xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 2984f26a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 	  .model = UFS_ANY_MODEL,
244 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 	  .model = UFS_ANY_MODEL,
249 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 	  .model = "hB8aL1" /*H28U62301AMR*/,
252 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 	  .model = "THGLF2G9C8KBADG",
258 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 	  .model = "THGLF2G9D8KBADG",
261 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 	{}
263 };
264 
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 			     struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 					 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 						 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290 
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 	if (!hba->is_irq_enabled) {
294 		enable_irq(hba->irq);
295 		hba->is_irq_enabled = true;
296 	}
297 }
298 
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 	if (hba->is_irq_enabled) {
302 		disable_irq(hba->irq);
303 		hba->is_irq_enabled = false;
304 	}
305 }
306 
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 	if (!ufshcd_is_wb_allowed(hba))
310 		return;
311 
312 	ufshcd_wb_toggle(hba, true);
313 
314 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315 
316 	if (ufshcd_is_wb_buf_flush_allowed(hba))
317 		ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319 
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 		scsi_unblock_requests(hba->host);
324 }
325 
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 		scsi_block_requests(hba->host);
330 }
331 
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 				      enum ufs_trace_str_t str_t)
334 {
335 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 	struct utp_upiu_header *header;
337 
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	if (str_t == UFS_CMD_SEND)
342 		header = &rq->header;
343 	else
344 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345 
346 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 			  UFS_TSF_CDB);
348 }
349 
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 					enum ufs_trace_str_t str_t,
352 					struct utp_upiu_req *rq_rsp)
353 {
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 			  &rq_rsp->qr, UFS_TSF_OSF);
359 }
360 
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 				     enum ufs_trace_str_t str_t)
363 {
364 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365 
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	if (str_t == UFS_TM_SEND)
370 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 				  &descp->upiu_req.req_header,
372 				  &descp->upiu_req.input_param1,
373 				  UFS_TSF_TM_INPUT);
374 	else
375 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 				  &descp->upiu_rsp.rsp_header,
377 				  &descp->upiu_rsp.output_param1,
378 				  UFS_TSF_TM_OUTPUT);
379 }
380 
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 					 const struct uic_command *ucmd,
383 					 enum ufs_trace_str_t str_t)
384 {
385 	u32 cmd;
386 
387 	if (!trace_ufshcd_uic_command_enabled())
388 		return;
389 
390 	if (str_t == UFS_CMD_SEND)
391 		cmd = ucmd->command;
392 	else
393 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394 
395 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400 
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 				     enum ufs_trace_str_t str_t)
403 {
404 	u64 lba = 0;
405 	u8 opcode = 0, group_id = 0;
406 	u32 doorbell = 0;
407 	u32 intr;
408 	int hwq_id = -1;
409 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 	struct scsi_cmnd *cmd = lrbp->cmd;
411 	struct request *rq = scsi_cmd_to_rq(cmd);
412 	int transfer_len = -1;
413 
414 	if (!cmd)
415 		return;
416 
417 	/* trace UPIU also */
418 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 	if (!trace_ufshcd_command_enabled())
420 		return;
421 
422 	opcode = cmd->cmnd[0];
423 
424 	if (opcode == READ_10 || opcode == WRITE_10) {
425 		/*
426 		 * Currently we only fully trace read(10) and write(10) commands
427 		 */
428 		transfer_len =
429 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 		lba = scsi_get_lba(cmd);
431 		if (opcode == WRITE_10)
432 			group_id = lrbp->cmd->cmnd[6];
433 	} else if (opcode == UNMAP) {
434 		/*
435 		 * The number of Bytes to be unmapped beginning with the lba.
436 		 */
437 		transfer_len = blk_rq_bytes(rq);
438 		lba = scsi_get_lba(cmd);
439 	}
440 
441 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442 
443 	if (is_mcq_enabled(hba)) {
444 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445 
446 		hwq_id = hwq->id;
447 	} else {
448 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 	}
450 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453 
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 	struct ufs_clk_info *clki;
457 	struct list_head *head = &hba->clk_list_head;
458 
459 	if (list_empty(head))
460 		return;
461 
462 	list_for_each_entry(clki, head, list) {
463 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 				clki->max_freq)
465 			dev_err(hba->dev, "clk: %s, rate: %u\n",
466 					clki->name, clki->curr_freq);
467 	}
468 }
469 
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 			     const char *err_name)
472 {
473 	int i;
474 	bool found = false;
475 	const struct ufs_event_hist *e;
476 
477 	if (id >= UFS_EVT_CNT)
478 		return;
479 
480 	e = &hba->ufs_stats.event[id];
481 
482 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484 
485 		if (e->tstamp[p] == 0)
486 			continue;
487 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 			e->val[p], div_u64(e->tstamp[p], 1000));
489 		found = true;
490 	}
491 
492 	if (!found)
493 		dev_err(hba->dev, "No record of %s\n", err_name);
494 	else
495 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497 
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501 
502 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 			 "auto_hibern8_err");
509 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 			 "link_startup_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 			 "suspend_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 			 "wlun suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521 
522 	ufshcd_vops_dbg_register_dump(hba);
523 }
524 
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 	const struct ufshcd_lrb *lrbp;
529 	int prdt_length;
530 
531 	lrbp = &hba->lrb[tag];
532 
533 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 	dev_err(hba->dev,
538 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 		tag, (u64)lrbp->utrd_dma_addr);
540 
541 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 			sizeof(struct utp_transfer_req_desc));
543 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 		(u64)lrbp->ucd_req_dma_addr);
545 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 			sizeof(struct utp_upiu_req));
547 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 		(u64)lrbp->ucd_rsp_dma_addr);
549 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 			sizeof(struct utp_upiu_rsp));
551 
552 	prdt_length = le16_to_cpu(
553 		lrbp->utr_descriptor_ptr->prd_table_length);
554 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 		prdt_length /= ufshcd_sg_entry_size(hba);
556 
557 	dev_err(hba->dev,
558 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559 		tag, prdt_length,
560 		(u64)lrbp->ucd_prdt_dma_addr);
561 
562 	if (pr_prdt)
563 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 			ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566 
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 	struct scsi_device *sdev = req->q->queuedata;
570 	struct Scsi_Host *shost = sdev->host;
571 	struct ufs_hba *hba = shost_priv(shost);
572 
573 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574 
575 	return true;
576 }
577 
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587 
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 	int tag;
591 
592 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594 
595 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 	}
598 }
599 
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603 
604 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 		hba->outstanding_reqs, hba->outstanding_tasks);
607 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 		hba->saved_err, hba->saved_uic_err);
609 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 		hba->curr_dev_pwr_mode, hba->uic_link_state);
611 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 		hba->pm_op_in_progress, hba->is_sys_suspended);
613 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 	dev_err(hba->dev,
617 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 		hba->ufs_stats.hibern8_exit_cnt);
620 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 		hba->ufs_stats.last_intr_status);
623 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 		hba->eh_flags, hba->req_abort_count);
625 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 		hba->ufs_version, hba->capabilities, hba->caps);
627 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 		hba->dev_quirks);
629 	if (sdev_ufs)
630 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632 
633 	ufshcd_print_clk_freqs(hba);
634 }
635 
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 	static const char * const names[] = {
644 		"INVALID MODE",
645 		"FAST MODE",
646 		"SLOW_MODE",
647 		"INVALID MODE",
648 		"FASTAUTO_MODE",
649 		"SLOWAUTO_MODE",
650 		"INVALID MODE",
651 	};
652 
653 	/*
654 	 * Using dev_dbg to avoid messages during runtime PM to avoid
655 	 * never-ending cycles of messages written back to storage by user space
656 	 * causing runtime resume, causing more messages and so on.
657 	 */
658 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 		 __func__,
660 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 		 names[hba->pwr_info.pwr_rx],
663 		 names[hba->pwr_info.pwr_tx],
664 		 hba->pwr_info.hs_rate);
665 }
666 
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 	int err;
670 
671 	err = ufshcd_vops_device_reset(hba);
672 
673 	if (!err) {
674 		ufshcd_set_ufs_dev_active(hba);
675 		if (ufshcd_is_wb_allowed(hba)) {
676 			hba->dev_info.wb_enabled = false;
677 			hba->dev_info.wb_buf_flush_enabled = false;
678 		}
679 	}
680 	if (err != -EOPNOTSUPP)
681 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683 
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 	if (!us)
687 		return;
688 
689 	if (us < 10)
690 		udelay(us);
691 	else
692 		usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695 
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 				u32 val, unsigned long interval_us,
709 				unsigned long timeout_ms)
710 {
711 	int err = 0;
712 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713 
714 	/* ignore bits that we don't intend to wait on */
715 	val = val & mask;
716 
717 	while ((ufshcd_readl(hba, reg) & mask) != val) {
718 		usleep_range(interval_us, interval_us + 50);
719 		if (time_after(jiffies, timeout)) {
720 			if ((ufshcd_readl(hba, reg) & mask) != val)
721 				err = -ETIMEDOUT;
722 			break;
723 		}
724 	}
725 
726 	return err;
727 }
728 
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 	if (hba->ufs_version == ufshci_version(1, 0))
738 		return INTERRUPT_MASK_ALL_VER_10;
739 	if (hba->ufs_version <= ufshci_version(2, 0))
740 		return INTERRUPT_MASK_ALL_VER_11;
741 
742 	return INTERRUPT_MASK_ALL_VER_21;
743 }
744 
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 	u32 ufshci_ver;
754 
755 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 	else
758 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759 
760 	/*
761 	 * UFSHCI v1.x uses a different version scheme, in order
762 	 * to allow the use of comparisons with the ufshci_version
763 	 * function, we convert it to the same scheme as ufs 2.0+.
764 	 */
765 	if (ufshci_ver & 0x00010000)
766 		return ufshci_version(1, ufshci_ver & 0x00000100);
767 
768 	return ufshci_ver;
769 }
770 
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *			      the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782 
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 				      struct cq_entry *cqe)
794 {
795 	if (cqe)
796 		return le32_to_cpu(cqe->status) & MASK_OCS;
797 
798 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800 
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 		mask = ~mask;
810 	/*
811 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 	 * Register (UTRLCLR): This field is bit significant. Each bit
813 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 	 * by host software to indicate to the host controller that a transfer
816 	 * request slot is cleared. The host controller
817 	 * shall free up any resources associated to the request slot
818 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 	 * host software indicates no change to request slots by setting the
820 	 * associated bits in this field to ‘1’. Bits in this field shall only
821 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 	 */
823 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825 
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 	else
836 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849 
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876 
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 	return ucd_rsp_ptr->header.transaction_code;
887 }
888 
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.device_information & 1;
901 }
902 
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 	ufshcd_writel(hba, INT_AGGR_ENABLE |
911 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914 
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 		      INT_AGGR_TIMEOUT_VAL(tmout),
927 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929 
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938 
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *			When run-stop registers are set to 1, it indicates the
942  *			host controller that it can process the requests
943  * @hba: per adapter instance
944  */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952 
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 	u32 val = CONTROLLER_ENABLE;
960 
961 	if (ufshcd_crypto_enable(hba))
962 		val |= CRYPTO_GENERAL_ENABLE;
963 
964 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966 
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978 
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 	if (hba->ufs_version <= ufshci_version(1, 1))
983 		return UFS_UNIPRO_VER_1_41;
984 	else
985 		return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988 
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 	/*
992 	 * If both host and device support UniPro ver1.6 or later, PA layer
993 	 * parameters tuning happens during link startup itself.
994 	 *
995 	 * We can manually tune PA layer parameters if either host or device
996 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 	 * logic simple, we will only do manual tuning if local unipro version
998 	 * doesn't support ver1.6 or later.
999 	 */
1000 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002 
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 	int ret = 0;
1013 	struct ufs_clk_info *clki;
1014 	struct list_head *head = &hba->clk_list_head;
1015 
1016 	if (list_empty(head))
1017 		goto out;
1018 
1019 	list_for_each_entry(clki, head, list) {
1020 		if (!IS_ERR_OR_NULL(clki->clk)) {
1021 			if (scale_up && clki->max_freq) {
1022 				if (clki->curr_freq == clki->max_freq)
1023 					continue;
1024 
1025 				ret = clk_set_rate(clki->clk, clki->max_freq);
1026 				if (ret) {
1027 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 						__func__, clki->name,
1029 						clki->max_freq, ret);
1030 					break;
1031 				}
1032 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 						"scaled up", clki->name,
1034 						clki->curr_freq,
1035 						clki->max_freq);
1036 
1037 				clki->curr_freq = clki->max_freq;
1038 
1039 			} else if (!scale_up && clki->min_freq) {
1040 				if (clki->curr_freq == clki->min_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->min_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->min_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled down", clki->name,
1052 						clki->curr_freq,
1053 						clki->min_freq);
1054 				clki->curr_freq = clki->min_freq;
1055 			}
1056 		}
1057 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 				clki->name, clk_get_rate(clki->clk));
1059 	}
1060 
1061 out:
1062 	return ret;
1063 }
1064 
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 	int ret = 0;
1075 	ktime_t start = ktime_get();
1076 
1077 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 	if (ret)
1079 		goto out;
1080 
1081 	ret = ufshcd_set_clk_freq(hba, scale_up);
1082 	if (ret)
1083 		goto out;
1084 
1085 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 	if (ret)
1087 		ufshcd_set_clk_freq(hba, !scale_up);
1088 
1089 out:
1090 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 			(scale_up ? "up" : "down"),
1092 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 					       bool scale_up)
1105 {
1106 	struct ufs_clk_info *clki;
1107 	struct list_head *head = &hba->clk_list_head;
1108 
1109 	if (list_empty(head))
1110 		return false;
1111 
1112 	list_for_each_entry(clki, head, list) {
1113 		if (!IS_ERR_OR_NULL(clki->clk)) {
1114 			if (scale_up && clki->max_freq) {
1115 				if (clki->curr_freq == clki->max_freq)
1116 					continue;
1117 				return true;
1118 			} else if (!scale_up && clki->min_freq) {
1119 				if (clki->curr_freq == clki->min_freq)
1120 					continue;
1121 				return true;
1122 			}
1123 		}
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 	const struct scsi_device *sdev;
1139 	u32 pending = 0;
1140 
1141 	lockdep_assert_held(hba->host->host_lock);
1142 	__shost_for_each_device(sdev, hba->host)
1143 		pending += sbitmap_weight(&sdev->budget_map);
1144 
1145 	return pending;
1146 }
1147 
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 					u64 wait_timeout_us)
1156 {
1157 	unsigned long flags;
1158 	int ret = 0;
1159 	u32 tm_doorbell;
1160 	u32 tr_pending;
1161 	bool timeout = false, do_last_check = false;
1162 	ktime_t start;
1163 
1164 	ufshcd_hold(hba);
1165 	spin_lock_irqsave(hba->host->host_lock, flags);
1166 	/*
1167 	 * Wait for all the outstanding tasks/transfer requests.
1168 	 * Verify by checking the doorbell registers are clear.
1169 	 */
1170 	start = ktime_get();
1171 	do {
1172 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 			ret = -EBUSY;
1174 			goto out;
1175 		}
1176 
1177 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 		tr_pending = ufshcd_pending_cmds(hba);
1179 		if (!tm_doorbell && !tr_pending) {
1180 			timeout = false;
1181 			break;
1182 		} else if (do_last_check) {
1183 			break;
1184 		}
1185 
1186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 		io_schedule_timeout(msecs_to_jiffies(20));
1188 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 		    wait_timeout_us) {
1190 			timeout = true;
1191 			/*
1192 			 * We might have scheduled out for long time so make
1193 			 * sure to check if doorbells are cleared by this time
1194 			 * or not.
1195 			 */
1196 			do_last_check = true;
1197 		}
1198 		spin_lock_irqsave(hba->host->host_lock, flags);
1199 	} while (tm_doorbell || tr_pending);
1200 
1201 	if (timeout) {
1202 		dev_err(hba->dev,
1203 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 			__func__, tm_doorbell, tr_pending);
1205 		ret = -EBUSY;
1206 	}
1207 out:
1208 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 	ufshcd_release(hba);
1210 	return ret;
1211 }
1212 
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 	int ret = 0;
1224 	struct ufs_pa_layer_attr new_pwr_info;
1225 
1226 	if (scale_up) {
1227 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 		       sizeof(struct ufs_pa_layer_attr));
1229 	} else {
1230 		memcpy(&new_pwr_info, &hba->pwr_info,
1231 		       sizeof(struct ufs_pa_layer_attr));
1232 
1233 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 			/* save the current power mode */
1236 			memcpy(&hba->clk_scaling.saved_pwr_info,
1237 				&hba->pwr_info,
1238 				sizeof(struct ufs_pa_layer_attr));
1239 
1240 			/* scale down gear */
1241 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 		}
1244 	}
1245 
1246 	/* check if the power mode needs to be changed or not? */
1247 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 	if (ret)
1249 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 			__func__, ret,
1251 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 	int ret = 0;
1266 	/*
1267 	 * make sure that there are no outstanding requests when
1268 	 * clock scaling is in progress
1269 	 */
1270 	ufshcd_scsi_block_requests(hba);
1271 	mutex_lock(&hba->wb_mutex);
1272 	down_write(&hba->clk_scaling_lock);
1273 
1274 	if (!hba->clk_scaling.is_allowed ||
1275 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 		ret = -EBUSY;
1277 		up_write(&hba->clk_scaling_lock);
1278 		mutex_unlock(&hba->wb_mutex);
1279 		ufshcd_scsi_unblock_requests(hba);
1280 		goto out;
1281 	}
1282 
1283 	/* let's not get into low power until clock scaling is completed */
1284 	ufshcd_hold(hba);
1285 
1286 out:
1287 	return ret;
1288 }
1289 
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 	up_write(&hba->clk_scaling_lock);
1293 
1294 	/* Enable Write Booster if we have scaled up else disable it */
1295 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 		ufshcd_wb_toggle(hba, scale_up);
1297 
1298 	mutex_unlock(&hba->wb_mutex);
1299 
1300 	ufshcd_scsi_unblock_requests(hba);
1301 	ufshcd_release(hba);
1302 }
1303 
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 	int ret = 0;
1315 
1316 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* scale down the gear before scaling down clocks */
1321 	if (!scale_up) {
1322 		ret = ufshcd_scale_gear(hba, false);
1323 		if (ret)
1324 			goto out_unprepare;
1325 	}
1326 
1327 	ret = ufshcd_scale_clks(hba, scale_up);
1328 	if (ret) {
1329 		if (!scale_up)
1330 			ufshcd_scale_gear(hba, true);
1331 		goto out_unprepare;
1332 	}
1333 
1334 	/* scale up the gear after scaling up clocks */
1335 	if (scale_up) {
1336 		ret = ufshcd_scale_gear(hba, true);
1337 		if (ret) {
1338 			ufshcd_scale_clks(hba, false);
1339 			goto out_unprepare;
1340 		}
1341 	}
1342 
1343 out_unprepare:
1344 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 	return ret;
1346 }
1347 
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 					   clk_scaling.suspend_work);
1352 	unsigned long irq_flags;
1353 
1354 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 		return;
1358 	}
1359 	hba->clk_scaling.is_suspended = true;
1360 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 
1362 	__ufshcd_suspend_clkscaling(hba);
1363 }
1364 
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 					   clk_scaling.resume_work);
1369 	unsigned long irq_flags;
1370 
1371 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 	if (!hba->clk_scaling.is_suspended) {
1373 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 		return;
1375 	}
1376 	hba->clk_scaling.is_suspended = false;
1377 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378 
1379 	devfreq_resume_device(hba->devfreq);
1380 }
1381 
1382 static int ufshcd_devfreq_target(struct device *dev,
1383 				unsigned long *freq, u32 flags)
1384 {
1385 	int ret = 0;
1386 	struct ufs_hba *hba = dev_get_drvdata(dev);
1387 	ktime_t start;
1388 	bool scale_up, sched_clk_scaling_suspend_work = false;
1389 	struct list_head *clk_list = &hba->clk_list_head;
1390 	struct ufs_clk_info *clki;
1391 	unsigned long irq_flags;
1392 
1393 	if (!ufshcd_is_clkscaling_supported(hba))
1394 		return -EINVAL;
1395 
1396 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 	/* Override with the closest supported frequency */
1398 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (ufshcd_eh_in_progress(hba)) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return 0;
1403 	}
1404 
1405 	if (!hba->clk_scaling.active_reqs)
1406 		sched_clk_scaling_suspend_work = true;
1407 
1408 	if (list_empty(clk_list)) {
1409 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 		goto out;
1411 	}
1412 
1413 	/* Decide based on the rounded-off frequency and update */
1414 	scale_up = *freq == clki->max_freq;
1415 	if (!scale_up)
1416 		*freq = clki->min_freq;
1417 	/* Update the frequency */
1418 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		ret = 0;
1421 		goto out; /* no state change required */
1422 	}
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	start = ktime_get();
1426 	ret = ufshcd_devfreq_scale(hba, scale_up);
1427 
1428 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 		(scale_up ? "up" : "down"),
1430 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431 
1432 out:
1433 	if (sched_clk_scaling_suspend_work)
1434 		queue_work(hba->clk_scaling.workq,
1435 			   &hba->clk_scaling.suspend_work);
1436 
1437 	return ret;
1438 }
1439 
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 		struct devfreq_dev_status *stat)
1442 {
1443 	struct ufs_hba *hba = dev_get_drvdata(dev);
1444 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 	unsigned long flags;
1446 	struct list_head *clk_list = &hba->clk_list_head;
1447 	struct ufs_clk_info *clki;
1448 	ktime_t curr_t;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return -EINVAL;
1452 
1453 	memset(stat, 0, sizeof(*stat));
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, flags);
1456 	curr_t = ktime_get();
1457 	if (!scaling->window_start_t)
1458 		goto start_window;
1459 
1460 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 	/*
1462 	 * If current frequency is 0, then the ondemand governor considers
1463 	 * there's no initial frequency set. And it always requests to set
1464 	 * to max. frequency.
1465 	 */
1466 	stat->current_frequency = clki->curr_freq;
1467 	if (scaling->is_busy_started)
1468 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 				scaling->busy_start_t);
1470 
1471 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 	stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 	scaling->window_start_t = curr_t;
1475 	scaling->tot_busy_t = 0;
1476 
1477 	if (scaling->active_reqs) {
1478 		scaling->busy_start_t = curr_t;
1479 		scaling->is_busy_started = true;
1480 	} else {
1481 		scaling->busy_start_t = 0;
1482 		scaling->is_busy_started = false;
1483 	}
1484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 	return 0;
1486 }
1487 
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 	struct devfreq *devfreq;
1493 	int ret;
1494 
1495 	/* Skip devfreq if we don't have any clocks in the list */
1496 	if (list_empty(clk_list))
1497 		return 0;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502 
1503 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 					 &hba->vps->ondemand_data);
1505 	devfreq = devfreq_add_device(hba->dev,
1506 			&hba->vps->devfreq_profile,
1507 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 			&hba->vps->ondemand_data);
1509 	if (IS_ERR(devfreq)) {
1510 		ret = PTR_ERR(devfreq);
1511 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512 
1513 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 		return ret;
1516 	}
1517 
1518 	hba->devfreq = devfreq;
1519 
1520 	return 0;
1521 }
1522 
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!hba->devfreq)
1529 		return;
1530 
1531 	devfreq_remove_device(hba->devfreq);
1532 	hba->devfreq = NULL;
1533 
1534 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538 
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 	unsigned long flags;
1542 
1543 	devfreq_suspend_device(hba->devfreq);
1544 	spin_lock_irqsave(hba->host->host_lock, flags);
1545 	hba->clk_scaling.window_start_t = 0;
1546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548 
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 	unsigned long flags;
1552 	bool suspend = false;
1553 
1554 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 	cancel_work_sync(&hba->clk_scaling.resume_work);
1556 
1557 	spin_lock_irqsave(hba->host->host_lock, flags);
1558 	if (!hba->clk_scaling.is_suspended) {
1559 		suspend = true;
1560 		hba->clk_scaling.is_suspended = true;
1561 	}
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 
1564 	if (suspend)
1565 		__ufshcd_suspend_clkscaling(hba);
1566 }
1567 
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool resume = false;
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (hba->clk_scaling.is_suspended) {
1575 		resume = true;
1576 		hba->clk_scaling.is_suspended = false;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (resume)
1581 		devfreq_resume_device(hba->devfreq);
1582 }
1583 
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct ufs_hba *hba = dev_get_drvdata(dev);
1588 
1589 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591 
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 		struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 	struct ufs_hba *hba = dev_get_drvdata(dev);
1596 	u32 value;
1597 	int err = 0;
1598 
1599 	if (kstrtou32(buf, 0, &value))
1600 		return -EINVAL;
1601 
1602 	down(&hba->host_sem);
1603 	if (!ufshcd_is_user_access_allowed(hba)) {
1604 		err = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	value = !!value;
1609 	if (value == hba->clk_scaling.is_enabled)
1610 		goto out;
1611 
1612 	ufshcd_rpm_get_sync(hba);
1613 	ufshcd_hold(hba);
1614 
1615 	hba->clk_scaling.is_enabled = value;
1616 
1617 	if (value) {
1618 		ufshcd_resume_clkscaling(hba);
1619 	} else {
1620 		ufshcd_suspend_clkscaling(hba);
1621 		err = ufshcd_devfreq_scale(hba, true);
1622 		if (err)
1623 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 					__func__, err);
1625 	}
1626 
1627 	ufshcd_release(hba);
1628 	ufshcd_rpm_put_sync(hba);
1629 out:
1630 	up(&hba->host_sem);
1631 	return err ? err : count;
1632 }
1633 
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644 
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 	if (hba->clk_scaling.enable_attr.attr.name)
1648 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650 
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 	char wq_name[sizeof("ufs_clkscaling_00")];
1654 
1655 	if (!ufshcd_is_clkscaling_supported(hba))
1656 		return;
1657 
1658 	if (!hba->clk_scaling.min_gear)
1659 		hba->clk_scaling.min_gear = UFS_HS_G1;
1660 
1661 	INIT_WORK(&hba->clk_scaling.suspend_work,
1662 		  ufshcd_clk_scaling_suspend_work);
1663 	INIT_WORK(&hba->clk_scaling.resume_work,
1664 		  ufshcd_clk_scaling_resume_work);
1665 
1666 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 		 hba->host->host_no);
1668 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669 
1670 	hba->clk_scaling.is_initialized = true;
1671 }
1672 
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 	if (!hba->clk_scaling.is_initialized)
1676 		return;
1677 
1678 	ufshcd_remove_clk_scaling_sysfs(hba);
1679 	destroy_workqueue(hba->clk_scaling.workq);
1680 	ufshcd_devfreq_remove(hba);
1681 	hba->clk_scaling.is_initialized = false;
1682 }
1683 
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 	int ret;
1687 	unsigned long flags;
1688 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 			clk_gating.ungate_work);
1690 
1691 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692 
1693 	spin_lock_irqsave(hba->host->host_lock, flags);
1694 	if (hba->clk_gating.state == CLKS_ON) {
1695 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 		return;
1697 	}
1698 
1699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 	ufshcd_hba_vreg_set_hpm(hba);
1701 	ufshcd_setup_clocks(hba, true);
1702 
1703 	ufshcd_enable_irq(hba);
1704 
1705 	/* Exit from hibern8 */
1706 	if (ufshcd_can_hibern8_during_gating(hba)) {
1707 		/* Prevent gating in this path */
1708 		hba->clk_gating.is_suspended = true;
1709 		if (ufshcd_is_link_hibern8(hba)) {
1710 			ret = ufshcd_uic_hibern8_exit(hba);
1711 			if (ret)
1712 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 					__func__, ret);
1714 			else
1715 				ufshcd_set_link_active(hba);
1716 		}
1717 		hba->clk_gating.is_suspended = false;
1718 	}
1719 }
1720 
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 	bool flush_result;
1729 	unsigned long flags;
1730 
1731 	if (!ufshcd_is_clkgating_allowed(hba) ||
1732 	    !hba->clk_gating.is_initialized)
1733 		return;
1734 	spin_lock_irqsave(hba->host->host_lock, flags);
1735 	hba->clk_gating.active_reqs++;
1736 
1737 start:
1738 	switch (hba->clk_gating.state) {
1739 	case CLKS_ON:
1740 		/*
1741 		 * Wait for the ungate work to complete if in progress.
1742 		 * Though the clocks may be in ON state, the link could
1743 		 * still be in hibner8 state if hibern8 is allowed
1744 		 * during clock gating.
1745 		 * Make sure we exit hibern8 state also in addition to
1746 		 * clocks being ON.
1747 		 */
1748 		if (ufshcd_can_hibern8_during_gating(hba) &&
1749 		    ufshcd_is_link_hibern8(hba)) {
1750 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 			if (hba->clk_gating.is_suspended && !flush_result)
1753 				return;
1754 			spin_lock_irqsave(hba->host->host_lock, flags);
1755 			goto start;
1756 		}
1757 		break;
1758 	case REQ_CLKS_OFF:
1759 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 			hba->clk_gating.state = CLKS_ON;
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			break;
1764 		}
1765 		/*
1766 		 * If we are here, it means gating work is either done or
1767 		 * currently running. Hence, fall through to cancel gating
1768 		 * work and to enable clocks.
1769 		 */
1770 		fallthrough;
1771 	case CLKS_OFF:
1772 		hba->clk_gating.state = REQ_CLKS_ON;
1773 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 					hba->clk_gating.state);
1775 		queue_work(hba->clk_gating.clk_gating_workq,
1776 			   &hba->clk_gating.ungate_work);
1777 		/*
1778 		 * fall through to check if we should wait for this
1779 		 * work to be done or not.
1780 		 */
1781 		fallthrough;
1782 	case REQ_CLKS_ON:
1783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 		flush_work(&hba->clk_gating.ungate_work);
1785 		/* Make sure state is CLKS_ON before returning */
1786 		spin_lock_irqsave(hba->host->host_lock, flags);
1787 		goto start;
1788 	default:
1789 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 				__func__, hba->clk_gating.state);
1791 		break;
1792 	}
1793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796 
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 			clk_gating.gate_work.work);
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	spin_lock_irqsave(hba->host->host_lock, flags);
1805 	/*
1806 	 * In case you are here to cancel this work the gating state
1807 	 * would be marked as REQ_CLKS_ON. In this case save time by
1808 	 * skipping the gating work and exit after changing the clock
1809 	 * state to CLKS_ON.
1810 	 */
1811 	if (hba->clk_gating.is_suspended ||
1812 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 		hba->clk_gating.state = CLKS_ON;
1814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 					hba->clk_gating.state);
1816 		goto rel_lock;
1817 	}
1818 
1819 	if (hba->clk_gating.active_reqs
1820 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 		|| hba->outstanding_reqs || hba->outstanding_tasks
1822 		|| hba->active_uic_cmd || hba->uic_async_done)
1823 		goto rel_lock;
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 
1827 	/* put the link into hibern8 mode before turning off clocks */
1828 	if (ufshcd_can_hibern8_during_gating(hba)) {
1829 		ret = ufshcd_uic_hibern8_enter(hba);
1830 		if (ret) {
1831 			hba->clk_gating.state = CLKS_ON;
1832 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 					__func__, ret);
1834 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 						hba->clk_gating.state);
1836 			goto out;
1837 		}
1838 		ufshcd_set_link_hibern8(hba);
1839 	}
1840 
1841 	ufshcd_disable_irq(hba);
1842 
1843 	ufshcd_setup_clocks(hba, false);
1844 
1845 	/* Put the host controller in low power mode if possible */
1846 	ufshcd_hba_vreg_set_lpm(hba);
1847 	/*
1848 	 * In case you are here to cancel this work the gating state
1849 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 	 * and a request to turn them on is pending. By doing this way,
1852 	 * we keep the state machine in tact and this would ultimately
1853 	 * prevent from doing cancel work multiple times when there are
1854 	 * new requests arriving before the current cancel work is done.
1855 	 */
1856 	spin_lock_irqsave(hba->host->host_lock, flags);
1857 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 		hba->clk_gating.state = CLKS_OFF;
1859 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 					hba->clk_gating.state);
1861 	}
1862 rel_lock:
1863 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 	return;
1866 }
1867 
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 	if (!ufshcd_is_clkgating_allowed(hba))
1872 		return;
1873 
1874 	hba->clk_gating.active_reqs--;
1875 
1876 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 	    hba->active_uic_cmd || hba->uic_async_done ||
1880 	    hba->clk_gating.state == CLKS_OFF)
1881 		return;
1882 
1883 	hba->clk_gating.state = REQ_CLKS_OFF;
1884 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 			   &hba->clk_gating.gate_work,
1887 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889 
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(hba->host->host_lock, flags);
1895 	__ufshcd_release(hba);
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899 
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 		struct device_attribute *attr, char *buf)
1902 {
1903 	struct ufs_hba *hba = dev_get_drvdata(dev);
1904 
1905 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907 
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 	struct ufs_hba *hba = dev_get_drvdata(dev);
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(hba->host->host_lock, flags);
1914 	hba->clk_gating.delay_ms = value;
1915 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918 
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	unsigned long value;
1923 
1924 	if (kstrtoul(buf, 0, &value))
1925 		return -EINVAL;
1926 
1927 	ufshcd_clkgate_delay_set(dev, value);
1928 	return count;
1929 }
1930 
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 		struct device_attribute *attr, char *buf)
1933 {
1934 	struct ufs_hba *hba = dev_get_drvdata(dev);
1935 
1936 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938 
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 		struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 	struct ufs_hba *hba = dev_get_drvdata(dev);
1943 	unsigned long flags;
1944 	u32 value;
1945 
1946 	if (kstrtou32(buf, 0, &value))
1947 		return -EINVAL;
1948 
1949 	value = !!value;
1950 
1951 	spin_lock_irqsave(hba->host->host_lock, flags);
1952 	if (value == hba->clk_gating.is_enabled)
1953 		goto out;
1954 
1955 	if (value)
1956 		__ufshcd_release(hba);
1957 	else
1958 		hba->clk_gating.active_reqs++;
1959 
1960 	hba->clk_gating.is_enabled = value;
1961 out:
1962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 	return count;
1964 }
1965 
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 	hba->clk_gating.delay_attr.attr.mode = 0644;
1973 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975 
1976 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 	hba->clk_gating.enable_attr.attr.mode = 0644;
1981 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984 
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 	if (hba->clk_gating.delay_attr.attr.name)
1988 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 	if (hba->clk_gating.enable_attr.attr.name)
1990 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992 
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 	char wq_name[sizeof("ufs_clk_gating_00")];
1996 
1997 	if (!ufshcd_is_clkgating_allowed(hba))
1998 		return;
1999 
2000 	hba->clk_gating.state = CLKS_ON;
2001 
2002 	hba->clk_gating.delay_ms = 150;
2003 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005 
2006 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 		 hba->host->host_no);
2008 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010 
2011 	ufshcd_init_clk_gating_sysfs(hba);
2012 
2013 	hba->clk_gating.is_enabled = true;
2014 	hba->clk_gating.is_initialized = true;
2015 }
2016 
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 	if (!hba->clk_gating.is_initialized)
2020 		return;
2021 
2022 	ufshcd_remove_clk_gating_sysfs(hba);
2023 
2024 	/* Ungate the clock if necessary. */
2025 	ufshcd_hold(hba);
2026 	hba->clk_gating.is_initialized = false;
2027 	ufshcd_release(hba);
2028 
2029 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031 
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 	bool queue_resume_work = false;
2035 	ktime_t curr_t = ktime_get();
2036 	unsigned long flags;
2037 
2038 	if (!ufshcd_is_clkscaling_supported(hba))
2039 		return;
2040 
2041 	spin_lock_irqsave(hba->host->host_lock, flags);
2042 	if (!hba->clk_scaling.active_reqs++)
2043 		queue_resume_work = true;
2044 
2045 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 		return;
2048 	}
2049 
2050 	if (queue_resume_work)
2051 		queue_work(hba->clk_scaling.workq,
2052 			   &hba->clk_scaling.resume_work);
2053 
2054 	if (!hba->clk_scaling.window_start_t) {
2055 		hba->clk_scaling.window_start_t = curr_t;
2056 		hba->clk_scaling.tot_busy_t = 0;
2057 		hba->clk_scaling.is_busy_started = false;
2058 	}
2059 
2060 	if (!hba->clk_scaling.is_busy_started) {
2061 		hba->clk_scaling.busy_start_t = curr_t;
2062 		hba->clk_scaling.is_busy_started = true;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 	unsigned long flags;
2071 
2072 	if (!ufshcd_is_clkscaling_supported(hba))
2073 		return;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	hba->clk_scaling.active_reqs--;
2077 	if (!scaling->active_reqs && scaling->is_busy_started) {
2078 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 					scaling->busy_start_t));
2080 		scaling->busy_start_t = 0;
2081 		scaling->is_busy_started = false;
2082 	}
2083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085 
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 		return READ;
2090 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 		return WRITE;
2092 	else
2093 		return -EINVAL;
2094 }
2095 
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 						struct ufshcd_lrb *lrbp)
2098 {
2099 	const struct ufs_hba_monitor *m = &hba->monitor;
2100 
2101 	return (m->enabled && lrbp && lrbp->cmd &&
2102 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105 
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 				 const struct ufshcd_lrb *lrbp)
2108 {
2109 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 		hba->monitor.busy_start_ts[dir] = ktime_get();
2115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117 
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 		struct ufs_hba_monitor *m = &hba->monitor;
2127 		ktime_t now, inc, lat;
2128 
2129 		now = lrbp->compl_time_stamp;
2130 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133 
2134 		/* Update latencies */
2135 		m->nr_req[dir]++;
2136 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 		m->lat_sum[dir] += lat;
2138 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 			m->lat_max[dir] = lat;
2140 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 			m->lat_min[dir] = lat;
2142 
2143 		m->nr_queued[dir]--;
2144 		/* Push forward the busy start of monitor */
2145 		m->busy_start_ts[dir] = now;
2146 	}
2147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149 
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 			 struct ufs_hw_queue *hwq)
2159 {
2160 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 	unsigned long flags;
2162 
2163 	lrbp->issue_time_stamp = ktime_get();
2164 	lrbp->issue_time_stamp_local_clock = local_clock();
2165 	lrbp->compl_time_stamp = ktime_set(0, 0);
2166 	lrbp->compl_time_stamp_local_clock = 0;
2167 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 	ufshcd_clk_scaling_start_busy(hba);
2169 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 		ufshcd_start_monitor(hba, lrbp);
2171 
2172 	if (is_mcq_enabled(hba)) {
2173 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 		struct utp_transfer_req_desc *dest;
2176 
2177 		spin_lock(&hwq->sq_lock);
2178 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 		memcpy(dest, src, utrd_size);
2180 		ufshcd_inc_sq_tail(hwq);
2181 		spin_unlock(&hwq->sq_lock);
2182 	} else {
2183 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 		if (hba->vops && hba->vops->setup_xfer_req)
2185 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 						  !!lrbp->cmd);
2187 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 	}
2192 }
2193 
2194 /**
2195  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196  * @lrbp: pointer to local reference block
2197  */
2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 	u16 resp_len;
2202 	int len;
2203 
2204 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 	if (sense_buffer && resp_len) {
2206 		int len_to_copy;
2207 
2208 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210 
2211 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 		       len_to_copy);
2213 	}
2214 }
2215 
2216 /**
2217  * ufshcd_copy_query_response() - Copy the Query Response and the data
2218  * descriptor
2219  * @hba: per adapter instance
2220  * @lrbp: pointer to local reference block
2221  *
2222  * Return: 0 upon success; < 0 upon failure.
2223  */
2224 static
2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228 
2229 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230 
2231 	/* Get the descriptor */
2232 	if (hba->dev_cmd.query.descriptor &&
2233 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 				GENERAL_UPIU_REQUEST_SIZE;
2236 		u16 resp_len;
2237 		u16 buf_len;
2238 
2239 		/* data segment length */
2240 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 				       .data_segment_length);
2242 		buf_len = be16_to_cpu(
2243 				hba->dev_cmd.query.request.upiu_req.length);
2244 		if (likely(buf_len >= resp_len)) {
2245 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 		} else {
2247 			dev_warn(hba->dev,
2248 				 "%s: rsp size %d is bigger than buffer size %d",
2249 				 __func__, resp_len, buf_len);
2250 			return -EINVAL;
2251 		}
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 /**
2258  * ufshcd_hba_capabilities - Read controller capabilities
2259  * @hba: per adapter instance
2260  *
2261  * Return: 0 on success, negative on error.
2262  */
2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 	int err;
2266 
2267 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270 
2271 	/* nutrs and nutmrs are 0 based values */
2272 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273 	hba->nutmrs =
2274 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275 	hba->reserved_slot = hba->nutrs - 1;
2276 
2277 	/* Read crypto capabilities */
2278 	err = ufshcd_hba_init_crypto_capabilities(hba);
2279 	if (err) {
2280 		dev_err(hba->dev, "crypto setup failed\n");
2281 		return err;
2282 	}
2283 
2284 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2285 	if (!hba->mcq_sup)
2286 		return 0;
2287 
2288 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2289 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2290 				     hba->mcq_capabilities);
2291 
2292 	return 0;
2293 }
2294 
2295 /**
2296  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2297  *                            to accept UIC commands
2298  * @hba: per adapter instance
2299  *
2300  * Return: true on success, else false.
2301  */
2302 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2303 {
2304 	u32 val;
2305 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2306 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2307 				    REG_CONTROLLER_STATUS);
2308 	return ret == 0 ? true : false;
2309 }
2310 
2311 /**
2312  * ufshcd_get_upmcrs - Get the power mode change request status
2313  * @hba: Pointer to adapter instance
2314  *
2315  * This function gets the UPMCRS field of HCS register
2316  *
2317  * Return: value of UPMCRS field.
2318  */
2319 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2320 {
2321 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2322 }
2323 
2324 /**
2325  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2326  * @hba: per adapter instance
2327  * @uic_cmd: UIC command
2328  */
2329 static inline void
2330 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2331 {
2332 	lockdep_assert_held(&hba->uic_cmd_mutex);
2333 
2334 	WARN_ON(hba->active_uic_cmd);
2335 
2336 	hba->active_uic_cmd = uic_cmd;
2337 
2338 	/* Write Args */
2339 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2340 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2341 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2342 
2343 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2344 
2345 	/* Write UIC Cmd */
2346 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2347 		      REG_UIC_COMMAND);
2348 }
2349 
2350 /**
2351  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2352  * @hba: per adapter instance
2353  * @uic_cmd: UIC command
2354  *
2355  * Return: 0 only if success.
2356  */
2357 static int
2358 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2359 {
2360 	int ret;
2361 	unsigned long flags;
2362 
2363 	lockdep_assert_held(&hba->uic_cmd_mutex);
2364 
2365 	if (wait_for_completion_timeout(&uic_cmd->done,
2366 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2367 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2368 	} else {
2369 		ret = -ETIMEDOUT;
2370 		dev_err(hba->dev,
2371 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2372 			uic_cmd->command, uic_cmd->argument3);
2373 
2374 		if (!uic_cmd->cmd_active) {
2375 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2376 				__func__);
2377 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378 		}
2379 	}
2380 
2381 	spin_lock_irqsave(hba->host->host_lock, flags);
2382 	hba->active_uic_cmd = NULL;
2383 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2384 
2385 	return ret;
2386 }
2387 
2388 /**
2389  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2390  * @hba: per adapter instance
2391  * @uic_cmd: UIC command
2392  * @completion: initialize the completion only if this is set to true
2393  *
2394  * Return: 0 only if success.
2395  */
2396 static int
2397 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2398 		      bool completion)
2399 {
2400 	lockdep_assert_held(&hba->uic_cmd_mutex);
2401 
2402 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2403 		dev_err(hba->dev,
2404 			"Controller not ready to accept UIC commands\n");
2405 		return -EIO;
2406 	}
2407 
2408 	if (completion)
2409 		init_completion(&uic_cmd->done);
2410 
2411 	uic_cmd->cmd_active = 1;
2412 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2413 
2414 	return 0;
2415 }
2416 
2417 /**
2418  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2419  * @hba: per adapter instance
2420  * @uic_cmd: UIC command
2421  *
2422  * Return: 0 only if success.
2423  */
2424 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2425 {
2426 	int ret;
2427 
2428 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2429 		return 0;
2430 
2431 	ufshcd_hold(hba);
2432 	mutex_lock(&hba->uic_cmd_mutex);
2433 	ufshcd_add_delay_before_dme_cmd(hba);
2434 
2435 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2436 	if (!ret)
2437 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2438 
2439 	mutex_unlock(&hba->uic_cmd_mutex);
2440 
2441 	ufshcd_release(hba);
2442 	return ret;
2443 }
2444 
2445 /**
2446  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2447  * @hba:	per-adapter instance
2448  * @lrbp:	pointer to local reference block
2449  * @sg_entries:	The number of sg lists actually used
2450  * @sg_list:	Pointer to SG list
2451  */
2452 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2453 			       struct scatterlist *sg_list)
2454 {
2455 	struct ufshcd_sg_entry *prd;
2456 	struct scatterlist *sg;
2457 	int i;
2458 
2459 	if (sg_entries) {
2460 
2461 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2462 			lrbp->utr_descriptor_ptr->prd_table_length =
2463 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2464 		else
2465 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2466 
2467 		prd = lrbp->ucd_prdt_ptr;
2468 
2469 		for_each_sg(sg_list, sg, sg_entries, i) {
2470 			const unsigned int len = sg_dma_len(sg);
2471 
2472 			/*
2473 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2474 			 * based value that indicates the length, in bytes, of
2475 			 * the data block. A maximum of length of 256KB may
2476 			 * exist for any entry. Bits 1:0 of this field shall be
2477 			 * 11b to indicate Dword granularity. A value of '3'
2478 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2479 			 */
2480 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2481 			prd->size = cpu_to_le32(len - 1);
2482 			prd->addr = cpu_to_le64(sg->dma_address);
2483 			prd->reserved = 0;
2484 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2485 		}
2486 	} else {
2487 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2488 	}
2489 }
2490 
2491 /**
2492  * ufshcd_map_sg - Map scatter-gather list to prdt
2493  * @hba: per adapter instance
2494  * @lrbp: pointer to local reference block
2495  *
2496  * Return: 0 in case of success, non-zero value in case of failure.
2497  */
2498 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2499 {
2500 	struct scsi_cmnd *cmd = lrbp->cmd;
2501 	int sg_segments = scsi_dma_map(cmd);
2502 
2503 	if (sg_segments < 0)
2504 		return sg_segments;
2505 
2506 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2507 
2508 	return 0;
2509 }
2510 
2511 /**
2512  * ufshcd_enable_intr - enable interrupts
2513  * @hba: per adapter instance
2514  * @intrs: interrupt bits
2515  */
2516 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2517 {
2518 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2519 
2520 	if (hba->ufs_version == ufshci_version(1, 0)) {
2521 		u32 rw;
2522 		rw = set & INTERRUPT_MASK_RW_VER_10;
2523 		set = rw | ((set ^ intrs) & intrs);
2524 	} else {
2525 		set |= intrs;
2526 	}
2527 
2528 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2529 }
2530 
2531 /**
2532  * ufshcd_disable_intr - disable interrupts
2533  * @hba: per adapter instance
2534  * @intrs: interrupt bits
2535  */
2536 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2537 {
2538 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2539 
2540 	if (hba->ufs_version == ufshci_version(1, 0)) {
2541 		u32 rw;
2542 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2543 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2544 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2545 
2546 	} else {
2547 		set &= ~intrs;
2548 	}
2549 
2550 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2551 }
2552 
2553 /**
2554  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2555  * descriptor according to request
2556  * @lrbp: pointer to local reference block
2557  * @upiu_flags: flags required in the header
2558  * @cmd_dir: requests data direction
2559  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2560  */
2561 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2562 					enum dma_data_direction cmd_dir, int ehs_length)
2563 {
2564 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2565 	struct request_desc_header *h = &req_desc->header;
2566 	enum utp_data_direction data_direction;
2567 
2568 	*h = (typeof(*h)){ };
2569 
2570 	if (cmd_dir == DMA_FROM_DEVICE) {
2571 		data_direction = UTP_DEVICE_TO_HOST;
2572 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2573 	} else if (cmd_dir == DMA_TO_DEVICE) {
2574 		data_direction = UTP_HOST_TO_DEVICE;
2575 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2576 	} else {
2577 		data_direction = UTP_NO_DATA_TRANSFER;
2578 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2579 	}
2580 
2581 	h->command_type = lrbp->command_type;
2582 	h->data_direction = data_direction;
2583 	h->ehs_length = ehs_length;
2584 
2585 	if (lrbp->intr_cmd)
2586 		h->interrupt = 1;
2587 
2588 	/* Prepare crypto related dwords */
2589 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2590 
2591 	/*
2592 	 * assigning invalid value for command status. Controller
2593 	 * updates OCS on command completion, with the command
2594 	 * status
2595 	 */
2596 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2597 
2598 	req_desc->prd_table_length = 0;
2599 }
2600 
2601 /**
2602  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2603  * for scsi commands
2604  * @lrbp: local reference block pointer
2605  * @upiu_flags: flags
2606  */
2607 static
2608 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2609 {
2610 	struct scsi_cmnd *cmd = lrbp->cmd;
2611 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2612 	unsigned short cdb_len;
2613 
2614 	ucd_req_ptr->header = (struct utp_upiu_header){
2615 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2616 		.flags = upiu_flags,
2617 		.lun = lrbp->lun,
2618 		.task_tag = lrbp->task_tag,
2619 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2620 	};
2621 
2622 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2623 
2624 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2625 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2626 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2627 
2628 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2629 }
2630 
2631 /**
2632  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2633  * @hba: UFS hba
2634  * @lrbp: local reference block pointer
2635  * @upiu_flags: flags
2636  */
2637 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2638 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2639 {
2640 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2641 	struct ufs_query *query = &hba->dev_cmd.query;
2642 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2643 
2644 	/* Query request header */
2645 	ucd_req_ptr->header = (struct utp_upiu_header){
2646 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2647 		.flags = upiu_flags,
2648 		.lun = lrbp->lun,
2649 		.task_tag = lrbp->task_tag,
2650 		.query_function = query->request.query_func,
2651 		/* Data segment length only need for WRITE_DESC */
2652 		.data_segment_length =
2653 			query->request.upiu_req.opcode ==
2654 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2655 				cpu_to_be16(len) :
2656 				0,
2657 	};
2658 
2659 	/* Copy the Query Request buffer as is */
2660 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2661 			QUERY_OSF_SIZE);
2662 
2663 	/* Copy the Descriptor */
2664 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2665 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2666 
2667 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2668 }
2669 
2670 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2671 {
2672 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2673 
2674 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2675 
2676 	ucd_req_ptr->header = (struct utp_upiu_header){
2677 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2678 		.task_tag = lrbp->task_tag,
2679 	};
2680 
2681 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2682 }
2683 
2684 /**
2685  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2686  *			     for Device Management Purposes
2687  * @hba: per adapter instance
2688  * @lrbp: pointer to local reference block
2689  *
2690  * Return: 0 upon success; < 0 upon failure.
2691  */
2692 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2693 				      struct ufshcd_lrb *lrbp)
2694 {
2695 	u8 upiu_flags;
2696 	int ret = 0;
2697 
2698 	if (hba->ufs_version <= ufshci_version(1, 1))
2699 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2700 	else
2701 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2702 
2703 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2704 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2705 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2706 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2707 		ufshcd_prepare_utp_nop_upiu(lrbp);
2708 	else
2709 		ret = -EINVAL;
2710 
2711 	return ret;
2712 }
2713 
2714 /**
2715  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2716  *			   for SCSI Purposes
2717  * @hba: per adapter instance
2718  * @lrbp: pointer to local reference block
2719  *
2720  * Return: 0 upon success; < 0 upon failure.
2721  */
2722 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2723 {
2724 	u8 upiu_flags;
2725 	int ret = 0;
2726 
2727 	if (hba->ufs_version <= ufshci_version(1, 1))
2728 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2729 	else
2730 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2731 
2732 	if (likely(lrbp->cmd)) {
2733 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2734 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2735 	} else {
2736 		ret = -EINVAL;
2737 	}
2738 
2739 	return ret;
2740 }
2741 
2742 /**
2743  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2744  * @upiu_wlun_id: UPIU W-LUN id
2745  *
2746  * Return: SCSI W-LUN id.
2747  */
2748 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2749 {
2750 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2751 }
2752 
2753 static inline bool is_device_wlun(struct scsi_device *sdev)
2754 {
2755 	return sdev->lun ==
2756 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2757 }
2758 
2759 /*
2760  * Associate the UFS controller queue with the default and poll HCTX types.
2761  * Initialize the mq_map[] arrays.
2762  */
2763 static void ufshcd_map_queues(struct Scsi_Host *shost)
2764 {
2765 	struct ufs_hba *hba = shost_priv(shost);
2766 	int i, queue_offset = 0;
2767 
2768 	if (!is_mcq_supported(hba)) {
2769 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2770 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2771 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2772 		hba->nr_hw_queues = 1;
2773 	}
2774 
2775 	for (i = 0; i < shost->nr_maps; i++) {
2776 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2777 
2778 		map->nr_queues = hba->nr_queues[i];
2779 		if (!map->nr_queues)
2780 			continue;
2781 		map->queue_offset = queue_offset;
2782 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2783 			map->queue_offset = 0;
2784 
2785 		blk_mq_map_queues(map);
2786 		queue_offset += map->nr_queues;
2787 	}
2788 }
2789 
2790 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2791 {
2792 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2793 		i * ufshcd_get_ucd_size(hba);
2794 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2795 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2796 		i * ufshcd_get_ucd_size(hba);
2797 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2798 				       response_upiu);
2799 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2800 
2801 	lrb->utr_descriptor_ptr = utrdlp + i;
2802 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2803 		i * sizeof(struct utp_transfer_req_desc);
2804 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2805 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2806 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2807 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2808 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2809 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2810 }
2811 
2812 /**
2813  * ufshcd_queuecommand - main entry point for SCSI requests
2814  * @host: SCSI host pointer
2815  * @cmd: command from SCSI Midlayer
2816  *
2817  * Return: 0 for success, non-zero in case of failure.
2818  */
2819 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2820 {
2821 	struct ufs_hba *hba = shost_priv(host);
2822 	int tag = scsi_cmd_to_rq(cmd)->tag;
2823 	struct ufshcd_lrb *lrbp;
2824 	int err = 0;
2825 	struct ufs_hw_queue *hwq = NULL;
2826 
2827 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2828 
2829 	switch (hba->ufshcd_state) {
2830 	case UFSHCD_STATE_OPERATIONAL:
2831 		break;
2832 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2833 		/*
2834 		 * SCSI error handler can call ->queuecommand() while UFS error
2835 		 * handler is in progress. Error interrupts could change the
2836 		 * state from UFSHCD_STATE_RESET to
2837 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2838 		 * being issued in that case.
2839 		 */
2840 		if (ufshcd_eh_in_progress(hba)) {
2841 			err = SCSI_MLQUEUE_HOST_BUSY;
2842 			goto out;
2843 		}
2844 		break;
2845 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2846 		/*
2847 		 * pm_runtime_get_sync() is used at error handling preparation
2848 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2849 		 * PM ops, it can never be finished if we let SCSI layer keep
2850 		 * retrying it, which gets err handler stuck forever. Neither
2851 		 * can we let the scsi cmd pass through, because UFS is in bad
2852 		 * state, the scsi cmd may eventually time out, which will get
2853 		 * err handler blocked for too long. So, just fail the scsi cmd
2854 		 * sent from PM ops, err handler can recover PM error anyways.
2855 		 */
2856 		if (hba->pm_op_in_progress) {
2857 			hba->force_reset = true;
2858 			set_host_byte(cmd, DID_BAD_TARGET);
2859 			scsi_done(cmd);
2860 			goto out;
2861 		}
2862 		fallthrough;
2863 	case UFSHCD_STATE_RESET:
2864 		err = SCSI_MLQUEUE_HOST_BUSY;
2865 		goto out;
2866 	case UFSHCD_STATE_ERROR:
2867 		set_host_byte(cmd, DID_ERROR);
2868 		scsi_done(cmd);
2869 		goto out;
2870 	}
2871 
2872 	hba->req_abort_count = 0;
2873 
2874 	ufshcd_hold(hba);
2875 
2876 	lrbp = &hba->lrb[tag];
2877 	lrbp->cmd = cmd;
2878 	lrbp->task_tag = tag;
2879 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2880 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2881 
2882 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2883 
2884 	lrbp->req_abort_skip = false;
2885 
2886 	ufshcd_comp_scsi_upiu(hba, lrbp);
2887 
2888 	err = ufshcd_map_sg(hba, lrbp);
2889 	if (err) {
2890 		ufshcd_release(hba);
2891 		goto out;
2892 	}
2893 
2894 	if (is_mcq_enabled(hba))
2895 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2896 
2897 	ufshcd_send_command(hba, tag, hwq);
2898 
2899 out:
2900 	if (ufs_trigger_eh()) {
2901 		unsigned long flags;
2902 
2903 		spin_lock_irqsave(hba->host->host_lock, flags);
2904 		ufshcd_schedule_eh_work(hba);
2905 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2906 	}
2907 
2908 	return err;
2909 }
2910 
2911 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2912 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2913 {
2914 	lrbp->cmd = NULL;
2915 	lrbp->task_tag = tag;
2916 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2917 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2918 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2919 	hba->dev_cmd.type = cmd_type;
2920 
2921 	return ufshcd_compose_devman_upiu(hba, lrbp);
2922 }
2923 
2924 /*
2925  * Check with the block layer if the command is inflight
2926  * @cmd: command to check.
2927  *
2928  * Return: true if command is inflight; false if not.
2929  */
2930 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2931 {
2932 	struct request *rq;
2933 
2934 	if (!cmd)
2935 		return false;
2936 
2937 	rq = scsi_cmd_to_rq(cmd);
2938 	if (!blk_mq_request_started(rq))
2939 		return false;
2940 
2941 	return true;
2942 }
2943 
2944 /*
2945  * Clear the pending command in the controller and wait until
2946  * the controller confirms that the command has been cleared.
2947  * @hba: per adapter instance
2948  * @task_tag: The tag number of the command to be cleared.
2949  */
2950 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2951 {
2952 	u32 mask;
2953 	unsigned long flags;
2954 	int err;
2955 
2956 	if (is_mcq_enabled(hba)) {
2957 		/*
2958 		 * MCQ mode. Clean up the MCQ resources similar to
2959 		 * what the ufshcd_utrl_clear() does for SDB mode.
2960 		 */
2961 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2962 		if (err) {
2963 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2964 				__func__, task_tag, err);
2965 			return err;
2966 		}
2967 		return 0;
2968 	}
2969 
2970 	mask = 1U << task_tag;
2971 
2972 	/* clear outstanding transaction before retry */
2973 	spin_lock_irqsave(hba->host->host_lock, flags);
2974 	ufshcd_utrl_clear(hba, mask);
2975 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2976 
2977 	/*
2978 	 * wait for h/w to clear corresponding bit in door-bell.
2979 	 * max. wait is 1 sec.
2980 	 */
2981 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2982 					mask, ~mask, 1000, 1000);
2983 }
2984 
2985 /**
2986  * ufshcd_dev_cmd_completion() - handles device management command responses
2987  * @hba: per adapter instance
2988  * @lrbp: pointer to local reference block
2989  *
2990  * Return: 0 upon success; < 0 upon failure.
2991  */
2992 static int
2993 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2994 {
2995 	enum upiu_response_transaction resp;
2996 	int err = 0;
2997 
2998 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2999 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3000 
3001 	switch (resp) {
3002 	case UPIU_TRANSACTION_NOP_IN:
3003 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3004 			err = -EINVAL;
3005 			dev_err(hba->dev, "%s: unexpected response %x\n",
3006 					__func__, resp);
3007 		}
3008 		break;
3009 	case UPIU_TRANSACTION_QUERY_RSP: {
3010 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3011 
3012 		if (response == 0)
3013 			err = ufshcd_copy_query_response(hba, lrbp);
3014 		break;
3015 	}
3016 	case UPIU_TRANSACTION_REJECT_UPIU:
3017 		/* TODO: handle Reject UPIU Response */
3018 		err = -EPERM;
3019 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3020 				__func__);
3021 		break;
3022 	case UPIU_TRANSACTION_RESPONSE:
3023 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3024 			err = -EINVAL;
3025 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3026 		}
3027 		break;
3028 	default:
3029 		err = -EINVAL;
3030 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3031 				__func__, resp);
3032 		break;
3033 	}
3034 
3035 	return err;
3036 }
3037 
3038 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3039 		struct ufshcd_lrb *lrbp, int max_timeout)
3040 {
3041 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3042 	unsigned long flags;
3043 	bool pending;
3044 	int err;
3045 
3046 retry:
3047 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3048 						time_left);
3049 
3050 	if (likely(time_left)) {
3051 		/*
3052 		 * The completion handler called complete() and the caller of
3053 		 * this function still owns the @lrbp tag so the code below does
3054 		 * not trigger any race conditions.
3055 		 */
3056 		hba->dev_cmd.complete = NULL;
3057 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3058 		if (!err)
3059 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3060 	} else {
3061 		err = -ETIMEDOUT;
3062 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3063 			__func__, lrbp->task_tag);
3064 
3065 		/* MCQ mode */
3066 		if (is_mcq_enabled(hba)) {
3067 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3068 			hba->dev_cmd.complete = NULL;
3069 			return err;
3070 		}
3071 
3072 		/* SDB mode */
3073 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3074 			/* successfully cleared the command, retry if needed */
3075 			err = -EAGAIN;
3076 			/*
3077 			 * Since clearing the command succeeded we also need to
3078 			 * clear the task tag bit from the outstanding_reqs
3079 			 * variable.
3080 			 */
3081 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3082 			pending = test_bit(lrbp->task_tag,
3083 					   &hba->outstanding_reqs);
3084 			if (pending) {
3085 				hba->dev_cmd.complete = NULL;
3086 				__clear_bit(lrbp->task_tag,
3087 					    &hba->outstanding_reqs);
3088 			}
3089 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3090 
3091 			if (!pending) {
3092 				/*
3093 				 * The completion handler ran while we tried to
3094 				 * clear the command.
3095 				 */
3096 				time_left = 1;
3097 				goto retry;
3098 			}
3099 		} else {
3100 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3101 				__func__, lrbp->task_tag);
3102 
3103 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3104 			pending = test_bit(lrbp->task_tag,
3105 					   &hba->outstanding_reqs);
3106 			if (pending)
3107 				hba->dev_cmd.complete = NULL;
3108 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3109 
3110 			if (!pending) {
3111 				/*
3112 				 * The completion handler ran while we tried to
3113 				 * clear the command.
3114 				 */
3115 				time_left = 1;
3116 				goto retry;
3117 			}
3118 		}
3119 	}
3120 
3121 	return err;
3122 }
3123 
3124 /**
3125  * ufshcd_exec_dev_cmd - API for sending device management requests
3126  * @hba: UFS hba
3127  * @cmd_type: specifies the type (NOP, Query...)
3128  * @timeout: timeout in milliseconds
3129  *
3130  * Return: 0 upon success; < 0 upon failure.
3131  *
3132  * NOTE: Since there is only one available tag for device management commands,
3133  * it is expected you hold the hba->dev_cmd.lock mutex.
3134  */
3135 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3136 		enum dev_cmd_type cmd_type, int timeout)
3137 {
3138 	DECLARE_COMPLETION_ONSTACK(wait);
3139 	const u32 tag = hba->reserved_slot;
3140 	struct ufshcd_lrb *lrbp;
3141 	int err;
3142 
3143 	/* Protects use of hba->reserved_slot. */
3144 	lockdep_assert_held(&hba->dev_cmd.lock);
3145 
3146 	down_read(&hba->clk_scaling_lock);
3147 
3148 	lrbp = &hba->lrb[tag];
3149 	lrbp->cmd = NULL;
3150 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3151 	if (unlikely(err))
3152 		goto out;
3153 
3154 	hba->dev_cmd.complete = &wait;
3155 
3156 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3157 
3158 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3159 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3160 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3161 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3162 
3163 out:
3164 	up_read(&hba->clk_scaling_lock);
3165 	return err;
3166 }
3167 
3168 /**
3169  * ufshcd_init_query() - init the query response and request parameters
3170  * @hba: per-adapter instance
3171  * @request: address of the request pointer to be initialized
3172  * @response: address of the response pointer to be initialized
3173  * @opcode: operation to perform
3174  * @idn: flag idn to access
3175  * @index: LU number to access
3176  * @selector: query/flag/descriptor further identification
3177  */
3178 static inline void ufshcd_init_query(struct ufs_hba *hba,
3179 		struct ufs_query_req **request, struct ufs_query_res **response,
3180 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3181 {
3182 	*request = &hba->dev_cmd.query.request;
3183 	*response = &hba->dev_cmd.query.response;
3184 	memset(*request, 0, sizeof(struct ufs_query_req));
3185 	memset(*response, 0, sizeof(struct ufs_query_res));
3186 	(*request)->upiu_req.opcode = opcode;
3187 	(*request)->upiu_req.idn = idn;
3188 	(*request)->upiu_req.index = index;
3189 	(*request)->upiu_req.selector = selector;
3190 }
3191 
3192 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3193 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3194 {
3195 	int ret;
3196 	int retries;
3197 
3198 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3199 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3200 		if (ret)
3201 			dev_dbg(hba->dev,
3202 				"%s: failed with error %d, retries %d\n",
3203 				__func__, ret, retries);
3204 		else
3205 			break;
3206 	}
3207 
3208 	if (ret)
3209 		dev_err(hba->dev,
3210 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3211 			__func__, opcode, idn, ret, retries);
3212 	return ret;
3213 }
3214 
3215 /**
3216  * ufshcd_query_flag() - API function for sending flag query requests
3217  * @hba: per-adapter instance
3218  * @opcode: flag query to perform
3219  * @idn: flag idn to access
3220  * @index: flag index to access
3221  * @flag_res: the flag value after the query request completes
3222  *
3223  * Return: 0 for success, non-zero in case of failure.
3224  */
3225 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3226 			enum flag_idn idn, u8 index, bool *flag_res)
3227 {
3228 	struct ufs_query_req *request = NULL;
3229 	struct ufs_query_res *response = NULL;
3230 	int err, selector = 0;
3231 	int timeout = QUERY_REQ_TIMEOUT;
3232 
3233 	BUG_ON(!hba);
3234 
3235 	ufshcd_hold(hba);
3236 	mutex_lock(&hba->dev_cmd.lock);
3237 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3238 			selector);
3239 
3240 	switch (opcode) {
3241 	case UPIU_QUERY_OPCODE_SET_FLAG:
3242 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3243 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3244 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3245 		break;
3246 	case UPIU_QUERY_OPCODE_READ_FLAG:
3247 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3248 		if (!flag_res) {
3249 			/* No dummy reads */
3250 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3251 					__func__);
3252 			err = -EINVAL;
3253 			goto out_unlock;
3254 		}
3255 		break;
3256 	default:
3257 		dev_err(hba->dev,
3258 			"%s: Expected query flag opcode but got = %d\n",
3259 			__func__, opcode);
3260 		err = -EINVAL;
3261 		goto out_unlock;
3262 	}
3263 
3264 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3265 
3266 	if (err) {
3267 		dev_err(hba->dev,
3268 			"%s: Sending flag query for idn %d failed, err = %d\n",
3269 			__func__, idn, err);
3270 		goto out_unlock;
3271 	}
3272 
3273 	if (flag_res)
3274 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3275 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3276 
3277 out_unlock:
3278 	mutex_unlock(&hba->dev_cmd.lock);
3279 	ufshcd_release(hba);
3280 	return err;
3281 }
3282 
3283 /**
3284  * ufshcd_query_attr - API function for sending attribute requests
3285  * @hba: per-adapter instance
3286  * @opcode: attribute opcode
3287  * @idn: attribute idn to access
3288  * @index: index field
3289  * @selector: selector field
3290  * @attr_val: the attribute value after the query request completes
3291  *
3292  * Return: 0 for success, non-zero in case of failure.
3293 */
3294 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3295 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3296 {
3297 	struct ufs_query_req *request = NULL;
3298 	struct ufs_query_res *response = NULL;
3299 	int err;
3300 
3301 	BUG_ON(!hba);
3302 
3303 	if (!attr_val) {
3304 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3305 				__func__, opcode);
3306 		return -EINVAL;
3307 	}
3308 
3309 	ufshcd_hold(hba);
3310 
3311 	mutex_lock(&hba->dev_cmd.lock);
3312 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3313 			selector);
3314 
3315 	switch (opcode) {
3316 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3317 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3318 		request->upiu_req.value = cpu_to_be32(*attr_val);
3319 		break;
3320 	case UPIU_QUERY_OPCODE_READ_ATTR:
3321 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3322 		break;
3323 	default:
3324 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3325 				__func__, opcode);
3326 		err = -EINVAL;
3327 		goto out_unlock;
3328 	}
3329 
3330 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3331 
3332 	if (err) {
3333 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3334 				__func__, opcode, idn, index, err);
3335 		goto out_unlock;
3336 	}
3337 
3338 	*attr_val = be32_to_cpu(response->upiu_res.value);
3339 
3340 out_unlock:
3341 	mutex_unlock(&hba->dev_cmd.lock);
3342 	ufshcd_release(hba);
3343 	return err;
3344 }
3345 
3346 /**
3347  * ufshcd_query_attr_retry() - API function for sending query
3348  * attribute with retries
3349  * @hba: per-adapter instance
3350  * @opcode: attribute opcode
3351  * @idn: attribute idn to access
3352  * @index: index field
3353  * @selector: selector field
3354  * @attr_val: the attribute value after the query request
3355  * completes
3356  *
3357  * Return: 0 for success, non-zero in case of failure.
3358 */
3359 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3360 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3361 	u32 *attr_val)
3362 {
3363 	int ret = 0;
3364 	u32 retries;
3365 
3366 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3367 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3368 						selector, attr_val);
3369 		if (ret)
3370 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3371 				__func__, ret, retries);
3372 		else
3373 			break;
3374 	}
3375 
3376 	if (ret)
3377 		dev_err(hba->dev,
3378 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3379 			__func__, idn, ret, QUERY_REQ_RETRIES);
3380 	return ret;
3381 }
3382 
3383 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3384 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3385 			u8 selector, u8 *desc_buf, int *buf_len)
3386 {
3387 	struct ufs_query_req *request = NULL;
3388 	struct ufs_query_res *response = NULL;
3389 	int err;
3390 
3391 	BUG_ON(!hba);
3392 
3393 	if (!desc_buf) {
3394 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3395 				__func__, opcode);
3396 		return -EINVAL;
3397 	}
3398 
3399 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3400 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3401 				__func__, *buf_len);
3402 		return -EINVAL;
3403 	}
3404 
3405 	ufshcd_hold(hba);
3406 
3407 	mutex_lock(&hba->dev_cmd.lock);
3408 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3409 			selector);
3410 	hba->dev_cmd.query.descriptor = desc_buf;
3411 	request->upiu_req.length = cpu_to_be16(*buf_len);
3412 
3413 	switch (opcode) {
3414 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3415 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3416 		break;
3417 	case UPIU_QUERY_OPCODE_READ_DESC:
3418 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3419 		break;
3420 	default:
3421 		dev_err(hba->dev,
3422 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3423 				__func__, opcode);
3424 		err = -EINVAL;
3425 		goto out_unlock;
3426 	}
3427 
3428 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3429 
3430 	if (err) {
3431 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3432 				__func__, opcode, idn, index, err);
3433 		goto out_unlock;
3434 	}
3435 
3436 	*buf_len = be16_to_cpu(response->upiu_res.length);
3437 
3438 out_unlock:
3439 	hba->dev_cmd.query.descriptor = NULL;
3440 	mutex_unlock(&hba->dev_cmd.lock);
3441 	ufshcd_release(hba);
3442 	return err;
3443 }
3444 
3445 /**
3446  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3447  * @hba: per-adapter instance
3448  * @opcode: attribute opcode
3449  * @idn: attribute idn to access
3450  * @index: index field
3451  * @selector: selector field
3452  * @desc_buf: the buffer that contains the descriptor
3453  * @buf_len: length parameter passed to the device
3454  *
3455  * The buf_len parameter will contain, on return, the length parameter
3456  * received on the response.
3457  *
3458  * Return: 0 for success, non-zero in case of failure.
3459  */
3460 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3461 				  enum query_opcode opcode,
3462 				  enum desc_idn idn, u8 index,
3463 				  u8 selector,
3464 				  u8 *desc_buf, int *buf_len)
3465 {
3466 	int err;
3467 	int retries;
3468 
3469 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3470 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3471 						selector, desc_buf, buf_len);
3472 		if (!err || err == -EINVAL)
3473 			break;
3474 	}
3475 
3476 	return err;
3477 }
3478 
3479 /**
3480  * ufshcd_read_desc_param - read the specified descriptor parameter
3481  * @hba: Pointer to adapter instance
3482  * @desc_id: descriptor idn value
3483  * @desc_index: descriptor index
3484  * @param_offset: offset of the parameter to read
3485  * @param_read_buf: pointer to buffer where parameter would be read
3486  * @param_size: sizeof(param_read_buf)
3487  *
3488  * Return: 0 in case of success, non-zero otherwise.
3489  */
3490 int ufshcd_read_desc_param(struct ufs_hba *hba,
3491 			   enum desc_idn desc_id,
3492 			   int desc_index,
3493 			   u8 param_offset,
3494 			   u8 *param_read_buf,
3495 			   u8 param_size)
3496 {
3497 	int ret;
3498 	u8 *desc_buf;
3499 	int buff_len = QUERY_DESC_MAX_SIZE;
3500 	bool is_kmalloc = true;
3501 
3502 	/* Safety check */
3503 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3504 		return -EINVAL;
3505 
3506 	/* Check whether we need temp memory */
3507 	if (param_offset != 0 || param_size < buff_len) {
3508 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3509 		if (!desc_buf)
3510 			return -ENOMEM;
3511 	} else {
3512 		desc_buf = param_read_buf;
3513 		is_kmalloc = false;
3514 	}
3515 
3516 	/* Request for full descriptor */
3517 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3518 					    desc_id, desc_index, 0,
3519 					    desc_buf, &buff_len);
3520 	if (ret) {
3521 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3522 			__func__, desc_id, desc_index, param_offset, ret);
3523 		goto out;
3524 	}
3525 
3526 	/* Update descriptor length */
3527 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3528 
3529 	if (param_offset >= buff_len) {
3530 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3531 			__func__, param_offset, desc_id, buff_len);
3532 		ret = -EINVAL;
3533 		goto out;
3534 	}
3535 
3536 	/* Sanity check */
3537 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3538 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3539 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3540 		ret = -EINVAL;
3541 		goto out;
3542 	}
3543 
3544 	if (is_kmalloc) {
3545 		/* Make sure we don't copy more data than available */
3546 		if (param_offset >= buff_len)
3547 			ret = -EINVAL;
3548 		else
3549 			memcpy(param_read_buf, &desc_buf[param_offset],
3550 			       min_t(u32, param_size, buff_len - param_offset));
3551 	}
3552 out:
3553 	if (is_kmalloc)
3554 		kfree(desc_buf);
3555 	return ret;
3556 }
3557 
3558 /**
3559  * struct uc_string_id - unicode string
3560  *
3561  * @len: size of this descriptor inclusive
3562  * @type: descriptor type
3563  * @uc: unicode string character
3564  */
3565 struct uc_string_id {
3566 	u8 len;
3567 	u8 type;
3568 	wchar_t uc[];
3569 } __packed;
3570 
3571 /* replace non-printable or non-ASCII characters with spaces */
3572 static inline char ufshcd_remove_non_printable(u8 ch)
3573 {
3574 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3575 }
3576 
3577 /**
3578  * ufshcd_read_string_desc - read string descriptor
3579  * @hba: pointer to adapter instance
3580  * @desc_index: descriptor index
3581  * @buf: pointer to buffer where descriptor would be read,
3582  *       the caller should free the memory.
3583  * @ascii: if true convert from unicode to ascii characters
3584  *         null terminated string.
3585  *
3586  * Return:
3587  * *      string size on success.
3588  * *      -ENOMEM: on allocation failure
3589  * *      -EINVAL: on a wrong parameter
3590  */
3591 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3592 			    u8 **buf, bool ascii)
3593 {
3594 	struct uc_string_id *uc_str;
3595 	u8 *str;
3596 	int ret;
3597 
3598 	if (!buf)
3599 		return -EINVAL;
3600 
3601 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3602 	if (!uc_str)
3603 		return -ENOMEM;
3604 
3605 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3606 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3607 	if (ret < 0) {
3608 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3609 			QUERY_REQ_RETRIES, ret);
3610 		str = NULL;
3611 		goto out;
3612 	}
3613 
3614 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3615 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3616 		str = NULL;
3617 		ret = 0;
3618 		goto out;
3619 	}
3620 
3621 	if (ascii) {
3622 		ssize_t ascii_len;
3623 		int i;
3624 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3625 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3626 		str = kzalloc(ascii_len, GFP_KERNEL);
3627 		if (!str) {
3628 			ret = -ENOMEM;
3629 			goto out;
3630 		}
3631 
3632 		/*
3633 		 * the descriptor contains string in UTF16 format
3634 		 * we need to convert to utf-8 so it can be displayed
3635 		 */
3636 		ret = utf16s_to_utf8s(uc_str->uc,
3637 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3638 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3639 
3640 		/* replace non-printable or non-ASCII characters with spaces */
3641 		for (i = 0; i < ret; i++)
3642 			str[i] = ufshcd_remove_non_printable(str[i]);
3643 
3644 		str[ret++] = '\0';
3645 
3646 	} else {
3647 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3648 		if (!str) {
3649 			ret = -ENOMEM;
3650 			goto out;
3651 		}
3652 		ret = uc_str->len;
3653 	}
3654 out:
3655 	*buf = str;
3656 	kfree(uc_str);
3657 	return ret;
3658 }
3659 
3660 /**
3661  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3662  * @hba: Pointer to adapter instance
3663  * @lun: lun id
3664  * @param_offset: offset of the parameter to read
3665  * @param_read_buf: pointer to buffer where parameter would be read
3666  * @param_size: sizeof(param_read_buf)
3667  *
3668  * Return: 0 in case of success, non-zero otherwise.
3669  */
3670 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3671 					      int lun,
3672 					      enum unit_desc_param param_offset,
3673 					      u8 *param_read_buf,
3674 					      u32 param_size)
3675 {
3676 	/*
3677 	 * Unit descriptors are only available for general purpose LUs (LUN id
3678 	 * from 0 to 7) and RPMB Well known LU.
3679 	 */
3680 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3681 		return -EOPNOTSUPP;
3682 
3683 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3684 				      param_offset, param_read_buf, param_size);
3685 }
3686 
3687 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3688 {
3689 	int err = 0;
3690 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3691 
3692 	if (hba->dev_info.wspecversion >= 0x300) {
3693 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3694 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3695 				&gating_wait);
3696 		if (err)
3697 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3698 					 err, gating_wait);
3699 
3700 		if (gating_wait == 0) {
3701 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3702 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3703 					 gating_wait);
3704 		}
3705 
3706 		hba->dev_info.clk_gating_wait_us = gating_wait;
3707 	}
3708 
3709 	return err;
3710 }
3711 
3712 /**
3713  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3714  * @hba: per adapter instance
3715  *
3716  * 1. Allocate DMA memory for Command Descriptor array
3717  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3718  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3719  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3720  *	(UTMRDL)
3721  * 4. Allocate memory for local reference block(lrb).
3722  *
3723  * Return: 0 for success, non-zero in case of failure.
3724  */
3725 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3726 {
3727 	size_t utmrdl_size, utrdl_size, ucdl_size;
3728 
3729 	/* Allocate memory for UTP command descriptors */
3730 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3731 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3732 						  ucdl_size,
3733 						  &hba->ucdl_dma_addr,
3734 						  GFP_KERNEL);
3735 
3736 	/*
3737 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3738 	 */
3739 	if (!hba->ucdl_base_addr ||
3740 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3741 		dev_err(hba->dev,
3742 			"Command Descriptor Memory allocation failed\n");
3743 		goto out;
3744 	}
3745 
3746 	/*
3747 	 * Allocate memory for UTP Transfer descriptors
3748 	 * UFSHCI requires 1KB alignment of UTRD
3749 	 */
3750 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3751 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3752 						   utrdl_size,
3753 						   &hba->utrdl_dma_addr,
3754 						   GFP_KERNEL);
3755 	if (!hba->utrdl_base_addr ||
3756 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3757 		dev_err(hba->dev,
3758 			"Transfer Descriptor Memory allocation failed\n");
3759 		goto out;
3760 	}
3761 
3762 	/*
3763 	 * Skip utmrdl allocation; it may have been
3764 	 * allocated during first pass and not released during
3765 	 * MCQ memory allocation.
3766 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3767 	 */
3768 	if (hba->utmrdl_base_addr)
3769 		goto skip_utmrdl;
3770 	/*
3771 	 * Allocate memory for UTP Task Management descriptors
3772 	 * UFSHCI requires 1KB alignment of UTMRD
3773 	 */
3774 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3775 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3776 						    utmrdl_size,
3777 						    &hba->utmrdl_dma_addr,
3778 						    GFP_KERNEL);
3779 	if (!hba->utmrdl_base_addr ||
3780 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3781 		dev_err(hba->dev,
3782 		"Task Management Descriptor Memory allocation failed\n");
3783 		goto out;
3784 	}
3785 
3786 skip_utmrdl:
3787 	/* Allocate memory for local reference block */
3788 	hba->lrb = devm_kcalloc(hba->dev,
3789 				hba->nutrs, sizeof(struct ufshcd_lrb),
3790 				GFP_KERNEL);
3791 	if (!hba->lrb) {
3792 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3793 		goto out;
3794 	}
3795 	return 0;
3796 out:
3797 	return -ENOMEM;
3798 }
3799 
3800 /**
3801  * ufshcd_host_memory_configure - configure local reference block with
3802  *				memory offsets
3803  * @hba: per adapter instance
3804  *
3805  * Configure Host memory space
3806  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3807  * address.
3808  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3809  * and PRDT offset.
3810  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3811  * into local reference block.
3812  */
3813 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3814 {
3815 	struct utp_transfer_req_desc *utrdlp;
3816 	dma_addr_t cmd_desc_dma_addr;
3817 	dma_addr_t cmd_desc_element_addr;
3818 	u16 response_offset;
3819 	u16 prdt_offset;
3820 	int cmd_desc_size;
3821 	int i;
3822 
3823 	utrdlp = hba->utrdl_base_addr;
3824 
3825 	response_offset =
3826 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3827 	prdt_offset =
3828 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3829 
3830 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3831 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3832 
3833 	for (i = 0; i < hba->nutrs; i++) {
3834 		/* Configure UTRD with command descriptor base address */
3835 		cmd_desc_element_addr =
3836 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3837 		utrdlp[i].command_desc_base_addr =
3838 				cpu_to_le64(cmd_desc_element_addr);
3839 
3840 		/* Response upiu and prdt offset should be in double words */
3841 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3842 			utrdlp[i].response_upiu_offset =
3843 				cpu_to_le16(response_offset);
3844 			utrdlp[i].prd_table_offset =
3845 				cpu_to_le16(prdt_offset);
3846 			utrdlp[i].response_upiu_length =
3847 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3848 		} else {
3849 			utrdlp[i].response_upiu_offset =
3850 				cpu_to_le16(response_offset >> 2);
3851 			utrdlp[i].prd_table_offset =
3852 				cpu_to_le16(prdt_offset >> 2);
3853 			utrdlp[i].response_upiu_length =
3854 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3855 		}
3856 
3857 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3858 	}
3859 }
3860 
3861 /**
3862  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3863  * @hba: per adapter instance
3864  *
3865  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3866  * in order to initialize the Unipro link startup procedure.
3867  * Once the Unipro links are up, the device connected to the controller
3868  * is detected.
3869  *
3870  * Return: 0 on success, non-zero value on failure.
3871  */
3872 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3873 {
3874 	struct uic_command uic_cmd = {0};
3875 	int ret;
3876 
3877 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3878 
3879 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3880 	if (ret)
3881 		dev_dbg(hba->dev,
3882 			"dme-link-startup: error code %d\n", ret);
3883 	return ret;
3884 }
3885 /**
3886  * ufshcd_dme_reset - UIC command for DME_RESET
3887  * @hba: per adapter instance
3888  *
3889  * DME_RESET command is issued in order to reset UniPro stack.
3890  * This function now deals with cold reset.
3891  *
3892  * Return: 0 on success, non-zero value on failure.
3893  */
3894 static int ufshcd_dme_reset(struct ufs_hba *hba)
3895 {
3896 	struct uic_command uic_cmd = {0};
3897 	int ret;
3898 
3899 	uic_cmd.command = UIC_CMD_DME_RESET;
3900 
3901 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3902 	if (ret)
3903 		dev_err(hba->dev,
3904 			"dme-reset: error code %d\n", ret);
3905 
3906 	return ret;
3907 }
3908 
3909 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3910 			       int agreed_gear,
3911 			       int adapt_val)
3912 {
3913 	int ret;
3914 
3915 	if (agreed_gear < UFS_HS_G4)
3916 		adapt_val = PA_NO_ADAPT;
3917 
3918 	ret = ufshcd_dme_set(hba,
3919 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3920 			     adapt_val);
3921 	return ret;
3922 }
3923 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3924 
3925 /**
3926  * ufshcd_dme_enable - UIC command for DME_ENABLE
3927  * @hba: per adapter instance
3928  *
3929  * DME_ENABLE command is issued in order to enable UniPro stack.
3930  *
3931  * Return: 0 on success, non-zero value on failure.
3932  */
3933 static int ufshcd_dme_enable(struct ufs_hba *hba)
3934 {
3935 	struct uic_command uic_cmd = {0};
3936 	int ret;
3937 
3938 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3939 
3940 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3941 	if (ret)
3942 		dev_err(hba->dev,
3943 			"dme-enable: error code %d\n", ret);
3944 
3945 	return ret;
3946 }
3947 
3948 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3949 {
3950 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3951 	unsigned long min_sleep_time_us;
3952 
3953 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3954 		return;
3955 
3956 	/*
3957 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3958 	 * this function
3959 	 */
3960 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3961 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3962 	} else {
3963 		unsigned long delta =
3964 			(unsigned long) ktime_to_us(
3965 				ktime_sub(ktime_get(),
3966 				hba->last_dme_cmd_tstamp));
3967 
3968 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3969 			min_sleep_time_us =
3970 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3971 		else
3972 			return; /* no more delay required */
3973 	}
3974 
3975 	/* allow sleep for extra 50us if needed */
3976 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3977 }
3978 
3979 /**
3980  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3981  * @hba: per adapter instance
3982  * @attr_sel: uic command argument1
3983  * @attr_set: attribute set type as uic command argument2
3984  * @mib_val: setting value as uic command argument3
3985  * @peer: indicate whether peer or local
3986  *
3987  * Return: 0 on success, non-zero value on failure.
3988  */
3989 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3990 			u8 attr_set, u32 mib_val, u8 peer)
3991 {
3992 	struct uic_command uic_cmd = {0};
3993 	static const char *const action[] = {
3994 		"dme-set",
3995 		"dme-peer-set"
3996 	};
3997 	const char *set = action[!!peer];
3998 	int ret;
3999 	int retries = UFS_UIC_COMMAND_RETRIES;
4000 
4001 	uic_cmd.command = peer ?
4002 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4003 	uic_cmd.argument1 = attr_sel;
4004 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4005 	uic_cmd.argument3 = mib_val;
4006 
4007 	do {
4008 		/* for peer attributes we retry upon failure */
4009 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4010 		if (ret)
4011 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4012 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4013 	} while (ret && peer && --retries);
4014 
4015 	if (ret)
4016 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4017 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4018 			UFS_UIC_COMMAND_RETRIES - retries);
4019 
4020 	return ret;
4021 }
4022 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4023 
4024 /**
4025  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4026  * @hba: per adapter instance
4027  * @attr_sel: uic command argument1
4028  * @mib_val: the value of the attribute as returned by the UIC command
4029  * @peer: indicate whether peer or local
4030  *
4031  * Return: 0 on success, non-zero value on failure.
4032  */
4033 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4034 			u32 *mib_val, u8 peer)
4035 {
4036 	struct uic_command uic_cmd = {0};
4037 	static const char *const action[] = {
4038 		"dme-get",
4039 		"dme-peer-get"
4040 	};
4041 	const char *get = action[!!peer];
4042 	int ret;
4043 	int retries = UFS_UIC_COMMAND_RETRIES;
4044 	struct ufs_pa_layer_attr orig_pwr_info;
4045 	struct ufs_pa_layer_attr temp_pwr_info;
4046 	bool pwr_mode_change = false;
4047 
4048 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4049 		orig_pwr_info = hba->pwr_info;
4050 		temp_pwr_info = orig_pwr_info;
4051 
4052 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4053 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4054 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4055 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4056 			pwr_mode_change = true;
4057 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4058 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4059 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4060 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4061 			pwr_mode_change = true;
4062 		}
4063 		if (pwr_mode_change) {
4064 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4065 			if (ret)
4066 				goto out;
4067 		}
4068 	}
4069 
4070 	uic_cmd.command = peer ?
4071 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4072 	uic_cmd.argument1 = attr_sel;
4073 
4074 	do {
4075 		/* for peer attributes we retry upon failure */
4076 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4077 		if (ret)
4078 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4079 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4080 	} while (ret && peer && --retries);
4081 
4082 	if (ret)
4083 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4084 			get, UIC_GET_ATTR_ID(attr_sel),
4085 			UFS_UIC_COMMAND_RETRIES - retries);
4086 
4087 	if (mib_val && !ret)
4088 		*mib_val = uic_cmd.argument3;
4089 
4090 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4091 	    && pwr_mode_change)
4092 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4093 out:
4094 	return ret;
4095 }
4096 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4097 
4098 /**
4099  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4100  * state) and waits for it to take effect.
4101  *
4102  * @hba: per adapter instance
4103  * @cmd: UIC command to execute
4104  *
4105  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4106  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4107  * and device UniPro link and hence it's final completion would be indicated by
4108  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4109  * addition to normal UIC command completion Status (UCCS). This function only
4110  * returns after the relevant status bits indicate the completion.
4111  *
4112  * Return: 0 on success, non-zero value on failure.
4113  */
4114 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4115 {
4116 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4117 	unsigned long flags;
4118 	u8 status;
4119 	int ret;
4120 	bool reenable_intr = false;
4121 
4122 	mutex_lock(&hba->uic_cmd_mutex);
4123 	ufshcd_add_delay_before_dme_cmd(hba);
4124 
4125 	spin_lock_irqsave(hba->host->host_lock, flags);
4126 	if (ufshcd_is_link_broken(hba)) {
4127 		ret = -ENOLINK;
4128 		goto out_unlock;
4129 	}
4130 	hba->uic_async_done = &uic_async_done;
4131 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4132 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4133 		/*
4134 		 * Make sure UIC command completion interrupt is disabled before
4135 		 * issuing UIC command.
4136 		 */
4137 		wmb();
4138 		reenable_intr = true;
4139 	}
4140 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4141 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4142 	if (ret) {
4143 		dev_err(hba->dev,
4144 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4145 			cmd->command, cmd->argument3, ret);
4146 		goto out;
4147 	}
4148 
4149 	if (!wait_for_completion_timeout(hba->uic_async_done,
4150 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4151 		dev_err(hba->dev,
4152 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4153 			cmd->command, cmd->argument3);
4154 
4155 		if (!cmd->cmd_active) {
4156 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4157 				__func__);
4158 			goto check_upmcrs;
4159 		}
4160 
4161 		ret = -ETIMEDOUT;
4162 		goto out;
4163 	}
4164 
4165 check_upmcrs:
4166 	status = ufshcd_get_upmcrs(hba);
4167 	if (status != PWR_LOCAL) {
4168 		dev_err(hba->dev,
4169 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4170 			cmd->command, status);
4171 		ret = (status != PWR_OK) ? status : -1;
4172 	}
4173 out:
4174 	if (ret) {
4175 		ufshcd_print_host_state(hba);
4176 		ufshcd_print_pwr_info(hba);
4177 		ufshcd_print_evt_hist(hba);
4178 	}
4179 
4180 	spin_lock_irqsave(hba->host->host_lock, flags);
4181 	hba->active_uic_cmd = NULL;
4182 	hba->uic_async_done = NULL;
4183 	if (reenable_intr)
4184 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4185 	if (ret) {
4186 		ufshcd_set_link_broken(hba);
4187 		ufshcd_schedule_eh_work(hba);
4188 	}
4189 out_unlock:
4190 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4191 	mutex_unlock(&hba->uic_cmd_mutex);
4192 
4193 	return ret;
4194 }
4195 
4196 /**
4197  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4198  *				using DME_SET primitives.
4199  * @hba: per adapter instance
4200  * @mode: powr mode value
4201  *
4202  * Return: 0 on success, non-zero value on failure.
4203  */
4204 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4205 {
4206 	struct uic_command uic_cmd = {0};
4207 	int ret;
4208 
4209 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4210 		ret = ufshcd_dme_set(hba,
4211 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4212 		if (ret) {
4213 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4214 						__func__, ret);
4215 			goto out;
4216 		}
4217 	}
4218 
4219 	uic_cmd.command = UIC_CMD_DME_SET;
4220 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4221 	uic_cmd.argument3 = mode;
4222 	ufshcd_hold(hba);
4223 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4224 	ufshcd_release(hba);
4225 
4226 out:
4227 	return ret;
4228 }
4229 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4230 
4231 int ufshcd_link_recovery(struct ufs_hba *hba)
4232 {
4233 	int ret;
4234 	unsigned long flags;
4235 
4236 	spin_lock_irqsave(hba->host->host_lock, flags);
4237 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4238 	ufshcd_set_eh_in_progress(hba);
4239 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4240 
4241 	/* Reset the attached device */
4242 	ufshcd_device_reset(hba);
4243 
4244 	ret = ufshcd_host_reset_and_restore(hba);
4245 
4246 	spin_lock_irqsave(hba->host->host_lock, flags);
4247 	if (ret)
4248 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4249 	ufshcd_clear_eh_in_progress(hba);
4250 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4251 
4252 	if (ret)
4253 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4254 			__func__, ret);
4255 
4256 	return ret;
4257 }
4258 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4259 
4260 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4261 {
4262 	int ret;
4263 	struct uic_command uic_cmd = {0};
4264 	ktime_t start = ktime_get();
4265 
4266 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4267 
4268 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4269 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4270 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4271 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4272 
4273 	if (ret)
4274 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4275 			__func__, ret);
4276 	else
4277 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4278 								POST_CHANGE);
4279 
4280 	return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4283 
4284 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4285 {
4286 	struct uic_command uic_cmd = {0};
4287 	int ret;
4288 	ktime_t start = ktime_get();
4289 
4290 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4291 
4292 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4293 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4294 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4295 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4296 
4297 	if (ret) {
4298 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4299 			__func__, ret);
4300 	} else {
4301 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4302 								POST_CHANGE);
4303 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4304 		hba->ufs_stats.hibern8_exit_cnt++;
4305 	}
4306 
4307 	return ret;
4308 }
4309 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4310 
4311 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4312 {
4313 	unsigned long flags;
4314 	bool update = false;
4315 
4316 	if (!ufshcd_is_auto_hibern8_supported(hba))
4317 		return;
4318 
4319 	spin_lock_irqsave(hba->host->host_lock, flags);
4320 	if (hba->ahit != ahit) {
4321 		hba->ahit = ahit;
4322 		update = true;
4323 	}
4324 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4325 
4326 	if (update &&
4327 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4328 		ufshcd_rpm_get_sync(hba);
4329 		ufshcd_hold(hba);
4330 		ufshcd_auto_hibern8_enable(hba);
4331 		ufshcd_release(hba);
4332 		ufshcd_rpm_put_sync(hba);
4333 	}
4334 }
4335 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4336 
4337 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4338 {
4339 	if (!ufshcd_is_auto_hibern8_supported(hba))
4340 		return;
4341 
4342 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4343 }
4344 
4345  /**
4346  * ufshcd_init_pwr_info - setting the POR (power on reset)
4347  * values in hba power info
4348  * @hba: per-adapter instance
4349  */
4350 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4351 {
4352 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4353 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4354 	hba->pwr_info.lane_rx = UFS_LANE_1;
4355 	hba->pwr_info.lane_tx = UFS_LANE_1;
4356 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4357 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4358 	hba->pwr_info.hs_rate = 0;
4359 }
4360 
4361 /**
4362  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4363  * @hba: per-adapter instance
4364  *
4365  * Return: 0 upon success; < 0 upon failure.
4366  */
4367 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4368 {
4369 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4370 
4371 	if (hba->max_pwr_info.is_valid)
4372 		return 0;
4373 
4374 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4375 		pwr_info->pwr_tx = FASTAUTO_MODE;
4376 		pwr_info->pwr_rx = FASTAUTO_MODE;
4377 	} else {
4378 		pwr_info->pwr_tx = FAST_MODE;
4379 		pwr_info->pwr_rx = FAST_MODE;
4380 	}
4381 	pwr_info->hs_rate = PA_HS_MODE_B;
4382 
4383 	/* Get the connected lane count */
4384 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4385 			&pwr_info->lane_rx);
4386 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4387 			&pwr_info->lane_tx);
4388 
4389 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4390 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4391 				__func__,
4392 				pwr_info->lane_rx,
4393 				pwr_info->lane_tx);
4394 		return -EINVAL;
4395 	}
4396 
4397 	/*
4398 	 * First, get the maximum gears of HS speed.
4399 	 * If a zero value, it means there is no HSGEAR capability.
4400 	 * Then, get the maximum gears of PWM speed.
4401 	 */
4402 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4403 	if (!pwr_info->gear_rx) {
4404 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4405 				&pwr_info->gear_rx);
4406 		if (!pwr_info->gear_rx) {
4407 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4408 				__func__, pwr_info->gear_rx);
4409 			return -EINVAL;
4410 		}
4411 		pwr_info->pwr_rx = SLOW_MODE;
4412 	}
4413 
4414 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4415 			&pwr_info->gear_tx);
4416 	if (!pwr_info->gear_tx) {
4417 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4418 				&pwr_info->gear_tx);
4419 		if (!pwr_info->gear_tx) {
4420 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4421 				__func__, pwr_info->gear_tx);
4422 			return -EINVAL;
4423 		}
4424 		pwr_info->pwr_tx = SLOW_MODE;
4425 	}
4426 
4427 	hba->max_pwr_info.is_valid = true;
4428 	return 0;
4429 }
4430 
4431 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4432 			     struct ufs_pa_layer_attr *pwr_mode)
4433 {
4434 	int ret;
4435 
4436 	/* if already configured to the requested pwr_mode */
4437 	if (!hba->force_pmc &&
4438 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4439 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4440 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4441 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4442 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4443 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4444 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4445 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4446 		return 0;
4447 	}
4448 
4449 	/*
4450 	 * Configure attributes for power mode change with below.
4451 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4452 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4453 	 * - PA_HSSERIES
4454 	 */
4455 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4456 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4457 			pwr_mode->lane_rx);
4458 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4459 			pwr_mode->pwr_rx == FAST_MODE)
4460 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4461 	else
4462 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4463 
4464 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4465 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4466 			pwr_mode->lane_tx);
4467 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4468 			pwr_mode->pwr_tx == FAST_MODE)
4469 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4470 	else
4471 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4472 
4473 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4474 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4475 	    pwr_mode->pwr_rx == FAST_MODE ||
4476 	    pwr_mode->pwr_tx == FAST_MODE)
4477 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4478 						pwr_mode->hs_rate);
4479 
4480 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4481 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4482 				DL_FC0ProtectionTimeOutVal_Default);
4483 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4484 				DL_TC0ReplayTimeOutVal_Default);
4485 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4486 				DL_AFC0ReqTimeOutVal_Default);
4487 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4488 				DL_FC1ProtectionTimeOutVal_Default);
4489 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4490 				DL_TC1ReplayTimeOutVal_Default);
4491 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4492 				DL_AFC1ReqTimeOutVal_Default);
4493 
4494 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4495 				DL_FC0ProtectionTimeOutVal_Default);
4496 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4497 				DL_TC0ReplayTimeOutVal_Default);
4498 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4499 				DL_AFC0ReqTimeOutVal_Default);
4500 	}
4501 
4502 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4503 			| pwr_mode->pwr_tx);
4504 
4505 	if (ret) {
4506 		dev_err(hba->dev,
4507 			"%s: power mode change failed %d\n", __func__, ret);
4508 	} else {
4509 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4510 								pwr_mode);
4511 
4512 		memcpy(&hba->pwr_info, pwr_mode,
4513 			sizeof(struct ufs_pa_layer_attr));
4514 	}
4515 
4516 	return ret;
4517 }
4518 
4519 /**
4520  * ufshcd_config_pwr_mode - configure a new power mode
4521  * @hba: per-adapter instance
4522  * @desired_pwr_mode: desired power configuration
4523  *
4524  * Return: 0 upon success; < 0 upon failure.
4525  */
4526 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4527 		struct ufs_pa_layer_attr *desired_pwr_mode)
4528 {
4529 	struct ufs_pa_layer_attr final_params = { 0 };
4530 	int ret;
4531 
4532 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4533 					desired_pwr_mode, &final_params);
4534 
4535 	if (ret)
4536 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4537 
4538 	ret = ufshcd_change_power_mode(hba, &final_params);
4539 
4540 	return ret;
4541 }
4542 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4543 
4544 /**
4545  * ufshcd_complete_dev_init() - checks device readiness
4546  * @hba: per-adapter instance
4547  *
4548  * Set fDeviceInit flag and poll until device toggles it.
4549  *
4550  * Return: 0 upon success; < 0 upon failure.
4551  */
4552 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4553 {
4554 	int err;
4555 	bool flag_res = true;
4556 	ktime_t timeout;
4557 
4558 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4559 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4560 	if (err) {
4561 		dev_err(hba->dev,
4562 			"%s: setting fDeviceInit flag failed with error %d\n",
4563 			__func__, err);
4564 		goto out;
4565 	}
4566 
4567 	/* Poll fDeviceInit flag to be cleared */
4568 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4569 	do {
4570 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4571 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4572 		if (!flag_res)
4573 			break;
4574 		usleep_range(500, 1000);
4575 	} while (ktime_before(ktime_get(), timeout));
4576 
4577 	if (err) {
4578 		dev_err(hba->dev,
4579 				"%s: reading fDeviceInit flag failed with error %d\n",
4580 				__func__, err);
4581 	} else if (flag_res) {
4582 		dev_err(hba->dev,
4583 				"%s: fDeviceInit was not cleared by the device\n",
4584 				__func__);
4585 		err = -EBUSY;
4586 	}
4587 out:
4588 	return err;
4589 }
4590 
4591 /**
4592  * ufshcd_make_hba_operational - Make UFS controller operational
4593  * @hba: per adapter instance
4594  *
4595  * To bring UFS host controller to operational state,
4596  * 1. Enable required interrupts
4597  * 2. Configure interrupt aggregation
4598  * 3. Program UTRL and UTMRL base address
4599  * 4. Configure run-stop-registers
4600  *
4601  * Return: 0 on success, non-zero value on failure.
4602  */
4603 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4604 {
4605 	int err = 0;
4606 	u32 reg;
4607 
4608 	/* Enable required interrupts */
4609 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4610 
4611 	/* Configure interrupt aggregation */
4612 	if (ufshcd_is_intr_aggr_allowed(hba))
4613 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4614 	else
4615 		ufshcd_disable_intr_aggr(hba);
4616 
4617 	/* Configure UTRL and UTMRL base address registers */
4618 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4619 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4620 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4621 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4622 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4623 			REG_UTP_TASK_REQ_LIST_BASE_L);
4624 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4625 			REG_UTP_TASK_REQ_LIST_BASE_H);
4626 
4627 	/*
4628 	 * Make sure base address and interrupt setup are updated before
4629 	 * enabling the run/stop registers below.
4630 	 */
4631 	wmb();
4632 
4633 	/*
4634 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4635 	 */
4636 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4637 	if (!(ufshcd_get_lists_status(reg))) {
4638 		ufshcd_enable_run_stop_reg(hba);
4639 	} else {
4640 		dev_err(hba->dev,
4641 			"Host controller not ready to process requests");
4642 		err = -EIO;
4643 	}
4644 
4645 	return err;
4646 }
4647 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4648 
4649 /**
4650  * ufshcd_hba_stop - Send controller to reset state
4651  * @hba: per adapter instance
4652  */
4653 void ufshcd_hba_stop(struct ufs_hba *hba)
4654 {
4655 	unsigned long flags;
4656 	int err;
4657 
4658 	/*
4659 	 * Obtain the host lock to prevent that the controller is disabled
4660 	 * while the UFS interrupt handler is active on another CPU.
4661 	 */
4662 	spin_lock_irqsave(hba->host->host_lock, flags);
4663 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4664 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4665 
4666 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4667 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4668 					10, 1);
4669 	if (err)
4670 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4671 }
4672 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4673 
4674 /**
4675  * ufshcd_hba_execute_hce - initialize the controller
4676  * @hba: per adapter instance
4677  *
4678  * The controller resets itself and controller firmware initialization
4679  * sequence kicks off. When controller is ready it will set
4680  * the Host Controller Enable bit to 1.
4681  *
4682  * Return: 0 on success, non-zero value on failure.
4683  */
4684 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4685 {
4686 	int retry_outer = 3;
4687 	int retry_inner;
4688 
4689 start:
4690 	if (ufshcd_is_hba_active(hba))
4691 		/* change controller state to "reset state" */
4692 		ufshcd_hba_stop(hba);
4693 
4694 	/* UniPro link is disabled at this point */
4695 	ufshcd_set_link_off(hba);
4696 
4697 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4698 
4699 	/* start controller initialization sequence */
4700 	ufshcd_hba_start(hba);
4701 
4702 	/*
4703 	 * To initialize a UFS host controller HCE bit must be set to 1.
4704 	 * During initialization the HCE bit value changes from 1->0->1.
4705 	 * When the host controller completes initialization sequence
4706 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4707 	 * to check if the controller has completed initialization sequence.
4708 	 * So without this delay the value HCE = 1, set in the previous
4709 	 * instruction might be read back.
4710 	 * This delay can be changed based on the controller.
4711 	 */
4712 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4713 
4714 	/* wait for the host controller to complete initialization */
4715 	retry_inner = 50;
4716 	while (!ufshcd_is_hba_active(hba)) {
4717 		if (retry_inner) {
4718 			retry_inner--;
4719 		} else {
4720 			dev_err(hba->dev,
4721 				"Controller enable failed\n");
4722 			if (retry_outer) {
4723 				retry_outer--;
4724 				goto start;
4725 			}
4726 			return -EIO;
4727 		}
4728 		usleep_range(1000, 1100);
4729 	}
4730 
4731 	/* enable UIC related interrupts */
4732 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4733 
4734 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4735 
4736 	return 0;
4737 }
4738 
4739 int ufshcd_hba_enable(struct ufs_hba *hba)
4740 {
4741 	int ret;
4742 
4743 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4744 		ufshcd_set_link_off(hba);
4745 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4746 
4747 		/* enable UIC related interrupts */
4748 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4749 		ret = ufshcd_dme_reset(hba);
4750 		if (ret) {
4751 			dev_err(hba->dev, "DME_RESET failed\n");
4752 			return ret;
4753 		}
4754 
4755 		ret = ufshcd_dme_enable(hba);
4756 		if (ret) {
4757 			dev_err(hba->dev, "Enabling DME failed\n");
4758 			return ret;
4759 		}
4760 
4761 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4762 	} else {
4763 		ret = ufshcd_hba_execute_hce(hba);
4764 	}
4765 
4766 	return ret;
4767 }
4768 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4769 
4770 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4771 {
4772 	int tx_lanes = 0, i, err = 0;
4773 
4774 	if (!peer)
4775 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4776 			       &tx_lanes);
4777 	else
4778 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4779 				    &tx_lanes);
4780 	for (i = 0; i < tx_lanes; i++) {
4781 		if (!peer)
4782 			err = ufshcd_dme_set(hba,
4783 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4784 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4785 					0);
4786 		else
4787 			err = ufshcd_dme_peer_set(hba,
4788 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4789 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4790 					0);
4791 		if (err) {
4792 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4793 				__func__, peer, i, err);
4794 			break;
4795 		}
4796 	}
4797 
4798 	return err;
4799 }
4800 
4801 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4802 {
4803 	return ufshcd_disable_tx_lcc(hba, true);
4804 }
4805 
4806 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4807 {
4808 	struct ufs_event_hist *e;
4809 
4810 	if (id >= UFS_EVT_CNT)
4811 		return;
4812 
4813 	e = &hba->ufs_stats.event[id];
4814 	e->val[e->pos] = val;
4815 	e->tstamp[e->pos] = local_clock();
4816 	e->cnt += 1;
4817 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4818 
4819 	ufshcd_vops_event_notify(hba, id, &val);
4820 }
4821 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4822 
4823 /**
4824  * ufshcd_link_startup - Initialize unipro link startup
4825  * @hba: per adapter instance
4826  *
4827  * Return: 0 for success, non-zero in case of failure.
4828  */
4829 static int ufshcd_link_startup(struct ufs_hba *hba)
4830 {
4831 	int ret;
4832 	int retries = DME_LINKSTARTUP_RETRIES;
4833 	bool link_startup_again = false;
4834 
4835 	/*
4836 	 * If UFS device isn't active then we will have to issue link startup
4837 	 * 2 times to make sure the device state move to active.
4838 	 */
4839 	if (!ufshcd_is_ufs_dev_active(hba))
4840 		link_startup_again = true;
4841 
4842 link_startup:
4843 	do {
4844 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4845 
4846 		ret = ufshcd_dme_link_startup(hba);
4847 
4848 		/* check if device is detected by inter-connect layer */
4849 		if (!ret && !ufshcd_is_device_present(hba)) {
4850 			ufshcd_update_evt_hist(hba,
4851 					       UFS_EVT_LINK_STARTUP_FAIL,
4852 					       0);
4853 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4854 			ret = -ENXIO;
4855 			goto out;
4856 		}
4857 
4858 		/*
4859 		 * DME link lost indication is only received when link is up,
4860 		 * but we can't be sure if the link is up until link startup
4861 		 * succeeds. So reset the local Uni-Pro and try again.
4862 		 */
4863 		if (ret && retries && ufshcd_hba_enable(hba)) {
4864 			ufshcd_update_evt_hist(hba,
4865 					       UFS_EVT_LINK_STARTUP_FAIL,
4866 					       (u32)ret);
4867 			goto out;
4868 		}
4869 	} while (ret && retries--);
4870 
4871 	if (ret) {
4872 		/* failed to get the link up... retire */
4873 		ufshcd_update_evt_hist(hba,
4874 				       UFS_EVT_LINK_STARTUP_FAIL,
4875 				       (u32)ret);
4876 		goto out;
4877 	}
4878 
4879 	if (link_startup_again) {
4880 		link_startup_again = false;
4881 		retries = DME_LINKSTARTUP_RETRIES;
4882 		goto link_startup;
4883 	}
4884 
4885 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4886 	ufshcd_init_pwr_info(hba);
4887 	ufshcd_print_pwr_info(hba);
4888 
4889 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4890 		ret = ufshcd_disable_device_tx_lcc(hba);
4891 		if (ret)
4892 			goto out;
4893 	}
4894 
4895 	/* Include any host controller configuration via UIC commands */
4896 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4897 	if (ret)
4898 		goto out;
4899 
4900 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4901 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4902 	ret = ufshcd_make_hba_operational(hba);
4903 out:
4904 	if (ret) {
4905 		dev_err(hba->dev, "link startup failed %d\n", ret);
4906 		ufshcd_print_host_state(hba);
4907 		ufshcd_print_pwr_info(hba);
4908 		ufshcd_print_evt_hist(hba);
4909 	}
4910 	return ret;
4911 }
4912 
4913 /**
4914  * ufshcd_verify_dev_init() - Verify device initialization
4915  * @hba: per-adapter instance
4916  *
4917  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4918  * device Transport Protocol (UTP) layer is ready after a reset.
4919  * If the UTP layer at the device side is not initialized, it may
4920  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4921  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4922  *
4923  * Return: 0 upon success; < 0 upon failure.
4924  */
4925 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4926 {
4927 	int err = 0;
4928 	int retries;
4929 
4930 	ufshcd_hold(hba);
4931 	mutex_lock(&hba->dev_cmd.lock);
4932 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4933 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4934 					  hba->nop_out_timeout);
4935 
4936 		if (!err || err == -ETIMEDOUT)
4937 			break;
4938 
4939 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4940 	}
4941 	mutex_unlock(&hba->dev_cmd.lock);
4942 	ufshcd_release(hba);
4943 
4944 	if (err)
4945 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4946 	return err;
4947 }
4948 
4949 /**
4950  * ufshcd_setup_links - associate link b/w device wlun and other luns
4951  * @sdev: pointer to SCSI device
4952  * @hba: pointer to ufs hba
4953  */
4954 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4955 {
4956 	struct device_link *link;
4957 
4958 	/*
4959 	 * Device wlun is the supplier & rest of the luns are consumers.
4960 	 * This ensures that device wlun suspends after all other luns.
4961 	 */
4962 	if (hba->ufs_device_wlun) {
4963 		link = device_link_add(&sdev->sdev_gendev,
4964 				       &hba->ufs_device_wlun->sdev_gendev,
4965 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4966 		if (!link) {
4967 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4968 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4969 			return;
4970 		}
4971 		hba->luns_avail--;
4972 		/* Ignore REPORT_LUN wlun probing */
4973 		if (hba->luns_avail == 1) {
4974 			ufshcd_rpm_put(hba);
4975 			return;
4976 		}
4977 	} else {
4978 		/*
4979 		 * Device wlun is probed. The assumption is that WLUNs are
4980 		 * scanned before other LUNs.
4981 		 */
4982 		hba->luns_avail--;
4983 	}
4984 }
4985 
4986 /**
4987  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4988  * @hba: per-adapter instance
4989  * @sdev: pointer to SCSI device
4990  */
4991 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4992 {
4993 	int len = QUERY_DESC_MAX_SIZE;
4994 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4995 	u8 lun_qdepth = hba->nutrs;
4996 	u8 *desc_buf;
4997 	int ret;
4998 
4999 	desc_buf = kzalloc(len, GFP_KERNEL);
5000 	if (!desc_buf)
5001 		goto set_qdepth;
5002 
5003 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5004 	if (ret < 0) {
5005 		if (ret == -EOPNOTSUPP)
5006 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5007 			lun_qdepth = 1;
5008 		kfree(desc_buf);
5009 		goto set_qdepth;
5010 	}
5011 
5012 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5013 		/*
5014 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5015 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5016 		 */
5017 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5018 	}
5019 	/*
5020 	 * According to UFS device specification, the write protection mode is only supported by
5021 	 * normal LU, not supported by WLUN.
5022 	 */
5023 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5024 	    !hba->dev_info.is_lu_power_on_wp &&
5025 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5026 		hba->dev_info.is_lu_power_on_wp = true;
5027 
5028 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5029 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5030 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5031 		hba->dev_info.b_advanced_rpmb_en = true;
5032 
5033 
5034 	kfree(desc_buf);
5035 set_qdepth:
5036 	/*
5037 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5038 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5039 	 */
5040 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5041 	scsi_change_queue_depth(sdev, lun_qdepth);
5042 }
5043 
5044 /**
5045  * ufshcd_slave_alloc - handle initial SCSI device configurations
5046  * @sdev: pointer to SCSI device
5047  *
5048  * Return: success.
5049  */
5050 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5051 {
5052 	struct ufs_hba *hba;
5053 
5054 	hba = shost_priv(sdev->host);
5055 
5056 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5057 	sdev->use_10_for_ms = 1;
5058 
5059 	/* DBD field should be set to 1 in mode sense(10) */
5060 	sdev->set_dbd_for_ms = 1;
5061 
5062 	/* allow SCSI layer to restart the device in case of errors */
5063 	sdev->allow_restart = 1;
5064 
5065 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5066 	sdev->no_report_opcodes = 1;
5067 
5068 	/* WRITE_SAME command is not supported */
5069 	sdev->no_write_same = 1;
5070 
5071 	ufshcd_lu_init(hba, sdev);
5072 
5073 	ufshcd_setup_links(hba, sdev);
5074 
5075 	return 0;
5076 }
5077 
5078 /**
5079  * ufshcd_change_queue_depth - change queue depth
5080  * @sdev: pointer to SCSI device
5081  * @depth: required depth to set
5082  *
5083  * Change queue depth and make sure the max. limits are not crossed.
5084  *
5085  * Return: new queue depth.
5086  */
5087 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5088 {
5089 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5090 }
5091 
5092 /**
5093  * ufshcd_slave_configure - adjust SCSI device configurations
5094  * @sdev: pointer to SCSI device
5095  *
5096  * Return: 0 (success).
5097  */
5098 static int ufshcd_slave_configure(struct scsi_device *sdev)
5099 {
5100 	struct ufs_hba *hba = shost_priv(sdev->host);
5101 	struct request_queue *q = sdev->request_queue;
5102 
5103 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5104 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5105 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5106 	/*
5107 	 * Block runtime-pm until all consumers are added.
5108 	 * Refer ufshcd_setup_links().
5109 	 */
5110 	if (is_device_wlun(sdev))
5111 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5112 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5113 		sdev->rpm_autosuspend = 1;
5114 	/*
5115 	 * Do not print messages during runtime PM to avoid never-ending cycles
5116 	 * of messages written back to storage by user space causing runtime
5117 	 * resume, causing more messages and so on.
5118 	 */
5119 	sdev->silence_suspend = 1;
5120 
5121 	ufshcd_crypto_register(hba, q);
5122 
5123 	return 0;
5124 }
5125 
5126 /**
5127  * ufshcd_slave_destroy - remove SCSI device configurations
5128  * @sdev: pointer to SCSI device
5129  */
5130 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5131 {
5132 	struct ufs_hba *hba;
5133 	unsigned long flags;
5134 
5135 	hba = shost_priv(sdev->host);
5136 
5137 	/* Drop the reference as it won't be needed anymore */
5138 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5139 		spin_lock_irqsave(hba->host->host_lock, flags);
5140 		hba->ufs_device_wlun = NULL;
5141 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5142 	} else if (hba->ufs_device_wlun) {
5143 		struct device *supplier = NULL;
5144 
5145 		/* Ensure UFS Device WLUN exists and does not disappear */
5146 		spin_lock_irqsave(hba->host->host_lock, flags);
5147 		if (hba->ufs_device_wlun) {
5148 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5149 			get_device(supplier);
5150 		}
5151 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5152 
5153 		if (supplier) {
5154 			/*
5155 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5156 			 * device will not have been registered but can still
5157 			 * have a device link holding a reference to the device.
5158 			 */
5159 			device_link_remove(&sdev->sdev_gendev, supplier);
5160 			put_device(supplier);
5161 		}
5162 	}
5163 }
5164 
5165 /**
5166  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5167  * @lrbp: pointer to local reference block of completed command
5168  * @scsi_status: SCSI command status
5169  *
5170  * Return: value base on SCSI command status.
5171  */
5172 static inline int
5173 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5174 {
5175 	int result = 0;
5176 
5177 	switch (scsi_status) {
5178 	case SAM_STAT_CHECK_CONDITION:
5179 		ufshcd_copy_sense_data(lrbp);
5180 		fallthrough;
5181 	case SAM_STAT_GOOD:
5182 		result |= DID_OK << 16 | scsi_status;
5183 		break;
5184 	case SAM_STAT_TASK_SET_FULL:
5185 	case SAM_STAT_BUSY:
5186 	case SAM_STAT_TASK_ABORTED:
5187 		ufshcd_copy_sense_data(lrbp);
5188 		result |= scsi_status;
5189 		break;
5190 	default:
5191 		result |= DID_ERROR << 16;
5192 		break;
5193 	} /* end of switch */
5194 
5195 	return result;
5196 }
5197 
5198 /**
5199  * ufshcd_transfer_rsp_status - Get overall status of the response
5200  * @hba: per adapter instance
5201  * @lrbp: pointer to local reference block of completed command
5202  * @cqe: pointer to the completion queue entry
5203  *
5204  * Return: result of the command to notify SCSI midlayer.
5205  */
5206 static inline int
5207 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5208 			   struct cq_entry *cqe)
5209 {
5210 	int result = 0;
5211 	int scsi_status;
5212 	enum utp_ocs ocs;
5213 	u8 upiu_flags;
5214 	u32 resid;
5215 
5216 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5217 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5218 	/*
5219 	 * Test !overflow instead of underflow to support UFS devices that do
5220 	 * not set either flag.
5221 	 */
5222 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5223 		scsi_set_resid(lrbp->cmd, resid);
5224 
5225 	/* overall command status of utrd */
5226 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5227 
5228 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5229 		if (lrbp->ucd_rsp_ptr->header.response ||
5230 		    lrbp->ucd_rsp_ptr->header.status)
5231 			ocs = OCS_SUCCESS;
5232 	}
5233 
5234 	switch (ocs) {
5235 	case OCS_SUCCESS:
5236 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5237 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5238 		case UPIU_TRANSACTION_RESPONSE:
5239 			/*
5240 			 * get the result based on SCSI status response
5241 			 * to notify the SCSI midlayer of the command status
5242 			 */
5243 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5244 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5245 
5246 			/*
5247 			 * Currently we are only supporting BKOPs exception
5248 			 * events hence we can ignore BKOPs exception event
5249 			 * during power management callbacks. BKOPs exception
5250 			 * event is not expected to be raised in runtime suspend
5251 			 * callback as it allows the urgent bkops.
5252 			 * During system suspend, we are anyway forcefully
5253 			 * disabling the bkops and if urgent bkops is needed
5254 			 * it will be enabled on system resume. Long term
5255 			 * solution could be to abort the system suspend if
5256 			 * UFS device needs urgent BKOPs.
5257 			 */
5258 			if (!hba->pm_op_in_progress &&
5259 			    !ufshcd_eh_in_progress(hba) &&
5260 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5261 				/* Flushed in suspend */
5262 				schedule_work(&hba->eeh_work);
5263 			break;
5264 		case UPIU_TRANSACTION_REJECT_UPIU:
5265 			/* TODO: handle Reject UPIU Response */
5266 			result = DID_ERROR << 16;
5267 			dev_err(hba->dev,
5268 				"Reject UPIU not fully implemented\n");
5269 			break;
5270 		default:
5271 			dev_err(hba->dev,
5272 				"Unexpected request response code = %x\n",
5273 				result);
5274 			result = DID_ERROR << 16;
5275 			break;
5276 		}
5277 		break;
5278 	case OCS_ABORTED:
5279 		result |= DID_ABORT << 16;
5280 		break;
5281 	case OCS_INVALID_COMMAND_STATUS:
5282 		result |= DID_REQUEUE << 16;
5283 		break;
5284 	case OCS_INVALID_CMD_TABLE_ATTR:
5285 	case OCS_INVALID_PRDT_ATTR:
5286 	case OCS_MISMATCH_DATA_BUF_SIZE:
5287 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5288 	case OCS_PEER_COMM_FAILURE:
5289 	case OCS_FATAL_ERROR:
5290 	case OCS_DEVICE_FATAL_ERROR:
5291 	case OCS_INVALID_CRYPTO_CONFIG:
5292 	case OCS_GENERAL_CRYPTO_ERROR:
5293 	default:
5294 		result |= DID_ERROR << 16;
5295 		dev_err(hba->dev,
5296 				"OCS error from controller = %x for tag %d\n",
5297 				ocs, lrbp->task_tag);
5298 		ufshcd_print_evt_hist(hba);
5299 		ufshcd_print_host_state(hba);
5300 		break;
5301 	} /* end of switch */
5302 
5303 	if ((host_byte(result) != DID_OK) &&
5304 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5305 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5306 	return result;
5307 }
5308 
5309 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5310 					 u32 intr_mask)
5311 {
5312 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5313 	    !ufshcd_is_auto_hibern8_enabled(hba))
5314 		return false;
5315 
5316 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5317 		return false;
5318 
5319 	if (hba->active_uic_cmd &&
5320 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5321 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5322 		return false;
5323 
5324 	return true;
5325 }
5326 
5327 /**
5328  * ufshcd_uic_cmd_compl - handle completion of uic command
5329  * @hba: per adapter instance
5330  * @intr_status: interrupt status generated by the controller
5331  *
5332  * Return:
5333  *  IRQ_HANDLED - If interrupt is valid
5334  *  IRQ_NONE    - If invalid interrupt
5335  */
5336 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5337 {
5338 	irqreturn_t retval = IRQ_NONE;
5339 
5340 	spin_lock(hba->host->host_lock);
5341 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5342 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5343 
5344 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5345 		hba->active_uic_cmd->argument2 |=
5346 			ufshcd_get_uic_cmd_result(hba);
5347 		hba->active_uic_cmd->argument3 =
5348 			ufshcd_get_dme_attr_val(hba);
5349 		if (!hba->uic_async_done)
5350 			hba->active_uic_cmd->cmd_active = 0;
5351 		complete(&hba->active_uic_cmd->done);
5352 		retval = IRQ_HANDLED;
5353 	}
5354 
5355 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5356 		hba->active_uic_cmd->cmd_active = 0;
5357 		complete(hba->uic_async_done);
5358 		retval = IRQ_HANDLED;
5359 	}
5360 
5361 	if (retval == IRQ_HANDLED)
5362 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5363 					     UFS_CMD_COMP);
5364 	spin_unlock(hba->host->host_lock);
5365 	return retval;
5366 }
5367 
5368 /* Release the resources allocated for processing a SCSI command. */
5369 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5370 			     struct ufshcd_lrb *lrbp)
5371 {
5372 	struct scsi_cmnd *cmd = lrbp->cmd;
5373 
5374 	scsi_dma_unmap(cmd);
5375 	ufshcd_release(hba);
5376 	ufshcd_clk_scaling_update_busy(hba);
5377 }
5378 
5379 /**
5380  * ufshcd_compl_one_cqe - handle a completion queue entry
5381  * @hba: per adapter instance
5382  * @task_tag: the task tag of the request to be completed
5383  * @cqe: pointer to the completion queue entry
5384  */
5385 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5386 			  struct cq_entry *cqe)
5387 {
5388 	struct ufshcd_lrb *lrbp;
5389 	struct scsi_cmnd *cmd;
5390 	enum utp_ocs ocs;
5391 
5392 	lrbp = &hba->lrb[task_tag];
5393 	lrbp->compl_time_stamp = ktime_get();
5394 	cmd = lrbp->cmd;
5395 	if (cmd) {
5396 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5397 			ufshcd_update_monitor(hba, lrbp);
5398 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5399 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5400 		ufshcd_release_scsi_cmd(hba, lrbp);
5401 		/* Do not touch lrbp after scsi done */
5402 		scsi_done(cmd);
5403 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5404 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5405 		if (hba->dev_cmd.complete) {
5406 			if (cqe) {
5407 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5408 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5409 			}
5410 			complete(hba->dev_cmd.complete);
5411 			ufshcd_clk_scaling_update_busy(hba);
5412 		}
5413 	}
5414 }
5415 
5416 /**
5417  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5418  * @hba: per adapter instance
5419  * @completed_reqs: bitmask that indicates which requests to complete
5420  */
5421 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5422 					unsigned long completed_reqs)
5423 {
5424 	int tag;
5425 
5426 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5427 		ufshcd_compl_one_cqe(hba, tag, NULL);
5428 }
5429 
5430 /* Any value that is not an existing queue number is fine for this constant. */
5431 enum {
5432 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5433 };
5434 
5435 static void ufshcd_clear_polled(struct ufs_hba *hba,
5436 				unsigned long *completed_reqs)
5437 {
5438 	int tag;
5439 
5440 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5441 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5442 
5443 		if (!cmd)
5444 			continue;
5445 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5446 			__clear_bit(tag, completed_reqs);
5447 	}
5448 }
5449 
5450 /*
5451  * Return: > 0 if one or more commands have been completed or 0 if no
5452  * requests have been completed.
5453  */
5454 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5455 {
5456 	struct ufs_hba *hba = shost_priv(shost);
5457 	unsigned long completed_reqs, flags;
5458 	u32 tr_doorbell;
5459 	struct ufs_hw_queue *hwq;
5460 
5461 	if (is_mcq_enabled(hba)) {
5462 		hwq = &hba->uhq[queue_num];
5463 
5464 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5465 	}
5466 
5467 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5468 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5469 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5470 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5471 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5472 		  hba->outstanding_reqs);
5473 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5474 		/* Do not complete polled requests from interrupt context. */
5475 		ufshcd_clear_polled(hba, &completed_reqs);
5476 	}
5477 	hba->outstanding_reqs &= ~completed_reqs;
5478 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5479 
5480 	if (completed_reqs)
5481 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5482 
5483 	return completed_reqs != 0;
5484 }
5485 
5486 /**
5487  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5488  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5489  * to complete the pending transfers and free the resources associated with
5490  * the scsi command.
5491  *
5492  * @hba: per adapter instance
5493  * @force_compl: This flag is set to true when invoked
5494  * from ufshcd_host_reset_and_restore() in which case it requires special
5495  * handling because the host controller has been reset by ufshcd_hba_stop().
5496  */
5497 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5498 					      bool force_compl)
5499 {
5500 	struct ufs_hw_queue *hwq;
5501 	struct ufshcd_lrb *lrbp;
5502 	struct scsi_cmnd *cmd;
5503 	unsigned long flags;
5504 	u32 hwq_num, utag;
5505 	int tag;
5506 
5507 	for (tag = 0; tag < hba->nutrs; tag++) {
5508 		lrbp = &hba->lrb[tag];
5509 		cmd = lrbp->cmd;
5510 		if (!ufshcd_cmd_inflight(cmd) ||
5511 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5512 			continue;
5513 
5514 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5515 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5516 		hwq = &hba->uhq[hwq_num];
5517 
5518 		if (force_compl) {
5519 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5520 			/*
5521 			 * For those cmds of which the cqes are not present
5522 			 * in the cq, complete them explicitly.
5523 			 */
5524 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5525 				spin_lock_irqsave(&hwq->cq_lock, flags);
5526 				set_host_byte(cmd, DID_REQUEUE);
5527 				ufshcd_release_scsi_cmd(hba, lrbp);
5528 				scsi_done(cmd);
5529 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5530 			}
5531 		} else {
5532 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5533 		}
5534 	}
5535 }
5536 
5537 /**
5538  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5539  * @hba: per adapter instance
5540  *
5541  * Return:
5542  *  IRQ_HANDLED - If interrupt is valid
5543  *  IRQ_NONE    - If invalid interrupt
5544  */
5545 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5546 {
5547 	/* Resetting interrupt aggregation counters first and reading the
5548 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5549 	 * In order to prevent other interrupts starvation the DB is read once
5550 	 * after reset. The down side of this solution is the possibility of
5551 	 * false interrupt if device completes another request after resetting
5552 	 * aggregation and before reading the DB.
5553 	 */
5554 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5555 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5556 		ufshcd_reset_intr_aggr(hba);
5557 
5558 	if (ufs_fail_completion())
5559 		return IRQ_HANDLED;
5560 
5561 	/*
5562 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5563 	 * do not want polling to trigger spurious interrupt complaints.
5564 	 */
5565 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5566 
5567 	return IRQ_HANDLED;
5568 }
5569 
5570 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5571 {
5572 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5573 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5574 				       &ee_ctrl_mask);
5575 }
5576 
5577 int ufshcd_write_ee_control(struct ufs_hba *hba)
5578 {
5579 	int err;
5580 
5581 	mutex_lock(&hba->ee_ctrl_mutex);
5582 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5583 	mutex_unlock(&hba->ee_ctrl_mutex);
5584 	if (err)
5585 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5586 			__func__, err);
5587 	return err;
5588 }
5589 
5590 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5591 			     const u16 *other_mask, u16 set, u16 clr)
5592 {
5593 	u16 new_mask, ee_ctrl_mask;
5594 	int err = 0;
5595 
5596 	mutex_lock(&hba->ee_ctrl_mutex);
5597 	new_mask = (*mask & ~clr) | set;
5598 	ee_ctrl_mask = new_mask | *other_mask;
5599 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5600 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5601 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5602 	if (!err) {
5603 		hba->ee_ctrl_mask = ee_ctrl_mask;
5604 		*mask = new_mask;
5605 	}
5606 	mutex_unlock(&hba->ee_ctrl_mutex);
5607 	return err;
5608 }
5609 
5610 /**
5611  * ufshcd_disable_ee - disable exception event
5612  * @hba: per-adapter instance
5613  * @mask: exception event to disable
5614  *
5615  * Disables exception event in the device so that the EVENT_ALERT
5616  * bit is not set.
5617  *
5618  * Return: zero on success, non-zero error value on failure.
5619  */
5620 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5621 {
5622 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5623 }
5624 
5625 /**
5626  * ufshcd_enable_ee - enable exception event
5627  * @hba: per-adapter instance
5628  * @mask: exception event to enable
5629  *
5630  * Enable corresponding exception event in the device to allow
5631  * device to alert host in critical scenarios.
5632  *
5633  * Return: zero on success, non-zero error value on failure.
5634  */
5635 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5636 {
5637 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5638 }
5639 
5640 /**
5641  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5642  * @hba: per-adapter instance
5643  *
5644  * Allow device to manage background operations on its own. Enabling
5645  * this might lead to inconsistent latencies during normal data transfers
5646  * as the device is allowed to manage its own way of handling background
5647  * operations.
5648  *
5649  * Return: zero on success, non-zero on failure.
5650  */
5651 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5652 {
5653 	int err = 0;
5654 
5655 	if (hba->auto_bkops_enabled)
5656 		goto out;
5657 
5658 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5659 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5660 	if (err) {
5661 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5662 				__func__, err);
5663 		goto out;
5664 	}
5665 
5666 	hba->auto_bkops_enabled = true;
5667 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5668 
5669 	/* No need of URGENT_BKOPS exception from the device */
5670 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5671 	if (err)
5672 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5673 				__func__, err);
5674 out:
5675 	return err;
5676 }
5677 
5678 /**
5679  * ufshcd_disable_auto_bkops - block device in doing background operations
5680  * @hba: per-adapter instance
5681  *
5682  * Disabling background operations improves command response latency but
5683  * has drawback of device moving into critical state where the device is
5684  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5685  * host is idle so that BKOPS are managed effectively without any negative
5686  * impacts.
5687  *
5688  * Return: zero on success, non-zero on failure.
5689  */
5690 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5691 {
5692 	int err = 0;
5693 
5694 	if (!hba->auto_bkops_enabled)
5695 		goto out;
5696 
5697 	/*
5698 	 * If host assisted BKOPs is to be enabled, make sure
5699 	 * urgent bkops exception is allowed.
5700 	 */
5701 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5702 	if (err) {
5703 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5704 				__func__, err);
5705 		goto out;
5706 	}
5707 
5708 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5709 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5710 	if (err) {
5711 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5712 				__func__, err);
5713 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5714 		goto out;
5715 	}
5716 
5717 	hba->auto_bkops_enabled = false;
5718 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5719 	hba->is_urgent_bkops_lvl_checked = false;
5720 out:
5721 	return err;
5722 }
5723 
5724 /**
5725  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5726  * @hba: per adapter instance
5727  *
5728  * After a device reset the device may toggle the BKOPS_EN flag
5729  * to default value. The s/w tracking variables should be updated
5730  * as well. This function would change the auto-bkops state based on
5731  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5732  */
5733 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5734 {
5735 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5736 		hba->auto_bkops_enabled = false;
5737 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5738 		ufshcd_enable_auto_bkops(hba);
5739 	} else {
5740 		hba->auto_bkops_enabled = true;
5741 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5742 		ufshcd_disable_auto_bkops(hba);
5743 	}
5744 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5745 	hba->is_urgent_bkops_lvl_checked = false;
5746 }
5747 
5748 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5749 {
5750 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5751 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5752 }
5753 
5754 /**
5755  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5756  * @hba: per-adapter instance
5757  * @status: bkops_status value
5758  *
5759  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5760  * flag in the device to permit background operations if the device
5761  * bkops_status is greater than or equal to "status" argument passed to
5762  * this function, disable otherwise.
5763  *
5764  * Return: 0 for success, non-zero in case of failure.
5765  *
5766  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5767  * to know whether auto bkops is enabled or disabled after this function
5768  * returns control to it.
5769  */
5770 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5771 			     enum bkops_status status)
5772 {
5773 	int err;
5774 	u32 curr_status = 0;
5775 
5776 	err = ufshcd_get_bkops_status(hba, &curr_status);
5777 	if (err) {
5778 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5779 				__func__, err);
5780 		goto out;
5781 	} else if (curr_status > BKOPS_STATUS_MAX) {
5782 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5783 				__func__, curr_status);
5784 		err = -EINVAL;
5785 		goto out;
5786 	}
5787 
5788 	if (curr_status >= status)
5789 		err = ufshcd_enable_auto_bkops(hba);
5790 	else
5791 		err = ufshcd_disable_auto_bkops(hba);
5792 out:
5793 	return err;
5794 }
5795 
5796 /**
5797  * ufshcd_urgent_bkops - handle urgent bkops exception event
5798  * @hba: per-adapter instance
5799  *
5800  * Enable fBackgroundOpsEn flag in the device to permit background
5801  * operations.
5802  *
5803  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5804  * and negative error value for any other failure.
5805  *
5806  * Return: 0 upon success; < 0 upon failure.
5807  */
5808 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5809 {
5810 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5811 }
5812 
5813 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5814 {
5815 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5816 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5817 }
5818 
5819 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5820 {
5821 	int err;
5822 	u32 curr_status = 0;
5823 
5824 	if (hba->is_urgent_bkops_lvl_checked)
5825 		goto enable_auto_bkops;
5826 
5827 	err = ufshcd_get_bkops_status(hba, &curr_status);
5828 	if (err) {
5829 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5830 				__func__, err);
5831 		goto out;
5832 	}
5833 
5834 	/*
5835 	 * We are seeing that some devices are raising the urgent bkops
5836 	 * exception events even when BKOPS status doesn't indicate performace
5837 	 * impacted or critical. Handle these device by determining their urgent
5838 	 * bkops status at runtime.
5839 	 */
5840 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5841 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5842 				__func__, curr_status);
5843 		/* update the current status as the urgent bkops level */
5844 		hba->urgent_bkops_lvl = curr_status;
5845 		hba->is_urgent_bkops_lvl_checked = true;
5846 	}
5847 
5848 enable_auto_bkops:
5849 	err = ufshcd_enable_auto_bkops(hba);
5850 out:
5851 	if (err < 0)
5852 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5853 				__func__, err);
5854 }
5855 
5856 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5857 {
5858 	u32 value;
5859 
5860 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5861 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5862 		return;
5863 
5864 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5865 
5866 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5867 
5868 	/*
5869 	 * A placeholder for the platform vendors to add whatever additional
5870 	 * steps required
5871 	 */
5872 }
5873 
5874 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5875 {
5876 	u8 index;
5877 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5878 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5879 
5880 	index = ufshcd_wb_get_query_index(hba);
5881 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5882 }
5883 
5884 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5885 {
5886 	int ret;
5887 
5888 	if (!ufshcd_is_wb_allowed(hba) ||
5889 	    hba->dev_info.wb_enabled == enable)
5890 		return 0;
5891 
5892 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5893 	if (ret) {
5894 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5895 			__func__, enable ? "enabling" : "disabling", ret);
5896 		return ret;
5897 	}
5898 
5899 	hba->dev_info.wb_enabled = enable;
5900 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5901 			__func__, enable ? "enabled" : "disabled");
5902 
5903 	return ret;
5904 }
5905 
5906 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5907 						 bool enable)
5908 {
5909 	int ret;
5910 
5911 	ret = __ufshcd_wb_toggle(hba, enable,
5912 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5913 	if (ret) {
5914 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5915 			__func__, enable ? "enabling" : "disabling", ret);
5916 		return;
5917 	}
5918 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5919 			__func__, enable ? "enabled" : "disabled");
5920 }
5921 
5922 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5923 {
5924 	int ret;
5925 
5926 	if (!ufshcd_is_wb_allowed(hba) ||
5927 	    hba->dev_info.wb_buf_flush_enabled == enable)
5928 		return 0;
5929 
5930 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5931 	if (ret) {
5932 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5933 			__func__, enable ? "enabling" : "disabling", ret);
5934 		return ret;
5935 	}
5936 
5937 	hba->dev_info.wb_buf_flush_enabled = enable;
5938 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5939 			__func__, enable ? "enabled" : "disabled");
5940 
5941 	return ret;
5942 }
5943 
5944 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5945 						u32 avail_buf)
5946 {
5947 	u32 cur_buf;
5948 	int ret;
5949 	u8 index;
5950 
5951 	index = ufshcd_wb_get_query_index(hba);
5952 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5953 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5954 					      index, 0, &cur_buf);
5955 	if (ret) {
5956 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5957 			__func__, ret);
5958 		return false;
5959 	}
5960 
5961 	if (!cur_buf) {
5962 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5963 			 cur_buf);
5964 		return false;
5965 	}
5966 	/* Let it continue to flush when available buffer exceeds threshold */
5967 	return avail_buf < hba->vps->wb_flush_threshold;
5968 }
5969 
5970 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5971 {
5972 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5973 		ufshcd_wb_toggle_buf_flush(hba, false);
5974 
5975 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5976 	ufshcd_wb_toggle(hba, false);
5977 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5978 
5979 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5980 }
5981 
5982 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5983 {
5984 	u32 lifetime;
5985 	int ret;
5986 	u8 index;
5987 
5988 	index = ufshcd_wb_get_query_index(hba);
5989 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5990 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5991 				      index, 0, &lifetime);
5992 	if (ret) {
5993 		dev_err(hba->dev,
5994 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5995 			__func__, ret);
5996 		return false;
5997 	}
5998 
5999 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6000 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6001 			__func__, lifetime);
6002 		return false;
6003 	}
6004 
6005 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6006 		__func__, lifetime);
6007 
6008 	return true;
6009 }
6010 
6011 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6012 {
6013 	int ret;
6014 	u32 avail_buf;
6015 	u8 index;
6016 
6017 	if (!ufshcd_is_wb_allowed(hba))
6018 		return false;
6019 
6020 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6021 		ufshcd_wb_force_disable(hba);
6022 		return false;
6023 	}
6024 
6025 	/*
6026 	 * The ufs device needs the vcc to be ON to flush.
6027 	 * With user-space reduction enabled, it's enough to enable flush
6028 	 * by checking only the available buffer. The threshold
6029 	 * defined here is > 90% full.
6030 	 * With user-space preserved enabled, the current-buffer
6031 	 * should be checked too because the wb buffer size can reduce
6032 	 * when disk tends to be full. This info is provided by current
6033 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6034 	 * keeping vcc on when current buffer is empty.
6035 	 */
6036 	index = ufshcd_wb_get_query_index(hba);
6037 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6038 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6039 				      index, 0, &avail_buf);
6040 	if (ret) {
6041 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6042 			 __func__, ret);
6043 		return false;
6044 	}
6045 
6046 	if (!hba->dev_info.b_presrv_uspc_en)
6047 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6048 
6049 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6050 }
6051 
6052 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6053 {
6054 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6055 					   struct ufs_hba,
6056 					   rpm_dev_flush_recheck_work);
6057 	/*
6058 	 * To prevent unnecessary VCC power drain after device finishes
6059 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6060 	 * after a certain delay to recheck the threshold by next runtime
6061 	 * suspend.
6062 	 */
6063 	ufshcd_rpm_get_sync(hba);
6064 	ufshcd_rpm_put_sync(hba);
6065 }
6066 
6067 /**
6068  * ufshcd_exception_event_handler - handle exceptions raised by device
6069  * @work: pointer to work data
6070  *
6071  * Read bExceptionEventStatus attribute from the device and handle the
6072  * exception event accordingly.
6073  */
6074 static void ufshcd_exception_event_handler(struct work_struct *work)
6075 {
6076 	struct ufs_hba *hba;
6077 	int err;
6078 	u32 status = 0;
6079 	hba = container_of(work, struct ufs_hba, eeh_work);
6080 
6081 	ufshcd_scsi_block_requests(hba);
6082 	err = ufshcd_get_ee_status(hba, &status);
6083 	if (err) {
6084 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6085 				__func__, err);
6086 		goto out;
6087 	}
6088 
6089 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6090 
6091 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6092 		ufshcd_bkops_exception_event_handler(hba);
6093 
6094 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6095 		ufshcd_temp_exception_event_handler(hba, status);
6096 
6097 	ufs_debugfs_exception_event(hba, status);
6098 out:
6099 	ufshcd_scsi_unblock_requests(hba);
6100 }
6101 
6102 /* Complete requests that have door-bell cleared */
6103 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6104 {
6105 	if (is_mcq_enabled(hba))
6106 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6107 	else
6108 		ufshcd_transfer_req_compl(hba);
6109 
6110 	ufshcd_tmc_handler(hba);
6111 }
6112 
6113 /**
6114  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6115  *				to recover from the DL NAC errors or not.
6116  * @hba: per-adapter instance
6117  *
6118  * Return: true if error handling is required, false otherwise.
6119  */
6120 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6121 {
6122 	unsigned long flags;
6123 	bool err_handling = true;
6124 
6125 	spin_lock_irqsave(hba->host->host_lock, flags);
6126 	/*
6127 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6128 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6129 	 */
6130 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6131 		goto out;
6132 
6133 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6134 	    ((hba->saved_err & UIC_ERROR) &&
6135 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6136 		goto out;
6137 
6138 	if ((hba->saved_err & UIC_ERROR) &&
6139 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6140 		int err;
6141 		/*
6142 		 * wait for 50ms to see if we can get any other errors or not.
6143 		 */
6144 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6145 		msleep(50);
6146 		spin_lock_irqsave(hba->host->host_lock, flags);
6147 
6148 		/*
6149 		 * now check if we have got any other severe errors other than
6150 		 * DL NAC error?
6151 		 */
6152 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6153 		    ((hba->saved_err & UIC_ERROR) &&
6154 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6155 			goto out;
6156 
6157 		/*
6158 		 * As DL NAC is the only error received so far, send out NOP
6159 		 * command to confirm if link is still active or not.
6160 		 *   - If we don't get any response then do error recovery.
6161 		 *   - If we get response then clear the DL NAC error bit.
6162 		 */
6163 
6164 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6165 		err = ufshcd_verify_dev_init(hba);
6166 		spin_lock_irqsave(hba->host->host_lock, flags);
6167 
6168 		if (err)
6169 			goto out;
6170 
6171 		/* Link seems to be alive hence ignore the DL NAC errors */
6172 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6173 			hba->saved_err &= ~UIC_ERROR;
6174 		/* clear NAC error */
6175 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6176 		if (!hba->saved_uic_err)
6177 			err_handling = false;
6178 	}
6179 out:
6180 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6181 	return err_handling;
6182 }
6183 
6184 /* host lock must be held before calling this func */
6185 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6186 {
6187 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6188 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6189 }
6190 
6191 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6192 {
6193 	lockdep_assert_held(hba->host->host_lock);
6194 
6195 	/* handle fatal errors only when link is not in error state */
6196 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6197 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6198 		    ufshcd_is_saved_err_fatal(hba))
6199 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6200 		else
6201 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6202 		queue_work(hba->eh_wq, &hba->eh_work);
6203 	}
6204 }
6205 
6206 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6207 {
6208 	spin_lock_irq(hba->host->host_lock);
6209 	hba->force_reset = true;
6210 	ufshcd_schedule_eh_work(hba);
6211 	spin_unlock_irq(hba->host->host_lock);
6212 }
6213 
6214 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6215 {
6216 	mutex_lock(&hba->wb_mutex);
6217 	down_write(&hba->clk_scaling_lock);
6218 	hba->clk_scaling.is_allowed = allow;
6219 	up_write(&hba->clk_scaling_lock);
6220 	mutex_unlock(&hba->wb_mutex);
6221 }
6222 
6223 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6224 {
6225 	if (suspend) {
6226 		if (hba->clk_scaling.is_enabled)
6227 			ufshcd_suspend_clkscaling(hba);
6228 		ufshcd_clk_scaling_allow(hba, false);
6229 	} else {
6230 		ufshcd_clk_scaling_allow(hba, true);
6231 		if (hba->clk_scaling.is_enabled)
6232 			ufshcd_resume_clkscaling(hba);
6233 	}
6234 }
6235 
6236 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6237 {
6238 	ufshcd_rpm_get_sync(hba);
6239 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6240 	    hba->is_sys_suspended) {
6241 		enum ufs_pm_op pm_op;
6242 
6243 		/*
6244 		 * Don't assume anything of resume, if
6245 		 * resume fails, irq and clocks can be OFF, and powers
6246 		 * can be OFF or in LPM.
6247 		 */
6248 		ufshcd_setup_hba_vreg(hba, true);
6249 		ufshcd_enable_irq(hba);
6250 		ufshcd_setup_vreg(hba, true);
6251 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6252 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6253 		ufshcd_hold(hba);
6254 		if (!ufshcd_is_clkgating_allowed(hba))
6255 			ufshcd_setup_clocks(hba, true);
6256 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6257 		ufshcd_vops_resume(hba, pm_op);
6258 	} else {
6259 		ufshcd_hold(hba);
6260 		if (ufshcd_is_clkscaling_supported(hba) &&
6261 		    hba->clk_scaling.is_enabled)
6262 			ufshcd_suspend_clkscaling(hba);
6263 		ufshcd_clk_scaling_allow(hba, false);
6264 	}
6265 	ufshcd_scsi_block_requests(hba);
6266 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6267 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6268 	cancel_work_sync(&hba->eeh_work);
6269 }
6270 
6271 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6272 {
6273 	ufshcd_scsi_unblock_requests(hba);
6274 	ufshcd_release(hba);
6275 	if (ufshcd_is_clkscaling_supported(hba))
6276 		ufshcd_clk_scaling_suspend(hba, false);
6277 	ufshcd_rpm_put(hba);
6278 }
6279 
6280 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6281 {
6282 	return (!hba->is_powered || hba->shutting_down ||
6283 		!hba->ufs_device_wlun ||
6284 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6285 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6286 		   ufshcd_is_link_broken(hba))));
6287 }
6288 
6289 #ifdef CONFIG_PM
6290 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6291 {
6292 	struct Scsi_Host *shost = hba->host;
6293 	struct scsi_device *sdev;
6294 	struct request_queue *q;
6295 	int ret;
6296 
6297 	hba->is_sys_suspended = false;
6298 	/*
6299 	 * Set RPM status of wlun device to RPM_ACTIVE,
6300 	 * this also clears its runtime error.
6301 	 */
6302 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6303 
6304 	/* hba device might have a runtime error otherwise */
6305 	if (ret)
6306 		ret = pm_runtime_set_active(hba->dev);
6307 	/*
6308 	 * If wlun device had runtime error, we also need to resume those
6309 	 * consumer scsi devices in case any of them has failed to be
6310 	 * resumed due to supplier runtime resume failure. This is to unblock
6311 	 * blk_queue_enter in case there are bios waiting inside it.
6312 	 */
6313 	if (!ret) {
6314 		shost_for_each_device(sdev, shost) {
6315 			q = sdev->request_queue;
6316 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6317 				       q->rpm_status == RPM_SUSPENDING))
6318 				pm_request_resume(q->dev);
6319 		}
6320 	}
6321 }
6322 #else
6323 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6324 {
6325 }
6326 #endif
6327 
6328 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6329 {
6330 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6331 	u32 mode;
6332 
6333 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6334 
6335 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6336 		return true;
6337 
6338 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6339 		return true;
6340 
6341 	return false;
6342 }
6343 
6344 static bool ufshcd_abort_one(struct request *rq, void *priv)
6345 {
6346 	int *ret = priv;
6347 	u32 tag = rq->tag;
6348 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6349 	struct scsi_device *sdev = cmd->device;
6350 	struct Scsi_Host *shost = sdev->host;
6351 	struct ufs_hba *hba = shost_priv(shost);
6352 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6353 	struct ufs_hw_queue *hwq;
6354 	unsigned long flags;
6355 
6356 	*ret = ufshcd_try_to_abort_task(hba, tag);
6357 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6358 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6359 		*ret ? "failed" : "succeeded");
6360 
6361 	/* Release cmd in MCQ mode if abort succeeds */
6362 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6363 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6364 		spin_lock_irqsave(&hwq->cq_lock, flags);
6365 		if (ufshcd_cmd_inflight(lrbp->cmd))
6366 			ufshcd_release_scsi_cmd(hba, lrbp);
6367 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6368 	}
6369 
6370 	return *ret == 0;
6371 }
6372 
6373 /**
6374  * ufshcd_abort_all - Abort all pending commands.
6375  * @hba: Host bus adapter pointer.
6376  *
6377  * Return: true if and only if the host controller needs to be reset.
6378  */
6379 static bool ufshcd_abort_all(struct ufs_hba *hba)
6380 {
6381 	int tag, ret = 0;
6382 
6383 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6384 	if (ret)
6385 		goto out;
6386 
6387 	/* Clear pending task management requests */
6388 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6389 		ret = ufshcd_clear_tm_cmd(hba, tag);
6390 		if (ret)
6391 			goto out;
6392 	}
6393 
6394 out:
6395 	/* Complete the requests that are cleared by s/w */
6396 	ufshcd_complete_requests(hba, false);
6397 
6398 	return ret != 0;
6399 }
6400 
6401 /**
6402  * ufshcd_err_handler - handle UFS errors that require s/w attention
6403  * @work: pointer to work structure
6404  */
6405 static void ufshcd_err_handler(struct work_struct *work)
6406 {
6407 	int retries = MAX_ERR_HANDLER_RETRIES;
6408 	struct ufs_hba *hba;
6409 	unsigned long flags;
6410 	bool needs_restore;
6411 	bool needs_reset;
6412 	int pmc_err;
6413 
6414 	hba = container_of(work, struct ufs_hba, eh_work);
6415 
6416 	dev_info(hba->dev,
6417 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6418 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6419 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6420 		 hba->saved_uic_err, hba->force_reset,
6421 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6422 
6423 	down(&hba->host_sem);
6424 	spin_lock_irqsave(hba->host->host_lock, flags);
6425 	if (ufshcd_err_handling_should_stop(hba)) {
6426 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6427 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6428 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6429 		up(&hba->host_sem);
6430 		return;
6431 	}
6432 	ufshcd_set_eh_in_progress(hba);
6433 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6434 	ufshcd_err_handling_prepare(hba);
6435 	/* Complete requests that have door-bell cleared by h/w */
6436 	ufshcd_complete_requests(hba, false);
6437 	spin_lock_irqsave(hba->host->host_lock, flags);
6438 again:
6439 	needs_restore = false;
6440 	needs_reset = false;
6441 
6442 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6443 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6444 	/*
6445 	 * A full reset and restore might have happened after preparation
6446 	 * is finished, double check whether we should stop.
6447 	 */
6448 	if (ufshcd_err_handling_should_stop(hba))
6449 		goto skip_err_handling;
6450 
6451 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6452 		bool ret;
6453 
6454 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6455 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6456 		ret = ufshcd_quirk_dl_nac_errors(hba);
6457 		spin_lock_irqsave(hba->host->host_lock, flags);
6458 		if (!ret && ufshcd_err_handling_should_stop(hba))
6459 			goto skip_err_handling;
6460 	}
6461 
6462 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6463 	    (hba->saved_uic_err &&
6464 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6465 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6466 
6467 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6468 		ufshcd_print_host_state(hba);
6469 		ufshcd_print_pwr_info(hba);
6470 		ufshcd_print_evt_hist(hba);
6471 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6472 		ufshcd_print_trs_all(hba, pr_prdt);
6473 		spin_lock_irqsave(hba->host->host_lock, flags);
6474 	}
6475 
6476 	/*
6477 	 * if host reset is required then skip clearing the pending
6478 	 * transfers forcefully because they will get cleared during
6479 	 * host reset and restore
6480 	 */
6481 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6482 	    ufshcd_is_saved_err_fatal(hba) ||
6483 	    ((hba->saved_err & UIC_ERROR) &&
6484 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6485 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6486 		needs_reset = true;
6487 		goto do_reset;
6488 	}
6489 
6490 	/*
6491 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6492 	 * check if power mode restore is needed.
6493 	 */
6494 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6495 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6496 		if (!hba->saved_uic_err)
6497 			hba->saved_err &= ~UIC_ERROR;
6498 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6499 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6500 			needs_restore = true;
6501 		spin_lock_irqsave(hba->host->host_lock, flags);
6502 		if (!hba->saved_err && !needs_restore)
6503 			goto skip_err_handling;
6504 	}
6505 
6506 	hba->silence_err_logs = true;
6507 	/* release lock as clear command might sleep */
6508 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6509 
6510 	needs_reset = ufshcd_abort_all(hba);
6511 
6512 	spin_lock_irqsave(hba->host->host_lock, flags);
6513 	hba->silence_err_logs = false;
6514 	if (needs_reset)
6515 		goto do_reset;
6516 
6517 	/*
6518 	 * After all reqs and tasks are cleared from doorbell,
6519 	 * now it is safe to retore power mode.
6520 	 */
6521 	if (needs_restore) {
6522 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6523 		/*
6524 		 * Hold the scaling lock just in case dev cmds
6525 		 * are sent via bsg and/or sysfs.
6526 		 */
6527 		down_write(&hba->clk_scaling_lock);
6528 		hba->force_pmc = true;
6529 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6530 		if (pmc_err) {
6531 			needs_reset = true;
6532 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6533 					__func__, pmc_err);
6534 		}
6535 		hba->force_pmc = false;
6536 		ufshcd_print_pwr_info(hba);
6537 		up_write(&hba->clk_scaling_lock);
6538 		spin_lock_irqsave(hba->host->host_lock, flags);
6539 	}
6540 
6541 do_reset:
6542 	/* Fatal errors need reset */
6543 	if (needs_reset) {
6544 		int err;
6545 
6546 		hba->force_reset = false;
6547 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6548 		err = ufshcd_reset_and_restore(hba);
6549 		if (err)
6550 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6551 					__func__, err);
6552 		else
6553 			ufshcd_recover_pm_error(hba);
6554 		spin_lock_irqsave(hba->host->host_lock, flags);
6555 	}
6556 
6557 skip_err_handling:
6558 	if (!needs_reset) {
6559 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6560 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6561 		if (hba->saved_err || hba->saved_uic_err)
6562 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6563 			    __func__, hba->saved_err, hba->saved_uic_err);
6564 	}
6565 	/* Exit in an operational state or dead */
6566 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6567 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6568 		if (--retries)
6569 			goto again;
6570 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6571 	}
6572 	ufshcd_clear_eh_in_progress(hba);
6573 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6574 	ufshcd_err_handling_unprepare(hba);
6575 	up(&hba->host_sem);
6576 
6577 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6578 		 ufshcd_state_name[hba->ufshcd_state]);
6579 }
6580 
6581 /**
6582  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6583  * @hba: per-adapter instance
6584  *
6585  * Return:
6586  *  IRQ_HANDLED - If interrupt is valid
6587  *  IRQ_NONE    - If invalid interrupt
6588  */
6589 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6590 {
6591 	u32 reg;
6592 	irqreturn_t retval = IRQ_NONE;
6593 
6594 	/* PHY layer error */
6595 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6596 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6597 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6598 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6599 		/*
6600 		 * To know whether this error is fatal or not, DB timeout
6601 		 * must be checked but this error is handled separately.
6602 		 */
6603 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6604 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6605 					__func__);
6606 
6607 		/* Got a LINERESET indication. */
6608 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6609 			struct uic_command *cmd = NULL;
6610 
6611 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6612 			if (hba->uic_async_done && hba->active_uic_cmd)
6613 				cmd = hba->active_uic_cmd;
6614 			/*
6615 			 * Ignore the LINERESET during power mode change
6616 			 * operation via DME_SET command.
6617 			 */
6618 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6619 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6620 		}
6621 		retval |= IRQ_HANDLED;
6622 	}
6623 
6624 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6625 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6626 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6627 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6628 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6629 
6630 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6631 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6632 		else if (hba->dev_quirks &
6633 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6634 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6635 				hba->uic_error |=
6636 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6637 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6638 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6639 		}
6640 		retval |= IRQ_HANDLED;
6641 	}
6642 
6643 	/* UIC NL/TL/DME errors needs software retry */
6644 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6645 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6646 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6647 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6648 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6649 		retval |= IRQ_HANDLED;
6650 	}
6651 
6652 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6653 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6654 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6655 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6656 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6657 		retval |= IRQ_HANDLED;
6658 	}
6659 
6660 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6661 	if ((reg & UIC_DME_ERROR) &&
6662 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6663 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6664 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6665 		retval |= IRQ_HANDLED;
6666 	}
6667 
6668 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6669 			__func__, hba->uic_error);
6670 	return retval;
6671 }
6672 
6673 /**
6674  * ufshcd_check_errors - Check for errors that need s/w attention
6675  * @hba: per-adapter instance
6676  * @intr_status: interrupt status generated by the controller
6677  *
6678  * Return:
6679  *  IRQ_HANDLED - If interrupt is valid
6680  *  IRQ_NONE    - If invalid interrupt
6681  */
6682 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6683 {
6684 	bool queue_eh_work = false;
6685 	irqreturn_t retval = IRQ_NONE;
6686 
6687 	spin_lock(hba->host->host_lock);
6688 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6689 
6690 	if (hba->errors & INT_FATAL_ERRORS) {
6691 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6692 				       hba->errors);
6693 		queue_eh_work = true;
6694 	}
6695 
6696 	if (hba->errors & UIC_ERROR) {
6697 		hba->uic_error = 0;
6698 		retval = ufshcd_update_uic_error(hba);
6699 		if (hba->uic_error)
6700 			queue_eh_work = true;
6701 	}
6702 
6703 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6704 		dev_err(hba->dev,
6705 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6706 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6707 			"Enter" : "Exit",
6708 			hba->errors, ufshcd_get_upmcrs(hba));
6709 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6710 				       hba->errors);
6711 		ufshcd_set_link_broken(hba);
6712 		queue_eh_work = true;
6713 	}
6714 
6715 	if (queue_eh_work) {
6716 		/*
6717 		 * update the transfer error masks to sticky bits, let's do this
6718 		 * irrespective of current ufshcd_state.
6719 		 */
6720 		hba->saved_err |= hba->errors;
6721 		hba->saved_uic_err |= hba->uic_error;
6722 
6723 		/* dump controller state before resetting */
6724 		if ((hba->saved_err &
6725 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6726 		    (hba->saved_uic_err &&
6727 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6728 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6729 					__func__, hba->saved_err,
6730 					hba->saved_uic_err);
6731 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6732 					 "host_regs: ");
6733 			ufshcd_print_pwr_info(hba);
6734 		}
6735 		ufshcd_schedule_eh_work(hba);
6736 		retval |= IRQ_HANDLED;
6737 	}
6738 	/*
6739 	 * if (!queue_eh_work) -
6740 	 * Other errors are either non-fatal where host recovers
6741 	 * itself without s/w intervention or errors that will be
6742 	 * handled by the SCSI core layer.
6743 	 */
6744 	hba->errors = 0;
6745 	hba->uic_error = 0;
6746 	spin_unlock(hba->host->host_lock);
6747 	return retval;
6748 }
6749 
6750 /**
6751  * ufshcd_tmc_handler - handle task management function completion
6752  * @hba: per adapter instance
6753  *
6754  * Return:
6755  *  IRQ_HANDLED - If interrupt is valid
6756  *  IRQ_NONE    - If invalid interrupt
6757  */
6758 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6759 {
6760 	unsigned long flags, pending, issued;
6761 	irqreturn_t ret = IRQ_NONE;
6762 	int tag;
6763 
6764 	spin_lock_irqsave(hba->host->host_lock, flags);
6765 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6766 	issued = hba->outstanding_tasks & ~pending;
6767 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6768 		struct request *req = hba->tmf_rqs[tag];
6769 		struct completion *c = req->end_io_data;
6770 
6771 		complete(c);
6772 		ret = IRQ_HANDLED;
6773 	}
6774 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6775 
6776 	return ret;
6777 }
6778 
6779 /**
6780  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6781  * @hba: per adapter instance
6782  *
6783  * Return: IRQ_HANDLED if interrupt is handled.
6784  */
6785 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6786 {
6787 	struct ufs_hw_queue *hwq;
6788 	unsigned long outstanding_cqs;
6789 	unsigned int nr_queues;
6790 	int i, ret;
6791 	u32 events;
6792 
6793 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6794 	if (ret)
6795 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6796 
6797 	/* Exclude the poll queues */
6798 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6799 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6800 		hwq = &hba->uhq[i];
6801 
6802 		events = ufshcd_mcq_read_cqis(hba, i);
6803 		if (events)
6804 			ufshcd_mcq_write_cqis(hba, events, i);
6805 
6806 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6807 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6808 	}
6809 
6810 	return IRQ_HANDLED;
6811 }
6812 
6813 /**
6814  * ufshcd_sl_intr - Interrupt service routine
6815  * @hba: per adapter instance
6816  * @intr_status: contains interrupts generated by the controller
6817  *
6818  * Return:
6819  *  IRQ_HANDLED - If interrupt is valid
6820  *  IRQ_NONE    - If invalid interrupt
6821  */
6822 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6823 {
6824 	irqreturn_t retval = IRQ_NONE;
6825 
6826 	if (intr_status & UFSHCD_UIC_MASK)
6827 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6828 
6829 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6830 		retval |= ufshcd_check_errors(hba, intr_status);
6831 
6832 	if (intr_status & UTP_TASK_REQ_COMPL)
6833 		retval |= ufshcd_tmc_handler(hba);
6834 
6835 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6836 		retval |= ufshcd_transfer_req_compl(hba);
6837 
6838 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6839 		retval |= ufshcd_handle_mcq_cq_events(hba);
6840 
6841 	return retval;
6842 }
6843 
6844 /**
6845  * ufshcd_intr - Main interrupt service routine
6846  * @irq: irq number
6847  * @__hba: pointer to adapter instance
6848  *
6849  * Return:
6850  *  IRQ_HANDLED - If interrupt is valid
6851  *  IRQ_NONE    - If invalid interrupt
6852  */
6853 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6854 {
6855 	u32 intr_status, enabled_intr_status = 0;
6856 	irqreturn_t retval = IRQ_NONE;
6857 	struct ufs_hba *hba = __hba;
6858 	int retries = hba->nutrs;
6859 
6860 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6861 	hba->ufs_stats.last_intr_status = intr_status;
6862 	hba->ufs_stats.last_intr_ts = local_clock();
6863 
6864 	/*
6865 	 * There could be max of hba->nutrs reqs in flight and in worst case
6866 	 * if the reqs get finished 1 by 1 after the interrupt status is
6867 	 * read, make sure we handle them by checking the interrupt status
6868 	 * again in a loop until we process all of the reqs before returning.
6869 	 */
6870 	while (intr_status && retries--) {
6871 		enabled_intr_status =
6872 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6873 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6874 		if (enabled_intr_status)
6875 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6876 
6877 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6878 	}
6879 
6880 	if (enabled_intr_status && retval == IRQ_NONE &&
6881 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6882 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6883 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6884 					__func__,
6885 					intr_status,
6886 					hba->ufs_stats.last_intr_status,
6887 					enabled_intr_status);
6888 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6889 	}
6890 
6891 	return retval;
6892 }
6893 
6894 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6895 {
6896 	int err = 0;
6897 	u32 mask = 1 << tag;
6898 	unsigned long flags;
6899 
6900 	if (!test_bit(tag, &hba->outstanding_tasks))
6901 		goto out;
6902 
6903 	spin_lock_irqsave(hba->host->host_lock, flags);
6904 	ufshcd_utmrl_clear(hba, tag);
6905 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6906 
6907 	/* poll for max. 1 sec to clear door bell register by h/w */
6908 	err = ufshcd_wait_for_register(hba,
6909 			REG_UTP_TASK_REQ_DOOR_BELL,
6910 			mask, 0, 1000, 1000);
6911 
6912 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6913 		tag, err < 0 ? "failed" : "succeeded");
6914 
6915 out:
6916 	return err;
6917 }
6918 
6919 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6920 		struct utp_task_req_desc *treq, u8 tm_function)
6921 {
6922 	struct request_queue *q = hba->tmf_queue;
6923 	struct Scsi_Host *host = hba->host;
6924 	DECLARE_COMPLETION_ONSTACK(wait);
6925 	struct request *req;
6926 	unsigned long flags;
6927 	int task_tag, err;
6928 
6929 	/*
6930 	 * blk_mq_alloc_request() is used here only to get a free tag.
6931 	 */
6932 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6933 	if (IS_ERR(req))
6934 		return PTR_ERR(req);
6935 
6936 	req->end_io_data = &wait;
6937 	ufshcd_hold(hba);
6938 
6939 	spin_lock_irqsave(host->host_lock, flags);
6940 
6941 	task_tag = req->tag;
6942 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6943 		  task_tag);
6944 	hba->tmf_rqs[req->tag] = req;
6945 	treq->upiu_req.req_header.task_tag = task_tag;
6946 
6947 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6948 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6949 
6950 	/* send command to the controller */
6951 	__set_bit(task_tag, &hba->outstanding_tasks);
6952 
6953 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6954 	/* Make sure that doorbell is committed immediately */
6955 	wmb();
6956 
6957 	spin_unlock_irqrestore(host->host_lock, flags);
6958 
6959 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6960 
6961 	/* wait until the task management command is completed */
6962 	err = wait_for_completion_io_timeout(&wait,
6963 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6964 	if (!err) {
6965 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6966 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6967 				__func__, tm_function);
6968 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6969 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6970 					__func__, task_tag);
6971 		err = -ETIMEDOUT;
6972 	} else {
6973 		err = 0;
6974 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6975 
6976 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6977 	}
6978 
6979 	spin_lock_irqsave(hba->host->host_lock, flags);
6980 	hba->tmf_rqs[req->tag] = NULL;
6981 	__clear_bit(task_tag, &hba->outstanding_tasks);
6982 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6983 
6984 	ufshcd_release(hba);
6985 	blk_mq_free_request(req);
6986 
6987 	return err;
6988 }
6989 
6990 /**
6991  * ufshcd_issue_tm_cmd - issues task management commands to controller
6992  * @hba: per adapter instance
6993  * @lun_id: LUN ID to which TM command is sent
6994  * @task_id: task ID to which the TM command is applicable
6995  * @tm_function: task management function opcode
6996  * @tm_response: task management service response return value
6997  *
6998  * Return: non-zero value on error, zero on success.
6999  */
7000 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7001 		u8 tm_function, u8 *tm_response)
7002 {
7003 	struct utp_task_req_desc treq = { };
7004 	enum utp_ocs ocs_value;
7005 	int err;
7006 
7007 	/* Configure task request descriptor */
7008 	treq.header.interrupt = 1;
7009 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7010 
7011 	/* Configure task request UPIU */
7012 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7013 	treq.upiu_req.req_header.lun = lun_id;
7014 	treq.upiu_req.req_header.tm_function = tm_function;
7015 
7016 	/*
7017 	 * The host shall provide the same value for LUN field in the basic
7018 	 * header and for Input Parameter.
7019 	 */
7020 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7021 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7022 
7023 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7024 	if (err == -ETIMEDOUT)
7025 		return err;
7026 
7027 	ocs_value = treq.header.ocs & MASK_OCS;
7028 	if (ocs_value != OCS_SUCCESS)
7029 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7030 				__func__, ocs_value);
7031 	else if (tm_response)
7032 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7033 				MASK_TM_SERVICE_RESP;
7034 	return err;
7035 }
7036 
7037 /**
7038  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7039  * @hba:	per-adapter instance
7040  * @req_upiu:	upiu request
7041  * @rsp_upiu:	upiu reply
7042  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7043  * @buff_len:	descriptor size, 0 if NA
7044  * @cmd_type:	specifies the type (NOP, Query...)
7045  * @desc_op:	descriptor operation
7046  *
7047  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7048  * Therefore, it "rides" the device management infrastructure: uses its tag and
7049  * tasks work queues.
7050  *
7051  * Since there is only one available tag for device management commands,
7052  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7053  *
7054  * Return: 0 upon success; < 0 upon failure.
7055  */
7056 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7057 					struct utp_upiu_req *req_upiu,
7058 					struct utp_upiu_req *rsp_upiu,
7059 					u8 *desc_buff, int *buff_len,
7060 					enum dev_cmd_type cmd_type,
7061 					enum query_opcode desc_op)
7062 {
7063 	DECLARE_COMPLETION_ONSTACK(wait);
7064 	const u32 tag = hba->reserved_slot;
7065 	struct ufshcd_lrb *lrbp;
7066 	int err = 0;
7067 	u8 upiu_flags;
7068 
7069 	/* Protects use of hba->reserved_slot. */
7070 	lockdep_assert_held(&hba->dev_cmd.lock);
7071 
7072 	down_read(&hba->clk_scaling_lock);
7073 
7074 	lrbp = &hba->lrb[tag];
7075 	lrbp->cmd = NULL;
7076 	lrbp->task_tag = tag;
7077 	lrbp->lun = 0;
7078 	lrbp->intr_cmd = true;
7079 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7080 	hba->dev_cmd.type = cmd_type;
7081 
7082 	if (hba->ufs_version <= ufshci_version(1, 1))
7083 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7084 	else
7085 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7086 
7087 	/* update the task tag in the request upiu */
7088 	req_upiu->header.task_tag = tag;
7089 
7090 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7091 
7092 	/* just copy the upiu request as it is */
7093 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7094 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7095 		/* The Data Segment Area is optional depending upon the query
7096 		 * function value. for WRITE DESCRIPTOR, the data segment
7097 		 * follows right after the tsf.
7098 		 */
7099 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7100 		*buff_len = 0;
7101 	}
7102 
7103 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7104 
7105 	hba->dev_cmd.complete = &wait;
7106 
7107 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7108 
7109 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7110 	/*
7111 	 * ignore the returning value here - ufshcd_check_query_response is
7112 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7113 	 * read the response directly ignoring all errors.
7114 	 */
7115 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7116 
7117 	/* just copy the upiu response as it is */
7118 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7119 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7120 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7121 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7122 					   .data_segment_length);
7123 
7124 		if (*buff_len >= resp_len) {
7125 			memcpy(desc_buff, descp, resp_len);
7126 			*buff_len = resp_len;
7127 		} else {
7128 			dev_warn(hba->dev,
7129 				 "%s: rsp size %d is bigger than buffer size %d",
7130 				 __func__, resp_len, *buff_len);
7131 			*buff_len = 0;
7132 			err = -EINVAL;
7133 		}
7134 	}
7135 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7136 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7137 
7138 	up_read(&hba->clk_scaling_lock);
7139 	return err;
7140 }
7141 
7142 /**
7143  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7144  * @hba:	per-adapter instance
7145  * @req_upiu:	upiu request
7146  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7147  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7148  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7149  * @buff_len:	descriptor size, 0 if NA
7150  * @desc_op:	descriptor operation
7151  *
7152  * Supports UTP Transfer requests (nop and query), and UTP Task
7153  * Management requests.
7154  * It is up to the caller to fill the upiu conent properly, as it will
7155  * be copied without any further input validations.
7156  *
7157  * Return: 0 upon success; < 0 upon failure.
7158  */
7159 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7160 			     struct utp_upiu_req *req_upiu,
7161 			     struct utp_upiu_req *rsp_upiu,
7162 			     enum upiu_request_transaction msgcode,
7163 			     u8 *desc_buff, int *buff_len,
7164 			     enum query_opcode desc_op)
7165 {
7166 	int err;
7167 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7168 	struct utp_task_req_desc treq = { };
7169 	enum utp_ocs ocs_value;
7170 	u8 tm_f = req_upiu->header.tm_function;
7171 
7172 	switch (msgcode) {
7173 	case UPIU_TRANSACTION_NOP_OUT:
7174 		cmd_type = DEV_CMD_TYPE_NOP;
7175 		fallthrough;
7176 	case UPIU_TRANSACTION_QUERY_REQ:
7177 		ufshcd_hold(hba);
7178 		mutex_lock(&hba->dev_cmd.lock);
7179 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7180 						   desc_buff, buff_len,
7181 						   cmd_type, desc_op);
7182 		mutex_unlock(&hba->dev_cmd.lock);
7183 		ufshcd_release(hba);
7184 
7185 		break;
7186 	case UPIU_TRANSACTION_TASK_REQ:
7187 		treq.header.interrupt = 1;
7188 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7189 
7190 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7191 
7192 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7193 		if (err == -ETIMEDOUT)
7194 			break;
7195 
7196 		ocs_value = treq.header.ocs & MASK_OCS;
7197 		if (ocs_value != OCS_SUCCESS) {
7198 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7199 				ocs_value);
7200 			break;
7201 		}
7202 
7203 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7204 
7205 		break;
7206 	default:
7207 		err = -EINVAL;
7208 
7209 		break;
7210 	}
7211 
7212 	return err;
7213 }
7214 
7215 /**
7216  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7217  * @hba:	per adapter instance
7218  * @req_upiu:	upiu request
7219  * @rsp_upiu:	upiu reply
7220  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7221  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7222  * @sg_cnt:	The number of sg lists actually used
7223  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7224  * @dir:	DMA direction
7225  *
7226  * Return: zero on success, non-zero on failure.
7227  */
7228 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7229 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7230 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7231 			 enum dma_data_direction dir)
7232 {
7233 	DECLARE_COMPLETION_ONSTACK(wait);
7234 	const u32 tag = hba->reserved_slot;
7235 	struct ufshcd_lrb *lrbp;
7236 	int err = 0;
7237 	int result;
7238 	u8 upiu_flags;
7239 	u8 *ehs_data;
7240 	u16 ehs_len;
7241 
7242 	/* Protects use of hba->reserved_slot. */
7243 	ufshcd_hold(hba);
7244 	mutex_lock(&hba->dev_cmd.lock);
7245 	down_read(&hba->clk_scaling_lock);
7246 
7247 	lrbp = &hba->lrb[tag];
7248 	lrbp->cmd = NULL;
7249 	lrbp->task_tag = tag;
7250 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7251 
7252 	lrbp->intr_cmd = true;
7253 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7254 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7255 
7256 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7257 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7258 
7259 	/*
7260 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7261 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7262 	 * HW controller takes EHS length from UTRD.
7263 	 */
7264 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7265 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7266 	else
7267 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7268 
7269 	/* update the task tag */
7270 	req_upiu->header.task_tag = tag;
7271 
7272 	/* copy the UPIU(contains CDB) request as it is */
7273 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7274 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7275 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7276 
7277 	if (dir != DMA_NONE && sg_list)
7278 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7279 
7280 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7281 
7282 	hba->dev_cmd.complete = &wait;
7283 
7284 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7285 
7286 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7287 
7288 	if (!err) {
7289 		/* Just copy the upiu response as it is */
7290 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7291 		/* Get the response UPIU result */
7292 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7293 			lrbp->ucd_rsp_ptr->header.status;
7294 
7295 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7296 		/*
7297 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7298 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7299 		 * Message is 02h
7300 		 */
7301 		if (ehs_len == 2 && rsp_ehs) {
7302 			/*
7303 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7304 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7305 			 */
7306 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7307 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7308 		}
7309 	}
7310 
7311 	up_read(&hba->clk_scaling_lock);
7312 	mutex_unlock(&hba->dev_cmd.lock);
7313 	ufshcd_release(hba);
7314 	return err ? : result;
7315 }
7316 
7317 /**
7318  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7319  * @cmd: SCSI command pointer
7320  *
7321  * Return: SUCCESS or FAILED.
7322  */
7323 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7324 {
7325 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7326 	struct Scsi_Host *host;
7327 	struct ufs_hba *hba;
7328 	struct ufs_hw_queue *hwq;
7329 	struct ufshcd_lrb *lrbp;
7330 	u32 pos, not_cleared_mask = 0;
7331 	int err;
7332 	u8 resp = 0xF, lun;
7333 
7334 	host = cmd->device->host;
7335 	hba = shost_priv(host);
7336 
7337 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7338 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7339 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7340 		if (!err)
7341 			err = resp;
7342 		goto out;
7343 	}
7344 
7345 	if (is_mcq_enabled(hba)) {
7346 		for (pos = 0; pos < hba->nutrs; pos++) {
7347 			lrbp = &hba->lrb[pos];
7348 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7349 			    lrbp->lun == lun) {
7350 				ufshcd_clear_cmd(hba, pos);
7351 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7352 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7353 			}
7354 		}
7355 		err = 0;
7356 		goto out;
7357 	}
7358 
7359 	/* clear the commands that were pending for corresponding LUN */
7360 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7361 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7362 		if (hba->lrb[pos].lun == lun)
7363 			__set_bit(pos, &pending_reqs);
7364 	hba->outstanding_reqs &= ~pending_reqs;
7365 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7366 
7367 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7368 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7369 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7370 			not_cleared = 1U << pos &
7371 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7372 			hba->outstanding_reqs |= not_cleared;
7373 			not_cleared_mask |= not_cleared;
7374 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7375 
7376 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7377 				__func__, pos);
7378 		}
7379 	}
7380 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7381 
7382 out:
7383 	hba->req_abort_count = 0;
7384 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7385 	if (!err) {
7386 		err = SUCCESS;
7387 	} else {
7388 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7389 		err = FAILED;
7390 	}
7391 	return err;
7392 }
7393 
7394 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7395 {
7396 	struct ufshcd_lrb *lrbp;
7397 	int tag;
7398 
7399 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7400 		lrbp = &hba->lrb[tag];
7401 		lrbp->req_abort_skip = true;
7402 	}
7403 }
7404 
7405 /**
7406  * ufshcd_try_to_abort_task - abort a specific task
7407  * @hba: Pointer to adapter instance
7408  * @tag: Task tag/index to be aborted
7409  *
7410  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7411  * command, and in host controller by clearing the door-bell register. There can
7412  * be race between controller sending the command to the device while abort is
7413  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7414  * really issued and then try to abort it.
7415  *
7416  * Return: zero on success, non-zero on failure.
7417  */
7418 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7419 {
7420 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7421 	int err = 0;
7422 	int poll_cnt;
7423 	u8 resp = 0xF;
7424 	u32 reg;
7425 
7426 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7427 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7428 				UFS_QUERY_TASK, &resp);
7429 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7430 			/* cmd pending in the device */
7431 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7432 				__func__, tag);
7433 			break;
7434 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7435 			/*
7436 			 * cmd not pending in the device, check if it is
7437 			 * in transition.
7438 			 */
7439 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7440 				__func__, tag);
7441 			if (is_mcq_enabled(hba)) {
7442 				/* MCQ mode */
7443 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7444 					/* sleep for max. 200us same delay as in SDB mode */
7445 					usleep_range(100, 200);
7446 					continue;
7447 				}
7448 				/* command completed already */
7449 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7450 					__func__, tag);
7451 				goto out;
7452 			}
7453 
7454 			/* Single Doorbell Mode */
7455 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7456 			if (reg & (1 << tag)) {
7457 				/* sleep for max. 200us to stabilize */
7458 				usleep_range(100, 200);
7459 				continue;
7460 			}
7461 			/* command completed already */
7462 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7463 				__func__, tag);
7464 			goto out;
7465 		} else {
7466 			dev_err(hba->dev,
7467 				"%s: no response from device. tag = %d, err %d\n",
7468 				__func__, tag, err);
7469 			if (!err)
7470 				err = resp; /* service response error */
7471 			goto out;
7472 		}
7473 	}
7474 
7475 	if (!poll_cnt) {
7476 		err = -EBUSY;
7477 		goto out;
7478 	}
7479 
7480 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7481 			UFS_ABORT_TASK, &resp);
7482 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7483 		if (!err) {
7484 			err = resp; /* service response error */
7485 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7486 				__func__, tag, err);
7487 		}
7488 		goto out;
7489 	}
7490 
7491 	err = ufshcd_clear_cmd(hba, tag);
7492 	if (err)
7493 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7494 			__func__, tag, err);
7495 
7496 out:
7497 	return err;
7498 }
7499 
7500 /**
7501  * ufshcd_abort - scsi host template eh_abort_handler callback
7502  * @cmd: SCSI command pointer
7503  *
7504  * Return: SUCCESS or FAILED.
7505  */
7506 static int ufshcd_abort(struct scsi_cmnd *cmd)
7507 {
7508 	struct Scsi_Host *host = cmd->device->host;
7509 	struct ufs_hba *hba = shost_priv(host);
7510 	int tag = scsi_cmd_to_rq(cmd)->tag;
7511 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7512 	unsigned long flags;
7513 	int err = FAILED;
7514 	bool outstanding;
7515 	u32 reg;
7516 
7517 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7518 
7519 	ufshcd_hold(hba);
7520 
7521 	if (!is_mcq_enabled(hba)) {
7522 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7523 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7524 			/* If command is already aborted/completed, return FAILED. */
7525 			dev_err(hba->dev,
7526 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7527 				__func__, tag, hba->outstanding_reqs, reg);
7528 			goto release;
7529 		}
7530 	}
7531 
7532 	/* Print Transfer Request of aborted task */
7533 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7534 
7535 	/*
7536 	 * Print detailed info about aborted request.
7537 	 * As more than one request might get aborted at the same time,
7538 	 * print full information only for the first aborted request in order
7539 	 * to reduce repeated printouts. For other aborted requests only print
7540 	 * basic details.
7541 	 */
7542 	scsi_print_command(cmd);
7543 	if (!hba->req_abort_count) {
7544 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7545 		ufshcd_print_evt_hist(hba);
7546 		ufshcd_print_host_state(hba);
7547 		ufshcd_print_pwr_info(hba);
7548 		ufshcd_print_tr(hba, tag, true);
7549 	} else {
7550 		ufshcd_print_tr(hba, tag, false);
7551 	}
7552 	hba->req_abort_count++;
7553 
7554 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7555 		/* only execute this code in single doorbell mode */
7556 		dev_err(hba->dev,
7557 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7558 		__func__, tag);
7559 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7560 		goto release;
7561 	}
7562 
7563 	/*
7564 	 * Task abort to the device W-LUN is illegal. When this command
7565 	 * will fail, due to spec violation, scsi err handling next step
7566 	 * will be to send LU reset which, again, is a spec violation.
7567 	 * To avoid these unnecessary/illegal steps, first we clean up
7568 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7569 	 * then queue the eh_work and bail.
7570 	 */
7571 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7572 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7573 
7574 		spin_lock_irqsave(host->host_lock, flags);
7575 		hba->force_reset = true;
7576 		ufshcd_schedule_eh_work(hba);
7577 		spin_unlock_irqrestore(host->host_lock, flags);
7578 		goto release;
7579 	}
7580 
7581 	if (is_mcq_enabled(hba)) {
7582 		/* MCQ mode. Branch off to handle abort for mcq mode */
7583 		err = ufshcd_mcq_abort(cmd);
7584 		goto release;
7585 	}
7586 
7587 	/* Skip task abort in case previous aborts failed and report failure */
7588 	if (lrbp->req_abort_skip) {
7589 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7590 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7591 		goto release;
7592 	}
7593 
7594 	err = ufshcd_try_to_abort_task(hba, tag);
7595 	if (err) {
7596 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7597 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7598 		err = FAILED;
7599 		goto release;
7600 	}
7601 
7602 	/*
7603 	 * Clear the corresponding bit from outstanding_reqs since the command
7604 	 * has been aborted successfully.
7605 	 */
7606 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7607 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7608 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7609 
7610 	if (outstanding)
7611 		ufshcd_release_scsi_cmd(hba, lrbp);
7612 
7613 	err = SUCCESS;
7614 
7615 release:
7616 	/* Matches the ufshcd_hold() call at the start of this function. */
7617 	ufshcd_release(hba);
7618 	return err;
7619 }
7620 
7621 /**
7622  * ufshcd_host_reset_and_restore - reset and restore host controller
7623  * @hba: per-adapter instance
7624  *
7625  * Note that host controller reset may issue DME_RESET to
7626  * local and remote (device) Uni-Pro stack and the attributes
7627  * are reset to default state.
7628  *
7629  * Return: zero on success, non-zero on failure.
7630  */
7631 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7632 {
7633 	int err;
7634 
7635 	/*
7636 	 * Stop the host controller and complete the requests
7637 	 * cleared by h/w
7638 	 */
7639 	ufshcd_hba_stop(hba);
7640 	hba->silence_err_logs = true;
7641 	ufshcd_complete_requests(hba, true);
7642 	hba->silence_err_logs = false;
7643 
7644 	/* scale up clocks to max frequency before full reinitialization */
7645 	ufshcd_scale_clks(hba, true);
7646 
7647 	err = ufshcd_hba_enable(hba);
7648 
7649 	/* Establish the link again and restore the device */
7650 	if (!err)
7651 		err = ufshcd_probe_hba(hba, false);
7652 
7653 	if (err)
7654 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7655 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7656 	return err;
7657 }
7658 
7659 /**
7660  * ufshcd_reset_and_restore - reset and re-initialize host/device
7661  * @hba: per-adapter instance
7662  *
7663  * Reset and recover device, host and re-establish link. This
7664  * is helpful to recover the communication in fatal error conditions.
7665  *
7666  * Return: zero on success, non-zero on failure.
7667  */
7668 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7669 {
7670 	u32 saved_err = 0;
7671 	u32 saved_uic_err = 0;
7672 	int err = 0;
7673 	unsigned long flags;
7674 	int retries = MAX_HOST_RESET_RETRIES;
7675 
7676 	spin_lock_irqsave(hba->host->host_lock, flags);
7677 	do {
7678 		/*
7679 		 * This is a fresh start, cache and clear saved error first,
7680 		 * in case new error generated during reset and restore.
7681 		 */
7682 		saved_err |= hba->saved_err;
7683 		saved_uic_err |= hba->saved_uic_err;
7684 		hba->saved_err = 0;
7685 		hba->saved_uic_err = 0;
7686 		hba->force_reset = false;
7687 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7688 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7689 
7690 		/* Reset the attached device */
7691 		ufshcd_device_reset(hba);
7692 
7693 		err = ufshcd_host_reset_and_restore(hba);
7694 
7695 		spin_lock_irqsave(hba->host->host_lock, flags);
7696 		if (err)
7697 			continue;
7698 		/* Do not exit unless operational or dead */
7699 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7700 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7701 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7702 			err = -EAGAIN;
7703 	} while (err && --retries);
7704 
7705 	/*
7706 	 * Inform scsi mid-layer that we did reset and allow to handle
7707 	 * Unit Attention properly.
7708 	 */
7709 	scsi_report_bus_reset(hba->host, 0);
7710 	if (err) {
7711 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7712 		hba->saved_err |= saved_err;
7713 		hba->saved_uic_err |= saved_uic_err;
7714 	}
7715 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7716 
7717 	return err;
7718 }
7719 
7720 /**
7721  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7722  * @cmd: SCSI command pointer
7723  *
7724  * Return: SUCCESS or FAILED.
7725  */
7726 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7727 {
7728 	int err = SUCCESS;
7729 	unsigned long flags;
7730 	struct ufs_hba *hba;
7731 
7732 	hba = shost_priv(cmd->device->host);
7733 
7734 	spin_lock_irqsave(hba->host->host_lock, flags);
7735 	hba->force_reset = true;
7736 	ufshcd_schedule_eh_work(hba);
7737 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7738 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7739 
7740 	flush_work(&hba->eh_work);
7741 
7742 	spin_lock_irqsave(hba->host->host_lock, flags);
7743 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7744 		err = FAILED;
7745 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7746 
7747 	return err;
7748 }
7749 
7750 /**
7751  * ufshcd_get_max_icc_level - calculate the ICC level
7752  * @sup_curr_uA: max. current supported by the regulator
7753  * @start_scan: row at the desc table to start scan from
7754  * @buff: power descriptor buffer
7755  *
7756  * Return: calculated max ICC level for specific regulator.
7757  */
7758 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7759 				    const char *buff)
7760 {
7761 	int i;
7762 	int curr_uA;
7763 	u16 data;
7764 	u16 unit;
7765 
7766 	for (i = start_scan; i >= 0; i--) {
7767 		data = get_unaligned_be16(&buff[2 * i]);
7768 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7769 						ATTR_ICC_LVL_UNIT_OFFSET;
7770 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7771 		switch (unit) {
7772 		case UFSHCD_NANO_AMP:
7773 			curr_uA = curr_uA / 1000;
7774 			break;
7775 		case UFSHCD_MILI_AMP:
7776 			curr_uA = curr_uA * 1000;
7777 			break;
7778 		case UFSHCD_AMP:
7779 			curr_uA = curr_uA * 1000 * 1000;
7780 			break;
7781 		case UFSHCD_MICRO_AMP:
7782 		default:
7783 			break;
7784 		}
7785 		if (sup_curr_uA >= curr_uA)
7786 			break;
7787 	}
7788 	if (i < 0) {
7789 		i = 0;
7790 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7791 	}
7792 
7793 	return (u32)i;
7794 }
7795 
7796 /**
7797  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7798  * In case regulators are not initialized we'll return 0
7799  * @hba: per-adapter instance
7800  * @desc_buf: power descriptor buffer to extract ICC levels from.
7801  *
7802  * Return: calculated ICC level.
7803  */
7804 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7805 						const u8 *desc_buf)
7806 {
7807 	u32 icc_level = 0;
7808 
7809 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7810 						!hba->vreg_info.vccq2) {
7811 		/*
7812 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7813 		 * never-ending cycles of messages written back to storage by
7814 		 * user space causing runtime resume, causing more messages and
7815 		 * so on.
7816 		 */
7817 		dev_dbg(hba->dev,
7818 			"%s: Regulator capability was not set, actvIccLevel=%d",
7819 							__func__, icc_level);
7820 		goto out;
7821 	}
7822 
7823 	if (hba->vreg_info.vcc->max_uA)
7824 		icc_level = ufshcd_get_max_icc_level(
7825 				hba->vreg_info.vcc->max_uA,
7826 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7827 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7828 
7829 	if (hba->vreg_info.vccq->max_uA)
7830 		icc_level = ufshcd_get_max_icc_level(
7831 				hba->vreg_info.vccq->max_uA,
7832 				icc_level,
7833 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7834 
7835 	if (hba->vreg_info.vccq2->max_uA)
7836 		icc_level = ufshcd_get_max_icc_level(
7837 				hba->vreg_info.vccq2->max_uA,
7838 				icc_level,
7839 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7840 out:
7841 	return icc_level;
7842 }
7843 
7844 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7845 {
7846 	int ret;
7847 	u8 *desc_buf;
7848 	u32 icc_level;
7849 
7850 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7851 	if (!desc_buf)
7852 		return;
7853 
7854 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7855 				     desc_buf, QUERY_DESC_MAX_SIZE);
7856 	if (ret) {
7857 		dev_err(hba->dev,
7858 			"%s: Failed reading power descriptor ret = %d",
7859 			__func__, ret);
7860 		goto out;
7861 	}
7862 
7863 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7864 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7865 
7866 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7867 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7868 
7869 	if (ret)
7870 		dev_err(hba->dev,
7871 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7872 			__func__, icc_level, ret);
7873 
7874 out:
7875 	kfree(desc_buf);
7876 }
7877 
7878 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7879 {
7880 	scsi_autopm_get_device(sdev);
7881 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7882 	if (sdev->rpm_autosuspend)
7883 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7884 						 RPM_AUTOSUSPEND_DELAY_MS);
7885 	scsi_autopm_put_device(sdev);
7886 }
7887 
7888 /**
7889  * ufshcd_scsi_add_wlus - Adds required W-LUs
7890  * @hba: per-adapter instance
7891  *
7892  * UFS device specification requires the UFS devices to support 4 well known
7893  * logical units:
7894  *	"REPORT_LUNS" (address: 01h)
7895  *	"UFS Device" (address: 50h)
7896  *	"RPMB" (address: 44h)
7897  *	"BOOT" (address: 30h)
7898  * UFS device's power management needs to be controlled by "POWER CONDITION"
7899  * field of SSU (START STOP UNIT) command. But this "power condition" field
7900  * will take effect only when its sent to "UFS device" well known logical unit
7901  * hence we require the scsi_device instance to represent this logical unit in
7902  * order for the UFS host driver to send the SSU command for power management.
7903  *
7904  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7905  * Block) LU so user space process can control this LU. User space may also
7906  * want to have access to BOOT LU.
7907  *
7908  * This function adds scsi device instances for each of all well known LUs
7909  * (except "REPORT LUNS" LU).
7910  *
7911  * Return: zero on success (all required W-LUs are added successfully),
7912  * non-zero error value on failure (if failed to add any of the required W-LU).
7913  */
7914 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7915 {
7916 	int ret = 0;
7917 	struct scsi_device *sdev_boot, *sdev_rpmb;
7918 
7919 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7920 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7921 	if (IS_ERR(hba->ufs_device_wlun)) {
7922 		ret = PTR_ERR(hba->ufs_device_wlun);
7923 		hba->ufs_device_wlun = NULL;
7924 		goto out;
7925 	}
7926 	scsi_device_put(hba->ufs_device_wlun);
7927 
7928 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7929 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7930 	if (IS_ERR(sdev_rpmb)) {
7931 		ret = PTR_ERR(sdev_rpmb);
7932 		goto remove_ufs_device_wlun;
7933 	}
7934 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7935 	scsi_device_put(sdev_rpmb);
7936 
7937 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7938 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7939 	if (IS_ERR(sdev_boot)) {
7940 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7941 	} else {
7942 		ufshcd_blk_pm_runtime_init(sdev_boot);
7943 		scsi_device_put(sdev_boot);
7944 	}
7945 	goto out;
7946 
7947 remove_ufs_device_wlun:
7948 	scsi_remove_device(hba->ufs_device_wlun);
7949 out:
7950 	return ret;
7951 }
7952 
7953 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7954 {
7955 	struct ufs_dev_info *dev_info = &hba->dev_info;
7956 	u8 lun;
7957 	u32 d_lu_wb_buf_alloc;
7958 	u32 ext_ufs_feature;
7959 
7960 	if (!ufshcd_is_wb_allowed(hba))
7961 		return;
7962 
7963 	/*
7964 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7965 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7966 	 * enabled
7967 	 */
7968 	if (!(dev_info->wspecversion >= 0x310 ||
7969 	      dev_info->wspecversion == 0x220 ||
7970 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7971 		goto wb_disabled;
7972 
7973 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7974 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7975 
7976 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7977 		goto wb_disabled;
7978 
7979 	/*
7980 	 * WB may be supported but not configured while provisioning. The spec
7981 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7982 	 * buffer configured.
7983 	 */
7984 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7985 
7986 	dev_info->b_presrv_uspc_en =
7987 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7988 
7989 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7990 		if (!get_unaligned_be32(desc_buf +
7991 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7992 			goto wb_disabled;
7993 	} else {
7994 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7995 			d_lu_wb_buf_alloc = 0;
7996 			ufshcd_read_unit_desc_param(hba,
7997 					lun,
7998 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7999 					(u8 *)&d_lu_wb_buf_alloc,
8000 					sizeof(d_lu_wb_buf_alloc));
8001 			if (d_lu_wb_buf_alloc) {
8002 				dev_info->wb_dedicated_lu = lun;
8003 				break;
8004 			}
8005 		}
8006 
8007 		if (!d_lu_wb_buf_alloc)
8008 			goto wb_disabled;
8009 	}
8010 
8011 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8012 		goto wb_disabled;
8013 
8014 	return;
8015 
8016 wb_disabled:
8017 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8018 }
8019 
8020 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8021 {
8022 	struct ufs_dev_info *dev_info = &hba->dev_info;
8023 	u32 ext_ufs_feature;
8024 	u8 mask = 0;
8025 
8026 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8027 		return;
8028 
8029 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8030 
8031 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8032 		mask |= MASK_EE_TOO_LOW_TEMP;
8033 
8034 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8035 		mask |= MASK_EE_TOO_HIGH_TEMP;
8036 
8037 	if (mask) {
8038 		ufshcd_enable_ee(hba, mask);
8039 		ufs_hwmon_probe(hba, mask);
8040 	}
8041 }
8042 
8043 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8044 {
8045 	struct ufs_dev_info *dev_info = &hba->dev_info;
8046 	u32 ext_ufs_feature;
8047 	u32 ext_iid_en = 0;
8048 	int err;
8049 
8050 	/* Only UFS-4.0 and above may support EXT_IID */
8051 	if (dev_info->wspecversion < 0x400)
8052 		goto out;
8053 
8054 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8055 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8056 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8057 		goto out;
8058 
8059 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8060 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8061 	if (err)
8062 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8063 
8064 out:
8065 	dev_info->b_ext_iid_en = ext_iid_en;
8066 }
8067 
8068 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8069 			     const struct ufs_dev_quirk *fixups)
8070 {
8071 	const struct ufs_dev_quirk *f;
8072 	struct ufs_dev_info *dev_info = &hba->dev_info;
8073 
8074 	if (!fixups)
8075 		return;
8076 
8077 	for (f = fixups; f->quirk; f++) {
8078 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8079 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8080 		     ((dev_info->model &&
8081 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8082 		      !strcmp(f->model, UFS_ANY_MODEL)))
8083 			hba->dev_quirks |= f->quirk;
8084 	}
8085 }
8086 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8087 
8088 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8089 {
8090 	/* fix by general quirk table */
8091 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8092 
8093 	/* allow vendors to fix quirks */
8094 	ufshcd_vops_fixup_dev_quirks(hba);
8095 }
8096 
8097 static int ufs_get_device_desc(struct ufs_hba *hba)
8098 {
8099 	int err;
8100 	u8 model_index;
8101 	u8 *desc_buf;
8102 	struct ufs_dev_info *dev_info = &hba->dev_info;
8103 
8104 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8105 	if (!desc_buf) {
8106 		err = -ENOMEM;
8107 		goto out;
8108 	}
8109 
8110 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8111 				     QUERY_DESC_MAX_SIZE);
8112 	if (err) {
8113 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8114 			__func__, err);
8115 		goto out;
8116 	}
8117 
8118 	/*
8119 	 * getting vendor (manufacturerID) and Bank Index in big endian
8120 	 * format
8121 	 */
8122 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8123 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8124 
8125 	/* getting Specification Version in big endian format */
8126 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8127 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8128 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8129 
8130 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8131 
8132 	err = ufshcd_read_string_desc(hba, model_index,
8133 				      &dev_info->model, SD_ASCII_STD);
8134 	if (err < 0) {
8135 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8136 			__func__, err);
8137 		goto out;
8138 	}
8139 
8140 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8141 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8142 
8143 	ufs_fixup_device_setup(hba);
8144 
8145 	ufshcd_wb_probe(hba, desc_buf);
8146 
8147 	ufshcd_temp_notif_probe(hba, desc_buf);
8148 
8149 	if (hba->ext_iid_sup)
8150 		ufshcd_ext_iid_probe(hba, desc_buf);
8151 
8152 	/*
8153 	 * ufshcd_read_string_desc returns size of the string
8154 	 * reset the error value
8155 	 */
8156 	err = 0;
8157 
8158 out:
8159 	kfree(desc_buf);
8160 	return err;
8161 }
8162 
8163 static void ufs_put_device_desc(struct ufs_hba *hba)
8164 {
8165 	struct ufs_dev_info *dev_info = &hba->dev_info;
8166 
8167 	kfree(dev_info->model);
8168 	dev_info->model = NULL;
8169 }
8170 
8171 /**
8172  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8173  * @hba: per-adapter instance
8174  *
8175  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8176  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8177  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8178  * the hibern8 exit latency.
8179  *
8180  * Return: zero on success, non-zero error value on failure.
8181  */
8182 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8183 {
8184 	int ret = 0;
8185 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8186 
8187 	ret = ufshcd_dme_peer_get(hba,
8188 				  UIC_ARG_MIB_SEL(
8189 					RX_MIN_ACTIVATETIME_CAPABILITY,
8190 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8191 				  &peer_rx_min_activatetime);
8192 	if (ret)
8193 		goto out;
8194 
8195 	/* make sure proper unit conversion is applied */
8196 	tuned_pa_tactivate =
8197 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8198 		 / PA_TACTIVATE_TIME_UNIT_US);
8199 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8200 			     tuned_pa_tactivate);
8201 
8202 out:
8203 	return ret;
8204 }
8205 
8206 /**
8207  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8208  * @hba: per-adapter instance
8209  *
8210  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8211  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8212  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8213  * This optimal value can help reduce the hibern8 exit latency.
8214  *
8215  * Return: zero on success, non-zero error value on failure.
8216  */
8217 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8218 {
8219 	int ret = 0;
8220 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8221 	u32 max_hibern8_time, tuned_pa_hibern8time;
8222 
8223 	ret = ufshcd_dme_get(hba,
8224 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8225 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8226 				  &local_tx_hibern8_time_cap);
8227 	if (ret)
8228 		goto out;
8229 
8230 	ret = ufshcd_dme_peer_get(hba,
8231 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8232 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8233 				  &peer_rx_hibern8_time_cap);
8234 	if (ret)
8235 		goto out;
8236 
8237 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8238 			       peer_rx_hibern8_time_cap);
8239 	/* make sure proper unit conversion is applied */
8240 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8241 				/ PA_HIBERN8_TIME_UNIT_US);
8242 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8243 			     tuned_pa_hibern8time);
8244 out:
8245 	return ret;
8246 }
8247 
8248 /**
8249  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8250  * less than device PA_TACTIVATE time.
8251  * @hba: per-adapter instance
8252  *
8253  * Some UFS devices require host PA_TACTIVATE to be lower than device
8254  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8255  * for such devices.
8256  *
8257  * Return: zero on success, non-zero error value on failure.
8258  */
8259 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8260 {
8261 	int ret = 0;
8262 	u32 granularity, peer_granularity;
8263 	u32 pa_tactivate, peer_pa_tactivate;
8264 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8265 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8266 
8267 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8268 				  &granularity);
8269 	if (ret)
8270 		goto out;
8271 
8272 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8273 				  &peer_granularity);
8274 	if (ret)
8275 		goto out;
8276 
8277 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8278 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8279 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8280 			__func__, granularity);
8281 		return -EINVAL;
8282 	}
8283 
8284 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8285 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8286 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8287 			__func__, peer_granularity);
8288 		return -EINVAL;
8289 	}
8290 
8291 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8292 	if (ret)
8293 		goto out;
8294 
8295 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8296 				  &peer_pa_tactivate);
8297 	if (ret)
8298 		goto out;
8299 
8300 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8301 	peer_pa_tactivate_us = peer_pa_tactivate *
8302 			     gran_to_us_table[peer_granularity - 1];
8303 
8304 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8305 		u32 new_peer_pa_tactivate;
8306 
8307 		new_peer_pa_tactivate = pa_tactivate_us /
8308 				      gran_to_us_table[peer_granularity - 1];
8309 		new_peer_pa_tactivate++;
8310 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8311 					  new_peer_pa_tactivate);
8312 	}
8313 
8314 out:
8315 	return ret;
8316 }
8317 
8318 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8319 {
8320 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8321 		ufshcd_tune_pa_tactivate(hba);
8322 		ufshcd_tune_pa_hibern8time(hba);
8323 	}
8324 
8325 	ufshcd_vops_apply_dev_quirks(hba);
8326 
8327 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8328 		/* set 1ms timeout for PA_TACTIVATE */
8329 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8330 
8331 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8332 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8333 }
8334 
8335 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8336 {
8337 	hba->ufs_stats.hibern8_exit_cnt = 0;
8338 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8339 	hba->req_abort_count = 0;
8340 }
8341 
8342 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8343 {
8344 	int err;
8345 	u8 *desc_buf;
8346 
8347 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8348 	if (!desc_buf) {
8349 		err = -ENOMEM;
8350 		goto out;
8351 	}
8352 
8353 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8354 				     desc_buf, QUERY_DESC_MAX_SIZE);
8355 	if (err) {
8356 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8357 				__func__, err);
8358 		goto out;
8359 	}
8360 
8361 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8362 		hba->dev_info.max_lu_supported = 32;
8363 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8364 		hba->dev_info.max_lu_supported = 8;
8365 
8366 out:
8367 	kfree(desc_buf);
8368 	return err;
8369 }
8370 
8371 struct ufs_ref_clk {
8372 	unsigned long freq_hz;
8373 	enum ufs_ref_clk_freq val;
8374 };
8375 
8376 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8377 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8378 	{26000000, REF_CLK_FREQ_26_MHZ},
8379 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8380 	{52000000, REF_CLK_FREQ_52_MHZ},
8381 	{0, REF_CLK_FREQ_INVAL},
8382 };
8383 
8384 static enum ufs_ref_clk_freq
8385 ufs_get_bref_clk_from_hz(unsigned long freq)
8386 {
8387 	int i;
8388 
8389 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8390 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8391 			return ufs_ref_clk_freqs[i].val;
8392 
8393 	return REF_CLK_FREQ_INVAL;
8394 }
8395 
8396 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8397 {
8398 	unsigned long freq;
8399 
8400 	freq = clk_get_rate(refclk);
8401 
8402 	hba->dev_ref_clk_freq =
8403 		ufs_get_bref_clk_from_hz(freq);
8404 
8405 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8406 		dev_err(hba->dev,
8407 		"invalid ref_clk setting = %ld\n", freq);
8408 }
8409 
8410 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8411 {
8412 	int err;
8413 	u32 ref_clk;
8414 	u32 freq = hba->dev_ref_clk_freq;
8415 
8416 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8417 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8418 
8419 	if (err) {
8420 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8421 			err);
8422 		goto out;
8423 	}
8424 
8425 	if (ref_clk == freq)
8426 		goto out; /* nothing to update */
8427 
8428 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8429 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8430 
8431 	if (err) {
8432 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8433 			ufs_ref_clk_freqs[freq].freq_hz);
8434 		goto out;
8435 	}
8436 
8437 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8438 			ufs_ref_clk_freqs[freq].freq_hz);
8439 
8440 out:
8441 	return err;
8442 }
8443 
8444 static int ufshcd_device_params_init(struct ufs_hba *hba)
8445 {
8446 	bool flag;
8447 	int ret;
8448 
8449 	/* Init UFS geometry descriptor related parameters */
8450 	ret = ufshcd_device_geo_params_init(hba);
8451 	if (ret)
8452 		goto out;
8453 
8454 	/* Check and apply UFS device quirks */
8455 	ret = ufs_get_device_desc(hba);
8456 	if (ret) {
8457 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8458 			__func__, ret);
8459 		goto out;
8460 	}
8461 
8462 	ufshcd_get_ref_clk_gating_wait(hba);
8463 
8464 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8465 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8466 		hba->dev_info.f_power_on_wp_en = flag;
8467 
8468 	/* Probe maximum power mode co-supported by both UFS host and device */
8469 	if (ufshcd_get_max_pwr_mode(hba))
8470 		dev_err(hba->dev,
8471 			"%s: Failed getting max supported power mode\n",
8472 			__func__);
8473 out:
8474 	return ret;
8475 }
8476 
8477 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8478 {
8479 	int err;
8480 	struct ufs_query_req *request = NULL;
8481 	struct ufs_query_res *response = NULL;
8482 	struct ufs_dev_info *dev_info = &hba->dev_info;
8483 	struct utp_upiu_query_v4_0 *upiu_data;
8484 
8485 	if (dev_info->wspecversion < 0x400)
8486 		return;
8487 
8488 	ufshcd_hold(hba);
8489 
8490 	mutex_lock(&hba->dev_cmd.lock);
8491 
8492 	ufshcd_init_query(hba, &request, &response,
8493 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8494 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8495 
8496 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8497 
8498 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8499 
8500 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8501 
8502 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8503 
8504 	if (err)
8505 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8506 			__func__, err);
8507 
8508 	mutex_unlock(&hba->dev_cmd.lock);
8509 	ufshcd_release(hba);
8510 }
8511 
8512 /**
8513  * ufshcd_add_lus - probe and add UFS logical units
8514  * @hba: per-adapter instance
8515  *
8516  * Return: 0 upon success; < 0 upon failure.
8517  */
8518 static int ufshcd_add_lus(struct ufs_hba *hba)
8519 {
8520 	int ret;
8521 
8522 	/* Add required well known logical units to scsi mid layer */
8523 	ret = ufshcd_scsi_add_wlus(hba);
8524 	if (ret)
8525 		goto out;
8526 
8527 	/* Initialize devfreq after UFS device is detected */
8528 	if (ufshcd_is_clkscaling_supported(hba)) {
8529 		memcpy(&hba->clk_scaling.saved_pwr_info,
8530 			&hba->pwr_info,
8531 			sizeof(struct ufs_pa_layer_attr));
8532 		hba->clk_scaling.is_allowed = true;
8533 
8534 		ret = ufshcd_devfreq_init(hba);
8535 		if (ret)
8536 			goto out;
8537 
8538 		hba->clk_scaling.is_enabled = true;
8539 		ufshcd_init_clk_scaling_sysfs(hba);
8540 	}
8541 
8542 	ufs_bsg_probe(hba);
8543 	scsi_scan_host(hba->host);
8544 
8545 out:
8546 	return ret;
8547 }
8548 
8549 /* SDB - Single Doorbell */
8550 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8551 {
8552 	size_t ucdl_size, utrdl_size;
8553 
8554 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8555 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8556 			   hba->ucdl_dma_addr);
8557 
8558 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8559 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8560 			   hba->utrdl_dma_addr);
8561 
8562 	devm_kfree(hba->dev, hba->lrb);
8563 }
8564 
8565 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8566 {
8567 	int ret;
8568 	int old_nutrs = hba->nutrs;
8569 
8570 	ret = ufshcd_mcq_decide_queue_depth(hba);
8571 	if (ret < 0)
8572 		return ret;
8573 
8574 	hba->nutrs = ret;
8575 	ret = ufshcd_mcq_init(hba);
8576 	if (ret)
8577 		goto err;
8578 
8579 	/*
8580 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8581 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8582 	 */
8583 	if (hba->nutrs != old_nutrs) {
8584 		ufshcd_release_sdb_queue(hba, old_nutrs);
8585 		ret = ufshcd_memory_alloc(hba);
8586 		if (ret)
8587 			goto err;
8588 		ufshcd_host_memory_configure(hba);
8589 	}
8590 
8591 	ret = ufshcd_mcq_memory_alloc(hba);
8592 	if (ret)
8593 		goto err;
8594 
8595 	return 0;
8596 err:
8597 	hba->nutrs = old_nutrs;
8598 	return ret;
8599 }
8600 
8601 static void ufshcd_config_mcq(struct ufs_hba *hba)
8602 {
8603 	int ret;
8604 	u32 intrs;
8605 
8606 	ret = ufshcd_mcq_vops_config_esi(hba);
8607 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8608 
8609 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8610 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8611 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8612 	ufshcd_enable_intr(hba, intrs);
8613 	ufshcd_mcq_make_queues_operational(hba);
8614 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8615 
8616 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8617 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8618 
8619 	/* Select MCQ mode */
8620 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8621 		      REG_UFS_MEM_CFG);
8622 	hba->mcq_enabled = true;
8623 
8624 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8625 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8626 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8627 		 hba->nutrs);
8628 }
8629 
8630 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8631 {
8632 	int ret;
8633 	struct Scsi_Host *host = hba->host;
8634 
8635 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8636 
8637 	ret = ufshcd_link_startup(hba);
8638 	if (ret)
8639 		return ret;
8640 
8641 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8642 		return ret;
8643 
8644 	/* Debug counters initialization */
8645 	ufshcd_clear_dbg_ufs_stats(hba);
8646 
8647 	/* UniPro link is active now */
8648 	ufshcd_set_link_active(hba);
8649 
8650 	/* Reconfigure MCQ upon reset */
8651 	if (is_mcq_enabled(hba) && !init_dev_params)
8652 		ufshcd_config_mcq(hba);
8653 
8654 	/* Verify device initialization by sending NOP OUT UPIU */
8655 	ret = ufshcd_verify_dev_init(hba);
8656 	if (ret)
8657 		return ret;
8658 
8659 	/* Initiate UFS initialization, and waiting until completion */
8660 	ret = ufshcd_complete_dev_init(hba);
8661 	if (ret)
8662 		return ret;
8663 
8664 	/*
8665 	 * Initialize UFS device parameters used by driver, these
8666 	 * parameters are associated with UFS descriptors.
8667 	 */
8668 	if (init_dev_params) {
8669 		ret = ufshcd_device_params_init(hba);
8670 		if (ret)
8671 			return ret;
8672 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8673 			ret = ufshcd_alloc_mcq(hba);
8674 			if (!ret) {
8675 				ufshcd_config_mcq(hba);
8676 			} else {
8677 				/* Continue with SDB mode */
8678 				use_mcq_mode = false;
8679 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8680 					 ret);
8681 			}
8682 			ret = scsi_add_host(host, hba->dev);
8683 			if (ret) {
8684 				dev_err(hba->dev, "scsi_add_host failed\n");
8685 				return ret;
8686 			}
8687 			hba->scsi_host_added = true;
8688 		} else if (is_mcq_supported(hba)) {
8689 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8690 			ufshcd_config_mcq(hba);
8691 		}
8692 	}
8693 
8694 	ufshcd_tune_unipro_params(hba);
8695 
8696 	/* UFS device is also active now */
8697 	ufshcd_set_ufs_dev_active(hba);
8698 	ufshcd_force_reset_auto_bkops(hba);
8699 
8700 	ufshcd_set_timestamp_attr(hba);
8701 
8702 	/* Gear up to HS gear if supported */
8703 	if (hba->max_pwr_info.is_valid) {
8704 		/*
8705 		 * Set the right value to bRefClkFreq before attempting to
8706 		 * switch to HS gears.
8707 		 */
8708 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8709 			ufshcd_set_dev_ref_clk(hba);
8710 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8711 		if (ret) {
8712 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8713 					__func__, ret);
8714 			return ret;
8715 		}
8716 	}
8717 
8718 	return 0;
8719 }
8720 
8721 /**
8722  * ufshcd_probe_hba - probe hba to detect device and initialize it
8723  * @hba: per-adapter instance
8724  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8725  *
8726  * Execute link-startup and verify device initialization
8727  *
8728  * Return: 0 upon success; < 0 upon failure.
8729  */
8730 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8731 {
8732 	ktime_t start = ktime_get();
8733 	unsigned long flags;
8734 	int ret;
8735 
8736 	ret = ufshcd_device_init(hba, init_dev_params);
8737 	if (ret)
8738 		goto out;
8739 
8740 	if (!hba->pm_op_in_progress &&
8741 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8742 		/* Reset the device and controller before doing reinit */
8743 		ufshcd_device_reset(hba);
8744 		ufshcd_hba_stop(hba);
8745 		ufshcd_vops_reinit_notify(hba);
8746 		ret = ufshcd_hba_enable(hba);
8747 		if (ret) {
8748 			dev_err(hba->dev, "Host controller enable failed\n");
8749 			ufshcd_print_evt_hist(hba);
8750 			ufshcd_print_host_state(hba);
8751 			goto out;
8752 		}
8753 
8754 		/* Reinit the device */
8755 		ret = ufshcd_device_init(hba, init_dev_params);
8756 		if (ret)
8757 			goto out;
8758 	}
8759 
8760 	ufshcd_print_pwr_info(hba);
8761 
8762 	/*
8763 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8764 	 * and for removable UFS card as well, hence always set the parameter.
8765 	 * Note: Error handler may issue the device reset hence resetting
8766 	 * bActiveICCLevel as well so it is always safe to set this here.
8767 	 */
8768 	ufshcd_set_active_icc_lvl(hba);
8769 
8770 	/* Enable UFS Write Booster if supported */
8771 	ufshcd_configure_wb(hba);
8772 
8773 	if (hba->ee_usr_mask)
8774 		ufshcd_write_ee_control(hba);
8775 	/* Enable Auto-Hibernate if configured */
8776 	ufshcd_auto_hibern8_enable(hba);
8777 
8778 out:
8779 	spin_lock_irqsave(hba->host->host_lock, flags);
8780 	if (ret)
8781 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8782 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8783 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8784 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8785 
8786 	trace_ufshcd_init(dev_name(hba->dev), ret,
8787 		ktime_to_us(ktime_sub(ktime_get(), start)),
8788 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8789 	return ret;
8790 }
8791 
8792 /**
8793  * ufshcd_async_scan - asynchronous execution for probing hba
8794  * @data: data pointer to pass to this function
8795  * @cookie: cookie data
8796  */
8797 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8798 {
8799 	struct ufs_hba *hba = (struct ufs_hba *)data;
8800 	int ret;
8801 
8802 	down(&hba->host_sem);
8803 	/* Initialize hba, detect and initialize UFS device */
8804 	ret = ufshcd_probe_hba(hba, true);
8805 	up(&hba->host_sem);
8806 	if (ret)
8807 		goto out;
8808 
8809 	/* Probe and add UFS logical units  */
8810 	ret = ufshcd_add_lus(hba);
8811 
8812 out:
8813 	pm_runtime_put_sync(hba->dev);
8814 
8815 	if (ret)
8816 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8817 }
8818 
8819 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8820 {
8821 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8822 
8823 	if (!hba->system_suspending) {
8824 		/* Activate the error handler in the SCSI core. */
8825 		return SCSI_EH_NOT_HANDLED;
8826 	}
8827 
8828 	/*
8829 	 * If we get here we know that no TMFs are outstanding and also that
8830 	 * the only pending command is a START STOP UNIT command. Handle the
8831 	 * timeout of that command directly to prevent a deadlock between
8832 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8833 	 */
8834 	ufshcd_link_recovery(hba);
8835 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8836 		 __func__, hba->outstanding_tasks);
8837 
8838 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8839 }
8840 
8841 static const struct attribute_group *ufshcd_driver_groups[] = {
8842 	&ufs_sysfs_unit_descriptor_group,
8843 	&ufs_sysfs_lun_attributes_group,
8844 	NULL,
8845 };
8846 
8847 static struct ufs_hba_variant_params ufs_hba_vps = {
8848 	.hba_enable_delay_us		= 1000,
8849 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8850 	.devfreq_profile.polling_ms	= 100,
8851 	.devfreq_profile.target		= ufshcd_devfreq_target,
8852 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8853 	.ondemand_data.upthreshold	= 70,
8854 	.ondemand_data.downdifferential	= 5,
8855 };
8856 
8857 static const struct scsi_host_template ufshcd_driver_template = {
8858 	.module			= THIS_MODULE,
8859 	.name			= UFSHCD,
8860 	.proc_name		= UFSHCD,
8861 	.map_queues		= ufshcd_map_queues,
8862 	.queuecommand		= ufshcd_queuecommand,
8863 	.mq_poll		= ufshcd_poll,
8864 	.slave_alloc		= ufshcd_slave_alloc,
8865 	.slave_configure	= ufshcd_slave_configure,
8866 	.slave_destroy		= ufshcd_slave_destroy,
8867 	.change_queue_depth	= ufshcd_change_queue_depth,
8868 	.eh_abort_handler	= ufshcd_abort,
8869 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8870 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8871 	.eh_timed_out		= ufshcd_eh_timed_out,
8872 	.this_id		= -1,
8873 	.sg_tablesize		= SG_ALL,
8874 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8875 	.can_queue		= UFSHCD_CAN_QUEUE,
8876 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8877 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8878 	.max_host_blocked	= 1,
8879 	.track_queue_depth	= 1,
8880 	.skip_settle_delay	= 1,
8881 	.sdev_groups		= ufshcd_driver_groups,
8882 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8883 };
8884 
8885 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8886 				   int ua)
8887 {
8888 	int ret;
8889 
8890 	if (!vreg)
8891 		return 0;
8892 
8893 	/*
8894 	 * "set_load" operation shall be required on those regulators
8895 	 * which specifically configured current limitation. Otherwise
8896 	 * zero max_uA may cause unexpected behavior when regulator is
8897 	 * enabled or set as high power mode.
8898 	 */
8899 	if (!vreg->max_uA)
8900 		return 0;
8901 
8902 	ret = regulator_set_load(vreg->reg, ua);
8903 	if (ret < 0) {
8904 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8905 				__func__, vreg->name, ua, ret);
8906 	}
8907 
8908 	return ret;
8909 }
8910 
8911 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8912 					 struct ufs_vreg *vreg)
8913 {
8914 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8915 }
8916 
8917 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8918 					 struct ufs_vreg *vreg)
8919 {
8920 	if (!vreg)
8921 		return 0;
8922 
8923 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8924 }
8925 
8926 static int ufshcd_config_vreg(struct device *dev,
8927 		struct ufs_vreg *vreg, bool on)
8928 {
8929 	if (regulator_count_voltages(vreg->reg) <= 0)
8930 		return 0;
8931 
8932 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8933 }
8934 
8935 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8936 {
8937 	int ret = 0;
8938 
8939 	if (!vreg || vreg->enabled)
8940 		goto out;
8941 
8942 	ret = ufshcd_config_vreg(dev, vreg, true);
8943 	if (!ret)
8944 		ret = regulator_enable(vreg->reg);
8945 
8946 	if (!ret)
8947 		vreg->enabled = true;
8948 	else
8949 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8950 				__func__, vreg->name, ret);
8951 out:
8952 	return ret;
8953 }
8954 
8955 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8956 {
8957 	int ret = 0;
8958 
8959 	if (!vreg || !vreg->enabled || vreg->always_on)
8960 		goto out;
8961 
8962 	ret = regulator_disable(vreg->reg);
8963 
8964 	if (!ret) {
8965 		/* ignore errors on applying disable config */
8966 		ufshcd_config_vreg(dev, vreg, false);
8967 		vreg->enabled = false;
8968 	} else {
8969 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8970 				__func__, vreg->name, ret);
8971 	}
8972 out:
8973 	return ret;
8974 }
8975 
8976 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8977 {
8978 	int ret = 0;
8979 	struct device *dev = hba->dev;
8980 	struct ufs_vreg_info *info = &hba->vreg_info;
8981 
8982 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8983 	if (ret)
8984 		goto out;
8985 
8986 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8987 	if (ret)
8988 		goto out;
8989 
8990 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8991 
8992 out:
8993 	if (ret) {
8994 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8995 		ufshcd_toggle_vreg(dev, info->vccq, false);
8996 		ufshcd_toggle_vreg(dev, info->vcc, false);
8997 	}
8998 	return ret;
8999 }
9000 
9001 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9002 {
9003 	struct ufs_vreg_info *info = &hba->vreg_info;
9004 
9005 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9006 }
9007 
9008 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9009 {
9010 	int ret = 0;
9011 
9012 	if (!vreg)
9013 		goto out;
9014 
9015 	vreg->reg = devm_regulator_get(dev, vreg->name);
9016 	if (IS_ERR(vreg->reg)) {
9017 		ret = PTR_ERR(vreg->reg);
9018 		dev_err(dev, "%s: %s get failed, err=%d\n",
9019 				__func__, vreg->name, ret);
9020 	}
9021 out:
9022 	return ret;
9023 }
9024 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9025 
9026 static int ufshcd_init_vreg(struct ufs_hba *hba)
9027 {
9028 	int ret = 0;
9029 	struct device *dev = hba->dev;
9030 	struct ufs_vreg_info *info = &hba->vreg_info;
9031 
9032 	ret = ufshcd_get_vreg(dev, info->vcc);
9033 	if (ret)
9034 		goto out;
9035 
9036 	ret = ufshcd_get_vreg(dev, info->vccq);
9037 	if (!ret)
9038 		ret = ufshcd_get_vreg(dev, info->vccq2);
9039 out:
9040 	return ret;
9041 }
9042 
9043 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9044 {
9045 	struct ufs_vreg_info *info = &hba->vreg_info;
9046 
9047 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9048 }
9049 
9050 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9051 {
9052 	int ret = 0;
9053 	struct ufs_clk_info *clki;
9054 	struct list_head *head = &hba->clk_list_head;
9055 	unsigned long flags;
9056 	ktime_t start = ktime_get();
9057 	bool clk_state_changed = false;
9058 
9059 	if (list_empty(head))
9060 		goto out;
9061 
9062 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9063 	if (ret)
9064 		return ret;
9065 
9066 	list_for_each_entry(clki, head, list) {
9067 		if (!IS_ERR_OR_NULL(clki->clk)) {
9068 			/*
9069 			 * Don't disable clocks which are needed
9070 			 * to keep the link active.
9071 			 */
9072 			if (ufshcd_is_link_active(hba) &&
9073 			    clki->keep_link_active)
9074 				continue;
9075 
9076 			clk_state_changed = on ^ clki->enabled;
9077 			if (on && !clki->enabled) {
9078 				ret = clk_prepare_enable(clki->clk);
9079 				if (ret) {
9080 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9081 						__func__, clki->name, ret);
9082 					goto out;
9083 				}
9084 			} else if (!on && clki->enabled) {
9085 				clk_disable_unprepare(clki->clk);
9086 			}
9087 			clki->enabled = on;
9088 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9089 					clki->name, on ? "en" : "dis");
9090 		}
9091 	}
9092 
9093 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9094 	if (ret)
9095 		return ret;
9096 
9097 out:
9098 	if (ret) {
9099 		list_for_each_entry(clki, head, list) {
9100 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9101 				clk_disable_unprepare(clki->clk);
9102 		}
9103 	} else if (!ret && on) {
9104 		spin_lock_irqsave(hba->host->host_lock, flags);
9105 		hba->clk_gating.state = CLKS_ON;
9106 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9107 					hba->clk_gating.state);
9108 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9109 	}
9110 
9111 	if (clk_state_changed)
9112 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9113 			(on ? "on" : "off"),
9114 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9115 	return ret;
9116 }
9117 
9118 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9119 {
9120 	u32 freq;
9121 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9122 
9123 	if (ret) {
9124 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9125 		return REF_CLK_FREQ_INVAL;
9126 	}
9127 
9128 	return ufs_get_bref_clk_from_hz(freq);
9129 }
9130 
9131 static int ufshcd_init_clocks(struct ufs_hba *hba)
9132 {
9133 	int ret = 0;
9134 	struct ufs_clk_info *clki;
9135 	struct device *dev = hba->dev;
9136 	struct list_head *head = &hba->clk_list_head;
9137 
9138 	if (list_empty(head))
9139 		goto out;
9140 
9141 	list_for_each_entry(clki, head, list) {
9142 		if (!clki->name)
9143 			continue;
9144 
9145 		clki->clk = devm_clk_get(dev, clki->name);
9146 		if (IS_ERR(clki->clk)) {
9147 			ret = PTR_ERR(clki->clk);
9148 			dev_err(dev, "%s: %s clk get failed, %d\n",
9149 					__func__, clki->name, ret);
9150 			goto out;
9151 		}
9152 
9153 		/*
9154 		 * Parse device ref clk freq as per device tree "ref_clk".
9155 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9156 		 * in ufshcd_alloc_host().
9157 		 */
9158 		if (!strcmp(clki->name, "ref_clk"))
9159 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9160 
9161 		if (clki->max_freq) {
9162 			ret = clk_set_rate(clki->clk, clki->max_freq);
9163 			if (ret) {
9164 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9165 					__func__, clki->name,
9166 					clki->max_freq, ret);
9167 				goto out;
9168 			}
9169 			clki->curr_freq = clki->max_freq;
9170 		}
9171 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9172 				clki->name, clk_get_rate(clki->clk));
9173 	}
9174 out:
9175 	return ret;
9176 }
9177 
9178 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9179 {
9180 	int err = 0;
9181 
9182 	if (!hba->vops)
9183 		goto out;
9184 
9185 	err = ufshcd_vops_init(hba);
9186 	if (err)
9187 		dev_err_probe(hba->dev, err,
9188 			      "%s: variant %s init failed with err %d\n",
9189 			      __func__, ufshcd_get_var_name(hba), err);
9190 out:
9191 	return err;
9192 }
9193 
9194 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9195 {
9196 	if (!hba->vops)
9197 		return;
9198 
9199 	ufshcd_vops_exit(hba);
9200 }
9201 
9202 static int ufshcd_hba_init(struct ufs_hba *hba)
9203 {
9204 	int err;
9205 
9206 	/*
9207 	 * Handle host controller power separately from the UFS device power
9208 	 * rails as it will help controlling the UFS host controller power
9209 	 * collapse easily which is different than UFS device power collapse.
9210 	 * Also, enable the host controller power before we go ahead with rest
9211 	 * of the initialization here.
9212 	 */
9213 	err = ufshcd_init_hba_vreg(hba);
9214 	if (err)
9215 		goto out;
9216 
9217 	err = ufshcd_setup_hba_vreg(hba, true);
9218 	if (err)
9219 		goto out;
9220 
9221 	err = ufshcd_init_clocks(hba);
9222 	if (err)
9223 		goto out_disable_hba_vreg;
9224 
9225 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9226 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9227 
9228 	err = ufshcd_setup_clocks(hba, true);
9229 	if (err)
9230 		goto out_disable_hba_vreg;
9231 
9232 	err = ufshcd_init_vreg(hba);
9233 	if (err)
9234 		goto out_disable_clks;
9235 
9236 	err = ufshcd_setup_vreg(hba, true);
9237 	if (err)
9238 		goto out_disable_clks;
9239 
9240 	err = ufshcd_variant_hba_init(hba);
9241 	if (err)
9242 		goto out_disable_vreg;
9243 
9244 	ufs_debugfs_hba_init(hba);
9245 
9246 	hba->is_powered = true;
9247 	goto out;
9248 
9249 out_disable_vreg:
9250 	ufshcd_setup_vreg(hba, false);
9251 out_disable_clks:
9252 	ufshcd_setup_clocks(hba, false);
9253 out_disable_hba_vreg:
9254 	ufshcd_setup_hba_vreg(hba, false);
9255 out:
9256 	return err;
9257 }
9258 
9259 static void ufshcd_hba_exit(struct ufs_hba *hba)
9260 {
9261 	if (hba->is_powered) {
9262 		ufshcd_exit_clk_scaling(hba);
9263 		ufshcd_exit_clk_gating(hba);
9264 		if (hba->eh_wq)
9265 			destroy_workqueue(hba->eh_wq);
9266 		ufs_debugfs_hba_exit(hba);
9267 		ufshcd_variant_hba_exit(hba);
9268 		ufshcd_setup_vreg(hba, false);
9269 		ufshcd_setup_clocks(hba, false);
9270 		ufshcd_setup_hba_vreg(hba, false);
9271 		hba->is_powered = false;
9272 		ufs_put_device_desc(hba);
9273 	}
9274 }
9275 
9276 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9277 				     enum ufs_dev_pwr_mode pwr_mode,
9278 				     struct scsi_sense_hdr *sshdr)
9279 {
9280 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9281 	const struct scsi_exec_args args = {
9282 		.sshdr = sshdr,
9283 		.req_flags = BLK_MQ_REQ_PM,
9284 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9285 	};
9286 
9287 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9288 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9289 			&args);
9290 }
9291 
9292 /**
9293  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9294  *			     power mode
9295  * @hba: per adapter instance
9296  * @pwr_mode: device power mode to set
9297  *
9298  * Return: 0 if requested power mode is set successfully;
9299  *         < 0 if failed to set the requested power mode.
9300  */
9301 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9302 				     enum ufs_dev_pwr_mode pwr_mode)
9303 {
9304 	struct scsi_sense_hdr sshdr;
9305 	struct scsi_device *sdp;
9306 	unsigned long flags;
9307 	int ret, retries;
9308 
9309 	spin_lock_irqsave(hba->host->host_lock, flags);
9310 	sdp = hba->ufs_device_wlun;
9311 	if (sdp && scsi_device_online(sdp))
9312 		ret = scsi_device_get(sdp);
9313 	else
9314 		ret = -ENODEV;
9315 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9316 
9317 	if (ret)
9318 		return ret;
9319 
9320 	/*
9321 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9322 	 * handling, which would wait for host to be resumed. Since we know
9323 	 * we are functional while we are here, skip host resume in error
9324 	 * handling context.
9325 	 */
9326 	hba->host->eh_noresume = 1;
9327 
9328 	/*
9329 	 * Current function would be generally called from the power management
9330 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9331 	 * already suspended childs.
9332 	 */
9333 	for (retries = 3; retries > 0; --retries) {
9334 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9335 		/*
9336 		 * scsi_execute() only returns a negative value if the request
9337 		 * queue is dying.
9338 		 */
9339 		if (ret <= 0)
9340 			break;
9341 	}
9342 	if (ret) {
9343 		sdev_printk(KERN_WARNING, sdp,
9344 			    "START_STOP failed for power mode: %d, result %x\n",
9345 			    pwr_mode, ret);
9346 		if (ret > 0) {
9347 			if (scsi_sense_valid(&sshdr))
9348 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9349 			ret = -EIO;
9350 		}
9351 	} else {
9352 		hba->curr_dev_pwr_mode = pwr_mode;
9353 	}
9354 
9355 	scsi_device_put(sdp);
9356 	hba->host->eh_noresume = 0;
9357 	return ret;
9358 }
9359 
9360 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9361 					enum uic_link_state req_link_state,
9362 					bool check_for_bkops)
9363 {
9364 	int ret = 0;
9365 
9366 	if (req_link_state == hba->uic_link_state)
9367 		return 0;
9368 
9369 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9370 		ret = ufshcd_uic_hibern8_enter(hba);
9371 		if (!ret) {
9372 			ufshcd_set_link_hibern8(hba);
9373 		} else {
9374 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9375 					__func__, ret);
9376 			goto out;
9377 		}
9378 	}
9379 	/*
9380 	 * If autobkops is enabled, link can't be turned off because
9381 	 * turning off the link would also turn off the device, except in the
9382 	 * case of DeepSleep where the device is expected to remain powered.
9383 	 */
9384 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9385 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9386 		/*
9387 		 * Let's make sure that link is in low power mode, we are doing
9388 		 * this currently by putting the link in Hibern8. Otherway to
9389 		 * put the link in low power mode is to send the DME end point
9390 		 * to device and then send the DME reset command to local
9391 		 * unipro. But putting the link in hibern8 is much faster.
9392 		 *
9393 		 * Note also that putting the link in Hibern8 is a requirement
9394 		 * for entering DeepSleep.
9395 		 */
9396 		ret = ufshcd_uic_hibern8_enter(hba);
9397 		if (ret) {
9398 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9399 					__func__, ret);
9400 			goto out;
9401 		}
9402 		/*
9403 		 * Change controller state to "reset state" which
9404 		 * should also put the link in off/reset state
9405 		 */
9406 		ufshcd_hba_stop(hba);
9407 		/*
9408 		 * TODO: Check if we need any delay to make sure that
9409 		 * controller is reset
9410 		 */
9411 		ufshcd_set_link_off(hba);
9412 	}
9413 
9414 out:
9415 	return ret;
9416 }
9417 
9418 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9419 {
9420 	bool vcc_off = false;
9421 
9422 	/*
9423 	 * It seems some UFS devices may keep drawing more than sleep current
9424 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9425 	 * To avoid this situation, add 2ms delay before putting these UFS
9426 	 * rails in LPM mode.
9427 	 */
9428 	if (!ufshcd_is_link_active(hba) &&
9429 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9430 		usleep_range(2000, 2100);
9431 
9432 	/*
9433 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9434 	 * power.
9435 	 *
9436 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9437 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9438 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9439 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9440 	 *
9441 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9442 	 * in low power state which would save some power.
9443 	 *
9444 	 * If Write Booster is enabled and the device needs to flush the WB
9445 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9446 	 */
9447 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9448 	    !hba->dev_info.is_lu_power_on_wp) {
9449 		ufshcd_setup_vreg(hba, false);
9450 		vcc_off = true;
9451 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9452 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9453 		vcc_off = true;
9454 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9455 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9456 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9457 		}
9458 	}
9459 
9460 	/*
9461 	 * Some UFS devices require delay after VCC power rail is turned-off.
9462 	 */
9463 	if (vcc_off && hba->vreg_info.vcc &&
9464 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9465 		usleep_range(5000, 5100);
9466 }
9467 
9468 #ifdef CONFIG_PM
9469 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9470 {
9471 	int ret = 0;
9472 
9473 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9474 	    !hba->dev_info.is_lu_power_on_wp) {
9475 		ret = ufshcd_setup_vreg(hba, true);
9476 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9477 		if (!ufshcd_is_link_active(hba)) {
9478 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9479 			if (ret)
9480 				goto vcc_disable;
9481 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9482 			if (ret)
9483 				goto vccq_lpm;
9484 		}
9485 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9486 	}
9487 	goto out;
9488 
9489 vccq_lpm:
9490 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9491 vcc_disable:
9492 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9493 out:
9494 	return ret;
9495 }
9496 #endif /* CONFIG_PM */
9497 
9498 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9499 {
9500 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9501 		ufshcd_setup_hba_vreg(hba, false);
9502 }
9503 
9504 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9505 {
9506 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9507 		ufshcd_setup_hba_vreg(hba, true);
9508 }
9509 
9510 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9511 {
9512 	int ret = 0;
9513 	bool check_for_bkops;
9514 	enum ufs_pm_level pm_lvl;
9515 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9516 	enum uic_link_state req_link_state;
9517 
9518 	hba->pm_op_in_progress = true;
9519 	if (pm_op != UFS_SHUTDOWN_PM) {
9520 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9521 			 hba->rpm_lvl : hba->spm_lvl;
9522 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9523 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9524 	} else {
9525 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9526 		req_link_state = UIC_LINK_OFF_STATE;
9527 	}
9528 
9529 	/*
9530 	 * If we can't transition into any of the low power modes
9531 	 * just gate the clocks.
9532 	 */
9533 	ufshcd_hold(hba);
9534 	hba->clk_gating.is_suspended = true;
9535 
9536 	if (ufshcd_is_clkscaling_supported(hba))
9537 		ufshcd_clk_scaling_suspend(hba, true);
9538 
9539 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9540 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9541 		goto vops_suspend;
9542 	}
9543 
9544 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9545 	    (req_link_state == hba->uic_link_state))
9546 		goto enable_scaling;
9547 
9548 	/* UFS device & link must be active before we enter in this function */
9549 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9550 		ret = -EINVAL;
9551 		goto enable_scaling;
9552 	}
9553 
9554 	if (pm_op == UFS_RUNTIME_PM) {
9555 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9556 			/*
9557 			 * The device is idle with no requests in the queue,
9558 			 * allow background operations if bkops status shows
9559 			 * that performance might be impacted.
9560 			 */
9561 			ret = ufshcd_urgent_bkops(hba);
9562 			if (ret) {
9563 				/*
9564 				 * If return err in suspend flow, IO will hang.
9565 				 * Trigger error handler and break suspend for
9566 				 * error recovery.
9567 				 */
9568 				ufshcd_force_error_recovery(hba);
9569 				ret = -EBUSY;
9570 				goto enable_scaling;
9571 			}
9572 		} else {
9573 			/* make sure that auto bkops is disabled */
9574 			ufshcd_disable_auto_bkops(hba);
9575 		}
9576 		/*
9577 		 * If device needs to do BKOP or WB buffer flush during
9578 		 * Hibern8, keep device power mode as "active power mode"
9579 		 * and VCC supply.
9580 		 */
9581 		hba->dev_info.b_rpm_dev_flush_capable =
9582 			hba->auto_bkops_enabled ||
9583 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9584 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9585 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9586 			ufshcd_wb_need_flush(hba));
9587 	}
9588 
9589 	flush_work(&hba->eeh_work);
9590 
9591 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9592 	if (ret)
9593 		goto enable_scaling;
9594 
9595 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9596 		if (pm_op != UFS_RUNTIME_PM)
9597 			/* ensure that bkops is disabled */
9598 			ufshcd_disable_auto_bkops(hba);
9599 
9600 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9601 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9602 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9603 				/*
9604 				 * If return err in suspend flow, IO will hang.
9605 				 * Trigger error handler and break suspend for
9606 				 * error recovery.
9607 				 */
9608 				ufshcd_force_error_recovery(hba);
9609 				ret = -EBUSY;
9610 			}
9611 			if (ret)
9612 				goto enable_scaling;
9613 		}
9614 	}
9615 
9616 	/*
9617 	 * In the case of DeepSleep, the device is expected to remain powered
9618 	 * with the link off, so do not check for bkops.
9619 	 */
9620 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9621 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9622 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9623 		/*
9624 		 * If return err in suspend flow, IO will hang.
9625 		 * Trigger error handler and break suspend for
9626 		 * error recovery.
9627 		 */
9628 		ufshcd_force_error_recovery(hba);
9629 		ret = -EBUSY;
9630 	}
9631 	if (ret)
9632 		goto set_dev_active;
9633 
9634 vops_suspend:
9635 	/*
9636 	 * Call vendor specific suspend callback. As these callbacks may access
9637 	 * vendor specific host controller register space call them before the
9638 	 * host clocks are ON.
9639 	 */
9640 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9641 	if (ret)
9642 		goto set_link_active;
9643 	goto out;
9644 
9645 set_link_active:
9646 	/*
9647 	 * Device hardware reset is required to exit DeepSleep. Also, for
9648 	 * DeepSleep, the link is off so host reset and restore will be done
9649 	 * further below.
9650 	 */
9651 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9652 		ufshcd_device_reset(hba);
9653 		WARN_ON(!ufshcd_is_link_off(hba));
9654 	}
9655 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9656 		ufshcd_set_link_active(hba);
9657 	else if (ufshcd_is_link_off(hba))
9658 		ufshcd_host_reset_and_restore(hba);
9659 set_dev_active:
9660 	/* Can also get here needing to exit DeepSleep */
9661 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9662 		ufshcd_device_reset(hba);
9663 		ufshcd_host_reset_and_restore(hba);
9664 	}
9665 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9666 		ufshcd_disable_auto_bkops(hba);
9667 enable_scaling:
9668 	if (ufshcd_is_clkscaling_supported(hba))
9669 		ufshcd_clk_scaling_suspend(hba, false);
9670 
9671 	hba->dev_info.b_rpm_dev_flush_capable = false;
9672 out:
9673 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9674 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9675 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9676 	}
9677 
9678 	if (ret) {
9679 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9680 		hba->clk_gating.is_suspended = false;
9681 		ufshcd_release(hba);
9682 	}
9683 	hba->pm_op_in_progress = false;
9684 	return ret;
9685 }
9686 
9687 #ifdef CONFIG_PM
9688 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9689 {
9690 	int ret;
9691 	enum uic_link_state old_link_state = hba->uic_link_state;
9692 
9693 	hba->pm_op_in_progress = true;
9694 
9695 	/*
9696 	 * Call vendor specific resume callback. As these callbacks may access
9697 	 * vendor specific host controller register space call them when the
9698 	 * host clocks are ON.
9699 	 */
9700 	ret = ufshcd_vops_resume(hba, pm_op);
9701 	if (ret)
9702 		goto out;
9703 
9704 	/* For DeepSleep, the only supported option is to have the link off */
9705 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9706 
9707 	if (ufshcd_is_link_hibern8(hba)) {
9708 		ret = ufshcd_uic_hibern8_exit(hba);
9709 		if (!ret) {
9710 			ufshcd_set_link_active(hba);
9711 		} else {
9712 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9713 					__func__, ret);
9714 			goto vendor_suspend;
9715 		}
9716 	} else if (ufshcd_is_link_off(hba)) {
9717 		/*
9718 		 * A full initialization of the host and the device is
9719 		 * required since the link was put to off during suspend.
9720 		 * Note, in the case of DeepSleep, the device will exit
9721 		 * DeepSleep due to device reset.
9722 		 */
9723 		ret = ufshcd_reset_and_restore(hba);
9724 		/*
9725 		 * ufshcd_reset_and_restore() should have already
9726 		 * set the link state as active
9727 		 */
9728 		if (ret || !ufshcd_is_link_active(hba))
9729 			goto vendor_suspend;
9730 	}
9731 
9732 	if (!ufshcd_is_ufs_dev_active(hba)) {
9733 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9734 		if (ret)
9735 			goto set_old_link_state;
9736 		ufshcd_set_timestamp_attr(hba);
9737 	}
9738 
9739 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9740 		ufshcd_enable_auto_bkops(hba);
9741 	else
9742 		/*
9743 		 * If BKOPs operations are urgently needed at this moment then
9744 		 * keep auto-bkops enabled or else disable it.
9745 		 */
9746 		ufshcd_urgent_bkops(hba);
9747 
9748 	if (hba->ee_usr_mask)
9749 		ufshcd_write_ee_control(hba);
9750 
9751 	if (ufshcd_is_clkscaling_supported(hba))
9752 		ufshcd_clk_scaling_suspend(hba, false);
9753 
9754 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9755 		hba->dev_info.b_rpm_dev_flush_capable = false;
9756 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9757 	}
9758 
9759 	/* Enable Auto-Hibernate if configured */
9760 	ufshcd_auto_hibern8_enable(hba);
9761 
9762 	goto out;
9763 
9764 set_old_link_state:
9765 	ufshcd_link_state_transition(hba, old_link_state, 0);
9766 vendor_suspend:
9767 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9768 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9769 out:
9770 	if (ret)
9771 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9772 	hba->clk_gating.is_suspended = false;
9773 	ufshcd_release(hba);
9774 	hba->pm_op_in_progress = false;
9775 	return ret;
9776 }
9777 
9778 static int ufshcd_wl_runtime_suspend(struct device *dev)
9779 {
9780 	struct scsi_device *sdev = to_scsi_device(dev);
9781 	struct ufs_hba *hba;
9782 	int ret;
9783 	ktime_t start = ktime_get();
9784 
9785 	hba = shost_priv(sdev->host);
9786 
9787 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9788 	if (ret)
9789 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9790 
9791 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9792 		ktime_to_us(ktime_sub(ktime_get(), start)),
9793 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9794 
9795 	return ret;
9796 }
9797 
9798 static int ufshcd_wl_runtime_resume(struct device *dev)
9799 {
9800 	struct scsi_device *sdev = to_scsi_device(dev);
9801 	struct ufs_hba *hba;
9802 	int ret = 0;
9803 	ktime_t start = ktime_get();
9804 
9805 	hba = shost_priv(sdev->host);
9806 
9807 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9808 	if (ret)
9809 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9810 
9811 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9812 		ktime_to_us(ktime_sub(ktime_get(), start)),
9813 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9814 
9815 	return ret;
9816 }
9817 #endif
9818 
9819 #ifdef CONFIG_PM_SLEEP
9820 static int ufshcd_wl_suspend(struct device *dev)
9821 {
9822 	struct scsi_device *sdev = to_scsi_device(dev);
9823 	struct ufs_hba *hba;
9824 	int ret = 0;
9825 	ktime_t start = ktime_get();
9826 
9827 	hba = shost_priv(sdev->host);
9828 	down(&hba->host_sem);
9829 	hba->system_suspending = true;
9830 
9831 	if (pm_runtime_suspended(dev))
9832 		goto out;
9833 
9834 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9835 	if (ret) {
9836 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9837 		up(&hba->host_sem);
9838 	}
9839 
9840 out:
9841 	if (!ret)
9842 		hba->is_sys_suspended = true;
9843 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9844 		ktime_to_us(ktime_sub(ktime_get(), start)),
9845 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9846 
9847 	return ret;
9848 }
9849 
9850 static int ufshcd_wl_resume(struct device *dev)
9851 {
9852 	struct scsi_device *sdev = to_scsi_device(dev);
9853 	struct ufs_hba *hba;
9854 	int ret = 0;
9855 	ktime_t start = ktime_get();
9856 
9857 	hba = shost_priv(sdev->host);
9858 
9859 	if (pm_runtime_suspended(dev))
9860 		goto out;
9861 
9862 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9863 	if (ret)
9864 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9865 out:
9866 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9867 		ktime_to_us(ktime_sub(ktime_get(), start)),
9868 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9869 	if (!ret)
9870 		hba->is_sys_suspended = false;
9871 	hba->system_suspending = false;
9872 	up(&hba->host_sem);
9873 	return ret;
9874 }
9875 #endif
9876 
9877 /**
9878  * ufshcd_suspend - helper function for suspend operations
9879  * @hba: per adapter instance
9880  *
9881  * This function will put disable irqs, turn off clocks
9882  * and set vreg and hba-vreg in lpm mode.
9883  *
9884  * Return: 0 upon success; < 0 upon failure.
9885  */
9886 static int ufshcd_suspend(struct ufs_hba *hba)
9887 {
9888 	int ret;
9889 
9890 	if (!hba->is_powered)
9891 		return 0;
9892 	/*
9893 	 * Disable the host irq as host controller as there won't be any
9894 	 * host controller transaction expected till resume.
9895 	 */
9896 	ufshcd_disable_irq(hba);
9897 	ret = ufshcd_setup_clocks(hba, false);
9898 	if (ret) {
9899 		ufshcd_enable_irq(hba);
9900 		return ret;
9901 	}
9902 	if (ufshcd_is_clkgating_allowed(hba)) {
9903 		hba->clk_gating.state = CLKS_OFF;
9904 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9905 					hba->clk_gating.state);
9906 	}
9907 
9908 	ufshcd_vreg_set_lpm(hba);
9909 	/* Put the host controller in low power mode if possible */
9910 	ufshcd_hba_vreg_set_lpm(hba);
9911 	return ret;
9912 }
9913 
9914 #ifdef CONFIG_PM
9915 /**
9916  * ufshcd_resume - helper function for resume operations
9917  * @hba: per adapter instance
9918  *
9919  * This function basically turns on the regulators, clocks and
9920  * irqs of the hba.
9921  *
9922  * Return: 0 for success and non-zero for failure.
9923  */
9924 static int ufshcd_resume(struct ufs_hba *hba)
9925 {
9926 	int ret;
9927 
9928 	if (!hba->is_powered)
9929 		return 0;
9930 
9931 	ufshcd_hba_vreg_set_hpm(hba);
9932 	ret = ufshcd_vreg_set_hpm(hba);
9933 	if (ret)
9934 		goto out;
9935 
9936 	/* Make sure clocks are enabled before accessing controller */
9937 	ret = ufshcd_setup_clocks(hba, true);
9938 	if (ret)
9939 		goto disable_vreg;
9940 
9941 	/* enable the host irq as host controller would be active soon */
9942 	ufshcd_enable_irq(hba);
9943 
9944 	goto out;
9945 
9946 disable_vreg:
9947 	ufshcd_vreg_set_lpm(hba);
9948 out:
9949 	if (ret)
9950 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9951 	return ret;
9952 }
9953 #endif /* CONFIG_PM */
9954 
9955 #ifdef CONFIG_PM_SLEEP
9956 /**
9957  * ufshcd_system_suspend - system suspend callback
9958  * @dev: Device associated with the UFS controller.
9959  *
9960  * Executed before putting the system into a sleep state in which the contents
9961  * of main memory are preserved.
9962  *
9963  * Return: 0 for success and non-zero for failure.
9964  */
9965 int ufshcd_system_suspend(struct device *dev)
9966 {
9967 	struct ufs_hba *hba = dev_get_drvdata(dev);
9968 	int ret = 0;
9969 	ktime_t start = ktime_get();
9970 
9971 	if (pm_runtime_suspended(hba->dev))
9972 		goto out;
9973 
9974 	ret = ufshcd_suspend(hba);
9975 out:
9976 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9977 		ktime_to_us(ktime_sub(ktime_get(), start)),
9978 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9979 	return ret;
9980 }
9981 EXPORT_SYMBOL(ufshcd_system_suspend);
9982 
9983 /**
9984  * ufshcd_system_resume - system resume callback
9985  * @dev: Device associated with the UFS controller.
9986  *
9987  * Executed after waking the system up from a sleep state in which the contents
9988  * of main memory were preserved.
9989  *
9990  * Return: 0 for success and non-zero for failure.
9991  */
9992 int ufshcd_system_resume(struct device *dev)
9993 {
9994 	struct ufs_hba *hba = dev_get_drvdata(dev);
9995 	ktime_t start = ktime_get();
9996 	int ret = 0;
9997 
9998 	if (pm_runtime_suspended(hba->dev))
9999 		goto out;
10000 
10001 	ret = ufshcd_resume(hba);
10002 
10003 out:
10004 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10005 		ktime_to_us(ktime_sub(ktime_get(), start)),
10006 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10007 
10008 	return ret;
10009 }
10010 EXPORT_SYMBOL(ufshcd_system_resume);
10011 #endif /* CONFIG_PM_SLEEP */
10012 
10013 #ifdef CONFIG_PM
10014 /**
10015  * ufshcd_runtime_suspend - runtime suspend callback
10016  * @dev: Device associated with the UFS controller.
10017  *
10018  * Check the description of ufshcd_suspend() function for more details.
10019  *
10020  * Return: 0 for success and non-zero for failure.
10021  */
10022 int ufshcd_runtime_suspend(struct device *dev)
10023 {
10024 	struct ufs_hba *hba = dev_get_drvdata(dev);
10025 	int ret;
10026 	ktime_t start = ktime_get();
10027 
10028 	ret = ufshcd_suspend(hba);
10029 
10030 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10031 		ktime_to_us(ktime_sub(ktime_get(), start)),
10032 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10033 	return ret;
10034 }
10035 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10036 
10037 /**
10038  * ufshcd_runtime_resume - runtime resume routine
10039  * @dev: Device associated with the UFS controller.
10040  *
10041  * This function basically brings controller
10042  * to active state. Following operations are done in this function:
10043  *
10044  * 1. Turn on all the controller related clocks
10045  * 2. Turn ON VCC rail
10046  *
10047  * Return: 0 upon success; < 0 upon failure.
10048  */
10049 int ufshcd_runtime_resume(struct device *dev)
10050 {
10051 	struct ufs_hba *hba = dev_get_drvdata(dev);
10052 	int ret;
10053 	ktime_t start = ktime_get();
10054 
10055 	ret = ufshcd_resume(hba);
10056 
10057 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10058 		ktime_to_us(ktime_sub(ktime_get(), start)),
10059 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10060 	return ret;
10061 }
10062 EXPORT_SYMBOL(ufshcd_runtime_resume);
10063 #endif /* CONFIG_PM */
10064 
10065 static void ufshcd_wl_shutdown(struct device *dev)
10066 {
10067 	struct scsi_device *sdev = to_scsi_device(dev);
10068 	struct ufs_hba *hba = shost_priv(sdev->host);
10069 
10070 	down(&hba->host_sem);
10071 	hba->shutting_down = true;
10072 	up(&hba->host_sem);
10073 
10074 	/* Turn on everything while shutting down */
10075 	ufshcd_rpm_get_sync(hba);
10076 	scsi_device_quiesce(sdev);
10077 	shost_for_each_device(sdev, hba->host) {
10078 		if (sdev == hba->ufs_device_wlun)
10079 			continue;
10080 		scsi_device_quiesce(sdev);
10081 	}
10082 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10083 
10084 	/*
10085 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10086 	 * clocks.
10087 	 */
10088 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10089 		ufshcd_suspend(hba);
10090 
10091 	hba->is_powered = false;
10092 }
10093 
10094 /**
10095  * ufshcd_remove - de-allocate SCSI host and host memory space
10096  *		data structure memory
10097  * @hba: per adapter instance
10098  */
10099 void ufshcd_remove(struct ufs_hba *hba)
10100 {
10101 	if (hba->ufs_device_wlun)
10102 		ufshcd_rpm_get_sync(hba);
10103 	ufs_hwmon_remove(hba);
10104 	ufs_bsg_remove(hba);
10105 	ufs_sysfs_remove_nodes(hba->dev);
10106 	blk_mq_destroy_queue(hba->tmf_queue);
10107 	blk_put_queue(hba->tmf_queue);
10108 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10109 	scsi_remove_host(hba->host);
10110 	/* disable interrupts */
10111 	ufshcd_disable_intr(hba, hba->intr_mask);
10112 	ufshcd_hba_stop(hba);
10113 	ufshcd_hba_exit(hba);
10114 }
10115 EXPORT_SYMBOL_GPL(ufshcd_remove);
10116 
10117 #ifdef CONFIG_PM_SLEEP
10118 int ufshcd_system_freeze(struct device *dev)
10119 {
10120 
10121 	return ufshcd_system_suspend(dev);
10122 
10123 }
10124 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10125 
10126 int ufshcd_system_restore(struct device *dev)
10127 {
10128 
10129 	struct ufs_hba *hba = dev_get_drvdata(dev);
10130 	int ret;
10131 
10132 	ret = ufshcd_system_resume(dev);
10133 	if (ret)
10134 		return ret;
10135 
10136 	/* Configure UTRL and UTMRL base address registers */
10137 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10138 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10139 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10140 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10141 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10142 			REG_UTP_TASK_REQ_LIST_BASE_L);
10143 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10144 			REG_UTP_TASK_REQ_LIST_BASE_H);
10145 	/*
10146 	 * Make sure that UTRL and UTMRL base address registers
10147 	 * are updated with the latest queue addresses. Only after
10148 	 * updating these addresses, we can queue the new commands.
10149 	 */
10150 	mb();
10151 
10152 	/* Resuming from hibernate, assume that link was OFF */
10153 	ufshcd_set_link_off(hba);
10154 
10155 	return 0;
10156 
10157 }
10158 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10159 
10160 int ufshcd_system_thaw(struct device *dev)
10161 {
10162 	return ufshcd_system_resume(dev);
10163 }
10164 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10165 #endif /* CONFIG_PM_SLEEP  */
10166 
10167 /**
10168  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10169  * @hba: pointer to Host Bus Adapter (HBA)
10170  */
10171 void ufshcd_dealloc_host(struct ufs_hba *hba)
10172 {
10173 	scsi_host_put(hba->host);
10174 }
10175 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10176 
10177 /**
10178  * ufshcd_set_dma_mask - Set dma mask based on the controller
10179  *			 addressing capability
10180  * @hba: per adapter instance
10181  *
10182  * Return: 0 for success, non-zero for failure.
10183  */
10184 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10185 {
10186 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10187 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10188 			return 0;
10189 	}
10190 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10191 }
10192 
10193 /**
10194  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10195  * @dev: pointer to device handle
10196  * @hba_handle: driver private handle
10197  *
10198  * Return: 0 on success, non-zero value on failure.
10199  */
10200 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10201 {
10202 	struct Scsi_Host *host;
10203 	struct ufs_hba *hba;
10204 	int err = 0;
10205 
10206 	if (!dev) {
10207 		dev_err(dev,
10208 		"Invalid memory reference for dev is NULL\n");
10209 		err = -ENODEV;
10210 		goto out_error;
10211 	}
10212 
10213 	host = scsi_host_alloc(&ufshcd_driver_template,
10214 				sizeof(struct ufs_hba));
10215 	if (!host) {
10216 		dev_err(dev, "scsi_host_alloc failed\n");
10217 		err = -ENOMEM;
10218 		goto out_error;
10219 	}
10220 	host->nr_maps = HCTX_TYPE_POLL + 1;
10221 	hba = shost_priv(host);
10222 	hba->host = host;
10223 	hba->dev = dev;
10224 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10225 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10226 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10227 	INIT_LIST_HEAD(&hba->clk_list_head);
10228 	spin_lock_init(&hba->outstanding_lock);
10229 
10230 	*hba_handle = hba;
10231 
10232 out_error:
10233 	return err;
10234 }
10235 EXPORT_SYMBOL(ufshcd_alloc_host);
10236 
10237 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10238 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10239 				     const struct blk_mq_queue_data *qd)
10240 {
10241 	WARN_ON_ONCE(true);
10242 	return BLK_STS_NOTSUPP;
10243 }
10244 
10245 static const struct blk_mq_ops ufshcd_tmf_ops = {
10246 	.queue_rq = ufshcd_queue_tmf,
10247 };
10248 
10249 /**
10250  * ufshcd_init - Driver initialization routine
10251  * @hba: per-adapter instance
10252  * @mmio_base: base register address
10253  * @irq: Interrupt line of device
10254  *
10255  * Return: 0 on success, non-zero value on failure.
10256  */
10257 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10258 {
10259 	int err;
10260 	struct Scsi_Host *host = hba->host;
10261 	struct device *dev = hba->dev;
10262 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10263 
10264 	/*
10265 	 * dev_set_drvdata() must be called before any callbacks are registered
10266 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10267 	 * sysfs).
10268 	 */
10269 	dev_set_drvdata(dev, hba);
10270 
10271 	if (!mmio_base) {
10272 		dev_err(hba->dev,
10273 		"Invalid memory reference for mmio_base is NULL\n");
10274 		err = -ENODEV;
10275 		goto out_error;
10276 	}
10277 
10278 	hba->mmio_base = mmio_base;
10279 	hba->irq = irq;
10280 	hba->vps = &ufs_hba_vps;
10281 
10282 	err = ufshcd_hba_init(hba);
10283 	if (err)
10284 		goto out_error;
10285 
10286 	/* Read capabilities registers */
10287 	err = ufshcd_hba_capabilities(hba);
10288 	if (err)
10289 		goto out_disable;
10290 
10291 	/* Get UFS version supported by the controller */
10292 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10293 
10294 	/* Get Interrupt bit mask per version */
10295 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10296 
10297 	err = ufshcd_set_dma_mask(hba);
10298 	if (err) {
10299 		dev_err(hba->dev, "set dma mask failed\n");
10300 		goto out_disable;
10301 	}
10302 
10303 	/* Allocate memory for host memory space */
10304 	err = ufshcd_memory_alloc(hba);
10305 	if (err) {
10306 		dev_err(hba->dev, "Memory allocation failed\n");
10307 		goto out_disable;
10308 	}
10309 
10310 	/* Configure LRB */
10311 	ufshcd_host_memory_configure(hba);
10312 
10313 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10314 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10315 	host->max_id = UFSHCD_MAX_ID;
10316 	host->max_lun = UFS_MAX_LUNS;
10317 	host->max_channel = UFSHCD_MAX_CHANNEL;
10318 	host->unique_id = host->host_no;
10319 	host->max_cmd_len = UFS_CDB_SIZE;
10320 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10321 
10322 	hba->max_pwr_info.is_valid = false;
10323 
10324 	/* Initialize work queues */
10325 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10326 		 hba->host->host_no);
10327 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10328 	if (!hba->eh_wq) {
10329 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10330 			__func__);
10331 		err = -ENOMEM;
10332 		goto out_disable;
10333 	}
10334 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10335 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10336 
10337 	sema_init(&hba->host_sem, 1);
10338 
10339 	/* Initialize UIC command mutex */
10340 	mutex_init(&hba->uic_cmd_mutex);
10341 
10342 	/* Initialize mutex for device management commands */
10343 	mutex_init(&hba->dev_cmd.lock);
10344 
10345 	/* Initialize mutex for exception event control */
10346 	mutex_init(&hba->ee_ctrl_mutex);
10347 
10348 	mutex_init(&hba->wb_mutex);
10349 	init_rwsem(&hba->clk_scaling_lock);
10350 
10351 	ufshcd_init_clk_gating(hba);
10352 
10353 	ufshcd_init_clk_scaling(hba);
10354 
10355 	/*
10356 	 * In order to avoid any spurious interrupt immediately after
10357 	 * registering UFS controller interrupt handler, clear any pending UFS
10358 	 * interrupt status and disable all the UFS interrupts.
10359 	 */
10360 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10361 		      REG_INTERRUPT_STATUS);
10362 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10363 	/*
10364 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10365 	 * status is cleared before registering UFS interrupt handler.
10366 	 */
10367 	mb();
10368 
10369 	/* IRQ registration */
10370 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10371 	if (err) {
10372 		dev_err(hba->dev, "request irq failed\n");
10373 		goto out_disable;
10374 	} else {
10375 		hba->is_irq_enabled = true;
10376 	}
10377 
10378 	if (!is_mcq_supported(hba)) {
10379 		err = scsi_add_host(host, hba->dev);
10380 		if (err) {
10381 			dev_err(hba->dev, "scsi_add_host failed\n");
10382 			goto out_disable;
10383 		}
10384 	}
10385 
10386 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10387 		.nr_hw_queues	= 1,
10388 		.queue_depth	= hba->nutmrs,
10389 		.ops		= &ufshcd_tmf_ops,
10390 		.flags		= BLK_MQ_F_NO_SCHED,
10391 	};
10392 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10393 	if (err < 0)
10394 		goto out_remove_scsi_host;
10395 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10396 	if (IS_ERR(hba->tmf_queue)) {
10397 		err = PTR_ERR(hba->tmf_queue);
10398 		goto free_tmf_tag_set;
10399 	}
10400 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10401 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10402 	if (!hba->tmf_rqs) {
10403 		err = -ENOMEM;
10404 		goto free_tmf_queue;
10405 	}
10406 
10407 	/* Reset the attached device */
10408 	ufshcd_device_reset(hba);
10409 
10410 	ufshcd_init_crypto(hba);
10411 
10412 	/* Host controller enable */
10413 	err = ufshcd_hba_enable(hba);
10414 	if (err) {
10415 		dev_err(hba->dev, "Host controller enable failed\n");
10416 		ufshcd_print_evt_hist(hba);
10417 		ufshcd_print_host_state(hba);
10418 		goto free_tmf_queue;
10419 	}
10420 
10421 	/*
10422 	 * Set the default power management level for runtime and system PM.
10423 	 * Default power saving mode is to keep UFS link in Hibern8 state
10424 	 * and UFS device in sleep state.
10425 	 */
10426 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10427 						UFS_SLEEP_PWR_MODE,
10428 						UIC_LINK_HIBERN8_STATE);
10429 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10430 						UFS_SLEEP_PWR_MODE,
10431 						UIC_LINK_HIBERN8_STATE);
10432 
10433 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10434 			  ufshcd_rpm_dev_flush_recheck_work);
10435 
10436 	/* Set the default auto-hiberate idle timer value to 150 ms */
10437 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10438 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10439 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10440 	}
10441 
10442 	/* Hold auto suspend until async scan completes */
10443 	pm_runtime_get_sync(dev);
10444 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10445 	/*
10446 	 * We are assuming that device wasn't put in sleep/power-down
10447 	 * state exclusively during the boot stage before kernel.
10448 	 * This assumption helps avoid doing link startup twice during
10449 	 * ufshcd_probe_hba().
10450 	 */
10451 	ufshcd_set_ufs_dev_active(hba);
10452 
10453 	async_schedule(ufshcd_async_scan, hba);
10454 	ufs_sysfs_add_nodes(hba->dev);
10455 
10456 	device_enable_async_suspend(dev);
10457 	return 0;
10458 
10459 free_tmf_queue:
10460 	blk_mq_destroy_queue(hba->tmf_queue);
10461 	blk_put_queue(hba->tmf_queue);
10462 free_tmf_tag_set:
10463 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10464 out_remove_scsi_host:
10465 	scsi_remove_host(hba->host);
10466 out_disable:
10467 	hba->is_irq_enabled = false;
10468 	ufshcd_hba_exit(hba);
10469 out_error:
10470 	return err;
10471 }
10472 EXPORT_SYMBOL_GPL(ufshcd_init);
10473 
10474 void ufshcd_resume_complete(struct device *dev)
10475 {
10476 	struct ufs_hba *hba = dev_get_drvdata(dev);
10477 
10478 	if (hba->complete_put) {
10479 		ufshcd_rpm_put(hba);
10480 		hba->complete_put = false;
10481 	}
10482 }
10483 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10484 
10485 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10486 {
10487 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10488 	enum ufs_dev_pwr_mode dev_pwr_mode;
10489 	enum uic_link_state link_state;
10490 	unsigned long flags;
10491 	bool res;
10492 
10493 	spin_lock_irqsave(&dev->power.lock, flags);
10494 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10495 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10496 	res = pm_runtime_suspended(dev) &&
10497 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10498 	      hba->uic_link_state == link_state &&
10499 	      !hba->dev_info.b_rpm_dev_flush_capable;
10500 	spin_unlock_irqrestore(&dev->power.lock, flags);
10501 
10502 	return res;
10503 }
10504 
10505 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10506 {
10507 	struct ufs_hba *hba = dev_get_drvdata(dev);
10508 	int ret;
10509 
10510 	/*
10511 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10512 	 * are same. And it doesn't wake up the device for system-suspend
10513 	 * if it's runtime suspended. But ufs doesn't follow that.
10514 	 * Refer ufshcd_resume_complete()
10515 	 */
10516 	if (hba->ufs_device_wlun) {
10517 		/* Prevent runtime suspend */
10518 		ufshcd_rpm_get_noresume(hba);
10519 		/*
10520 		 * Check if already runtime suspended in same state as system
10521 		 * suspend would be.
10522 		 */
10523 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10524 			/* RPM state is not ok for SPM, so runtime resume */
10525 			ret = ufshcd_rpm_resume(hba);
10526 			if (ret < 0 && ret != -EACCES) {
10527 				ufshcd_rpm_put(hba);
10528 				return ret;
10529 			}
10530 		}
10531 		hba->complete_put = true;
10532 	}
10533 	return 0;
10534 }
10535 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10536 
10537 int ufshcd_suspend_prepare(struct device *dev)
10538 {
10539 	return __ufshcd_suspend_prepare(dev, true);
10540 }
10541 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10542 
10543 #ifdef CONFIG_PM_SLEEP
10544 static int ufshcd_wl_poweroff(struct device *dev)
10545 {
10546 	struct scsi_device *sdev = to_scsi_device(dev);
10547 	struct ufs_hba *hba = shost_priv(sdev->host);
10548 
10549 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10550 	return 0;
10551 }
10552 #endif
10553 
10554 static int ufshcd_wl_probe(struct device *dev)
10555 {
10556 	struct scsi_device *sdev = to_scsi_device(dev);
10557 
10558 	if (!is_device_wlun(sdev))
10559 		return -ENODEV;
10560 
10561 	blk_pm_runtime_init(sdev->request_queue, dev);
10562 	pm_runtime_set_autosuspend_delay(dev, 0);
10563 	pm_runtime_allow(dev);
10564 
10565 	return  0;
10566 }
10567 
10568 static int ufshcd_wl_remove(struct device *dev)
10569 {
10570 	pm_runtime_forbid(dev);
10571 	return 0;
10572 }
10573 
10574 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10575 #ifdef CONFIG_PM_SLEEP
10576 	.suspend = ufshcd_wl_suspend,
10577 	.resume = ufshcd_wl_resume,
10578 	.freeze = ufshcd_wl_suspend,
10579 	.thaw = ufshcd_wl_resume,
10580 	.poweroff = ufshcd_wl_poweroff,
10581 	.restore = ufshcd_wl_resume,
10582 #endif
10583 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10584 };
10585 
10586 static void ufshcd_check_header_layout(void)
10587 {
10588 	/*
10589 	 * gcc compilers before version 10 cannot do constant-folding for
10590 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10591 	 * before.
10592 	 */
10593 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10594 		return;
10595 
10596 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10597 				.cci = 3})[0] != 3);
10598 
10599 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10600 				.ehs_length = 2})[1] != 2);
10601 
10602 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10603 				.enable_crypto = 1})[2]
10604 		     != 0x80);
10605 
10606 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10607 					.command_type = 5,
10608 					.data_direction = 3,
10609 					.interrupt = 1,
10610 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10611 
10612 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10613 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10614 		cpu_to_le32(0xdeadbeef));
10615 
10616 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10617 				.ocs = 4})[8] != 4);
10618 
10619 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10620 				.cds = 5})[9] != 5);
10621 
10622 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10623 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10624 		cpu_to_le32(0xbadcafe));
10625 
10626 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10627 			     .iid = 0xf })[4] != 0xf0);
10628 
10629 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10630 			     .command_set_type = 0xf })[4] != 0xf);
10631 }
10632 
10633 /*
10634  * ufs_dev_wlun_template - describes ufs device wlun
10635  * ufs-device wlun - used to send pm commands
10636  * All luns are consumers of ufs-device wlun.
10637  *
10638  * Currently, no sd driver is present for wluns.
10639  * Hence the no specific pm operations are performed.
10640  * With ufs design, SSU should be sent to ufs-device wlun.
10641  * Hence register a scsi driver for ufs wluns only.
10642  */
10643 static struct scsi_driver ufs_dev_wlun_template = {
10644 	.gendrv = {
10645 		.name = "ufs_device_wlun",
10646 		.owner = THIS_MODULE,
10647 		.probe = ufshcd_wl_probe,
10648 		.remove = ufshcd_wl_remove,
10649 		.pm = &ufshcd_wl_pm_ops,
10650 		.shutdown = ufshcd_wl_shutdown,
10651 	},
10652 };
10653 
10654 static int __init ufshcd_core_init(void)
10655 {
10656 	int ret;
10657 
10658 	ufshcd_check_header_layout();
10659 
10660 	ufs_debugfs_init();
10661 
10662 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10663 	if (ret)
10664 		ufs_debugfs_exit();
10665 	return ret;
10666 }
10667 
10668 static void __exit ufshcd_core_exit(void)
10669 {
10670 	ufs_debugfs_exit();
10671 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10672 }
10673 
10674 module_init(ufshcd_core_init);
10675 module_exit(ufshcd_core_exit);
10676 
10677 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10678 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10679 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10680 MODULE_SOFTDEP("pre: governor_simpleondemand");
10681 MODULE_LICENSE("GPL");
10682