xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 2acc635a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode, refer param_set_mcq_mode() */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 static int param_set_mcq_mode(const char *val, const struct kernel_param *kp)
110 {
111 	int ret;
112 
113 	ret = param_set_bool(val, kp);
114 	if (ret)
115 		return ret;
116 
117 	return 0;
118 }
119 
120 static const struct kernel_param_ops mcq_mode_ops = {
121 	.set = param_set_mcq_mode,
122 	.get = param_get_bool,
123 };
124 
125 module_param_cb(use_mcq_mode, &mcq_mode_ops, &use_mcq_mode, 0644);
126 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
127 
128 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
129 	({                                                              \
130 		int _ret;                                               \
131 		if (_on)                                                \
132 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
133 		else                                                    \
134 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
135 		_ret;                                                   \
136 	})
137 
138 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
139 	size_t __len = (len);                                            \
140 	print_hex_dump(KERN_ERR, prefix_str,                             \
141 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
142 		       16, 4, buf, __len, false);                        \
143 } while (0)
144 
145 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
146 		     const char *prefix)
147 {
148 	u32 *regs;
149 	size_t pos;
150 
151 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
152 		return -EINVAL;
153 
154 	regs = kzalloc(len, GFP_ATOMIC);
155 	if (!regs)
156 		return -ENOMEM;
157 
158 	for (pos = 0; pos < len; pos += 4) {
159 		if (offset == 0 &&
160 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
161 		    pos <= REG_UIC_ERROR_CODE_DME)
162 			continue;
163 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
164 	}
165 
166 	ufshcd_hex_dump(prefix, regs, len);
167 	kfree(regs);
168 
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
172 
173 enum {
174 	UFSHCD_MAX_CHANNEL	= 0,
175 	UFSHCD_MAX_ID		= 1,
176 	UFSHCD_NUM_RESERVED	= 1,
177 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
178 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
179 };
180 
181 static const char *const ufshcd_state_name[] = {
182 	[UFSHCD_STATE_RESET]			= "reset",
183 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
184 	[UFSHCD_STATE_ERROR]			= "error",
185 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
186 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
187 };
188 
189 /* UFSHCD error handling flags */
190 enum {
191 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
192 };
193 
194 /* UFSHCD UIC layer error flags */
195 enum {
196 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
197 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
198 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
199 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
200 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
201 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
202 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
203 };
204 
205 #define ufshcd_set_eh_in_progress(h) \
206 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
207 #define ufshcd_eh_in_progress(h) \
208 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
209 #define ufshcd_clear_eh_in_progress(h) \
210 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
211 
212 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
213 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
214 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
215 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
216 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
217 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
218 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
219 	/*
220 	 * For DeepSleep, the link is first put in hibern8 and then off.
221 	 * Leaving the link in hibern8 is not supported.
222 	 */
223 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
224 };
225 
226 static inline enum ufs_dev_pwr_mode
227 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
228 {
229 	return ufs_pm_lvl_states[lvl].dev_state;
230 }
231 
232 static inline enum uic_link_state
233 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
234 {
235 	return ufs_pm_lvl_states[lvl].link_state;
236 }
237 
238 static inline enum ufs_pm_level
239 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
240 					enum uic_link_state link_state)
241 {
242 	enum ufs_pm_level lvl;
243 
244 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
245 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
246 			(ufs_pm_lvl_states[lvl].link_state == link_state))
247 			return lvl;
248 	}
249 
250 	/* if no match found, return the level 0 */
251 	return UFS_PM_LVL_0;
252 }
253 
254 static const struct ufs_dev_quirk ufs_fixups[] = {
255 	/* UFS cards deviations table */
256 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
257 	  .model = UFS_ANY_MODEL,
258 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
259 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
260 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
261 	  .model = UFS_ANY_MODEL,
262 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
263 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
264 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
265 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
266 	  .model = UFS_ANY_MODEL,
267 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
268 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
269 	  .model = "hB8aL1" /*H28U62301AMR*/,
270 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
271 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
272 	  .model = UFS_ANY_MODEL,
273 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
274 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
275 	  .model = "THGLF2G9C8KBADG",
276 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
277 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
278 	  .model = "THGLF2G9D8KBADG",
279 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
280 	{}
281 };
282 
283 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
284 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
285 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
286 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
287 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
288 static void ufshcd_hba_exit(struct ufs_hba *hba);
289 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
290 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
291 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
292 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
293 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
294 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
295 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
296 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
297 static irqreturn_t ufshcd_intr(int irq, void *__hba);
298 static int ufshcd_change_power_mode(struct ufs_hba *hba,
299 			     struct ufs_pa_layer_attr *pwr_mode);
300 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
301 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
302 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
303 					 struct ufs_vreg *vreg);
304 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
305 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
306 						 bool enable);
307 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
308 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
309 
310 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
311 {
312 	if (!hba->is_irq_enabled) {
313 		enable_irq(hba->irq);
314 		hba->is_irq_enabled = true;
315 	}
316 }
317 
318 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
319 {
320 	if (hba->is_irq_enabled) {
321 		disable_irq(hba->irq);
322 		hba->is_irq_enabled = false;
323 	}
324 }
325 
326 static void ufshcd_configure_wb(struct ufs_hba *hba)
327 {
328 	if (!ufshcd_is_wb_allowed(hba))
329 		return;
330 
331 	ufshcd_wb_toggle(hba, true);
332 
333 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
334 
335 	if (ufshcd_is_wb_buf_flush_allowed(hba))
336 		ufshcd_wb_toggle_buf_flush(hba, true);
337 }
338 
339 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
340 {
341 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
342 		scsi_unblock_requests(hba->host);
343 }
344 
345 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
346 {
347 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
348 		scsi_block_requests(hba->host);
349 }
350 
351 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
352 				      enum ufs_trace_str_t str_t)
353 {
354 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
355 	struct utp_upiu_header *header;
356 
357 	if (!trace_ufshcd_upiu_enabled())
358 		return;
359 
360 	if (str_t == UFS_CMD_SEND)
361 		header = &rq->header;
362 	else
363 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
364 
365 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
366 			  UFS_TSF_CDB);
367 }
368 
369 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
370 					enum ufs_trace_str_t str_t,
371 					struct utp_upiu_req *rq_rsp)
372 {
373 	if (!trace_ufshcd_upiu_enabled())
374 		return;
375 
376 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
377 			  &rq_rsp->qr, UFS_TSF_OSF);
378 }
379 
380 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
381 				     enum ufs_trace_str_t str_t)
382 {
383 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
384 
385 	if (!trace_ufshcd_upiu_enabled())
386 		return;
387 
388 	if (str_t == UFS_TM_SEND)
389 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
390 				  &descp->upiu_req.req_header,
391 				  &descp->upiu_req.input_param1,
392 				  UFS_TSF_TM_INPUT);
393 	else
394 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
395 				  &descp->upiu_rsp.rsp_header,
396 				  &descp->upiu_rsp.output_param1,
397 				  UFS_TSF_TM_OUTPUT);
398 }
399 
400 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
401 					 const struct uic_command *ucmd,
402 					 enum ufs_trace_str_t str_t)
403 {
404 	u32 cmd;
405 
406 	if (!trace_ufshcd_uic_command_enabled())
407 		return;
408 
409 	if (str_t == UFS_CMD_SEND)
410 		cmd = ucmd->command;
411 	else
412 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
413 
414 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
415 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
416 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
417 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
418 }
419 
420 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
421 				     enum ufs_trace_str_t str_t)
422 {
423 	u64 lba = 0;
424 	u8 opcode = 0, group_id = 0;
425 	u32 doorbell = 0;
426 	u32 intr;
427 	int hwq_id = -1;
428 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
429 	struct scsi_cmnd *cmd = lrbp->cmd;
430 	struct request *rq = scsi_cmd_to_rq(cmd);
431 	int transfer_len = -1;
432 
433 	if (!cmd)
434 		return;
435 
436 	/* trace UPIU also */
437 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
438 	if (!trace_ufshcd_command_enabled())
439 		return;
440 
441 	opcode = cmd->cmnd[0];
442 
443 	if (opcode == READ_10 || opcode == WRITE_10) {
444 		/*
445 		 * Currently we only fully trace read(10) and write(10) commands
446 		 */
447 		transfer_len =
448 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
449 		lba = scsi_get_lba(cmd);
450 		if (opcode == WRITE_10)
451 			group_id = lrbp->cmd->cmnd[6];
452 	} else if (opcode == UNMAP) {
453 		/*
454 		 * The number of Bytes to be unmapped beginning with the lba.
455 		 */
456 		transfer_len = blk_rq_bytes(rq);
457 		lba = scsi_get_lba(cmd);
458 	}
459 
460 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
461 
462 	if (is_mcq_enabled(hba)) {
463 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
464 
465 		hwq_id = hwq->id;
466 	} else {
467 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
468 	}
469 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
470 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
471 }
472 
473 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
474 {
475 	struct ufs_clk_info *clki;
476 	struct list_head *head = &hba->clk_list_head;
477 
478 	if (list_empty(head))
479 		return;
480 
481 	list_for_each_entry(clki, head, list) {
482 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
483 				clki->max_freq)
484 			dev_err(hba->dev, "clk: %s, rate: %u\n",
485 					clki->name, clki->curr_freq);
486 	}
487 }
488 
489 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
490 			     const char *err_name)
491 {
492 	int i;
493 	bool found = false;
494 	const struct ufs_event_hist *e;
495 
496 	if (id >= UFS_EVT_CNT)
497 		return;
498 
499 	e = &hba->ufs_stats.event[id];
500 
501 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
502 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
503 
504 		if (e->tstamp[p] == 0)
505 			continue;
506 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
507 			e->val[p], div_u64(e->tstamp[p], 1000));
508 		found = true;
509 	}
510 
511 	if (!found)
512 		dev_err(hba->dev, "No record of %s\n", err_name);
513 	else
514 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
515 }
516 
517 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
518 {
519 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
520 
521 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
522 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
523 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
524 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
525 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
526 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
527 			 "auto_hibern8_err");
528 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
529 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
530 			 "link_startup_fail");
531 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
532 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
533 			 "suspend_fail");
534 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
535 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
536 			 "wlun suspend_fail");
537 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
538 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
539 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
540 
541 	ufshcd_vops_dbg_register_dump(hba);
542 }
543 
544 static
545 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
546 {
547 	const struct ufshcd_lrb *lrbp;
548 	int prdt_length;
549 
550 	lrbp = &hba->lrb[tag];
551 
552 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
553 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
554 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
555 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
556 	dev_err(hba->dev,
557 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
558 		tag, (u64)lrbp->utrd_dma_addr);
559 
560 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
561 			sizeof(struct utp_transfer_req_desc));
562 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
563 		(u64)lrbp->ucd_req_dma_addr);
564 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
565 			sizeof(struct utp_upiu_req));
566 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
567 		(u64)lrbp->ucd_rsp_dma_addr);
568 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
569 			sizeof(struct utp_upiu_rsp));
570 
571 	prdt_length = le16_to_cpu(
572 		lrbp->utr_descriptor_ptr->prd_table_length);
573 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
574 		prdt_length /= ufshcd_sg_entry_size(hba);
575 
576 	dev_err(hba->dev,
577 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
578 		tag, prdt_length,
579 		(u64)lrbp->ucd_prdt_dma_addr);
580 
581 	if (pr_prdt)
582 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
583 			ufshcd_sg_entry_size(hba) * prdt_length);
584 }
585 
586 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
587 {
588 	struct scsi_device *sdev = req->q->queuedata;
589 	struct Scsi_Host *shost = sdev->host;
590 	struct ufs_hba *hba = shost_priv(shost);
591 
592 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
593 
594 	return true;
595 }
596 
597 /**
598  * ufshcd_print_trs_all - print trs for all started requests.
599  * @hba: per-adapter instance.
600  * @pr_prdt: need to print prdt or not.
601  */
602 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
603 {
604 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
605 }
606 
607 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
608 {
609 	int tag;
610 
611 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
612 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
613 
614 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
615 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
616 	}
617 }
618 
619 static void ufshcd_print_host_state(struct ufs_hba *hba)
620 {
621 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
622 
623 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
624 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
625 		hba->outstanding_reqs, hba->outstanding_tasks);
626 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
627 		hba->saved_err, hba->saved_uic_err);
628 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
629 		hba->curr_dev_pwr_mode, hba->uic_link_state);
630 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
631 		hba->pm_op_in_progress, hba->is_sys_suspended);
632 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
633 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
634 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
635 	dev_err(hba->dev,
636 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
637 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
638 		hba->ufs_stats.hibern8_exit_cnt);
639 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
640 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
641 		hba->ufs_stats.last_intr_status);
642 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
643 		hba->eh_flags, hba->req_abort_count);
644 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
645 		hba->ufs_version, hba->capabilities, hba->caps);
646 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
647 		hba->dev_quirks);
648 	if (sdev_ufs)
649 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
650 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
651 
652 	ufshcd_print_clk_freqs(hba);
653 }
654 
655 /**
656  * ufshcd_print_pwr_info - print power params as saved in hba
657  * power info
658  * @hba: per-adapter instance
659  */
660 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
661 {
662 	static const char * const names[] = {
663 		"INVALID MODE",
664 		"FAST MODE",
665 		"SLOW_MODE",
666 		"INVALID MODE",
667 		"FASTAUTO_MODE",
668 		"SLOWAUTO_MODE",
669 		"INVALID MODE",
670 	};
671 
672 	/*
673 	 * Using dev_dbg to avoid messages during runtime PM to avoid
674 	 * never-ending cycles of messages written back to storage by user space
675 	 * causing runtime resume, causing more messages and so on.
676 	 */
677 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
678 		 __func__,
679 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
680 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
681 		 names[hba->pwr_info.pwr_rx],
682 		 names[hba->pwr_info.pwr_tx],
683 		 hba->pwr_info.hs_rate);
684 }
685 
686 static void ufshcd_device_reset(struct ufs_hba *hba)
687 {
688 	int err;
689 
690 	err = ufshcd_vops_device_reset(hba);
691 
692 	if (!err) {
693 		ufshcd_set_ufs_dev_active(hba);
694 		if (ufshcd_is_wb_allowed(hba)) {
695 			hba->dev_info.wb_enabled = false;
696 			hba->dev_info.wb_buf_flush_enabled = false;
697 		}
698 	}
699 	if (err != -EOPNOTSUPP)
700 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
701 }
702 
703 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
704 {
705 	if (!us)
706 		return;
707 
708 	if (us < 10)
709 		udelay(us);
710 	else
711 		usleep_range(us, us + tolerance);
712 }
713 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
714 
715 /**
716  * ufshcd_wait_for_register - wait for register value to change
717  * @hba: per-adapter interface
718  * @reg: mmio register offset
719  * @mask: mask to apply to the read register value
720  * @val: value to wait for
721  * @interval_us: polling interval in microseconds
722  * @timeout_ms: timeout in milliseconds
723  *
724  * Return:
725  * -ETIMEDOUT on error, zero on success.
726  */
727 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
728 				u32 val, unsigned long interval_us,
729 				unsigned long timeout_ms)
730 {
731 	int err = 0;
732 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
733 
734 	/* ignore bits that we don't intend to wait on */
735 	val = val & mask;
736 
737 	while ((ufshcd_readl(hba, reg) & mask) != val) {
738 		usleep_range(interval_us, interval_us + 50);
739 		if (time_after(jiffies, timeout)) {
740 			if ((ufshcd_readl(hba, reg) & mask) != val)
741 				err = -ETIMEDOUT;
742 			break;
743 		}
744 	}
745 
746 	return err;
747 }
748 
749 /**
750  * ufshcd_get_intr_mask - Get the interrupt bit mask
751  * @hba: Pointer to adapter instance
752  *
753  * Returns interrupt bit mask per version
754  */
755 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
756 {
757 	if (hba->ufs_version == ufshci_version(1, 0))
758 		return INTERRUPT_MASK_ALL_VER_10;
759 	if (hba->ufs_version <= ufshci_version(2, 0))
760 		return INTERRUPT_MASK_ALL_VER_11;
761 
762 	return INTERRUPT_MASK_ALL_VER_21;
763 }
764 
765 /**
766  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
767  * @hba: Pointer to adapter instance
768  *
769  * Returns UFSHCI version supported by the controller
770  */
771 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
772 {
773 	u32 ufshci_ver;
774 
775 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
776 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
777 	else
778 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
779 
780 	/*
781 	 * UFSHCI v1.x uses a different version scheme, in order
782 	 * to allow the use of comparisons with the ufshci_version
783 	 * function, we convert it to the same scheme as ufs 2.0+.
784 	 */
785 	if (ufshci_ver & 0x00010000)
786 		return ufshci_version(1, ufshci_ver & 0x00000100);
787 
788 	return ufshci_ver;
789 }
790 
791 /**
792  * ufshcd_is_device_present - Check if any device connected to
793  *			      the host controller
794  * @hba: pointer to adapter instance
795  *
796  * Returns true if device present, false if no device detected
797  */
798 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
799 {
800 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
801 }
802 
803 /**
804  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
805  * @lrbp: pointer to local command reference block
806  * @cqe: pointer to the completion queue entry
807  *
808  * This function is used to get the OCS field from UTRD
809  * Returns the OCS field in the UTRD
810  */
811 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
812 				      struct cq_entry *cqe)
813 {
814 	if (cqe)
815 		return le32_to_cpu(cqe->status) & MASK_OCS;
816 
817 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
818 }
819 
820 /**
821  * ufshcd_utrl_clear() - Clear requests from the controller request list.
822  * @hba: per adapter instance
823  * @mask: mask with one bit set for each request to be cleared
824  */
825 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
826 {
827 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
828 		mask = ~mask;
829 	/*
830 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
831 	 * Register (UTRLCLR): This field is bit significant. Each bit
832 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
833 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
834 	 * by host software to indicate to the host controller that a transfer
835 	 * request slot is cleared. The host controller
836 	 * shall free up any resources associated to the request slot
837 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
838 	 * host software indicates no change to request slots by setting the
839 	 * associated bits in this field to ‘1’. Bits in this field shall only
840 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
841 	 */
842 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
843 }
844 
845 /**
846  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
847  * @hba: per adapter instance
848  * @pos: position of the bit to be cleared
849  */
850 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
851 {
852 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
853 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
854 	else
855 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
856 }
857 
858 /**
859  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
860  * @reg: Register value of host controller status
861  *
862  * Returns integer, 0 on Success and positive value if failed
863  */
864 static inline int ufshcd_get_lists_status(u32 reg)
865 {
866 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
867 }
868 
869 /**
870  * ufshcd_get_uic_cmd_result - Get the UIC command result
871  * @hba: Pointer to adapter instance
872  *
873  * This function gets the result of UIC command completion
874  * Returns 0 on success, non zero value on error
875  */
876 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
877 {
878 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
879 	       MASK_UIC_COMMAND_RESULT;
880 }
881 
882 /**
883  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
884  * @hba: Pointer to adapter instance
885  *
886  * This function gets UIC command argument3
887  * Returns 0 on success, non zero value on error
888  */
889 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
890 {
891 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
892 }
893 
894 /**
895  * ufshcd_get_req_rsp - returns the TR response transaction type
896  * @ucd_rsp_ptr: pointer to response UPIU
897  */
898 static inline int
899 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
900 {
901 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
902 }
903 
904 /**
905  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
906  * @ucd_rsp_ptr: pointer to response UPIU
907  *
908  * This function gets the response status and scsi_status from response UPIU
909  * Returns the response result code.
910  */
911 static inline int
912 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
913 {
914 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
915 }
916 
917 /*
918  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
919  *				from response UPIU
920  * @ucd_rsp_ptr: pointer to response UPIU
921  *
922  * Return the data segment length.
923  */
924 static inline unsigned int
925 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
926 {
927 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
928 		MASK_RSP_UPIU_DATA_SEG_LEN;
929 }
930 
931 /**
932  * ufshcd_is_exception_event - Check if the device raised an exception event
933  * @ucd_rsp_ptr: pointer to response UPIU
934  *
935  * The function checks if the device raised an exception event indicated in
936  * the Device Information field of response UPIU.
937  *
938  * Returns true if exception is raised, false otherwise.
939  */
940 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
941 {
942 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
943 			MASK_RSP_EXCEPTION_EVENT;
944 }
945 
946 /**
947  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
948  * @hba: per adapter instance
949  */
950 static inline void
951 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
952 {
953 	ufshcd_writel(hba, INT_AGGR_ENABLE |
954 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
955 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
956 }
957 
958 /**
959  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
960  * @hba: per adapter instance
961  * @cnt: Interrupt aggregation counter threshold
962  * @tmout: Interrupt aggregation timeout value
963  */
964 static inline void
965 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
966 {
967 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
968 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
969 		      INT_AGGR_TIMEOUT_VAL(tmout),
970 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
971 }
972 
973 /**
974  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
975  * @hba: per adapter instance
976  */
977 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
978 {
979 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
980 }
981 
982 /**
983  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
984  *			When run-stop registers are set to 1, it indicates the
985  *			host controller that it can process the requests
986  * @hba: per adapter instance
987  */
988 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
989 {
990 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
991 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
992 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
993 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
994 }
995 
996 /**
997  * ufshcd_hba_start - Start controller initialization sequence
998  * @hba: per adapter instance
999  */
1000 static inline void ufshcd_hba_start(struct ufs_hba *hba)
1001 {
1002 	u32 val = CONTROLLER_ENABLE;
1003 
1004 	if (ufshcd_crypto_enable(hba))
1005 		val |= CRYPTO_GENERAL_ENABLE;
1006 
1007 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
1008 }
1009 
1010 /**
1011  * ufshcd_is_hba_active - Get controller state
1012  * @hba: per adapter instance
1013  *
1014  * Returns true if and only if the controller is active.
1015  */
1016 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
1017 {
1018 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1019 }
1020 
1021 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
1022 {
1023 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
1024 	if (hba->ufs_version <= ufshci_version(1, 1))
1025 		return UFS_UNIPRO_VER_1_41;
1026 	else
1027 		return UFS_UNIPRO_VER_1_6;
1028 }
1029 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1030 
1031 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1032 {
1033 	/*
1034 	 * If both host and device support UniPro ver1.6 or later, PA layer
1035 	 * parameters tuning happens during link startup itself.
1036 	 *
1037 	 * We can manually tune PA layer parameters if either host or device
1038 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1039 	 * logic simple, we will only do manual tuning if local unipro version
1040 	 * doesn't support ver1.6 or later.
1041 	 */
1042 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1043 }
1044 
1045 /**
1046  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1047  * @hba: per adapter instance
1048  * @scale_up: If True, set max possible frequency othewise set low frequency
1049  *
1050  * Returns 0 if successful
1051  * Returns < 0 for any other errors
1052  */
1053 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1054 {
1055 	int ret = 0;
1056 	struct ufs_clk_info *clki;
1057 	struct list_head *head = &hba->clk_list_head;
1058 
1059 	if (list_empty(head))
1060 		goto out;
1061 
1062 	list_for_each_entry(clki, head, list) {
1063 		if (!IS_ERR_OR_NULL(clki->clk)) {
1064 			if (scale_up && clki->max_freq) {
1065 				if (clki->curr_freq == clki->max_freq)
1066 					continue;
1067 
1068 				ret = clk_set_rate(clki->clk, clki->max_freq);
1069 				if (ret) {
1070 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1071 						__func__, clki->name,
1072 						clki->max_freq, ret);
1073 					break;
1074 				}
1075 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1076 						"scaled up", clki->name,
1077 						clki->curr_freq,
1078 						clki->max_freq);
1079 
1080 				clki->curr_freq = clki->max_freq;
1081 
1082 			} else if (!scale_up && clki->min_freq) {
1083 				if (clki->curr_freq == clki->min_freq)
1084 					continue;
1085 
1086 				ret = clk_set_rate(clki->clk, clki->min_freq);
1087 				if (ret) {
1088 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1089 						__func__, clki->name,
1090 						clki->min_freq, ret);
1091 					break;
1092 				}
1093 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1094 						"scaled down", clki->name,
1095 						clki->curr_freq,
1096 						clki->min_freq);
1097 				clki->curr_freq = clki->min_freq;
1098 			}
1099 		}
1100 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1101 				clki->name, clk_get_rate(clki->clk));
1102 	}
1103 
1104 out:
1105 	return ret;
1106 }
1107 
1108 /**
1109  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1110  * @hba: per adapter instance
1111  * @scale_up: True if scaling up and false if scaling down
1112  *
1113  * Returns 0 if successful
1114  * Returns < 0 for any other errors
1115  */
1116 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1117 {
1118 	int ret = 0;
1119 	ktime_t start = ktime_get();
1120 
1121 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1122 	if (ret)
1123 		goto out;
1124 
1125 	ret = ufshcd_set_clk_freq(hba, scale_up);
1126 	if (ret)
1127 		goto out;
1128 
1129 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1130 	if (ret)
1131 		ufshcd_set_clk_freq(hba, !scale_up);
1132 
1133 out:
1134 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1135 			(scale_up ? "up" : "down"),
1136 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1137 	return ret;
1138 }
1139 
1140 /**
1141  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1142  * @hba: per adapter instance
1143  * @scale_up: True if scaling up and false if scaling down
1144  *
1145  * Returns true if scaling is required, false otherwise.
1146  */
1147 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1148 					       bool scale_up)
1149 {
1150 	struct ufs_clk_info *clki;
1151 	struct list_head *head = &hba->clk_list_head;
1152 
1153 	if (list_empty(head))
1154 		return false;
1155 
1156 	list_for_each_entry(clki, head, list) {
1157 		if (!IS_ERR_OR_NULL(clki->clk)) {
1158 			if (scale_up && clki->max_freq) {
1159 				if (clki->curr_freq == clki->max_freq)
1160 					continue;
1161 				return true;
1162 			} else if (!scale_up && clki->min_freq) {
1163 				if (clki->curr_freq == clki->min_freq)
1164 					continue;
1165 				return true;
1166 			}
1167 		}
1168 	}
1169 
1170 	return false;
1171 }
1172 
1173 /*
1174  * Determine the number of pending commands by counting the bits in the SCSI
1175  * device budget maps. This approach has been selected because a bit is set in
1176  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1177  * flag. The host_self_blocked flag can be modified by calling
1178  * scsi_block_requests() or scsi_unblock_requests().
1179  */
1180 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1181 {
1182 	const struct scsi_device *sdev;
1183 	u32 pending = 0;
1184 
1185 	lockdep_assert_held(hba->host->host_lock);
1186 	__shost_for_each_device(sdev, hba->host)
1187 		pending += sbitmap_weight(&sdev->budget_map);
1188 
1189 	return pending;
1190 }
1191 
1192 /*
1193  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1194  * has expired.
1195  *
1196  * Return: 0 upon success; -EBUSY upon timeout.
1197  */
1198 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1199 					u64 wait_timeout_us)
1200 {
1201 	unsigned long flags;
1202 	int ret = 0;
1203 	u32 tm_doorbell;
1204 	u32 tr_pending;
1205 	bool timeout = false, do_last_check = false;
1206 	ktime_t start;
1207 
1208 	ufshcd_hold(hba, false);
1209 	spin_lock_irqsave(hba->host->host_lock, flags);
1210 	/*
1211 	 * Wait for all the outstanding tasks/transfer requests.
1212 	 * Verify by checking the doorbell registers are clear.
1213 	 */
1214 	start = ktime_get();
1215 	do {
1216 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1217 			ret = -EBUSY;
1218 			goto out;
1219 		}
1220 
1221 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1222 		tr_pending = ufshcd_pending_cmds(hba);
1223 		if (!tm_doorbell && !tr_pending) {
1224 			timeout = false;
1225 			break;
1226 		} else if (do_last_check) {
1227 			break;
1228 		}
1229 
1230 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1231 		io_schedule_timeout(msecs_to_jiffies(20));
1232 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1233 		    wait_timeout_us) {
1234 			timeout = true;
1235 			/*
1236 			 * We might have scheduled out for long time so make
1237 			 * sure to check if doorbells are cleared by this time
1238 			 * or not.
1239 			 */
1240 			do_last_check = true;
1241 		}
1242 		spin_lock_irqsave(hba->host->host_lock, flags);
1243 	} while (tm_doorbell || tr_pending);
1244 
1245 	if (timeout) {
1246 		dev_err(hba->dev,
1247 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1248 			__func__, tm_doorbell, tr_pending);
1249 		ret = -EBUSY;
1250 	}
1251 out:
1252 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1253 	ufshcd_release(hba);
1254 	return ret;
1255 }
1256 
1257 /**
1258  * ufshcd_scale_gear - scale up/down UFS gear
1259  * @hba: per adapter instance
1260  * @scale_up: True for scaling up gear and false for scaling down
1261  *
1262  * Returns 0 for success,
1263  * Returns -EBUSY if scaling can't happen at this time
1264  * Returns non-zero for any other errors
1265  */
1266 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1267 {
1268 	int ret = 0;
1269 	struct ufs_pa_layer_attr new_pwr_info;
1270 
1271 	if (scale_up) {
1272 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1273 		       sizeof(struct ufs_pa_layer_attr));
1274 	} else {
1275 		memcpy(&new_pwr_info, &hba->pwr_info,
1276 		       sizeof(struct ufs_pa_layer_attr));
1277 
1278 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1279 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1280 			/* save the current power mode */
1281 			memcpy(&hba->clk_scaling.saved_pwr_info,
1282 				&hba->pwr_info,
1283 				sizeof(struct ufs_pa_layer_attr));
1284 
1285 			/* scale down gear */
1286 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1287 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1288 		}
1289 	}
1290 
1291 	/* check if the power mode needs to be changed or not? */
1292 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1293 	if (ret)
1294 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1295 			__func__, ret,
1296 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1297 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1298 
1299 	return ret;
1300 }
1301 
1302 /*
1303  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1304  * has expired.
1305  *
1306  * Return: 0 upon success; -EBUSY upon timeout.
1307  */
1308 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1309 {
1310 	int ret = 0;
1311 	/*
1312 	 * make sure that there are no outstanding requests when
1313 	 * clock scaling is in progress
1314 	 */
1315 	ufshcd_scsi_block_requests(hba);
1316 	mutex_lock(&hba->wb_mutex);
1317 	down_write(&hba->clk_scaling_lock);
1318 
1319 	if (!hba->clk_scaling.is_allowed ||
1320 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1321 		ret = -EBUSY;
1322 		up_write(&hba->clk_scaling_lock);
1323 		mutex_unlock(&hba->wb_mutex);
1324 		ufshcd_scsi_unblock_requests(hba);
1325 		goto out;
1326 	}
1327 
1328 	/* let's not get into low power until clock scaling is completed */
1329 	ufshcd_hold(hba, false);
1330 
1331 out:
1332 	return ret;
1333 }
1334 
1335 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1336 {
1337 	up_write(&hba->clk_scaling_lock);
1338 
1339 	/* Enable Write Booster if we have scaled up else disable it */
1340 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1341 		ufshcd_wb_toggle(hba, scale_up);
1342 
1343 	mutex_unlock(&hba->wb_mutex);
1344 
1345 	ufshcd_scsi_unblock_requests(hba);
1346 	ufshcd_release(hba);
1347 }
1348 
1349 /**
1350  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1351  * @hba: per adapter instance
1352  * @scale_up: True for scaling up and false for scalin down
1353  *
1354  * Returns 0 for success,
1355  * Returns -EBUSY if scaling can't happen at this time
1356  * Returns non-zero for any other errors
1357  */
1358 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1359 {
1360 	int ret = 0;
1361 
1362 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1363 	if (ret)
1364 		return ret;
1365 
1366 	/* scale down the gear before scaling down clocks */
1367 	if (!scale_up) {
1368 		ret = ufshcd_scale_gear(hba, false);
1369 		if (ret)
1370 			goto out_unprepare;
1371 	}
1372 
1373 	ret = ufshcd_scale_clks(hba, scale_up);
1374 	if (ret) {
1375 		if (!scale_up)
1376 			ufshcd_scale_gear(hba, true);
1377 		goto out_unprepare;
1378 	}
1379 
1380 	/* scale up the gear after scaling up clocks */
1381 	if (scale_up) {
1382 		ret = ufshcd_scale_gear(hba, true);
1383 		if (ret) {
1384 			ufshcd_scale_clks(hba, false);
1385 			goto out_unprepare;
1386 		}
1387 	}
1388 
1389 out_unprepare:
1390 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1391 	return ret;
1392 }
1393 
1394 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1395 {
1396 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1397 					   clk_scaling.suspend_work);
1398 	unsigned long irq_flags;
1399 
1400 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1401 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1402 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1403 		return;
1404 	}
1405 	hba->clk_scaling.is_suspended = true;
1406 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1407 
1408 	__ufshcd_suspend_clkscaling(hba);
1409 }
1410 
1411 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1412 {
1413 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1414 					   clk_scaling.resume_work);
1415 	unsigned long irq_flags;
1416 
1417 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1418 	if (!hba->clk_scaling.is_suspended) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		return;
1421 	}
1422 	hba->clk_scaling.is_suspended = false;
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	devfreq_resume_device(hba->devfreq);
1426 }
1427 
1428 static int ufshcd_devfreq_target(struct device *dev,
1429 				unsigned long *freq, u32 flags)
1430 {
1431 	int ret = 0;
1432 	struct ufs_hba *hba = dev_get_drvdata(dev);
1433 	ktime_t start;
1434 	bool scale_up, sched_clk_scaling_suspend_work = false;
1435 	struct list_head *clk_list = &hba->clk_list_head;
1436 	struct ufs_clk_info *clki;
1437 	unsigned long irq_flags;
1438 
1439 	/*
1440 	 * Skip devfreq if UFS initialization is not finished.
1441 	 * Otherwise ufs could be in a inconsistent state.
1442 	 */
1443 	if (!smp_load_acquire(&hba->logical_unit_scan_finished))
1444 		return 0;
1445 
1446 	if (!ufshcd_is_clkscaling_supported(hba))
1447 		return -EINVAL;
1448 
1449 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1450 	/* Override with the closest supported frequency */
1451 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1452 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1453 	if (ufshcd_eh_in_progress(hba)) {
1454 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1455 		return 0;
1456 	}
1457 
1458 	if (!hba->clk_scaling.active_reqs)
1459 		sched_clk_scaling_suspend_work = true;
1460 
1461 	if (list_empty(clk_list)) {
1462 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1463 		goto out;
1464 	}
1465 
1466 	/* Decide based on the rounded-off frequency and update */
1467 	scale_up = *freq == clki->max_freq;
1468 	if (!scale_up)
1469 		*freq = clki->min_freq;
1470 	/* Update the frequency */
1471 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1472 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1473 		ret = 0;
1474 		goto out; /* no state change required */
1475 	}
1476 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1477 
1478 	start = ktime_get();
1479 	ret = ufshcd_devfreq_scale(hba, scale_up);
1480 
1481 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1482 		(scale_up ? "up" : "down"),
1483 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1484 
1485 out:
1486 	if (sched_clk_scaling_suspend_work)
1487 		queue_work(hba->clk_scaling.workq,
1488 			   &hba->clk_scaling.suspend_work);
1489 
1490 	return ret;
1491 }
1492 
1493 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1494 		struct devfreq_dev_status *stat)
1495 {
1496 	struct ufs_hba *hba = dev_get_drvdata(dev);
1497 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1498 	unsigned long flags;
1499 	struct list_head *clk_list = &hba->clk_list_head;
1500 	struct ufs_clk_info *clki;
1501 	ktime_t curr_t;
1502 
1503 	if (!ufshcd_is_clkscaling_supported(hba))
1504 		return -EINVAL;
1505 
1506 	memset(stat, 0, sizeof(*stat));
1507 
1508 	spin_lock_irqsave(hba->host->host_lock, flags);
1509 	curr_t = ktime_get();
1510 	if (!scaling->window_start_t)
1511 		goto start_window;
1512 
1513 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1514 	/*
1515 	 * If current frequency is 0, then the ondemand governor considers
1516 	 * there's no initial frequency set. And it always requests to set
1517 	 * to max. frequency.
1518 	 */
1519 	stat->current_frequency = clki->curr_freq;
1520 	if (scaling->is_busy_started)
1521 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1522 				scaling->busy_start_t);
1523 
1524 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1525 	stat->busy_time = scaling->tot_busy_t;
1526 start_window:
1527 	scaling->window_start_t = curr_t;
1528 	scaling->tot_busy_t = 0;
1529 
1530 	if (scaling->active_reqs) {
1531 		scaling->busy_start_t = curr_t;
1532 		scaling->is_busy_started = true;
1533 	} else {
1534 		scaling->busy_start_t = 0;
1535 		scaling->is_busy_started = false;
1536 	}
1537 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1538 	return 0;
1539 }
1540 
1541 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1542 {
1543 	struct list_head *clk_list = &hba->clk_list_head;
1544 	struct ufs_clk_info *clki;
1545 	struct devfreq *devfreq;
1546 	int ret;
1547 
1548 	/* Skip devfreq if we don't have any clocks in the list */
1549 	if (list_empty(clk_list))
1550 		return 0;
1551 
1552 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1553 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1554 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1555 
1556 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1557 					 &hba->vps->ondemand_data);
1558 	devfreq = devfreq_add_device(hba->dev,
1559 			&hba->vps->devfreq_profile,
1560 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1561 			&hba->vps->ondemand_data);
1562 	if (IS_ERR(devfreq)) {
1563 		ret = PTR_ERR(devfreq);
1564 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1565 
1566 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1567 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1568 		return ret;
1569 	}
1570 
1571 	hba->devfreq = devfreq;
1572 
1573 	return 0;
1574 }
1575 
1576 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1577 {
1578 	struct list_head *clk_list = &hba->clk_list_head;
1579 	struct ufs_clk_info *clki;
1580 
1581 	if (!hba->devfreq)
1582 		return;
1583 
1584 	devfreq_remove_device(hba->devfreq);
1585 	hba->devfreq = NULL;
1586 
1587 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1588 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1589 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1590 }
1591 
1592 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1593 {
1594 	unsigned long flags;
1595 
1596 	devfreq_suspend_device(hba->devfreq);
1597 	spin_lock_irqsave(hba->host->host_lock, flags);
1598 	hba->clk_scaling.window_start_t = 0;
1599 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1600 }
1601 
1602 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1603 {
1604 	unsigned long flags;
1605 	bool suspend = false;
1606 
1607 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1608 	cancel_work_sync(&hba->clk_scaling.resume_work);
1609 
1610 	spin_lock_irqsave(hba->host->host_lock, flags);
1611 	if (!hba->clk_scaling.is_suspended) {
1612 		suspend = true;
1613 		hba->clk_scaling.is_suspended = true;
1614 	}
1615 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1616 
1617 	if (suspend)
1618 		__ufshcd_suspend_clkscaling(hba);
1619 }
1620 
1621 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1622 {
1623 	unsigned long flags;
1624 	bool resume = false;
1625 
1626 	spin_lock_irqsave(hba->host->host_lock, flags);
1627 	if (hba->clk_scaling.is_suspended) {
1628 		resume = true;
1629 		hba->clk_scaling.is_suspended = false;
1630 	}
1631 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1632 
1633 	if (resume)
1634 		devfreq_resume_device(hba->devfreq);
1635 }
1636 
1637 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1638 		struct device_attribute *attr, char *buf)
1639 {
1640 	struct ufs_hba *hba = dev_get_drvdata(dev);
1641 
1642 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1643 }
1644 
1645 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1646 		struct device_attribute *attr, const char *buf, size_t count)
1647 {
1648 	struct ufs_hba *hba = dev_get_drvdata(dev);
1649 	u32 value;
1650 	int err = 0;
1651 
1652 	if (kstrtou32(buf, 0, &value))
1653 		return -EINVAL;
1654 
1655 	down(&hba->host_sem);
1656 	if (!ufshcd_is_user_access_allowed(hba)) {
1657 		err = -EBUSY;
1658 		goto out;
1659 	}
1660 
1661 	value = !!value;
1662 	if (value == hba->clk_scaling.is_enabled)
1663 		goto out;
1664 
1665 	ufshcd_rpm_get_sync(hba);
1666 	ufshcd_hold(hba, false);
1667 
1668 	hba->clk_scaling.is_enabled = value;
1669 
1670 	if (value) {
1671 		ufshcd_resume_clkscaling(hba);
1672 	} else {
1673 		ufshcd_suspend_clkscaling(hba);
1674 		err = ufshcd_devfreq_scale(hba, true);
1675 		if (err)
1676 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1677 					__func__, err);
1678 	}
1679 
1680 	ufshcd_release(hba);
1681 	ufshcd_rpm_put_sync(hba);
1682 out:
1683 	up(&hba->host_sem);
1684 	return err ? err : count;
1685 }
1686 
1687 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1688 {
1689 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1690 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1691 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1692 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1693 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1694 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1695 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1696 }
1697 
1698 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1699 {
1700 	if (hba->clk_scaling.enable_attr.attr.name)
1701 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1702 }
1703 
1704 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1705 {
1706 	char wq_name[sizeof("ufs_clkscaling_00")];
1707 
1708 	if (!ufshcd_is_clkscaling_supported(hba))
1709 		return;
1710 
1711 	if (!hba->clk_scaling.min_gear)
1712 		hba->clk_scaling.min_gear = UFS_HS_G1;
1713 
1714 	INIT_WORK(&hba->clk_scaling.suspend_work,
1715 		  ufshcd_clk_scaling_suspend_work);
1716 	INIT_WORK(&hba->clk_scaling.resume_work,
1717 		  ufshcd_clk_scaling_resume_work);
1718 
1719 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1720 		 hba->host->host_no);
1721 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1722 
1723 	hba->clk_scaling.is_initialized = true;
1724 }
1725 
1726 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1727 {
1728 	if (!hba->clk_scaling.is_initialized)
1729 		return;
1730 
1731 	ufshcd_remove_clk_scaling_sysfs(hba);
1732 	destroy_workqueue(hba->clk_scaling.workq);
1733 	ufshcd_devfreq_remove(hba);
1734 	hba->clk_scaling.is_initialized = false;
1735 }
1736 
1737 static void ufshcd_ungate_work(struct work_struct *work)
1738 {
1739 	int ret;
1740 	unsigned long flags;
1741 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1742 			clk_gating.ungate_work);
1743 
1744 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1745 
1746 	spin_lock_irqsave(hba->host->host_lock, flags);
1747 	if (hba->clk_gating.state == CLKS_ON) {
1748 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1749 		goto unblock_reqs;
1750 	}
1751 
1752 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1753 	ufshcd_hba_vreg_set_hpm(hba);
1754 	ufshcd_setup_clocks(hba, true);
1755 
1756 	ufshcd_enable_irq(hba);
1757 
1758 	/* Exit from hibern8 */
1759 	if (ufshcd_can_hibern8_during_gating(hba)) {
1760 		/* Prevent gating in this path */
1761 		hba->clk_gating.is_suspended = true;
1762 		if (ufshcd_is_link_hibern8(hba)) {
1763 			ret = ufshcd_uic_hibern8_exit(hba);
1764 			if (ret)
1765 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1766 					__func__, ret);
1767 			else
1768 				ufshcd_set_link_active(hba);
1769 		}
1770 		hba->clk_gating.is_suspended = false;
1771 	}
1772 unblock_reqs:
1773 	ufshcd_scsi_unblock_requests(hba);
1774 }
1775 
1776 /**
1777  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1778  * Also, exit from hibern8 mode and set the link as active.
1779  * @hba: per adapter instance
1780  * @async: This indicates whether caller should ungate clocks asynchronously.
1781  */
1782 int ufshcd_hold(struct ufs_hba *hba, bool async)
1783 {
1784 	int rc = 0;
1785 	bool flush_result;
1786 	unsigned long flags;
1787 
1788 	if (!ufshcd_is_clkgating_allowed(hba) ||
1789 	    !hba->clk_gating.is_initialized)
1790 		goto out;
1791 	spin_lock_irqsave(hba->host->host_lock, flags);
1792 	hba->clk_gating.active_reqs++;
1793 
1794 start:
1795 	switch (hba->clk_gating.state) {
1796 	case CLKS_ON:
1797 		/*
1798 		 * Wait for the ungate work to complete if in progress.
1799 		 * Though the clocks may be in ON state, the link could
1800 		 * still be in hibner8 state if hibern8 is allowed
1801 		 * during clock gating.
1802 		 * Make sure we exit hibern8 state also in addition to
1803 		 * clocks being ON.
1804 		 */
1805 		if (ufshcd_can_hibern8_during_gating(hba) &&
1806 		    ufshcd_is_link_hibern8(hba)) {
1807 			if (async) {
1808 				rc = -EAGAIN;
1809 				hba->clk_gating.active_reqs--;
1810 				break;
1811 			}
1812 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1813 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1814 			if (hba->clk_gating.is_suspended && !flush_result)
1815 				goto out;
1816 			spin_lock_irqsave(hba->host->host_lock, flags);
1817 			goto start;
1818 		}
1819 		break;
1820 	case REQ_CLKS_OFF:
1821 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1822 			hba->clk_gating.state = CLKS_ON;
1823 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1824 						hba->clk_gating.state);
1825 			break;
1826 		}
1827 		/*
1828 		 * If we are here, it means gating work is either done or
1829 		 * currently running. Hence, fall through to cancel gating
1830 		 * work and to enable clocks.
1831 		 */
1832 		fallthrough;
1833 	case CLKS_OFF:
1834 		hba->clk_gating.state = REQ_CLKS_ON;
1835 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1836 					hba->clk_gating.state);
1837 		if (queue_work(hba->clk_gating.clk_gating_workq,
1838 			       &hba->clk_gating.ungate_work))
1839 			ufshcd_scsi_block_requests(hba);
1840 		/*
1841 		 * fall through to check if we should wait for this
1842 		 * work to be done or not.
1843 		 */
1844 		fallthrough;
1845 	case REQ_CLKS_ON:
1846 		if (async) {
1847 			rc = -EAGAIN;
1848 			hba->clk_gating.active_reqs--;
1849 			break;
1850 		}
1851 
1852 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1853 		flush_work(&hba->clk_gating.ungate_work);
1854 		/* Make sure state is CLKS_ON before returning */
1855 		spin_lock_irqsave(hba->host->host_lock, flags);
1856 		goto start;
1857 	default:
1858 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1859 				__func__, hba->clk_gating.state);
1860 		break;
1861 	}
1862 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1863 out:
1864 	return rc;
1865 }
1866 EXPORT_SYMBOL_GPL(ufshcd_hold);
1867 
1868 static void ufshcd_gate_work(struct work_struct *work)
1869 {
1870 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1871 			clk_gating.gate_work.work);
1872 	unsigned long flags;
1873 	int ret;
1874 
1875 	spin_lock_irqsave(hba->host->host_lock, flags);
1876 	/*
1877 	 * In case you are here to cancel this work the gating state
1878 	 * would be marked as REQ_CLKS_ON. In this case save time by
1879 	 * skipping the gating work and exit after changing the clock
1880 	 * state to CLKS_ON.
1881 	 */
1882 	if (hba->clk_gating.is_suspended ||
1883 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1884 		hba->clk_gating.state = CLKS_ON;
1885 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1886 					hba->clk_gating.state);
1887 		goto rel_lock;
1888 	}
1889 
1890 	if (hba->clk_gating.active_reqs
1891 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1892 		|| hba->outstanding_reqs || hba->outstanding_tasks
1893 		|| hba->active_uic_cmd || hba->uic_async_done)
1894 		goto rel_lock;
1895 
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 
1898 	/* put the link into hibern8 mode before turning off clocks */
1899 	if (ufshcd_can_hibern8_during_gating(hba)) {
1900 		ret = ufshcd_uic_hibern8_enter(hba);
1901 		if (ret) {
1902 			hba->clk_gating.state = CLKS_ON;
1903 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1904 					__func__, ret);
1905 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1906 						hba->clk_gating.state);
1907 			goto out;
1908 		}
1909 		ufshcd_set_link_hibern8(hba);
1910 	}
1911 
1912 	ufshcd_disable_irq(hba);
1913 
1914 	ufshcd_setup_clocks(hba, false);
1915 
1916 	/* Put the host controller in low power mode if possible */
1917 	ufshcd_hba_vreg_set_lpm(hba);
1918 	/*
1919 	 * In case you are here to cancel this work the gating state
1920 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1921 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1922 	 * and a request to turn them on is pending. By doing this way,
1923 	 * we keep the state machine in tact and this would ultimately
1924 	 * prevent from doing cancel work multiple times when there are
1925 	 * new requests arriving before the current cancel work is done.
1926 	 */
1927 	spin_lock_irqsave(hba->host->host_lock, flags);
1928 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1929 		hba->clk_gating.state = CLKS_OFF;
1930 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1931 					hba->clk_gating.state);
1932 	}
1933 rel_lock:
1934 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1935 out:
1936 	return;
1937 }
1938 
1939 /* host lock must be held before calling this variant */
1940 static void __ufshcd_release(struct ufs_hba *hba)
1941 {
1942 	if (!ufshcd_is_clkgating_allowed(hba))
1943 		return;
1944 
1945 	hba->clk_gating.active_reqs--;
1946 
1947 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1948 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1949 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1950 	    hba->active_uic_cmd || hba->uic_async_done ||
1951 	    hba->clk_gating.state == CLKS_OFF)
1952 		return;
1953 
1954 	hba->clk_gating.state = REQ_CLKS_OFF;
1955 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1956 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1957 			   &hba->clk_gating.gate_work,
1958 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1959 }
1960 
1961 void ufshcd_release(struct ufs_hba *hba)
1962 {
1963 	unsigned long flags;
1964 
1965 	spin_lock_irqsave(hba->host->host_lock, flags);
1966 	__ufshcd_release(hba);
1967 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1968 }
1969 EXPORT_SYMBOL_GPL(ufshcd_release);
1970 
1971 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1972 		struct device_attribute *attr, char *buf)
1973 {
1974 	struct ufs_hba *hba = dev_get_drvdata(dev);
1975 
1976 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1977 }
1978 
1979 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1980 {
1981 	struct ufs_hba *hba = dev_get_drvdata(dev);
1982 	unsigned long flags;
1983 
1984 	spin_lock_irqsave(hba->host->host_lock, flags);
1985 	hba->clk_gating.delay_ms = value;
1986 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1987 }
1988 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1989 
1990 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1991 		struct device_attribute *attr, const char *buf, size_t count)
1992 {
1993 	unsigned long value;
1994 
1995 	if (kstrtoul(buf, 0, &value))
1996 		return -EINVAL;
1997 
1998 	ufshcd_clkgate_delay_set(dev, value);
1999 	return count;
2000 }
2001 
2002 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2003 		struct device_attribute *attr, char *buf)
2004 {
2005 	struct ufs_hba *hba = dev_get_drvdata(dev);
2006 
2007 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2008 }
2009 
2010 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2011 		struct device_attribute *attr, const char *buf, size_t count)
2012 {
2013 	struct ufs_hba *hba = dev_get_drvdata(dev);
2014 	unsigned long flags;
2015 	u32 value;
2016 
2017 	if (kstrtou32(buf, 0, &value))
2018 		return -EINVAL;
2019 
2020 	value = !!value;
2021 
2022 	spin_lock_irqsave(hba->host->host_lock, flags);
2023 	if (value == hba->clk_gating.is_enabled)
2024 		goto out;
2025 
2026 	if (value)
2027 		__ufshcd_release(hba);
2028 	else
2029 		hba->clk_gating.active_reqs++;
2030 
2031 	hba->clk_gating.is_enabled = value;
2032 out:
2033 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2034 	return count;
2035 }
2036 
2037 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2038 {
2039 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2040 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2041 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2042 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2043 	hba->clk_gating.delay_attr.attr.mode = 0644;
2044 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2045 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2046 
2047 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2048 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2049 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2050 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2051 	hba->clk_gating.enable_attr.attr.mode = 0644;
2052 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2053 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2054 }
2055 
2056 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2057 {
2058 	if (hba->clk_gating.delay_attr.attr.name)
2059 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2060 	if (hba->clk_gating.enable_attr.attr.name)
2061 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2062 }
2063 
2064 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2065 {
2066 	char wq_name[sizeof("ufs_clk_gating_00")];
2067 
2068 	if (!ufshcd_is_clkgating_allowed(hba))
2069 		return;
2070 
2071 	hba->clk_gating.state = CLKS_ON;
2072 
2073 	hba->clk_gating.delay_ms = 150;
2074 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2075 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2076 
2077 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2078 		 hba->host->host_no);
2079 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2080 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2081 
2082 	ufshcd_init_clk_gating_sysfs(hba);
2083 
2084 	hba->clk_gating.is_enabled = true;
2085 	hba->clk_gating.is_initialized = true;
2086 }
2087 
2088 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2089 {
2090 	if (!hba->clk_gating.is_initialized)
2091 		return;
2092 
2093 	ufshcd_remove_clk_gating_sysfs(hba);
2094 
2095 	/* Ungate the clock if necessary. */
2096 	ufshcd_hold(hba, false);
2097 	hba->clk_gating.is_initialized = false;
2098 	ufshcd_release(hba);
2099 
2100 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2101 }
2102 
2103 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2104 {
2105 	bool queue_resume_work = false;
2106 	ktime_t curr_t = ktime_get();
2107 	unsigned long flags;
2108 
2109 	if (!ufshcd_is_clkscaling_supported(hba))
2110 		return;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (!hba->clk_scaling.active_reqs++)
2114 		queue_resume_work = true;
2115 
2116 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2117 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2118 		return;
2119 	}
2120 
2121 	if (queue_resume_work)
2122 		queue_work(hba->clk_scaling.workq,
2123 			   &hba->clk_scaling.resume_work);
2124 
2125 	if (!hba->clk_scaling.window_start_t) {
2126 		hba->clk_scaling.window_start_t = curr_t;
2127 		hba->clk_scaling.tot_busy_t = 0;
2128 		hba->clk_scaling.is_busy_started = false;
2129 	}
2130 
2131 	if (!hba->clk_scaling.is_busy_started) {
2132 		hba->clk_scaling.busy_start_t = curr_t;
2133 		hba->clk_scaling.is_busy_started = true;
2134 	}
2135 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2136 }
2137 
2138 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2139 {
2140 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2141 	unsigned long flags;
2142 
2143 	if (!ufshcd_is_clkscaling_supported(hba))
2144 		return;
2145 
2146 	spin_lock_irqsave(hba->host->host_lock, flags);
2147 	hba->clk_scaling.active_reqs--;
2148 	if (!scaling->active_reqs && scaling->is_busy_started) {
2149 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2150 					scaling->busy_start_t));
2151 		scaling->busy_start_t = 0;
2152 		scaling->is_busy_started = false;
2153 	}
2154 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2155 }
2156 
2157 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2158 {
2159 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2160 		return READ;
2161 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2162 		return WRITE;
2163 	else
2164 		return -EINVAL;
2165 }
2166 
2167 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2168 						struct ufshcd_lrb *lrbp)
2169 {
2170 	const struct ufs_hba_monitor *m = &hba->monitor;
2171 
2172 	return (m->enabled && lrbp && lrbp->cmd &&
2173 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2174 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2175 }
2176 
2177 static void ufshcd_start_monitor(struct ufs_hba *hba,
2178 				 const struct ufshcd_lrb *lrbp)
2179 {
2180 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2181 	unsigned long flags;
2182 
2183 	spin_lock_irqsave(hba->host->host_lock, flags);
2184 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2185 		hba->monitor.busy_start_ts[dir] = ktime_get();
2186 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2187 }
2188 
2189 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2190 {
2191 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2192 	unsigned long flags;
2193 
2194 	spin_lock_irqsave(hba->host->host_lock, flags);
2195 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2196 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2197 		struct ufs_hba_monitor *m = &hba->monitor;
2198 		ktime_t now, inc, lat;
2199 
2200 		now = lrbp->compl_time_stamp;
2201 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2202 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2203 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2204 
2205 		/* Update latencies */
2206 		m->nr_req[dir]++;
2207 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2208 		m->lat_sum[dir] += lat;
2209 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2210 			m->lat_max[dir] = lat;
2211 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2212 			m->lat_min[dir] = lat;
2213 
2214 		m->nr_queued[dir]--;
2215 		/* Push forward the busy start of monitor */
2216 		m->busy_start_ts[dir] = now;
2217 	}
2218 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2219 }
2220 
2221 /**
2222  * ufshcd_send_command - Send SCSI or device management commands
2223  * @hba: per adapter instance
2224  * @task_tag: Task tag of the command
2225  * @hwq: pointer to hardware queue instance
2226  */
2227 static inline
2228 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2229 			 struct ufs_hw_queue *hwq)
2230 {
2231 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2232 	unsigned long flags;
2233 
2234 	lrbp->issue_time_stamp = ktime_get();
2235 	lrbp->issue_time_stamp_local_clock = local_clock();
2236 	lrbp->compl_time_stamp = ktime_set(0, 0);
2237 	lrbp->compl_time_stamp_local_clock = 0;
2238 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2239 	ufshcd_clk_scaling_start_busy(hba);
2240 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2241 		ufshcd_start_monitor(hba, lrbp);
2242 
2243 	if (is_mcq_enabled(hba)) {
2244 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2245 
2246 		spin_lock(&hwq->sq_lock);
2247 		memcpy(hwq->sqe_base_addr + (hwq->sq_tail_slot * utrd_size),
2248 		       lrbp->utr_descriptor_ptr, utrd_size);
2249 		ufshcd_inc_sq_tail(hwq);
2250 		spin_unlock(&hwq->sq_lock);
2251 	} else {
2252 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2253 		if (hba->vops && hba->vops->setup_xfer_req)
2254 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2255 						  !!lrbp->cmd);
2256 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2257 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2258 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2259 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2260 	}
2261 }
2262 
2263 /**
2264  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2265  * @lrbp: pointer to local reference block
2266  */
2267 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2268 {
2269 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2270 	int len;
2271 
2272 	if (sense_buffer &&
2273 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2274 		int len_to_copy;
2275 
2276 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2277 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2278 
2279 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2280 		       len_to_copy);
2281 	}
2282 }
2283 
2284 /**
2285  * ufshcd_copy_query_response() - Copy the Query Response and the data
2286  * descriptor
2287  * @hba: per adapter instance
2288  * @lrbp: pointer to local reference block
2289  */
2290 static
2291 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2292 {
2293 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2294 
2295 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2296 
2297 	/* Get the descriptor */
2298 	if (hba->dev_cmd.query.descriptor &&
2299 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2300 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2301 				GENERAL_UPIU_REQUEST_SIZE;
2302 		u16 resp_len;
2303 		u16 buf_len;
2304 
2305 		/* data segment length */
2306 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2307 						MASK_QUERY_DATA_SEG_LEN;
2308 		buf_len = be16_to_cpu(
2309 				hba->dev_cmd.query.request.upiu_req.length);
2310 		if (likely(buf_len >= resp_len)) {
2311 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2312 		} else {
2313 			dev_warn(hba->dev,
2314 				 "%s: rsp size %d is bigger than buffer size %d",
2315 				 __func__, resp_len, buf_len);
2316 			return -EINVAL;
2317 		}
2318 	}
2319 
2320 	return 0;
2321 }
2322 
2323 /**
2324  * ufshcd_hba_capabilities - Read controller capabilities
2325  * @hba: per adapter instance
2326  *
2327  * Return: 0 on success, negative on error.
2328  */
2329 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2330 {
2331 	int err;
2332 
2333 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2334 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2335 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2336 
2337 	/* nutrs and nutmrs are 0 based values */
2338 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2339 	hba->nutmrs =
2340 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2341 	hba->reserved_slot = hba->nutrs - 1;
2342 
2343 	/* Read crypto capabilities */
2344 	err = ufshcd_hba_init_crypto_capabilities(hba);
2345 	if (err)
2346 		dev_err(hba->dev, "crypto setup failed\n");
2347 
2348 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2349 	if (!hba->mcq_sup)
2350 		return err;
2351 
2352 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2353 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2354 				     hba->mcq_capabilities);
2355 
2356 	return err;
2357 }
2358 
2359 /**
2360  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2361  *                            to accept UIC commands
2362  * @hba: per adapter instance
2363  * Return true on success, else false
2364  */
2365 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2366 {
2367 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2368 }
2369 
2370 /**
2371  * ufshcd_get_upmcrs - Get the power mode change request status
2372  * @hba: Pointer to adapter instance
2373  *
2374  * This function gets the UPMCRS field of HCS register
2375  * Returns value of UPMCRS field
2376  */
2377 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2378 {
2379 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2380 }
2381 
2382 /**
2383  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2384  * @hba: per adapter instance
2385  * @uic_cmd: UIC command
2386  */
2387 static inline void
2388 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2389 {
2390 	lockdep_assert_held(&hba->uic_cmd_mutex);
2391 
2392 	WARN_ON(hba->active_uic_cmd);
2393 
2394 	hba->active_uic_cmd = uic_cmd;
2395 
2396 	/* Write Args */
2397 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2398 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2399 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2400 
2401 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2402 
2403 	/* Write UIC Cmd */
2404 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2405 		      REG_UIC_COMMAND);
2406 }
2407 
2408 /**
2409  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2410  * @hba: per adapter instance
2411  * @uic_cmd: UIC command
2412  *
2413  * Returns 0 only if success.
2414  */
2415 static int
2416 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2417 {
2418 	int ret;
2419 	unsigned long flags;
2420 
2421 	lockdep_assert_held(&hba->uic_cmd_mutex);
2422 
2423 	if (wait_for_completion_timeout(&uic_cmd->done,
2424 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2425 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2426 	} else {
2427 		ret = -ETIMEDOUT;
2428 		dev_err(hba->dev,
2429 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2430 			uic_cmd->command, uic_cmd->argument3);
2431 
2432 		if (!uic_cmd->cmd_active) {
2433 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2434 				__func__);
2435 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2436 		}
2437 	}
2438 
2439 	spin_lock_irqsave(hba->host->host_lock, flags);
2440 	hba->active_uic_cmd = NULL;
2441 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2442 
2443 	return ret;
2444 }
2445 
2446 /**
2447  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2448  * @hba: per adapter instance
2449  * @uic_cmd: UIC command
2450  * @completion: initialize the completion only if this is set to true
2451  *
2452  * Returns 0 only if success.
2453  */
2454 static int
2455 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2456 		      bool completion)
2457 {
2458 	lockdep_assert_held(&hba->uic_cmd_mutex);
2459 	lockdep_assert_held(hba->host->host_lock);
2460 
2461 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2462 		dev_err(hba->dev,
2463 			"Controller not ready to accept UIC commands\n");
2464 		return -EIO;
2465 	}
2466 
2467 	if (completion)
2468 		init_completion(&uic_cmd->done);
2469 
2470 	uic_cmd->cmd_active = 1;
2471 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2472 
2473 	return 0;
2474 }
2475 
2476 /**
2477  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2478  * @hba: per adapter instance
2479  * @uic_cmd: UIC command
2480  *
2481  * Returns 0 only if success.
2482  */
2483 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2484 {
2485 	int ret;
2486 	unsigned long flags;
2487 
2488 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2489 		return 0;
2490 
2491 	ufshcd_hold(hba, false);
2492 	mutex_lock(&hba->uic_cmd_mutex);
2493 	ufshcd_add_delay_before_dme_cmd(hba);
2494 
2495 	spin_lock_irqsave(hba->host->host_lock, flags);
2496 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2497 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2498 	if (!ret)
2499 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2500 
2501 	mutex_unlock(&hba->uic_cmd_mutex);
2502 
2503 	ufshcd_release(hba);
2504 	return ret;
2505 }
2506 
2507 /**
2508  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2509  * @hba:	per-adapter instance
2510  * @lrbp:	pointer to local reference block
2511  * @sg_entries:	The number of sg lists actually used
2512  * @sg_list:	Pointer to SG list
2513  */
2514 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2515 			       struct scatterlist *sg_list)
2516 {
2517 	struct ufshcd_sg_entry *prd;
2518 	struct scatterlist *sg;
2519 	int i;
2520 
2521 	if (sg_entries) {
2522 
2523 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2524 			lrbp->utr_descriptor_ptr->prd_table_length =
2525 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2526 		else
2527 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2528 
2529 		prd = lrbp->ucd_prdt_ptr;
2530 
2531 		for_each_sg(sg_list, sg, sg_entries, i) {
2532 			const unsigned int len = sg_dma_len(sg);
2533 
2534 			/*
2535 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2536 			 * based value that indicates the length, in bytes, of
2537 			 * the data block. A maximum of length of 256KB may
2538 			 * exist for any entry. Bits 1:0 of this field shall be
2539 			 * 11b to indicate Dword granularity. A value of '3'
2540 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2541 			 */
2542 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2543 			prd->size = cpu_to_le32(len - 1);
2544 			prd->addr = cpu_to_le64(sg->dma_address);
2545 			prd->reserved = 0;
2546 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2547 		}
2548 	} else {
2549 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2550 	}
2551 }
2552 
2553 /**
2554  * ufshcd_map_sg - Map scatter-gather list to prdt
2555  * @hba: per adapter instance
2556  * @lrbp: pointer to local reference block
2557  *
2558  * Returns 0 in case of success, non-zero value in case of failure
2559  */
2560 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2561 {
2562 	struct scsi_cmnd *cmd = lrbp->cmd;
2563 	int sg_segments = scsi_dma_map(cmd);
2564 
2565 	if (sg_segments < 0)
2566 		return sg_segments;
2567 
2568 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2569 
2570 	return 0;
2571 }
2572 
2573 /**
2574  * ufshcd_enable_intr - enable interrupts
2575  * @hba: per adapter instance
2576  * @intrs: interrupt bits
2577  */
2578 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2579 {
2580 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2581 
2582 	if (hba->ufs_version == ufshci_version(1, 0)) {
2583 		u32 rw;
2584 		rw = set & INTERRUPT_MASK_RW_VER_10;
2585 		set = rw | ((set ^ intrs) & intrs);
2586 	} else {
2587 		set |= intrs;
2588 	}
2589 
2590 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2591 }
2592 
2593 /**
2594  * ufshcd_disable_intr - disable interrupts
2595  * @hba: per adapter instance
2596  * @intrs: interrupt bits
2597  */
2598 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2599 {
2600 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2601 
2602 	if (hba->ufs_version == ufshci_version(1, 0)) {
2603 		u32 rw;
2604 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2605 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2606 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2607 
2608 	} else {
2609 		set &= ~intrs;
2610 	}
2611 
2612 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2613 }
2614 
2615 /**
2616  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2617  * descriptor according to request
2618  * @lrbp: pointer to local reference block
2619  * @upiu_flags: flags required in the header
2620  * @cmd_dir: requests data direction
2621  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2622  */
2623 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2624 					enum dma_data_direction cmd_dir, int ehs_length)
2625 {
2626 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2627 	u32 data_direction;
2628 	u32 dword_0;
2629 	u32 dword_1 = 0;
2630 	u32 dword_3 = 0;
2631 
2632 	if (cmd_dir == DMA_FROM_DEVICE) {
2633 		data_direction = UTP_DEVICE_TO_HOST;
2634 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2635 	} else if (cmd_dir == DMA_TO_DEVICE) {
2636 		data_direction = UTP_HOST_TO_DEVICE;
2637 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2638 	} else {
2639 		data_direction = UTP_NO_DATA_TRANSFER;
2640 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2641 	}
2642 
2643 	dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET) |
2644 		ehs_length << 8;
2645 	if (lrbp->intr_cmd)
2646 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2647 
2648 	/* Prepare crypto related dwords */
2649 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2650 
2651 	/* Transfer request descriptor header fields */
2652 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2653 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2654 	/*
2655 	 * assigning invalid value for command status. Controller
2656 	 * updates OCS on command completion, with the command
2657 	 * status
2658 	 */
2659 	req_desc->header.dword_2 =
2660 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2661 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2662 
2663 	req_desc->prd_table_length = 0;
2664 }
2665 
2666 /**
2667  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2668  * for scsi commands
2669  * @lrbp: local reference block pointer
2670  * @upiu_flags: flags
2671  */
2672 static
2673 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2674 {
2675 	struct scsi_cmnd *cmd = lrbp->cmd;
2676 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2677 	unsigned short cdb_len;
2678 
2679 	/* command descriptor fields */
2680 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2681 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2682 				lrbp->lun, lrbp->task_tag);
2683 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2684 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2685 
2686 	/* Total EHS length and Data segment length will be zero */
2687 	ucd_req_ptr->header.dword_2 = 0;
2688 
2689 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2690 
2691 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2692 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2693 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2694 
2695 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2696 }
2697 
2698 /**
2699  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2700  * @hba: UFS hba
2701  * @lrbp: local reference block pointer
2702  * @upiu_flags: flags
2703  */
2704 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2705 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2706 {
2707 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2708 	struct ufs_query *query = &hba->dev_cmd.query;
2709 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2710 
2711 	/* Query request header */
2712 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2713 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2714 			lrbp->lun, lrbp->task_tag);
2715 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2716 			0, query->request.query_func, 0, 0);
2717 
2718 	/* Data segment length only need for WRITE_DESC */
2719 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2720 		ucd_req_ptr->header.dword_2 =
2721 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2722 	else
2723 		ucd_req_ptr->header.dword_2 = 0;
2724 
2725 	/* Copy the Query Request buffer as is */
2726 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2727 			QUERY_OSF_SIZE);
2728 
2729 	/* Copy the Descriptor */
2730 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2731 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2732 
2733 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2734 }
2735 
2736 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2737 {
2738 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2739 
2740 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2741 
2742 	/* command descriptor fields */
2743 	ucd_req_ptr->header.dword_0 =
2744 		UPIU_HEADER_DWORD(
2745 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2746 	/* clear rest of the fields of basic header */
2747 	ucd_req_ptr->header.dword_1 = 0;
2748 	ucd_req_ptr->header.dword_2 = 0;
2749 
2750 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2751 }
2752 
2753 /**
2754  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2755  *			     for Device Management Purposes
2756  * @hba: per adapter instance
2757  * @lrbp: pointer to local reference block
2758  */
2759 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2760 				      struct ufshcd_lrb *lrbp)
2761 {
2762 	u8 upiu_flags;
2763 	int ret = 0;
2764 
2765 	if (hba->ufs_version <= ufshci_version(1, 1))
2766 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2767 	else
2768 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2769 
2770 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2771 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2772 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2773 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2774 		ufshcd_prepare_utp_nop_upiu(lrbp);
2775 	else
2776 		ret = -EINVAL;
2777 
2778 	return ret;
2779 }
2780 
2781 /**
2782  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2783  *			   for SCSI Purposes
2784  * @hba: per adapter instance
2785  * @lrbp: pointer to local reference block
2786  */
2787 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2788 {
2789 	u8 upiu_flags;
2790 	int ret = 0;
2791 
2792 	if (hba->ufs_version <= ufshci_version(1, 1))
2793 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2794 	else
2795 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2796 
2797 	if (likely(lrbp->cmd)) {
2798 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2799 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2800 	} else {
2801 		ret = -EINVAL;
2802 	}
2803 
2804 	return ret;
2805 }
2806 
2807 /**
2808  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2809  * @upiu_wlun_id: UPIU W-LUN id
2810  *
2811  * Returns SCSI W-LUN id
2812  */
2813 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2814 {
2815 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2816 }
2817 
2818 static inline bool is_device_wlun(struct scsi_device *sdev)
2819 {
2820 	return sdev->lun ==
2821 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2822 }
2823 
2824 /*
2825  * Associate the UFS controller queue with the default and poll HCTX types.
2826  * Initialize the mq_map[] arrays.
2827  */
2828 static void ufshcd_map_queues(struct Scsi_Host *shost)
2829 {
2830 	struct ufs_hba *hba = shost_priv(shost);
2831 	int i, queue_offset = 0;
2832 
2833 	if (!is_mcq_supported(hba)) {
2834 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2835 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2836 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2837 		hba->nr_hw_queues = 1;
2838 	}
2839 
2840 	for (i = 0; i < shost->nr_maps; i++) {
2841 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2842 
2843 		map->nr_queues = hba->nr_queues[i];
2844 		if (!map->nr_queues)
2845 			continue;
2846 		map->queue_offset = queue_offset;
2847 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2848 			map->queue_offset = 0;
2849 
2850 		blk_mq_map_queues(map);
2851 		queue_offset += map->nr_queues;
2852 	}
2853 }
2854 
2855 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2856 {
2857 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2858 		i * sizeof_utp_transfer_cmd_desc(hba);
2859 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2860 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2861 		i * sizeof_utp_transfer_cmd_desc(hba);
2862 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2863 				       response_upiu);
2864 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2865 
2866 	lrb->utr_descriptor_ptr = utrdlp + i;
2867 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2868 		i * sizeof(struct utp_transfer_req_desc);
2869 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2870 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2871 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2872 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2873 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2874 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2875 }
2876 
2877 /**
2878  * ufshcd_queuecommand - main entry point for SCSI requests
2879  * @host: SCSI host pointer
2880  * @cmd: command from SCSI Midlayer
2881  *
2882  * Returns 0 for success, non-zero in case of failure
2883  */
2884 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2885 {
2886 	struct ufs_hba *hba = shost_priv(host);
2887 	int tag = scsi_cmd_to_rq(cmd)->tag;
2888 	struct ufshcd_lrb *lrbp;
2889 	int err = 0;
2890 	struct ufs_hw_queue *hwq = NULL;
2891 
2892 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2893 
2894 	/*
2895 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2896 	 * calls.
2897 	 */
2898 	rcu_read_lock();
2899 
2900 	switch (hba->ufshcd_state) {
2901 	case UFSHCD_STATE_OPERATIONAL:
2902 		break;
2903 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2904 		/*
2905 		 * SCSI error handler can call ->queuecommand() while UFS error
2906 		 * handler is in progress. Error interrupts could change the
2907 		 * state from UFSHCD_STATE_RESET to
2908 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2909 		 * being issued in that case.
2910 		 */
2911 		if (ufshcd_eh_in_progress(hba)) {
2912 			err = SCSI_MLQUEUE_HOST_BUSY;
2913 			goto out;
2914 		}
2915 		break;
2916 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2917 		/*
2918 		 * pm_runtime_get_sync() is used at error handling preparation
2919 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2920 		 * PM ops, it can never be finished if we let SCSI layer keep
2921 		 * retrying it, which gets err handler stuck forever. Neither
2922 		 * can we let the scsi cmd pass through, because UFS is in bad
2923 		 * state, the scsi cmd may eventually time out, which will get
2924 		 * err handler blocked for too long. So, just fail the scsi cmd
2925 		 * sent from PM ops, err handler can recover PM error anyways.
2926 		 */
2927 		if (hba->pm_op_in_progress) {
2928 			hba->force_reset = true;
2929 			set_host_byte(cmd, DID_BAD_TARGET);
2930 			scsi_done(cmd);
2931 			goto out;
2932 		}
2933 		fallthrough;
2934 	case UFSHCD_STATE_RESET:
2935 		err = SCSI_MLQUEUE_HOST_BUSY;
2936 		goto out;
2937 	case UFSHCD_STATE_ERROR:
2938 		set_host_byte(cmd, DID_ERROR);
2939 		scsi_done(cmd);
2940 		goto out;
2941 	}
2942 
2943 	hba->req_abort_count = 0;
2944 
2945 	err = ufshcd_hold(hba, true);
2946 	if (err) {
2947 		err = SCSI_MLQUEUE_HOST_BUSY;
2948 		goto out;
2949 	}
2950 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2951 		(hba->clk_gating.state != CLKS_ON));
2952 
2953 	lrbp = &hba->lrb[tag];
2954 	WARN_ON(lrbp->cmd);
2955 	lrbp->cmd = cmd;
2956 	lrbp->task_tag = tag;
2957 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2958 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2959 
2960 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2961 
2962 	lrbp->req_abort_skip = false;
2963 
2964 	ufshpb_prep(hba, lrbp);
2965 
2966 	ufshcd_comp_scsi_upiu(hba, lrbp);
2967 
2968 	err = ufshcd_map_sg(hba, lrbp);
2969 	if (err) {
2970 		lrbp->cmd = NULL;
2971 		ufshcd_release(hba);
2972 		goto out;
2973 	}
2974 
2975 	if (is_mcq_enabled(hba))
2976 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2977 
2978 	ufshcd_send_command(hba, tag, hwq);
2979 
2980 out:
2981 	rcu_read_unlock();
2982 
2983 	if (ufs_trigger_eh()) {
2984 		unsigned long flags;
2985 
2986 		spin_lock_irqsave(hba->host->host_lock, flags);
2987 		ufshcd_schedule_eh_work(hba);
2988 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2989 	}
2990 
2991 	return err;
2992 }
2993 
2994 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2995 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2996 {
2997 	lrbp->cmd = NULL;
2998 	lrbp->task_tag = tag;
2999 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
3000 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3001 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
3002 	hba->dev_cmd.type = cmd_type;
3003 
3004 	return ufshcd_compose_devman_upiu(hba, lrbp);
3005 }
3006 
3007 /*
3008  * Clear all the requests from the controller for which a bit has been set in
3009  * @mask and wait until the controller confirms that these requests have been
3010  * cleared.
3011  */
3012 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
3013 {
3014 	unsigned long flags;
3015 
3016 	/* clear outstanding transaction before retry */
3017 	spin_lock_irqsave(hba->host->host_lock, flags);
3018 	ufshcd_utrl_clear(hba, mask);
3019 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3020 
3021 	/*
3022 	 * wait for h/w to clear corresponding bit in door-bell.
3023 	 * max. wait is 1 sec.
3024 	 */
3025 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3026 					mask, ~mask, 1000, 1000);
3027 }
3028 
3029 static int
3030 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3031 {
3032 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
3033 
3034 	/* Get the UPIU response */
3035 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
3036 				UPIU_RSP_CODE_OFFSET;
3037 	return query_res->response;
3038 }
3039 
3040 /**
3041  * ufshcd_dev_cmd_completion() - handles device management command responses
3042  * @hba: per adapter instance
3043  * @lrbp: pointer to local reference block
3044  */
3045 static int
3046 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3047 {
3048 	int resp;
3049 	int err = 0;
3050 
3051 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3052 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3053 
3054 	switch (resp) {
3055 	case UPIU_TRANSACTION_NOP_IN:
3056 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3057 			err = -EINVAL;
3058 			dev_err(hba->dev, "%s: unexpected response %x\n",
3059 					__func__, resp);
3060 		}
3061 		break;
3062 	case UPIU_TRANSACTION_QUERY_RSP:
3063 		err = ufshcd_check_query_response(hba, lrbp);
3064 		if (!err)
3065 			err = ufshcd_copy_query_response(hba, lrbp);
3066 		break;
3067 	case UPIU_TRANSACTION_REJECT_UPIU:
3068 		/* TODO: handle Reject UPIU Response */
3069 		err = -EPERM;
3070 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3071 				__func__);
3072 		break;
3073 	case UPIU_TRANSACTION_RESPONSE:
3074 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3075 			err = -EINVAL;
3076 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3077 		}
3078 		break;
3079 	default:
3080 		err = -EINVAL;
3081 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3082 				__func__, resp);
3083 		break;
3084 	}
3085 
3086 	return err;
3087 }
3088 
3089 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3090 		struct ufshcd_lrb *lrbp, int max_timeout)
3091 {
3092 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3093 	unsigned long flags;
3094 	bool pending;
3095 	int err;
3096 
3097 retry:
3098 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3099 						time_left);
3100 
3101 	if (likely(time_left)) {
3102 		/*
3103 		 * The completion handler called complete() and the caller of
3104 		 * this function still owns the @lrbp tag so the code below does
3105 		 * not trigger any race conditions.
3106 		 */
3107 		hba->dev_cmd.complete = NULL;
3108 		err = ufshcd_get_tr_ocs(lrbp, hba->dev_cmd.cqe);
3109 		if (!err)
3110 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3111 	} else {
3112 		err = -ETIMEDOUT;
3113 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3114 			__func__, lrbp->task_tag);
3115 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
3116 			/* successfully cleared the command, retry if needed */
3117 			err = -EAGAIN;
3118 			/*
3119 			 * Since clearing the command succeeded we also need to
3120 			 * clear the task tag bit from the outstanding_reqs
3121 			 * variable.
3122 			 */
3123 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3124 			pending = test_bit(lrbp->task_tag,
3125 					   &hba->outstanding_reqs);
3126 			if (pending) {
3127 				hba->dev_cmd.complete = NULL;
3128 				__clear_bit(lrbp->task_tag,
3129 					    &hba->outstanding_reqs);
3130 			}
3131 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3132 
3133 			if (!pending) {
3134 				/*
3135 				 * The completion handler ran while we tried to
3136 				 * clear the command.
3137 				 */
3138 				time_left = 1;
3139 				goto retry;
3140 			}
3141 		} else {
3142 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3143 				__func__, lrbp->task_tag);
3144 
3145 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3146 			pending = test_bit(lrbp->task_tag,
3147 					   &hba->outstanding_reqs);
3148 			if (pending)
3149 				hba->dev_cmd.complete = NULL;
3150 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3151 
3152 			if (!pending) {
3153 				/*
3154 				 * The completion handler ran while we tried to
3155 				 * clear the command.
3156 				 */
3157 				time_left = 1;
3158 				goto retry;
3159 			}
3160 		}
3161 	}
3162 
3163 	return err;
3164 }
3165 
3166 /**
3167  * ufshcd_exec_dev_cmd - API for sending device management requests
3168  * @hba: UFS hba
3169  * @cmd_type: specifies the type (NOP, Query...)
3170  * @timeout: timeout in milliseconds
3171  *
3172  * NOTE: Since there is only one available tag for device management commands,
3173  * it is expected you hold the hba->dev_cmd.lock mutex.
3174  */
3175 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3176 		enum dev_cmd_type cmd_type, int timeout)
3177 {
3178 	DECLARE_COMPLETION_ONSTACK(wait);
3179 	const u32 tag = hba->reserved_slot;
3180 	struct ufshcd_lrb *lrbp;
3181 	int err;
3182 
3183 	/* Protects use of hba->reserved_slot. */
3184 	lockdep_assert_held(&hba->dev_cmd.lock);
3185 
3186 	down_read(&hba->clk_scaling_lock);
3187 
3188 	lrbp = &hba->lrb[tag];
3189 	WARN_ON(lrbp->cmd);
3190 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3191 	if (unlikely(err))
3192 		goto out;
3193 
3194 	hba->dev_cmd.complete = &wait;
3195 	hba->dev_cmd.cqe = NULL;
3196 
3197 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3198 
3199 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3200 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3201 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3202 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3203 
3204 out:
3205 	up_read(&hba->clk_scaling_lock);
3206 	return err;
3207 }
3208 
3209 /**
3210  * ufshcd_init_query() - init the query response and request parameters
3211  * @hba: per-adapter instance
3212  * @request: address of the request pointer to be initialized
3213  * @response: address of the response pointer to be initialized
3214  * @opcode: operation to perform
3215  * @idn: flag idn to access
3216  * @index: LU number to access
3217  * @selector: query/flag/descriptor further identification
3218  */
3219 static inline void ufshcd_init_query(struct ufs_hba *hba,
3220 		struct ufs_query_req **request, struct ufs_query_res **response,
3221 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3222 {
3223 	*request = &hba->dev_cmd.query.request;
3224 	*response = &hba->dev_cmd.query.response;
3225 	memset(*request, 0, sizeof(struct ufs_query_req));
3226 	memset(*response, 0, sizeof(struct ufs_query_res));
3227 	(*request)->upiu_req.opcode = opcode;
3228 	(*request)->upiu_req.idn = idn;
3229 	(*request)->upiu_req.index = index;
3230 	(*request)->upiu_req.selector = selector;
3231 }
3232 
3233 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3234 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3235 {
3236 	int ret;
3237 	int retries;
3238 
3239 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3240 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3241 		if (ret)
3242 			dev_dbg(hba->dev,
3243 				"%s: failed with error %d, retries %d\n",
3244 				__func__, ret, retries);
3245 		else
3246 			break;
3247 	}
3248 
3249 	if (ret)
3250 		dev_err(hba->dev,
3251 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3252 			__func__, opcode, idn, ret, retries);
3253 	return ret;
3254 }
3255 
3256 /**
3257  * ufshcd_query_flag() - API function for sending flag query requests
3258  * @hba: per-adapter instance
3259  * @opcode: flag query to perform
3260  * @idn: flag idn to access
3261  * @index: flag index to access
3262  * @flag_res: the flag value after the query request completes
3263  *
3264  * Returns 0 for success, non-zero in case of failure
3265  */
3266 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3267 			enum flag_idn idn, u8 index, bool *flag_res)
3268 {
3269 	struct ufs_query_req *request = NULL;
3270 	struct ufs_query_res *response = NULL;
3271 	int err, selector = 0;
3272 	int timeout = QUERY_REQ_TIMEOUT;
3273 
3274 	BUG_ON(!hba);
3275 
3276 	ufshcd_hold(hba, false);
3277 	mutex_lock(&hba->dev_cmd.lock);
3278 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3279 			selector);
3280 
3281 	switch (opcode) {
3282 	case UPIU_QUERY_OPCODE_SET_FLAG:
3283 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3284 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3285 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3286 		break;
3287 	case UPIU_QUERY_OPCODE_READ_FLAG:
3288 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3289 		if (!flag_res) {
3290 			/* No dummy reads */
3291 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3292 					__func__);
3293 			err = -EINVAL;
3294 			goto out_unlock;
3295 		}
3296 		break;
3297 	default:
3298 		dev_err(hba->dev,
3299 			"%s: Expected query flag opcode but got = %d\n",
3300 			__func__, opcode);
3301 		err = -EINVAL;
3302 		goto out_unlock;
3303 	}
3304 
3305 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3306 
3307 	if (err) {
3308 		dev_err(hba->dev,
3309 			"%s: Sending flag query for idn %d failed, err = %d\n",
3310 			__func__, idn, err);
3311 		goto out_unlock;
3312 	}
3313 
3314 	if (flag_res)
3315 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3316 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3317 
3318 out_unlock:
3319 	mutex_unlock(&hba->dev_cmd.lock);
3320 	ufshcd_release(hba);
3321 	return err;
3322 }
3323 
3324 /**
3325  * ufshcd_query_attr - API function for sending attribute requests
3326  * @hba: per-adapter instance
3327  * @opcode: attribute opcode
3328  * @idn: attribute idn to access
3329  * @index: index field
3330  * @selector: selector field
3331  * @attr_val: the attribute value after the query request completes
3332  *
3333  * Returns 0 for success, non-zero in case of failure
3334 */
3335 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3336 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3337 {
3338 	struct ufs_query_req *request = NULL;
3339 	struct ufs_query_res *response = NULL;
3340 	int err;
3341 
3342 	BUG_ON(!hba);
3343 
3344 	if (!attr_val) {
3345 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3346 				__func__, opcode);
3347 		return -EINVAL;
3348 	}
3349 
3350 	ufshcd_hold(hba, false);
3351 
3352 	mutex_lock(&hba->dev_cmd.lock);
3353 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3354 			selector);
3355 
3356 	switch (opcode) {
3357 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3358 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3359 		request->upiu_req.value = cpu_to_be32(*attr_val);
3360 		break;
3361 	case UPIU_QUERY_OPCODE_READ_ATTR:
3362 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3363 		break;
3364 	default:
3365 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3366 				__func__, opcode);
3367 		err = -EINVAL;
3368 		goto out_unlock;
3369 	}
3370 
3371 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3372 
3373 	if (err) {
3374 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3375 				__func__, opcode, idn, index, err);
3376 		goto out_unlock;
3377 	}
3378 
3379 	*attr_val = be32_to_cpu(response->upiu_res.value);
3380 
3381 out_unlock:
3382 	mutex_unlock(&hba->dev_cmd.lock);
3383 	ufshcd_release(hba);
3384 	return err;
3385 }
3386 
3387 /**
3388  * ufshcd_query_attr_retry() - API function for sending query
3389  * attribute with retries
3390  * @hba: per-adapter instance
3391  * @opcode: attribute opcode
3392  * @idn: attribute idn to access
3393  * @index: index field
3394  * @selector: selector field
3395  * @attr_val: the attribute value after the query request
3396  * completes
3397  *
3398  * Returns 0 for success, non-zero in case of failure
3399 */
3400 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3401 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3402 	u32 *attr_val)
3403 {
3404 	int ret = 0;
3405 	u32 retries;
3406 
3407 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3408 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3409 						selector, attr_val);
3410 		if (ret)
3411 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3412 				__func__, ret, retries);
3413 		else
3414 			break;
3415 	}
3416 
3417 	if (ret)
3418 		dev_err(hba->dev,
3419 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3420 			__func__, idn, ret, QUERY_REQ_RETRIES);
3421 	return ret;
3422 }
3423 
3424 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3425 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3426 			u8 selector, u8 *desc_buf, int *buf_len)
3427 {
3428 	struct ufs_query_req *request = NULL;
3429 	struct ufs_query_res *response = NULL;
3430 	int err;
3431 
3432 	BUG_ON(!hba);
3433 
3434 	if (!desc_buf) {
3435 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3436 				__func__, opcode);
3437 		return -EINVAL;
3438 	}
3439 
3440 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3441 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3442 				__func__, *buf_len);
3443 		return -EINVAL;
3444 	}
3445 
3446 	ufshcd_hold(hba, false);
3447 
3448 	mutex_lock(&hba->dev_cmd.lock);
3449 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3450 			selector);
3451 	hba->dev_cmd.query.descriptor = desc_buf;
3452 	request->upiu_req.length = cpu_to_be16(*buf_len);
3453 
3454 	switch (opcode) {
3455 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3456 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3457 		break;
3458 	case UPIU_QUERY_OPCODE_READ_DESC:
3459 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3460 		break;
3461 	default:
3462 		dev_err(hba->dev,
3463 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3464 				__func__, opcode);
3465 		err = -EINVAL;
3466 		goto out_unlock;
3467 	}
3468 
3469 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3470 
3471 	if (err) {
3472 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3473 				__func__, opcode, idn, index, err);
3474 		goto out_unlock;
3475 	}
3476 
3477 	*buf_len = be16_to_cpu(response->upiu_res.length);
3478 
3479 out_unlock:
3480 	hba->dev_cmd.query.descriptor = NULL;
3481 	mutex_unlock(&hba->dev_cmd.lock);
3482 	ufshcd_release(hba);
3483 	return err;
3484 }
3485 
3486 /**
3487  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3488  * @hba: per-adapter instance
3489  * @opcode: attribute opcode
3490  * @idn: attribute idn to access
3491  * @index: index field
3492  * @selector: selector field
3493  * @desc_buf: the buffer that contains the descriptor
3494  * @buf_len: length parameter passed to the device
3495  *
3496  * Returns 0 for success, non-zero in case of failure.
3497  * The buf_len parameter will contain, on return, the length parameter
3498  * received on the response.
3499  */
3500 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3501 				  enum query_opcode opcode,
3502 				  enum desc_idn idn, u8 index,
3503 				  u8 selector,
3504 				  u8 *desc_buf, int *buf_len)
3505 {
3506 	int err;
3507 	int retries;
3508 
3509 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3510 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3511 						selector, desc_buf, buf_len);
3512 		if (!err || err == -EINVAL)
3513 			break;
3514 	}
3515 
3516 	return err;
3517 }
3518 
3519 /**
3520  * ufshcd_read_desc_param - read the specified descriptor parameter
3521  * @hba: Pointer to adapter instance
3522  * @desc_id: descriptor idn value
3523  * @desc_index: descriptor index
3524  * @param_offset: offset of the parameter to read
3525  * @param_read_buf: pointer to buffer where parameter would be read
3526  * @param_size: sizeof(param_read_buf)
3527  *
3528  * Return 0 in case of success, non-zero otherwise
3529  */
3530 int ufshcd_read_desc_param(struct ufs_hba *hba,
3531 			   enum desc_idn desc_id,
3532 			   int desc_index,
3533 			   u8 param_offset,
3534 			   u8 *param_read_buf,
3535 			   u8 param_size)
3536 {
3537 	int ret;
3538 	u8 *desc_buf;
3539 	int buff_len = QUERY_DESC_MAX_SIZE;
3540 	bool is_kmalloc = true;
3541 
3542 	/* Safety check */
3543 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3544 		return -EINVAL;
3545 
3546 	/* Check whether we need temp memory */
3547 	if (param_offset != 0 || param_size < buff_len) {
3548 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3549 		if (!desc_buf)
3550 			return -ENOMEM;
3551 	} else {
3552 		desc_buf = param_read_buf;
3553 		is_kmalloc = false;
3554 	}
3555 
3556 	/* Request for full descriptor */
3557 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3558 					    desc_id, desc_index, 0,
3559 					    desc_buf, &buff_len);
3560 	if (ret) {
3561 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3562 			__func__, desc_id, desc_index, param_offset, ret);
3563 		goto out;
3564 	}
3565 
3566 	/* Update descriptor length */
3567 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3568 
3569 	if (param_offset >= buff_len) {
3570 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3571 			__func__, param_offset, desc_id, buff_len);
3572 		ret = -EINVAL;
3573 		goto out;
3574 	}
3575 
3576 	/* Sanity check */
3577 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3578 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3579 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3580 		ret = -EINVAL;
3581 		goto out;
3582 	}
3583 
3584 	if (is_kmalloc) {
3585 		/* Make sure we don't copy more data than available */
3586 		if (param_offset >= buff_len)
3587 			ret = -EINVAL;
3588 		else
3589 			memcpy(param_read_buf, &desc_buf[param_offset],
3590 			       min_t(u32, param_size, buff_len - param_offset));
3591 	}
3592 out:
3593 	if (is_kmalloc)
3594 		kfree(desc_buf);
3595 	return ret;
3596 }
3597 
3598 /**
3599  * struct uc_string_id - unicode string
3600  *
3601  * @len: size of this descriptor inclusive
3602  * @type: descriptor type
3603  * @uc: unicode string character
3604  */
3605 struct uc_string_id {
3606 	u8 len;
3607 	u8 type;
3608 	wchar_t uc[];
3609 } __packed;
3610 
3611 /* replace non-printable or non-ASCII characters with spaces */
3612 static inline char ufshcd_remove_non_printable(u8 ch)
3613 {
3614 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3615 }
3616 
3617 /**
3618  * ufshcd_read_string_desc - read string descriptor
3619  * @hba: pointer to adapter instance
3620  * @desc_index: descriptor index
3621  * @buf: pointer to buffer where descriptor would be read,
3622  *       the caller should free the memory.
3623  * @ascii: if true convert from unicode to ascii characters
3624  *         null terminated string.
3625  *
3626  * Return:
3627  * *      string size on success.
3628  * *      -ENOMEM: on allocation failure
3629  * *      -EINVAL: on a wrong parameter
3630  */
3631 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3632 			    u8 **buf, bool ascii)
3633 {
3634 	struct uc_string_id *uc_str;
3635 	u8 *str;
3636 	int ret;
3637 
3638 	if (!buf)
3639 		return -EINVAL;
3640 
3641 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3642 	if (!uc_str)
3643 		return -ENOMEM;
3644 
3645 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3646 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3647 	if (ret < 0) {
3648 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3649 			QUERY_REQ_RETRIES, ret);
3650 		str = NULL;
3651 		goto out;
3652 	}
3653 
3654 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3655 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3656 		str = NULL;
3657 		ret = 0;
3658 		goto out;
3659 	}
3660 
3661 	if (ascii) {
3662 		ssize_t ascii_len;
3663 		int i;
3664 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3665 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3666 		str = kzalloc(ascii_len, GFP_KERNEL);
3667 		if (!str) {
3668 			ret = -ENOMEM;
3669 			goto out;
3670 		}
3671 
3672 		/*
3673 		 * the descriptor contains string in UTF16 format
3674 		 * we need to convert to utf-8 so it can be displayed
3675 		 */
3676 		ret = utf16s_to_utf8s(uc_str->uc,
3677 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3678 				      UTF16_BIG_ENDIAN, str, ascii_len);
3679 
3680 		/* replace non-printable or non-ASCII characters with spaces */
3681 		for (i = 0; i < ret; i++)
3682 			str[i] = ufshcd_remove_non_printable(str[i]);
3683 
3684 		str[ret++] = '\0';
3685 
3686 	} else {
3687 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3688 		if (!str) {
3689 			ret = -ENOMEM;
3690 			goto out;
3691 		}
3692 		ret = uc_str->len;
3693 	}
3694 out:
3695 	*buf = str;
3696 	kfree(uc_str);
3697 	return ret;
3698 }
3699 
3700 /**
3701  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3702  * @hba: Pointer to adapter instance
3703  * @lun: lun id
3704  * @param_offset: offset of the parameter to read
3705  * @param_read_buf: pointer to buffer where parameter would be read
3706  * @param_size: sizeof(param_read_buf)
3707  *
3708  * Return 0 in case of success, non-zero otherwise
3709  */
3710 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3711 					      int lun,
3712 					      enum unit_desc_param param_offset,
3713 					      u8 *param_read_buf,
3714 					      u32 param_size)
3715 {
3716 	/*
3717 	 * Unit descriptors are only available for general purpose LUs (LUN id
3718 	 * from 0 to 7) and RPMB Well known LU.
3719 	 */
3720 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3721 		return -EOPNOTSUPP;
3722 
3723 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3724 				      param_offset, param_read_buf, param_size);
3725 }
3726 
3727 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3728 {
3729 	int err = 0;
3730 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3731 
3732 	if (hba->dev_info.wspecversion >= 0x300) {
3733 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3734 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3735 				&gating_wait);
3736 		if (err)
3737 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3738 					 err, gating_wait);
3739 
3740 		if (gating_wait == 0) {
3741 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3742 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3743 					 gating_wait);
3744 		}
3745 
3746 		hba->dev_info.clk_gating_wait_us = gating_wait;
3747 	}
3748 
3749 	return err;
3750 }
3751 
3752 /**
3753  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3754  * @hba: per adapter instance
3755  *
3756  * 1. Allocate DMA memory for Command Descriptor array
3757  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3758  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3759  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3760  *	(UTMRDL)
3761  * 4. Allocate memory for local reference block(lrb).
3762  *
3763  * Returns 0 for success, non-zero in case of failure
3764  */
3765 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3766 {
3767 	size_t utmrdl_size, utrdl_size, ucdl_size;
3768 
3769 	/* Allocate memory for UTP command descriptors */
3770 	ucdl_size = sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs;
3771 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3772 						  ucdl_size,
3773 						  &hba->ucdl_dma_addr,
3774 						  GFP_KERNEL);
3775 
3776 	/*
3777 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3778 	 */
3779 	if (!hba->ucdl_base_addr ||
3780 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3781 		dev_err(hba->dev,
3782 			"Command Descriptor Memory allocation failed\n");
3783 		goto out;
3784 	}
3785 
3786 	/*
3787 	 * Allocate memory for UTP Transfer descriptors
3788 	 * UFSHCI requires 1024 byte alignment of UTRD
3789 	 */
3790 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3791 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3792 						   utrdl_size,
3793 						   &hba->utrdl_dma_addr,
3794 						   GFP_KERNEL);
3795 	if (!hba->utrdl_base_addr ||
3796 	    WARN_ON(hba->utrdl_dma_addr & (1024 - 1))) {
3797 		dev_err(hba->dev,
3798 			"Transfer Descriptor Memory allocation failed\n");
3799 		goto out;
3800 	}
3801 
3802 	/*
3803 	 * Skip utmrdl allocation; it may have been
3804 	 * allocated during first pass and not released during
3805 	 * MCQ memory allocation.
3806 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3807 	 */
3808 	if (hba->utmrdl_base_addr)
3809 		goto skip_utmrdl;
3810 	/*
3811 	 * Allocate memory for UTP Task Management descriptors
3812 	 * UFSHCI requires 1024 byte alignment of UTMRD
3813 	 */
3814 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3815 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3816 						    utmrdl_size,
3817 						    &hba->utmrdl_dma_addr,
3818 						    GFP_KERNEL);
3819 	if (!hba->utmrdl_base_addr ||
3820 	    WARN_ON(hba->utmrdl_dma_addr & (1024 - 1))) {
3821 		dev_err(hba->dev,
3822 		"Task Management Descriptor Memory allocation failed\n");
3823 		goto out;
3824 	}
3825 
3826 skip_utmrdl:
3827 	/* Allocate memory for local reference block */
3828 	hba->lrb = devm_kcalloc(hba->dev,
3829 				hba->nutrs, sizeof(struct ufshcd_lrb),
3830 				GFP_KERNEL);
3831 	if (!hba->lrb) {
3832 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3833 		goto out;
3834 	}
3835 	return 0;
3836 out:
3837 	return -ENOMEM;
3838 }
3839 
3840 /**
3841  * ufshcd_host_memory_configure - configure local reference block with
3842  *				memory offsets
3843  * @hba: per adapter instance
3844  *
3845  * Configure Host memory space
3846  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3847  * address.
3848  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3849  * and PRDT offset.
3850  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3851  * into local reference block.
3852  */
3853 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3854 {
3855 	struct utp_transfer_req_desc *utrdlp;
3856 	dma_addr_t cmd_desc_dma_addr;
3857 	dma_addr_t cmd_desc_element_addr;
3858 	u16 response_offset;
3859 	u16 prdt_offset;
3860 	int cmd_desc_size;
3861 	int i;
3862 
3863 	utrdlp = hba->utrdl_base_addr;
3864 
3865 	response_offset =
3866 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3867 	prdt_offset =
3868 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3869 
3870 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3871 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3872 
3873 	for (i = 0; i < hba->nutrs; i++) {
3874 		/* Configure UTRD with command descriptor base address */
3875 		cmd_desc_element_addr =
3876 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3877 		utrdlp[i].command_desc_base_addr_lo =
3878 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3879 		utrdlp[i].command_desc_base_addr_hi =
3880 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3881 
3882 		/* Response upiu and prdt offset should be in double words */
3883 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3884 			utrdlp[i].response_upiu_offset =
3885 				cpu_to_le16(response_offset);
3886 			utrdlp[i].prd_table_offset =
3887 				cpu_to_le16(prdt_offset);
3888 			utrdlp[i].response_upiu_length =
3889 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3890 		} else {
3891 			utrdlp[i].response_upiu_offset =
3892 				cpu_to_le16(response_offset >> 2);
3893 			utrdlp[i].prd_table_offset =
3894 				cpu_to_le16(prdt_offset >> 2);
3895 			utrdlp[i].response_upiu_length =
3896 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3897 		}
3898 
3899 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3900 	}
3901 }
3902 
3903 /**
3904  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3905  * @hba: per adapter instance
3906  *
3907  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3908  * in order to initialize the Unipro link startup procedure.
3909  * Once the Unipro links are up, the device connected to the controller
3910  * is detected.
3911  *
3912  * Returns 0 on success, non-zero value on failure
3913  */
3914 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3915 {
3916 	struct uic_command uic_cmd = {0};
3917 	int ret;
3918 
3919 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3920 
3921 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3922 	if (ret)
3923 		dev_dbg(hba->dev,
3924 			"dme-link-startup: error code %d\n", ret);
3925 	return ret;
3926 }
3927 /**
3928  * ufshcd_dme_reset - UIC command for DME_RESET
3929  * @hba: per adapter instance
3930  *
3931  * DME_RESET command is issued in order to reset UniPro stack.
3932  * This function now deals with cold reset.
3933  *
3934  * Returns 0 on success, non-zero value on failure
3935  */
3936 static int ufshcd_dme_reset(struct ufs_hba *hba)
3937 {
3938 	struct uic_command uic_cmd = {0};
3939 	int ret;
3940 
3941 	uic_cmd.command = UIC_CMD_DME_RESET;
3942 
3943 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3944 	if (ret)
3945 		dev_err(hba->dev,
3946 			"dme-reset: error code %d\n", ret);
3947 
3948 	return ret;
3949 }
3950 
3951 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3952 			       int agreed_gear,
3953 			       int adapt_val)
3954 {
3955 	int ret;
3956 
3957 	if (agreed_gear < UFS_HS_G4)
3958 		adapt_val = PA_NO_ADAPT;
3959 
3960 	ret = ufshcd_dme_set(hba,
3961 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3962 			     adapt_val);
3963 	return ret;
3964 }
3965 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3966 
3967 /**
3968  * ufshcd_dme_enable - UIC command for DME_ENABLE
3969  * @hba: per adapter instance
3970  *
3971  * DME_ENABLE command is issued in order to enable UniPro stack.
3972  *
3973  * Returns 0 on success, non-zero value on failure
3974  */
3975 static int ufshcd_dme_enable(struct ufs_hba *hba)
3976 {
3977 	struct uic_command uic_cmd = {0};
3978 	int ret;
3979 
3980 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3981 
3982 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3983 	if (ret)
3984 		dev_err(hba->dev,
3985 			"dme-enable: error code %d\n", ret);
3986 
3987 	return ret;
3988 }
3989 
3990 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3991 {
3992 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3993 	unsigned long min_sleep_time_us;
3994 
3995 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3996 		return;
3997 
3998 	/*
3999 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4000 	 * this function
4001 	 */
4002 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4003 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4004 	} else {
4005 		unsigned long delta =
4006 			(unsigned long) ktime_to_us(
4007 				ktime_sub(ktime_get(),
4008 				hba->last_dme_cmd_tstamp));
4009 
4010 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4011 			min_sleep_time_us =
4012 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4013 		else
4014 			return; /* no more delay required */
4015 	}
4016 
4017 	/* allow sleep for extra 50us if needed */
4018 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4019 }
4020 
4021 /**
4022  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4023  * @hba: per adapter instance
4024  * @attr_sel: uic command argument1
4025  * @attr_set: attribute set type as uic command argument2
4026  * @mib_val: setting value as uic command argument3
4027  * @peer: indicate whether peer or local
4028  *
4029  * Returns 0 on success, non-zero value on failure
4030  */
4031 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4032 			u8 attr_set, u32 mib_val, u8 peer)
4033 {
4034 	struct uic_command uic_cmd = {0};
4035 	static const char *const action[] = {
4036 		"dme-set",
4037 		"dme-peer-set"
4038 	};
4039 	const char *set = action[!!peer];
4040 	int ret;
4041 	int retries = UFS_UIC_COMMAND_RETRIES;
4042 
4043 	uic_cmd.command = peer ?
4044 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4045 	uic_cmd.argument1 = attr_sel;
4046 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4047 	uic_cmd.argument3 = mib_val;
4048 
4049 	do {
4050 		/* for peer attributes we retry upon failure */
4051 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4052 		if (ret)
4053 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4054 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4055 	} while (ret && peer && --retries);
4056 
4057 	if (ret)
4058 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4059 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4060 			UFS_UIC_COMMAND_RETRIES - retries);
4061 
4062 	return ret;
4063 }
4064 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4065 
4066 /**
4067  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4068  * @hba: per adapter instance
4069  * @attr_sel: uic command argument1
4070  * @mib_val: the value of the attribute as returned by the UIC command
4071  * @peer: indicate whether peer or local
4072  *
4073  * Returns 0 on success, non-zero value on failure
4074  */
4075 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4076 			u32 *mib_val, u8 peer)
4077 {
4078 	struct uic_command uic_cmd = {0};
4079 	static const char *const action[] = {
4080 		"dme-get",
4081 		"dme-peer-get"
4082 	};
4083 	const char *get = action[!!peer];
4084 	int ret;
4085 	int retries = UFS_UIC_COMMAND_RETRIES;
4086 	struct ufs_pa_layer_attr orig_pwr_info;
4087 	struct ufs_pa_layer_attr temp_pwr_info;
4088 	bool pwr_mode_change = false;
4089 
4090 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4091 		orig_pwr_info = hba->pwr_info;
4092 		temp_pwr_info = orig_pwr_info;
4093 
4094 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4095 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4096 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4097 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4098 			pwr_mode_change = true;
4099 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4100 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4101 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4102 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4103 			pwr_mode_change = true;
4104 		}
4105 		if (pwr_mode_change) {
4106 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4107 			if (ret)
4108 				goto out;
4109 		}
4110 	}
4111 
4112 	uic_cmd.command = peer ?
4113 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4114 	uic_cmd.argument1 = attr_sel;
4115 
4116 	do {
4117 		/* for peer attributes we retry upon failure */
4118 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4119 		if (ret)
4120 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4121 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4122 	} while (ret && peer && --retries);
4123 
4124 	if (ret)
4125 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4126 			get, UIC_GET_ATTR_ID(attr_sel),
4127 			UFS_UIC_COMMAND_RETRIES - retries);
4128 
4129 	if (mib_val && !ret)
4130 		*mib_val = uic_cmd.argument3;
4131 
4132 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4133 	    && pwr_mode_change)
4134 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4135 out:
4136 	return ret;
4137 }
4138 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4139 
4140 /**
4141  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4142  * state) and waits for it to take effect.
4143  *
4144  * @hba: per adapter instance
4145  * @cmd: UIC command to execute
4146  *
4147  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4148  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4149  * and device UniPro link and hence it's final completion would be indicated by
4150  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4151  * addition to normal UIC command completion Status (UCCS). This function only
4152  * returns after the relevant status bits indicate the completion.
4153  *
4154  * Returns 0 on success, non-zero value on failure
4155  */
4156 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4157 {
4158 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4159 	unsigned long flags;
4160 	u8 status;
4161 	int ret;
4162 	bool reenable_intr = false;
4163 
4164 	mutex_lock(&hba->uic_cmd_mutex);
4165 	ufshcd_add_delay_before_dme_cmd(hba);
4166 
4167 	spin_lock_irqsave(hba->host->host_lock, flags);
4168 	if (ufshcd_is_link_broken(hba)) {
4169 		ret = -ENOLINK;
4170 		goto out_unlock;
4171 	}
4172 	hba->uic_async_done = &uic_async_done;
4173 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4174 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4175 		/*
4176 		 * Make sure UIC command completion interrupt is disabled before
4177 		 * issuing UIC command.
4178 		 */
4179 		wmb();
4180 		reenable_intr = true;
4181 	}
4182 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4183 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4184 	if (ret) {
4185 		dev_err(hba->dev,
4186 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4187 			cmd->command, cmd->argument3, ret);
4188 		goto out;
4189 	}
4190 
4191 	if (!wait_for_completion_timeout(hba->uic_async_done,
4192 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4193 		dev_err(hba->dev,
4194 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4195 			cmd->command, cmd->argument3);
4196 
4197 		if (!cmd->cmd_active) {
4198 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4199 				__func__);
4200 			goto check_upmcrs;
4201 		}
4202 
4203 		ret = -ETIMEDOUT;
4204 		goto out;
4205 	}
4206 
4207 check_upmcrs:
4208 	status = ufshcd_get_upmcrs(hba);
4209 	if (status != PWR_LOCAL) {
4210 		dev_err(hba->dev,
4211 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4212 			cmd->command, status);
4213 		ret = (status != PWR_OK) ? status : -1;
4214 	}
4215 out:
4216 	if (ret) {
4217 		ufshcd_print_host_state(hba);
4218 		ufshcd_print_pwr_info(hba);
4219 		ufshcd_print_evt_hist(hba);
4220 	}
4221 
4222 	spin_lock_irqsave(hba->host->host_lock, flags);
4223 	hba->active_uic_cmd = NULL;
4224 	hba->uic_async_done = NULL;
4225 	if (reenable_intr)
4226 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4227 	if (ret) {
4228 		ufshcd_set_link_broken(hba);
4229 		ufshcd_schedule_eh_work(hba);
4230 	}
4231 out_unlock:
4232 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4233 	mutex_unlock(&hba->uic_cmd_mutex);
4234 
4235 	return ret;
4236 }
4237 
4238 /**
4239  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4240  *				using DME_SET primitives.
4241  * @hba: per adapter instance
4242  * @mode: powr mode value
4243  *
4244  * Returns 0 on success, non-zero value on failure
4245  */
4246 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4247 {
4248 	struct uic_command uic_cmd = {0};
4249 	int ret;
4250 
4251 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4252 		ret = ufshcd_dme_set(hba,
4253 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4254 		if (ret) {
4255 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4256 						__func__, ret);
4257 			goto out;
4258 		}
4259 	}
4260 
4261 	uic_cmd.command = UIC_CMD_DME_SET;
4262 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4263 	uic_cmd.argument3 = mode;
4264 	ufshcd_hold(hba, false);
4265 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4266 	ufshcd_release(hba);
4267 
4268 out:
4269 	return ret;
4270 }
4271 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4272 
4273 int ufshcd_link_recovery(struct ufs_hba *hba)
4274 {
4275 	int ret;
4276 	unsigned long flags;
4277 
4278 	spin_lock_irqsave(hba->host->host_lock, flags);
4279 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4280 	ufshcd_set_eh_in_progress(hba);
4281 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4282 
4283 	/* Reset the attached device */
4284 	ufshcd_device_reset(hba);
4285 
4286 	ret = ufshcd_host_reset_and_restore(hba);
4287 
4288 	spin_lock_irqsave(hba->host->host_lock, flags);
4289 	if (ret)
4290 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4291 	ufshcd_clear_eh_in_progress(hba);
4292 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4293 
4294 	if (ret)
4295 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4296 			__func__, ret);
4297 
4298 	return ret;
4299 }
4300 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4301 
4302 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4303 {
4304 	int ret;
4305 	struct uic_command uic_cmd = {0};
4306 	ktime_t start = ktime_get();
4307 
4308 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4309 
4310 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4311 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4312 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4313 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4314 
4315 	if (ret)
4316 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4317 			__func__, ret);
4318 	else
4319 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4320 								POST_CHANGE);
4321 
4322 	return ret;
4323 }
4324 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4325 
4326 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4327 {
4328 	struct uic_command uic_cmd = {0};
4329 	int ret;
4330 	ktime_t start = ktime_get();
4331 
4332 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4333 
4334 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4335 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4336 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4337 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4338 
4339 	if (ret) {
4340 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4341 			__func__, ret);
4342 	} else {
4343 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4344 								POST_CHANGE);
4345 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4346 		hba->ufs_stats.hibern8_exit_cnt++;
4347 	}
4348 
4349 	return ret;
4350 }
4351 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4352 
4353 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4354 {
4355 	unsigned long flags;
4356 	bool update = false;
4357 
4358 	if (!ufshcd_is_auto_hibern8_supported(hba))
4359 		return;
4360 
4361 	spin_lock_irqsave(hba->host->host_lock, flags);
4362 	if (hba->ahit != ahit) {
4363 		hba->ahit = ahit;
4364 		update = true;
4365 	}
4366 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4367 
4368 	if (update &&
4369 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4370 		ufshcd_rpm_get_sync(hba);
4371 		ufshcd_hold(hba, false);
4372 		ufshcd_auto_hibern8_enable(hba);
4373 		ufshcd_release(hba);
4374 		ufshcd_rpm_put_sync(hba);
4375 	}
4376 }
4377 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4378 
4379 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4380 {
4381 	if (!ufshcd_is_auto_hibern8_supported(hba))
4382 		return;
4383 
4384 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4385 }
4386 
4387  /**
4388  * ufshcd_init_pwr_info - setting the POR (power on reset)
4389  * values in hba power info
4390  * @hba: per-adapter instance
4391  */
4392 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4393 {
4394 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4395 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4396 	hba->pwr_info.lane_rx = 1;
4397 	hba->pwr_info.lane_tx = 1;
4398 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4399 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4400 	hba->pwr_info.hs_rate = 0;
4401 }
4402 
4403 /**
4404  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4405  * @hba: per-adapter instance
4406  */
4407 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4408 {
4409 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4410 
4411 	if (hba->max_pwr_info.is_valid)
4412 		return 0;
4413 
4414 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4415 		pwr_info->pwr_tx = FASTAUTO_MODE;
4416 		pwr_info->pwr_rx = FASTAUTO_MODE;
4417 	} else {
4418 		pwr_info->pwr_tx = FAST_MODE;
4419 		pwr_info->pwr_rx = FAST_MODE;
4420 	}
4421 	pwr_info->hs_rate = PA_HS_MODE_B;
4422 
4423 	/* Get the connected lane count */
4424 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4425 			&pwr_info->lane_rx);
4426 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4427 			&pwr_info->lane_tx);
4428 
4429 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4430 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4431 				__func__,
4432 				pwr_info->lane_rx,
4433 				pwr_info->lane_tx);
4434 		return -EINVAL;
4435 	}
4436 
4437 	/*
4438 	 * First, get the maximum gears of HS speed.
4439 	 * If a zero value, it means there is no HSGEAR capability.
4440 	 * Then, get the maximum gears of PWM speed.
4441 	 */
4442 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4443 	if (!pwr_info->gear_rx) {
4444 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4445 				&pwr_info->gear_rx);
4446 		if (!pwr_info->gear_rx) {
4447 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4448 				__func__, pwr_info->gear_rx);
4449 			return -EINVAL;
4450 		}
4451 		pwr_info->pwr_rx = SLOW_MODE;
4452 	}
4453 
4454 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4455 			&pwr_info->gear_tx);
4456 	if (!pwr_info->gear_tx) {
4457 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4458 				&pwr_info->gear_tx);
4459 		if (!pwr_info->gear_tx) {
4460 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4461 				__func__, pwr_info->gear_tx);
4462 			return -EINVAL;
4463 		}
4464 		pwr_info->pwr_tx = SLOW_MODE;
4465 	}
4466 
4467 	hba->max_pwr_info.is_valid = true;
4468 	return 0;
4469 }
4470 
4471 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4472 			     struct ufs_pa_layer_attr *pwr_mode)
4473 {
4474 	int ret;
4475 
4476 	/* if already configured to the requested pwr_mode */
4477 	if (!hba->force_pmc &&
4478 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4479 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4480 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4481 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4482 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4483 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4484 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4485 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4486 		return 0;
4487 	}
4488 
4489 	/*
4490 	 * Configure attributes for power mode change with below.
4491 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4492 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4493 	 * - PA_HSSERIES
4494 	 */
4495 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4496 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4497 			pwr_mode->lane_rx);
4498 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4499 			pwr_mode->pwr_rx == FAST_MODE)
4500 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4501 	else
4502 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4503 
4504 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4505 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4506 			pwr_mode->lane_tx);
4507 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4508 			pwr_mode->pwr_tx == FAST_MODE)
4509 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4510 	else
4511 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4512 
4513 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4514 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4515 	    pwr_mode->pwr_rx == FAST_MODE ||
4516 	    pwr_mode->pwr_tx == FAST_MODE)
4517 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4518 						pwr_mode->hs_rate);
4519 
4520 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4521 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4522 				DL_FC0ProtectionTimeOutVal_Default);
4523 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4524 				DL_TC0ReplayTimeOutVal_Default);
4525 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4526 				DL_AFC0ReqTimeOutVal_Default);
4527 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4528 				DL_FC1ProtectionTimeOutVal_Default);
4529 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4530 				DL_TC1ReplayTimeOutVal_Default);
4531 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4532 				DL_AFC1ReqTimeOutVal_Default);
4533 
4534 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4535 				DL_FC0ProtectionTimeOutVal_Default);
4536 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4537 				DL_TC0ReplayTimeOutVal_Default);
4538 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4539 				DL_AFC0ReqTimeOutVal_Default);
4540 	}
4541 
4542 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4543 			| pwr_mode->pwr_tx);
4544 
4545 	if (ret) {
4546 		dev_err(hba->dev,
4547 			"%s: power mode change failed %d\n", __func__, ret);
4548 	} else {
4549 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4550 								pwr_mode);
4551 
4552 		memcpy(&hba->pwr_info, pwr_mode,
4553 			sizeof(struct ufs_pa_layer_attr));
4554 	}
4555 
4556 	return ret;
4557 }
4558 
4559 /**
4560  * ufshcd_config_pwr_mode - configure a new power mode
4561  * @hba: per-adapter instance
4562  * @desired_pwr_mode: desired power configuration
4563  */
4564 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4565 		struct ufs_pa_layer_attr *desired_pwr_mode)
4566 {
4567 	struct ufs_pa_layer_attr final_params = { 0 };
4568 	int ret;
4569 
4570 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4571 					desired_pwr_mode, &final_params);
4572 
4573 	if (ret)
4574 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4575 
4576 	ret = ufshcd_change_power_mode(hba, &final_params);
4577 
4578 	return ret;
4579 }
4580 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4581 
4582 /**
4583  * ufshcd_complete_dev_init() - checks device readiness
4584  * @hba: per-adapter instance
4585  *
4586  * Set fDeviceInit flag and poll until device toggles it.
4587  */
4588 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4589 {
4590 	int err;
4591 	bool flag_res = true;
4592 	ktime_t timeout;
4593 
4594 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4595 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4596 	if (err) {
4597 		dev_err(hba->dev,
4598 			"%s: setting fDeviceInit flag failed with error %d\n",
4599 			__func__, err);
4600 		goto out;
4601 	}
4602 
4603 	/* Poll fDeviceInit flag to be cleared */
4604 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4605 	do {
4606 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4607 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4608 		if (!flag_res)
4609 			break;
4610 		usleep_range(500, 1000);
4611 	} while (ktime_before(ktime_get(), timeout));
4612 
4613 	if (err) {
4614 		dev_err(hba->dev,
4615 				"%s: reading fDeviceInit flag failed with error %d\n",
4616 				__func__, err);
4617 	} else if (flag_res) {
4618 		dev_err(hba->dev,
4619 				"%s: fDeviceInit was not cleared by the device\n",
4620 				__func__);
4621 		err = -EBUSY;
4622 	}
4623 out:
4624 	return err;
4625 }
4626 
4627 /**
4628  * ufshcd_make_hba_operational - Make UFS controller operational
4629  * @hba: per adapter instance
4630  *
4631  * To bring UFS host controller to operational state,
4632  * 1. Enable required interrupts
4633  * 2. Configure interrupt aggregation
4634  * 3. Program UTRL and UTMRL base address
4635  * 4. Configure run-stop-registers
4636  *
4637  * Returns 0 on success, non-zero value on failure
4638  */
4639 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4640 {
4641 	int err = 0;
4642 	u32 reg;
4643 
4644 	/* Enable required interrupts */
4645 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4646 
4647 	/* Configure interrupt aggregation */
4648 	if (ufshcd_is_intr_aggr_allowed(hba))
4649 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4650 	else
4651 		ufshcd_disable_intr_aggr(hba);
4652 
4653 	/* Configure UTRL and UTMRL base address registers */
4654 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4655 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4656 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4657 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4658 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4659 			REG_UTP_TASK_REQ_LIST_BASE_L);
4660 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4661 			REG_UTP_TASK_REQ_LIST_BASE_H);
4662 
4663 	/*
4664 	 * Make sure base address and interrupt setup are updated before
4665 	 * enabling the run/stop registers below.
4666 	 */
4667 	wmb();
4668 
4669 	/*
4670 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4671 	 */
4672 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4673 	if (!(ufshcd_get_lists_status(reg))) {
4674 		ufshcd_enable_run_stop_reg(hba);
4675 	} else {
4676 		dev_err(hba->dev,
4677 			"Host controller not ready to process requests");
4678 		err = -EIO;
4679 	}
4680 
4681 	return err;
4682 }
4683 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4684 
4685 /**
4686  * ufshcd_hba_stop - Send controller to reset state
4687  * @hba: per adapter instance
4688  */
4689 void ufshcd_hba_stop(struct ufs_hba *hba)
4690 {
4691 	unsigned long flags;
4692 	int err;
4693 
4694 	/*
4695 	 * Obtain the host lock to prevent that the controller is disabled
4696 	 * while the UFS interrupt handler is active on another CPU.
4697 	 */
4698 	spin_lock_irqsave(hba->host->host_lock, flags);
4699 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4700 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4701 
4702 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4703 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4704 					10, 1);
4705 	if (err)
4706 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4707 }
4708 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4709 
4710 /**
4711  * ufshcd_hba_execute_hce - initialize the controller
4712  * @hba: per adapter instance
4713  *
4714  * The controller resets itself and controller firmware initialization
4715  * sequence kicks off. When controller is ready it will set
4716  * the Host Controller Enable bit to 1.
4717  *
4718  * Returns 0 on success, non-zero value on failure
4719  */
4720 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4721 {
4722 	int retry_outer = 3;
4723 	int retry_inner;
4724 
4725 start:
4726 	if (ufshcd_is_hba_active(hba))
4727 		/* change controller state to "reset state" */
4728 		ufshcd_hba_stop(hba);
4729 
4730 	/* UniPro link is disabled at this point */
4731 	ufshcd_set_link_off(hba);
4732 
4733 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4734 
4735 	/* start controller initialization sequence */
4736 	ufshcd_hba_start(hba);
4737 
4738 	/*
4739 	 * To initialize a UFS host controller HCE bit must be set to 1.
4740 	 * During initialization the HCE bit value changes from 1->0->1.
4741 	 * When the host controller completes initialization sequence
4742 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4743 	 * to check if the controller has completed initialization sequence.
4744 	 * So without this delay the value HCE = 1, set in the previous
4745 	 * instruction might be read back.
4746 	 * This delay can be changed based on the controller.
4747 	 */
4748 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4749 
4750 	/* wait for the host controller to complete initialization */
4751 	retry_inner = 50;
4752 	while (!ufshcd_is_hba_active(hba)) {
4753 		if (retry_inner) {
4754 			retry_inner--;
4755 		} else {
4756 			dev_err(hba->dev,
4757 				"Controller enable failed\n");
4758 			if (retry_outer) {
4759 				retry_outer--;
4760 				goto start;
4761 			}
4762 			return -EIO;
4763 		}
4764 		usleep_range(1000, 1100);
4765 	}
4766 
4767 	/* enable UIC related interrupts */
4768 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4769 
4770 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4771 
4772 	return 0;
4773 }
4774 
4775 int ufshcd_hba_enable(struct ufs_hba *hba)
4776 {
4777 	int ret;
4778 
4779 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4780 		ufshcd_set_link_off(hba);
4781 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4782 
4783 		/* enable UIC related interrupts */
4784 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4785 		ret = ufshcd_dme_reset(hba);
4786 		if (ret) {
4787 			dev_err(hba->dev, "DME_RESET failed\n");
4788 			return ret;
4789 		}
4790 
4791 		ret = ufshcd_dme_enable(hba);
4792 		if (ret) {
4793 			dev_err(hba->dev, "Enabling DME failed\n");
4794 			return ret;
4795 		}
4796 
4797 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4798 	} else {
4799 		ret = ufshcd_hba_execute_hce(hba);
4800 	}
4801 
4802 	return ret;
4803 }
4804 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4805 
4806 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4807 {
4808 	int tx_lanes = 0, i, err = 0;
4809 
4810 	if (!peer)
4811 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4812 			       &tx_lanes);
4813 	else
4814 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4815 				    &tx_lanes);
4816 	for (i = 0; i < tx_lanes; i++) {
4817 		if (!peer)
4818 			err = ufshcd_dme_set(hba,
4819 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4820 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4821 					0);
4822 		else
4823 			err = ufshcd_dme_peer_set(hba,
4824 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4825 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4826 					0);
4827 		if (err) {
4828 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4829 				__func__, peer, i, err);
4830 			break;
4831 		}
4832 	}
4833 
4834 	return err;
4835 }
4836 
4837 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4838 {
4839 	return ufshcd_disable_tx_lcc(hba, true);
4840 }
4841 
4842 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4843 {
4844 	struct ufs_event_hist *e;
4845 
4846 	if (id >= UFS_EVT_CNT)
4847 		return;
4848 
4849 	e = &hba->ufs_stats.event[id];
4850 	e->val[e->pos] = val;
4851 	e->tstamp[e->pos] = local_clock();
4852 	e->cnt += 1;
4853 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4854 
4855 	ufshcd_vops_event_notify(hba, id, &val);
4856 }
4857 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4858 
4859 /**
4860  * ufshcd_link_startup - Initialize unipro link startup
4861  * @hba: per adapter instance
4862  *
4863  * Returns 0 for success, non-zero in case of failure
4864  */
4865 static int ufshcd_link_startup(struct ufs_hba *hba)
4866 {
4867 	int ret;
4868 	int retries = DME_LINKSTARTUP_RETRIES;
4869 	bool link_startup_again = false;
4870 
4871 	/*
4872 	 * If UFS device isn't active then we will have to issue link startup
4873 	 * 2 times to make sure the device state move to active.
4874 	 */
4875 	if (!ufshcd_is_ufs_dev_active(hba))
4876 		link_startup_again = true;
4877 
4878 link_startup:
4879 	do {
4880 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4881 
4882 		ret = ufshcd_dme_link_startup(hba);
4883 
4884 		/* check if device is detected by inter-connect layer */
4885 		if (!ret && !ufshcd_is_device_present(hba)) {
4886 			ufshcd_update_evt_hist(hba,
4887 					       UFS_EVT_LINK_STARTUP_FAIL,
4888 					       0);
4889 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4890 			ret = -ENXIO;
4891 			goto out;
4892 		}
4893 
4894 		/*
4895 		 * DME link lost indication is only received when link is up,
4896 		 * but we can't be sure if the link is up until link startup
4897 		 * succeeds. So reset the local Uni-Pro and try again.
4898 		 */
4899 		if (ret && retries && ufshcd_hba_enable(hba)) {
4900 			ufshcd_update_evt_hist(hba,
4901 					       UFS_EVT_LINK_STARTUP_FAIL,
4902 					       (u32)ret);
4903 			goto out;
4904 		}
4905 	} while (ret && retries--);
4906 
4907 	if (ret) {
4908 		/* failed to get the link up... retire */
4909 		ufshcd_update_evt_hist(hba,
4910 				       UFS_EVT_LINK_STARTUP_FAIL,
4911 				       (u32)ret);
4912 		goto out;
4913 	}
4914 
4915 	if (link_startup_again) {
4916 		link_startup_again = false;
4917 		retries = DME_LINKSTARTUP_RETRIES;
4918 		goto link_startup;
4919 	}
4920 
4921 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4922 	ufshcd_init_pwr_info(hba);
4923 	ufshcd_print_pwr_info(hba);
4924 
4925 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4926 		ret = ufshcd_disable_device_tx_lcc(hba);
4927 		if (ret)
4928 			goto out;
4929 	}
4930 
4931 	/* Include any host controller configuration via UIC commands */
4932 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4933 	if (ret)
4934 		goto out;
4935 
4936 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4937 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4938 	ret = ufshcd_make_hba_operational(hba);
4939 out:
4940 	if (ret) {
4941 		dev_err(hba->dev, "link startup failed %d\n", ret);
4942 		ufshcd_print_host_state(hba);
4943 		ufshcd_print_pwr_info(hba);
4944 		ufshcd_print_evt_hist(hba);
4945 	}
4946 	return ret;
4947 }
4948 
4949 /**
4950  * ufshcd_verify_dev_init() - Verify device initialization
4951  * @hba: per-adapter instance
4952  *
4953  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4954  * device Transport Protocol (UTP) layer is ready after a reset.
4955  * If the UTP layer at the device side is not initialized, it may
4956  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4957  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4958  */
4959 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4960 {
4961 	int err = 0;
4962 	int retries;
4963 
4964 	ufshcd_hold(hba, false);
4965 	mutex_lock(&hba->dev_cmd.lock);
4966 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4967 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4968 					  hba->nop_out_timeout);
4969 
4970 		if (!err || err == -ETIMEDOUT)
4971 			break;
4972 
4973 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4974 	}
4975 	mutex_unlock(&hba->dev_cmd.lock);
4976 	ufshcd_release(hba);
4977 
4978 	if (err)
4979 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4980 	return err;
4981 }
4982 
4983 /**
4984  * ufshcd_setup_links - associate link b/w device wlun and other luns
4985  * @sdev: pointer to SCSI device
4986  * @hba: pointer to ufs hba
4987  */
4988 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4989 {
4990 	struct device_link *link;
4991 
4992 	/*
4993 	 * Device wlun is the supplier & rest of the luns are consumers.
4994 	 * This ensures that device wlun suspends after all other luns.
4995 	 */
4996 	if (hba->ufs_device_wlun) {
4997 		link = device_link_add(&sdev->sdev_gendev,
4998 				       &hba->ufs_device_wlun->sdev_gendev,
4999 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5000 		if (!link) {
5001 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5002 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5003 			return;
5004 		}
5005 		hba->luns_avail--;
5006 		/* Ignore REPORT_LUN wlun probing */
5007 		if (hba->luns_avail == 1) {
5008 			ufshcd_rpm_put(hba);
5009 			return;
5010 		}
5011 	} else {
5012 		/*
5013 		 * Device wlun is probed. The assumption is that WLUNs are
5014 		 * scanned before other LUNs.
5015 		 */
5016 		hba->luns_avail--;
5017 	}
5018 }
5019 
5020 /**
5021  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5022  * @hba: per-adapter instance
5023  * @sdev: pointer to SCSI device
5024  */
5025 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5026 {
5027 	int len = QUERY_DESC_MAX_SIZE;
5028 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5029 	u8 lun_qdepth = hba->nutrs;
5030 	u8 *desc_buf;
5031 	int ret;
5032 
5033 	desc_buf = kzalloc(len, GFP_KERNEL);
5034 	if (!desc_buf)
5035 		goto set_qdepth;
5036 
5037 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5038 	if (ret < 0) {
5039 		if (ret == -EOPNOTSUPP)
5040 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5041 			lun_qdepth = 1;
5042 		kfree(desc_buf);
5043 		goto set_qdepth;
5044 	}
5045 
5046 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5047 		/*
5048 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5049 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5050 		 */
5051 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5052 	}
5053 	/*
5054 	 * According to UFS device specification, the write protection mode is only supported by
5055 	 * normal LU, not supported by WLUN.
5056 	 */
5057 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5058 	    !hba->dev_info.is_lu_power_on_wp &&
5059 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5060 		hba->dev_info.is_lu_power_on_wp = true;
5061 
5062 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5063 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5064 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5065 		hba->dev_info.b_advanced_rpmb_en = true;
5066 
5067 
5068 	kfree(desc_buf);
5069 set_qdepth:
5070 	/*
5071 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5072 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5073 	 */
5074 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5075 	scsi_change_queue_depth(sdev, lun_qdepth);
5076 }
5077 
5078 /**
5079  * ufshcd_slave_alloc - handle initial SCSI device configurations
5080  * @sdev: pointer to SCSI device
5081  *
5082  * Returns success
5083  */
5084 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5085 {
5086 	struct ufs_hba *hba;
5087 
5088 	hba = shost_priv(sdev->host);
5089 
5090 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5091 	sdev->use_10_for_ms = 1;
5092 
5093 	/* DBD field should be set to 1 in mode sense(10) */
5094 	sdev->set_dbd_for_ms = 1;
5095 
5096 	/* allow SCSI layer to restart the device in case of errors */
5097 	sdev->allow_restart = 1;
5098 
5099 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5100 	sdev->no_report_opcodes = 1;
5101 
5102 	/* WRITE_SAME command is not supported */
5103 	sdev->no_write_same = 1;
5104 
5105 	ufshcd_lu_init(hba, sdev);
5106 
5107 	ufshcd_setup_links(hba, sdev);
5108 
5109 	return 0;
5110 }
5111 
5112 /**
5113  * ufshcd_change_queue_depth - change queue depth
5114  * @sdev: pointer to SCSI device
5115  * @depth: required depth to set
5116  *
5117  * Change queue depth and make sure the max. limits are not crossed.
5118  */
5119 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5120 {
5121 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5122 }
5123 
5124 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5125 {
5126 	/* skip well-known LU */
5127 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5128 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5129 		return;
5130 
5131 	ufshpb_destroy_lu(hba, sdev);
5132 }
5133 
5134 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5135 {
5136 	/* skip well-known LU */
5137 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5138 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5139 		return;
5140 
5141 	ufshpb_init_hpb_lu(hba, sdev);
5142 }
5143 
5144 /**
5145  * ufshcd_slave_configure - adjust SCSI device configurations
5146  * @sdev: pointer to SCSI device
5147  */
5148 static int ufshcd_slave_configure(struct scsi_device *sdev)
5149 {
5150 	struct ufs_hba *hba = shost_priv(sdev->host);
5151 	struct request_queue *q = sdev->request_queue;
5152 
5153 	ufshcd_hpb_configure(hba, sdev);
5154 
5155 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5156 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5157 		blk_queue_update_dma_alignment(q, 4096 - 1);
5158 	/*
5159 	 * Block runtime-pm until all consumers are added.
5160 	 * Refer ufshcd_setup_links().
5161 	 */
5162 	if (is_device_wlun(sdev))
5163 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5164 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5165 		sdev->rpm_autosuspend = 1;
5166 	/*
5167 	 * Do not print messages during runtime PM to avoid never-ending cycles
5168 	 * of messages written back to storage by user space causing runtime
5169 	 * resume, causing more messages and so on.
5170 	 */
5171 	sdev->silence_suspend = 1;
5172 
5173 	ufshcd_crypto_register(hba, q);
5174 
5175 	return 0;
5176 }
5177 
5178 /**
5179  * ufshcd_slave_destroy - remove SCSI device configurations
5180  * @sdev: pointer to SCSI device
5181  */
5182 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5183 {
5184 	struct ufs_hba *hba;
5185 	unsigned long flags;
5186 
5187 	hba = shost_priv(sdev->host);
5188 
5189 	ufshcd_hpb_destroy(hba, sdev);
5190 
5191 	/* Drop the reference as it won't be needed anymore */
5192 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5193 		spin_lock_irqsave(hba->host->host_lock, flags);
5194 		hba->ufs_device_wlun = NULL;
5195 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5196 	} else if (hba->ufs_device_wlun) {
5197 		struct device *supplier = NULL;
5198 
5199 		/* Ensure UFS Device WLUN exists and does not disappear */
5200 		spin_lock_irqsave(hba->host->host_lock, flags);
5201 		if (hba->ufs_device_wlun) {
5202 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5203 			get_device(supplier);
5204 		}
5205 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5206 
5207 		if (supplier) {
5208 			/*
5209 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5210 			 * device will not have been registered but can still
5211 			 * have a device link holding a reference to the device.
5212 			 */
5213 			device_link_remove(&sdev->sdev_gendev, supplier);
5214 			put_device(supplier);
5215 		}
5216 	}
5217 }
5218 
5219 /**
5220  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5221  * @lrbp: pointer to local reference block of completed command
5222  * @scsi_status: SCSI command status
5223  *
5224  * Returns value base on SCSI command status
5225  */
5226 static inline int
5227 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5228 {
5229 	int result = 0;
5230 
5231 	switch (scsi_status) {
5232 	case SAM_STAT_CHECK_CONDITION:
5233 		ufshcd_copy_sense_data(lrbp);
5234 		fallthrough;
5235 	case SAM_STAT_GOOD:
5236 		result |= DID_OK << 16 | scsi_status;
5237 		break;
5238 	case SAM_STAT_TASK_SET_FULL:
5239 	case SAM_STAT_BUSY:
5240 	case SAM_STAT_TASK_ABORTED:
5241 		ufshcd_copy_sense_data(lrbp);
5242 		result |= scsi_status;
5243 		break;
5244 	default:
5245 		result |= DID_ERROR << 16;
5246 		break;
5247 	} /* end of switch */
5248 
5249 	return result;
5250 }
5251 
5252 /**
5253  * ufshcd_transfer_rsp_status - Get overall status of the response
5254  * @hba: per adapter instance
5255  * @lrbp: pointer to local reference block of completed command
5256  * @cqe: pointer to the completion queue entry
5257  *
5258  * Returns result of the command to notify SCSI midlayer
5259  */
5260 static inline int
5261 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5262 			   struct cq_entry *cqe)
5263 {
5264 	int result = 0;
5265 	int scsi_status;
5266 	enum utp_ocs ocs;
5267 
5268 	scsi_set_resid(lrbp->cmd,
5269 		be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count));
5270 
5271 	/* overall command status of utrd */
5272 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5273 
5274 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5275 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5276 					MASK_RSP_UPIU_RESULT)
5277 			ocs = OCS_SUCCESS;
5278 	}
5279 
5280 	switch (ocs) {
5281 	case OCS_SUCCESS:
5282 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5283 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5284 		switch (result) {
5285 		case UPIU_TRANSACTION_RESPONSE:
5286 			/*
5287 			 * get the response UPIU result to extract
5288 			 * the SCSI command status
5289 			 */
5290 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5291 
5292 			/*
5293 			 * get the result based on SCSI status response
5294 			 * to notify the SCSI midlayer of the command status
5295 			 */
5296 			scsi_status = result & MASK_SCSI_STATUS;
5297 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5298 
5299 			/*
5300 			 * Currently we are only supporting BKOPs exception
5301 			 * events hence we can ignore BKOPs exception event
5302 			 * during power management callbacks. BKOPs exception
5303 			 * event is not expected to be raised in runtime suspend
5304 			 * callback as it allows the urgent bkops.
5305 			 * During system suspend, we are anyway forcefully
5306 			 * disabling the bkops and if urgent bkops is needed
5307 			 * it will be enabled on system resume. Long term
5308 			 * solution could be to abort the system suspend if
5309 			 * UFS device needs urgent BKOPs.
5310 			 */
5311 			if (!hba->pm_op_in_progress &&
5312 			    !ufshcd_eh_in_progress(hba) &&
5313 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5314 				/* Flushed in suspend */
5315 				schedule_work(&hba->eeh_work);
5316 
5317 			if (scsi_status == SAM_STAT_GOOD)
5318 				ufshpb_rsp_upiu(hba, lrbp);
5319 			break;
5320 		case UPIU_TRANSACTION_REJECT_UPIU:
5321 			/* TODO: handle Reject UPIU Response */
5322 			result = DID_ERROR << 16;
5323 			dev_err(hba->dev,
5324 				"Reject UPIU not fully implemented\n");
5325 			break;
5326 		default:
5327 			dev_err(hba->dev,
5328 				"Unexpected request response code = %x\n",
5329 				result);
5330 			result = DID_ERROR << 16;
5331 			break;
5332 		}
5333 		break;
5334 	case OCS_ABORTED:
5335 		result |= DID_ABORT << 16;
5336 		break;
5337 	case OCS_INVALID_COMMAND_STATUS:
5338 		result |= DID_REQUEUE << 16;
5339 		break;
5340 	case OCS_INVALID_CMD_TABLE_ATTR:
5341 	case OCS_INVALID_PRDT_ATTR:
5342 	case OCS_MISMATCH_DATA_BUF_SIZE:
5343 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5344 	case OCS_PEER_COMM_FAILURE:
5345 	case OCS_FATAL_ERROR:
5346 	case OCS_DEVICE_FATAL_ERROR:
5347 	case OCS_INVALID_CRYPTO_CONFIG:
5348 	case OCS_GENERAL_CRYPTO_ERROR:
5349 	default:
5350 		result |= DID_ERROR << 16;
5351 		dev_err(hba->dev,
5352 				"OCS error from controller = %x for tag %d\n",
5353 				ocs, lrbp->task_tag);
5354 		ufshcd_print_evt_hist(hba);
5355 		ufshcd_print_host_state(hba);
5356 		break;
5357 	} /* end of switch */
5358 
5359 	if ((host_byte(result) != DID_OK) &&
5360 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5361 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5362 	return result;
5363 }
5364 
5365 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5366 					 u32 intr_mask)
5367 {
5368 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5369 	    !ufshcd_is_auto_hibern8_enabled(hba))
5370 		return false;
5371 
5372 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5373 		return false;
5374 
5375 	if (hba->active_uic_cmd &&
5376 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5377 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5378 		return false;
5379 
5380 	return true;
5381 }
5382 
5383 /**
5384  * ufshcd_uic_cmd_compl - handle completion of uic command
5385  * @hba: per adapter instance
5386  * @intr_status: interrupt status generated by the controller
5387  *
5388  * Returns
5389  *  IRQ_HANDLED - If interrupt is valid
5390  *  IRQ_NONE    - If invalid interrupt
5391  */
5392 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5393 {
5394 	irqreturn_t retval = IRQ_NONE;
5395 
5396 	spin_lock(hba->host->host_lock);
5397 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5398 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5399 
5400 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5401 		hba->active_uic_cmd->argument2 |=
5402 			ufshcd_get_uic_cmd_result(hba);
5403 		hba->active_uic_cmd->argument3 =
5404 			ufshcd_get_dme_attr_val(hba);
5405 		if (!hba->uic_async_done)
5406 			hba->active_uic_cmd->cmd_active = 0;
5407 		complete(&hba->active_uic_cmd->done);
5408 		retval = IRQ_HANDLED;
5409 	}
5410 
5411 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5412 		hba->active_uic_cmd->cmd_active = 0;
5413 		complete(hba->uic_async_done);
5414 		retval = IRQ_HANDLED;
5415 	}
5416 
5417 	if (retval == IRQ_HANDLED)
5418 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5419 					     UFS_CMD_COMP);
5420 	spin_unlock(hba->host->host_lock);
5421 	return retval;
5422 }
5423 
5424 /* Release the resources allocated for processing a SCSI command. */
5425 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5426 				    struct ufshcd_lrb *lrbp)
5427 {
5428 	struct scsi_cmnd *cmd = lrbp->cmd;
5429 
5430 	scsi_dma_unmap(cmd);
5431 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5432 	ufshcd_release(hba);
5433 	ufshcd_clk_scaling_update_busy(hba);
5434 }
5435 
5436 /**
5437  * ufshcd_compl_one_cqe - handle a completion queue entry
5438  * @hba: per adapter instance
5439  * @task_tag: the task tag of the request to be completed
5440  * @cqe: pointer to the completion queue entry
5441  */
5442 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5443 			  struct cq_entry *cqe)
5444 {
5445 	struct ufshcd_lrb *lrbp;
5446 	struct scsi_cmnd *cmd;
5447 
5448 	lrbp = &hba->lrb[task_tag];
5449 	lrbp->compl_time_stamp = ktime_get();
5450 	cmd = lrbp->cmd;
5451 	if (cmd) {
5452 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5453 			ufshcd_update_monitor(hba, lrbp);
5454 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5455 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5456 		ufshcd_release_scsi_cmd(hba, lrbp);
5457 		/* Do not touch lrbp after scsi done */
5458 		scsi_done(cmd);
5459 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5460 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5461 		if (hba->dev_cmd.complete) {
5462 			hba->dev_cmd.cqe = cqe;
5463 			ufshcd_add_command_trace(hba, task_tag, UFS_DEV_COMP);
5464 			complete(hba->dev_cmd.complete);
5465 			ufshcd_clk_scaling_update_busy(hba);
5466 		}
5467 	}
5468 }
5469 
5470 /**
5471  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5472  * @hba: per adapter instance
5473  * @completed_reqs: bitmask that indicates which requests to complete
5474  */
5475 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5476 					unsigned long completed_reqs)
5477 {
5478 	int tag;
5479 
5480 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5481 		ufshcd_compl_one_cqe(hba, tag, NULL);
5482 }
5483 
5484 /* Any value that is not an existing queue number is fine for this constant. */
5485 enum {
5486 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5487 };
5488 
5489 static void ufshcd_clear_polled(struct ufs_hba *hba,
5490 				unsigned long *completed_reqs)
5491 {
5492 	int tag;
5493 
5494 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5495 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5496 
5497 		if (!cmd)
5498 			continue;
5499 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5500 			__clear_bit(tag, completed_reqs);
5501 	}
5502 }
5503 
5504 /*
5505  * Returns > 0 if one or more commands have been completed or 0 if no
5506  * requests have been completed.
5507  */
5508 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5509 {
5510 	struct ufs_hba *hba = shost_priv(shost);
5511 	unsigned long completed_reqs, flags;
5512 	u32 tr_doorbell;
5513 	struct ufs_hw_queue *hwq;
5514 
5515 	if (is_mcq_enabled(hba)) {
5516 		hwq = &hba->uhq[queue_num + UFSHCD_MCQ_IO_QUEUE_OFFSET];
5517 
5518 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5519 	}
5520 
5521 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5522 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5523 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5524 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5525 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5526 		  hba->outstanding_reqs);
5527 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5528 		/* Do not complete polled requests from interrupt context. */
5529 		ufshcd_clear_polled(hba, &completed_reqs);
5530 	}
5531 	hba->outstanding_reqs &= ~completed_reqs;
5532 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5533 
5534 	if (completed_reqs)
5535 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5536 
5537 	return completed_reqs != 0;
5538 }
5539 
5540 /**
5541  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5542  * @hba: per adapter instance
5543  *
5544  * Returns
5545  *  IRQ_HANDLED - If interrupt is valid
5546  *  IRQ_NONE    - If invalid interrupt
5547  */
5548 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5549 {
5550 	/* Resetting interrupt aggregation counters first and reading the
5551 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5552 	 * In order to prevent other interrupts starvation the DB is read once
5553 	 * after reset. The down side of this solution is the possibility of
5554 	 * false interrupt if device completes another request after resetting
5555 	 * aggregation and before reading the DB.
5556 	 */
5557 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5558 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5559 		ufshcd_reset_intr_aggr(hba);
5560 
5561 	if (ufs_fail_completion())
5562 		return IRQ_HANDLED;
5563 
5564 	/*
5565 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5566 	 * do not want polling to trigger spurious interrupt complaints.
5567 	 */
5568 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5569 
5570 	return IRQ_HANDLED;
5571 }
5572 
5573 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5574 {
5575 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5576 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5577 				       &ee_ctrl_mask);
5578 }
5579 
5580 int ufshcd_write_ee_control(struct ufs_hba *hba)
5581 {
5582 	int err;
5583 
5584 	mutex_lock(&hba->ee_ctrl_mutex);
5585 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5586 	mutex_unlock(&hba->ee_ctrl_mutex);
5587 	if (err)
5588 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5589 			__func__, err);
5590 	return err;
5591 }
5592 
5593 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5594 			     const u16 *other_mask, u16 set, u16 clr)
5595 {
5596 	u16 new_mask, ee_ctrl_mask;
5597 	int err = 0;
5598 
5599 	mutex_lock(&hba->ee_ctrl_mutex);
5600 	new_mask = (*mask & ~clr) | set;
5601 	ee_ctrl_mask = new_mask | *other_mask;
5602 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5603 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5604 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5605 	if (!err) {
5606 		hba->ee_ctrl_mask = ee_ctrl_mask;
5607 		*mask = new_mask;
5608 	}
5609 	mutex_unlock(&hba->ee_ctrl_mutex);
5610 	return err;
5611 }
5612 
5613 /**
5614  * ufshcd_disable_ee - disable exception event
5615  * @hba: per-adapter instance
5616  * @mask: exception event to disable
5617  *
5618  * Disables exception event in the device so that the EVENT_ALERT
5619  * bit is not set.
5620  *
5621  * Returns zero on success, non-zero error value on failure.
5622  */
5623 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5624 {
5625 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5626 }
5627 
5628 /**
5629  * ufshcd_enable_ee - enable exception event
5630  * @hba: per-adapter instance
5631  * @mask: exception event to enable
5632  *
5633  * Enable corresponding exception event in the device to allow
5634  * device to alert host in critical scenarios.
5635  *
5636  * Returns zero on success, non-zero error value on failure.
5637  */
5638 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5639 {
5640 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5641 }
5642 
5643 /**
5644  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5645  * @hba: per-adapter instance
5646  *
5647  * Allow device to manage background operations on its own. Enabling
5648  * this might lead to inconsistent latencies during normal data transfers
5649  * as the device is allowed to manage its own way of handling background
5650  * operations.
5651  *
5652  * Returns zero on success, non-zero on failure.
5653  */
5654 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5655 {
5656 	int err = 0;
5657 
5658 	if (hba->auto_bkops_enabled)
5659 		goto out;
5660 
5661 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5662 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5663 	if (err) {
5664 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5665 				__func__, err);
5666 		goto out;
5667 	}
5668 
5669 	hba->auto_bkops_enabled = true;
5670 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5671 
5672 	/* No need of URGENT_BKOPS exception from the device */
5673 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5674 	if (err)
5675 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5676 				__func__, err);
5677 out:
5678 	return err;
5679 }
5680 
5681 /**
5682  * ufshcd_disable_auto_bkops - block device in doing background operations
5683  * @hba: per-adapter instance
5684  *
5685  * Disabling background operations improves command response latency but
5686  * has drawback of device moving into critical state where the device is
5687  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5688  * host is idle so that BKOPS are managed effectively without any negative
5689  * impacts.
5690  *
5691  * Returns zero on success, non-zero on failure.
5692  */
5693 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5694 {
5695 	int err = 0;
5696 
5697 	if (!hba->auto_bkops_enabled)
5698 		goto out;
5699 
5700 	/*
5701 	 * If host assisted BKOPs is to be enabled, make sure
5702 	 * urgent bkops exception is allowed.
5703 	 */
5704 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5705 	if (err) {
5706 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5707 				__func__, err);
5708 		goto out;
5709 	}
5710 
5711 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5712 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5713 	if (err) {
5714 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5715 				__func__, err);
5716 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5717 		goto out;
5718 	}
5719 
5720 	hba->auto_bkops_enabled = false;
5721 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5722 	hba->is_urgent_bkops_lvl_checked = false;
5723 out:
5724 	return err;
5725 }
5726 
5727 /**
5728  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5729  * @hba: per adapter instance
5730  *
5731  * After a device reset the device may toggle the BKOPS_EN flag
5732  * to default value. The s/w tracking variables should be updated
5733  * as well. This function would change the auto-bkops state based on
5734  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5735  */
5736 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5737 {
5738 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5739 		hba->auto_bkops_enabled = false;
5740 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5741 		ufshcd_enable_auto_bkops(hba);
5742 	} else {
5743 		hba->auto_bkops_enabled = true;
5744 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5745 		ufshcd_disable_auto_bkops(hba);
5746 	}
5747 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5748 	hba->is_urgent_bkops_lvl_checked = false;
5749 }
5750 
5751 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5752 {
5753 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5754 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5755 }
5756 
5757 /**
5758  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5759  * @hba: per-adapter instance
5760  * @status: bkops_status value
5761  *
5762  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5763  * flag in the device to permit background operations if the device
5764  * bkops_status is greater than or equal to "status" argument passed to
5765  * this function, disable otherwise.
5766  *
5767  * Returns 0 for success, non-zero in case of failure.
5768  *
5769  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5770  * to know whether auto bkops is enabled or disabled after this function
5771  * returns control to it.
5772  */
5773 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5774 			     enum bkops_status status)
5775 {
5776 	int err;
5777 	u32 curr_status = 0;
5778 
5779 	err = ufshcd_get_bkops_status(hba, &curr_status);
5780 	if (err) {
5781 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5782 				__func__, err);
5783 		goto out;
5784 	} else if (curr_status > BKOPS_STATUS_MAX) {
5785 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5786 				__func__, curr_status);
5787 		err = -EINVAL;
5788 		goto out;
5789 	}
5790 
5791 	if (curr_status >= status)
5792 		err = ufshcd_enable_auto_bkops(hba);
5793 	else
5794 		err = ufshcd_disable_auto_bkops(hba);
5795 out:
5796 	return err;
5797 }
5798 
5799 /**
5800  * ufshcd_urgent_bkops - handle urgent bkops exception event
5801  * @hba: per-adapter instance
5802  *
5803  * Enable fBackgroundOpsEn flag in the device to permit background
5804  * operations.
5805  *
5806  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5807  * and negative error value for any other failure.
5808  */
5809 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5810 {
5811 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5812 }
5813 
5814 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5815 {
5816 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5817 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5818 }
5819 
5820 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5821 {
5822 	int err;
5823 	u32 curr_status = 0;
5824 
5825 	if (hba->is_urgent_bkops_lvl_checked)
5826 		goto enable_auto_bkops;
5827 
5828 	err = ufshcd_get_bkops_status(hba, &curr_status);
5829 	if (err) {
5830 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5831 				__func__, err);
5832 		goto out;
5833 	}
5834 
5835 	/*
5836 	 * We are seeing that some devices are raising the urgent bkops
5837 	 * exception events even when BKOPS status doesn't indicate performace
5838 	 * impacted or critical. Handle these device by determining their urgent
5839 	 * bkops status at runtime.
5840 	 */
5841 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5842 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5843 				__func__, curr_status);
5844 		/* update the current status as the urgent bkops level */
5845 		hba->urgent_bkops_lvl = curr_status;
5846 		hba->is_urgent_bkops_lvl_checked = true;
5847 	}
5848 
5849 enable_auto_bkops:
5850 	err = ufshcd_enable_auto_bkops(hba);
5851 out:
5852 	if (err < 0)
5853 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5854 				__func__, err);
5855 }
5856 
5857 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5858 {
5859 	u32 value;
5860 
5861 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5862 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5863 		return;
5864 
5865 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5866 
5867 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5868 
5869 	/*
5870 	 * A placeholder for the platform vendors to add whatever additional
5871 	 * steps required
5872 	 */
5873 }
5874 
5875 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5876 {
5877 	u8 index;
5878 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5879 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5880 
5881 	index = ufshcd_wb_get_query_index(hba);
5882 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5883 }
5884 
5885 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5886 {
5887 	int ret;
5888 
5889 	if (!ufshcd_is_wb_allowed(hba) ||
5890 	    hba->dev_info.wb_enabled == enable)
5891 		return 0;
5892 
5893 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5894 	if (ret) {
5895 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5896 			__func__, enable ? "enabling" : "disabling", ret);
5897 		return ret;
5898 	}
5899 
5900 	hba->dev_info.wb_enabled = enable;
5901 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5902 			__func__, enable ? "enabled" : "disabled");
5903 
5904 	return ret;
5905 }
5906 
5907 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5908 						 bool enable)
5909 {
5910 	int ret;
5911 
5912 	ret = __ufshcd_wb_toggle(hba, enable,
5913 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5914 	if (ret) {
5915 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5916 			__func__, enable ? "enabling" : "disabling", ret);
5917 		return;
5918 	}
5919 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5920 			__func__, enable ? "enabled" : "disabled");
5921 }
5922 
5923 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5924 {
5925 	int ret;
5926 
5927 	if (!ufshcd_is_wb_allowed(hba) ||
5928 	    hba->dev_info.wb_buf_flush_enabled == enable)
5929 		return 0;
5930 
5931 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5932 	if (ret) {
5933 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5934 			__func__, enable ? "enabling" : "disabling", ret);
5935 		return ret;
5936 	}
5937 
5938 	hba->dev_info.wb_buf_flush_enabled = enable;
5939 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5940 			__func__, enable ? "enabled" : "disabled");
5941 
5942 	return ret;
5943 }
5944 
5945 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5946 						u32 avail_buf)
5947 {
5948 	u32 cur_buf;
5949 	int ret;
5950 	u8 index;
5951 
5952 	index = ufshcd_wb_get_query_index(hba);
5953 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5954 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5955 					      index, 0, &cur_buf);
5956 	if (ret) {
5957 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5958 			__func__, ret);
5959 		return false;
5960 	}
5961 
5962 	if (!cur_buf) {
5963 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5964 			 cur_buf);
5965 		return false;
5966 	}
5967 	/* Let it continue to flush when available buffer exceeds threshold */
5968 	return avail_buf < hba->vps->wb_flush_threshold;
5969 }
5970 
5971 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5972 {
5973 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5974 		ufshcd_wb_toggle_buf_flush(hba, false);
5975 
5976 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5977 	ufshcd_wb_toggle(hba, false);
5978 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5979 
5980 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5981 }
5982 
5983 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5984 {
5985 	u32 lifetime;
5986 	int ret;
5987 	u8 index;
5988 
5989 	index = ufshcd_wb_get_query_index(hba);
5990 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5991 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5992 				      index, 0, &lifetime);
5993 	if (ret) {
5994 		dev_err(hba->dev,
5995 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5996 			__func__, ret);
5997 		return false;
5998 	}
5999 
6000 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6001 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6002 			__func__, lifetime);
6003 		return false;
6004 	}
6005 
6006 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6007 		__func__, lifetime);
6008 
6009 	return true;
6010 }
6011 
6012 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6013 {
6014 	int ret;
6015 	u32 avail_buf;
6016 	u8 index;
6017 
6018 	if (!ufshcd_is_wb_allowed(hba))
6019 		return false;
6020 
6021 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6022 		ufshcd_wb_force_disable(hba);
6023 		return false;
6024 	}
6025 
6026 	/*
6027 	 * The ufs device needs the vcc to be ON to flush.
6028 	 * With user-space reduction enabled, it's enough to enable flush
6029 	 * by checking only the available buffer. The threshold
6030 	 * defined here is > 90% full.
6031 	 * With user-space preserved enabled, the current-buffer
6032 	 * should be checked too because the wb buffer size can reduce
6033 	 * when disk tends to be full. This info is provided by current
6034 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6035 	 * keeping vcc on when current buffer is empty.
6036 	 */
6037 	index = ufshcd_wb_get_query_index(hba);
6038 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6039 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6040 				      index, 0, &avail_buf);
6041 	if (ret) {
6042 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6043 			 __func__, ret);
6044 		return false;
6045 	}
6046 
6047 	if (!hba->dev_info.b_presrv_uspc_en)
6048 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6049 
6050 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6051 }
6052 
6053 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6054 {
6055 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6056 					   struct ufs_hba,
6057 					   rpm_dev_flush_recheck_work);
6058 	/*
6059 	 * To prevent unnecessary VCC power drain after device finishes
6060 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6061 	 * after a certain delay to recheck the threshold by next runtime
6062 	 * suspend.
6063 	 */
6064 	ufshcd_rpm_get_sync(hba);
6065 	ufshcd_rpm_put_sync(hba);
6066 }
6067 
6068 /**
6069  * ufshcd_exception_event_handler - handle exceptions raised by device
6070  * @work: pointer to work data
6071  *
6072  * Read bExceptionEventStatus attribute from the device and handle the
6073  * exception event accordingly.
6074  */
6075 static void ufshcd_exception_event_handler(struct work_struct *work)
6076 {
6077 	struct ufs_hba *hba;
6078 	int err;
6079 	u32 status = 0;
6080 	hba = container_of(work, struct ufs_hba, eeh_work);
6081 
6082 	ufshcd_scsi_block_requests(hba);
6083 	err = ufshcd_get_ee_status(hba, &status);
6084 	if (err) {
6085 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6086 				__func__, err);
6087 		goto out;
6088 	}
6089 
6090 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6091 
6092 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6093 		ufshcd_bkops_exception_event_handler(hba);
6094 
6095 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6096 		ufshcd_temp_exception_event_handler(hba, status);
6097 
6098 	ufs_debugfs_exception_event(hba, status);
6099 out:
6100 	ufshcd_scsi_unblock_requests(hba);
6101 }
6102 
6103 /* Complete requests that have door-bell cleared */
6104 static void ufshcd_complete_requests(struct ufs_hba *hba)
6105 {
6106 	ufshcd_transfer_req_compl(hba);
6107 	ufshcd_tmc_handler(hba);
6108 }
6109 
6110 /**
6111  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6112  *				to recover from the DL NAC errors or not.
6113  * @hba: per-adapter instance
6114  *
6115  * Returns true if error handling is required, false otherwise
6116  */
6117 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6118 {
6119 	unsigned long flags;
6120 	bool err_handling = true;
6121 
6122 	spin_lock_irqsave(hba->host->host_lock, flags);
6123 	/*
6124 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6125 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6126 	 */
6127 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6128 		goto out;
6129 
6130 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6131 	    ((hba->saved_err & UIC_ERROR) &&
6132 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6133 		goto out;
6134 
6135 	if ((hba->saved_err & UIC_ERROR) &&
6136 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6137 		int err;
6138 		/*
6139 		 * wait for 50ms to see if we can get any other errors or not.
6140 		 */
6141 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6142 		msleep(50);
6143 		spin_lock_irqsave(hba->host->host_lock, flags);
6144 
6145 		/*
6146 		 * now check if we have got any other severe errors other than
6147 		 * DL NAC error?
6148 		 */
6149 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6150 		    ((hba->saved_err & UIC_ERROR) &&
6151 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6152 			goto out;
6153 
6154 		/*
6155 		 * As DL NAC is the only error received so far, send out NOP
6156 		 * command to confirm if link is still active or not.
6157 		 *   - If we don't get any response then do error recovery.
6158 		 *   - If we get response then clear the DL NAC error bit.
6159 		 */
6160 
6161 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6162 		err = ufshcd_verify_dev_init(hba);
6163 		spin_lock_irqsave(hba->host->host_lock, flags);
6164 
6165 		if (err)
6166 			goto out;
6167 
6168 		/* Link seems to be alive hence ignore the DL NAC errors */
6169 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6170 			hba->saved_err &= ~UIC_ERROR;
6171 		/* clear NAC error */
6172 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6173 		if (!hba->saved_uic_err)
6174 			err_handling = false;
6175 	}
6176 out:
6177 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6178 	return err_handling;
6179 }
6180 
6181 /* host lock must be held before calling this func */
6182 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6183 {
6184 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6185 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6186 }
6187 
6188 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6189 {
6190 	lockdep_assert_held(hba->host->host_lock);
6191 
6192 	/* handle fatal errors only when link is not in error state */
6193 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6194 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6195 		    ufshcd_is_saved_err_fatal(hba))
6196 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6197 		else
6198 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6199 		queue_work(hba->eh_wq, &hba->eh_work);
6200 	}
6201 }
6202 
6203 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6204 {
6205 	spin_lock_irq(hba->host->host_lock);
6206 	hba->force_reset = true;
6207 	ufshcd_schedule_eh_work(hba);
6208 	spin_unlock_irq(hba->host->host_lock);
6209 }
6210 
6211 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6212 {
6213 	mutex_lock(&hba->wb_mutex);
6214 	down_write(&hba->clk_scaling_lock);
6215 	hba->clk_scaling.is_allowed = allow;
6216 	up_write(&hba->clk_scaling_lock);
6217 	mutex_unlock(&hba->wb_mutex);
6218 }
6219 
6220 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6221 {
6222 	if (suspend) {
6223 		if (hba->clk_scaling.is_enabled)
6224 			ufshcd_suspend_clkscaling(hba);
6225 		ufshcd_clk_scaling_allow(hba, false);
6226 	} else {
6227 		ufshcd_clk_scaling_allow(hba, true);
6228 		if (hba->clk_scaling.is_enabled)
6229 			ufshcd_resume_clkscaling(hba);
6230 	}
6231 }
6232 
6233 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6234 {
6235 	ufshcd_rpm_get_sync(hba);
6236 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6237 	    hba->is_sys_suspended) {
6238 		enum ufs_pm_op pm_op;
6239 
6240 		/*
6241 		 * Don't assume anything of resume, if
6242 		 * resume fails, irq and clocks can be OFF, and powers
6243 		 * can be OFF or in LPM.
6244 		 */
6245 		ufshcd_setup_hba_vreg(hba, true);
6246 		ufshcd_enable_irq(hba);
6247 		ufshcd_setup_vreg(hba, true);
6248 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6249 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6250 		ufshcd_hold(hba, false);
6251 		if (!ufshcd_is_clkgating_allowed(hba))
6252 			ufshcd_setup_clocks(hba, true);
6253 		ufshcd_release(hba);
6254 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6255 		ufshcd_vops_resume(hba, pm_op);
6256 	} else {
6257 		ufshcd_hold(hba, false);
6258 		if (ufshcd_is_clkscaling_supported(hba) &&
6259 		    hba->clk_scaling.is_enabled)
6260 			ufshcd_suspend_clkscaling(hba);
6261 		ufshcd_clk_scaling_allow(hba, false);
6262 	}
6263 	ufshcd_scsi_block_requests(hba);
6264 	/* Drain ufshcd_queuecommand() */
6265 	synchronize_rcu();
6266 	cancel_work_sync(&hba->eeh_work);
6267 }
6268 
6269 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6270 {
6271 	ufshcd_scsi_unblock_requests(hba);
6272 	ufshcd_release(hba);
6273 	if (ufshcd_is_clkscaling_supported(hba))
6274 		ufshcd_clk_scaling_suspend(hba, false);
6275 	ufshcd_rpm_put(hba);
6276 }
6277 
6278 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6279 {
6280 	return (!hba->is_powered || hba->shutting_down ||
6281 		!hba->ufs_device_wlun ||
6282 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6283 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6284 		   ufshcd_is_link_broken(hba))));
6285 }
6286 
6287 #ifdef CONFIG_PM
6288 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6289 {
6290 	struct Scsi_Host *shost = hba->host;
6291 	struct scsi_device *sdev;
6292 	struct request_queue *q;
6293 	int ret;
6294 
6295 	hba->is_sys_suspended = false;
6296 	/*
6297 	 * Set RPM status of wlun device to RPM_ACTIVE,
6298 	 * this also clears its runtime error.
6299 	 */
6300 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6301 
6302 	/* hba device might have a runtime error otherwise */
6303 	if (ret)
6304 		ret = pm_runtime_set_active(hba->dev);
6305 	/*
6306 	 * If wlun device had runtime error, we also need to resume those
6307 	 * consumer scsi devices in case any of them has failed to be
6308 	 * resumed due to supplier runtime resume failure. This is to unblock
6309 	 * blk_queue_enter in case there are bios waiting inside it.
6310 	 */
6311 	if (!ret) {
6312 		shost_for_each_device(sdev, shost) {
6313 			q = sdev->request_queue;
6314 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6315 				       q->rpm_status == RPM_SUSPENDING))
6316 				pm_request_resume(q->dev);
6317 		}
6318 	}
6319 }
6320 #else
6321 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6322 {
6323 }
6324 #endif
6325 
6326 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6327 {
6328 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6329 	u32 mode;
6330 
6331 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6332 
6333 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6334 		return true;
6335 
6336 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6337 		return true;
6338 
6339 	return false;
6340 }
6341 
6342 static bool ufshcd_abort_all(struct ufs_hba *hba)
6343 {
6344 	bool needs_reset = false;
6345 	int tag, ret;
6346 
6347 	/* Clear pending transfer requests */
6348 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6349 		ret = ufshcd_try_to_abort_task(hba, tag);
6350 		dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6351 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6352 			ret ? "failed" : "succeeded");
6353 		if (ret) {
6354 			needs_reset = true;
6355 			goto out;
6356 		}
6357 	}
6358 
6359 	/* Clear pending task management requests */
6360 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6361 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6362 			needs_reset = true;
6363 			goto out;
6364 		}
6365 	}
6366 
6367 out:
6368 	/* Complete the requests that are cleared by s/w */
6369 	ufshcd_complete_requests(hba);
6370 
6371 	return needs_reset;
6372 }
6373 
6374 /**
6375  * ufshcd_err_handler - handle UFS errors that require s/w attention
6376  * @work: pointer to work structure
6377  */
6378 static void ufshcd_err_handler(struct work_struct *work)
6379 {
6380 	int retries = MAX_ERR_HANDLER_RETRIES;
6381 	struct ufs_hba *hba;
6382 	unsigned long flags;
6383 	bool needs_restore;
6384 	bool needs_reset;
6385 	int pmc_err;
6386 
6387 	hba = container_of(work, struct ufs_hba, eh_work);
6388 
6389 	dev_info(hba->dev,
6390 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6391 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6392 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6393 		 hba->saved_uic_err, hba->force_reset,
6394 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6395 
6396 	down(&hba->host_sem);
6397 	spin_lock_irqsave(hba->host->host_lock, flags);
6398 	if (ufshcd_err_handling_should_stop(hba)) {
6399 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6400 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6401 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6402 		up(&hba->host_sem);
6403 		return;
6404 	}
6405 	ufshcd_set_eh_in_progress(hba);
6406 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6407 	ufshcd_err_handling_prepare(hba);
6408 	/* Complete requests that have door-bell cleared by h/w */
6409 	ufshcd_complete_requests(hba);
6410 	spin_lock_irqsave(hba->host->host_lock, flags);
6411 again:
6412 	needs_restore = false;
6413 	needs_reset = false;
6414 
6415 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6416 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6417 	/*
6418 	 * A full reset and restore might have happened after preparation
6419 	 * is finished, double check whether we should stop.
6420 	 */
6421 	if (ufshcd_err_handling_should_stop(hba))
6422 		goto skip_err_handling;
6423 
6424 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6425 		bool ret;
6426 
6427 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6428 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6429 		ret = ufshcd_quirk_dl_nac_errors(hba);
6430 		spin_lock_irqsave(hba->host->host_lock, flags);
6431 		if (!ret && ufshcd_err_handling_should_stop(hba))
6432 			goto skip_err_handling;
6433 	}
6434 
6435 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6436 	    (hba->saved_uic_err &&
6437 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6438 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6439 
6440 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6441 		ufshcd_print_host_state(hba);
6442 		ufshcd_print_pwr_info(hba);
6443 		ufshcd_print_evt_hist(hba);
6444 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6445 		ufshcd_print_trs_all(hba, pr_prdt);
6446 		spin_lock_irqsave(hba->host->host_lock, flags);
6447 	}
6448 
6449 	/*
6450 	 * if host reset is required then skip clearing the pending
6451 	 * transfers forcefully because they will get cleared during
6452 	 * host reset and restore
6453 	 */
6454 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6455 	    ufshcd_is_saved_err_fatal(hba) ||
6456 	    ((hba->saved_err & UIC_ERROR) &&
6457 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6458 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6459 		needs_reset = true;
6460 		goto do_reset;
6461 	}
6462 
6463 	/*
6464 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6465 	 * check if power mode restore is needed.
6466 	 */
6467 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6468 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6469 		if (!hba->saved_uic_err)
6470 			hba->saved_err &= ~UIC_ERROR;
6471 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6472 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6473 			needs_restore = true;
6474 		spin_lock_irqsave(hba->host->host_lock, flags);
6475 		if (!hba->saved_err && !needs_restore)
6476 			goto skip_err_handling;
6477 	}
6478 
6479 	hba->silence_err_logs = true;
6480 	/* release lock as clear command might sleep */
6481 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6482 
6483 	needs_reset = ufshcd_abort_all(hba);
6484 
6485 	spin_lock_irqsave(hba->host->host_lock, flags);
6486 	hba->silence_err_logs = false;
6487 	if (needs_reset)
6488 		goto do_reset;
6489 
6490 	/*
6491 	 * After all reqs and tasks are cleared from doorbell,
6492 	 * now it is safe to retore power mode.
6493 	 */
6494 	if (needs_restore) {
6495 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6496 		/*
6497 		 * Hold the scaling lock just in case dev cmds
6498 		 * are sent via bsg and/or sysfs.
6499 		 */
6500 		down_write(&hba->clk_scaling_lock);
6501 		hba->force_pmc = true;
6502 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6503 		if (pmc_err) {
6504 			needs_reset = true;
6505 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6506 					__func__, pmc_err);
6507 		}
6508 		hba->force_pmc = false;
6509 		ufshcd_print_pwr_info(hba);
6510 		up_write(&hba->clk_scaling_lock);
6511 		spin_lock_irqsave(hba->host->host_lock, flags);
6512 	}
6513 
6514 do_reset:
6515 	/* Fatal errors need reset */
6516 	if (needs_reset) {
6517 		int err;
6518 
6519 		hba->force_reset = false;
6520 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6521 		err = ufshcd_reset_and_restore(hba);
6522 		if (err)
6523 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6524 					__func__, err);
6525 		else
6526 			ufshcd_recover_pm_error(hba);
6527 		spin_lock_irqsave(hba->host->host_lock, flags);
6528 	}
6529 
6530 skip_err_handling:
6531 	if (!needs_reset) {
6532 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6533 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6534 		if (hba->saved_err || hba->saved_uic_err)
6535 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6536 			    __func__, hba->saved_err, hba->saved_uic_err);
6537 	}
6538 	/* Exit in an operational state or dead */
6539 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6540 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6541 		if (--retries)
6542 			goto again;
6543 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6544 	}
6545 	ufshcd_clear_eh_in_progress(hba);
6546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6547 	ufshcd_err_handling_unprepare(hba);
6548 	up(&hba->host_sem);
6549 
6550 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6551 		 ufshcd_state_name[hba->ufshcd_state]);
6552 }
6553 
6554 /**
6555  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6556  * @hba: per-adapter instance
6557  *
6558  * Returns
6559  *  IRQ_HANDLED - If interrupt is valid
6560  *  IRQ_NONE    - If invalid interrupt
6561  */
6562 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6563 {
6564 	u32 reg;
6565 	irqreturn_t retval = IRQ_NONE;
6566 
6567 	/* PHY layer error */
6568 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6569 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6570 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6571 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6572 		/*
6573 		 * To know whether this error is fatal or not, DB timeout
6574 		 * must be checked but this error is handled separately.
6575 		 */
6576 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6577 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6578 					__func__);
6579 
6580 		/* Got a LINERESET indication. */
6581 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6582 			struct uic_command *cmd = NULL;
6583 
6584 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6585 			if (hba->uic_async_done && hba->active_uic_cmd)
6586 				cmd = hba->active_uic_cmd;
6587 			/*
6588 			 * Ignore the LINERESET during power mode change
6589 			 * operation via DME_SET command.
6590 			 */
6591 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6592 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6593 		}
6594 		retval |= IRQ_HANDLED;
6595 	}
6596 
6597 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6598 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6599 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6600 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6601 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6602 
6603 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6604 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6605 		else if (hba->dev_quirks &
6606 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6607 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6608 				hba->uic_error |=
6609 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6610 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6611 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6612 		}
6613 		retval |= IRQ_HANDLED;
6614 	}
6615 
6616 	/* UIC NL/TL/DME errors needs software retry */
6617 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6618 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6619 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6620 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6621 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6622 		retval |= IRQ_HANDLED;
6623 	}
6624 
6625 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6626 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6627 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6628 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6629 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6630 		retval |= IRQ_HANDLED;
6631 	}
6632 
6633 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6634 	if ((reg & UIC_DME_ERROR) &&
6635 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6636 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6637 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6638 		retval |= IRQ_HANDLED;
6639 	}
6640 
6641 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6642 			__func__, hba->uic_error);
6643 	return retval;
6644 }
6645 
6646 /**
6647  * ufshcd_check_errors - Check for errors that need s/w attention
6648  * @hba: per-adapter instance
6649  * @intr_status: interrupt status generated by the controller
6650  *
6651  * Returns
6652  *  IRQ_HANDLED - If interrupt is valid
6653  *  IRQ_NONE    - If invalid interrupt
6654  */
6655 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6656 {
6657 	bool queue_eh_work = false;
6658 	irqreturn_t retval = IRQ_NONE;
6659 
6660 	spin_lock(hba->host->host_lock);
6661 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6662 
6663 	if (hba->errors & INT_FATAL_ERRORS) {
6664 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6665 				       hba->errors);
6666 		queue_eh_work = true;
6667 	}
6668 
6669 	if (hba->errors & UIC_ERROR) {
6670 		hba->uic_error = 0;
6671 		retval = ufshcd_update_uic_error(hba);
6672 		if (hba->uic_error)
6673 			queue_eh_work = true;
6674 	}
6675 
6676 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6677 		dev_err(hba->dev,
6678 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6679 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6680 			"Enter" : "Exit",
6681 			hba->errors, ufshcd_get_upmcrs(hba));
6682 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6683 				       hba->errors);
6684 		ufshcd_set_link_broken(hba);
6685 		queue_eh_work = true;
6686 	}
6687 
6688 	if (queue_eh_work) {
6689 		/*
6690 		 * update the transfer error masks to sticky bits, let's do this
6691 		 * irrespective of current ufshcd_state.
6692 		 */
6693 		hba->saved_err |= hba->errors;
6694 		hba->saved_uic_err |= hba->uic_error;
6695 
6696 		/* dump controller state before resetting */
6697 		if ((hba->saved_err &
6698 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6699 		    (hba->saved_uic_err &&
6700 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6701 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6702 					__func__, hba->saved_err,
6703 					hba->saved_uic_err);
6704 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6705 					 "host_regs: ");
6706 			ufshcd_print_pwr_info(hba);
6707 		}
6708 		ufshcd_schedule_eh_work(hba);
6709 		retval |= IRQ_HANDLED;
6710 	}
6711 	/*
6712 	 * if (!queue_eh_work) -
6713 	 * Other errors are either non-fatal where host recovers
6714 	 * itself without s/w intervention or errors that will be
6715 	 * handled by the SCSI core layer.
6716 	 */
6717 	hba->errors = 0;
6718 	hba->uic_error = 0;
6719 	spin_unlock(hba->host->host_lock);
6720 	return retval;
6721 }
6722 
6723 /**
6724  * ufshcd_tmc_handler - handle task management function completion
6725  * @hba: per adapter instance
6726  *
6727  * Returns
6728  *  IRQ_HANDLED - If interrupt is valid
6729  *  IRQ_NONE    - If invalid interrupt
6730  */
6731 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6732 {
6733 	unsigned long flags, pending, issued;
6734 	irqreturn_t ret = IRQ_NONE;
6735 	int tag;
6736 
6737 	spin_lock_irqsave(hba->host->host_lock, flags);
6738 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6739 	issued = hba->outstanding_tasks & ~pending;
6740 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6741 		struct request *req = hba->tmf_rqs[tag];
6742 		struct completion *c = req->end_io_data;
6743 
6744 		complete(c);
6745 		ret = IRQ_HANDLED;
6746 	}
6747 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6748 
6749 	return ret;
6750 }
6751 
6752 /**
6753  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6754  * @hba: per adapter instance
6755  *
6756  * Returns IRQ_HANDLED if interrupt is handled
6757  */
6758 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6759 {
6760 	struct ufs_hw_queue *hwq;
6761 	unsigned long outstanding_cqs;
6762 	unsigned int nr_queues;
6763 	int i, ret;
6764 	u32 events;
6765 
6766 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6767 	if (ret)
6768 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6769 
6770 	/* Exclude the poll queues */
6771 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6772 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6773 		hwq = &hba->uhq[i];
6774 
6775 		events = ufshcd_mcq_read_cqis(hba, i);
6776 		if (events)
6777 			ufshcd_mcq_write_cqis(hba, events, i);
6778 
6779 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6780 			ufshcd_mcq_poll_cqe_nolock(hba, hwq);
6781 	}
6782 
6783 	return IRQ_HANDLED;
6784 }
6785 
6786 /**
6787  * ufshcd_sl_intr - Interrupt service routine
6788  * @hba: per adapter instance
6789  * @intr_status: contains interrupts generated by the controller
6790  *
6791  * Returns
6792  *  IRQ_HANDLED - If interrupt is valid
6793  *  IRQ_NONE    - If invalid interrupt
6794  */
6795 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6796 {
6797 	irqreturn_t retval = IRQ_NONE;
6798 
6799 	if (intr_status & UFSHCD_UIC_MASK)
6800 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6801 
6802 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6803 		retval |= ufshcd_check_errors(hba, intr_status);
6804 
6805 	if (intr_status & UTP_TASK_REQ_COMPL)
6806 		retval |= ufshcd_tmc_handler(hba);
6807 
6808 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6809 		retval |= ufshcd_transfer_req_compl(hba);
6810 
6811 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6812 		retval |= ufshcd_handle_mcq_cq_events(hba);
6813 
6814 	return retval;
6815 }
6816 
6817 /**
6818  * ufshcd_intr - Main interrupt service routine
6819  * @irq: irq number
6820  * @__hba: pointer to adapter instance
6821  *
6822  * Returns
6823  *  IRQ_HANDLED - If interrupt is valid
6824  *  IRQ_NONE    - If invalid interrupt
6825  */
6826 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6827 {
6828 	u32 intr_status, enabled_intr_status = 0;
6829 	irqreturn_t retval = IRQ_NONE;
6830 	struct ufs_hba *hba = __hba;
6831 	int retries = hba->nutrs;
6832 
6833 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6834 	hba->ufs_stats.last_intr_status = intr_status;
6835 	hba->ufs_stats.last_intr_ts = local_clock();
6836 
6837 	/*
6838 	 * There could be max of hba->nutrs reqs in flight and in worst case
6839 	 * if the reqs get finished 1 by 1 after the interrupt status is
6840 	 * read, make sure we handle them by checking the interrupt status
6841 	 * again in a loop until we process all of the reqs before returning.
6842 	 */
6843 	while (intr_status && retries--) {
6844 		enabled_intr_status =
6845 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6846 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6847 		if (enabled_intr_status)
6848 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6849 
6850 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6851 	}
6852 
6853 	if (enabled_intr_status && retval == IRQ_NONE &&
6854 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6855 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6856 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6857 					__func__,
6858 					intr_status,
6859 					hba->ufs_stats.last_intr_status,
6860 					enabled_intr_status);
6861 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6862 	}
6863 
6864 	return retval;
6865 }
6866 
6867 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6868 {
6869 	int err = 0;
6870 	u32 mask = 1 << tag;
6871 	unsigned long flags;
6872 
6873 	if (!test_bit(tag, &hba->outstanding_tasks))
6874 		goto out;
6875 
6876 	spin_lock_irqsave(hba->host->host_lock, flags);
6877 	ufshcd_utmrl_clear(hba, tag);
6878 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6879 
6880 	/* poll for max. 1 sec to clear door bell register by h/w */
6881 	err = ufshcd_wait_for_register(hba,
6882 			REG_UTP_TASK_REQ_DOOR_BELL,
6883 			mask, 0, 1000, 1000);
6884 
6885 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6886 		tag, err ? "succeeded" : "failed");
6887 
6888 out:
6889 	return err;
6890 }
6891 
6892 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6893 		struct utp_task_req_desc *treq, u8 tm_function)
6894 {
6895 	struct request_queue *q = hba->tmf_queue;
6896 	struct Scsi_Host *host = hba->host;
6897 	DECLARE_COMPLETION_ONSTACK(wait);
6898 	struct request *req;
6899 	unsigned long flags;
6900 	int task_tag, err;
6901 
6902 	/*
6903 	 * blk_mq_alloc_request() is used here only to get a free tag.
6904 	 */
6905 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6906 	if (IS_ERR(req))
6907 		return PTR_ERR(req);
6908 
6909 	req->end_io_data = &wait;
6910 	ufshcd_hold(hba, false);
6911 
6912 	spin_lock_irqsave(host->host_lock, flags);
6913 
6914 	task_tag = req->tag;
6915 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6916 		  task_tag);
6917 	hba->tmf_rqs[req->tag] = req;
6918 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6919 
6920 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6921 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6922 
6923 	/* send command to the controller */
6924 	__set_bit(task_tag, &hba->outstanding_tasks);
6925 
6926 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6927 	/* Make sure that doorbell is committed immediately */
6928 	wmb();
6929 
6930 	spin_unlock_irqrestore(host->host_lock, flags);
6931 
6932 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6933 
6934 	/* wait until the task management command is completed */
6935 	err = wait_for_completion_io_timeout(&wait,
6936 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6937 	if (!err) {
6938 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6939 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6940 				__func__, tm_function);
6941 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6942 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6943 					__func__, task_tag);
6944 		err = -ETIMEDOUT;
6945 	} else {
6946 		err = 0;
6947 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6948 
6949 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6950 	}
6951 
6952 	spin_lock_irqsave(hba->host->host_lock, flags);
6953 	hba->tmf_rqs[req->tag] = NULL;
6954 	__clear_bit(task_tag, &hba->outstanding_tasks);
6955 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6956 
6957 	ufshcd_release(hba);
6958 	blk_mq_free_request(req);
6959 
6960 	return err;
6961 }
6962 
6963 /**
6964  * ufshcd_issue_tm_cmd - issues task management commands to controller
6965  * @hba: per adapter instance
6966  * @lun_id: LUN ID to which TM command is sent
6967  * @task_id: task ID to which the TM command is applicable
6968  * @tm_function: task management function opcode
6969  * @tm_response: task management service response return value
6970  *
6971  * Returns non-zero value on error, zero on success.
6972  */
6973 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6974 		u8 tm_function, u8 *tm_response)
6975 {
6976 	struct utp_task_req_desc treq = { { 0 }, };
6977 	enum utp_ocs ocs_value;
6978 	int err;
6979 
6980 	/* Configure task request descriptor */
6981 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6982 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6983 
6984 	/* Configure task request UPIU */
6985 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6986 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6987 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6988 
6989 	/*
6990 	 * The host shall provide the same value for LUN field in the basic
6991 	 * header and for Input Parameter.
6992 	 */
6993 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6994 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6995 
6996 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6997 	if (err == -ETIMEDOUT)
6998 		return err;
6999 
7000 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7001 	if (ocs_value != OCS_SUCCESS)
7002 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7003 				__func__, ocs_value);
7004 	else if (tm_response)
7005 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7006 				MASK_TM_SERVICE_RESP;
7007 	return err;
7008 }
7009 
7010 /**
7011  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7012  * @hba:	per-adapter instance
7013  * @req_upiu:	upiu request
7014  * @rsp_upiu:	upiu reply
7015  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7016  * @buff_len:	descriptor size, 0 if NA
7017  * @cmd_type:	specifies the type (NOP, Query...)
7018  * @desc_op:	descriptor operation
7019  *
7020  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7021  * Therefore, it "rides" the device management infrastructure: uses its tag and
7022  * tasks work queues.
7023  *
7024  * Since there is only one available tag for device management commands,
7025  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7026  */
7027 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7028 					struct utp_upiu_req *req_upiu,
7029 					struct utp_upiu_req *rsp_upiu,
7030 					u8 *desc_buff, int *buff_len,
7031 					enum dev_cmd_type cmd_type,
7032 					enum query_opcode desc_op)
7033 {
7034 	DECLARE_COMPLETION_ONSTACK(wait);
7035 	const u32 tag = hba->reserved_slot;
7036 	struct ufshcd_lrb *lrbp;
7037 	int err = 0;
7038 	u8 upiu_flags;
7039 
7040 	/* Protects use of hba->reserved_slot. */
7041 	lockdep_assert_held(&hba->dev_cmd.lock);
7042 
7043 	down_read(&hba->clk_scaling_lock);
7044 
7045 	lrbp = &hba->lrb[tag];
7046 	WARN_ON(lrbp->cmd);
7047 	lrbp->cmd = NULL;
7048 	lrbp->task_tag = tag;
7049 	lrbp->lun = 0;
7050 	lrbp->intr_cmd = true;
7051 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7052 	hba->dev_cmd.type = cmd_type;
7053 
7054 	if (hba->ufs_version <= ufshci_version(1, 1))
7055 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7056 	else
7057 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7058 
7059 	/* update the task tag in the request upiu */
7060 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
7061 
7062 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7063 
7064 	/* just copy the upiu request as it is */
7065 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7066 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7067 		/* The Data Segment Area is optional depending upon the query
7068 		 * function value. for WRITE DESCRIPTOR, the data segment
7069 		 * follows right after the tsf.
7070 		 */
7071 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7072 		*buff_len = 0;
7073 	}
7074 
7075 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7076 
7077 	hba->dev_cmd.complete = &wait;
7078 
7079 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7080 
7081 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7082 	/*
7083 	 * ignore the returning value here - ufshcd_check_query_response is
7084 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7085 	 * read the response directly ignoring all errors.
7086 	 */
7087 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7088 
7089 	/* just copy the upiu response as it is */
7090 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7091 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7092 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7093 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
7094 			       MASK_QUERY_DATA_SEG_LEN;
7095 
7096 		if (*buff_len >= resp_len) {
7097 			memcpy(desc_buff, descp, resp_len);
7098 			*buff_len = resp_len;
7099 		} else {
7100 			dev_warn(hba->dev,
7101 				 "%s: rsp size %d is bigger than buffer size %d",
7102 				 __func__, resp_len, *buff_len);
7103 			*buff_len = 0;
7104 			err = -EINVAL;
7105 		}
7106 	}
7107 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7108 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7109 
7110 	up_read(&hba->clk_scaling_lock);
7111 	return err;
7112 }
7113 
7114 /**
7115  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7116  * @hba:	per-adapter instance
7117  * @req_upiu:	upiu request
7118  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7119  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7120  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7121  * @buff_len:	descriptor size, 0 if NA
7122  * @desc_op:	descriptor operation
7123  *
7124  * Supports UTP Transfer requests (nop and query), and UTP Task
7125  * Management requests.
7126  * It is up to the caller to fill the upiu conent properly, as it will
7127  * be copied without any further input validations.
7128  */
7129 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7130 			     struct utp_upiu_req *req_upiu,
7131 			     struct utp_upiu_req *rsp_upiu,
7132 			     int msgcode,
7133 			     u8 *desc_buff, int *buff_len,
7134 			     enum query_opcode desc_op)
7135 {
7136 	int err;
7137 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7138 	struct utp_task_req_desc treq = { { 0 }, };
7139 	enum utp_ocs ocs_value;
7140 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
7141 
7142 	switch (msgcode) {
7143 	case UPIU_TRANSACTION_NOP_OUT:
7144 		cmd_type = DEV_CMD_TYPE_NOP;
7145 		fallthrough;
7146 	case UPIU_TRANSACTION_QUERY_REQ:
7147 		ufshcd_hold(hba, false);
7148 		mutex_lock(&hba->dev_cmd.lock);
7149 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7150 						   desc_buff, buff_len,
7151 						   cmd_type, desc_op);
7152 		mutex_unlock(&hba->dev_cmd.lock);
7153 		ufshcd_release(hba);
7154 
7155 		break;
7156 	case UPIU_TRANSACTION_TASK_REQ:
7157 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7158 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7159 
7160 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7161 
7162 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7163 		if (err == -ETIMEDOUT)
7164 			break;
7165 
7166 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7167 		if (ocs_value != OCS_SUCCESS) {
7168 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7169 				ocs_value);
7170 			break;
7171 		}
7172 
7173 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7174 
7175 		break;
7176 	default:
7177 		err = -EINVAL;
7178 
7179 		break;
7180 	}
7181 
7182 	return err;
7183 }
7184 
7185 /**
7186  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7187  * @hba:	per adapter instance
7188  * @req_upiu:	upiu request
7189  * @rsp_upiu:	upiu reply
7190  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7191  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7192  * @sg_cnt:	The number of sg lists actually used
7193  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7194  * @dir:	DMA direction
7195  *
7196  * Returns zero on success, non-zero on failure
7197  */
7198 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7199 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7200 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7201 			 enum dma_data_direction dir)
7202 {
7203 	DECLARE_COMPLETION_ONSTACK(wait);
7204 	const u32 tag = hba->reserved_slot;
7205 	struct ufshcd_lrb *lrbp;
7206 	int err = 0;
7207 	int result;
7208 	u8 upiu_flags;
7209 	u8 *ehs_data;
7210 	u16 ehs_len;
7211 
7212 	/* Protects use of hba->reserved_slot. */
7213 	ufshcd_hold(hba, false);
7214 	mutex_lock(&hba->dev_cmd.lock);
7215 	down_read(&hba->clk_scaling_lock);
7216 
7217 	lrbp = &hba->lrb[tag];
7218 	WARN_ON(lrbp->cmd);
7219 	lrbp->cmd = NULL;
7220 	lrbp->task_tag = tag;
7221 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7222 
7223 	lrbp->intr_cmd = true;
7224 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7225 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7226 
7227 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7228 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7229 
7230 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7231 
7232 	/* update the task tag and LUN in the request upiu */
7233 	req_upiu->header.dword_0 |= cpu_to_be32(upiu_flags << 16 | UFS_UPIU_RPMB_WLUN << 8 | tag);
7234 
7235 	/* copy the UPIU(contains CDB) request as it is */
7236 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7237 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7238 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7239 
7240 	if (dir != DMA_NONE && sg_list)
7241 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7242 
7243 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7244 
7245 	hba->dev_cmd.complete = &wait;
7246 
7247 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7248 
7249 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7250 
7251 	if (!err) {
7252 		/* Just copy the upiu response as it is */
7253 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7254 		/* Get the response UPIU result */
7255 		result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
7256 
7257 		ehs_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) >> 24;
7258 		/*
7259 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7260 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7261 		 * Message is 02h
7262 		 */
7263 		if (ehs_len == 2 && rsp_ehs) {
7264 			/*
7265 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7266 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7267 			 */
7268 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7269 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7270 		}
7271 	}
7272 
7273 	up_read(&hba->clk_scaling_lock);
7274 	mutex_unlock(&hba->dev_cmd.lock);
7275 	ufshcd_release(hba);
7276 	return err ? : result;
7277 }
7278 
7279 /**
7280  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7281  * @cmd: SCSI command pointer
7282  *
7283  * Returns SUCCESS/FAILED
7284  */
7285 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7286 {
7287 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7288 	struct Scsi_Host *host;
7289 	struct ufs_hba *hba;
7290 	u32 pos;
7291 	int err;
7292 	u8 resp = 0xF, lun;
7293 
7294 	host = cmd->device->host;
7295 	hba = shost_priv(host);
7296 
7297 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7298 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7299 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7300 		if (!err)
7301 			err = resp;
7302 		goto out;
7303 	}
7304 
7305 	/* clear the commands that were pending for corresponding LUN */
7306 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7307 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7308 		if (hba->lrb[pos].lun == lun)
7309 			__set_bit(pos, &pending_reqs);
7310 	hba->outstanding_reqs &= ~pending_reqs;
7311 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7312 
7313 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7314 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7315 		not_cleared = pending_reqs &
7316 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7317 		hba->outstanding_reqs |= not_cleared;
7318 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7319 
7320 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7321 			__func__, not_cleared);
7322 	}
7323 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7324 
7325 out:
7326 	hba->req_abort_count = 0;
7327 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7328 	if (!err) {
7329 		err = SUCCESS;
7330 	} else {
7331 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7332 		err = FAILED;
7333 	}
7334 	return err;
7335 }
7336 
7337 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7338 {
7339 	struct ufshcd_lrb *lrbp;
7340 	int tag;
7341 
7342 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7343 		lrbp = &hba->lrb[tag];
7344 		lrbp->req_abort_skip = true;
7345 	}
7346 }
7347 
7348 /**
7349  * ufshcd_try_to_abort_task - abort a specific task
7350  * @hba: Pointer to adapter instance
7351  * @tag: Task tag/index to be aborted
7352  *
7353  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7354  * command, and in host controller by clearing the door-bell register. There can
7355  * be race between controller sending the command to the device while abort is
7356  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7357  * really issued and then try to abort it.
7358  *
7359  * Returns zero on success, non-zero on failure
7360  */
7361 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7362 {
7363 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7364 	int err = 0;
7365 	int poll_cnt;
7366 	u8 resp = 0xF;
7367 	u32 reg;
7368 
7369 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7370 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7371 				UFS_QUERY_TASK, &resp);
7372 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7373 			/* cmd pending in the device */
7374 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7375 				__func__, tag);
7376 			break;
7377 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7378 			/*
7379 			 * cmd not pending in the device, check if it is
7380 			 * in transition.
7381 			 */
7382 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7383 				__func__, tag);
7384 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7385 			if (reg & (1 << tag)) {
7386 				/* sleep for max. 200us to stabilize */
7387 				usleep_range(100, 200);
7388 				continue;
7389 			}
7390 			/* command completed already */
7391 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7392 				__func__, tag);
7393 			goto out;
7394 		} else {
7395 			dev_err(hba->dev,
7396 				"%s: no response from device. tag = %d, err %d\n",
7397 				__func__, tag, err);
7398 			if (!err)
7399 				err = resp; /* service response error */
7400 			goto out;
7401 		}
7402 	}
7403 
7404 	if (!poll_cnt) {
7405 		err = -EBUSY;
7406 		goto out;
7407 	}
7408 
7409 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7410 			UFS_ABORT_TASK, &resp);
7411 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7412 		if (!err) {
7413 			err = resp; /* service response error */
7414 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7415 				__func__, tag, err);
7416 		}
7417 		goto out;
7418 	}
7419 
7420 	err = ufshcd_clear_cmds(hba, 1U << tag);
7421 	if (err)
7422 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7423 			__func__, tag, err);
7424 
7425 out:
7426 	return err;
7427 }
7428 
7429 /**
7430  * ufshcd_abort - scsi host template eh_abort_handler callback
7431  * @cmd: SCSI command pointer
7432  *
7433  * Returns SUCCESS/FAILED
7434  */
7435 static int ufshcd_abort(struct scsi_cmnd *cmd)
7436 {
7437 	struct Scsi_Host *host = cmd->device->host;
7438 	struct ufs_hba *hba = shost_priv(host);
7439 	int tag = scsi_cmd_to_rq(cmd)->tag;
7440 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7441 	unsigned long flags;
7442 	int err = FAILED;
7443 	bool outstanding;
7444 	u32 reg;
7445 
7446 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7447 
7448 	ufshcd_hold(hba, false);
7449 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7450 	/* If command is already aborted/completed, return FAILED. */
7451 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7452 		dev_err(hba->dev,
7453 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7454 			__func__, tag, hba->outstanding_reqs, reg);
7455 		goto release;
7456 	}
7457 
7458 	/* Print Transfer Request of aborted task */
7459 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7460 
7461 	/*
7462 	 * Print detailed info about aborted request.
7463 	 * As more than one request might get aborted at the same time,
7464 	 * print full information only for the first aborted request in order
7465 	 * to reduce repeated printouts. For other aborted requests only print
7466 	 * basic details.
7467 	 */
7468 	scsi_print_command(cmd);
7469 	if (!hba->req_abort_count) {
7470 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7471 		ufshcd_print_evt_hist(hba);
7472 		ufshcd_print_host_state(hba);
7473 		ufshcd_print_pwr_info(hba);
7474 		ufshcd_print_tr(hba, tag, true);
7475 	} else {
7476 		ufshcd_print_tr(hba, tag, false);
7477 	}
7478 	hba->req_abort_count++;
7479 
7480 	if (!(reg & (1 << tag))) {
7481 		dev_err(hba->dev,
7482 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7483 		__func__, tag);
7484 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7485 		goto release;
7486 	}
7487 
7488 	/*
7489 	 * Task abort to the device W-LUN is illegal. When this command
7490 	 * will fail, due to spec violation, scsi err handling next step
7491 	 * will be to send LU reset which, again, is a spec violation.
7492 	 * To avoid these unnecessary/illegal steps, first we clean up
7493 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7494 	 * then queue the eh_work and bail.
7495 	 */
7496 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7497 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7498 
7499 		spin_lock_irqsave(host->host_lock, flags);
7500 		hba->force_reset = true;
7501 		ufshcd_schedule_eh_work(hba);
7502 		spin_unlock_irqrestore(host->host_lock, flags);
7503 		goto release;
7504 	}
7505 
7506 	/* Skip task abort in case previous aborts failed and report failure */
7507 	if (lrbp->req_abort_skip) {
7508 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7509 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7510 		goto release;
7511 	}
7512 
7513 	err = ufshcd_try_to_abort_task(hba, tag);
7514 	if (err) {
7515 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7516 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7517 		err = FAILED;
7518 		goto release;
7519 	}
7520 
7521 	/*
7522 	 * Clear the corresponding bit from outstanding_reqs since the command
7523 	 * has been aborted successfully.
7524 	 */
7525 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7526 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7527 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7528 
7529 	if (outstanding)
7530 		ufshcd_release_scsi_cmd(hba, lrbp);
7531 
7532 	err = SUCCESS;
7533 
7534 release:
7535 	/* Matches the ufshcd_hold() call at the start of this function. */
7536 	ufshcd_release(hba);
7537 	return err;
7538 }
7539 
7540 /**
7541  * ufshcd_host_reset_and_restore - reset and restore host controller
7542  * @hba: per-adapter instance
7543  *
7544  * Note that host controller reset may issue DME_RESET to
7545  * local and remote (device) Uni-Pro stack and the attributes
7546  * are reset to default state.
7547  *
7548  * Returns zero on success, non-zero on failure
7549  */
7550 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7551 {
7552 	int err;
7553 
7554 	/*
7555 	 * Stop the host controller and complete the requests
7556 	 * cleared by h/w
7557 	 */
7558 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7559 	ufshcd_hba_stop(hba);
7560 	hba->silence_err_logs = true;
7561 	ufshcd_complete_requests(hba);
7562 	hba->silence_err_logs = false;
7563 
7564 	/* scale up clocks to max frequency before full reinitialization */
7565 	ufshcd_scale_clks(hba, true);
7566 
7567 	err = ufshcd_hba_enable(hba);
7568 
7569 	/* Establish the link again and restore the device */
7570 	if (!err)
7571 		err = ufshcd_probe_hba(hba, false);
7572 
7573 	if (err)
7574 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7575 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7576 	return err;
7577 }
7578 
7579 /**
7580  * ufshcd_reset_and_restore - reset and re-initialize host/device
7581  * @hba: per-adapter instance
7582  *
7583  * Reset and recover device, host and re-establish link. This
7584  * is helpful to recover the communication in fatal error conditions.
7585  *
7586  * Returns zero on success, non-zero on failure
7587  */
7588 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7589 {
7590 	u32 saved_err = 0;
7591 	u32 saved_uic_err = 0;
7592 	int err = 0;
7593 	unsigned long flags;
7594 	int retries = MAX_HOST_RESET_RETRIES;
7595 
7596 	spin_lock_irqsave(hba->host->host_lock, flags);
7597 	do {
7598 		/*
7599 		 * This is a fresh start, cache and clear saved error first,
7600 		 * in case new error generated during reset and restore.
7601 		 */
7602 		saved_err |= hba->saved_err;
7603 		saved_uic_err |= hba->saved_uic_err;
7604 		hba->saved_err = 0;
7605 		hba->saved_uic_err = 0;
7606 		hba->force_reset = false;
7607 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7608 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7609 
7610 		/* Reset the attached device */
7611 		ufshcd_device_reset(hba);
7612 
7613 		err = ufshcd_host_reset_and_restore(hba);
7614 
7615 		spin_lock_irqsave(hba->host->host_lock, flags);
7616 		if (err)
7617 			continue;
7618 		/* Do not exit unless operational or dead */
7619 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7620 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7621 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7622 			err = -EAGAIN;
7623 	} while (err && --retries);
7624 
7625 	/*
7626 	 * Inform scsi mid-layer that we did reset and allow to handle
7627 	 * Unit Attention properly.
7628 	 */
7629 	scsi_report_bus_reset(hba->host, 0);
7630 	if (err) {
7631 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7632 		hba->saved_err |= saved_err;
7633 		hba->saved_uic_err |= saved_uic_err;
7634 	}
7635 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7636 
7637 	return err;
7638 }
7639 
7640 /**
7641  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7642  * @cmd: SCSI command pointer
7643  *
7644  * Returns SUCCESS/FAILED
7645  */
7646 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7647 {
7648 	int err = SUCCESS;
7649 	unsigned long flags;
7650 	struct ufs_hba *hba;
7651 
7652 	hba = shost_priv(cmd->device->host);
7653 
7654 	spin_lock_irqsave(hba->host->host_lock, flags);
7655 	hba->force_reset = true;
7656 	ufshcd_schedule_eh_work(hba);
7657 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7658 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7659 
7660 	flush_work(&hba->eh_work);
7661 
7662 	spin_lock_irqsave(hba->host->host_lock, flags);
7663 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7664 		err = FAILED;
7665 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7666 
7667 	return err;
7668 }
7669 
7670 /**
7671  * ufshcd_get_max_icc_level - calculate the ICC level
7672  * @sup_curr_uA: max. current supported by the regulator
7673  * @start_scan: row at the desc table to start scan from
7674  * @buff: power descriptor buffer
7675  *
7676  * Returns calculated max ICC level for specific regulator
7677  */
7678 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7679 				    const char *buff)
7680 {
7681 	int i;
7682 	int curr_uA;
7683 	u16 data;
7684 	u16 unit;
7685 
7686 	for (i = start_scan; i >= 0; i--) {
7687 		data = get_unaligned_be16(&buff[2 * i]);
7688 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7689 						ATTR_ICC_LVL_UNIT_OFFSET;
7690 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7691 		switch (unit) {
7692 		case UFSHCD_NANO_AMP:
7693 			curr_uA = curr_uA / 1000;
7694 			break;
7695 		case UFSHCD_MILI_AMP:
7696 			curr_uA = curr_uA * 1000;
7697 			break;
7698 		case UFSHCD_AMP:
7699 			curr_uA = curr_uA * 1000 * 1000;
7700 			break;
7701 		case UFSHCD_MICRO_AMP:
7702 		default:
7703 			break;
7704 		}
7705 		if (sup_curr_uA >= curr_uA)
7706 			break;
7707 	}
7708 	if (i < 0) {
7709 		i = 0;
7710 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7711 	}
7712 
7713 	return (u32)i;
7714 }
7715 
7716 /**
7717  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7718  * In case regulators are not initialized we'll return 0
7719  * @hba: per-adapter instance
7720  * @desc_buf: power descriptor buffer to extract ICC levels from.
7721  *
7722  * Returns calculated ICC level
7723  */
7724 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7725 						const u8 *desc_buf)
7726 {
7727 	u32 icc_level = 0;
7728 
7729 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7730 						!hba->vreg_info.vccq2) {
7731 		/*
7732 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7733 		 * never-ending cycles of messages written back to storage by
7734 		 * user space causing runtime resume, causing more messages and
7735 		 * so on.
7736 		 */
7737 		dev_dbg(hba->dev,
7738 			"%s: Regulator capability was not set, actvIccLevel=%d",
7739 							__func__, icc_level);
7740 		goto out;
7741 	}
7742 
7743 	if (hba->vreg_info.vcc->max_uA)
7744 		icc_level = ufshcd_get_max_icc_level(
7745 				hba->vreg_info.vcc->max_uA,
7746 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7747 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7748 
7749 	if (hba->vreg_info.vccq->max_uA)
7750 		icc_level = ufshcd_get_max_icc_level(
7751 				hba->vreg_info.vccq->max_uA,
7752 				icc_level,
7753 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7754 
7755 	if (hba->vreg_info.vccq2->max_uA)
7756 		icc_level = ufshcd_get_max_icc_level(
7757 				hba->vreg_info.vccq2->max_uA,
7758 				icc_level,
7759 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7760 out:
7761 	return icc_level;
7762 }
7763 
7764 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7765 {
7766 	int ret;
7767 	u8 *desc_buf;
7768 	u32 icc_level;
7769 
7770 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7771 	if (!desc_buf)
7772 		return;
7773 
7774 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7775 				     desc_buf, QUERY_DESC_MAX_SIZE);
7776 	if (ret) {
7777 		dev_err(hba->dev,
7778 			"%s: Failed reading power descriptor ret = %d",
7779 			__func__, ret);
7780 		goto out;
7781 	}
7782 
7783 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7784 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7785 
7786 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7787 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7788 
7789 	if (ret)
7790 		dev_err(hba->dev,
7791 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7792 			__func__, icc_level, ret);
7793 
7794 out:
7795 	kfree(desc_buf);
7796 }
7797 
7798 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7799 {
7800 	scsi_autopm_get_device(sdev);
7801 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7802 	if (sdev->rpm_autosuspend)
7803 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7804 						 RPM_AUTOSUSPEND_DELAY_MS);
7805 	scsi_autopm_put_device(sdev);
7806 }
7807 
7808 /**
7809  * ufshcd_scsi_add_wlus - Adds required W-LUs
7810  * @hba: per-adapter instance
7811  *
7812  * UFS device specification requires the UFS devices to support 4 well known
7813  * logical units:
7814  *	"REPORT_LUNS" (address: 01h)
7815  *	"UFS Device" (address: 50h)
7816  *	"RPMB" (address: 44h)
7817  *	"BOOT" (address: 30h)
7818  * UFS device's power management needs to be controlled by "POWER CONDITION"
7819  * field of SSU (START STOP UNIT) command. But this "power condition" field
7820  * will take effect only when its sent to "UFS device" well known logical unit
7821  * hence we require the scsi_device instance to represent this logical unit in
7822  * order for the UFS host driver to send the SSU command for power management.
7823  *
7824  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7825  * Block) LU so user space process can control this LU. User space may also
7826  * want to have access to BOOT LU.
7827  *
7828  * This function adds scsi device instances for each of all well known LUs
7829  * (except "REPORT LUNS" LU).
7830  *
7831  * Returns zero on success (all required W-LUs are added successfully),
7832  * non-zero error value on failure (if failed to add any of the required W-LU).
7833  */
7834 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7835 {
7836 	int ret = 0;
7837 	struct scsi_device *sdev_boot, *sdev_rpmb;
7838 
7839 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7840 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7841 	if (IS_ERR(hba->ufs_device_wlun)) {
7842 		ret = PTR_ERR(hba->ufs_device_wlun);
7843 		hba->ufs_device_wlun = NULL;
7844 		goto out;
7845 	}
7846 	scsi_device_put(hba->ufs_device_wlun);
7847 
7848 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7849 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7850 	if (IS_ERR(sdev_rpmb)) {
7851 		ret = PTR_ERR(sdev_rpmb);
7852 		goto remove_ufs_device_wlun;
7853 	}
7854 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7855 	scsi_device_put(sdev_rpmb);
7856 
7857 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7858 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7859 	if (IS_ERR(sdev_boot)) {
7860 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7861 	} else {
7862 		ufshcd_blk_pm_runtime_init(sdev_boot);
7863 		scsi_device_put(sdev_boot);
7864 	}
7865 	goto out;
7866 
7867 remove_ufs_device_wlun:
7868 	scsi_remove_device(hba->ufs_device_wlun);
7869 out:
7870 	return ret;
7871 }
7872 
7873 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7874 {
7875 	struct ufs_dev_info *dev_info = &hba->dev_info;
7876 	u8 lun;
7877 	u32 d_lu_wb_buf_alloc;
7878 	u32 ext_ufs_feature;
7879 
7880 	if (!ufshcd_is_wb_allowed(hba))
7881 		return;
7882 
7883 	/*
7884 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7885 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7886 	 * enabled
7887 	 */
7888 	if (!(dev_info->wspecversion >= 0x310 ||
7889 	      dev_info->wspecversion == 0x220 ||
7890 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7891 		goto wb_disabled;
7892 
7893 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7894 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7895 
7896 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7897 		goto wb_disabled;
7898 
7899 	/*
7900 	 * WB may be supported but not configured while provisioning. The spec
7901 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7902 	 * buffer configured.
7903 	 */
7904 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7905 
7906 	dev_info->b_presrv_uspc_en =
7907 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7908 
7909 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7910 		if (!get_unaligned_be32(desc_buf +
7911 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7912 			goto wb_disabled;
7913 	} else {
7914 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7915 			d_lu_wb_buf_alloc = 0;
7916 			ufshcd_read_unit_desc_param(hba,
7917 					lun,
7918 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7919 					(u8 *)&d_lu_wb_buf_alloc,
7920 					sizeof(d_lu_wb_buf_alloc));
7921 			if (d_lu_wb_buf_alloc) {
7922 				dev_info->wb_dedicated_lu = lun;
7923 				break;
7924 			}
7925 		}
7926 
7927 		if (!d_lu_wb_buf_alloc)
7928 			goto wb_disabled;
7929 	}
7930 
7931 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7932 		goto wb_disabled;
7933 
7934 	return;
7935 
7936 wb_disabled:
7937 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7938 }
7939 
7940 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7941 {
7942 	struct ufs_dev_info *dev_info = &hba->dev_info;
7943 	u32 ext_ufs_feature;
7944 	u8 mask = 0;
7945 
7946 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7947 		return;
7948 
7949 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7950 
7951 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7952 		mask |= MASK_EE_TOO_LOW_TEMP;
7953 
7954 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7955 		mask |= MASK_EE_TOO_HIGH_TEMP;
7956 
7957 	if (mask) {
7958 		ufshcd_enable_ee(hba, mask);
7959 		ufs_hwmon_probe(hba, mask);
7960 	}
7961 }
7962 
7963 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
7964 {
7965 	struct ufs_dev_info *dev_info = &hba->dev_info;
7966 	u32 ext_ufs_feature;
7967 	u32 ext_iid_en = 0;
7968 	int err;
7969 
7970 	/* Only UFS-4.0 and above may support EXT_IID */
7971 	if (dev_info->wspecversion < 0x400)
7972 		goto out;
7973 
7974 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7975 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7976 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
7977 		goto out;
7978 
7979 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7980 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
7981 	if (err)
7982 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
7983 
7984 out:
7985 	dev_info->b_ext_iid_en = ext_iid_en;
7986 }
7987 
7988 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7989 			     const struct ufs_dev_quirk *fixups)
7990 {
7991 	const struct ufs_dev_quirk *f;
7992 	struct ufs_dev_info *dev_info = &hba->dev_info;
7993 
7994 	if (!fixups)
7995 		return;
7996 
7997 	for (f = fixups; f->quirk; f++) {
7998 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7999 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8000 		     ((dev_info->model &&
8001 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8002 		      !strcmp(f->model, UFS_ANY_MODEL)))
8003 			hba->dev_quirks |= f->quirk;
8004 	}
8005 }
8006 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8007 
8008 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8009 {
8010 	/* fix by general quirk table */
8011 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8012 
8013 	/* allow vendors to fix quirks */
8014 	ufshcd_vops_fixup_dev_quirks(hba);
8015 }
8016 
8017 static int ufs_get_device_desc(struct ufs_hba *hba)
8018 {
8019 	int err;
8020 	u8 model_index;
8021 	u8 b_ufs_feature_sup;
8022 	u8 *desc_buf;
8023 	struct ufs_dev_info *dev_info = &hba->dev_info;
8024 
8025 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8026 	if (!desc_buf) {
8027 		err = -ENOMEM;
8028 		goto out;
8029 	}
8030 
8031 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8032 				     QUERY_DESC_MAX_SIZE);
8033 	if (err) {
8034 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8035 			__func__, err);
8036 		goto out;
8037 	}
8038 
8039 	/*
8040 	 * getting vendor (manufacturerID) and Bank Index in big endian
8041 	 * format
8042 	 */
8043 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8044 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8045 
8046 	/* getting Specification Version in big endian format */
8047 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8048 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8049 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8050 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
8051 
8052 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8053 
8054 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
8055 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
8056 		bool hpb_en = false;
8057 
8058 		ufshpb_get_dev_info(hba, desc_buf);
8059 
8060 		if (!ufshpb_is_legacy(hba))
8061 			err = ufshcd_query_flag_retry(hba,
8062 						      UPIU_QUERY_OPCODE_READ_FLAG,
8063 						      QUERY_FLAG_IDN_HPB_EN, 0,
8064 						      &hpb_en);
8065 
8066 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
8067 			dev_info->hpb_enabled = true;
8068 	}
8069 
8070 	err = ufshcd_read_string_desc(hba, model_index,
8071 				      &dev_info->model, SD_ASCII_STD);
8072 	if (err < 0) {
8073 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8074 			__func__, err);
8075 		goto out;
8076 	}
8077 
8078 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8079 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8080 
8081 	ufs_fixup_device_setup(hba);
8082 
8083 	ufshcd_wb_probe(hba, desc_buf);
8084 
8085 	ufshcd_temp_notif_probe(hba, desc_buf);
8086 
8087 	if (hba->ext_iid_sup)
8088 		ufshcd_ext_iid_probe(hba, desc_buf);
8089 
8090 	/*
8091 	 * ufshcd_read_string_desc returns size of the string
8092 	 * reset the error value
8093 	 */
8094 	err = 0;
8095 
8096 out:
8097 	kfree(desc_buf);
8098 	return err;
8099 }
8100 
8101 static void ufs_put_device_desc(struct ufs_hba *hba)
8102 {
8103 	struct ufs_dev_info *dev_info = &hba->dev_info;
8104 
8105 	kfree(dev_info->model);
8106 	dev_info->model = NULL;
8107 }
8108 
8109 /**
8110  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8111  * @hba: per-adapter instance
8112  *
8113  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8114  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8115  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8116  * the hibern8 exit latency.
8117  *
8118  * Returns zero on success, non-zero error value on failure.
8119  */
8120 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8121 {
8122 	int ret = 0;
8123 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8124 
8125 	ret = ufshcd_dme_peer_get(hba,
8126 				  UIC_ARG_MIB_SEL(
8127 					RX_MIN_ACTIVATETIME_CAPABILITY,
8128 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8129 				  &peer_rx_min_activatetime);
8130 	if (ret)
8131 		goto out;
8132 
8133 	/* make sure proper unit conversion is applied */
8134 	tuned_pa_tactivate =
8135 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8136 		 / PA_TACTIVATE_TIME_UNIT_US);
8137 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8138 			     tuned_pa_tactivate);
8139 
8140 out:
8141 	return ret;
8142 }
8143 
8144 /**
8145  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8146  * @hba: per-adapter instance
8147  *
8148  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8149  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8150  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8151  * This optimal value can help reduce the hibern8 exit latency.
8152  *
8153  * Returns zero on success, non-zero error value on failure.
8154  */
8155 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8156 {
8157 	int ret = 0;
8158 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8159 	u32 max_hibern8_time, tuned_pa_hibern8time;
8160 
8161 	ret = ufshcd_dme_get(hba,
8162 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8163 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8164 				  &local_tx_hibern8_time_cap);
8165 	if (ret)
8166 		goto out;
8167 
8168 	ret = ufshcd_dme_peer_get(hba,
8169 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8170 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8171 				  &peer_rx_hibern8_time_cap);
8172 	if (ret)
8173 		goto out;
8174 
8175 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8176 			       peer_rx_hibern8_time_cap);
8177 	/* make sure proper unit conversion is applied */
8178 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8179 				/ PA_HIBERN8_TIME_UNIT_US);
8180 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8181 			     tuned_pa_hibern8time);
8182 out:
8183 	return ret;
8184 }
8185 
8186 /**
8187  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8188  * less than device PA_TACTIVATE time.
8189  * @hba: per-adapter instance
8190  *
8191  * Some UFS devices require host PA_TACTIVATE to be lower than device
8192  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8193  * for such devices.
8194  *
8195  * Returns zero on success, non-zero error value on failure.
8196  */
8197 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8198 {
8199 	int ret = 0;
8200 	u32 granularity, peer_granularity;
8201 	u32 pa_tactivate, peer_pa_tactivate;
8202 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8203 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8204 
8205 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8206 				  &granularity);
8207 	if (ret)
8208 		goto out;
8209 
8210 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8211 				  &peer_granularity);
8212 	if (ret)
8213 		goto out;
8214 
8215 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8216 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8217 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8218 			__func__, granularity);
8219 		return -EINVAL;
8220 	}
8221 
8222 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8223 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8224 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8225 			__func__, peer_granularity);
8226 		return -EINVAL;
8227 	}
8228 
8229 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8230 	if (ret)
8231 		goto out;
8232 
8233 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8234 				  &peer_pa_tactivate);
8235 	if (ret)
8236 		goto out;
8237 
8238 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8239 	peer_pa_tactivate_us = peer_pa_tactivate *
8240 			     gran_to_us_table[peer_granularity - 1];
8241 
8242 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8243 		u32 new_peer_pa_tactivate;
8244 
8245 		new_peer_pa_tactivate = pa_tactivate_us /
8246 				      gran_to_us_table[peer_granularity - 1];
8247 		new_peer_pa_tactivate++;
8248 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8249 					  new_peer_pa_tactivate);
8250 	}
8251 
8252 out:
8253 	return ret;
8254 }
8255 
8256 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8257 {
8258 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8259 		ufshcd_tune_pa_tactivate(hba);
8260 		ufshcd_tune_pa_hibern8time(hba);
8261 	}
8262 
8263 	ufshcd_vops_apply_dev_quirks(hba);
8264 
8265 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8266 		/* set 1ms timeout for PA_TACTIVATE */
8267 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8268 
8269 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8270 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8271 }
8272 
8273 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8274 {
8275 	hba->ufs_stats.hibern8_exit_cnt = 0;
8276 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8277 	hba->req_abort_count = 0;
8278 }
8279 
8280 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8281 {
8282 	int err;
8283 	u8 *desc_buf;
8284 
8285 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8286 	if (!desc_buf) {
8287 		err = -ENOMEM;
8288 		goto out;
8289 	}
8290 
8291 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8292 				     desc_buf, QUERY_DESC_MAX_SIZE);
8293 	if (err) {
8294 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8295 				__func__, err);
8296 		goto out;
8297 	}
8298 
8299 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8300 		hba->dev_info.max_lu_supported = 32;
8301 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8302 		hba->dev_info.max_lu_supported = 8;
8303 
8304 	if (desc_buf[QUERY_DESC_LENGTH_OFFSET] >=
8305 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8306 		ufshpb_get_geo_info(hba, desc_buf);
8307 
8308 out:
8309 	kfree(desc_buf);
8310 	return err;
8311 }
8312 
8313 struct ufs_ref_clk {
8314 	unsigned long freq_hz;
8315 	enum ufs_ref_clk_freq val;
8316 };
8317 
8318 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8319 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8320 	{26000000, REF_CLK_FREQ_26_MHZ},
8321 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8322 	{52000000, REF_CLK_FREQ_52_MHZ},
8323 	{0, REF_CLK_FREQ_INVAL},
8324 };
8325 
8326 static enum ufs_ref_clk_freq
8327 ufs_get_bref_clk_from_hz(unsigned long freq)
8328 {
8329 	int i;
8330 
8331 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8332 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8333 			return ufs_ref_clk_freqs[i].val;
8334 
8335 	return REF_CLK_FREQ_INVAL;
8336 }
8337 
8338 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8339 {
8340 	unsigned long freq;
8341 
8342 	freq = clk_get_rate(refclk);
8343 
8344 	hba->dev_ref_clk_freq =
8345 		ufs_get_bref_clk_from_hz(freq);
8346 
8347 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8348 		dev_err(hba->dev,
8349 		"invalid ref_clk setting = %ld\n", freq);
8350 }
8351 
8352 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8353 {
8354 	int err;
8355 	u32 ref_clk;
8356 	u32 freq = hba->dev_ref_clk_freq;
8357 
8358 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8359 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8360 
8361 	if (err) {
8362 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8363 			err);
8364 		goto out;
8365 	}
8366 
8367 	if (ref_clk == freq)
8368 		goto out; /* nothing to update */
8369 
8370 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8371 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8372 
8373 	if (err) {
8374 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8375 			ufs_ref_clk_freqs[freq].freq_hz);
8376 		goto out;
8377 	}
8378 
8379 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8380 			ufs_ref_clk_freqs[freq].freq_hz);
8381 
8382 out:
8383 	return err;
8384 }
8385 
8386 static int ufshcd_device_params_init(struct ufs_hba *hba)
8387 {
8388 	bool flag;
8389 	int ret;
8390 
8391 	/* Init UFS geometry descriptor related parameters */
8392 	ret = ufshcd_device_geo_params_init(hba);
8393 	if (ret)
8394 		goto out;
8395 
8396 	/* Check and apply UFS device quirks */
8397 	ret = ufs_get_device_desc(hba);
8398 	if (ret) {
8399 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8400 			__func__, ret);
8401 		goto out;
8402 	}
8403 
8404 	ufshcd_get_ref_clk_gating_wait(hba);
8405 
8406 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8407 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8408 		hba->dev_info.f_power_on_wp_en = flag;
8409 
8410 	/* Probe maximum power mode co-supported by both UFS host and device */
8411 	if (ufshcd_get_max_pwr_mode(hba))
8412 		dev_err(hba->dev,
8413 			"%s: Failed getting max supported power mode\n",
8414 			__func__);
8415 out:
8416 	return ret;
8417 }
8418 
8419 /**
8420  * ufshcd_add_lus - probe and add UFS logical units
8421  * @hba: per-adapter instance
8422  */
8423 static int ufshcd_add_lus(struct ufs_hba *hba)
8424 {
8425 	int ret;
8426 
8427 	/* Add required well known logical units to scsi mid layer */
8428 	ret = ufshcd_scsi_add_wlus(hba);
8429 	if (ret)
8430 		goto out;
8431 
8432 	ufs_bsg_probe(hba);
8433 	ufshpb_init(hba);
8434 	scsi_scan_host(hba->host);
8435 	pm_runtime_put_sync(hba->dev);
8436 
8437 out:
8438 	return ret;
8439 }
8440 
8441 /* SDB - Single Doorbell */
8442 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8443 {
8444 	size_t ucdl_size, utrdl_size;
8445 
8446 	ucdl_size = sizeof(struct utp_transfer_cmd_desc) * nutrs;
8447 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8448 			   hba->ucdl_dma_addr);
8449 
8450 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8451 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8452 			   hba->utrdl_dma_addr);
8453 
8454 	devm_kfree(hba->dev, hba->lrb);
8455 }
8456 
8457 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8458 {
8459 	int ret;
8460 	int old_nutrs = hba->nutrs;
8461 
8462 	ret = ufshcd_mcq_decide_queue_depth(hba);
8463 	if (ret < 0)
8464 		return ret;
8465 
8466 	hba->nutrs = ret;
8467 	ret = ufshcd_mcq_init(hba);
8468 	if (ret)
8469 		goto err;
8470 
8471 	/*
8472 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8473 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8474 	 */
8475 	if (hba->nutrs != old_nutrs) {
8476 		ufshcd_release_sdb_queue(hba, old_nutrs);
8477 		ret = ufshcd_memory_alloc(hba);
8478 		if (ret)
8479 			goto err;
8480 		ufshcd_host_memory_configure(hba);
8481 	}
8482 
8483 	ret = ufshcd_mcq_memory_alloc(hba);
8484 	if (ret)
8485 		goto err;
8486 
8487 	return 0;
8488 err:
8489 	hba->nutrs = old_nutrs;
8490 	return ret;
8491 }
8492 
8493 static void ufshcd_config_mcq(struct ufs_hba *hba)
8494 {
8495 	int ret;
8496 
8497 	ret = ufshcd_mcq_vops_config_esi(hba);
8498 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8499 
8500 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_MCQ_INTRS);
8501 	ufshcd_mcq_make_queues_operational(hba);
8502 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8503 
8504 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8505 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8506 
8507 	/* Select MCQ mode */
8508 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8509 		      REG_UFS_MEM_CFG);
8510 	hba->mcq_enabled = true;
8511 
8512 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8513 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8514 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8515 		 hba->nutrs);
8516 }
8517 
8518 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8519 {
8520 	int ret;
8521 	struct Scsi_Host *host = hba->host;
8522 
8523 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8524 
8525 	ret = ufshcd_link_startup(hba);
8526 	if (ret)
8527 		return ret;
8528 
8529 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8530 		return ret;
8531 
8532 	/* Debug counters initialization */
8533 	ufshcd_clear_dbg_ufs_stats(hba);
8534 
8535 	/* UniPro link is active now */
8536 	ufshcd_set_link_active(hba);
8537 
8538 	/* Reconfigure MCQ upon reset */
8539 	if (is_mcq_enabled(hba) && !init_dev_params)
8540 		ufshcd_config_mcq(hba);
8541 
8542 	/* Verify device initialization by sending NOP OUT UPIU */
8543 	ret = ufshcd_verify_dev_init(hba);
8544 	if (ret)
8545 		return ret;
8546 
8547 	/* Initiate UFS initialization, and waiting until completion */
8548 	ret = ufshcd_complete_dev_init(hba);
8549 	if (ret)
8550 		return ret;
8551 
8552 	/*
8553 	 * Initialize UFS device parameters used by driver, these
8554 	 * parameters are associated with UFS descriptors.
8555 	 */
8556 	if (init_dev_params) {
8557 		ret = ufshcd_device_params_init(hba);
8558 		if (ret)
8559 			return ret;
8560 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8561 			ret = ufshcd_alloc_mcq(hba);
8562 			if (!ret) {
8563 				ufshcd_config_mcq(hba);
8564 			} else {
8565 				/* Continue with SDB mode */
8566 				use_mcq_mode = false;
8567 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8568 					 ret);
8569 			}
8570 			ret = scsi_add_host(host, hba->dev);
8571 			if (ret) {
8572 				dev_err(hba->dev, "scsi_add_host failed\n");
8573 				return ret;
8574 			}
8575 			hba->scsi_host_added = true;
8576 		} else if (is_mcq_supported(hba)) {
8577 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8578 			ufshcd_config_mcq(hba);
8579 		}
8580 	}
8581 
8582 	ufshcd_tune_unipro_params(hba);
8583 
8584 	/* UFS device is also active now */
8585 	ufshcd_set_ufs_dev_active(hba);
8586 	ufshcd_force_reset_auto_bkops(hba);
8587 
8588 	/* Gear up to HS gear if supported */
8589 	if (hba->max_pwr_info.is_valid) {
8590 		/*
8591 		 * Set the right value to bRefClkFreq before attempting to
8592 		 * switch to HS gears.
8593 		 */
8594 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8595 			ufshcd_set_dev_ref_clk(hba);
8596 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8597 		if (ret) {
8598 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8599 					__func__, ret);
8600 			return ret;
8601 		}
8602 	}
8603 
8604 	return 0;
8605 }
8606 
8607 /**
8608  * ufshcd_probe_hba - probe hba to detect device and initialize it
8609  * @hba: per-adapter instance
8610  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8611  *
8612  * Execute link-startup and verify device initialization
8613  */
8614 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8615 {
8616 	ktime_t start = ktime_get();
8617 	unsigned long flags;
8618 	int ret;
8619 
8620 	ret = ufshcd_device_init(hba, init_dev_params);
8621 	if (ret)
8622 		goto out;
8623 
8624 	if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8625 		/* Reset the device and controller before doing reinit */
8626 		ufshcd_device_reset(hba);
8627 		ufshcd_hba_stop(hba);
8628 		ufshcd_vops_reinit_notify(hba);
8629 		ret = ufshcd_hba_enable(hba);
8630 		if (ret) {
8631 			dev_err(hba->dev, "Host controller enable failed\n");
8632 			ufshcd_print_evt_hist(hba);
8633 			ufshcd_print_host_state(hba);
8634 			goto out;
8635 		}
8636 
8637 		/* Reinit the device */
8638 		ret = ufshcd_device_init(hba, init_dev_params);
8639 		if (ret)
8640 			goto out;
8641 	}
8642 
8643 	ufshcd_print_pwr_info(hba);
8644 
8645 	/*
8646 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8647 	 * and for removable UFS card as well, hence always set the parameter.
8648 	 * Note: Error handler may issue the device reset hence resetting
8649 	 * bActiveICCLevel as well so it is always safe to set this here.
8650 	 */
8651 	ufshcd_set_active_icc_lvl(hba);
8652 
8653 	/* Enable UFS Write Booster if supported */
8654 	ufshcd_configure_wb(hba);
8655 
8656 	if (hba->ee_usr_mask)
8657 		ufshcd_write_ee_control(hba);
8658 	/* Enable Auto-Hibernate if configured */
8659 	ufshcd_auto_hibern8_enable(hba);
8660 
8661 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8662 out:
8663 	spin_lock_irqsave(hba->host->host_lock, flags);
8664 	if (ret)
8665 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8666 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8667 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8668 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8669 
8670 	trace_ufshcd_init(dev_name(hba->dev), ret,
8671 		ktime_to_us(ktime_sub(ktime_get(), start)),
8672 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8673 	return ret;
8674 }
8675 
8676 /**
8677  * ufshcd_async_scan - asynchronous execution for probing hba
8678  * @data: data pointer to pass to this function
8679  * @cookie: cookie data
8680  */
8681 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8682 {
8683 	struct ufs_hba *hba = (struct ufs_hba *)data;
8684 	int ret;
8685 
8686 	down(&hba->host_sem);
8687 	/* Initialize hba, detect and initialize UFS device */
8688 	ret = ufshcd_probe_hba(hba, true);
8689 	up(&hba->host_sem);
8690 	if (ret)
8691 		goto out;
8692 
8693 	/* Probe and add UFS logical units  */
8694 	ret = ufshcd_add_lus(hba);
8695 out:
8696 	/*
8697 	 * If we failed to initialize the device or the device is not
8698 	 * present, turn off the power/clocks etc.
8699 	 */
8700 	if (ret) {
8701 		pm_runtime_put_sync(hba->dev);
8702 		ufshcd_hba_exit(hba);
8703 	} else {
8704 		/*
8705 		 * Make sure that when reader code sees UFS initialization has finished,
8706 		 * all initialization steps have really been executed.
8707 		 */
8708 		smp_store_release(&hba->logical_unit_scan_finished, true);
8709 	}
8710 }
8711 
8712 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8713 {
8714 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8715 
8716 	if (!hba->system_suspending) {
8717 		/* Activate the error handler in the SCSI core. */
8718 		return SCSI_EH_NOT_HANDLED;
8719 	}
8720 
8721 	/*
8722 	 * If we get here we know that no TMFs are outstanding and also that
8723 	 * the only pending command is a START STOP UNIT command. Handle the
8724 	 * timeout of that command directly to prevent a deadlock between
8725 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8726 	 */
8727 	ufshcd_link_recovery(hba);
8728 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8729 		 __func__, hba->outstanding_tasks);
8730 
8731 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8732 }
8733 
8734 static const struct attribute_group *ufshcd_driver_groups[] = {
8735 	&ufs_sysfs_unit_descriptor_group,
8736 	&ufs_sysfs_lun_attributes_group,
8737 #ifdef CONFIG_SCSI_UFS_HPB
8738 	&ufs_sysfs_hpb_stat_group,
8739 	&ufs_sysfs_hpb_param_group,
8740 #endif
8741 	NULL,
8742 };
8743 
8744 static struct ufs_hba_variant_params ufs_hba_vps = {
8745 	.hba_enable_delay_us		= 1000,
8746 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8747 	.devfreq_profile.polling_ms	= 100,
8748 	.devfreq_profile.target		= ufshcd_devfreq_target,
8749 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8750 	.ondemand_data.upthreshold	= 70,
8751 	.ondemand_data.downdifferential	= 5,
8752 };
8753 
8754 static const struct scsi_host_template ufshcd_driver_template = {
8755 	.module			= THIS_MODULE,
8756 	.name			= UFSHCD,
8757 	.proc_name		= UFSHCD,
8758 	.map_queues		= ufshcd_map_queues,
8759 	.queuecommand		= ufshcd_queuecommand,
8760 	.mq_poll		= ufshcd_poll,
8761 	.slave_alloc		= ufshcd_slave_alloc,
8762 	.slave_configure	= ufshcd_slave_configure,
8763 	.slave_destroy		= ufshcd_slave_destroy,
8764 	.change_queue_depth	= ufshcd_change_queue_depth,
8765 	.eh_abort_handler	= ufshcd_abort,
8766 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8767 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8768 	.eh_timed_out		= ufshcd_eh_timed_out,
8769 	.this_id		= -1,
8770 	.sg_tablesize		= SG_ALL,
8771 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8772 	.can_queue		= UFSHCD_CAN_QUEUE,
8773 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8774 	.max_sectors		= (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8775 	.max_host_blocked	= 1,
8776 	.track_queue_depth	= 1,
8777 	.skip_settle_delay	= 1,
8778 	.sdev_groups		= ufshcd_driver_groups,
8779 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8780 };
8781 
8782 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8783 				   int ua)
8784 {
8785 	int ret;
8786 
8787 	if (!vreg)
8788 		return 0;
8789 
8790 	/*
8791 	 * "set_load" operation shall be required on those regulators
8792 	 * which specifically configured current limitation. Otherwise
8793 	 * zero max_uA may cause unexpected behavior when regulator is
8794 	 * enabled or set as high power mode.
8795 	 */
8796 	if (!vreg->max_uA)
8797 		return 0;
8798 
8799 	ret = regulator_set_load(vreg->reg, ua);
8800 	if (ret < 0) {
8801 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8802 				__func__, vreg->name, ua, ret);
8803 	}
8804 
8805 	return ret;
8806 }
8807 
8808 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8809 					 struct ufs_vreg *vreg)
8810 {
8811 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8812 }
8813 
8814 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8815 					 struct ufs_vreg *vreg)
8816 {
8817 	if (!vreg)
8818 		return 0;
8819 
8820 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8821 }
8822 
8823 static int ufshcd_config_vreg(struct device *dev,
8824 		struct ufs_vreg *vreg, bool on)
8825 {
8826 	if (regulator_count_voltages(vreg->reg) <= 0)
8827 		return 0;
8828 
8829 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8830 }
8831 
8832 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8833 {
8834 	int ret = 0;
8835 
8836 	if (!vreg || vreg->enabled)
8837 		goto out;
8838 
8839 	ret = ufshcd_config_vreg(dev, vreg, true);
8840 	if (!ret)
8841 		ret = regulator_enable(vreg->reg);
8842 
8843 	if (!ret)
8844 		vreg->enabled = true;
8845 	else
8846 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8847 				__func__, vreg->name, ret);
8848 out:
8849 	return ret;
8850 }
8851 
8852 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8853 {
8854 	int ret = 0;
8855 
8856 	if (!vreg || !vreg->enabled || vreg->always_on)
8857 		goto out;
8858 
8859 	ret = regulator_disable(vreg->reg);
8860 
8861 	if (!ret) {
8862 		/* ignore errors on applying disable config */
8863 		ufshcd_config_vreg(dev, vreg, false);
8864 		vreg->enabled = false;
8865 	} else {
8866 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8867 				__func__, vreg->name, ret);
8868 	}
8869 out:
8870 	return ret;
8871 }
8872 
8873 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8874 {
8875 	int ret = 0;
8876 	struct device *dev = hba->dev;
8877 	struct ufs_vreg_info *info = &hba->vreg_info;
8878 
8879 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8880 	if (ret)
8881 		goto out;
8882 
8883 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8884 	if (ret)
8885 		goto out;
8886 
8887 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8888 
8889 out:
8890 	if (ret) {
8891 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8892 		ufshcd_toggle_vreg(dev, info->vccq, false);
8893 		ufshcd_toggle_vreg(dev, info->vcc, false);
8894 	}
8895 	return ret;
8896 }
8897 
8898 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8899 {
8900 	struct ufs_vreg_info *info = &hba->vreg_info;
8901 
8902 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8903 }
8904 
8905 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8906 {
8907 	int ret = 0;
8908 
8909 	if (!vreg)
8910 		goto out;
8911 
8912 	vreg->reg = devm_regulator_get(dev, vreg->name);
8913 	if (IS_ERR(vreg->reg)) {
8914 		ret = PTR_ERR(vreg->reg);
8915 		dev_err(dev, "%s: %s get failed, err=%d\n",
8916 				__func__, vreg->name, ret);
8917 	}
8918 out:
8919 	return ret;
8920 }
8921 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8922 
8923 static int ufshcd_init_vreg(struct ufs_hba *hba)
8924 {
8925 	int ret = 0;
8926 	struct device *dev = hba->dev;
8927 	struct ufs_vreg_info *info = &hba->vreg_info;
8928 
8929 	ret = ufshcd_get_vreg(dev, info->vcc);
8930 	if (ret)
8931 		goto out;
8932 
8933 	ret = ufshcd_get_vreg(dev, info->vccq);
8934 	if (!ret)
8935 		ret = ufshcd_get_vreg(dev, info->vccq2);
8936 out:
8937 	return ret;
8938 }
8939 
8940 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8941 {
8942 	struct ufs_vreg_info *info = &hba->vreg_info;
8943 
8944 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8945 }
8946 
8947 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8948 {
8949 	int ret = 0;
8950 	struct ufs_clk_info *clki;
8951 	struct list_head *head = &hba->clk_list_head;
8952 	unsigned long flags;
8953 	ktime_t start = ktime_get();
8954 	bool clk_state_changed = false;
8955 
8956 	if (list_empty(head))
8957 		goto out;
8958 
8959 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8960 	if (ret)
8961 		return ret;
8962 
8963 	list_for_each_entry(clki, head, list) {
8964 		if (!IS_ERR_OR_NULL(clki->clk)) {
8965 			/*
8966 			 * Don't disable clocks which are needed
8967 			 * to keep the link active.
8968 			 */
8969 			if (ufshcd_is_link_active(hba) &&
8970 			    clki->keep_link_active)
8971 				continue;
8972 
8973 			clk_state_changed = on ^ clki->enabled;
8974 			if (on && !clki->enabled) {
8975 				ret = clk_prepare_enable(clki->clk);
8976 				if (ret) {
8977 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8978 						__func__, clki->name, ret);
8979 					goto out;
8980 				}
8981 			} else if (!on && clki->enabled) {
8982 				clk_disable_unprepare(clki->clk);
8983 			}
8984 			clki->enabled = on;
8985 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8986 					clki->name, on ? "en" : "dis");
8987 		}
8988 	}
8989 
8990 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8991 	if (ret)
8992 		return ret;
8993 
8994 out:
8995 	if (ret) {
8996 		list_for_each_entry(clki, head, list) {
8997 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8998 				clk_disable_unprepare(clki->clk);
8999 		}
9000 	} else if (!ret && on) {
9001 		spin_lock_irqsave(hba->host->host_lock, flags);
9002 		hba->clk_gating.state = CLKS_ON;
9003 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9004 					hba->clk_gating.state);
9005 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9006 	}
9007 
9008 	if (clk_state_changed)
9009 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9010 			(on ? "on" : "off"),
9011 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9012 	return ret;
9013 }
9014 
9015 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9016 {
9017 	u32 freq;
9018 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9019 
9020 	if (ret) {
9021 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9022 		return REF_CLK_FREQ_INVAL;
9023 	}
9024 
9025 	return ufs_get_bref_clk_from_hz(freq);
9026 }
9027 
9028 static int ufshcd_init_clocks(struct ufs_hba *hba)
9029 {
9030 	int ret = 0;
9031 	struct ufs_clk_info *clki;
9032 	struct device *dev = hba->dev;
9033 	struct list_head *head = &hba->clk_list_head;
9034 
9035 	if (list_empty(head))
9036 		goto out;
9037 
9038 	list_for_each_entry(clki, head, list) {
9039 		if (!clki->name)
9040 			continue;
9041 
9042 		clki->clk = devm_clk_get(dev, clki->name);
9043 		if (IS_ERR(clki->clk)) {
9044 			ret = PTR_ERR(clki->clk);
9045 			dev_err(dev, "%s: %s clk get failed, %d\n",
9046 					__func__, clki->name, ret);
9047 			goto out;
9048 		}
9049 
9050 		/*
9051 		 * Parse device ref clk freq as per device tree "ref_clk".
9052 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9053 		 * in ufshcd_alloc_host().
9054 		 */
9055 		if (!strcmp(clki->name, "ref_clk"))
9056 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9057 
9058 		if (clki->max_freq) {
9059 			ret = clk_set_rate(clki->clk, clki->max_freq);
9060 			if (ret) {
9061 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9062 					__func__, clki->name,
9063 					clki->max_freq, ret);
9064 				goto out;
9065 			}
9066 			clki->curr_freq = clki->max_freq;
9067 		}
9068 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9069 				clki->name, clk_get_rate(clki->clk));
9070 	}
9071 out:
9072 	return ret;
9073 }
9074 
9075 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9076 {
9077 	int err = 0;
9078 
9079 	if (!hba->vops)
9080 		goto out;
9081 
9082 	err = ufshcd_vops_init(hba);
9083 	if (err)
9084 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
9085 			__func__, ufshcd_get_var_name(hba), err);
9086 out:
9087 	return err;
9088 }
9089 
9090 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9091 {
9092 	if (!hba->vops)
9093 		return;
9094 
9095 	ufshcd_vops_exit(hba);
9096 }
9097 
9098 static int ufshcd_hba_init(struct ufs_hba *hba)
9099 {
9100 	int err;
9101 
9102 	/*
9103 	 * Handle host controller power separately from the UFS device power
9104 	 * rails as it will help controlling the UFS host controller power
9105 	 * collapse easily which is different than UFS device power collapse.
9106 	 * Also, enable the host controller power before we go ahead with rest
9107 	 * of the initialization here.
9108 	 */
9109 	err = ufshcd_init_hba_vreg(hba);
9110 	if (err)
9111 		goto out;
9112 
9113 	err = ufshcd_setup_hba_vreg(hba, true);
9114 	if (err)
9115 		goto out;
9116 
9117 	err = ufshcd_init_clocks(hba);
9118 	if (err)
9119 		goto out_disable_hba_vreg;
9120 
9121 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9122 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9123 
9124 	err = ufshcd_setup_clocks(hba, true);
9125 	if (err)
9126 		goto out_disable_hba_vreg;
9127 
9128 	err = ufshcd_init_vreg(hba);
9129 	if (err)
9130 		goto out_disable_clks;
9131 
9132 	err = ufshcd_setup_vreg(hba, true);
9133 	if (err)
9134 		goto out_disable_clks;
9135 
9136 	err = ufshcd_variant_hba_init(hba);
9137 	if (err)
9138 		goto out_disable_vreg;
9139 
9140 	ufs_debugfs_hba_init(hba);
9141 
9142 	hba->is_powered = true;
9143 	goto out;
9144 
9145 out_disable_vreg:
9146 	ufshcd_setup_vreg(hba, false);
9147 out_disable_clks:
9148 	ufshcd_setup_clocks(hba, false);
9149 out_disable_hba_vreg:
9150 	ufshcd_setup_hba_vreg(hba, false);
9151 out:
9152 	return err;
9153 }
9154 
9155 static void ufshcd_hba_exit(struct ufs_hba *hba)
9156 {
9157 	if (hba->is_powered) {
9158 		ufshcd_exit_clk_scaling(hba);
9159 		ufshcd_exit_clk_gating(hba);
9160 		if (hba->eh_wq)
9161 			destroy_workqueue(hba->eh_wq);
9162 		ufs_debugfs_hba_exit(hba);
9163 		ufshcd_variant_hba_exit(hba);
9164 		ufshcd_setup_vreg(hba, false);
9165 		ufshcd_setup_clocks(hba, false);
9166 		ufshcd_setup_hba_vreg(hba, false);
9167 		hba->is_powered = false;
9168 		ufs_put_device_desc(hba);
9169 	}
9170 }
9171 
9172 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9173 				     enum ufs_dev_pwr_mode pwr_mode,
9174 				     struct scsi_sense_hdr *sshdr)
9175 {
9176 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9177 	const struct scsi_exec_args args = {
9178 		.sshdr = sshdr,
9179 		.req_flags = BLK_MQ_REQ_PM,
9180 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9181 	};
9182 
9183 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9184 			/*bufflen=*/0, /*timeout=*/HZ, /*retries=*/0, &args);
9185 }
9186 
9187 /**
9188  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9189  *			     power mode
9190  * @hba: per adapter instance
9191  * @pwr_mode: device power mode to set
9192  *
9193  * Returns 0 if requested power mode is set successfully
9194  * Returns < 0 if failed to set the requested power mode
9195  */
9196 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9197 				     enum ufs_dev_pwr_mode pwr_mode)
9198 {
9199 	struct scsi_sense_hdr sshdr;
9200 	struct scsi_device *sdp;
9201 	unsigned long flags;
9202 	int ret, retries;
9203 
9204 	spin_lock_irqsave(hba->host->host_lock, flags);
9205 	sdp = hba->ufs_device_wlun;
9206 	if (sdp && scsi_device_online(sdp))
9207 		ret = scsi_device_get(sdp);
9208 	else
9209 		ret = -ENODEV;
9210 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9211 
9212 	if (ret)
9213 		return ret;
9214 
9215 	/*
9216 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9217 	 * handling, which would wait for host to be resumed. Since we know
9218 	 * we are functional while we are here, skip host resume in error
9219 	 * handling context.
9220 	 */
9221 	hba->host->eh_noresume = 1;
9222 
9223 	/*
9224 	 * Current function would be generally called from the power management
9225 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9226 	 * already suspended childs.
9227 	 */
9228 	for (retries = 3; retries > 0; --retries) {
9229 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9230 		/*
9231 		 * scsi_execute() only returns a negative value if the request
9232 		 * queue is dying.
9233 		 */
9234 		if (ret <= 0)
9235 			break;
9236 	}
9237 	if (ret) {
9238 		sdev_printk(KERN_WARNING, sdp,
9239 			    "START_STOP failed for power mode: %d, result %x\n",
9240 			    pwr_mode, ret);
9241 		if (ret > 0) {
9242 			if (scsi_sense_valid(&sshdr))
9243 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9244 			ret = -EIO;
9245 		}
9246 	} else {
9247 		hba->curr_dev_pwr_mode = pwr_mode;
9248 	}
9249 
9250 	scsi_device_put(sdp);
9251 	hba->host->eh_noresume = 0;
9252 	return ret;
9253 }
9254 
9255 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9256 					enum uic_link_state req_link_state,
9257 					bool check_for_bkops)
9258 {
9259 	int ret = 0;
9260 
9261 	if (req_link_state == hba->uic_link_state)
9262 		return 0;
9263 
9264 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9265 		ret = ufshcd_uic_hibern8_enter(hba);
9266 		if (!ret) {
9267 			ufshcd_set_link_hibern8(hba);
9268 		} else {
9269 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9270 					__func__, ret);
9271 			goto out;
9272 		}
9273 	}
9274 	/*
9275 	 * If autobkops is enabled, link can't be turned off because
9276 	 * turning off the link would also turn off the device, except in the
9277 	 * case of DeepSleep where the device is expected to remain powered.
9278 	 */
9279 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9280 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9281 		/*
9282 		 * Let's make sure that link is in low power mode, we are doing
9283 		 * this currently by putting the link in Hibern8. Otherway to
9284 		 * put the link in low power mode is to send the DME end point
9285 		 * to device and then send the DME reset command to local
9286 		 * unipro. But putting the link in hibern8 is much faster.
9287 		 *
9288 		 * Note also that putting the link in Hibern8 is a requirement
9289 		 * for entering DeepSleep.
9290 		 */
9291 		ret = ufshcd_uic_hibern8_enter(hba);
9292 		if (ret) {
9293 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9294 					__func__, ret);
9295 			goto out;
9296 		}
9297 		/*
9298 		 * Change controller state to "reset state" which
9299 		 * should also put the link in off/reset state
9300 		 */
9301 		ufshcd_hba_stop(hba);
9302 		/*
9303 		 * TODO: Check if we need any delay to make sure that
9304 		 * controller is reset
9305 		 */
9306 		ufshcd_set_link_off(hba);
9307 	}
9308 
9309 out:
9310 	return ret;
9311 }
9312 
9313 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9314 {
9315 	bool vcc_off = false;
9316 
9317 	/*
9318 	 * It seems some UFS devices may keep drawing more than sleep current
9319 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9320 	 * To avoid this situation, add 2ms delay before putting these UFS
9321 	 * rails in LPM mode.
9322 	 */
9323 	if (!ufshcd_is_link_active(hba) &&
9324 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9325 		usleep_range(2000, 2100);
9326 
9327 	/*
9328 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9329 	 * power.
9330 	 *
9331 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9332 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9333 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9334 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9335 	 *
9336 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9337 	 * in low power state which would save some power.
9338 	 *
9339 	 * If Write Booster is enabled and the device needs to flush the WB
9340 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9341 	 */
9342 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9343 	    !hba->dev_info.is_lu_power_on_wp) {
9344 		ufshcd_setup_vreg(hba, false);
9345 		vcc_off = true;
9346 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9347 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9348 		vcc_off = true;
9349 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9350 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9351 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9352 		}
9353 	}
9354 
9355 	/*
9356 	 * Some UFS devices require delay after VCC power rail is turned-off.
9357 	 */
9358 	if (vcc_off && hba->vreg_info.vcc &&
9359 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9360 		usleep_range(5000, 5100);
9361 }
9362 
9363 #ifdef CONFIG_PM
9364 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9365 {
9366 	int ret = 0;
9367 
9368 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9369 	    !hba->dev_info.is_lu_power_on_wp) {
9370 		ret = ufshcd_setup_vreg(hba, true);
9371 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9372 		if (!ufshcd_is_link_active(hba)) {
9373 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9374 			if (ret)
9375 				goto vcc_disable;
9376 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9377 			if (ret)
9378 				goto vccq_lpm;
9379 		}
9380 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9381 	}
9382 	goto out;
9383 
9384 vccq_lpm:
9385 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9386 vcc_disable:
9387 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9388 out:
9389 	return ret;
9390 }
9391 #endif /* CONFIG_PM */
9392 
9393 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9394 {
9395 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9396 		ufshcd_setup_hba_vreg(hba, false);
9397 }
9398 
9399 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9400 {
9401 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9402 		ufshcd_setup_hba_vreg(hba, true);
9403 }
9404 
9405 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9406 {
9407 	int ret = 0;
9408 	bool check_for_bkops;
9409 	enum ufs_pm_level pm_lvl;
9410 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9411 	enum uic_link_state req_link_state;
9412 
9413 	hba->pm_op_in_progress = true;
9414 	if (pm_op != UFS_SHUTDOWN_PM) {
9415 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9416 			 hba->rpm_lvl : hba->spm_lvl;
9417 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9418 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9419 	} else {
9420 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9421 		req_link_state = UIC_LINK_OFF_STATE;
9422 	}
9423 
9424 	ufshpb_suspend(hba);
9425 
9426 	/*
9427 	 * If we can't transition into any of the low power modes
9428 	 * just gate the clocks.
9429 	 */
9430 	ufshcd_hold(hba, false);
9431 	hba->clk_gating.is_suspended = true;
9432 
9433 	if (ufshcd_is_clkscaling_supported(hba))
9434 		ufshcd_clk_scaling_suspend(hba, true);
9435 
9436 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9437 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9438 		goto vops_suspend;
9439 	}
9440 
9441 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9442 	    (req_link_state == hba->uic_link_state))
9443 		goto enable_scaling;
9444 
9445 	/* UFS device & link must be active before we enter in this function */
9446 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9447 		ret = -EINVAL;
9448 		goto enable_scaling;
9449 	}
9450 
9451 	if (pm_op == UFS_RUNTIME_PM) {
9452 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9453 			/*
9454 			 * The device is idle with no requests in the queue,
9455 			 * allow background operations if bkops status shows
9456 			 * that performance might be impacted.
9457 			 */
9458 			ret = ufshcd_urgent_bkops(hba);
9459 			if (ret)
9460 				goto enable_scaling;
9461 		} else {
9462 			/* make sure that auto bkops is disabled */
9463 			ufshcd_disable_auto_bkops(hba);
9464 		}
9465 		/*
9466 		 * If device needs to do BKOP or WB buffer flush during
9467 		 * Hibern8, keep device power mode as "active power mode"
9468 		 * and VCC supply.
9469 		 */
9470 		hba->dev_info.b_rpm_dev_flush_capable =
9471 			hba->auto_bkops_enabled ||
9472 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9473 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9474 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9475 			ufshcd_wb_need_flush(hba));
9476 	}
9477 
9478 	flush_work(&hba->eeh_work);
9479 
9480 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9481 	if (ret)
9482 		goto enable_scaling;
9483 
9484 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9485 		if (pm_op != UFS_RUNTIME_PM)
9486 			/* ensure that bkops is disabled */
9487 			ufshcd_disable_auto_bkops(hba);
9488 
9489 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9490 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9491 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9492 				/*
9493 				 * If return err in suspend flow, IO will hang.
9494 				 * Trigger error handler and break suspend for
9495 				 * error recovery.
9496 				 */
9497 				ufshcd_force_error_recovery(hba);
9498 				ret = -EBUSY;
9499 			}
9500 			if (ret)
9501 				goto enable_scaling;
9502 		}
9503 	}
9504 
9505 	/*
9506 	 * In the case of DeepSleep, the device is expected to remain powered
9507 	 * with the link off, so do not check for bkops.
9508 	 */
9509 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9510 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9511 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9512 		/*
9513 		 * If return err in suspend flow, IO will hang.
9514 		 * Trigger error handler and break suspend for
9515 		 * error recovery.
9516 		 */
9517 		ufshcd_force_error_recovery(hba);
9518 		ret = -EBUSY;
9519 	}
9520 	if (ret)
9521 		goto set_dev_active;
9522 
9523 vops_suspend:
9524 	/*
9525 	 * Call vendor specific suspend callback. As these callbacks may access
9526 	 * vendor specific host controller register space call them before the
9527 	 * host clocks are ON.
9528 	 */
9529 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9530 	if (ret)
9531 		goto set_link_active;
9532 	goto out;
9533 
9534 set_link_active:
9535 	/*
9536 	 * Device hardware reset is required to exit DeepSleep. Also, for
9537 	 * DeepSleep, the link is off so host reset and restore will be done
9538 	 * further below.
9539 	 */
9540 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9541 		ufshcd_device_reset(hba);
9542 		WARN_ON(!ufshcd_is_link_off(hba));
9543 	}
9544 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9545 		ufshcd_set_link_active(hba);
9546 	else if (ufshcd_is_link_off(hba))
9547 		ufshcd_host_reset_and_restore(hba);
9548 set_dev_active:
9549 	/* Can also get here needing to exit DeepSleep */
9550 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9551 		ufshcd_device_reset(hba);
9552 		ufshcd_host_reset_and_restore(hba);
9553 	}
9554 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9555 		ufshcd_disable_auto_bkops(hba);
9556 enable_scaling:
9557 	if (ufshcd_is_clkscaling_supported(hba))
9558 		ufshcd_clk_scaling_suspend(hba, false);
9559 
9560 	hba->dev_info.b_rpm_dev_flush_capable = false;
9561 out:
9562 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9563 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9564 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9565 	}
9566 
9567 	if (ret) {
9568 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9569 		hba->clk_gating.is_suspended = false;
9570 		ufshcd_release(hba);
9571 		ufshpb_resume(hba);
9572 	}
9573 	hba->pm_op_in_progress = false;
9574 	return ret;
9575 }
9576 
9577 #ifdef CONFIG_PM
9578 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9579 {
9580 	int ret;
9581 	enum uic_link_state old_link_state = hba->uic_link_state;
9582 
9583 	hba->pm_op_in_progress = true;
9584 
9585 	/*
9586 	 * Call vendor specific resume callback. As these callbacks may access
9587 	 * vendor specific host controller register space call them when the
9588 	 * host clocks are ON.
9589 	 */
9590 	ret = ufshcd_vops_resume(hba, pm_op);
9591 	if (ret)
9592 		goto out;
9593 
9594 	/* For DeepSleep, the only supported option is to have the link off */
9595 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9596 
9597 	if (ufshcd_is_link_hibern8(hba)) {
9598 		ret = ufshcd_uic_hibern8_exit(hba);
9599 		if (!ret) {
9600 			ufshcd_set_link_active(hba);
9601 		} else {
9602 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9603 					__func__, ret);
9604 			goto vendor_suspend;
9605 		}
9606 	} else if (ufshcd_is_link_off(hba)) {
9607 		/*
9608 		 * A full initialization of the host and the device is
9609 		 * required since the link was put to off during suspend.
9610 		 * Note, in the case of DeepSleep, the device will exit
9611 		 * DeepSleep due to device reset.
9612 		 */
9613 		ret = ufshcd_reset_and_restore(hba);
9614 		/*
9615 		 * ufshcd_reset_and_restore() should have already
9616 		 * set the link state as active
9617 		 */
9618 		if (ret || !ufshcd_is_link_active(hba))
9619 			goto vendor_suspend;
9620 	}
9621 
9622 	if (!ufshcd_is_ufs_dev_active(hba)) {
9623 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9624 		if (ret)
9625 			goto set_old_link_state;
9626 	}
9627 
9628 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9629 		ufshcd_enable_auto_bkops(hba);
9630 	else
9631 		/*
9632 		 * If BKOPs operations are urgently needed at this moment then
9633 		 * keep auto-bkops enabled or else disable it.
9634 		 */
9635 		ufshcd_urgent_bkops(hba);
9636 
9637 	if (hba->ee_usr_mask)
9638 		ufshcd_write_ee_control(hba);
9639 
9640 	if (ufshcd_is_clkscaling_supported(hba))
9641 		ufshcd_clk_scaling_suspend(hba, false);
9642 
9643 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9644 		hba->dev_info.b_rpm_dev_flush_capable = false;
9645 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9646 	}
9647 
9648 	/* Enable Auto-Hibernate if configured */
9649 	ufshcd_auto_hibern8_enable(hba);
9650 
9651 	ufshpb_resume(hba);
9652 	goto out;
9653 
9654 set_old_link_state:
9655 	ufshcd_link_state_transition(hba, old_link_state, 0);
9656 vendor_suspend:
9657 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9658 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9659 out:
9660 	if (ret)
9661 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9662 	hba->clk_gating.is_suspended = false;
9663 	ufshcd_release(hba);
9664 	hba->pm_op_in_progress = false;
9665 	return ret;
9666 }
9667 
9668 static int ufshcd_wl_runtime_suspend(struct device *dev)
9669 {
9670 	struct scsi_device *sdev = to_scsi_device(dev);
9671 	struct ufs_hba *hba;
9672 	int ret;
9673 	ktime_t start = ktime_get();
9674 
9675 	hba = shost_priv(sdev->host);
9676 
9677 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9678 	if (ret)
9679 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9680 
9681 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9682 		ktime_to_us(ktime_sub(ktime_get(), start)),
9683 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9684 
9685 	return ret;
9686 }
9687 
9688 static int ufshcd_wl_runtime_resume(struct device *dev)
9689 {
9690 	struct scsi_device *sdev = to_scsi_device(dev);
9691 	struct ufs_hba *hba;
9692 	int ret = 0;
9693 	ktime_t start = ktime_get();
9694 
9695 	hba = shost_priv(sdev->host);
9696 
9697 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9698 	if (ret)
9699 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9700 
9701 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9702 		ktime_to_us(ktime_sub(ktime_get(), start)),
9703 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9704 
9705 	return ret;
9706 }
9707 #endif
9708 
9709 #ifdef CONFIG_PM_SLEEP
9710 static int ufshcd_wl_suspend(struct device *dev)
9711 {
9712 	struct scsi_device *sdev = to_scsi_device(dev);
9713 	struct ufs_hba *hba;
9714 	int ret = 0;
9715 	ktime_t start = ktime_get();
9716 
9717 	hba = shost_priv(sdev->host);
9718 	down(&hba->host_sem);
9719 	hba->system_suspending = true;
9720 
9721 	if (pm_runtime_suspended(dev))
9722 		goto out;
9723 
9724 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9725 	if (ret) {
9726 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9727 		up(&hba->host_sem);
9728 	}
9729 
9730 out:
9731 	if (!ret)
9732 		hba->is_sys_suspended = true;
9733 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9734 		ktime_to_us(ktime_sub(ktime_get(), start)),
9735 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9736 
9737 	return ret;
9738 }
9739 
9740 static int ufshcd_wl_resume(struct device *dev)
9741 {
9742 	struct scsi_device *sdev = to_scsi_device(dev);
9743 	struct ufs_hba *hba;
9744 	int ret = 0;
9745 	ktime_t start = ktime_get();
9746 
9747 	hba = shost_priv(sdev->host);
9748 
9749 	if (pm_runtime_suspended(dev))
9750 		goto out;
9751 
9752 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9753 	if (ret)
9754 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9755 out:
9756 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9757 		ktime_to_us(ktime_sub(ktime_get(), start)),
9758 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9759 	if (!ret)
9760 		hba->is_sys_suspended = false;
9761 	hba->system_suspending = false;
9762 	up(&hba->host_sem);
9763 	return ret;
9764 }
9765 #endif
9766 
9767 static void ufshcd_wl_shutdown(struct device *dev)
9768 {
9769 	struct scsi_device *sdev = to_scsi_device(dev);
9770 	struct ufs_hba *hba;
9771 
9772 	hba = shost_priv(sdev->host);
9773 
9774 	down(&hba->host_sem);
9775 	hba->shutting_down = true;
9776 	up(&hba->host_sem);
9777 
9778 	/* Turn on everything while shutting down */
9779 	ufshcd_rpm_get_sync(hba);
9780 	scsi_device_quiesce(sdev);
9781 	shost_for_each_device(sdev, hba->host) {
9782 		if (sdev == hba->ufs_device_wlun)
9783 			continue;
9784 		scsi_device_quiesce(sdev);
9785 	}
9786 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9787 }
9788 
9789 /**
9790  * ufshcd_suspend - helper function for suspend operations
9791  * @hba: per adapter instance
9792  *
9793  * This function will put disable irqs, turn off clocks
9794  * and set vreg and hba-vreg in lpm mode.
9795  */
9796 static int ufshcd_suspend(struct ufs_hba *hba)
9797 {
9798 	int ret;
9799 
9800 	if (!hba->is_powered)
9801 		return 0;
9802 	/*
9803 	 * Disable the host irq as host controller as there won't be any
9804 	 * host controller transaction expected till resume.
9805 	 */
9806 	ufshcd_disable_irq(hba);
9807 	ret = ufshcd_setup_clocks(hba, false);
9808 	if (ret) {
9809 		ufshcd_enable_irq(hba);
9810 		return ret;
9811 	}
9812 	if (ufshcd_is_clkgating_allowed(hba)) {
9813 		hba->clk_gating.state = CLKS_OFF;
9814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9815 					hba->clk_gating.state);
9816 	}
9817 
9818 	ufshcd_vreg_set_lpm(hba);
9819 	/* Put the host controller in low power mode if possible */
9820 	ufshcd_hba_vreg_set_lpm(hba);
9821 	return ret;
9822 }
9823 
9824 #ifdef CONFIG_PM
9825 /**
9826  * ufshcd_resume - helper function for resume operations
9827  * @hba: per adapter instance
9828  *
9829  * This function basically turns on the regulators, clocks and
9830  * irqs of the hba.
9831  *
9832  * Returns 0 for success and non-zero for failure
9833  */
9834 static int ufshcd_resume(struct ufs_hba *hba)
9835 {
9836 	int ret;
9837 
9838 	if (!hba->is_powered)
9839 		return 0;
9840 
9841 	ufshcd_hba_vreg_set_hpm(hba);
9842 	ret = ufshcd_vreg_set_hpm(hba);
9843 	if (ret)
9844 		goto out;
9845 
9846 	/* Make sure clocks are enabled before accessing controller */
9847 	ret = ufshcd_setup_clocks(hba, true);
9848 	if (ret)
9849 		goto disable_vreg;
9850 
9851 	/* enable the host irq as host controller would be active soon */
9852 	ufshcd_enable_irq(hba);
9853 
9854 	goto out;
9855 
9856 disable_vreg:
9857 	ufshcd_vreg_set_lpm(hba);
9858 out:
9859 	if (ret)
9860 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9861 	return ret;
9862 }
9863 #endif /* CONFIG_PM */
9864 
9865 #ifdef CONFIG_PM_SLEEP
9866 /**
9867  * ufshcd_system_suspend - system suspend callback
9868  * @dev: Device associated with the UFS controller.
9869  *
9870  * Executed before putting the system into a sleep state in which the contents
9871  * of main memory are preserved.
9872  *
9873  * Returns 0 for success and non-zero for failure
9874  */
9875 int ufshcd_system_suspend(struct device *dev)
9876 {
9877 	struct ufs_hba *hba = dev_get_drvdata(dev);
9878 	int ret = 0;
9879 	ktime_t start = ktime_get();
9880 
9881 	if (pm_runtime_suspended(hba->dev))
9882 		goto out;
9883 
9884 	ret = ufshcd_suspend(hba);
9885 out:
9886 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9887 		ktime_to_us(ktime_sub(ktime_get(), start)),
9888 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9889 	return ret;
9890 }
9891 EXPORT_SYMBOL(ufshcd_system_suspend);
9892 
9893 /**
9894  * ufshcd_system_resume - system resume callback
9895  * @dev: Device associated with the UFS controller.
9896  *
9897  * Executed after waking the system up from a sleep state in which the contents
9898  * of main memory were preserved.
9899  *
9900  * Returns 0 for success and non-zero for failure
9901  */
9902 int ufshcd_system_resume(struct device *dev)
9903 {
9904 	struct ufs_hba *hba = dev_get_drvdata(dev);
9905 	ktime_t start = ktime_get();
9906 	int ret = 0;
9907 
9908 	if (pm_runtime_suspended(hba->dev))
9909 		goto out;
9910 
9911 	ret = ufshcd_resume(hba);
9912 
9913 out:
9914 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9915 		ktime_to_us(ktime_sub(ktime_get(), start)),
9916 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9917 
9918 	return ret;
9919 }
9920 EXPORT_SYMBOL(ufshcd_system_resume);
9921 #endif /* CONFIG_PM_SLEEP */
9922 
9923 #ifdef CONFIG_PM
9924 /**
9925  * ufshcd_runtime_suspend - runtime suspend callback
9926  * @dev: Device associated with the UFS controller.
9927  *
9928  * Check the description of ufshcd_suspend() function for more details.
9929  *
9930  * Returns 0 for success and non-zero for failure
9931  */
9932 int ufshcd_runtime_suspend(struct device *dev)
9933 {
9934 	struct ufs_hba *hba = dev_get_drvdata(dev);
9935 	int ret;
9936 	ktime_t start = ktime_get();
9937 
9938 	ret = ufshcd_suspend(hba);
9939 
9940 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9941 		ktime_to_us(ktime_sub(ktime_get(), start)),
9942 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9943 	return ret;
9944 }
9945 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9946 
9947 /**
9948  * ufshcd_runtime_resume - runtime resume routine
9949  * @dev: Device associated with the UFS controller.
9950  *
9951  * This function basically brings controller
9952  * to active state. Following operations are done in this function:
9953  *
9954  * 1. Turn on all the controller related clocks
9955  * 2. Turn ON VCC rail
9956  */
9957 int ufshcd_runtime_resume(struct device *dev)
9958 {
9959 	struct ufs_hba *hba = dev_get_drvdata(dev);
9960 	int ret;
9961 	ktime_t start = ktime_get();
9962 
9963 	ret = ufshcd_resume(hba);
9964 
9965 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9966 		ktime_to_us(ktime_sub(ktime_get(), start)),
9967 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9968 	return ret;
9969 }
9970 EXPORT_SYMBOL(ufshcd_runtime_resume);
9971 #endif /* CONFIG_PM */
9972 
9973 /**
9974  * ufshcd_shutdown - shutdown routine
9975  * @hba: per adapter instance
9976  *
9977  * This function would turn off both UFS device and UFS hba
9978  * regulators. It would also disable clocks.
9979  *
9980  * Returns 0 always to allow force shutdown even in case of errors.
9981  */
9982 int ufshcd_shutdown(struct ufs_hba *hba)
9983 {
9984 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9985 		ufshcd_suspend(hba);
9986 
9987 	hba->is_powered = false;
9988 	/* allow force shutdown even in case of errors */
9989 	return 0;
9990 }
9991 EXPORT_SYMBOL(ufshcd_shutdown);
9992 
9993 /**
9994  * ufshcd_remove - de-allocate SCSI host and host memory space
9995  *		data structure memory
9996  * @hba: per adapter instance
9997  */
9998 void ufshcd_remove(struct ufs_hba *hba)
9999 {
10000 	if (hba->ufs_device_wlun)
10001 		ufshcd_rpm_get_sync(hba);
10002 	ufs_hwmon_remove(hba);
10003 	ufs_bsg_remove(hba);
10004 	ufshpb_remove(hba);
10005 	ufs_sysfs_remove_nodes(hba->dev);
10006 	blk_mq_destroy_queue(hba->tmf_queue);
10007 	blk_put_queue(hba->tmf_queue);
10008 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10009 	scsi_remove_host(hba->host);
10010 	/* disable interrupts */
10011 	ufshcd_disable_intr(hba, hba->intr_mask);
10012 	ufshcd_hba_stop(hba);
10013 	ufshcd_hba_exit(hba);
10014 }
10015 EXPORT_SYMBOL_GPL(ufshcd_remove);
10016 
10017 #ifdef CONFIG_PM_SLEEP
10018 int ufshcd_system_freeze(struct device *dev)
10019 {
10020 
10021 	return ufshcd_system_suspend(dev);
10022 
10023 }
10024 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10025 
10026 int ufshcd_system_restore(struct device *dev)
10027 {
10028 
10029 	struct ufs_hba *hba = dev_get_drvdata(dev);
10030 	int ret;
10031 
10032 	ret = ufshcd_system_resume(dev);
10033 	if (ret)
10034 		return ret;
10035 
10036 	/* Configure UTRL and UTMRL base address registers */
10037 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10038 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10039 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10040 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10041 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10042 			REG_UTP_TASK_REQ_LIST_BASE_L);
10043 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10044 			REG_UTP_TASK_REQ_LIST_BASE_H);
10045 	/*
10046 	 * Make sure that UTRL and UTMRL base address registers
10047 	 * are updated with the latest queue addresses. Only after
10048 	 * updating these addresses, we can queue the new commands.
10049 	 */
10050 	mb();
10051 
10052 	/* Resuming from hibernate, assume that link was OFF */
10053 	ufshcd_set_link_off(hba);
10054 
10055 	return 0;
10056 
10057 }
10058 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10059 
10060 int ufshcd_system_thaw(struct device *dev)
10061 {
10062 	return ufshcd_system_resume(dev);
10063 }
10064 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10065 #endif /* CONFIG_PM_SLEEP  */
10066 
10067 /**
10068  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10069  * @hba: pointer to Host Bus Adapter (HBA)
10070  */
10071 void ufshcd_dealloc_host(struct ufs_hba *hba)
10072 {
10073 	scsi_host_put(hba->host);
10074 }
10075 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10076 
10077 /**
10078  * ufshcd_set_dma_mask - Set dma mask based on the controller
10079  *			 addressing capability
10080  * @hba: per adapter instance
10081  *
10082  * Returns 0 for success, non-zero for failure
10083  */
10084 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10085 {
10086 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10087 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10088 			return 0;
10089 	}
10090 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10091 }
10092 
10093 /**
10094  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10095  * @dev: pointer to device handle
10096  * @hba_handle: driver private handle
10097  * Returns 0 on success, non-zero value on failure
10098  */
10099 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10100 {
10101 	struct Scsi_Host *host;
10102 	struct ufs_hba *hba;
10103 	int err = 0;
10104 
10105 	if (!dev) {
10106 		dev_err(dev,
10107 		"Invalid memory reference for dev is NULL\n");
10108 		err = -ENODEV;
10109 		goto out_error;
10110 	}
10111 
10112 	host = scsi_host_alloc(&ufshcd_driver_template,
10113 				sizeof(struct ufs_hba));
10114 	if (!host) {
10115 		dev_err(dev, "scsi_host_alloc failed\n");
10116 		err = -ENOMEM;
10117 		goto out_error;
10118 	}
10119 	host->nr_maps = HCTX_TYPE_POLL + 1;
10120 	hba = shost_priv(host);
10121 	hba->host = host;
10122 	hba->dev = dev;
10123 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10124 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10125 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10126 	INIT_LIST_HEAD(&hba->clk_list_head);
10127 	spin_lock_init(&hba->outstanding_lock);
10128 
10129 	*hba_handle = hba;
10130 
10131 out_error:
10132 	return err;
10133 }
10134 EXPORT_SYMBOL(ufshcd_alloc_host);
10135 
10136 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10137 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10138 				     const struct blk_mq_queue_data *qd)
10139 {
10140 	WARN_ON_ONCE(true);
10141 	return BLK_STS_NOTSUPP;
10142 }
10143 
10144 static const struct blk_mq_ops ufshcd_tmf_ops = {
10145 	.queue_rq = ufshcd_queue_tmf,
10146 };
10147 
10148 /**
10149  * ufshcd_init - Driver initialization routine
10150  * @hba: per-adapter instance
10151  * @mmio_base: base register address
10152  * @irq: Interrupt line of device
10153  * Returns 0 on success, non-zero value on failure
10154  */
10155 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10156 {
10157 	int err;
10158 	struct Scsi_Host *host = hba->host;
10159 	struct device *dev = hba->dev;
10160 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10161 
10162 	/*
10163 	 * dev_set_drvdata() must be called before any callbacks are registered
10164 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10165 	 * sysfs).
10166 	 */
10167 	dev_set_drvdata(dev, hba);
10168 
10169 	if (!mmio_base) {
10170 		dev_err(hba->dev,
10171 		"Invalid memory reference for mmio_base is NULL\n");
10172 		err = -ENODEV;
10173 		goto out_error;
10174 	}
10175 
10176 	hba->mmio_base = mmio_base;
10177 	hba->irq = irq;
10178 	hba->vps = &ufs_hba_vps;
10179 
10180 	err = ufshcd_hba_init(hba);
10181 	if (err)
10182 		goto out_error;
10183 
10184 	/* Read capabilities registers */
10185 	err = ufshcd_hba_capabilities(hba);
10186 	if (err)
10187 		goto out_disable;
10188 
10189 	/* Get UFS version supported by the controller */
10190 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10191 
10192 	/* Get Interrupt bit mask per version */
10193 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10194 
10195 	err = ufshcd_set_dma_mask(hba);
10196 	if (err) {
10197 		dev_err(hba->dev, "set dma mask failed\n");
10198 		goto out_disable;
10199 	}
10200 
10201 	/* Allocate memory for host memory space */
10202 	err = ufshcd_memory_alloc(hba);
10203 	if (err) {
10204 		dev_err(hba->dev, "Memory allocation failed\n");
10205 		goto out_disable;
10206 	}
10207 
10208 	/* Configure LRB */
10209 	ufshcd_host_memory_configure(hba);
10210 
10211 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10212 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10213 	host->max_id = UFSHCD_MAX_ID;
10214 	host->max_lun = UFS_MAX_LUNS;
10215 	host->max_channel = UFSHCD_MAX_CHANNEL;
10216 	host->unique_id = host->host_no;
10217 	host->max_cmd_len = UFS_CDB_SIZE;
10218 
10219 	hba->max_pwr_info.is_valid = false;
10220 
10221 	/* Initialize work queues */
10222 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10223 		 hba->host->host_no);
10224 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10225 	if (!hba->eh_wq) {
10226 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10227 			__func__);
10228 		err = -ENOMEM;
10229 		goto out_disable;
10230 	}
10231 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10232 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10233 
10234 	sema_init(&hba->host_sem, 1);
10235 
10236 	/* Initialize UIC command mutex */
10237 	mutex_init(&hba->uic_cmd_mutex);
10238 
10239 	/* Initialize mutex for device management commands */
10240 	mutex_init(&hba->dev_cmd.lock);
10241 
10242 	/* Initialize mutex for exception event control */
10243 	mutex_init(&hba->ee_ctrl_mutex);
10244 
10245 	mutex_init(&hba->wb_mutex);
10246 	init_rwsem(&hba->clk_scaling_lock);
10247 
10248 	ufshcd_init_clk_gating(hba);
10249 
10250 	ufshcd_init_clk_scaling(hba);
10251 
10252 	/*
10253 	 * In order to avoid any spurious interrupt immediately after
10254 	 * registering UFS controller interrupt handler, clear any pending UFS
10255 	 * interrupt status and disable all the UFS interrupts.
10256 	 */
10257 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10258 		      REG_INTERRUPT_STATUS);
10259 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10260 	/*
10261 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10262 	 * status is cleared before registering UFS interrupt handler.
10263 	 */
10264 	mb();
10265 
10266 	/* IRQ registration */
10267 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10268 	if (err) {
10269 		dev_err(hba->dev, "request irq failed\n");
10270 		goto out_disable;
10271 	} else {
10272 		hba->is_irq_enabled = true;
10273 	}
10274 
10275 	if (!is_mcq_supported(hba)) {
10276 		err = scsi_add_host(host, hba->dev);
10277 		if (err) {
10278 			dev_err(hba->dev, "scsi_add_host failed\n");
10279 			goto out_disable;
10280 		}
10281 	}
10282 
10283 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10284 		.nr_hw_queues	= 1,
10285 		.queue_depth	= hba->nutmrs,
10286 		.ops		= &ufshcd_tmf_ops,
10287 		.flags		= BLK_MQ_F_NO_SCHED,
10288 	};
10289 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10290 	if (err < 0)
10291 		goto out_remove_scsi_host;
10292 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10293 	if (IS_ERR(hba->tmf_queue)) {
10294 		err = PTR_ERR(hba->tmf_queue);
10295 		goto free_tmf_tag_set;
10296 	}
10297 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10298 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10299 	if (!hba->tmf_rqs) {
10300 		err = -ENOMEM;
10301 		goto free_tmf_queue;
10302 	}
10303 
10304 	/* Reset the attached device */
10305 	ufshcd_device_reset(hba);
10306 
10307 	ufshcd_init_crypto(hba);
10308 
10309 	/* Host controller enable */
10310 	err = ufshcd_hba_enable(hba);
10311 	if (err) {
10312 		dev_err(hba->dev, "Host controller enable failed\n");
10313 		ufshcd_print_evt_hist(hba);
10314 		ufshcd_print_host_state(hba);
10315 		goto free_tmf_queue;
10316 	}
10317 
10318 	/*
10319 	 * Set the default power management level for runtime and system PM.
10320 	 * Default power saving mode is to keep UFS link in Hibern8 state
10321 	 * and UFS device in sleep state.
10322 	 */
10323 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10324 						UFS_SLEEP_PWR_MODE,
10325 						UIC_LINK_HIBERN8_STATE);
10326 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10327 						UFS_SLEEP_PWR_MODE,
10328 						UIC_LINK_HIBERN8_STATE);
10329 
10330 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10331 			  ufshcd_rpm_dev_flush_recheck_work);
10332 
10333 	/* Set the default auto-hiberate idle timer value to 150 ms */
10334 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10335 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10336 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10337 	}
10338 
10339 	/* Hold auto suspend until async scan completes */
10340 	pm_runtime_get_sync(dev);
10341 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10342 	/*
10343 	 * We are assuming that device wasn't put in sleep/power-down
10344 	 * state exclusively during the boot stage before kernel.
10345 	 * This assumption helps avoid doing link startup twice during
10346 	 * ufshcd_probe_hba().
10347 	 */
10348 	ufshcd_set_ufs_dev_active(hba);
10349 
10350 	/* Initialize devfreq */
10351 	if (ufshcd_is_clkscaling_supported(hba)) {
10352 		memcpy(&hba->clk_scaling.saved_pwr_info,
10353 			&hba->pwr_info,
10354 			sizeof(struct ufs_pa_layer_attr));
10355 		hba->clk_scaling.is_allowed = true;
10356 
10357 		err = ufshcd_devfreq_init(hba);
10358 		if (err)
10359 			goto rpm_put_sync;
10360 
10361 		hba->clk_scaling.is_enabled = true;
10362 		ufshcd_init_clk_scaling_sysfs(hba);
10363 	}
10364 
10365 	async_schedule(ufshcd_async_scan, hba);
10366 	ufs_sysfs_add_nodes(hba->dev);
10367 
10368 	device_enable_async_suspend(dev);
10369 	return 0;
10370 
10371 rpm_put_sync:
10372 	pm_runtime_put_sync(dev);
10373 free_tmf_queue:
10374 	blk_mq_destroy_queue(hba->tmf_queue);
10375 	blk_put_queue(hba->tmf_queue);
10376 free_tmf_tag_set:
10377 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10378 out_remove_scsi_host:
10379 	scsi_remove_host(hba->host);
10380 out_disable:
10381 	hba->is_irq_enabled = false;
10382 	ufshcd_hba_exit(hba);
10383 out_error:
10384 	return err;
10385 }
10386 EXPORT_SYMBOL_GPL(ufshcd_init);
10387 
10388 void ufshcd_resume_complete(struct device *dev)
10389 {
10390 	struct ufs_hba *hba = dev_get_drvdata(dev);
10391 
10392 	if (hba->complete_put) {
10393 		ufshcd_rpm_put(hba);
10394 		hba->complete_put = false;
10395 	}
10396 }
10397 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10398 
10399 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10400 {
10401 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10402 	enum ufs_dev_pwr_mode dev_pwr_mode;
10403 	enum uic_link_state link_state;
10404 	unsigned long flags;
10405 	bool res;
10406 
10407 	spin_lock_irqsave(&dev->power.lock, flags);
10408 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10409 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10410 	res = pm_runtime_suspended(dev) &&
10411 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10412 	      hba->uic_link_state == link_state &&
10413 	      !hba->dev_info.b_rpm_dev_flush_capable;
10414 	spin_unlock_irqrestore(&dev->power.lock, flags);
10415 
10416 	return res;
10417 }
10418 
10419 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10420 {
10421 	struct ufs_hba *hba = dev_get_drvdata(dev);
10422 	int ret;
10423 
10424 	/*
10425 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10426 	 * are same. And it doesn't wake up the device for system-suspend
10427 	 * if it's runtime suspended. But ufs doesn't follow that.
10428 	 * Refer ufshcd_resume_complete()
10429 	 */
10430 	if (hba->ufs_device_wlun) {
10431 		/* Prevent runtime suspend */
10432 		ufshcd_rpm_get_noresume(hba);
10433 		/*
10434 		 * Check if already runtime suspended in same state as system
10435 		 * suspend would be.
10436 		 */
10437 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10438 			/* RPM state is not ok for SPM, so runtime resume */
10439 			ret = ufshcd_rpm_resume(hba);
10440 			if (ret < 0 && ret != -EACCES) {
10441 				ufshcd_rpm_put(hba);
10442 				return ret;
10443 			}
10444 		}
10445 		hba->complete_put = true;
10446 	}
10447 	return 0;
10448 }
10449 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10450 
10451 int ufshcd_suspend_prepare(struct device *dev)
10452 {
10453 	return __ufshcd_suspend_prepare(dev, true);
10454 }
10455 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10456 
10457 #ifdef CONFIG_PM_SLEEP
10458 static int ufshcd_wl_poweroff(struct device *dev)
10459 {
10460 	struct scsi_device *sdev = to_scsi_device(dev);
10461 	struct ufs_hba *hba = shost_priv(sdev->host);
10462 
10463 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10464 	return 0;
10465 }
10466 #endif
10467 
10468 static int ufshcd_wl_probe(struct device *dev)
10469 {
10470 	struct scsi_device *sdev = to_scsi_device(dev);
10471 
10472 	if (!is_device_wlun(sdev))
10473 		return -ENODEV;
10474 
10475 	blk_pm_runtime_init(sdev->request_queue, dev);
10476 	pm_runtime_set_autosuspend_delay(dev, 0);
10477 	pm_runtime_allow(dev);
10478 
10479 	return  0;
10480 }
10481 
10482 static int ufshcd_wl_remove(struct device *dev)
10483 {
10484 	pm_runtime_forbid(dev);
10485 	return 0;
10486 }
10487 
10488 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10489 #ifdef CONFIG_PM_SLEEP
10490 	.suspend = ufshcd_wl_suspend,
10491 	.resume = ufshcd_wl_resume,
10492 	.freeze = ufshcd_wl_suspend,
10493 	.thaw = ufshcd_wl_resume,
10494 	.poweroff = ufshcd_wl_poweroff,
10495 	.restore = ufshcd_wl_resume,
10496 #endif
10497 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10498 };
10499 
10500 /*
10501  * ufs_dev_wlun_template - describes ufs device wlun
10502  * ufs-device wlun - used to send pm commands
10503  * All luns are consumers of ufs-device wlun.
10504  *
10505  * Currently, no sd driver is present for wluns.
10506  * Hence the no specific pm operations are performed.
10507  * With ufs design, SSU should be sent to ufs-device wlun.
10508  * Hence register a scsi driver for ufs wluns only.
10509  */
10510 static struct scsi_driver ufs_dev_wlun_template = {
10511 	.gendrv = {
10512 		.name = "ufs_device_wlun",
10513 		.owner = THIS_MODULE,
10514 		.probe = ufshcd_wl_probe,
10515 		.remove = ufshcd_wl_remove,
10516 		.pm = &ufshcd_wl_pm_ops,
10517 		.shutdown = ufshcd_wl_shutdown,
10518 	},
10519 };
10520 
10521 static int __init ufshcd_core_init(void)
10522 {
10523 	int ret;
10524 
10525 	ufs_debugfs_init();
10526 
10527 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10528 	if (ret)
10529 		ufs_debugfs_exit();
10530 	return ret;
10531 }
10532 
10533 static void __exit ufshcd_core_exit(void)
10534 {
10535 	ufs_debugfs_exit();
10536 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10537 }
10538 
10539 module_init(ufshcd_core_init);
10540 module_exit(ufshcd_core_exit);
10541 
10542 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10543 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10544 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10545 MODULE_SOFTDEP("pre: governor_simpleondemand");
10546 MODULE_LICENSE("GPL");
10547