xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 177fe2a7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 	  .model = UFS_ANY_MODEL,
244 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 	  .model = UFS_ANY_MODEL,
249 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 	  .model = "hB8aL1" /*H28U62301AMR*/,
252 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 	  .model = "THGLF2G9C8KBADG",
258 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 	  .model = "THGLF2G9D8KBADG",
261 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 	{}
263 };
264 
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 			     struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 					 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 						 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290 
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 	if (!hba->is_irq_enabled) {
294 		enable_irq(hba->irq);
295 		hba->is_irq_enabled = true;
296 	}
297 }
298 
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 	if (hba->is_irq_enabled) {
302 		disable_irq(hba->irq);
303 		hba->is_irq_enabled = false;
304 	}
305 }
306 
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 	if (!ufshcd_is_wb_allowed(hba))
310 		return;
311 
312 	ufshcd_wb_toggle(hba, true);
313 
314 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315 
316 	if (ufshcd_is_wb_buf_flush_allowed(hba))
317 		ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319 
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 		scsi_unblock_requests(hba->host);
324 }
325 
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 		scsi_block_requests(hba->host);
330 }
331 
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 				      enum ufs_trace_str_t str_t)
334 {
335 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 	struct utp_upiu_header *header;
337 
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	if (str_t == UFS_CMD_SEND)
342 		header = &rq->header;
343 	else
344 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345 
346 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 			  UFS_TSF_CDB);
348 }
349 
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 					enum ufs_trace_str_t str_t,
352 					struct utp_upiu_req *rq_rsp)
353 {
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 			  &rq_rsp->qr, UFS_TSF_OSF);
359 }
360 
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 				     enum ufs_trace_str_t str_t)
363 {
364 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365 
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	if (str_t == UFS_TM_SEND)
370 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 				  &descp->upiu_req.req_header,
372 				  &descp->upiu_req.input_param1,
373 				  UFS_TSF_TM_INPUT);
374 	else
375 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 				  &descp->upiu_rsp.rsp_header,
377 				  &descp->upiu_rsp.output_param1,
378 				  UFS_TSF_TM_OUTPUT);
379 }
380 
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 					 const struct uic_command *ucmd,
383 					 enum ufs_trace_str_t str_t)
384 {
385 	u32 cmd;
386 
387 	if (!trace_ufshcd_uic_command_enabled())
388 		return;
389 
390 	if (str_t == UFS_CMD_SEND)
391 		cmd = ucmd->command;
392 	else
393 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394 
395 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400 
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 				     enum ufs_trace_str_t str_t)
403 {
404 	u64 lba = 0;
405 	u8 opcode = 0, group_id = 0;
406 	u32 doorbell = 0;
407 	u32 intr;
408 	int hwq_id = -1;
409 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 	struct scsi_cmnd *cmd = lrbp->cmd;
411 	struct request *rq = scsi_cmd_to_rq(cmd);
412 	int transfer_len = -1;
413 
414 	if (!cmd)
415 		return;
416 
417 	/* trace UPIU also */
418 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 	if (!trace_ufshcd_command_enabled())
420 		return;
421 
422 	opcode = cmd->cmnd[0];
423 
424 	if (opcode == READ_10 || opcode == WRITE_10) {
425 		/*
426 		 * Currently we only fully trace read(10) and write(10) commands
427 		 */
428 		transfer_len =
429 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 		lba = scsi_get_lba(cmd);
431 		if (opcode == WRITE_10)
432 			group_id = lrbp->cmd->cmnd[6];
433 	} else if (opcode == UNMAP) {
434 		/*
435 		 * The number of Bytes to be unmapped beginning with the lba.
436 		 */
437 		transfer_len = blk_rq_bytes(rq);
438 		lba = scsi_get_lba(cmd);
439 	}
440 
441 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442 
443 	if (is_mcq_enabled(hba)) {
444 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445 
446 		hwq_id = hwq->id;
447 	} else {
448 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 	}
450 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453 
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 	struct ufs_clk_info *clki;
457 	struct list_head *head = &hba->clk_list_head;
458 
459 	if (list_empty(head))
460 		return;
461 
462 	list_for_each_entry(clki, head, list) {
463 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 				clki->max_freq)
465 			dev_err(hba->dev, "clk: %s, rate: %u\n",
466 					clki->name, clki->curr_freq);
467 	}
468 }
469 
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 			     const char *err_name)
472 {
473 	int i;
474 	bool found = false;
475 	const struct ufs_event_hist *e;
476 
477 	if (id >= UFS_EVT_CNT)
478 		return;
479 
480 	e = &hba->ufs_stats.event[id];
481 
482 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484 
485 		if (e->tstamp[p] == 0)
486 			continue;
487 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 			e->val[p], div_u64(e->tstamp[p], 1000));
489 		found = true;
490 	}
491 
492 	if (!found)
493 		dev_err(hba->dev, "No record of %s\n", err_name);
494 	else
495 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497 
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501 
502 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 			 "auto_hibern8_err");
509 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 			 "link_startup_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 			 "suspend_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 			 "wlun suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521 
522 	ufshcd_vops_dbg_register_dump(hba);
523 }
524 
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 	const struct ufshcd_lrb *lrbp;
529 	int prdt_length;
530 
531 	lrbp = &hba->lrb[tag];
532 
533 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 	dev_err(hba->dev,
538 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 		tag, (u64)lrbp->utrd_dma_addr);
540 
541 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 			sizeof(struct utp_transfer_req_desc));
543 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 		(u64)lrbp->ucd_req_dma_addr);
545 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 			sizeof(struct utp_upiu_req));
547 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 		(u64)lrbp->ucd_rsp_dma_addr);
549 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 			sizeof(struct utp_upiu_rsp));
551 
552 	prdt_length = le16_to_cpu(
553 		lrbp->utr_descriptor_ptr->prd_table_length);
554 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 		prdt_length /= ufshcd_sg_entry_size(hba);
556 
557 	dev_err(hba->dev,
558 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559 		tag, prdt_length,
560 		(u64)lrbp->ucd_prdt_dma_addr);
561 
562 	if (pr_prdt)
563 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 			ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566 
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 	struct scsi_device *sdev = req->q->queuedata;
570 	struct Scsi_Host *shost = sdev->host;
571 	struct ufs_hba *hba = shost_priv(shost);
572 
573 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574 
575 	return true;
576 }
577 
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587 
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 	int tag;
591 
592 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594 
595 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 	}
598 }
599 
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603 
604 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 		hba->outstanding_reqs, hba->outstanding_tasks);
607 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 		hba->saved_err, hba->saved_uic_err);
609 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 		hba->curr_dev_pwr_mode, hba->uic_link_state);
611 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 		hba->pm_op_in_progress, hba->is_sys_suspended);
613 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 	dev_err(hba->dev,
617 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 		hba->ufs_stats.hibern8_exit_cnt);
620 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 		hba->ufs_stats.last_intr_status);
623 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 		hba->eh_flags, hba->req_abort_count);
625 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 		hba->ufs_version, hba->capabilities, hba->caps);
627 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 		hba->dev_quirks);
629 	if (sdev_ufs)
630 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632 
633 	ufshcd_print_clk_freqs(hba);
634 }
635 
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 	static const char * const names[] = {
644 		"INVALID MODE",
645 		"FAST MODE",
646 		"SLOW_MODE",
647 		"INVALID MODE",
648 		"FASTAUTO_MODE",
649 		"SLOWAUTO_MODE",
650 		"INVALID MODE",
651 	};
652 
653 	/*
654 	 * Using dev_dbg to avoid messages during runtime PM to avoid
655 	 * never-ending cycles of messages written back to storage by user space
656 	 * causing runtime resume, causing more messages and so on.
657 	 */
658 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 		 __func__,
660 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 		 names[hba->pwr_info.pwr_rx],
663 		 names[hba->pwr_info.pwr_tx],
664 		 hba->pwr_info.hs_rate);
665 }
666 
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 	int err;
670 
671 	err = ufshcd_vops_device_reset(hba);
672 
673 	if (!err) {
674 		ufshcd_set_ufs_dev_active(hba);
675 		if (ufshcd_is_wb_allowed(hba)) {
676 			hba->dev_info.wb_enabled = false;
677 			hba->dev_info.wb_buf_flush_enabled = false;
678 		}
679 	}
680 	if (err != -EOPNOTSUPP)
681 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683 
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 	if (!us)
687 		return;
688 
689 	if (us < 10)
690 		udelay(us);
691 	else
692 		usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695 
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 				u32 val, unsigned long interval_us,
709 				unsigned long timeout_ms)
710 {
711 	int err = 0;
712 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713 
714 	/* ignore bits that we don't intend to wait on */
715 	val = val & mask;
716 
717 	while ((ufshcd_readl(hba, reg) & mask) != val) {
718 		usleep_range(interval_us, interval_us + 50);
719 		if (time_after(jiffies, timeout)) {
720 			if ((ufshcd_readl(hba, reg) & mask) != val)
721 				err = -ETIMEDOUT;
722 			break;
723 		}
724 	}
725 
726 	return err;
727 }
728 
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 	if (hba->ufs_version == ufshci_version(1, 0))
738 		return INTERRUPT_MASK_ALL_VER_10;
739 	if (hba->ufs_version <= ufshci_version(2, 0))
740 		return INTERRUPT_MASK_ALL_VER_11;
741 
742 	return INTERRUPT_MASK_ALL_VER_21;
743 }
744 
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 	u32 ufshci_ver;
754 
755 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 	else
758 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759 
760 	/*
761 	 * UFSHCI v1.x uses a different version scheme, in order
762 	 * to allow the use of comparisons with the ufshci_version
763 	 * function, we convert it to the same scheme as ufs 2.0+.
764 	 */
765 	if (ufshci_ver & 0x00010000)
766 		return ufshci_version(1, ufshci_ver & 0x00000100);
767 
768 	return ufshci_ver;
769 }
770 
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *			      the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782 
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 				      struct cq_entry *cqe)
794 {
795 	if (cqe)
796 		return le32_to_cpu(cqe->status) & MASK_OCS;
797 
798 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800 
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 		mask = ~mask;
810 	/*
811 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 	 * Register (UTRLCLR): This field is bit significant. Each bit
813 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 	 * by host software to indicate to the host controller that a transfer
816 	 * request slot is cleared. The host controller
817 	 * shall free up any resources associated to the request slot
818 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 	 * host software indicates no change to request slots by setting the
820 	 * associated bits in this field to ‘1’. Bits in this field shall only
821 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 	 */
823 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825 
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 	else
836 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849 
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876 
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 	return ucd_rsp_ptr->header.transaction_code;
887 }
888 
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.device_information & 1;
901 }
902 
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 	ufshcd_writel(hba, INT_AGGR_ENABLE |
911 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914 
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 		      INT_AGGR_TIMEOUT_VAL(tmout),
927 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929 
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938 
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *			When run-stop registers are set to 1, it indicates the
942  *			host controller that it can process the requests
943  * @hba: per adapter instance
944  */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952 
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 	u32 val = CONTROLLER_ENABLE;
960 
961 	if (ufshcd_crypto_enable(hba))
962 		val |= CRYPTO_GENERAL_ENABLE;
963 
964 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966 
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978 
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 	if (hba->ufs_version <= ufshci_version(1, 1))
983 		return UFS_UNIPRO_VER_1_41;
984 	else
985 		return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988 
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 	/*
992 	 * If both host and device support UniPro ver1.6 or later, PA layer
993 	 * parameters tuning happens during link startup itself.
994 	 *
995 	 * We can manually tune PA layer parameters if either host or device
996 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 	 * logic simple, we will only do manual tuning if local unipro version
998 	 * doesn't support ver1.6 or later.
999 	 */
1000 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002 
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 	int ret = 0;
1013 	struct ufs_clk_info *clki;
1014 	struct list_head *head = &hba->clk_list_head;
1015 
1016 	if (list_empty(head))
1017 		goto out;
1018 
1019 	list_for_each_entry(clki, head, list) {
1020 		if (!IS_ERR_OR_NULL(clki->clk)) {
1021 			if (scale_up && clki->max_freq) {
1022 				if (clki->curr_freq == clki->max_freq)
1023 					continue;
1024 
1025 				ret = clk_set_rate(clki->clk, clki->max_freq);
1026 				if (ret) {
1027 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 						__func__, clki->name,
1029 						clki->max_freq, ret);
1030 					break;
1031 				}
1032 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 						"scaled up", clki->name,
1034 						clki->curr_freq,
1035 						clki->max_freq);
1036 
1037 				clki->curr_freq = clki->max_freq;
1038 
1039 			} else if (!scale_up && clki->min_freq) {
1040 				if (clki->curr_freq == clki->min_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->min_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->min_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled down", clki->name,
1052 						clki->curr_freq,
1053 						clki->min_freq);
1054 				clki->curr_freq = clki->min_freq;
1055 			}
1056 		}
1057 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 				clki->name, clk_get_rate(clki->clk));
1059 	}
1060 
1061 out:
1062 	return ret;
1063 }
1064 
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 	int ret = 0;
1075 	ktime_t start = ktime_get();
1076 
1077 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 	if (ret)
1079 		goto out;
1080 
1081 	ret = ufshcd_set_clk_freq(hba, scale_up);
1082 	if (ret)
1083 		goto out;
1084 
1085 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 	if (ret)
1087 		ufshcd_set_clk_freq(hba, !scale_up);
1088 
1089 out:
1090 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 			(scale_up ? "up" : "down"),
1092 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 					       bool scale_up)
1105 {
1106 	struct ufs_clk_info *clki;
1107 	struct list_head *head = &hba->clk_list_head;
1108 
1109 	if (list_empty(head))
1110 		return false;
1111 
1112 	list_for_each_entry(clki, head, list) {
1113 		if (!IS_ERR_OR_NULL(clki->clk)) {
1114 			if (scale_up && clki->max_freq) {
1115 				if (clki->curr_freq == clki->max_freq)
1116 					continue;
1117 				return true;
1118 			} else if (!scale_up && clki->min_freq) {
1119 				if (clki->curr_freq == clki->min_freq)
1120 					continue;
1121 				return true;
1122 			}
1123 		}
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 	const struct scsi_device *sdev;
1139 	u32 pending = 0;
1140 
1141 	lockdep_assert_held(hba->host->host_lock);
1142 	__shost_for_each_device(sdev, hba->host)
1143 		pending += sbitmap_weight(&sdev->budget_map);
1144 
1145 	return pending;
1146 }
1147 
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 					u64 wait_timeout_us)
1156 {
1157 	unsigned long flags;
1158 	int ret = 0;
1159 	u32 tm_doorbell;
1160 	u32 tr_pending;
1161 	bool timeout = false, do_last_check = false;
1162 	ktime_t start;
1163 
1164 	ufshcd_hold(hba);
1165 	spin_lock_irqsave(hba->host->host_lock, flags);
1166 	/*
1167 	 * Wait for all the outstanding tasks/transfer requests.
1168 	 * Verify by checking the doorbell registers are clear.
1169 	 */
1170 	start = ktime_get();
1171 	do {
1172 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 			ret = -EBUSY;
1174 			goto out;
1175 		}
1176 
1177 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 		tr_pending = ufshcd_pending_cmds(hba);
1179 		if (!tm_doorbell && !tr_pending) {
1180 			timeout = false;
1181 			break;
1182 		} else if (do_last_check) {
1183 			break;
1184 		}
1185 
1186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 		io_schedule_timeout(msecs_to_jiffies(20));
1188 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 		    wait_timeout_us) {
1190 			timeout = true;
1191 			/*
1192 			 * We might have scheduled out for long time so make
1193 			 * sure to check if doorbells are cleared by this time
1194 			 * or not.
1195 			 */
1196 			do_last_check = true;
1197 		}
1198 		spin_lock_irqsave(hba->host->host_lock, flags);
1199 	} while (tm_doorbell || tr_pending);
1200 
1201 	if (timeout) {
1202 		dev_err(hba->dev,
1203 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 			__func__, tm_doorbell, tr_pending);
1205 		ret = -EBUSY;
1206 	}
1207 out:
1208 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 	ufshcd_release(hba);
1210 	return ret;
1211 }
1212 
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 	int ret = 0;
1224 	struct ufs_pa_layer_attr new_pwr_info;
1225 
1226 	if (scale_up) {
1227 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 		       sizeof(struct ufs_pa_layer_attr));
1229 	} else {
1230 		memcpy(&new_pwr_info, &hba->pwr_info,
1231 		       sizeof(struct ufs_pa_layer_attr));
1232 
1233 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 			/* save the current power mode */
1236 			memcpy(&hba->clk_scaling.saved_pwr_info,
1237 				&hba->pwr_info,
1238 				sizeof(struct ufs_pa_layer_attr));
1239 
1240 			/* scale down gear */
1241 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 		}
1244 	}
1245 
1246 	/* check if the power mode needs to be changed or not? */
1247 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 	if (ret)
1249 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 			__func__, ret,
1251 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 	int ret = 0;
1266 	/*
1267 	 * make sure that there are no outstanding requests when
1268 	 * clock scaling is in progress
1269 	 */
1270 	ufshcd_scsi_block_requests(hba);
1271 	mutex_lock(&hba->wb_mutex);
1272 	down_write(&hba->clk_scaling_lock);
1273 
1274 	if (!hba->clk_scaling.is_allowed ||
1275 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 		ret = -EBUSY;
1277 		up_write(&hba->clk_scaling_lock);
1278 		mutex_unlock(&hba->wb_mutex);
1279 		ufshcd_scsi_unblock_requests(hba);
1280 		goto out;
1281 	}
1282 
1283 	/* let's not get into low power until clock scaling is completed */
1284 	ufshcd_hold(hba);
1285 
1286 out:
1287 	return ret;
1288 }
1289 
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 	up_write(&hba->clk_scaling_lock);
1293 
1294 	/* Enable Write Booster if we have scaled up else disable it */
1295 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 		ufshcd_wb_toggle(hba, scale_up);
1297 
1298 	mutex_unlock(&hba->wb_mutex);
1299 
1300 	ufshcd_scsi_unblock_requests(hba);
1301 	ufshcd_release(hba);
1302 }
1303 
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 	int ret = 0;
1315 
1316 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* scale down the gear before scaling down clocks */
1321 	if (!scale_up) {
1322 		ret = ufshcd_scale_gear(hba, false);
1323 		if (ret)
1324 			goto out_unprepare;
1325 	}
1326 
1327 	ret = ufshcd_scale_clks(hba, scale_up);
1328 	if (ret) {
1329 		if (!scale_up)
1330 			ufshcd_scale_gear(hba, true);
1331 		goto out_unprepare;
1332 	}
1333 
1334 	/* scale up the gear after scaling up clocks */
1335 	if (scale_up) {
1336 		ret = ufshcd_scale_gear(hba, true);
1337 		if (ret) {
1338 			ufshcd_scale_clks(hba, false);
1339 			goto out_unprepare;
1340 		}
1341 	}
1342 
1343 out_unprepare:
1344 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 	return ret;
1346 }
1347 
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 					   clk_scaling.suspend_work);
1352 	unsigned long irq_flags;
1353 
1354 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 		return;
1358 	}
1359 	hba->clk_scaling.is_suspended = true;
1360 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 
1362 	__ufshcd_suspend_clkscaling(hba);
1363 }
1364 
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 					   clk_scaling.resume_work);
1369 	unsigned long irq_flags;
1370 
1371 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 	if (!hba->clk_scaling.is_suspended) {
1373 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 		return;
1375 	}
1376 	hba->clk_scaling.is_suspended = false;
1377 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378 
1379 	devfreq_resume_device(hba->devfreq);
1380 }
1381 
1382 static int ufshcd_devfreq_target(struct device *dev,
1383 				unsigned long *freq, u32 flags)
1384 {
1385 	int ret = 0;
1386 	struct ufs_hba *hba = dev_get_drvdata(dev);
1387 	ktime_t start;
1388 	bool scale_up, sched_clk_scaling_suspend_work = false;
1389 	struct list_head *clk_list = &hba->clk_list_head;
1390 	struct ufs_clk_info *clki;
1391 	unsigned long irq_flags;
1392 
1393 	if (!ufshcd_is_clkscaling_supported(hba))
1394 		return -EINVAL;
1395 
1396 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 	/* Override with the closest supported frequency */
1398 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (ufshcd_eh_in_progress(hba)) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return 0;
1403 	}
1404 
1405 	if (!hba->clk_scaling.active_reqs)
1406 		sched_clk_scaling_suspend_work = true;
1407 
1408 	if (list_empty(clk_list)) {
1409 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 		goto out;
1411 	}
1412 
1413 	/* Decide based on the rounded-off frequency and update */
1414 	scale_up = *freq == clki->max_freq;
1415 	if (!scale_up)
1416 		*freq = clki->min_freq;
1417 	/* Update the frequency */
1418 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		ret = 0;
1421 		goto out; /* no state change required */
1422 	}
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	start = ktime_get();
1426 	ret = ufshcd_devfreq_scale(hba, scale_up);
1427 
1428 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 		(scale_up ? "up" : "down"),
1430 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431 
1432 out:
1433 	if (sched_clk_scaling_suspend_work)
1434 		queue_work(hba->clk_scaling.workq,
1435 			   &hba->clk_scaling.suspend_work);
1436 
1437 	return ret;
1438 }
1439 
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 		struct devfreq_dev_status *stat)
1442 {
1443 	struct ufs_hba *hba = dev_get_drvdata(dev);
1444 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 	unsigned long flags;
1446 	struct list_head *clk_list = &hba->clk_list_head;
1447 	struct ufs_clk_info *clki;
1448 	ktime_t curr_t;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return -EINVAL;
1452 
1453 	memset(stat, 0, sizeof(*stat));
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, flags);
1456 	curr_t = ktime_get();
1457 	if (!scaling->window_start_t)
1458 		goto start_window;
1459 
1460 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 	/*
1462 	 * If current frequency is 0, then the ondemand governor considers
1463 	 * there's no initial frequency set. And it always requests to set
1464 	 * to max. frequency.
1465 	 */
1466 	stat->current_frequency = clki->curr_freq;
1467 	if (scaling->is_busy_started)
1468 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 				scaling->busy_start_t);
1470 
1471 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 	stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 	scaling->window_start_t = curr_t;
1475 	scaling->tot_busy_t = 0;
1476 
1477 	if (scaling->active_reqs) {
1478 		scaling->busy_start_t = curr_t;
1479 		scaling->is_busy_started = true;
1480 	} else {
1481 		scaling->busy_start_t = 0;
1482 		scaling->is_busy_started = false;
1483 	}
1484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 	return 0;
1486 }
1487 
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 	struct devfreq *devfreq;
1493 	int ret;
1494 
1495 	/* Skip devfreq if we don't have any clocks in the list */
1496 	if (list_empty(clk_list))
1497 		return 0;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502 
1503 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 					 &hba->vps->ondemand_data);
1505 	devfreq = devfreq_add_device(hba->dev,
1506 			&hba->vps->devfreq_profile,
1507 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 			&hba->vps->ondemand_data);
1509 	if (IS_ERR(devfreq)) {
1510 		ret = PTR_ERR(devfreq);
1511 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512 
1513 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 		return ret;
1516 	}
1517 
1518 	hba->devfreq = devfreq;
1519 
1520 	return 0;
1521 }
1522 
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!hba->devfreq)
1529 		return;
1530 
1531 	devfreq_remove_device(hba->devfreq);
1532 	hba->devfreq = NULL;
1533 
1534 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538 
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 	unsigned long flags;
1542 
1543 	devfreq_suspend_device(hba->devfreq);
1544 	spin_lock_irqsave(hba->host->host_lock, flags);
1545 	hba->clk_scaling.window_start_t = 0;
1546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548 
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 	unsigned long flags;
1552 	bool suspend = false;
1553 
1554 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 	cancel_work_sync(&hba->clk_scaling.resume_work);
1556 
1557 	spin_lock_irqsave(hba->host->host_lock, flags);
1558 	if (!hba->clk_scaling.is_suspended) {
1559 		suspend = true;
1560 		hba->clk_scaling.is_suspended = true;
1561 	}
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 
1564 	if (suspend)
1565 		__ufshcd_suspend_clkscaling(hba);
1566 }
1567 
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool resume = false;
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (hba->clk_scaling.is_suspended) {
1575 		resume = true;
1576 		hba->clk_scaling.is_suspended = false;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (resume)
1581 		devfreq_resume_device(hba->devfreq);
1582 }
1583 
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct ufs_hba *hba = dev_get_drvdata(dev);
1588 
1589 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591 
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 		struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 	struct ufs_hba *hba = dev_get_drvdata(dev);
1596 	u32 value;
1597 	int err = 0;
1598 
1599 	if (kstrtou32(buf, 0, &value))
1600 		return -EINVAL;
1601 
1602 	down(&hba->host_sem);
1603 	if (!ufshcd_is_user_access_allowed(hba)) {
1604 		err = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	value = !!value;
1609 	if (value == hba->clk_scaling.is_enabled)
1610 		goto out;
1611 
1612 	ufshcd_rpm_get_sync(hba);
1613 	ufshcd_hold(hba);
1614 
1615 	hba->clk_scaling.is_enabled = value;
1616 
1617 	if (value) {
1618 		ufshcd_resume_clkscaling(hba);
1619 	} else {
1620 		ufshcd_suspend_clkscaling(hba);
1621 		err = ufshcd_devfreq_scale(hba, true);
1622 		if (err)
1623 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 					__func__, err);
1625 	}
1626 
1627 	ufshcd_release(hba);
1628 	ufshcd_rpm_put_sync(hba);
1629 out:
1630 	up(&hba->host_sem);
1631 	return err ? err : count;
1632 }
1633 
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644 
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 	if (hba->clk_scaling.enable_attr.attr.name)
1648 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650 
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 	char wq_name[sizeof("ufs_clkscaling_00")];
1654 
1655 	if (!ufshcd_is_clkscaling_supported(hba))
1656 		return;
1657 
1658 	if (!hba->clk_scaling.min_gear)
1659 		hba->clk_scaling.min_gear = UFS_HS_G1;
1660 
1661 	INIT_WORK(&hba->clk_scaling.suspend_work,
1662 		  ufshcd_clk_scaling_suspend_work);
1663 	INIT_WORK(&hba->clk_scaling.resume_work,
1664 		  ufshcd_clk_scaling_resume_work);
1665 
1666 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 		 hba->host->host_no);
1668 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669 
1670 	hba->clk_scaling.is_initialized = true;
1671 }
1672 
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 	if (!hba->clk_scaling.is_initialized)
1676 		return;
1677 
1678 	ufshcd_remove_clk_scaling_sysfs(hba);
1679 	destroy_workqueue(hba->clk_scaling.workq);
1680 	ufshcd_devfreq_remove(hba);
1681 	hba->clk_scaling.is_initialized = false;
1682 }
1683 
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 	int ret;
1687 	unsigned long flags;
1688 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 			clk_gating.ungate_work);
1690 
1691 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692 
1693 	spin_lock_irqsave(hba->host->host_lock, flags);
1694 	if (hba->clk_gating.state == CLKS_ON) {
1695 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 		return;
1697 	}
1698 
1699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 	ufshcd_hba_vreg_set_hpm(hba);
1701 	ufshcd_setup_clocks(hba, true);
1702 
1703 	ufshcd_enable_irq(hba);
1704 
1705 	/* Exit from hibern8 */
1706 	if (ufshcd_can_hibern8_during_gating(hba)) {
1707 		/* Prevent gating in this path */
1708 		hba->clk_gating.is_suspended = true;
1709 		if (ufshcd_is_link_hibern8(hba)) {
1710 			ret = ufshcd_uic_hibern8_exit(hba);
1711 			if (ret)
1712 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 					__func__, ret);
1714 			else
1715 				ufshcd_set_link_active(hba);
1716 		}
1717 		hba->clk_gating.is_suspended = false;
1718 	}
1719 }
1720 
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 	bool flush_result;
1729 	unsigned long flags;
1730 
1731 	if (!ufshcd_is_clkgating_allowed(hba) ||
1732 	    !hba->clk_gating.is_initialized)
1733 		return;
1734 	spin_lock_irqsave(hba->host->host_lock, flags);
1735 	hba->clk_gating.active_reqs++;
1736 
1737 start:
1738 	switch (hba->clk_gating.state) {
1739 	case CLKS_ON:
1740 		/*
1741 		 * Wait for the ungate work to complete if in progress.
1742 		 * Though the clocks may be in ON state, the link could
1743 		 * still be in hibner8 state if hibern8 is allowed
1744 		 * during clock gating.
1745 		 * Make sure we exit hibern8 state also in addition to
1746 		 * clocks being ON.
1747 		 */
1748 		if (ufshcd_can_hibern8_during_gating(hba) &&
1749 		    ufshcd_is_link_hibern8(hba)) {
1750 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 			if (hba->clk_gating.is_suspended && !flush_result)
1753 				return;
1754 			spin_lock_irqsave(hba->host->host_lock, flags);
1755 			goto start;
1756 		}
1757 		break;
1758 	case REQ_CLKS_OFF:
1759 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 			hba->clk_gating.state = CLKS_ON;
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			break;
1764 		}
1765 		/*
1766 		 * If we are here, it means gating work is either done or
1767 		 * currently running. Hence, fall through to cancel gating
1768 		 * work and to enable clocks.
1769 		 */
1770 		fallthrough;
1771 	case CLKS_OFF:
1772 		hba->clk_gating.state = REQ_CLKS_ON;
1773 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 					hba->clk_gating.state);
1775 		queue_work(hba->clk_gating.clk_gating_workq,
1776 			   &hba->clk_gating.ungate_work);
1777 		/*
1778 		 * fall through to check if we should wait for this
1779 		 * work to be done or not.
1780 		 */
1781 		fallthrough;
1782 	case REQ_CLKS_ON:
1783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 		flush_work(&hba->clk_gating.ungate_work);
1785 		/* Make sure state is CLKS_ON before returning */
1786 		spin_lock_irqsave(hba->host->host_lock, flags);
1787 		goto start;
1788 	default:
1789 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 				__func__, hba->clk_gating.state);
1791 		break;
1792 	}
1793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796 
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 			clk_gating.gate_work.work);
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	spin_lock_irqsave(hba->host->host_lock, flags);
1805 	/*
1806 	 * In case you are here to cancel this work the gating state
1807 	 * would be marked as REQ_CLKS_ON. In this case save time by
1808 	 * skipping the gating work and exit after changing the clock
1809 	 * state to CLKS_ON.
1810 	 */
1811 	if (hba->clk_gating.is_suspended ||
1812 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 		hba->clk_gating.state = CLKS_ON;
1814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 					hba->clk_gating.state);
1816 		goto rel_lock;
1817 	}
1818 
1819 	if (hba->clk_gating.active_reqs
1820 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 		|| hba->outstanding_reqs || hba->outstanding_tasks
1822 		|| hba->active_uic_cmd || hba->uic_async_done)
1823 		goto rel_lock;
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 
1827 	/* put the link into hibern8 mode before turning off clocks */
1828 	if (ufshcd_can_hibern8_during_gating(hba)) {
1829 		ret = ufshcd_uic_hibern8_enter(hba);
1830 		if (ret) {
1831 			hba->clk_gating.state = CLKS_ON;
1832 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 					__func__, ret);
1834 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 						hba->clk_gating.state);
1836 			goto out;
1837 		}
1838 		ufshcd_set_link_hibern8(hba);
1839 	}
1840 
1841 	ufshcd_disable_irq(hba);
1842 
1843 	ufshcd_setup_clocks(hba, false);
1844 
1845 	/* Put the host controller in low power mode if possible */
1846 	ufshcd_hba_vreg_set_lpm(hba);
1847 	/*
1848 	 * In case you are here to cancel this work the gating state
1849 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 	 * and a request to turn them on is pending. By doing this way,
1852 	 * we keep the state machine in tact and this would ultimately
1853 	 * prevent from doing cancel work multiple times when there are
1854 	 * new requests arriving before the current cancel work is done.
1855 	 */
1856 	spin_lock_irqsave(hba->host->host_lock, flags);
1857 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 		hba->clk_gating.state = CLKS_OFF;
1859 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 					hba->clk_gating.state);
1861 	}
1862 rel_lock:
1863 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 	return;
1866 }
1867 
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 	if (!ufshcd_is_clkgating_allowed(hba))
1872 		return;
1873 
1874 	hba->clk_gating.active_reqs--;
1875 
1876 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 	    hba->active_uic_cmd || hba->uic_async_done ||
1880 	    hba->clk_gating.state == CLKS_OFF)
1881 		return;
1882 
1883 	hba->clk_gating.state = REQ_CLKS_OFF;
1884 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 			   &hba->clk_gating.gate_work,
1887 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889 
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(hba->host->host_lock, flags);
1895 	__ufshcd_release(hba);
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899 
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 		struct device_attribute *attr, char *buf)
1902 {
1903 	struct ufs_hba *hba = dev_get_drvdata(dev);
1904 
1905 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907 
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 	struct ufs_hba *hba = dev_get_drvdata(dev);
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(hba->host->host_lock, flags);
1914 	hba->clk_gating.delay_ms = value;
1915 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918 
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	unsigned long value;
1923 
1924 	if (kstrtoul(buf, 0, &value))
1925 		return -EINVAL;
1926 
1927 	ufshcd_clkgate_delay_set(dev, value);
1928 	return count;
1929 }
1930 
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 		struct device_attribute *attr, char *buf)
1933 {
1934 	struct ufs_hba *hba = dev_get_drvdata(dev);
1935 
1936 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938 
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 		struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 	struct ufs_hba *hba = dev_get_drvdata(dev);
1943 	unsigned long flags;
1944 	u32 value;
1945 
1946 	if (kstrtou32(buf, 0, &value))
1947 		return -EINVAL;
1948 
1949 	value = !!value;
1950 
1951 	spin_lock_irqsave(hba->host->host_lock, flags);
1952 	if (value == hba->clk_gating.is_enabled)
1953 		goto out;
1954 
1955 	if (value)
1956 		__ufshcd_release(hba);
1957 	else
1958 		hba->clk_gating.active_reqs++;
1959 
1960 	hba->clk_gating.is_enabled = value;
1961 out:
1962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 	return count;
1964 }
1965 
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 	hba->clk_gating.delay_attr.attr.mode = 0644;
1973 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975 
1976 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 	hba->clk_gating.enable_attr.attr.mode = 0644;
1981 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984 
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 	if (hba->clk_gating.delay_attr.attr.name)
1988 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 	if (hba->clk_gating.enable_attr.attr.name)
1990 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992 
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 	char wq_name[sizeof("ufs_clk_gating_00")];
1996 
1997 	if (!ufshcd_is_clkgating_allowed(hba))
1998 		return;
1999 
2000 	hba->clk_gating.state = CLKS_ON;
2001 
2002 	hba->clk_gating.delay_ms = 150;
2003 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005 
2006 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 		 hba->host->host_no);
2008 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010 
2011 	ufshcd_init_clk_gating_sysfs(hba);
2012 
2013 	hba->clk_gating.is_enabled = true;
2014 	hba->clk_gating.is_initialized = true;
2015 }
2016 
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 	if (!hba->clk_gating.is_initialized)
2020 		return;
2021 
2022 	ufshcd_remove_clk_gating_sysfs(hba);
2023 
2024 	/* Ungate the clock if necessary. */
2025 	ufshcd_hold(hba);
2026 	hba->clk_gating.is_initialized = false;
2027 	ufshcd_release(hba);
2028 
2029 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031 
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 	bool queue_resume_work = false;
2035 	ktime_t curr_t = ktime_get();
2036 	unsigned long flags;
2037 
2038 	if (!ufshcd_is_clkscaling_supported(hba))
2039 		return;
2040 
2041 	spin_lock_irqsave(hba->host->host_lock, flags);
2042 	if (!hba->clk_scaling.active_reqs++)
2043 		queue_resume_work = true;
2044 
2045 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 		return;
2048 	}
2049 
2050 	if (queue_resume_work)
2051 		queue_work(hba->clk_scaling.workq,
2052 			   &hba->clk_scaling.resume_work);
2053 
2054 	if (!hba->clk_scaling.window_start_t) {
2055 		hba->clk_scaling.window_start_t = curr_t;
2056 		hba->clk_scaling.tot_busy_t = 0;
2057 		hba->clk_scaling.is_busy_started = false;
2058 	}
2059 
2060 	if (!hba->clk_scaling.is_busy_started) {
2061 		hba->clk_scaling.busy_start_t = curr_t;
2062 		hba->clk_scaling.is_busy_started = true;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 	unsigned long flags;
2071 
2072 	if (!ufshcd_is_clkscaling_supported(hba))
2073 		return;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	hba->clk_scaling.active_reqs--;
2077 	if (!scaling->active_reqs && scaling->is_busy_started) {
2078 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 					scaling->busy_start_t));
2080 		scaling->busy_start_t = 0;
2081 		scaling->is_busy_started = false;
2082 	}
2083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085 
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 		return READ;
2090 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 		return WRITE;
2092 	else
2093 		return -EINVAL;
2094 }
2095 
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 						struct ufshcd_lrb *lrbp)
2098 {
2099 	const struct ufs_hba_monitor *m = &hba->monitor;
2100 
2101 	return (m->enabled && lrbp && lrbp->cmd &&
2102 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105 
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 				 const struct ufshcd_lrb *lrbp)
2108 {
2109 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 		hba->monitor.busy_start_ts[dir] = ktime_get();
2115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117 
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 		struct ufs_hba_monitor *m = &hba->monitor;
2127 		ktime_t now, inc, lat;
2128 
2129 		now = lrbp->compl_time_stamp;
2130 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133 
2134 		/* Update latencies */
2135 		m->nr_req[dir]++;
2136 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 		m->lat_sum[dir] += lat;
2138 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 			m->lat_max[dir] = lat;
2140 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 			m->lat_min[dir] = lat;
2142 
2143 		m->nr_queued[dir]--;
2144 		/* Push forward the busy start of monitor */
2145 		m->busy_start_ts[dir] = now;
2146 	}
2147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149 
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 			 struct ufs_hw_queue *hwq)
2159 {
2160 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 	unsigned long flags;
2162 
2163 	lrbp->issue_time_stamp = ktime_get();
2164 	lrbp->issue_time_stamp_local_clock = local_clock();
2165 	lrbp->compl_time_stamp = ktime_set(0, 0);
2166 	lrbp->compl_time_stamp_local_clock = 0;
2167 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 	ufshcd_clk_scaling_start_busy(hba);
2169 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 		ufshcd_start_monitor(hba, lrbp);
2171 
2172 	if (is_mcq_enabled(hba)) {
2173 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 		struct utp_transfer_req_desc *dest;
2176 
2177 		spin_lock(&hwq->sq_lock);
2178 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 		memcpy(dest, src, utrd_size);
2180 		ufshcd_inc_sq_tail(hwq);
2181 		spin_unlock(&hwq->sq_lock);
2182 	} else {
2183 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 		if (hba->vops && hba->vops->setup_xfer_req)
2185 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 						  !!lrbp->cmd);
2187 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 	}
2192 }
2193 
2194 /**
2195  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196  * @lrbp: pointer to local reference block
2197  */
2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 	u16 resp_len;
2202 	int len;
2203 
2204 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 	if (sense_buffer && resp_len) {
2206 		int len_to_copy;
2207 
2208 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210 
2211 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 		       len_to_copy);
2213 	}
2214 }
2215 
2216 /**
2217  * ufshcd_copy_query_response() - Copy the Query Response and the data
2218  * descriptor
2219  * @hba: per adapter instance
2220  * @lrbp: pointer to local reference block
2221  *
2222  * Return: 0 upon success; < 0 upon failure.
2223  */
2224 static
2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228 
2229 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230 
2231 	/* Get the descriptor */
2232 	if (hba->dev_cmd.query.descriptor &&
2233 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 				GENERAL_UPIU_REQUEST_SIZE;
2236 		u16 resp_len;
2237 		u16 buf_len;
2238 
2239 		/* data segment length */
2240 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 				       .data_segment_length);
2242 		buf_len = be16_to_cpu(
2243 				hba->dev_cmd.query.request.upiu_req.length);
2244 		if (likely(buf_len >= resp_len)) {
2245 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 		} else {
2247 			dev_warn(hba->dev,
2248 				 "%s: rsp size %d is bigger than buffer size %d",
2249 				 __func__, resp_len, buf_len);
2250 			return -EINVAL;
2251 		}
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 /**
2258  * ufshcd_hba_capabilities - Read controller capabilities
2259  * @hba: per adapter instance
2260  *
2261  * Return: 0 on success, negative on error.
2262  */
2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 	int err;
2266 
2267 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270 
2271 	/* nutrs and nutmrs are 0 based values */
2272 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273 	hba->nutmrs =
2274 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275 	hba->reserved_slot = hba->nutrs - 1;
2276 
2277 	/* Read crypto capabilities */
2278 	err = ufshcd_hba_init_crypto_capabilities(hba);
2279 	if (err) {
2280 		dev_err(hba->dev, "crypto setup failed\n");
2281 		return err;
2282 	}
2283 
2284 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2285 	if (!hba->mcq_sup)
2286 		return 0;
2287 
2288 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2289 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2290 				     hba->mcq_capabilities);
2291 
2292 	return 0;
2293 }
2294 
2295 /**
2296  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2297  *                            to accept UIC commands
2298  * @hba: per adapter instance
2299  *
2300  * Return: true on success, else false.
2301  */
2302 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2303 {
2304 	u32 val;
2305 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2306 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2307 				    REG_CONTROLLER_STATUS);
2308 	return ret == 0 ? true : false;
2309 }
2310 
2311 /**
2312  * ufshcd_get_upmcrs - Get the power mode change request status
2313  * @hba: Pointer to adapter instance
2314  *
2315  * This function gets the UPMCRS field of HCS register
2316  *
2317  * Return: value of UPMCRS field.
2318  */
2319 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2320 {
2321 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2322 }
2323 
2324 /**
2325  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2326  * @hba: per adapter instance
2327  * @uic_cmd: UIC command
2328  */
2329 static inline void
2330 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2331 {
2332 	lockdep_assert_held(&hba->uic_cmd_mutex);
2333 
2334 	WARN_ON(hba->active_uic_cmd);
2335 
2336 	hba->active_uic_cmd = uic_cmd;
2337 
2338 	/* Write Args */
2339 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2340 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2341 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2342 
2343 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2344 
2345 	/* Write UIC Cmd */
2346 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2347 		      REG_UIC_COMMAND);
2348 }
2349 
2350 /**
2351  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2352  * @hba: per adapter instance
2353  * @uic_cmd: UIC command
2354  *
2355  * Return: 0 only if success.
2356  */
2357 static int
2358 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2359 {
2360 	int ret;
2361 	unsigned long flags;
2362 
2363 	lockdep_assert_held(&hba->uic_cmd_mutex);
2364 
2365 	if (wait_for_completion_timeout(&uic_cmd->done,
2366 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2367 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2368 	} else {
2369 		ret = -ETIMEDOUT;
2370 		dev_err(hba->dev,
2371 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2372 			uic_cmd->command, uic_cmd->argument3);
2373 
2374 		if (!uic_cmd->cmd_active) {
2375 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2376 				__func__);
2377 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378 		}
2379 	}
2380 
2381 	spin_lock_irqsave(hba->host->host_lock, flags);
2382 	hba->active_uic_cmd = NULL;
2383 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2384 
2385 	return ret;
2386 }
2387 
2388 /**
2389  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2390  * @hba: per adapter instance
2391  * @uic_cmd: UIC command
2392  * @completion: initialize the completion only if this is set to true
2393  *
2394  * Return: 0 only if success.
2395  */
2396 static int
2397 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2398 		      bool completion)
2399 {
2400 	lockdep_assert_held(&hba->uic_cmd_mutex);
2401 
2402 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2403 		dev_err(hba->dev,
2404 			"Controller not ready to accept UIC commands\n");
2405 		return -EIO;
2406 	}
2407 
2408 	if (completion)
2409 		init_completion(&uic_cmd->done);
2410 
2411 	uic_cmd->cmd_active = 1;
2412 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2413 
2414 	return 0;
2415 }
2416 
2417 /**
2418  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2419  * @hba: per adapter instance
2420  * @uic_cmd: UIC command
2421  *
2422  * Return: 0 only if success.
2423  */
2424 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2425 {
2426 	int ret;
2427 
2428 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2429 		return 0;
2430 
2431 	ufshcd_hold(hba);
2432 	mutex_lock(&hba->uic_cmd_mutex);
2433 	ufshcd_add_delay_before_dme_cmd(hba);
2434 
2435 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2436 	if (!ret)
2437 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2438 
2439 	mutex_unlock(&hba->uic_cmd_mutex);
2440 
2441 	ufshcd_release(hba);
2442 	return ret;
2443 }
2444 
2445 /**
2446  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2447  * @hba:	per-adapter instance
2448  * @lrbp:	pointer to local reference block
2449  * @sg_entries:	The number of sg lists actually used
2450  * @sg_list:	Pointer to SG list
2451  */
2452 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2453 			       struct scatterlist *sg_list)
2454 {
2455 	struct ufshcd_sg_entry *prd;
2456 	struct scatterlist *sg;
2457 	int i;
2458 
2459 	if (sg_entries) {
2460 
2461 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2462 			lrbp->utr_descriptor_ptr->prd_table_length =
2463 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2464 		else
2465 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2466 
2467 		prd = lrbp->ucd_prdt_ptr;
2468 
2469 		for_each_sg(sg_list, sg, sg_entries, i) {
2470 			const unsigned int len = sg_dma_len(sg);
2471 
2472 			/*
2473 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2474 			 * based value that indicates the length, in bytes, of
2475 			 * the data block. A maximum of length of 256KB may
2476 			 * exist for any entry. Bits 1:0 of this field shall be
2477 			 * 11b to indicate Dword granularity. A value of '3'
2478 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2479 			 */
2480 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2481 			prd->size = cpu_to_le32(len - 1);
2482 			prd->addr = cpu_to_le64(sg->dma_address);
2483 			prd->reserved = 0;
2484 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2485 		}
2486 	} else {
2487 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2488 	}
2489 }
2490 
2491 /**
2492  * ufshcd_map_sg - Map scatter-gather list to prdt
2493  * @hba: per adapter instance
2494  * @lrbp: pointer to local reference block
2495  *
2496  * Return: 0 in case of success, non-zero value in case of failure.
2497  */
2498 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2499 {
2500 	struct scsi_cmnd *cmd = lrbp->cmd;
2501 	int sg_segments = scsi_dma_map(cmd);
2502 
2503 	if (sg_segments < 0)
2504 		return sg_segments;
2505 
2506 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2507 
2508 	return 0;
2509 }
2510 
2511 /**
2512  * ufshcd_enable_intr - enable interrupts
2513  * @hba: per adapter instance
2514  * @intrs: interrupt bits
2515  */
2516 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2517 {
2518 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2519 
2520 	if (hba->ufs_version == ufshci_version(1, 0)) {
2521 		u32 rw;
2522 		rw = set & INTERRUPT_MASK_RW_VER_10;
2523 		set = rw | ((set ^ intrs) & intrs);
2524 	} else {
2525 		set |= intrs;
2526 	}
2527 
2528 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2529 }
2530 
2531 /**
2532  * ufshcd_disable_intr - disable interrupts
2533  * @hba: per adapter instance
2534  * @intrs: interrupt bits
2535  */
2536 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2537 {
2538 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2539 
2540 	if (hba->ufs_version == ufshci_version(1, 0)) {
2541 		u32 rw;
2542 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2543 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2544 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2545 
2546 	} else {
2547 		set &= ~intrs;
2548 	}
2549 
2550 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2551 }
2552 
2553 /**
2554  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2555  * descriptor according to request
2556  * @lrbp: pointer to local reference block
2557  * @upiu_flags: flags required in the header
2558  * @cmd_dir: requests data direction
2559  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2560  */
2561 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2562 					enum dma_data_direction cmd_dir, int ehs_length)
2563 {
2564 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2565 	struct request_desc_header *h = &req_desc->header;
2566 	enum utp_data_direction data_direction;
2567 
2568 	*h = (typeof(*h)){ };
2569 
2570 	if (cmd_dir == DMA_FROM_DEVICE) {
2571 		data_direction = UTP_DEVICE_TO_HOST;
2572 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2573 	} else if (cmd_dir == DMA_TO_DEVICE) {
2574 		data_direction = UTP_HOST_TO_DEVICE;
2575 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2576 	} else {
2577 		data_direction = UTP_NO_DATA_TRANSFER;
2578 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2579 	}
2580 
2581 	h->command_type = lrbp->command_type;
2582 	h->data_direction = data_direction;
2583 	h->ehs_length = ehs_length;
2584 
2585 	if (lrbp->intr_cmd)
2586 		h->interrupt = 1;
2587 
2588 	/* Prepare crypto related dwords */
2589 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2590 
2591 	/*
2592 	 * assigning invalid value for command status. Controller
2593 	 * updates OCS on command completion, with the command
2594 	 * status
2595 	 */
2596 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2597 
2598 	req_desc->prd_table_length = 0;
2599 }
2600 
2601 /**
2602  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2603  * for scsi commands
2604  * @lrbp: local reference block pointer
2605  * @upiu_flags: flags
2606  */
2607 static
2608 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2609 {
2610 	struct scsi_cmnd *cmd = lrbp->cmd;
2611 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2612 	unsigned short cdb_len;
2613 
2614 	ucd_req_ptr->header = (struct utp_upiu_header){
2615 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2616 		.flags = upiu_flags,
2617 		.lun = lrbp->lun,
2618 		.task_tag = lrbp->task_tag,
2619 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2620 	};
2621 
2622 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2623 
2624 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2625 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2626 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2627 
2628 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2629 }
2630 
2631 /**
2632  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2633  * @hba: UFS hba
2634  * @lrbp: local reference block pointer
2635  * @upiu_flags: flags
2636  */
2637 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2638 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2639 {
2640 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2641 	struct ufs_query *query = &hba->dev_cmd.query;
2642 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2643 
2644 	/* Query request header */
2645 	ucd_req_ptr->header = (struct utp_upiu_header){
2646 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2647 		.flags = upiu_flags,
2648 		.lun = lrbp->lun,
2649 		.task_tag = lrbp->task_tag,
2650 		.query_function = query->request.query_func,
2651 		/* Data segment length only need for WRITE_DESC */
2652 		.data_segment_length =
2653 			query->request.upiu_req.opcode ==
2654 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2655 				cpu_to_be16(len) :
2656 				0,
2657 	};
2658 
2659 	/* Copy the Query Request buffer as is */
2660 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2661 			QUERY_OSF_SIZE);
2662 
2663 	/* Copy the Descriptor */
2664 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2665 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2666 
2667 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2668 }
2669 
2670 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2671 {
2672 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2673 
2674 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2675 
2676 	ucd_req_ptr->header = (struct utp_upiu_header){
2677 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2678 		.task_tag = lrbp->task_tag,
2679 	};
2680 
2681 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2682 }
2683 
2684 /**
2685  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2686  *			     for Device Management Purposes
2687  * @hba: per adapter instance
2688  * @lrbp: pointer to local reference block
2689  *
2690  * Return: 0 upon success; < 0 upon failure.
2691  */
2692 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2693 				      struct ufshcd_lrb *lrbp)
2694 {
2695 	u8 upiu_flags;
2696 	int ret = 0;
2697 
2698 	if (hba->ufs_version <= ufshci_version(1, 1))
2699 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2700 	else
2701 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2702 
2703 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2704 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2705 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2706 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2707 		ufshcd_prepare_utp_nop_upiu(lrbp);
2708 	else
2709 		ret = -EINVAL;
2710 
2711 	return ret;
2712 }
2713 
2714 /**
2715  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2716  *			   for SCSI Purposes
2717  * @hba: per adapter instance
2718  * @lrbp: pointer to local reference block
2719  *
2720  * Return: 0 upon success; < 0 upon failure.
2721  */
2722 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2723 {
2724 	u8 upiu_flags;
2725 	int ret = 0;
2726 
2727 	if (hba->ufs_version <= ufshci_version(1, 1))
2728 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2729 	else
2730 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2731 
2732 	if (likely(lrbp->cmd)) {
2733 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2734 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2735 	} else {
2736 		ret = -EINVAL;
2737 	}
2738 
2739 	return ret;
2740 }
2741 
2742 /**
2743  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2744  * @upiu_wlun_id: UPIU W-LUN id
2745  *
2746  * Return: SCSI W-LUN id.
2747  */
2748 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2749 {
2750 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2751 }
2752 
2753 static inline bool is_device_wlun(struct scsi_device *sdev)
2754 {
2755 	return sdev->lun ==
2756 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2757 }
2758 
2759 /*
2760  * Associate the UFS controller queue with the default and poll HCTX types.
2761  * Initialize the mq_map[] arrays.
2762  */
2763 static void ufshcd_map_queues(struct Scsi_Host *shost)
2764 {
2765 	struct ufs_hba *hba = shost_priv(shost);
2766 	int i, queue_offset = 0;
2767 
2768 	if (!is_mcq_supported(hba)) {
2769 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2770 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2771 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2772 		hba->nr_hw_queues = 1;
2773 	}
2774 
2775 	for (i = 0; i < shost->nr_maps; i++) {
2776 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2777 
2778 		map->nr_queues = hba->nr_queues[i];
2779 		if (!map->nr_queues)
2780 			continue;
2781 		map->queue_offset = queue_offset;
2782 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2783 			map->queue_offset = 0;
2784 
2785 		blk_mq_map_queues(map);
2786 		queue_offset += map->nr_queues;
2787 	}
2788 }
2789 
2790 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2791 {
2792 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2793 		i * ufshcd_get_ucd_size(hba);
2794 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2795 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2796 		i * ufshcd_get_ucd_size(hba);
2797 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2798 				       response_upiu);
2799 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2800 
2801 	lrb->utr_descriptor_ptr = utrdlp + i;
2802 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2803 		i * sizeof(struct utp_transfer_req_desc);
2804 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2805 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2806 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2807 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2808 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2809 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2810 }
2811 
2812 /**
2813  * ufshcd_queuecommand - main entry point for SCSI requests
2814  * @host: SCSI host pointer
2815  * @cmd: command from SCSI Midlayer
2816  *
2817  * Return: 0 for success, non-zero in case of failure.
2818  */
2819 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2820 {
2821 	struct ufs_hba *hba = shost_priv(host);
2822 	int tag = scsi_cmd_to_rq(cmd)->tag;
2823 	struct ufshcd_lrb *lrbp;
2824 	int err = 0;
2825 	struct ufs_hw_queue *hwq = NULL;
2826 
2827 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2828 
2829 	switch (hba->ufshcd_state) {
2830 	case UFSHCD_STATE_OPERATIONAL:
2831 		break;
2832 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2833 		/*
2834 		 * SCSI error handler can call ->queuecommand() while UFS error
2835 		 * handler is in progress. Error interrupts could change the
2836 		 * state from UFSHCD_STATE_RESET to
2837 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2838 		 * being issued in that case.
2839 		 */
2840 		if (ufshcd_eh_in_progress(hba)) {
2841 			err = SCSI_MLQUEUE_HOST_BUSY;
2842 			goto out;
2843 		}
2844 		break;
2845 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2846 		/*
2847 		 * pm_runtime_get_sync() is used at error handling preparation
2848 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2849 		 * PM ops, it can never be finished if we let SCSI layer keep
2850 		 * retrying it, which gets err handler stuck forever. Neither
2851 		 * can we let the scsi cmd pass through, because UFS is in bad
2852 		 * state, the scsi cmd may eventually time out, which will get
2853 		 * err handler blocked for too long. So, just fail the scsi cmd
2854 		 * sent from PM ops, err handler can recover PM error anyways.
2855 		 */
2856 		if (hba->pm_op_in_progress) {
2857 			hba->force_reset = true;
2858 			set_host_byte(cmd, DID_BAD_TARGET);
2859 			scsi_done(cmd);
2860 			goto out;
2861 		}
2862 		fallthrough;
2863 	case UFSHCD_STATE_RESET:
2864 		err = SCSI_MLQUEUE_HOST_BUSY;
2865 		goto out;
2866 	case UFSHCD_STATE_ERROR:
2867 		set_host_byte(cmd, DID_ERROR);
2868 		scsi_done(cmd);
2869 		goto out;
2870 	}
2871 
2872 	hba->req_abort_count = 0;
2873 
2874 	ufshcd_hold(hba);
2875 
2876 	lrbp = &hba->lrb[tag];
2877 	lrbp->cmd = cmd;
2878 	lrbp->task_tag = tag;
2879 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2880 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2881 
2882 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2883 
2884 	lrbp->req_abort_skip = false;
2885 
2886 	ufshcd_comp_scsi_upiu(hba, lrbp);
2887 
2888 	err = ufshcd_map_sg(hba, lrbp);
2889 	if (err) {
2890 		ufshcd_release(hba);
2891 		goto out;
2892 	}
2893 
2894 	if (is_mcq_enabled(hba))
2895 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2896 
2897 	ufshcd_send_command(hba, tag, hwq);
2898 
2899 out:
2900 	if (ufs_trigger_eh()) {
2901 		unsigned long flags;
2902 
2903 		spin_lock_irqsave(hba->host->host_lock, flags);
2904 		ufshcd_schedule_eh_work(hba);
2905 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2906 	}
2907 
2908 	return err;
2909 }
2910 
2911 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2912 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2913 {
2914 	lrbp->cmd = NULL;
2915 	lrbp->task_tag = tag;
2916 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2917 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2918 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2919 	hba->dev_cmd.type = cmd_type;
2920 
2921 	return ufshcd_compose_devman_upiu(hba, lrbp);
2922 }
2923 
2924 /*
2925  * Check with the block layer if the command is inflight
2926  * @cmd: command to check.
2927  *
2928  * Return: true if command is inflight; false if not.
2929  */
2930 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2931 {
2932 	struct request *rq;
2933 
2934 	if (!cmd)
2935 		return false;
2936 
2937 	rq = scsi_cmd_to_rq(cmd);
2938 	if (!blk_mq_request_started(rq))
2939 		return false;
2940 
2941 	return true;
2942 }
2943 
2944 /*
2945  * Clear the pending command in the controller and wait until
2946  * the controller confirms that the command has been cleared.
2947  * @hba: per adapter instance
2948  * @task_tag: The tag number of the command to be cleared.
2949  */
2950 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2951 {
2952 	u32 mask = 1U << task_tag;
2953 	unsigned long flags;
2954 	int err;
2955 
2956 	if (is_mcq_enabled(hba)) {
2957 		/*
2958 		 * MCQ mode. Clean up the MCQ resources similar to
2959 		 * what the ufshcd_utrl_clear() does for SDB mode.
2960 		 */
2961 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2962 		if (err) {
2963 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2964 				__func__, task_tag, err);
2965 			return err;
2966 		}
2967 		return 0;
2968 	}
2969 
2970 	/* clear outstanding transaction before retry */
2971 	spin_lock_irqsave(hba->host->host_lock, flags);
2972 	ufshcd_utrl_clear(hba, mask);
2973 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2974 
2975 	/*
2976 	 * wait for h/w to clear corresponding bit in door-bell.
2977 	 * max. wait is 1 sec.
2978 	 */
2979 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2980 					mask, ~mask, 1000, 1000);
2981 }
2982 
2983 /**
2984  * ufshcd_dev_cmd_completion() - handles device management command responses
2985  * @hba: per adapter instance
2986  * @lrbp: pointer to local reference block
2987  *
2988  * Return: 0 upon success; < 0 upon failure.
2989  */
2990 static int
2991 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2992 {
2993 	enum upiu_response_transaction resp;
2994 	int err = 0;
2995 
2996 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2997 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2998 
2999 	switch (resp) {
3000 	case UPIU_TRANSACTION_NOP_IN:
3001 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3002 			err = -EINVAL;
3003 			dev_err(hba->dev, "%s: unexpected response %x\n",
3004 					__func__, resp);
3005 		}
3006 		break;
3007 	case UPIU_TRANSACTION_QUERY_RSP: {
3008 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3009 
3010 		if (response == 0)
3011 			err = ufshcd_copy_query_response(hba, lrbp);
3012 		break;
3013 	}
3014 	case UPIU_TRANSACTION_REJECT_UPIU:
3015 		/* TODO: handle Reject UPIU Response */
3016 		err = -EPERM;
3017 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3018 				__func__);
3019 		break;
3020 	case UPIU_TRANSACTION_RESPONSE:
3021 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3022 			err = -EINVAL;
3023 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3024 		}
3025 		break;
3026 	default:
3027 		err = -EINVAL;
3028 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3029 				__func__, resp);
3030 		break;
3031 	}
3032 
3033 	return err;
3034 }
3035 
3036 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3037 		struct ufshcd_lrb *lrbp, int max_timeout)
3038 {
3039 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3040 	unsigned long flags;
3041 	bool pending;
3042 	int err;
3043 
3044 retry:
3045 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3046 						time_left);
3047 
3048 	if (likely(time_left)) {
3049 		/*
3050 		 * The completion handler called complete() and the caller of
3051 		 * this function still owns the @lrbp tag so the code below does
3052 		 * not trigger any race conditions.
3053 		 */
3054 		hba->dev_cmd.complete = NULL;
3055 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3056 		if (!err)
3057 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3058 	} else {
3059 		err = -ETIMEDOUT;
3060 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3061 			__func__, lrbp->task_tag);
3062 
3063 		/* MCQ mode */
3064 		if (is_mcq_enabled(hba)) {
3065 			err = ufshcd_clear_cmd(hba, lrbp->task_tag);
3066 			hba->dev_cmd.complete = NULL;
3067 			return err;
3068 		}
3069 
3070 		/* SDB mode */
3071 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3072 			/* successfully cleared the command, retry if needed */
3073 			err = -EAGAIN;
3074 			/*
3075 			 * Since clearing the command succeeded we also need to
3076 			 * clear the task tag bit from the outstanding_reqs
3077 			 * variable.
3078 			 */
3079 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3080 			pending = test_bit(lrbp->task_tag,
3081 					   &hba->outstanding_reqs);
3082 			if (pending) {
3083 				hba->dev_cmd.complete = NULL;
3084 				__clear_bit(lrbp->task_tag,
3085 					    &hba->outstanding_reqs);
3086 			}
3087 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3088 
3089 			if (!pending) {
3090 				/*
3091 				 * The completion handler ran while we tried to
3092 				 * clear the command.
3093 				 */
3094 				time_left = 1;
3095 				goto retry;
3096 			}
3097 		} else {
3098 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3099 				__func__, lrbp->task_tag);
3100 
3101 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3102 			pending = test_bit(lrbp->task_tag,
3103 					   &hba->outstanding_reqs);
3104 			if (pending)
3105 				hba->dev_cmd.complete = NULL;
3106 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3107 
3108 			if (!pending) {
3109 				/*
3110 				 * The completion handler ran while we tried to
3111 				 * clear the command.
3112 				 */
3113 				time_left = 1;
3114 				goto retry;
3115 			}
3116 		}
3117 	}
3118 
3119 	return err;
3120 }
3121 
3122 /**
3123  * ufshcd_exec_dev_cmd - API for sending device management requests
3124  * @hba: UFS hba
3125  * @cmd_type: specifies the type (NOP, Query...)
3126  * @timeout: timeout in milliseconds
3127  *
3128  * Return: 0 upon success; < 0 upon failure.
3129  *
3130  * NOTE: Since there is only one available tag for device management commands,
3131  * it is expected you hold the hba->dev_cmd.lock mutex.
3132  */
3133 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3134 		enum dev_cmd_type cmd_type, int timeout)
3135 {
3136 	DECLARE_COMPLETION_ONSTACK(wait);
3137 	const u32 tag = hba->reserved_slot;
3138 	struct ufshcd_lrb *lrbp;
3139 	int err;
3140 
3141 	/* Protects use of hba->reserved_slot. */
3142 	lockdep_assert_held(&hba->dev_cmd.lock);
3143 
3144 	down_read(&hba->clk_scaling_lock);
3145 
3146 	lrbp = &hba->lrb[tag];
3147 	lrbp->cmd = NULL;
3148 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3149 	if (unlikely(err))
3150 		goto out;
3151 
3152 	hba->dev_cmd.complete = &wait;
3153 
3154 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3155 
3156 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3157 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3158 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3159 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3160 
3161 out:
3162 	up_read(&hba->clk_scaling_lock);
3163 	return err;
3164 }
3165 
3166 /**
3167  * ufshcd_init_query() - init the query response and request parameters
3168  * @hba: per-adapter instance
3169  * @request: address of the request pointer to be initialized
3170  * @response: address of the response pointer to be initialized
3171  * @opcode: operation to perform
3172  * @idn: flag idn to access
3173  * @index: LU number to access
3174  * @selector: query/flag/descriptor further identification
3175  */
3176 static inline void ufshcd_init_query(struct ufs_hba *hba,
3177 		struct ufs_query_req **request, struct ufs_query_res **response,
3178 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3179 {
3180 	*request = &hba->dev_cmd.query.request;
3181 	*response = &hba->dev_cmd.query.response;
3182 	memset(*request, 0, sizeof(struct ufs_query_req));
3183 	memset(*response, 0, sizeof(struct ufs_query_res));
3184 	(*request)->upiu_req.opcode = opcode;
3185 	(*request)->upiu_req.idn = idn;
3186 	(*request)->upiu_req.index = index;
3187 	(*request)->upiu_req.selector = selector;
3188 }
3189 
3190 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3191 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3192 {
3193 	int ret;
3194 	int retries;
3195 
3196 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3197 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3198 		if (ret)
3199 			dev_dbg(hba->dev,
3200 				"%s: failed with error %d, retries %d\n",
3201 				__func__, ret, retries);
3202 		else
3203 			break;
3204 	}
3205 
3206 	if (ret)
3207 		dev_err(hba->dev,
3208 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3209 			__func__, opcode, idn, ret, retries);
3210 	return ret;
3211 }
3212 
3213 /**
3214  * ufshcd_query_flag() - API function for sending flag query requests
3215  * @hba: per-adapter instance
3216  * @opcode: flag query to perform
3217  * @idn: flag idn to access
3218  * @index: flag index to access
3219  * @flag_res: the flag value after the query request completes
3220  *
3221  * Return: 0 for success, non-zero in case of failure.
3222  */
3223 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3224 			enum flag_idn idn, u8 index, bool *flag_res)
3225 {
3226 	struct ufs_query_req *request = NULL;
3227 	struct ufs_query_res *response = NULL;
3228 	int err, selector = 0;
3229 	int timeout = QUERY_REQ_TIMEOUT;
3230 
3231 	BUG_ON(!hba);
3232 
3233 	ufshcd_hold(hba);
3234 	mutex_lock(&hba->dev_cmd.lock);
3235 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3236 			selector);
3237 
3238 	switch (opcode) {
3239 	case UPIU_QUERY_OPCODE_SET_FLAG:
3240 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3241 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3242 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3243 		break;
3244 	case UPIU_QUERY_OPCODE_READ_FLAG:
3245 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3246 		if (!flag_res) {
3247 			/* No dummy reads */
3248 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3249 					__func__);
3250 			err = -EINVAL;
3251 			goto out_unlock;
3252 		}
3253 		break;
3254 	default:
3255 		dev_err(hba->dev,
3256 			"%s: Expected query flag opcode but got = %d\n",
3257 			__func__, opcode);
3258 		err = -EINVAL;
3259 		goto out_unlock;
3260 	}
3261 
3262 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3263 
3264 	if (err) {
3265 		dev_err(hba->dev,
3266 			"%s: Sending flag query for idn %d failed, err = %d\n",
3267 			__func__, idn, err);
3268 		goto out_unlock;
3269 	}
3270 
3271 	if (flag_res)
3272 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3273 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3274 
3275 out_unlock:
3276 	mutex_unlock(&hba->dev_cmd.lock);
3277 	ufshcd_release(hba);
3278 	return err;
3279 }
3280 
3281 /**
3282  * ufshcd_query_attr - API function for sending attribute requests
3283  * @hba: per-adapter instance
3284  * @opcode: attribute opcode
3285  * @idn: attribute idn to access
3286  * @index: index field
3287  * @selector: selector field
3288  * @attr_val: the attribute value after the query request completes
3289  *
3290  * Return: 0 for success, non-zero in case of failure.
3291 */
3292 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3293 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3294 {
3295 	struct ufs_query_req *request = NULL;
3296 	struct ufs_query_res *response = NULL;
3297 	int err;
3298 
3299 	BUG_ON(!hba);
3300 
3301 	if (!attr_val) {
3302 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3303 				__func__, opcode);
3304 		return -EINVAL;
3305 	}
3306 
3307 	ufshcd_hold(hba);
3308 
3309 	mutex_lock(&hba->dev_cmd.lock);
3310 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3311 			selector);
3312 
3313 	switch (opcode) {
3314 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3315 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3316 		request->upiu_req.value = cpu_to_be32(*attr_val);
3317 		break;
3318 	case UPIU_QUERY_OPCODE_READ_ATTR:
3319 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3320 		break;
3321 	default:
3322 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3323 				__func__, opcode);
3324 		err = -EINVAL;
3325 		goto out_unlock;
3326 	}
3327 
3328 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3329 
3330 	if (err) {
3331 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3332 				__func__, opcode, idn, index, err);
3333 		goto out_unlock;
3334 	}
3335 
3336 	*attr_val = be32_to_cpu(response->upiu_res.value);
3337 
3338 out_unlock:
3339 	mutex_unlock(&hba->dev_cmd.lock);
3340 	ufshcd_release(hba);
3341 	return err;
3342 }
3343 
3344 /**
3345  * ufshcd_query_attr_retry() - API function for sending query
3346  * attribute with retries
3347  * @hba: per-adapter instance
3348  * @opcode: attribute opcode
3349  * @idn: attribute idn to access
3350  * @index: index field
3351  * @selector: selector field
3352  * @attr_val: the attribute value after the query request
3353  * completes
3354  *
3355  * Return: 0 for success, non-zero in case of failure.
3356 */
3357 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3358 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3359 	u32 *attr_val)
3360 {
3361 	int ret = 0;
3362 	u32 retries;
3363 
3364 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3365 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3366 						selector, attr_val);
3367 		if (ret)
3368 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3369 				__func__, ret, retries);
3370 		else
3371 			break;
3372 	}
3373 
3374 	if (ret)
3375 		dev_err(hba->dev,
3376 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3377 			__func__, idn, ret, QUERY_REQ_RETRIES);
3378 	return ret;
3379 }
3380 
3381 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3382 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3383 			u8 selector, u8 *desc_buf, int *buf_len)
3384 {
3385 	struct ufs_query_req *request = NULL;
3386 	struct ufs_query_res *response = NULL;
3387 	int err;
3388 
3389 	BUG_ON(!hba);
3390 
3391 	if (!desc_buf) {
3392 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3393 				__func__, opcode);
3394 		return -EINVAL;
3395 	}
3396 
3397 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3398 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3399 				__func__, *buf_len);
3400 		return -EINVAL;
3401 	}
3402 
3403 	ufshcd_hold(hba);
3404 
3405 	mutex_lock(&hba->dev_cmd.lock);
3406 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3407 			selector);
3408 	hba->dev_cmd.query.descriptor = desc_buf;
3409 	request->upiu_req.length = cpu_to_be16(*buf_len);
3410 
3411 	switch (opcode) {
3412 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3413 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3414 		break;
3415 	case UPIU_QUERY_OPCODE_READ_DESC:
3416 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3417 		break;
3418 	default:
3419 		dev_err(hba->dev,
3420 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3421 				__func__, opcode);
3422 		err = -EINVAL;
3423 		goto out_unlock;
3424 	}
3425 
3426 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3427 
3428 	if (err) {
3429 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3430 				__func__, opcode, idn, index, err);
3431 		goto out_unlock;
3432 	}
3433 
3434 	*buf_len = be16_to_cpu(response->upiu_res.length);
3435 
3436 out_unlock:
3437 	hba->dev_cmd.query.descriptor = NULL;
3438 	mutex_unlock(&hba->dev_cmd.lock);
3439 	ufshcd_release(hba);
3440 	return err;
3441 }
3442 
3443 /**
3444  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3445  * @hba: per-adapter instance
3446  * @opcode: attribute opcode
3447  * @idn: attribute idn to access
3448  * @index: index field
3449  * @selector: selector field
3450  * @desc_buf: the buffer that contains the descriptor
3451  * @buf_len: length parameter passed to the device
3452  *
3453  * The buf_len parameter will contain, on return, the length parameter
3454  * received on the response.
3455  *
3456  * Return: 0 for success, non-zero in case of failure.
3457  */
3458 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3459 				  enum query_opcode opcode,
3460 				  enum desc_idn idn, u8 index,
3461 				  u8 selector,
3462 				  u8 *desc_buf, int *buf_len)
3463 {
3464 	int err;
3465 	int retries;
3466 
3467 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3468 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3469 						selector, desc_buf, buf_len);
3470 		if (!err || err == -EINVAL)
3471 			break;
3472 	}
3473 
3474 	return err;
3475 }
3476 
3477 /**
3478  * ufshcd_read_desc_param - read the specified descriptor parameter
3479  * @hba: Pointer to adapter instance
3480  * @desc_id: descriptor idn value
3481  * @desc_index: descriptor index
3482  * @param_offset: offset of the parameter to read
3483  * @param_read_buf: pointer to buffer where parameter would be read
3484  * @param_size: sizeof(param_read_buf)
3485  *
3486  * Return: 0 in case of success, non-zero otherwise.
3487  */
3488 int ufshcd_read_desc_param(struct ufs_hba *hba,
3489 			   enum desc_idn desc_id,
3490 			   int desc_index,
3491 			   u8 param_offset,
3492 			   u8 *param_read_buf,
3493 			   u8 param_size)
3494 {
3495 	int ret;
3496 	u8 *desc_buf;
3497 	int buff_len = QUERY_DESC_MAX_SIZE;
3498 	bool is_kmalloc = true;
3499 
3500 	/* Safety check */
3501 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3502 		return -EINVAL;
3503 
3504 	/* Check whether we need temp memory */
3505 	if (param_offset != 0 || param_size < buff_len) {
3506 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3507 		if (!desc_buf)
3508 			return -ENOMEM;
3509 	} else {
3510 		desc_buf = param_read_buf;
3511 		is_kmalloc = false;
3512 	}
3513 
3514 	/* Request for full descriptor */
3515 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3516 					    desc_id, desc_index, 0,
3517 					    desc_buf, &buff_len);
3518 	if (ret) {
3519 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3520 			__func__, desc_id, desc_index, param_offset, ret);
3521 		goto out;
3522 	}
3523 
3524 	/* Update descriptor length */
3525 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3526 
3527 	if (param_offset >= buff_len) {
3528 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3529 			__func__, param_offset, desc_id, buff_len);
3530 		ret = -EINVAL;
3531 		goto out;
3532 	}
3533 
3534 	/* Sanity check */
3535 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3536 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3537 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3538 		ret = -EINVAL;
3539 		goto out;
3540 	}
3541 
3542 	if (is_kmalloc) {
3543 		/* Make sure we don't copy more data than available */
3544 		if (param_offset >= buff_len)
3545 			ret = -EINVAL;
3546 		else
3547 			memcpy(param_read_buf, &desc_buf[param_offset],
3548 			       min_t(u32, param_size, buff_len - param_offset));
3549 	}
3550 out:
3551 	if (is_kmalloc)
3552 		kfree(desc_buf);
3553 	return ret;
3554 }
3555 
3556 /**
3557  * struct uc_string_id - unicode string
3558  *
3559  * @len: size of this descriptor inclusive
3560  * @type: descriptor type
3561  * @uc: unicode string character
3562  */
3563 struct uc_string_id {
3564 	u8 len;
3565 	u8 type;
3566 	wchar_t uc[];
3567 } __packed;
3568 
3569 /* replace non-printable or non-ASCII characters with spaces */
3570 static inline char ufshcd_remove_non_printable(u8 ch)
3571 {
3572 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3573 }
3574 
3575 /**
3576  * ufshcd_read_string_desc - read string descriptor
3577  * @hba: pointer to adapter instance
3578  * @desc_index: descriptor index
3579  * @buf: pointer to buffer where descriptor would be read,
3580  *       the caller should free the memory.
3581  * @ascii: if true convert from unicode to ascii characters
3582  *         null terminated string.
3583  *
3584  * Return:
3585  * *      string size on success.
3586  * *      -ENOMEM: on allocation failure
3587  * *      -EINVAL: on a wrong parameter
3588  */
3589 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3590 			    u8 **buf, bool ascii)
3591 {
3592 	struct uc_string_id *uc_str;
3593 	u8 *str;
3594 	int ret;
3595 
3596 	if (!buf)
3597 		return -EINVAL;
3598 
3599 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3600 	if (!uc_str)
3601 		return -ENOMEM;
3602 
3603 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3604 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3605 	if (ret < 0) {
3606 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3607 			QUERY_REQ_RETRIES, ret);
3608 		str = NULL;
3609 		goto out;
3610 	}
3611 
3612 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3613 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3614 		str = NULL;
3615 		ret = 0;
3616 		goto out;
3617 	}
3618 
3619 	if (ascii) {
3620 		ssize_t ascii_len;
3621 		int i;
3622 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3623 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3624 		str = kzalloc(ascii_len, GFP_KERNEL);
3625 		if (!str) {
3626 			ret = -ENOMEM;
3627 			goto out;
3628 		}
3629 
3630 		/*
3631 		 * the descriptor contains string in UTF16 format
3632 		 * we need to convert to utf-8 so it can be displayed
3633 		 */
3634 		ret = utf16s_to_utf8s(uc_str->uc,
3635 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3636 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3637 
3638 		/* replace non-printable or non-ASCII characters with spaces */
3639 		for (i = 0; i < ret; i++)
3640 			str[i] = ufshcd_remove_non_printable(str[i]);
3641 
3642 		str[ret++] = '\0';
3643 
3644 	} else {
3645 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3646 		if (!str) {
3647 			ret = -ENOMEM;
3648 			goto out;
3649 		}
3650 		ret = uc_str->len;
3651 	}
3652 out:
3653 	*buf = str;
3654 	kfree(uc_str);
3655 	return ret;
3656 }
3657 
3658 /**
3659  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3660  * @hba: Pointer to adapter instance
3661  * @lun: lun id
3662  * @param_offset: offset of the parameter to read
3663  * @param_read_buf: pointer to buffer where parameter would be read
3664  * @param_size: sizeof(param_read_buf)
3665  *
3666  * Return: 0 in case of success, non-zero otherwise.
3667  */
3668 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3669 					      int lun,
3670 					      enum unit_desc_param param_offset,
3671 					      u8 *param_read_buf,
3672 					      u32 param_size)
3673 {
3674 	/*
3675 	 * Unit descriptors are only available for general purpose LUs (LUN id
3676 	 * from 0 to 7) and RPMB Well known LU.
3677 	 */
3678 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3679 		return -EOPNOTSUPP;
3680 
3681 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3682 				      param_offset, param_read_buf, param_size);
3683 }
3684 
3685 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3686 {
3687 	int err = 0;
3688 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3689 
3690 	if (hba->dev_info.wspecversion >= 0x300) {
3691 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3692 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3693 				&gating_wait);
3694 		if (err)
3695 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3696 					 err, gating_wait);
3697 
3698 		if (gating_wait == 0) {
3699 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3700 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3701 					 gating_wait);
3702 		}
3703 
3704 		hba->dev_info.clk_gating_wait_us = gating_wait;
3705 	}
3706 
3707 	return err;
3708 }
3709 
3710 /**
3711  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3712  * @hba: per adapter instance
3713  *
3714  * 1. Allocate DMA memory for Command Descriptor array
3715  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3716  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3717  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3718  *	(UTMRDL)
3719  * 4. Allocate memory for local reference block(lrb).
3720  *
3721  * Return: 0 for success, non-zero in case of failure.
3722  */
3723 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3724 {
3725 	size_t utmrdl_size, utrdl_size, ucdl_size;
3726 
3727 	/* Allocate memory for UTP command descriptors */
3728 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3729 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3730 						  ucdl_size,
3731 						  &hba->ucdl_dma_addr,
3732 						  GFP_KERNEL);
3733 
3734 	/*
3735 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3736 	 */
3737 	if (!hba->ucdl_base_addr ||
3738 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3739 		dev_err(hba->dev,
3740 			"Command Descriptor Memory allocation failed\n");
3741 		goto out;
3742 	}
3743 
3744 	/*
3745 	 * Allocate memory for UTP Transfer descriptors
3746 	 * UFSHCI requires 1KB alignment of UTRD
3747 	 */
3748 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3749 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3750 						   utrdl_size,
3751 						   &hba->utrdl_dma_addr,
3752 						   GFP_KERNEL);
3753 	if (!hba->utrdl_base_addr ||
3754 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3755 		dev_err(hba->dev,
3756 			"Transfer Descriptor Memory allocation failed\n");
3757 		goto out;
3758 	}
3759 
3760 	/*
3761 	 * Skip utmrdl allocation; it may have been
3762 	 * allocated during first pass and not released during
3763 	 * MCQ memory allocation.
3764 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3765 	 */
3766 	if (hba->utmrdl_base_addr)
3767 		goto skip_utmrdl;
3768 	/*
3769 	 * Allocate memory for UTP Task Management descriptors
3770 	 * UFSHCI requires 1KB alignment of UTMRD
3771 	 */
3772 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3773 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3774 						    utmrdl_size,
3775 						    &hba->utmrdl_dma_addr,
3776 						    GFP_KERNEL);
3777 	if (!hba->utmrdl_base_addr ||
3778 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3779 		dev_err(hba->dev,
3780 		"Task Management Descriptor Memory allocation failed\n");
3781 		goto out;
3782 	}
3783 
3784 skip_utmrdl:
3785 	/* Allocate memory for local reference block */
3786 	hba->lrb = devm_kcalloc(hba->dev,
3787 				hba->nutrs, sizeof(struct ufshcd_lrb),
3788 				GFP_KERNEL);
3789 	if (!hba->lrb) {
3790 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3791 		goto out;
3792 	}
3793 	return 0;
3794 out:
3795 	return -ENOMEM;
3796 }
3797 
3798 /**
3799  * ufshcd_host_memory_configure - configure local reference block with
3800  *				memory offsets
3801  * @hba: per adapter instance
3802  *
3803  * Configure Host memory space
3804  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3805  * address.
3806  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3807  * and PRDT offset.
3808  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3809  * into local reference block.
3810  */
3811 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3812 {
3813 	struct utp_transfer_req_desc *utrdlp;
3814 	dma_addr_t cmd_desc_dma_addr;
3815 	dma_addr_t cmd_desc_element_addr;
3816 	u16 response_offset;
3817 	u16 prdt_offset;
3818 	int cmd_desc_size;
3819 	int i;
3820 
3821 	utrdlp = hba->utrdl_base_addr;
3822 
3823 	response_offset =
3824 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3825 	prdt_offset =
3826 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3827 
3828 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3829 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3830 
3831 	for (i = 0; i < hba->nutrs; i++) {
3832 		/* Configure UTRD with command descriptor base address */
3833 		cmd_desc_element_addr =
3834 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3835 		utrdlp[i].command_desc_base_addr =
3836 				cpu_to_le64(cmd_desc_element_addr);
3837 
3838 		/* Response upiu and prdt offset should be in double words */
3839 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3840 			utrdlp[i].response_upiu_offset =
3841 				cpu_to_le16(response_offset);
3842 			utrdlp[i].prd_table_offset =
3843 				cpu_to_le16(prdt_offset);
3844 			utrdlp[i].response_upiu_length =
3845 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3846 		} else {
3847 			utrdlp[i].response_upiu_offset =
3848 				cpu_to_le16(response_offset >> 2);
3849 			utrdlp[i].prd_table_offset =
3850 				cpu_to_le16(prdt_offset >> 2);
3851 			utrdlp[i].response_upiu_length =
3852 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3853 		}
3854 
3855 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3856 	}
3857 }
3858 
3859 /**
3860  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3861  * @hba: per adapter instance
3862  *
3863  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3864  * in order to initialize the Unipro link startup procedure.
3865  * Once the Unipro links are up, the device connected to the controller
3866  * is detected.
3867  *
3868  * Return: 0 on success, non-zero value on failure.
3869  */
3870 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3871 {
3872 	struct uic_command uic_cmd = {0};
3873 	int ret;
3874 
3875 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3876 
3877 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3878 	if (ret)
3879 		dev_dbg(hba->dev,
3880 			"dme-link-startup: error code %d\n", ret);
3881 	return ret;
3882 }
3883 /**
3884  * ufshcd_dme_reset - UIC command for DME_RESET
3885  * @hba: per adapter instance
3886  *
3887  * DME_RESET command is issued in order to reset UniPro stack.
3888  * This function now deals with cold reset.
3889  *
3890  * Return: 0 on success, non-zero value on failure.
3891  */
3892 static int ufshcd_dme_reset(struct ufs_hba *hba)
3893 {
3894 	struct uic_command uic_cmd = {0};
3895 	int ret;
3896 
3897 	uic_cmd.command = UIC_CMD_DME_RESET;
3898 
3899 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3900 	if (ret)
3901 		dev_err(hba->dev,
3902 			"dme-reset: error code %d\n", ret);
3903 
3904 	return ret;
3905 }
3906 
3907 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3908 			       int agreed_gear,
3909 			       int adapt_val)
3910 {
3911 	int ret;
3912 
3913 	if (agreed_gear < UFS_HS_G4)
3914 		adapt_val = PA_NO_ADAPT;
3915 
3916 	ret = ufshcd_dme_set(hba,
3917 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3918 			     adapt_val);
3919 	return ret;
3920 }
3921 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3922 
3923 /**
3924  * ufshcd_dme_enable - UIC command for DME_ENABLE
3925  * @hba: per adapter instance
3926  *
3927  * DME_ENABLE command is issued in order to enable UniPro stack.
3928  *
3929  * Return: 0 on success, non-zero value on failure.
3930  */
3931 static int ufshcd_dme_enable(struct ufs_hba *hba)
3932 {
3933 	struct uic_command uic_cmd = {0};
3934 	int ret;
3935 
3936 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3937 
3938 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3939 	if (ret)
3940 		dev_err(hba->dev,
3941 			"dme-enable: error code %d\n", ret);
3942 
3943 	return ret;
3944 }
3945 
3946 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3947 {
3948 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3949 	unsigned long min_sleep_time_us;
3950 
3951 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3952 		return;
3953 
3954 	/*
3955 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3956 	 * this function
3957 	 */
3958 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3959 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3960 	} else {
3961 		unsigned long delta =
3962 			(unsigned long) ktime_to_us(
3963 				ktime_sub(ktime_get(),
3964 				hba->last_dme_cmd_tstamp));
3965 
3966 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3967 			min_sleep_time_us =
3968 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3969 		else
3970 			return; /* no more delay required */
3971 	}
3972 
3973 	/* allow sleep for extra 50us if needed */
3974 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3975 }
3976 
3977 /**
3978  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3979  * @hba: per adapter instance
3980  * @attr_sel: uic command argument1
3981  * @attr_set: attribute set type as uic command argument2
3982  * @mib_val: setting value as uic command argument3
3983  * @peer: indicate whether peer or local
3984  *
3985  * Return: 0 on success, non-zero value on failure.
3986  */
3987 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3988 			u8 attr_set, u32 mib_val, u8 peer)
3989 {
3990 	struct uic_command uic_cmd = {0};
3991 	static const char *const action[] = {
3992 		"dme-set",
3993 		"dme-peer-set"
3994 	};
3995 	const char *set = action[!!peer];
3996 	int ret;
3997 	int retries = UFS_UIC_COMMAND_RETRIES;
3998 
3999 	uic_cmd.command = peer ?
4000 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4001 	uic_cmd.argument1 = attr_sel;
4002 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4003 	uic_cmd.argument3 = mib_val;
4004 
4005 	do {
4006 		/* for peer attributes we retry upon failure */
4007 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4008 		if (ret)
4009 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4010 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4011 	} while (ret && peer && --retries);
4012 
4013 	if (ret)
4014 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4015 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4016 			UFS_UIC_COMMAND_RETRIES - retries);
4017 
4018 	return ret;
4019 }
4020 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4021 
4022 /**
4023  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4024  * @hba: per adapter instance
4025  * @attr_sel: uic command argument1
4026  * @mib_val: the value of the attribute as returned by the UIC command
4027  * @peer: indicate whether peer or local
4028  *
4029  * Return: 0 on success, non-zero value on failure.
4030  */
4031 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4032 			u32 *mib_val, u8 peer)
4033 {
4034 	struct uic_command uic_cmd = {0};
4035 	static const char *const action[] = {
4036 		"dme-get",
4037 		"dme-peer-get"
4038 	};
4039 	const char *get = action[!!peer];
4040 	int ret;
4041 	int retries = UFS_UIC_COMMAND_RETRIES;
4042 	struct ufs_pa_layer_attr orig_pwr_info;
4043 	struct ufs_pa_layer_attr temp_pwr_info;
4044 	bool pwr_mode_change = false;
4045 
4046 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4047 		orig_pwr_info = hba->pwr_info;
4048 		temp_pwr_info = orig_pwr_info;
4049 
4050 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4051 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4052 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4053 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4054 			pwr_mode_change = true;
4055 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4056 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4057 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4058 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4059 			pwr_mode_change = true;
4060 		}
4061 		if (pwr_mode_change) {
4062 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4063 			if (ret)
4064 				goto out;
4065 		}
4066 	}
4067 
4068 	uic_cmd.command = peer ?
4069 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4070 	uic_cmd.argument1 = attr_sel;
4071 
4072 	do {
4073 		/* for peer attributes we retry upon failure */
4074 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4075 		if (ret)
4076 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4077 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4078 	} while (ret && peer && --retries);
4079 
4080 	if (ret)
4081 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4082 			get, UIC_GET_ATTR_ID(attr_sel),
4083 			UFS_UIC_COMMAND_RETRIES - retries);
4084 
4085 	if (mib_val && !ret)
4086 		*mib_val = uic_cmd.argument3;
4087 
4088 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4089 	    && pwr_mode_change)
4090 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4091 out:
4092 	return ret;
4093 }
4094 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4095 
4096 /**
4097  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4098  * state) and waits for it to take effect.
4099  *
4100  * @hba: per adapter instance
4101  * @cmd: UIC command to execute
4102  *
4103  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4104  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4105  * and device UniPro link and hence it's final completion would be indicated by
4106  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4107  * addition to normal UIC command completion Status (UCCS). This function only
4108  * returns after the relevant status bits indicate the completion.
4109  *
4110  * Return: 0 on success, non-zero value on failure.
4111  */
4112 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4113 {
4114 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4115 	unsigned long flags;
4116 	u8 status;
4117 	int ret;
4118 	bool reenable_intr = false;
4119 
4120 	mutex_lock(&hba->uic_cmd_mutex);
4121 	ufshcd_add_delay_before_dme_cmd(hba);
4122 
4123 	spin_lock_irqsave(hba->host->host_lock, flags);
4124 	if (ufshcd_is_link_broken(hba)) {
4125 		ret = -ENOLINK;
4126 		goto out_unlock;
4127 	}
4128 	hba->uic_async_done = &uic_async_done;
4129 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4130 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4131 		/*
4132 		 * Make sure UIC command completion interrupt is disabled before
4133 		 * issuing UIC command.
4134 		 */
4135 		wmb();
4136 		reenable_intr = true;
4137 	}
4138 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4139 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4140 	if (ret) {
4141 		dev_err(hba->dev,
4142 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4143 			cmd->command, cmd->argument3, ret);
4144 		goto out;
4145 	}
4146 
4147 	if (!wait_for_completion_timeout(hba->uic_async_done,
4148 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4149 		dev_err(hba->dev,
4150 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4151 			cmd->command, cmd->argument3);
4152 
4153 		if (!cmd->cmd_active) {
4154 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4155 				__func__);
4156 			goto check_upmcrs;
4157 		}
4158 
4159 		ret = -ETIMEDOUT;
4160 		goto out;
4161 	}
4162 
4163 check_upmcrs:
4164 	status = ufshcd_get_upmcrs(hba);
4165 	if (status != PWR_LOCAL) {
4166 		dev_err(hba->dev,
4167 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4168 			cmd->command, status);
4169 		ret = (status != PWR_OK) ? status : -1;
4170 	}
4171 out:
4172 	if (ret) {
4173 		ufshcd_print_host_state(hba);
4174 		ufshcd_print_pwr_info(hba);
4175 		ufshcd_print_evt_hist(hba);
4176 	}
4177 
4178 	spin_lock_irqsave(hba->host->host_lock, flags);
4179 	hba->active_uic_cmd = NULL;
4180 	hba->uic_async_done = NULL;
4181 	if (reenable_intr)
4182 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4183 	if (ret) {
4184 		ufshcd_set_link_broken(hba);
4185 		ufshcd_schedule_eh_work(hba);
4186 	}
4187 out_unlock:
4188 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4189 	mutex_unlock(&hba->uic_cmd_mutex);
4190 
4191 	return ret;
4192 }
4193 
4194 /**
4195  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4196  *				using DME_SET primitives.
4197  * @hba: per adapter instance
4198  * @mode: powr mode value
4199  *
4200  * Return: 0 on success, non-zero value on failure.
4201  */
4202 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4203 {
4204 	struct uic_command uic_cmd = {0};
4205 	int ret;
4206 
4207 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4208 		ret = ufshcd_dme_set(hba,
4209 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4210 		if (ret) {
4211 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4212 						__func__, ret);
4213 			goto out;
4214 		}
4215 	}
4216 
4217 	uic_cmd.command = UIC_CMD_DME_SET;
4218 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4219 	uic_cmd.argument3 = mode;
4220 	ufshcd_hold(hba);
4221 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4222 	ufshcd_release(hba);
4223 
4224 out:
4225 	return ret;
4226 }
4227 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4228 
4229 int ufshcd_link_recovery(struct ufs_hba *hba)
4230 {
4231 	int ret;
4232 	unsigned long flags;
4233 
4234 	spin_lock_irqsave(hba->host->host_lock, flags);
4235 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4236 	ufshcd_set_eh_in_progress(hba);
4237 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4238 
4239 	/* Reset the attached device */
4240 	ufshcd_device_reset(hba);
4241 
4242 	ret = ufshcd_host_reset_and_restore(hba);
4243 
4244 	spin_lock_irqsave(hba->host->host_lock, flags);
4245 	if (ret)
4246 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4247 	ufshcd_clear_eh_in_progress(hba);
4248 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4249 
4250 	if (ret)
4251 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4252 			__func__, ret);
4253 
4254 	return ret;
4255 }
4256 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4257 
4258 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4259 {
4260 	int ret;
4261 	struct uic_command uic_cmd = {0};
4262 	ktime_t start = ktime_get();
4263 
4264 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4265 
4266 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4267 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4268 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4269 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4270 
4271 	if (ret)
4272 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4273 			__func__, ret);
4274 	else
4275 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4276 								POST_CHANGE);
4277 
4278 	return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4281 
4282 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4283 {
4284 	struct uic_command uic_cmd = {0};
4285 	int ret;
4286 	ktime_t start = ktime_get();
4287 
4288 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4289 
4290 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4291 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4292 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4293 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4294 
4295 	if (ret) {
4296 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4297 			__func__, ret);
4298 	} else {
4299 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4300 								POST_CHANGE);
4301 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4302 		hba->ufs_stats.hibern8_exit_cnt++;
4303 	}
4304 
4305 	return ret;
4306 }
4307 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4308 
4309 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4310 {
4311 	unsigned long flags;
4312 	bool update = false;
4313 
4314 	if (!ufshcd_is_auto_hibern8_supported(hba))
4315 		return;
4316 
4317 	spin_lock_irqsave(hba->host->host_lock, flags);
4318 	if (hba->ahit != ahit) {
4319 		hba->ahit = ahit;
4320 		update = true;
4321 	}
4322 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4323 
4324 	if (update &&
4325 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4326 		ufshcd_rpm_get_sync(hba);
4327 		ufshcd_hold(hba);
4328 		ufshcd_auto_hibern8_enable(hba);
4329 		ufshcd_release(hba);
4330 		ufshcd_rpm_put_sync(hba);
4331 	}
4332 }
4333 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4334 
4335 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4336 {
4337 	if (!ufshcd_is_auto_hibern8_supported(hba))
4338 		return;
4339 
4340 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4341 }
4342 
4343  /**
4344  * ufshcd_init_pwr_info - setting the POR (power on reset)
4345  * values in hba power info
4346  * @hba: per-adapter instance
4347  */
4348 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4349 {
4350 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4351 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4352 	hba->pwr_info.lane_rx = UFS_LANE_1;
4353 	hba->pwr_info.lane_tx = UFS_LANE_1;
4354 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4355 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4356 	hba->pwr_info.hs_rate = 0;
4357 }
4358 
4359 /**
4360  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4361  * @hba: per-adapter instance
4362  *
4363  * Return: 0 upon success; < 0 upon failure.
4364  */
4365 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4366 {
4367 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4368 
4369 	if (hba->max_pwr_info.is_valid)
4370 		return 0;
4371 
4372 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4373 		pwr_info->pwr_tx = FASTAUTO_MODE;
4374 		pwr_info->pwr_rx = FASTAUTO_MODE;
4375 	} else {
4376 		pwr_info->pwr_tx = FAST_MODE;
4377 		pwr_info->pwr_rx = FAST_MODE;
4378 	}
4379 	pwr_info->hs_rate = PA_HS_MODE_B;
4380 
4381 	/* Get the connected lane count */
4382 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4383 			&pwr_info->lane_rx);
4384 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4385 			&pwr_info->lane_tx);
4386 
4387 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4388 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4389 				__func__,
4390 				pwr_info->lane_rx,
4391 				pwr_info->lane_tx);
4392 		return -EINVAL;
4393 	}
4394 
4395 	/*
4396 	 * First, get the maximum gears of HS speed.
4397 	 * If a zero value, it means there is no HSGEAR capability.
4398 	 * Then, get the maximum gears of PWM speed.
4399 	 */
4400 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4401 	if (!pwr_info->gear_rx) {
4402 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4403 				&pwr_info->gear_rx);
4404 		if (!pwr_info->gear_rx) {
4405 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4406 				__func__, pwr_info->gear_rx);
4407 			return -EINVAL;
4408 		}
4409 		pwr_info->pwr_rx = SLOW_MODE;
4410 	}
4411 
4412 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4413 			&pwr_info->gear_tx);
4414 	if (!pwr_info->gear_tx) {
4415 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4416 				&pwr_info->gear_tx);
4417 		if (!pwr_info->gear_tx) {
4418 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4419 				__func__, pwr_info->gear_tx);
4420 			return -EINVAL;
4421 		}
4422 		pwr_info->pwr_tx = SLOW_MODE;
4423 	}
4424 
4425 	hba->max_pwr_info.is_valid = true;
4426 	return 0;
4427 }
4428 
4429 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4430 			     struct ufs_pa_layer_attr *pwr_mode)
4431 {
4432 	int ret;
4433 
4434 	/* if already configured to the requested pwr_mode */
4435 	if (!hba->force_pmc &&
4436 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4437 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4438 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4439 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4440 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4441 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4442 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4443 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4444 		return 0;
4445 	}
4446 
4447 	/*
4448 	 * Configure attributes for power mode change with below.
4449 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4450 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4451 	 * - PA_HSSERIES
4452 	 */
4453 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4454 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4455 			pwr_mode->lane_rx);
4456 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4457 			pwr_mode->pwr_rx == FAST_MODE)
4458 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4459 	else
4460 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4461 
4462 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4463 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4464 			pwr_mode->lane_tx);
4465 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4466 			pwr_mode->pwr_tx == FAST_MODE)
4467 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4468 	else
4469 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4470 
4471 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4472 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4473 	    pwr_mode->pwr_rx == FAST_MODE ||
4474 	    pwr_mode->pwr_tx == FAST_MODE)
4475 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4476 						pwr_mode->hs_rate);
4477 
4478 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4479 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4480 				DL_FC0ProtectionTimeOutVal_Default);
4481 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4482 				DL_TC0ReplayTimeOutVal_Default);
4483 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4484 				DL_AFC0ReqTimeOutVal_Default);
4485 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4486 				DL_FC1ProtectionTimeOutVal_Default);
4487 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4488 				DL_TC1ReplayTimeOutVal_Default);
4489 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4490 				DL_AFC1ReqTimeOutVal_Default);
4491 
4492 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4493 				DL_FC0ProtectionTimeOutVal_Default);
4494 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4495 				DL_TC0ReplayTimeOutVal_Default);
4496 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4497 				DL_AFC0ReqTimeOutVal_Default);
4498 	}
4499 
4500 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4501 			| pwr_mode->pwr_tx);
4502 
4503 	if (ret) {
4504 		dev_err(hba->dev,
4505 			"%s: power mode change failed %d\n", __func__, ret);
4506 	} else {
4507 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4508 								pwr_mode);
4509 
4510 		memcpy(&hba->pwr_info, pwr_mode,
4511 			sizeof(struct ufs_pa_layer_attr));
4512 	}
4513 
4514 	return ret;
4515 }
4516 
4517 /**
4518  * ufshcd_config_pwr_mode - configure a new power mode
4519  * @hba: per-adapter instance
4520  * @desired_pwr_mode: desired power configuration
4521  *
4522  * Return: 0 upon success; < 0 upon failure.
4523  */
4524 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4525 		struct ufs_pa_layer_attr *desired_pwr_mode)
4526 {
4527 	struct ufs_pa_layer_attr final_params = { 0 };
4528 	int ret;
4529 
4530 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4531 					desired_pwr_mode, &final_params);
4532 
4533 	if (ret)
4534 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4535 
4536 	ret = ufshcd_change_power_mode(hba, &final_params);
4537 
4538 	return ret;
4539 }
4540 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4541 
4542 /**
4543  * ufshcd_complete_dev_init() - checks device readiness
4544  * @hba: per-adapter instance
4545  *
4546  * Set fDeviceInit flag and poll until device toggles it.
4547  *
4548  * Return: 0 upon success; < 0 upon failure.
4549  */
4550 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4551 {
4552 	int err;
4553 	bool flag_res = true;
4554 	ktime_t timeout;
4555 
4556 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4557 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4558 	if (err) {
4559 		dev_err(hba->dev,
4560 			"%s: setting fDeviceInit flag failed with error %d\n",
4561 			__func__, err);
4562 		goto out;
4563 	}
4564 
4565 	/* Poll fDeviceInit flag to be cleared */
4566 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4567 	do {
4568 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4569 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4570 		if (!flag_res)
4571 			break;
4572 		usleep_range(500, 1000);
4573 	} while (ktime_before(ktime_get(), timeout));
4574 
4575 	if (err) {
4576 		dev_err(hba->dev,
4577 				"%s: reading fDeviceInit flag failed with error %d\n",
4578 				__func__, err);
4579 	} else if (flag_res) {
4580 		dev_err(hba->dev,
4581 				"%s: fDeviceInit was not cleared by the device\n",
4582 				__func__);
4583 		err = -EBUSY;
4584 	}
4585 out:
4586 	return err;
4587 }
4588 
4589 /**
4590  * ufshcd_make_hba_operational - Make UFS controller operational
4591  * @hba: per adapter instance
4592  *
4593  * To bring UFS host controller to operational state,
4594  * 1. Enable required interrupts
4595  * 2. Configure interrupt aggregation
4596  * 3. Program UTRL and UTMRL base address
4597  * 4. Configure run-stop-registers
4598  *
4599  * Return: 0 on success, non-zero value on failure.
4600  */
4601 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4602 {
4603 	int err = 0;
4604 	u32 reg;
4605 
4606 	/* Enable required interrupts */
4607 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4608 
4609 	/* Configure interrupt aggregation */
4610 	if (ufshcd_is_intr_aggr_allowed(hba))
4611 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4612 	else
4613 		ufshcd_disable_intr_aggr(hba);
4614 
4615 	/* Configure UTRL and UTMRL base address registers */
4616 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4617 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4618 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4619 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4620 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4621 			REG_UTP_TASK_REQ_LIST_BASE_L);
4622 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4623 			REG_UTP_TASK_REQ_LIST_BASE_H);
4624 
4625 	/*
4626 	 * Make sure base address and interrupt setup are updated before
4627 	 * enabling the run/stop registers below.
4628 	 */
4629 	wmb();
4630 
4631 	/*
4632 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4633 	 */
4634 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4635 	if (!(ufshcd_get_lists_status(reg))) {
4636 		ufshcd_enable_run_stop_reg(hba);
4637 	} else {
4638 		dev_err(hba->dev,
4639 			"Host controller not ready to process requests");
4640 		err = -EIO;
4641 	}
4642 
4643 	return err;
4644 }
4645 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4646 
4647 /**
4648  * ufshcd_hba_stop - Send controller to reset state
4649  * @hba: per adapter instance
4650  */
4651 void ufshcd_hba_stop(struct ufs_hba *hba)
4652 {
4653 	unsigned long flags;
4654 	int err;
4655 
4656 	/*
4657 	 * Obtain the host lock to prevent that the controller is disabled
4658 	 * while the UFS interrupt handler is active on another CPU.
4659 	 */
4660 	spin_lock_irqsave(hba->host->host_lock, flags);
4661 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4662 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4663 
4664 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4665 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4666 					10, 1);
4667 	if (err)
4668 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4669 }
4670 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4671 
4672 /**
4673  * ufshcd_hba_execute_hce - initialize the controller
4674  * @hba: per adapter instance
4675  *
4676  * The controller resets itself and controller firmware initialization
4677  * sequence kicks off. When controller is ready it will set
4678  * the Host Controller Enable bit to 1.
4679  *
4680  * Return: 0 on success, non-zero value on failure.
4681  */
4682 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4683 {
4684 	int retry_outer = 3;
4685 	int retry_inner;
4686 
4687 start:
4688 	if (ufshcd_is_hba_active(hba))
4689 		/* change controller state to "reset state" */
4690 		ufshcd_hba_stop(hba);
4691 
4692 	/* UniPro link is disabled at this point */
4693 	ufshcd_set_link_off(hba);
4694 
4695 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4696 
4697 	/* start controller initialization sequence */
4698 	ufshcd_hba_start(hba);
4699 
4700 	/*
4701 	 * To initialize a UFS host controller HCE bit must be set to 1.
4702 	 * During initialization the HCE bit value changes from 1->0->1.
4703 	 * When the host controller completes initialization sequence
4704 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4705 	 * to check if the controller has completed initialization sequence.
4706 	 * So without this delay the value HCE = 1, set in the previous
4707 	 * instruction might be read back.
4708 	 * This delay can be changed based on the controller.
4709 	 */
4710 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4711 
4712 	/* wait for the host controller to complete initialization */
4713 	retry_inner = 50;
4714 	while (!ufshcd_is_hba_active(hba)) {
4715 		if (retry_inner) {
4716 			retry_inner--;
4717 		} else {
4718 			dev_err(hba->dev,
4719 				"Controller enable failed\n");
4720 			if (retry_outer) {
4721 				retry_outer--;
4722 				goto start;
4723 			}
4724 			return -EIO;
4725 		}
4726 		usleep_range(1000, 1100);
4727 	}
4728 
4729 	/* enable UIC related interrupts */
4730 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4731 
4732 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4733 
4734 	return 0;
4735 }
4736 
4737 int ufshcd_hba_enable(struct ufs_hba *hba)
4738 {
4739 	int ret;
4740 
4741 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4742 		ufshcd_set_link_off(hba);
4743 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4744 
4745 		/* enable UIC related interrupts */
4746 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4747 		ret = ufshcd_dme_reset(hba);
4748 		if (ret) {
4749 			dev_err(hba->dev, "DME_RESET failed\n");
4750 			return ret;
4751 		}
4752 
4753 		ret = ufshcd_dme_enable(hba);
4754 		if (ret) {
4755 			dev_err(hba->dev, "Enabling DME failed\n");
4756 			return ret;
4757 		}
4758 
4759 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4760 	} else {
4761 		ret = ufshcd_hba_execute_hce(hba);
4762 	}
4763 
4764 	return ret;
4765 }
4766 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4767 
4768 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4769 {
4770 	int tx_lanes = 0, i, err = 0;
4771 
4772 	if (!peer)
4773 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4774 			       &tx_lanes);
4775 	else
4776 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4777 				    &tx_lanes);
4778 	for (i = 0; i < tx_lanes; i++) {
4779 		if (!peer)
4780 			err = ufshcd_dme_set(hba,
4781 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4782 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4783 					0);
4784 		else
4785 			err = ufshcd_dme_peer_set(hba,
4786 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4787 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4788 					0);
4789 		if (err) {
4790 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4791 				__func__, peer, i, err);
4792 			break;
4793 		}
4794 	}
4795 
4796 	return err;
4797 }
4798 
4799 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4800 {
4801 	return ufshcd_disable_tx_lcc(hba, true);
4802 }
4803 
4804 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4805 {
4806 	struct ufs_event_hist *e;
4807 
4808 	if (id >= UFS_EVT_CNT)
4809 		return;
4810 
4811 	e = &hba->ufs_stats.event[id];
4812 	e->val[e->pos] = val;
4813 	e->tstamp[e->pos] = local_clock();
4814 	e->cnt += 1;
4815 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4816 
4817 	ufshcd_vops_event_notify(hba, id, &val);
4818 }
4819 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4820 
4821 /**
4822  * ufshcd_link_startup - Initialize unipro link startup
4823  * @hba: per adapter instance
4824  *
4825  * Return: 0 for success, non-zero in case of failure.
4826  */
4827 static int ufshcd_link_startup(struct ufs_hba *hba)
4828 {
4829 	int ret;
4830 	int retries = DME_LINKSTARTUP_RETRIES;
4831 	bool link_startup_again = false;
4832 
4833 	/*
4834 	 * If UFS device isn't active then we will have to issue link startup
4835 	 * 2 times to make sure the device state move to active.
4836 	 */
4837 	if (!ufshcd_is_ufs_dev_active(hba))
4838 		link_startup_again = true;
4839 
4840 link_startup:
4841 	do {
4842 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4843 
4844 		ret = ufshcd_dme_link_startup(hba);
4845 
4846 		/* check if device is detected by inter-connect layer */
4847 		if (!ret && !ufshcd_is_device_present(hba)) {
4848 			ufshcd_update_evt_hist(hba,
4849 					       UFS_EVT_LINK_STARTUP_FAIL,
4850 					       0);
4851 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4852 			ret = -ENXIO;
4853 			goto out;
4854 		}
4855 
4856 		/*
4857 		 * DME link lost indication is only received when link is up,
4858 		 * but we can't be sure if the link is up until link startup
4859 		 * succeeds. So reset the local Uni-Pro and try again.
4860 		 */
4861 		if (ret && retries && ufshcd_hba_enable(hba)) {
4862 			ufshcd_update_evt_hist(hba,
4863 					       UFS_EVT_LINK_STARTUP_FAIL,
4864 					       (u32)ret);
4865 			goto out;
4866 		}
4867 	} while (ret && retries--);
4868 
4869 	if (ret) {
4870 		/* failed to get the link up... retire */
4871 		ufshcd_update_evt_hist(hba,
4872 				       UFS_EVT_LINK_STARTUP_FAIL,
4873 				       (u32)ret);
4874 		goto out;
4875 	}
4876 
4877 	if (link_startup_again) {
4878 		link_startup_again = false;
4879 		retries = DME_LINKSTARTUP_RETRIES;
4880 		goto link_startup;
4881 	}
4882 
4883 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4884 	ufshcd_init_pwr_info(hba);
4885 	ufshcd_print_pwr_info(hba);
4886 
4887 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4888 		ret = ufshcd_disable_device_tx_lcc(hba);
4889 		if (ret)
4890 			goto out;
4891 	}
4892 
4893 	/* Include any host controller configuration via UIC commands */
4894 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4895 	if (ret)
4896 		goto out;
4897 
4898 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4899 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4900 	ret = ufshcd_make_hba_operational(hba);
4901 out:
4902 	if (ret) {
4903 		dev_err(hba->dev, "link startup failed %d\n", ret);
4904 		ufshcd_print_host_state(hba);
4905 		ufshcd_print_pwr_info(hba);
4906 		ufshcd_print_evt_hist(hba);
4907 	}
4908 	return ret;
4909 }
4910 
4911 /**
4912  * ufshcd_verify_dev_init() - Verify device initialization
4913  * @hba: per-adapter instance
4914  *
4915  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4916  * device Transport Protocol (UTP) layer is ready after a reset.
4917  * If the UTP layer at the device side is not initialized, it may
4918  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4919  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4920  *
4921  * Return: 0 upon success; < 0 upon failure.
4922  */
4923 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4924 {
4925 	int err = 0;
4926 	int retries;
4927 
4928 	ufshcd_hold(hba);
4929 	mutex_lock(&hba->dev_cmd.lock);
4930 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4931 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4932 					  hba->nop_out_timeout);
4933 
4934 		if (!err || err == -ETIMEDOUT)
4935 			break;
4936 
4937 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4938 	}
4939 	mutex_unlock(&hba->dev_cmd.lock);
4940 	ufshcd_release(hba);
4941 
4942 	if (err)
4943 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4944 	return err;
4945 }
4946 
4947 /**
4948  * ufshcd_setup_links - associate link b/w device wlun and other luns
4949  * @sdev: pointer to SCSI device
4950  * @hba: pointer to ufs hba
4951  */
4952 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4953 {
4954 	struct device_link *link;
4955 
4956 	/*
4957 	 * Device wlun is the supplier & rest of the luns are consumers.
4958 	 * This ensures that device wlun suspends after all other luns.
4959 	 */
4960 	if (hba->ufs_device_wlun) {
4961 		link = device_link_add(&sdev->sdev_gendev,
4962 				       &hba->ufs_device_wlun->sdev_gendev,
4963 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4964 		if (!link) {
4965 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4966 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4967 			return;
4968 		}
4969 		hba->luns_avail--;
4970 		/* Ignore REPORT_LUN wlun probing */
4971 		if (hba->luns_avail == 1) {
4972 			ufshcd_rpm_put(hba);
4973 			return;
4974 		}
4975 	} else {
4976 		/*
4977 		 * Device wlun is probed. The assumption is that WLUNs are
4978 		 * scanned before other LUNs.
4979 		 */
4980 		hba->luns_avail--;
4981 	}
4982 }
4983 
4984 /**
4985  * ufshcd_lu_init - Initialize the relevant parameters of the LU
4986  * @hba: per-adapter instance
4987  * @sdev: pointer to SCSI device
4988  */
4989 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
4990 {
4991 	int len = QUERY_DESC_MAX_SIZE;
4992 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
4993 	u8 lun_qdepth = hba->nutrs;
4994 	u8 *desc_buf;
4995 	int ret;
4996 
4997 	desc_buf = kzalloc(len, GFP_KERNEL);
4998 	if (!desc_buf)
4999 		goto set_qdepth;
5000 
5001 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5002 	if (ret < 0) {
5003 		if (ret == -EOPNOTSUPP)
5004 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5005 			lun_qdepth = 1;
5006 		kfree(desc_buf);
5007 		goto set_qdepth;
5008 	}
5009 
5010 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5011 		/*
5012 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5013 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5014 		 */
5015 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5016 	}
5017 	/*
5018 	 * According to UFS device specification, the write protection mode is only supported by
5019 	 * normal LU, not supported by WLUN.
5020 	 */
5021 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5022 	    !hba->dev_info.is_lu_power_on_wp &&
5023 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5024 		hba->dev_info.is_lu_power_on_wp = true;
5025 
5026 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5027 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5028 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5029 		hba->dev_info.b_advanced_rpmb_en = true;
5030 
5031 
5032 	kfree(desc_buf);
5033 set_qdepth:
5034 	/*
5035 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5036 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5037 	 */
5038 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5039 	scsi_change_queue_depth(sdev, lun_qdepth);
5040 }
5041 
5042 /**
5043  * ufshcd_slave_alloc - handle initial SCSI device configurations
5044  * @sdev: pointer to SCSI device
5045  *
5046  * Return: success.
5047  */
5048 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5049 {
5050 	struct ufs_hba *hba;
5051 
5052 	hba = shost_priv(sdev->host);
5053 
5054 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5055 	sdev->use_10_for_ms = 1;
5056 
5057 	/* DBD field should be set to 1 in mode sense(10) */
5058 	sdev->set_dbd_for_ms = 1;
5059 
5060 	/* allow SCSI layer to restart the device in case of errors */
5061 	sdev->allow_restart = 1;
5062 
5063 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5064 	sdev->no_report_opcodes = 1;
5065 
5066 	/* WRITE_SAME command is not supported */
5067 	sdev->no_write_same = 1;
5068 
5069 	ufshcd_lu_init(hba, sdev);
5070 
5071 	ufshcd_setup_links(hba, sdev);
5072 
5073 	return 0;
5074 }
5075 
5076 /**
5077  * ufshcd_change_queue_depth - change queue depth
5078  * @sdev: pointer to SCSI device
5079  * @depth: required depth to set
5080  *
5081  * Change queue depth and make sure the max. limits are not crossed.
5082  *
5083  * Return: new queue depth.
5084  */
5085 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5086 {
5087 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5088 }
5089 
5090 /**
5091  * ufshcd_slave_configure - adjust SCSI device configurations
5092  * @sdev: pointer to SCSI device
5093  *
5094  * Return: 0 (success).
5095  */
5096 static int ufshcd_slave_configure(struct scsi_device *sdev)
5097 {
5098 	struct ufs_hba *hba = shost_priv(sdev->host);
5099 	struct request_queue *q = sdev->request_queue;
5100 
5101 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5102 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5103 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5104 	/*
5105 	 * Block runtime-pm until all consumers are added.
5106 	 * Refer ufshcd_setup_links().
5107 	 */
5108 	if (is_device_wlun(sdev))
5109 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5110 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5111 		sdev->rpm_autosuspend = 1;
5112 	/*
5113 	 * Do not print messages during runtime PM to avoid never-ending cycles
5114 	 * of messages written back to storage by user space causing runtime
5115 	 * resume, causing more messages and so on.
5116 	 */
5117 	sdev->silence_suspend = 1;
5118 
5119 	ufshcd_crypto_register(hba, q);
5120 
5121 	return 0;
5122 }
5123 
5124 /**
5125  * ufshcd_slave_destroy - remove SCSI device configurations
5126  * @sdev: pointer to SCSI device
5127  */
5128 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5129 {
5130 	struct ufs_hba *hba;
5131 	unsigned long flags;
5132 
5133 	hba = shost_priv(sdev->host);
5134 
5135 	/* Drop the reference as it won't be needed anymore */
5136 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5137 		spin_lock_irqsave(hba->host->host_lock, flags);
5138 		hba->ufs_device_wlun = NULL;
5139 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5140 	} else if (hba->ufs_device_wlun) {
5141 		struct device *supplier = NULL;
5142 
5143 		/* Ensure UFS Device WLUN exists and does not disappear */
5144 		spin_lock_irqsave(hba->host->host_lock, flags);
5145 		if (hba->ufs_device_wlun) {
5146 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5147 			get_device(supplier);
5148 		}
5149 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5150 
5151 		if (supplier) {
5152 			/*
5153 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5154 			 * device will not have been registered but can still
5155 			 * have a device link holding a reference to the device.
5156 			 */
5157 			device_link_remove(&sdev->sdev_gendev, supplier);
5158 			put_device(supplier);
5159 		}
5160 	}
5161 }
5162 
5163 /**
5164  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5165  * @lrbp: pointer to local reference block of completed command
5166  * @scsi_status: SCSI command status
5167  *
5168  * Return: value base on SCSI command status.
5169  */
5170 static inline int
5171 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5172 {
5173 	int result = 0;
5174 
5175 	switch (scsi_status) {
5176 	case SAM_STAT_CHECK_CONDITION:
5177 		ufshcd_copy_sense_data(lrbp);
5178 		fallthrough;
5179 	case SAM_STAT_GOOD:
5180 		result |= DID_OK << 16 | scsi_status;
5181 		break;
5182 	case SAM_STAT_TASK_SET_FULL:
5183 	case SAM_STAT_BUSY:
5184 	case SAM_STAT_TASK_ABORTED:
5185 		ufshcd_copy_sense_data(lrbp);
5186 		result |= scsi_status;
5187 		break;
5188 	default:
5189 		result |= DID_ERROR << 16;
5190 		break;
5191 	} /* end of switch */
5192 
5193 	return result;
5194 }
5195 
5196 /**
5197  * ufshcd_transfer_rsp_status - Get overall status of the response
5198  * @hba: per adapter instance
5199  * @lrbp: pointer to local reference block of completed command
5200  * @cqe: pointer to the completion queue entry
5201  *
5202  * Return: result of the command to notify SCSI midlayer.
5203  */
5204 static inline int
5205 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5206 			   struct cq_entry *cqe)
5207 {
5208 	int result = 0;
5209 	int scsi_status;
5210 	enum utp_ocs ocs;
5211 	u8 upiu_flags;
5212 	u32 resid;
5213 
5214 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5215 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5216 	/*
5217 	 * Test !overflow instead of underflow to support UFS devices that do
5218 	 * not set either flag.
5219 	 */
5220 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5221 		scsi_set_resid(lrbp->cmd, resid);
5222 
5223 	/* overall command status of utrd */
5224 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5225 
5226 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5227 		if (lrbp->ucd_rsp_ptr->header.response ||
5228 		    lrbp->ucd_rsp_ptr->header.status)
5229 			ocs = OCS_SUCCESS;
5230 	}
5231 
5232 	switch (ocs) {
5233 	case OCS_SUCCESS:
5234 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5235 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5236 		case UPIU_TRANSACTION_RESPONSE:
5237 			/*
5238 			 * get the result based on SCSI status response
5239 			 * to notify the SCSI midlayer of the command status
5240 			 */
5241 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5242 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5243 
5244 			/*
5245 			 * Currently we are only supporting BKOPs exception
5246 			 * events hence we can ignore BKOPs exception event
5247 			 * during power management callbacks. BKOPs exception
5248 			 * event is not expected to be raised in runtime suspend
5249 			 * callback as it allows the urgent bkops.
5250 			 * During system suspend, we are anyway forcefully
5251 			 * disabling the bkops and if urgent bkops is needed
5252 			 * it will be enabled on system resume. Long term
5253 			 * solution could be to abort the system suspend if
5254 			 * UFS device needs urgent BKOPs.
5255 			 */
5256 			if (!hba->pm_op_in_progress &&
5257 			    !ufshcd_eh_in_progress(hba) &&
5258 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5259 				/* Flushed in suspend */
5260 				schedule_work(&hba->eeh_work);
5261 			break;
5262 		case UPIU_TRANSACTION_REJECT_UPIU:
5263 			/* TODO: handle Reject UPIU Response */
5264 			result = DID_ERROR << 16;
5265 			dev_err(hba->dev,
5266 				"Reject UPIU not fully implemented\n");
5267 			break;
5268 		default:
5269 			dev_err(hba->dev,
5270 				"Unexpected request response code = %x\n",
5271 				result);
5272 			result = DID_ERROR << 16;
5273 			break;
5274 		}
5275 		break;
5276 	case OCS_ABORTED:
5277 		result |= DID_ABORT << 16;
5278 		break;
5279 	case OCS_INVALID_COMMAND_STATUS:
5280 		result |= DID_REQUEUE << 16;
5281 		break;
5282 	case OCS_INVALID_CMD_TABLE_ATTR:
5283 	case OCS_INVALID_PRDT_ATTR:
5284 	case OCS_MISMATCH_DATA_BUF_SIZE:
5285 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5286 	case OCS_PEER_COMM_FAILURE:
5287 	case OCS_FATAL_ERROR:
5288 	case OCS_DEVICE_FATAL_ERROR:
5289 	case OCS_INVALID_CRYPTO_CONFIG:
5290 	case OCS_GENERAL_CRYPTO_ERROR:
5291 	default:
5292 		result |= DID_ERROR << 16;
5293 		dev_err(hba->dev,
5294 				"OCS error from controller = %x for tag %d\n",
5295 				ocs, lrbp->task_tag);
5296 		ufshcd_print_evt_hist(hba);
5297 		ufshcd_print_host_state(hba);
5298 		break;
5299 	} /* end of switch */
5300 
5301 	if ((host_byte(result) != DID_OK) &&
5302 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5303 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5304 	return result;
5305 }
5306 
5307 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5308 					 u32 intr_mask)
5309 {
5310 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5311 	    !ufshcd_is_auto_hibern8_enabled(hba))
5312 		return false;
5313 
5314 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5315 		return false;
5316 
5317 	if (hba->active_uic_cmd &&
5318 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5319 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5320 		return false;
5321 
5322 	return true;
5323 }
5324 
5325 /**
5326  * ufshcd_uic_cmd_compl - handle completion of uic command
5327  * @hba: per adapter instance
5328  * @intr_status: interrupt status generated by the controller
5329  *
5330  * Return:
5331  *  IRQ_HANDLED - If interrupt is valid
5332  *  IRQ_NONE    - If invalid interrupt
5333  */
5334 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5335 {
5336 	irqreturn_t retval = IRQ_NONE;
5337 
5338 	spin_lock(hba->host->host_lock);
5339 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5340 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5341 
5342 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5343 		hba->active_uic_cmd->argument2 |=
5344 			ufshcd_get_uic_cmd_result(hba);
5345 		hba->active_uic_cmd->argument3 =
5346 			ufshcd_get_dme_attr_val(hba);
5347 		if (!hba->uic_async_done)
5348 			hba->active_uic_cmd->cmd_active = 0;
5349 		complete(&hba->active_uic_cmd->done);
5350 		retval = IRQ_HANDLED;
5351 	}
5352 
5353 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5354 		hba->active_uic_cmd->cmd_active = 0;
5355 		complete(hba->uic_async_done);
5356 		retval = IRQ_HANDLED;
5357 	}
5358 
5359 	if (retval == IRQ_HANDLED)
5360 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5361 					     UFS_CMD_COMP);
5362 	spin_unlock(hba->host->host_lock);
5363 	return retval;
5364 }
5365 
5366 /* Release the resources allocated for processing a SCSI command. */
5367 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5368 			     struct ufshcd_lrb *lrbp)
5369 {
5370 	struct scsi_cmnd *cmd = lrbp->cmd;
5371 
5372 	scsi_dma_unmap(cmd);
5373 	ufshcd_release(hba);
5374 	ufshcd_clk_scaling_update_busy(hba);
5375 }
5376 
5377 /**
5378  * ufshcd_compl_one_cqe - handle a completion queue entry
5379  * @hba: per adapter instance
5380  * @task_tag: the task tag of the request to be completed
5381  * @cqe: pointer to the completion queue entry
5382  */
5383 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5384 			  struct cq_entry *cqe)
5385 {
5386 	struct ufshcd_lrb *lrbp;
5387 	struct scsi_cmnd *cmd;
5388 	enum utp_ocs ocs;
5389 
5390 	lrbp = &hba->lrb[task_tag];
5391 	lrbp->compl_time_stamp = ktime_get();
5392 	cmd = lrbp->cmd;
5393 	if (cmd) {
5394 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5395 			ufshcd_update_monitor(hba, lrbp);
5396 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5397 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5398 		ufshcd_release_scsi_cmd(hba, lrbp);
5399 		/* Do not touch lrbp after scsi done */
5400 		scsi_done(cmd);
5401 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5402 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5403 		if (hba->dev_cmd.complete) {
5404 			if (cqe) {
5405 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5406 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5407 			}
5408 			complete(hba->dev_cmd.complete);
5409 			ufshcd_clk_scaling_update_busy(hba);
5410 		}
5411 	}
5412 }
5413 
5414 /**
5415  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5416  * @hba: per adapter instance
5417  * @completed_reqs: bitmask that indicates which requests to complete
5418  */
5419 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5420 					unsigned long completed_reqs)
5421 {
5422 	int tag;
5423 
5424 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5425 		ufshcd_compl_one_cqe(hba, tag, NULL);
5426 }
5427 
5428 /* Any value that is not an existing queue number is fine for this constant. */
5429 enum {
5430 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5431 };
5432 
5433 static void ufshcd_clear_polled(struct ufs_hba *hba,
5434 				unsigned long *completed_reqs)
5435 {
5436 	int tag;
5437 
5438 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5439 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5440 
5441 		if (!cmd)
5442 			continue;
5443 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5444 			__clear_bit(tag, completed_reqs);
5445 	}
5446 }
5447 
5448 /*
5449  * Return: > 0 if one or more commands have been completed or 0 if no
5450  * requests have been completed.
5451  */
5452 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5453 {
5454 	struct ufs_hba *hba = shost_priv(shost);
5455 	unsigned long completed_reqs, flags;
5456 	u32 tr_doorbell;
5457 	struct ufs_hw_queue *hwq;
5458 
5459 	if (is_mcq_enabled(hba)) {
5460 		hwq = &hba->uhq[queue_num];
5461 
5462 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5463 	}
5464 
5465 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5466 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5467 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5468 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5469 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5470 		  hba->outstanding_reqs);
5471 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5472 		/* Do not complete polled requests from interrupt context. */
5473 		ufshcd_clear_polled(hba, &completed_reqs);
5474 	}
5475 	hba->outstanding_reqs &= ~completed_reqs;
5476 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5477 
5478 	if (completed_reqs)
5479 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5480 
5481 	return completed_reqs != 0;
5482 }
5483 
5484 /**
5485  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5486  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5487  * to complete the pending transfers and free the resources associated with
5488  * the scsi command.
5489  *
5490  * @hba: per adapter instance
5491  * @force_compl: This flag is set to true when invoked
5492  * from ufshcd_host_reset_and_restore() in which case it requires special
5493  * handling because the host controller has been reset by ufshcd_hba_stop().
5494  */
5495 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5496 					      bool force_compl)
5497 {
5498 	struct ufs_hw_queue *hwq;
5499 	struct ufshcd_lrb *lrbp;
5500 	struct scsi_cmnd *cmd;
5501 	unsigned long flags;
5502 	u32 hwq_num, utag;
5503 	int tag;
5504 
5505 	for (tag = 0; tag < hba->nutrs; tag++) {
5506 		lrbp = &hba->lrb[tag];
5507 		cmd = lrbp->cmd;
5508 		if (!ufshcd_cmd_inflight(cmd) ||
5509 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5510 			continue;
5511 
5512 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5513 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5514 		hwq = &hba->uhq[hwq_num];
5515 
5516 		if (force_compl) {
5517 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5518 			/*
5519 			 * For those cmds of which the cqes are not present
5520 			 * in the cq, complete them explicitly.
5521 			 */
5522 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5523 				spin_lock_irqsave(&hwq->cq_lock, flags);
5524 				set_host_byte(cmd, DID_REQUEUE);
5525 				ufshcd_release_scsi_cmd(hba, lrbp);
5526 				scsi_done(cmd);
5527 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5528 			}
5529 		} else {
5530 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5531 		}
5532 	}
5533 }
5534 
5535 /**
5536  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5537  * @hba: per adapter instance
5538  *
5539  * Return:
5540  *  IRQ_HANDLED - If interrupt is valid
5541  *  IRQ_NONE    - If invalid interrupt
5542  */
5543 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5544 {
5545 	/* Resetting interrupt aggregation counters first and reading the
5546 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5547 	 * In order to prevent other interrupts starvation the DB is read once
5548 	 * after reset. The down side of this solution is the possibility of
5549 	 * false interrupt if device completes another request after resetting
5550 	 * aggregation and before reading the DB.
5551 	 */
5552 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5553 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5554 		ufshcd_reset_intr_aggr(hba);
5555 
5556 	if (ufs_fail_completion())
5557 		return IRQ_HANDLED;
5558 
5559 	/*
5560 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5561 	 * do not want polling to trigger spurious interrupt complaints.
5562 	 */
5563 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5564 
5565 	return IRQ_HANDLED;
5566 }
5567 
5568 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5569 {
5570 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5571 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5572 				       &ee_ctrl_mask);
5573 }
5574 
5575 int ufshcd_write_ee_control(struct ufs_hba *hba)
5576 {
5577 	int err;
5578 
5579 	mutex_lock(&hba->ee_ctrl_mutex);
5580 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5581 	mutex_unlock(&hba->ee_ctrl_mutex);
5582 	if (err)
5583 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5584 			__func__, err);
5585 	return err;
5586 }
5587 
5588 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5589 			     const u16 *other_mask, u16 set, u16 clr)
5590 {
5591 	u16 new_mask, ee_ctrl_mask;
5592 	int err = 0;
5593 
5594 	mutex_lock(&hba->ee_ctrl_mutex);
5595 	new_mask = (*mask & ~clr) | set;
5596 	ee_ctrl_mask = new_mask | *other_mask;
5597 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5598 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5599 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5600 	if (!err) {
5601 		hba->ee_ctrl_mask = ee_ctrl_mask;
5602 		*mask = new_mask;
5603 	}
5604 	mutex_unlock(&hba->ee_ctrl_mutex);
5605 	return err;
5606 }
5607 
5608 /**
5609  * ufshcd_disable_ee - disable exception event
5610  * @hba: per-adapter instance
5611  * @mask: exception event to disable
5612  *
5613  * Disables exception event in the device so that the EVENT_ALERT
5614  * bit is not set.
5615  *
5616  * Return: zero on success, non-zero error value on failure.
5617  */
5618 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5619 {
5620 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5621 }
5622 
5623 /**
5624  * ufshcd_enable_ee - enable exception event
5625  * @hba: per-adapter instance
5626  * @mask: exception event to enable
5627  *
5628  * Enable corresponding exception event in the device to allow
5629  * device to alert host in critical scenarios.
5630  *
5631  * Return: zero on success, non-zero error value on failure.
5632  */
5633 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5634 {
5635 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5636 }
5637 
5638 /**
5639  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5640  * @hba: per-adapter instance
5641  *
5642  * Allow device to manage background operations on its own. Enabling
5643  * this might lead to inconsistent latencies during normal data transfers
5644  * as the device is allowed to manage its own way of handling background
5645  * operations.
5646  *
5647  * Return: zero on success, non-zero on failure.
5648  */
5649 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5650 {
5651 	int err = 0;
5652 
5653 	if (hba->auto_bkops_enabled)
5654 		goto out;
5655 
5656 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5657 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5658 	if (err) {
5659 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5660 				__func__, err);
5661 		goto out;
5662 	}
5663 
5664 	hba->auto_bkops_enabled = true;
5665 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5666 
5667 	/* No need of URGENT_BKOPS exception from the device */
5668 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5669 	if (err)
5670 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5671 				__func__, err);
5672 out:
5673 	return err;
5674 }
5675 
5676 /**
5677  * ufshcd_disable_auto_bkops - block device in doing background operations
5678  * @hba: per-adapter instance
5679  *
5680  * Disabling background operations improves command response latency but
5681  * has drawback of device moving into critical state where the device is
5682  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5683  * host is idle so that BKOPS are managed effectively without any negative
5684  * impacts.
5685  *
5686  * Return: zero on success, non-zero on failure.
5687  */
5688 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5689 {
5690 	int err = 0;
5691 
5692 	if (!hba->auto_bkops_enabled)
5693 		goto out;
5694 
5695 	/*
5696 	 * If host assisted BKOPs is to be enabled, make sure
5697 	 * urgent bkops exception is allowed.
5698 	 */
5699 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5700 	if (err) {
5701 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5702 				__func__, err);
5703 		goto out;
5704 	}
5705 
5706 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5707 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5708 	if (err) {
5709 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5710 				__func__, err);
5711 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5712 		goto out;
5713 	}
5714 
5715 	hba->auto_bkops_enabled = false;
5716 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5717 	hba->is_urgent_bkops_lvl_checked = false;
5718 out:
5719 	return err;
5720 }
5721 
5722 /**
5723  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5724  * @hba: per adapter instance
5725  *
5726  * After a device reset the device may toggle the BKOPS_EN flag
5727  * to default value. The s/w tracking variables should be updated
5728  * as well. This function would change the auto-bkops state based on
5729  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5730  */
5731 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5732 {
5733 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5734 		hba->auto_bkops_enabled = false;
5735 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5736 		ufshcd_enable_auto_bkops(hba);
5737 	} else {
5738 		hba->auto_bkops_enabled = true;
5739 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5740 		ufshcd_disable_auto_bkops(hba);
5741 	}
5742 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5743 	hba->is_urgent_bkops_lvl_checked = false;
5744 }
5745 
5746 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5747 {
5748 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5749 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5750 }
5751 
5752 /**
5753  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5754  * @hba: per-adapter instance
5755  * @status: bkops_status value
5756  *
5757  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5758  * flag in the device to permit background operations if the device
5759  * bkops_status is greater than or equal to "status" argument passed to
5760  * this function, disable otherwise.
5761  *
5762  * Return: 0 for success, non-zero in case of failure.
5763  *
5764  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5765  * to know whether auto bkops is enabled or disabled after this function
5766  * returns control to it.
5767  */
5768 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5769 			     enum bkops_status status)
5770 {
5771 	int err;
5772 	u32 curr_status = 0;
5773 
5774 	err = ufshcd_get_bkops_status(hba, &curr_status);
5775 	if (err) {
5776 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5777 				__func__, err);
5778 		goto out;
5779 	} else if (curr_status > BKOPS_STATUS_MAX) {
5780 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5781 				__func__, curr_status);
5782 		err = -EINVAL;
5783 		goto out;
5784 	}
5785 
5786 	if (curr_status >= status)
5787 		err = ufshcd_enable_auto_bkops(hba);
5788 	else
5789 		err = ufshcd_disable_auto_bkops(hba);
5790 out:
5791 	return err;
5792 }
5793 
5794 /**
5795  * ufshcd_urgent_bkops - handle urgent bkops exception event
5796  * @hba: per-adapter instance
5797  *
5798  * Enable fBackgroundOpsEn flag in the device to permit background
5799  * operations.
5800  *
5801  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5802  * and negative error value for any other failure.
5803  *
5804  * Return: 0 upon success; < 0 upon failure.
5805  */
5806 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5807 {
5808 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5809 }
5810 
5811 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5812 {
5813 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5814 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5815 }
5816 
5817 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5818 {
5819 	int err;
5820 	u32 curr_status = 0;
5821 
5822 	if (hba->is_urgent_bkops_lvl_checked)
5823 		goto enable_auto_bkops;
5824 
5825 	err = ufshcd_get_bkops_status(hba, &curr_status);
5826 	if (err) {
5827 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5828 				__func__, err);
5829 		goto out;
5830 	}
5831 
5832 	/*
5833 	 * We are seeing that some devices are raising the urgent bkops
5834 	 * exception events even when BKOPS status doesn't indicate performace
5835 	 * impacted or critical. Handle these device by determining their urgent
5836 	 * bkops status at runtime.
5837 	 */
5838 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5839 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5840 				__func__, curr_status);
5841 		/* update the current status as the urgent bkops level */
5842 		hba->urgent_bkops_lvl = curr_status;
5843 		hba->is_urgent_bkops_lvl_checked = true;
5844 	}
5845 
5846 enable_auto_bkops:
5847 	err = ufshcd_enable_auto_bkops(hba);
5848 out:
5849 	if (err < 0)
5850 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5851 				__func__, err);
5852 }
5853 
5854 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5855 {
5856 	u32 value;
5857 
5858 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5859 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5860 		return;
5861 
5862 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5863 
5864 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5865 
5866 	/*
5867 	 * A placeholder for the platform vendors to add whatever additional
5868 	 * steps required
5869 	 */
5870 }
5871 
5872 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5873 {
5874 	u8 index;
5875 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5876 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5877 
5878 	index = ufshcd_wb_get_query_index(hba);
5879 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5880 }
5881 
5882 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5883 {
5884 	int ret;
5885 
5886 	if (!ufshcd_is_wb_allowed(hba) ||
5887 	    hba->dev_info.wb_enabled == enable)
5888 		return 0;
5889 
5890 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5891 	if (ret) {
5892 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5893 			__func__, enable ? "enabling" : "disabling", ret);
5894 		return ret;
5895 	}
5896 
5897 	hba->dev_info.wb_enabled = enable;
5898 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5899 			__func__, enable ? "enabled" : "disabled");
5900 
5901 	return ret;
5902 }
5903 
5904 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5905 						 bool enable)
5906 {
5907 	int ret;
5908 
5909 	ret = __ufshcd_wb_toggle(hba, enable,
5910 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5911 	if (ret) {
5912 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5913 			__func__, enable ? "enabling" : "disabling", ret);
5914 		return;
5915 	}
5916 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5917 			__func__, enable ? "enabled" : "disabled");
5918 }
5919 
5920 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5921 {
5922 	int ret;
5923 
5924 	if (!ufshcd_is_wb_allowed(hba) ||
5925 	    hba->dev_info.wb_buf_flush_enabled == enable)
5926 		return 0;
5927 
5928 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5929 	if (ret) {
5930 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5931 			__func__, enable ? "enabling" : "disabling", ret);
5932 		return ret;
5933 	}
5934 
5935 	hba->dev_info.wb_buf_flush_enabled = enable;
5936 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5937 			__func__, enable ? "enabled" : "disabled");
5938 
5939 	return ret;
5940 }
5941 
5942 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5943 						u32 avail_buf)
5944 {
5945 	u32 cur_buf;
5946 	int ret;
5947 	u8 index;
5948 
5949 	index = ufshcd_wb_get_query_index(hba);
5950 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5951 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5952 					      index, 0, &cur_buf);
5953 	if (ret) {
5954 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5955 			__func__, ret);
5956 		return false;
5957 	}
5958 
5959 	if (!cur_buf) {
5960 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5961 			 cur_buf);
5962 		return false;
5963 	}
5964 	/* Let it continue to flush when available buffer exceeds threshold */
5965 	return avail_buf < hba->vps->wb_flush_threshold;
5966 }
5967 
5968 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5969 {
5970 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5971 		ufshcd_wb_toggle_buf_flush(hba, false);
5972 
5973 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5974 	ufshcd_wb_toggle(hba, false);
5975 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5976 
5977 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5978 }
5979 
5980 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5981 {
5982 	u32 lifetime;
5983 	int ret;
5984 	u8 index;
5985 
5986 	index = ufshcd_wb_get_query_index(hba);
5987 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5988 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5989 				      index, 0, &lifetime);
5990 	if (ret) {
5991 		dev_err(hba->dev,
5992 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5993 			__func__, ret);
5994 		return false;
5995 	}
5996 
5997 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5998 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5999 			__func__, lifetime);
6000 		return false;
6001 	}
6002 
6003 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6004 		__func__, lifetime);
6005 
6006 	return true;
6007 }
6008 
6009 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6010 {
6011 	int ret;
6012 	u32 avail_buf;
6013 	u8 index;
6014 
6015 	if (!ufshcd_is_wb_allowed(hba))
6016 		return false;
6017 
6018 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6019 		ufshcd_wb_force_disable(hba);
6020 		return false;
6021 	}
6022 
6023 	/*
6024 	 * The ufs device needs the vcc to be ON to flush.
6025 	 * With user-space reduction enabled, it's enough to enable flush
6026 	 * by checking only the available buffer. The threshold
6027 	 * defined here is > 90% full.
6028 	 * With user-space preserved enabled, the current-buffer
6029 	 * should be checked too because the wb buffer size can reduce
6030 	 * when disk tends to be full. This info is provided by current
6031 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6032 	 * keeping vcc on when current buffer is empty.
6033 	 */
6034 	index = ufshcd_wb_get_query_index(hba);
6035 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6036 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6037 				      index, 0, &avail_buf);
6038 	if (ret) {
6039 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6040 			 __func__, ret);
6041 		return false;
6042 	}
6043 
6044 	if (!hba->dev_info.b_presrv_uspc_en)
6045 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6046 
6047 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6048 }
6049 
6050 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6051 {
6052 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6053 					   struct ufs_hba,
6054 					   rpm_dev_flush_recheck_work);
6055 	/*
6056 	 * To prevent unnecessary VCC power drain after device finishes
6057 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6058 	 * after a certain delay to recheck the threshold by next runtime
6059 	 * suspend.
6060 	 */
6061 	ufshcd_rpm_get_sync(hba);
6062 	ufshcd_rpm_put_sync(hba);
6063 }
6064 
6065 /**
6066  * ufshcd_exception_event_handler - handle exceptions raised by device
6067  * @work: pointer to work data
6068  *
6069  * Read bExceptionEventStatus attribute from the device and handle the
6070  * exception event accordingly.
6071  */
6072 static void ufshcd_exception_event_handler(struct work_struct *work)
6073 {
6074 	struct ufs_hba *hba;
6075 	int err;
6076 	u32 status = 0;
6077 	hba = container_of(work, struct ufs_hba, eeh_work);
6078 
6079 	ufshcd_scsi_block_requests(hba);
6080 	err = ufshcd_get_ee_status(hba, &status);
6081 	if (err) {
6082 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6083 				__func__, err);
6084 		goto out;
6085 	}
6086 
6087 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6088 
6089 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6090 		ufshcd_bkops_exception_event_handler(hba);
6091 
6092 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6093 		ufshcd_temp_exception_event_handler(hba, status);
6094 
6095 	ufs_debugfs_exception_event(hba, status);
6096 out:
6097 	ufshcd_scsi_unblock_requests(hba);
6098 }
6099 
6100 /* Complete requests that have door-bell cleared */
6101 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6102 {
6103 	if (is_mcq_enabled(hba))
6104 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6105 	else
6106 		ufshcd_transfer_req_compl(hba);
6107 
6108 	ufshcd_tmc_handler(hba);
6109 }
6110 
6111 /**
6112  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6113  *				to recover from the DL NAC errors or not.
6114  * @hba: per-adapter instance
6115  *
6116  * Return: true if error handling is required, false otherwise.
6117  */
6118 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6119 {
6120 	unsigned long flags;
6121 	bool err_handling = true;
6122 
6123 	spin_lock_irqsave(hba->host->host_lock, flags);
6124 	/*
6125 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6126 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6127 	 */
6128 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6129 		goto out;
6130 
6131 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6132 	    ((hba->saved_err & UIC_ERROR) &&
6133 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6134 		goto out;
6135 
6136 	if ((hba->saved_err & UIC_ERROR) &&
6137 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6138 		int err;
6139 		/*
6140 		 * wait for 50ms to see if we can get any other errors or not.
6141 		 */
6142 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6143 		msleep(50);
6144 		spin_lock_irqsave(hba->host->host_lock, flags);
6145 
6146 		/*
6147 		 * now check if we have got any other severe errors other than
6148 		 * DL NAC error?
6149 		 */
6150 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6151 		    ((hba->saved_err & UIC_ERROR) &&
6152 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6153 			goto out;
6154 
6155 		/*
6156 		 * As DL NAC is the only error received so far, send out NOP
6157 		 * command to confirm if link is still active or not.
6158 		 *   - If we don't get any response then do error recovery.
6159 		 *   - If we get response then clear the DL NAC error bit.
6160 		 */
6161 
6162 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6163 		err = ufshcd_verify_dev_init(hba);
6164 		spin_lock_irqsave(hba->host->host_lock, flags);
6165 
6166 		if (err)
6167 			goto out;
6168 
6169 		/* Link seems to be alive hence ignore the DL NAC errors */
6170 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6171 			hba->saved_err &= ~UIC_ERROR;
6172 		/* clear NAC error */
6173 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6174 		if (!hba->saved_uic_err)
6175 			err_handling = false;
6176 	}
6177 out:
6178 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6179 	return err_handling;
6180 }
6181 
6182 /* host lock must be held before calling this func */
6183 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6184 {
6185 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6186 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6187 }
6188 
6189 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6190 {
6191 	lockdep_assert_held(hba->host->host_lock);
6192 
6193 	/* handle fatal errors only when link is not in error state */
6194 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6195 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6196 		    ufshcd_is_saved_err_fatal(hba))
6197 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6198 		else
6199 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6200 		queue_work(hba->eh_wq, &hba->eh_work);
6201 	}
6202 }
6203 
6204 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6205 {
6206 	spin_lock_irq(hba->host->host_lock);
6207 	hba->force_reset = true;
6208 	ufshcd_schedule_eh_work(hba);
6209 	spin_unlock_irq(hba->host->host_lock);
6210 }
6211 
6212 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6213 {
6214 	mutex_lock(&hba->wb_mutex);
6215 	down_write(&hba->clk_scaling_lock);
6216 	hba->clk_scaling.is_allowed = allow;
6217 	up_write(&hba->clk_scaling_lock);
6218 	mutex_unlock(&hba->wb_mutex);
6219 }
6220 
6221 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6222 {
6223 	if (suspend) {
6224 		if (hba->clk_scaling.is_enabled)
6225 			ufshcd_suspend_clkscaling(hba);
6226 		ufshcd_clk_scaling_allow(hba, false);
6227 	} else {
6228 		ufshcd_clk_scaling_allow(hba, true);
6229 		if (hba->clk_scaling.is_enabled)
6230 			ufshcd_resume_clkscaling(hba);
6231 	}
6232 }
6233 
6234 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6235 {
6236 	ufshcd_rpm_get_sync(hba);
6237 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6238 	    hba->is_sys_suspended) {
6239 		enum ufs_pm_op pm_op;
6240 
6241 		/*
6242 		 * Don't assume anything of resume, if
6243 		 * resume fails, irq and clocks can be OFF, and powers
6244 		 * can be OFF or in LPM.
6245 		 */
6246 		ufshcd_setup_hba_vreg(hba, true);
6247 		ufshcd_enable_irq(hba);
6248 		ufshcd_setup_vreg(hba, true);
6249 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6250 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6251 		ufshcd_hold(hba);
6252 		if (!ufshcd_is_clkgating_allowed(hba))
6253 			ufshcd_setup_clocks(hba, true);
6254 		ufshcd_release(hba);
6255 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6256 		ufshcd_vops_resume(hba, pm_op);
6257 	} else {
6258 		ufshcd_hold(hba);
6259 		if (ufshcd_is_clkscaling_supported(hba) &&
6260 		    hba->clk_scaling.is_enabled)
6261 			ufshcd_suspend_clkscaling(hba);
6262 		ufshcd_clk_scaling_allow(hba, false);
6263 	}
6264 	ufshcd_scsi_block_requests(hba);
6265 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6266 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6267 	cancel_work_sync(&hba->eeh_work);
6268 }
6269 
6270 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6271 {
6272 	ufshcd_scsi_unblock_requests(hba);
6273 	ufshcd_release(hba);
6274 	if (ufshcd_is_clkscaling_supported(hba))
6275 		ufshcd_clk_scaling_suspend(hba, false);
6276 	ufshcd_rpm_put(hba);
6277 }
6278 
6279 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6280 {
6281 	return (!hba->is_powered || hba->shutting_down ||
6282 		!hba->ufs_device_wlun ||
6283 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6284 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6285 		   ufshcd_is_link_broken(hba))));
6286 }
6287 
6288 #ifdef CONFIG_PM
6289 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6290 {
6291 	struct Scsi_Host *shost = hba->host;
6292 	struct scsi_device *sdev;
6293 	struct request_queue *q;
6294 	int ret;
6295 
6296 	hba->is_sys_suspended = false;
6297 	/*
6298 	 * Set RPM status of wlun device to RPM_ACTIVE,
6299 	 * this also clears its runtime error.
6300 	 */
6301 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6302 
6303 	/* hba device might have a runtime error otherwise */
6304 	if (ret)
6305 		ret = pm_runtime_set_active(hba->dev);
6306 	/*
6307 	 * If wlun device had runtime error, we also need to resume those
6308 	 * consumer scsi devices in case any of them has failed to be
6309 	 * resumed due to supplier runtime resume failure. This is to unblock
6310 	 * blk_queue_enter in case there are bios waiting inside it.
6311 	 */
6312 	if (!ret) {
6313 		shost_for_each_device(sdev, shost) {
6314 			q = sdev->request_queue;
6315 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6316 				       q->rpm_status == RPM_SUSPENDING))
6317 				pm_request_resume(q->dev);
6318 		}
6319 	}
6320 }
6321 #else
6322 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6323 {
6324 }
6325 #endif
6326 
6327 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6328 {
6329 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6330 	u32 mode;
6331 
6332 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6333 
6334 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6335 		return true;
6336 
6337 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6338 		return true;
6339 
6340 	return false;
6341 }
6342 
6343 static bool ufshcd_abort_one(struct request *rq, void *priv)
6344 {
6345 	int *ret = priv;
6346 	u32 tag = rq->tag;
6347 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6348 	struct scsi_device *sdev = cmd->device;
6349 	struct Scsi_Host *shost = sdev->host;
6350 	struct ufs_hba *hba = shost_priv(shost);
6351 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6352 	struct ufs_hw_queue *hwq;
6353 	unsigned long flags;
6354 
6355 	*ret = ufshcd_try_to_abort_task(hba, tag);
6356 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6357 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6358 		*ret ? "failed" : "succeeded");
6359 
6360 	/* Release cmd in MCQ mode if abort succeeds */
6361 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6362 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6363 		spin_lock_irqsave(&hwq->cq_lock, flags);
6364 		if (ufshcd_cmd_inflight(lrbp->cmd))
6365 			ufshcd_release_scsi_cmd(hba, lrbp);
6366 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6367 	}
6368 
6369 	return *ret == 0;
6370 }
6371 
6372 /**
6373  * ufshcd_abort_all - Abort all pending commands.
6374  * @hba: Host bus adapter pointer.
6375  *
6376  * Return: true if and only if the host controller needs to be reset.
6377  */
6378 static bool ufshcd_abort_all(struct ufs_hba *hba)
6379 {
6380 	int tag, ret = 0;
6381 
6382 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6383 	if (ret)
6384 		goto out;
6385 
6386 	/* Clear pending task management requests */
6387 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6388 		ret = ufshcd_clear_tm_cmd(hba, tag);
6389 		if (ret)
6390 			goto out;
6391 	}
6392 
6393 out:
6394 	/* Complete the requests that are cleared by s/w */
6395 	ufshcd_complete_requests(hba, false);
6396 
6397 	return ret != 0;
6398 }
6399 
6400 /**
6401  * ufshcd_err_handler - handle UFS errors that require s/w attention
6402  * @work: pointer to work structure
6403  */
6404 static void ufshcd_err_handler(struct work_struct *work)
6405 {
6406 	int retries = MAX_ERR_HANDLER_RETRIES;
6407 	struct ufs_hba *hba;
6408 	unsigned long flags;
6409 	bool needs_restore;
6410 	bool needs_reset;
6411 	int pmc_err;
6412 
6413 	hba = container_of(work, struct ufs_hba, eh_work);
6414 
6415 	dev_info(hba->dev,
6416 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6417 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6418 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6419 		 hba->saved_uic_err, hba->force_reset,
6420 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6421 
6422 	down(&hba->host_sem);
6423 	spin_lock_irqsave(hba->host->host_lock, flags);
6424 	if (ufshcd_err_handling_should_stop(hba)) {
6425 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6426 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6427 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6428 		up(&hba->host_sem);
6429 		return;
6430 	}
6431 	ufshcd_set_eh_in_progress(hba);
6432 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6433 	ufshcd_err_handling_prepare(hba);
6434 	/* Complete requests that have door-bell cleared by h/w */
6435 	ufshcd_complete_requests(hba, false);
6436 	spin_lock_irqsave(hba->host->host_lock, flags);
6437 again:
6438 	needs_restore = false;
6439 	needs_reset = false;
6440 
6441 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6442 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6443 	/*
6444 	 * A full reset and restore might have happened after preparation
6445 	 * is finished, double check whether we should stop.
6446 	 */
6447 	if (ufshcd_err_handling_should_stop(hba))
6448 		goto skip_err_handling;
6449 
6450 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6451 		bool ret;
6452 
6453 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6454 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6455 		ret = ufshcd_quirk_dl_nac_errors(hba);
6456 		spin_lock_irqsave(hba->host->host_lock, flags);
6457 		if (!ret && ufshcd_err_handling_should_stop(hba))
6458 			goto skip_err_handling;
6459 	}
6460 
6461 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6462 	    (hba->saved_uic_err &&
6463 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6464 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6465 
6466 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6467 		ufshcd_print_host_state(hba);
6468 		ufshcd_print_pwr_info(hba);
6469 		ufshcd_print_evt_hist(hba);
6470 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6471 		ufshcd_print_trs_all(hba, pr_prdt);
6472 		spin_lock_irqsave(hba->host->host_lock, flags);
6473 	}
6474 
6475 	/*
6476 	 * if host reset is required then skip clearing the pending
6477 	 * transfers forcefully because they will get cleared during
6478 	 * host reset and restore
6479 	 */
6480 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6481 	    ufshcd_is_saved_err_fatal(hba) ||
6482 	    ((hba->saved_err & UIC_ERROR) &&
6483 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6484 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6485 		needs_reset = true;
6486 		goto do_reset;
6487 	}
6488 
6489 	/*
6490 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6491 	 * check if power mode restore is needed.
6492 	 */
6493 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6494 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6495 		if (!hba->saved_uic_err)
6496 			hba->saved_err &= ~UIC_ERROR;
6497 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6498 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6499 			needs_restore = true;
6500 		spin_lock_irqsave(hba->host->host_lock, flags);
6501 		if (!hba->saved_err && !needs_restore)
6502 			goto skip_err_handling;
6503 	}
6504 
6505 	hba->silence_err_logs = true;
6506 	/* release lock as clear command might sleep */
6507 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6508 
6509 	needs_reset = ufshcd_abort_all(hba);
6510 
6511 	spin_lock_irqsave(hba->host->host_lock, flags);
6512 	hba->silence_err_logs = false;
6513 	if (needs_reset)
6514 		goto do_reset;
6515 
6516 	/*
6517 	 * After all reqs and tasks are cleared from doorbell,
6518 	 * now it is safe to retore power mode.
6519 	 */
6520 	if (needs_restore) {
6521 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6522 		/*
6523 		 * Hold the scaling lock just in case dev cmds
6524 		 * are sent via bsg and/or sysfs.
6525 		 */
6526 		down_write(&hba->clk_scaling_lock);
6527 		hba->force_pmc = true;
6528 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6529 		if (pmc_err) {
6530 			needs_reset = true;
6531 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6532 					__func__, pmc_err);
6533 		}
6534 		hba->force_pmc = false;
6535 		ufshcd_print_pwr_info(hba);
6536 		up_write(&hba->clk_scaling_lock);
6537 		spin_lock_irqsave(hba->host->host_lock, flags);
6538 	}
6539 
6540 do_reset:
6541 	/* Fatal errors need reset */
6542 	if (needs_reset) {
6543 		int err;
6544 
6545 		hba->force_reset = false;
6546 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6547 		err = ufshcd_reset_and_restore(hba);
6548 		if (err)
6549 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6550 					__func__, err);
6551 		else
6552 			ufshcd_recover_pm_error(hba);
6553 		spin_lock_irqsave(hba->host->host_lock, flags);
6554 	}
6555 
6556 skip_err_handling:
6557 	if (!needs_reset) {
6558 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6559 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6560 		if (hba->saved_err || hba->saved_uic_err)
6561 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6562 			    __func__, hba->saved_err, hba->saved_uic_err);
6563 	}
6564 	/* Exit in an operational state or dead */
6565 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6566 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6567 		if (--retries)
6568 			goto again;
6569 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6570 	}
6571 	ufshcd_clear_eh_in_progress(hba);
6572 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6573 	ufshcd_err_handling_unprepare(hba);
6574 	up(&hba->host_sem);
6575 
6576 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6577 		 ufshcd_state_name[hba->ufshcd_state]);
6578 }
6579 
6580 /**
6581  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6582  * @hba: per-adapter instance
6583  *
6584  * Return:
6585  *  IRQ_HANDLED - If interrupt is valid
6586  *  IRQ_NONE    - If invalid interrupt
6587  */
6588 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6589 {
6590 	u32 reg;
6591 	irqreturn_t retval = IRQ_NONE;
6592 
6593 	/* PHY layer error */
6594 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6595 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6596 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6597 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6598 		/*
6599 		 * To know whether this error is fatal or not, DB timeout
6600 		 * must be checked but this error is handled separately.
6601 		 */
6602 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6603 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6604 					__func__);
6605 
6606 		/* Got a LINERESET indication. */
6607 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6608 			struct uic_command *cmd = NULL;
6609 
6610 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6611 			if (hba->uic_async_done && hba->active_uic_cmd)
6612 				cmd = hba->active_uic_cmd;
6613 			/*
6614 			 * Ignore the LINERESET during power mode change
6615 			 * operation via DME_SET command.
6616 			 */
6617 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6618 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6619 		}
6620 		retval |= IRQ_HANDLED;
6621 	}
6622 
6623 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6624 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6625 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6626 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6627 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6628 
6629 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6630 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6631 		else if (hba->dev_quirks &
6632 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6633 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6634 				hba->uic_error |=
6635 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6636 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6637 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6638 		}
6639 		retval |= IRQ_HANDLED;
6640 	}
6641 
6642 	/* UIC NL/TL/DME errors needs software retry */
6643 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6644 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6645 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6646 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6647 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6648 		retval |= IRQ_HANDLED;
6649 	}
6650 
6651 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6652 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6653 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6654 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6655 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6656 		retval |= IRQ_HANDLED;
6657 	}
6658 
6659 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6660 	if ((reg & UIC_DME_ERROR) &&
6661 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6662 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6663 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6664 		retval |= IRQ_HANDLED;
6665 	}
6666 
6667 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6668 			__func__, hba->uic_error);
6669 	return retval;
6670 }
6671 
6672 /**
6673  * ufshcd_check_errors - Check for errors that need s/w attention
6674  * @hba: per-adapter instance
6675  * @intr_status: interrupt status generated by the controller
6676  *
6677  * Return:
6678  *  IRQ_HANDLED - If interrupt is valid
6679  *  IRQ_NONE    - If invalid interrupt
6680  */
6681 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6682 {
6683 	bool queue_eh_work = false;
6684 	irqreturn_t retval = IRQ_NONE;
6685 
6686 	spin_lock(hba->host->host_lock);
6687 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6688 
6689 	if (hba->errors & INT_FATAL_ERRORS) {
6690 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6691 				       hba->errors);
6692 		queue_eh_work = true;
6693 	}
6694 
6695 	if (hba->errors & UIC_ERROR) {
6696 		hba->uic_error = 0;
6697 		retval = ufshcd_update_uic_error(hba);
6698 		if (hba->uic_error)
6699 			queue_eh_work = true;
6700 	}
6701 
6702 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6703 		dev_err(hba->dev,
6704 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6705 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6706 			"Enter" : "Exit",
6707 			hba->errors, ufshcd_get_upmcrs(hba));
6708 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6709 				       hba->errors);
6710 		ufshcd_set_link_broken(hba);
6711 		queue_eh_work = true;
6712 	}
6713 
6714 	if (queue_eh_work) {
6715 		/*
6716 		 * update the transfer error masks to sticky bits, let's do this
6717 		 * irrespective of current ufshcd_state.
6718 		 */
6719 		hba->saved_err |= hba->errors;
6720 		hba->saved_uic_err |= hba->uic_error;
6721 
6722 		/* dump controller state before resetting */
6723 		if ((hba->saved_err &
6724 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6725 		    (hba->saved_uic_err &&
6726 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6727 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6728 					__func__, hba->saved_err,
6729 					hba->saved_uic_err);
6730 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6731 					 "host_regs: ");
6732 			ufshcd_print_pwr_info(hba);
6733 		}
6734 		ufshcd_schedule_eh_work(hba);
6735 		retval |= IRQ_HANDLED;
6736 	}
6737 	/*
6738 	 * if (!queue_eh_work) -
6739 	 * Other errors are either non-fatal where host recovers
6740 	 * itself without s/w intervention or errors that will be
6741 	 * handled by the SCSI core layer.
6742 	 */
6743 	hba->errors = 0;
6744 	hba->uic_error = 0;
6745 	spin_unlock(hba->host->host_lock);
6746 	return retval;
6747 }
6748 
6749 /**
6750  * ufshcd_tmc_handler - handle task management function completion
6751  * @hba: per adapter instance
6752  *
6753  * Return:
6754  *  IRQ_HANDLED - If interrupt is valid
6755  *  IRQ_NONE    - If invalid interrupt
6756  */
6757 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6758 {
6759 	unsigned long flags, pending, issued;
6760 	irqreturn_t ret = IRQ_NONE;
6761 	int tag;
6762 
6763 	spin_lock_irqsave(hba->host->host_lock, flags);
6764 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6765 	issued = hba->outstanding_tasks & ~pending;
6766 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6767 		struct request *req = hba->tmf_rqs[tag];
6768 		struct completion *c = req->end_io_data;
6769 
6770 		complete(c);
6771 		ret = IRQ_HANDLED;
6772 	}
6773 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6774 
6775 	return ret;
6776 }
6777 
6778 /**
6779  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6780  * @hba: per adapter instance
6781  *
6782  * Return: IRQ_HANDLED if interrupt is handled.
6783  */
6784 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6785 {
6786 	struct ufs_hw_queue *hwq;
6787 	unsigned long outstanding_cqs;
6788 	unsigned int nr_queues;
6789 	int i, ret;
6790 	u32 events;
6791 
6792 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6793 	if (ret)
6794 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6795 
6796 	/* Exclude the poll queues */
6797 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6798 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6799 		hwq = &hba->uhq[i];
6800 
6801 		events = ufshcd_mcq_read_cqis(hba, i);
6802 		if (events)
6803 			ufshcd_mcq_write_cqis(hba, events, i);
6804 
6805 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6806 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6807 	}
6808 
6809 	return IRQ_HANDLED;
6810 }
6811 
6812 /**
6813  * ufshcd_sl_intr - Interrupt service routine
6814  * @hba: per adapter instance
6815  * @intr_status: contains interrupts generated by the controller
6816  *
6817  * Return:
6818  *  IRQ_HANDLED - If interrupt is valid
6819  *  IRQ_NONE    - If invalid interrupt
6820  */
6821 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6822 {
6823 	irqreturn_t retval = IRQ_NONE;
6824 
6825 	if (intr_status & UFSHCD_UIC_MASK)
6826 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6827 
6828 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6829 		retval |= ufshcd_check_errors(hba, intr_status);
6830 
6831 	if (intr_status & UTP_TASK_REQ_COMPL)
6832 		retval |= ufshcd_tmc_handler(hba);
6833 
6834 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6835 		retval |= ufshcd_transfer_req_compl(hba);
6836 
6837 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6838 		retval |= ufshcd_handle_mcq_cq_events(hba);
6839 
6840 	return retval;
6841 }
6842 
6843 /**
6844  * ufshcd_intr - Main interrupt service routine
6845  * @irq: irq number
6846  * @__hba: pointer to adapter instance
6847  *
6848  * Return:
6849  *  IRQ_HANDLED - If interrupt is valid
6850  *  IRQ_NONE    - If invalid interrupt
6851  */
6852 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6853 {
6854 	u32 intr_status, enabled_intr_status = 0;
6855 	irqreturn_t retval = IRQ_NONE;
6856 	struct ufs_hba *hba = __hba;
6857 	int retries = hba->nutrs;
6858 
6859 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6860 	hba->ufs_stats.last_intr_status = intr_status;
6861 	hba->ufs_stats.last_intr_ts = local_clock();
6862 
6863 	/*
6864 	 * There could be max of hba->nutrs reqs in flight and in worst case
6865 	 * if the reqs get finished 1 by 1 after the interrupt status is
6866 	 * read, make sure we handle them by checking the interrupt status
6867 	 * again in a loop until we process all of the reqs before returning.
6868 	 */
6869 	while (intr_status && retries--) {
6870 		enabled_intr_status =
6871 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6872 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6873 		if (enabled_intr_status)
6874 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6875 
6876 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6877 	}
6878 
6879 	if (enabled_intr_status && retval == IRQ_NONE &&
6880 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6881 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6882 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6883 					__func__,
6884 					intr_status,
6885 					hba->ufs_stats.last_intr_status,
6886 					enabled_intr_status);
6887 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6888 	}
6889 
6890 	return retval;
6891 }
6892 
6893 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6894 {
6895 	int err = 0;
6896 	u32 mask = 1 << tag;
6897 	unsigned long flags;
6898 
6899 	if (!test_bit(tag, &hba->outstanding_tasks))
6900 		goto out;
6901 
6902 	spin_lock_irqsave(hba->host->host_lock, flags);
6903 	ufshcd_utmrl_clear(hba, tag);
6904 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6905 
6906 	/* poll for max. 1 sec to clear door bell register by h/w */
6907 	err = ufshcd_wait_for_register(hba,
6908 			REG_UTP_TASK_REQ_DOOR_BELL,
6909 			mask, 0, 1000, 1000);
6910 
6911 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6912 		tag, err < 0 ? "failed" : "succeeded");
6913 
6914 out:
6915 	return err;
6916 }
6917 
6918 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6919 		struct utp_task_req_desc *treq, u8 tm_function)
6920 {
6921 	struct request_queue *q = hba->tmf_queue;
6922 	struct Scsi_Host *host = hba->host;
6923 	DECLARE_COMPLETION_ONSTACK(wait);
6924 	struct request *req;
6925 	unsigned long flags;
6926 	int task_tag, err;
6927 
6928 	/*
6929 	 * blk_mq_alloc_request() is used here only to get a free tag.
6930 	 */
6931 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6932 	if (IS_ERR(req))
6933 		return PTR_ERR(req);
6934 
6935 	req->end_io_data = &wait;
6936 	ufshcd_hold(hba);
6937 
6938 	spin_lock_irqsave(host->host_lock, flags);
6939 
6940 	task_tag = req->tag;
6941 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6942 		  task_tag);
6943 	hba->tmf_rqs[req->tag] = req;
6944 	treq->upiu_req.req_header.task_tag = task_tag;
6945 
6946 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6947 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6948 
6949 	/* send command to the controller */
6950 	__set_bit(task_tag, &hba->outstanding_tasks);
6951 
6952 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6953 	/* Make sure that doorbell is committed immediately */
6954 	wmb();
6955 
6956 	spin_unlock_irqrestore(host->host_lock, flags);
6957 
6958 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6959 
6960 	/* wait until the task management command is completed */
6961 	err = wait_for_completion_io_timeout(&wait,
6962 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6963 	if (!err) {
6964 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6965 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6966 				__func__, tm_function);
6967 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6968 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6969 					__func__, task_tag);
6970 		err = -ETIMEDOUT;
6971 	} else {
6972 		err = 0;
6973 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6974 
6975 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6976 	}
6977 
6978 	spin_lock_irqsave(hba->host->host_lock, flags);
6979 	hba->tmf_rqs[req->tag] = NULL;
6980 	__clear_bit(task_tag, &hba->outstanding_tasks);
6981 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6982 
6983 	ufshcd_release(hba);
6984 	blk_mq_free_request(req);
6985 
6986 	return err;
6987 }
6988 
6989 /**
6990  * ufshcd_issue_tm_cmd - issues task management commands to controller
6991  * @hba: per adapter instance
6992  * @lun_id: LUN ID to which TM command is sent
6993  * @task_id: task ID to which the TM command is applicable
6994  * @tm_function: task management function opcode
6995  * @tm_response: task management service response return value
6996  *
6997  * Return: non-zero value on error, zero on success.
6998  */
6999 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7000 		u8 tm_function, u8 *tm_response)
7001 {
7002 	struct utp_task_req_desc treq = { };
7003 	enum utp_ocs ocs_value;
7004 	int err;
7005 
7006 	/* Configure task request descriptor */
7007 	treq.header.interrupt = 1;
7008 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7009 
7010 	/* Configure task request UPIU */
7011 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7012 	treq.upiu_req.req_header.lun = lun_id;
7013 	treq.upiu_req.req_header.tm_function = tm_function;
7014 
7015 	/*
7016 	 * The host shall provide the same value for LUN field in the basic
7017 	 * header and for Input Parameter.
7018 	 */
7019 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7020 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7021 
7022 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7023 	if (err == -ETIMEDOUT)
7024 		return err;
7025 
7026 	ocs_value = treq.header.ocs & MASK_OCS;
7027 	if (ocs_value != OCS_SUCCESS)
7028 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7029 				__func__, ocs_value);
7030 	else if (tm_response)
7031 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7032 				MASK_TM_SERVICE_RESP;
7033 	return err;
7034 }
7035 
7036 /**
7037  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7038  * @hba:	per-adapter instance
7039  * @req_upiu:	upiu request
7040  * @rsp_upiu:	upiu reply
7041  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7042  * @buff_len:	descriptor size, 0 if NA
7043  * @cmd_type:	specifies the type (NOP, Query...)
7044  * @desc_op:	descriptor operation
7045  *
7046  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7047  * Therefore, it "rides" the device management infrastructure: uses its tag and
7048  * tasks work queues.
7049  *
7050  * Since there is only one available tag for device management commands,
7051  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7052  *
7053  * Return: 0 upon success; < 0 upon failure.
7054  */
7055 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7056 					struct utp_upiu_req *req_upiu,
7057 					struct utp_upiu_req *rsp_upiu,
7058 					u8 *desc_buff, int *buff_len,
7059 					enum dev_cmd_type cmd_type,
7060 					enum query_opcode desc_op)
7061 {
7062 	DECLARE_COMPLETION_ONSTACK(wait);
7063 	const u32 tag = hba->reserved_slot;
7064 	struct ufshcd_lrb *lrbp;
7065 	int err = 0;
7066 	u8 upiu_flags;
7067 
7068 	/* Protects use of hba->reserved_slot. */
7069 	lockdep_assert_held(&hba->dev_cmd.lock);
7070 
7071 	down_read(&hba->clk_scaling_lock);
7072 
7073 	lrbp = &hba->lrb[tag];
7074 	lrbp->cmd = NULL;
7075 	lrbp->task_tag = tag;
7076 	lrbp->lun = 0;
7077 	lrbp->intr_cmd = true;
7078 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7079 	hba->dev_cmd.type = cmd_type;
7080 
7081 	if (hba->ufs_version <= ufshci_version(1, 1))
7082 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7083 	else
7084 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7085 
7086 	/* update the task tag in the request upiu */
7087 	req_upiu->header.task_tag = tag;
7088 
7089 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7090 
7091 	/* just copy the upiu request as it is */
7092 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7093 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7094 		/* The Data Segment Area is optional depending upon the query
7095 		 * function value. for WRITE DESCRIPTOR, the data segment
7096 		 * follows right after the tsf.
7097 		 */
7098 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7099 		*buff_len = 0;
7100 	}
7101 
7102 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7103 
7104 	hba->dev_cmd.complete = &wait;
7105 
7106 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7107 
7108 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7109 	/*
7110 	 * ignore the returning value here - ufshcd_check_query_response is
7111 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7112 	 * read the response directly ignoring all errors.
7113 	 */
7114 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7115 
7116 	/* just copy the upiu response as it is */
7117 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7118 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7119 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7120 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7121 					   .data_segment_length);
7122 
7123 		if (*buff_len >= resp_len) {
7124 			memcpy(desc_buff, descp, resp_len);
7125 			*buff_len = resp_len;
7126 		} else {
7127 			dev_warn(hba->dev,
7128 				 "%s: rsp size %d is bigger than buffer size %d",
7129 				 __func__, resp_len, *buff_len);
7130 			*buff_len = 0;
7131 			err = -EINVAL;
7132 		}
7133 	}
7134 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7135 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7136 
7137 	up_read(&hba->clk_scaling_lock);
7138 	return err;
7139 }
7140 
7141 /**
7142  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7143  * @hba:	per-adapter instance
7144  * @req_upiu:	upiu request
7145  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7146  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7147  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7148  * @buff_len:	descriptor size, 0 if NA
7149  * @desc_op:	descriptor operation
7150  *
7151  * Supports UTP Transfer requests (nop and query), and UTP Task
7152  * Management requests.
7153  * It is up to the caller to fill the upiu conent properly, as it will
7154  * be copied without any further input validations.
7155  *
7156  * Return: 0 upon success; < 0 upon failure.
7157  */
7158 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7159 			     struct utp_upiu_req *req_upiu,
7160 			     struct utp_upiu_req *rsp_upiu,
7161 			     enum upiu_request_transaction msgcode,
7162 			     u8 *desc_buff, int *buff_len,
7163 			     enum query_opcode desc_op)
7164 {
7165 	int err;
7166 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7167 	struct utp_task_req_desc treq = { };
7168 	enum utp_ocs ocs_value;
7169 	u8 tm_f = req_upiu->header.tm_function;
7170 
7171 	switch (msgcode) {
7172 	case UPIU_TRANSACTION_NOP_OUT:
7173 		cmd_type = DEV_CMD_TYPE_NOP;
7174 		fallthrough;
7175 	case UPIU_TRANSACTION_QUERY_REQ:
7176 		ufshcd_hold(hba);
7177 		mutex_lock(&hba->dev_cmd.lock);
7178 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7179 						   desc_buff, buff_len,
7180 						   cmd_type, desc_op);
7181 		mutex_unlock(&hba->dev_cmd.lock);
7182 		ufshcd_release(hba);
7183 
7184 		break;
7185 	case UPIU_TRANSACTION_TASK_REQ:
7186 		treq.header.interrupt = 1;
7187 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7188 
7189 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7190 
7191 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7192 		if (err == -ETIMEDOUT)
7193 			break;
7194 
7195 		ocs_value = treq.header.ocs & MASK_OCS;
7196 		if (ocs_value != OCS_SUCCESS) {
7197 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7198 				ocs_value);
7199 			break;
7200 		}
7201 
7202 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7203 
7204 		break;
7205 	default:
7206 		err = -EINVAL;
7207 
7208 		break;
7209 	}
7210 
7211 	return err;
7212 }
7213 
7214 /**
7215  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7216  * @hba:	per adapter instance
7217  * @req_upiu:	upiu request
7218  * @rsp_upiu:	upiu reply
7219  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7220  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7221  * @sg_cnt:	The number of sg lists actually used
7222  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7223  * @dir:	DMA direction
7224  *
7225  * Return: zero on success, non-zero on failure.
7226  */
7227 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7228 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7229 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7230 			 enum dma_data_direction dir)
7231 {
7232 	DECLARE_COMPLETION_ONSTACK(wait);
7233 	const u32 tag = hba->reserved_slot;
7234 	struct ufshcd_lrb *lrbp;
7235 	int err = 0;
7236 	int result;
7237 	u8 upiu_flags;
7238 	u8 *ehs_data;
7239 	u16 ehs_len;
7240 
7241 	/* Protects use of hba->reserved_slot. */
7242 	ufshcd_hold(hba);
7243 	mutex_lock(&hba->dev_cmd.lock);
7244 	down_read(&hba->clk_scaling_lock);
7245 
7246 	lrbp = &hba->lrb[tag];
7247 	lrbp->cmd = NULL;
7248 	lrbp->task_tag = tag;
7249 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7250 
7251 	lrbp->intr_cmd = true;
7252 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7253 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7254 
7255 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7256 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7257 
7258 	/*
7259 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7260 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7261 	 * HW controller takes EHS length from UTRD.
7262 	 */
7263 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7264 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7265 	else
7266 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7267 
7268 	/* update the task tag */
7269 	req_upiu->header.task_tag = tag;
7270 
7271 	/* copy the UPIU(contains CDB) request as it is */
7272 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7273 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7274 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7275 
7276 	if (dir != DMA_NONE && sg_list)
7277 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7278 
7279 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7280 
7281 	hba->dev_cmd.complete = &wait;
7282 
7283 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7284 
7285 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7286 
7287 	if (!err) {
7288 		/* Just copy the upiu response as it is */
7289 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7290 		/* Get the response UPIU result */
7291 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7292 			lrbp->ucd_rsp_ptr->header.status;
7293 
7294 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7295 		/*
7296 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7297 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7298 		 * Message is 02h
7299 		 */
7300 		if (ehs_len == 2 && rsp_ehs) {
7301 			/*
7302 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7303 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7304 			 */
7305 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7306 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7307 		}
7308 	}
7309 
7310 	up_read(&hba->clk_scaling_lock);
7311 	mutex_unlock(&hba->dev_cmd.lock);
7312 	ufshcd_release(hba);
7313 	return err ? : result;
7314 }
7315 
7316 /**
7317  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7318  * @cmd: SCSI command pointer
7319  *
7320  * Return: SUCCESS or FAILED.
7321  */
7322 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7323 {
7324 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7325 	struct Scsi_Host *host;
7326 	struct ufs_hba *hba;
7327 	struct ufs_hw_queue *hwq;
7328 	struct ufshcd_lrb *lrbp;
7329 	u32 pos, not_cleared_mask = 0;
7330 	int err;
7331 	u8 resp = 0xF, lun;
7332 
7333 	host = cmd->device->host;
7334 	hba = shost_priv(host);
7335 
7336 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7337 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7338 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7339 		if (!err)
7340 			err = resp;
7341 		goto out;
7342 	}
7343 
7344 	if (is_mcq_enabled(hba)) {
7345 		for (pos = 0; pos < hba->nutrs; pos++) {
7346 			lrbp = &hba->lrb[pos];
7347 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7348 			    lrbp->lun == lun) {
7349 				ufshcd_clear_cmd(hba, pos);
7350 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7351 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7352 			}
7353 		}
7354 		err = 0;
7355 		goto out;
7356 	}
7357 
7358 	/* clear the commands that were pending for corresponding LUN */
7359 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7360 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7361 		if (hba->lrb[pos].lun == lun)
7362 			__set_bit(pos, &pending_reqs);
7363 	hba->outstanding_reqs &= ~pending_reqs;
7364 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7365 
7366 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7367 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7368 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7369 			not_cleared = 1U << pos &
7370 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7371 			hba->outstanding_reqs |= not_cleared;
7372 			not_cleared_mask |= not_cleared;
7373 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7374 
7375 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7376 				__func__, pos);
7377 		}
7378 	}
7379 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7380 
7381 out:
7382 	hba->req_abort_count = 0;
7383 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7384 	if (!err) {
7385 		err = SUCCESS;
7386 	} else {
7387 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7388 		err = FAILED;
7389 	}
7390 	return err;
7391 }
7392 
7393 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7394 {
7395 	struct ufshcd_lrb *lrbp;
7396 	int tag;
7397 
7398 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7399 		lrbp = &hba->lrb[tag];
7400 		lrbp->req_abort_skip = true;
7401 	}
7402 }
7403 
7404 /**
7405  * ufshcd_try_to_abort_task - abort a specific task
7406  * @hba: Pointer to adapter instance
7407  * @tag: Task tag/index to be aborted
7408  *
7409  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7410  * command, and in host controller by clearing the door-bell register. There can
7411  * be race between controller sending the command to the device while abort is
7412  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7413  * really issued and then try to abort it.
7414  *
7415  * Return: zero on success, non-zero on failure.
7416  */
7417 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7418 {
7419 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7420 	int err = 0;
7421 	int poll_cnt;
7422 	u8 resp = 0xF;
7423 	u32 reg;
7424 
7425 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7426 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7427 				UFS_QUERY_TASK, &resp);
7428 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7429 			/* cmd pending in the device */
7430 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7431 				__func__, tag);
7432 			break;
7433 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7434 			/*
7435 			 * cmd not pending in the device, check if it is
7436 			 * in transition.
7437 			 */
7438 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7439 				__func__, tag);
7440 			if (is_mcq_enabled(hba)) {
7441 				/* MCQ mode */
7442 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7443 					/* sleep for max. 200us same delay as in SDB mode */
7444 					usleep_range(100, 200);
7445 					continue;
7446 				}
7447 				/* command completed already */
7448 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7449 					__func__, tag);
7450 				goto out;
7451 			}
7452 
7453 			/* Single Doorbell Mode */
7454 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7455 			if (reg & (1 << tag)) {
7456 				/* sleep for max. 200us to stabilize */
7457 				usleep_range(100, 200);
7458 				continue;
7459 			}
7460 			/* command completed already */
7461 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7462 				__func__, tag);
7463 			goto out;
7464 		} else {
7465 			dev_err(hba->dev,
7466 				"%s: no response from device. tag = %d, err %d\n",
7467 				__func__, tag, err);
7468 			if (!err)
7469 				err = resp; /* service response error */
7470 			goto out;
7471 		}
7472 	}
7473 
7474 	if (!poll_cnt) {
7475 		err = -EBUSY;
7476 		goto out;
7477 	}
7478 
7479 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7480 			UFS_ABORT_TASK, &resp);
7481 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7482 		if (!err) {
7483 			err = resp; /* service response error */
7484 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7485 				__func__, tag, err);
7486 		}
7487 		goto out;
7488 	}
7489 
7490 	err = ufshcd_clear_cmd(hba, tag);
7491 	if (err)
7492 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7493 			__func__, tag, err);
7494 
7495 out:
7496 	return err;
7497 }
7498 
7499 /**
7500  * ufshcd_abort - scsi host template eh_abort_handler callback
7501  * @cmd: SCSI command pointer
7502  *
7503  * Return: SUCCESS or FAILED.
7504  */
7505 static int ufshcd_abort(struct scsi_cmnd *cmd)
7506 {
7507 	struct Scsi_Host *host = cmd->device->host;
7508 	struct ufs_hba *hba = shost_priv(host);
7509 	int tag = scsi_cmd_to_rq(cmd)->tag;
7510 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7511 	unsigned long flags;
7512 	int err = FAILED;
7513 	bool outstanding;
7514 	u32 reg;
7515 
7516 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7517 
7518 	ufshcd_hold(hba);
7519 
7520 	if (!is_mcq_enabled(hba)) {
7521 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7522 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7523 			/* If command is already aborted/completed, return FAILED. */
7524 			dev_err(hba->dev,
7525 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7526 				__func__, tag, hba->outstanding_reqs, reg);
7527 			goto release;
7528 		}
7529 	}
7530 
7531 	/* Print Transfer Request of aborted task */
7532 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7533 
7534 	/*
7535 	 * Print detailed info about aborted request.
7536 	 * As more than one request might get aborted at the same time,
7537 	 * print full information only for the first aborted request in order
7538 	 * to reduce repeated printouts. For other aborted requests only print
7539 	 * basic details.
7540 	 */
7541 	scsi_print_command(cmd);
7542 	if (!hba->req_abort_count) {
7543 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7544 		ufshcd_print_evt_hist(hba);
7545 		ufshcd_print_host_state(hba);
7546 		ufshcd_print_pwr_info(hba);
7547 		ufshcd_print_tr(hba, tag, true);
7548 	} else {
7549 		ufshcd_print_tr(hba, tag, false);
7550 	}
7551 	hba->req_abort_count++;
7552 
7553 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7554 		/* only execute this code in single doorbell mode */
7555 		dev_err(hba->dev,
7556 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7557 		__func__, tag);
7558 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7559 		goto release;
7560 	}
7561 
7562 	/*
7563 	 * Task abort to the device W-LUN is illegal. When this command
7564 	 * will fail, due to spec violation, scsi err handling next step
7565 	 * will be to send LU reset which, again, is a spec violation.
7566 	 * To avoid these unnecessary/illegal steps, first we clean up
7567 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7568 	 * then queue the eh_work and bail.
7569 	 */
7570 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7571 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7572 
7573 		spin_lock_irqsave(host->host_lock, flags);
7574 		hba->force_reset = true;
7575 		ufshcd_schedule_eh_work(hba);
7576 		spin_unlock_irqrestore(host->host_lock, flags);
7577 		goto release;
7578 	}
7579 
7580 	if (is_mcq_enabled(hba)) {
7581 		/* MCQ mode. Branch off to handle abort for mcq mode */
7582 		err = ufshcd_mcq_abort(cmd);
7583 		goto release;
7584 	}
7585 
7586 	/* Skip task abort in case previous aborts failed and report failure */
7587 	if (lrbp->req_abort_skip) {
7588 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7589 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7590 		goto release;
7591 	}
7592 
7593 	err = ufshcd_try_to_abort_task(hba, tag);
7594 	if (err) {
7595 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7596 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7597 		err = FAILED;
7598 		goto release;
7599 	}
7600 
7601 	/*
7602 	 * Clear the corresponding bit from outstanding_reqs since the command
7603 	 * has been aborted successfully.
7604 	 */
7605 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7606 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7607 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7608 
7609 	if (outstanding)
7610 		ufshcd_release_scsi_cmd(hba, lrbp);
7611 
7612 	err = SUCCESS;
7613 
7614 release:
7615 	/* Matches the ufshcd_hold() call at the start of this function. */
7616 	ufshcd_release(hba);
7617 	return err;
7618 }
7619 
7620 /**
7621  * ufshcd_host_reset_and_restore - reset and restore host controller
7622  * @hba: per-adapter instance
7623  *
7624  * Note that host controller reset may issue DME_RESET to
7625  * local and remote (device) Uni-Pro stack and the attributes
7626  * are reset to default state.
7627  *
7628  * Return: zero on success, non-zero on failure.
7629  */
7630 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7631 {
7632 	int err;
7633 
7634 	/*
7635 	 * Stop the host controller and complete the requests
7636 	 * cleared by h/w
7637 	 */
7638 	ufshcd_hba_stop(hba);
7639 	hba->silence_err_logs = true;
7640 	ufshcd_complete_requests(hba, true);
7641 	hba->silence_err_logs = false;
7642 
7643 	/* scale up clocks to max frequency before full reinitialization */
7644 	ufshcd_scale_clks(hba, true);
7645 
7646 	err = ufshcd_hba_enable(hba);
7647 
7648 	/* Establish the link again and restore the device */
7649 	if (!err)
7650 		err = ufshcd_probe_hba(hba, false);
7651 
7652 	if (err)
7653 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7654 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7655 	return err;
7656 }
7657 
7658 /**
7659  * ufshcd_reset_and_restore - reset and re-initialize host/device
7660  * @hba: per-adapter instance
7661  *
7662  * Reset and recover device, host and re-establish link. This
7663  * is helpful to recover the communication in fatal error conditions.
7664  *
7665  * Return: zero on success, non-zero on failure.
7666  */
7667 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7668 {
7669 	u32 saved_err = 0;
7670 	u32 saved_uic_err = 0;
7671 	int err = 0;
7672 	unsigned long flags;
7673 	int retries = MAX_HOST_RESET_RETRIES;
7674 
7675 	spin_lock_irqsave(hba->host->host_lock, flags);
7676 	do {
7677 		/*
7678 		 * This is a fresh start, cache and clear saved error first,
7679 		 * in case new error generated during reset and restore.
7680 		 */
7681 		saved_err |= hba->saved_err;
7682 		saved_uic_err |= hba->saved_uic_err;
7683 		hba->saved_err = 0;
7684 		hba->saved_uic_err = 0;
7685 		hba->force_reset = false;
7686 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7687 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7688 
7689 		/* Reset the attached device */
7690 		ufshcd_device_reset(hba);
7691 
7692 		err = ufshcd_host_reset_and_restore(hba);
7693 
7694 		spin_lock_irqsave(hba->host->host_lock, flags);
7695 		if (err)
7696 			continue;
7697 		/* Do not exit unless operational or dead */
7698 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7699 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7700 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7701 			err = -EAGAIN;
7702 	} while (err && --retries);
7703 
7704 	/*
7705 	 * Inform scsi mid-layer that we did reset and allow to handle
7706 	 * Unit Attention properly.
7707 	 */
7708 	scsi_report_bus_reset(hba->host, 0);
7709 	if (err) {
7710 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7711 		hba->saved_err |= saved_err;
7712 		hba->saved_uic_err |= saved_uic_err;
7713 	}
7714 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7715 
7716 	return err;
7717 }
7718 
7719 /**
7720  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7721  * @cmd: SCSI command pointer
7722  *
7723  * Return: SUCCESS or FAILED.
7724  */
7725 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7726 {
7727 	int err = SUCCESS;
7728 	unsigned long flags;
7729 	struct ufs_hba *hba;
7730 
7731 	hba = shost_priv(cmd->device->host);
7732 
7733 	spin_lock_irqsave(hba->host->host_lock, flags);
7734 	hba->force_reset = true;
7735 	ufshcd_schedule_eh_work(hba);
7736 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7737 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7738 
7739 	flush_work(&hba->eh_work);
7740 
7741 	spin_lock_irqsave(hba->host->host_lock, flags);
7742 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7743 		err = FAILED;
7744 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7745 
7746 	return err;
7747 }
7748 
7749 /**
7750  * ufshcd_get_max_icc_level - calculate the ICC level
7751  * @sup_curr_uA: max. current supported by the regulator
7752  * @start_scan: row at the desc table to start scan from
7753  * @buff: power descriptor buffer
7754  *
7755  * Return: calculated max ICC level for specific regulator.
7756  */
7757 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7758 				    const char *buff)
7759 {
7760 	int i;
7761 	int curr_uA;
7762 	u16 data;
7763 	u16 unit;
7764 
7765 	for (i = start_scan; i >= 0; i--) {
7766 		data = get_unaligned_be16(&buff[2 * i]);
7767 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7768 						ATTR_ICC_LVL_UNIT_OFFSET;
7769 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7770 		switch (unit) {
7771 		case UFSHCD_NANO_AMP:
7772 			curr_uA = curr_uA / 1000;
7773 			break;
7774 		case UFSHCD_MILI_AMP:
7775 			curr_uA = curr_uA * 1000;
7776 			break;
7777 		case UFSHCD_AMP:
7778 			curr_uA = curr_uA * 1000 * 1000;
7779 			break;
7780 		case UFSHCD_MICRO_AMP:
7781 		default:
7782 			break;
7783 		}
7784 		if (sup_curr_uA >= curr_uA)
7785 			break;
7786 	}
7787 	if (i < 0) {
7788 		i = 0;
7789 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7790 	}
7791 
7792 	return (u32)i;
7793 }
7794 
7795 /**
7796  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7797  * In case regulators are not initialized we'll return 0
7798  * @hba: per-adapter instance
7799  * @desc_buf: power descriptor buffer to extract ICC levels from.
7800  *
7801  * Return: calculated ICC level.
7802  */
7803 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7804 						const u8 *desc_buf)
7805 {
7806 	u32 icc_level = 0;
7807 
7808 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7809 						!hba->vreg_info.vccq2) {
7810 		/*
7811 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7812 		 * never-ending cycles of messages written back to storage by
7813 		 * user space causing runtime resume, causing more messages and
7814 		 * so on.
7815 		 */
7816 		dev_dbg(hba->dev,
7817 			"%s: Regulator capability was not set, actvIccLevel=%d",
7818 							__func__, icc_level);
7819 		goto out;
7820 	}
7821 
7822 	if (hba->vreg_info.vcc->max_uA)
7823 		icc_level = ufshcd_get_max_icc_level(
7824 				hba->vreg_info.vcc->max_uA,
7825 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7826 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7827 
7828 	if (hba->vreg_info.vccq->max_uA)
7829 		icc_level = ufshcd_get_max_icc_level(
7830 				hba->vreg_info.vccq->max_uA,
7831 				icc_level,
7832 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7833 
7834 	if (hba->vreg_info.vccq2->max_uA)
7835 		icc_level = ufshcd_get_max_icc_level(
7836 				hba->vreg_info.vccq2->max_uA,
7837 				icc_level,
7838 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7839 out:
7840 	return icc_level;
7841 }
7842 
7843 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7844 {
7845 	int ret;
7846 	u8 *desc_buf;
7847 	u32 icc_level;
7848 
7849 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7850 	if (!desc_buf)
7851 		return;
7852 
7853 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7854 				     desc_buf, QUERY_DESC_MAX_SIZE);
7855 	if (ret) {
7856 		dev_err(hba->dev,
7857 			"%s: Failed reading power descriptor ret = %d",
7858 			__func__, ret);
7859 		goto out;
7860 	}
7861 
7862 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7863 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7864 
7865 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7866 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7867 
7868 	if (ret)
7869 		dev_err(hba->dev,
7870 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7871 			__func__, icc_level, ret);
7872 
7873 out:
7874 	kfree(desc_buf);
7875 }
7876 
7877 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7878 {
7879 	scsi_autopm_get_device(sdev);
7880 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7881 	if (sdev->rpm_autosuspend)
7882 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7883 						 RPM_AUTOSUSPEND_DELAY_MS);
7884 	scsi_autopm_put_device(sdev);
7885 }
7886 
7887 /**
7888  * ufshcd_scsi_add_wlus - Adds required W-LUs
7889  * @hba: per-adapter instance
7890  *
7891  * UFS device specification requires the UFS devices to support 4 well known
7892  * logical units:
7893  *	"REPORT_LUNS" (address: 01h)
7894  *	"UFS Device" (address: 50h)
7895  *	"RPMB" (address: 44h)
7896  *	"BOOT" (address: 30h)
7897  * UFS device's power management needs to be controlled by "POWER CONDITION"
7898  * field of SSU (START STOP UNIT) command. But this "power condition" field
7899  * will take effect only when its sent to "UFS device" well known logical unit
7900  * hence we require the scsi_device instance to represent this logical unit in
7901  * order for the UFS host driver to send the SSU command for power management.
7902  *
7903  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7904  * Block) LU so user space process can control this LU. User space may also
7905  * want to have access to BOOT LU.
7906  *
7907  * This function adds scsi device instances for each of all well known LUs
7908  * (except "REPORT LUNS" LU).
7909  *
7910  * Return: zero on success (all required W-LUs are added successfully),
7911  * non-zero error value on failure (if failed to add any of the required W-LU).
7912  */
7913 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7914 {
7915 	int ret = 0;
7916 	struct scsi_device *sdev_boot, *sdev_rpmb;
7917 
7918 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7919 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7920 	if (IS_ERR(hba->ufs_device_wlun)) {
7921 		ret = PTR_ERR(hba->ufs_device_wlun);
7922 		hba->ufs_device_wlun = NULL;
7923 		goto out;
7924 	}
7925 	scsi_device_put(hba->ufs_device_wlun);
7926 
7927 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7928 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7929 	if (IS_ERR(sdev_rpmb)) {
7930 		ret = PTR_ERR(sdev_rpmb);
7931 		goto remove_ufs_device_wlun;
7932 	}
7933 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7934 	scsi_device_put(sdev_rpmb);
7935 
7936 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7937 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7938 	if (IS_ERR(sdev_boot)) {
7939 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7940 	} else {
7941 		ufshcd_blk_pm_runtime_init(sdev_boot);
7942 		scsi_device_put(sdev_boot);
7943 	}
7944 	goto out;
7945 
7946 remove_ufs_device_wlun:
7947 	scsi_remove_device(hba->ufs_device_wlun);
7948 out:
7949 	return ret;
7950 }
7951 
7952 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7953 {
7954 	struct ufs_dev_info *dev_info = &hba->dev_info;
7955 	u8 lun;
7956 	u32 d_lu_wb_buf_alloc;
7957 	u32 ext_ufs_feature;
7958 
7959 	if (!ufshcd_is_wb_allowed(hba))
7960 		return;
7961 
7962 	/*
7963 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7964 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7965 	 * enabled
7966 	 */
7967 	if (!(dev_info->wspecversion >= 0x310 ||
7968 	      dev_info->wspecversion == 0x220 ||
7969 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7970 		goto wb_disabled;
7971 
7972 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7973 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7974 
7975 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7976 		goto wb_disabled;
7977 
7978 	/*
7979 	 * WB may be supported but not configured while provisioning. The spec
7980 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7981 	 * buffer configured.
7982 	 */
7983 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7984 
7985 	dev_info->b_presrv_uspc_en =
7986 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7987 
7988 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7989 		if (!get_unaligned_be32(desc_buf +
7990 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7991 			goto wb_disabled;
7992 	} else {
7993 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7994 			d_lu_wb_buf_alloc = 0;
7995 			ufshcd_read_unit_desc_param(hba,
7996 					lun,
7997 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7998 					(u8 *)&d_lu_wb_buf_alloc,
7999 					sizeof(d_lu_wb_buf_alloc));
8000 			if (d_lu_wb_buf_alloc) {
8001 				dev_info->wb_dedicated_lu = lun;
8002 				break;
8003 			}
8004 		}
8005 
8006 		if (!d_lu_wb_buf_alloc)
8007 			goto wb_disabled;
8008 	}
8009 
8010 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8011 		goto wb_disabled;
8012 
8013 	return;
8014 
8015 wb_disabled:
8016 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8017 }
8018 
8019 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8020 {
8021 	struct ufs_dev_info *dev_info = &hba->dev_info;
8022 	u32 ext_ufs_feature;
8023 	u8 mask = 0;
8024 
8025 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8026 		return;
8027 
8028 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8029 
8030 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8031 		mask |= MASK_EE_TOO_LOW_TEMP;
8032 
8033 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8034 		mask |= MASK_EE_TOO_HIGH_TEMP;
8035 
8036 	if (mask) {
8037 		ufshcd_enable_ee(hba, mask);
8038 		ufs_hwmon_probe(hba, mask);
8039 	}
8040 }
8041 
8042 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8043 {
8044 	struct ufs_dev_info *dev_info = &hba->dev_info;
8045 	u32 ext_ufs_feature;
8046 	u32 ext_iid_en = 0;
8047 	int err;
8048 
8049 	/* Only UFS-4.0 and above may support EXT_IID */
8050 	if (dev_info->wspecversion < 0x400)
8051 		goto out;
8052 
8053 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8054 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8055 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8056 		goto out;
8057 
8058 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8059 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8060 	if (err)
8061 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8062 
8063 out:
8064 	dev_info->b_ext_iid_en = ext_iid_en;
8065 }
8066 
8067 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8068 			     const struct ufs_dev_quirk *fixups)
8069 {
8070 	const struct ufs_dev_quirk *f;
8071 	struct ufs_dev_info *dev_info = &hba->dev_info;
8072 
8073 	if (!fixups)
8074 		return;
8075 
8076 	for (f = fixups; f->quirk; f++) {
8077 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8078 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8079 		     ((dev_info->model &&
8080 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8081 		      !strcmp(f->model, UFS_ANY_MODEL)))
8082 			hba->dev_quirks |= f->quirk;
8083 	}
8084 }
8085 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8086 
8087 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8088 {
8089 	/* fix by general quirk table */
8090 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8091 
8092 	/* allow vendors to fix quirks */
8093 	ufshcd_vops_fixup_dev_quirks(hba);
8094 }
8095 
8096 static int ufs_get_device_desc(struct ufs_hba *hba)
8097 {
8098 	int err;
8099 	u8 model_index;
8100 	u8 *desc_buf;
8101 	struct ufs_dev_info *dev_info = &hba->dev_info;
8102 
8103 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8104 	if (!desc_buf) {
8105 		err = -ENOMEM;
8106 		goto out;
8107 	}
8108 
8109 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8110 				     QUERY_DESC_MAX_SIZE);
8111 	if (err) {
8112 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8113 			__func__, err);
8114 		goto out;
8115 	}
8116 
8117 	/*
8118 	 * getting vendor (manufacturerID) and Bank Index in big endian
8119 	 * format
8120 	 */
8121 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8122 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8123 
8124 	/* getting Specification Version in big endian format */
8125 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8126 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8127 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8128 
8129 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8130 
8131 	err = ufshcd_read_string_desc(hba, model_index,
8132 				      &dev_info->model, SD_ASCII_STD);
8133 	if (err < 0) {
8134 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8135 			__func__, err);
8136 		goto out;
8137 	}
8138 
8139 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8140 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8141 
8142 	ufs_fixup_device_setup(hba);
8143 
8144 	ufshcd_wb_probe(hba, desc_buf);
8145 
8146 	ufshcd_temp_notif_probe(hba, desc_buf);
8147 
8148 	if (hba->ext_iid_sup)
8149 		ufshcd_ext_iid_probe(hba, desc_buf);
8150 
8151 	/*
8152 	 * ufshcd_read_string_desc returns size of the string
8153 	 * reset the error value
8154 	 */
8155 	err = 0;
8156 
8157 out:
8158 	kfree(desc_buf);
8159 	return err;
8160 }
8161 
8162 static void ufs_put_device_desc(struct ufs_hba *hba)
8163 {
8164 	struct ufs_dev_info *dev_info = &hba->dev_info;
8165 
8166 	kfree(dev_info->model);
8167 	dev_info->model = NULL;
8168 }
8169 
8170 /**
8171  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8172  * @hba: per-adapter instance
8173  *
8174  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8175  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8176  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8177  * the hibern8 exit latency.
8178  *
8179  * Return: zero on success, non-zero error value on failure.
8180  */
8181 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8182 {
8183 	int ret = 0;
8184 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8185 
8186 	ret = ufshcd_dme_peer_get(hba,
8187 				  UIC_ARG_MIB_SEL(
8188 					RX_MIN_ACTIVATETIME_CAPABILITY,
8189 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8190 				  &peer_rx_min_activatetime);
8191 	if (ret)
8192 		goto out;
8193 
8194 	/* make sure proper unit conversion is applied */
8195 	tuned_pa_tactivate =
8196 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8197 		 / PA_TACTIVATE_TIME_UNIT_US);
8198 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8199 			     tuned_pa_tactivate);
8200 
8201 out:
8202 	return ret;
8203 }
8204 
8205 /**
8206  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8207  * @hba: per-adapter instance
8208  *
8209  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8210  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8211  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8212  * This optimal value can help reduce the hibern8 exit latency.
8213  *
8214  * Return: zero on success, non-zero error value on failure.
8215  */
8216 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8217 {
8218 	int ret = 0;
8219 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8220 	u32 max_hibern8_time, tuned_pa_hibern8time;
8221 
8222 	ret = ufshcd_dme_get(hba,
8223 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8224 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8225 				  &local_tx_hibern8_time_cap);
8226 	if (ret)
8227 		goto out;
8228 
8229 	ret = ufshcd_dme_peer_get(hba,
8230 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8231 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8232 				  &peer_rx_hibern8_time_cap);
8233 	if (ret)
8234 		goto out;
8235 
8236 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8237 			       peer_rx_hibern8_time_cap);
8238 	/* make sure proper unit conversion is applied */
8239 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8240 				/ PA_HIBERN8_TIME_UNIT_US);
8241 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8242 			     tuned_pa_hibern8time);
8243 out:
8244 	return ret;
8245 }
8246 
8247 /**
8248  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8249  * less than device PA_TACTIVATE time.
8250  * @hba: per-adapter instance
8251  *
8252  * Some UFS devices require host PA_TACTIVATE to be lower than device
8253  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8254  * for such devices.
8255  *
8256  * Return: zero on success, non-zero error value on failure.
8257  */
8258 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8259 {
8260 	int ret = 0;
8261 	u32 granularity, peer_granularity;
8262 	u32 pa_tactivate, peer_pa_tactivate;
8263 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8264 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8265 
8266 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8267 				  &granularity);
8268 	if (ret)
8269 		goto out;
8270 
8271 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8272 				  &peer_granularity);
8273 	if (ret)
8274 		goto out;
8275 
8276 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8277 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8278 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8279 			__func__, granularity);
8280 		return -EINVAL;
8281 	}
8282 
8283 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8284 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8285 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8286 			__func__, peer_granularity);
8287 		return -EINVAL;
8288 	}
8289 
8290 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8291 	if (ret)
8292 		goto out;
8293 
8294 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8295 				  &peer_pa_tactivate);
8296 	if (ret)
8297 		goto out;
8298 
8299 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8300 	peer_pa_tactivate_us = peer_pa_tactivate *
8301 			     gran_to_us_table[peer_granularity - 1];
8302 
8303 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8304 		u32 new_peer_pa_tactivate;
8305 
8306 		new_peer_pa_tactivate = pa_tactivate_us /
8307 				      gran_to_us_table[peer_granularity - 1];
8308 		new_peer_pa_tactivate++;
8309 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8310 					  new_peer_pa_tactivate);
8311 	}
8312 
8313 out:
8314 	return ret;
8315 }
8316 
8317 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8318 {
8319 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8320 		ufshcd_tune_pa_tactivate(hba);
8321 		ufshcd_tune_pa_hibern8time(hba);
8322 	}
8323 
8324 	ufshcd_vops_apply_dev_quirks(hba);
8325 
8326 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8327 		/* set 1ms timeout for PA_TACTIVATE */
8328 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8329 
8330 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8331 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8332 }
8333 
8334 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8335 {
8336 	hba->ufs_stats.hibern8_exit_cnt = 0;
8337 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8338 	hba->req_abort_count = 0;
8339 }
8340 
8341 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8342 {
8343 	int err;
8344 	u8 *desc_buf;
8345 
8346 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8347 	if (!desc_buf) {
8348 		err = -ENOMEM;
8349 		goto out;
8350 	}
8351 
8352 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8353 				     desc_buf, QUERY_DESC_MAX_SIZE);
8354 	if (err) {
8355 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8356 				__func__, err);
8357 		goto out;
8358 	}
8359 
8360 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8361 		hba->dev_info.max_lu_supported = 32;
8362 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8363 		hba->dev_info.max_lu_supported = 8;
8364 
8365 out:
8366 	kfree(desc_buf);
8367 	return err;
8368 }
8369 
8370 struct ufs_ref_clk {
8371 	unsigned long freq_hz;
8372 	enum ufs_ref_clk_freq val;
8373 };
8374 
8375 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8376 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8377 	{26000000, REF_CLK_FREQ_26_MHZ},
8378 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8379 	{52000000, REF_CLK_FREQ_52_MHZ},
8380 	{0, REF_CLK_FREQ_INVAL},
8381 };
8382 
8383 static enum ufs_ref_clk_freq
8384 ufs_get_bref_clk_from_hz(unsigned long freq)
8385 {
8386 	int i;
8387 
8388 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8389 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8390 			return ufs_ref_clk_freqs[i].val;
8391 
8392 	return REF_CLK_FREQ_INVAL;
8393 }
8394 
8395 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8396 {
8397 	unsigned long freq;
8398 
8399 	freq = clk_get_rate(refclk);
8400 
8401 	hba->dev_ref_clk_freq =
8402 		ufs_get_bref_clk_from_hz(freq);
8403 
8404 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8405 		dev_err(hba->dev,
8406 		"invalid ref_clk setting = %ld\n", freq);
8407 }
8408 
8409 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8410 {
8411 	int err;
8412 	u32 ref_clk;
8413 	u32 freq = hba->dev_ref_clk_freq;
8414 
8415 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8416 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8417 
8418 	if (err) {
8419 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8420 			err);
8421 		goto out;
8422 	}
8423 
8424 	if (ref_clk == freq)
8425 		goto out; /* nothing to update */
8426 
8427 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8428 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8429 
8430 	if (err) {
8431 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8432 			ufs_ref_clk_freqs[freq].freq_hz);
8433 		goto out;
8434 	}
8435 
8436 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8437 			ufs_ref_clk_freqs[freq].freq_hz);
8438 
8439 out:
8440 	return err;
8441 }
8442 
8443 static int ufshcd_device_params_init(struct ufs_hba *hba)
8444 {
8445 	bool flag;
8446 	int ret;
8447 
8448 	/* Init UFS geometry descriptor related parameters */
8449 	ret = ufshcd_device_geo_params_init(hba);
8450 	if (ret)
8451 		goto out;
8452 
8453 	/* Check and apply UFS device quirks */
8454 	ret = ufs_get_device_desc(hba);
8455 	if (ret) {
8456 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8457 			__func__, ret);
8458 		goto out;
8459 	}
8460 
8461 	ufshcd_get_ref_clk_gating_wait(hba);
8462 
8463 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8464 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8465 		hba->dev_info.f_power_on_wp_en = flag;
8466 
8467 	/* Probe maximum power mode co-supported by both UFS host and device */
8468 	if (ufshcd_get_max_pwr_mode(hba))
8469 		dev_err(hba->dev,
8470 			"%s: Failed getting max supported power mode\n",
8471 			__func__);
8472 out:
8473 	return ret;
8474 }
8475 
8476 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8477 {
8478 	int err;
8479 	struct ufs_query_req *request = NULL;
8480 	struct ufs_query_res *response = NULL;
8481 	struct ufs_dev_info *dev_info = &hba->dev_info;
8482 	struct utp_upiu_query_v4_0 *upiu_data;
8483 
8484 	if (dev_info->wspecversion < 0x400)
8485 		return;
8486 
8487 	ufshcd_hold(hba);
8488 
8489 	mutex_lock(&hba->dev_cmd.lock);
8490 
8491 	ufshcd_init_query(hba, &request, &response,
8492 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8493 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8494 
8495 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8496 
8497 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8498 
8499 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8500 
8501 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8502 
8503 	if (err)
8504 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8505 			__func__, err);
8506 
8507 	mutex_unlock(&hba->dev_cmd.lock);
8508 	ufshcd_release(hba);
8509 }
8510 
8511 /**
8512  * ufshcd_add_lus - probe and add UFS logical units
8513  * @hba: per-adapter instance
8514  *
8515  * Return: 0 upon success; < 0 upon failure.
8516  */
8517 static int ufshcd_add_lus(struct ufs_hba *hba)
8518 {
8519 	int ret;
8520 
8521 	/* Add required well known logical units to scsi mid layer */
8522 	ret = ufshcd_scsi_add_wlus(hba);
8523 	if (ret)
8524 		goto out;
8525 
8526 	/* Initialize devfreq after UFS device is detected */
8527 	if (ufshcd_is_clkscaling_supported(hba)) {
8528 		memcpy(&hba->clk_scaling.saved_pwr_info,
8529 			&hba->pwr_info,
8530 			sizeof(struct ufs_pa_layer_attr));
8531 		hba->clk_scaling.is_allowed = true;
8532 
8533 		ret = ufshcd_devfreq_init(hba);
8534 		if (ret)
8535 			goto out;
8536 
8537 		hba->clk_scaling.is_enabled = true;
8538 		ufshcd_init_clk_scaling_sysfs(hba);
8539 	}
8540 
8541 	ufs_bsg_probe(hba);
8542 	scsi_scan_host(hba->host);
8543 
8544 out:
8545 	return ret;
8546 }
8547 
8548 /* SDB - Single Doorbell */
8549 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8550 {
8551 	size_t ucdl_size, utrdl_size;
8552 
8553 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8554 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8555 			   hba->ucdl_dma_addr);
8556 
8557 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8558 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8559 			   hba->utrdl_dma_addr);
8560 
8561 	devm_kfree(hba->dev, hba->lrb);
8562 }
8563 
8564 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8565 {
8566 	int ret;
8567 	int old_nutrs = hba->nutrs;
8568 
8569 	ret = ufshcd_mcq_decide_queue_depth(hba);
8570 	if (ret < 0)
8571 		return ret;
8572 
8573 	hba->nutrs = ret;
8574 	ret = ufshcd_mcq_init(hba);
8575 	if (ret)
8576 		goto err;
8577 
8578 	/*
8579 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8580 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8581 	 */
8582 	if (hba->nutrs != old_nutrs) {
8583 		ufshcd_release_sdb_queue(hba, old_nutrs);
8584 		ret = ufshcd_memory_alloc(hba);
8585 		if (ret)
8586 			goto err;
8587 		ufshcd_host_memory_configure(hba);
8588 	}
8589 
8590 	ret = ufshcd_mcq_memory_alloc(hba);
8591 	if (ret)
8592 		goto err;
8593 
8594 	return 0;
8595 err:
8596 	hba->nutrs = old_nutrs;
8597 	return ret;
8598 }
8599 
8600 static void ufshcd_config_mcq(struct ufs_hba *hba)
8601 {
8602 	int ret;
8603 	u32 intrs;
8604 
8605 	ret = ufshcd_mcq_vops_config_esi(hba);
8606 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8607 
8608 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8609 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8610 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8611 	ufshcd_enable_intr(hba, intrs);
8612 	ufshcd_mcq_make_queues_operational(hba);
8613 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8614 
8615 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8616 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8617 
8618 	/* Select MCQ mode */
8619 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8620 		      REG_UFS_MEM_CFG);
8621 	hba->mcq_enabled = true;
8622 
8623 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8624 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8625 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8626 		 hba->nutrs);
8627 }
8628 
8629 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8630 {
8631 	int ret;
8632 	struct Scsi_Host *host = hba->host;
8633 
8634 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8635 
8636 	ret = ufshcd_link_startup(hba);
8637 	if (ret)
8638 		return ret;
8639 
8640 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8641 		return ret;
8642 
8643 	/* Debug counters initialization */
8644 	ufshcd_clear_dbg_ufs_stats(hba);
8645 
8646 	/* UniPro link is active now */
8647 	ufshcd_set_link_active(hba);
8648 
8649 	/* Reconfigure MCQ upon reset */
8650 	if (is_mcq_enabled(hba) && !init_dev_params)
8651 		ufshcd_config_mcq(hba);
8652 
8653 	/* Verify device initialization by sending NOP OUT UPIU */
8654 	ret = ufshcd_verify_dev_init(hba);
8655 	if (ret)
8656 		return ret;
8657 
8658 	/* Initiate UFS initialization, and waiting until completion */
8659 	ret = ufshcd_complete_dev_init(hba);
8660 	if (ret)
8661 		return ret;
8662 
8663 	/*
8664 	 * Initialize UFS device parameters used by driver, these
8665 	 * parameters are associated with UFS descriptors.
8666 	 */
8667 	if (init_dev_params) {
8668 		ret = ufshcd_device_params_init(hba);
8669 		if (ret)
8670 			return ret;
8671 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8672 			ret = ufshcd_alloc_mcq(hba);
8673 			if (!ret) {
8674 				ufshcd_config_mcq(hba);
8675 			} else {
8676 				/* Continue with SDB mode */
8677 				use_mcq_mode = false;
8678 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8679 					 ret);
8680 			}
8681 			ret = scsi_add_host(host, hba->dev);
8682 			if (ret) {
8683 				dev_err(hba->dev, "scsi_add_host failed\n");
8684 				return ret;
8685 			}
8686 			hba->scsi_host_added = true;
8687 		} else if (is_mcq_supported(hba)) {
8688 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8689 			ufshcd_config_mcq(hba);
8690 		}
8691 	}
8692 
8693 	ufshcd_tune_unipro_params(hba);
8694 
8695 	/* UFS device is also active now */
8696 	ufshcd_set_ufs_dev_active(hba);
8697 	ufshcd_force_reset_auto_bkops(hba);
8698 
8699 	ufshcd_set_timestamp_attr(hba);
8700 
8701 	/* Gear up to HS gear if supported */
8702 	if (hba->max_pwr_info.is_valid) {
8703 		/*
8704 		 * Set the right value to bRefClkFreq before attempting to
8705 		 * switch to HS gears.
8706 		 */
8707 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8708 			ufshcd_set_dev_ref_clk(hba);
8709 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8710 		if (ret) {
8711 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8712 					__func__, ret);
8713 			return ret;
8714 		}
8715 	}
8716 
8717 	return 0;
8718 }
8719 
8720 /**
8721  * ufshcd_probe_hba - probe hba to detect device and initialize it
8722  * @hba: per-adapter instance
8723  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8724  *
8725  * Execute link-startup and verify device initialization
8726  *
8727  * Return: 0 upon success; < 0 upon failure.
8728  */
8729 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8730 {
8731 	ktime_t start = ktime_get();
8732 	unsigned long flags;
8733 	int ret;
8734 
8735 	ret = ufshcd_device_init(hba, init_dev_params);
8736 	if (ret)
8737 		goto out;
8738 
8739 	if (!hba->pm_op_in_progress &&
8740 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8741 		/* Reset the device and controller before doing reinit */
8742 		ufshcd_device_reset(hba);
8743 		ufshcd_hba_stop(hba);
8744 		ufshcd_vops_reinit_notify(hba);
8745 		ret = ufshcd_hba_enable(hba);
8746 		if (ret) {
8747 			dev_err(hba->dev, "Host controller enable failed\n");
8748 			ufshcd_print_evt_hist(hba);
8749 			ufshcd_print_host_state(hba);
8750 			goto out;
8751 		}
8752 
8753 		/* Reinit the device */
8754 		ret = ufshcd_device_init(hba, init_dev_params);
8755 		if (ret)
8756 			goto out;
8757 	}
8758 
8759 	ufshcd_print_pwr_info(hba);
8760 
8761 	/*
8762 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8763 	 * and for removable UFS card as well, hence always set the parameter.
8764 	 * Note: Error handler may issue the device reset hence resetting
8765 	 * bActiveICCLevel as well so it is always safe to set this here.
8766 	 */
8767 	ufshcd_set_active_icc_lvl(hba);
8768 
8769 	/* Enable UFS Write Booster if supported */
8770 	ufshcd_configure_wb(hba);
8771 
8772 	if (hba->ee_usr_mask)
8773 		ufshcd_write_ee_control(hba);
8774 	/* Enable Auto-Hibernate if configured */
8775 	ufshcd_auto_hibern8_enable(hba);
8776 
8777 out:
8778 	spin_lock_irqsave(hba->host->host_lock, flags);
8779 	if (ret)
8780 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8781 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8782 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8783 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8784 
8785 	trace_ufshcd_init(dev_name(hba->dev), ret,
8786 		ktime_to_us(ktime_sub(ktime_get(), start)),
8787 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8788 	return ret;
8789 }
8790 
8791 /**
8792  * ufshcd_async_scan - asynchronous execution for probing hba
8793  * @data: data pointer to pass to this function
8794  * @cookie: cookie data
8795  */
8796 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8797 {
8798 	struct ufs_hba *hba = (struct ufs_hba *)data;
8799 	int ret;
8800 
8801 	down(&hba->host_sem);
8802 	/* Initialize hba, detect and initialize UFS device */
8803 	ret = ufshcd_probe_hba(hba, true);
8804 	up(&hba->host_sem);
8805 	if (ret)
8806 		goto out;
8807 
8808 	/* Probe and add UFS logical units  */
8809 	ret = ufshcd_add_lus(hba);
8810 
8811 out:
8812 	pm_runtime_put_sync(hba->dev);
8813 
8814 	if (ret)
8815 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8816 }
8817 
8818 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8819 {
8820 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8821 
8822 	if (!hba->system_suspending) {
8823 		/* Activate the error handler in the SCSI core. */
8824 		return SCSI_EH_NOT_HANDLED;
8825 	}
8826 
8827 	/*
8828 	 * If we get here we know that no TMFs are outstanding and also that
8829 	 * the only pending command is a START STOP UNIT command. Handle the
8830 	 * timeout of that command directly to prevent a deadlock between
8831 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8832 	 */
8833 	ufshcd_link_recovery(hba);
8834 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8835 		 __func__, hba->outstanding_tasks);
8836 
8837 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8838 }
8839 
8840 static const struct attribute_group *ufshcd_driver_groups[] = {
8841 	&ufs_sysfs_unit_descriptor_group,
8842 	&ufs_sysfs_lun_attributes_group,
8843 	NULL,
8844 };
8845 
8846 static struct ufs_hba_variant_params ufs_hba_vps = {
8847 	.hba_enable_delay_us		= 1000,
8848 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8849 	.devfreq_profile.polling_ms	= 100,
8850 	.devfreq_profile.target		= ufshcd_devfreq_target,
8851 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8852 	.ondemand_data.upthreshold	= 70,
8853 	.ondemand_data.downdifferential	= 5,
8854 };
8855 
8856 static const struct scsi_host_template ufshcd_driver_template = {
8857 	.module			= THIS_MODULE,
8858 	.name			= UFSHCD,
8859 	.proc_name		= UFSHCD,
8860 	.map_queues		= ufshcd_map_queues,
8861 	.queuecommand		= ufshcd_queuecommand,
8862 	.mq_poll		= ufshcd_poll,
8863 	.slave_alloc		= ufshcd_slave_alloc,
8864 	.slave_configure	= ufshcd_slave_configure,
8865 	.slave_destroy		= ufshcd_slave_destroy,
8866 	.change_queue_depth	= ufshcd_change_queue_depth,
8867 	.eh_abort_handler	= ufshcd_abort,
8868 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8869 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8870 	.eh_timed_out		= ufshcd_eh_timed_out,
8871 	.this_id		= -1,
8872 	.sg_tablesize		= SG_ALL,
8873 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8874 	.can_queue		= UFSHCD_CAN_QUEUE,
8875 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8876 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8877 	.max_host_blocked	= 1,
8878 	.track_queue_depth	= 1,
8879 	.skip_settle_delay	= 1,
8880 	.sdev_groups		= ufshcd_driver_groups,
8881 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8882 };
8883 
8884 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8885 				   int ua)
8886 {
8887 	int ret;
8888 
8889 	if (!vreg)
8890 		return 0;
8891 
8892 	/*
8893 	 * "set_load" operation shall be required on those regulators
8894 	 * which specifically configured current limitation. Otherwise
8895 	 * zero max_uA may cause unexpected behavior when regulator is
8896 	 * enabled or set as high power mode.
8897 	 */
8898 	if (!vreg->max_uA)
8899 		return 0;
8900 
8901 	ret = regulator_set_load(vreg->reg, ua);
8902 	if (ret < 0) {
8903 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8904 				__func__, vreg->name, ua, ret);
8905 	}
8906 
8907 	return ret;
8908 }
8909 
8910 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8911 					 struct ufs_vreg *vreg)
8912 {
8913 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8914 }
8915 
8916 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8917 					 struct ufs_vreg *vreg)
8918 {
8919 	if (!vreg)
8920 		return 0;
8921 
8922 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8923 }
8924 
8925 static int ufshcd_config_vreg(struct device *dev,
8926 		struct ufs_vreg *vreg, bool on)
8927 {
8928 	if (regulator_count_voltages(vreg->reg) <= 0)
8929 		return 0;
8930 
8931 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8932 }
8933 
8934 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8935 {
8936 	int ret = 0;
8937 
8938 	if (!vreg || vreg->enabled)
8939 		goto out;
8940 
8941 	ret = ufshcd_config_vreg(dev, vreg, true);
8942 	if (!ret)
8943 		ret = regulator_enable(vreg->reg);
8944 
8945 	if (!ret)
8946 		vreg->enabled = true;
8947 	else
8948 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8949 				__func__, vreg->name, ret);
8950 out:
8951 	return ret;
8952 }
8953 
8954 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8955 {
8956 	int ret = 0;
8957 
8958 	if (!vreg || !vreg->enabled || vreg->always_on)
8959 		goto out;
8960 
8961 	ret = regulator_disable(vreg->reg);
8962 
8963 	if (!ret) {
8964 		/* ignore errors on applying disable config */
8965 		ufshcd_config_vreg(dev, vreg, false);
8966 		vreg->enabled = false;
8967 	} else {
8968 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8969 				__func__, vreg->name, ret);
8970 	}
8971 out:
8972 	return ret;
8973 }
8974 
8975 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8976 {
8977 	int ret = 0;
8978 	struct device *dev = hba->dev;
8979 	struct ufs_vreg_info *info = &hba->vreg_info;
8980 
8981 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8982 	if (ret)
8983 		goto out;
8984 
8985 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8986 	if (ret)
8987 		goto out;
8988 
8989 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8990 
8991 out:
8992 	if (ret) {
8993 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8994 		ufshcd_toggle_vreg(dev, info->vccq, false);
8995 		ufshcd_toggle_vreg(dev, info->vcc, false);
8996 	}
8997 	return ret;
8998 }
8999 
9000 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9001 {
9002 	struct ufs_vreg_info *info = &hba->vreg_info;
9003 
9004 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9005 }
9006 
9007 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9008 {
9009 	int ret = 0;
9010 
9011 	if (!vreg)
9012 		goto out;
9013 
9014 	vreg->reg = devm_regulator_get(dev, vreg->name);
9015 	if (IS_ERR(vreg->reg)) {
9016 		ret = PTR_ERR(vreg->reg);
9017 		dev_err(dev, "%s: %s get failed, err=%d\n",
9018 				__func__, vreg->name, ret);
9019 	}
9020 out:
9021 	return ret;
9022 }
9023 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9024 
9025 static int ufshcd_init_vreg(struct ufs_hba *hba)
9026 {
9027 	int ret = 0;
9028 	struct device *dev = hba->dev;
9029 	struct ufs_vreg_info *info = &hba->vreg_info;
9030 
9031 	ret = ufshcd_get_vreg(dev, info->vcc);
9032 	if (ret)
9033 		goto out;
9034 
9035 	ret = ufshcd_get_vreg(dev, info->vccq);
9036 	if (!ret)
9037 		ret = ufshcd_get_vreg(dev, info->vccq2);
9038 out:
9039 	return ret;
9040 }
9041 
9042 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9043 {
9044 	struct ufs_vreg_info *info = &hba->vreg_info;
9045 
9046 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9047 }
9048 
9049 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9050 {
9051 	int ret = 0;
9052 	struct ufs_clk_info *clki;
9053 	struct list_head *head = &hba->clk_list_head;
9054 	unsigned long flags;
9055 	ktime_t start = ktime_get();
9056 	bool clk_state_changed = false;
9057 
9058 	if (list_empty(head))
9059 		goto out;
9060 
9061 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9062 	if (ret)
9063 		return ret;
9064 
9065 	list_for_each_entry(clki, head, list) {
9066 		if (!IS_ERR_OR_NULL(clki->clk)) {
9067 			/*
9068 			 * Don't disable clocks which are needed
9069 			 * to keep the link active.
9070 			 */
9071 			if (ufshcd_is_link_active(hba) &&
9072 			    clki->keep_link_active)
9073 				continue;
9074 
9075 			clk_state_changed = on ^ clki->enabled;
9076 			if (on && !clki->enabled) {
9077 				ret = clk_prepare_enable(clki->clk);
9078 				if (ret) {
9079 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9080 						__func__, clki->name, ret);
9081 					goto out;
9082 				}
9083 			} else if (!on && clki->enabled) {
9084 				clk_disable_unprepare(clki->clk);
9085 			}
9086 			clki->enabled = on;
9087 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9088 					clki->name, on ? "en" : "dis");
9089 		}
9090 	}
9091 
9092 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9093 	if (ret)
9094 		return ret;
9095 
9096 out:
9097 	if (ret) {
9098 		list_for_each_entry(clki, head, list) {
9099 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9100 				clk_disable_unprepare(clki->clk);
9101 		}
9102 	} else if (!ret && on) {
9103 		spin_lock_irqsave(hba->host->host_lock, flags);
9104 		hba->clk_gating.state = CLKS_ON;
9105 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9106 					hba->clk_gating.state);
9107 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9108 	}
9109 
9110 	if (clk_state_changed)
9111 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9112 			(on ? "on" : "off"),
9113 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9114 	return ret;
9115 }
9116 
9117 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9118 {
9119 	u32 freq;
9120 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9121 
9122 	if (ret) {
9123 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9124 		return REF_CLK_FREQ_INVAL;
9125 	}
9126 
9127 	return ufs_get_bref_clk_from_hz(freq);
9128 }
9129 
9130 static int ufshcd_init_clocks(struct ufs_hba *hba)
9131 {
9132 	int ret = 0;
9133 	struct ufs_clk_info *clki;
9134 	struct device *dev = hba->dev;
9135 	struct list_head *head = &hba->clk_list_head;
9136 
9137 	if (list_empty(head))
9138 		goto out;
9139 
9140 	list_for_each_entry(clki, head, list) {
9141 		if (!clki->name)
9142 			continue;
9143 
9144 		clki->clk = devm_clk_get(dev, clki->name);
9145 		if (IS_ERR(clki->clk)) {
9146 			ret = PTR_ERR(clki->clk);
9147 			dev_err(dev, "%s: %s clk get failed, %d\n",
9148 					__func__, clki->name, ret);
9149 			goto out;
9150 		}
9151 
9152 		/*
9153 		 * Parse device ref clk freq as per device tree "ref_clk".
9154 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9155 		 * in ufshcd_alloc_host().
9156 		 */
9157 		if (!strcmp(clki->name, "ref_clk"))
9158 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9159 
9160 		if (clki->max_freq) {
9161 			ret = clk_set_rate(clki->clk, clki->max_freq);
9162 			if (ret) {
9163 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9164 					__func__, clki->name,
9165 					clki->max_freq, ret);
9166 				goto out;
9167 			}
9168 			clki->curr_freq = clki->max_freq;
9169 		}
9170 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9171 				clki->name, clk_get_rate(clki->clk));
9172 	}
9173 out:
9174 	return ret;
9175 }
9176 
9177 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9178 {
9179 	int err = 0;
9180 
9181 	if (!hba->vops)
9182 		goto out;
9183 
9184 	err = ufshcd_vops_init(hba);
9185 	if (err)
9186 		dev_err_probe(hba->dev, err,
9187 			      "%s: variant %s init failed with err %d\n",
9188 			      __func__, ufshcd_get_var_name(hba), err);
9189 out:
9190 	return err;
9191 }
9192 
9193 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9194 {
9195 	if (!hba->vops)
9196 		return;
9197 
9198 	ufshcd_vops_exit(hba);
9199 }
9200 
9201 static int ufshcd_hba_init(struct ufs_hba *hba)
9202 {
9203 	int err;
9204 
9205 	/*
9206 	 * Handle host controller power separately from the UFS device power
9207 	 * rails as it will help controlling the UFS host controller power
9208 	 * collapse easily which is different than UFS device power collapse.
9209 	 * Also, enable the host controller power before we go ahead with rest
9210 	 * of the initialization here.
9211 	 */
9212 	err = ufshcd_init_hba_vreg(hba);
9213 	if (err)
9214 		goto out;
9215 
9216 	err = ufshcd_setup_hba_vreg(hba, true);
9217 	if (err)
9218 		goto out;
9219 
9220 	err = ufshcd_init_clocks(hba);
9221 	if (err)
9222 		goto out_disable_hba_vreg;
9223 
9224 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9225 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9226 
9227 	err = ufshcd_setup_clocks(hba, true);
9228 	if (err)
9229 		goto out_disable_hba_vreg;
9230 
9231 	err = ufshcd_init_vreg(hba);
9232 	if (err)
9233 		goto out_disable_clks;
9234 
9235 	err = ufshcd_setup_vreg(hba, true);
9236 	if (err)
9237 		goto out_disable_clks;
9238 
9239 	err = ufshcd_variant_hba_init(hba);
9240 	if (err)
9241 		goto out_disable_vreg;
9242 
9243 	ufs_debugfs_hba_init(hba);
9244 
9245 	hba->is_powered = true;
9246 	goto out;
9247 
9248 out_disable_vreg:
9249 	ufshcd_setup_vreg(hba, false);
9250 out_disable_clks:
9251 	ufshcd_setup_clocks(hba, false);
9252 out_disable_hba_vreg:
9253 	ufshcd_setup_hba_vreg(hba, false);
9254 out:
9255 	return err;
9256 }
9257 
9258 static void ufshcd_hba_exit(struct ufs_hba *hba)
9259 {
9260 	if (hba->is_powered) {
9261 		ufshcd_exit_clk_scaling(hba);
9262 		ufshcd_exit_clk_gating(hba);
9263 		if (hba->eh_wq)
9264 			destroy_workqueue(hba->eh_wq);
9265 		ufs_debugfs_hba_exit(hba);
9266 		ufshcd_variant_hba_exit(hba);
9267 		ufshcd_setup_vreg(hba, false);
9268 		ufshcd_setup_clocks(hba, false);
9269 		ufshcd_setup_hba_vreg(hba, false);
9270 		hba->is_powered = false;
9271 		ufs_put_device_desc(hba);
9272 	}
9273 }
9274 
9275 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9276 				     enum ufs_dev_pwr_mode pwr_mode,
9277 				     struct scsi_sense_hdr *sshdr)
9278 {
9279 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9280 	const struct scsi_exec_args args = {
9281 		.sshdr = sshdr,
9282 		.req_flags = BLK_MQ_REQ_PM,
9283 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9284 	};
9285 
9286 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9287 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9288 			&args);
9289 }
9290 
9291 /**
9292  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9293  *			     power mode
9294  * @hba: per adapter instance
9295  * @pwr_mode: device power mode to set
9296  *
9297  * Return: 0 if requested power mode is set successfully;
9298  *         < 0 if failed to set the requested power mode.
9299  */
9300 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9301 				     enum ufs_dev_pwr_mode pwr_mode)
9302 {
9303 	struct scsi_sense_hdr sshdr;
9304 	struct scsi_device *sdp;
9305 	unsigned long flags;
9306 	int ret, retries;
9307 
9308 	spin_lock_irqsave(hba->host->host_lock, flags);
9309 	sdp = hba->ufs_device_wlun;
9310 	if (sdp && scsi_device_online(sdp))
9311 		ret = scsi_device_get(sdp);
9312 	else
9313 		ret = -ENODEV;
9314 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9315 
9316 	if (ret)
9317 		return ret;
9318 
9319 	/*
9320 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9321 	 * handling, which would wait for host to be resumed. Since we know
9322 	 * we are functional while we are here, skip host resume in error
9323 	 * handling context.
9324 	 */
9325 	hba->host->eh_noresume = 1;
9326 
9327 	/*
9328 	 * Current function would be generally called from the power management
9329 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9330 	 * already suspended childs.
9331 	 */
9332 	for (retries = 3; retries > 0; --retries) {
9333 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9334 		/*
9335 		 * scsi_execute() only returns a negative value if the request
9336 		 * queue is dying.
9337 		 */
9338 		if (ret <= 0)
9339 			break;
9340 	}
9341 	if (ret) {
9342 		sdev_printk(KERN_WARNING, sdp,
9343 			    "START_STOP failed for power mode: %d, result %x\n",
9344 			    pwr_mode, ret);
9345 		if (ret > 0) {
9346 			if (scsi_sense_valid(&sshdr))
9347 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9348 			ret = -EIO;
9349 		}
9350 	} else {
9351 		hba->curr_dev_pwr_mode = pwr_mode;
9352 	}
9353 
9354 	scsi_device_put(sdp);
9355 	hba->host->eh_noresume = 0;
9356 	return ret;
9357 }
9358 
9359 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9360 					enum uic_link_state req_link_state,
9361 					bool check_for_bkops)
9362 {
9363 	int ret = 0;
9364 
9365 	if (req_link_state == hba->uic_link_state)
9366 		return 0;
9367 
9368 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9369 		ret = ufshcd_uic_hibern8_enter(hba);
9370 		if (!ret) {
9371 			ufshcd_set_link_hibern8(hba);
9372 		} else {
9373 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9374 					__func__, ret);
9375 			goto out;
9376 		}
9377 	}
9378 	/*
9379 	 * If autobkops is enabled, link can't be turned off because
9380 	 * turning off the link would also turn off the device, except in the
9381 	 * case of DeepSleep where the device is expected to remain powered.
9382 	 */
9383 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9384 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9385 		/*
9386 		 * Let's make sure that link is in low power mode, we are doing
9387 		 * this currently by putting the link in Hibern8. Otherway to
9388 		 * put the link in low power mode is to send the DME end point
9389 		 * to device and then send the DME reset command to local
9390 		 * unipro. But putting the link in hibern8 is much faster.
9391 		 *
9392 		 * Note also that putting the link in Hibern8 is a requirement
9393 		 * for entering DeepSleep.
9394 		 */
9395 		ret = ufshcd_uic_hibern8_enter(hba);
9396 		if (ret) {
9397 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9398 					__func__, ret);
9399 			goto out;
9400 		}
9401 		/*
9402 		 * Change controller state to "reset state" which
9403 		 * should also put the link in off/reset state
9404 		 */
9405 		ufshcd_hba_stop(hba);
9406 		/*
9407 		 * TODO: Check if we need any delay to make sure that
9408 		 * controller is reset
9409 		 */
9410 		ufshcd_set_link_off(hba);
9411 	}
9412 
9413 out:
9414 	return ret;
9415 }
9416 
9417 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9418 {
9419 	bool vcc_off = false;
9420 
9421 	/*
9422 	 * It seems some UFS devices may keep drawing more than sleep current
9423 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9424 	 * To avoid this situation, add 2ms delay before putting these UFS
9425 	 * rails in LPM mode.
9426 	 */
9427 	if (!ufshcd_is_link_active(hba) &&
9428 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9429 		usleep_range(2000, 2100);
9430 
9431 	/*
9432 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9433 	 * power.
9434 	 *
9435 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9436 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9437 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9438 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9439 	 *
9440 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9441 	 * in low power state which would save some power.
9442 	 *
9443 	 * If Write Booster is enabled and the device needs to flush the WB
9444 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9445 	 */
9446 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9447 	    !hba->dev_info.is_lu_power_on_wp) {
9448 		ufshcd_setup_vreg(hba, false);
9449 		vcc_off = true;
9450 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9451 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9452 		vcc_off = true;
9453 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9454 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9455 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9456 		}
9457 	}
9458 
9459 	/*
9460 	 * Some UFS devices require delay after VCC power rail is turned-off.
9461 	 */
9462 	if (vcc_off && hba->vreg_info.vcc &&
9463 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9464 		usleep_range(5000, 5100);
9465 }
9466 
9467 #ifdef CONFIG_PM
9468 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9469 {
9470 	int ret = 0;
9471 
9472 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9473 	    !hba->dev_info.is_lu_power_on_wp) {
9474 		ret = ufshcd_setup_vreg(hba, true);
9475 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9476 		if (!ufshcd_is_link_active(hba)) {
9477 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9478 			if (ret)
9479 				goto vcc_disable;
9480 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9481 			if (ret)
9482 				goto vccq_lpm;
9483 		}
9484 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9485 	}
9486 	goto out;
9487 
9488 vccq_lpm:
9489 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9490 vcc_disable:
9491 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9492 out:
9493 	return ret;
9494 }
9495 #endif /* CONFIG_PM */
9496 
9497 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9498 {
9499 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9500 		ufshcd_setup_hba_vreg(hba, false);
9501 }
9502 
9503 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9504 {
9505 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9506 		ufshcd_setup_hba_vreg(hba, true);
9507 }
9508 
9509 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9510 {
9511 	int ret = 0;
9512 	bool check_for_bkops;
9513 	enum ufs_pm_level pm_lvl;
9514 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9515 	enum uic_link_state req_link_state;
9516 
9517 	hba->pm_op_in_progress = true;
9518 	if (pm_op != UFS_SHUTDOWN_PM) {
9519 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9520 			 hba->rpm_lvl : hba->spm_lvl;
9521 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9522 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9523 	} else {
9524 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9525 		req_link_state = UIC_LINK_OFF_STATE;
9526 	}
9527 
9528 	/*
9529 	 * If we can't transition into any of the low power modes
9530 	 * just gate the clocks.
9531 	 */
9532 	ufshcd_hold(hba);
9533 	hba->clk_gating.is_suspended = true;
9534 
9535 	if (ufshcd_is_clkscaling_supported(hba))
9536 		ufshcd_clk_scaling_suspend(hba, true);
9537 
9538 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9539 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9540 		goto vops_suspend;
9541 	}
9542 
9543 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9544 	    (req_link_state == hba->uic_link_state))
9545 		goto enable_scaling;
9546 
9547 	/* UFS device & link must be active before we enter in this function */
9548 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9549 		ret = -EINVAL;
9550 		goto enable_scaling;
9551 	}
9552 
9553 	if (pm_op == UFS_RUNTIME_PM) {
9554 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9555 			/*
9556 			 * The device is idle with no requests in the queue,
9557 			 * allow background operations if bkops status shows
9558 			 * that performance might be impacted.
9559 			 */
9560 			ret = ufshcd_urgent_bkops(hba);
9561 			if (ret) {
9562 				/*
9563 				 * If return err in suspend flow, IO will hang.
9564 				 * Trigger error handler and break suspend for
9565 				 * error recovery.
9566 				 */
9567 				ufshcd_force_error_recovery(hba);
9568 				ret = -EBUSY;
9569 				goto enable_scaling;
9570 			}
9571 		} else {
9572 			/* make sure that auto bkops is disabled */
9573 			ufshcd_disable_auto_bkops(hba);
9574 		}
9575 		/*
9576 		 * If device needs to do BKOP or WB buffer flush during
9577 		 * Hibern8, keep device power mode as "active power mode"
9578 		 * and VCC supply.
9579 		 */
9580 		hba->dev_info.b_rpm_dev_flush_capable =
9581 			hba->auto_bkops_enabled ||
9582 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9583 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9584 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9585 			ufshcd_wb_need_flush(hba));
9586 	}
9587 
9588 	flush_work(&hba->eeh_work);
9589 
9590 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9591 	if (ret)
9592 		goto enable_scaling;
9593 
9594 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9595 		if (pm_op != UFS_RUNTIME_PM)
9596 			/* ensure that bkops is disabled */
9597 			ufshcd_disable_auto_bkops(hba);
9598 
9599 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9600 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9601 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9602 				/*
9603 				 * If return err in suspend flow, IO will hang.
9604 				 * Trigger error handler and break suspend for
9605 				 * error recovery.
9606 				 */
9607 				ufshcd_force_error_recovery(hba);
9608 				ret = -EBUSY;
9609 			}
9610 			if (ret)
9611 				goto enable_scaling;
9612 		}
9613 	}
9614 
9615 	/*
9616 	 * In the case of DeepSleep, the device is expected to remain powered
9617 	 * with the link off, so do not check for bkops.
9618 	 */
9619 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9620 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9621 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9622 		/*
9623 		 * If return err in suspend flow, IO will hang.
9624 		 * Trigger error handler and break suspend for
9625 		 * error recovery.
9626 		 */
9627 		ufshcd_force_error_recovery(hba);
9628 		ret = -EBUSY;
9629 	}
9630 	if (ret)
9631 		goto set_dev_active;
9632 
9633 vops_suspend:
9634 	/*
9635 	 * Call vendor specific suspend callback. As these callbacks may access
9636 	 * vendor specific host controller register space call them before the
9637 	 * host clocks are ON.
9638 	 */
9639 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9640 	if (ret)
9641 		goto set_link_active;
9642 	goto out;
9643 
9644 set_link_active:
9645 	/*
9646 	 * Device hardware reset is required to exit DeepSleep. Also, for
9647 	 * DeepSleep, the link is off so host reset and restore will be done
9648 	 * further below.
9649 	 */
9650 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9651 		ufshcd_device_reset(hba);
9652 		WARN_ON(!ufshcd_is_link_off(hba));
9653 	}
9654 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9655 		ufshcd_set_link_active(hba);
9656 	else if (ufshcd_is_link_off(hba))
9657 		ufshcd_host_reset_and_restore(hba);
9658 set_dev_active:
9659 	/* Can also get here needing to exit DeepSleep */
9660 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9661 		ufshcd_device_reset(hba);
9662 		ufshcd_host_reset_and_restore(hba);
9663 	}
9664 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9665 		ufshcd_disable_auto_bkops(hba);
9666 enable_scaling:
9667 	if (ufshcd_is_clkscaling_supported(hba))
9668 		ufshcd_clk_scaling_suspend(hba, false);
9669 
9670 	hba->dev_info.b_rpm_dev_flush_capable = false;
9671 out:
9672 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9673 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9674 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9675 	}
9676 
9677 	if (ret) {
9678 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9679 		hba->clk_gating.is_suspended = false;
9680 		ufshcd_release(hba);
9681 	}
9682 	hba->pm_op_in_progress = false;
9683 	return ret;
9684 }
9685 
9686 #ifdef CONFIG_PM
9687 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9688 {
9689 	int ret;
9690 	enum uic_link_state old_link_state = hba->uic_link_state;
9691 
9692 	hba->pm_op_in_progress = true;
9693 
9694 	/*
9695 	 * Call vendor specific resume callback. As these callbacks may access
9696 	 * vendor specific host controller register space call them when the
9697 	 * host clocks are ON.
9698 	 */
9699 	ret = ufshcd_vops_resume(hba, pm_op);
9700 	if (ret)
9701 		goto out;
9702 
9703 	/* For DeepSleep, the only supported option is to have the link off */
9704 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9705 
9706 	if (ufshcd_is_link_hibern8(hba)) {
9707 		ret = ufshcd_uic_hibern8_exit(hba);
9708 		if (!ret) {
9709 			ufshcd_set_link_active(hba);
9710 		} else {
9711 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9712 					__func__, ret);
9713 			goto vendor_suspend;
9714 		}
9715 	} else if (ufshcd_is_link_off(hba)) {
9716 		/*
9717 		 * A full initialization of the host and the device is
9718 		 * required since the link was put to off during suspend.
9719 		 * Note, in the case of DeepSleep, the device will exit
9720 		 * DeepSleep due to device reset.
9721 		 */
9722 		ret = ufshcd_reset_and_restore(hba);
9723 		/*
9724 		 * ufshcd_reset_and_restore() should have already
9725 		 * set the link state as active
9726 		 */
9727 		if (ret || !ufshcd_is_link_active(hba))
9728 			goto vendor_suspend;
9729 	}
9730 
9731 	if (!ufshcd_is_ufs_dev_active(hba)) {
9732 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9733 		if (ret)
9734 			goto set_old_link_state;
9735 		ufshcd_set_timestamp_attr(hba);
9736 	}
9737 
9738 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9739 		ufshcd_enable_auto_bkops(hba);
9740 	else
9741 		/*
9742 		 * If BKOPs operations are urgently needed at this moment then
9743 		 * keep auto-bkops enabled or else disable it.
9744 		 */
9745 		ufshcd_urgent_bkops(hba);
9746 
9747 	if (hba->ee_usr_mask)
9748 		ufshcd_write_ee_control(hba);
9749 
9750 	if (ufshcd_is_clkscaling_supported(hba))
9751 		ufshcd_clk_scaling_suspend(hba, false);
9752 
9753 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9754 		hba->dev_info.b_rpm_dev_flush_capable = false;
9755 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9756 	}
9757 
9758 	/* Enable Auto-Hibernate if configured */
9759 	ufshcd_auto_hibern8_enable(hba);
9760 
9761 	goto out;
9762 
9763 set_old_link_state:
9764 	ufshcd_link_state_transition(hba, old_link_state, 0);
9765 vendor_suspend:
9766 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9767 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9768 out:
9769 	if (ret)
9770 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9771 	hba->clk_gating.is_suspended = false;
9772 	ufshcd_release(hba);
9773 	hba->pm_op_in_progress = false;
9774 	return ret;
9775 }
9776 
9777 static int ufshcd_wl_runtime_suspend(struct device *dev)
9778 {
9779 	struct scsi_device *sdev = to_scsi_device(dev);
9780 	struct ufs_hba *hba;
9781 	int ret;
9782 	ktime_t start = ktime_get();
9783 
9784 	hba = shost_priv(sdev->host);
9785 
9786 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9787 	if (ret)
9788 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9789 
9790 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9791 		ktime_to_us(ktime_sub(ktime_get(), start)),
9792 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9793 
9794 	return ret;
9795 }
9796 
9797 static int ufshcd_wl_runtime_resume(struct device *dev)
9798 {
9799 	struct scsi_device *sdev = to_scsi_device(dev);
9800 	struct ufs_hba *hba;
9801 	int ret = 0;
9802 	ktime_t start = ktime_get();
9803 
9804 	hba = shost_priv(sdev->host);
9805 
9806 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9807 	if (ret)
9808 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9809 
9810 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9811 		ktime_to_us(ktime_sub(ktime_get(), start)),
9812 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9813 
9814 	return ret;
9815 }
9816 #endif
9817 
9818 #ifdef CONFIG_PM_SLEEP
9819 static int ufshcd_wl_suspend(struct device *dev)
9820 {
9821 	struct scsi_device *sdev = to_scsi_device(dev);
9822 	struct ufs_hba *hba;
9823 	int ret = 0;
9824 	ktime_t start = ktime_get();
9825 
9826 	hba = shost_priv(sdev->host);
9827 	down(&hba->host_sem);
9828 	hba->system_suspending = true;
9829 
9830 	if (pm_runtime_suspended(dev))
9831 		goto out;
9832 
9833 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9834 	if (ret) {
9835 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9836 		up(&hba->host_sem);
9837 	}
9838 
9839 out:
9840 	if (!ret)
9841 		hba->is_sys_suspended = true;
9842 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9843 		ktime_to_us(ktime_sub(ktime_get(), start)),
9844 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9845 
9846 	return ret;
9847 }
9848 
9849 static int ufshcd_wl_resume(struct device *dev)
9850 {
9851 	struct scsi_device *sdev = to_scsi_device(dev);
9852 	struct ufs_hba *hba;
9853 	int ret = 0;
9854 	ktime_t start = ktime_get();
9855 
9856 	hba = shost_priv(sdev->host);
9857 
9858 	if (pm_runtime_suspended(dev))
9859 		goto out;
9860 
9861 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9862 	if (ret)
9863 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9864 out:
9865 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9866 		ktime_to_us(ktime_sub(ktime_get(), start)),
9867 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9868 	if (!ret)
9869 		hba->is_sys_suspended = false;
9870 	hba->system_suspending = false;
9871 	up(&hba->host_sem);
9872 	return ret;
9873 }
9874 #endif
9875 
9876 /**
9877  * ufshcd_suspend - helper function for suspend operations
9878  * @hba: per adapter instance
9879  *
9880  * This function will put disable irqs, turn off clocks
9881  * and set vreg and hba-vreg in lpm mode.
9882  *
9883  * Return: 0 upon success; < 0 upon failure.
9884  */
9885 static int ufshcd_suspend(struct ufs_hba *hba)
9886 {
9887 	int ret;
9888 
9889 	if (!hba->is_powered)
9890 		return 0;
9891 	/*
9892 	 * Disable the host irq as host controller as there won't be any
9893 	 * host controller transaction expected till resume.
9894 	 */
9895 	ufshcd_disable_irq(hba);
9896 	ret = ufshcd_setup_clocks(hba, false);
9897 	if (ret) {
9898 		ufshcd_enable_irq(hba);
9899 		return ret;
9900 	}
9901 	if (ufshcd_is_clkgating_allowed(hba)) {
9902 		hba->clk_gating.state = CLKS_OFF;
9903 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9904 					hba->clk_gating.state);
9905 	}
9906 
9907 	ufshcd_vreg_set_lpm(hba);
9908 	/* Put the host controller in low power mode if possible */
9909 	ufshcd_hba_vreg_set_lpm(hba);
9910 	return ret;
9911 }
9912 
9913 #ifdef CONFIG_PM
9914 /**
9915  * ufshcd_resume - helper function for resume operations
9916  * @hba: per adapter instance
9917  *
9918  * This function basically turns on the regulators, clocks and
9919  * irqs of the hba.
9920  *
9921  * Return: 0 for success and non-zero for failure.
9922  */
9923 static int ufshcd_resume(struct ufs_hba *hba)
9924 {
9925 	int ret;
9926 
9927 	if (!hba->is_powered)
9928 		return 0;
9929 
9930 	ufshcd_hba_vreg_set_hpm(hba);
9931 	ret = ufshcd_vreg_set_hpm(hba);
9932 	if (ret)
9933 		goto out;
9934 
9935 	/* Make sure clocks are enabled before accessing controller */
9936 	ret = ufshcd_setup_clocks(hba, true);
9937 	if (ret)
9938 		goto disable_vreg;
9939 
9940 	/* enable the host irq as host controller would be active soon */
9941 	ufshcd_enable_irq(hba);
9942 
9943 	goto out;
9944 
9945 disable_vreg:
9946 	ufshcd_vreg_set_lpm(hba);
9947 out:
9948 	if (ret)
9949 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9950 	return ret;
9951 }
9952 #endif /* CONFIG_PM */
9953 
9954 #ifdef CONFIG_PM_SLEEP
9955 /**
9956  * ufshcd_system_suspend - system suspend callback
9957  * @dev: Device associated with the UFS controller.
9958  *
9959  * Executed before putting the system into a sleep state in which the contents
9960  * of main memory are preserved.
9961  *
9962  * Return: 0 for success and non-zero for failure.
9963  */
9964 int ufshcd_system_suspend(struct device *dev)
9965 {
9966 	struct ufs_hba *hba = dev_get_drvdata(dev);
9967 	int ret = 0;
9968 	ktime_t start = ktime_get();
9969 
9970 	if (pm_runtime_suspended(hba->dev))
9971 		goto out;
9972 
9973 	ret = ufshcd_suspend(hba);
9974 out:
9975 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9976 		ktime_to_us(ktime_sub(ktime_get(), start)),
9977 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9978 	return ret;
9979 }
9980 EXPORT_SYMBOL(ufshcd_system_suspend);
9981 
9982 /**
9983  * ufshcd_system_resume - system resume callback
9984  * @dev: Device associated with the UFS controller.
9985  *
9986  * Executed after waking the system up from a sleep state in which the contents
9987  * of main memory were preserved.
9988  *
9989  * Return: 0 for success and non-zero for failure.
9990  */
9991 int ufshcd_system_resume(struct device *dev)
9992 {
9993 	struct ufs_hba *hba = dev_get_drvdata(dev);
9994 	ktime_t start = ktime_get();
9995 	int ret = 0;
9996 
9997 	if (pm_runtime_suspended(hba->dev))
9998 		goto out;
9999 
10000 	ret = ufshcd_resume(hba);
10001 
10002 out:
10003 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10004 		ktime_to_us(ktime_sub(ktime_get(), start)),
10005 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10006 
10007 	return ret;
10008 }
10009 EXPORT_SYMBOL(ufshcd_system_resume);
10010 #endif /* CONFIG_PM_SLEEP */
10011 
10012 #ifdef CONFIG_PM
10013 /**
10014  * ufshcd_runtime_suspend - runtime suspend callback
10015  * @dev: Device associated with the UFS controller.
10016  *
10017  * Check the description of ufshcd_suspend() function for more details.
10018  *
10019  * Return: 0 for success and non-zero for failure.
10020  */
10021 int ufshcd_runtime_suspend(struct device *dev)
10022 {
10023 	struct ufs_hba *hba = dev_get_drvdata(dev);
10024 	int ret;
10025 	ktime_t start = ktime_get();
10026 
10027 	ret = ufshcd_suspend(hba);
10028 
10029 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10030 		ktime_to_us(ktime_sub(ktime_get(), start)),
10031 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10032 	return ret;
10033 }
10034 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10035 
10036 /**
10037  * ufshcd_runtime_resume - runtime resume routine
10038  * @dev: Device associated with the UFS controller.
10039  *
10040  * This function basically brings controller
10041  * to active state. Following operations are done in this function:
10042  *
10043  * 1. Turn on all the controller related clocks
10044  * 2. Turn ON VCC rail
10045  *
10046  * Return: 0 upon success; < 0 upon failure.
10047  */
10048 int ufshcd_runtime_resume(struct device *dev)
10049 {
10050 	struct ufs_hba *hba = dev_get_drvdata(dev);
10051 	int ret;
10052 	ktime_t start = ktime_get();
10053 
10054 	ret = ufshcd_resume(hba);
10055 
10056 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10057 		ktime_to_us(ktime_sub(ktime_get(), start)),
10058 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10059 	return ret;
10060 }
10061 EXPORT_SYMBOL(ufshcd_runtime_resume);
10062 #endif /* CONFIG_PM */
10063 
10064 static void ufshcd_wl_shutdown(struct device *dev)
10065 {
10066 	struct scsi_device *sdev = to_scsi_device(dev);
10067 	struct ufs_hba *hba = shost_priv(sdev->host);
10068 
10069 	down(&hba->host_sem);
10070 	hba->shutting_down = true;
10071 	up(&hba->host_sem);
10072 
10073 	/* Turn on everything while shutting down */
10074 	ufshcd_rpm_get_sync(hba);
10075 	scsi_device_quiesce(sdev);
10076 	shost_for_each_device(sdev, hba->host) {
10077 		if (sdev == hba->ufs_device_wlun)
10078 			continue;
10079 		scsi_device_quiesce(sdev);
10080 	}
10081 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10082 
10083 	/*
10084 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10085 	 * clocks.
10086 	 */
10087 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10088 		ufshcd_suspend(hba);
10089 
10090 	hba->is_powered = false;
10091 }
10092 
10093 /**
10094  * ufshcd_remove - de-allocate SCSI host and host memory space
10095  *		data structure memory
10096  * @hba: per adapter instance
10097  */
10098 void ufshcd_remove(struct ufs_hba *hba)
10099 {
10100 	if (hba->ufs_device_wlun)
10101 		ufshcd_rpm_get_sync(hba);
10102 	ufs_hwmon_remove(hba);
10103 	ufs_bsg_remove(hba);
10104 	ufs_sysfs_remove_nodes(hba->dev);
10105 	blk_mq_destroy_queue(hba->tmf_queue);
10106 	blk_put_queue(hba->tmf_queue);
10107 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10108 	scsi_remove_host(hba->host);
10109 	/* disable interrupts */
10110 	ufshcd_disable_intr(hba, hba->intr_mask);
10111 	ufshcd_hba_stop(hba);
10112 	ufshcd_hba_exit(hba);
10113 }
10114 EXPORT_SYMBOL_GPL(ufshcd_remove);
10115 
10116 #ifdef CONFIG_PM_SLEEP
10117 int ufshcd_system_freeze(struct device *dev)
10118 {
10119 
10120 	return ufshcd_system_suspend(dev);
10121 
10122 }
10123 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10124 
10125 int ufshcd_system_restore(struct device *dev)
10126 {
10127 
10128 	struct ufs_hba *hba = dev_get_drvdata(dev);
10129 	int ret;
10130 
10131 	ret = ufshcd_system_resume(dev);
10132 	if (ret)
10133 		return ret;
10134 
10135 	/* Configure UTRL and UTMRL base address registers */
10136 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10137 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10138 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10139 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10140 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10141 			REG_UTP_TASK_REQ_LIST_BASE_L);
10142 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10143 			REG_UTP_TASK_REQ_LIST_BASE_H);
10144 	/*
10145 	 * Make sure that UTRL and UTMRL base address registers
10146 	 * are updated with the latest queue addresses. Only after
10147 	 * updating these addresses, we can queue the new commands.
10148 	 */
10149 	mb();
10150 
10151 	/* Resuming from hibernate, assume that link was OFF */
10152 	ufshcd_set_link_off(hba);
10153 
10154 	return 0;
10155 
10156 }
10157 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10158 
10159 int ufshcd_system_thaw(struct device *dev)
10160 {
10161 	return ufshcd_system_resume(dev);
10162 }
10163 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10164 #endif /* CONFIG_PM_SLEEP  */
10165 
10166 /**
10167  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10168  * @hba: pointer to Host Bus Adapter (HBA)
10169  */
10170 void ufshcd_dealloc_host(struct ufs_hba *hba)
10171 {
10172 	scsi_host_put(hba->host);
10173 }
10174 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10175 
10176 /**
10177  * ufshcd_set_dma_mask - Set dma mask based on the controller
10178  *			 addressing capability
10179  * @hba: per adapter instance
10180  *
10181  * Return: 0 for success, non-zero for failure.
10182  */
10183 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10184 {
10185 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10186 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10187 			return 0;
10188 	}
10189 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10190 }
10191 
10192 /**
10193  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10194  * @dev: pointer to device handle
10195  * @hba_handle: driver private handle
10196  *
10197  * Return: 0 on success, non-zero value on failure.
10198  */
10199 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10200 {
10201 	struct Scsi_Host *host;
10202 	struct ufs_hba *hba;
10203 	int err = 0;
10204 
10205 	if (!dev) {
10206 		dev_err(dev,
10207 		"Invalid memory reference for dev is NULL\n");
10208 		err = -ENODEV;
10209 		goto out_error;
10210 	}
10211 
10212 	host = scsi_host_alloc(&ufshcd_driver_template,
10213 				sizeof(struct ufs_hba));
10214 	if (!host) {
10215 		dev_err(dev, "scsi_host_alloc failed\n");
10216 		err = -ENOMEM;
10217 		goto out_error;
10218 	}
10219 	host->nr_maps = HCTX_TYPE_POLL + 1;
10220 	hba = shost_priv(host);
10221 	hba->host = host;
10222 	hba->dev = dev;
10223 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10224 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10225 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10226 	INIT_LIST_HEAD(&hba->clk_list_head);
10227 	spin_lock_init(&hba->outstanding_lock);
10228 
10229 	*hba_handle = hba;
10230 
10231 out_error:
10232 	return err;
10233 }
10234 EXPORT_SYMBOL(ufshcd_alloc_host);
10235 
10236 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10237 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10238 				     const struct blk_mq_queue_data *qd)
10239 {
10240 	WARN_ON_ONCE(true);
10241 	return BLK_STS_NOTSUPP;
10242 }
10243 
10244 static const struct blk_mq_ops ufshcd_tmf_ops = {
10245 	.queue_rq = ufshcd_queue_tmf,
10246 };
10247 
10248 /**
10249  * ufshcd_init - Driver initialization routine
10250  * @hba: per-adapter instance
10251  * @mmio_base: base register address
10252  * @irq: Interrupt line of device
10253  *
10254  * Return: 0 on success, non-zero value on failure.
10255  */
10256 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10257 {
10258 	int err;
10259 	struct Scsi_Host *host = hba->host;
10260 	struct device *dev = hba->dev;
10261 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10262 
10263 	/*
10264 	 * dev_set_drvdata() must be called before any callbacks are registered
10265 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10266 	 * sysfs).
10267 	 */
10268 	dev_set_drvdata(dev, hba);
10269 
10270 	if (!mmio_base) {
10271 		dev_err(hba->dev,
10272 		"Invalid memory reference for mmio_base is NULL\n");
10273 		err = -ENODEV;
10274 		goto out_error;
10275 	}
10276 
10277 	hba->mmio_base = mmio_base;
10278 	hba->irq = irq;
10279 	hba->vps = &ufs_hba_vps;
10280 
10281 	err = ufshcd_hba_init(hba);
10282 	if (err)
10283 		goto out_error;
10284 
10285 	/* Read capabilities registers */
10286 	err = ufshcd_hba_capabilities(hba);
10287 	if (err)
10288 		goto out_disable;
10289 
10290 	/* Get UFS version supported by the controller */
10291 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10292 
10293 	/* Get Interrupt bit mask per version */
10294 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10295 
10296 	err = ufshcd_set_dma_mask(hba);
10297 	if (err) {
10298 		dev_err(hba->dev, "set dma mask failed\n");
10299 		goto out_disable;
10300 	}
10301 
10302 	/* Allocate memory for host memory space */
10303 	err = ufshcd_memory_alloc(hba);
10304 	if (err) {
10305 		dev_err(hba->dev, "Memory allocation failed\n");
10306 		goto out_disable;
10307 	}
10308 
10309 	/* Configure LRB */
10310 	ufshcd_host_memory_configure(hba);
10311 
10312 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10313 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10314 	host->max_id = UFSHCD_MAX_ID;
10315 	host->max_lun = UFS_MAX_LUNS;
10316 	host->max_channel = UFSHCD_MAX_CHANNEL;
10317 	host->unique_id = host->host_no;
10318 	host->max_cmd_len = UFS_CDB_SIZE;
10319 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10320 
10321 	hba->max_pwr_info.is_valid = false;
10322 
10323 	/* Initialize work queues */
10324 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10325 		 hba->host->host_no);
10326 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10327 	if (!hba->eh_wq) {
10328 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10329 			__func__);
10330 		err = -ENOMEM;
10331 		goto out_disable;
10332 	}
10333 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10334 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10335 
10336 	sema_init(&hba->host_sem, 1);
10337 
10338 	/* Initialize UIC command mutex */
10339 	mutex_init(&hba->uic_cmd_mutex);
10340 
10341 	/* Initialize mutex for device management commands */
10342 	mutex_init(&hba->dev_cmd.lock);
10343 
10344 	/* Initialize mutex for exception event control */
10345 	mutex_init(&hba->ee_ctrl_mutex);
10346 
10347 	mutex_init(&hba->wb_mutex);
10348 	init_rwsem(&hba->clk_scaling_lock);
10349 
10350 	ufshcd_init_clk_gating(hba);
10351 
10352 	ufshcd_init_clk_scaling(hba);
10353 
10354 	/*
10355 	 * In order to avoid any spurious interrupt immediately after
10356 	 * registering UFS controller interrupt handler, clear any pending UFS
10357 	 * interrupt status and disable all the UFS interrupts.
10358 	 */
10359 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10360 		      REG_INTERRUPT_STATUS);
10361 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10362 	/*
10363 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10364 	 * status is cleared before registering UFS interrupt handler.
10365 	 */
10366 	mb();
10367 
10368 	/* IRQ registration */
10369 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10370 	if (err) {
10371 		dev_err(hba->dev, "request irq failed\n");
10372 		goto out_disable;
10373 	} else {
10374 		hba->is_irq_enabled = true;
10375 	}
10376 
10377 	if (!is_mcq_supported(hba)) {
10378 		err = scsi_add_host(host, hba->dev);
10379 		if (err) {
10380 			dev_err(hba->dev, "scsi_add_host failed\n");
10381 			goto out_disable;
10382 		}
10383 	}
10384 
10385 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10386 		.nr_hw_queues	= 1,
10387 		.queue_depth	= hba->nutmrs,
10388 		.ops		= &ufshcd_tmf_ops,
10389 		.flags		= BLK_MQ_F_NO_SCHED,
10390 	};
10391 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10392 	if (err < 0)
10393 		goto out_remove_scsi_host;
10394 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10395 	if (IS_ERR(hba->tmf_queue)) {
10396 		err = PTR_ERR(hba->tmf_queue);
10397 		goto free_tmf_tag_set;
10398 	}
10399 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10400 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10401 	if (!hba->tmf_rqs) {
10402 		err = -ENOMEM;
10403 		goto free_tmf_queue;
10404 	}
10405 
10406 	/* Reset the attached device */
10407 	ufshcd_device_reset(hba);
10408 
10409 	ufshcd_init_crypto(hba);
10410 
10411 	/* Host controller enable */
10412 	err = ufshcd_hba_enable(hba);
10413 	if (err) {
10414 		dev_err(hba->dev, "Host controller enable failed\n");
10415 		ufshcd_print_evt_hist(hba);
10416 		ufshcd_print_host_state(hba);
10417 		goto free_tmf_queue;
10418 	}
10419 
10420 	/*
10421 	 * Set the default power management level for runtime and system PM.
10422 	 * Default power saving mode is to keep UFS link in Hibern8 state
10423 	 * and UFS device in sleep state.
10424 	 */
10425 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10426 						UFS_SLEEP_PWR_MODE,
10427 						UIC_LINK_HIBERN8_STATE);
10428 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10429 						UFS_SLEEP_PWR_MODE,
10430 						UIC_LINK_HIBERN8_STATE);
10431 
10432 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10433 			  ufshcd_rpm_dev_flush_recheck_work);
10434 
10435 	/* Set the default auto-hiberate idle timer value to 150 ms */
10436 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10437 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10438 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10439 	}
10440 
10441 	/* Hold auto suspend until async scan completes */
10442 	pm_runtime_get_sync(dev);
10443 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10444 	/*
10445 	 * We are assuming that device wasn't put in sleep/power-down
10446 	 * state exclusively during the boot stage before kernel.
10447 	 * This assumption helps avoid doing link startup twice during
10448 	 * ufshcd_probe_hba().
10449 	 */
10450 	ufshcd_set_ufs_dev_active(hba);
10451 
10452 	async_schedule(ufshcd_async_scan, hba);
10453 	ufs_sysfs_add_nodes(hba->dev);
10454 
10455 	device_enable_async_suspend(dev);
10456 	return 0;
10457 
10458 free_tmf_queue:
10459 	blk_mq_destroy_queue(hba->tmf_queue);
10460 	blk_put_queue(hba->tmf_queue);
10461 free_tmf_tag_set:
10462 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10463 out_remove_scsi_host:
10464 	scsi_remove_host(hba->host);
10465 out_disable:
10466 	hba->is_irq_enabled = false;
10467 	ufshcd_hba_exit(hba);
10468 out_error:
10469 	return err;
10470 }
10471 EXPORT_SYMBOL_GPL(ufshcd_init);
10472 
10473 void ufshcd_resume_complete(struct device *dev)
10474 {
10475 	struct ufs_hba *hba = dev_get_drvdata(dev);
10476 
10477 	if (hba->complete_put) {
10478 		ufshcd_rpm_put(hba);
10479 		hba->complete_put = false;
10480 	}
10481 }
10482 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10483 
10484 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10485 {
10486 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10487 	enum ufs_dev_pwr_mode dev_pwr_mode;
10488 	enum uic_link_state link_state;
10489 	unsigned long flags;
10490 	bool res;
10491 
10492 	spin_lock_irqsave(&dev->power.lock, flags);
10493 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10494 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10495 	res = pm_runtime_suspended(dev) &&
10496 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10497 	      hba->uic_link_state == link_state &&
10498 	      !hba->dev_info.b_rpm_dev_flush_capable;
10499 	spin_unlock_irqrestore(&dev->power.lock, flags);
10500 
10501 	return res;
10502 }
10503 
10504 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10505 {
10506 	struct ufs_hba *hba = dev_get_drvdata(dev);
10507 	int ret;
10508 
10509 	/*
10510 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10511 	 * are same. And it doesn't wake up the device for system-suspend
10512 	 * if it's runtime suspended. But ufs doesn't follow that.
10513 	 * Refer ufshcd_resume_complete()
10514 	 */
10515 	if (hba->ufs_device_wlun) {
10516 		/* Prevent runtime suspend */
10517 		ufshcd_rpm_get_noresume(hba);
10518 		/*
10519 		 * Check if already runtime suspended in same state as system
10520 		 * suspend would be.
10521 		 */
10522 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10523 			/* RPM state is not ok for SPM, so runtime resume */
10524 			ret = ufshcd_rpm_resume(hba);
10525 			if (ret < 0 && ret != -EACCES) {
10526 				ufshcd_rpm_put(hba);
10527 				return ret;
10528 			}
10529 		}
10530 		hba->complete_put = true;
10531 	}
10532 	return 0;
10533 }
10534 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10535 
10536 int ufshcd_suspend_prepare(struct device *dev)
10537 {
10538 	return __ufshcd_suspend_prepare(dev, true);
10539 }
10540 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10541 
10542 #ifdef CONFIG_PM_SLEEP
10543 static int ufshcd_wl_poweroff(struct device *dev)
10544 {
10545 	struct scsi_device *sdev = to_scsi_device(dev);
10546 	struct ufs_hba *hba = shost_priv(sdev->host);
10547 
10548 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10549 	return 0;
10550 }
10551 #endif
10552 
10553 static int ufshcd_wl_probe(struct device *dev)
10554 {
10555 	struct scsi_device *sdev = to_scsi_device(dev);
10556 
10557 	if (!is_device_wlun(sdev))
10558 		return -ENODEV;
10559 
10560 	blk_pm_runtime_init(sdev->request_queue, dev);
10561 	pm_runtime_set_autosuspend_delay(dev, 0);
10562 	pm_runtime_allow(dev);
10563 
10564 	return  0;
10565 }
10566 
10567 static int ufshcd_wl_remove(struct device *dev)
10568 {
10569 	pm_runtime_forbid(dev);
10570 	return 0;
10571 }
10572 
10573 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10574 #ifdef CONFIG_PM_SLEEP
10575 	.suspend = ufshcd_wl_suspend,
10576 	.resume = ufshcd_wl_resume,
10577 	.freeze = ufshcd_wl_suspend,
10578 	.thaw = ufshcd_wl_resume,
10579 	.poweroff = ufshcd_wl_poweroff,
10580 	.restore = ufshcd_wl_resume,
10581 #endif
10582 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10583 };
10584 
10585 static void ufshcd_check_header_layout(void)
10586 {
10587 	/*
10588 	 * gcc compilers before version 10 cannot do constant-folding for
10589 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10590 	 * before.
10591 	 */
10592 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10593 		return;
10594 
10595 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10596 				.cci = 3})[0] != 3);
10597 
10598 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10599 				.ehs_length = 2})[1] != 2);
10600 
10601 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10602 				.enable_crypto = 1})[2]
10603 		     != 0x80);
10604 
10605 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10606 					.command_type = 5,
10607 					.data_direction = 3,
10608 					.interrupt = 1,
10609 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10610 
10611 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10612 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10613 		cpu_to_le32(0xdeadbeef));
10614 
10615 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10616 				.ocs = 4})[8] != 4);
10617 
10618 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10619 				.cds = 5})[9] != 5);
10620 
10621 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10622 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10623 		cpu_to_le32(0xbadcafe));
10624 
10625 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10626 			     .iid = 0xf })[4] != 0xf0);
10627 
10628 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10629 			     .command_set_type = 0xf })[4] != 0xf);
10630 }
10631 
10632 /*
10633  * ufs_dev_wlun_template - describes ufs device wlun
10634  * ufs-device wlun - used to send pm commands
10635  * All luns are consumers of ufs-device wlun.
10636  *
10637  * Currently, no sd driver is present for wluns.
10638  * Hence the no specific pm operations are performed.
10639  * With ufs design, SSU should be sent to ufs-device wlun.
10640  * Hence register a scsi driver for ufs wluns only.
10641  */
10642 static struct scsi_driver ufs_dev_wlun_template = {
10643 	.gendrv = {
10644 		.name = "ufs_device_wlun",
10645 		.owner = THIS_MODULE,
10646 		.probe = ufshcd_wl_probe,
10647 		.remove = ufshcd_wl_remove,
10648 		.pm = &ufshcd_wl_pm_ops,
10649 		.shutdown = ufshcd_wl_shutdown,
10650 	},
10651 };
10652 
10653 static int __init ufshcd_core_init(void)
10654 {
10655 	int ret;
10656 
10657 	ufshcd_check_header_layout();
10658 
10659 	ufs_debugfs_init();
10660 
10661 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10662 	if (ret)
10663 		ufs_debugfs_exit();
10664 	return ret;
10665 }
10666 
10667 static void __exit ufshcd_core_exit(void)
10668 {
10669 	ufs_debugfs_exit();
10670 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10671 }
10672 
10673 module_init(ufshcd_core_init);
10674 module_exit(ufshcd_core_exit);
10675 
10676 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10677 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10678 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10679 MODULE_SOFTDEP("pre: governor_simpleondemand");
10680 MODULE_LICENSE("GPL");
10681