		ret = ufshcd_uic_hibern8_exit(hba);
9138 		if (!ret) {
9139 			ufshcd_set_link_active(hba);
9140 		} else {
9141 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9142 					__func__, ret);
9143 			goto vendor_suspend;
9144 		}
9145 	} else if (ufshcd_is_link_off(hba)) {
9146 		/*
9147 		 * A full initialization of the host and the device is
9148 		 * required since the link was put to off during suspend.
9149 		 * Note, in the case of DeepSleep, the device will exit
9150 		 * DeepSleep due to device reset.
9151 		 */
9152 		ret = ufshcd_reset_and_restore(hba);
9153 		/*
9154 		 * ufshcd_reset_and_restore() should have already
9155 		 * set the link state as active
9156 		 */
9157 		if (ret || !ufshcd_is_link_active(hba))
9158 			goto vendor_suspend;
9159 	}
9160 
9161 	if (!ufshcd_is_ufs_dev_active(hba)) {
9162 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9163 		if (ret)
9164 			goto set_old_link_state;
9165 	}
9166 
9167 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9168 		ufshcd_enable_auto_bkops(hba);
9169 	else
9170 		/*
9171 		 * If BKOPs operations are urgently needed at this moment then
9172 		 * keep auto-bkops enabled or else disable it.
9173 		 */
9174 		ufshcd_urgent_bkops(hba);
9175 
9176 	if (hba->ee_usr_mask)
9177 		ufshcd_write_ee_control(hba);
9178 
9179 	if (ufshcd_is_clkscaling_supported(hba))
9180 		ufshcd_clk_scaling_suspend(hba, false);
9181 
9182 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9183 		hba->dev_info.b_rpm_dev_flush_capable = false;
9184 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9185 	}
9186 
9187 	/* Enable Auto-Hibernate if configured */
9188 	ufshcd_auto_hibern8_enable(hba);
9189 
9190 	ufshpb_resume(hba);
9191 	goto out;
9192 
9193 set_old_link_state:
9194 	ufshcd_link_state_transition(hba, old_link_state, 0);
9195 vendor_suspend:
9196 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9197 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9198 out:
9199 	if (ret)
9200 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9201 	hba->clk_gating.is_suspended = false;
9202 	ufshcd_release(hba);
9203 	hba->pm_op_in_progress = false;
9204 	return ret;
9205 }
9206 
9207 static int ufshcd_wl_runtime_suspend(struct device *dev)
9208 {
9209 	struct scsi_device *sdev = to_scsi_device(dev);
9210 	struct ufs_hba *hba;
9211 	int ret;
9212 	ktime_t start = ktime_get();
9213 
9214 	hba = shost_priv(sdev->host);
9215 
9216 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9217 	if (ret)
9218 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9219 
9220 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9221 		ktime_to_us(ktime_sub(ktime_get(), start)),
9222 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9223 
9224 	return ret;
9225 }
9226 
9227 static int ufshcd_wl_runtime_resume(struct device *dev)
9228 {
9229 	struct scsi_device *sdev = to_scsi_device(dev);
9230 	struct ufs_hba *hba;
9231 	int ret = 0;
9232 	ktime_t start = ktime_get();
9233 
9234 	hba = shost_priv(sdev->host);
9235 
9236 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9237 	if (ret)
9238 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9239 
9240 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9241 		ktime_to_us(ktime_sub(ktime_get(), start)),
9242 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9243 
9244 	return ret;
9245 }
9246 #endif
9247 
9248 #ifdef CONFIG_PM_SLEEP
9249 static int ufshcd_wl_suspend(struct device *dev)
9250 {
9251 	struct scsi_device *sdev = to_scsi_device(dev);
9252 	struct ufs_hba *hba;
9253 	int ret = 0;
9254 	ktime_t start = ktime_get();
9255 
9256 	hba = shost_priv(sdev->host);
9257 	down(&hba->host_sem);
9258 
9259 	if (pm_runtime_suspended(dev))
9260 		goto out;
9261 
9262 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9263 	if (ret) {
9264 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9265 		up(&hba->host_sem);
9266 	}
9267 
9268 out:
9269 	if (!ret)
9270 		hba->is_sys_suspended = true;
9271 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9272 		ktime_to_us(ktime_sub(ktime_get(), start)),
9273 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9274 
9275 	return ret;
9276 }
9277 
9278 static int ufshcd_wl_resume(struct device *dev)
9279 {
9280 	struct scsi_device *sdev = to_scsi_device(dev);
9281 	struct ufs_hba *hba;
9282 	int ret = 0;
9283 	ktime_t start = ktime_get();
9284 
9285 	hba = shost_priv(sdev->host);
9286 
9287 	if (pm_runtime_suspended(dev))
9288 		goto out;
9289 
9290 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9291 	if (ret)
9292 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9293 out:
9294 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9295 		ktime_to_us(ktime_sub(ktime_get(), start)),
9296 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9297 	if (!ret)
9298 		hba->is_sys_suspended = false;
9299 	up(&hba->host_sem);
9300 	return ret;
9301 }
9302 #endif
9303 
9304 static void ufshcd_wl_shutdown(struct device *dev)
9305 {
9306 	struct scsi_device *sdev = to_scsi_device(dev);
9307 	struct ufs_hba *hba;
9308 
9309 	hba = shost_priv(sdev->host);
9310 
9311 	down(&hba->host_sem);
9312 	hba->shutting_down = true;
9313 	up(&hba->host_sem);
9314 
9315 	/* Turn on everything while shutting down */
9316 	ufshcd_rpm_get_sync(hba);
9317 	scsi_device_quiesce(sdev);
9318 	shost_for_each_device(sdev, hba->host) {
9319 		if (sdev == hba->ufs_device_wlun)
9320 			continue;
9321 		scsi_device_quiesce(sdev);
9322 	}
9323 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9324 }
9325 
9326 /**
9327  * ufshcd_suspend - helper function for suspend operations
9328  * @hba: per adapter instance
9329  *
9330  * This function will put disable irqs, turn off clocks
9331  * and set vreg and hba-vreg in lpm mode.
9332  */
9333 static int ufshcd_suspend(struct ufs_hba *hba)
9334 {
9335 	int ret;
9336 
9337 	if (!hba->is_powered)
9338 		return 0;
9339 	/*
9340 	 * Disable the host irq as host controller as there won't be any
9341 	 * host controller transaction expected till resume.
9342 	 */
9343 	ufshcd_disable_irq(hba);
9344 	ret = ufshcd_setup_clocks(hba, false);
9345 	if (ret) {
9346 		ufshcd_enable_irq(hba);
9347 		return ret;
9348 	}
9349 	if (ufshcd_is_clkgating_allowed(hba)) {
9350 		hba->clk_gating.state = CLKS_OFF;
9351 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9352 					hba->clk_gating.state);
9353 	}
9354 
9355 	ufshcd_vreg_set_lpm(hba);
9356 	/* Put the host controller in low power mode if possible */
9357 	ufshcd_hba_vreg_set_lpm(hba);
9358 	return ret;
9359 }
9360 
9361 #ifdef CONFIG_PM
9362 /**
9363  * ufshcd_resume - helper function for resume operations
9364  * @hba: per adapter instance
9365  *
9366  * This function basically turns on the regulators, clocks and
9367  * irqs of the hba.
9368  *
9369  * Returns 0 for success and non-zero for failure
9370  */
9371 static int ufshcd_resume(struct ufs_hba *hba)
9372 {
9373 	int ret;
9374 
9375 	if (!hba->is_powered)
9376 		return 0;
9377 
9378 	ufshcd_hba_vreg_set_hpm(hba);
9379 	ret = ufshcd_vreg_set_hpm(hba);
9380 	if (ret)
9381 		goto out;
9382 
9383 	/* Make sure clocks are enabled before accessing controller */
9384 	ret = ufshcd_setup_clocks(hba, true);
9385 	if (ret)
9386 		goto disable_vreg;
9387 
9388 	/* enable the host irq as host controller would be active soon */
9389 	ufshcd_enable_irq(hba);
9390 	goto out;
9391 
9392 disable_vreg:
9393 	ufshcd_vreg_set_lpm(hba);
9394 out:
9395 	if (ret)
9396 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9397 	return ret;
9398 }
9399 #endif /* CONFIG_PM */
9400 
9401 #ifdef CONFIG_PM_SLEEP
9402 /**
9403  * ufshcd_system_suspend - system suspend callback
9404  * @dev: Device associated with the UFS controller.
9405  *
9406  * Executed before putting the system into a sleep state in which the contents
9407  * of main memory are preserved.
9408  *
9409  * Returns 0 for success and non-zero for failure
9410  */
9411 int ufshcd_system_suspend(struct device *dev)
9412 {
9413 	struct ufs_hba *hba = dev_get_drvdata(dev);
9414 	int ret = 0;
9415 	ktime_t start = ktime_get();
9416 
9417 	if (pm_runtime_suspended(hba->dev))
9418 		goto out;
9419 
9420 	ret = ufshcd_suspend(hba);
9421 out:
9422 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9423 		ktime_to_us(ktime_sub(ktime_get(), start)),
9424 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9425 	return ret;
9426 }
9427 EXPORT_SYMBOL(ufshcd_system_suspend);
9428 
9429 /**
9430  * ufshcd_system_resume - system resume callback
9431  * @dev: Device associated with the UFS controller.
9432  *
9433  * Executed after waking the system up from a sleep state in which the contents
9434  * of main memory were preserved.
9435  *
9436  * Returns 0 for success and non-zero for failure
9437  */
9438 int ufshcd_system_resume(struct device *dev)
9439 {
9440 	struct ufs_hba *hba = dev_get_drvdata(dev);
9441 	ktime_t start = ktime_get();
9442 	int ret = 0;
9443 
9444 	if (pm_runtime_suspended(hba->dev))
9445 		goto out;
9446 
9447 	ret = ufshcd_resume(hba);
9448 
9449 out:
9450 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9451 		ktime_to_us(ktime_sub(ktime_get(), start)),
9452 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9453 
9454 	return ret;
9455 }
9456 EXPORT_SYMBOL(ufshcd_system_resume);
9457 #endif /* CONFIG_PM_SLEEP */
9458 
9459 #ifdef CONFIG_PM
9460 /**
9461  * ufshcd_runtime_suspend - runtime suspend callback
9462  * @dev: Device associated with the UFS controller.
9463  *
9464  * Check the description of ufshcd_suspend() function for more details.
9465  *
9466  * Returns 0 for success and non-zero for failure
9467  */
9468 int ufshcd_runtime_suspend(struct device *dev)
9469 {
9470 	struct ufs_hba *hba = dev_get_drvdata(dev);
9471 	int ret;
9472 	ktime_t start = ktime_get();
9473 
9474 	ret = ufshcd_suspend(hba);
9475 
9476 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9477 		ktime_to_us(ktime_sub(ktime_get(), start)),
9478 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9479 	return ret;
9480 }
9481 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9482 
9483 /**
9484  * ufshcd_runtime_resume - runtime resume routine
9485  * @dev: Device associated with the UFS controller.
9486  *
9487  * This function basically brings controller
9488  * to active state. Following operations are done in this function:
9489  *
9490  * 1. Turn on all the controller related clocks
9491  * 2. Turn ON VCC rail
9492  */
9493 int ufshcd_runtime_resume(struct device *dev)
9494 {
9495 	struct ufs_hba *hba = dev_get_drvdata(dev);
9496 	int ret;
9497 	ktime_t start = ktime_get();
9498 
9499 	ret = ufshcd_resume(hba);
9500 
9501 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9502 		ktime_to_us(ktime_sub(ktime_get(), start)),
9503 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9504 	return ret;
9505 }
9506 EXPORT_SYMBOL(ufshcd_runtime_resume);
9507 #endif /* CONFIG_PM */
9508 
9509 /**
9510  * ufshcd_shutdown - shutdown routine
9511  * @hba: per adapter instance
9512  *
9513  * This function would turn off both UFS device and UFS hba
9514  * regulators. It would also disable clocks.
9515  *
9516  * Returns 0 always to allow force shutdown even in case of errors.
9517  */
9518 int ufshcd_shutdown(struct ufs_hba *hba)
9519 {
9520 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9521 		ufshcd_suspend(hba);
9522 
9523 	hba->is_powered = false;
9524 	/* allow force shutdown even in case of errors */
9525 	return 0;
9526 }
9527 EXPORT_SYMBOL(ufshcd_shutdown);
9528 
9529 /**
9530  * ufshcd_remove - de-allocate SCSI host and host memory space
9531  *		data structure memory
9532  * @hba: per adapter instance
9533  */
9534 void ufshcd_remove(struct ufs_hba *hba)
9535 {
9536 	if (hba->ufs_device_wlun)
9537 		ufshcd_rpm_get_sync(hba);
9538 	ufs_hwmon_remove(hba);
9539 	ufs_bsg_remove(hba);
9540 	ufshpb_remove(hba);
9541 	ufs_sysfs_remove_nodes(hba->dev);
9542 	blk_mq_destroy_queue(hba->tmf_queue);
9543 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9544 	scsi_remove_host(hba->host);
9545 	/* disable interrupts */
9546 	ufshcd_disable_intr(hba, hba->intr_mask);
9547 	ufshcd_hba_stop(hba);
9548 	ufshcd_hba_exit(hba);
9549 }
9550 EXPORT_SYMBOL_GPL(ufshcd_remove);
9551 
9552 /**
9553  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9554  * @hba: pointer to Host Bus Adapter (HBA)
9555  */
9556 void ufshcd_dealloc_host(struct ufs_hba *hba)
9557 {
9558 	scsi_host_put(hba->host);
9559 }
9560 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9561 
9562 /**
9563  * ufshcd_set_dma_mask - Set dma mask based on the controller
9564  *			 addressing capability
9565  * @hba: per adapter instance
9566  *
9567  * Returns 0 for success, non-zero for failure
9568  */
9569 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9570 {
9571 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9572 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9573 			return 0;
9574 	}
9575 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9576 }
9577 
9578 /**
9579  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9580  * @dev: pointer to device handle
9581  * @hba_handle: driver private handle
9582  * Returns 0 on success, non-zero value on failure
9583  */
9584 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9585 {
9586 	struct Scsi_Host *host;
9587 	struct ufs_hba *hba;
9588 	int err = 0;
9589 
9590 	if (!dev) {
9591 		dev_err(dev,
9592 		"Invalid memory reference for dev is NULL\n");
9593 		err = -ENODEV;
9594 		goto out_error;
9595 	}
9596 
9597 	host = scsi_host_alloc(&ufshcd_driver_template,
9598 				sizeof(struct ufs_hba));
9599 	if (!host) {
9600 		dev_err(dev, "scsi_host_alloc failed\n");
9601 		err = -ENOMEM;
9602 		goto out_error;
9603 	}
9604 	host->nr_maps = HCTX_TYPE_POLL + 1;
9605 	hba = shost_priv(host);
9606 	hba->host = host;
9607 	hba->dev = dev;
9608 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9609 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
9610 	INIT_LIST_HEAD(&hba->clk_list_head);
9611 	spin_lock_init(&hba->outstanding_lock);
9612 
9613 	*hba_handle = hba;
9614 
9615 out_error:
9616 	return err;
9617 }
9618 EXPORT_SYMBOL(ufshcd_alloc_host);
9619 
9620 /* This function exists because blk_mq_alloc_tag_set() requires this. */
9621 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9622 				     const struct blk_mq_queue_data *qd)
9623 {
9624 	WARN_ON_ONCE(true);
9625 	return BLK_STS_NOTSUPP;
9626 }
9627 
9628 static const struct blk_mq_ops ufshcd_tmf_ops = {
9629 	.queue_rq = ufshcd_queue_tmf,
9630 };
9631 
9632 /**
9633  * ufshcd_init - Driver initialization routine
9634  * @hba: per-adapter instance
9635  * @mmio_base: base register address
9636  * @irq: Interrupt line of device
9637  * Returns 0 on success, non-zero value on failure
9638  */
9639 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9640 {
9641 	int err;
9642 	struct Scsi_Host *host = hba->host;
9643 	struct device *dev = hba->dev;
9644 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9645 
9646 	/*
9647 	 * dev_set_drvdata() must be called before any callbacks are registered
9648 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9649 	 * sysfs).
9650 	 */
9651 	dev_set_drvdata(dev, hba);
9652 
9653 	if (!mmio_base) {
9654 		dev_err(hba->dev,
9655 		"Invalid memory reference for mmio_base is NULL\n");
9656 		err = -ENODEV;
9657 		goto out_error;
9658 	}
9659 
9660 	hba->mmio_base = mmio_base;
9661 	hba->irq = irq;
9662 	hba->vps = &ufs_hba_vps;
9663 
9664 	err = ufshcd_hba_init(hba);
9665 	if (err)
9666 		goto out_error;
9667 
9668 	/* Read capabilities registers */
9669 	err = ufshcd_hba_capabilities(hba);
9670 	if (err)
9671 		goto out_disable;
9672 
9673 	/* Get UFS version supported by the controller */
9674 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9675 
9676 	/* Get Interrupt bit mask per version */
9677 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9678 
9679 	err = ufshcd_set_dma_mask(hba);
9680 	if (err) {
9681 		dev_err(hba->dev, "set dma mask failed\n");
9682 		goto out_disable;
9683 	}
9684 
9685 	/* Allocate memory for host memory space */
9686 	err = ufshcd_memory_alloc(hba);
9687 	if (err) {
9688 		dev_err(hba->dev, "Memory allocation failed\n");
9689 		goto out_disable;
9690 	}
9691 
9692 	/* Configure LRB */
9693 	ufshcd_host_memory_configure(hba);
9694 
9695 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9696 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9697 	host->max_id = UFSHCD_MAX_ID;
9698 	host->max_lun = UFS_MAX_LUNS;
9699 	host->max_channel = UFSHCD_MAX_CHANNEL;
9700 	host->unique_id = host->host_no;
9701 	host->max_cmd_len = UFS_CDB_SIZE;
9702 
9703 	hba->max_pwr_info.is_valid = false;
9704 
9705 	/* Initialize work queues */
9706 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9707 		 hba->host->host_no);
9708 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9709 	if (!hba->eh_wq) {
9710 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9711 			__func__);
9712 		err = -ENOMEM;
9713 		goto out_disable;
9714 	}
9715 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9716 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9717 
9718 	sema_init(&hba->host_sem, 1);
9719 
9720 	/* Initialize UIC command mutex */
9721 	mutex_init(&hba->uic_cmd_mutex);
9722 
9723 	/* Initialize mutex for device management commands */
9724 	mutex_init(&hba->dev_cmd.lock);
9725 
9726 	/* Initialize mutex for exception event control */
9727 	mutex_init(&hba->ee_ctrl_mutex);
9728 
9729 	init_rwsem(&hba->clk_scaling_lock);
9730 
9731 	ufshcd_init_clk_gating(hba);
9732 
9733 	ufshcd_init_clk_scaling(hba);
9734 
9735 	/*
9736 	 * In order to avoid any spurious interrupt immediately after
9737 	 * registering UFS controller interrupt handler, clear any pending UFS
9738 	 * interrupt status and disable all the UFS interrupts.
9739 	 */
9740 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9741 		      REG_INTERRUPT_STATUS);
9742 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9743 	/*
9744 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9745 	 * status is cleared before registering UFS interrupt handler.
9746 	 */
9747 	mb();
9748 
9749 	/* IRQ registration */
9750 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9751 	if (err) {
9752 		dev_err(hba->dev, "request irq failed\n");
9753 		goto out_disable;
9754 	} else {
9755 		hba->is_irq_enabled = true;
9756 	}
9757 
9758 	err = scsi_add_host(host, hba->dev);
9759 	if (err) {
9760 		dev_err(hba->dev, "scsi_add_host failed\n");
9761 		goto out_disable;
9762 	}
9763 
9764 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9765 		.nr_hw_queues	= 1,
9766 		.queue_depth	= hba->nutmrs,
9767 		.ops		= &ufshcd_tmf_ops,
9768 		.flags		= BLK_MQ_F_NO_SCHED,
9769 	};
9770 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9771 	if (err < 0)
9772 		goto out_remove_scsi_host;
9773 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9774 	if (IS_ERR(hba->tmf_queue)) {
9775 		err = PTR_ERR(hba->tmf_queue);
9776 		goto free_tmf_tag_set;
9777 	}
9778 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9779 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
9780 	if (!hba->tmf_rqs) {
9781 		err = -ENOMEM;
9782 		goto free_tmf_queue;
9783 	}
9784 
9785 	/* Reset the attached device */
9786 	ufshcd_device_reset(hba);
9787 
9788 	ufshcd_init_crypto(hba);
9789 
9790 	/* Host controller enable */
9791 	err = ufshcd_hba_enable(hba);
9792 	if (err) {
9793 		dev_err(hba->dev, "Host controller enable failed\n");
9794 		ufshcd_print_evt_hist(hba);
9795 		ufshcd_print_host_state(hba);
9796 		goto free_tmf_queue;
9797 	}
9798 
9799 	/*
9800 	 * Set the default power management level for runtime and system PM.
9801 	 * Default power saving mode is to keep UFS link in Hibern8 state
9802 	 * and UFS device in sleep state.
9803 	 */
9804 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9805 						UFS_SLEEP_PWR_MODE,
9806 						UIC_LINK_HIBERN8_STATE);
9807 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9808 						UFS_SLEEP_PWR_MODE,
9809 						UIC_LINK_HIBERN8_STATE);
9810 
9811 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9812 			  ufshcd_rpm_dev_flush_recheck_work);
9813 
9814 	/* Set the default auto-hiberate idle timer value to 150 ms */
9815 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9816 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9817 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9818 	}
9819 
9820 	/* Hold auto suspend until async scan completes */
9821 	pm_runtime_get_sync(dev);
9822 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9823 	/*
9824 	 * We are assuming that device wasn't put in sleep/power-down
9825 	 * state exclusively during the boot stage before kernel.
9826 	 * This assumption helps avoid doing link startup twice during
9827 	 * ufshcd_probe_hba().
9828 	 */
9829 	ufshcd_set_ufs_dev_active(hba);
9830 
9831 	async_schedule(ufshcd_async_scan, hba);
9832 	ufs_sysfs_add_nodes(hba->dev);
9833 
9834 	device_enable_async_suspend(dev);
9835 	return 0;
9836 
9837 free_tmf_queue:
9838 	blk_mq_destroy_queue(hba->tmf_queue);
9839 free_tmf_tag_set:
9840 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9841 out_remove_scsi_host:
9842 	scsi_remove_host(hba->host);
9843 out_disable:
9844 	hba->is_irq_enabled = false;
9845 	ufshcd_hba_exit(hba);
9846 out_error:
9847 	return err;
9848 }
9849 EXPORT_SYMBOL_GPL(ufshcd_init);
9850 
9851 void ufshcd_resume_complete(struct device *dev)
9852 {
9853 	struct ufs_hba *hba = dev_get_drvdata(dev);
9854 
9855 	if (hba->complete_put) {
9856 		ufshcd_rpm_put(hba);
9857 		hba->complete_put = false;
9858 	}
9859 }
9860 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
9861 
9862 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
9863 {
9864 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
9865 	enum ufs_dev_pwr_mode dev_pwr_mode;
9866 	enum uic_link_state link_state;
9867 	unsigned long flags;
9868 	bool res;
9869 
9870 	spin_lock_irqsave(&dev->power.lock, flags);
9871 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
9872 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
9873 	res = pm_runtime_suspended(dev) &&
9874 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
9875 	      hba->uic_link_state == link_state &&
9876 	      !hba->dev_info.b_rpm_dev_flush_capable;
9877 	spin_unlock_irqrestore(&dev->power.lock, flags);
9878 
9879 	return res;
9880 }
9881 
9882 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
9883 {
9884 	struct ufs_hba *hba = dev_get_drvdata(dev);
9885 	int ret;
9886 
9887 	/*
9888 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
9889 	 * are same. And it doesn't wake up the device for system-suspend
9890 	 * if it's runtime suspended. But ufs doesn't follow that.
9891 	 * Refer ufshcd_resume_complete()
9892 	 */
9893 	if (hba->ufs_device_wlun) {
9894 		/* Prevent runtime suspend */
9895 		ufshcd_rpm_get_noresume(hba);
9896 		/*
9897 		 * Check if already runtime suspended in same state as system
9898 		 * suspend would be.
9899 		 */
9900 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
9901 			/* RPM state is not ok for SPM, so runtime resume */
9902 			ret = ufshcd_rpm_resume(hba);
9903 			if (ret < 0 && ret != -EACCES) {
9904 				ufshcd_rpm_put(hba);
9905 				return ret;
9906 			}
9907 		}
9908 		hba->complete_put = true;
9909 	}
9910 	return 0;
9911 }
9912 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
9913 
9914 int ufshcd_suspend_prepare(struct device *dev)
9915 {
9916 	return __ufshcd_suspend_prepare(dev, true);
9917 }
9918 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
9919 
9920 #ifdef CONFIG_PM_SLEEP
9921 static int ufshcd_wl_poweroff(struct device *dev)
9922 {
9923 	struct scsi_device *sdev = to_scsi_device(dev);
9924 	struct ufs_hba *hba = shost_priv(sdev->host);
9925 
9926 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9927 	return 0;
9928 }
9929 #endif
9930 
9931 static int ufshcd_wl_probe(struct device *dev)
9932 {
9933 	struct scsi_device *sdev = to_scsi_device(dev);
9934 
9935 	if (!is_device_wlun(sdev))
9936 		return -ENODEV;
9937 
9938 	blk_pm_runtime_init(sdev->request_queue, dev);
9939 	pm_runtime_set_autosuspend_delay(dev, 0);
9940 	pm_runtime_allow(dev);
9941 
9942 	return  0;
9943 }
9944 
9945 static int ufshcd_wl_remove(struct device *dev)
9946 {
9947 	pm_runtime_forbid(dev);
9948 	return 0;
9949 }
9950 
9951 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
9952 #ifdef CONFIG_PM_SLEEP
9953 	.suspend = ufshcd_wl_suspend,
9954 	.resume = ufshcd_wl_resume,
9955 	.freeze = ufshcd_wl_suspend,
9956 	.thaw = ufshcd_wl_resume,
9957 	.poweroff = ufshcd_wl_poweroff,
9958 	.restore = ufshcd_wl_resume,
9959 #endif
9960 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
9961 };
9962 
9963 /*
9964  * ufs_dev_wlun_template - describes ufs device wlun
9965  * ufs-device wlun - used to send pm commands
9966  * All luns are consumers of ufs-device wlun.
9967  *
9968  * Currently, no sd driver is present for wluns.
9969  * Hence the no specific pm operations are performed.
9970  * With ufs design, SSU should be sent to ufs-device wlun.
9971  * Hence register a scsi driver for ufs wluns only.
9972  */
9973 static struct scsi_driver ufs_dev_wlun_template = {
9974 	.gendrv = {
9975 		.name = "ufs_device_wlun",
9976 		.owner = THIS_MODULE,
9977 		.probe = ufshcd_wl_probe,
9978 		.remove = ufshcd_wl_remove,
9979 		.pm = &ufshcd_wl_pm_ops,
9980 		.shutdown = ufshcd_wl_shutdown,
9981 	},
9982 };
9983 
9984 static int __init ufshcd_core_init(void)
9985 {
9986 	int ret;
9987 
9988 	/* Verify that there are no gaps in struct utp_transfer_cmd_desc. */
9989 	static_assert(sizeof(struct utp_transfer_cmd_desc) ==
9990 		      2 * ALIGNED_UPIU_SIZE +
9991 			      SG_ALL * sizeof(struct ufshcd_sg_entry));
9992 
9993 	ufs_debugfs_init();
9994 
9995 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
9996 	if (ret)
9997 		ufs_debugfs_exit();
9998 	return ret;
9999 }
10000 
10001 static void __exit ufshcd_core_exit(void)
10002 {
10003 	ufs_debugfs_exit();
10004 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10005 }
10006 
10007 module_init(ufshcd_core_init);
10008 module_exit(ufshcd_core_exit);
10009 
10010 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10011 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10012 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10013 MODULE_LICENSE("GPL");
10014