xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 1edd0337)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode, refer param_set_mcq_mode() */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 static int param_set_mcq_mode(const char *val, const struct kernel_param *kp)
110 {
111 	int ret;
112 
113 	ret = param_set_bool(val, kp);
114 	if (ret)
115 		return ret;
116 
117 	return 0;
118 }
119 
120 static const struct kernel_param_ops mcq_mode_ops = {
121 	.set = param_set_mcq_mode,
122 	.get = param_get_bool,
123 };
124 
125 module_param_cb(use_mcq_mode, &mcq_mode_ops, &use_mcq_mode, 0644);
126 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
127 
128 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
129 	({                                                              \
130 		int _ret;                                               \
131 		if (_on)                                                \
132 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
133 		else                                                    \
134 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
135 		_ret;                                                   \
136 	})
137 
138 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
139 	size_t __len = (len);                                            \
140 	print_hex_dump(KERN_ERR, prefix_str,                             \
141 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
142 		       16, 4, buf, __len, false);                        \
143 } while (0)
144 
145 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
146 		     const char *prefix)
147 {
148 	u32 *regs;
149 	size_t pos;
150 
151 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
152 		return -EINVAL;
153 
154 	regs = kzalloc(len, GFP_ATOMIC);
155 	if (!regs)
156 		return -ENOMEM;
157 
158 	for (pos = 0; pos < len; pos += 4) {
159 		if (offset == 0 &&
160 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
161 		    pos <= REG_UIC_ERROR_CODE_DME)
162 			continue;
163 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
164 	}
165 
166 	ufshcd_hex_dump(prefix, regs, len);
167 	kfree(regs);
168 
169 	return 0;
170 }
171 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
172 
173 enum {
174 	UFSHCD_MAX_CHANNEL	= 0,
175 	UFSHCD_MAX_ID		= 1,
176 	UFSHCD_NUM_RESERVED	= 1,
177 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
178 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
179 };
180 
181 static const char *const ufshcd_state_name[] = {
182 	[UFSHCD_STATE_RESET]			= "reset",
183 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
184 	[UFSHCD_STATE_ERROR]			= "error",
185 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
186 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
187 };
188 
189 /* UFSHCD error handling flags */
190 enum {
191 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
192 };
193 
194 /* UFSHCD UIC layer error flags */
195 enum {
196 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
197 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
198 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
199 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
200 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
201 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
202 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
203 };
204 
205 #define ufshcd_set_eh_in_progress(h) \
206 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
207 #define ufshcd_eh_in_progress(h) \
208 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
209 #define ufshcd_clear_eh_in_progress(h) \
210 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
211 
212 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
213 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
214 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
215 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
216 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
217 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
218 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
219 	/*
220 	 * For DeepSleep, the link is first put in hibern8 and then off.
221 	 * Leaving the link in hibern8 is not supported.
222 	 */
223 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
224 };
225 
226 static inline enum ufs_dev_pwr_mode
227 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
228 {
229 	return ufs_pm_lvl_states[lvl].dev_state;
230 }
231 
232 static inline enum uic_link_state
233 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
234 {
235 	return ufs_pm_lvl_states[lvl].link_state;
236 }
237 
238 static inline enum ufs_pm_level
239 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
240 					enum uic_link_state link_state)
241 {
242 	enum ufs_pm_level lvl;
243 
244 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
245 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
246 			(ufs_pm_lvl_states[lvl].link_state == link_state))
247 			return lvl;
248 	}
249 
250 	/* if no match found, return the level 0 */
251 	return UFS_PM_LVL_0;
252 }
253 
254 static const struct ufs_dev_quirk ufs_fixups[] = {
255 	/* UFS cards deviations table */
256 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
257 	  .model = UFS_ANY_MODEL,
258 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
259 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
260 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
261 	  .model = UFS_ANY_MODEL,
262 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
263 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
264 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
265 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
266 	  .model = UFS_ANY_MODEL,
267 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
268 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
269 	  .model = "hB8aL1" /*H28U62301AMR*/,
270 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
271 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
272 	  .model = UFS_ANY_MODEL,
273 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
274 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
275 	  .model = "THGLF2G9C8KBADG",
276 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
277 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
278 	  .model = "THGLF2G9D8KBADG",
279 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
280 	{}
281 };
282 
283 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
284 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
285 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
286 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
287 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
288 static void ufshcd_hba_exit(struct ufs_hba *hba);
289 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
290 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
291 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
292 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
293 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
294 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
295 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
296 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
297 static irqreturn_t ufshcd_intr(int irq, void *__hba);
298 static int ufshcd_change_power_mode(struct ufs_hba *hba,
299 			     struct ufs_pa_layer_attr *pwr_mode);
300 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
301 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
302 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
303 					 struct ufs_vreg *vreg);
304 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
305 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
306 						 bool enable);
307 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
308 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
309 
310 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
311 {
312 	if (!hba->is_irq_enabled) {
313 		enable_irq(hba->irq);
314 		hba->is_irq_enabled = true;
315 	}
316 }
317 
318 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
319 {
320 	if (hba->is_irq_enabled) {
321 		disable_irq(hba->irq);
322 		hba->is_irq_enabled = false;
323 	}
324 }
325 
326 static void ufshcd_configure_wb(struct ufs_hba *hba)
327 {
328 	if (!ufshcd_is_wb_allowed(hba))
329 		return;
330 
331 	ufshcd_wb_toggle(hba, true);
332 
333 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
334 
335 	if (ufshcd_is_wb_buf_flush_allowed(hba))
336 		ufshcd_wb_toggle_buf_flush(hba, true);
337 }
338 
339 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
340 {
341 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
342 		scsi_unblock_requests(hba->host);
343 }
344 
345 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
346 {
347 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
348 		scsi_block_requests(hba->host);
349 }
350 
351 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
352 				      enum ufs_trace_str_t str_t)
353 {
354 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
355 	struct utp_upiu_header *header;
356 
357 	if (!trace_ufshcd_upiu_enabled())
358 		return;
359 
360 	if (str_t == UFS_CMD_SEND)
361 		header = &rq->header;
362 	else
363 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
364 
365 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
366 			  UFS_TSF_CDB);
367 }
368 
369 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
370 					enum ufs_trace_str_t str_t,
371 					struct utp_upiu_req *rq_rsp)
372 {
373 	if (!trace_ufshcd_upiu_enabled())
374 		return;
375 
376 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
377 			  &rq_rsp->qr, UFS_TSF_OSF);
378 }
379 
380 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
381 				     enum ufs_trace_str_t str_t)
382 {
383 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
384 
385 	if (!trace_ufshcd_upiu_enabled())
386 		return;
387 
388 	if (str_t == UFS_TM_SEND)
389 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
390 				  &descp->upiu_req.req_header,
391 				  &descp->upiu_req.input_param1,
392 				  UFS_TSF_TM_INPUT);
393 	else
394 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
395 				  &descp->upiu_rsp.rsp_header,
396 				  &descp->upiu_rsp.output_param1,
397 				  UFS_TSF_TM_OUTPUT);
398 }
399 
400 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
401 					 const struct uic_command *ucmd,
402 					 enum ufs_trace_str_t str_t)
403 {
404 	u32 cmd;
405 
406 	if (!trace_ufshcd_uic_command_enabled())
407 		return;
408 
409 	if (str_t == UFS_CMD_SEND)
410 		cmd = ucmd->command;
411 	else
412 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
413 
414 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
415 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
416 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
417 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
418 }
419 
420 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
421 				     enum ufs_trace_str_t str_t)
422 {
423 	u64 lba = 0;
424 	u8 opcode = 0, group_id = 0;
425 	u32 intr, doorbell;
426 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
427 	struct scsi_cmnd *cmd = lrbp->cmd;
428 	struct request *rq = scsi_cmd_to_rq(cmd);
429 	int transfer_len = -1;
430 
431 	if (!cmd)
432 		return;
433 
434 	/* trace UPIU also */
435 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
436 	if (!trace_ufshcd_command_enabled())
437 		return;
438 
439 	opcode = cmd->cmnd[0];
440 
441 	if (opcode == READ_10 || opcode == WRITE_10) {
442 		/*
443 		 * Currently we only fully trace read(10) and write(10) commands
444 		 */
445 		transfer_len =
446 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
447 		lba = scsi_get_lba(cmd);
448 		if (opcode == WRITE_10)
449 			group_id = lrbp->cmd->cmnd[6];
450 	} else if (opcode == UNMAP) {
451 		/*
452 		 * The number of Bytes to be unmapped beginning with the lba.
453 		 */
454 		transfer_len = blk_rq_bytes(rq);
455 		lba = scsi_get_lba(cmd);
456 	}
457 
458 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
459 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
460 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
461 			doorbell, transfer_len, intr, lba, opcode, group_id);
462 }
463 
464 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
465 {
466 	struct ufs_clk_info *clki;
467 	struct list_head *head = &hba->clk_list_head;
468 
469 	if (list_empty(head))
470 		return;
471 
472 	list_for_each_entry(clki, head, list) {
473 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
474 				clki->max_freq)
475 			dev_err(hba->dev, "clk: %s, rate: %u\n",
476 					clki->name, clki->curr_freq);
477 	}
478 }
479 
480 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
481 			     const char *err_name)
482 {
483 	int i;
484 	bool found = false;
485 	const struct ufs_event_hist *e;
486 
487 	if (id >= UFS_EVT_CNT)
488 		return;
489 
490 	e = &hba->ufs_stats.event[id];
491 
492 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
493 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
494 
495 		if (e->tstamp[p] == 0)
496 			continue;
497 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
498 			e->val[p], div_u64(e->tstamp[p], 1000));
499 		found = true;
500 	}
501 
502 	if (!found)
503 		dev_err(hba->dev, "No record of %s\n", err_name);
504 	else
505 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
506 }
507 
508 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
509 {
510 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
511 
512 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
513 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
514 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
515 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
516 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
517 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
518 			 "auto_hibern8_err");
519 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
520 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
521 			 "link_startup_fail");
522 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
523 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
524 			 "suspend_fail");
525 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
526 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
527 			 "wlun suspend_fail");
528 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
529 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
530 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
531 
532 	ufshcd_vops_dbg_register_dump(hba);
533 }
534 
535 static
536 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
537 {
538 	const struct ufshcd_lrb *lrbp;
539 	int prdt_length;
540 	int tag;
541 
542 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
543 		lrbp = &hba->lrb[tag];
544 
545 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
546 				tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
547 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
548 				tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
549 		dev_err(hba->dev,
550 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
551 			tag, (u64)lrbp->utrd_dma_addr);
552 
553 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
554 				sizeof(struct utp_transfer_req_desc));
555 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
556 			(u64)lrbp->ucd_req_dma_addr);
557 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
558 				sizeof(struct utp_upiu_req));
559 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
560 			(u64)lrbp->ucd_rsp_dma_addr);
561 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
562 				sizeof(struct utp_upiu_rsp));
563 
564 		prdt_length = le16_to_cpu(
565 			lrbp->utr_descriptor_ptr->prd_table_length);
566 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
567 			prdt_length /= ufshcd_sg_entry_size(hba);
568 
569 		dev_err(hba->dev,
570 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
571 			tag, prdt_length,
572 			(u64)lrbp->ucd_prdt_dma_addr);
573 
574 		if (pr_prdt)
575 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
576 				ufshcd_sg_entry_size(hba) * prdt_length);
577 	}
578 }
579 
580 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
581 {
582 	int tag;
583 
584 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
585 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
586 
587 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
588 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
589 	}
590 }
591 
592 static void ufshcd_print_host_state(struct ufs_hba *hba)
593 {
594 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
595 
596 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
597 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
598 		hba->outstanding_reqs, hba->outstanding_tasks);
599 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
600 		hba->saved_err, hba->saved_uic_err);
601 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
602 		hba->curr_dev_pwr_mode, hba->uic_link_state);
603 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
604 		hba->pm_op_in_progress, hba->is_sys_suspended);
605 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
606 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
607 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
608 	dev_err(hba->dev,
609 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
610 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
611 		hba->ufs_stats.hibern8_exit_cnt);
612 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
613 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
614 		hba->ufs_stats.last_intr_status);
615 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
616 		hba->eh_flags, hba->req_abort_count);
617 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
618 		hba->ufs_version, hba->capabilities, hba->caps);
619 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
620 		hba->dev_quirks);
621 	if (sdev_ufs)
622 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
623 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
624 
625 	ufshcd_print_clk_freqs(hba);
626 }
627 
628 /**
629  * ufshcd_print_pwr_info - print power params as saved in hba
630  * power info
631  * @hba: per-adapter instance
632  */
633 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
634 {
635 	static const char * const names[] = {
636 		"INVALID MODE",
637 		"FAST MODE",
638 		"SLOW_MODE",
639 		"INVALID MODE",
640 		"FASTAUTO_MODE",
641 		"SLOWAUTO_MODE",
642 		"INVALID MODE",
643 	};
644 
645 	/*
646 	 * Using dev_dbg to avoid messages during runtime PM to avoid
647 	 * never-ending cycles of messages written back to storage by user space
648 	 * causing runtime resume, causing more messages and so on.
649 	 */
650 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
651 		 __func__,
652 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
653 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
654 		 names[hba->pwr_info.pwr_rx],
655 		 names[hba->pwr_info.pwr_tx],
656 		 hba->pwr_info.hs_rate);
657 }
658 
659 static void ufshcd_device_reset(struct ufs_hba *hba)
660 {
661 	int err;
662 
663 	err = ufshcd_vops_device_reset(hba);
664 
665 	if (!err) {
666 		ufshcd_set_ufs_dev_active(hba);
667 		if (ufshcd_is_wb_allowed(hba)) {
668 			hba->dev_info.wb_enabled = false;
669 			hba->dev_info.wb_buf_flush_enabled = false;
670 		}
671 	}
672 	if (err != -EOPNOTSUPP)
673 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
674 }
675 
676 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
677 {
678 	if (!us)
679 		return;
680 
681 	if (us < 10)
682 		udelay(us);
683 	else
684 		usleep_range(us, us + tolerance);
685 }
686 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
687 
688 /**
689  * ufshcd_wait_for_register - wait for register value to change
690  * @hba: per-adapter interface
691  * @reg: mmio register offset
692  * @mask: mask to apply to the read register value
693  * @val: value to wait for
694  * @interval_us: polling interval in microseconds
695  * @timeout_ms: timeout in milliseconds
696  *
697  * Return:
698  * -ETIMEDOUT on error, zero on success.
699  */
700 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
701 				u32 val, unsigned long interval_us,
702 				unsigned long timeout_ms)
703 {
704 	int err = 0;
705 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
706 
707 	/* ignore bits that we don't intend to wait on */
708 	val = val & mask;
709 
710 	while ((ufshcd_readl(hba, reg) & mask) != val) {
711 		usleep_range(interval_us, interval_us + 50);
712 		if (time_after(jiffies, timeout)) {
713 			if ((ufshcd_readl(hba, reg) & mask) != val)
714 				err = -ETIMEDOUT;
715 			break;
716 		}
717 	}
718 
719 	return err;
720 }
721 
722 /**
723  * ufshcd_get_intr_mask - Get the interrupt bit mask
724  * @hba: Pointer to adapter instance
725  *
726  * Returns interrupt bit mask per version
727  */
728 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
729 {
730 	if (hba->ufs_version == ufshci_version(1, 0))
731 		return INTERRUPT_MASK_ALL_VER_10;
732 	if (hba->ufs_version <= ufshci_version(2, 0))
733 		return INTERRUPT_MASK_ALL_VER_11;
734 
735 	return INTERRUPT_MASK_ALL_VER_21;
736 }
737 
738 /**
739  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
740  * @hba: Pointer to adapter instance
741  *
742  * Returns UFSHCI version supported by the controller
743  */
744 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
745 {
746 	u32 ufshci_ver;
747 
748 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
749 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
750 	else
751 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
752 
753 	/*
754 	 * UFSHCI v1.x uses a different version scheme, in order
755 	 * to allow the use of comparisons with the ufshci_version
756 	 * function, we convert it to the same scheme as ufs 2.0+.
757 	 */
758 	if (ufshci_ver & 0x00010000)
759 		return ufshci_version(1, ufshci_ver & 0x00000100);
760 
761 	return ufshci_ver;
762 }
763 
764 /**
765  * ufshcd_is_device_present - Check if any device connected to
766  *			      the host controller
767  * @hba: pointer to adapter instance
768  *
769  * Returns true if device present, false if no device detected
770  */
771 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
772 {
773 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
774 }
775 
776 /**
777  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
778  * @lrbp: pointer to local command reference block
779  * @cqe: pointer to the completion queue entry
780  *
781  * This function is used to get the OCS field from UTRD
782  * Returns the OCS field in the UTRD
783  */
784 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
785 				      struct cq_entry *cqe)
786 {
787 	if (cqe)
788 		return le32_to_cpu(cqe->status) & MASK_OCS;
789 
790 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
791 }
792 
793 /**
794  * ufshcd_utrl_clear() - Clear requests from the controller request list.
795  * @hba: per adapter instance
796  * @mask: mask with one bit set for each request to be cleared
797  */
798 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
799 {
800 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
801 		mask = ~mask;
802 	/*
803 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
804 	 * Register (UTRLCLR): This field is bit significant. Each bit
805 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
806 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
807 	 * by host software to indicate to the host controller that a transfer
808 	 * request slot is cleared. The host controller
809 	 * shall free up any resources associated to the request slot
810 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
811 	 * host software indicates no change to request slots by setting the
812 	 * associated bits in this field to ‘1’. Bits in this field shall only
813 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
814 	 */
815 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
816 }
817 
818 /**
819  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
820  * @hba: per adapter instance
821  * @pos: position of the bit to be cleared
822  */
823 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
824 {
825 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
826 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
827 	else
828 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
829 }
830 
831 /**
832  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
833  * @reg: Register value of host controller status
834  *
835  * Returns integer, 0 on Success and positive value if failed
836  */
837 static inline int ufshcd_get_lists_status(u32 reg)
838 {
839 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
840 }
841 
842 /**
843  * ufshcd_get_uic_cmd_result - Get the UIC command result
844  * @hba: Pointer to adapter instance
845  *
846  * This function gets the result of UIC command completion
847  * Returns 0 on success, non zero value on error
848  */
849 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
850 {
851 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
852 	       MASK_UIC_COMMAND_RESULT;
853 }
854 
855 /**
856  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
857  * @hba: Pointer to adapter instance
858  *
859  * This function gets UIC command argument3
860  * Returns 0 on success, non zero value on error
861  */
862 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
863 {
864 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
865 }
866 
867 /**
868  * ufshcd_get_req_rsp - returns the TR response transaction type
869  * @ucd_rsp_ptr: pointer to response UPIU
870  */
871 static inline int
872 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
873 {
874 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
875 }
876 
877 /**
878  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * This function gets the response status and scsi_status from response UPIU
882  * Returns the response result code.
883  */
884 static inline int
885 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
886 {
887 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
888 }
889 
890 /*
891  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
892  *				from response UPIU
893  * @ucd_rsp_ptr: pointer to response UPIU
894  *
895  * Return the data segment length.
896  */
897 static inline unsigned int
898 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
901 		MASK_RSP_UPIU_DATA_SEG_LEN;
902 }
903 
904 /**
905  * ufshcd_is_exception_event - Check if the device raised an exception event
906  * @ucd_rsp_ptr: pointer to response UPIU
907  *
908  * The function checks if the device raised an exception event indicated in
909  * the Device Information field of response UPIU.
910  *
911  * Returns true if exception is raised, false otherwise.
912  */
913 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
914 {
915 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
916 			MASK_RSP_EXCEPTION_EVENT;
917 }
918 
919 /**
920  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
921  * @hba: per adapter instance
922  */
923 static inline void
924 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
925 {
926 	ufshcd_writel(hba, INT_AGGR_ENABLE |
927 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
928 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930 
931 /**
932  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
933  * @hba: per adapter instance
934  * @cnt: Interrupt aggregation counter threshold
935  * @tmout: Interrupt aggregation timeout value
936  */
937 static inline void
938 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
939 {
940 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
941 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
942 		      INT_AGGR_TIMEOUT_VAL(tmout),
943 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
944 }
945 
946 /**
947  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
948  * @hba: per adapter instance
949  */
950 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
951 {
952 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954 
955 /**
956  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
957  *			When run-stop registers are set to 1, it indicates the
958  *			host controller that it can process the requests
959  * @hba: per adapter instance
960  */
961 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
962 {
963 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
965 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
966 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
967 }
968 
969 /**
970  * ufshcd_hba_start - Start controller initialization sequence
971  * @hba: per adapter instance
972  */
973 static inline void ufshcd_hba_start(struct ufs_hba *hba)
974 {
975 	u32 val = CONTROLLER_ENABLE;
976 
977 	if (ufshcd_crypto_enable(hba))
978 		val |= CRYPTO_GENERAL_ENABLE;
979 
980 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
981 }
982 
983 /**
984  * ufshcd_is_hba_active - Get controller state
985  * @hba: per adapter instance
986  *
987  * Returns true if and only if the controller is active.
988  */
989 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
990 {
991 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
992 }
993 
994 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
995 {
996 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
997 	if (hba->ufs_version <= ufshci_version(1, 1))
998 		return UFS_UNIPRO_VER_1_41;
999 	else
1000 		return UFS_UNIPRO_VER_1_6;
1001 }
1002 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1003 
1004 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1005 {
1006 	/*
1007 	 * If both host and device support UniPro ver1.6 or later, PA layer
1008 	 * parameters tuning happens during link startup itself.
1009 	 *
1010 	 * We can manually tune PA layer parameters if either host or device
1011 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1012 	 * logic simple, we will only do manual tuning if local unipro version
1013 	 * doesn't support ver1.6 or later.
1014 	 */
1015 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1016 }
1017 
1018 /**
1019  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1020  * @hba: per adapter instance
1021  * @scale_up: If True, set max possible frequency othewise set low frequency
1022  *
1023  * Returns 0 if successful
1024  * Returns < 0 for any other errors
1025  */
1026 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1027 {
1028 	int ret = 0;
1029 	struct ufs_clk_info *clki;
1030 	struct list_head *head = &hba->clk_list_head;
1031 
1032 	if (list_empty(head))
1033 		goto out;
1034 
1035 	list_for_each_entry(clki, head, list) {
1036 		if (!IS_ERR_OR_NULL(clki->clk)) {
1037 			if (scale_up && clki->max_freq) {
1038 				if (clki->curr_freq == clki->max_freq)
1039 					continue;
1040 
1041 				ret = clk_set_rate(clki->clk, clki->max_freq);
1042 				if (ret) {
1043 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1044 						__func__, clki->name,
1045 						clki->max_freq, ret);
1046 					break;
1047 				}
1048 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1049 						"scaled up", clki->name,
1050 						clki->curr_freq,
1051 						clki->max_freq);
1052 
1053 				clki->curr_freq = clki->max_freq;
1054 
1055 			} else if (!scale_up && clki->min_freq) {
1056 				if (clki->curr_freq == clki->min_freq)
1057 					continue;
1058 
1059 				ret = clk_set_rate(clki->clk, clki->min_freq);
1060 				if (ret) {
1061 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1062 						__func__, clki->name,
1063 						clki->min_freq, ret);
1064 					break;
1065 				}
1066 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1067 						"scaled down", clki->name,
1068 						clki->curr_freq,
1069 						clki->min_freq);
1070 				clki->curr_freq = clki->min_freq;
1071 			}
1072 		}
1073 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1074 				clki->name, clk_get_rate(clki->clk));
1075 	}
1076 
1077 out:
1078 	return ret;
1079 }
1080 
1081 /**
1082  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1083  * @hba: per adapter instance
1084  * @scale_up: True if scaling up and false if scaling down
1085  *
1086  * Returns 0 if successful
1087  * Returns < 0 for any other errors
1088  */
1089 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1090 {
1091 	int ret = 0;
1092 	ktime_t start = ktime_get();
1093 
1094 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1095 	if (ret)
1096 		goto out;
1097 
1098 	ret = ufshcd_set_clk_freq(hba, scale_up);
1099 	if (ret)
1100 		goto out;
1101 
1102 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1103 	if (ret)
1104 		ufshcd_set_clk_freq(hba, !scale_up);
1105 
1106 out:
1107 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1108 			(scale_up ? "up" : "down"),
1109 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1110 	return ret;
1111 }
1112 
1113 /**
1114  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1115  * @hba: per adapter instance
1116  * @scale_up: True if scaling up and false if scaling down
1117  *
1118  * Returns true if scaling is required, false otherwise.
1119  */
1120 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1121 					       bool scale_up)
1122 {
1123 	struct ufs_clk_info *clki;
1124 	struct list_head *head = &hba->clk_list_head;
1125 
1126 	if (list_empty(head))
1127 		return false;
1128 
1129 	list_for_each_entry(clki, head, list) {
1130 		if (!IS_ERR_OR_NULL(clki->clk)) {
1131 			if (scale_up && clki->max_freq) {
1132 				if (clki->curr_freq == clki->max_freq)
1133 					continue;
1134 				return true;
1135 			} else if (!scale_up && clki->min_freq) {
1136 				if (clki->curr_freq == clki->min_freq)
1137 					continue;
1138 				return true;
1139 			}
1140 		}
1141 	}
1142 
1143 	return false;
1144 }
1145 
1146 /*
1147  * Determine the number of pending commands by counting the bits in the SCSI
1148  * device budget maps. This approach has been selected because a bit is set in
1149  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1150  * flag. The host_self_blocked flag can be modified by calling
1151  * scsi_block_requests() or scsi_unblock_requests().
1152  */
1153 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1154 {
1155 	const struct scsi_device *sdev;
1156 	u32 pending = 0;
1157 
1158 	lockdep_assert_held(hba->host->host_lock);
1159 	__shost_for_each_device(sdev, hba->host)
1160 		pending += sbitmap_weight(&sdev->budget_map);
1161 
1162 	return pending;
1163 }
1164 
1165 /*
1166  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1167  * has expired.
1168  *
1169  * Return: 0 upon success; -EBUSY upon timeout.
1170  */
1171 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1172 					u64 wait_timeout_us)
1173 {
1174 	unsigned long flags;
1175 	int ret = 0;
1176 	u32 tm_doorbell;
1177 	u32 tr_pending;
1178 	bool timeout = false, do_last_check = false;
1179 	ktime_t start;
1180 
1181 	ufshcd_hold(hba, false);
1182 	spin_lock_irqsave(hba->host->host_lock, flags);
1183 	/*
1184 	 * Wait for all the outstanding tasks/transfer requests.
1185 	 * Verify by checking the doorbell registers are clear.
1186 	 */
1187 	start = ktime_get();
1188 	do {
1189 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1190 			ret = -EBUSY;
1191 			goto out;
1192 		}
1193 
1194 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1195 		tr_pending = ufshcd_pending_cmds(hba);
1196 		if (!tm_doorbell && !tr_pending) {
1197 			timeout = false;
1198 			break;
1199 		} else if (do_last_check) {
1200 			break;
1201 		}
1202 
1203 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1204 		io_schedule_timeout(msecs_to_jiffies(20));
1205 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1206 		    wait_timeout_us) {
1207 			timeout = true;
1208 			/*
1209 			 * We might have scheduled out for long time so make
1210 			 * sure to check if doorbells are cleared by this time
1211 			 * or not.
1212 			 */
1213 			do_last_check = true;
1214 		}
1215 		spin_lock_irqsave(hba->host->host_lock, flags);
1216 	} while (tm_doorbell || tr_pending);
1217 
1218 	if (timeout) {
1219 		dev_err(hba->dev,
1220 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1221 			__func__, tm_doorbell, tr_pending);
1222 		ret = -EBUSY;
1223 	}
1224 out:
1225 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1226 	ufshcd_release(hba);
1227 	return ret;
1228 }
1229 
1230 /**
1231  * ufshcd_scale_gear - scale up/down UFS gear
1232  * @hba: per adapter instance
1233  * @scale_up: True for scaling up gear and false for scaling down
1234  *
1235  * Returns 0 for success,
1236  * Returns -EBUSY if scaling can't happen at this time
1237  * Returns non-zero for any other errors
1238  */
1239 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1240 {
1241 	int ret = 0;
1242 	struct ufs_pa_layer_attr new_pwr_info;
1243 
1244 	if (scale_up) {
1245 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1246 		       sizeof(struct ufs_pa_layer_attr));
1247 	} else {
1248 		memcpy(&new_pwr_info, &hba->pwr_info,
1249 		       sizeof(struct ufs_pa_layer_attr));
1250 
1251 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1252 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1253 			/* save the current power mode */
1254 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1255 				&hba->pwr_info,
1256 				sizeof(struct ufs_pa_layer_attr));
1257 
1258 			/* scale down gear */
1259 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1260 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1261 		}
1262 	}
1263 
1264 	/* check if the power mode needs to be changed or not? */
1265 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1266 	if (ret)
1267 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1268 			__func__, ret,
1269 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1270 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1271 
1272 	return ret;
1273 }
1274 
1275 /*
1276  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1277  * has expired.
1278  *
1279  * Return: 0 upon success; -EBUSY upon timeout.
1280  */
1281 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1282 {
1283 	int ret = 0;
1284 	/*
1285 	 * make sure that there are no outstanding requests when
1286 	 * clock scaling is in progress
1287 	 */
1288 	ufshcd_scsi_block_requests(hba);
1289 	mutex_lock(&hba->wb_mutex);
1290 	down_write(&hba->clk_scaling_lock);
1291 
1292 	if (!hba->clk_scaling.is_allowed ||
1293 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1294 		ret = -EBUSY;
1295 		up_write(&hba->clk_scaling_lock);
1296 		mutex_unlock(&hba->wb_mutex);
1297 		ufshcd_scsi_unblock_requests(hba);
1298 		goto out;
1299 	}
1300 
1301 	/* let's not get into low power until clock scaling is completed */
1302 	ufshcd_hold(hba, false);
1303 
1304 out:
1305 	return ret;
1306 }
1307 
1308 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1309 {
1310 	up_write(&hba->clk_scaling_lock);
1311 
1312 	/* Enable Write Booster if we have scaled up else disable it */
1313 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1314 		ufshcd_wb_toggle(hba, scale_up);
1315 
1316 	mutex_unlock(&hba->wb_mutex);
1317 
1318 	ufshcd_scsi_unblock_requests(hba);
1319 	ufshcd_release(hba);
1320 }
1321 
1322 /**
1323  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1324  * @hba: per adapter instance
1325  * @scale_up: True for scaling up and false for scalin down
1326  *
1327  * Returns 0 for success,
1328  * Returns -EBUSY if scaling can't happen at this time
1329  * Returns non-zero for any other errors
1330  */
1331 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1332 {
1333 	int ret = 0;
1334 
1335 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1336 	if (ret)
1337 		return ret;
1338 
1339 	/* scale down the gear before scaling down clocks */
1340 	if (!scale_up) {
1341 		ret = ufshcd_scale_gear(hba, false);
1342 		if (ret)
1343 			goto out_unprepare;
1344 	}
1345 
1346 	ret = ufshcd_scale_clks(hba, scale_up);
1347 	if (ret) {
1348 		if (!scale_up)
1349 			ufshcd_scale_gear(hba, true);
1350 		goto out_unprepare;
1351 	}
1352 
1353 	/* scale up the gear after scaling up clocks */
1354 	if (scale_up) {
1355 		ret = ufshcd_scale_gear(hba, true);
1356 		if (ret) {
1357 			ufshcd_scale_clks(hba, false);
1358 			goto out_unprepare;
1359 		}
1360 	}
1361 
1362 out_unprepare:
1363 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1364 	return ret;
1365 }
1366 
1367 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1368 {
1369 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1370 					   clk_scaling.suspend_work);
1371 	unsigned long irq_flags;
1372 
1373 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1374 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1375 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1376 		return;
1377 	}
1378 	hba->clk_scaling.is_suspended = true;
1379 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1380 
1381 	__ufshcd_suspend_clkscaling(hba);
1382 }
1383 
1384 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1385 {
1386 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1387 					   clk_scaling.resume_work);
1388 	unsigned long irq_flags;
1389 
1390 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1391 	if (!hba->clk_scaling.is_suspended) {
1392 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1393 		return;
1394 	}
1395 	hba->clk_scaling.is_suspended = false;
1396 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1397 
1398 	devfreq_resume_device(hba->devfreq);
1399 }
1400 
1401 static int ufshcd_devfreq_target(struct device *dev,
1402 				unsigned long *freq, u32 flags)
1403 {
1404 	int ret = 0;
1405 	struct ufs_hba *hba = dev_get_drvdata(dev);
1406 	ktime_t start;
1407 	bool scale_up, sched_clk_scaling_suspend_work = false;
1408 	struct list_head *clk_list = &hba->clk_list_head;
1409 	struct ufs_clk_info *clki;
1410 	unsigned long irq_flags;
1411 
1412 	if (!ufshcd_is_clkscaling_supported(hba))
1413 		return -EINVAL;
1414 
1415 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1416 	/* Override with the closest supported frequency */
1417 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1418 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1419 	if (ufshcd_eh_in_progress(hba)) {
1420 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1421 		return 0;
1422 	}
1423 
1424 	if (!hba->clk_scaling.active_reqs)
1425 		sched_clk_scaling_suspend_work = true;
1426 
1427 	if (list_empty(clk_list)) {
1428 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1429 		goto out;
1430 	}
1431 
1432 	/* Decide based on the rounded-off frequency and update */
1433 	scale_up = *freq == clki->max_freq;
1434 	if (!scale_up)
1435 		*freq = clki->min_freq;
1436 	/* Update the frequency */
1437 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1438 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1439 		ret = 0;
1440 		goto out; /* no state change required */
1441 	}
1442 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1443 
1444 	start = ktime_get();
1445 	ret = ufshcd_devfreq_scale(hba, scale_up);
1446 
1447 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1448 		(scale_up ? "up" : "down"),
1449 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1450 
1451 out:
1452 	if (sched_clk_scaling_suspend_work)
1453 		queue_work(hba->clk_scaling.workq,
1454 			   &hba->clk_scaling.suspend_work);
1455 
1456 	return ret;
1457 }
1458 
1459 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1460 		struct devfreq_dev_status *stat)
1461 {
1462 	struct ufs_hba *hba = dev_get_drvdata(dev);
1463 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1464 	unsigned long flags;
1465 	struct list_head *clk_list = &hba->clk_list_head;
1466 	struct ufs_clk_info *clki;
1467 	ktime_t curr_t;
1468 
1469 	if (!ufshcd_is_clkscaling_supported(hba))
1470 		return -EINVAL;
1471 
1472 	memset(stat, 0, sizeof(*stat));
1473 
1474 	spin_lock_irqsave(hba->host->host_lock, flags);
1475 	curr_t = ktime_get();
1476 	if (!scaling->window_start_t)
1477 		goto start_window;
1478 
1479 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1480 	/*
1481 	 * If current frequency is 0, then the ondemand governor considers
1482 	 * there's no initial frequency set. And it always requests to set
1483 	 * to max. frequency.
1484 	 */
1485 	stat->current_frequency = clki->curr_freq;
1486 	if (scaling->is_busy_started)
1487 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1488 				scaling->busy_start_t);
1489 
1490 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1491 	stat->busy_time = scaling->tot_busy_t;
1492 start_window:
1493 	scaling->window_start_t = curr_t;
1494 	scaling->tot_busy_t = 0;
1495 
1496 	if (scaling->active_reqs) {
1497 		scaling->busy_start_t = curr_t;
1498 		scaling->is_busy_started = true;
1499 	} else {
1500 		scaling->busy_start_t = 0;
1501 		scaling->is_busy_started = false;
1502 	}
1503 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1504 	return 0;
1505 }
1506 
1507 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1508 {
1509 	struct list_head *clk_list = &hba->clk_list_head;
1510 	struct ufs_clk_info *clki;
1511 	struct devfreq *devfreq;
1512 	int ret;
1513 
1514 	/* Skip devfreq if we don't have any clocks in the list */
1515 	if (list_empty(clk_list))
1516 		return 0;
1517 
1518 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1519 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1520 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1521 
1522 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1523 					 &hba->vps->ondemand_data);
1524 	devfreq = devfreq_add_device(hba->dev,
1525 			&hba->vps->devfreq_profile,
1526 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1527 			&hba->vps->ondemand_data);
1528 	if (IS_ERR(devfreq)) {
1529 		ret = PTR_ERR(devfreq);
1530 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1531 
1532 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1533 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1534 		return ret;
1535 	}
1536 
1537 	hba->devfreq = devfreq;
1538 
1539 	return 0;
1540 }
1541 
1542 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1543 {
1544 	struct list_head *clk_list = &hba->clk_list_head;
1545 	struct ufs_clk_info *clki;
1546 
1547 	if (!hba->devfreq)
1548 		return;
1549 
1550 	devfreq_remove_device(hba->devfreq);
1551 	hba->devfreq = NULL;
1552 
1553 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1554 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1555 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1556 }
1557 
1558 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1559 {
1560 	unsigned long flags;
1561 
1562 	devfreq_suspend_device(hba->devfreq);
1563 	spin_lock_irqsave(hba->host->host_lock, flags);
1564 	hba->clk_scaling.window_start_t = 0;
1565 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1566 }
1567 
1568 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool suspend = false;
1572 
1573 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1574 	cancel_work_sync(&hba->clk_scaling.resume_work);
1575 
1576 	spin_lock_irqsave(hba->host->host_lock, flags);
1577 	if (!hba->clk_scaling.is_suspended) {
1578 		suspend = true;
1579 		hba->clk_scaling.is_suspended = true;
1580 	}
1581 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1582 
1583 	if (suspend)
1584 		__ufshcd_suspend_clkscaling(hba);
1585 }
1586 
1587 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1588 {
1589 	unsigned long flags;
1590 	bool resume = false;
1591 
1592 	spin_lock_irqsave(hba->host->host_lock, flags);
1593 	if (hba->clk_scaling.is_suspended) {
1594 		resume = true;
1595 		hba->clk_scaling.is_suspended = false;
1596 	}
1597 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1598 
1599 	if (resume)
1600 		devfreq_resume_device(hba->devfreq);
1601 }
1602 
1603 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1604 		struct device_attribute *attr, char *buf)
1605 {
1606 	struct ufs_hba *hba = dev_get_drvdata(dev);
1607 
1608 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1609 }
1610 
1611 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1612 		struct device_attribute *attr, const char *buf, size_t count)
1613 {
1614 	struct ufs_hba *hba = dev_get_drvdata(dev);
1615 	u32 value;
1616 	int err = 0;
1617 
1618 	if (kstrtou32(buf, 0, &value))
1619 		return -EINVAL;
1620 
1621 	down(&hba->host_sem);
1622 	if (!ufshcd_is_user_access_allowed(hba)) {
1623 		err = -EBUSY;
1624 		goto out;
1625 	}
1626 
1627 	value = !!value;
1628 	if (value == hba->clk_scaling.is_enabled)
1629 		goto out;
1630 
1631 	ufshcd_rpm_get_sync(hba);
1632 	ufshcd_hold(hba, false);
1633 
1634 	hba->clk_scaling.is_enabled = value;
1635 
1636 	if (value) {
1637 		ufshcd_resume_clkscaling(hba);
1638 	} else {
1639 		ufshcd_suspend_clkscaling(hba);
1640 		err = ufshcd_devfreq_scale(hba, true);
1641 		if (err)
1642 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1643 					__func__, err);
1644 	}
1645 
1646 	ufshcd_release(hba);
1647 	ufshcd_rpm_put_sync(hba);
1648 out:
1649 	up(&hba->host_sem);
1650 	return err ? err : count;
1651 }
1652 
1653 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1654 {
1655 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1656 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1657 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1658 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1659 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1660 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1661 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1662 }
1663 
1664 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1665 {
1666 	if (hba->clk_scaling.enable_attr.attr.name)
1667 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1668 }
1669 
1670 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1671 {
1672 	char wq_name[sizeof("ufs_clkscaling_00")];
1673 
1674 	if (!ufshcd_is_clkscaling_supported(hba))
1675 		return;
1676 
1677 	if (!hba->clk_scaling.min_gear)
1678 		hba->clk_scaling.min_gear = UFS_HS_G1;
1679 
1680 	INIT_WORK(&hba->clk_scaling.suspend_work,
1681 		  ufshcd_clk_scaling_suspend_work);
1682 	INIT_WORK(&hba->clk_scaling.resume_work,
1683 		  ufshcd_clk_scaling_resume_work);
1684 
1685 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1686 		 hba->host->host_no);
1687 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1688 
1689 	hba->clk_scaling.is_initialized = true;
1690 }
1691 
1692 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1693 {
1694 	if (!hba->clk_scaling.is_initialized)
1695 		return;
1696 
1697 	ufshcd_remove_clk_scaling_sysfs(hba);
1698 	destroy_workqueue(hba->clk_scaling.workq);
1699 	ufshcd_devfreq_remove(hba);
1700 	hba->clk_scaling.is_initialized = false;
1701 }
1702 
1703 static void ufshcd_ungate_work(struct work_struct *work)
1704 {
1705 	int ret;
1706 	unsigned long flags;
1707 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1708 			clk_gating.ungate_work);
1709 
1710 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1711 
1712 	spin_lock_irqsave(hba->host->host_lock, flags);
1713 	if (hba->clk_gating.state == CLKS_ON) {
1714 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1715 		goto unblock_reqs;
1716 	}
1717 
1718 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1719 	ufshcd_hba_vreg_set_hpm(hba);
1720 	ufshcd_setup_clocks(hba, true);
1721 
1722 	ufshcd_enable_irq(hba);
1723 
1724 	/* Exit from hibern8 */
1725 	if (ufshcd_can_hibern8_during_gating(hba)) {
1726 		/* Prevent gating in this path */
1727 		hba->clk_gating.is_suspended = true;
1728 		if (ufshcd_is_link_hibern8(hba)) {
1729 			ret = ufshcd_uic_hibern8_exit(hba);
1730 			if (ret)
1731 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1732 					__func__, ret);
1733 			else
1734 				ufshcd_set_link_active(hba);
1735 		}
1736 		hba->clk_gating.is_suspended = false;
1737 	}
1738 unblock_reqs:
1739 	ufshcd_scsi_unblock_requests(hba);
1740 }
1741 
1742 /**
1743  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1744  * Also, exit from hibern8 mode and set the link as active.
1745  * @hba: per adapter instance
1746  * @async: This indicates whether caller should ungate clocks asynchronously.
1747  */
1748 int ufshcd_hold(struct ufs_hba *hba, bool async)
1749 {
1750 	int rc = 0;
1751 	bool flush_result;
1752 	unsigned long flags;
1753 
1754 	if (!ufshcd_is_clkgating_allowed(hba) ||
1755 	    !hba->clk_gating.is_initialized)
1756 		goto out;
1757 	spin_lock_irqsave(hba->host->host_lock, flags);
1758 	hba->clk_gating.active_reqs++;
1759 
1760 start:
1761 	switch (hba->clk_gating.state) {
1762 	case CLKS_ON:
1763 		/*
1764 		 * Wait for the ungate work to complete if in progress.
1765 		 * Though the clocks may be in ON state, the link could
1766 		 * still be in hibner8 state if hibern8 is allowed
1767 		 * during clock gating.
1768 		 * Make sure we exit hibern8 state also in addition to
1769 		 * clocks being ON.
1770 		 */
1771 		if (ufshcd_can_hibern8_during_gating(hba) &&
1772 		    ufshcd_is_link_hibern8(hba)) {
1773 			if (async) {
1774 				rc = -EAGAIN;
1775 				hba->clk_gating.active_reqs--;
1776 				break;
1777 			}
1778 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1779 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1780 			if (hba->clk_gating.is_suspended && !flush_result)
1781 				goto out;
1782 			spin_lock_irqsave(hba->host->host_lock, flags);
1783 			goto start;
1784 		}
1785 		break;
1786 	case REQ_CLKS_OFF:
1787 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1788 			hba->clk_gating.state = CLKS_ON;
1789 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1790 						hba->clk_gating.state);
1791 			break;
1792 		}
1793 		/*
1794 		 * If we are here, it means gating work is either done or
1795 		 * currently running. Hence, fall through to cancel gating
1796 		 * work and to enable clocks.
1797 		 */
1798 		fallthrough;
1799 	case CLKS_OFF:
1800 		hba->clk_gating.state = REQ_CLKS_ON;
1801 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1802 					hba->clk_gating.state);
1803 		if (queue_work(hba->clk_gating.clk_gating_workq,
1804 			       &hba->clk_gating.ungate_work))
1805 			ufshcd_scsi_block_requests(hba);
1806 		/*
1807 		 * fall through to check if we should wait for this
1808 		 * work to be done or not.
1809 		 */
1810 		fallthrough;
1811 	case REQ_CLKS_ON:
1812 		if (async) {
1813 			rc = -EAGAIN;
1814 			hba->clk_gating.active_reqs--;
1815 			break;
1816 		}
1817 
1818 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1819 		flush_work(&hba->clk_gating.ungate_work);
1820 		/* Make sure state is CLKS_ON before returning */
1821 		spin_lock_irqsave(hba->host->host_lock, flags);
1822 		goto start;
1823 	default:
1824 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1825 				__func__, hba->clk_gating.state);
1826 		break;
1827 	}
1828 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1829 out:
1830 	return rc;
1831 }
1832 EXPORT_SYMBOL_GPL(ufshcd_hold);
1833 
1834 static void ufshcd_gate_work(struct work_struct *work)
1835 {
1836 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1837 			clk_gating.gate_work.work);
1838 	unsigned long flags;
1839 	int ret;
1840 
1841 	spin_lock_irqsave(hba->host->host_lock, flags);
1842 	/*
1843 	 * In case you are here to cancel this work the gating state
1844 	 * would be marked as REQ_CLKS_ON. In this case save time by
1845 	 * skipping the gating work and exit after changing the clock
1846 	 * state to CLKS_ON.
1847 	 */
1848 	if (hba->clk_gating.is_suspended ||
1849 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1850 		hba->clk_gating.state = CLKS_ON;
1851 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1852 					hba->clk_gating.state);
1853 		goto rel_lock;
1854 	}
1855 
1856 	if (hba->clk_gating.active_reqs
1857 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1858 		|| hba->outstanding_reqs || hba->outstanding_tasks
1859 		|| hba->active_uic_cmd || hba->uic_async_done)
1860 		goto rel_lock;
1861 
1862 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1863 
1864 	/* put the link into hibern8 mode before turning off clocks */
1865 	if (ufshcd_can_hibern8_during_gating(hba)) {
1866 		ret = ufshcd_uic_hibern8_enter(hba);
1867 		if (ret) {
1868 			hba->clk_gating.state = CLKS_ON;
1869 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1870 					__func__, ret);
1871 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1872 						hba->clk_gating.state);
1873 			goto out;
1874 		}
1875 		ufshcd_set_link_hibern8(hba);
1876 	}
1877 
1878 	ufshcd_disable_irq(hba);
1879 
1880 	ufshcd_setup_clocks(hba, false);
1881 
1882 	/* Put the host controller in low power mode if possible */
1883 	ufshcd_hba_vreg_set_lpm(hba);
1884 	/*
1885 	 * In case you are here to cancel this work the gating state
1886 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1887 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1888 	 * and a request to turn them on is pending. By doing this way,
1889 	 * we keep the state machine in tact and this would ultimately
1890 	 * prevent from doing cancel work multiple times when there are
1891 	 * new requests arriving before the current cancel work is done.
1892 	 */
1893 	spin_lock_irqsave(hba->host->host_lock, flags);
1894 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1895 		hba->clk_gating.state = CLKS_OFF;
1896 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1897 					hba->clk_gating.state);
1898 	}
1899 rel_lock:
1900 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1901 out:
1902 	return;
1903 }
1904 
1905 /* host lock must be held before calling this variant */
1906 static void __ufshcd_release(struct ufs_hba *hba)
1907 {
1908 	if (!ufshcd_is_clkgating_allowed(hba))
1909 		return;
1910 
1911 	hba->clk_gating.active_reqs--;
1912 
1913 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1914 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1915 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1916 	    hba->active_uic_cmd || hba->uic_async_done ||
1917 	    hba->clk_gating.state == CLKS_OFF)
1918 		return;
1919 
1920 	hba->clk_gating.state = REQ_CLKS_OFF;
1921 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1922 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1923 			   &hba->clk_gating.gate_work,
1924 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1925 }
1926 
1927 void ufshcd_release(struct ufs_hba *hba)
1928 {
1929 	unsigned long flags;
1930 
1931 	spin_lock_irqsave(hba->host->host_lock, flags);
1932 	__ufshcd_release(hba);
1933 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1934 }
1935 EXPORT_SYMBOL_GPL(ufshcd_release);
1936 
1937 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1938 		struct device_attribute *attr, char *buf)
1939 {
1940 	struct ufs_hba *hba = dev_get_drvdata(dev);
1941 
1942 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1943 }
1944 
1945 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1946 {
1947 	struct ufs_hba *hba = dev_get_drvdata(dev);
1948 	unsigned long flags;
1949 
1950 	spin_lock_irqsave(hba->host->host_lock, flags);
1951 	hba->clk_gating.delay_ms = value;
1952 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1953 }
1954 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1955 
1956 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1957 		struct device_attribute *attr, const char *buf, size_t count)
1958 {
1959 	unsigned long value;
1960 
1961 	if (kstrtoul(buf, 0, &value))
1962 		return -EINVAL;
1963 
1964 	ufshcd_clkgate_delay_set(dev, value);
1965 	return count;
1966 }
1967 
1968 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1969 		struct device_attribute *attr, char *buf)
1970 {
1971 	struct ufs_hba *hba = dev_get_drvdata(dev);
1972 
1973 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1974 }
1975 
1976 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1977 		struct device_attribute *attr, const char *buf, size_t count)
1978 {
1979 	struct ufs_hba *hba = dev_get_drvdata(dev);
1980 	unsigned long flags;
1981 	u32 value;
1982 
1983 	if (kstrtou32(buf, 0, &value))
1984 		return -EINVAL;
1985 
1986 	value = !!value;
1987 
1988 	spin_lock_irqsave(hba->host->host_lock, flags);
1989 	if (value == hba->clk_gating.is_enabled)
1990 		goto out;
1991 
1992 	if (value)
1993 		__ufshcd_release(hba);
1994 	else
1995 		hba->clk_gating.active_reqs++;
1996 
1997 	hba->clk_gating.is_enabled = value;
1998 out:
1999 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2000 	return count;
2001 }
2002 
2003 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2004 {
2005 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2006 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2007 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2008 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2009 	hba->clk_gating.delay_attr.attr.mode = 0644;
2010 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2011 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2012 
2013 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2014 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2015 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2016 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2017 	hba->clk_gating.enable_attr.attr.mode = 0644;
2018 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2019 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2020 }
2021 
2022 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2023 {
2024 	if (hba->clk_gating.delay_attr.attr.name)
2025 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2026 	if (hba->clk_gating.enable_attr.attr.name)
2027 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2028 }
2029 
2030 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2031 {
2032 	char wq_name[sizeof("ufs_clk_gating_00")];
2033 
2034 	if (!ufshcd_is_clkgating_allowed(hba))
2035 		return;
2036 
2037 	hba->clk_gating.state = CLKS_ON;
2038 
2039 	hba->clk_gating.delay_ms = 150;
2040 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2041 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2042 
2043 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2044 		 hba->host->host_no);
2045 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2046 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2047 
2048 	ufshcd_init_clk_gating_sysfs(hba);
2049 
2050 	hba->clk_gating.is_enabled = true;
2051 	hba->clk_gating.is_initialized = true;
2052 }
2053 
2054 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2055 {
2056 	if (!hba->clk_gating.is_initialized)
2057 		return;
2058 
2059 	ufshcd_remove_clk_gating_sysfs(hba);
2060 
2061 	/* Ungate the clock if necessary. */
2062 	ufshcd_hold(hba, false);
2063 	hba->clk_gating.is_initialized = false;
2064 	ufshcd_release(hba);
2065 
2066 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2067 }
2068 
2069 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2070 {
2071 	bool queue_resume_work = false;
2072 	ktime_t curr_t = ktime_get();
2073 	unsigned long flags;
2074 
2075 	if (!ufshcd_is_clkscaling_supported(hba))
2076 		return;
2077 
2078 	spin_lock_irqsave(hba->host->host_lock, flags);
2079 	if (!hba->clk_scaling.active_reqs++)
2080 		queue_resume_work = true;
2081 
2082 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2083 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 		return;
2085 	}
2086 
2087 	if (queue_resume_work)
2088 		queue_work(hba->clk_scaling.workq,
2089 			   &hba->clk_scaling.resume_work);
2090 
2091 	if (!hba->clk_scaling.window_start_t) {
2092 		hba->clk_scaling.window_start_t = curr_t;
2093 		hba->clk_scaling.tot_busy_t = 0;
2094 		hba->clk_scaling.is_busy_started = false;
2095 	}
2096 
2097 	if (!hba->clk_scaling.is_busy_started) {
2098 		hba->clk_scaling.busy_start_t = curr_t;
2099 		hba->clk_scaling.is_busy_started = true;
2100 	}
2101 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2102 }
2103 
2104 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2105 {
2106 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2107 	unsigned long flags;
2108 
2109 	if (!ufshcd_is_clkscaling_supported(hba))
2110 		return;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	hba->clk_scaling.active_reqs--;
2114 	if (!scaling->active_reqs && scaling->is_busy_started) {
2115 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2116 					scaling->busy_start_t));
2117 		scaling->busy_start_t = 0;
2118 		scaling->is_busy_started = false;
2119 	}
2120 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2121 }
2122 
2123 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2124 {
2125 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2126 		return READ;
2127 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2128 		return WRITE;
2129 	else
2130 		return -EINVAL;
2131 }
2132 
2133 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2134 						struct ufshcd_lrb *lrbp)
2135 {
2136 	const struct ufs_hba_monitor *m = &hba->monitor;
2137 
2138 	return (m->enabled && lrbp && lrbp->cmd &&
2139 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2140 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2141 }
2142 
2143 static void ufshcd_start_monitor(struct ufs_hba *hba,
2144 				 const struct ufshcd_lrb *lrbp)
2145 {
2146 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2147 	unsigned long flags;
2148 
2149 	spin_lock_irqsave(hba->host->host_lock, flags);
2150 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2151 		hba->monitor.busy_start_ts[dir] = ktime_get();
2152 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2153 }
2154 
2155 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2156 {
2157 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2158 	unsigned long flags;
2159 
2160 	spin_lock_irqsave(hba->host->host_lock, flags);
2161 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2162 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2163 		struct ufs_hba_monitor *m = &hba->monitor;
2164 		ktime_t now, inc, lat;
2165 
2166 		now = lrbp->compl_time_stamp;
2167 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2168 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2169 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2170 
2171 		/* Update latencies */
2172 		m->nr_req[dir]++;
2173 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2174 		m->lat_sum[dir] += lat;
2175 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2176 			m->lat_max[dir] = lat;
2177 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2178 			m->lat_min[dir] = lat;
2179 
2180 		m->nr_queued[dir]--;
2181 		/* Push forward the busy start of monitor */
2182 		m->busy_start_ts[dir] = now;
2183 	}
2184 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2185 }
2186 
2187 /**
2188  * ufshcd_send_command - Send SCSI or device management commands
2189  * @hba: per adapter instance
2190  * @task_tag: Task tag of the command
2191  * @hwq: pointer to hardware queue instance
2192  */
2193 static inline
2194 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2195 			 struct ufs_hw_queue *hwq)
2196 {
2197 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2198 	unsigned long flags;
2199 
2200 	lrbp->issue_time_stamp = ktime_get();
2201 	lrbp->issue_time_stamp_local_clock = local_clock();
2202 	lrbp->compl_time_stamp = ktime_set(0, 0);
2203 	lrbp->compl_time_stamp_local_clock = 0;
2204 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2205 	ufshcd_clk_scaling_start_busy(hba);
2206 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2207 		ufshcd_start_monitor(hba, lrbp);
2208 
2209 	if (is_mcq_enabled(hba)) {
2210 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2211 
2212 		spin_lock(&hwq->sq_lock);
2213 		memcpy(hwq->sqe_base_addr + (hwq->sq_tail_slot * utrd_size),
2214 		       lrbp->utr_descriptor_ptr, utrd_size);
2215 		ufshcd_inc_sq_tail(hwq);
2216 		spin_unlock(&hwq->sq_lock);
2217 	} else {
2218 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2219 		if (hba->vops && hba->vops->setup_xfer_req)
2220 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2221 						  !!lrbp->cmd);
2222 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2223 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2224 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2225 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2226 	}
2227 }
2228 
2229 /**
2230  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2231  * @lrbp: pointer to local reference block
2232  */
2233 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2234 {
2235 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2236 	int len;
2237 
2238 	if (sense_buffer &&
2239 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2240 		int len_to_copy;
2241 
2242 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2243 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2244 
2245 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2246 		       len_to_copy);
2247 	}
2248 }
2249 
2250 /**
2251  * ufshcd_copy_query_response() - Copy the Query Response and the data
2252  * descriptor
2253  * @hba: per adapter instance
2254  * @lrbp: pointer to local reference block
2255  */
2256 static
2257 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2258 {
2259 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2260 
2261 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2262 
2263 	/* Get the descriptor */
2264 	if (hba->dev_cmd.query.descriptor &&
2265 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2266 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2267 				GENERAL_UPIU_REQUEST_SIZE;
2268 		u16 resp_len;
2269 		u16 buf_len;
2270 
2271 		/* data segment length */
2272 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2273 						MASK_QUERY_DATA_SEG_LEN;
2274 		buf_len = be16_to_cpu(
2275 				hba->dev_cmd.query.request.upiu_req.length);
2276 		if (likely(buf_len >= resp_len)) {
2277 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2278 		} else {
2279 			dev_warn(hba->dev,
2280 				 "%s: rsp size %d is bigger than buffer size %d",
2281 				 __func__, resp_len, buf_len);
2282 			return -EINVAL;
2283 		}
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 /**
2290  * ufshcd_hba_capabilities - Read controller capabilities
2291  * @hba: per adapter instance
2292  *
2293  * Return: 0 on success, negative on error.
2294  */
2295 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2296 {
2297 	int err;
2298 
2299 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2300 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2301 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2302 
2303 	/* nutrs and nutmrs are 0 based values */
2304 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2305 	hba->nutmrs =
2306 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2307 	hba->reserved_slot = hba->nutrs - 1;
2308 
2309 	/* Read crypto capabilities */
2310 	err = ufshcd_hba_init_crypto_capabilities(hba);
2311 	if (err)
2312 		dev_err(hba->dev, "crypto setup failed\n");
2313 
2314 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2315 	if (!hba->mcq_sup)
2316 		return err;
2317 
2318 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2319 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2320 				     hba->mcq_capabilities);
2321 
2322 	return err;
2323 }
2324 
2325 /**
2326  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2327  *                            to accept UIC commands
2328  * @hba: per adapter instance
2329  * Return true on success, else false
2330  */
2331 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2332 {
2333 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2334 }
2335 
2336 /**
2337  * ufshcd_get_upmcrs - Get the power mode change request status
2338  * @hba: Pointer to adapter instance
2339  *
2340  * This function gets the UPMCRS field of HCS register
2341  * Returns value of UPMCRS field
2342  */
2343 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2344 {
2345 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2346 }
2347 
2348 /**
2349  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2350  * @hba: per adapter instance
2351  * @uic_cmd: UIC command
2352  */
2353 static inline void
2354 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2355 {
2356 	lockdep_assert_held(&hba->uic_cmd_mutex);
2357 
2358 	WARN_ON(hba->active_uic_cmd);
2359 
2360 	hba->active_uic_cmd = uic_cmd;
2361 
2362 	/* Write Args */
2363 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2364 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2365 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2366 
2367 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2368 
2369 	/* Write UIC Cmd */
2370 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2371 		      REG_UIC_COMMAND);
2372 }
2373 
2374 /**
2375  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2376  * @hba: per adapter instance
2377  * @uic_cmd: UIC command
2378  *
2379  * Returns 0 only if success.
2380  */
2381 static int
2382 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2383 {
2384 	int ret;
2385 	unsigned long flags;
2386 
2387 	lockdep_assert_held(&hba->uic_cmd_mutex);
2388 
2389 	if (wait_for_completion_timeout(&uic_cmd->done,
2390 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2391 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2392 	} else {
2393 		ret = -ETIMEDOUT;
2394 		dev_err(hba->dev,
2395 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2396 			uic_cmd->command, uic_cmd->argument3);
2397 
2398 		if (!uic_cmd->cmd_active) {
2399 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2400 				__func__);
2401 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2402 		}
2403 	}
2404 
2405 	spin_lock_irqsave(hba->host->host_lock, flags);
2406 	hba->active_uic_cmd = NULL;
2407 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2408 
2409 	return ret;
2410 }
2411 
2412 /**
2413  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2414  * @hba: per adapter instance
2415  * @uic_cmd: UIC command
2416  * @completion: initialize the completion only if this is set to true
2417  *
2418  * Returns 0 only if success.
2419  */
2420 static int
2421 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2422 		      bool completion)
2423 {
2424 	lockdep_assert_held(&hba->uic_cmd_mutex);
2425 	lockdep_assert_held(hba->host->host_lock);
2426 
2427 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2428 		dev_err(hba->dev,
2429 			"Controller not ready to accept UIC commands\n");
2430 		return -EIO;
2431 	}
2432 
2433 	if (completion)
2434 		init_completion(&uic_cmd->done);
2435 
2436 	uic_cmd->cmd_active = 1;
2437 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2438 
2439 	return 0;
2440 }
2441 
2442 /**
2443  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2444  * @hba: per adapter instance
2445  * @uic_cmd: UIC command
2446  *
2447  * Returns 0 only if success.
2448  */
2449 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2450 {
2451 	int ret;
2452 	unsigned long flags;
2453 
2454 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2455 		return 0;
2456 
2457 	ufshcd_hold(hba, false);
2458 	mutex_lock(&hba->uic_cmd_mutex);
2459 	ufshcd_add_delay_before_dme_cmd(hba);
2460 
2461 	spin_lock_irqsave(hba->host->host_lock, flags);
2462 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2463 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2464 	if (!ret)
2465 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2466 
2467 	mutex_unlock(&hba->uic_cmd_mutex);
2468 
2469 	ufshcd_release(hba);
2470 	return ret;
2471 }
2472 
2473 /**
2474  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2475  * @hba:	per-adapter instance
2476  * @lrbp:	pointer to local reference block
2477  * @sg_entries:	The number of sg lists actually used
2478  * @sg_list:	Pointer to SG list
2479  */
2480 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2481 			       struct scatterlist *sg_list)
2482 {
2483 	struct ufshcd_sg_entry *prd;
2484 	struct scatterlist *sg;
2485 	int i;
2486 
2487 	if (sg_entries) {
2488 
2489 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2490 			lrbp->utr_descriptor_ptr->prd_table_length =
2491 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2492 		else
2493 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2494 
2495 		prd = lrbp->ucd_prdt_ptr;
2496 
2497 		for_each_sg(sg_list, sg, sg_entries, i) {
2498 			const unsigned int len = sg_dma_len(sg);
2499 
2500 			/*
2501 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2502 			 * based value that indicates the length, in bytes, of
2503 			 * the data block. A maximum of length of 256KB may
2504 			 * exist for any entry. Bits 1:0 of this field shall be
2505 			 * 11b to indicate Dword granularity. A value of '3'
2506 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2507 			 */
2508 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2509 			prd->size = cpu_to_le32(len - 1);
2510 			prd->addr = cpu_to_le64(sg->dma_address);
2511 			prd->reserved = 0;
2512 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2513 		}
2514 	} else {
2515 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2516 	}
2517 }
2518 
2519 /**
2520  * ufshcd_map_sg - Map scatter-gather list to prdt
2521  * @hba: per adapter instance
2522  * @lrbp: pointer to local reference block
2523  *
2524  * Returns 0 in case of success, non-zero value in case of failure
2525  */
2526 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2527 {
2528 	struct scsi_cmnd *cmd = lrbp->cmd;
2529 	int sg_segments = scsi_dma_map(cmd);
2530 
2531 	if (sg_segments < 0)
2532 		return sg_segments;
2533 
2534 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2535 
2536 	return 0;
2537 }
2538 
2539 /**
2540  * ufshcd_enable_intr - enable interrupts
2541  * @hba: per adapter instance
2542  * @intrs: interrupt bits
2543  */
2544 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2545 {
2546 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2547 
2548 	if (hba->ufs_version == ufshci_version(1, 0)) {
2549 		u32 rw;
2550 		rw = set & INTERRUPT_MASK_RW_VER_10;
2551 		set = rw | ((set ^ intrs) & intrs);
2552 	} else {
2553 		set |= intrs;
2554 	}
2555 
2556 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2557 }
2558 
2559 /**
2560  * ufshcd_disable_intr - disable interrupts
2561  * @hba: per adapter instance
2562  * @intrs: interrupt bits
2563  */
2564 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2565 {
2566 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2567 
2568 	if (hba->ufs_version == ufshci_version(1, 0)) {
2569 		u32 rw;
2570 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2571 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2572 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2573 
2574 	} else {
2575 		set &= ~intrs;
2576 	}
2577 
2578 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2579 }
2580 
2581 /**
2582  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2583  * descriptor according to request
2584  * @lrbp: pointer to local reference block
2585  * @upiu_flags: flags required in the header
2586  * @cmd_dir: requests data direction
2587  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2588  */
2589 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2590 					enum dma_data_direction cmd_dir, int ehs_length)
2591 {
2592 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2593 	u32 data_direction;
2594 	u32 dword_0;
2595 	u32 dword_1 = 0;
2596 	u32 dword_3 = 0;
2597 
2598 	if (cmd_dir == DMA_FROM_DEVICE) {
2599 		data_direction = UTP_DEVICE_TO_HOST;
2600 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2601 	} else if (cmd_dir == DMA_TO_DEVICE) {
2602 		data_direction = UTP_HOST_TO_DEVICE;
2603 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2604 	} else {
2605 		data_direction = UTP_NO_DATA_TRANSFER;
2606 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2607 	}
2608 
2609 	dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET) |
2610 		ehs_length << 8;
2611 	if (lrbp->intr_cmd)
2612 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2613 
2614 	/* Prepare crypto related dwords */
2615 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2616 
2617 	/* Transfer request descriptor header fields */
2618 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2619 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2620 	/*
2621 	 * assigning invalid value for command status. Controller
2622 	 * updates OCS on command completion, with the command
2623 	 * status
2624 	 */
2625 	req_desc->header.dword_2 =
2626 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2627 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2628 
2629 	req_desc->prd_table_length = 0;
2630 }
2631 
2632 /**
2633  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2634  * for scsi commands
2635  * @lrbp: local reference block pointer
2636  * @upiu_flags: flags
2637  */
2638 static
2639 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2640 {
2641 	struct scsi_cmnd *cmd = lrbp->cmd;
2642 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2643 	unsigned short cdb_len;
2644 
2645 	/* command descriptor fields */
2646 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2647 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2648 				lrbp->lun, lrbp->task_tag);
2649 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2650 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2651 
2652 	/* Total EHS length and Data segment length will be zero */
2653 	ucd_req_ptr->header.dword_2 = 0;
2654 
2655 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2656 
2657 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2658 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2659 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2660 
2661 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2662 }
2663 
2664 /**
2665  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2666  * @hba: UFS hba
2667  * @lrbp: local reference block pointer
2668  * @upiu_flags: flags
2669  */
2670 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2671 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2672 {
2673 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2674 	struct ufs_query *query = &hba->dev_cmd.query;
2675 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2676 
2677 	/* Query request header */
2678 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2679 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2680 			lrbp->lun, lrbp->task_tag);
2681 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2682 			0, query->request.query_func, 0, 0);
2683 
2684 	/* Data segment length only need for WRITE_DESC */
2685 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2686 		ucd_req_ptr->header.dword_2 =
2687 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2688 	else
2689 		ucd_req_ptr->header.dword_2 = 0;
2690 
2691 	/* Copy the Query Request buffer as is */
2692 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2693 			QUERY_OSF_SIZE);
2694 
2695 	/* Copy the Descriptor */
2696 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2697 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2698 
2699 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2700 }
2701 
2702 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2703 {
2704 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2705 
2706 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2707 
2708 	/* command descriptor fields */
2709 	ucd_req_ptr->header.dword_0 =
2710 		UPIU_HEADER_DWORD(
2711 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2712 	/* clear rest of the fields of basic header */
2713 	ucd_req_ptr->header.dword_1 = 0;
2714 	ucd_req_ptr->header.dword_2 = 0;
2715 
2716 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2717 }
2718 
2719 /**
2720  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2721  *			     for Device Management Purposes
2722  * @hba: per adapter instance
2723  * @lrbp: pointer to local reference block
2724  */
2725 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2726 				      struct ufshcd_lrb *lrbp)
2727 {
2728 	u8 upiu_flags;
2729 	int ret = 0;
2730 
2731 	if (hba->ufs_version <= ufshci_version(1, 1))
2732 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2733 	else
2734 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2735 
2736 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2737 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2738 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2739 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2740 		ufshcd_prepare_utp_nop_upiu(lrbp);
2741 	else
2742 		ret = -EINVAL;
2743 
2744 	return ret;
2745 }
2746 
2747 /**
2748  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2749  *			   for SCSI Purposes
2750  * @hba: per adapter instance
2751  * @lrbp: pointer to local reference block
2752  */
2753 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2754 {
2755 	u8 upiu_flags;
2756 	int ret = 0;
2757 
2758 	if (hba->ufs_version <= ufshci_version(1, 1))
2759 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2760 	else
2761 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2762 
2763 	if (likely(lrbp->cmd)) {
2764 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2765 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2766 	} else {
2767 		ret = -EINVAL;
2768 	}
2769 
2770 	return ret;
2771 }
2772 
2773 /**
2774  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2775  * @upiu_wlun_id: UPIU W-LUN id
2776  *
2777  * Returns SCSI W-LUN id
2778  */
2779 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2780 {
2781 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2782 }
2783 
2784 static inline bool is_device_wlun(struct scsi_device *sdev)
2785 {
2786 	return sdev->lun ==
2787 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2788 }
2789 
2790 /*
2791  * Associate the UFS controller queue with the default and poll HCTX types.
2792  * Initialize the mq_map[] arrays.
2793  */
2794 static void ufshcd_map_queues(struct Scsi_Host *shost)
2795 {
2796 	struct ufs_hba *hba = shost_priv(shost);
2797 	int i, queue_offset = 0;
2798 
2799 	if (!is_mcq_supported(hba)) {
2800 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2801 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2802 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2803 		hba->nr_hw_queues = 1;
2804 	}
2805 
2806 	for (i = 0; i < shost->nr_maps; i++) {
2807 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2808 
2809 		map->nr_queues = hba->nr_queues[i];
2810 		if (!map->nr_queues)
2811 			continue;
2812 		map->queue_offset = queue_offset;
2813 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2814 			map->queue_offset = 0;
2815 
2816 		blk_mq_map_queues(map);
2817 		queue_offset += map->nr_queues;
2818 	}
2819 }
2820 
2821 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2822 {
2823 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2824 		i * sizeof_utp_transfer_cmd_desc(hba);
2825 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2826 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2827 		i * sizeof_utp_transfer_cmd_desc(hba);
2828 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2829 				       response_upiu);
2830 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2831 
2832 	lrb->utr_descriptor_ptr = utrdlp + i;
2833 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2834 		i * sizeof(struct utp_transfer_req_desc);
2835 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2836 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2837 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2838 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2839 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2840 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2841 }
2842 
2843 /**
2844  * ufshcd_queuecommand - main entry point for SCSI requests
2845  * @host: SCSI host pointer
2846  * @cmd: command from SCSI Midlayer
2847  *
2848  * Returns 0 for success, non-zero in case of failure
2849  */
2850 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2851 {
2852 	struct ufs_hba *hba = shost_priv(host);
2853 	int tag = scsi_cmd_to_rq(cmd)->tag;
2854 	struct ufshcd_lrb *lrbp;
2855 	int err = 0;
2856 	struct ufs_hw_queue *hwq = NULL;
2857 
2858 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2859 
2860 	/*
2861 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2862 	 * calls.
2863 	 */
2864 	rcu_read_lock();
2865 
2866 	switch (hba->ufshcd_state) {
2867 	case UFSHCD_STATE_OPERATIONAL:
2868 		break;
2869 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2870 		/*
2871 		 * SCSI error handler can call ->queuecommand() while UFS error
2872 		 * handler is in progress. Error interrupts could change the
2873 		 * state from UFSHCD_STATE_RESET to
2874 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2875 		 * being issued in that case.
2876 		 */
2877 		if (ufshcd_eh_in_progress(hba)) {
2878 			err = SCSI_MLQUEUE_HOST_BUSY;
2879 			goto out;
2880 		}
2881 		break;
2882 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2883 		/*
2884 		 * pm_runtime_get_sync() is used at error handling preparation
2885 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2886 		 * PM ops, it can never be finished if we let SCSI layer keep
2887 		 * retrying it, which gets err handler stuck forever. Neither
2888 		 * can we let the scsi cmd pass through, because UFS is in bad
2889 		 * state, the scsi cmd may eventually time out, which will get
2890 		 * err handler blocked for too long. So, just fail the scsi cmd
2891 		 * sent from PM ops, err handler can recover PM error anyways.
2892 		 */
2893 		if (hba->pm_op_in_progress) {
2894 			hba->force_reset = true;
2895 			set_host_byte(cmd, DID_BAD_TARGET);
2896 			scsi_done(cmd);
2897 			goto out;
2898 		}
2899 		fallthrough;
2900 	case UFSHCD_STATE_RESET:
2901 		err = SCSI_MLQUEUE_HOST_BUSY;
2902 		goto out;
2903 	case UFSHCD_STATE_ERROR:
2904 		set_host_byte(cmd, DID_ERROR);
2905 		scsi_done(cmd);
2906 		goto out;
2907 	}
2908 
2909 	hba->req_abort_count = 0;
2910 
2911 	err = ufshcd_hold(hba, true);
2912 	if (err) {
2913 		err = SCSI_MLQUEUE_HOST_BUSY;
2914 		goto out;
2915 	}
2916 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2917 		(hba->clk_gating.state != CLKS_ON));
2918 
2919 	lrbp = &hba->lrb[tag];
2920 	WARN_ON(lrbp->cmd);
2921 	lrbp->cmd = cmd;
2922 	lrbp->task_tag = tag;
2923 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2924 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2925 
2926 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2927 
2928 	lrbp->req_abort_skip = false;
2929 
2930 	ufshpb_prep(hba, lrbp);
2931 
2932 	ufshcd_comp_scsi_upiu(hba, lrbp);
2933 
2934 	err = ufshcd_map_sg(hba, lrbp);
2935 	if (err) {
2936 		lrbp->cmd = NULL;
2937 		ufshcd_release(hba);
2938 		goto out;
2939 	}
2940 
2941 	if (is_mcq_enabled(hba))
2942 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2943 
2944 	ufshcd_send_command(hba, tag, hwq);
2945 
2946 out:
2947 	rcu_read_unlock();
2948 
2949 	if (ufs_trigger_eh()) {
2950 		unsigned long flags;
2951 
2952 		spin_lock_irqsave(hba->host->host_lock, flags);
2953 		ufshcd_schedule_eh_work(hba);
2954 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2955 	}
2956 
2957 	return err;
2958 }
2959 
2960 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2961 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2962 {
2963 	lrbp->cmd = NULL;
2964 	lrbp->task_tag = tag;
2965 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2966 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2967 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2968 	hba->dev_cmd.type = cmd_type;
2969 
2970 	return ufshcd_compose_devman_upiu(hba, lrbp);
2971 }
2972 
2973 /*
2974  * Clear all the requests from the controller for which a bit has been set in
2975  * @mask and wait until the controller confirms that these requests have been
2976  * cleared.
2977  */
2978 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2979 {
2980 	unsigned long flags;
2981 
2982 	/* clear outstanding transaction before retry */
2983 	spin_lock_irqsave(hba->host->host_lock, flags);
2984 	ufshcd_utrl_clear(hba, mask);
2985 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2986 
2987 	/*
2988 	 * wait for h/w to clear corresponding bit in door-bell.
2989 	 * max. wait is 1 sec.
2990 	 */
2991 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2992 					mask, ~mask, 1000, 1000);
2993 }
2994 
2995 static int
2996 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2997 {
2998 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2999 
3000 	/* Get the UPIU response */
3001 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
3002 				UPIU_RSP_CODE_OFFSET;
3003 	return query_res->response;
3004 }
3005 
3006 /**
3007  * ufshcd_dev_cmd_completion() - handles device management command responses
3008  * @hba: per adapter instance
3009  * @lrbp: pointer to local reference block
3010  */
3011 static int
3012 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3013 {
3014 	int resp;
3015 	int err = 0;
3016 
3017 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3018 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3019 
3020 	switch (resp) {
3021 	case UPIU_TRANSACTION_NOP_IN:
3022 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3023 			err = -EINVAL;
3024 			dev_err(hba->dev, "%s: unexpected response %x\n",
3025 					__func__, resp);
3026 		}
3027 		break;
3028 	case UPIU_TRANSACTION_QUERY_RSP:
3029 		err = ufshcd_check_query_response(hba, lrbp);
3030 		if (!err)
3031 			err = ufshcd_copy_query_response(hba, lrbp);
3032 		break;
3033 	case UPIU_TRANSACTION_REJECT_UPIU:
3034 		/* TODO: handle Reject UPIU Response */
3035 		err = -EPERM;
3036 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3037 				__func__);
3038 		break;
3039 	case UPIU_TRANSACTION_RESPONSE:
3040 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3041 			err = -EINVAL;
3042 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3043 		}
3044 		break;
3045 	default:
3046 		err = -EINVAL;
3047 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3048 				__func__, resp);
3049 		break;
3050 	}
3051 
3052 	return err;
3053 }
3054 
3055 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3056 		struct ufshcd_lrb *lrbp, int max_timeout)
3057 {
3058 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3059 	unsigned long flags;
3060 	bool pending;
3061 	int err;
3062 
3063 retry:
3064 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3065 						time_left);
3066 
3067 	if (likely(time_left)) {
3068 		/*
3069 		 * The completion handler called complete() and the caller of
3070 		 * this function still owns the @lrbp tag so the code below does
3071 		 * not trigger any race conditions.
3072 		 */
3073 		hba->dev_cmd.complete = NULL;
3074 		err = ufshcd_get_tr_ocs(lrbp, hba->dev_cmd.cqe);
3075 		if (!err)
3076 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3077 	} else {
3078 		err = -ETIMEDOUT;
3079 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3080 			__func__, lrbp->task_tag);
3081 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
3082 			/* successfully cleared the command, retry if needed */
3083 			err = -EAGAIN;
3084 			/*
3085 			 * Since clearing the command succeeded we also need to
3086 			 * clear the task tag bit from the outstanding_reqs
3087 			 * variable.
3088 			 */
3089 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3090 			pending = test_bit(lrbp->task_tag,
3091 					   &hba->outstanding_reqs);
3092 			if (pending) {
3093 				hba->dev_cmd.complete = NULL;
3094 				__clear_bit(lrbp->task_tag,
3095 					    &hba->outstanding_reqs);
3096 			}
3097 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3098 
3099 			if (!pending) {
3100 				/*
3101 				 * The completion handler ran while we tried to
3102 				 * clear the command.
3103 				 */
3104 				time_left = 1;
3105 				goto retry;
3106 			}
3107 		} else {
3108 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3109 				__func__, lrbp->task_tag);
3110 
3111 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3112 			pending = test_bit(lrbp->task_tag,
3113 					   &hba->outstanding_reqs);
3114 			if (pending)
3115 				hba->dev_cmd.complete = NULL;
3116 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3117 
3118 			if (!pending) {
3119 				/*
3120 				 * The completion handler ran while we tried to
3121 				 * clear the command.
3122 				 */
3123 				time_left = 1;
3124 				goto retry;
3125 			}
3126 		}
3127 	}
3128 
3129 	return err;
3130 }
3131 
3132 /**
3133  * ufshcd_exec_dev_cmd - API for sending device management requests
3134  * @hba: UFS hba
3135  * @cmd_type: specifies the type (NOP, Query...)
3136  * @timeout: timeout in milliseconds
3137  *
3138  * NOTE: Since there is only one available tag for device management commands,
3139  * it is expected you hold the hba->dev_cmd.lock mutex.
3140  */
3141 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3142 		enum dev_cmd_type cmd_type, int timeout)
3143 {
3144 	DECLARE_COMPLETION_ONSTACK(wait);
3145 	const u32 tag = hba->reserved_slot;
3146 	struct ufshcd_lrb *lrbp;
3147 	int err;
3148 
3149 	/* Protects use of hba->reserved_slot. */
3150 	lockdep_assert_held(&hba->dev_cmd.lock);
3151 
3152 	down_read(&hba->clk_scaling_lock);
3153 
3154 	lrbp = &hba->lrb[tag];
3155 	WARN_ON(lrbp->cmd);
3156 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3157 	if (unlikely(err))
3158 		goto out;
3159 
3160 	hba->dev_cmd.complete = &wait;
3161 	hba->dev_cmd.cqe = NULL;
3162 
3163 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3164 
3165 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3166 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3167 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3168 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3169 
3170 out:
3171 	up_read(&hba->clk_scaling_lock);
3172 	return err;
3173 }
3174 
3175 /**
3176  * ufshcd_init_query() - init the query response and request parameters
3177  * @hba: per-adapter instance
3178  * @request: address of the request pointer to be initialized
3179  * @response: address of the response pointer to be initialized
3180  * @opcode: operation to perform
3181  * @idn: flag idn to access
3182  * @index: LU number to access
3183  * @selector: query/flag/descriptor further identification
3184  */
3185 static inline void ufshcd_init_query(struct ufs_hba *hba,
3186 		struct ufs_query_req **request, struct ufs_query_res **response,
3187 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3188 {
3189 	*request = &hba->dev_cmd.query.request;
3190 	*response = &hba->dev_cmd.query.response;
3191 	memset(*request, 0, sizeof(struct ufs_query_req));
3192 	memset(*response, 0, sizeof(struct ufs_query_res));
3193 	(*request)->upiu_req.opcode = opcode;
3194 	(*request)->upiu_req.idn = idn;
3195 	(*request)->upiu_req.index = index;
3196 	(*request)->upiu_req.selector = selector;
3197 }
3198 
3199 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3200 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3201 {
3202 	int ret;
3203 	int retries;
3204 
3205 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3206 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3207 		if (ret)
3208 			dev_dbg(hba->dev,
3209 				"%s: failed with error %d, retries %d\n",
3210 				__func__, ret, retries);
3211 		else
3212 			break;
3213 	}
3214 
3215 	if (ret)
3216 		dev_err(hba->dev,
3217 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3218 			__func__, opcode, idn, ret, retries);
3219 	return ret;
3220 }
3221 
3222 /**
3223  * ufshcd_query_flag() - API function for sending flag query requests
3224  * @hba: per-adapter instance
3225  * @opcode: flag query to perform
3226  * @idn: flag idn to access
3227  * @index: flag index to access
3228  * @flag_res: the flag value after the query request completes
3229  *
3230  * Returns 0 for success, non-zero in case of failure
3231  */
3232 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3233 			enum flag_idn idn, u8 index, bool *flag_res)
3234 {
3235 	struct ufs_query_req *request = NULL;
3236 	struct ufs_query_res *response = NULL;
3237 	int err, selector = 0;
3238 	int timeout = QUERY_REQ_TIMEOUT;
3239 
3240 	BUG_ON(!hba);
3241 
3242 	ufshcd_hold(hba, false);
3243 	mutex_lock(&hba->dev_cmd.lock);
3244 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3245 			selector);
3246 
3247 	switch (opcode) {
3248 	case UPIU_QUERY_OPCODE_SET_FLAG:
3249 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3250 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3251 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3252 		break;
3253 	case UPIU_QUERY_OPCODE_READ_FLAG:
3254 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3255 		if (!flag_res) {
3256 			/* No dummy reads */
3257 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3258 					__func__);
3259 			err = -EINVAL;
3260 			goto out_unlock;
3261 		}
3262 		break;
3263 	default:
3264 		dev_err(hba->dev,
3265 			"%s: Expected query flag opcode but got = %d\n",
3266 			__func__, opcode);
3267 		err = -EINVAL;
3268 		goto out_unlock;
3269 	}
3270 
3271 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3272 
3273 	if (err) {
3274 		dev_err(hba->dev,
3275 			"%s: Sending flag query for idn %d failed, err = %d\n",
3276 			__func__, idn, err);
3277 		goto out_unlock;
3278 	}
3279 
3280 	if (flag_res)
3281 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3282 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3283 
3284 out_unlock:
3285 	mutex_unlock(&hba->dev_cmd.lock);
3286 	ufshcd_release(hba);
3287 	return err;
3288 }
3289 
3290 /**
3291  * ufshcd_query_attr - API function for sending attribute requests
3292  * @hba: per-adapter instance
3293  * @opcode: attribute opcode
3294  * @idn: attribute idn to access
3295  * @index: index field
3296  * @selector: selector field
3297  * @attr_val: the attribute value after the query request completes
3298  *
3299  * Returns 0 for success, non-zero in case of failure
3300 */
3301 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3302 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3303 {
3304 	struct ufs_query_req *request = NULL;
3305 	struct ufs_query_res *response = NULL;
3306 	int err;
3307 
3308 	BUG_ON(!hba);
3309 
3310 	if (!attr_val) {
3311 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3312 				__func__, opcode);
3313 		return -EINVAL;
3314 	}
3315 
3316 	ufshcd_hold(hba, false);
3317 
3318 	mutex_lock(&hba->dev_cmd.lock);
3319 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3320 			selector);
3321 
3322 	switch (opcode) {
3323 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3324 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3325 		request->upiu_req.value = cpu_to_be32(*attr_val);
3326 		break;
3327 	case UPIU_QUERY_OPCODE_READ_ATTR:
3328 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3329 		break;
3330 	default:
3331 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3332 				__func__, opcode);
3333 		err = -EINVAL;
3334 		goto out_unlock;
3335 	}
3336 
3337 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3338 
3339 	if (err) {
3340 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3341 				__func__, opcode, idn, index, err);
3342 		goto out_unlock;
3343 	}
3344 
3345 	*attr_val = be32_to_cpu(response->upiu_res.value);
3346 
3347 out_unlock:
3348 	mutex_unlock(&hba->dev_cmd.lock);
3349 	ufshcd_release(hba);
3350 	return err;
3351 }
3352 
3353 /**
3354  * ufshcd_query_attr_retry() - API function for sending query
3355  * attribute with retries
3356  * @hba: per-adapter instance
3357  * @opcode: attribute opcode
3358  * @idn: attribute idn to access
3359  * @index: index field
3360  * @selector: selector field
3361  * @attr_val: the attribute value after the query request
3362  * completes
3363  *
3364  * Returns 0 for success, non-zero in case of failure
3365 */
3366 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3367 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3368 	u32 *attr_val)
3369 {
3370 	int ret = 0;
3371 	u32 retries;
3372 
3373 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3374 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3375 						selector, attr_val);
3376 		if (ret)
3377 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3378 				__func__, ret, retries);
3379 		else
3380 			break;
3381 	}
3382 
3383 	if (ret)
3384 		dev_err(hba->dev,
3385 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3386 			__func__, idn, ret, QUERY_REQ_RETRIES);
3387 	return ret;
3388 }
3389 
3390 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3391 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3392 			u8 selector, u8 *desc_buf, int *buf_len)
3393 {
3394 	struct ufs_query_req *request = NULL;
3395 	struct ufs_query_res *response = NULL;
3396 	int err;
3397 
3398 	BUG_ON(!hba);
3399 
3400 	if (!desc_buf) {
3401 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3402 				__func__, opcode);
3403 		return -EINVAL;
3404 	}
3405 
3406 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3407 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3408 				__func__, *buf_len);
3409 		return -EINVAL;
3410 	}
3411 
3412 	ufshcd_hold(hba, false);
3413 
3414 	mutex_lock(&hba->dev_cmd.lock);
3415 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3416 			selector);
3417 	hba->dev_cmd.query.descriptor = desc_buf;
3418 	request->upiu_req.length = cpu_to_be16(*buf_len);
3419 
3420 	switch (opcode) {
3421 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3422 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3423 		break;
3424 	case UPIU_QUERY_OPCODE_READ_DESC:
3425 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3426 		break;
3427 	default:
3428 		dev_err(hba->dev,
3429 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3430 				__func__, opcode);
3431 		err = -EINVAL;
3432 		goto out_unlock;
3433 	}
3434 
3435 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3436 
3437 	if (err) {
3438 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3439 				__func__, opcode, idn, index, err);
3440 		goto out_unlock;
3441 	}
3442 
3443 	*buf_len = be16_to_cpu(response->upiu_res.length);
3444 
3445 out_unlock:
3446 	hba->dev_cmd.query.descriptor = NULL;
3447 	mutex_unlock(&hba->dev_cmd.lock);
3448 	ufshcd_release(hba);
3449 	return err;
3450 }
3451 
3452 /**
3453  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3454  * @hba: per-adapter instance
3455  * @opcode: attribute opcode
3456  * @idn: attribute idn to access
3457  * @index: index field
3458  * @selector: selector field
3459  * @desc_buf: the buffer that contains the descriptor
3460  * @buf_len: length parameter passed to the device
3461  *
3462  * Returns 0 for success, non-zero in case of failure.
3463  * The buf_len parameter will contain, on return, the length parameter
3464  * received on the response.
3465  */
3466 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3467 				  enum query_opcode opcode,
3468 				  enum desc_idn idn, u8 index,
3469 				  u8 selector,
3470 				  u8 *desc_buf, int *buf_len)
3471 {
3472 	int err;
3473 	int retries;
3474 
3475 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3476 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3477 						selector, desc_buf, buf_len);
3478 		if (!err || err == -EINVAL)
3479 			break;
3480 	}
3481 
3482 	return err;
3483 }
3484 
3485 /**
3486  * ufshcd_read_desc_param - read the specified descriptor parameter
3487  * @hba: Pointer to adapter instance
3488  * @desc_id: descriptor idn value
3489  * @desc_index: descriptor index
3490  * @param_offset: offset of the parameter to read
3491  * @param_read_buf: pointer to buffer where parameter would be read
3492  * @param_size: sizeof(param_read_buf)
3493  *
3494  * Return 0 in case of success, non-zero otherwise
3495  */
3496 int ufshcd_read_desc_param(struct ufs_hba *hba,
3497 			   enum desc_idn desc_id,
3498 			   int desc_index,
3499 			   u8 param_offset,
3500 			   u8 *param_read_buf,
3501 			   u8 param_size)
3502 {
3503 	int ret;
3504 	u8 *desc_buf;
3505 	int buff_len = QUERY_DESC_MAX_SIZE;
3506 	bool is_kmalloc = true;
3507 
3508 	/* Safety check */
3509 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3510 		return -EINVAL;
3511 
3512 	/* Check whether we need temp memory */
3513 	if (param_offset != 0 || param_size < buff_len) {
3514 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3515 		if (!desc_buf)
3516 			return -ENOMEM;
3517 	} else {
3518 		desc_buf = param_read_buf;
3519 		is_kmalloc = false;
3520 	}
3521 
3522 	/* Request for full descriptor */
3523 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3524 					    desc_id, desc_index, 0,
3525 					    desc_buf, &buff_len);
3526 	if (ret) {
3527 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3528 			__func__, desc_id, desc_index, param_offset, ret);
3529 		goto out;
3530 	}
3531 
3532 	/* Update descriptor length */
3533 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3534 
3535 	if (param_offset >= buff_len) {
3536 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3537 			__func__, param_offset, desc_id, buff_len);
3538 		ret = -EINVAL;
3539 		goto out;
3540 	}
3541 
3542 	/* Sanity check */
3543 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3544 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3545 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3546 		ret = -EINVAL;
3547 		goto out;
3548 	}
3549 
3550 	if (is_kmalloc) {
3551 		/* Make sure we don't copy more data than available */
3552 		if (param_offset >= buff_len)
3553 			ret = -EINVAL;
3554 		else
3555 			memcpy(param_read_buf, &desc_buf[param_offset],
3556 			       min_t(u32, param_size, buff_len - param_offset));
3557 	}
3558 out:
3559 	if (is_kmalloc)
3560 		kfree(desc_buf);
3561 	return ret;
3562 }
3563 
3564 /**
3565  * struct uc_string_id - unicode string
3566  *
3567  * @len: size of this descriptor inclusive
3568  * @type: descriptor type
3569  * @uc: unicode string character
3570  */
3571 struct uc_string_id {
3572 	u8 len;
3573 	u8 type;
3574 	wchar_t uc[];
3575 } __packed;
3576 
3577 /* replace non-printable or non-ASCII characters with spaces */
3578 static inline char ufshcd_remove_non_printable(u8 ch)
3579 {
3580 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3581 }
3582 
3583 /**
3584  * ufshcd_read_string_desc - read string descriptor
3585  * @hba: pointer to adapter instance
3586  * @desc_index: descriptor index
3587  * @buf: pointer to buffer where descriptor would be read,
3588  *       the caller should free the memory.
3589  * @ascii: if true convert from unicode to ascii characters
3590  *         null terminated string.
3591  *
3592  * Return:
3593  * *      string size on success.
3594  * *      -ENOMEM: on allocation failure
3595  * *      -EINVAL: on a wrong parameter
3596  */
3597 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3598 			    u8 **buf, bool ascii)
3599 {
3600 	struct uc_string_id *uc_str;
3601 	u8 *str;
3602 	int ret;
3603 
3604 	if (!buf)
3605 		return -EINVAL;
3606 
3607 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3608 	if (!uc_str)
3609 		return -ENOMEM;
3610 
3611 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3612 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3613 	if (ret < 0) {
3614 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3615 			QUERY_REQ_RETRIES, ret);
3616 		str = NULL;
3617 		goto out;
3618 	}
3619 
3620 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3621 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3622 		str = NULL;
3623 		ret = 0;
3624 		goto out;
3625 	}
3626 
3627 	if (ascii) {
3628 		ssize_t ascii_len;
3629 		int i;
3630 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3631 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3632 		str = kzalloc(ascii_len, GFP_KERNEL);
3633 		if (!str) {
3634 			ret = -ENOMEM;
3635 			goto out;
3636 		}
3637 
3638 		/*
3639 		 * the descriptor contains string in UTF16 format
3640 		 * we need to convert to utf-8 so it can be displayed
3641 		 */
3642 		ret = utf16s_to_utf8s(uc_str->uc,
3643 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3644 				      UTF16_BIG_ENDIAN, str, ascii_len);
3645 
3646 		/* replace non-printable or non-ASCII characters with spaces */
3647 		for (i = 0; i < ret; i++)
3648 			str[i] = ufshcd_remove_non_printable(str[i]);
3649 
3650 		str[ret++] = '\0';
3651 
3652 	} else {
3653 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3654 		if (!str) {
3655 			ret = -ENOMEM;
3656 			goto out;
3657 		}
3658 		ret = uc_str->len;
3659 	}
3660 out:
3661 	*buf = str;
3662 	kfree(uc_str);
3663 	return ret;
3664 }
3665 
3666 /**
3667  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3668  * @hba: Pointer to adapter instance
3669  * @lun: lun id
3670  * @param_offset: offset of the parameter to read
3671  * @param_read_buf: pointer to buffer where parameter would be read
3672  * @param_size: sizeof(param_read_buf)
3673  *
3674  * Return 0 in case of success, non-zero otherwise
3675  */
3676 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3677 					      int lun,
3678 					      enum unit_desc_param param_offset,
3679 					      u8 *param_read_buf,
3680 					      u32 param_size)
3681 {
3682 	/*
3683 	 * Unit descriptors are only available for general purpose LUs (LUN id
3684 	 * from 0 to 7) and RPMB Well known LU.
3685 	 */
3686 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3687 		return -EOPNOTSUPP;
3688 
3689 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3690 				      param_offset, param_read_buf, param_size);
3691 }
3692 
3693 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3694 {
3695 	int err = 0;
3696 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3697 
3698 	if (hba->dev_info.wspecversion >= 0x300) {
3699 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3700 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3701 				&gating_wait);
3702 		if (err)
3703 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3704 					 err, gating_wait);
3705 
3706 		if (gating_wait == 0) {
3707 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3708 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3709 					 gating_wait);
3710 		}
3711 
3712 		hba->dev_info.clk_gating_wait_us = gating_wait;
3713 	}
3714 
3715 	return err;
3716 }
3717 
3718 /**
3719  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3720  * @hba: per adapter instance
3721  *
3722  * 1. Allocate DMA memory for Command Descriptor array
3723  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3724  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3725  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3726  *	(UTMRDL)
3727  * 4. Allocate memory for local reference block(lrb).
3728  *
3729  * Returns 0 for success, non-zero in case of failure
3730  */
3731 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3732 {
3733 	size_t utmrdl_size, utrdl_size, ucdl_size;
3734 
3735 	/* Allocate memory for UTP command descriptors */
3736 	ucdl_size = sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs;
3737 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3738 						  ucdl_size,
3739 						  &hba->ucdl_dma_addr,
3740 						  GFP_KERNEL);
3741 
3742 	/*
3743 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3744 	 */
3745 	if (!hba->ucdl_base_addr ||
3746 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3747 		dev_err(hba->dev,
3748 			"Command Descriptor Memory allocation failed\n");
3749 		goto out;
3750 	}
3751 
3752 	/*
3753 	 * Allocate memory for UTP Transfer descriptors
3754 	 * UFSHCI requires 1024 byte alignment of UTRD
3755 	 */
3756 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3757 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3758 						   utrdl_size,
3759 						   &hba->utrdl_dma_addr,
3760 						   GFP_KERNEL);
3761 	if (!hba->utrdl_base_addr ||
3762 	    WARN_ON(hba->utrdl_dma_addr & (1024 - 1))) {
3763 		dev_err(hba->dev,
3764 			"Transfer Descriptor Memory allocation failed\n");
3765 		goto out;
3766 	}
3767 
3768 	/*
3769 	 * Skip utmrdl allocation; it may have been
3770 	 * allocated during first pass and not released during
3771 	 * MCQ memory allocation.
3772 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3773 	 */
3774 	if (hba->utmrdl_base_addr)
3775 		goto skip_utmrdl;
3776 	/*
3777 	 * Allocate memory for UTP Task Management descriptors
3778 	 * UFSHCI requires 1024 byte alignment of UTMRD
3779 	 */
3780 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3781 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3782 						    utmrdl_size,
3783 						    &hba->utmrdl_dma_addr,
3784 						    GFP_KERNEL);
3785 	if (!hba->utmrdl_base_addr ||
3786 	    WARN_ON(hba->utmrdl_dma_addr & (1024 - 1))) {
3787 		dev_err(hba->dev,
3788 		"Task Management Descriptor Memory allocation failed\n");
3789 		goto out;
3790 	}
3791 
3792 skip_utmrdl:
3793 	/* Allocate memory for local reference block */
3794 	hba->lrb = devm_kcalloc(hba->dev,
3795 				hba->nutrs, sizeof(struct ufshcd_lrb),
3796 				GFP_KERNEL);
3797 	if (!hba->lrb) {
3798 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3799 		goto out;
3800 	}
3801 	return 0;
3802 out:
3803 	return -ENOMEM;
3804 }
3805 
3806 /**
3807  * ufshcd_host_memory_configure - configure local reference block with
3808  *				memory offsets
3809  * @hba: per adapter instance
3810  *
3811  * Configure Host memory space
3812  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3813  * address.
3814  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3815  * and PRDT offset.
3816  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3817  * into local reference block.
3818  */
3819 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3820 {
3821 	struct utp_transfer_req_desc *utrdlp;
3822 	dma_addr_t cmd_desc_dma_addr;
3823 	dma_addr_t cmd_desc_element_addr;
3824 	u16 response_offset;
3825 	u16 prdt_offset;
3826 	int cmd_desc_size;
3827 	int i;
3828 
3829 	utrdlp = hba->utrdl_base_addr;
3830 
3831 	response_offset =
3832 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3833 	prdt_offset =
3834 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3835 
3836 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3837 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3838 
3839 	for (i = 0; i < hba->nutrs; i++) {
3840 		/* Configure UTRD with command descriptor base address */
3841 		cmd_desc_element_addr =
3842 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3843 		utrdlp[i].command_desc_base_addr_lo =
3844 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3845 		utrdlp[i].command_desc_base_addr_hi =
3846 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3847 
3848 		/* Response upiu and prdt offset should be in double words */
3849 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3850 			utrdlp[i].response_upiu_offset =
3851 				cpu_to_le16(response_offset);
3852 			utrdlp[i].prd_table_offset =
3853 				cpu_to_le16(prdt_offset);
3854 			utrdlp[i].response_upiu_length =
3855 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3856 		} else {
3857 			utrdlp[i].response_upiu_offset =
3858 				cpu_to_le16(response_offset >> 2);
3859 			utrdlp[i].prd_table_offset =
3860 				cpu_to_le16(prdt_offset >> 2);
3861 			utrdlp[i].response_upiu_length =
3862 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3863 		}
3864 
3865 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3866 	}
3867 }
3868 
3869 /**
3870  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3871  * @hba: per adapter instance
3872  *
3873  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3874  * in order to initialize the Unipro link startup procedure.
3875  * Once the Unipro links are up, the device connected to the controller
3876  * is detected.
3877  *
3878  * Returns 0 on success, non-zero value on failure
3879  */
3880 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3881 {
3882 	struct uic_command uic_cmd = {0};
3883 	int ret;
3884 
3885 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3886 
3887 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3888 	if (ret)
3889 		dev_dbg(hba->dev,
3890 			"dme-link-startup: error code %d\n", ret);
3891 	return ret;
3892 }
3893 /**
3894  * ufshcd_dme_reset - UIC command for DME_RESET
3895  * @hba: per adapter instance
3896  *
3897  * DME_RESET command is issued in order to reset UniPro stack.
3898  * This function now deals with cold reset.
3899  *
3900  * Returns 0 on success, non-zero value on failure
3901  */
3902 static int ufshcd_dme_reset(struct ufs_hba *hba)
3903 {
3904 	struct uic_command uic_cmd = {0};
3905 	int ret;
3906 
3907 	uic_cmd.command = UIC_CMD_DME_RESET;
3908 
3909 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3910 	if (ret)
3911 		dev_err(hba->dev,
3912 			"dme-reset: error code %d\n", ret);
3913 
3914 	return ret;
3915 }
3916 
3917 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3918 			       int agreed_gear,
3919 			       int adapt_val)
3920 {
3921 	int ret;
3922 
3923 	if (agreed_gear < UFS_HS_G4)
3924 		adapt_val = PA_NO_ADAPT;
3925 
3926 	ret = ufshcd_dme_set(hba,
3927 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3928 			     adapt_val);
3929 	return ret;
3930 }
3931 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3932 
3933 /**
3934  * ufshcd_dme_enable - UIC command for DME_ENABLE
3935  * @hba: per adapter instance
3936  *
3937  * DME_ENABLE command is issued in order to enable UniPro stack.
3938  *
3939  * Returns 0 on success, non-zero value on failure
3940  */
3941 static int ufshcd_dme_enable(struct ufs_hba *hba)
3942 {
3943 	struct uic_command uic_cmd = {0};
3944 	int ret;
3945 
3946 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3947 
3948 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3949 	if (ret)
3950 		dev_err(hba->dev,
3951 			"dme-enable: error code %d\n", ret);
3952 
3953 	return ret;
3954 }
3955 
3956 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3957 {
3958 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3959 	unsigned long min_sleep_time_us;
3960 
3961 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3962 		return;
3963 
3964 	/*
3965 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3966 	 * this function
3967 	 */
3968 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3969 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3970 	} else {
3971 		unsigned long delta =
3972 			(unsigned long) ktime_to_us(
3973 				ktime_sub(ktime_get(),
3974 				hba->last_dme_cmd_tstamp));
3975 
3976 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3977 			min_sleep_time_us =
3978 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3979 		else
3980 			return; /* no more delay required */
3981 	}
3982 
3983 	/* allow sleep for extra 50us if needed */
3984 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3985 }
3986 
3987 /**
3988  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3989  * @hba: per adapter instance
3990  * @attr_sel: uic command argument1
3991  * @attr_set: attribute set type as uic command argument2
3992  * @mib_val: setting value as uic command argument3
3993  * @peer: indicate whether peer or local
3994  *
3995  * Returns 0 on success, non-zero value on failure
3996  */
3997 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3998 			u8 attr_set, u32 mib_val, u8 peer)
3999 {
4000 	struct uic_command uic_cmd = {0};
4001 	static const char *const action[] = {
4002 		"dme-set",
4003 		"dme-peer-set"
4004 	};
4005 	const char *set = action[!!peer];
4006 	int ret;
4007 	int retries = UFS_UIC_COMMAND_RETRIES;
4008 
4009 	uic_cmd.command = peer ?
4010 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4011 	uic_cmd.argument1 = attr_sel;
4012 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4013 	uic_cmd.argument3 = mib_val;
4014 
4015 	do {
4016 		/* for peer attributes we retry upon failure */
4017 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4018 		if (ret)
4019 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4020 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4021 	} while (ret && peer && --retries);
4022 
4023 	if (ret)
4024 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4025 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4026 			UFS_UIC_COMMAND_RETRIES - retries);
4027 
4028 	return ret;
4029 }
4030 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4031 
4032 /**
4033  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4034  * @hba: per adapter instance
4035  * @attr_sel: uic command argument1
4036  * @mib_val: the value of the attribute as returned by the UIC command
4037  * @peer: indicate whether peer or local
4038  *
4039  * Returns 0 on success, non-zero value on failure
4040  */
4041 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4042 			u32 *mib_val, u8 peer)
4043 {
4044 	struct uic_command uic_cmd = {0};
4045 	static const char *const action[] = {
4046 		"dme-get",
4047 		"dme-peer-get"
4048 	};
4049 	const char *get = action[!!peer];
4050 	int ret;
4051 	int retries = UFS_UIC_COMMAND_RETRIES;
4052 	struct ufs_pa_layer_attr orig_pwr_info;
4053 	struct ufs_pa_layer_attr temp_pwr_info;
4054 	bool pwr_mode_change = false;
4055 
4056 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4057 		orig_pwr_info = hba->pwr_info;
4058 		temp_pwr_info = orig_pwr_info;
4059 
4060 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4061 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4062 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4063 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4064 			pwr_mode_change = true;
4065 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4066 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4067 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4068 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4069 			pwr_mode_change = true;
4070 		}
4071 		if (pwr_mode_change) {
4072 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4073 			if (ret)
4074 				goto out;
4075 		}
4076 	}
4077 
4078 	uic_cmd.command = peer ?
4079 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4080 	uic_cmd.argument1 = attr_sel;
4081 
4082 	do {
4083 		/* for peer attributes we retry upon failure */
4084 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4085 		if (ret)
4086 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4087 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4088 	} while (ret && peer && --retries);
4089 
4090 	if (ret)
4091 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4092 			get, UIC_GET_ATTR_ID(attr_sel),
4093 			UFS_UIC_COMMAND_RETRIES - retries);
4094 
4095 	if (mib_val && !ret)
4096 		*mib_val = uic_cmd.argument3;
4097 
4098 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4099 	    && pwr_mode_change)
4100 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4101 out:
4102 	return ret;
4103 }
4104 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4105 
4106 /**
4107  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4108  * state) and waits for it to take effect.
4109  *
4110  * @hba: per adapter instance
4111  * @cmd: UIC command to execute
4112  *
4113  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4114  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4115  * and device UniPro link and hence it's final completion would be indicated by
4116  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4117  * addition to normal UIC command completion Status (UCCS). This function only
4118  * returns after the relevant status bits indicate the completion.
4119  *
4120  * Returns 0 on success, non-zero value on failure
4121  */
4122 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4123 {
4124 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4125 	unsigned long flags;
4126 	u8 status;
4127 	int ret;
4128 	bool reenable_intr = false;
4129 
4130 	mutex_lock(&hba->uic_cmd_mutex);
4131 	ufshcd_add_delay_before_dme_cmd(hba);
4132 
4133 	spin_lock_irqsave(hba->host->host_lock, flags);
4134 	if (ufshcd_is_link_broken(hba)) {
4135 		ret = -ENOLINK;
4136 		goto out_unlock;
4137 	}
4138 	hba->uic_async_done = &uic_async_done;
4139 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4140 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4141 		/*
4142 		 * Make sure UIC command completion interrupt is disabled before
4143 		 * issuing UIC command.
4144 		 */
4145 		wmb();
4146 		reenable_intr = true;
4147 	}
4148 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4149 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4150 	if (ret) {
4151 		dev_err(hba->dev,
4152 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4153 			cmd->command, cmd->argument3, ret);
4154 		goto out;
4155 	}
4156 
4157 	if (!wait_for_completion_timeout(hba->uic_async_done,
4158 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4159 		dev_err(hba->dev,
4160 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4161 			cmd->command, cmd->argument3);
4162 
4163 		if (!cmd->cmd_active) {
4164 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4165 				__func__);
4166 			goto check_upmcrs;
4167 		}
4168 
4169 		ret = -ETIMEDOUT;
4170 		goto out;
4171 	}
4172 
4173 check_upmcrs:
4174 	status = ufshcd_get_upmcrs(hba);
4175 	if (status != PWR_LOCAL) {
4176 		dev_err(hba->dev,
4177 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4178 			cmd->command, status);
4179 		ret = (status != PWR_OK) ? status : -1;
4180 	}
4181 out:
4182 	if (ret) {
4183 		ufshcd_print_host_state(hba);
4184 		ufshcd_print_pwr_info(hba);
4185 		ufshcd_print_evt_hist(hba);
4186 	}
4187 
4188 	spin_lock_irqsave(hba->host->host_lock, flags);
4189 	hba->active_uic_cmd = NULL;
4190 	hba->uic_async_done = NULL;
4191 	if (reenable_intr)
4192 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4193 	if (ret) {
4194 		ufshcd_set_link_broken(hba);
4195 		ufshcd_schedule_eh_work(hba);
4196 	}
4197 out_unlock:
4198 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4199 	mutex_unlock(&hba->uic_cmd_mutex);
4200 
4201 	return ret;
4202 }
4203 
4204 /**
4205  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4206  *				using DME_SET primitives.
4207  * @hba: per adapter instance
4208  * @mode: powr mode value
4209  *
4210  * Returns 0 on success, non-zero value on failure
4211  */
4212 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4213 {
4214 	struct uic_command uic_cmd = {0};
4215 	int ret;
4216 
4217 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4218 		ret = ufshcd_dme_set(hba,
4219 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4220 		if (ret) {
4221 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4222 						__func__, ret);
4223 			goto out;
4224 		}
4225 	}
4226 
4227 	uic_cmd.command = UIC_CMD_DME_SET;
4228 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4229 	uic_cmd.argument3 = mode;
4230 	ufshcd_hold(hba, false);
4231 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4232 	ufshcd_release(hba);
4233 
4234 out:
4235 	return ret;
4236 }
4237 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4238 
4239 int ufshcd_link_recovery(struct ufs_hba *hba)
4240 {
4241 	int ret;
4242 	unsigned long flags;
4243 
4244 	spin_lock_irqsave(hba->host->host_lock, flags);
4245 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4246 	ufshcd_set_eh_in_progress(hba);
4247 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4248 
4249 	/* Reset the attached device */
4250 	ufshcd_device_reset(hba);
4251 
4252 	ret = ufshcd_host_reset_and_restore(hba);
4253 
4254 	spin_lock_irqsave(hba->host->host_lock, flags);
4255 	if (ret)
4256 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4257 	ufshcd_clear_eh_in_progress(hba);
4258 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4259 
4260 	if (ret)
4261 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4262 			__func__, ret);
4263 
4264 	return ret;
4265 }
4266 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4267 
4268 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4269 {
4270 	int ret;
4271 	struct uic_command uic_cmd = {0};
4272 	ktime_t start = ktime_get();
4273 
4274 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4275 
4276 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4277 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4278 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4279 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4280 
4281 	if (ret)
4282 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4283 			__func__, ret);
4284 	else
4285 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4286 								POST_CHANGE);
4287 
4288 	return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4291 
4292 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4293 {
4294 	struct uic_command uic_cmd = {0};
4295 	int ret;
4296 	ktime_t start = ktime_get();
4297 
4298 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4299 
4300 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4301 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4302 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4303 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4304 
4305 	if (ret) {
4306 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4307 			__func__, ret);
4308 	} else {
4309 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4310 								POST_CHANGE);
4311 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4312 		hba->ufs_stats.hibern8_exit_cnt++;
4313 	}
4314 
4315 	return ret;
4316 }
4317 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4318 
4319 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4320 {
4321 	unsigned long flags;
4322 	bool update = false;
4323 
4324 	if (!ufshcd_is_auto_hibern8_supported(hba))
4325 		return;
4326 
4327 	spin_lock_irqsave(hba->host->host_lock, flags);
4328 	if (hba->ahit != ahit) {
4329 		hba->ahit = ahit;
4330 		update = true;
4331 	}
4332 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4333 
4334 	if (update &&
4335 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4336 		ufshcd_rpm_get_sync(hba);
4337 		ufshcd_hold(hba, false);
4338 		ufshcd_auto_hibern8_enable(hba);
4339 		ufshcd_release(hba);
4340 		ufshcd_rpm_put_sync(hba);
4341 	}
4342 }
4343 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4344 
4345 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4346 {
4347 	if (!ufshcd_is_auto_hibern8_supported(hba))
4348 		return;
4349 
4350 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4351 }
4352 
4353  /**
4354  * ufshcd_init_pwr_info - setting the POR (power on reset)
4355  * values in hba power info
4356  * @hba: per-adapter instance
4357  */
4358 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4359 {
4360 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4361 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4362 	hba->pwr_info.lane_rx = 1;
4363 	hba->pwr_info.lane_tx = 1;
4364 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4365 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4366 	hba->pwr_info.hs_rate = 0;
4367 }
4368 
4369 /**
4370  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4371  * @hba: per-adapter instance
4372  */
4373 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4374 {
4375 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4376 
4377 	if (hba->max_pwr_info.is_valid)
4378 		return 0;
4379 
4380 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4381 		pwr_info->pwr_tx = FASTAUTO_MODE;
4382 		pwr_info->pwr_rx = FASTAUTO_MODE;
4383 	} else {
4384 		pwr_info->pwr_tx = FAST_MODE;
4385 		pwr_info->pwr_rx = FAST_MODE;
4386 	}
4387 	pwr_info->hs_rate = PA_HS_MODE_B;
4388 
4389 	/* Get the connected lane count */
4390 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4391 			&pwr_info->lane_rx);
4392 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4393 			&pwr_info->lane_tx);
4394 
4395 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4396 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4397 				__func__,
4398 				pwr_info->lane_rx,
4399 				pwr_info->lane_tx);
4400 		return -EINVAL;
4401 	}
4402 
4403 	/*
4404 	 * First, get the maximum gears of HS speed.
4405 	 * If a zero value, it means there is no HSGEAR capability.
4406 	 * Then, get the maximum gears of PWM speed.
4407 	 */
4408 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4409 	if (!pwr_info->gear_rx) {
4410 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4411 				&pwr_info->gear_rx);
4412 		if (!pwr_info->gear_rx) {
4413 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4414 				__func__, pwr_info->gear_rx);
4415 			return -EINVAL;
4416 		}
4417 		pwr_info->pwr_rx = SLOW_MODE;
4418 	}
4419 
4420 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4421 			&pwr_info->gear_tx);
4422 	if (!pwr_info->gear_tx) {
4423 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4424 				&pwr_info->gear_tx);
4425 		if (!pwr_info->gear_tx) {
4426 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4427 				__func__, pwr_info->gear_tx);
4428 			return -EINVAL;
4429 		}
4430 		pwr_info->pwr_tx = SLOW_MODE;
4431 	}
4432 
4433 	hba->max_pwr_info.is_valid = true;
4434 	return 0;
4435 }
4436 
4437 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4438 			     struct ufs_pa_layer_attr *pwr_mode)
4439 {
4440 	int ret;
4441 
4442 	/* if already configured to the requested pwr_mode */
4443 	if (!hba->force_pmc &&
4444 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4445 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4446 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4447 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4448 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4449 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4450 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4451 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4452 		return 0;
4453 	}
4454 
4455 	/*
4456 	 * Configure attributes for power mode change with below.
4457 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4458 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4459 	 * - PA_HSSERIES
4460 	 */
4461 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4462 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4463 			pwr_mode->lane_rx);
4464 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4465 			pwr_mode->pwr_rx == FAST_MODE)
4466 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4467 	else
4468 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4469 
4470 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4471 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4472 			pwr_mode->lane_tx);
4473 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4474 			pwr_mode->pwr_tx == FAST_MODE)
4475 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4476 	else
4477 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4478 
4479 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4480 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4481 	    pwr_mode->pwr_rx == FAST_MODE ||
4482 	    pwr_mode->pwr_tx == FAST_MODE)
4483 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4484 						pwr_mode->hs_rate);
4485 
4486 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4487 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4488 				DL_FC0ProtectionTimeOutVal_Default);
4489 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4490 				DL_TC0ReplayTimeOutVal_Default);
4491 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4492 				DL_AFC0ReqTimeOutVal_Default);
4493 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4494 				DL_FC1ProtectionTimeOutVal_Default);
4495 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4496 				DL_TC1ReplayTimeOutVal_Default);
4497 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4498 				DL_AFC1ReqTimeOutVal_Default);
4499 
4500 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4501 				DL_FC0ProtectionTimeOutVal_Default);
4502 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4503 				DL_TC0ReplayTimeOutVal_Default);
4504 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4505 				DL_AFC0ReqTimeOutVal_Default);
4506 	}
4507 
4508 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4509 			| pwr_mode->pwr_tx);
4510 
4511 	if (ret) {
4512 		dev_err(hba->dev,
4513 			"%s: power mode change failed %d\n", __func__, ret);
4514 	} else {
4515 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4516 								pwr_mode);
4517 
4518 		memcpy(&hba->pwr_info, pwr_mode,
4519 			sizeof(struct ufs_pa_layer_attr));
4520 	}
4521 
4522 	return ret;
4523 }
4524 
4525 /**
4526  * ufshcd_config_pwr_mode - configure a new power mode
4527  * @hba: per-adapter instance
4528  * @desired_pwr_mode: desired power configuration
4529  */
4530 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4531 		struct ufs_pa_layer_attr *desired_pwr_mode)
4532 {
4533 	struct ufs_pa_layer_attr final_params = { 0 };
4534 	int ret;
4535 
4536 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4537 					desired_pwr_mode, &final_params);
4538 
4539 	if (ret)
4540 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4541 
4542 	ret = ufshcd_change_power_mode(hba, &final_params);
4543 
4544 	return ret;
4545 }
4546 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4547 
4548 /**
4549  * ufshcd_complete_dev_init() - checks device readiness
4550  * @hba: per-adapter instance
4551  *
4552  * Set fDeviceInit flag and poll until device toggles it.
4553  */
4554 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4555 {
4556 	int err;
4557 	bool flag_res = true;
4558 	ktime_t timeout;
4559 
4560 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4561 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4562 	if (err) {
4563 		dev_err(hba->dev,
4564 			"%s: setting fDeviceInit flag failed with error %d\n",
4565 			__func__, err);
4566 		goto out;
4567 	}
4568 
4569 	/* Poll fDeviceInit flag to be cleared */
4570 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4571 	do {
4572 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4573 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4574 		if (!flag_res)
4575 			break;
4576 		usleep_range(500, 1000);
4577 	} while (ktime_before(ktime_get(), timeout));
4578 
4579 	if (err) {
4580 		dev_err(hba->dev,
4581 				"%s: reading fDeviceInit flag failed with error %d\n",
4582 				__func__, err);
4583 	} else if (flag_res) {
4584 		dev_err(hba->dev,
4585 				"%s: fDeviceInit was not cleared by the device\n",
4586 				__func__);
4587 		err = -EBUSY;
4588 	}
4589 out:
4590 	return err;
4591 }
4592 
4593 /**
4594  * ufshcd_make_hba_operational - Make UFS controller operational
4595  * @hba: per adapter instance
4596  *
4597  * To bring UFS host controller to operational state,
4598  * 1. Enable required interrupts
4599  * 2. Configure interrupt aggregation
4600  * 3. Program UTRL and UTMRL base address
4601  * 4. Configure run-stop-registers
4602  *
4603  * Returns 0 on success, non-zero value on failure
4604  */
4605 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4606 {
4607 	int err = 0;
4608 	u32 reg;
4609 
4610 	/* Enable required interrupts */
4611 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4612 
4613 	/* Configure interrupt aggregation */
4614 	if (ufshcd_is_intr_aggr_allowed(hba))
4615 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4616 	else
4617 		ufshcd_disable_intr_aggr(hba);
4618 
4619 	/* Configure UTRL and UTMRL base address registers */
4620 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4621 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4622 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4623 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4624 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4625 			REG_UTP_TASK_REQ_LIST_BASE_L);
4626 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4627 			REG_UTP_TASK_REQ_LIST_BASE_H);
4628 
4629 	/*
4630 	 * Make sure base address and interrupt setup are updated before
4631 	 * enabling the run/stop registers below.
4632 	 */
4633 	wmb();
4634 
4635 	/*
4636 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4637 	 */
4638 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4639 	if (!(ufshcd_get_lists_status(reg))) {
4640 		ufshcd_enable_run_stop_reg(hba);
4641 	} else {
4642 		dev_err(hba->dev,
4643 			"Host controller not ready to process requests");
4644 		err = -EIO;
4645 	}
4646 
4647 	return err;
4648 }
4649 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4650 
4651 /**
4652  * ufshcd_hba_stop - Send controller to reset state
4653  * @hba: per adapter instance
4654  */
4655 void ufshcd_hba_stop(struct ufs_hba *hba)
4656 {
4657 	unsigned long flags;
4658 	int err;
4659 
4660 	/*
4661 	 * Obtain the host lock to prevent that the controller is disabled
4662 	 * while the UFS interrupt handler is active on another CPU.
4663 	 */
4664 	spin_lock_irqsave(hba->host->host_lock, flags);
4665 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4666 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4667 
4668 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4669 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4670 					10, 1);
4671 	if (err)
4672 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4673 }
4674 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4675 
4676 /**
4677  * ufshcd_hba_execute_hce - initialize the controller
4678  * @hba: per adapter instance
4679  *
4680  * The controller resets itself and controller firmware initialization
4681  * sequence kicks off. When controller is ready it will set
4682  * the Host Controller Enable bit to 1.
4683  *
4684  * Returns 0 on success, non-zero value on failure
4685  */
4686 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4687 {
4688 	int retry_outer = 3;
4689 	int retry_inner;
4690 
4691 start:
4692 	if (ufshcd_is_hba_active(hba))
4693 		/* change controller state to "reset state" */
4694 		ufshcd_hba_stop(hba);
4695 
4696 	/* UniPro link is disabled at this point */
4697 	ufshcd_set_link_off(hba);
4698 
4699 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4700 
4701 	/* start controller initialization sequence */
4702 	ufshcd_hba_start(hba);
4703 
4704 	/*
4705 	 * To initialize a UFS host controller HCE bit must be set to 1.
4706 	 * During initialization the HCE bit value changes from 1->0->1.
4707 	 * When the host controller completes initialization sequence
4708 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4709 	 * to check if the controller has completed initialization sequence.
4710 	 * So without this delay the value HCE = 1, set in the previous
4711 	 * instruction might be read back.
4712 	 * This delay can be changed based on the controller.
4713 	 */
4714 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4715 
4716 	/* wait for the host controller to complete initialization */
4717 	retry_inner = 50;
4718 	while (!ufshcd_is_hba_active(hba)) {
4719 		if (retry_inner) {
4720 			retry_inner--;
4721 		} else {
4722 			dev_err(hba->dev,
4723 				"Controller enable failed\n");
4724 			if (retry_outer) {
4725 				retry_outer--;
4726 				goto start;
4727 			}
4728 			return -EIO;
4729 		}
4730 		usleep_range(1000, 1100);
4731 	}
4732 
4733 	/* enable UIC related interrupts */
4734 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4735 
4736 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4737 
4738 	return 0;
4739 }
4740 
4741 int ufshcd_hba_enable(struct ufs_hba *hba)
4742 {
4743 	int ret;
4744 
4745 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4746 		ufshcd_set_link_off(hba);
4747 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4748 
4749 		/* enable UIC related interrupts */
4750 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4751 		ret = ufshcd_dme_reset(hba);
4752 		if (ret) {
4753 			dev_err(hba->dev, "DME_RESET failed\n");
4754 			return ret;
4755 		}
4756 
4757 		ret = ufshcd_dme_enable(hba);
4758 		if (ret) {
4759 			dev_err(hba->dev, "Enabling DME failed\n");
4760 			return ret;
4761 		}
4762 
4763 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4764 	} else {
4765 		ret = ufshcd_hba_execute_hce(hba);
4766 	}
4767 
4768 	return ret;
4769 }
4770 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4771 
4772 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4773 {
4774 	int tx_lanes = 0, i, err = 0;
4775 
4776 	if (!peer)
4777 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4778 			       &tx_lanes);
4779 	else
4780 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4781 				    &tx_lanes);
4782 	for (i = 0; i < tx_lanes; i++) {
4783 		if (!peer)
4784 			err = ufshcd_dme_set(hba,
4785 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4786 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4787 					0);
4788 		else
4789 			err = ufshcd_dme_peer_set(hba,
4790 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4791 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4792 					0);
4793 		if (err) {
4794 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4795 				__func__, peer, i, err);
4796 			break;
4797 		}
4798 	}
4799 
4800 	return err;
4801 }
4802 
4803 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4804 {
4805 	return ufshcd_disable_tx_lcc(hba, true);
4806 }
4807 
4808 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4809 {
4810 	struct ufs_event_hist *e;
4811 
4812 	if (id >= UFS_EVT_CNT)
4813 		return;
4814 
4815 	e = &hba->ufs_stats.event[id];
4816 	e->val[e->pos] = val;
4817 	e->tstamp[e->pos] = local_clock();
4818 	e->cnt += 1;
4819 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4820 
4821 	ufshcd_vops_event_notify(hba, id, &val);
4822 }
4823 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4824 
4825 /**
4826  * ufshcd_link_startup - Initialize unipro link startup
4827  * @hba: per adapter instance
4828  *
4829  * Returns 0 for success, non-zero in case of failure
4830  */
4831 static int ufshcd_link_startup(struct ufs_hba *hba)
4832 {
4833 	int ret;
4834 	int retries = DME_LINKSTARTUP_RETRIES;
4835 	bool link_startup_again = false;
4836 
4837 	/*
4838 	 * If UFS device isn't active then we will have to issue link startup
4839 	 * 2 times to make sure the device state move to active.
4840 	 */
4841 	if (!ufshcd_is_ufs_dev_active(hba))
4842 		link_startup_again = true;
4843 
4844 link_startup:
4845 	do {
4846 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4847 
4848 		ret = ufshcd_dme_link_startup(hba);
4849 
4850 		/* check if device is detected by inter-connect layer */
4851 		if (!ret && !ufshcd_is_device_present(hba)) {
4852 			ufshcd_update_evt_hist(hba,
4853 					       UFS_EVT_LINK_STARTUP_FAIL,
4854 					       0);
4855 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4856 			ret = -ENXIO;
4857 			goto out;
4858 		}
4859 
4860 		/*
4861 		 * DME link lost indication is only received when link is up,
4862 		 * but we can't be sure if the link is up until link startup
4863 		 * succeeds. So reset the local Uni-Pro and try again.
4864 		 */
4865 		if (ret && retries && ufshcd_hba_enable(hba)) {
4866 			ufshcd_update_evt_hist(hba,
4867 					       UFS_EVT_LINK_STARTUP_FAIL,
4868 					       (u32)ret);
4869 			goto out;
4870 		}
4871 	} while (ret && retries--);
4872 
4873 	if (ret) {
4874 		/* failed to get the link up... retire */
4875 		ufshcd_update_evt_hist(hba,
4876 				       UFS_EVT_LINK_STARTUP_FAIL,
4877 				       (u32)ret);
4878 		goto out;
4879 	}
4880 
4881 	if (link_startup_again) {
4882 		link_startup_again = false;
4883 		retries = DME_LINKSTARTUP_RETRIES;
4884 		goto link_startup;
4885 	}
4886 
4887 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4888 	ufshcd_init_pwr_info(hba);
4889 	ufshcd_print_pwr_info(hba);
4890 
4891 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4892 		ret = ufshcd_disable_device_tx_lcc(hba);
4893 		if (ret)
4894 			goto out;
4895 	}
4896 
4897 	/* Include any host controller configuration via UIC commands */
4898 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4899 	if (ret)
4900 		goto out;
4901 
4902 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4903 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4904 	ret = ufshcd_make_hba_operational(hba);
4905 out:
4906 	if (ret) {
4907 		dev_err(hba->dev, "link startup failed %d\n", ret);
4908 		ufshcd_print_host_state(hba);
4909 		ufshcd_print_pwr_info(hba);
4910 		ufshcd_print_evt_hist(hba);
4911 	}
4912 	return ret;
4913 }
4914 
4915 /**
4916  * ufshcd_verify_dev_init() - Verify device initialization
4917  * @hba: per-adapter instance
4918  *
4919  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4920  * device Transport Protocol (UTP) layer is ready after a reset.
4921  * If the UTP layer at the device side is not initialized, it may
4922  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4923  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4924  */
4925 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4926 {
4927 	int err = 0;
4928 	int retries;
4929 
4930 	ufshcd_hold(hba, false);
4931 	mutex_lock(&hba->dev_cmd.lock);
4932 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4933 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4934 					  hba->nop_out_timeout);
4935 
4936 		if (!err || err == -ETIMEDOUT)
4937 			break;
4938 
4939 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4940 	}
4941 	mutex_unlock(&hba->dev_cmd.lock);
4942 	ufshcd_release(hba);
4943 
4944 	if (err)
4945 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4946 	return err;
4947 }
4948 
4949 /**
4950  * ufshcd_setup_links - associate link b/w device wlun and other luns
4951  * @sdev: pointer to SCSI device
4952  * @hba: pointer to ufs hba
4953  */
4954 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4955 {
4956 	struct device_link *link;
4957 
4958 	/*
4959 	 * Device wlun is the supplier & rest of the luns are consumers.
4960 	 * This ensures that device wlun suspends after all other luns.
4961 	 */
4962 	if (hba->ufs_device_wlun) {
4963 		link = device_link_add(&sdev->sdev_gendev,
4964 				       &hba->ufs_device_wlun->sdev_gendev,
4965 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4966 		if (!link) {
4967 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4968 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4969 			return;
4970 		}
4971 		hba->luns_avail--;
4972 		/* Ignore REPORT_LUN wlun probing */
4973 		if (hba->luns_avail == 1) {
4974 			ufshcd_rpm_put(hba);
4975 			return;
4976 		}
4977 	} else {
4978 		/*
4979 		 * Device wlun is probed. The assumption is that WLUNs are
4980 		 * scanned before other LUNs.
4981 		 */
4982 		hba->luns_avail--;
4983 	}
4984 }
4985 
4986 /**
4987  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4988  * @hba: per-adapter instance
4989  * @sdev: pointer to SCSI device
4990  */
4991 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4992 {
4993 	int len = QUERY_DESC_MAX_SIZE;
4994 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4995 	u8 lun_qdepth = hba->nutrs;
4996 	u8 *desc_buf;
4997 	int ret;
4998 
4999 	desc_buf = kzalloc(len, GFP_KERNEL);
5000 	if (!desc_buf)
5001 		goto set_qdepth;
5002 
5003 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5004 	if (ret < 0) {
5005 		if (ret == -EOPNOTSUPP)
5006 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5007 			lun_qdepth = 1;
5008 		kfree(desc_buf);
5009 		goto set_qdepth;
5010 	}
5011 
5012 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5013 		/*
5014 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5015 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5016 		 */
5017 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5018 	}
5019 	/*
5020 	 * According to UFS device specification, the write protection mode is only supported by
5021 	 * normal LU, not supported by WLUN.
5022 	 */
5023 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5024 	    !hba->dev_info.is_lu_power_on_wp &&
5025 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5026 		hba->dev_info.is_lu_power_on_wp = true;
5027 
5028 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5029 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5030 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5031 		hba->dev_info.b_advanced_rpmb_en = true;
5032 
5033 
5034 	kfree(desc_buf);
5035 set_qdepth:
5036 	/*
5037 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5038 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5039 	 */
5040 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5041 	scsi_change_queue_depth(sdev, lun_qdepth);
5042 }
5043 
5044 /**
5045  * ufshcd_slave_alloc - handle initial SCSI device configurations
5046  * @sdev: pointer to SCSI device
5047  *
5048  * Returns success
5049  */
5050 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5051 {
5052 	struct ufs_hba *hba;
5053 
5054 	hba = shost_priv(sdev->host);
5055 
5056 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5057 	sdev->use_10_for_ms = 1;
5058 
5059 	/* DBD field should be set to 1 in mode sense(10) */
5060 	sdev->set_dbd_for_ms = 1;
5061 
5062 	/* allow SCSI layer to restart the device in case of errors */
5063 	sdev->allow_restart = 1;
5064 
5065 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5066 	sdev->no_report_opcodes = 1;
5067 
5068 	/* WRITE_SAME command is not supported */
5069 	sdev->no_write_same = 1;
5070 
5071 	ufshcd_lu_init(hba, sdev);
5072 
5073 	ufshcd_setup_links(hba, sdev);
5074 
5075 	return 0;
5076 }
5077 
5078 /**
5079  * ufshcd_change_queue_depth - change queue depth
5080  * @sdev: pointer to SCSI device
5081  * @depth: required depth to set
5082  *
5083  * Change queue depth and make sure the max. limits are not crossed.
5084  */
5085 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5086 {
5087 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5088 }
5089 
5090 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5091 {
5092 	/* skip well-known LU */
5093 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5094 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5095 		return;
5096 
5097 	ufshpb_destroy_lu(hba, sdev);
5098 }
5099 
5100 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5101 {
5102 	/* skip well-known LU */
5103 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5104 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5105 		return;
5106 
5107 	ufshpb_init_hpb_lu(hba, sdev);
5108 }
5109 
5110 /**
5111  * ufshcd_slave_configure - adjust SCSI device configurations
5112  * @sdev: pointer to SCSI device
5113  */
5114 static int ufshcd_slave_configure(struct scsi_device *sdev)
5115 {
5116 	struct ufs_hba *hba = shost_priv(sdev->host);
5117 	struct request_queue *q = sdev->request_queue;
5118 
5119 	ufshcd_hpb_configure(hba, sdev);
5120 
5121 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5122 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5123 		blk_queue_update_dma_alignment(q, 4096 - 1);
5124 	/*
5125 	 * Block runtime-pm until all consumers are added.
5126 	 * Refer ufshcd_setup_links().
5127 	 */
5128 	if (is_device_wlun(sdev))
5129 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5130 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5131 		sdev->rpm_autosuspend = 1;
5132 	/*
5133 	 * Do not print messages during runtime PM to avoid never-ending cycles
5134 	 * of messages written back to storage by user space causing runtime
5135 	 * resume, causing more messages and so on.
5136 	 */
5137 	sdev->silence_suspend = 1;
5138 
5139 	ufshcd_crypto_register(hba, q);
5140 
5141 	return 0;
5142 }
5143 
5144 /**
5145  * ufshcd_slave_destroy - remove SCSI device configurations
5146  * @sdev: pointer to SCSI device
5147  */
5148 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5149 {
5150 	struct ufs_hba *hba;
5151 	unsigned long flags;
5152 
5153 	hba = shost_priv(sdev->host);
5154 
5155 	ufshcd_hpb_destroy(hba, sdev);
5156 
5157 	/* Drop the reference as it won't be needed anymore */
5158 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5159 		spin_lock_irqsave(hba->host->host_lock, flags);
5160 		hba->ufs_device_wlun = NULL;
5161 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5162 	} else if (hba->ufs_device_wlun) {
5163 		struct device *supplier = NULL;
5164 
5165 		/* Ensure UFS Device WLUN exists and does not disappear */
5166 		spin_lock_irqsave(hba->host->host_lock, flags);
5167 		if (hba->ufs_device_wlun) {
5168 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5169 			get_device(supplier);
5170 		}
5171 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5172 
5173 		if (supplier) {
5174 			/*
5175 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5176 			 * device will not have been registered but can still
5177 			 * have a device link holding a reference to the device.
5178 			 */
5179 			device_link_remove(&sdev->sdev_gendev, supplier);
5180 			put_device(supplier);
5181 		}
5182 	}
5183 }
5184 
5185 /**
5186  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5187  * @lrbp: pointer to local reference block of completed command
5188  * @scsi_status: SCSI command status
5189  *
5190  * Returns value base on SCSI command status
5191  */
5192 static inline int
5193 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5194 {
5195 	int result = 0;
5196 
5197 	switch (scsi_status) {
5198 	case SAM_STAT_CHECK_CONDITION:
5199 		ufshcd_copy_sense_data(lrbp);
5200 		fallthrough;
5201 	case SAM_STAT_GOOD:
5202 		result |= DID_OK << 16 | scsi_status;
5203 		break;
5204 	case SAM_STAT_TASK_SET_FULL:
5205 	case SAM_STAT_BUSY:
5206 	case SAM_STAT_TASK_ABORTED:
5207 		ufshcd_copy_sense_data(lrbp);
5208 		result |= scsi_status;
5209 		break;
5210 	default:
5211 		result |= DID_ERROR << 16;
5212 		break;
5213 	} /* end of switch */
5214 
5215 	return result;
5216 }
5217 
5218 /**
5219  * ufshcd_transfer_rsp_status - Get overall status of the response
5220  * @hba: per adapter instance
5221  * @lrbp: pointer to local reference block of completed command
5222  * @cqe: pointer to the completion queue entry
5223  *
5224  * Returns result of the command to notify SCSI midlayer
5225  */
5226 static inline int
5227 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5228 			   struct cq_entry *cqe)
5229 {
5230 	int result = 0;
5231 	int scsi_status;
5232 	enum utp_ocs ocs;
5233 
5234 	/* overall command status of utrd */
5235 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5236 
5237 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5238 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5239 					MASK_RSP_UPIU_RESULT)
5240 			ocs = OCS_SUCCESS;
5241 	}
5242 
5243 	switch (ocs) {
5244 	case OCS_SUCCESS:
5245 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5246 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5247 		switch (result) {
5248 		case UPIU_TRANSACTION_RESPONSE:
5249 			/*
5250 			 * get the response UPIU result to extract
5251 			 * the SCSI command status
5252 			 */
5253 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5254 
5255 			/*
5256 			 * get the result based on SCSI status response
5257 			 * to notify the SCSI midlayer of the command status
5258 			 */
5259 			scsi_status = result & MASK_SCSI_STATUS;
5260 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5261 
5262 			/*
5263 			 * Currently we are only supporting BKOPs exception
5264 			 * events hence we can ignore BKOPs exception event
5265 			 * during power management callbacks. BKOPs exception
5266 			 * event is not expected to be raised in runtime suspend
5267 			 * callback as it allows the urgent bkops.
5268 			 * During system suspend, we are anyway forcefully
5269 			 * disabling the bkops and if urgent bkops is needed
5270 			 * it will be enabled on system resume. Long term
5271 			 * solution could be to abort the system suspend if
5272 			 * UFS device needs urgent BKOPs.
5273 			 */
5274 			if (!hba->pm_op_in_progress &&
5275 			    !ufshcd_eh_in_progress(hba) &&
5276 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5277 				/* Flushed in suspend */
5278 				schedule_work(&hba->eeh_work);
5279 
5280 			if (scsi_status == SAM_STAT_GOOD)
5281 				ufshpb_rsp_upiu(hba, lrbp);
5282 			break;
5283 		case UPIU_TRANSACTION_REJECT_UPIU:
5284 			/* TODO: handle Reject UPIU Response */
5285 			result = DID_ERROR << 16;
5286 			dev_err(hba->dev,
5287 				"Reject UPIU not fully implemented\n");
5288 			break;
5289 		default:
5290 			dev_err(hba->dev,
5291 				"Unexpected request response code = %x\n",
5292 				result);
5293 			result = DID_ERROR << 16;
5294 			break;
5295 		}
5296 		break;
5297 	case OCS_ABORTED:
5298 		result |= DID_ABORT << 16;
5299 		break;
5300 	case OCS_INVALID_COMMAND_STATUS:
5301 		result |= DID_REQUEUE << 16;
5302 		break;
5303 	case OCS_INVALID_CMD_TABLE_ATTR:
5304 	case OCS_INVALID_PRDT_ATTR:
5305 	case OCS_MISMATCH_DATA_BUF_SIZE:
5306 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5307 	case OCS_PEER_COMM_FAILURE:
5308 	case OCS_FATAL_ERROR:
5309 	case OCS_DEVICE_FATAL_ERROR:
5310 	case OCS_INVALID_CRYPTO_CONFIG:
5311 	case OCS_GENERAL_CRYPTO_ERROR:
5312 	default:
5313 		result |= DID_ERROR << 16;
5314 		dev_err(hba->dev,
5315 				"OCS error from controller = %x for tag %d\n",
5316 				ocs, lrbp->task_tag);
5317 		ufshcd_print_evt_hist(hba);
5318 		ufshcd_print_host_state(hba);
5319 		break;
5320 	} /* end of switch */
5321 
5322 	if ((host_byte(result) != DID_OK) &&
5323 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5324 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5325 	return result;
5326 }
5327 
5328 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5329 					 u32 intr_mask)
5330 {
5331 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5332 	    !ufshcd_is_auto_hibern8_enabled(hba))
5333 		return false;
5334 
5335 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5336 		return false;
5337 
5338 	if (hba->active_uic_cmd &&
5339 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5340 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5341 		return false;
5342 
5343 	return true;
5344 }
5345 
5346 /**
5347  * ufshcd_uic_cmd_compl - handle completion of uic command
5348  * @hba: per adapter instance
5349  * @intr_status: interrupt status generated by the controller
5350  *
5351  * Returns
5352  *  IRQ_HANDLED - If interrupt is valid
5353  *  IRQ_NONE    - If invalid interrupt
5354  */
5355 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5356 {
5357 	irqreturn_t retval = IRQ_NONE;
5358 
5359 	spin_lock(hba->host->host_lock);
5360 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5361 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5362 
5363 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5364 		hba->active_uic_cmd->argument2 |=
5365 			ufshcd_get_uic_cmd_result(hba);
5366 		hba->active_uic_cmd->argument3 =
5367 			ufshcd_get_dme_attr_val(hba);
5368 		if (!hba->uic_async_done)
5369 			hba->active_uic_cmd->cmd_active = 0;
5370 		complete(&hba->active_uic_cmd->done);
5371 		retval = IRQ_HANDLED;
5372 	}
5373 
5374 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5375 		hba->active_uic_cmd->cmd_active = 0;
5376 		complete(hba->uic_async_done);
5377 		retval = IRQ_HANDLED;
5378 	}
5379 
5380 	if (retval == IRQ_HANDLED)
5381 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5382 					     UFS_CMD_COMP);
5383 	spin_unlock(hba->host->host_lock);
5384 	return retval;
5385 }
5386 
5387 /* Release the resources allocated for processing a SCSI command. */
5388 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5389 				    struct ufshcd_lrb *lrbp)
5390 {
5391 	struct scsi_cmnd *cmd = lrbp->cmd;
5392 
5393 	scsi_dma_unmap(cmd);
5394 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5395 	ufshcd_release(hba);
5396 	ufshcd_clk_scaling_update_busy(hba);
5397 }
5398 
5399 /**
5400  * ufshcd_compl_one_cqe - handle a completion queue entry
5401  * @hba: per adapter instance
5402  * @task_tag: the task tag of the request to be completed
5403  * @cqe: pointer to the completion queue entry
5404  */
5405 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5406 			  struct cq_entry *cqe)
5407 {
5408 	struct ufshcd_lrb *lrbp;
5409 	struct scsi_cmnd *cmd;
5410 
5411 	lrbp = &hba->lrb[task_tag];
5412 	lrbp->compl_time_stamp = ktime_get();
5413 	cmd = lrbp->cmd;
5414 	if (cmd) {
5415 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5416 			ufshcd_update_monitor(hba, lrbp);
5417 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5418 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5419 		ufshcd_release_scsi_cmd(hba, lrbp);
5420 		/* Do not touch lrbp after scsi done */
5421 		scsi_done(cmd);
5422 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5423 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5424 		if (hba->dev_cmd.complete) {
5425 			hba->dev_cmd.cqe = cqe;
5426 			ufshcd_add_command_trace(hba, task_tag, UFS_DEV_COMP);
5427 			complete(hba->dev_cmd.complete);
5428 			ufshcd_clk_scaling_update_busy(hba);
5429 		}
5430 	}
5431 }
5432 
5433 /**
5434  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5435  * @hba: per adapter instance
5436  * @completed_reqs: bitmask that indicates which requests to complete
5437  */
5438 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5439 					unsigned long completed_reqs)
5440 {
5441 	int tag;
5442 
5443 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5444 		ufshcd_compl_one_cqe(hba, tag, NULL);
5445 }
5446 
5447 /* Any value that is not an existing queue number is fine for this constant. */
5448 enum {
5449 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5450 };
5451 
5452 static void ufshcd_clear_polled(struct ufs_hba *hba,
5453 				unsigned long *completed_reqs)
5454 {
5455 	int tag;
5456 
5457 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5458 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5459 
5460 		if (!cmd)
5461 			continue;
5462 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5463 			__clear_bit(tag, completed_reqs);
5464 	}
5465 }
5466 
5467 /*
5468  * Returns > 0 if one or more commands have been completed or 0 if no
5469  * requests have been completed.
5470  */
5471 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5472 {
5473 	struct ufs_hba *hba = shost_priv(shost);
5474 	unsigned long completed_reqs, flags;
5475 	u32 tr_doorbell;
5476 	struct ufs_hw_queue *hwq;
5477 
5478 	if (is_mcq_enabled(hba)) {
5479 		hwq = &hba->uhq[queue_num + UFSHCD_MCQ_IO_QUEUE_OFFSET];
5480 
5481 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5482 	}
5483 
5484 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5485 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5486 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5487 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5488 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5489 		  hba->outstanding_reqs);
5490 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5491 		/* Do not complete polled requests from interrupt context. */
5492 		ufshcd_clear_polled(hba, &completed_reqs);
5493 	}
5494 	hba->outstanding_reqs &= ~completed_reqs;
5495 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5496 
5497 	if (completed_reqs)
5498 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5499 
5500 	return completed_reqs != 0;
5501 }
5502 
5503 /**
5504  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5505  * @hba: per adapter instance
5506  *
5507  * Returns
5508  *  IRQ_HANDLED - If interrupt is valid
5509  *  IRQ_NONE    - If invalid interrupt
5510  */
5511 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5512 {
5513 	/* Resetting interrupt aggregation counters first and reading the
5514 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5515 	 * In order to prevent other interrupts starvation the DB is read once
5516 	 * after reset. The down side of this solution is the possibility of
5517 	 * false interrupt if device completes another request after resetting
5518 	 * aggregation and before reading the DB.
5519 	 */
5520 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5521 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5522 		ufshcd_reset_intr_aggr(hba);
5523 
5524 	if (ufs_fail_completion())
5525 		return IRQ_HANDLED;
5526 
5527 	/*
5528 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5529 	 * do not want polling to trigger spurious interrupt complaints.
5530 	 */
5531 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5532 
5533 	return IRQ_HANDLED;
5534 }
5535 
5536 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5537 {
5538 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5539 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5540 				       &ee_ctrl_mask);
5541 }
5542 
5543 int ufshcd_write_ee_control(struct ufs_hba *hba)
5544 {
5545 	int err;
5546 
5547 	mutex_lock(&hba->ee_ctrl_mutex);
5548 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5549 	mutex_unlock(&hba->ee_ctrl_mutex);
5550 	if (err)
5551 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5552 			__func__, err);
5553 	return err;
5554 }
5555 
5556 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5557 			     const u16 *other_mask, u16 set, u16 clr)
5558 {
5559 	u16 new_mask, ee_ctrl_mask;
5560 	int err = 0;
5561 
5562 	mutex_lock(&hba->ee_ctrl_mutex);
5563 	new_mask = (*mask & ~clr) | set;
5564 	ee_ctrl_mask = new_mask | *other_mask;
5565 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5566 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5567 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5568 	if (!err) {
5569 		hba->ee_ctrl_mask = ee_ctrl_mask;
5570 		*mask = new_mask;
5571 	}
5572 	mutex_unlock(&hba->ee_ctrl_mutex);
5573 	return err;
5574 }
5575 
5576 /**
5577  * ufshcd_disable_ee - disable exception event
5578  * @hba: per-adapter instance
5579  * @mask: exception event to disable
5580  *
5581  * Disables exception event in the device so that the EVENT_ALERT
5582  * bit is not set.
5583  *
5584  * Returns zero on success, non-zero error value on failure.
5585  */
5586 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5587 {
5588 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5589 }
5590 
5591 /**
5592  * ufshcd_enable_ee - enable exception event
5593  * @hba: per-adapter instance
5594  * @mask: exception event to enable
5595  *
5596  * Enable corresponding exception event in the device to allow
5597  * device to alert host in critical scenarios.
5598  *
5599  * Returns zero on success, non-zero error value on failure.
5600  */
5601 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5602 {
5603 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5604 }
5605 
5606 /**
5607  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5608  * @hba: per-adapter instance
5609  *
5610  * Allow device to manage background operations on its own. Enabling
5611  * this might lead to inconsistent latencies during normal data transfers
5612  * as the device is allowed to manage its own way of handling background
5613  * operations.
5614  *
5615  * Returns zero on success, non-zero on failure.
5616  */
5617 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5618 {
5619 	int err = 0;
5620 
5621 	if (hba->auto_bkops_enabled)
5622 		goto out;
5623 
5624 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5625 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5626 	if (err) {
5627 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5628 				__func__, err);
5629 		goto out;
5630 	}
5631 
5632 	hba->auto_bkops_enabled = true;
5633 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5634 
5635 	/* No need of URGENT_BKOPS exception from the device */
5636 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5637 	if (err)
5638 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5639 				__func__, err);
5640 out:
5641 	return err;
5642 }
5643 
5644 /**
5645  * ufshcd_disable_auto_bkops - block device in doing background operations
5646  * @hba: per-adapter instance
5647  *
5648  * Disabling background operations improves command response latency but
5649  * has drawback of device moving into critical state where the device is
5650  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5651  * host is idle so that BKOPS are managed effectively without any negative
5652  * impacts.
5653  *
5654  * Returns zero on success, non-zero on failure.
5655  */
5656 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5657 {
5658 	int err = 0;
5659 
5660 	if (!hba->auto_bkops_enabled)
5661 		goto out;
5662 
5663 	/*
5664 	 * If host assisted BKOPs is to be enabled, make sure
5665 	 * urgent bkops exception is allowed.
5666 	 */
5667 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5668 	if (err) {
5669 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5670 				__func__, err);
5671 		goto out;
5672 	}
5673 
5674 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5675 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5676 	if (err) {
5677 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5678 				__func__, err);
5679 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5680 		goto out;
5681 	}
5682 
5683 	hba->auto_bkops_enabled = false;
5684 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5685 	hba->is_urgent_bkops_lvl_checked = false;
5686 out:
5687 	return err;
5688 }
5689 
5690 /**
5691  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5692  * @hba: per adapter instance
5693  *
5694  * After a device reset the device may toggle the BKOPS_EN flag
5695  * to default value. The s/w tracking variables should be updated
5696  * as well. This function would change the auto-bkops state based on
5697  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5698  */
5699 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5700 {
5701 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5702 		hba->auto_bkops_enabled = false;
5703 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5704 		ufshcd_enable_auto_bkops(hba);
5705 	} else {
5706 		hba->auto_bkops_enabled = true;
5707 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5708 		ufshcd_disable_auto_bkops(hba);
5709 	}
5710 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5711 	hba->is_urgent_bkops_lvl_checked = false;
5712 }
5713 
5714 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5715 {
5716 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5717 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5718 }
5719 
5720 /**
5721  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5722  * @hba: per-adapter instance
5723  * @status: bkops_status value
5724  *
5725  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5726  * flag in the device to permit background operations if the device
5727  * bkops_status is greater than or equal to "status" argument passed to
5728  * this function, disable otherwise.
5729  *
5730  * Returns 0 for success, non-zero in case of failure.
5731  *
5732  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5733  * to know whether auto bkops is enabled or disabled after this function
5734  * returns control to it.
5735  */
5736 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5737 			     enum bkops_status status)
5738 {
5739 	int err;
5740 	u32 curr_status = 0;
5741 
5742 	err = ufshcd_get_bkops_status(hba, &curr_status);
5743 	if (err) {
5744 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5745 				__func__, err);
5746 		goto out;
5747 	} else if (curr_status > BKOPS_STATUS_MAX) {
5748 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5749 				__func__, curr_status);
5750 		err = -EINVAL;
5751 		goto out;
5752 	}
5753 
5754 	if (curr_status >= status)
5755 		err = ufshcd_enable_auto_bkops(hba);
5756 	else
5757 		err = ufshcd_disable_auto_bkops(hba);
5758 out:
5759 	return err;
5760 }
5761 
5762 /**
5763  * ufshcd_urgent_bkops - handle urgent bkops exception event
5764  * @hba: per-adapter instance
5765  *
5766  * Enable fBackgroundOpsEn flag in the device to permit background
5767  * operations.
5768  *
5769  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5770  * and negative error value for any other failure.
5771  */
5772 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5773 {
5774 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5775 }
5776 
5777 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5778 {
5779 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5780 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5781 }
5782 
5783 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5784 {
5785 	int err;
5786 	u32 curr_status = 0;
5787 
5788 	if (hba->is_urgent_bkops_lvl_checked)
5789 		goto enable_auto_bkops;
5790 
5791 	err = ufshcd_get_bkops_status(hba, &curr_status);
5792 	if (err) {
5793 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5794 				__func__, err);
5795 		goto out;
5796 	}
5797 
5798 	/*
5799 	 * We are seeing that some devices are raising the urgent bkops
5800 	 * exception events even when BKOPS status doesn't indicate performace
5801 	 * impacted or critical. Handle these device by determining their urgent
5802 	 * bkops status at runtime.
5803 	 */
5804 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5805 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5806 				__func__, curr_status);
5807 		/* update the current status as the urgent bkops level */
5808 		hba->urgent_bkops_lvl = curr_status;
5809 		hba->is_urgent_bkops_lvl_checked = true;
5810 	}
5811 
5812 enable_auto_bkops:
5813 	err = ufshcd_enable_auto_bkops(hba);
5814 out:
5815 	if (err < 0)
5816 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5817 				__func__, err);
5818 }
5819 
5820 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5821 {
5822 	u32 value;
5823 
5824 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5825 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5826 		return;
5827 
5828 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5829 
5830 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5831 
5832 	/*
5833 	 * A placeholder for the platform vendors to add whatever additional
5834 	 * steps required
5835 	 */
5836 }
5837 
5838 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5839 {
5840 	u8 index;
5841 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5842 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5843 
5844 	index = ufshcd_wb_get_query_index(hba);
5845 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5846 }
5847 
5848 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5849 {
5850 	int ret;
5851 
5852 	if (!ufshcd_is_wb_allowed(hba) ||
5853 	    hba->dev_info.wb_enabled == enable)
5854 		return 0;
5855 
5856 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5857 	if (ret) {
5858 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5859 			__func__, enable ? "enabling" : "disabling", ret);
5860 		return ret;
5861 	}
5862 
5863 	hba->dev_info.wb_enabled = enable;
5864 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5865 			__func__, enable ? "enabled" : "disabled");
5866 
5867 	return ret;
5868 }
5869 
5870 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5871 						 bool enable)
5872 {
5873 	int ret;
5874 
5875 	ret = __ufshcd_wb_toggle(hba, enable,
5876 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5877 	if (ret) {
5878 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5879 			__func__, enable ? "enabling" : "disabling", ret);
5880 		return;
5881 	}
5882 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5883 			__func__, enable ? "enabled" : "disabled");
5884 }
5885 
5886 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5887 {
5888 	int ret;
5889 
5890 	if (!ufshcd_is_wb_allowed(hba) ||
5891 	    hba->dev_info.wb_buf_flush_enabled == enable)
5892 		return 0;
5893 
5894 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5895 	if (ret) {
5896 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5897 			__func__, enable ? "enabling" : "disabling", ret);
5898 		return ret;
5899 	}
5900 
5901 	hba->dev_info.wb_buf_flush_enabled = enable;
5902 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5903 			__func__, enable ? "enabled" : "disabled");
5904 
5905 	return ret;
5906 }
5907 
5908 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5909 						u32 avail_buf)
5910 {
5911 	u32 cur_buf;
5912 	int ret;
5913 	u8 index;
5914 
5915 	index = ufshcd_wb_get_query_index(hba);
5916 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5917 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5918 					      index, 0, &cur_buf);
5919 	if (ret) {
5920 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5921 			__func__, ret);
5922 		return false;
5923 	}
5924 
5925 	if (!cur_buf) {
5926 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5927 			 cur_buf);
5928 		return false;
5929 	}
5930 	/* Let it continue to flush when available buffer exceeds threshold */
5931 	return avail_buf < hba->vps->wb_flush_threshold;
5932 }
5933 
5934 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5935 {
5936 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5937 		ufshcd_wb_toggle_buf_flush(hba, false);
5938 
5939 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5940 	ufshcd_wb_toggle(hba, false);
5941 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5942 
5943 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5944 }
5945 
5946 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5947 {
5948 	u32 lifetime;
5949 	int ret;
5950 	u8 index;
5951 
5952 	index = ufshcd_wb_get_query_index(hba);
5953 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5954 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5955 				      index, 0, &lifetime);
5956 	if (ret) {
5957 		dev_err(hba->dev,
5958 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5959 			__func__, ret);
5960 		return false;
5961 	}
5962 
5963 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5964 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5965 			__func__, lifetime);
5966 		return false;
5967 	}
5968 
5969 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5970 		__func__, lifetime);
5971 
5972 	return true;
5973 }
5974 
5975 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5976 {
5977 	int ret;
5978 	u32 avail_buf;
5979 	u8 index;
5980 
5981 	if (!ufshcd_is_wb_allowed(hba))
5982 		return false;
5983 
5984 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5985 		ufshcd_wb_force_disable(hba);
5986 		return false;
5987 	}
5988 
5989 	/*
5990 	 * The ufs device needs the vcc to be ON to flush.
5991 	 * With user-space reduction enabled, it's enough to enable flush
5992 	 * by checking only the available buffer. The threshold
5993 	 * defined here is > 90% full.
5994 	 * With user-space preserved enabled, the current-buffer
5995 	 * should be checked too because the wb buffer size can reduce
5996 	 * when disk tends to be full. This info is provided by current
5997 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5998 	 * keeping vcc on when current buffer is empty.
5999 	 */
6000 	index = ufshcd_wb_get_query_index(hba);
6001 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6002 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6003 				      index, 0, &avail_buf);
6004 	if (ret) {
6005 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6006 			 __func__, ret);
6007 		return false;
6008 	}
6009 
6010 	if (!hba->dev_info.b_presrv_uspc_en)
6011 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6012 
6013 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6014 }
6015 
6016 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6017 {
6018 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6019 					   struct ufs_hba,
6020 					   rpm_dev_flush_recheck_work);
6021 	/*
6022 	 * To prevent unnecessary VCC power drain after device finishes
6023 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6024 	 * after a certain delay to recheck the threshold by next runtime
6025 	 * suspend.
6026 	 */
6027 	ufshcd_rpm_get_sync(hba);
6028 	ufshcd_rpm_put_sync(hba);
6029 }
6030 
6031 /**
6032  * ufshcd_exception_event_handler - handle exceptions raised by device
6033  * @work: pointer to work data
6034  *
6035  * Read bExceptionEventStatus attribute from the device and handle the
6036  * exception event accordingly.
6037  */
6038 static void ufshcd_exception_event_handler(struct work_struct *work)
6039 {
6040 	struct ufs_hba *hba;
6041 	int err;
6042 	u32 status = 0;
6043 	hba = container_of(work, struct ufs_hba, eeh_work);
6044 
6045 	ufshcd_scsi_block_requests(hba);
6046 	err = ufshcd_get_ee_status(hba, &status);
6047 	if (err) {
6048 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6049 				__func__, err);
6050 		goto out;
6051 	}
6052 
6053 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6054 
6055 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6056 		ufshcd_bkops_exception_event_handler(hba);
6057 
6058 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6059 		ufshcd_temp_exception_event_handler(hba, status);
6060 
6061 	ufs_debugfs_exception_event(hba, status);
6062 out:
6063 	ufshcd_scsi_unblock_requests(hba);
6064 }
6065 
6066 /* Complete requests that have door-bell cleared */
6067 static void ufshcd_complete_requests(struct ufs_hba *hba)
6068 {
6069 	ufshcd_transfer_req_compl(hba);
6070 	ufshcd_tmc_handler(hba);
6071 }
6072 
6073 /**
6074  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6075  *				to recover from the DL NAC errors or not.
6076  * @hba: per-adapter instance
6077  *
6078  * Returns true if error handling is required, false otherwise
6079  */
6080 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6081 {
6082 	unsigned long flags;
6083 	bool err_handling = true;
6084 
6085 	spin_lock_irqsave(hba->host->host_lock, flags);
6086 	/*
6087 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6088 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6089 	 */
6090 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6091 		goto out;
6092 
6093 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6094 	    ((hba->saved_err & UIC_ERROR) &&
6095 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6096 		goto out;
6097 
6098 	if ((hba->saved_err & UIC_ERROR) &&
6099 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6100 		int err;
6101 		/*
6102 		 * wait for 50ms to see if we can get any other errors or not.
6103 		 */
6104 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6105 		msleep(50);
6106 		spin_lock_irqsave(hba->host->host_lock, flags);
6107 
6108 		/*
6109 		 * now check if we have got any other severe errors other than
6110 		 * DL NAC error?
6111 		 */
6112 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6113 		    ((hba->saved_err & UIC_ERROR) &&
6114 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6115 			goto out;
6116 
6117 		/*
6118 		 * As DL NAC is the only error received so far, send out NOP
6119 		 * command to confirm if link is still active or not.
6120 		 *   - If we don't get any response then do error recovery.
6121 		 *   - If we get response then clear the DL NAC error bit.
6122 		 */
6123 
6124 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6125 		err = ufshcd_verify_dev_init(hba);
6126 		spin_lock_irqsave(hba->host->host_lock, flags);
6127 
6128 		if (err)
6129 			goto out;
6130 
6131 		/* Link seems to be alive hence ignore the DL NAC errors */
6132 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6133 			hba->saved_err &= ~UIC_ERROR;
6134 		/* clear NAC error */
6135 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6136 		if (!hba->saved_uic_err)
6137 			err_handling = false;
6138 	}
6139 out:
6140 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6141 	return err_handling;
6142 }
6143 
6144 /* host lock must be held before calling this func */
6145 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6146 {
6147 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6148 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6149 }
6150 
6151 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6152 {
6153 	lockdep_assert_held(hba->host->host_lock);
6154 
6155 	/* handle fatal errors only when link is not in error state */
6156 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6157 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6158 		    ufshcd_is_saved_err_fatal(hba))
6159 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6160 		else
6161 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6162 		queue_work(hba->eh_wq, &hba->eh_work);
6163 	}
6164 }
6165 
6166 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6167 {
6168 	spin_lock_irq(hba->host->host_lock);
6169 	hba->force_reset = true;
6170 	ufshcd_schedule_eh_work(hba);
6171 	spin_unlock_irq(hba->host->host_lock);
6172 }
6173 
6174 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6175 {
6176 	mutex_lock(&hba->wb_mutex);
6177 	down_write(&hba->clk_scaling_lock);
6178 	hba->clk_scaling.is_allowed = allow;
6179 	up_write(&hba->clk_scaling_lock);
6180 	mutex_unlock(&hba->wb_mutex);
6181 }
6182 
6183 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6184 {
6185 	if (suspend) {
6186 		if (hba->clk_scaling.is_enabled)
6187 			ufshcd_suspend_clkscaling(hba);
6188 		ufshcd_clk_scaling_allow(hba, false);
6189 	} else {
6190 		ufshcd_clk_scaling_allow(hba, true);
6191 		if (hba->clk_scaling.is_enabled)
6192 			ufshcd_resume_clkscaling(hba);
6193 	}
6194 }
6195 
6196 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6197 {
6198 	ufshcd_rpm_get_sync(hba);
6199 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6200 	    hba->is_sys_suspended) {
6201 		enum ufs_pm_op pm_op;
6202 
6203 		/*
6204 		 * Don't assume anything of resume, if
6205 		 * resume fails, irq and clocks can be OFF, and powers
6206 		 * can be OFF or in LPM.
6207 		 */
6208 		ufshcd_setup_hba_vreg(hba, true);
6209 		ufshcd_enable_irq(hba);
6210 		ufshcd_setup_vreg(hba, true);
6211 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6212 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6213 		ufshcd_hold(hba, false);
6214 		if (!ufshcd_is_clkgating_allowed(hba))
6215 			ufshcd_setup_clocks(hba, true);
6216 		ufshcd_release(hba);
6217 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6218 		ufshcd_vops_resume(hba, pm_op);
6219 	} else {
6220 		ufshcd_hold(hba, false);
6221 		if (ufshcd_is_clkscaling_supported(hba) &&
6222 		    hba->clk_scaling.is_enabled)
6223 			ufshcd_suspend_clkscaling(hba);
6224 		ufshcd_clk_scaling_allow(hba, false);
6225 	}
6226 	ufshcd_scsi_block_requests(hba);
6227 	/* Drain ufshcd_queuecommand() */
6228 	synchronize_rcu();
6229 	cancel_work_sync(&hba->eeh_work);
6230 }
6231 
6232 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6233 {
6234 	ufshcd_scsi_unblock_requests(hba);
6235 	ufshcd_release(hba);
6236 	if (ufshcd_is_clkscaling_supported(hba))
6237 		ufshcd_clk_scaling_suspend(hba, false);
6238 	ufshcd_rpm_put(hba);
6239 }
6240 
6241 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6242 {
6243 	return (!hba->is_powered || hba->shutting_down ||
6244 		!hba->ufs_device_wlun ||
6245 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6246 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6247 		   ufshcd_is_link_broken(hba))));
6248 }
6249 
6250 #ifdef CONFIG_PM
6251 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6252 {
6253 	struct Scsi_Host *shost = hba->host;
6254 	struct scsi_device *sdev;
6255 	struct request_queue *q;
6256 	int ret;
6257 
6258 	hba->is_sys_suspended = false;
6259 	/*
6260 	 * Set RPM status of wlun device to RPM_ACTIVE,
6261 	 * this also clears its runtime error.
6262 	 */
6263 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6264 
6265 	/* hba device might have a runtime error otherwise */
6266 	if (ret)
6267 		ret = pm_runtime_set_active(hba->dev);
6268 	/*
6269 	 * If wlun device had runtime error, we also need to resume those
6270 	 * consumer scsi devices in case any of them has failed to be
6271 	 * resumed due to supplier runtime resume failure. This is to unblock
6272 	 * blk_queue_enter in case there are bios waiting inside it.
6273 	 */
6274 	if (!ret) {
6275 		shost_for_each_device(sdev, shost) {
6276 			q = sdev->request_queue;
6277 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6278 				       q->rpm_status == RPM_SUSPENDING))
6279 				pm_request_resume(q->dev);
6280 		}
6281 	}
6282 }
6283 #else
6284 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6285 {
6286 }
6287 #endif
6288 
6289 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6290 {
6291 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6292 	u32 mode;
6293 
6294 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6295 
6296 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6297 		return true;
6298 
6299 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6300 		return true;
6301 
6302 	return false;
6303 }
6304 
6305 static bool ufshcd_abort_all(struct ufs_hba *hba)
6306 {
6307 	bool needs_reset = false;
6308 	int tag, ret;
6309 
6310 	/* Clear pending transfer requests */
6311 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6312 		ret = ufshcd_try_to_abort_task(hba, tag);
6313 		dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6314 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6315 			ret ? "failed" : "succeeded");
6316 		if (ret) {
6317 			needs_reset = true;
6318 			goto out;
6319 		}
6320 	}
6321 
6322 	/* Clear pending task management requests */
6323 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6324 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6325 			needs_reset = true;
6326 			goto out;
6327 		}
6328 	}
6329 
6330 out:
6331 	/* Complete the requests that are cleared by s/w */
6332 	ufshcd_complete_requests(hba);
6333 
6334 	return needs_reset;
6335 }
6336 
6337 /**
6338  * ufshcd_err_handler - handle UFS errors that require s/w attention
6339  * @work: pointer to work structure
6340  */
6341 static void ufshcd_err_handler(struct work_struct *work)
6342 {
6343 	int retries = MAX_ERR_HANDLER_RETRIES;
6344 	struct ufs_hba *hba;
6345 	unsigned long flags;
6346 	bool needs_restore;
6347 	bool needs_reset;
6348 	int pmc_err;
6349 
6350 	hba = container_of(work, struct ufs_hba, eh_work);
6351 
6352 	dev_info(hba->dev,
6353 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6354 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6355 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6356 		 hba->saved_uic_err, hba->force_reset,
6357 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6358 
6359 	down(&hba->host_sem);
6360 	spin_lock_irqsave(hba->host->host_lock, flags);
6361 	if (ufshcd_err_handling_should_stop(hba)) {
6362 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6363 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6364 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6365 		up(&hba->host_sem);
6366 		return;
6367 	}
6368 	ufshcd_set_eh_in_progress(hba);
6369 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6370 	ufshcd_err_handling_prepare(hba);
6371 	/* Complete requests that have door-bell cleared by h/w */
6372 	ufshcd_complete_requests(hba);
6373 	spin_lock_irqsave(hba->host->host_lock, flags);
6374 again:
6375 	needs_restore = false;
6376 	needs_reset = false;
6377 
6378 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6379 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6380 	/*
6381 	 * A full reset and restore might have happened after preparation
6382 	 * is finished, double check whether we should stop.
6383 	 */
6384 	if (ufshcd_err_handling_should_stop(hba))
6385 		goto skip_err_handling;
6386 
6387 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6388 		bool ret;
6389 
6390 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6391 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6392 		ret = ufshcd_quirk_dl_nac_errors(hba);
6393 		spin_lock_irqsave(hba->host->host_lock, flags);
6394 		if (!ret && ufshcd_err_handling_should_stop(hba))
6395 			goto skip_err_handling;
6396 	}
6397 
6398 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6399 	    (hba->saved_uic_err &&
6400 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6401 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6402 
6403 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6404 		ufshcd_print_host_state(hba);
6405 		ufshcd_print_pwr_info(hba);
6406 		ufshcd_print_evt_hist(hba);
6407 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6408 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6409 		spin_lock_irqsave(hba->host->host_lock, flags);
6410 	}
6411 
6412 	/*
6413 	 * if host reset is required then skip clearing the pending
6414 	 * transfers forcefully because they will get cleared during
6415 	 * host reset and restore
6416 	 */
6417 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6418 	    ufshcd_is_saved_err_fatal(hba) ||
6419 	    ((hba->saved_err & UIC_ERROR) &&
6420 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6421 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6422 		needs_reset = true;
6423 		goto do_reset;
6424 	}
6425 
6426 	/*
6427 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6428 	 * check if power mode restore is needed.
6429 	 */
6430 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6431 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6432 		if (!hba->saved_uic_err)
6433 			hba->saved_err &= ~UIC_ERROR;
6434 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6435 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6436 			needs_restore = true;
6437 		spin_lock_irqsave(hba->host->host_lock, flags);
6438 		if (!hba->saved_err && !needs_restore)
6439 			goto skip_err_handling;
6440 	}
6441 
6442 	hba->silence_err_logs = true;
6443 	/* release lock as clear command might sleep */
6444 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6445 
6446 	needs_reset = ufshcd_abort_all(hba);
6447 
6448 	spin_lock_irqsave(hba->host->host_lock, flags);
6449 	hba->silence_err_logs = false;
6450 	if (needs_reset)
6451 		goto do_reset;
6452 
6453 	/*
6454 	 * After all reqs and tasks are cleared from doorbell,
6455 	 * now it is safe to retore power mode.
6456 	 */
6457 	if (needs_restore) {
6458 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6459 		/*
6460 		 * Hold the scaling lock just in case dev cmds
6461 		 * are sent via bsg and/or sysfs.
6462 		 */
6463 		down_write(&hba->clk_scaling_lock);
6464 		hba->force_pmc = true;
6465 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6466 		if (pmc_err) {
6467 			needs_reset = true;
6468 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6469 					__func__, pmc_err);
6470 		}
6471 		hba->force_pmc = false;
6472 		ufshcd_print_pwr_info(hba);
6473 		up_write(&hba->clk_scaling_lock);
6474 		spin_lock_irqsave(hba->host->host_lock, flags);
6475 	}
6476 
6477 do_reset:
6478 	/* Fatal errors need reset */
6479 	if (needs_reset) {
6480 		int err;
6481 
6482 		hba->force_reset = false;
6483 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6484 		err = ufshcd_reset_and_restore(hba);
6485 		if (err)
6486 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6487 					__func__, err);
6488 		else
6489 			ufshcd_recover_pm_error(hba);
6490 		spin_lock_irqsave(hba->host->host_lock, flags);
6491 	}
6492 
6493 skip_err_handling:
6494 	if (!needs_reset) {
6495 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6496 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6497 		if (hba->saved_err || hba->saved_uic_err)
6498 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6499 			    __func__, hba->saved_err, hba->saved_uic_err);
6500 	}
6501 	/* Exit in an operational state or dead */
6502 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6503 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6504 		if (--retries)
6505 			goto again;
6506 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6507 	}
6508 	ufshcd_clear_eh_in_progress(hba);
6509 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6510 	ufshcd_err_handling_unprepare(hba);
6511 	up(&hba->host_sem);
6512 
6513 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6514 		 ufshcd_state_name[hba->ufshcd_state]);
6515 }
6516 
6517 /**
6518  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6519  * @hba: per-adapter instance
6520  *
6521  * Returns
6522  *  IRQ_HANDLED - If interrupt is valid
6523  *  IRQ_NONE    - If invalid interrupt
6524  */
6525 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6526 {
6527 	u32 reg;
6528 	irqreturn_t retval = IRQ_NONE;
6529 
6530 	/* PHY layer error */
6531 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6532 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6533 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6534 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6535 		/*
6536 		 * To know whether this error is fatal or not, DB timeout
6537 		 * must be checked but this error is handled separately.
6538 		 */
6539 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6540 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6541 					__func__);
6542 
6543 		/* Got a LINERESET indication. */
6544 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6545 			struct uic_command *cmd = NULL;
6546 
6547 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6548 			if (hba->uic_async_done && hba->active_uic_cmd)
6549 				cmd = hba->active_uic_cmd;
6550 			/*
6551 			 * Ignore the LINERESET during power mode change
6552 			 * operation via DME_SET command.
6553 			 */
6554 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6555 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6556 		}
6557 		retval |= IRQ_HANDLED;
6558 	}
6559 
6560 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6561 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6562 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6563 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6564 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6565 
6566 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6567 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6568 		else if (hba->dev_quirks &
6569 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6570 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6571 				hba->uic_error |=
6572 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6573 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6574 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6575 		}
6576 		retval |= IRQ_HANDLED;
6577 	}
6578 
6579 	/* UIC NL/TL/DME errors needs software retry */
6580 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6581 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6582 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6583 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6584 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6585 		retval |= IRQ_HANDLED;
6586 	}
6587 
6588 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6589 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6590 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6591 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6592 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6593 		retval |= IRQ_HANDLED;
6594 	}
6595 
6596 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6597 	if ((reg & UIC_DME_ERROR) &&
6598 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6599 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6600 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6601 		retval |= IRQ_HANDLED;
6602 	}
6603 
6604 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6605 			__func__, hba->uic_error);
6606 	return retval;
6607 }
6608 
6609 /**
6610  * ufshcd_check_errors - Check for errors that need s/w attention
6611  * @hba: per-adapter instance
6612  * @intr_status: interrupt status generated by the controller
6613  *
6614  * Returns
6615  *  IRQ_HANDLED - If interrupt is valid
6616  *  IRQ_NONE    - If invalid interrupt
6617  */
6618 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6619 {
6620 	bool queue_eh_work = false;
6621 	irqreturn_t retval = IRQ_NONE;
6622 
6623 	spin_lock(hba->host->host_lock);
6624 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6625 
6626 	if (hba->errors & INT_FATAL_ERRORS) {
6627 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6628 				       hba->errors);
6629 		queue_eh_work = true;
6630 	}
6631 
6632 	if (hba->errors & UIC_ERROR) {
6633 		hba->uic_error = 0;
6634 		retval = ufshcd_update_uic_error(hba);
6635 		if (hba->uic_error)
6636 			queue_eh_work = true;
6637 	}
6638 
6639 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6640 		dev_err(hba->dev,
6641 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6642 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6643 			"Enter" : "Exit",
6644 			hba->errors, ufshcd_get_upmcrs(hba));
6645 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6646 				       hba->errors);
6647 		ufshcd_set_link_broken(hba);
6648 		queue_eh_work = true;
6649 	}
6650 
6651 	if (queue_eh_work) {
6652 		/*
6653 		 * update the transfer error masks to sticky bits, let's do this
6654 		 * irrespective of current ufshcd_state.
6655 		 */
6656 		hba->saved_err |= hba->errors;
6657 		hba->saved_uic_err |= hba->uic_error;
6658 
6659 		/* dump controller state before resetting */
6660 		if ((hba->saved_err &
6661 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6662 		    (hba->saved_uic_err &&
6663 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6664 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6665 					__func__, hba->saved_err,
6666 					hba->saved_uic_err);
6667 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6668 					 "host_regs: ");
6669 			ufshcd_print_pwr_info(hba);
6670 		}
6671 		ufshcd_schedule_eh_work(hba);
6672 		retval |= IRQ_HANDLED;
6673 	}
6674 	/*
6675 	 * if (!queue_eh_work) -
6676 	 * Other errors are either non-fatal where host recovers
6677 	 * itself without s/w intervention or errors that will be
6678 	 * handled by the SCSI core layer.
6679 	 */
6680 	hba->errors = 0;
6681 	hba->uic_error = 0;
6682 	spin_unlock(hba->host->host_lock);
6683 	return retval;
6684 }
6685 
6686 /**
6687  * ufshcd_tmc_handler - handle task management function completion
6688  * @hba: per adapter instance
6689  *
6690  * Returns
6691  *  IRQ_HANDLED - If interrupt is valid
6692  *  IRQ_NONE    - If invalid interrupt
6693  */
6694 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6695 {
6696 	unsigned long flags, pending, issued;
6697 	irqreturn_t ret = IRQ_NONE;
6698 	int tag;
6699 
6700 	spin_lock_irqsave(hba->host->host_lock, flags);
6701 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6702 	issued = hba->outstanding_tasks & ~pending;
6703 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6704 		struct request *req = hba->tmf_rqs[tag];
6705 		struct completion *c = req->end_io_data;
6706 
6707 		complete(c);
6708 		ret = IRQ_HANDLED;
6709 	}
6710 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6711 
6712 	return ret;
6713 }
6714 
6715 /**
6716  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6717  * @hba: per adapter instance
6718  *
6719  * Returns IRQ_HANDLED if interrupt is handled
6720  */
6721 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6722 {
6723 	struct ufs_hw_queue *hwq;
6724 	unsigned long outstanding_cqs;
6725 	unsigned int nr_queues;
6726 	int i, ret;
6727 	u32 events;
6728 
6729 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6730 	if (ret)
6731 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6732 
6733 	/* Exclude the poll queues */
6734 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6735 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6736 		hwq = &hba->uhq[i];
6737 
6738 		events = ufshcd_mcq_read_cqis(hba, i);
6739 		if (events)
6740 			ufshcd_mcq_write_cqis(hba, events, i);
6741 
6742 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6743 			ufshcd_mcq_poll_cqe_nolock(hba, hwq);
6744 	}
6745 
6746 	return IRQ_HANDLED;
6747 }
6748 
6749 /**
6750  * ufshcd_sl_intr - Interrupt service routine
6751  * @hba: per adapter instance
6752  * @intr_status: contains interrupts generated by the controller
6753  *
6754  * Returns
6755  *  IRQ_HANDLED - If interrupt is valid
6756  *  IRQ_NONE    - If invalid interrupt
6757  */
6758 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6759 {
6760 	irqreturn_t retval = IRQ_NONE;
6761 
6762 	if (intr_status & UFSHCD_UIC_MASK)
6763 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6764 
6765 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6766 		retval |= ufshcd_check_errors(hba, intr_status);
6767 
6768 	if (intr_status & UTP_TASK_REQ_COMPL)
6769 		retval |= ufshcd_tmc_handler(hba);
6770 
6771 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6772 		retval |= ufshcd_transfer_req_compl(hba);
6773 
6774 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6775 		retval |= ufshcd_handle_mcq_cq_events(hba);
6776 
6777 	return retval;
6778 }
6779 
6780 /**
6781  * ufshcd_intr - Main interrupt service routine
6782  * @irq: irq number
6783  * @__hba: pointer to adapter instance
6784  *
6785  * Returns
6786  *  IRQ_HANDLED - If interrupt is valid
6787  *  IRQ_NONE    - If invalid interrupt
6788  */
6789 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6790 {
6791 	u32 intr_status, enabled_intr_status = 0;
6792 	irqreturn_t retval = IRQ_NONE;
6793 	struct ufs_hba *hba = __hba;
6794 	int retries = hba->nutrs;
6795 
6796 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6797 	hba->ufs_stats.last_intr_status = intr_status;
6798 	hba->ufs_stats.last_intr_ts = local_clock();
6799 
6800 	/*
6801 	 * There could be max of hba->nutrs reqs in flight and in worst case
6802 	 * if the reqs get finished 1 by 1 after the interrupt status is
6803 	 * read, make sure we handle them by checking the interrupt status
6804 	 * again in a loop until we process all of the reqs before returning.
6805 	 */
6806 	while (intr_status && retries--) {
6807 		enabled_intr_status =
6808 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6809 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6810 		if (enabled_intr_status)
6811 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6812 
6813 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6814 	}
6815 
6816 	if (enabled_intr_status && retval == IRQ_NONE &&
6817 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6818 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6819 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6820 					__func__,
6821 					intr_status,
6822 					hba->ufs_stats.last_intr_status,
6823 					enabled_intr_status);
6824 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6825 	}
6826 
6827 	return retval;
6828 }
6829 
6830 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6831 {
6832 	int err = 0;
6833 	u32 mask = 1 << tag;
6834 	unsigned long flags;
6835 
6836 	if (!test_bit(tag, &hba->outstanding_tasks))
6837 		goto out;
6838 
6839 	spin_lock_irqsave(hba->host->host_lock, flags);
6840 	ufshcd_utmrl_clear(hba, tag);
6841 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6842 
6843 	/* poll for max. 1 sec to clear door bell register by h/w */
6844 	err = ufshcd_wait_for_register(hba,
6845 			REG_UTP_TASK_REQ_DOOR_BELL,
6846 			mask, 0, 1000, 1000);
6847 
6848 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6849 		tag, err ? "succeeded" : "failed");
6850 
6851 out:
6852 	return err;
6853 }
6854 
6855 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6856 		struct utp_task_req_desc *treq, u8 tm_function)
6857 {
6858 	struct request_queue *q = hba->tmf_queue;
6859 	struct Scsi_Host *host = hba->host;
6860 	DECLARE_COMPLETION_ONSTACK(wait);
6861 	struct request *req;
6862 	unsigned long flags;
6863 	int task_tag, err;
6864 
6865 	/*
6866 	 * blk_mq_alloc_request() is used here only to get a free tag.
6867 	 */
6868 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6869 	if (IS_ERR(req))
6870 		return PTR_ERR(req);
6871 
6872 	req->end_io_data = &wait;
6873 	ufshcd_hold(hba, false);
6874 
6875 	spin_lock_irqsave(host->host_lock, flags);
6876 
6877 	task_tag = req->tag;
6878 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6879 		  task_tag);
6880 	hba->tmf_rqs[req->tag] = req;
6881 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6882 
6883 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6884 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6885 
6886 	/* send command to the controller */
6887 	__set_bit(task_tag, &hba->outstanding_tasks);
6888 
6889 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6890 	/* Make sure that doorbell is committed immediately */
6891 	wmb();
6892 
6893 	spin_unlock_irqrestore(host->host_lock, flags);
6894 
6895 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6896 
6897 	/* wait until the task management command is completed */
6898 	err = wait_for_completion_io_timeout(&wait,
6899 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6900 	if (!err) {
6901 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6902 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6903 				__func__, tm_function);
6904 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6905 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6906 					__func__, task_tag);
6907 		err = -ETIMEDOUT;
6908 	} else {
6909 		err = 0;
6910 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6911 
6912 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6913 	}
6914 
6915 	spin_lock_irqsave(hba->host->host_lock, flags);
6916 	hba->tmf_rqs[req->tag] = NULL;
6917 	__clear_bit(task_tag, &hba->outstanding_tasks);
6918 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6919 
6920 	ufshcd_release(hba);
6921 	blk_mq_free_request(req);
6922 
6923 	return err;
6924 }
6925 
6926 /**
6927  * ufshcd_issue_tm_cmd - issues task management commands to controller
6928  * @hba: per adapter instance
6929  * @lun_id: LUN ID to which TM command is sent
6930  * @task_id: task ID to which the TM command is applicable
6931  * @tm_function: task management function opcode
6932  * @tm_response: task management service response return value
6933  *
6934  * Returns non-zero value on error, zero on success.
6935  */
6936 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6937 		u8 tm_function, u8 *tm_response)
6938 {
6939 	struct utp_task_req_desc treq = { { 0 }, };
6940 	enum utp_ocs ocs_value;
6941 	int err;
6942 
6943 	/* Configure task request descriptor */
6944 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6945 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6946 
6947 	/* Configure task request UPIU */
6948 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6949 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6950 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6951 
6952 	/*
6953 	 * The host shall provide the same value for LUN field in the basic
6954 	 * header and for Input Parameter.
6955 	 */
6956 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6957 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6958 
6959 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6960 	if (err == -ETIMEDOUT)
6961 		return err;
6962 
6963 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6964 	if (ocs_value != OCS_SUCCESS)
6965 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6966 				__func__, ocs_value);
6967 	else if (tm_response)
6968 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6969 				MASK_TM_SERVICE_RESP;
6970 	return err;
6971 }
6972 
6973 /**
6974  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6975  * @hba:	per-adapter instance
6976  * @req_upiu:	upiu request
6977  * @rsp_upiu:	upiu reply
6978  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6979  * @buff_len:	descriptor size, 0 if NA
6980  * @cmd_type:	specifies the type (NOP, Query...)
6981  * @desc_op:	descriptor operation
6982  *
6983  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6984  * Therefore, it "rides" the device management infrastructure: uses its tag and
6985  * tasks work queues.
6986  *
6987  * Since there is only one available tag for device management commands,
6988  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6989  */
6990 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6991 					struct utp_upiu_req *req_upiu,
6992 					struct utp_upiu_req *rsp_upiu,
6993 					u8 *desc_buff, int *buff_len,
6994 					enum dev_cmd_type cmd_type,
6995 					enum query_opcode desc_op)
6996 {
6997 	DECLARE_COMPLETION_ONSTACK(wait);
6998 	const u32 tag = hba->reserved_slot;
6999 	struct ufshcd_lrb *lrbp;
7000 	int err = 0;
7001 	u8 upiu_flags;
7002 
7003 	/* Protects use of hba->reserved_slot. */
7004 	lockdep_assert_held(&hba->dev_cmd.lock);
7005 
7006 	down_read(&hba->clk_scaling_lock);
7007 
7008 	lrbp = &hba->lrb[tag];
7009 	WARN_ON(lrbp->cmd);
7010 	lrbp->cmd = NULL;
7011 	lrbp->task_tag = tag;
7012 	lrbp->lun = 0;
7013 	lrbp->intr_cmd = true;
7014 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7015 	hba->dev_cmd.type = cmd_type;
7016 
7017 	if (hba->ufs_version <= ufshci_version(1, 1))
7018 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7019 	else
7020 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7021 
7022 	/* update the task tag in the request upiu */
7023 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
7024 
7025 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7026 
7027 	/* just copy the upiu request as it is */
7028 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7029 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7030 		/* The Data Segment Area is optional depending upon the query
7031 		 * function value. for WRITE DESCRIPTOR, the data segment
7032 		 * follows right after the tsf.
7033 		 */
7034 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7035 		*buff_len = 0;
7036 	}
7037 
7038 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7039 
7040 	hba->dev_cmd.complete = &wait;
7041 
7042 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7043 
7044 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7045 	/*
7046 	 * ignore the returning value here - ufshcd_check_query_response is
7047 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7048 	 * read the response directly ignoring all errors.
7049 	 */
7050 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7051 
7052 	/* just copy the upiu response as it is */
7053 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7054 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7055 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7056 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
7057 			       MASK_QUERY_DATA_SEG_LEN;
7058 
7059 		if (*buff_len >= resp_len) {
7060 			memcpy(desc_buff, descp, resp_len);
7061 			*buff_len = resp_len;
7062 		} else {
7063 			dev_warn(hba->dev,
7064 				 "%s: rsp size %d is bigger than buffer size %d",
7065 				 __func__, resp_len, *buff_len);
7066 			*buff_len = 0;
7067 			err = -EINVAL;
7068 		}
7069 	}
7070 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7071 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7072 
7073 	up_read(&hba->clk_scaling_lock);
7074 	return err;
7075 }
7076 
7077 /**
7078  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7079  * @hba:	per-adapter instance
7080  * @req_upiu:	upiu request
7081  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7082  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7083  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7084  * @buff_len:	descriptor size, 0 if NA
7085  * @desc_op:	descriptor operation
7086  *
7087  * Supports UTP Transfer requests (nop and query), and UTP Task
7088  * Management requests.
7089  * It is up to the caller to fill the upiu conent properly, as it will
7090  * be copied without any further input validations.
7091  */
7092 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7093 			     struct utp_upiu_req *req_upiu,
7094 			     struct utp_upiu_req *rsp_upiu,
7095 			     int msgcode,
7096 			     u8 *desc_buff, int *buff_len,
7097 			     enum query_opcode desc_op)
7098 {
7099 	int err;
7100 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7101 	struct utp_task_req_desc treq = { { 0 }, };
7102 	enum utp_ocs ocs_value;
7103 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
7104 
7105 	switch (msgcode) {
7106 	case UPIU_TRANSACTION_NOP_OUT:
7107 		cmd_type = DEV_CMD_TYPE_NOP;
7108 		fallthrough;
7109 	case UPIU_TRANSACTION_QUERY_REQ:
7110 		ufshcd_hold(hba, false);
7111 		mutex_lock(&hba->dev_cmd.lock);
7112 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7113 						   desc_buff, buff_len,
7114 						   cmd_type, desc_op);
7115 		mutex_unlock(&hba->dev_cmd.lock);
7116 		ufshcd_release(hba);
7117 
7118 		break;
7119 	case UPIU_TRANSACTION_TASK_REQ:
7120 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7121 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7122 
7123 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7124 
7125 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7126 		if (err == -ETIMEDOUT)
7127 			break;
7128 
7129 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7130 		if (ocs_value != OCS_SUCCESS) {
7131 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7132 				ocs_value);
7133 			break;
7134 		}
7135 
7136 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7137 
7138 		break;
7139 	default:
7140 		err = -EINVAL;
7141 
7142 		break;
7143 	}
7144 
7145 	return err;
7146 }
7147 
7148 /**
7149  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7150  * @hba:	per adapter instance
7151  * @req_upiu:	upiu request
7152  * @rsp_upiu:	upiu reply
7153  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7154  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7155  * @sg_cnt:	The number of sg lists actually used
7156  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7157  * @dir:	DMA direction
7158  *
7159  * Returns zero on success, non-zero on failure
7160  */
7161 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7162 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7163 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7164 			 enum dma_data_direction dir)
7165 {
7166 	DECLARE_COMPLETION_ONSTACK(wait);
7167 	const u32 tag = hba->reserved_slot;
7168 	struct ufshcd_lrb *lrbp;
7169 	int err = 0;
7170 	int result;
7171 	u8 upiu_flags;
7172 	u8 *ehs_data;
7173 	u16 ehs_len;
7174 
7175 	/* Protects use of hba->reserved_slot. */
7176 	ufshcd_hold(hba, false);
7177 	mutex_lock(&hba->dev_cmd.lock);
7178 	down_read(&hba->clk_scaling_lock);
7179 
7180 	lrbp = &hba->lrb[tag];
7181 	WARN_ON(lrbp->cmd);
7182 	lrbp->cmd = NULL;
7183 	lrbp->task_tag = tag;
7184 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7185 
7186 	lrbp->intr_cmd = true;
7187 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7188 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7189 
7190 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7191 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7192 
7193 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7194 
7195 	/* update the task tag and LUN in the request upiu */
7196 	req_upiu->header.dword_0 |= cpu_to_be32(upiu_flags << 16 | UFS_UPIU_RPMB_WLUN << 8 | tag);
7197 
7198 	/* copy the UPIU(contains CDB) request as it is */
7199 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7200 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7201 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7202 
7203 	if (dir != DMA_NONE && sg_list)
7204 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7205 
7206 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7207 
7208 	hba->dev_cmd.complete = &wait;
7209 
7210 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7211 
7212 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7213 
7214 	if (!err) {
7215 		/* Just copy the upiu response as it is */
7216 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7217 		/* Get the response UPIU result */
7218 		result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
7219 
7220 		ehs_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) >> 24;
7221 		/*
7222 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7223 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7224 		 * Message is 02h
7225 		 */
7226 		if (ehs_len == 2 && rsp_ehs) {
7227 			/*
7228 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7229 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7230 			 */
7231 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7232 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7233 		}
7234 	}
7235 
7236 	up_read(&hba->clk_scaling_lock);
7237 	mutex_unlock(&hba->dev_cmd.lock);
7238 	ufshcd_release(hba);
7239 	return err ? : result;
7240 }
7241 
7242 /**
7243  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7244  * @cmd: SCSI command pointer
7245  *
7246  * Returns SUCCESS/FAILED
7247  */
7248 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7249 {
7250 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7251 	struct Scsi_Host *host;
7252 	struct ufs_hba *hba;
7253 	u32 pos;
7254 	int err;
7255 	u8 resp = 0xF, lun;
7256 
7257 	host = cmd->device->host;
7258 	hba = shost_priv(host);
7259 
7260 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7261 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7262 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7263 		if (!err)
7264 			err = resp;
7265 		goto out;
7266 	}
7267 
7268 	/* clear the commands that were pending for corresponding LUN */
7269 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7270 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7271 		if (hba->lrb[pos].lun == lun)
7272 			__set_bit(pos, &pending_reqs);
7273 	hba->outstanding_reqs &= ~pending_reqs;
7274 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7275 
7276 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7277 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7278 		not_cleared = pending_reqs &
7279 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7280 		hba->outstanding_reqs |= not_cleared;
7281 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7282 
7283 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7284 			__func__, not_cleared);
7285 	}
7286 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7287 
7288 out:
7289 	hba->req_abort_count = 0;
7290 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7291 	if (!err) {
7292 		err = SUCCESS;
7293 	} else {
7294 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7295 		err = FAILED;
7296 	}
7297 	return err;
7298 }
7299 
7300 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7301 {
7302 	struct ufshcd_lrb *lrbp;
7303 	int tag;
7304 
7305 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7306 		lrbp = &hba->lrb[tag];
7307 		lrbp->req_abort_skip = true;
7308 	}
7309 }
7310 
7311 /**
7312  * ufshcd_try_to_abort_task - abort a specific task
7313  * @hba: Pointer to adapter instance
7314  * @tag: Task tag/index to be aborted
7315  *
7316  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7317  * command, and in host controller by clearing the door-bell register. There can
7318  * be race between controller sending the command to the device while abort is
7319  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7320  * really issued and then try to abort it.
7321  *
7322  * Returns zero on success, non-zero on failure
7323  */
7324 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7325 {
7326 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7327 	int err = 0;
7328 	int poll_cnt;
7329 	u8 resp = 0xF;
7330 	u32 reg;
7331 
7332 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7333 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7334 				UFS_QUERY_TASK, &resp);
7335 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7336 			/* cmd pending in the device */
7337 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7338 				__func__, tag);
7339 			break;
7340 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7341 			/*
7342 			 * cmd not pending in the device, check if it is
7343 			 * in transition.
7344 			 */
7345 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7346 				__func__, tag);
7347 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7348 			if (reg & (1 << tag)) {
7349 				/* sleep for max. 200us to stabilize */
7350 				usleep_range(100, 200);
7351 				continue;
7352 			}
7353 			/* command completed already */
7354 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7355 				__func__, tag);
7356 			goto out;
7357 		} else {
7358 			dev_err(hba->dev,
7359 				"%s: no response from device. tag = %d, err %d\n",
7360 				__func__, tag, err);
7361 			if (!err)
7362 				err = resp; /* service response error */
7363 			goto out;
7364 		}
7365 	}
7366 
7367 	if (!poll_cnt) {
7368 		err = -EBUSY;
7369 		goto out;
7370 	}
7371 
7372 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7373 			UFS_ABORT_TASK, &resp);
7374 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7375 		if (!err) {
7376 			err = resp; /* service response error */
7377 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7378 				__func__, tag, err);
7379 		}
7380 		goto out;
7381 	}
7382 
7383 	err = ufshcd_clear_cmds(hba, 1U << tag);
7384 	if (err)
7385 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7386 			__func__, tag, err);
7387 
7388 out:
7389 	return err;
7390 }
7391 
7392 /**
7393  * ufshcd_abort - scsi host template eh_abort_handler callback
7394  * @cmd: SCSI command pointer
7395  *
7396  * Returns SUCCESS/FAILED
7397  */
7398 static int ufshcd_abort(struct scsi_cmnd *cmd)
7399 {
7400 	struct Scsi_Host *host = cmd->device->host;
7401 	struct ufs_hba *hba = shost_priv(host);
7402 	int tag = scsi_cmd_to_rq(cmd)->tag;
7403 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7404 	unsigned long flags;
7405 	int err = FAILED;
7406 	bool outstanding;
7407 	u32 reg;
7408 
7409 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7410 
7411 	ufshcd_hold(hba, false);
7412 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7413 	/* If command is already aborted/completed, return FAILED. */
7414 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7415 		dev_err(hba->dev,
7416 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7417 			__func__, tag, hba->outstanding_reqs, reg);
7418 		goto release;
7419 	}
7420 
7421 	/* Print Transfer Request of aborted task */
7422 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7423 
7424 	/*
7425 	 * Print detailed info about aborted request.
7426 	 * As more than one request might get aborted at the same time,
7427 	 * print full information only for the first aborted request in order
7428 	 * to reduce repeated printouts. For other aborted requests only print
7429 	 * basic details.
7430 	 */
7431 	scsi_print_command(cmd);
7432 	if (!hba->req_abort_count) {
7433 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7434 		ufshcd_print_evt_hist(hba);
7435 		ufshcd_print_host_state(hba);
7436 		ufshcd_print_pwr_info(hba);
7437 		ufshcd_print_trs(hba, 1 << tag, true);
7438 	} else {
7439 		ufshcd_print_trs(hba, 1 << tag, false);
7440 	}
7441 	hba->req_abort_count++;
7442 
7443 	if (!(reg & (1 << tag))) {
7444 		dev_err(hba->dev,
7445 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7446 		__func__, tag);
7447 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7448 		goto release;
7449 	}
7450 
7451 	/*
7452 	 * Task abort to the device W-LUN is illegal. When this command
7453 	 * will fail, due to spec violation, scsi err handling next step
7454 	 * will be to send LU reset which, again, is a spec violation.
7455 	 * To avoid these unnecessary/illegal steps, first we clean up
7456 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7457 	 * then queue the eh_work and bail.
7458 	 */
7459 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7460 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7461 
7462 		spin_lock_irqsave(host->host_lock, flags);
7463 		hba->force_reset = true;
7464 		ufshcd_schedule_eh_work(hba);
7465 		spin_unlock_irqrestore(host->host_lock, flags);
7466 		goto release;
7467 	}
7468 
7469 	/* Skip task abort in case previous aborts failed and report failure */
7470 	if (lrbp->req_abort_skip) {
7471 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7472 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7473 		goto release;
7474 	}
7475 
7476 	err = ufshcd_try_to_abort_task(hba, tag);
7477 	if (err) {
7478 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7479 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7480 		err = FAILED;
7481 		goto release;
7482 	}
7483 
7484 	/*
7485 	 * Clear the corresponding bit from outstanding_reqs since the command
7486 	 * has been aborted successfully.
7487 	 */
7488 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7489 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7490 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7491 
7492 	if (outstanding)
7493 		ufshcd_release_scsi_cmd(hba, lrbp);
7494 
7495 	err = SUCCESS;
7496 
7497 release:
7498 	/* Matches the ufshcd_hold() call at the start of this function. */
7499 	ufshcd_release(hba);
7500 	return err;
7501 }
7502 
7503 /**
7504  * ufshcd_host_reset_and_restore - reset and restore host controller
7505  * @hba: per-adapter instance
7506  *
7507  * Note that host controller reset may issue DME_RESET to
7508  * local and remote (device) Uni-Pro stack and the attributes
7509  * are reset to default state.
7510  *
7511  * Returns zero on success, non-zero on failure
7512  */
7513 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7514 {
7515 	int err;
7516 
7517 	/*
7518 	 * Stop the host controller and complete the requests
7519 	 * cleared by h/w
7520 	 */
7521 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7522 	ufshcd_hba_stop(hba);
7523 	hba->silence_err_logs = true;
7524 	ufshcd_complete_requests(hba);
7525 	hba->silence_err_logs = false;
7526 
7527 	/* scale up clocks to max frequency before full reinitialization */
7528 	ufshcd_scale_clks(hba, true);
7529 
7530 	err = ufshcd_hba_enable(hba);
7531 
7532 	/* Establish the link again and restore the device */
7533 	if (!err)
7534 		err = ufshcd_probe_hba(hba, false);
7535 
7536 	if (err)
7537 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7538 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7539 	return err;
7540 }
7541 
7542 /**
7543  * ufshcd_reset_and_restore - reset and re-initialize host/device
7544  * @hba: per-adapter instance
7545  *
7546  * Reset and recover device, host and re-establish link. This
7547  * is helpful to recover the communication in fatal error conditions.
7548  *
7549  * Returns zero on success, non-zero on failure
7550  */
7551 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7552 {
7553 	u32 saved_err = 0;
7554 	u32 saved_uic_err = 0;
7555 	int err = 0;
7556 	unsigned long flags;
7557 	int retries = MAX_HOST_RESET_RETRIES;
7558 
7559 	spin_lock_irqsave(hba->host->host_lock, flags);
7560 	do {
7561 		/*
7562 		 * This is a fresh start, cache and clear saved error first,
7563 		 * in case new error generated during reset and restore.
7564 		 */
7565 		saved_err |= hba->saved_err;
7566 		saved_uic_err |= hba->saved_uic_err;
7567 		hba->saved_err = 0;
7568 		hba->saved_uic_err = 0;
7569 		hba->force_reset = false;
7570 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7571 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7572 
7573 		/* Reset the attached device */
7574 		ufshcd_device_reset(hba);
7575 
7576 		err = ufshcd_host_reset_and_restore(hba);
7577 
7578 		spin_lock_irqsave(hba->host->host_lock, flags);
7579 		if (err)
7580 			continue;
7581 		/* Do not exit unless operational or dead */
7582 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7583 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7584 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7585 			err = -EAGAIN;
7586 	} while (err && --retries);
7587 
7588 	/*
7589 	 * Inform scsi mid-layer that we did reset and allow to handle
7590 	 * Unit Attention properly.
7591 	 */
7592 	scsi_report_bus_reset(hba->host, 0);
7593 	if (err) {
7594 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7595 		hba->saved_err |= saved_err;
7596 		hba->saved_uic_err |= saved_uic_err;
7597 	}
7598 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7599 
7600 	return err;
7601 }
7602 
7603 /**
7604  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7605  * @cmd: SCSI command pointer
7606  *
7607  * Returns SUCCESS/FAILED
7608  */
7609 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7610 {
7611 	int err = SUCCESS;
7612 	unsigned long flags;
7613 	struct ufs_hba *hba;
7614 
7615 	hba = shost_priv(cmd->device->host);
7616 
7617 	spin_lock_irqsave(hba->host->host_lock, flags);
7618 	hba->force_reset = true;
7619 	ufshcd_schedule_eh_work(hba);
7620 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7621 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7622 
7623 	flush_work(&hba->eh_work);
7624 
7625 	spin_lock_irqsave(hba->host->host_lock, flags);
7626 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7627 		err = FAILED;
7628 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7629 
7630 	return err;
7631 }
7632 
7633 /**
7634  * ufshcd_get_max_icc_level - calculate the ICC level
7635  * @sup_curr_uA: max. current supported by the regulator
7636  * @start_scan: row at the desc table to start scan from
7637  * @buff: power descriptor buffer
7638  *
7639  * Returns calculated max ICC level for specific regulator
7640  */
7641 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7642 				    const char *buff)
7643 {
7644 	int i;
7645 	int curr_uA;
7646 	u16 data;
7647 	u16 unit;
7648 
7649 	for (i = start_scan; i >= 0; i--) {
7650 		data = get_unaligned_be16(&buff[2 * i]);
7651 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7652 						ATTR_ICC_LVL_UNIT_OFFSET;
7653 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7654 		switch (unit) {
7655 		case UFSHCD_NANO_AMP:
7656 			curr_uA = curr_uA / 1000;
7657 			break;
7658 		case UFSHCD_MILI_AMP:
7659 			curr_uA = curr_uA * 1000;
7660 			break;
7661 		case UFSHCD_AMP:
7662 			curr_uA = curr_uA * 1000 * 1000;
7663 			break;
7664 		case UFSHCD_MICRO_AMP:
7665 		default:
7666 			break;
7667 		}
7668 		if (sup_curr_uA >= curr_uA)
7669 			break;
7670 	}
7671 	if (i < 0) {
7672 		i = 0;
7673 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7674 	}
7675 
7676 	return (u32)i;
7677 }
7678 
7679 /**
7680  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7681  * In case regulators are not initialized we'll return 0
7682  * @hba: per-adapter instance
7683  * @desc_buf: power descriptor buffer to extract ICC levels from.
7684  *
7685  * Returns calculated ICC level
7686  */
7687 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7688 						const u8 *desc_buf)
7689 {
7690 	u32 icc_level = 0;
7691 
7692 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7693 						!hba->vreg_info.vccq2) {
7694 		/*
7695 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7696 		 * never-ending cycles of messages written back to storage by
7697 		 * user space causing runtime resume, causing more messages and
7698 		 * so on.
7699 		 */
7700 		dev_dbg(hba->dev,
7701 			"%s: Regulator capability was not set, actvIccLevel=%d",
7702 							__func__, icc_level);
7703 		goto out;
7704 	}
7705 
7706 	if (hba->vreg_info.vcc->max_uA)
7707 		icc_level = ufshcd_get_max_icc_level(
7708 				hba->vreg_info.vcc->max_uA,
7709 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7710 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7711 
7712 	if (hba->vreg_info.vccq->max_uA)
7713 		icc_level = ufshcd_get_max_icc_level(
7714 				hba->vreg_info.vccq->max_uA,
7715 				icc_level,
7716 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7717 
7718 	if (hba->vreg_info.vccq2->max_uA)
7719 		icc_level = ufshcd_get_max_icc_level(
7720 				hba->vreg_info.vccq2->max_uA,
7721 				icc_level,
7722 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7723 out:
7724 	return icc_level;
7725 }
7726 
7727 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7728 {
7729 	int ret;
7730 	u8 *desc_buf;
7731 	u32 icc_level;
7732 
7733 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7734 	if (!desc_buf)
7735 		return;
7736 
7737 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7738 				     desc_buf, QUERY_DESC_MAX_SIZE);
7739 	if (ret) {
7740 		dev_err(hba->dev,
7741 			"%s: Failed reading power descriptor ret = %d",
7742 			__func__, ret);
7743 		goto out;
7744 	}
7745 
7746 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7747 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7748 
7749 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7750 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7751 
7752 	if (ret)
7753 		dev_err(hba->dev,
7754 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7755 			__func__, icc_level, ret);
7756 
7757 out:
7758 	kfree(desc_buf);
7759 }
7760 
7761 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7762 {
7763 	scsi_autopm_get_device(sdev);
7764 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7765 	if (sdev->rpm_autosuspend)
7766 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7767 						 RPM_AUTOSUSPEND_DELAY_MS);
7768 	scsi_autopm_put_device(sdev);
7769 }
7770 
7771 /**
7772  * ufshcd_scsi_add_wlus - Adds required W-LUs
7773  * @hba: per-adapter instance
7774  *
7775  * UFS device specification requires the UFS devices to support 4 well known
7776  * logical units:
7777  *	"REPORT_LUNS" (address: 01h)
7778  *	"UFS Device" (address: 50h)
7779  *	"RPMB" (address: 44h)
7780  *	"BOOT" (address: 30h)
7781  * UFS device's power management needs to be controlled by "POWER CONDITION"
7782  * field of SSU (START STOP UNIT) command. But this "power condition" field
7783  * will take effect only when its sent to "UFS device" well known logical unit
7784  * hence we require the scsi_device instance to represent this logical unit in
7785  * order for the UFS host driver to send the SSU command for power management.
7786  *
7787  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7788  * Block) LU so user space process can control this LU. User space may also
7789  * want to have access to BOOT LU.
7790  *
7791  * This function adds scsi device instances for each of all well known LUs
7792  * (except "REPORT LUNS" LU).
7793  *
7794  * Returns zero on success (all required W-LUs are added successfully),
7795  * non-zero error value on failure (if failed to add any of the required W-LU).
7796  */
7797 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7798 {
7799 	int ret = 0;
7800 	struct scsi_device *sdev_boot, *sdev_rpmb;
7801 
7802 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7803 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7804 	if (IS_ERR(hba->ufs_device_wlun)) {
7805 		ret = PTR_ERR(hba->ufs_device_wlun);
7806 		hba->ufs_device_wlun = NULL;
7807 		goto out;
7808 	}
7809 	scsi_device_put(hba->ufs_device_wlun);
7810 
7811 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7812 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7813 	if (IS_ERR(sdev_rpmb)) {
7814 		ret = PTR_ERR(sdev_rpmb);
7815 		goto remove_ufs_device_wlun;
7816 	}
7817 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7818 	scsi_device_put(sdev_rpmb);
7819 
7820 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7821 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7822 	if (IS_ERR(sdev_boot)) {
7823 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7824 	} else {
7825 		ufshcd_blk_pm_runtime_init(sdev_boot);
7826 		scsi_device_put(sdev_boot);
7827 	}
7828 	goto out;
7829 
7830 remove_ufs_device_wlun:
7831 	scsi_remove_device(hba->ufs_device_wlun);
7832 out:
7833 	return ret;
7834 }
7835 
7836 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7837 {
7838 	struct ufs_dev_info *dev_info = &hba->dev_info;
7839 	u8 lun;
7840 	u32 d_lu_wb_buf_alloc;
7841 	u32 ext_ufs_feature;
7842 
7843 	if (!ufshcd_is_wb_allowed(hba))
7844 		return;
7845 
7846 	/*
7847 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7848 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7849 	 * enabled
7850 	 */
7851 	if (!(dev_info->wspecversion >= 0x310 ||
7852 	      dev_info->wspecversion == 0x220 ||
7853 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7854 		goto wb_disabled;
7855 
7856 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7857 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7858 
7859 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7860 		goto wb_disabled;
7861 
7862 	/*
7863 	 * WB may be supported but not configured while provisioning. The spec
7864 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7865 	 * buffer configured.
7866 	 */
7867 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7868 
7869 	dev_info->b_presrv_uspc_en =
7870 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7871 
7872 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7873 		if (!get_unaligned_be32(desc_buf +
7874 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7875 			goto wb_disabled;
7876 	} else {
7877 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7878 			d_lu_wb_buf_alloc = 0;
7879 			ufshcd_read_unit_desc_param(hba,
7880 					lun,
7881 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7882 					(u8 *)&d_lu_wb_buf_alloc,
7883 					sizeof(d_lu_wb_buf_alloc));
7884 			if (d_lu_wb_buf_alloc) {
7885 				dev_info->wb_dedicated_lu = lun;
7886 				break;
7887 			}
7888 		}
7889 
7890 		if (!d_lu_wb_buf_alloc)
7891 			goto wb_disabled;
7892 	}
7893 
7894 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7895 		goto wb_disabled;
7896 
7897 	return;
7898 
7899 wb_disabled:
7900 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7901 }
7902 
7903 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7904 {
7905 	struct ufs_dev_info *dev_info = &hba->dev_info;
7906 	u32 ext_ufs_feature;
7907 	u8 mask = 0;
7908 
7909 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7910 		return;
7911 
7912 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7913 
7914 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7915 		mask |= MASK_EE_TOO_LOW_TEMP;
7916 
7917 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7918 		mask |= MASK_EE_TOO_HIGH_TEMP;
7919 
7920 	if (mask) {
7921 		ufshcd_enable_ee(hba, mask);
7922 		ufs_hwmon_probe(hba, mask);
7923 	}
7924 }
7925 
7926 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
7927 {
7928 	struct ufs_dev_info *dev_info = &hba->dev_info;
7929 	u32 ext_ufs_feature;
7930 	u32 ext_iid_en = 0;
7931 	int err;
7932 
7933 	/* Only UFS-4.0 and above may support EXT_IID */
7934 	if (dev_info->wspecversion < 0x400)
7935 		goto out;
7936 
7937 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7938 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7939 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
7940 		goto out;
7941 
7942 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7943 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
7944 	if (err)
7945 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
7946 
7947 out:
7948 	dev_info->b_ext_iid_en = ext_iid_en;
7949 }
7950 
7951 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7952 			     const struct ufs_dev_quirk *fixups)
7953 {
7954 	const struct ufs_dev_quirk *f;
7955 	struct ufs_dev_info *dev_info = &hba->dev_info;
7956 
7957 	if (!fixups)
7958 		return;
7959 
7960 	for (f = fixups; f->quirk; f++) {
7961 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7962 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7963 		     ((dev_info->model &&
7964 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7965 		      !strcmp(f->model, UFS_ANY_MODEL)))
7966 			hba->dev_quirks |= f->quirk;
7967 	}
7968 }
7969 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7970 
7971 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7972 {
7973 	/* fix by general quirk table */
7974 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7975 
7976 	/* allow vendors to fix quirks */
7977 	ufshcd_vops_fixup_dev_quirks(hba);
7978 }
7979 
7980 static int ufs_get_device_desc(struct ufs_hba *hba)
7981 {
7982 	int err;
7983 	u8 model_index;
7984 	u8 b_ufs_feature_sup;
7985 	u8 *desc_buf;
7986 	struct ufs_dev_info *dev_info = &hba->dev_info;
7987 
7988 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7989 	if (!desc_buf) {
7990 		err = -ENOMEM;
7991 		goto out;
7992 	}
7993 
7994 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7995 				     QUERY_DESC_MAX_SIZE);
7996 	if (err) {
7997 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7998 			__func__, err);
7999 		goto out;
8000 	}
8001 
8002 	/*
8003 	 * getting vendor (manufacturerID) and Bank Index in big endian
8004 	 * format
8005 	 */
8006 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8007 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8008 
8009 	/* getting Specification Version in big endian format */
8010 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8011 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8012 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8013 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
8014 
8015 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8016 
8017 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
8018 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
8019 		bool hpb_en = false;
8020 
8021 		ufshpb_get_dev_info(hba, desc_buf);
8022 
8023 		if (!ufshpb_is_legacy(hba))
8024 			err = ufshcd_query_flag_retry(hba,
8025 						      UPIU_QUERY_OPCODE_READ_FLAG,
8026 						      QUERY_FLAG_IDN_HPB_EN, 0,
8027 						      &hpb_en);
8028 
8029 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
8030 			dev_info->hpb_enabled = true;
8031 	}
8032 
8033 	err = ufshcd_read_string_desc(hba, model_index,
8034 				      &dev_info->model, SD_ASCII_STD);
8035 	if (err < 0) {
8036 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8037 			__func__, err);
8038 		goto out;
8039 	}
8040 
8041 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8042 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8043 
8044 	ufs_fixup_device_setup(hba);
8045 
8046 	ufshcd_wb_probe(hba, desc_buf);
8047 
8048 	ufshcd_temp_notif_probe(hba, desc_buf);
8049 
8050 	if (hba->ext_iid_sup)
8051 		ufshcd_ext_iid_probe(hba, desc_buf);
8052 
8053 	/*
8054 	 * ufshcd_read_string_desc returns size of the string
8055 	 * reset the error value
8056 	 */
8057 	err = 0;
8058 
8059 out:
8060 	kfree(desc_buf);
8061 	return err;
8062 }
8063 
8064 static void ufs_put_device_desc(struct ufs_hba *hba)
8065 {
8066 	struct ufs_dev_info *dev_info = &hba->dev_info;
8067 
8068 	kfree(dev_info->model);
8069 	dev_info->model = NULL;
8070 }
8071 
8072 /**
8073  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8074  * @hba: per-adapter instance
8075  *
8076  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8077  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8078  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8079  * the hibern8 exit latency.
8080  *
8081  * Returns zero on success, non-zero error value on failure.
8082  */
8083 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8084 {
8085 	int ret = 0;
8086 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8087 
8088 	ret = ufshcd_dme_peer_get(hba,
8089 				  UIC_ARG_MIB_SEL(
8090 					RX_MIN_ACTIVATETIME_CAPABILITY,
8091 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8092 				  &peer_rx_min_activatetime);
8093 	if (ret)
8094 		goto out;
8095 
8096 	/* make sure proper unit conversion is applied */
8097 	tuned_pa_tactivate =
8098 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8099 		 / PA_TACTIVATE_TIME_UNIT_US);
8100 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8101 			     tuned_pa_tactivate);
8102 
8103 out:
8104 	return ret;
8105 }
8106 
8107 /**
8108  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8109  * @hba: per-adapter instance
8110  *
8111  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8112  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8113  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8114  * This optimal value can help reduce the hibern8 exit latency.
8115  *
8116  * Returns zero on success, non-zero error value on failure.
8117  */
8118 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8119 {
8120 	int ret = 0;
8121 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8122 	u32 max_hibern8_time, tuned_pa_hibern8time;
8123 
8124 	ret = ufshcd_dme_get(hba,
8125 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8126 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8127 				  &local_tx_hibern8_time_cap);
8128 	if (ret)
8129 		goto out;
8130 
8131 	ret = ufshcd_dme_peer_get(hba,
8132 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8133 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8134 				  &peer_rx_hibern8_time_cap);
8135 	if (ret)
8136 		goto out;
8137 
8138 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8139 			       peer_rx_hibern8_time_cap);
8140 	/* make sure proper unit conversion is applied */
8141 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8142 				/ PA_HIBERN8_TIME_UNIT_US);
8143 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8144 			     tuned_pa_hibern8time);
8145 out:
8146 	return ret;
8147 }
8148 
8149 /**
8150  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8151  * less than device PA_TACTIVATE time.
8152  * @hba: per-adapter instance
8153  *
8154  * Some UFS devices require host PA_TACTIVATE to be lower than device
8155  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8156  * for such devices.
8157  *
8158  * Returns zero on success, non-zero error value on failure.
8159  */
8160 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8161 {
8162 	int ret = 0;
8163 	u32 granularity, peer_granularity;
8164 	u32 pa_tactivate, peer_pa_tactivate;
8165 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8166 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8167 
8168 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8169 				  &granularity);
8170 	if (ret)
8171 		goto out;
8172 
8173 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8174 				  &peer_granularity);
8175 	if (ret)
8176 		goto out;
8177 
8178 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8179 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8180 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8181 			__func__, granularity);
8182 		return -EINVAL;
8183 	}
8184 
8185 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8186 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8187 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8188 			__func__, peer_granularity);
8189 		return -EINVAL;
8190 	}
8191 
8192 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8193 	if (ret)
8194 		goto out;
8195 
8196 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8197 				  &peer_pa_tactivate);
8198 	if (ret)
8199 		goto out;
8200 
8201 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8202 	peer_pa_tactivate_us = peer_pa_tactivate *
8203 			     gran_to_us_table[peer_granularity - 1];
8204 
8205 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8206 		u32 new_peer_pa_tactivate;
8207 
8208 		new_peer_pa_tactivate = pa_tactivate_us /
8209 				      gran_to_us_table[peer_granularity - 1];
8210 		new_peer_pa_tactivate++;
8211 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8212 					  new_peer_pa_tactivate);
8213 	}
8214 
8215 out:
8216 	return ret;
8217 }
8218 
8219 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8220 {
8221 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8222 		ufshcd_tune_pa_tactivate(hba);
8223 		ufshcd_tune_pa_hibern8time(hba);
8224 	}
8225 
8226 	ufshcd_vops_apply_dev_quirks(hba);
8227 
8228 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8229 		/* set 1ms timeout for PA_TACTIVATE */
8230 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8231 
8232 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8233 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8234 }
8235 
8236 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8237 {
8238 	hba->ufs_stats.hibern8_exit_cnt = 0;
8239 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8240 	hba->req_abort_count = 0;
8241 }
8242 
8243 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8244 {
8245 	int err;
8246 	u8 *desc_buf;
8247 
8248 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8249 	if (!desc_buf) {
8250 		err = -ENOMEM;
8251 		goto out;
8252 	}
8253 
8254 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8255 				     desc_buf, QUERY_DESC_MAX_SIZE);
8256 	if (err) {
8257 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8258 				__func__, err);
8259 		goto out;
8260 	}
8261 
8262 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8263 		hba->dev_info.max_lu_supported = 32;
8264 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8265 		hba->dev_info.max_lu_supported = 8;
8266 
8267 	if (desc_buf[QUERY_DESC_LENGTH_OFFSET] >=
8268 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8269 		ufshpb_get_geo_info(hba, desc_buf);
8270 
8271 out:
8272 	kfree(desc_buf);
8273 	return err;
8274 }
8275 
8276 struct ufs_ref_clk {
8277 	unsigned long freq_hz;
8278 	enum ufs_ref_clk_freq val;
8279 };
8280 
8281 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8282 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8283 	{26000000, REF_CLK_FREQ_26_MHZ},
8284 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8285 	{52000000, REF_CLK_FREQ_52_MHZ},
8286 	{0, REF_CLK_FREQ_INVAL},
8287 };
8288 
8289 static enum ufs_ref_clk_freq
8290 ufs_get_bref_clk_from_hz(unsigned long freq)
8291 {
8292 	int i;
8293 
8294 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8295 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8296 			return ufs_ref_clk_freqs[i].val;
8297 
8298 	return REF_CLK_FREQ_INVAL;
8299 }
8300 
8301 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8302 {
8303 	unsigned long freq;
8304 
8305 	freq = clk_get_rate(refclk);
8306 
8307 	hba->dev_ref_clk_freq =
8308 		ufs_get_bref_clk_from_hz(freq);
8309 
8310 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8311 		dev_err(hba->dev,
8312 		"invalid ref_clk setting = %ld\n", freq);
8313 }
8314 
8315 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8316 {
8317 	int err;
8318 	u32 ref_clk;
8319 	u32 freq = hba->dev_ref_clk_freq;
8320 
8321 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8322 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8323 
8324 	if (err) {
8325 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8326 			err);
8327 		goto out;
8328 	}
8329 
8330 	if (ref_clk == freq)
8331 		goto out; /* nothing to update */
8332 
8333 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8334 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8335 
8336 	if (err) {
8337 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8338 			ufs_ref_clk_freqs[freq].freq_hz);
8339 		goto out;
8340 	}
8341 
8342 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8343 			ufs_ref_clk_freqs[freq].freq_hz);
8344 
8345 out:
8346 	return err;
8347 }
8348 
8349 static int ufshcd_device_params_init(struct ufs_hba *hba)
8350 {
8351 	bool flag;
8352 	int ret;
8353 
8354 	/* Init UFS geometry descriptor related parameters */
8355 	ret = ufshcd_device_geo_params_init(hba);
8356 	if (ret)
8357 		goto out;
8358 
8359 	/* Check and apply UFS device quirks */
8360 	ret = ufs_get_device_desc(hba);
8361 	if (ret) {
8362 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8363 			__func__, ret);
8364 		goto out;
8365 	}
8366 
8367 	ufshcd_get_ref_clk_gating_wait(hba);
8368 
8369 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8370 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8371 		hba->dev_info.f_power_on_wp_en = flag;
8372 
8373 	/* Probe maximum power mode co-supported by both UFS host and device */
8374 	if (ufshcd_get_max_pwr_mode(hba))
8375 		dev_err(hba->dev,
8376 			"%s: Failed getting max supported power mode\n",
8377 			__func__);
8378 out:
8379 	return ret;
8380 }
8381 
8382 /**
8383  * ufshcd_add_lus - probe and add UFS logical units
8384  * @hba: per-adapter instance
8385  */
8386 static int ufshcd_add_lus(struct ufs_hba *hba)
8387 {
8388 	int ret;
8389 
8390 	/* Add required well known logical units to scsi mid layer */
8391 	ret = ufshcd_scsi_add_wlus(hba);
8392 	if (ret)
8393 		goto out;
8394 
8395 	/* Initialize devfreq after UFS device is detected */
8396 	if (ufshcd_is_clkscaling_supported(hba)) {
8397 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
8398 			&hba->pwr_info,
8399 			sizeof(struct ufs_pa_layer_attr));
8400 		hba->clk_scaling.saved_pwr_info.is_valid = true;
8401 		hba->clk_scaling.is_allowed = true;
8402 
8403 		ret = ufshcd_devfreq_init(hba);
8404 		if (ret)
8405 			goto out;
8406 
8407 		hba->clk_scaling.is_enabled = true;
8408 		ufshcd_init_clk_scaling_sysfs(hba);
8409 	}
8410 
8411 	ufs_bsg_probe(hba);
8412 	ufshpb_init(hba);
8413 	scsi_scan_host(hba->host);
8414 	pm_runtime_put_sync(hba->dev);
8415 
8416 out:
8417 	return ret;
8418 }
8419 
8420 /* SDB - Single Doorbell */
8421 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8422 {
8423 	size_t ucdl_size, utrdl_size;
8424 
8425 	ucdl_size = sizeof(struct utp_transfer_cmd_desc) * nutrs;
8426 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8427 			   hba->ucdl_dma_addr);
8428 
8429 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8430 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8431 			   hba->utrdl_dma_addr);
8432 
8433 	devm_kfree(hba->dev, hba->lrb);
8434 }
8435 
8436 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8437 {
8438 	int ret;
8439 	int old_nutrs = hba->nutrs;
8440 
8441 	ret = ufshcd_mcq_decide_queue_depth(hba);
8442 	if (ret < 0)
8443 		return ret;
8444 
8445 	hba->nutrs = ret;
8446 	ret = ufshcd_mcq_init(hba);
8447 	if (ret)
8448 		goto err;
8449 
8450 	/*
8451 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8452 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8453 	 */
8454 	if (hba->nutrs != old_nutrs) {
8455 		ufshcd_release_sdb_queue(hba, old_nutrs);
8456 		ret = ufshcd_memory_alloc(hba);
8457 		if (ret)
8458 			goto err;
8459 		ufshcd_host_memory_configure(hba);
8460 	}
8461 
8462 	ret = ufshcd_mcq_memory_alloc(hba);
8463 	if (ret)
8464 		goto err;
8465 
8466 	return 0;
8467 err:
8468 	hba->nutrs = old_nutrs;
8469 	return ret;
8470 }
8471 
8472 static void ufshcd_config_mcq(struct ufs_hba *hba)
8473 {
8474 	int ret;
8475 
8476 	ret = ufshcd_mcq_vops_config_esi(hba);
8477 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8478 
8479 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_MCQ_INTRS);
8480 	ufshcd_mcq_make_queues_operational(hba);
8481 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8482 
8483 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8484 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8485 
8486 	/* Select MCQ mode */
8487 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8488 		      REG_UFS_MEM_CFG);
8489 	hba->mcq_enabled = true;
8490 
8491 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8492 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8493 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8494 		 hba->nutrs);
8495 }
8496 
8497 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8498 {
8499 	int ret;
8500 	struct Scsi_Host *host = hba->host;
8501 
8502 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8503 
8504 	ret = ufshcd_link_startup(hba);
8505 	if (ret)
8506 		return ret;
8507 
8508 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8509 		return ret;
8510 
8511 	/* Debug counters initialization */
8512 	ufshcd_clear_dbg_ufs_stats(hba);
8513 
8514 	/* UniPro link is active now */
8515 	ufshcd_set_link_active(hba);
8516 
8517 	/* Reconfigure MCQ upon reset */
8518 	if (is_mcq_enabled(hba) && !init_dev_params)
8519 		ufshcd_config_mcq(hba);
8520 
8521 	/* Verify device initialization by sending NOP OUT UPIU */
8522 	ret = ufshcd_verify_dev_init(hba);
8523 	if (ret)
8524 		return ret;
8525 
8526 	/* Initiate UFS initialization, and waiting until completion */
8527 	ret = ufshcd_complete_dev_init(hba);
8528 	if (ret)
8529 		return ret;
8530 
8531 	/*
8532 	 * Initialize UFS device parameters used by driver, these
8533 	 * parameters are associated with UFS descriptors.
8534 	 */
8535 	if (init_dev_params) {
8536 		ret = ufshcd_device_params_init(hba);
8537 		if (ret)
8538 			return ret;
8539 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8540 			ret = ufshcd_alloc_mcq(hba);
8541 			if (!ret) {
8542 				ufshcd_config_mcq(hba);
8543 			} else {
8544 				/* Continue with SDB mode */
8545 				use_mcq_mode = false;
8546 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8547 					 ret);
8548 			}
8549 			ret = scsi_add_host(host, hba->dev);
8550 			if (ret) {
8551 				dev_err(hba->dev, "scsi_add_host failed\n");
8552 				return ret;
8553 			}
8554 			hba->scsi_host_added = true;
8555 		} else if (is_mcq_supported(hba)) {
8556 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8557 			ufshcd_config_mcq(hba);
8558 		}
8559 	}
8560 
8561 	ufshcd_tune_unipro_params(hba);
8562 
8563 	/* UFS device is also active now */
8564 	ufshcd_set_ufs_dev_active(hba);
8565 	ufshcd_force_reset_auto_bkops(hba);
8566 
8567 	/* Gear up to HS gear if supported */
8568 	if (hba->max_pwr_info.is_valid) {
8569 		/*
8570 		 * Set the right value to bRefClkFreq before attempting to
8571 		 * switch to HS gears.
8572 		 */
8573 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8574 			ufshcd_set_dev_ref_clk(hba);
8575 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8576 		if (ret) {
8577 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8578 					__func__, ret);
8579 			return ret;
8580 		}
8581 	}
8582 
8583 	return 0;
8584 }
8585 
8586 /**
8587  * ufshcd_probe_hba - probe hba to detect device and initialize it
8588  * @hba: per-adapter instance
8589  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8590  *
8591  * Execute link-startup and verify device initialization
8592  */
8593 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8594 {
8595 	ktime_t start = ktime_get();
8596 	unsigned long flags;
8597 	int ret;
8598 
8599 	ret = ufshcd_device_init(hba, init_dev_params);
8600 	if (ret)
8601 		goto out;
8602 
8603 	if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8604 		/* Reset the device and controller before doing reinit */
8605 		ufshcd_device_reset(hba);
8606 		ufshcd_hba_stop(hba);
8607 		ufshcd_vops_reinit_notify(hba);
8608 		ret = ufshcd_hba_enable(hba);
8609 		if (ret) {
8610 			dev_err(hba->dev, "Host controller enable failed\n");
8611 			ufshcd_print_evt_hist(hba);
8612 			ufshcd_print_host_state(hba);
8613 			goto out;
8614 		}
8615 
8616 		/* Reinit the device */
8617 		ret = ufshcd_device_init(hba, init_dev_params);
8618 		if (ret)
8619 			goto out;
8620 	}
8621 
8622 	ufshcd_print_pwr_info(hba);
8623 
8624 	/*
8625 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8626 	 * and for removable UFS card as well, hence always set the parameter.
8627 	 * Note: Error handler may issue the device reset hence resetting
8628 	 * bActiveICCLevel as well so it is always safe to set this here.
8629 	 */
8630 	ufshcd_set_active_icc_lvl(hba);
8631 
8632 	/* Enable UFS Write Booster if supported */
8633 	ufshcd_configure_wb(hba);
8634 
8635 	if (hba->ee_usr_mask)
8636 		ufshcd_write_ee_control(hba);
8637 	/* Enable Auto-Hibernate if configured */
8638 	ufshcd_auto_hibern8_enable(hba);
8639 
8640 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8641 out:
8642 	spin_lock_irqsave(hba->host->host_lock, flags);
8643 	if (ret)
8644 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8645 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8646 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8647 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8648 
8649 	trace_ufshcd_init(dev_name(hba->dev), ret,
8650 		ktime_to_us(ktime_sub(ktime_get(), start)),
8651 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8652 	return ret;
8653 }
8654 
8655 /**
8656  * ufshcd_async_scan - asynchronous execution for probing hba
8657  * @data: data pointer to pass to this function
8658  * @cookie: cookie data
8659  */
8660 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8661 {
8662 	struct ufs_hba *hba = (struct ufs_hba *)data;
8663 	int ret;
8664 
8665 	down(&hba->host_sem);
8666 	/* Initialize hba, detect and initialize UFS device */
8667 	ret = ufshcd_probe_hba(hba, true);
8668 	up(&hba->host_sem);
8669 	if (ret)
8670 		goto out;
8671 
8672 	/* Probe and add UFS logical units  */
8673 	ret = ufshcd_add_lus(hba);
8674 out:
8675 	/*
8676 	 * If we failed to initialize the device or the device is not
8677 	 * present, turn off the power/clocks etc.
8678 	 */
8679 	if (ret) {
8680 		pm_runtime_put_sync(hba->dev);
8681 		ufshcd_hba_exit(hba);
8682 	}
8683 }
8684 
8685 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8686 {
8687 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8688 
8689 	if (!hba->system_suspending) {
8690 		/* Activate the error handler in the SCSI core. */
8691 		return SCSI_EH_NOT_HANDLED;
8692 	}
8693 
8694 	/*
8695 	 * If we get here we know that no TMFs are outstanding and also that
8696 	 * the only pending command is a START STOP UNIT command. Handle the
8697 	 * timeout of that command directly to prevent a deadlock between
8698 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8699 	 */
8700 	ufshcd_link_recovery(hba);
8701 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8702 		 __func__, hba->outstanding_tasks);
8703 
8704 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8705 }
8706 
8707 static const struct attribute_group *ufshcd_driver_groups[] = {
8708 	&ufs_sysfs_unit_descriptor_group,
8709 	&ufs_sysfs_lun_attributes_group,
8710 #ifdef CONFIG_SCSI_UFS_HPB
8711 	&ufs_sysfs_hpb_stat_group,
8712 	&ufs_sysfs_hpb_param_group,
8713 #endif
8714 	NULL,
8715 };
8716 
8717 static struct ufs_hba_variant_params ufs_hba_vps = {
8718 	.hba_enable_delay_us		= 1000,
8719 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8720 	.devfreq_profile.polling_ms	= 100,
8721 	.devfreq_profile.target		= ufshcd_devfreq_target,
8722 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8723 	.ondemand_data.upthreshold	= 70,
8724 	.ondemand_data.downdifferential	= 5,
8725 };
8726 
8727 static struct scsi_host_template ufshcd_driver_template = {
8728 	.module			= THIS_MODULE,
8729 	.name			= UFSHCD,
8730 	.proc_name		= UFSHCD,
8731 	.map_queues		= ufshcd_map_queues,
8732 	.queuecommand		= ufshcd_queuecommand,
8733 	.mq_poll		= ufshcd_poll,
8734 	.slave_alloc		= ufshcd_slave_alloc,
8735 	.slave_configure	= ufshcd_slave_configure,
8736 	.slave_destroy		= ufshcd_slave_destroy,
8737 	.change_queue_depth	= ufshcd_change_queue_depth,
8738 	.eh_abort_handler	= ufshcd_abort,
8739 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8740 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8741 	.eh_timed_out		= ufshcd_eh_timed_out,
8742 	.this_id		= -1,
8743 	.sg_tablesize		= SG_ALL,
8744 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8745 	.can_queue		= UFSHCD_CAN_QUEUE,
8746 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8747 	.max_sectors		= (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8748 	.max_host_blocked	= 1,
8749 	.track_queue_depth	= 1,
8750 	.sdev_groups		= ufshcd_driver_groups,
8751 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8752 };
8753 
8754 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8755 				   int ua)
8756 {
8757 	int ret;
8758 
8759 	if (!vreg)
8760 		return 0;
8761 
8762 	/*
8763 	 * "set_load" operation shall be required on those regulators
8764 	 * which specifically configured current limitation. Otherwise
8765 	 * zero max_uA may cause unexpected behavior when regulator is
8766 	 * enabled or set as high power mode.
8767 	 */
8768 	if (!vreg->max_uA)
8769 		return 0;
8770 
8771 	ret = regulator_set_load(vreg->reg, ua);
8772 	if (ret < 0) {
8773 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8774 				__func__, vreg->name, ua, ret);
8775 	}
8776 
8777 	return ret;
8778 }
8779 
8780 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8781 					 struct ufs_vreg *vreg)
8782 {
8783 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8784 }
8785 
8786 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8787 					 struct ufs_vreg *vreg)
8788 {
8789 	if (!vreg)
8790 		return 0;
8791 
8792 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8793 }
8794 
8795 static int ufshcd_config_vreg(struct device *dev,
8796 		struct ufs_vreg *vreg, bool on)
8797 {
8798 	if (regulator_count_voltages(vreg->reg) <= 0)
8799 		return 0;
8800 
8801 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8802 }
8803 
8804 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8805 {
8806 	int ret = 0;
8807 
8808 	if (!vreg || vreg->enabled)
8809 		goto out;
8810 
8811 	ret = ufshcd_config_vreg(dev, vreg, true);
8812 	if (!ret)
8813 		ret = regulator_enable(vreg->reg);
8814 
8815 	if (!ret)
8816 		vreg->enabled = true;
8817 	else
8818 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8819 				__func__, vreg->name, ret);
8820 out:
8821 	return ret;
8822 }
8823 
8824 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8825 {
8826 	int ret = 0;
8827 
8828 	if (!vreg || !vreg->enabled || vreg->always_on)
8829 		goto out;
8830 
8831 	ret = regulator_disable(vreg->reg);
8832 
8833 	if (!ret) {
8834 		/* ignore errors on applying disable config */
8835 		ufshcd_config_vreg(dev, vreg, false);
8836 		vreg->enabled = false;
8837 	} else {
8838 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8839 				__func__, vreg->name, ret);
8840 	}
8841 out:
8842 	return ret;
8843 }
8844 
8845 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8846 {
8847 	int ret = 0;
8848 	struct device *dev = hba->dev;
8849 	struct ufs_vreg_info *info = &hba->vreg_info;
8850 
8851 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8852 	if (ret)
8853 		goto out;
8854 
8855 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8856 	if (ret)
8857 		goto out;
8858 
8859 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8860 
8861 out:
8862 	if (ret) {
8863 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8864 		ufshcd_toggle_vreg(dev, info->vccq, false);
8865 		ufshcd_toggle_vreg(dev, info->vcc, false);
8866 	}
8867 	return ret;
8868 }
8869 
8870 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8871 {
8872 	struct ufs_vreg_info *info = &hba->vreg_info;
8873 
8874 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8875 }
8876 
8877 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8878 {
8879 	int ret = 0;
8880 
8881 	if (!vreg)
8882 		goto out;
8883 
8884 	vreg->reg = devm_regulator_get(dev, vreg->name);
8885 	if (IS_ERR(vreg->reg)) {
8886 		ret = PTR_ERR(vreg->reg);
8887 		dev_err(dev, "%s: %s get failed, err=%d\n",
8888 				__func__, vreg->name, ret);
8889 	}
8890 out:
8891 	return ret;
8892 }
8893 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8894 
8895 static int ufshcd_init_vreg(struct ufs_hba *hba)
8896 {
8897 	int ret = 0;
8898 	struct device *dev = hba->dev;
8899 	struct ufs_vreg_info *info = &hba->vreg_info;
8900 
8901 	ret = ufshcd_get_vreg(dev, info->vcc);
8902 	if (ret)
8903 		goto out;
8904 
8905 	ret = ufshcd_get_vreg(dev, info->vccq);
8906 	if (!ret)
8907 		ret = ufshcd_get_vreg(dev, info->vccq2);
8908 out:
8909 	return ret;
8910 }
8911 
8912 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8913 {
8914 	struct ufs_vreg_info *info = &hba->vreg_info;
8915 
8916 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8917 }
8918 
8919 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8920 {
8921 	int ret = 0;
8922 	struct ufs_clk_info *clki;
8923 	struct list_head *head = &hba->clk_list_head;
8924 	unsigned long flags;
8925 	ktime_t start = ktime_get();
8926 	bool clk_state_changed = false;
8927 
8928 	if (list_empty(head))
8929 		goto out;
8930 
8931 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8932 	if (ret)
8933 		return ret;
8934 
8935 	list_for_each_entry(clki, head, list) {
8936 		if (!IS_ERR_OR_NULL(clki->clk)) {
8937 			/*
8938 			 * Don't disable clocks which are needed
8939 			 * to keep the link active.
8940 			 */
8941 			if (ufshcd_is_link_active(hba) &&
8942 			    clki->keep_link_active)
8943 				continue;
8944 
8945 			clk_state_changed = on ^ clki->enabled;
8946 			if (on && !clki->enabled) {
8947 				ret = clk_prepare_enable(clki->clk);
8948 				if (ret) {
8949 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8950 						__func__, clki->name, ret);
8951 					goto out;
8952 				}
8953 			} else if (!on && clki->enabled) {
8954 				clk_disable_unprepare(clki->clk);
8955 			}
8956 			clki->enabled = on;
8957 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8958 					clki->name, on ? "en" : "dis");
8959 		}
8960 	}
8961 
8962 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8963 	if (ret)
8964 		return ret;
8965 
8966 out:
8967 	if (ret) {
8968 		list_for_each_entry(clki, head, list) {
8969 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8970 				clk_disable_unprepare(clki->clk);
8971 		}
8972 	} else if (!ret && on) {
8973 		spin_lock_irqsave(hba->host->host_lock, flags);
8974 		hba->clk_gating.state = CLKS_ON;
8975 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8976 					hba->clk_gating.state);
8977 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8978 	}
8979 
8980 	if (clk_state_changed)
8981 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8982 			(on ? "on" : "off"),
8983 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8984 	return ret;
8985 }
8986 
8987 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
8988 {
8989 	u32 freq;
8990 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
8991 
8992 	if (ret) {
8993 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
8994 		return REF_CLK_FREQ_INVAL;
8995 	}
8996 
8997 	return ufs_get_bref_clk_from_hz(freq);
8998 }
8999 
9000 static int ufshcd_init_clocks(struct ufs_hba *hba)
9001 {
9002 	int ret = 0;
9003 	struct ufs_clk_info *clki;
9004 	struct device *dev = hba->dev;
9005 	struct list_head *head = &hba->clk_list_head;
9006 
9007 	if (list_empty(head))
9008 		goto out;
9009 
9010 	list_for_each_entry(clki, head, list) {
9011 		if (!clki->name)
9012 			continue;
9013 
9014 		clki->clk = devm_clk_get(dev, clki->name);
9015 		if (IS_ERR(clki->clk)) {
9016 			ret = PTR_ERR(clki->clk);
9017 			dev_err(dev, "%s: %s clk get failed, %d\n",
9018 					__func__, clki->name, ret);
9019 			goto out;
9020 		}
9021 
9022 		/*
9023 		 * Parse device ref clk freq as per device tree "ref_clk".
9024 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9025 		 * in ufshcd_alloc_host().
9026 		 */
9027 		if (!strcmp(clki->name, "ref_clk"))
9028 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9029 
9030 		if (clki->max_freq) {
9031 			ret = clk_set_rate(clki->clk, clki->max_freq);
9032 			if (ret) {
9033 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9034 					__func__, clki->name,
9035 					clki->max_freq, ret);
9036 				goto out;
9037 			}
9038 			clki->curr_freq = clki->max_freq;
9039 		}
9040 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9041 				clki->name, clk_get_rate(clki->clk));
9042 	}
9043 out:
9044 	return ret;
9045 }
9046 
9047 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9048 {
9049 	int err = 0;
9050 
9051 	if (!hba->vops)
9052 		goto out;
9053 
9054 	err = ufshcd_vops_init(hba);
9055 	if (err)
9056 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
9057 			__func__, ufshcd_get_var_name(hba), err);
9058 out:
9059 	return err;
9060 }
9061 
9062 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9063 {
9064 	if (!hba->vops)
9065 		return;
9066 
9067 	ufshcd_vops_exit(hba);
9068 }
9069 
9070 static int ufshcd_hba_init(struct ufs_hba *hba)
9071 {
9072 	int err;
9073 
9074 	/*
9075 	 * Handle host controller power separately from the UFS device power
9076 	 * rails as it will help controlling the UFS host controller power
9077 	 * collapse easily which is different than UFS device power collapse.
9078 	 * Also, enable the host controller power before we go ahead with rest
9079 	 * of the initialization here.
9080 	 */
9081 	err = ufshcd_init_hba_vreg(hba);
9082 	if (err)
9083 		goto out;
9084 
9085 	err = ufshcd_setup_hba_vreg(hba, true);
9086 	if (err)
9087 		goto out;
9088 
9089 	err = ufshcd_init_clocks(hba);
9090 	if (err)
9091 		goto out_disable_hba_vreg;
9092 
9093 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9094 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9095 
9096 	err = ufshcd_setup_clocks(hba, true);
9097 	if (err)
9098 		goto out_disable_hba_vreg;
9099 
9100 	err = ufshcd_init_vreg(hba);
9101 	if (err)
9102 		goto out_disable_clks;
9103 
9104 	err = ufshcd_setup_vreg(hba, true);
9105 	if (err)
9106 		goto out_disable_clks;
9107 
9108 	err = ufshcd_variant_hba_init(hba);
9109 	if (err)
9110 		goto out_disable_vreg;
9111 
9112 	ufs_debugfs_hba_init(hba);
9113 
9114 	hba->is_powered = true;
9115 	goto out;
9116 
9117 out_disable_vreg:
9118 	ufshcd_setup_vreg(hba, false);
9119 out_disable_clks:
9120 	ufshcd_setup_clocks(hba, false);
9121 out_disable_hba_vreg:
9122 	ufshcd_setup_hba_vreg(hba, false);
9123 out:
9124 	return err;
9125 }
9126 
9127 static void ufshcd_hba_exit(struct ufs_hba *hba)
9128 {
9129 	if (hba->is_powered) {
9130 		ufshcd_exit_clk_scaling(hba);
9131 		ufshcd_exit_clk_gating(hba);
9132 		if (hba->eh_wq)
9133 			destroy_workqueue(hba->eh_wq);
9134 		ufs_debugfs_hba_exit(hba);
9135 		ufshcd_variant_hba_exit(hba);
9136 		ufshcd_setup_vreg(hba, false);
9137 		ufshcd_setup_clocks(hba, false);
9138 		ufshcd_setup_hba_vreg(hba, false);
9139 		hba->is_powered = false;
9140 		ufs_put_device_desc(hba);
9141 	}
9142 }
9143 
9144 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9145 				     enum ufs_dev_pwr_mode pwr_mode,
9146 				     struct scsi_sense_hdr *sshdr)
9147 {
9148 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9149 	const struct scsi_exec_args args = {
9150 		.sshdr = sshdr,
9151 		.req_flags = BLK_MQ_REQ_PM,
9152 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9153 	};
9154 
9155 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9156 			/*bufflen=*/0, /*timeout=*/HZ, /*retries=*/0, &args);
9157 }
9158 
9159 /**
9160  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9161  *			     power mode
9162  * @hba: per adapter instance
9163  * @pwr_mode: device power mode to set
9164  *
9165  * Returns 0 if requested power mode is set successfully
9166  * Returns < 0 if failed to set the requested power mode
9167  */
9168 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9169 				     enum ufs_dev_pwr_mode pwr_mode)
9170 {
9171 	struct scsi_sense_hdr sshdr;
9172 	struct scsi_device *sdp;
9173 	unsigned long flags;
9174 	int ret, retries;
9175 
9176 	spin_lock_irqsave(hba->host->host_lock, flags);
9177 	sdp = hba->ufs_device_wlun;
9178 	if (sdp && scsi_device_online(sdp))
9179 		ret = scsi_device_get(sdp);
9180 	else
9181 		ret = -ENODEV;
9182 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9183 
9184 	if (ret)
9185 		return ret;
9186 
9187 	/*
9188 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9189 	 * handling, which would wait for host to be resumed. Since we know
9190 	 * we are functional while we are here, skip host resume in error
9191 	 * handling context.
9192 	 */
9193 	hba->host->eh_noresume = 1;
9194 
9195 	/*
9196 	 * Current function would be generally called from the power management
9197 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9198 	 * already suspended childs.
9199 	 */
9200 	for (retries = 3; retries > 0; --retries) {
9201 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9202 		/*
9203 		 * scsi_execute() only returns a negative value if the request
9204 		 * queue is dying.
9205 		 */
9206 		if (ret <= 0)
9207 			break;
9208 	}
9209 	if (ret) {
9210 		sdev_printk(KERN_WARNING, sdp,
9211 			    "START_STOP failed for power mode: %d, result %x\n",
9212 			    pwr_mode, ret);
9213 		if (ret > 0) {
9214 			if (scsi_sense_valid(&sshdr))
9215 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9216 			ret = -EIO;
9217 		}
9218 	} else {
9219 		hba->curr_dev_pwr_mode = pwr_mode;
9220 	}
9221 
9222 	scsi_device_put(sdp);
9223 	hba->host->eh_noresume = 0;
9224 	return ret;
9225 }
9226 
9227 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9228 					enum uic_link_state req_link_state,
9229 					bool check_for_bkops)
9230 {
9231 	int ret = 0;
9232 
9233 	if (req_link_state == hba->uic_link_state)
9234 		return 0;
9235 
9236 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9237 		ret = ufshcd_uic_hibern8_enter(hba);
9238 		if (!ret) {
9239 			ufshcd_set_link_hibern8(hba);
9240 		} else {
9241 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9242 					__func__, ret);
9243 			goto out;
9244 		}
9245 	}
9246 	/*
9247 	 * If autobkops is enabled, link can't be turned off because
9248 	 * turning off the link would also turn off the device, except in the
9249 	 * case of DeepSleep where the device is expected to remain powered.
9250 	 */
9251 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9252 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9253 		/*
9254 		 * Let's make sure that link is in low power mode, we are doing
9255 		 * this currently by putting the link in Hibern8. Otherway to
9256 		 * put the link in low power mode is to send the DME end point
9257 		 * to device and then send the DME reset command to local
9258 		 * unipro. But putting the link in hibern8 is much faster.
9259 		 *
9260 		 * Note also that putting the link in Hibern8 is a requirement
9261 		 * for entering DeepSleep.
9262 		 */
9263 		ret = ufshcd_uic_hibern8_enter(hba);
9264 		if (ret) {
9265 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9266 					__func__, ret);
9267 			goto out;
9268 		}
9269 		/*
9270 		 * Change controller state to "reset state" which
9271 		 * should also put the link in off/reset state
9272 		 */
9273 		ufshcd_hba_stop(hba);
9274 		/*
9275 		 * TODO: Check if we need any delay to make sure that
9276 		 * controller is reset
9277 		 */
9278 		ufshcd_set_link_off(hba);
9279 	}
9280 
9281 out:
9282 	return ret;
9283 }
9284 
9285 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9286 {
9287 	bool vcc_off = false;
9288 
9289 	/*
9290 	 * It seems some UFS devices may keep drawing more than sleep current
9291 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9292 	 * To avoid this situation, add 2ms delay before putting these UFS
9293 	 * rails in LPM mode.
9294 	 */
9295 	if (!ufshcd_is_link_active(hba) &&
9296 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9297 		usleep_range(2000, 2100);
9298 
9299 	/*
9300 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9301 	 * power.
9302 	 *
9303 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9304 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9305 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9306 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9307 	 *
9308 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9309 	 * in low power state which would save some power.
9310 	 *
9311 	 * If Write Booster is enabled and the device needs to flush the WB
9312 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9313 	 */
9314 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9315 	    !hba->dev_info.is_lu_power_on_wp) {
9316 		ufshcd_setup_vreg(hba, false);
9317 		vcc_off = true;
9318 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9319 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9320 		vcc_off = true;
9321 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9322 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9323 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9324 		}
9325 	}
9326 
9327 	/*
9328 	 * Some UFS devices require delay after VCC power rail is turned-off.
9329 	 */
9330 	if (vcc_off && hba->vreg_info.vcc &&
9331 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9332 		usleep_range(5000, 5100);
9333 }
9334 
9335 #ifdef CONFIG_PM
9336 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9337 {
9338 	int ret = 0;
9339 
9340 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9341 	    !hba->dev_info.is_lu_power_on_wp) {
9342 		ret = ufshcd_setup_vreg(hba, true);
9343 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9344 		if (!ufshcd_is_link_active(hba)) {
9345 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9346 			if (ret)
9347 				goto vcc_disable;
9348 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9349 			if (ret)
9350 				goto vccq_lpm;
9351 		}
9352 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9353 	}
9354 	goto out;
9355 
9356 vccq_lpm:
9357 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9358 vcc_disable:
9359 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9360 out:
9361 	return ret;
9362 }
9363 #endif /* CONFIG_PM */
9364 
9365 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9366 {
9367 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9368 		ufshcd_setup_hba_vreg(hba, false);
9369 }
9370 
9371 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9372 {
9373 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9374 		ufshcd_setup_hba_vreg(hba, true);
9375 }
9376 
9377 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9378 {
9379 	int ret = 0;
9380 	bool check_for_bkops;
9381 	enum ufs_pm_level pm_lvl;
9382 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9383 	enum uic_link_state req_link_state;
9384 
9385 	hba->pm_op_in_progress = true;
9386 	if (pm_op != UFS_SHUTDOWN_PM) {
9387 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9388 			 hba->rpm_lvl : hba->spm_lvl;
9389 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9390 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9391 	} else {
9392 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9393 		req_link_state = UIC_LINK_OFF_STATE;
9394 	}
9395 
9396 	ufshpb_suspend(hba);
9397 
9398 	/*
9399 	 * If we can't transition into any of the low power modes
9400 	 * just gate the clocks.
9401 	 */
9402 	ufshcd_hold(hba, false);
9403 	hba->clk_gating.is_suspended = true;
9404 
9405 	if (ufshcd_is_clkscaling_supported(hba))
9406 		ufshcd_clk_scaling_suspend(hba, true);
9407 
9408 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9409 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9410 		goto vops_suspend;
9411 	}
9412 
9413 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9414 	    (req_link_state == hba->uic_link_state))
9415 		goto enable_scaling;
9416 
9417 	/* UFS device & link must be active before we enter in this function */
9418 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9419 		ret = -EINVAL;
9420 		goto enable_scaling;
9421 	}
9422 
9423 	if (pm_op == UFS_RUNTIME_PM) {
9424 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9425 			/*
9426 			 * The device is idle with no requests in the queue,
9427 			 * allow background operations if bkops status shows
9428 			 * that performance might be impacted.
9429 			 */
9430 			ret = ufshcd_urgent_bkops(hba);
9431 			if (ret)
9432 				goto enable_scaling;
9433 		} else {
9434 			/* make sure that auto bkops is disabled */
9435 			ufshcd_disable_auto_bkops(hba);
9436 		}
9437 		/*
9438 		 * If device needs to do BKOP or WB buffer flush during
9439 		 * Hibern8, keep device power mode as "active power mode"
9440 		 * and VCC supply.
9441 		 */
9442 		hba->dev_info.b_rpm_dev_flush_capable =
9443 			hba->auto_bkops_enabled ||
9444 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9445 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9446 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9447 			ufshcd_wb_need_flush(hba));
9448 	}
9449 
9450 	flush_work(&hba->eeh_work);
9451 
9452 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9453 	if (ret)
9454 		goto enable_scaling;
9455 
9456 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9457 		if (pm_op != UFS_RUNTIME_PM)
9458 			/* ensure that bkops is disabled */
9459 			ufshcd_disable_auto_bkops(hba);
9460 
9461 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9462 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9463 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9464 				/*
9465 				 * If return err in suspend flow, IO will hang.
9466 				 * Trigger error handler and break suspend for
9467 				 * error recovery.
9468 				 */
9469 				ufshcd_force_error_recovery(hba);
9470 				ret = -EBUSY;
9471 			}
9472 			if (ret)
9473 				goto enable_scaling;
9474 		}
9475 	}
9476 
9477 	/*
9478 	 * In the case of DeepSleep, the device is expected to remain powered
9479 	 * with the link off, so do not check for bkops.
9480 	 */
9481 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9482 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9483 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9484 		/*
9485 		 * If return err in suspend flow, IO will hang.
9486 		 * Trigger error handler and break suspend for
9487 		 * error recovery.
9488 		 */
9489 		ufshcd_force_error_recovery(hba);
9490 		ret = -EBUSY;
9491 	}
9492 	if (ret)
9493 		goto set_dev_active;
9494 
9495 vops_suspend:
9496 	/*
9497 	 * Call vendor specific suspend callback. As these callbacks may access
9498 	 * vendor specific host controller register space call them before the
9499 	 * host clocks are ON.
9500 	 */
9501 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9502 	if (ret)
9503 		goto set_link_active;
9504 	goto out;
9505 
9506 set_link_active:
9507 	/*
9508 	 * Device hardware reset is required to exit DeepSleep. Also, for
9509 	 * DeepSleep, the link is off so host reset and restore will be done
9510 	 * further below.
9511 	 */
9512 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9513 		ufshcd_device_reset(hba);
9514 		WARN_ON(!ufshcd_is_link_off(hba));
9515 	}
9516 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9517 		ufshcd_set_link_active(hba);
9518 	else if (ufshcd_is_link_off(hba))
9519 		ufshcd_host_reset_and_restore(hba);
9520 set_dev_active:
9521 	/* Can also get here needing to exit DeepSleep */
9522 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9523 		ufshcd_device_reset(hba);
9524 		ufshcd_host_reset_and_restore(hba);
9525 	}
9526 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9527 		ufshcd_disable_auto_bkops(hba);
9528 enable_scaling:
9529 	if (ufshcd_is_clkscaling_supported(hba))
9530 		ufshcd_clk_scaling_suspend(hba, false);
9531 
9532 	hba->dev_info.b_rpm_dev_flush_capable = false;
9533 out:
9534 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9535 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9536 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9537 	}
9538 
9539 	if (ret) {
9540 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9541 		hba->clk_gating.is_suspended = false;
9542 		ufshcd_release(hba);
9543 		ufshpb_resume(hba);
9544 	}
9545 	hba->pm_op_in_progress = false;
9546 	return ret;
9547 }
9548 
9549 #ifdef CONFIG_PM
9550 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9551 {
9552 	int ret;
9553 	enum uic_link_state old_link_state = hba->uic_link_state;
9554 
9555 	hba->pm_op_in_progress = true;
9556 
9557 	/*
9558 	 * Call vendor specific resume callback. As these callbacks may access
9559 	 * vendor specific host controller register space call them when the
9560 	 * host clocks are ON.
9561 	 */
9562 	ret = ufshcd_vops_resume(hba, pm_op);
9563 	if (ret)
9564 		goto out;
9565 
9566 	/* For DeepSleep, the only supported option is to have the link off */
9567 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9568 
9569 	if (ufshcd_is_link_hibern8(hba)) {
9570 		ret = ufshcd_uic_hibern8_exit(hba);
9571 		if (!ret) {
9572 			ufshcd_set_link_active(hba);
9573 		} else {
9574 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9575 					__func__, ret);
9576 			goto vendor_suspend;
9577 		}
9578 	} else if (ufshcd_is_link_off(hba)) {
9579 		/*
9580 		 * A full initialization of the host and the device is
9581 		 * required since the link was put to off during suspend.
9582 		 * Note, in the case of DeepSleep, the device will exit
9583 		 * DeepSleep due to device reset.
9584 		 */
9585 		ret = ufshcd_reset_and_restore(hba);
9586 		/*
9587 		 * ufshcd_reset_and_restore() should have already
9588 		 * set the link state as active
9589 		 */
9590 		if (ret || !ufshcd_is_link_active(hba))
9591 			goto vendor_suspend;
9592 	}
9593 
9594 	if (!ufshcd_is_ufs_dev_active(hba)) {
9595 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9596 		if (ret)
9597 			goto set_old_link_state;
9598 	}
9599 
9600 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9601 		ufshcd_enable_auto_bkops(hba);
9602 	else
9603 		/*
9604 		 * If BKOPs operations are urgently needed at this moment then
9605 		 * keep auto-bkops enabled or else disable it.
9606 		 */
9607 		ufshcd_urgent_bkops(hba);
9608 
9609 	if (hba->ee_usr_mask)
9610 		ufshcd_write_ee_control(hba);
9611 
9612 	if (ufshcd_is_clkscaling_supported(hba))
9613 		ufshcd_clk_scaling_suspend(hba, false);
9614 
9615 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9616 		hba->dev_info.b_rpm_dev_flush_capable = false;
9617 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9618 	}
9619 
9620 	/* Enable Auto-Hibernate if configured */
9621 	ufshcd_auto_hibern8_enable(hba);
9622 
9623 	ufshpb_resume(hba);
9624 	goto out;
9625 
9626 set_old_link_state:
9627 	ufshcd_link_state_transition(hba, old_link_state, 0);
9628 vendor_suspend:
9629 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9630 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9631 out:
9632 	if (ret)
9633 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9634 	hba->clk_gating.is_suspended = false;
9635 	ufshcd_release(hba);
9636 	hba->pm_op_in_progress = false;
9637 	return ret;
9638 }
9639 
9640 static int ufshcd_wl_runtime_suspend(struct device *dev)
9641 {
9642 	struct scsi_device *sdev = to_scsi_device(dev);
9643 	struct ufs_hba *hba;
9644 	int ret;
9645 	ktime_t start = ktime_get();
9646 
9647 	hba = shost_priv(sdev->host);
9648 
9649 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9650 	if (ret)
9651 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9652 
9653 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9654 		ktime_to_us(ktime_sub(ktime_get(), start)),
9655 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9656 
9657 	return ret;
9658 }
9659 
9660 static int ufshcd_wl_runtime_resume(struct device *dev)
9661 {
9662 	struct scsi_device *sdev = to_scsi_device(dev);
9663 	struct ufs_hba *hba;
9664 	int ret = 0;
9665 	ktime_t start = ktime_get();
9666 
9667 	hba = shost_priv(sdev->host);
9668 
9669 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9670 	if (ret)
9671 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9672 
9673 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9674 		ktime_to_us(ktime_sub(ktime_get(), start)),
9675 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9676 
9677 	return ret;
9678 }
9679 #endif
9680 
9681 #ifdef CONFIG_PM_SLEEP
9682 static int ufshcd_wl_suspend(struct device *dev)
9683 {
9684 	struct scsi_device *sdev = to_scsi_device(dev);
9685 	struct ufs_hba *hba;
9686 	int ret = 0;
9687 	ktime_t start = ktime_get();
9688 
9689 	hba = shost_priv(sdev->host);
9690 	down(&hba->host_sem);
9691 	hba->system_suspending = true;
9692 
9693 	if (pm_runtime_suspended(dev))
9694 		goto out;
9695 
9696 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9697 	if (ret) {
9698 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9699 		up(&hba->host_sem);
9700 	}
9701 
9702 out:
9703 	if (!ret)
9704 		hba->is_sys_suspended = true;
9705 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9706 		ktime_to_us(ktime_sub(ktime_get(), start)),
9707 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9708 
9709 	return ret;
9710 }
9711 
9712 static int ufshcd_wl_resume(struct device *dev)
9713 {
9714 	struct scsi_device *sdev = to_scsi_device(dev);
9715 	struct ufs_hba *hba;
9716 	int ret = 0;
9717 	ktime_t start = ktime_get();
9718 
9719 	hba = shost_priv(sdev->host);
9720 
9721 	if (pm_runtime_suspended(dev))
9722 		goto out;
9723 
9724 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9725 	if (ret)
9726 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9727 out:
9728 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9729 		ktime_to_us(ktime_sub(ktime_get(), start)),
9730 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9731 	if (!ret)
9732 		hba->is_sys_suspended = false;
9733 	hba->system_suspending = false;
9734 	up(&hba->host_sem);
9735 	return ret;
9736 }
9737 #endif
9738 
9739 static void ufshcd_wl_shutdown(struct device *dev)
9740 {
9741 	struct scsi_device *sdev = to_scsi_device(dev);
9742 	struct ufs_hba *hba;
9743 
9744 	hba = shost_priv(sdev->host);
9745 
9746 	down(&hba->host_sem);
9747 	hba->shutting_down = true;
9748 	up(&hba->host_sem);
9749 
9750 	/* Turn on everything while shutting down */
9751 	ufshcd_rpm_get_sync(hba);
9752 	scsi_device_quiesce(sdev);
9753 	shost_for_each_device(sdev, hba->host) {
9754 		if (sdev == hba->ufs_device_wlun)
9755 			continue;
9756 		scsi_device_quiesce(sdev);
9757 	}
9758 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9759 }
9760 
9761 /**
9762  * ufshcd_suspend - helper function for suspend operations
9763  * @hba: per adapter instance
9764  *
9765  * This function will put disable irqs, turn off clocks
9766  * and set vreg and hba-vreg in lpm mode.
9767  */
9768 static int ufshcd_suspend(struct ufs_hba *hba)
9769 {
9770 	int ret;
9771 
9772 	if (!hba->is_powered)
9773 		return 0;
9774 	/*
9775 	 * Disable the host irq as host controller as there won't be any
9776 	 * host controller transaction expected till resume.
9777 	 */
9778 	ufshcd_disable_irq(hba);
9779 	ret = ufshcd_setup_clocks(hba, false);
9780 	if (ret) {
9781 		ufshcd_enable_irq(hba);
9782 		return ret;
9783 	}
9784 	if (ufshcd_is_clkgating_allowed(hba)) {
9785 		hba->clk_gating.state = CLKS_OFF;
9786 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9787 					hba->clk_gating.state);
9788 	}
9789 
9790 	ufshcd_vreg_set_lpm(hba);
9791 	/* Put the host controller in low power mode if possible */
9792 	ufshcd_hba_vreg_set_lpm(hba);
9793 	return ret;
9794 }
9795 
9796 #ifdef CONFIG_PM
9797 /**
9798  * ufshcd_resume - helper function for resume operations
9799  * @hba: per adapter instance
9800  *
9801  * This function basically turns on the regulators, clocks and
9802  * irqs of the hba.
9803  *
9804  * Returns 0 for success and non-zero for failure
9805  */
9806 static int ufshcd_resume(struct ufs_hba *hba)
9807 {
9808 	int ret;
9809 
9810 	if (!hba->is_powered)
9811 		return 0;
9812 
9813 	ufshcd_hba_vreg_set_hpm(hba);
9814 	ret = ufshcd_vreg_set_hpm(hba);
9815 	if (ret)
9816 		goto out;
9817 
9818 	/* Make sure clocks are enabled before accessing controller */
9819 	ret = ufshcd_setup_clocks(hba, true);
9820 	if (ret)
9821 		goto disable_vreg;
9822 
9823 	/* enable the host irq as host controller would be active soon */
9824 	ufshcd_enable_irq(hba);
9825 
9826 	goto out;
9827 
9828 disable_vreg:
9829 	ufshcd_vreg_set_lpm(hba);
9830 out:
9831 	if (ret)
9832 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9833 	return ret;
9834 }
9835 #endif /* CONFIG_PM */
9836 
9837 #ifdef CONFIG_PM_SLEEP
9838 /**
9839  * ufshcd_system_suspend - system suspend callback
9840  * @dev: Device associated with the UFS controller.
9841  *
9842  * Executed before putting the system into a sleep state in which the contents
9843  * of main memory are preserved.
9844  *
9845  * Returns 0 for success and non-zero for failure
9846  */
9847 int ufshcd_system_suspend(struct device *dev)
9848 {
9849 	struct ufs_hba *hba = dev_get_drvdata(dev);
9850 	int ret = 0;
9851 	ktime_t start = ktime_get();
9852 
9853 	if (pm_runtime_suspended(hba->dev))
9854 		goto out;
9855 
9856 	ret = ufshcd_suspend(hba);
9857 out:
9858 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9859 		ktime_to_us(ktime_sub(ktime_get(), start)),
9860 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9861 	return ret;
9862 }
9863 EXPORT_SYMBOL(ufshcd_system_suspend);
9864 
9865 /**
9866  * ufshcd_system_resume - system resume callback
9867  * @dev: Device associated with the UFS controller.
9868  *
9869  * Executed after waking the system up from a sleep state in which the contents
9870  * of main memory were preserved.
9871  *
9872  * Returns 0 for success and non-zero for failure
9873  */
9874 int ufshcd_system_resume(struct device *dev)
9875 {
9876 	struct ufs_hba *hba = dev_get_drvdata(dev);
9877 	ktime_t start = ktime_get();
9878 	int ret = 0;
9879 
9880 	if (pm_runtime_suspended(hba->dev))
9881 		goto out;
9882 
9883 	ret = ufshcd_resume(hba);
9884 
9885 out:
9886 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9887 		ktime_to_us(ktime_sub(ktime_get(), start)),
9888 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9889 
9890 	return ret;
9891 }
9892 EXPORT_SYMBOL(ufshcd_system_resume);
9893 #endif /* CONFIG_PM_SLEEP */
9894 
9895 #ifdef CONFIG_PM
9896 /**
9897  * ufshcd_runtime_suspend - runtime suspend callback
9898  * @dev: Device associated with the UFS controller.
9899  *
9900  * Check the description of ufshcd_suspend() function for more details.
9901  *
9902  * Returns 0 for success and non-zero for failure
9903  */
9904 int ufshcd_runtime_suspend(struct device *dev)
9905 {
9906 	struct ufs_hba *hba = dev_get_drvdata(dev);
9907 	int ret;
9908 	ktime_t start = ktime_get();
9909 
9910 	ret = ufshcd_suspend(hba);
9911 
9912 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9913 		ktime_to_us(ktime_sub(ktime_get(), start)),
9914 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9915 	return ret;
9916 }
9917 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9918 
9919 /**
9920  * ufshcd_runtime_resume - runtime resume routine
9921  * @dev: Device associated with the UFS controller.
9922  *
9923  * This function basically brings controller
9924  * to active state. Following operations are done in this function:
9925  *
9926  * 1. Turn on all the controller related clocks
9927  * 2. Turn ON VCC rail
9928  */
9929 int ufshcd_runtime_resume(struct device *dev)
9930 {
9931 	struct ufs_hba *hba = dev_get_drvdata(dev);
9932 	int ret;
9933 	ktime_t start = ktime_get();
9934 
9935 	ret = ufshcd_resume(hba);
9936 
9937 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9938 		ktime_to_us(ktime_sub(ktime_get(), start)),
9939 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9940 	return ret;
9941 }
9942 EXPORT_SYMBOL(ufshcd_runtime_resume);
9943 #endif /* CONFIG_PM */
9944 
9945 /**
9946  * ufshcd_shutdown - shutdown routine
9947  * @hba: per adapter instance
9948  *
9949  * This function would turn off both UFS device and UFS hba
9950  * regulators. It would also disable clocks.
9951  *
9952  * Returns 0 always to allow force shutdown even in case of errors.
9953  */
9954 int ufshcd_shutdown(struct ufs_hba *hba)
9955 {
9956 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9957 		ufshcd_suspend(hba);
9958 
9959 	hba->is_powered = false;
9960 	/* allow force shutdown even in case of errors */
9961 	return 0;
9962 }
9963 EXPORT_SYMBOL(ufshcd_shutdown);
9964 
9965 /**
9966  * ufshcd_remove - de-allocate SCSI host and host memory space
9967  *		data structure memory
9968  * @hba: per adapter instance
9969  */
9970 void ufshcd_remove(struct ufs_hba *hba)
9971 {
9972 	if (hba->ufs_device_wlun)
9973 		ufshcd_rpm_get_sync(hba);
9974 	ufs_hwmon_remove(hba);
9975 	ufs_bsg_remove(hba);
9976 	ufshpb_remove(hba);
9977 	ufs_sysfs_remove_nodes(hba->dev);
9978 	blk_mq_destroy_queue(hba->tmf_queue);
9979 	blk_put_queue(hba->tmf_queue);
9980 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9981 	scsi_remove_host(hba->host);
9982 	/* disable interrupts */
9983 	ufshcd_disable_intr(hba, hba->intr_mask);
9984 	ufshcd_hba_stop(hba);
9985 	ufshcd_hba_exit(hba);
9986 }
9987 EXPORT_SYMBOL_GPL(ufshcd_remove);
9988 
9989 #ifdef CONFIG_PM_SLEEP
9990 int ufshcd_system_freeze(struct device *dev)
9991 {
9992 
9993 	return ufshcd_system_suspend(dev);
9994 
9995 }
9996 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
9997 
9998 int ufshcd_system_restore(struct device *dev)
9999 {
10000 
10001 	struct ufs_hba *hba = dev_get_drvdata(dev);
10002 	int ret;
10003 
10004 	ret = ufshcd_system_resume(dev);
10005 	if (ret)
10006 		return ret;
10007 
10008 	/* Configure UTRL and UTMRL base address registers */
10009 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10010 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10011 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10012 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10013 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10014 			REG_UTP_TASK_REQ_LIST_BASE_L);
10015 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10016 			REG_UTP_TASK_REQ_LIST_BASE_H);
10017 	/*
10018 	 * Make sure that UTRL and UTMRL base address registers
10019 	 * are updated with the latest queue addresses. Only after
10020 	 * updating these addresses, we can queue the new commands.
10021 	 */
10022 	mb();
10023 
10024 	/* Resuming from hibernate, assume that link was OFF */
10025 	ufshcd_set_link_off(hba);
10026 
10027 	return 0;
10028 
10029 }
10030 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10031 
10032 int ufshcd_system_thaw(struct device *dev)
10033 {
10034 	return ufshcd_system_resume(dev);
10035 }
10036 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10037 #endif /* CONFIG_PM_SLEEP  */
10038 
10039 /**
10040  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10041  * @hba: pointer to Host Bus Adapter (HBA)
10042  */
10043 void ufshcd_dealloc_host(struct ufs_hba *hba)
10044 {
10045 	scsi_host_put(hba->host);
10046 }
10047 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10048 
10049 /**
10050  * ufshcd_set_dma_mask - Set dma mask based on the controller
10051  *			 addressing capability
10052  * @hba: per adapter instance
10053  *
10054  * Returns 0 for success, non-zero for failure
10055  */
10056 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10057 {
10058 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10059 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10060 			return 0;
10061 	}
10062 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10063 }
10064 
10065 /**
10066  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10067  * @dev: pointer to device handle
10068  * @hba_handle: driver private handle
10069  * Returns 0 on success, non-zero value on failure
10070  */
10071 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10072 {
10073 	struct Scsi_Host *host;
10074 	struct ufs_hba *hba;
10075 	int err = 0;
10076 
10077 	if (!dev) {
10078 		dev_err(dev,
10079 		"Invalid memory reference for dev is NULL\n");
10080 		err = -ENODEV;
10081 		goto out_error;
10082 	}
10083 
10084 	host = scsi_host_alloc(&ufshcd_driver_template,
10085 				sizeof(struct ufs_hba));
10086 	if (!host) {
10087 		dev_err(dev, "scsi_host_alloc failed\n");
10088 		err = -ENOMEM;
10089 		goto out_error;
10090 	}
10091 	host->nr_maps = HCTX_TYPE_POLL + 1;
10092 	hba = shost_priv(host);
10093 	hba->host = host;
10094 	hba->dev = dev;
10095 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10096 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10097 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10098 	INIT_LIST_HEAD(&hba->clk_list_head);
10099 	spin_lock_init(&hba->outstanding_lock);
10100 
10101 	*hba_handle = hba;
10102 
10103 out_error:
10104 	return err;
10105 }
10106 EXPORT_SYMBOL(ufshcd_alloc_host);
10107 
10108 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10109 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10110 				     const struct blk_mq_queue_data *qd)
10111 {
10112 	WARN_ON_ONCE(true);
10113 	return BLK_STS_NOTSUPP;
10114 }
10115 
10116 static const struct blk_mq_ops ufshcd_tmf_ops = {
10117 	.queue_rq = ufshcd_queue_tmf,
10118 };
10119 
10120 /**
10121  * ufshcd_init - Driver initialization routine
10122  * @hba: per-adapter instance
10123  * @mmio_base: base register address
10124  * @irq: Interrupt line of device
10125  * Returns 0 on success, non-zero value on failure
10126  */
10127 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10128 {
10129 	int err;
10130 	struct Scsi_Host *host = hba->host;
10131 	struct device *dev = hba->dev;
10132 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10133 
10134 	/*
10135 	 * dev_set_drvdata() must be called before any callbacks are registered
10136 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10137 	 * sysfs).
10138 	 */
10139 	dev_set_drvdata(dev, hba);
10140 
10141 	if (!mmio_base) {
10142 		dev_err(hba->dev,
10143 		"Invalid memory reference for mmio_base is NULL\n");
10144 		err = -ENODEV;
10145 		goto out_error;
10146 	}
10147 
10148 	hba->mmio_base = mmio_base;
10149 	hba->irq = irq;
10150 	hba->vps = &ufs_hba_vps;
10151 
10152 	err = ufshcd_hba_init(hba);
10153 	if (err)
10154 		goto out_error;
10155 
10156 	/* Read capabilities registers */
10157 	err = ufshcd_hba_capabilities(hba);
10158 	if (err)
10159 		goto out_disable;
10160 
10161 	/* Get UFS version supported by the controller */
10162 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10163 
10164 	/* Get Interrupt bit mask per version */
10165 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10166 
10167 	err = ufshcd_set_dma_mask(hba);
10168 	if (err) {
10169 		dev_err(hba->dev, "set dma mask failed\n");
10170 		goto out_disable;
10171 	}
10172 
10173 	/* Allocate memory for host memory space */
10174 	err = ufshcd_memory_alloc(hba);
10175 	if (err) {
10176 		dev_err(hba->dev, "Memory allocation failed\n");
10177 		goto out_disable;
10178 	}
10179 
10180 	/* Configure LRB */
10181 	ufshcd_host_memory_configure(hba);
10182 
10183 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10184 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10185 	host->max_id = UFSHCD_MAX_ID;
10186 	host->max_lun = UFS_MAX_LUNS;
10187 	host->max_channel = UFSHCD_MAX_CHANNEL;
10188 	host->unique_id = host->host_no;
10189 	host->max_cmd_len = UFS_CDB_SIZE;
10190 
10191 	hba->max_pwr_info.is_valid = false;
10192 
10193 	/* Initialize work queues */
10194 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10195 		 hba->host->host_no);
10196 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10197 	if (!hba->eh_wq) {
10198 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10199 			__func__);
10200 		err = -ENOMEM;
10201 		goto out_disable;
10202 	}
10203 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10204 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10205 
10206 	sema_init(&hba->host_sem, 1);
10207 
10208 	/* Initialize UIC command mutex */
10209 	mutex_init(&hba->uic_cmd_mutex);
10210 
10211 	/* Initialize mutex for device management commands */
10212 	mutex_init(&hba->dev_cmd.lock);
10213 
10214 	/* Initialize mutex for exception event control */
10215 	mutex_init(&hba->ee_ctrl_mutex);
10216 
10217 	mutex_init(&hba->wb_mutex);
10218 	init_rwsem(&hba->clk_scaling_lock);
10219 
10220 	ufshcd_init_clk_gating(hba);
10221 
10222 	ufshcd_init_clk_scaling(hba);
10223 
10224 	/*
10225 	 * In order to avoid any spurious interrupt immediately after
10226 	 * registering UFS controller interrupt handler, clear any pending UFS
10227 	 * interrupt status and disable all the UFS interrupts.
10228 	 */
10229 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10230 		      REG_INTERRUPT_STATUS);
10231 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10232 	/*
10233 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10234 	 * status is cleared before registering UFS interrupt handler.
10235 	 */
10236 	mb();
10237 
10238 	/* IRQ registration */
10239 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10240 	if (err) {
10241 		dev_err(hba->dev, "request irq failed\n");
10242 		goto out_disable;
10243 	} else {
10244 		hba->is_irq_enabled = true;
10245 	}
10246 
10247 	if (!is_mcq_supported(hba)) {
10248 		err = scsi_add_host(host, hba->dev);
10249 		if (err) {
10250 			dev_err(hba->dev, "scsi_add_host failed\n");
10251 			goto out_disable;
10252 		}
10253 	}
10254 
10255 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10256 		.nr_hw_queues	= 1,
10257 		.queue_depth	= hba->nutmrs,
10258 		.ops		= &ufshcd_tmf_ops,
10259 		.flags		= BLK_MQ_F_NO_SCHED,
10260 	};
10261 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10262 	if (err < 0)
10263 		goto out_remove_scsi_host;
10264 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10265 	if (IS_ERR(hba->tmf_queue)) {
10266 		err = PTR_ERR(hba->tmf_queue);
10267 		goto free_tmf_tag_set;
10268 	}
10269 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10270 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10271 	if (!hba->tmf_rqs) {
10272 		err = -ENOMEM;
10273 		goto free_tmf_queue;
10274 	}
10275 
10276 	/* Reset the attached device */
10277 	ufshcd_device_reset(hba);
10278 
10279 	ufshcd_init_crypto(hba);
10280 
10281 	/* Host controller enable */
10282 	err = ufshcd_hba_enable(hba);
10283 	if (err) {
10284 		dev_err(hba->dev, "Host controller enable failed\n");
10285 		ufshcd_print_evt_hist(hba);
10286 		ufshcd_print_host_state(hba);
10287 		goto free_tmf_queue;
10288 	}
10289 
10290 	/*
10291 	 * Set the default power management level for runtime and system PM.
10292 	 * Default power saving mode is to keep UFS link in Hibern8 state
10293 	 * and UFS device in sleep state.
10294 	 */
10295 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10296 						UFS_SLEEP_PWR_MODE,
10297 						UIC_LINK_HIBERN8_STATE);
10298 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10299 						UFS_SLEEP_PWR_MODE,
10300 						UIC_LINK_HIBERN8_STATE);
10301 
10302 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10303 			  ufshcd_rpm_dev_flush_recheck_work);
10304 
10305 	/* Set the default auto-hiberate idle timer value to 150 ms */
10306 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10307 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10308 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10309 	}
10310 
10311 	/* Hold auto suspend until async scan completes */
10312 	pm_runtime_get_sync(dev);
10313 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10314 	/*
10315 	 * We are assuming that device wasn't put in sleep/power-down
10316 	 * state exclusively during the boot stage before kernel.
10317 	 * This assumption helps avoid doing link startup twice during
10318 	 * ufshcd_probe_hba().
10319 	 */
10320 	ufshcd_set_ufs_dev_active(hba);
10321 
10322 	async_schedule(ufshcd_async_scan, hba);
10323 	ufs_sysfs_add_nodes(hba->dev);
10324 
10325 	device_enable_async_suspend(dev);
10326 	return 0;
10327 
10328 free_tmf_queue:
10329 	blk_mq_destroy_queue(hba->tmf_queue);
10330 	blk_put_queue(hba->tmf_queue);
10331 free_tmf_tag_set:
10332 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10333 out_remove_scsi_host:
10334 	scsi_remove_host(hba->host);
10335 out_disable:
10336 	hba->is_irq_enabled = false;
10337 	ufshcd_hba_exit(hba);
10338 out_error:
10339 	return err;
10340 }
10341 EXPORT_SYMBOL_GPL(ufshcd_init);
10342 
10343 void ufshcd_resume_complete(struct device *dev)
10344 {
10345 	struct ufs_hba *hba = dev_get_drvdata(dev);
10346 
10347 	if (hba->complete_put) {
10348 		ufshcd_rpm_put(hba);
10349 		hba->complete_put = false;
10350 	}
10351 }
10352 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10353 
10354 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10355 {
10356 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10357 	enum ufs_dev_pwr_mode dev_pwr_mode;
10358 	enum uic_link_state link_state;
10359 	unsigned long flags;
10360 	bool res;
10361 
10362 	spin_lock_irqsave(&dev->power.lock, flags);
10363 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10364 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10365 	res = pm_runtime_suspended(dev) &&
10366 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10367 	      hba->uic_link_state == link_state &&
10368 	      !hba->dev_info.b_rpm_dev_flush_capable;
10369 	spin_unlock_irqrestore(&dev->power.lock, flags);
10370 
10371 	return res;
10372 }
10373 
10374 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10375 {
10376 	struct ufs_hba *hba = dev_get_drvdata(dev);
10377 	int ret;
10378 
10379 	/*
10380 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10381 	 * are same. And it doesn't wake up the device for system-suspend
10382 	 * if it's runtime suspended. But ufs doesn't follow that.
10383 	 * Refer ufshcd_resume_complete()
10384 	 */
10385 	if (hba->ufs_device_wlun) {
10386 		/* Prevent runtime suspend */
10387 		ufshcd_rpm_get_noresume(hba);
10388 		/*
10389 		 * Check if already runtime suspended in same state as system
10390 		 * suspend would be.
10391 		 */
10392 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10393 			/* RPM state is not ok for SPM, so runtime resume */
10394 			ret = ufshcd_rpm_resume(hba);
10395 			if (ret < 0 && ret != -EACCES) {
10396 				ufshcd_rpm_put(hba);
10397 				return ret;
10398 			}
10399 		}
10400 		hba->complete_put = true;
10401 	}
10402 	return 0;
10403 }
10404 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10405 
10406 int ufshcd_suspend_prepare(struct device *dev)
10407 {
10408 	return __ufshcd_suspend_prepare(dev, true);
10409 }
10410 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10411 
10412 #ifdef CONFIG_PM_SLEEP
10413 static int ufshcd_wl_poweroff(struct device *dev)
10414 {
10415 	struct scsi_device *sdev = to_scsi_device(dev);
10416 	struct ufs_hba *hba = shost_priv(sdev->host);
10417 
10418 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10419 	return 0;
10420 }
10421 #endif
10422 
10423 static int ufshcd_wl_probe(struct device *dev)
10424 {
10425 	struct scsi_device *sdev = to_scsi_device(dev);
10426 
10427 	if (!is_device_wlun(sdev))
10428 		return -ENODEV;
10429 
10430 	blk_pm_runtime_init(sdev->request_queue, dev);
10431 	pm_runtime_set_autosuspend_delay(dev, 0);
10432 	pm_runtime_allow(dev);
10433 
10434 	return  0;
10435 }
10436 
10437 static int ufshcd_wl_remove(struct device *dev)
10438 {
10439 	pm_runtime_forbid(dev);
10440 	return 0;
10441 }
10442 
10443 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10444 #ifdef CONFIG_PM_SLEEP
10445 	.suspend = ufshcd_wl_suspend,
10446 	.resume = ufshcd_wl_resume,
10447 	.freeze = ufshcd_wl_suspend,
10448 	.thaw = ufshcd_wl_resume,
10449 	.poweroff = ufshcd_wl_poweroff,
10450 	.restore = ufshcd_wl_resume,
10451 #endif
10452 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10453 };
10454 
10455 /*
10456  * ufs_dev_wlun_template - describes ufs device wlun
10457  * ufs-device wlun - used to send pm commands
10458  * All luns are consumers of ufs-device wlun.
10459  *
10460  * Currently, no sd driver is present for wluns.
10461  * Hence the no specific pm operations are performed.
10462  * With ufs design, SSU should be sent to ufs-device wlun.
10463  * Hence register a scsi driver for ufs wluns only.
10464  */
10465 static struct scsi_driver ufs_dev_wlun_template = {
10466 	.gendrv = {
10467 		.name = "ufs_device_wlun",
10468 		.owner = THIS_MODULE,
10469 		.probe = ufshcd_wl_probe,
10470 		.remove = ufshcd_wl_remove,
10471 		.pm = &ufshcd_wl_pm_ops,
10472 		.shutdown = ufshcd_wl_shutdown,
10473 	},
10474 };
10475 
10476 static int __init ufshcd_core_init(void)
10477 {
10478 	int ret;
10479 
10480 	ufs_debugfs_init();
10481 
10482 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10483 	if (ret)
10484 		ufs_debugfs_exit();
10485 	return ret;
10486 }
10487 
10488 static void __exit ufshcd_core_exit(void)
10489 {
10490 	ufs_debugfs_exit();
10491 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10492 }
10493 
10494 module_init(ufshcd_core_init);
10495 module_exit(ufshcd_core_exit);
10496 
10497 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10498 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10499 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10500 MODULE_SOFTDEP("pre: governor_simpleondemand");
10501 MODULE_LICENSE("GPL");
10502