xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 144679df)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include "ufshcd-priv.h"
30 #include <ufs/ufs_quirks.h>
31 #include <ufs/unipro.h>
32 #include "ufs-sysfs.h"
33 #include "ufs-debugfs.h"
34 #include "ufs-fault-injection.h"
35 #include "ufs_bsg.h"
36 #include "ufshcd-crypto.h"
37 #include "ufshpb.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_NUM_RESERVED	= 1,
161 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
162 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
163 };
164 
165 static const char *const ufshcd_state_name[] = {
166 	[UFSHCD_STATE_RESET]			= "reset",
167 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
168 	[UFSHCD_STATE_ERROR]			= "error",
169 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
170 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
171 };
172 
173 /* UFSHCD error handling flags */
174 enum {
175 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
176 };
177 
178 /* UFSHCD UIC layer error flags */
179 enum {
180 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
181 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
182 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
183 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
184 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
185 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
186 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
187 };
188 
189 #define ufshcd_set_eh_in_progress(h) \
190 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
191 #define ufshcd_eh_in_progress(h) \
192 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
193 #define ufshcd_clear_eh_in_progress(h) \
194 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
195 
196 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
197 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
198 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
199 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
200 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
202 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
203 	/*
204 	 * For DeepSleep, the link is first put in hibern8 and then off.
205 	 * Leaving the link in hibern8 is not supported.
206 	 */
207 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
208 };
209 
210 static inline enum ufs_dev_pwr_mode
211 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
212 {
213 	return ufs_pm_lvl_states[lvl].dev_state;
214 }
215 
216 static inline enum uic_link_state
217 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
218 {
219 	return ufs_pm_lvl_states[lvl].link_state;
220 }
221 
222 static inline enum ufs_pm_level
223 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
224 					enum uic_link_state link_state)
225 {
226 	enum ufs_pm_level lvl;
227 
228 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
229 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
230 			(ufs_pm_lvl_states[lvl].link_state == link_state))
231 			return lvl;
232 	}
233 
234 	/* if no match found, return the level 0 */
235 	return UFS_PM_LVL_0;
236 }
237 
238 static const struct ufs_dev_quirk ufs_fixups[] = {
239 	/* UFS cards deviations table */
240 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
241 	  .model = UFS_ANY_MODEL,
242 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
243 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
244 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
245 	  .model = UFS_ANY_MODEL,
246 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
247 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
248 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
249 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
250 	  .model = UFS_ANY_MODEL,
251 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
252 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
253 	  .model = "hB8aL1" /*H28U62301AMR*/,
254 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
255 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
256 	  .model = UFS_ANY_MODEL,
257 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
258 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
259 	  .model = "THGLF2G9C8KBADG",
260 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
261 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
262 	  .model = "THGLF2G9D8KBADG",
263 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
264 	{}
265 };
266 
267 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
268 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
269 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
270 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
271 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
272 static void ufshcd_hba_exit(struct ufs_hba *hba);
273 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
274 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
275 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
276 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
277 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
278 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
279 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
280 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
281 static irqreturn_t ufshcd_intr(int irq, void *__hba);
282 static int ufshcd_change_power_mode(struct ufs_hba *hba,
283 			     struct ufs_pa_layer_attr *pwr_mode);
284 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
285 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
286 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
287 					 struct ufs_vreg *vreg);
288 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
289 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
290 						 bool enable);
291 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
292 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
293 
294 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
295 {
296 	if (!hba->is_irq_enabled) {
297 		enable_irq(hba->irq);
298 		hba->is_irq_enabled = true;
299 	}
300 }
301 
302 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
303 {
304 	if (hba->is_irq_enabled) {
305 		disable_irq(hba->irq);
306 		hba->is_irq_enabled = false;
307 	}
308 }
309 
310 static void ufshcd_configure_wb(struct ufs_hba *hba)
311 {
312 	if (!ufshcd_is_wb_allowed(hba))
313 		return;
314 
315 	ufshcd_wb_toggle(hba, true);
316 
317 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
318 
319 	if (ufshcd_is_wb_buf_flush_allowed(hba))
320 		ufshcd_wb_toggle_buf_flush(hba, true);
321 }
322 
323 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
324 {
325 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
326 		scsi_unblock_requests(hba->host);
327 }
328 
329 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
330 {
331 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
332 		scsi_block_requests(hba->host);
333 }
334 
335 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
336 				      enum ufs_trace_str_t str_t)
337 {
338 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
339 	struct utp_upiu_header *header;
340 
341 	if (!trace_ufshcd_upiu_enabled())
342 		return;
343 
344 	if (str_t == UFS_CMD_SEND)
345 		header = &rq->header;
346 	else
347 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
348 
349 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
350 			  UFS_TSF_CDB);
351 }
352 
353 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
354 					enum ufs_trace_str_t str_t,
355 					struct utp_upiu_req *rq_rsp)
356 {
357 	if (!trace_ufshcd_upiu_enabled())
358 		return;
359 
360 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
361 			  &rq_rsp->qr, UFS_TSF_OSF);
362 }
363 
364 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
365 				     enum ufs_trace_str_t str_t)
366 {
367 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
368 
369 	if (!trace_ufshcd_upiu_enabled())
370 		return;
371 
372 	if (str_t == UFS_TM_SEND)
373 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
374 				  &descp->upiu_req.req_header,
375 				  &descp->upiu_req.input_param1,
376 				  UFS_TSF_TM_INPUT);
377 	else
378 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
379 				  &descp->upiu_rsp.rsp_header,
380 				  &descp->upiu_rsp.output_param1,
381 				  UFS_TSF_TM_OUTPUT);
382 }
383 
384 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
385 					 const struct uic_command *ucmd,
386 					 enum ufs_trace_str_t str_t)
387 {
388 	u32 cmd;
389 
390 	if (!trace_ufshcd_uic_command_enabled())
391 		return;
392 
393 	if (str_t == UFS_CMD_SEND)
394 		cmd = ucmd->command;
395 	else
396 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
397 
398 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
399 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
400 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
401 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
402 }
403 
404 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
405 				     enum ufs_trace_str_t str_t)
406 {
407 	u64 lba = 0;
408 	u8 opcode = 0, group_id = 0;
409 	u32 doorbell = 0;
410 	u32 intr;
411 	int hwq_id = -1;
412 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
413 	struct scsi_cmnd *cmd = lrbp->cmd;
414 	struct request *rq = scsi_cmd_to_rq(cmd);
415 	int transfer_len = -1;
416 
417 	if (!cmd)
418 		return;
419 
420 	/* trace UPIU also */
421 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
422 	if (!trace_ufshcd_command_enabled())
423 		return;
424 
425 	opcode = cmd->cmnd[0];
426 
427 	if (opcode == READ_10 || opcode == WRITE_10) {
428 		/*
429 		 * Currently we only fully trace read(10) and write(10) commands
430 		 */
431 		transfer_len =
432 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
433 		lba = scsi_get_lba(cmd);
434 		if (opcode == WRITE_10)
435 			group_id = lrbp->cmd->cmnd[6];
436 	} else if (opcode == UNMAP) {
437 		/*
438 		 * The number of Bytes to be unmapped beginning with the lba.
439 		 */
440 		transfer_len = blk_rq_bytes(rq);
441 		lba = scsi_get_lba(cmd);
442 	}
443 
444 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
445 
446 	if (is_mcq_enabled(hba)) {
447 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
448 
449 		hwq_id = hwq->id;
450 	} else {
451 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
452 	}
453 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
454 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
455 }
456 
457 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
458 {
459 	struct ufs_clk_info *clki;
460 	struct list_head *head = &hba->clk_list_head;
461 
462 	if (list_empty(head))
463 		return;
464 
465 	list_for_each_entry(clki, head, list) {
466 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
467 				clki->max_freq)
468 			dev_err(hba->dev, "clk: %s, rate: %u\n",
469 					clki->name, clki->curr_freq);
470 	}
471 }
472 
473 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
474 			     const char *err_name)
475 {
476 	int i;
477 	bool found = false;
478 	const struct ufs_event_hist *e;
479 
480 	if (id >= UFS_EVT_CNT)
481 		return;
482 
483 	e = &hba->ufs_stats.event[id];
484 
485 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
486 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
487 
488 		if (e->tstamp[p] == 0)
489 			continue;
490 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
491 			e->val[p], div_u64(e->tstamp[p], 1000));
492 		found = true;
493 	}
494 
495 	if (!found)
496 		dev_err(hba->dev, "No record of %s\n", err_name);
497 	else
498 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
499 }
500 
501 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
502 {
503 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
504 
505 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
507 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
508 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
509 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
510 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
511 			 "auto_hibern8_err");
512 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
513 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
514 			 "link_startup_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
517 			 "suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
519 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
520 			 "wlun suspend_fail");
521 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
522 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
523 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
524 
525 	ufshcd_vops_dbg_register_dump(hba);
526 }
527 
528 static
529 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
530 {
531 	const struct ufshcd_lrb *lrbp;
532 	int prdt_length;
533 
534 	lrbp = &hba->lrb[tag];
535 
536 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
537 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
538 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
539 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
540 	dev_err(hba->dev,
541 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
542 		tag, (u64)lrbp->utrd_dma_addr);
543 
544 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
545 			sizeof(struct utp_transfer_req_desc));
546 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
547 		(u64)lrbp->ucd_req_dma_addr);
548 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
549 			sizeof(struct utp_upiu_req));
550 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
551 		(u64)lrbp->ucd_rsp_dma_addr);
552 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
553 			sizeof(struct utp_upiu_rsp));
554 
555 	prdt_length = le16_to_cpu(
556 		lrbp->utr_descriptor_ptr->prd_table_length);
557 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
558 		prdt_length /= ufshcd_sg_entry_size(hba);
559 
560 	dev_err(hba->dev,
561 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
562 		tag, prdt_length,
563 		(u64)lrbp->ucd_prdt_dma_addr);
564 
565 	if (pr_prdt)
566 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
567 			ufshcd_sg_entry_size(hba) * prdt_length);
568 }
569 
570 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
571 {
572 	struct scsi_device *sdev = req->q->queuedata;
573 	struct Scsi_Host *shost = sdev->host;
574 	struct ufs_hba *hba = shost_priv(shost);
575 
576 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
577 
578 	return true;
579 }
580 
581 /**
582  * ufshcd_print_trs_all - print trs for all started requests.
583  * @hba: per-adapter instance.
584  * @pr_prdt: need to print prdt or not.
585  */
586 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
587 {
588 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
589 }
590 
591 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
592 {
593 	int tag;
594 
595 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
596 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
597 
598 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
599 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
600 	}
601 }
602 
603 static void ufshcd_print_host_state(struct ufs_hba *hba)
604 {
605 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
606 
607 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
608 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
609 		hba->outstanding_reqs, hba->outstanding_tasks);
610 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
611 		hba->saved_err, hba->saved_uic_err);
612 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
613 		hba->curr_dev_pwr_mode, hba->uic_link_state);
614 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
615 		hba->pm_op_in_progress, hba->is_sys_suspended);
616 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
617 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
618 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
619 	dev_err(hba->dev,
620 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
621 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
622 		hba->ufs_stats.hibern8_exit_cnt);
623 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
624 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
625 		hba->ufs_stats.last_intr_status);
626 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
627 		hba->eh_flags, hba->req_abort_count);
628 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
629 		hba->ufs_version, hba->capabilities, hba->caps);
630 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
631 		hba->dev_quirks);
632 	if (sdev_ufs)
633 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
634 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
635 
636 	ufshcd_print_clk_freqs(hba);
637 }
638 
639 /**
640  * ufshcd_print_pwr_info - print power params as saved in hba
641  * power info
642  * @hba: per-adapter instance
643  */
644 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
645 {
646 	static const char * const names[] = {
647 		"INVALID MODE",
648 		"FAST MODE",
649 		"SLOW_MODE",
650 		"INVALID MODE",
651 		"FASTAUTO_MODE",
652 		"SLOWAUTO_MODE",
653 		"INVALID MODE",
654 	};
655 
656 	/*
657 	 * Using dev_dbg to avoid messages during runtime PM to avoid
658 	 * never-ending cycles of messages written back to storage by user space
659 	 * causing runtime resume, causing more messages and so on.
660 	 */
661 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
662 		 __func__,
663 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
664 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
665 		 names[hba->pwr_info.pwr_rx],
666 		 names[hba->pwr_info.pwr_tx],
667 		 hba->pwr_info.hs_rate);
668 }
669 
670 static void ufshcd_device_reset(struct ufs_hba *hba)
671 {
672 	int err;
673 
674 	err = ufshcd_vops_device_reset(hba);
675 
676 	if (!err) {
677 		ufshcd_set_ufs_dev_active(hba);
678 		if (ufshcd_is_wb_allowed(hba)) {
679 			hba->dev_info.wb_enabled = false;
680 			hba->dev_info.wb_buf_flush_enabled = false;
681 		}
682 	}
683 	if (err != -EOPNOTSUPP)
684 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
685 }
686 
687 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
688 {
689 	if (!us)
690 		return;
691 
692 	if (us < 10)
693 		udelay(us);
694 	else
695 		usleep_range(us, us + tolerance);
696 }
697 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
698 
699 /**
700  * ufshcd_wait_for_register - wait for register value to change
701  * @hba: per-adapter interface
702  * @reg: mmio register offset
703  * @mask: mask to apply to the read register value
704  * @val: value to wait for
705  * @interval_us: polling interval in microseconds
706  * @timeout_ms: timeout in milliseconds
707  *
708  * Return:
709  * -ETIMEDOUT on error, zero on success.
710  */
711 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
712 				u32 val, unsigned long interval_us,
713 				unsigned long timeout_ms)
714 {
715 	int err = 0;
716 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
717 
718 	/* ignore bits that we don't intend to wait on */
719 	val = val & mask;
720 
721 	while ((ufshcd_readl(hba, reg) & mask) != val) {
722 		usleep_range(interval_us, interval_us + 50);
723 		if (time_after(jiffies, timeout)) {
724 			if ((ufshcd_readl(hba, reg) & mask) != val)
725 				err = -ETIMEDOUT;
726 			break;
727 		}
728 	}
729 
730 	return err;
731 }
732 
733 /**
734  * ufshcd_get_intr_mask - Get the interrupt bit mask
735  * @hba: Pointer to adapter instance
736  *
737  * Returns interrupt bit mask per version
738  */
739 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
740 {
741 	if (hba->ufs_version == ufshci_version(1, 0))
742 		return INTERRUPT_MASK_ALL_VER_10;
743 	if (hba->ufs_version <= ufshci_version(2, 0))
744 		return INTERRUPT_MASK_ALL_VER_11;
745 
746 	return INTERRUPT_MASK_ALL_VER_21;
747 }
748 
749 /**
750  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
751  * @hba: Pointer to adapter instance
752  *
753  * Returns UFSHCI version supported by the controller
754  */
755 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
756 {
757 	u32 ufshci_ver;
758 
759 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
760 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
761 	else
762 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
763 
764 	/*
765 	 * UFSHCI v1.x uses a different version scheme, in order
766 	 * to allow the use of comparisons with the ufshci_version
767 	 * function, we convert it to the same scheme as ufs 2.0+.
768 	 */
769 	if (ufshci_ver & 0x00010000)
770 		return ufshci_version(1, ufshci_ver & 0x00000100);
771 
772 	return ufshci_ver;
773 }
774 
775 /**
776  * ufshcd_is_device_present - Check if any device connected to
777  *			      the host controller
778  * @hba: pointer to adapter instance
779  *
780  * Returns true if device present, false if no device detected
781  */
782 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
783 {
784 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
785 }
786 
787 /**
788  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
789  * @lrbp: pointer to local command reference block
790  * @cqe: pointer to the completion queue entry
791  *
792  * This function is used to get the OCS field from UTRD
793  * Returns the OCS field in the UTRD
794  */
795 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
796 				      struct cq_entry *cqe)
797 {
798 	if (cqe)
799 		return le32_to_cpu(cqe->status) & MASK_OCS;
800 
801 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
802 }
803 
804 /**
805  * ufshcd_utrl_clear() - Clear requests from the controller request list.
806  * @hba: per adapter instance
807  * @mask: mask with one bit set for each request to be cleared
808  */
809 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
810 {
811 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
812 		mask = ~mask;
813 	/*
814 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
815 	 * Register (UTRLCLR): This field is bit significant. Each bit
816 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
817 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
818 	 * by host software to indicate to the host controller that a transfer
819 	 * request slot is cleared. The host controller
820 	 * shall free up any resources associated to the request slot
821 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
822 	 * host software indicates no change to request slots by setting the
823 	 * associated bits in this field to ‘1’. Bits in this field shall only
824 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
825 	 */
826 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
827 }
828 
829 /**
830  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
831  * @hba: per adapter instance
832  * @pos: position of the bit to be cleared
833  */
834 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
835 {
836 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
837 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
838 	else
839 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
840 }
841 
842 /**
843  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
844  * @reg: Register value of host controller status
845  *
846  * Returns integer, 0 on Success and positive value if failed
847  */
848 static inline int ufshcd_get_lists_status(u32 reg)
849 {
850 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
851 }
852 
853 /**
854  * ufshcd_get_uic_cmd_result - Get the UIC command result
855  * @hba: Pointer to adapter instance
856  *
857  * This function gets the result of UIC command completion
858  * Returns 0 on success, non zero value on error
859  */
860 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
861 {
862 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
863 	       MASK_UIC_COMMAND_RESULT;
864 }
865 
866 /**
867  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
868  * @hba: Pointer to adapter instance
869  *
870  * This function gets UIC command argument3
871  * Returns 0 on success, non zero value on error
872  */
873 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
874 {
875 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
876 }
877 
878 /**
879  * ufshcd_get_req_rsp - returns the TR response transaction type
880  * @ucd_rsp_ptr: pointer to response UPIU
881  */
882 static inline int
883 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
884 {
885 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
886 }
887 
888 /**
889  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
890  * @ucd_rsp_ptr: pointer to response UPIU
891  *
892  * This function gets the response status and scsi_status from response UPIU
893  * Returns the response result code.
894  */
895 static inline int
896 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
897 {
898 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
899 }
900 
901 /*
902  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
903  *				from response UPIU
904  * @ucd_rsp_ptr: pointer to response UPIU
905  *
906  * Return the data segment length.
907  */
908 static inline unsigned int
909 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
910 {
911 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
912 		MASK_RSP_UPIU_DATA_SEG_LEN;
913 }
914 
915 /**
916  * ufshcd_is_exception_event - Check if the device raised an exception event
917  * @ucd_rsp_ptr: pointer to response UPIU
918  *
919  * The function checks if the device raised an exception event indicated in
920  * the Device Information field of response UPIU.
921  *
922  * Returns true if exception is raised, false otherwise.
923  */
924 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
925 {
926 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
927 			MASK_RSP_EXCEPTION_EVENT;
928 }
929 
930 /**
931  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
932  * @hba: per adapter instance
933  */
934 static inline void
935 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
936 {
937 	ufshcd_writel(hba, INT_AGGR_ENABLE |
938 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
939 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
940 }
941 
942 /**
943  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
944  * @hba: per adapter instance
945  * @cnt: Interrupt aggregation counter threshold
946  * @tmout: Interrupt aggregation timeout value
947  */
948 static inline void
949 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
950 {
951 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
952 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
953 		      INT_AGGR_TIMEOUT_VAL(tmout),
954 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
955 }
956 
957 /**
958  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
959  * @hba: per adapter instance
960  */
961 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
962 {
963 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
964 }
965 
966 /**
967  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
968  *			When run-stop registers are set to 1, it indicates the
969  *			host controller that it can process the requests
970  * @hba: per adapter instance
971  */
972 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
973 {
974 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
975 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
976 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
977 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
978 }
979 
980 /**
981  * ufshcd_hba_start - Start controller initialization sequence
982  * @hba: per adapter instance
983  */
984 static inline void ufshcd_hba_start(struct ufs_hba *hba)
985 {
986 	u32 val = CONTROLLER_ENABLE;
987 
988 	if (ufshcd_crypto_enable(hba))
989 		val |= CRYPTO_GENERAL_ENABLE;
990 
991 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
992 }
993 
994 /**
995  * ufshcd_is_hba_active - Get controller state
996  * @hba: per adapter instance
997  *
998  * Returns true if and only if the controller is active.
999  */
1000 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
1001 {
1002 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
1003 }
1004 
1005 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
1006 {
1007 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
1008 	if (hba->ufs_version <= ufshci_version(1, 1))
1009 		return UFS_UNIPRO_VER_1_41;
1010 	else
1011 		return UFS_UNIPRO_VER_1_6;
1012 }
1013 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1014 
1015 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1016 {
1017 	/*
1018 	 * If both host and device support UniPro ver1.6 or later, PA layer
1019 	 * parameters tuning happens during link startup itself.
1020 	 *
1021 	 * We can manually tune PA layer parameters if either host or device
1022 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1023 	 * logic simple, we will only do manual tuning if local unipro version
1024 	 * doesn't support ver1.6 or later.
1025 	 */
1026 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1027 }
1028 
1029 /**
1030  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1031  * @hba: per adapter instance
1032  * @scale_up: If True, set max possible frequency othewise set low frequency
1033  *
1034  * Returns 0 if successful
1035  * Returns < 0 for any other errors
1036  */
1037 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1038 {
1039 	int ret = 0;
1040 	struct ufs_clk_info *clki;
1041 	struct list_head *head = &hba->clk_list_head;
1042 
1043 	if (list_empty(head))
1044 		goto out;
1045 
1046 	list_for_each_entry(clki, head, list) {
1047 		if (!IS_ERR_OR_NULL(clki->clk)) {
1048 			if (scale_up && clki->max_freq) {
1049 				if (clki->curr_freq == clki->max_freq)
1050 					continue;
1051 
1052 				ret = clk_set_rate(clki->clk, clki->max_freq);
1053 				if (ret) {
1054 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1055 						__func__, clki->name,
1056 						clki->max_freq, ret);
1057 					break;
1058 				}
1059 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1060 						"scaled up", clki->name,
1061 						clki->curr_freq,
1062 						clki->max_freq);
1063 
1064 				clki->curr_freq = clki->max_freq;
1065 
1066 			} else if (!scale_up && clki->min_freq) {
1067 				if (clki->curr_freq == clki->min_freq)
1068 					continue;
1069 
1070 				ret = clk_set_rate(clki->clk, clki->min_freq);
1071 				if (ret) {
1072 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1073 						__func__, clki->name,
1074 						clki->min_freq, ret);
1075 					break;
1076 				}
1077 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1078 						"scaled down", clki->name,
1079 						clki->curr_freq,
1080 						clki->min_freq);
1081 				clki->curr_freq = clki->min_freq;
1082 			}
1083 		}
1084 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1085 				clki->name, clk_get_rate(clki->clk));
1086 	}
1087 
1088 out:
1089 	return ret;
1090 }
1091 
1092 /**
1093  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1094  * @hba: per adapter instance
1095  * @scale_up: True if scaling up and false if scaling down
1096  *
1097  * Returns 0 if successful
1098  * Returns < 0 for any other errors
1099  */
1100 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1101 {
1102 	int ret = 0;
1103 	ktime_t start = ktime_get();
1104 
1105 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1106 	if (ret)
1107 		goto out;
1108 
1109 	ret = ufshcd_set_clk_freq(hba, scale_up);
1110 	if (ret)
1111 		goto out;
1112 
1113 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1114 	if (ret)
1115 		ufshcd_set_clk_freq(hba, !scale_up);
1116 
1117 out:
1118 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1119 			(scale_up ? "up" : "down"),
1120 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1121 	return ret;
1122 }
1123 
1124 /**
1125  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1126  * @hba: per adapter instance
1127  * @scale_up: True if scaling up and false if scaling down
1128  *
1129  * Returns true if scaling is required, false otherwise.
1130  */
1131 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1132 					       bool scale_up)
1133 {
1134 	struct ufs_clk_info *clki;
1135 	struct list_head *head = &hba->clk_list_head;
1136 
1137 	if (list_empty(head))
1138 		return false;
1139 
1140 	list_for_each_entry(clki, head, list) {
1141 		if (!IS_ERR_OR_NULL(clki->clk)) {
1142 			if (scale_up && clki->max_freq) {
1143 				if (clki->curr_freq == clki->max_freq)
1144 					continue;
1145 				return true;
1146 			} else if (!scale_up && clki->min_freq) {
1147 				if (clki->curr_freq == clki->min_freq)
1148 					continue;
1149 				return true;
1150 			}
1151 		}
1152 	}
1153 
1154 	return false;
1155 }
1156 
1157 /*
1158  * Determine the number of pending commands by counting the bits in the SCSI
1159  * device budget maps. This approach has been selected because a bit is set in
1160  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1161  * flag. The host_self_blocked flag can be modified by calling
1162  * scsi_block_requests() or scsi_unblock_requests().
1163  */
1164 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1165 {
1166 	const struct scsi_device *sdev;
1167 	u32 pending = 0;
1168 
1169 	lockdep_assert_held(hba->host->host_lock);
1170 	__shost_for_each_device(sdev, hba->host)
1171 		pending += sbitmap_weight(&sdev->budget_map);
1172 
1173 	return pending;
1174 }
1175 
1176 /*
1177  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1178  * has expired.
1179  *
1180  * Return: 0 upon success; -EBUSY upon timeout.
1181  */
1182 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1183 					u64 wait_timeout_us)
1184 {
1185 	unsigned long flags;
1186 	int ret = 0;
1187 	u32 tm_doorbell;
1188 	u32 tr_pending;
1189 	bool timeout = false, do_last_check = false;
1190 	ktime_t start;
1191 
1192 	ufshcd_hold(hba, false);
1193 	spin_lock_irqsave(hba->host->host_lock, flags);
1194 	/*
1195 	 * Wait for all the outstanding tasks/transfer requests.
1196 	 * Verify by checking the doorbell registers are clear.
1197 	 */
1198 	start = ktime_get();
1199 	do {
1200 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1201 			ret = -EBUSY;
1202 			goto out;
1203 		}
1204 
1205 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1206 		tr_pending = ufshcd_pending_cmds(hba);
1207 		if (!tm_doorbell && !tr_pending) {
1208 			timeout = false;
1209 			break;
1210 		} else if (do_last_check) {
1211 			break;
1212 		}
1213 
1214 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1215 		io_schedule_timeout(msecs_to_jiffies(20));
1216 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1217 		    wait_timeout_us) {
1218 			timeout = true;
1219 			/*
1220 			 * We might have scheduled out for long time so make
1221 			 * sure to check if doorbells are cleared by this time
1222 			 * or not.
1223 			 */
1224 			do_last_check = true;
1225 		}
1226 		spin_lock_irqsave(hba->host->host_lock, flags);
1227 	} while (tm_doorbell || tr_pending);
1228 
1229 	if (timeout) {
1230 		dev_err(hba->dev,
1231 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1232 			__func__, tm_doorbell, tr_pending);
1233 		ret = -EBUSY;
1234 	}
1235 out:
1236 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1237 	ufshcd_release(hba);
1238 	return ret;
1239 }
1240 
1241 /**
1242  * ufshcd_scale_gear - scale up/down UFS gear
1243  * @hba: per adapter instance
1244  * @scale_up: True for scaling up gear and false for scaling down
1245  *
1246  * Returns 0 for success,
1247  * Returns -EBUSY if scaling can't happen at this time
1248  * Returns non-zero for any other errors
1249  */
1250 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1251 {
1252 	int ret = 0;
1253 	struct ufs_pa_layer_attr new_pwr_info;
1254 
1255 	if (scale_up) {
1256 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1257 		       sizeof(struct ufs_pa_layer_attr));
1258 	} else {
1259 		memcpy(&new_pwr_info, &hba->pwr_info,
1260 		       sizeof(struct ufs_pa_layer_attr));
1261 
1262 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1263 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1264 			/* save the current power mode */
1265 			memcpy(&hba->clk_scaling.saved_pwr_info,
1266 				&hba->pwr_info,
1267 				sizeof(struct ufs_pa_layer_attr));
1268 
1269 			/* scale down gear */
1270 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1271 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1272 		}
1273 	}
1274 
1275 	/* check if the power mode needs to be changed or not? */
1276 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1277 	if (ret)
1278 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1279 			__func__, ret,
1280 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1281 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1282 
1283 	return ret;
1284 }
1285 
1286 /*
1287  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1288  * has expired.
1289  *
1290  * Return: 0 upon success; -EBUSY upon timeout.
1291  */
1292 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1293 {
1294 	int ret = 0;
1295 	/*
1296 	 * make sure that there are no outstanding requests when
1297 	 * clock scaling is in progress
1298 	 */
1299 	ufshcd_scsi_block_requests(hba);
1300 	mutex_lock(&hba->wb_mutex);
1301 	down_write(&hba->clk_scaling_lock);
1302 
1303 	if (!hba->clk_scaling.is_allowed ||
1304 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1305 		ret = -EBUSY;
1306 		up_write(&hba->clk_scaling_lock);
1307 		mutex_unlock(&hba->wb_mutex);
1308 		ufshcd_scsi_unblock_requests(hba);
1309 		goto out;
1310 	}
1311 
1312 	/* let's not get into low power until clock scaling is completed */
1313 	ufshcd_hold(hba, false);
1314 
1315 out:
1316 	return ret;
1317 }
1318 
1319 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1320 {
1321 	up_write(&hba->clk_scaling_lock);
1322 
1323 	/* Enable Write Booster if we have scaled up else disable it */
1324 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1325 		ufshcd_wb_toggle(hba, scale_up);
1326 
1327 	mutex_unlock(&hba->wb_mutex);
1328 
1329 	ufshcd_scsi_unblock_requests(hba);
1330 	ufshcd_release(hba);
1331 }
1332 
1333 /**
1334  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1335  * @hba: per adapter instance
1336  * @scale_up: True for scaling up and false for scalin down
1337  *
1338  * Returns 0 for success,
1339  * Returns -EBUSY if scaling can't happen at this time
1340  * Returns non-zero for any other errors
1341  */
1342 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1343 {
1344 	int ret = 0;
1345 
1346 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1347 	if (ret)
1348 		return ret;
1349 
1350 	/* scale down the gear before scaling down clocks */
1351 	if (!scale_up) {
1352 		ret = ufshcd_scale_gear(hba, false);
1353 		if (ret)
1354 			goto out_unprepare;
1355 	}
1356 
1357 	ret = ufshcd_scale_clks(hba, scale_up);
1358 	if (ret) {
1359 		if (!scale_up)
1360 			ufshcd_scale_gear(hba, true);
1361 		goto out_unprepare;
1362 	}
1363 
1364 	/* scale up the gear after scaling up clocks */
1365 	if (scale_up) {
1366 		ret = ufshcd_scale_gear(hba, true);
1367 		if (ret) {
1368 			ufshcd_scale_clks(hba, false);
1369 			goto out_unprepare;
1370 		}
1371 	}
1372 
1373 out_unprepare:
1374 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1375 	return ret;
1376 }
1377 
1378 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1379 {
1380 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1381 					   clk_scaling.suspend_work);
1382 	unsigned long irq_flags;
1383 
1384 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1385 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1386 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1387 		return;
1388 	}
1389 	hba->clk_scaling.is_suspended = true;
1390 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1391 
1392 	__ufshcd_suspend_clkscaling(hba);
1393 }
1394 
1395 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1396 {
1397 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1398 					   clk_scaling.resume_work);
1399 	unsigned long irq_flags;
1400 
1401 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1402 	if (!hba->clk_scaling.is_suspended) {
1403 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1404 		return;
1405 	}
1406 	hba->clk_scaling.is_suspended = false;
1407 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1408 
1409 	devfreq_resume_device(hba->devfreq);
1410 }
1411 
1412 static int ufshcd_devfreq_target(struct device *dev,
1413 				unsigned long *freq, u32 flags)
1414 {
1415 	int ret = 0;
1416 	struct ufs_hba *hba = dev_get_drvdata(dev);
1417 	ktime_t start;
1418 	bool scale_up, sched_clk_scaling_suspend_work = false;
1419 	struct list_head *clk_list = &hba->clk_list_head;
1420 	struct ufs_clk_info *clki;
1421 	unsigned long irq_flags;
1422 
1423 	if (!ufshcd_is_clkscaling_supported(hba))
1424 		return -EINVAL;
1425 
1426 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1427 	/* Override with the closest supported frequency */
1428 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1429 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1430 	if (ufshcd_eh_in_progress(hba)) {
1431 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1432 		return 0;
1433 	}
1434 
1435 	if (!hba->clk_scaling.active_reqs)
1436 		sched_clk_scaling_suspend_work = true;
1437 
1438 	if (list_empty(clk_list)) {
1439 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1440 		goto out;
1441 	}
1442 
1443 	/* Decide based on the rounded-off frequency and update */
1444 	scale_up = *freq == clki->max_freq;
1445 	if (!scale_up)
1446 		*freq = clki->min_freq;
1447 	/* Update the frequency */
1448 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1449 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1450 		ret = 0;
1451 		goto out; /* no state change required */
1452 	}
1453 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1454 
1455 	start = ktime_get();
1456 	ret = ufshcd_devfreq_scale(hba, scale_up);
1457 
1458 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1459 		(scale_up ? "up" : "down"),
1460 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1461 
1462 out:
1463 	if (sched_clk_scaling_suspend_work)
1464 		queue_work(hba->clk_scaling.workq,
1465 			   &hba->clk_scaling.suspend_work);
1466 
1467 	return ret;
1468 }
1469 
1470 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1471 		struct devfreq_dev_status *stat)
1472 {
1473 	struct ufs_hba *hba = dev_get_drvdata(dev);
1474 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1475 	unsigned long flags;
1476 	struct list_head *clk_list = &hba->clk_list_head;
1477 	struct ufs_clk_info *clki;
1478 	ktime_t curr_t;
1479 
1480 	if (!ufshcd_is_clkscaling_supported(hba))
1481 		return -EINVAL;
1482 
1483 	memset(stat, 0, sizeof(*stat));
1484 
1485 	spin_lock_irqsave(hba->host->host_lock, flags);
1486 	curr_t = ktime_get();
1487 	if (!scaling->window_start_t)
1488 		goto start_window;
1489 
1490 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1491 	/*
1492 	 * If current frequency is 0, then the ondemand governor considers
1493 	 * there's no initial frequency set. And it always requests to set
1494 	 * to max. frequency.
1495 	 */
1496 	stat->current_frequency = clki->curr_freq;
1497 	if (scaling->is_busy_started)
1498 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1499 				scaling->busy_start_t);
1500 
1501 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1502 	stat->busy_time = scaling->tot_busy_t;
1503 start_window:
1504 	scaling->window_start_t = curr_t;
1505 	scaling->tot_busy_t = 0;
1506 
1507 	if (scaling->active_reqs) {
1508 		scaling->busy_start_t = curr_t;
1509 		scaling->is_busy_started = true;
1510 	} else {
1511 		scaling->busy_start_t = 0;
1512 		scaling->is_busy_started = false;
1513 	}
1514 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1515 	return 0;
1516 }
1517 
1518 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1519 {
1520 	struct list_head *clk_list = &hba->clk_list_head;
1521 	struct ufs_clk_info *clki;
1522 	struct devfreq *devfreq;
1523 	int ret;
1524 
1525 	/* Skip devfreq if we don't have any clocks in the list */
1526 	if (list_empty(clk_list))
1527 		return 0;
1528 
1529 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1530 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1531 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1532 
1533 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1534 					 &hba->vps->ondemand_data);
1535 	devfreq = devfreq_add_device(hba->dev,
1536 			&hba->vps->devfreq_profile,
1537 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1538 			&hba->vps->ondemand_data);
1539 	if (IS_ERR(devfreq)) {
1540 		ret = PTR_ERR(devfreq);
1541 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1542 
1543 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1544 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1545 		return ret;
1546 	}
1547 
1548 	hba->devfreq = devfreq;
1549 
1550 	return 0;
1551 }
1552 
1553 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1554 {
1555 	struct list_head *clk_list = &hba->clk_list_head;
1556 	struct ufs_clk_info *clki;
1557 
1558 	if (!hba->devfreq)
1559 		return;
1560 
1561 	devfreq_remove_device(hba->devfreq);
1562 	hba->devfreq = NULL;
1563 
1564 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1565 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1566 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1567 }
1568 
1569 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1570 {
1571 	unsigned long flags;
1572 
1573 	devfreq_suspend_device(hba->devfreq);
1574 	spin_lock_irqsave(hba->host->host_lock, flags);
1575 	hba->clk_scaling.window_start_t = 0;
1576 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1577 }
1578 
1579 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1580 {
1581 	unsigned long flags;
1582 	bool suspend = false;
1583 
1584 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1585 	cancel_work_sync(&hba->clk_scaling.resume_work);
1586 
1587 	spin_lock_irqsave(hba->host->host_lock, flags);
1588 	if (!hba->clk_scaling.is_suspended) {
1589 		suspend = true;
1590 		hba->clk_scaling.is_suspended = true;
1591 	}
1592 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1593 
1594 	if (suspend)
1595 		__ufshcd_suspend_clkscaling(hba);
1596 }
1597 
1598 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1599 {
1600 	unsigned long flags;
1601 	bool resume = false;
1602 
1603 	spin_lock_irqsave(hba->host->host_lock, flags);
1604 	if (hba->clk_scaling.is_suspended) {
1605 		resume = true;
1606 		hba->clk_scaling.is_suspended = false;
1607 	}
1608 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1609 
1610 	if (resume)
1611 		devfreq_resume_device(hba->devfreq);
1612 }
1613 
1614 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1615 		struct device_attribute *attr, char *buf)
1616 {
1617 	struct ufs_hba *hba = dev_get_drvdata(dev);
1618 
1619 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1620 }
1621 
1622 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1623 		struct device_attribute *attr, const char *buf, size_t count)
1624 {
1625 	struct ufs_hba *hba = dev_get_drvdata(dev);
1626 	u32 value;
1627 	int err = 0;
1628 
1629 	if (kstrtou32(buf, 0, &value))
1630 		return -EINVAL;
1631 
1632 	down(&hba->host_sem);
1633 	if (!ufshcd_is_user_access_allowed(hba)) {
1634 		err = -EBUSY;
1635 		goto out;
1636 	}
1637 
1638 	value = !!value;
1639 	if (value == hba->clk_scaling.is_enabled)
1640 		goto out;
1641 
1642 	ufshcd_rpm_get_sync(hba);
1643 	ufshcd_hold(hba, false);
1644 
1645 	hba->clk_scaling.is_enabled = value;
1646 
1647 	if (value) {
1648 		ufshcd_resume_clkscaling(hba);
1649 	} else {
1650 		ufshcd_suspend_clkscaling(hba);
1651 		err = ufshcd_devfreq_scale(hba, true);
1652 		if (err)
1653 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1654 					__func__, err);
1655 	}
1656 
1657 	ufshcd_release(hba);
1658 	ufshcd_rpm_put_sync(hba);
1659 out:
1660 	up(&hba->host_sem);
1661 	return err ? err : count;
1662 }
1663 
1664 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1665 {
1666 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1667 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1668 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1669 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1670 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1671 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1672 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1673 }
1674 
1675 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1676 {
1677 	if (hba->clk_scaling.enable_attr.attr.name)
1678 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1679 }
1680 
1681 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1682 {
1683 	char wq_name[sizeof("ufs_clkscaling_00")];
1684 
1685 	if (!ufshcd_is_clkscaling_supported(hba))
1686 		return;
1687 
1688 	if (!hba->clk_scaling.min_gear)
1689 		hba->clk_scaling.min_gear = UFS_HS_G1;
1690 
1691 	INIT_WORK(&hba->clk_scaling.suspend_work,
1692 		  ufshcd_clk_scaling_suspend_work);
1693 	INIT_WORK(&hba->clk_scaling.resume_work,
1694 		  ufshcd_clk_scaling_resume_work);
1695 
1696 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1697 		 hba->host->host_no);
1698 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1699 
1700 	hba->clk_scaling.is_initialized = true;
1701 }
1702 
1703 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1704 {
1705 	if (!hba->clk_scaling.is_initialized)
1706 		return;
1707 
1708 	ufshcd_remove_clk_scaling_sysfs(hba);
1709 	destroy_workqueue(hba->clk_scaling.workq);
1710 	ufshcd_devfreq_remove(hba);
1711 	hba->clk_scaling.is_initialized = false;
1712 }
1713 
1714 static void ufshcd_ungate_work(struct work_struct *work)
1715 {
1716 	int ret;
1717 	unsigned long flags;
1718 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1719 			clk_gating.ungate_work);
1720 
1721 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1722 
1723 	spin_lock_irqsave(hba->host->host_lock, flags);
1724 	if (hba->clk_gating.state == CLKS_ON) {
1725 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1726 		goto unblock_reqs;
1727 	}
1728 
1729 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1730 	ufshcd_hba_vreg_set_hpm(hba);
1731 	ufshcd_setup_clocks(hba, true);
1732 
1733 	ufshcd_enable_irq(hba);
1734 
1735 	/* Exit from hibern8 */
1736 	if (ufshcd_can_hibern8_during_gating(hba)) {
1737 		/* Prevent gating in this path */
1738 		hba->clk_gating.is_suspended = true;
1739 		if (ufshcd_is_link_hibern8(hba)) {
1740 			ret = ufshcd_uic_hibern8_exit(hba);
1741 			if (ret)
1742 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1743 					__func__, ret);
1744 			else
1745 				ufshcd_set_link_active(hba);
1746 		}
1747 		hba->clk_gating.is_suspended = false;
1748 	}
1749 unblock_reqs:
1750 	ufshcd_scsi_unblock_requests(hba);
1751 }
1752 
1753 /**
1754  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1755  * Also, exit from hibern8 mode and set the link as active.
1756  * @hba: per adapter instance
1757  * @async: This indicates whether caller should ungate clocks asynchronously.
1758  */
1759 int ufshcd_hold(struct ufs_hba *hba, bool async)
1760 {
1761 	int rc = 0;
1762 	bool flush_result;
1763 	unsigned long flags;
1764 
1765 	if (!ufshcd_is_clkgating_allowed(hba) ||
1766 	    !hba->clk_gating.is_initialized)
1767 		goto out;
1768 	spin_lock_irqsave(hba->host->host_lock, flags);
1769 	hba->clk_gating.active_reqs++;
1770 
1771 start:
1772 	switch (hba->clk_gating.state) {
1773 	case CLKS_ON:
1774 		/*
1775 		 * Wait for the ungate work to complete if in progress.
1776 		 * Though the clocks may be in ON state, the link could
1777 		 * still be in hibner8 state if hibern8 is allowed
1778 		 * during clock gating.
1779 		 * Make sure we exit hibern8 state also in addition to
1780 		 * clocks being ON.
1781 		 */
1782 		if (ufshcd_can_hibern8_during_gating(hba) &&
1783 		    ufshcd_is_link_hibern8(hba)) {
1784 			if (async) {
1785 				rc = -EAGAIN;
1786 				hba->clk_gating.active_reqs--;
1787 				break;
1788 			}
1789 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1790 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1791 			if (hba->clk_gating.is_suspended && !flush_result)
1792 				goto out;
1793 			spin_lock_irqsave(hba->host->host_lock, flags);
1794 			goto start;
1795 		}
1796 		break;
1797 	case REQ_CLKS_OFF:
1798 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1799 			hba->clk_gating.state = CLKS_ON;
1800 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1801 						hba->clk_gating.state);
1802 			break;
1803 		}
1804 		/*
1805 		 * If we are here, it means gating work is either done or
1806 		 * currently running. Hence, fall through to cancel gating
1807 		 * work and to enable clocks.
1808 		 */
1809 		fallthrough;
1810 	case CLKS_OFF:
1811 		hba->clk_gating.state = REQ_CLKS_ON;
1812 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1813 					hba->clk_gating.state);
1814 		if (queue_work(hba->clk_gating.clk_gating_workq,
1815 			       &hba->clk_gating.ungate_work))
1816 			ufshcd_scsi_block_requests(hba);
1817 		/*
1818 		 * fall through to check if we should wait for this
1819 		 * work to be done or not.
1820 		 */
1821 		fallthrough;
1822 	case REQ_CLKS_ON:
1823 		if (async) {
1824 			rc = -EAGAIN;
1825 			hba->clk_gating.active_reqs--;
1826 			break;
1827 		}
1828 
1829 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1830 		flush_work(&hba->clk_gating.ungate_work);
1831 		/* Make sure state is CLKS_ON before returning */
1832 		spin_lock_irqsave(hba->host->host_lock, flags);
1833 		goto start;
1834 	default:
1835 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1836 				__func__, hba->clk_gating.state);
1837 		break;
1838 	}
1839 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1840 out:
1841 	return rc;
1842 }
1843 EXPORT_SYMBOL_GPL(ufshcd_hold);
1844 
1845 static void ufshcd_gate_work(struct work_struct *work)
1846 {
1847 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1848 			clk_gating.gate_work.work);
1849 	unsigned long flags;
1850 	int ret;
1851 
1852 	spin_lock_irqsave(hba->host->host_lock, flags);
1853 	/*
1854 	 * In case you are here to cancel this work the gating state
1855 	 * would be marked as REQ_CLKS_ON. In this case save time by
1856 	 * skipping the gating work and exit after changing the clock
1857 	 * state to CLKS_ON.
1858 	 */
1859 	if (hba->clk_gating.is_suspended ||
1860 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1861 		hba->clk_gating.state = CLKS_ON;
1862 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1863 					hba->clk_gating.state);
1864 		goto rel_lock;
1865 	}
1866 
1867 	if (hba->clk_gating.active_reqs
1868 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1869 		|| hba->outstanding_reqs || hba->outstanding_tasks
1870 		|| hba->active_uic_cmd || hba->uic_async_done)
1871 		goto rel_lock;
1872 
1873 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1874 
1875 	/* put the link into hibern8 mode before turning off clocks */
1876 	if (ufshcd_can_hibern8_during_gating(hba)) {
1877 		ret = ufshcd_uic_hibern8_enter(hba);
1878 		if (ret) {
1879 			hba->clk_gating.state = CLKS_ON;
1880 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1881 					__func__, ret);
1882 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1883 						hba->clk_gating.state);
1884 			goto out;
1885 		}
1886 		ufshcd_set_link_hibern8(hba);
1887 	}
1888 
1889 	ufshcd_disable_irq(hba);
1890 
1891 	ufshcd_setup_clocks(hba, false);
1892 
1893 	/* Put the host controller in low power mode if possible */
1894 	ufshcd_hba_vreg_set_lpm(hba);
1895 	/*
1896 	 * In case you are here to cancel this work the gating state
1897 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1898 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1899 	 * and a request to turn them on is pending. By doing this way,
1900 	 * we keep the state machine in tact and this would ultimately
1901 	 * prevent from doing cancel work multiple times when there are
1902 	 * new requests arriving before the current cancel work is done.
1903 	 */
1904 	spin_lock_irqsave(hba->host->host_lock, flags);
1905 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1906 		hba->clk_gating.state = CLKS_OFF;
1907 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1908 					hba->clk_gating.state);
1909 	}
1910 rel_lock:
1911 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1912 out:
1913 	return;
1914 }
1915 
1916 /* host lock must be held before calling this variant */
1917 static void __ufshcd_release(struct ufs_hba *hba)
1918 {
1919 	if (!ufshcd_is_clkgating_allowed(hba))
1920 		return;
1921 
1922 	hba->clk_gating.active_reqs--;
1923 
1924 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1925 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1926 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1927 	    hba->active_uic_cmd || hba->uic_async_done ||
1928 	    hba->clk_gating.state == CLKS_OFF)
1929 		return;
1930 
1931 	hba->clk_gating.state = REQ_CLKS_OFF;
1932 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1933 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1934 			   &hba->clk_gating.gate_work,
1935 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1936 }
1937 
1938 void ufshcd_release(struct ufs_hba *hba)
1939 {
1940 	unsigned long flags;
1941 
1942 	spin_lock_irqsave(hba->host->host_lock, flags);
1943 	__ufshcd_release(hba);
1944 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1945 }
1946 EXPORT_SYMBOL_GPL(ufshcd_release);
1947 
1948 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1949 		struct device_attribute *attr, char *buf)
1950 {
1951 	struct ufs_hba *hba = dev_get_drvdata(dev);
1952 
1953 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1954 }
1955 
1956 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1957 {
1958 	struct ufs_hba *hba = dev_get_drvdata(dev);
1959 	unsigned long flags;
1960 
1961 	spin_lock_irqsave(hba->host->host_lock, flags);
1962 	hba->clk_gating.delay_ms = value;
1963 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1964 }
1965 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1966 
1967 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1968 		struct device_attribute *attr, const char *buf, size_t count)
1969 {
1970 	unsigned long value;
1971 
1972 	if (kstrtoul(buf, 0, &value))
1973 		return -EINVAL;
1974 
1975 	ufshcd_clkgate_delay_set(dev, value);
1976 	return count;
1977 }
1978 
1979 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1980 		struct device_attribute *attr, char *buf)
1981 {
1982 	struct ufs_hba *hba = dev_get_drvdata(dev);
1983 
1984 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1985 }
1986 
1987 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1988 		struct device_attribute *attr, const char *buf, size_t count)
1989 {
1990 	struct ufs_hba *hba = dev_get_drvdata(dev);
1991 	unsigned long flags;
1992 	u32 value;
1993 
1994 	if (kstrtou32(buf, 0, &value))
1995 		return -EINVAL;
1996 
1997 	value = !!value;
1998 
1999 	spin_lock_irqsave(hba->host->host_lock, flags);
2000 	if (value == hba->clk_gating.is_enabled)
2001 		goto out;
2002 
2003 	if (value)
2004 		__ufshcd_release(hba);
2005 	else
2006 		hba->clk_gating.active_reqs++;
2007 
2008 	hba->clk_gating.is_enabled = value;
2009 out:
2010 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2011 	return count;
2012 }
2013 
2014 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2015 {
2016 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2017 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2018 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2019 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2020 	hba->clk_gating.delay_attr.attr.mode = 0644;
2021 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2022 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2023 
2024 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2025 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2026 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2027 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2028 	hba->clk_gating.enable_attr.attr.mode = 0644;
2029 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2030 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2031 }
2032 
2033 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2034 {
2035 	if (hba->clk_gating.delay_attr.attr.name)
2036 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2037 	if (hba->clk_gating.enable_attr.attr.name)
2038 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2039 }
2040 
2041 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2042 {
2043 	char wq_name[sizeof("ufs_clk_gating_00")];
2044 
2045 	if (!ufshcd_is_clkgating_allowed(hba))
2046 		return;
2047 
2048 	hba->clk_gating.state = CLKS_ON;
2049 
2050 	hba->clk_gating.delay_ms = 150;
2051 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2052 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2053 
2054 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2055 		 hba->host->host_no);
2056 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2057 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2058 
2059 	ufshcd_init_clk_gating_sysfs(hba);
2060 
2061 	hba->clk_gating.is_enabled = true;
2062 	hba->clk_gating.is_initialized = true;
2063 }
2064 
2065 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2066 {
2067 	if (!hba->clk_gating.is_initialized)
2068 		return;
2069 
2070 	ufshcd_remove_clk_gating_sysfs(hba);
2071 
2072 	/* Ungate the clock if necessary. */
2073 	ufshcd_hold(hba, false);
2074 	hba->clk_gating.is_initialized = false;
2075 	ufshcd_release(hba);
2076 
2077 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2078 }
2079 
2080 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2081 {
2082 	bool queue_resume_work = false;
2083 	ktime_t curr_t = ktime_get();
2084 	unsigned long flags;
2085 
2086 	if (!ufshcd_is_clkscaling_supported(hba))
2087 		return;
2088 
2089 	spin_lock_irqsave(hba->host->host_lock, flags);
2090 	if (!hba->clk_scaling.active_reqs++)
2091 		queue_resume_work = true;
2092 
2093 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2094 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2095 		return;
2096 	}
2097 
2098 	if (queue_resume_work)
2099 		queue_work(hba->clk_scaling.workq,
2100 			   &hba->clk_scaling.resume_work);
2101 
2102 	if (!hba->clk_scaling.window_start_t) {
2103 		hba->clk_scaling.window_start_t = curr_t;
2104 		hba->clk_scaling.tot_busy_t = 0;
2105 		hba->clk_scaling.is_busy_started = false;
2106 	}
2107 
2108 	if (!hba->clk_scaling.is_busy_started) {
2109 		hba->clk_scaling.busy_start_t = curr_t;
2110 		hba->clk_scaling.is_busy_started = true;
2111 	}
2112 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2113 }
2114 
2115 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2116 {
2117 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2118 	unsigned long flags;
2119 
2120 	if (!ufshcd_is_clkscaling_supported(hba))
2121 		return;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	hba->clk_scaling.active_reqs--;
2125 	if (!scaling->active_reqs && scaling->is_busy_started) {
2126 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2127 					scaling->busy_start_t));
2128 		scaling->busy_start_t = 0;
2129 		scaling->is_busy_started = false;
2130 	}
2131 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2132 }
2133 
2134 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2135 {
2136 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2137 		return READ;
2138 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2139 		return WRITE;
2140 	else
2141 		return -EINVAL;
2142 }
2143 
2144 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2145 						struct ufshcd_lrb *lrbp)
2146 {
2147 	const struct ufs_hba_monitor *m = &hba->monitor;
2148 
2149 	return (m->enabled && lrbp && lrbp->cmd &&
2150 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2151 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2152 }
2153 
2154 static void ufshcd_start_monitor(struct ufs_hba *hba,
2155 				 const struct ufshcd_lrb *lrbp)
2156 {
2157 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2158 	unsigned long flags;
2159 
2160 	spin_lock_irqsave(hba->host->host_lock, flags);
2161 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2162 		hba->monitor.busy_start_ts[dir] = ktime_get();
2163 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2164 }
2165 
2166 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2167 {
2168 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2169 	unsigned long flags;
2170 
2171 	spin_lock_irqsave(hba->host->host_lock, flags);
2172 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2173 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2174 		struct ufs_hba_monitor *m = &hba->monitor;
2175 		ktime_t now, inc, lat;
2176 
2177 		now = lrbp->compl_time_stamp;
2178 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2179 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2180 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2181 
2182 		/* Update latencies */
2183 		m->nr_req[dir]++;
2184 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2185 		m->lat_sum[dir] += lat;
2186 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2187 			m->lat_max[dir] = lat;
2188 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2189 			m->lat_min[dir] = lat;
2190 
2191 		m->nr_queued[dir]--;
2192 		/* Push forward the busy start of monitor */
2193 		m->busy_start_ts[dir] = now;
2194 	}
2195 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2196 }
2197 
2198 /**
2199  * ufshcd_send_command - Send SCSI or device management commands
2200  * @hba: per adapter instance
2201  * @task_tag: Task tag of the command
2202  * @hwq: pointer to hardware queue instance
2203  */
2204 static inline
2205 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2206 			 struct ufs_hw_queue *hwq)
2207 {
2208 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2209 	unsigned long flags;
2210 
2211 	lrbp->issue_time_stamp = ktime_get();
2212 	lrbp->issue_time_stamp_local_clock = local_clock();
2213 	lrbp->compl_time_stamp = ktime_set(0, 0);
2214 	lrbp->compl_time_stamp_local_clock = 0;
2215 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2216 	ufshcd_clk_scaling_start_busy(hba);
2217 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2218 		ufshcd_start_monitor(hba, lrbp);
2219 
2220 	if (is_mcq_enabled(hba)) {
2221 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2222 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2223 		struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2224 
2225 		spin_lock(&hwq->sq_lock);
2226 		memcpy(dest, src, utrd_size);
2227 		ufshcd_inc_sq_tail(hwq);
2228 		spin_unlock(&hwq->sq_lock);
2229 	} else {
2230 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2231 		if (hba->vops && hba->vops->setup_xfer_req)
2232 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2233 						  !!lrbp->cmd);
2234 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2235 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2236 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2237 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2238 	}
2239 }
2240 
2241 /**
2242  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2243  * @lrbp: pointer to local reference block
2244  */
2245 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2246 {
2247 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2248 	int len;
2249 
2250 	if (sense_buffer &&
2251 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2252 		int len_to_copy;
2253 
2254 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2255 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2256 
2257 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2258 		       len_to_copy);
2259 	}
2260 }
2261 
2262 /**
2263  * ufshcd_copy_query_response() - Copy the Query Response and the data
2264  * descriptor
2265  * @hba: per adapter instance
2266  * @lrbp: pointer to local reference block
2267  */
2268 static
2269 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2270 {
2271 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2272 
2273 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2274 
2275 	/* Get the descriptor */
2276 	if (hba->dev_cmd.query.descriptor &&
2277 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2278 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2279 				GENERAL_UPIU_REQUEST_SIZE;
2280 		u16 resp_len;
2281 		u16 buf_len;
2282 
2283 		/* data segment length */
2284 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2285 						MASK_QUERY_DATA_SEG_LEN;
2286 		buf_len = be16_to_cpu(
2287 				hba->dev_cmd.query.request.upiu_req.length);
2288 		if (likely(buf_len >= resp_len)) {
2289 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2290 		} else {
2291 			dev_warn(hba->dev,
2292 				 "%s: rsp size %d is bigger than buffer size %d",
2293 				 __func__, resp_len, buf_len);
2294 			return -EINVAL;
2295 		}
2296 	}
2297 
2298 	return 0;
2299 }
2300 
2301 /**
2302  * ufshcd_hba_capabilities - Read controller capabilities
2303  * @hba: per adapter instance
2304  *
2305  * Return: 0 on success, negative on error.
2306  */
2307 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2308 {
2309 	int err;
2310 
2311 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2312 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2313 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2314 
2315 	/* nutrs and nutmrs are 0 based values */
2316 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2317 	hba->nutmrs =
2318 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2319 	hba->reserved_slot = hba->nutrs - 1;
2320 
2321 	/* Read crypto capabilities */
2322 	err = ufshcd_hba_init_crypto_capabilities(hba);
2323 	if (err) {
2324 		dev_err(hba->dev, "crypto setup failed\n");
2325 		return err;
2326 	}
2327 
2328 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2329 	if (!hba->mcq_sup)
2330 		return 0;
2331 
2332 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2333 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2334 				     hba->mcq_capabilities);
2335 
2336 	return 0;
2337 }
2338 
2339 /**
2340  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2341  *                            to accept UIC commands
2342  * @hba: per adapter instance
2343  * Return true on success, else false
2344  */
2345 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2346 {
2347 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2348 }
2349 
2350 /**
2351  * ufshcd_get_upmcrs - Get the power mode change request status
2352  * @hba: Pointer to adapter instance
2353  *
2354  * This function gets the UPMCRS field of HCS register
2355  * Returns value of UPMCRS field
2356  */
2357 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2358 {
2359 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2360 }
2361 
2362 /**
2363  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2364  * @hba: per adapter instance
2365  * @uic_cmd: UIC command
2366  */
2367 static inline void
2368 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2369 {
2370 	lockdep_assert_held(&hba->uic_cmd_mutex);
2371 
2372 	WARN_ON(hba->active_uic_cmd);
2373 
2374 	hba->active_uic_cmd = uic_cmd;
2375 
2376 	/* Write Args */
2377 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2378 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2379 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2380 
2381 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2382 
2383 	/* Write UIC Cmd */
2384 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2385 		      REG_UIC_COMMAND);
2386 }
2387 
2388 /**
2389  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2390  * @hba: per adapter instance
2391  * @uic_cmd: UIC command
2392  *
2393  * Returns 0 only if success.
2394  */
2395 static int
2396 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2397 {
2398 	int ret;
2399 	unsigned long flags;
2400 
2401 	lockdep_assert_held(&hba->uic_cmd_mutex);
2402 
2403 	if (wait_for_completion_timeout(&uic_cmd->done,
2404 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2405 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2406 	} else {
2407 		ret = -ETIMEDOUT;
2408 		dev_err(hba->dev,
2409 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2410 			uic_cmd->command, uic_cmd->argument3);
2411 
2412 		if (!uic_cmd->cmd_active) {
2413 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2414 				__func__);
2415 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2416 		}
2417 	}
2418 
2419 	spin_lock_irqsave(hba->host->host_lock, flags);
2420 	hba->active_uic_cmd = NULL;
2421 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2422 
2423 	return ret;
2424 }
2425 
2426 /**
2427  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2428  * @hba: per adapter instance
2429  * @uic_cmd: UIC command
2430  * @completion: initialize the completion only if this is set to true
2431  *
2432  * Returns 0 only if success.
2433  */
2434 static int
2435 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2436 		      bool completion)
2437 {
2438 	lockdep_assert_held(&hba->uic_cmd_mutex);
2439 	lockdep_assert_held(hba->host->host_lock);
2440 
2441 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2442 		dev_err(hba->dev,
2443 			"Controller not ready to accept UIC commands\n");
2444 		return -EIO;
2445 	}
2446 
2447 	if (completion)
2448 		init_completion(&uic_cmd->done);
2449 
2450 	uic_cmd->cmd_active = 1;
2451 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2452 
2453 	return 0;
2454 }
2455 
2456 /**
2457  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2458  * @hba: per adapter instance
2459  * @uic_cmd: UIC command
2460  *
2461  * Returns 0 only if success.
2462  */
2463 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2464 {
2465 	int ret;
2466 	unsigned long flags;
2467 
2468 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2469 		return 0;
2470 
2471 	ufshcd_hold(hba, false);
2472 	mutex_lock(&hba->uic_cmd_mutex);
2473 	ufshcd_add_delay_before_dme_cmd(hba);
2474 
2475 	spin_lock_irqsave(hba->host->host_lock, flags);
2476 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2477 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2478 	if (!ret)
2479 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2480 
2481 	mutex_unlock(&hba->uic_cmd_mutex);
2482 
2483 	ufshcd_release(hba);
2484 	return ret;
2485 }
2486 
2487 /**
2488  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2489  * @hba:	per-adapter instance
2490  * @lrbp:	pointer to local reference block
2491  * @sg_entries:	The number of sg lists actually used
2492  * @sg_list:	Pointer to SG list
2493  */
2494 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2495 			       struct scatterlist *sg_list)
2496 {
2497 	struct ufshcd_sg_entry *prd;
2498 	struct scatterlist *sg;
2499 	int i;
2500 
2501 	if (sg_entries) {
2502 
2503 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2504 			lrbp->utr_descriptor_ptr->prd_table_length =
2505 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2506 		else
2507 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2508 
2509 		prd = lrbp->ucd_prdt_ptr;
2510 
2511 		for_each_sg(sg_list, sg, sg_entries, i) {
2512 			const unsigned int len = sg_dma_len(sg);
2513 
2514 			/*
2515 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2516 			 * based value that indicates the length, in bytes, of
2517 			 * the data block. A maximum of length of 256KB may
2518 			 * exist for any entry. Bits 1:0 of this field shall be
2519 			 * 11b to indicate Dword granularity. A value of '3'
2520 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2521 			 */
2522 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2523 			prd->size = cpu_to_le32(len - 1);
2524 			prd->addr = cpu_to_le64(sg->dma_address);
2525 			prd->reserved = 0;
2526 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2527 		}
2528 	} else {
2529 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2530 	}
2531 }
2532 
2533 /**
2534  * ufshcd_map_sg - Map scatter-gather list to prdt
2535  * @hba: per adapter instance
2536  * @lrbp: pointer to local reference block
2537  *
2538  * Returns 0 in case of success, non-zero value in case of failure
2539  */
2540 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2541 {
2542 	struct scsi_cmnd *cmd = lrbp->cmd;
2543 	int sg_segments = scsi_dma_map(cmd);
2544 
2545 	if (sg_segments < 0)
2546 		return sg_segments;
2547 
2548 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2549 
2550 	return 0;
2551 }
2552 
2553 /**
2554  * ufshcd_enable_intr - enable interrupts
2555  * @hba: per adapter instance
2556  * @intrs: interrupt bits
2557  */
2558 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2559 {
2560 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2561 
2562 	if (hba->ufs_version == ufshci_version(1, 0)) {
2563 		u32 rw;
2564 		rw = set & INTERRUPT_MASK_RW_VER_10;
2565 		set = rw | ((set ^ intrs) & intrs);
2566 	} else {
2567 		set |= intrs;
2568 	}
2569 
2570 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2571 }
2572 
2573 /**
2574  * ufshcd_disable_intr - disable interrupts
2575  * @hba: per adapter instance
2576  * @intrs: interrupt bits
2577  */
2578 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2579 {
2580 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2581 
2582 	if (hba->ufs_version == ufshci_version(1, 0)) {
2583 		u32 rw;
2584 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2585 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2586 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2587 
2588 	} else {
2589 		set &= ~intrs;
2590 	}
2591 
2592 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2593 }
2594 
2595 /**
2596  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2597  * descriptor according to request
2598  * @lrbp: pointer to local reference block
2599  * @upiu_flags: flags required in the header
2600  * @cmd_dir: requests data direction
2601  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2602  */
2603 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2604 					enum dma_data_direction cmd_dir, int ehs_length)
2605 {
2606 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2607 	u32 data_direction;
2608 	u32 dword_0;
2609 	u32 dword_1 = 0;
2610 	u32 dword_3 = 0;
2611 
2612 	if (cmd_dir == DMA_FROM_DEVICE) {
2613 		data_direction = UTP_DEVICE_TO_HOST;
2614 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2615 	} else if (cmd_dir == DMA_TO_DEVICE) {
2616 		data_direction = UTP_HOST_TO_DEVICE;
2617 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2618 	} else {
2619 		data_direction = UTP_NO_DATA_TRANSFER;
2620 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2621 	}
2622 
2623 	dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET) |
2624 		ehs_length << 8;
2625 	if (lrbp->intr_cmd)
2626 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2627 
2628 	/* Prepare crypto related dwords */
2629 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2630 
2631 	/* Transfer request descriptor header fields */
2632 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2633 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2634 	/*
2635 	 * assigning invalid value for command status. Controller
2636 	 * updates OCS on command completion, with the command
2637 	 * status
2638 	 */
2639 	req_desc->header.dword_2 =
2640 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2641 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2642 
2643 	req_desc->prd_table_length = 0;
2644 }
2645 
2646 /**
2647  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2648  * for scsi commands
2649  * @lrbp: local reference block pointer
2650  * @upiu_flags: flags
2651  */
2652 static
2653 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2654 {
2655 	struct scsi_cmnd *cmd = lrbp->cmd;
2656 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2657 	unsigned short cdb_len;
2658 
2659 	/* command descriptor fields */
2660 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2661 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2662 				lrbp->lun, lrbp->task_tag);
2663 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2664 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2665 
2666 	/* Total EHS length and Data segment length will be zero */
2667 	ucd_req_ptr->header.dword_2 = 0;
2668 
2669 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2670 
2671 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2672 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2673 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2674 
2675 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2676 }
2677 
2678 /**
2679  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2680  * @hba: UFS hba
2681  * @lrbp: local reference block pointer
2682  * @upiu_flags: flags
2683  */
2684 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2685 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2686 {
2687 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2688 	struct ufs_query *query = &hba->dev_cmd.query;
2689 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2690 
2691 	/* Query request header */
2692 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2693 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2694 			lrbp->lun, lrbp->task_tag);
2695 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2696 			0, query->request.query_func, 0, 0);
2697 
2698 	/* Data segment length only need for WRITE_DESC */
2699 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2700 		ucd_req_ptr->header.dword_2 =
2701 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2702 	else
2703 		ucd_req_ptr->header.dword_2 = 0;
2704 
2705 	/* Copy the Query Request buffer as is */
2706 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2707 			QUERY_OSF_SIZE);
2708 
2709 	/* Copy the Descriptor */
2710 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2711 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2712 
2713 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2714 }
2715 
2716 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2717 {
2718 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2719 
2720 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2721 
2722 	/* command descriptor fields */
2723 	ucd_req_ptr->header.dword_0 =
2724 		UPIU_HEADER_DWORD(
2725 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2726 	/* clear rest of the fields of basic header */
2727 	ucd_req_ptr->header.dword_1 = 0;
2728 	ucd_req_ptr->header.dword_2 = 0;
2729 
2730 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2731 }
2732 
2733 /**
2734  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2735  *			     for Device Management Purposes
2736  * @hba: per adapter instance
2737  * @lrbp: pointer to local reference block
2738  */
2739 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2740 				      struct ufshcd_lrb *lrbp)
2741 {
2742 	u8 upiu_flags;
2743 	int ret = 0;
2744 
2745 	if (hba->ufs_version <= ufshci_version(1, 1))
2746 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2747 	else
2748 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2749 
2750 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2751 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2752 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2753 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2754 		ufshcd_prepare_utp_nop_upiu(lrbp);
2755 	else
2756 		ret = -EINVAL;
2757 
2758 	return ret;
2759 }
2760 
2761 /**
2762  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2763  *			   for SCSI Purposes
2764  * @hba: per adapter instance
2765  * @lrbp: pointer to local reference block
2766  */
2767 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2768 {
2769 	u8 upiu_flags;
2770 	int ret = 0;
2771 
2772 	if (hba->ufs_version <= ufshci_version(1, 1))
2773 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2774 	else
2775 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2776 
2777 	if (likely(lrbp->cmd)) {
2778 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2779 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2780 	} else {
2781 		ret = -EINVAL;
2782 	}
2783 
2784 	return ret;
2785 }
2786 
2787 /**
2788  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2789  * @upiu_wlun_id: UPIU W-LUN id
2790  *
2791  * Returns SCSI W-LUN id
2792  */
2793 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2794 {
2795 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2796 }
2797 
2798 static inline bool is_device_wlun(struct scsi_device *sdev)
2799 {
2800 	return sdev->lun ==
2801 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2802 }
2803 
2804 /*
2805  * Associate the UFS controller queue with the default and poll HCTX types.
2806  * Initialize the mq_map[] arrays.
2807  */
2808 static void ufshcd_map_queues(struct Scsi_Host *shost)
2809 {
2810 	struct ufs_hba *hba = shost_priv(shost);
2811 	int i, queue_offset = 0;
2812 
2813 	if (!is_mcq_supported(hba)) {
2814 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2815 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2816 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2817 		hba->nr_hw_queues = 1;
2818 	}
2819 
2820 	for (i = 0; i < shost->nr_maps; i++) {
2821 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2822 
2823 		map->nr_queues = hba->nr_queues[i];
2824 		if (!map->nr_queues)
2825 			continue;
2826 		map->queue_offset = queue_offset;
2827 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2828 			map->queue_offset = 0;
2829 
2830 		blk_mq_map_queues(map);
2831 		queue_offset += map->nr_queues;
2832 	}
2833 }
2834 
2835 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2836 {
2837 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2838 		i * sizeof_utp_transfer_cmd_desc(hba);
2839 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2840 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2841 		i * sizeof_utp_transfer_cmd_desc(hba);
2842 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2843 				       response_upiu);
2844 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2845 
2846 	lrb->utr_descriptor_ptr = utrdlp + i;
2847 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2848 		i * sizeof(struct utp_transfer_req_desc);
2849 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2850 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2851 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2852 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2853 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2854 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2855 }
2856 
2857 /**
2858  * ufshcd_queuecommand - main entry point for SCSI requests
2859  * @host: SCSI host pointer
2860  * @cmd: command from SCSI Midlayer
2861  *
2862  * Returns 0 for success, non-zero in case of failure
2863  */
2864 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2865 {
2866 	struct ufs_hba *hba = shost_priv(host);
2867 	int tag = scsi_cmd_to_rq(cmd)->tag;
2868 	struct ufshcd_lrb *lrbp;
2869 	int err = 0;
2870 	struct ufs_hw_queue *hwq = NULL;
2871 
2872 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2873 
2874 	/*
2875 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2876 	 * calls.
2877 	 */
2878 	rcu_read_lock();
2879 
2880 	switch (hba->ufshcd_state) {
2881 	case UFSHCD_STATE_OPERATIONAL:
2882 		break;
2883 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2884 		/*
2885 		 * SCSI error handler can call ->queuecommand() while UFS error
2886 		 * handler is in progress. Error interrupts could change the
2887 		 * state from UFSHCD_STATE_RESET to
2888 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2889 		 * being issued in that case.
2890 		 */
2891 		if (ufshcd_eh_in_progress(hba)) {
2892 			err = SCSI_MLQUEUE_HOST_BUSY;
2893 			goto out;
2894 		}
2895 		break;
2896 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2897 		/*
2898 		 * pm_runtime_get_sync() is used at error handling preparation
2899 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2900 		 * PM ops, it can never be finished if we let SCSI layer keep
2901 		 * retrying it, which gets err handler stuck forever. Neither
2902 		 * can we let the scsi cmd pass through, because UFS is in bad
2903 		 * state, the scsi cmd may eventually time out, which will get
2904 		 * err handler blocked for too long. So, just fail the scsi cmd
2905 		 * sent from PM ops, err handler can recover PM error anyways.
2906 		 */
2907 		if (hba->pm_op_in_progress) {
2908 			hba->force_reset = true;
2909 			set_host_byte(cmd, DID_BAD_TARGET);
2910 			scsi_done(cmd);
2911 			goto out;
2912 		}
2913 		fallthrough;
2914 	case UFSHCD_STATE_RESET:
2915 		err = SCSI_MLQUEUE_HOST_BUSY;
2916 		goto out;
2917 	case UFSHCD_STATE_ERROR:
2918 		set_host_byte(cmd, DID_ERROR);
2919 		scsi_done(cmd);
2920 		goto out;
2921 	}
2922 
2923 	hba->req_abort_count = 0;
2924 
2925 	err = ufshcd_hold(hba, true);
2926 	if (err) {
2927 		err = SCSI_MLQUEUE_HOST_BUSY;
2928 		goto out;
2929 	}
2930 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2931 		(hba->clk_gating.state != CLKS_ON));
2932 
2933 	lrbp = &hba->lrb[tag];
2934 	WARN_ON(lrbp->cmd);
2935 	lrbp->cmd = cmd;
2936 	lrbp->task_tag = tag;
2937 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2938 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2939 
2940 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2941 
2942 	lrbp->req_abort_skip = false;
2943 
2944 	ufshpb_prep(hba, lrbp);
2945 
2946 	ufshcd_comp_scsi_upiu(hba, lrbp);
2947 
2948 	err = ufshcd_map_sg(hba, lrbp);
2949 	if (err) {
2950 		lrbp->cmd = NULL;
2951 		ufshcd_release(hba);
2952 		goto out;
2953 	}
2954 
2955 	if (is_mcq_enabled(hba))
2956 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2957 
2958 	ufshcd_send_command(hba, tag, hwq);
2959 
2960 out:
2961 	rcu_read_unlock();
2962 
2963 	if (ufs_trigger_eh()) {
2964 		unsigned long flags;
2965 
2966 		spin_lock_irqsave(hba->host->host_lock, flags);
2967 		ufshcd_schedule_eh_work(hba);
2968 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2969 	}
2970 
2971 	return err;
2972 }
2973 
2974 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2975 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2976 {
2977 	lrbp->cmd = NULL;
2978 	lrbp->task_tag = tag;
2979 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2980 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2981 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2982 	hba->dev_cmd.type = cmd_type;
2983 
2984 	return ufshcd_compose_devman_upiu(hba, lrbp);
2985 }
2986 
2987 /*
2988  * Clear all the requests from the controller for which a bit has been set in
2989  * @mask and wait until the controller confirms that these requests have been
2990  * cleared.
2991  */
2992 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2993 {
2994 	unsigned long flags;
2995 
2996 	/* clear outstanding transaction before retry */
2997 	spin_lock_irqsave(hba->host->host_lock, flags);
2998 	ufshcd_utrl_clear(hba, mask);
2999 	spin_unlock_irqrestore(hba->host->host_lock, flags);
3000 
3001 	/*
3002 	 * wait for h/w to clear corresponding bit in door-bell.
3003 	 * max. wait is 1 sec.
3004 	 */
3005 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3006 					mask, ~mask, 1000, 1000);
3007 }
3008 
3009 static int
3010 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3011 {
3012 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
3013 
3014 	/* Get the UPIU response */
3015 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
3016 				UPIU_RSP_CODE_OFFSET;
3017 	return query_res->response;
3018 }
3019 
3020 /**
3021  * ufshcd_dev_cmd_completion() - handles device management command responses
3022  * @hba: per adapter instance
3023  * @lrbp: pointer to local reference block
3024  */
3025 static int
3026 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3027 {
3028 	int resp;
3029 	int err = 0;
3030 
3031 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3032 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3033 
3034 	switch (resp) {
3035 	case UPIU_TRANSACTION_NOP_IN:
3036 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3037 			err = -EINVAL;
3038 			dev_err(hba->dev, "%s: unexpected response %x\n",
3039 					__func__, resp);
3040 		}
3041 		break;
3042 	case UPIU_TRANSACTION_QUERY_RSP:
3043 		err = ufshcd_check_query_response(hba, lrbp);
3044 		if (!err)
3045 			err = ufshcd_copy_query_response(hba, lrbp);
3046 		break;
3047 	case UPIU_TRANSACTION_REJECT_UPIU:
3048 		/* TODO: handle Reject UPIU Response */
3049 		err = -EPERM;
3050 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3051 				__func__);
3052 		break;
3053 	case UPIU_TRANSACTION_RESPONSE:
3054 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3055 			err = -EINVAL;
3056 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3057 		}
3058 		break;
3059 	default:
3060 		err = -EINVAL;
3061 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3062 				__func__, resp);
3063 		break;
3064 	}
3065 
3066 	return err;
3067 }
3068 
3069 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3070 		struct ufshcd_lrb *lrbp, int max_timeout)
3071 {
3072 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3073 	unsigned long flags;
3074 	bool pending;
3075 	int err;
3076 
3077 retry:
3078 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3079 						time_left);
3080 
3081 	if (likely(time_left)) {
3082 		/*
3083 		 * The completion handler called complete() and the caller of
3084 		 * this function still owns the @lrbp tag so the code below does
3085 		 * not trigger any race conditions.
3086 		 */
3087 		hba->dev_cmd.complete = NULL;
3088 		err = ufshcd_get_tr_ocs(lrbp, hba->dev_cmd.cqe);
3089 		if (!err)
3090 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3091 	} else {
3092 		err = -ETIMEDOUT;
3093 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3094 			__func__, lrbp->task_tag);
3095 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
3096 			/* successfully cleared the command, retry if needed */
3097 			err = -EAGAIN;
3098 			/*
3099 			 * Since clearing the command succeeded we also need to
3100 			 * clear the task tag bit from the outstanding_reqs
3101 			 * variable.
3102 			 */
3103 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3104 			pending = test_bit(lrbp->task_tag,
3105 					   &hba->outstanding_reqs);
3106 			if (pending) {
3107 				hba->dev_cmd.complete = NULL;
3108 				__clear_bit(lrbp->task_tag,
3109 					    &hba->outstanding_reqs);
3110 			}
3111 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3112 
3113 			if (!pending) {
3114 				/*
3115 				 * The completion handler ran while we tried to
3116 				 * clear the command.
3117 				 */
3118 				time_left = 1;
3119 				goto retry;
3120 			}
3121 		} else {
3122 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3123 				__func__, lrbp->task_tag);
3124 
3125 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3126 			pending = test_bit(lrbp->task_tag,
3127 					   &hba->outstanding_reqs);
3128 			if (pending)
3129 				hba->dev_cmd.complete = NULL;
3130 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3131 
3132 			if (!pending) {
3133 				/*
3134 				 * The completion handler ran while we tried to
3135 				 * clear the command.
3136 				 */
3137 				time_left = 1;
3138 				goto retry;
3139 			}
3140 		}
3141 	}
3142 
3143 	return err;
3144 }
3145 
3146 /**
3147  * ufshcd_exec_dev_cmd - API for sending device management requests
3148  * @hba: UFS hba
3149  * @cmd_type: specifies the type (NOP, Query...)
3150  * @timeout: timeout in milliseconds
3151  *
3152  * NOTE: Since there is only one available tag for device management commands,
3153  * it is expected you hold the hba->dev_cmd.lock mutex.
3154  */
3155 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3156 		enum dev_cmd_type cmd_type, int timeout)
3157 {
3158 	DECLARE_COMPLETION_ONSTACK(wait);
3159 	const u32 tag = hba->reserved_slot;
3160 	struct ufshcd_lrb *lrbp;
3161 	int err;
3162 
3163 	/* Protects use of hba->reserved_slot. */
3164 	lockdep_assert_held(&hba->dev_cmd.lock);
3165 
3166 	down_read(&hba->clk_scaling_lock);
3167 
3168 	lrbp = &hba->lrb[tag];
3169 	WARN_ON(lrbp->cmd);
3170 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3171 	if (unlikely(err))
3172 		goto out;
3173 
3174 	hba->dev_cmd.complete = &wait;
3175 	hba->dev_cmd.cqe = NULL;
3176 
3177 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3178 
3179 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3180 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3181 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3182 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3183 
3184 out:
3185 	up_read(&hba->clk_scaling_lock);
3186 	return err;
3187 }
3188 
3189 /**
3190  * ufshcd_init_query() - init the query response and request parameters
3191  * @hba: per-adapter instance
3192  * @request: address of the request pointer to be initialized
3193  * @response: address of the response pointer to be initialized
3194  * @opcode: operation to perform
3195  * @idn: flag idn to access
3196  * @index: LU number to access
3197  * @selector: query/flag/descriptor further identification
3198  */
3199 static inline void ufshcd_init_query(struct ufs_hba *hba,
3200 		struct ufs_query_req **request, struct ufs_query_res **response,
3201 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3202 {
3203 	*request = &hba->dev_cmd.query.request;
3204 	*response = &hba->dev_cmd.query.response;
3205 	memset(*request, 0, sizeof(struct ufs_query_req));
3206 	memset(*response, 0, sizeof(struct ufs_query_res));
3207 	(*request)->upiu_req.opcode = opcode;
3208 	(*request)->upiu_req.idn = idn;
3209 	(*request)->upiu_req.index = index;
3210 	(*request)->upiu_req.selector = selector;
3211 }
3212 
3213 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3214 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3215 {
3216 	int ret;
3217 	int retries;
3218 
3219 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3220 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3221 		if (ret)
3222 			dev_dbg(hba->dev,
3223 				"%s: failed with error %d, retries %d\n",
3224 				__func__, ret, retries);
3225 		else
3226 			break;
3227 	}
3228 
3229 	if (ret)
3230 		dev_err(hba->dev,
3231 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3232 			__func__, opcode, idn, ret, retries);
3233 	return ret;
3234 }
3235 
3236 /**
3237  * ufshcd_query_flag() - API function for sending flag query requests
3238  * @hba: per-adapter instance
3239  * @opcode: flag query to perform
3240  * @idn: flag idn to access
3241  * @index: flag index to access
3242  * @flag_res: the flag value after the query request completes
3243  *
3244  * Returns 0 for success, non-zero in case of failure
3245  */
3246 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3247 			enum flag_idn idn, u8 index, bool *flag_res)
3248 {
3249 	struct ufs_query_req *request = NULL;
3250 	struct ufs_query_res *response = NULL;
3251 	int err, selector = 0;
3252 	int timeout = QUERY_REQ_TIMEOUT;
3253 
3254 	BUG_ON(!hba);
3255 
3256 	ufshcd_hold(hba, false);
3257 	mutex_lock(&hba->dev_cmd.lock);
3258 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3259 			selector);
3260 
3261 	switch (opcode) {
3262 	case UPIU_QUERY_OPCODE_SET_FLAG:
3263 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3264 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3265 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3266 		break;
3267 	case UPIU_QUERY_OPCODE_READ_FLAG:
3268 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3269 		if (!flag_res) {
3270 			/* No dummy reads */
3271 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3272 					__func__);
3273 			err = -EINVAL;
3274 			goto out_unlock;
3275 		}
3276 		break;
3277 	default:
3278 		dev_err(hba->dev,
3279 			"%s: Expected query flag opcode but got = %d\n",
3280 			__func__, opcode);
3281 		err = -EINVAL;
3282 		goto out_unlock;
3283 	}
3284 
3285 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3286 
3287 	if (err) {
3288 		dev_err(hba->dev,
3289 			"%s: Sending flag query for idn %d failed, err = %d\n",
3290 			__func__, idn, err);
3291 		goto out_unlock;
3292 	}
3293 
3294 	if (flag_res)
3295 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3296 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3297 
3298 out_unlock:
3299 	mutex_unlock(&hba->dev_cmd.lock);
3300 	ufshcd_release(hba);
3301 	return err;
3302 }
3303 
3304 /**
3305  * ufshcd_query_attr - API function for sending attribute requests
3306  * @hba: per-adapter instance
3307  * @opcode: attribute opcode
3308  * @idn: attribute idn to access
3309  * @index: index field
3310  * @selector: selector field
3311  * @attr_val: the attribute value after the query request completes
3312  *
3313  * Returns 0 for success, non-zero in case of failure
3314 */
3315 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3316 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3317 {
3318 	struct ufs_query_req *request = NULL;
3319 	struct ufs_query_res *response = NULL;
3320 	int err;
3321 
3322 	BUG_ON(!hba);
3323 
3324 	if (!attr_val) {
3325 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3326 				__func__, opcode);
3327 		return -EINVAL;
3328 	}
3329 
3330 	ufshcd_hold(hba, false);
3331 
3332 	mutex_lock(&hba->dev_cmd.lock);
3333 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3334 			selector);
3335 
3336 	switch (opcode) {
3337 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3338 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3339 		request->upiu_req.value = cpu_to_be32(*attr_val);
3340 		break;
3341 	case UPIU_QUERY_OPCODE_READ_ATTR:
3342 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3343 		break;
3344 	default:
3345 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3346 				__func__, opcode);
3347 		err = -EINVAL;
3348 		goto out_unlock;
3349 	}
3350 
3351 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3352 
3353 	if (err) {
3354 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3355 				__func__, opcode, idn, index, err);
3356 		goto out_unlock;
3357 	}
3358 
3359 	*attr_val = be32_to_cpu(response->upiu_res.value);
3360 
3361 out_unlock:
3362 	mutex_unlock(&hba->dev_cmd.lock);
3363 	ufshcd_release(hba);
3364 	return err;
3365 }
3366 
3367 /**
3368  * ufshcd_query_attr_retry() - API function for sending query
3369  * attribute with retries
3370  * @hba: per-adapter instance
3371  * @opcode: attribute opcode
3372  * @idn: attribute idn to access
3373  * @index: index field
3374  * @selector: selector field
3375  * @attr_val: the attribute value after the query request
3376  * completes
3377  *
3378  * Returns 0 for success, non-zero in case of failure
3379 */
3380 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3381 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3382 	u32 *attr_val)
3383 {
3384 	int ret = 0;
3385 	u32 retries;
3386 
3387 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3388 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3389 						selector, attr_val);
3390 		if (ret)
3391 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3392 				__func__, ret, retries);
3393 		else
3394 			break;
3395 	}
3396 
3397 	if (ret)
3398 		dev_err(hba->dev,
3399 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3400 			__func__, idn, ret, QUERY_REQ_RETRIES);
3401 	return ret;
3402 }
3403 
3404 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3405 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3406 			u8 selector, u8 *desc_buf, int *buf_len)
3407 {
3408 	struct ufs_query_req *request = NULL;
3409 	struct ufs_query_res *response = NULL;
3410 	int err;
3411 
3412 	BUG_ON(!hba);
3413 
3414 	if (!desc_buf) {
3415 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3416 				__func__, opcode);
3417 		return -EINVAL;
3418 	}
3419 
3420 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3421 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3422 				__func__, *buf_len);
3423 		return -EINVAL;
3424 	}
3425 
3426 	ufshcd_hold(hba, false);
3427 
3428 	mutex_lock(&hba->dev_cmd.lock);
3429 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3430 			selector);
3431 	hba->dev_cmd.query.descriptor = desc_buf;
3432 	request->upiu_req.length = cpu_to_be16(*buf_len);
3433 
3434 	switch (opcode) {
3435 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3436 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3437 		break;
3438 	case UPIU_QUERY_OPCODE_READ_DESC:
3439 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3440 		break;
3441 	default:
3442 		dev_err(hba->dev,
3443 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3444 				__func__, opcode);
3445 		err = -EINVAL;
3446 		goto out_unlock;
3447 	}
3448 
3449 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3450 
3451 	if (err) {
3452 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3453 				__func__, opcode, idn, index, err);
3454 		goto out_unlock;
3455 	}
3456 
3457 	*buf_len = be16_to_cpu(response->upiu_res.length);
3458 
3459 out_unlock:
3460 	hba->dev_cmd.query.descriptor = NULL;
3461 	mutex_unlock(&hba->dev_cmd.lock);
3462 	ufshcd_release(hba);
3463 	return err;
3464 }
3465 
3466 /**
3467  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3468  * @hba: per-adapter instance
3469  * @opcode: attribute opcode
3470  * @idn: attribute idn to access
3471  * @index: index field
3472  * @selector: selector field
3473  * @desc_buf: the buffer that contains the descriptor
3474  * @buf_len: length parameter passed to the device
3475  *
3476  * Returns 0 for success, non-zero in case of failure.
3477  * The buf_len parameter will contain, on return, the length parameter
3478  * received on the response.
3479  */
3480 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3481 				  enum query_opcode opcode,
3482 				  enum desc_idn idn, u8 index,
3483 				  u8 selector,
3484 				  u8 *desc_buf, int *buf_len)
3485 {
3486 	int err;
3487 	int retries;
3488 
3489 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3490 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3491 						selector, desc_buf, buf_len);
3492 		if (!err || err == -EINVAL)
3493 			break;
3494 	}
3495 
3496 	return err;
3497 }
3498 
3499 /**
3500  * ufshcd_read_desc_param - read the specified descriptor parameter
3501  * @hba: Pointer to adapter instance
3502  * @desc_id: descriptor idn value
3503  * @desc_index: descriptor index
3504  * @param_offset: offset of the parameter to read
3505  * @param_read_buf: pointer to buffer where parameter would be read
3506  * @param_size: sizeof(param_read_buf)
3507  *
3508  * Return 0 in case of success, non-zero otherwise
3509  */
3510 int ufshcd_read_desc_param(struct ufs_hba *hba,
3511 			   enum desc_idn desc_id,
3512 			   int desc_index,
3513 			   u8 param_offset,
3514 			   u8 *param_read_buf,
3515 			   u8 param_size)
3516 {
3517 	int ret;
3518 	u8 *desc_buf;
3519 	int buff_len = QUERY_DESC_MAX_SIZE;
3520 	bool is_kmalloc = true;
3521 
3522 	/* Safety check */
3523 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3524 		return -EINVAL;
3525 
3526 	/* Check whether we need temp memory */
3527 	if (param_offset != 0 || param_size < buff_len) {
3528 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3529 		if (!desc_buf)
3530 			return -ENOMEM;
3531 	} else {
3532 		desc_buf = param_read_buf;
3533 		is_kmalloc = false;
3534 	}
3535 
3536 	/* Request for full descriptor */
3537 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3538 					    desc_id, desc_index, 0,
3539 					    desc_buf, &buff_len);
3540 	if (ret) {
3541 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3542 			__func__, desc_id, desc_index, param_offset, ret);
3543 		goto out;
3544 	}
3545 
3546 	/* Update descriptor length */
3547 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3548 
3549 	if (param_offset >= buff_len) {
3550 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3551 			__func__, param_offset, desc_id, buff_len);
3552 		ret = -EINVAL;
3553 		goto out;
3554 	}
3555 
3556 	/* Sanity check */
3557 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3558 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3559 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3560 		ret = -EINVAL;
3561 		goto out;
3562 	}
3563 
3564 	if (is_kmalloc) {
3565 		/* Make sure we don't copy more data than available */
3566 		if (param_offset >= buff_len)
3567 			ret = -EINVAL;
3568 		else
3569 			memcpy(param_read_buf, &desc_buf[param_offset],
3570 			       min_t(u32, param_size, buff_len - param_offset));
3571 	}
3572 out:
3573 	if (is_kmalloc)
3574 		kfree(desc_buf);
3575 	return ret;
3576 }
3577 
3578 /**
3579  * struct uc_string_id - unicode string
3580  *
3581  * @len: size of this descriptor inclusive
3582  * @type: descriptor type
3583  * @uc: unicode string character
3584  */
3585 struct uc_string_id {
3586 	u8 len;
3587 	u8 type;
3588 	wchar_t uc[];
3589 } __packed;
3590 
3591 /* replace non-printable or non-ASCII characters with spaces */
3592 static inline char ufshcd_remove_non_printable(u8 ch)
3593 {
3594 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3595 }
3596 
3597 /**
3598  * ufshcd_read_string_desc - read string descriptor
3599  * @hba: pointer to adapter instance
3600  * @desc_index: descriptor index
3601  * @buf: pointer to buffer where descriptor would be read,
3602  *       the caller should free the memory.
3603  * @ascii: if true convert from unicode to ascii characters
3604  *         null terminated string.
3605  *
3606  * Return:
3607  * *      string size on success.
3608  * *      -ENOMEM: on allocation failure
3609  * *      -EINVAL: on a wrong parameter
3610  */
3611 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3612 			    u8 **buf, bool ascii)
3613 {
3614 	struct uc_string_id *uc_str;
3615 	u8 *str;
3616 	int ret;
3617 
3618 	if (!buf)
3619 		return -EINVAL;
3620 
3621 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3622 	if (!uc_str)
3623 		return -ENOMEM;
3624 
3625 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3626 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3627 	if (ret < 0) {
3628 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3629 			QUERY_REQ_RETRIES, ret);
3630 		str = NULL;
3631 		goto out;
3632 	}
3633 
3634 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3635 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3636 		str = NULL;
3637 		ret = 0;
3638 		goto out;
3639 	}
3640 
3641 	if (ascii) {
3642 		ssize_t ascii_len;
3643 		int i;
3644 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3645 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3646 		str = kzalloc(ascii_len, GFP_KERNEL);
3647 		if (!str) {
3648 			ret = -ENOMEM;
3649 			goto out;
3650 		}
3651 
3652 		/*
3653 		 * the descriptor contains string in UTF16 format
3654 		 * we need to convert to utf-8 so it can be displayed
3655 		 */
3656 		ret = utf16s_to_utf8s(uc_str->uc,
3657 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3658 				      UTF16_BIG_ENDIAN, str, ascii_len);
3659 
3660 		/* replace non-printable or non-ASCII characters with spaces */
3661 		for (i = 0; i < ret; i++)
3662 			str[i] = ufshcd_remove_non_printable(str[i]);
3663 
3664 		str[ret++] = '\0';
3665 
3666 	} else {
3667 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3668 		if (!str) {
3669 			ret = -ENOMEM;
3670 			goto out;
3671 		}
3672 		ret = uc_str->len;
3673 	}
3674 out:
3675 	*buf = str;
3676 	kfree(uc_str);
3677 	return ret;
3678 }
3679 
3680 /**
3681  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3682  * @hba: Pointer to adapter instance
3683  * @lun: lun id
3684  * @param_offset: offset of the parameter to read
3685  * @param_read_buf: pointer to buffer where parameter would be read
3686  * @param_size: sizeof(param_read_buf)
3687  *
3688  * Return 0 in case of success, non-zero otherwise
3689  */
3690 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3691 					      int lun,
3692 					      enum unit_desc_param param_offset,
3693 					      u8 *param_read_buf,
3694 					      u32 param_size)
3695 {
3696 	/*
3697 	 * Unit descriptors are only available for general purpose LUs (LUN id
3698 	 * from 0 to 7) and RPMB Well known LU.
3699 	 */
3700 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3701 		return -EOPNOTSUPP;
3702 
3703 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3704 				      param_offset, param_read_buf, param_size);
3705 }
3706 
3707 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3708 {
3709 	int err = 0;
3710 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3711 
3712 	if (hba->dev_info.wspecversion >= 0x300) {
3713 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3714 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3715 				&gating_wait);
3716 		if (err)
3717 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3718 					 err, gating_wait);
3719 
3720 		if (gating_wait == 0) {
3721 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3722 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3723 					 gating_wait);
3724 		}
3725 
3726 		hba->dev_info.clk_gating_wait_us = gating_wait;
3727 	}
3728 
3729 	return err;
3730 }
3731 
3732 /**
3733  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3734  * @hba: per adapter instance
3735  *
3736  * 1. Allocate DMA memory for Command Descriptor array
3737  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3738  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3739  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3740  *	(UTMRDL)
3741  * 4. Allocate memory for local reference block(lrb).
3742  *
3743  * Returns 0 for success, non-zero in case of failure
3744  */
3745 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3746 {
3747 	size_t utmrdl_size, utrdl_size, ucdl_size;
3748 
3749 	/* Allocate memory for UTP command descriptors */
3750 	ucdl_size = sizeof_utp_transfer_cmd_desc(hba) * hba->nutrs;
3751 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3752 						  ucdl_size,
3753 						  &hba->ucdl_dma_addr,
3754 						  GFP_KERNEL);
3755 
3756 	/*
3757 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3758 	 */
3759 	if (!hba->ucdl_base_addr ||
3760 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3761 		dev_err(hba->dev,
3762 			"Command Descriptor Memory allocation failed\n");
3763 		goto out;
3764 	}
3765 
3766 	/*
3767 	 * Allocate memory for UTP Transfer descriptors
3768 	 * UFSHCI requires 1024 byte alignment of UTRD
3769 	 */
3770 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3771 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3772 						   utrdl_size,
3773 						   &hba->utrdl_dma_addr,
3774 						   GFP_KERNEL);
3775 	if (!hba->utrdl_base_addr ||
3776 	    WARN_ON(hba->utrdl_dma_addr & (1024 - 1))) {
3777 		dev_err(hba->dev,
3778 			"Transfer Descriptor Memory allocation failed\n");
3779 		goto out;
3780 	}
3781 
3782 	/*
3783 	 * Skip utmrdl allocation; it may have been
3784 	 * allocated during first pass and not released during
3785 	 * MCQ memory allocation.
3786 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3787 	 */
3788 	if (hba->utmrdl_base_addr)
3789 		goto skip_utmrdl;
3790 	/*
3791 	 * Allocate memory for UTP Task Management descriptors
3792 	 * UFSHCI requires 1024 byte alignment of UTMRD
3793 	 */
3794 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3795 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3796 						    utmrdl_size,
3797 						    &hba->utmrdl_dma_addr,
3798 						    GFP_KERNEL);
3799 	if (!hba->utmrdl_base_addr ||
3800 	    WARN_ON(hba->utmrdl_dma_addr & (1024 - 1))) {
3801 		dev_err(hba->dev,
3802 		"Task Management Descriptor Memory allocation failed\n");
3803 		goto out;
3804 	}
3805 
3806 skip_utmrdl:
3807 	/* Allocate memory for local reference block */
3808 	hba->lrb = devm_kcalloc(hba->dev,
3809 				hba->nutrs, sizeof(struct ufshcd_lrb),
3810 				GFP_KERNEL);
3811 	if (!hba->lrb) {
3812 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3813 		goto out;
3814 	}
3815 	return 0;
3816 out:
3817 	return -ENOMEM;
3818 }
3819 
3820 /**
3821  * ufshcd_host_memory_configure - configure local reference block with
3822  *				memory offsets
3823  * @hba: per adapter instance
3824  *
3825  * Configure Host memory space
3826  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3827  * address.
3828  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3829  * and PRDT offset.
3830  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3831  * into local reference block.
3832  */
3833 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3834 {
3835 	struct utp_transfer_req_desc *utrdlp;
3836 	dma_addr_t cmd_desc_dma_addr;
3837 	dma_addr_t cmd_desc_element_addr;
3838 	u16 response_offset;
3839 	u16 prdt_offset;
3840 	int cmd_desc_size;
3841 	int i;
3842 
3843 	utrdlp = hba->utrdl_base_addr;
3844 
3845 	response_offset =
3846 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3847 	prdt_offset =
3848 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3849 
3850 	cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3851 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3852 
3853 	for (i = 0; i < hba->nutrs; i++) {
3854 		/* Configure UTRD with command descriptor base address */
3855 		cmd_desc_element_addr =
3856 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3857 		utrdlp[i].command_desc_base_addr_lo =
3858 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3859 		utrdlp[i].command_desc_base_addr_hi =
3860 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3861 
3862 		/* Response upiu and prdt offset should be in double words */
3863 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3864 			utrdlp[i].response_upiu_offset =
3865 				cpu_to_le16(response_offset);
3866 			utrdlp[i].prd_table_offset =
3867 				cpu_to_le16(prdt_offset);
3868 			utrdlp[i].response_upiu_length =
3869 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3870 		} else {
3871 			utrdlp[i].response_upiu_offset =
3872 				cpu_to_le16(response_offset >> 2);
3873 			utrdlp[i].prd_table_offset =
3874 				cpu_to_le16(prdt_offset >> 2);
3875 			utrdlp[i].response_upiu_length =
3876 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3877 		}
3878 
3879 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3880 	}
3881 }
3882 
3883 /**
3884  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3885  * @hba: per adapter instance
3886  *
3887  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3888  * in order to initialize the Unipro link startup procedure.
3889  * Once the Unipro links are up, the device connected to the controller
3890  * is detected.
3891  *
3892  * Returns 0 on success, non-zero value on failure
3893  */
3894 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3895 {
3896 	struct uic_command uic_cmd = {0};
3897 	int ret;
3898 
3899 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3900 
3901 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3902 	if (ret)
3903 		dev_dbg(hba->dev,
3904 			"dme-link-startup: error code %d\n", ret);
3905 	return ret;
3906 }
3907 /**
3908  * ufshcd_dme_reset - UIC command for DME_RESET
3909  * @hba: per adapter instance
3910  *
3911  * DME_RESET command is issued in order to reset UniPro stack.
3912  * This function now deals with cold reset.
3913  *
3914  * Returns 0 on success, non-zero value on failure
3915  */
3916 static int ufshcd_dme_reset(struct ufs_hba *hba)
3917 {
3918 	struct uic_command uic_cmd = {0};
3919 	int ret;
3920 
3921 	uic_cmd.command = UIC_CMD_DME_RESET;
3922 
3923 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3924 	if (ret)
3925 		dev_err(hba->dev,
3926 			"dme-reset: error code %d\n", ret);
3927 
3928 	return ret;
3929 }
3930 
3931 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3932 			       int agreed_gear,
3933 			       int adapt_val)
3934 {
3935 	int ret;
3936 
3937 	if (agreed_gear < UFS_HS_G4)
3938 		adapt_val = PA_NO_ADAPT;
3939 
3940 	ret = ufshcd_dme_set(hba,
3941 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3942 			     adapt_val);
3943 	return ret;
3944 }
3945 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3946 
3947 /**
3948  * ufshcd_dme_enable - UIC command for DME_ENABLE
3949  * @hba: per adapter instance
3950  *
3951  * DME_ENABLE command is issued in order to enable UniPro stack.
3952  *
3953  * Returns 0 on success, non-zero value on failure
3954  */
3955 static int ufshcd_dme_enable(struct ufs_hba *hba)
3956 {
3957 	struct uic_command uic_cmd = {0};
3958 	int ret;
3959 
3960 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3961 
3962 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3963 	if (ret)
3964 		dev_err(hba->dev,
3965 			"dme-enable: error code %d\n", ret);
3966 
3967 	return ret;
3968 }
3969 
3970 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3971 {
3972 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3973 	unsigned long min_sleep_time_us;
3974 
3975 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3976 		return;
3977 
3978 	/*
3979 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3980 	 * this function
3981 	 */
3982 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3983 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3984 	} else {
3985 		unsigned long delta =
3986 			(unsigned long) ktime_to_us(
3987 				ktime_sub(ktime_get(),
3988 				hba->last_dme_cmd_tstamp));
3989 
3990 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3991 			min_sleep_time_us =
3992 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3993 		else
3994 			return; /* no more delay required */
3995 	}
3996 
3997 	/* allow sleep for extra 50us if needed */
3998 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3999 }
4000 
4001 /**
4002  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4003  * @hba: per adapter instance
4004  * @attr_sel: uic command argument1
4005  * @attr_set: attribute set type as uic command argument2
4006  * @mib_val: setting value as uic command argument3
4007  * @peer: indicate whether peer or local
4008  *
4009  * Returns 0 on success, non-zero value on failure
4010  */
4011 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4012 			u8 attr_set, u32 mib_val, u8 peer)
4013 {
4014 	struct uic_command uic_cmd = {0};
4015 	static const char *const action[] = {
4016 		"dme-set",
4017 		"dme-peer-set"
4018 	};
4019 	const char *set = action[!!peer];
4020 	int ret;
4021 	int retries = UFS_UIC_COMMAND_RETRIES;
4022 
4023 	uic_cmd.command = peer ?
4024 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4025 	uic_cmd.argument1 = attr_sel;
4026 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4027 	uic_cmd.argument3 = mib_val;
4028 
4029 	do {
4030 		/* for peer attributes we retry upon failure */
4031 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4032 		if (ret)
4033 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4034 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4035 	} while (ret && peer && --retries);
4036 
4037 	if (ret)
4038 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4039 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4040 			UFS_UIC_COMMAND_RETRIES - retries);
4041 
4042 	return ret;
4043 }
4044 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4045 
4046 /**
4047  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4048  * @hba: per adapter instance
4049  * @attr_sel: uic command argument1
4050  * @mib_val: the value of the attribute as returned by the UIC command
4051  * @peer: indicate whether peer or local
4052  *
4053  * Returns 0 on success, non-zero value on failure
4054  */
4055 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4056 			u32 *mib_val, u8 peer)
4057 {
4058 	struct uic_command uic_cmd = {0};
4059 	static const char *const action[] = {
4060 		"dme-get",
4061 		"dme-peer-get"
4062 	};
4063 	const char *get = action[!!peer];
4064 	int ret;
4065 	int retries = UFS_UIC_COMMAND_RETRIES;
4066 	struct ufs_pa_layer_attr orig_pwr_info;
4067 	struct ufs_pa_layer_attr temp_pwr_info;
4068 	bool pwr_mode_change = false;
4069 
4070 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4071 		orig_pwr_info = hba->pwr_info;
4072 		temp_pwr_info = orig_pwr_info;
4073 
4074 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4075 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4076 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4077 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4078 			pwr_mode_change = true;
4079 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4080 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4081 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4082 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4083 			pwr_mode_change = true;
4084 		}
4085 		if (pwr_mode_change) {
4086 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4087 			if (ret)
4088 				goto out;
4089 		}
4090 	}
4091 
4092 	uic_cmd.command = peer ?
4093 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4094 	uic_cmd.argument1 = attr_sel;
4095 
4096 	do {
4097 		/* for peer attributes we retry upon failure */
4098 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4099 		if (ret)
4100 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4101 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4102 	} while (ret && peer && --retries);
4103 
4104 	if (ret)
4105 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4106 			get, UIC_GET_ATTR_ID(attr_sel),
4107 			UFS_UIC_COMMAND_RETRIES - retries);
4108 
4109 	if (mib_val && !ret)
4110 		*mib_val = uic_cmd.argument3;
4111 
4112 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4113 	    && pwr_mode_change)
4114 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4115 out:
4116 	return ret;
4117 }
4118 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4119 
4120 /**
4121  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4122  * state) and waits for it to take effect.
4123  *
4124  * @hba: per adapter instance
4125  * @cmd: UIC command to execute
4126  *
4127  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4128  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4129  * and device UniPro link and hence it's final completion would be indicated by
4130  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4131  * addition to normal UIC command completion Status (UCCS). This function only
4132  * returns after the relevant status bits indicate the completion.
4133  *
4134  * Returns 0 on success, non-zero value on failure
4135  */
4136 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4137 {
4138 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4139 	unsigned long flags;
4140 	u8 status;
4141 	int ret;
4142 	bool reenable_intr = false;
4143 
4144 	mutex_lock(&hba->uic_cmd_mutex);
4145 	ufshcd_add_delay_before_dme_cmd(hba);
4146 
4147 	spin_lock_irqsave(hba->host->host_lock, flags);
4148 	if (ufshcd_is_link_broken(hba)) {
4149 		ret = -ENOLINK;
4150 		goto out_unlock;
4151 	}
4152 	hba->uic_async_done = &uic_async_done;
4153 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4154 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4155 		/*
4156 		 * Make sure UIC command completion interrupt is disabled before
4157 		 * issuing UIC command.
4158 		 */
4159 		wmb();
4160 		reenable_intr = true;
4161 	}
4162 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4163 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4164 	if (ret) {
4165 		dev_err(hba->dev,
4166 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4167 			cmd->command, cmd->argument3, ret);
4168 		goto out;
4169 	}
4170 
4171 	if (!wait_for_completion_timeout(hba->uic_async_done,
4172 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4173 		dev_err(hba->dev,
4174 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4175 			cmd->command, cmd->argument3);
4176 
4177 		if (!cmd->cmd_active) {
4178 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4179 				__func__);
4180 			goto check_upmcrs;
4181 		}
4182 
4183 		ret = -ETIMEDOUT;
4184 		goto out;
4185 	}
4186 
4187 check_upmcrs:
4188 	status = ufshcd_get_upmcrs(hba);
4189 	if (status != PWR_LOCAL) {
4190 		dev_err(hba->dev,
4191 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4192 			cmd->command, status);
4193 		ret = (status != PWR_OK) ? status : -1;
4194 	}
4195 out:
4196 	if (ret) {
4197 		ufshcd_print_host_state(hba);
4198 		ufshcd_print_pwr_info(hba);
4199 		ufshcd_print_evt_hist(hba);
4200 	}
4201 
4202 	spin_lock_irqsave(hba->host->host_lock, flags);
4203 	hba->active_uic_cmd = NULL;
4204 	hba->uic_async_done = NULL;
4205 	if (reenable_intr)
4206 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4207 	if (ret) {
4208 		ufshcd_set_link_broken(hba);
4209 		ufshcd_schedule_eh_work(hba);
4210 	}
4211 out_unlock:
4212 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4213 	mutex_unlock(&hba->uic_cmd_mutex);
4214 
4215 	return ret;
4216 }
4217 
4218 /**
4219  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4220  *				using DME_SET primitives.
4221  * @hba: per adapter instance
4222  * @mode: powr mode value
4223  *
4224  * Returns 0 on success, non-zero value on failure
4225  */
4226 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4227 {
4228 	struct uic_command uic_cmd = {0};
4229 	int ret;
4230 
4231 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4232 		ret = ufshcd_dme_set(hba,
4233 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4234 		if (ret) {
4235 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4236 						__func__, ret);
4237 			goto out;
4238 		}
4239 	}
4240 
4241 	uic_cmd.command = UIC_CMD_DME_SET;
4242 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4243 	uic_cmd.argument3 = mode;
4244 	ufshcd_hold(hba, false);
4245 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4246 	ufshcd_release(hba);
4247 
4248 out:
4249 	return ret;
4250 }
4251 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4252 
4253 int ufshcd_link_recovery(struct ufs_hba *hba)
4254 {
4255 	int ret;
4256 	unsigned long flags;
4257 
4258 	spin_lock_irqsave(hba->host->host_lock, flags);
4259 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4260 	ufshcd_set_eh_in_progress(hba);
4261 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4262 
4263 	/* Reset the attached device */
4264 	ufshcd_device_reset(hba);
4265 
4266 	ret = ufshcd_host_reset_and_restore(hba);
4267 
4268 	spin_lock_irqsave(hba->host->host_lock, flags);
4269 	if (ret)
4270 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4271 	ufshcd_clear_eh_in_progress(hba);
4272 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4273 
4274 	if (ret)
4275 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4276 			__func__, ret);
4277 
4278 	return ret;
4279 }
4280 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4281 
4282 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4283 {
4284 	int ret;
4285 	struct uic_command uic_cmd = {0};
4286 	ktime_t start = ktime_get();
4287 
4288 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4289 
4290 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4291 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4292 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4293 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4294 
4295 	if (ret)
4296 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4297 			__func__, ret);
4298 	else
4299 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4300 								POST_CHANGE);
4301 
4302 	return ret;
4303 }
4304 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4305 
4306 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4307 {
4308 	struct uic_command uic_cmd = {0};
4309 	int ret;
4310 	ktime_t start = ktime_get();
4311 
4312 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4313 
4314 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4315 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4316 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4317 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4318 
4319 	if (ret) {
4320 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4321 			__func__, ret);
4322 	} else {
4323 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4324 								POST_CHANGE);
4325 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4326 		hba->ufs_stats.hibern8_exit_cnt++;
4327 	}
4328 
4329 	return ret;
4330 }
4331 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4332 
4333 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4334 {
4335 	unsigned long flags;
4336 	bool update = false;
4337 
4338 	if (!ufshcd_is_auto_hibern8_supported(hba))
4339 		return;
4340 
4341 	spin_lock_irqsave(hba->host->host_lock, flags);
4342 	if (hba->ahit != ahit) {
4343 		hba->ahit = ahit;
4344 		update = true;
4345 	}
4346 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4347 
4348 	if (update &&
4349 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4350 		ufshcd_rpm_get_sync(hba);
4351 		ufshcd_hold(hba, false);
4352 		ufshcd_auto_hibern8_enable(hba);
4353 		ufshcd_release(hba);
4354 		ufshcd_rpm_put_sync(hba);
4355 	}
4356 }
4357 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4358 
4359 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4360 {
4361 	if (!ufshcd_is_auto_hibern8_supported(hba))
4362 		return;
4363 
4364 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4365 }
4366 
4367  /**
4368  * ufshcd_init_pwr_info - setting the POR (power on reset)
4369  * values in hba power info
4370  * @hba: per-adapter instance
4371  */
4372 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4373 {
4374 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4375 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4376 	hba->pwr_info.lane_rx = 1;
4377 	hba->pwr_info.lane_tx = 1;
4378 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4379 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4380 	hba->pwr_info.hs_rate = 0;
4381 }
4382 
4383 /**
4384  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4385  * @hba: per-adapter instance
4386  */
4387 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4388 {
4389 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4390 
4391 	if (hba->max_pwr_info.is_valid)
4392 		return 0;
4393 
4394 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4395 		pwr_info->pwr_tx = FASTAUTO_MODE;
4396 		pwr_info->pwr_rx = FASTAUTO_MODE;
4397 	} else {
4398 		pwr_info->pwr_tx = FAST_MODE;
4399 		pwr_info->pwr_rx = FAST_MODE;
4400 	}
4401 	pwr_info->hs_rate = PA_HS_MODE_B;
4402 
4403 	/* Get the connected lane count */
4404 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4405 			&pwr_info->lane_rx);
4406 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4407 			&pwr_info->lane_tx);
4408 
4409 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4410 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4411 				__func__,
4412 				pwr_info->lane_rx,
4413 				pwr_info->lane_tx);
4414 		return -EINVAL;
4415 	}
4416 
4417 	/*
4418 	 * First, get the maximum gears of HS speed.
4419 	 * If a zero value, it means there is no HSGEAR capability.
4420 	 * Then, get the maximum gears of PWM speed.
4421 	 */
4422 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4423 	if (!pwr_info->gear_rx) {
4424 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4425 				&pwr_info->gear_rx);
4426 		if (!pwr_info->gear_rx) {
4427 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4428 				__func__, pwr_info->gear_rx);
4429 			return -EINVAL;
4430 		}
4431 		pwr_info->pwr_rx = SLOW_MODE;
4432 	}
4433 
4434 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4435 			&pwr_info->gear_tx);
4436 	if (!pwr_info->gear_tx) {
4437 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4438 				&pwr_info->gear_tx);
4439 		if (!pwr_info->gear_tx) {
4440 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4441 				__func__, pwr_info->gear_tx);
4442 			return -EINVAL;
4443 		}
4444 		pwr_info->pwr_tx = SLOW_MODE;
4445 	}
4446 
4447 	hba->max_pwr_info.is_valid = true;
4448 	return 0;
4449 }
4450 
4451 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4452 			     struct ufs_pa_layer_attr *pwr_mode)
4453 {
4454 	int ret;
4455 
4456 	/* if already configured to the requested pwr_mode */
4457 	if (!hba->force_pmc &&
4458 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4459 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4460 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4461 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4462 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4463 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4464 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4465 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4466 		return 0;
4467 	}
4468 
4469 	/*
4470 	 * Configure attributes for power mode change with below.
4471 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4472 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4473 	 * - PA_HSSERIES
4474 	 */
4475 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4476 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4477 			pwr_mode->lane_rx);
4478 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4479 			pwr_mode->pwr_rx == FAST_MODE)
4480 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4481 	else
4482 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4483 
4484 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4485 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4486 			pwr_mode->lane_tx);
4487 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4488 			pwr_mode->pwr_tx == FAST_MODE)
4489 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4490 	else
4491 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4492 
4493 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4494 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4495 	    pwr_mode->pwr_rx == FAST_MODE ||
4496 	    pwr_mode->pwr_tx == FAST_MODE)
4497 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4498 						pwr_mode->hs_rate);
4499 
4500 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4501 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4502 				DL_FC0ProtectionTimeOutVal_Default);
4503 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4504 				DL_TC0ReplayTimeOutVal_Default);
4505 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4506 				DL_AFC0ReqTimeOutVal_Default);
4507 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4508 				DL_FC1ProtectionTimeOutVal_Default);
4509 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4510 				DL_TC1ReplayTimeOutVal_Default);
4511 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4512 				DL_AFC1ReqTimeOutVal_Default);
4513 
4514 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4515 				DL_FC0ProtectionTimeOutVal_Default);
4516 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4517 				DL_TC0ReplayTimeOutVal_Default);
4518 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4519 				DL_AFC0ReqTimeOutVal_Default);
4520 	}
4521 
4522 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4523 			| pwr_mode->pwr_tx);
4524 
4525 	if (ret) {
4526 		dev_err(hba->dev,
4527 			"%s: power mode change failed %d\n", __func__, ret);
4528 	} else {
4529 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4530 								pwr_mode);
4531 
4532 		memcpy(&hba->pwr_info, pwr_mode,
4533 			sizeof(struct ufs_pa_layer_attr));
4534 	}
4535 
4536 	return ret;
4537 }
4538 
4539 /**
4540  * ufshcd_config_pwr_mode - configure a new power mode
4541  * @hba: per-adapter instance
4542  * @desired_pwr_mode: desired power configuration
4543  */
4544 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4545 		struct ufs_pa_layer_attr *desired_pwr_mode)
4546 {
4547 	struct ufs_pa_layer_attr final_params = { 0 };
4548 	int ret;
4549 
4550 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4551 					desired_pwr_mode, &final_params);
4552 
4553 	if (ret)
4554 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4555 
4556 	ret = ufshcd_change_power_mode(hba, &final_params);
4557 
4558 	return ret;
4559 }
4560 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4561 
4562 /**
4563  * ufshcd_complete_dev_init() - checks device readiness
4564  * @hba: per-adapter instance
4565  *
4566  * Set fDeviceInit flag and poll until device toggles it.
4567  */
4568 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4569 {
4570 	int err;
4571 	bool flag_res = true;
4572 	ktime_t timeout;
4573 
4574 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4575 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4576 	if (err) {
4577 		dev_err(hba->dev,
4578 			"%s: setting fDeviceInit flag failed with error %d\n",
4579 			__func__, err);
4580 		goto out;
4581 	}
4582 
4583 	/* Poll fDeviceInit flag to be cleared */
4584 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4585 	do {
4586 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4587 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4588 		if (!flag_res)
4589 			break;
4590 		usleep_range(500, 1000);
4591 	} while (ktime_before(ktime_get(), timeout));
4592 
4593 	if (err) {
4594 		dev_err(hba->dev,
4595 				"%s: reading fDeviceInit flag failed with error %d\n",
4596 				__func__, err);
4597 	} else if (flag_res) {
4598 		dev_err(hba->dev,
4599 				"%s: fDeviceInit was not cleared by the device\n",
4600 				__func__);
4601 		err = -EBUSY;
4602 	}
4603 out:
4604 	return err;
4605 }
4606 
4607 /**
4608  * ufshcd_make_hba_operational - Make UFS controller operational
4609  * @hba: per adapter instance
4610  *
4611  * To bring UFS host controller to operational state,
4612  * 1. Enable required interrupts
4613  * 2. Configure interrupt aggregation
4614  * 3. Program UTRL and UTMRL base address
4615  * 4. Configure run-stop-registers
4616  *
4617  * Returns 0 on success, non-zero value on failure
4618  */
4619 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4620 {
4621 	int err = 0;
4622 	u32 reg;
4623 
4624 	/* Enable required interrupts */
4625 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4626 
4627 	/* Configure interrupt aggregation */
4628 	if (ufshcd_is_intr_aggr_allowed(hba))
4629 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4630 	else
4631 		ufshcd_disable_intr_aggr(hba);
4632 
4633 	/* Configure UTRL and UTMRL base address registers */
4634 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4635 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4636 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4637 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4638 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4639 			REG_UTP_TASK_REQ_LIST_BASE_L);
4640 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4641 			REG_UTP_TASK_REQ_LIST_BASE_H);
4642 
4643 	/*
4644 	 * Make sure base address and interrupt setup are updated before
4645 	 * enabling the run/stop registers below.
4646 	 */
4647 	wmb();
4648 
4649 	/*
4650 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4651 	 */
4652 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4653 	if (!(ufshcd_get_lists_status(reg))) {
4654 		ufshcd_enable_run_stop_reg(hba);
4655 	} else {
4656 		dev_err(hba->dev,
4657 			"Host controller not ready to process requests");
4658 		err = -EIO;
4659 	}
4660 
4661 	return err;
4662 }
4663 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4664 
4665 /**
4666  * ufshcd_hba_stop - Send controller to reset state
4667  * @hba: per adapter instance
4668  */
4669 void ufshcd_hba_stop(struct ufs_hba *hba)
4670 {
4671 	unsigned long flags;
4672 	int err;
4673 
4674 	/*
4675 	 * Obtain the host lock to prevent that the controller is disabled
4676 	 * while the UFS interrupt handler is active on another CPU.
4677 	 */
4678 	spin_lock_irqsave(hba->host->host_lock, flags);
4679 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4680 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4681 
4682 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4683 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4684 					10, 1);
4685 	if (err)
4686 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4687 }
4688 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4689 
4690 /**
4691  * ufshcd_hba_execute_hce - initialize the controller
4692  * @hba: per adapter instance
4693  *
4694  * The controller resets itself and controller firmware initialization
4695  * sequence kicks off. When controller is ready it will set
4696  * the Host Controller Enable bit to 1.
4697  *
4698  * Returns 0 on success, non-zero value on failure
4699  */
4700 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4701 {
4702 	int retry_outer = 3;
4703 	int retry_inner;
4704 
4705 start:
4706 	if (ufshcd_is_hba_active(hba))
4707 		/* change controller state to "reset state" */
4708 		ufshcd_hba_stop(hba);
4709 
4710 	/* UniPro link is disabled at this point */
4711 	ufshcd_set_link_off(hba);
4712 
4713 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4714 
4715 	/* start controller initialization sequence */
4716 	ufshcd_hba_start(hba);
4717 
4718 	/*
4719 	 * To initialize a UFS host controller HCE bit must be set to 1.
4720 	 * During initialization the HCE bit value changes from 1->0->1.
4721 	 * When the host controller completes initialization sequence
4722 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4723 	 * to check if the controller has completed initialization sequence.
4724 	 * So without this delay the value HCE = 1, set in the previous
4725 	 * instruction might be read back.
4726 	 * This delay can be changed based on the controller.
4727 	 */
4728 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4729 
4730 	/* wait for the host controller to complete initialization */
4731 	retry_inner = 50;
4732 	while (!ufshcd_is_hba_active(hba)) {
4733 		if (retry_inner) {
4734 			retry_inner--;
4735 		} else {
4736 			dev_err(hba->dev,
4737 				"Controller enable failed\n");
4738 			if (retry_outer) {
4739 				retry_outer--;
4740 				goto start;
4741 			}
4742 			return -EIO;
4743 		}
4744 		usleep_range(1000, 1100);
4745 	}
4746 
4747 	/* enable UIC related interrupts */
4748 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4749 
4750 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4751 
4752 	return 0;
4753 }
4754 
4755 int ufshcd_hba_enable(struct ufs_hba *hba)
4756 {
4757 	int ret;
4758 
4759 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4760 		ufshcd_set_link_off(hba);
4761 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4762 
4763 		/* enable UIC related interrupts */
4764 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4765 		ret = ufshcd_dme_reset(hba);
4766 		if (ret) {
4767 			dev_err(hba->dev, "DME_RESET failed\n");
4768 			return ret;
4769 		}
4770 
4771 		ret = ufshcd_dme_enable(hba);
4772 		if (ret) {
4773 			dev_err(hba->dev, "Enabling DME failed\n");
4774 			return ret;
4775 		}
4776 
4777 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4778 	} else {
4779 		ret = ufshcd_hba_execute_hce(hba);
4780 	}
4781 
4782 	return ret;
4783 }
4784 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4785 
4786 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4787 {
4788 	int tx_lanes = 0, i, err = 0;
4789 
4790 	if (!peer)
4791 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4792 			       &tx_lanes);
4793 	else
4794 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4795 				    &tx_lanes);
4796 	for (i = 0; i < tx_lanes; i++) {
4797 		if (!peer)
4798 			err = ufshcd_dme_set(hba,
4799 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4800 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4801 					0);
4802 		else
4803 			err = ufshcd_dme_peer_set(hba,
4804 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4805 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4806 					0);
4807 		if (err) {
4808 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4809 				__func__, peer, i, err);
4810 			break;
4811 		}
4812 	}
4813 
4814 	return err;
4815 }
4816 
4817 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4818 {
4819 	return ufshcd_disable_tx_lcc(hba, true);
4820 }
4821 
4822 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4823 {
4824 	struct ufs_event_hist *e;
4825 
4826 	if (id >= UFS_EVT_CNT)
4827 		return;
4828 
4829 	e = &hba->ufs_stats.event[id];
4830 	e->val[e->pos] = val;
4831 	e->tstamp[e->pos] = local_clock();
4832 	e->cnt += 1;
4833 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4834 
4835 	ufshcd_vops_event_notify(hba, id, &val);
4836 }
4837 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4838 
4839 /**
4840  * ufshcd_link_startup - Initialize unipro link startup
4841  * @hba: per adapter instance
4842  *
4843  * Returns 0 for success, non-zero in case of failure
4844  */
4845 static int ufshcd_link_startup(struct ufs_hba *hba)
4846 {
4847 	int ret;
4848 	int retries = DME_LINKSTARTUP_RETRIES;
4849 	bool link_startup_again = false;
4850 
4851 	/*
4852 	 * If UFS device isn't active then we will have to issue link startup
4853 	 * 2 times to make sure the device state move to active.
4854 	 */
4855 	if (!ufshcd_is_ufs_dev_active(hba))
4856 		link_startup_again = true;
4857 
4858 link_startup:
4859 	do {
4860 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4861 
4862 		ret = ufshcd_dme_link_startup(hba);
4863 
4864 		/* check if device is detected by inter-connect layer */
4865 		if (!ret && !ufshcd_is_device_present(hba)) {
4866 			ufshcd_update_evt_hist(hba,
4867 					       UFS_EVT_LINK_STARTUP_FAIL,
4868 					       0);
4869 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4870 			ret = -ENXIO;
4871 			goto out;
4872 		}
4873 
4874 		/*
4875 		 * DME link lost indication is only received when link is up,
4876 		 * but we can't be sure if the link is up until link startup
4877 		 * succeeds. So reset the local Uni-Pro and try again.
4878 		 */
4879 		if (ret && retries && ufshcd_hba_enable(hba)) {
4880 			ufshcd_update_evt_hist(hba,
4881 					       UFS_EVT_LINK_STARTUP_FAIL,
4882 					       (u32)ret);
4883 			goto out;
4884 		}
4885 	} while (ret && retries--);
4886 
4887 	if (ret) {
4888 		/* failed to get the link up... retire */
4889 		ufshcd_update_evt_hist(hba,
4890 				       UFS_EVT_LINK_STARTUP_FAIL,
4891 				       (u32)ret);
4892 		goto out;
4893 	}
4894 
4895 	if (link_startup_again) {
4896 		link_startup_again = false;
4897 		retries = DME_LINKSTARTUP_RETRIES;
4898 		goto link_startup;
4899 	}
4900 
4901 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4902 	ufshcd_init_pwr_info(hba);
4903 	ufshcd_print_pwr_info(hba);
4904 
4905 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4906 		ret = ufshcd_disable_device_tx_lcc(hba);
4907 		if (ret)
4908 			goto out;
4909 	}
4910 
4911 	/* Include any host controller configuration via UIC commands */
4912 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4913 	if (ret)
4914 		goto out;
4915 
4916 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4917 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4918 	ret = ufshcd_make_hba_operational(hba);
4919 out:
4920 	if (ret) {
4921 		dev_err(hba->dev, "link startup failed %d\n", ret);
4922 		ufshcd_print_host_state(hba);
4923 		ufshcd_print_pwr_info(hba);
4924 		ufshcd_print_evt_hist(hba);
4925 	}
4926 	return ret;
4927 }
4928 
4929 /**
4930  * ufshcd_verify_dev_init() - Verify device initialization
4931  * @hba: per-adapter instance
4932  *
4933  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4934  * device Transport Protocol (UTP) layer is ready after a reset.
4935  * If the UTP layer at the device side is not initialized, it may
4936  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4937  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4938  */
4939 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4940 {
4941 	int err = 0;
4942 	int retries;
4943 
4944 	ufshcd_hold(hba, false);
4945 	mutex_lock(&hba->dev_cmd.lock);
4946 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4947 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4948 					  hba->nop_out_timeout);
4949 
4950 		if (!err || err == -ETIMEDOUT)
4951 			break;
4952 
4953 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4954 	}
4955 	mutex_unlock(&hba->dev_cmd.lock);
4956 	ufshcd_release(hba);
4957 
4958 	if (err)
4959 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4960 	return err;
4961 }
4962 
4963 /**
4964  * ufshcd_setup_links - associate link b/w device wlun and other luns
4965  * @sdev: pointer to SCSI device
4966  * @hba: pointer to ufs hba
4967  */
4968 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4969 {
4970 	struct device_link *link;
4971 
4972 	/*
4973 	 * Device wlun is the supplier & rest of the luns are consumers.
4974 	 * This ensures that device wlun suspends after all other luns.
4975 	 */
4976 	if (hba->ufs_device_wlun) {
4977 		link = device_link_add(&sdev->sdev_gendev,
4978 				       &hba->ufs_device_wlun->sdev_gendev,
4979 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4980 		if (!link) {
4981 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4982 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4983 			return;
4984 		}
4985 		hba->luns_avail--;
4986 		/* Ignore REPORT_LUN wlun probing */
4987 		if (hba->luns_avail == 1) {
4988 			ufshcd_rpm_put(hba);
4989 			return;
4990 		}
4991 	} else {
4992 		/*
4993 		 * Device wlun is probed. The assumption is that WLUNs are
4994 		 * scanned before other LUNs.
4995 		 */
4996 		hba->luns_avail--;
4997 	}
4998 }
4999 
5000 /**
5001  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5002  * @hba: per-adapter instance
5003  * @sdev: pointer to SCSI device
5004  */
5005 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5006 {
5007 	int len = QUERY_DESC_MAX_SIZE;
5008 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5009 	u8 lun_qdepth = hba->nutrs;
5010 	u8 *desc_buf;
5011 	int ret;
5012 
5013 	desc_buf = kzalloc(len, GFP_KERNEL);
5014 	if (!desc_buf)
5015 		goto set_qdepth;
5016 
5017 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5018 	if (ret < 0) {
5019 		if (ret == -EOPNOTSUPP)
5020 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5021 			lun_qdepth = 1;
5022 		kfree(desc_buf);
5023 		goto set_qdepth;
5024 	}
5025 
5026 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5027 		/*
5028 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5029 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5030 		 */
5031 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5032 	}
5033 	/*
5034 	 * According to UFS device specification, the write protection mode is only supported by
5035 	 * normal LU, not supported by WLUN.
5036 	 */
5037 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5038 	    !hba->dev_info.is_lu_power_on_wp &&
5039 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5040 		hba->dev_info.is_lu_power_on_wp = true;
5041 
5042 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5043 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5044 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5045 		hba->dev_info.b_advanced_rpmb_en = true;
5046 
5047 
5048 	kfree(desc_buf);
5049 set_qdepth:
5050 	/*
5051 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5052 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5053 	 */
5054 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5055 	scsi_change_queue_depth(sdev, lun_qdepth);
5056 }
5057 
5058 /**
5059  * ufshcd_slave_alloc - handle initial SCSI device configurations
5060  * @sdev: pointer to SCSI device
5061  *
5062  * Returns success
5063  */
5064 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5065 {
5066 	struct ufs_hba *hba;
5067 
5068 	hba = shost_priv(sdev->host);
5069 
5070 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5071 	sdev->use_10_for_ms = 1;
5072 
5073 	/* DBD field should be set to 1 in mode sense(10) */
5074 	sdev->set_dbd_for_ms = 1;
5075 
5076 	/* allow SCSI layer to restart the device in case of errors */
5077 	sdev->allow_restart = 1;
5078 
5079 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5080 	sdev->no_report_opcodes = 1;
5081 
5082 	/* WRITE_SAME command is not supported */
5083 	sdev->no_write_same = 1;
5084 
5085 	ufshcd_lu_init(hba, sdev);
5086 
5087 	ufshcd_setup_links(hba, sdev);
5088 
5089 	return 0;
5090 }
5091 
5092 /**
5093  * ufshcd_change_queue_depth - change queue depth
5094  * @sdev: pointer to SCSI device
5095  * @depth: required depth to set
5096  *
5097  * Change queue depth and make sure the max. limits are not crossed.
5098  */
5099 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5100 {
5101 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5102 }
5103 
5104 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5105 {
5106 	/* skip well-known LU */
5107 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5108 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5109 		return;
5110 
5111 	ufshpb_destroy_lu(hba, sdev);
5112 }
5113 
5114 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5115 {
5116 	/* skip well-known LU */
5117 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5118 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5119 		return;
5120 
5121 	ufshpb_init_hpb_lu(hba, sdev);
5122 }
5123 
5124 /**
5125  * ufshcd_slave_configure - adjust SCSI device configurations
5126  * @sdev: pointer to SCSI device
5127  */
5128 static int ufshcd_slave_configure(struct scsi_device *sdev)
5129 {
5130 	struct ufs_hba *hba = shost_priv(sdev->host);
5131 	struct request_queue *q = sdev->request_queue;
5132 
5133 	ufshcd_hpb_configure(hba, sdev);
5134 
5135 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5136 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5137 		blk_queue_update_dma_alignment(q, 4096 - 1);
5138 	/*
5139 	 * Block runtime-pm until all consumers are added.
5140 	 * Refer ufshcd_setup_links().
5141 	 */
5142 	if (is_device_wlun(sdev))
5143 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5144 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5145 		sdev->rpm_autosuspend = 1;
5146 	/*
5147 	 * Do not print messages during runtime PM to avoid never-ending cycles
5148 	 * of messages written back to storage by user space causing runtime
5149 	 * resume, causing more messages and so on.
5150 	 */
5151 	sdev->silence_suspend = 1;
5152 
5153 	ufshcd_crypto_register(hba, q);
5154 
5155 	return 0;
5156 }
5157 
5158 /**
5159  * ufshcd_slave_destroy - remove SCSI device configurations
5160  * @sdev: pointer to SCSI device
5161  */
5162 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5163 {
5164 	struct ufs_hba *hba;
5165 	unsigned long flags;
5166 
5167 	hba = shost_priv(sdev->host);
5168 
5169 	ufshcd_hpb_destroy(hba, sdev);
5170 
5171 	/* Drop the reference as it won't be needed anymore */
5172 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5173 		spin_lock_irqsave(hba->host->host_lock, flags);
5174 		hba->ufs_device_wlun = NULL;
5175 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5176 	} else if (hba->ufs_device_wlun) {
5177 		struct device *supplier = NULL;
5178 
5179 		/* Ensure UFS Device WLUN exists and does not disappear */
5180 		spin_lock_irqsave(hba->host->host_lock, flags);
5181 		if (hba->ufs_device_wlun) {
5182 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5183 			get_device(supplier);
5184 		}
5185 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5186 
5187 		if (supplier) {
5188 			/*
5189 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5190 			 * device will not have been registered but can still
5191 			 * have a device link holding a reference to the device.
5192 			 */
5193 			device_link_remove(&sdev->sdev_gendev, supplier);
5194 			put_device(supplier);
5195 		}
5196 	}
5197 }
5198 
5199 /**
5200  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5201  * @lrbp: pointer to local reference block of completed command
5202  * @scsi_status: SCSI command status
5203  *
5204  * Returns value base on SCSI command status
5205  */
5206 static inline int
5207 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5208 {
5209 	int result = 0;
5210 
5211 	switch (scsi_status) {
5212 	case SAM_STAT_CHECK_CONDITION:
5213 		ufshcd_copy_sense_data(lrbp);
5214 		fallthrough;
5215 	case SAM_STAT_GOOD:
5216 		result |= DID_OK << 16 | scsi_status;
5217 		break;
5218 	case SAM_STAT_TASK_SET_FULL:
5219 	case SAM_STAT_BUSY:
5220 	case SAM_STAT_TASK_ABORTED:
5221 		ufshcd_copy_sense_data(lrbp);
5222 		result |= scsi_status;
5223 		break;
5224 	default:
5225 		result |= DID_ERROR << 16;
5226 		break;
5227 	} /* end of switch */
5228 
5229 	return result;
5230 }
5231 
5232 /**
5233  * ufshcd_transfer_rsp_status - Get overall status of the response
5234  * @hba: per adapter instance
5235  * @lrbp: pointer to local reference block of completed command
5236  * @cqe: pointer to the completion queue entry
5237  *
5238  * Returns result of the command to notify SCSI midlayer
5239  */
5240 static inline int
5241 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5242 			   struct cq_entry *cqe)
5243 {
5244 	int result = 0;
5245 	int scsi_status;
5246 	enum utp_ocs ocs;
5247 
5248 	scsi_set_resid(lrbp->cmd,
5249 		be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count));
5250 
5251 	/* overall command status of utrd */
5252 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5253 
5254 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5255 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5256 					MASK_RSP_UPIU_RESULT)
5257 			ocs = OCS_SUCCESS;
5258 	}
5259 
5260 	switch (ocs) {
5261 	case OCS_SUCCESS:
5262 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5263 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5264 		switch (result) {
5265 		case UPIU_TRANSACTION_RESPONSE:
5266 			/*
5267 			 * get the response UPIU result to extract
5268 			 * the SCSI command status
5269 			 */
5270 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5271 
5272 			/*
5273 			 * get the result based on SCSI status response
5274 			 * to notify the SCSI midlayer of the command status
5275 			 */
5276 			scsi_status = result & MASK_SCSI_STATUS;
5277 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5278 
5279 			/*
5280 			 * Currently we are only supporting BKOPs exception
5281 			 * events hence we can ignore BKOPs exception event
5282 			 * during power management callbacks. BKOPs exception
5283 			 * event is not expected to be raised in runtime suspend
5284 			 * callback as it allows the urgent bkops.
5285 			 * During system suspend, we are anyway forcefully
5286 			 * disabling the bkops and if urgent bkops is needed
5287 			 * it will be enabled on system resume. Long term
5288 			 * solution could be to abort the system suspend if
5289 			 * UFS device needs urgent BKOPs.
5290 			 */
5291 			if (!hba->pm_op_in_progress &&
5292 			    !ufshcd_eh_in_progress(hba) &&
5293 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5294 				/* Flushed in suspend */
5295 				schedule_work(&hba->eeh_work);
5296 
5297 			if (scsi_status == SAM_STAT_GOOD)
5298 				ufshpb_rsp_upiu(hba, lrbp);
5299 			break;
5300 		case UPIU_TRANSACTION_REJECT_UPIU:
5301 			/* TODO: handle Reject UPIU Response */
5302 			result = DID_ERROR << 16;
5303 			dev_err(hba->dev,
5304 				"Reject UPIU not fully implemented\n");
5305 			break;
5306 		default:
5307 			dev_err(hba->dev,
5308 				"Unexpected request response code = %x\n",
5309 				result);
5310 			result = DID_ERROR << 16;
5311 			break;
5312 		}
5313 		break;
5314 	case OCS_ABORTED:
5315 		result |= DID_ABORT << 16;
5316 		break;
5317 	case OCS_INVALID_COMMAND_STATUS:
5318 		result |= DID_REQUEUE << 16;
5319 		break;
5320 	case OCS_INVALID_CMD_TABLE_ATTR:
5321 	case OCS_INVALID_PRDT_ATTR:
5322 	case OCS_MISMATCH_DATA_BUF_SIZE:
5323 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5324 	case OCS_PEER_COMM_FAILURE:
5325 	case OCS_FATAL_ERROR:
5326 	case OCS_DEVICE_FATAL_ERROR:
5327 	case OCS_INVALID_CRYPTO_CONFIG:
5328 	case OCS_GENERAL_CRYPTO_ERROR:
5329 	default:
5330 		result |= DID_ERROR << 16;
5331 		dev_err(hba->dev,
5332 				"OCS error from controller = %x for tag %d\n",
5333 				ocs, lrbp->task_tag);
5334 		ufshcd_print_evt_hist(hba);
5335 		ufshcd_print_host_state(hba);
5336 		break;
5337 	} /* end of switch */
5338 
5339 	if ((host_byte(result) != DID_OK) &&
5340 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5341 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5342 	return result;
5343 }
5344 
5345 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5346 					 u32 intr_mask)
5347 {
5348 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5349 	    !ufshcd_is_auto_hibern8_enabled(hba))
5350 		return false;
5351 
5352 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5353 		return false;
5354 
5355 	if (hba->active_uic_cmd &&
5356 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5357 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5358 		return false;
5359 
5360 	return true;
5361 }
5362 
5363 /**
5364  * ufshcd_uic_cmd_compl - handle completion of uic command
5365  * @hba: per adapter instance
5366  * @intr_status: interrupt status generated by the controller
5367  *
5368  * Returns
5369  *  IRQ_HANDLED - If interrupt is valid
5370  *  IRQ_NONE    - If invalid interrupt
5371  */
5372 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5373 {
5374 	irqreturn_t retval = IRQ_NONE;
5375 
5376 	spin_lock(hba->host->host_lock);
5377 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5378 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5379 
5380 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5381 		hba->active_uic_cmd->argument2 |=
5382 			ufshcd_get_uic_cmd_result(hba);
5383 		hba->active_uic_cmd->argument3 =
5384 			ufshcd_get_dme_attr_val(hba);
5385 		if (!hba->uic_async_done)
5386 			hba->active_uic_cmd->cmd_active = 0;
5387 		complete(&hba->active_uic_cmd->done);
5388 		retval = IRQ_HANDLED;
5389 	}
5390 
5391 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5392 		hba->active_uic_cmd->cmd_active = 0;
5393 		complete(hba->uic_async_done);
5394 		retval = IRQ_HANDLED;
5395 	}
5396 
5397 	if (retval == IRQ_HANDLED)
5398 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5399 					     UFS_CMD_COMP);
5400 	spin_unlock(hba->host->host_lock);
5401 	return retval;
5402 }
5403 
5404 /* Release the resources allocated for processing a SCSI command. */
5405 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5406 				    struct ufshcd_lrb *lrbp)
5407 {
5408 	struct scsi_cmnd *cmd = lrbp->cmd;
5409 
5410 	scsi_dma_unmap(cmd);
5411 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5412 	ufshcd_release(hba);
5413 	ufshcd_clk_scaling_update_busy(hba);
5414 }
5415 
5416 /**
5417  * ufshcd_compl_one_cqe - handle a completion queue entry
5418  * @hba: per adapter instance
5419  * @task_tag: the task tag of the request to be completed
5420  * @cqe: pointer to the completion queue entry
5421  */
5422 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5423 			  struct cq_entry *cqe)
5424 {
5425 	struct ufshcd_lrb *lrbp;
5426 	struct scsi_cmnd *cmd;
5427 
5428 	lrbp = &hba->lrb[task_tag];
5429 	lrbp->compl_time_stamp = ktime_get();
5430 	cmd = lrbp->cmd;
5431 	if (cmd) {
5432 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5433 			ufshcd_update_monitor(hba, lrbp);
5434 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5435 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5436 		ufshcd_release_scsi_cmd(hba, lrbp);
5437 		/* Do not touch lrbp after scsi done */
5438 		scsi_done(cmd);
5439 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5440 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5441 		if (hba->dev_cmd.complete) {
5442 			hba->dev_cmd.cqe = cqe;
5443 			ufshcd_add_command_trace(hba, task_tag, UFS_DEV_COMP);
5444 			complete(hba->dev_cmd.complete);
5445 			ufshcd_clk_scaling_update_busy(hba);
5446 		}
5447 	}
5448 }
5449 
5450 /**
5451  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5452  * @hba: per adapter instance
5453  * @completed_reqs: bitmask that indicates which requests to complete
5454  */
5455 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5456 					unsigned long completed_reqs)
5457 {
5458 	int tag;
5459 
5460 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5461 		ufshcd_compl_one_cqe(hba, tag, NULL);
5462 }
5463 
5464 /* Any value that is not an existing queue number is fine for this constant. */
5465 enum {
5466 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5467 };
5468 
5469 static void ufshcd_clear_polled(struct ufs_hba *hba,
5470 				unsigned long *completed_reqs)
5471 {
5472 	int tag;
5473 
5474 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5475 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5476 
5477 		if (!cmd)
5478 			continue;
5479 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5480 			__clear_bit(tag, completed_reqs);
5481 	}
5482 }
5483 
5484 /*
5485  * Returns > 0 if one or more commands have been completed or 0 if no
5486  * requests have been completed.
5487  */
5488 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5489 {
5490 	struct ufs_hba *hba = shost_priv(shost);
5491 	unsigned long completed_reqs, flags;
5492 	u32 tr_doorbell;
5493 	struct ufs_hw_queue *hwq;
5494 
5495 	if (is_mcq_enabled(hba)) {
5496 		hwq = &hba->uhq[queue_num + UFSHCD_MCQ_IO_QUEUE_OFFSET];
5497 
5498 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5499 	}
5500 
5501 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5502 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5503 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5504 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5505 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5506 		  hba->outstanding_reqs);
5507 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5508 		/* Do not complete polled requests from interrupt context. */
5509 		ufshcd_clear_polled(hba, &completed_reqs);
5510 	}
5511 	hba->outstanding_reqs &= ~completed_reqs;
5512 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5513 
5514 	if (completed_reqs)
5515 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5516 
5517 	return completed_reqs != 0;
5518 }
5519 
5520 /**
5521  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5522  * @hba: per adapter instance
5523  *
5524  * Returns
5525  *  IRQ_HANDLED - If interrupt is valid
5526  *  IRQ_NONE    - If invalid interrupt
5527  */
5528 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5529 {
5530 	/* Resetting interrupt aggregation counters first and reading the
5531 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5532 	 * In order to prevent other interrupts starvation the DB is read once
5533 	 * after reset. The down side of this solution is the possibility of
5534 	 * false interrupt if device completes another request after resetting
5535 	 * aggregation and before reading the DB.
5536 	 */
5537 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5538 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5539 		ufshcd_reset_intr_aggr(hba);
5540 
5541 	if (ufs_fail_completion())
5542 		return IRQ_HANDLED;
5543 
5544 	/*
5545 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5546 	 * do not want polling to trigger spurious interrupt complaints.
5547 	 */
5548 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5549 
5550 	return IRQ_HANDLED;
5551 }
5552 
5553 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5554 {
5555 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5556 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5557 				       &ee_ctrl_mask);
5558 }
5559 
5560 int ufshcd_write_ee_control(struct ufs_hba *hba)
5561 {
5562 	int err;
5563 
5564 	mutex_lock(&hba->ee_ctrl_mutex);
5565 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5566 	mutex_unlock(&hba->ee_ctrl_mutex);
5567 	if (err)
5568 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5569 			__func__, err);
5570 	return err;
5571 }
5572 
5573 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5574 			     const u16 *other_mask, u16 set, u16 clr)
5575 {
5576 	u16 new_mask, ee_ctrl_mask;
5577 	int err = 0;
5578 
5579 	mutex_lock(&hba->ee_ctrl_mutex);
5580 	new_mask = (*mask & ~clr) | set;
5581 	ee_ctrl_mask = new_mask | *other_mask;
5582 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5583 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5584 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5585 	if (!err) {
5586 		hba->ee_ctrl_mask = ee_ctrl_mask;
5587 		*mask = new_mask;
5588 	}
5589 	mutex_unlock(&hba->ee_ctrl_mutex);
5590 	return err;
5591 }
5592 
5593 /**
5594  * ufshcd_disable_ee - disable exception event
5595  * @hba: per-adapter instance
5596  * @mask: exception event to disable
5597  *
5598  * Disables exception event in the device so that the EVENT_ALERT
5599  * bit is not set.
5600  *
5601  * Returns zero on success, non-zero error value on failure.
5602  */
5603 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5604 {
5605 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5606 }
5607 
5608 /**
5609  * ufshcd_enable_ee - enable exception event
5610  * @hba: per-adapter instance
5611  * @mask: exception event to enable
5612  *
5613  * Enable corresponding exception event in the device to allow
5614  * device to alert host in critical scenarios.
5615  *
5616  * Returns zero on success, non-zero error value on failure.
5617  */
5618 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5619 {
5620 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5621 }
5622 
5623 /**
5624  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5625  * @hba: per-adapter instance
5626  *
5627  * Allow device to manage background operations on its own. Enabling
5628  * this might lead to inconsistent latencies during normal data transfers
5629  * as the device is allowed to manage its own way of handling background
5630  * operations.
5631  *
5632  * Returns zero on success, non-zero on failure.
5633  */
5634 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5635 {
5636 	int err = 0;
5637 
5638 	if (hba->auto_bkops_enabled)
5639 		goto out;
5640 
5641 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5642 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5643 	if (err) {
5644 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5645 				__func__, err);
5646 		goto out;
5647 	}
5648 
5649 	hba->auto_bkops_enabled = true;
5650 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5651 
5652 	/* No need of URGENT_BKOPS exception from the device */
5653 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5654 	if (err)
5655 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5656 				__func__, err);
5657 out:
5658 	return err;
5659 }
5660 
5661 /**
5662  * ufshcd_disable_auto_bkops - block device in doing background operations
5663  * @hba: per-adapter instance
5664  *
5665  * Disabling background operations improves command response latency but
5666  * has drawback of device moving into critical state where the device is
5667  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5668  * host is idle so that BKOPS are managed effectively without any negative
5669  * impacts.
5670  *
5671  * Returns zero on success, non-zero on failure.
5672  */
5673 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5674 {
5675 	int err = 0;
5676 
5677 	if (!hba->auto_bkops_enabled)
5678 		goto out;
5679 
5680 	/*
5681 	 * If host assisted BKOPs is to be enabled, make sure
5682 	 * urgent bkops exception is allowed.
5683 	 */
5684 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5685 	if (err) {
5686 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5687 				__func__, err);
5688 		goto out;
5689 	}
5690 
5691 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5692 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5693 	if (err) {
5694 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5695 				__func__, err);
5696 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5697 		goto out;
5698 	}
5699 
5700 	hba->auto_bkops_enabled = false;
5701 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5702 	hba->is_urgent_bkops_lvl_checked = false;
5703 out:
5704 	return err;
5705 }
5706 
5707 /**
5708  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5709  * @hba: per adapter instance
5710  *
5711  * After a device reset the device may toggle the BKOPS_EN flag
5712  * to default value. The s/w tracking variables should be updated
5713  * as well. This function would change the auto-bkops state based on
5714  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5715  */
5716 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5717 {
5718 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5719 		hba->auto_bkops_enabled = false;
5720 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5721 		ufshcd_enable_auto_bkops(hba);
5722 	} else {
5723 		hba->auto_bkops_enabled = true;
5724 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5725 		ufshcd_disable_auto_bkops(hba);
5726 	}
5727 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5728 	hba->is_urgent_bkops_lvl_checked = false;
5729 }
5730 
5731 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5732 {
5733 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5734 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5735 }
5736 
5737 /**
5738  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5739  * @hba: per-adapter instance
5740  * @status: bkops_status value
5741  *
5742  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5743  * flag in the device to permit background operations if the device
5744  * bkops_status is greater than or equal to "status" argument passed to
5745  * this function, disable otherwise.
5746  *
5747  * Returns 0 for success, non-zero in case of failure.
5748  *
5749  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5750  * to know whether auto bkops is enabled or disabled after this function
5751  * returns control to it.
5752  */
5753 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5754 			     enum bkops_status status)
5755 {
5756 	int err;
5757 	u32 curr_status = 0;
5758 
5759 	err = ufshcd_get_bkops_status(hba, &curr_status);
5760 	if (err) {
5761 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5762 				__func__, err);
5763 		goto out;
5764 	} else if (curr_status > BKOPS_STATUS_MAX) {
5765 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5766 				__func__, curr_status);
5767 		err = -EINVAL;
5768 		goto out;
5769 	}
5770 
5771 	if (curr_status >= status)
5772 		err = ufshcd_enable_auto_bkops(hba);
5773 	else
5774 		err = ufshcd_disable_auto_bkops(hba);
5775 out:
5776 	return err;
5777 }
5778 
5779 /**
5780  * ufshcd_urgent_bkops - handle urgent bkops exception event
5781  * @hba: per-adapter instance
5782  *
5783  * Enable fBackgroundOpsEn flag in the device to permit background
5784  * operations.
5785  *
5786  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5787  * and negative error value for any other failure.
5788  */
5789 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5790 {
5791 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5792 }
5793 
5794 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5795 {
5796 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5797 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5798 }
5799 
5800 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5801 {
5802 	int err;
5803 	u32 curr_status = 0;
5804 
5805 	if (hba->is_urgent_bkops_lvl_checked)
5806 		goto enable_auto_bkops;
5807 
5808 	err = ufshcd_get_bkops_status(hba, &curr_status);
5809 	if (err) {
5810 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5811 				__func__, err);
5812 		goto out;
5813 	}
5814 
5815 	/*
5816 	 * We are seeing that some devices are raising the urgent bkops
5817 	 * exception events even when BKOPS status doesn't indicate performace
5818 	 * impacted or critical. Handle these device by determining their urgent
5819 	 * bkops status at runtime.
5820 	 */
5821 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5822 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5823 				__func__, curr_status);
5824 		/* update the current status as the urgent bkops level */
5825 		hba->urgent_bkops_lvl = curr_status;
5826 		hba->is_urgent_bkops_lvl_checked = true;
5827 	}
5828 
5829 enable_auto_bkops:
5830 	err = ufshcd_enable_auto_bkops(hba);
5831 out:
5832 	if (err < 0)
5833 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5834 				__func__, err);
5835 }
5836 
5837 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5838 {
5839 	u32 value;
5840 
5841 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5842 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5843 		return;
5844 
5845 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5846 
5847 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5848 
5849 	/*
5850 	 * A placeholder for the platform vendors to add whatever additional
5851 	 * steps required
5852 	 */
5853 }
5854 
5855 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5856 {
5857 	u8 index;
5858 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5859 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5860 
5861 	index = ufshcd_wb_get_query_index(hba);
5862 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5863 }
5864 
5865 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5866 {
5867 	int ret;
5868 
5869 	if (!ufshcd_is_wb_allowed(hba) ||
5870 	    hba->dev_info.wb_enabled == enable)
5871 		return 0;
5872 
5873 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5874 	if (ret) {
5875 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5876 			__func__, enable ? "enabling" : "disabling", ret);
5877 		return ret;
5878 	}
5879 
5880 	hba->dev_info.wb_enabled = enable;
5881 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5882 			__func__, enable ? "enabled" : "disabled");
5883 
5884 	return ret;
5885 }
5886 
5887 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5888 						 bool enable)
5889 {
5890 	int ret;
5891 
5892 	ret = __ufshcd_wb_toggle(hba, enable,
5893 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5894 	if (ret) {
5895 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5896 			__func__, enable ? "enabling" : "disabling", ret);
5897 		return;
5898 	}
5899 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5900 			__func__, enable ? "enabled" : "disabled");
5901 }
5902 
5903 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5904 {
5905 	int ret;
5906 
5907 	if (!ufshcd_is_wb_allowed(hba) ||
5908 	    hba->dev_info.wb_buf_flush_enabled == enable)
5909 		return 0;
5910 
5911 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5912 	if (ret) {
5913 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5914 			__func__, enable ? "enabling" : "disabling", ret);
5915 		return ret;
5916 	}
5917 
5918 	hba->dev_info.wb_buf_flush_enabled = enable;
5919 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5920 			__func__, enable ? "enabled" : "disabled");
5921 
5922 	return ret;
5923 }
5924 
5925 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5926 						u32 avail_buf)
5927 {
5928 	u32 cur_buf;
5929 	int ret;
5930 	u8 index;
5931 
5932 	index = ufshcd_wb_get_query_index(hba);
5933 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5934 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5935 					      index, 0, &cur_buf);
5936 	if (ret) {
5937 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
5938 			__func__, ret);
5939 		return false;
5940 	}
5941 
5942 	if (!cur_buf) {
5943 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5944 			 cur_buf);
5945 		return false;
5946 	}
5947 	/* Let it continue to flush when available buffer exceeds threshold */
5948 	return avail_buf < hba->vps->wb_flush_threshold;
5949 }
5950 
5951 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5952 {
5953 	if (ufshcd_is_wb_buf_flush_allowed(hba))
5954 		ufshcd_wb_toggle_buf_flush(hba, false);
5955 
5956 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
5957 	ufshcd_wb_toggle(hba, false);
5958 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5959 
5960 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5961 }
5962 
5963 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5964 {
5965 	u32 lifetime;
5966 	int ret;
5967 	u8 index;
5968 
5969 	index = ufshcd_wb_get_query_index(hba);
5970 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5971 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5972 				      index, 0, &lifetime);
5973 	if (ret) {
5974 		dev_err(hba->dev,
5975 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5976 			__func__, ret);
5977 		return false;
5978 	}
5979 
5980 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5981 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5982 			__func__, lifetime);
5983 		return false;
5984 	}
5985 
5986 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5987 		__func__, lifetime);
5988 
5989 	return true;
5990 }
5991 
5992 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5993 {
5994 	int ret;
5995 	u32 avail_buf;
5996 	u8 index;
5997 
5998 	if (!ufshcd_is_wb_allowed(hba))
5999 		return false;
6000 
6001 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6002 		ufshcd_wb_force_disable(hba);
6003 		return false;
6004 	}
6005 
6006 	/*
6007 	 * The ufs device needs the vcc to be ON to flush.
6008 	 * With user-space reduction enabled, it's enough to enable flush
6009 	 * by checking only the available buffer. The threshold
6010 	 * defined here is > 90% full.
6011 	 * With user-space preserved enabled, the current-buffer
6012 	 * should be checked too because the wb buffer size can reduce
6013 	 * when disk tends to be full. This info is provided by current
6014 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6015 	 * keeping vcc on when current buffer is empty.
6016 	 */
6017 	index = ufshcd_wb_get_query_index(hba);
6018 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6019 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6020 				      index, 0, &avail_buf);
6021 	if (ret) {
6022 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6023 			 __func__, ret);
6024 		return false;
6025 	}
6026 
6027 	if (!hba->dev_info.b_presrv_uspc_en)
6028 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6029 
6030 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6031 }
6032 
6033 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6034 {
6035 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6036 					   struct ufs_hba,
6037 					   rpm_dev_flush_recheck_work);
6038 	/*
6039 	 * To prevent unnecessary VCC power drain after device finishes
6040 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6041 	 * after a certain delay to recheck the threshold by next runtime
6042 	 * suspend.
6043 	 */
6044 	ufshcd_rpm_get_sync(hba);
6045 	ufshcd_rpm_put_sync(hba);
6046 }
6047 
6048 /**
6049  * ufshcd_exception_event_handler - handle exceptions raised by device
6050  * @work: pointer to work data
6051  *
6052  * Read bExceptionEventStatus attribute from the device and handle the
6053  * exception event accordingly.
6054  */
6055 static void ufshcd_exception_event_handler(struct work_struct *work)
6056 {
6057 	struct ufs_hba *hba;
6058 	int err;
6059 	u32 status = 0;
6060 	hba = container_of(work, struct ufs_hba, eeh_work);
6061 
6062 	ufshcd_scsi_block_requests(hba);
6063 	err = ufshcd_get_ee_status(hba, &status);
6064 	if (err) {
6065 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6066 				__func__, err);
6067 		goto out;
6068 	}
6069 
6070 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6071 
6072 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6073 		ufshcd_bkops_exception_event_handler(hba);
6074 
6075 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6076 		ufshcd_temp_exception_event_handler(hba, status);
6077 
6078 	ufs_debugfs_exception_event(hba, status);
6079 out:
6080 	ufshcd_scsi_unblock_requests(hba);
6081 }
6082 
6083 /* Complete requests that have door-bell cleared */
6084 static void ufshcd_complete_requests(struct ufs_hba *hba)
6085 {
6086 	ufshcd_transfer_req_compl(hba);
6087 	ufshcd_tmc_handler(hba);
6088 }
6089 
6090 /**
6091  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6092  *				to recover from the DL NAC errors or not.
6093  * @hba: per-adapter instance
6094  *
6095  * Returns true if error handling is required, false otherwise
6096  */
6097 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6098 {
6099 	unsigned long flags;
6100 	bool err_handling = true;
6101 
6102 	spin_lock_irqsave(hba->host->host_lock, flags);
6103 	/*
6104 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6105 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6106 	 */
6107 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6108 		goto out;
6109 
6110 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6111 	    ((hba->saved_err & UIC_ERROR) &&
6112 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6113 		goto out;
6114 
6115 	if ((hba->saved_err & UIC_ERROR) &&
6116 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6117 		int err;
6118 		/*
6119 		 * wait for 50ms to see if we can get any other errors or not.
6120 		 */
6121 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6122 		msleep(50);
6123 		spin_lock_irqsave(hba->host->host_lock, flags);
6124 
6125 		/*
6126 		 * now check if we have got any other severe errors other than
6127 		 * DL NAC error?
6128 		 */
6129 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6130 		    ((hba->saved_err & UIC_ERROR) &&
6131 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6132 			goto out;
6133 
6134 		/*
6135 		 * As DL NAC is the only error received so far, send out NOP
6136 		 * command to confirm if link is still active or not.
6137 		 *   - If we don't get any response then do error recovery.
6138 		 *   - If we get response then clear the DL NAC error bit.
6139 		 */
6140 
6141 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6142 		err = ufshcd_verify_dev_init(hba);
6143 		spin_lock_irqsave(hba->host->host_lock, flags);
6144 
6145 		if (err)
6146 			goto out;
6147 
6148 		/* Link seems to be alive hence ignore the DL NAC errors */
6149 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6150 			hba->saved_err &= ~UIC_ERROR;
6151 		/* clear NAC error */
6152 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6153 		if (!hba->saved_uic_err)
6154 			err_handling = false;
6155 	}
6156 out:
6157 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6158 	return err_handling;
6159 }
6160 
6161 /* host lock must be held before calling this func */
6162 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6163 {
6164 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6165 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6166 }
6167 
6168 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6169 {
6170 	lockdep_assert_held(hba->host->host_lock);
6171 
6172 	/* handle fatal errors only when link is not in error state */
6173 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6174 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6175 		    ufshcd_is_saved_err_fatal(hba))
6176 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6177 		else
6178 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6179 		queue_work(hba->eh_wq, &hba->eh_work);
6180 	}
6181 }
6182 
6183 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6184 {
6185 	spin_lock_irq(hba->host->host_lock);
6186 	hba->force_reset = true;
6187 	ufshcd_schedule_eh_work(hba);
6188 	spin_unlock_irq(hba->host->host_lock);
6189 }
6190 
6191 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6192 {
6193 	mutex_lock(&hba->wb_mutex);
6194 	down_write(&hba->clk_scaling_lock);
6195 	hba->clk_scaling.is_allowed = allow;
6196 	up_write(&hba->clk_scaling_lock);
6197 	mutex_unlock(&hba->wb_mutex);
6198 }
6199 
6200 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6201 {
6202 	if (suspend) {
6203 		if (hba->clk_scaling.is_enabled)
6204 			ufshcd_suspend_clkscaling(hba);
6205 		ufshcd_clk_scaling_allow(hba, false);
6206 	} else {
6207 		ufshcd_clk_scaling_allow(hba, true);
6208 		if (hba->clk_scaling.is_enabled)
6209 			ufshcd_resume_clkscaling(hba);
6210 	}
6211 }
6212 
6213 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6214 {
6215 	ufshcd_rpm_get_sync(hba);
6216 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6217 	    hba->is_sys_suspended) {
6218 		enum ufs_pm_op pm_op;
6219 
6220 		/*
6221 		 * Don't assume anything of resume, if
6222 		 * resume fails, irq and clocks can be OFF, and powers
6223 		 * can be OFF or in LPM.
6224 		 */
6225 		ufshcd_setup_hba_vreg(hba, true);
6226 		ufshcd_enable_irq(hba);
6227 		ufshcd_setup_vreg(hba, true);
6228 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6229 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6230 		ufshcd_hold(hba, false);
6231 		if (!ufshcd_is_clkgating_allowed(hba))
6232 			ufshcd_setup_clocks(hba, true);
6233 		ufshcd_release(hba);
6234 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6235 		ufshcd_vops_resume(hba, pm_op);
6236 	} else {
6237 		ufshcd_hold(hba, false);
6238 		if (ufshcd_is_clkscaling_supported(hba) &&
6239 		    hba->clk_scaling.is_enabled)
6240 			ufshcd_suspend_clkscaling(hba);
6241 		ufshcd_clk_scaling_allow(hba, false);
6242 	}
6243 	ufshcd_scsi_block_requests(hba);
6244 	/* Drain ufshcd_queuecommand() */
6245 	synchronize_rcu();
6246 	cancel_work_sync(&hba->eeh_work);
6247 }
6248 
6249 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6250 {
6251 	ufshcd_scsi_unblock_requests(hba);
6252 	ufshcd_release(hba);
6253 	if (ufshcd_is_clkscaling_supported(hba))
6254 		ufshcd_clk_scaling_suspend(hba, false);
6255 	ufshcd_rpm_put(hba);
6256 }
6257 
6258 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6259 {
6260 	return (!hba->is_powered || hba->shutting_down ||
6261 		!hba->ufs_device_wlun ||
6262 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6263 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6264 		   ufshcd_is_link_broken(hba))));
6265 }
6266 
6267 #ifdef CONFIG_PM
6268 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6269 {
6270 	struct Scsi_Host *shost = hba->host;
6271 	struct scsi_device *sdev;
6272 	struct request_queue *q;
6273 	int ret;
6274 
6275 	hba->is_sys_suspended = false;
6276 	/*
6277 	 * Set RPM status of wlun device to RPM_ACTIVE,
6278 	 * this also clears its runtime error.
6279 	 */
6280 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6281 
6282 	/* hba device might have a runtime error otherwise */
6283 	if (ret)
6284 		ret = pm_runtime_set_active(hba->dev);
6285 	/*
6286 	 * If wlun device had runtime error, we also need to resume those
6287 	 * consumer scsi devices in case any of them has failed to be
6288 	 * resumed due to supplier runtime resume failure. This is to unblock
6289 	 * blk_queue_enter in case there are bios waiting inside it.
6290 	 */
6291 	if (!ret) {
6292 		shost_for_each_device(sdev, shost) {
6293 			q = sdev->request_queue;
6294 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6295 				       q->rpm_status == RPM_SUSPENDING))
6296 				pm_request_resume(q->dev);
6297 		}
6298 	}
6299 }
6300 #else
6301 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6302 {
6303 }
6304 #endif
6305 
6306 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6307 {
6308 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6309 	u32 mode;
6310 
6311 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6312 
6313 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6314 		return true;
6315 
6316 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6317 		return true;
6318 
6319 	return false;
6320 }
6321 
6322 static bool ufshcd_abort_all(struct ufs_hba *hba)
6323 {
6324 	bool needs_reset = false;
6325 	int tag, ret;
6326 
6327 	/* Clear pending transfer requests */
6328 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6329 		ret = ufshcd_try_to_abort_task(hba, tag);
6330 		dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6331 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6332 			ret ? "failed" : "succeeded");
6333 		if (ret) {
6334 			needs_reset = true;
6335 			goto out;
6336 		}
6337 	}
6338 
6339 	/* Clear pending task management requests */
6340 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6341 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6342 			needs_reset = true;
6343 			goto out;
6344 		}
6345 	}
6346 
6347 out:
6348 	/* Complete the requests that are cleared by s/w */
6349 	ufshcd_complete_requests(hba);
6350 
6351 	return needs_reset;
6352 }
6353 
6354 /**
6355  * ufshcd_err_handler - handle UFS errors that require s/w attention
6356  * @work: pointer to work structure
6357  */
6358 static void ufshcd_err_handler(struct work_struct *work)
6359 {
6360 	int retries = MAX_ERR_HANDLER_RETRIES;
6361 	struct ufs_hba *hba;
6362 	unsigned long flags;
6363 	bool needs_restore;
6364 	bool needs_reset;
6365 	int pmc_err;
6366 
6367 	hba = container_of(work, struct ufs_hba, eh_work);
6368 
6369 	dev_info(hba->dev,
6370 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6371 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6372 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6373 		 hba->saved_uic_err, hba->force_reset,
6374 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6375 
6376 	down(&hba->host_sem);
6377 	spin_lock_irqsave(hba->host->host_lock, flags);
6378 	if (ufshcd_err_handling_should_stop(hba)) {
6379 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6380 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6381 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6382 		up(&hba->host_sem);
6383 		return;
6384 	}
6385 	ufshcd_set_eh_in_progress(hba);
6386 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6387 	ufshcd_err_handling_prepare(hba);
6388 	/* Complete requests that have door-bell cleared by h/w */
6389 	ufshcd_complete_requests(hba);
6390 	spin_lock_irqsave(hba->host->host_lock, flags);
6391 again:
6392 	needs_restore = false;
6393 	needs_reset = false;
6394 
6395 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6396 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6397 	/*
6398 	 * A full reset and restore might have happened after preparation
6399 	 * is finished, double check whether we should stop.
6400 	 */
6401 	if (ufshcd_err_handling_should_stop(hba))
6402 		goto skip_err_handling;
6403 
6404 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6405 		bool ret;
6406 
6407 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6408 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6409 		ret = ufshcd_quirk_dl_nac_errors(hba);
6410 		spin_lock_irqsave(hba->host->host_lock, flags);
6411 		if (!ret && ufshcd_err_handling_should_stop(hba))
6412 			goto skip_err_handling;
6413 	}
6414 
6415 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6416 	    (hba->saved_uic_err &&
6417 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6418 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6419 
6420 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6421 		ufshcd_print_host_state(hba);
6422 		ufshcd_print_pwr_info(hba);
6423 		ufshcd_print_evt_hist(hba);
6424 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6425 		ufshcd_print_trs_all(hba, pr_prdt);
6426 		spin_lock_irqsave(hba->host->host_lock, flags);
6427 	}
6428 
6429 	/*
6430 	 * if host reset is required then skip clearing the pending
6431 	 * transfers forcefully because they will get cleared during
6432 	 * host reset and restore
6433 	 */
6434 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6435 	    ufshcd_is_saved_err_fatal(hba) ||
6436 	    ((hba->saved_err & UIC_ERROR) &&
6437 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6438 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6439 		needs_reset = true;
6440 		goto do_reset;
6441 	}
6442 
6443 	/*
6444 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6445 	 * check if power mode restore is needed.
6446 	 */
6447 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6448 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6449 		if (!hba->saved_uic_err)
6450 			hba->saved_err &= ~UIC_ERROR;
6451 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6452 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6453 			needs_restore = true;
6454 		spin_lock_irqsave(hba->host->host_lock, flags);
6455 		if (!hba->saved_err && !needs_restore)
6456 			goto skip_err_handling;
6457 	}
6458 
6459 	hba->silence_err_logs = true;
6460 	/* release lock as clear command might sleep */
6461 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6462 
6463 	needs_reset = ufshcd_abort_all(hba);
6464 
6465 	spin_lock_irqsave(hba->host->host_lock, flags);
6466 	hba->silence_err_logs = false;
6467 	if (needs_reset)
6468 		goto do_reset;
6469 
6470 	/*
6471 	 * After all reqs and tasks are cleared from doorbell,
6472 	 * now it is safe to retore power mode.
6473 	 */
6474 	if (needs_restore) {
6475 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6476 		/*
6477 		 * Hold the scaling lock just in case dev cmds
6478 		 * are sent via bsg and/or sysfs.
6479 		 */
6480 		down_write(&hba->clk_scaling_lock);
6481 		hba->force_pmc = true;
6482 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6483 		if (pmc_err) {
6484 			needs_reset = true;
6485 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6486 					__func__, pmc_err);
6487 		}
6488 		hba->force_pmc = false;
6489 		ufshcd_print_pwr_info(hba);
6490 		up_write(&hba->clk_scaling_lock);
6491 		spin_lock_irqsave(hba->host->host_lock, flags);
6492 	}
6493 
6494 do_reset:
6495 	/* Fatal errors need reset */
6496 	if (needs_reset) {
6497 		int err;
6498 
6499 		hba->force_reset = false;
6500 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6501 		err = ufshcd_reset_and_restore(hba);
6502 		if (err)
6503 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6504 					__func__, err);
6505 		else
6506 			ufshcd_recover_pm_error(hba);
6507 		spin_lock_irqsave(hba->host->host_lock, flags);
6508 	}
6509 
6510 skip_err_handling:
6511 	if (!needs_reset) {
6512 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6513 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6514 		if (hba->saved_err || hba->saved_uic_err)
6515 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6516 			    __func__, hba->saved_err, hba->saved_uic_err);
6517 	}
6518 	/* Exit in an operational state or dead */
6519 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6520 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6521 		if (--retries)
6522 			goto again;
6523 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6524 	}
6525 	ufshcd_clear_eh_in_progress(hba);
6526 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6527 	ufshcd_err_handling_unprepare(hba);
6528 	up(&hba->host_sem);
6529 
6530 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6531 		 ufshcd_state_name[hba->ufshcd_state]);
6532 }
6533 
6534 /**
6535  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6536  * @hba: per-adapter instance
6537  *
6538  * Returns
6539  *  IRQ_HANDLED - If interrupt is valid
6540  *  IRQ_NONE    - If invalid interrupt
6541  */
6542 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6543 {
6544 	u32 reg;
6545 	irqreturn_t retval = IRQ_NONE;
6546 
6547 	/* PHY layer error */
6548 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6549 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6550 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6551 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6552 		/*
6553 		 * To know whether this error is fatal or not, DB timeout
6554 		 * must be checked but this error is handled separately.
6555 		 */
6556 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6557 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6558 					__func__);
6559 
6560 		/* Got a LINERESET indication. */
6561 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6562 			struct uic_command *cmd = NULL;
6563 
6564 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6565 			if (hba->uic_async_done && hba->active_uic_cmd)
6566 				cmd = hba->active_uic_cmd;
6567 			/*
6568 			 * Ignore the LINERESET during power mode change
6569 			 * operation via DME_SET command.
6570 			 */
6571 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6572 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6573 		}
6574 		retval |= IRQ_HANDLED;
6575 	}
6576 
6577 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6578 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6579 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6580 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6581 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6582 
6583 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6584 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6585 		else if (hba->dev_quirks &
6586 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6587 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6588 				hba->uic_error |=
6589 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6590 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6591 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6592 		}
6593 		retval |= IRQ_HANDLED;
6594 	}
6595 
6596 	/* UIC NL/TL/DME errors needs software retry */
6597 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6598 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6599 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6600 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6601 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6602 		retval |= IRQ_HANDLED;
6603 	}
6604 
6605 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6606 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6607 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6608 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6609 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6610 		retval |= IRQ_HANDLED;
6611 	}
6612 
6613 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6614 	if ((reg & UIC_DME_ERROR) &&
6615 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6616 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6617 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6618 		retval |= IRQ_HANDLED;
6619 	}
6620 
6621 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6622 			__func__, hba->uic_error);
6623 	return retval;
6624 }
6625 
6626 /**
6627  * ufshcd_check_errors - Check for errors that need s/w attention
6628  * @hba: per-adapter instance
6629  * @intr_status: interrupt status generated by the controller
6630  *
6631  * Returns
6632  *  IRQ_HANDLED - If interrupt is valid
6633  *  IRQ_NONE    - If invalid interrupt
6634  */
6635 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6636 {
6637 	bool queue_eh_work = false;
6638 	irqreturn_t retval = IRQ_NONE;
6639 
6640 	spin_lock(hba->host->host_lock);
6641 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6642 
6643 	if (hba->errors & INT_FATAL_ERRORS) {
6644 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6645 				       hba->errors);
6646 		queue_eh_work = true;
6647 	}
6648 
6649 	if (hba->errors & UIC_ERROR) {
6650 		hba->uic_error = 0;
6651 		retval = ufshcd_update_uic_error(hba);
6652 		if (hba->uic_error)
6653 			queue_eh_work = true;
6654 	}
6655 
6656 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6657 		dev_err(hba->dev,
6658 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6659 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6660 			"Enter" : "Exit",
6661 			hba->errors, ufshcd_get_upmcrs(hba));
6662 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6663 				       hba->errors);
6664 		ufshcd_set_link_broken(hba);
6665 		queue_eh_work = true;
6666 	}
6667 
6668 	if (queue_eh_work) {
6669 		/*
6670 		 * update the transfer error masks to sticky bits, let's do this
6671 		 * irrespective of current ufshcd_state.
6672 		 */
6673 		hba->saved_err |= hba->errors;
6674 		hba->saved_uic_err |= hba->uic_error;
6675 
6676 		/* dump controller state before resetting */
6677 		if ((hba->saved_err &
6678 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6679 		    (hba->saved_uic_err &&
6680 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6681 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6682 					__func__, hba->saved_err,
6683 					hba->saved_uic_err);
6684 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6685 					 "host_regs: ");
6686 			ufshcd_print_pwr_info(hba);
6687 		}
6688 		ufshcd_schedule_eh_work(hba);
6689 		retval |= IRQ_HANDLED;
6690 	}
6691 	/*
6692 	 * if (!queue_eh_work) -
6693 	 * Other errors are either non-fatal where host recovers
6694 	 * itself without s/w intervention or errors that will be
6695 	 * handled by the SCSI core layer.
6696 	 */
6697 	hba->errors = 0;
6698 	hba->uic_error = 0;
6699 	spin_unlock(hba->host->host_lock);
6700 	return retval;
6701 }
6702 
6703 /**
6704  * ufshcd_tmc_handler - handle task management function completion
6705  * @hba: per adapter instance
6706  *
6707  * Returns
6708  *  IRQ_HANDLED - If interrupt is valid
6709  *  IRQ_NONE    - If invalid interrupt
6710  */
6711 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6712 {
6713 	unsigned long flags, pending, issued;
6714 	irqreturn_t ret = IRQ_NONE;
6715 	int tag;
6716 
6717 	spin_lock_irqsave(hba->host->host_lock, flags);
6718 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6719 	issued = hba->outstanding_tasks & ~pending;
6720 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6721 		struct request *req = hba->tmf_rqs[tag];
6722 		struct completion *c = req->end_io_data;
6723 
6724 		complete(c);
6725 		ret = IRQ_HANDLED;
6726 	}
6727 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6728 
6729 	return ret;
6730 }
6731 
6732 /**
6733  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6734  * @hba: per adapter instance
6735  *
6736  * Returns IRQ_HANDLED if interrupt is handled
6737  */
6738 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6739 {
6740 	struct ufs_hw_queue *hwq;
6741 	unsigned long outstanding_cqs;
6742 	unsigned int nr_queues;
6743 	int i, ret;
6744 	u32 events;
6745 
6746 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6747 	if (ret)
6748 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6749 
6750 	/* Exclude the poll queues */
6751 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6752 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6753 		hwq = &hba->uhq[i];
6754 
6755 		events = ufshcd_mcq_read_cqis(hba, i);
6756 		if (events)
6757 			ufshcd_mcq_write_cqis(hba, events, i);
6758 
6759 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6760 			ufshcd_mcq_poll_cqe_nolock(hba, hwq);
6761 	}
6762 
6763 	return IRQ_HANDLED;
6764 }
6765 
6766 /**
6767  * ufshcd_sl_intr - Interrupt service routine
6768  * @hba: per adapter instance
6769  * @intr_status: contains interrupts generated by the controller
6770  *
6771  * Returns
6772  *  IRQ_HANDLED - If interrupt is valid
6773  *  IRQ_NONE    - If invalid interrupt
6774  */
6775 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6776 {
6777 	irqreturn_t retval = IRQ_NONE;
6778 
6779 	if (intr_status & UFSHCD_UIC_MASK)
6780 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6781 
6782 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6783 		retval |= ufshcd_check_errors(hba, intr_status);
6784 
6785 	if (intr_status & UTP_TASK_REQ_COMPL)
6786 		retval |= ufshcd_tmc_handler(hba);
6787 
6788 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6789 		retval |= ufshcd_transfer_req_compl(hba);
6790 
6791 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6792 		retval |= ufshcd_handle_mcq_cq_events(hba);
6793 
6794 	return retval;
6795 }
6796 
6797 /**
6798  * ufshcd_intr - Main interrupt service routine
6799  * @irq: irq number
6800  * @__hba: pointer to adapter instance
6801  *
6802  * Returns
6803  *  IRQ_HANDLED - If interrupt is valid
6804  *  IRQ_NONE    - If invalid interrupt
6805  */
6806 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6807 {
6808 	u32 intr_status, enabled_intr_status = 0;
6809 	irqreturn_t retval = IRQ_NONE;
6810 	struct ufs_hba *hba = __hba;
6811 	int retries = hba->nutrs;
6812 
6813 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6814 	hba->ufs_stats.last_intr_status = intr_status;
6815 	hba->ufs_stats.last_intr_ts = local_clock();
6816 
6817 	/*
6818 	 * There could be max of hba->nutrs reqs in flight and in worst case
6819 	 * if the reqs get finished 1 by 1 after the interrupt status is
6820 	 * read, make sure we handle them by checking the interrupt status
6821 	 * again in a loop until we process all of the reqs before returning.
6822 	 */
6823 	while (intr_status && retries--) {
6824 		enabled_intr_status =
6825 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6826 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6827 		if (enabled_intr_status)
6828 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6829 
6830 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6831 	}
6832 
6833 	if (enabled_intr_status && retval == IRQ_NONE &&
6834 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6835 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6836 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6837 					__func__,
6838 					intr_status,
6839 					hba->ufs_stats.last_intr_status,
6840 					enabled_intr_status);
6841 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6842 	}
6843 
6844 	return retval;
6845 }
6846 
6847 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6848 {
6849 	int err = 0;
6850 	u32 mask = 1 << tag;
6851 	unsigned long flags;
6852 
6853 	if (!test_bit(tag, &hba->outstanding_tasks))
6854 		goto out;
6855 
6856 	spin_lock_irqsave(hba->host->host_lock, flags);
6857 	ufshcd_utmrl_clear(hba, tag);
6858 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6859 
6860 	/* poll for max. 1 sec to clear door bell register by h/w */
6861 	err = ufshcd_wait_for_register(hba,
6862 			REG_UTP_TASK_REQ_DOOR_BELL,
6863 			mask, 0, 1000, 1000);
6864 
6865 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6866 		tag, err ? "succeeded" : "failed");
6867 
6868 out:
6869 	return err;
6870 }
6871 
6872 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6873 		struct utp_task_req_desc *treq, u8 tm_function)
6874 {
6875 	struct request_queue *q = hba->tmf_queue;
6876 	struct Scsi_Host *host = hba->host;
6877 	DECLARE_COMPLETION_ONSTACK(wait);
6878 	struct request *req;
6879 	unsigned long flags;
6880 	int task_tag, err;
6881 
6882 	/*
6883 	 * blk_mq_alloc_request() is used here only to get a free tag.
6884 	 */
6885 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6886 	if (IS_ERR(req))
6887 		return PTR_ERR(req);
6888 
6889 	req->end_io_data = &wait;
6890 	ufshcd_hold(hba, false);
6891 
6892 	spin_lock_irqsave(host->host_lock, flags);
6893 
6894 	task_tag = req->tag;
6895 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6896 		  task_tag);
6897 	hba->tmf_rqs[req->tag] = req;
6898 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6899 
6900 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6901 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6902 
6903 	/* send command to the controller */
6904 	__set_bit(task_tag, &hba->outstanding_tasks);
6905 
6906 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6907 	/* Make sure that doorbell is committed immediately */
6908 	wmb();
6909 
6910 	spin_unlock_irqrestore(host->host_lock, flags);
6911 
6912 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6913 
6914 	/* wait until the task management command is completed */
6915 	err = wait_for_completion_io_timeout(&wait,
6916 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6917 	if (!err) {
6918 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6919 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6920 				__func__, tm_function);
6921 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6922 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6923 					__func__, task_tag);
6924 		err = -ETIMEDOUT;
6925 	} else {
6926 		err = 0;
6927 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6928 
6929 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6930 	}
6931 
6932 	spin_lock_irqsave(hba->host->host_lock, flags);
6933 	hba->tmf_rqs[req->tag] = NULL;
6934 	__clear_bit(task_tag, &hba->outstanding_tasks);
6935 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6936 
6937 	ufshcd_release(hba);
6938 	blk_mq_free_request(req);
6939 
6940 	return err;
6941 }
6942 
6943 /**
6944  * ufshcd_issue_tm_cmd - issues task management commands to controller
6945  * @hba: per adapter instance
6946  * @lun_id: LUN ID to which TM command is sent
6947  * @task_id: task ID to which the TM command is applicable
6948  * @tm_function: task management function opcode
6949  * @tm_response: task management service response return value
6950  *
6951  * Returns non-zero value on error, zero on success.
6952  */
6953 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6954 		u8 tm_function, u8 *tm_response)
6955 {
6956 	struct utp_task_req_desc treq = { { 0 }, };
6957 	enum utp_ocs ocs_value;
6958 	int err;
6959 
6960 	/* Configure task request descriptor */
6961 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6962 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6963 
6964 	/* Configure task request UPIU */
6965 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6966 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6967 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6968 
6969 	/*
6970 	 * The host shall provide the same value for LUN field in the basic
6971 	 * header and for Input Parameter.
6972 	 */
6973 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6974 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6975 
6976 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6977 	if (err == -ETIMEDOUT)
6978 		return err;
6979 
6980 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6981 	if (ocs_value != OCS_SUCCESS)
6982 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6983 				__func__, ocs_value);
6984 	else if (tm_response)
6985 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6986 				MASK_TM_SERVICE_RESP;
6987 	return err;
6988 }
6989 
6990 /**
6991  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6992  * @hba:	per-adapter instance
6993  * @req_upiu:	upiu request
6994  * @rsp_upiu:	upiu reply
6995  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6996  * @buff_len:	descriptor size, 0 if NA
6997  * @cmd_type:	specifies the type (NOP, Query...)
6998  * @desc_op:	descriptor operation
6999  *
7000  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7001  * Therefore, it "rides" the device management infrastructure: uses its tag and
7002  * tasks work queues.
7003  *
7004  * Since there is only one available tag for device management commands,
7005  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7006  */
7007 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7008 					struct utp_upiu_req *req_upiu,
7009 					struct utp_upiu_req *rsp_upiu,
7010 					u8 *desc_buff, int *buff_len,
7011 					enum dev_cmd_type cmd_type,
7012 					enum query_opcode desc_op)
7013 {
7014 	DECLARE_COMPLETION_ONSTACK(wait);
7015 	const u32 tag = hba->reserved_slot;
7016 	struct ufshcd_lrb *lrbp;
7017 	int err = 0;
7018 	u8 upiu_flags;
7019 
7020 	/* Protects use of hba->reserved_slot. */
7021 	lockdep_assert_held(&hba->dev_cmd.lock);
7022 
7023 	down_read(&hba->clk_scaling_lock);
7024 
7025 	lrbp = &hba->lrb[tag];
7026 	WARN_ON(lrbp->cmd);
7027 	lrbp->cmd = NULL;
7028 	lrbp->task_tag = tag;
7029 	lrbp->lun = 0;
7030 	lrbp->intr_cmd = true;
7031 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7032 	hba->dev_cmd.type = cmd_type;
7033 
7034 	if (hba->ufs_version <= ufshci_version(1, 1))
7035 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7036 	else
7037 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7038 
7039 	/* update the task tag in the request upiu */
7040 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
7041 
7042 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7043 
7044 	/* just copy the upiu request as it is */
7045 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7046 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7047 		/* The Data Segment Area is optional depending upon the query
7048 		 * function value. for WRITE DESCRIPTOR, the data segment
7049 		 * follows right after the tsf.
7050 		 */
7051 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7052 		*buff_len = 0;
7053 	}
7054 
7055 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7056 
7057 	hba->dev_cmd.complete = &wait;
7058 
7059 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7060 
7061 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7062 	/*
7063 	 * ignore the returning value here - ufshcd_check_query_response is
7064 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7065 	 * read the response directly ignoring all errors.
7066 	 */
7067 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7068 
7069 	/* just copy the upiu response as it is */
7070 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7071 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7072 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7073 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
7074 			       MASK_QUERY_DATA_SEG_LEN;
7075 
7076 		if (*buff_len >= resp_len) {
7077 			memcpy(desc_buff, descp, resp_len);
7078 			*buff_len = resp_len;
7079 		} else {
7080 			dev_warn(hba->dev,
7081 				 "%s: rsp size %d is bigger than buffer size %d",
7082 				 __func__, resp_len, *buff_len);
7083 			*buff_len = 0;
7084 			err = -EINVAL;
7085 		}
7086 	}
7087 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7088 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7089 
7090 	up_read(&hba->clk_scaling_lock);
7091 	return err;
7092 }
7093 
7094 /**
7095  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7096  * @hba:	per-adapter instance
7097  * @req_upiu:	upiu request
7098  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7099  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7100  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7101  * @buff_len:	descriptor size, 0 if NA
7102  * @desc_op:	descriptor operation
7103  *
7104  * Supports UTP Transfer requests (nop and query), and UTP Task
7105  * Management requests.
7106  * It is up to the caller to fill the upiu conent properly, as it will
7107  * be copied without any further input validations.
7108  */
7109 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7110 			     struct utp_upiu_req *req_upiu,
7111 			     struct utp_upiu_req *rsp_upiu,
7112 			     int msgcode,
7113 			     u8 *desc_buff, int *buff_len,
7114 			     enum query_opcode desc_op)
7115 {
7116 	int err;
7117 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7118 	struct utp_task_req_desc treq = { { 0 }, };
7119 	enum utp_ocs ocs_value;
7120 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
7121 
7122 	switch (msgcode) {
7123 	case UPIU_TRANSACTION_NOP_OUT:
7124 		cmd_type = DEV_CMD_TYPE_NOP;
7125 		fallthrough;
7126 	case UPIU_TRANSACTION_QUERY_REQ:
7127 		ufshcd_hold(hba, false);
7128 		mutex_lock(&hba->dev_cmd.lock);
7129 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7130 						   desc_buff, buff_len,
7131 						   cmd_type, desc_op);
7132 		mutex_unlock(&hba->dev_cmd.lock);
7133 		ufshcd_release(hba);
7134 
7135 		break;
7136 	case UPIU_TRANSACTION_TASK_REQ:
7137 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
7138 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
7139 
7140 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7141 
7142 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7143 		if (err == -ETIMEDOUT)
7144 			break;
7145 
7146 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
7147 		if (ocs_value != OCS_SUCCESS) {
7148 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7149 				ocs_value);
7150 			break;
7151 		}
7152 
7153 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7154 
7155 		break;
7156 	default:
7157 		err = -EINVAL;
7158 
7159 		break;
7160 	}
7161 
7162 	return err;
7163 }
7164 
7165 /**
7166  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7167  * @hba:	per adapter instance
7168  * @req_upiu:	upiu request
7169  * @rsp_upiu:	upiu reply
7170  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7171  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7172  * @sg_cnt:	The number of sg lists actually used
7173  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7174  * @dir:	DMA direction
7175  *
7176  * Returns zero on success, non-zero on failure
7177  */
7178 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7179 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7180 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7181 			 enum dma_data_direction dir)
7182 {
7183 	DECLARE_COMPLETION_ONSTACK(wait);
7184 	const u32 tag = hba->reserved_slot;
7185 	struct ufshcd_lrb *lrbp;
7186 	int err = 0;
7187 	int result;
7188 	u8 upiu_flags;
7189 	u8 *ehs_data;
7190 	u16 ehs_len;
7191 
7192 	/* Protects use of hba->reserved_slot. */
7193 	ufshcd_hold(hba, false);
7194 	mutex_lock(&hba->dev_cmd.lock);
7195 	down_read(&hba->clk_scaling_lock);
7196 
7197 	lrbp = &hba->lrb[tag];
7198 	WARN_ON(lrbp->cmd);
7199 	lrbp->cmd = NULL;
7200 	lrbp->task_tag = tag;
7201 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7202 
7203 	lrbp->intr_cmd = true;
7204 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7205 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7206 
7207 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7208 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7209 
7210 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7211 
7212 	/* update the task tag and LUN in the request upiu */
7213 	req_upiu->header.dword_0 |= cpu_to_be32(upiu_flags << 16 | UFS_UPIU_RPMB_WLUN << 8 | tag);
7214 
7215 	/* copy the UPIU(contains CDB) request as it is */
7216 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7217 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7218 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7219 
7220 	if (dir != DMA_NONE && sg_list)
7221 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7222 
7223 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7224 
7225 	hba->dev_cmd.complete = &wait;
7226 
7227 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7228 
7229 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7230 
7231 	if (!err) {
7232 		/* Just copy the upiu response as it is */
7233 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7234 		/* Get the response UPIU result */
7235 		result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
7236 
7237 		ehs_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) >> 24;
7238 		/*
7239 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7240 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7241 		 * Message is 02h
7242 		 */
7243 		if (ehs_len == 2 && rsp_ehs) {
7244 			/*
7245 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7246 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7247 			 */
7248 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7249 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7250 		}
7251 	}
7252 
7253 	up_read(&hba->clk_scaling_lock);
7254 	mutex_unlock(&hba->dev_cmd.lock);
7255 	ufshcd_release(hba);
7256 	return err ? : result;
7257 }
7258 
7259 /**
7260  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7261  * @cmd: SCSI command pointer
7262  *
7263  * Returns SUCCESS/FAILED
7264  */
7265 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7266 {
7267 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7268 	struct Scsi_Host *host;
7269 	struct ufs_hba *hba;
7270 	u32 pos;
7271 	int err;
7272 	u8 resp = 0xF, lun;
7273 
7274 	host = cmd->device->host;
7275 	hba = shost_priv(host);
7276 
7277 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7278 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7279 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7280 		if (!err)
7281 			err = resp;
7282 		goto out;
7283 	}
7284 
7285 	/* clear the commands that were pending for corresponding LUN */
7286 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7287 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7288 		if (hba->lrb[pos].lun == lun)
7289 			__set_bit(pos, &pending_reqs);
7290 	hba->outstanding_reqs &= ~pending_reqs;
7291 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7292 
7293 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7294 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7295 		not_cleared = pending_reqs &
7296 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7297 		hba->outstanding_reqs |= not_cleared;
7298 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7299 
7300 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7301 			__func__, not_cleared);
7302 	}
7303 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7304 
7305 out:
7306 	hba->req_abort_count = 0;
7307 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7308 	if (!err) {
7309 		err = SUCCESS;
7310 	} else {
7311 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7312 		err = FAILED;
7313 	}
7314 	return err;
7315 }
7316 
7317 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7318 {
7319 	struct ufshcd_lrb *lrbp;
7320 	int tag;
7321 
7322 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7323 		lrbp = &hba->lrb[tag];
7324 		lrbp->req_abort_skip = true;
7325 	}
7326 }
7327 
7328 /**
7329  * ufshcd_try_to_abort_task - abort a specific task
7330  * @hba: Pointer to adapter instance
7331  * @tag: Task tag/index to be aborted
7332  *
7333  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7334  * command, and in host controller by clearing the door-bell register. There can
7335  * be race between controller sending the command to the device while abort is
7336  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7337  * really issued and then try to abort it.
7338  *
7339  * Returns zero on success, non-zero on failure
7340  */
7341 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7342 {
7343 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7344 	int err = 0;
7345 	int poll_cnt;
7346 	u8 resp = 0xF;
7347 	u32 reg;
7348 
7349 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7350 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7351 				UFS_QUERY_TASK, &resp);
7352 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7353 			/* cmd pending in the device */
7354 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7355 				__func__, tag);
7356 			break;
7357 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7358 			/*
7359 			 * cmd not pending in the device, check if it is
7360 			 * in transition.
7361 			 */
7362 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7363 				__func__, tag);
7364 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7365 			if (reg & (1 << tag)) {
7366 				/* sleep for max. 200us to stabilize */
7367 				usleep_range(100, 200);
7368 				continue;
7369 			}
7370 			/* command completed already */
7371 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7372 				__func__, tag);
7373 			goto out;
7374 		} else {
7375 			dev_err(hba->dev,
7376 				"%s: no response from device. tag = %d, err %d\n",
7377 				__func__, tag, err);
7378 			if (!err)
7379 				err = resp; /* service response error */
7380 			goto out;
7381 		}
7382 	}
7383 
7384 	if (!poll_cnt) {
7385 		err = -EBUSY;
7386 		goto out;
7387 	}
7388 
7389 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7390 			UFS_ABORT_TASK, &resp);
7391 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7392 		if (!err) {
7393 			err = resp; /* service response error */
7394 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7395 				__func__, tag, err);
7396 		}
7397 		goto out;
7398 	}
7399 
7400 	err = ufshcd_clear_cmds(hba, 1U << tag);
7401 	if (err)
7402 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7403 			__func__, tag, err);
7404 
7405 out:
7406 	return err;
7407 }
7408 
7409 /**
7410  * ufshcd_abort - scsi host template eh_abort_handler callback
7411  * @cmd: SCSI command pointer
7412  *
7413  * Returns SUCCESS/FAILED
7414  */
7415 static int ufshcd_abort(struct scsi_cmnd *cmd)
7416 {
7417 	struct Scsi_Host *host = cmd->device->host;
7418 	struct ufs_hba *hba = shost_priv(host);
7419 	int tag = scsi_cmd_to_rq(cmd)->tag;
7420 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7421 	unsigned long flags;
7422 	int err = FAILED;
7423 	bool outstanding;
7424 	u32 reg;
7425 
7426 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7427 
7428 	ufshcd_hold(hba, false);
7429 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7430 	/* If command is already aborted/completed, return FAILED. */
7431 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7432 		dev_err(hba->dev,
7433 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7434 			__func__, tag, hba->outstanding_reqs, reg);
7435 		goto release;
7436 	}
7437 
7438 	/* Print Transfer Request of aborted task */
7439 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7440 
7441 	/*
7442 	 * Print detailed info about aborted request.
7443 	 * As more than one request might get aborted at the same time,
7444 	 * print full information only for the first aborted request in order
7445 	 * to reduce repeated printouts. For other aborted requests only print
7446 	 * basic details.
7447 	 */
7448 	scsi_print_command(cmd);
7449 	if (!hba->req_abort_count) {
7450 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7451 		ufshcd_print_evt_hist(hba);
7452 		ufshcd_print_host_state(hba);
7453 		ufshcd_print_pwr_info(hba);
7454 		ufshcd_print_tr(hba, tag, true);
7455 	} else {
7456 		ufshcd_print_tr(hba, tag, false);
7457 	}
7458 	hba->req_abort_count++;
7459 
7460 	if (!(reg & (1 << tag))) {
7461 		dev_err(hba->dev,
7462 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7463 		__func__, tag);
7464 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7465 		goto release;
7466 	}
7467 
7468 	/*
7469 	 * Task abort to the device W-LUN is illegal. When this command
7470 	 * will fail, due to spec violation, scsi err handling next step
7471 	 * will be to send LU reset which, again, is a spec violation.
7472 	 * To avoid these unnecessary/illegal steps, first we clean up
7473 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7474 	 * then queue the eh_work and bail.
7475 	 */
7476 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7477 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7478 
7479 		spin_lock_irqsave(host->host_lock, flags);
7480 		hba->force_reset = true;
7481 		ufshcd_schedule_eh_work(hba);
7482 		spin_unlock_irqrestore(host->host_lock, flags);
7483 		goto release;
7484 	}
7485 
7486 	/* Skip task abort in case previous aborts failed and report failure */
7487 	if (lrbp->req_abort_skip) {
7488 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7489 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7490 		goto release;
7491 	}
7492 
7493 	err = ufshcd_try_to_abort_task(hba, tag);
7494 	if (err) {
7495 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7496 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7497 		err = FAILED;
7498 		goto release;
7499 	}
7500 
7501 	/*
7502 	 * Clear the corresponding bit from outstanding_reqs since the command
7503 	 * has been aborted successfully.
7504 	 */
7505 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7506 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7507 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7508 
7509 	if (outstanding)
7510 		ufshcd_release_scsi_cmd(hba, lrbp);
7511 
7512 	err = SUCCESS;
7513 
7514 release:
7515 	/* Matches the ufshcd_hold() call at the start of this function. */
7516 	ufshcd_release(hba);
7517 	return err;
7518 }
7519 
7520 /**
7521  * ufshcd_host_reset_and_restore - reset and restore host controller
7522  * @hba: per-adapter instance
7523  *
7524  * Note that host controller reset may issue DME_RESET to
7525  * local and remote (device) Uni-Pro stack and the attributes
7526  * are reset to default state.
7527  *
7528  * Returns zero on success, non-zero on failure
7529  */
7530 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7531 {
7532 	int err;
7533 
7534 	/*
7535 	 * Stop the host controller and complete the requests
7536 	 * cleared by h/w
7537 	 */
7538 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7539 	ufshcd_hba_stop(hba);
7540 	hba->silence_err_logs = true;
7541 	ufshcd_complete_requests(hba);
7542 	hba->silence_err_logs = false;
7543 
7544 	/* scale up clocks to max frequency before full reinitialization */
7545 	ufshcd_scale_clks(hba, true);
7546 
7547 	err = ufshcd_hba_enable(hba);
7548 
7549 	/* Establish the link again and restore the device */
7550 	if (!err)
7551 		err = ufshcd_probe_hba(hba, false);
7552 
7553 	if (err)
7554 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7555 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7556 	return err;
7557 }
7558 
7559 /**
7560  * ufshcd_reset_and_restore - reset and re-initialize host/device
7561  * @hba: per-adapter instance
7562  *
7563  * Reset and recover device, host and re-establish link. This
7564  * is helpful to recover the communication in fatal error conditions.
7565  *
7566  * Returns zero on success, non-zero on failure
7567  */
7568 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7569 {
7570 	u32 saved_err = 0;
7571 	u32 saved_uic_err = 0;
7572 	int err = 0;
7573 	unsigned long flags;
7574 	int retries = MAX_HOST_RESET_RETRIES;
7575 
7576 	spin_lock_irqsave(hba->host->host_lock, flags);
7577 	do {
7578 		/*
7579 		 * This is a fresh start, cache and clear saved error first,
7580 		 * in case new error generated during reset and restore.
7581 		 */
7582 		saved_err |= hba->saved_err;
7583 		saved_uic_err |= hba->saved_uic_err;
7584 		hba->saved_err = 0;
7585 		hba->saved_uic_err = 0;
7586 		hba->force_reset = false;
7587 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7588 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7589 
7590 		/* Reset the attached device */
7591 		ufshcd_device_reset(hba);
7592 
7593 		err = ufshcd_host_reset_and_restore(hba);
7594 
7595 		spin_lock_irqsave(hba->host->host_lock, flags);
7596 		if (err)
7597 			continue;
7598 		/* Do not exit unless operational or dead */
7599 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7600 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7601 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7602 			err = -EAGAIN;
7603 	} while (err && --retries);
7604 
7605 	/*
7606 	 * Inform scsi mid-layer that we did reset and allow to handle
7607 	 * Unit Attention properly.
7608 	 */
7609 	scsi_report_bus_reset(hba->host, 0);
7610 	if (err) {
7611 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7612 		hba->saved_err |= saved_err;
7613 		hba->saved_uic_err |= saved_uic_err;
7614 	}
7615 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7616 
7617 	return err;
7618 }
7619 
7620 /**
7621  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7622  * @cmd: SCSI command pointer
7623  *
7624  * Returns SUCCESS/FAILED
7625  */
7626 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7627 {
7628 	int err = SUCCESS;
7629 	unsigned long flags;
7630 	struct ufs_hba *hba;
7631 
7632 	hba = shost_priv(cmd->device->host);
7633 
7634 	spin_lock_irqsave(hba->host->host_lock, flags);
7635 	hba->force_reset = true;
7636 	ufshcd_schedule_eh_work(hba);
7637 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7638 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7639 
7640 	flush_work(&hba->eh_work);
7641 
7642 	spin_lock_irqsave(hba->host->host_lock, flags);
7643 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7644 		err = FAILED;
7645 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7646 
7647 	return err;
7648 }
7649 
7650 /**
7651  * ufshcd_get_max_icc_level - calculate the ICC level
7652  * @sup_curr_uA: max. current supported by the regulator
7653  * @start_scan: row at the desc table to start scan from
7654  * @buff: power descriptor buffer
7655  *
7656  * Returns calculated max ICC level for specific regulator
7657  */
7658 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7659 				    const char *buff)
7660 {
7661 	int i;
7662 	int curr_uA;
7663 	u16 data;
7664 	u16 unit;
7665 
7666 	for (i = start_scan; i >= 0; i--) {
7667 		data = get_unaligned_be16(&buff[2 * i]);
7668 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7669 						ATTR_ICC_LVL_UNIT_OFFSET;
7670 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7671 		switch (unit) {
7672 		case UFSHCD_NANO_AMP:
7673 			curr_uA = curr_uA / 1000;
7674 			break;
7675 		case UFSHCD_MILI_AMP:
7676 			curr_uA = curr_uA * 1000;
7677 			break;
7678 		case UFSHCD_AMP:
7679 			curr_uA = curr_uA * 1000 * 1000;
7680 			break;
7681 		case UFSHCD_MICRO_AMP:
7682 		default:
7683 			break;
7684 		}
7685 		if (sup_curr_uA >= curr_uA)
7686 			break;
7687 	}
7688 	if (i < 0) {
7689 		i = 0;
7690 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7691 	}
7692 
7693 	return (u32)i;
7694 }
7695 
7696 /**
7697  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7698  * In case regulators are not initialized we'll return 0
7699  * @hba: per-adapter instance
7700  * @desc_buf: power descriptor buffer to extract ICC levels from.
7701  *
7702  * Returns calculated ICC level
7703  */
7704 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7705 						const u8 *desc_buf)
7706 {
7707 	u32 icc_level = 0;
7708 
7709 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7710 						!hba->vreg_info.vccq2) {
7711 		/*
7712 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7713 		 * never-ending cycles of messages written back to storage by
7714 		 * user space causing runtime resume, causing more messages and
7715 		 * so on.
7716 		 */
7717 		dev_dbg(hba->dev,
7718 			"%s: Regulator capability was not set, actvIccLevel=%d",
7719 							__func__, icc_level);
7720 		goto out;
7721 	}
7722 
7723 	if (hba->vreg_info.vcc->max_uA)
7724 		icc_level = ufshcd_get_max_icc_level(
7725 				hba->vreg_info.vcc->max_uA,
7726 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7727 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7728 
7729 	if (hba->vreg_info.vccq->max_uA)
7730 		icc_level = ufshcd_get_max_icc_level(
7731 				hba->vreg_info.vccq->max_uA,
7732 				icc_level,
7733 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7734 
7735 	if (hba->vreg_info.vccq2->max_uA)
7736 		icc_level = ufshcd_get_max_icc_level(
7737 				hba->vreg_info.vccq2->max_uA,
7738 				icc_level,
7739 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7740 out:
7741 	return icc_level;
7742 }
7743 
7744 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7745 {
7746 	int ret;
7747 	u8 *desc_buf;
7748 	u32 icc_level;
7749 
7750 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7751 	if (!desc_buf)
7752 		return;
7753 
7754 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7755 				     desc_buf, QUERY_DESC_MAX_SIZE);
7756 	if (ret) {
7757 		dev_err(hba->dev,
7758 			"%s: Failed reading power descriptor ret = %d",
7759 			__func__, ret);
7760 		goto out;
7761 	}
7762 
7763 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7764 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7765 
7766 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7767 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7768 
7769 	if (ret)
7770 		dev_err(hba->dev,
7771 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7772 			__func__, icc_level, ret);
7773 
7774 out:
7775 	kfree(desc_buf);
7776 }
7777 
7778 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7779 {
7780 	scsi_autopm_get_device(sdev);
7781 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7782 	if (sdev->rpm_autosuspend)
7783 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7784 						 RPM_AUTOSUSPEND_DELAY_MS);
7785 	scsi_autopm_put_device(sdev);
7786 }
7787 
7788 /**
7789  * ufshcd_scsi_add_wlus - Adds required W-LUs
7790  * @hba: per-adapter instance
7791  *
7792  * UFS device specification requires the UFS devices to support 4 well known
7793  * logical units:
7794  *	"REPORT_LUNS" (address: 01h)
7795  *	"UFS Device" (address: 50h)
7796  *	"RPMB" (address: 44h)
7797  *	"BOOT" (address: 30h)
7798  * UFS device's power management needs to be controlled by "POWER CONDITION"
7799  * field of SSU (START STOP UNIT) command. But this "power condition" field
7800  * will take effect only when its sent to "UFS device" well known logical unit
7801  * hence we require the scsi_device instance to represent this logical unit in
7802  * order for the UFS host driver to send the SSU command for power management.
7803  *
7804  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7805  * Block) LU so user space process can control this LU. User space may also
7806  * want to have access to BOOT LU.
7807  *
7808  * This function adds scsi device instances for each of all well known LUs
7809  * (except "REPORT LUNS" LU).
7810  *
7811  * Returns zero on success (all required W-LUs are added successfully),
7812  * non-zero error value on failure (if failed to add any of the required W-LU).
7813  */
7814 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7815 {
7816 	int ret = 0;
7817 	struct scsi_device *sdev_boot, *sdev_rpmb;
7818 
7819 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7820 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7821 	if (IS_ERR(hba->ufs_device_wlun)) {
7822 		ret = PTR_ERR(hba->ufs_device_wlun);
7823 		hba->ufs_device_wlun = NULL;
7824 		goto out;
7825 	}
7826 	scsi_device_put(hba->ufs_device_wlun);
7827 
7828 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7829 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7830 	if (IS_ERR(sdev_rpmb)) {
7831 		ret = PTR_ERR(sdev_rpmb);
7832 		goto remove_ufs_device_wlun;
7833 	}
7834 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7835 	scsi_device_put(sdev_rpmb);
7836 
7837 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7838 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7839 	if (IS_ERR(sdev_boot)) {
7840 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7841 	} else {
7842 		ufshcd_blk_pm_runtime_init(sdev_boot);
7843 		scsi_device_put(sdev_boot);
7844 	}
7845 	goto out;
7846 
7847 remove_ufs_device_wlun:
7848 	scsi_remove_device(hba->ufs_device_wlun);
7849 out:
7850 	return ret;
7851 }
7852 
7853 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7854 {
7855 	struct ufs_dev_info *dev_info = &hba->dev_info;
7856 	u8 lun;
7857 	u32 d_lu_wb_buf_alloc;
7858 	u32 ext_ufs_feature;
7859 
7860 	if (!ufshcd_is_wb_allowed(hba))
7861 		return;
7862 
7863 	/*
7864 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7865 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7866 	 * enabled
7867 	 */
7868 	if (!(dev_info->wspecversion >= 0x310 ||
7869 	      dev_info->wspecversion == 0x220 ||
7870 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7871 		goto wb_disabled;
7872 
7873 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7874 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7875 
7876 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7877 		goto wb_disabled;
7878 
7879 	/*
7880 	 * WB may be supported but not configured while provisioning. The spec
7881 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7882 	 * buffer configured.
7883 	 */
7884 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7885 
7886 	dev_info->b_presrv_uspc_en =
7887 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7888 
7889 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7890 		if (!get_unaligned_be32(desc_buf +
7891 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7892 			goto wb_disabled;
7893 	} else {
7894 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7895 			d_lu_wb_buf_alloc = 0;
7896 			ufshcd_read_unit_desc_param(hba,
7897 					lun,
7898 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7899 					(u8 *)&d_lu_wb_buf_alloc,
7900 					sizeof(d_lu_wb_buf_alloc));
7901 			if (d_lu_wb_buf_alloc) {
7902 				dev_info->wb_dedicated_lu = lun;
7903 				break;
7904 			}
7905 		}
7906 
7907 		if (!d_lu_wb_buf_alloc)
7908 			goto wb_disabled;
7909 	}
7910 
7911 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7912 		goto wb_disabled;
7913 
7914 	return;
7915 
7916 wb_disabled:
7917 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7918 }
7919 
7920 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7921 {
7922 	struct ufs_dev_info *dev_info = &hba->dev_info;
7923 	u32 ext_ufs_feature;
7924 	u8 mask = 0;
7925 
7926 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7927 		return;
7928 
7929 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7930 
7931 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7932 		mask |= MASK_EE_TOO_LOW_TEMP;
7933 
7934 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7935 		mask |= MASK_EE_TOO_HIGH_TEMP;
7936 
7937 	if (mask) {
7938 		ufshcd_enable_ee(hba, mask);
7939 		ufs_hwmon_probe(hba, mask);
7940 	}
7941 }
7942 
7943 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
7944 {
7945 	struct ufs_dev_info *dev_info = &hba->dev_info;
7946 	u32 ext_ufs_feature;
7947 	u32 ext_iid_en = 0;
7948 	int err;
7949 
7950 	/* Only UFS-4.0 and above may support EXT_IID */
7951 	if (dev_info->wspecversion < 0x400)
7952 		goto out;
7953 
7954 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7955 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7956 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
7957 		goto out;
7958 
7959 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
7960 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
7961 	if (err)
7962 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
7963 
7964 out:
7965 	dev_info->b_ext_iid_en = ext_iid_en;
7966 }
7967 
7968 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7969 			     const struct ufs_dev_quirk *fixups)
7970 {
7971 	const struct ufs_dev_quirk *f;
7972 	struct ufs_dev_info *dev_info = &hba->dev_info;
7973 
7974 	if (!fixups)
7975 		return;
7976 
7977 	for (f = fixups; f->quirk; f++) {
7978 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7979 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7980 		     ((dev_info->model &&
7981 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7982 		      !strcmp(f->model, UFS_ANY_MODEL)))
7983 			hba->dev_quirks |= f->quirk;
7984 	}
7985 }
7986 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7987 
7988 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7989 {
7990 	/* fix by general quirk table */
7991 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7992 
7993 	/* allow vendors to fix quirks */
7994 	ufshcd_vops_fixup_dev_quirks(hba);
7995 }
7996 
7997 static int ufs_get_device_desc(struct ufs_hba *hba)
7998 {
7999 	int err;
8000 	u8 model_index;
8001 	u8 b_ufs_feature_sup;
8002 	u8 *desc_buf;
8003 	struct ufs_dev_info *dev_info = &hba->dev_info;
8004 
8005 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8006 	if (!desc_buf) {
8007 		err = -ENOMEM;
8008 		goto out;
8009 	}
8010 
8011 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8012 				     QUERY_DESC_MAX_SIZE);
8013 	if (err) {
8014 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8015 			__func__, err);
8016 		goto out;
8017 	}
8018 
8019 	/*
8020 	 * getting vendor (manufacturerID) and Bank Index in big endian
8021 	 * format
8022 	 */
8023 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8024 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8025 
8026 	/* getting Specification Version in big endian format */
8027 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8028 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8029 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8030 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
8031 
8032 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8033 
8034 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
8035 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
8036 		bool hpb_en = false;
8037 
8038 		ufshpb_get_dev_info(hba, desc_buf);
8039 
8040 		if (!ufshpb_is_legacy(hba))
8041 			err = ufshcd_query_flag_retry(hba,
8042 						      UPIU_QUERY_OPCODE_READ_FLAG,
8043 						      QUERY_FLAG_IDN_HPB_EN, 0,
8044 						      &hpb_en);
8045 
8046 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
8047 			dev_info->hpb_enabled = true;
8048 	}
8049 
8050 	err = ufshcd_read_string_desc(hba, model_index,
8051 				      &dev_info->model, SD_ASCII_STD);
8052 	if (err < 0) {
8053 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8054 			__func__, err);
8055 		goto out;
8056 	}
8057 
8058 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8059 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8060 
8061 	ufs_fixup_device_setup(hba);
8062 
8063 	ufshcd_wb_probe(hba, desc_buf);
8064 
8065 	ufshcd_temp_notif_probe(hba, desc_buf);
8066 
8067 	if (hba->ext_iid_sup)
8068 		ufshcd_ext_iid_probe(hba, desc_buf);
8069 
8070 	/*
8071 	 * ufshcd_read_string_desc returns size of the string
8072 	 * reset the error value
8073 	 */
8074 	err = 0;
8075 
8076 out:
8077 	kfree(desc_buf);
8078 	return err;
8079 }
8080 
8081 static void ufs_put_device_desc(struct ufs_hba *hba)
8082 {
8083 	struct ufs_dev_info *dev_info = &hba->dev_info;
8084 
8085 	kfree(dev_info->model);
8086 	dev_info->model = NULL;
8087 }
8088 
8089 /**
8090  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8091  * @hba: per-adapter instance
8092  *
8093  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8094  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8095  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8096  * the hibern8 exit latency.
8097  *
8098  * Returns zero on success, non-zero error value on failure.
8099  */
8100 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8101 {
8102 	int ret = 0;
8103 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8104 
8105 	ret = ufshcd_dme_peer_get(hba,
8106 				  UIC_ARG_MIB_SEL(
8107 					RX_MIN_ACTIVATETIME_CAPABILITY,
8108 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8109 				  &peer_rx_min_activatetime);
8110 	if (ret)
8111 		goto out;
8112 
8113 	/* make sure proper unit conversion is applied */
8114 	tuned_pa_tactivate =
8115 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8116 		 / PA_TACTIVATE_TIME_UNIT_US);
8117 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8118 			     tuned_pa_tactivate);
8119 
8120 out:
8121 	return ret;
8122 }
8123 
8124 /**
8125  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8126  * @hba: per-adapter instance
8127  *
8128  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8129  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8130  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8131  * This optimal value can help reduce the hibern8 exit latency.
8132  *
8133  * Returns zero on success, non-zero error value on failure.
8134  */
8135 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8136 {
8137 	int ret = 0;
8138 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8139 	u32 max_hibern8_time, tuned_pa_hibern8time;
8140 
8141 	ret = ufshcd_dme_get(hba,
8142 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8143 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8144 				  &local_tx_hibern8_time_cap);
8145 	if (ret)
8146 		goto out;
8147 
8148 	ret = ufshcd_dme_peer_get(hba,
8149 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8150 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8151 				  &peer_rx_hibern8_time_cap);
8152 	if (ret)
8153 		goto out;
8154 
8155 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8156 			       peer_rx_hibern8_time_cap);
8157 	/* make sure proper unit conversion is applied */
8158 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8159 				/ PA_HIBERN8_TIME_UNIT_US);
8160 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8161 			     tuned_pa_hibern8time);
8162 out:
8163 	return ret;
8164 }
8165 
8166 /**
8167  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8168  * less than device PA_TACTIVATE time.
8169  * @hba: per-adapter instance
8170  *
8171  * Some UFS devices require host PA_TACTIVATE to be lower than device
8172  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8173  * for such devices.
8174  *
8175  * Returns zero on success, non-zero error value on failure.
8176  */
8177 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8178 {
8179 	int ret = 0;
8180 	u32 granularity, peer_granularity;
8181 	u32 pa_tactivate, peer_pa_tactivate;
8182 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8183 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8184 
8185 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8186 				  &granularity);
8187 	if (ret)
8188 		goto out;
8189 
8190 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8191 				  &peer_granularity);
8192 	if (ret)
8193 		goto out;
8194 
8195 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8196 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8197 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8198 			__func__, granularity);
8199 		return -EINVAL;
8200 	}
8201 
8202 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8203 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8204 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8205 			__func__, peer_granularity);
8206 		return -EINVAL;
8207 	}
8208 
8209 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8210 	if (ret)
8211 		goto out;
8212 
8213 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8214 				  &peer_pa_tactivate);
8215 	if (ret)
8216 		goto out;
8217 
8218 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8219 	peer_pa_tactivate_us = peer_pa_tactivate *
8220 			     gran_to_us_table[peer_granularity - 1];
8221 
8222 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8223 		u32 new_peer_pa_tactivate;
8224 
8225 		new_peer_pa_tactivate = pa_tactivate_us /
8226 				      gran_to_us_table[peer_granularity - 1];
8227 		new_peer_pa_tactivate++;
8228 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8229 					  new_peer_pa_tactivate);
8230 	}
8231 
8232 out:
8233 	return ret;
8234 }
8235 
8236 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8237 {
8238 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8239 		ufshcd_tune_pa_tactivate(hba);
8240 		ufshcd_tune_pa_hibern8time(hba);
8241 	}
8242 
8243 	ufshcd_vops_apply_dev_quirks(hba);
8244 
8245 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8246 		/* set 1ms timeout for PA_TACTIVATE */
8247 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8248 
8249 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8250 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8251 }
8252 
8253 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8254 {
8255 	hba->ufs_stats.hibern8_exit_cnt = 0;
8256 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8257 	hba->req_abort_count = 0;
8258 }
8259 
8260 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8261 {
8262 	int err;
8263 	u8 *desc_buf;
8264 
8265 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8266 	if (!desc_buf) {
8267 		err = -ENOMEM;
8268 		goto out;
8269 	}
8270 
8271 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8272 				     desc_buf, QUERY_DESC_MAX_SIZE);
8273 	if (err) {
8274 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8275 				__func__, err);
8276 		goto out;
8277 	}
8278 
8279 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8280 		hba->dev_info.max_lu_supported = 32;
8281 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8282 		hba->dev_info.max_lu_supported = 8;
8283 
8284 	if (desc_buf[QUERY_DESC_LENGTH_OFFSET] >=
8285 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8286 		ufshpb_get_geo_info(hba, desc_buf);
8287 
8288 out:
8289 	kfree(desc_buf);
8290 	return err;
8291 }
8292 
8293 struct ufs_ref_clk {
8294 	unsigned long freq_hz;
8295 	enum ufs_ref_clk_freq val;
8296 };
8297 
8298 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8299 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8300 	{26000000, REF_CLK_FREQ_26_MHZ},
8301 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8302 	{52000000, REF_CLK_FREQ_52_MHZ},
8303 	{0, REF_CLK_FREQ_INVAL},
8304 };
8305 
8306 static enum ufs_ref_clk_freq
8307 ufs_get_bref_clk_from_hz(unsigned long freq)
8308 {
8309 	int i;
8310 
8311 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8312 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8313 			return ufs_ref_clk_freqs[i].val;
8314 
8315 	return REF_CLK_FREQ_INVAL;
8316 }
8317 
8318 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8319 {
8320 	unsigned long freq;
8321 
8322 	freq = clk_get_rate(refclk);
8323 
8324 	hba->dev_ref_clk_freq =
8325 		ufs_get_bref_clk_from_hz(freq);
8326 
8327 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8328 		dev_err(hba->dev,
8329 		"invalid ref_clk setting = %ld\n", freq);
8330 }
8331 
8332 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8333 {
8334 	int err;
8335 	u32 ref_clk;
8336 	u32 freq = hba->dev_ref_clk_freq;
8337 
8338 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8339 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8340 
8341 	if (err) {
8342 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8343 			err);
8344 		goto out;
8345 	}
8346 
8347 	if (ref_clk == freq)
8348 		goto out; /* nothing to update */
8349 
8350 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8351 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8352 
8353 	if (err) {
8354 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8355 			ufs_ref_clk_freqs[freq].freq_hz);
8356 		goto out;
8357 	}
8358 
8359 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8360 			ufs_ref_clk_freqs[freq].freq_hz);
8361 
8362 out:
8363 	return err;
8364 }
8365 
8366 static int ufshcd_device_params_init(struct ufs_hba *hba)
8367 {
8368 	bool flag;
8369 	int ret;
8370 
8371 	/* Init UFS geometry descriptor related parameters */
8372 	ret = ufshcd_device_geo_params_init(hba);
8373 	if (ret)
8374 		goto out;
8375 
8376 	/* Check and apply UFS device quirks */
8377 	ret = ufs_get_device_desc(hba);
8378 	if (ret) {
8379 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8380 			__func__, ret);
8381 		goto out;
8382 	}
8383 
8384 	ufshcd_get_ref_clk_gating_wait(hba);
8385 
8386 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8387 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8388 		hba->dev_info.f_power_on_wp_en = flag;
8389 
8390 	/* Probe maximum power mode co-supported by both UFS host and device */
8391 	if (ufshcd_get_max_pwr_mode(hba))
8392 		dev_err(hba->dev,
8393 			"%s: Failed getting max supported power mode\n",
8394 			__func__);
8395 out:
8396 	return ret;
8397 }
8398 
8399 /**
8400  * ufshcd_add_lus - probe and add UFS logical units
8401  * @hba: per-adapter instance
8402  */
8403 static int ufshcd_add_lus(struct ufs_hba *hba)
8404 {
8405 	int ret;
8406 
8407 	/* Add required well known logical units to scsi mid layer */
8408 	ret = ufshcd_scsi_add_wlus(hba);
8409 	if (ret)
8410 		goto out;
8411 
8412 	/* Initialize devfreq after UFS device is detected */
8413 	if (ufshcd_is_clkscaling_supported(hba)) {
8414 		memcpy(&hba->clk_scaling.saved_pwr_info,
8415 			&hba->pwr_info,
8416 			sizeof(struct ufs_pa_layer_attr));
8417 		hba->clk_scaling.is_allowed = true;
8418 
8419 		ret = ufshcd_devfreq_init(hba);
8420 		if (ret)
8421 			goto out;
8422 
8423 		hba->clk_scaling.is_enabled = true;
8424 		ufshcd_init_clk_scaling_sysfs(hba);
8425 	}
8426 
8427 	ufs_bsg_probe(hba);
8428 	ufshpb_init(hba);
8429 	scsi_scan_host(hba->host);
8430 	pm_runtime_put_sync(hba->dev);
8431 
8432 out:
8433 	return ret;
8434 }
8435 
8436 /* SDB - Single Doorbell */
8437 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8438 {
8439 	size_t ucdl_size, utrdl_size;
8440 
8441 	ucdl_size = sizeof(struct utp_transfer_cmd_desc) * nutrs;
8442 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8443 			   hba->ucdl_dma_addr);
8444 
8445 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8446 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8447 			   hba->utrdl_dma_addr);
8448 
8449 	devm_kfree(hba->dev, hba->lrb);
8450 }
8451 
8452 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8453 {
8454 	int ret;
8455 	int old_nutrs = hba->nutrs;
8456 
8457 	ret = ufshcd_mcq_decide_queue_depth(hba);
8458 	if (ret < 0)
8459 		return ret;
8460 
8461 	hba->nutrs = ret;
8462 	ret = ufshcd_mcq_init(hba);
8463 	if (ret)
8464 		goto err;
8465 
8466 	/*
8467 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8468 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8469 	 */
8470 	if (hba->nutrs != old_nutrs) {
8471 		ufshcd_release_sdb_queue(hba, old_nutrs);
8472 		ret = ufshcd_memory_alloc(hba);
8473 		if (ret)
8474 			goto err;
8475 		ufshcd_host_memory_configure(hba);
8476 	}
8477 
8478 	ret = ufshcd_mcq_memory_alloc(hba);
8479 	if (ret)
8480 		goto err;
8481 
8482 	return 0;
8483 err:
8484 	hba->nutrs = old_nutrs;
8485 	return ret;
8486 }
8487 
8488 static void ufshcd_config_mcq(struct ufs_hba *hba)
8489 {
8490 	int ret;
8491 
8492 	ret = ufshcd_mcq_vops_config_esi(hba);
8493 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8494 
8495 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_MCQ_INTRS);
8496 	ufshcd_mcq_make_queues_operational(hba);
8497 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8498 
8499 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8500 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8501 
8502 	/* Select MCQ mode */
8503 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8504 		      REG_UFS_MEM_CFG);
8505 	hba->mcq_enabled = true;
8506 
8507 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8508 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8509 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8510 		 hba->nutrs);
8511 }
8512 
8513 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8514 {
8515 	int ret;
8516 	struct Scsi_Host *host = hba->host;
8517 
8518 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8519 
8520 	ret = ufshcd_link_startup(hba);
8521 	if (ret)
8522 		return ret;
8523 
8524 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8525 		return ret;
8526 
8527 	/* Debug counters initialization */
8528 	ufshcd_clear_dbg_ufs_stats(hba);
8529 
8530 	/* UniPro link is active now */
8531 	ufshcd_set_link_active(hba);
8532 
8533 	/* Reconfigure MCQ upon reset */
8534 	if (is_mcq_enabled(hba) && !init_dev_params)
8535 		ufshcd_config_mcq(hba);
8536 
8537 	/* Verify device initialization by sending NOP OUT UPIU */
8538 	ret = ufshcd_verify_dev_init(hba);
8539 	if (ret)
8540 		return ret;
8541 
8542 	/* Initiate UFS initialization, and waiting until completion */
8543 	ret = ufshcd_complete_dev_init(hba);
8544 	if (ret)
8545 		return ret;
8546 
8547 	/*
8548 	 * Initialize UFS device parameters used by driver, these
8549 	 * parameters are associated with UFS descriptors.
8550 	 */
8551 	if (init_dev_params) {
8552 		ret = ufshcd_device_params_init(hba);
8553 		if (ret)
8554 			return ret;
8555 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8556 			ret = ufshcd_alloc_mcq(hba);
8557 			if (!ret) {
8558 				ufshcd_config_mcq(hba);
8559 			} else {
8560 				/* Continue with SDB mode */
8561 				use_mcq_mode = false;
8562 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8563 					 ret);
8564 			}
8565 			ret = scsi_add_host(host, hba->dev);
8566 			if (ret) {
8567 				dev_err(hba->dev, "scsi_add_host failed\n");
8568 				return ret;
8569 			}
8570 			hba->scsi_host_added = true;
8571 		} else if (is_mcq_supported(hba)) {
8572 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8573 			ufshcd_config_mcq(hba);
8574 		}
8575 	}
8576 
8577 	ufshcd_tune_unipro_params(hba);
8578 
8579 	/* UFS device is also active now */
8580 	ufshcd_set_ufs_dev_active(hba);
8581 	ufshcd_force_reset_auto_bkops(hba);
8582 
8583 	/* Gear up to HS gear if supported */
8584 	if (hba->max_pwr_info.is_valid) {
8585 		/*
8586 		 * Set the right value to bRefClkFreq before attempting to
8587 		 * switch to HS gears.
8588 		 */
8589 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8590 			ufshcd_set_dev_ref_clk(hba);
8591 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8592 		if (ret) {
8593 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8594 					__func__, ret);
8595 			return ret;
8596 		}
8597 	}
8598 
8599 	return 0;
8600 }
8601 
8602 /**
8603  * ufshcd_probe_hba - probe hba to detect device and initialize it
8604  * @hba: per-adapter instance
8605  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8606  *
8607  * Execute link-startup and verify device initialization
8608  */
8609 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8610 {
8611 	ktime_t start = ktime_get();
8612 	unsigned long flags;
8613 	int ret;
8614 
8615 	ret = ufshcd_device_init(hba, init_dev_params);
8616 	if (ret)
8617 		goto out;
8618 
8619 	if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8620 		/* Reset the device and controller before doing reinit */
8621 		ufshcd_device_reset(hba);
8622 		ufshcd_hba_stop(hba);
8623 		ufshcd_vops_reinit_notify(hba);
8624 		ret = ufshcd_hba_enable(hba);
8625 		if (ret) {
8626 			dev_err(hba->dev, "Host controller enable failed\n");
8627 			ufshcd_print_evt_hist(hba);
8628 			ufshcd_print_host_state(hba);
8629 			goto out;
8630 		}
8631 
8632 		/* Reinit the device */
8633 		ret = ufshcd_device_init(hba, init_dev_params);
8634 		if (ret)
8635 			goto out;
8636 	}
8637 
8638 	ufshcd_print_pwr_info(hba);
8639 
8640 	/*
8641 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8642 	 * and for removable UFS card as well, hence always set the parameter.
8643 	 * Note: Error handler may issue the device reset hence resetting
8644 	 * bActiveICCLevel as well so it is always safe to set this here.
8645 	 */
8646 	ufshcd_set_active_icc_lvl(hba);
8647 
8648 	/* Enable UFS Write Booster if supported */
8649 	ufshcd_configure_wb(hba);
8650 
8651 	if (hba->ee_usr_mask)
8652 		ufshcd_write_ee_control(hba);
8653 	/* Enable Auto-Hibernate if configured */
8654 	ufshcd_auto_hibern8_enable(hba);
8655 
8656 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8657 out:
8658 	spin_lock_irqsave(hba->host->host_lock, flags);
8659 	if (ret)
8660 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8661 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8662 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8663 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8664 
8665 	trace_ufshcd_init(dev_name(hba->dev), ret,
8666 		ktime_to_us(ktime_sub(ktime_get(), start)),
8667 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8668 	return ret;
8669 }
8670 
8671 /**
8672  * ufshcd_async_scan - asynchronous execution for probing hba
8673  * @data: data pointer to pass to this function
8674  * @cookie: cookie data
8675  */
8676 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8677 {
8678 	struct ufs_hba *hba = (struct ufs_hba *)data;
8679 	int ret;
8680 
8681 	down(&hba->host_sem);
8682 	/* Initialize hba, detect and initialize UFS device */
8683 	ret = ufshcd_probe_hba(hba, true);
8684 	up(&hba->host_sem);
8685 	if (ret)
8686 		goto out;
8687 
8688 	/* Probe and add UFS logical units  */
8689 	ret = ufshcd_add_lus(hba);
8690 out:
8691 	/*
8692 	 * If we failed to initialize the device or the device is not
8693 	 * present, turn off the power/clocks etc.
8694 	 */
8695 	if (ret) {
8696 		pm_runtime_put_sync(hba->dev);
8697 		ufshcd_hba_exit(hba);
8698 	}
8699 }
8700 
8701 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8702 {
8703 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8704 
8705 	if (!hba->system_suspending) {
8706 		/* Activate the error handler in the SCSI core. */
8707 		return SCSI_EH_NOT_HANDLED;
8708 	}
8709 
8710 	/*
8711 	 * If we get here we know that no TMFs are outstanding and also that
8712 	 * the only pending command is a START STOP UNIT command. Handle the
8713 	 * timeout of that command directly to prevent a deadlock between
8714 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8715 	 */
8716 	ufshcd_link_recovery(hba);
8717 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8718 		 __func__, hba->outstanding_tasks);
8719 
8720 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8721 }
8722 
8723 static const struct attribute_group *ufshcd_driver_groups[] = {
8724 	&ufs_sysfs_unit_descriptor_group,
8725 	&ufs_sysfs_lun_attributes_group,
8726 #ifdef CONFIG_SCSI_UFS_HPB
8727 	&ufs_sysfs_hpb_stat_group,
8728 	&ufs_sysfs_hpb_param_group,
8729 #endif
8730 	NULL,
8731 };
8732 
8733 static struct ufs_hba_variant_params ufs_hba_vps = {
8734 	.hba_enable_delay_us		= 1000,
8735 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8736 	.devfreq_profile.polling_ms	= 100,
8737 	.devfreq_profile.target		= ufshcd_devfreq_target,
8738 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8739 	.ondemand_data.upthreshold	= 70,
8740 	.ondemand_data.downdifferential	= 5,
8741 };
8742 
8743 static const struct scsi_host_template ufshcd_driver_template = {
8744 	.module			= THIS_MODULE,
8745 	.name			= UFSHCD,
8746 	.proc_name		= UFSHCD,
8747 	.map_queues		= ufshcd_map_queues,
8748 	.queuecommand		= ufshcd_queuecommand,
8749 	.mq_poll		= ufshcd_poll,
8750 	.slave_alloc		= ufshcd_slave_alloc,
8751 	.slave_configure	= ufshcd_slave_configure,
8752 	.slave_destroy		= ufshcd_slave_destroy,
8753 	.change_queue_depth	= ufshcd_change_queue_depth,
8754 	.eh_abort_handler	= ufshcd_abort,
8755 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8756 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8757 	.eh_timed_out		= ufshcd_eh_timed_out,
8758 	.this_id		= -1,
8759 	.sg_tablesize		= SG_ALL,
8760 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8761 	.can_queue		= UFSHCD_CAN_QUEUE,
8762 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8763 	.max_sectors		= (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8764 	.max_host_blocked	= 1,
8765 	.track_queue_depth	= 1,
8766 	.skip_settle_delay	= 1,
8767 	.sdev_groups		= ufshcd_driver_groups,
8768 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8769 };
8770 
8771 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8772 				   int ua)
8773 {
8774 	int ret;
8775 
8776 	if (!vreg)
8777 		return 0;
8778 
8779 	/*
8780 	 * "set_load" operation shall be required on those regulators
8781 	 * which specifically configured current limitation. Otherwise
8782 	 * zero max_uA may cause unexpected behavior when regulator is
8783 	 * enabled or set as high power mode.
8784 	 */
8785 	if (!vreg->max_uA)
8786 		return 0;
8787 
8788 	ret = regulator_set_load(vreg->reg, ua);
8789 	if (ret < 0) {
8790 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8791 				__func__, vreg->name, ua, ret);
8792 	}
8793 
8794 	return ret;
8795 }
8796 
8797 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8798 					 struct ufs_vreg *vreg)
8799 {
8800 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8801 }
8802 
8803 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8804 					 struct ufs_vreg *vreg)
8805 {
8806 	if (!vreg)
8807 		return 0;
8808 
8809 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8810 }
8811 
8812 static int ufshcd_config_vreg(struct device *dev,
8813 		struct ufs_vreg *vreg, bool on)
8814 {
8815 	if (regulator_count_voltages(vreg->reg) <= 0)
8816 		return 0;
8817 
8818 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8819 }
8820 
8821 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8822 {
8823 	int ret = 0;
8824 
8825 	if (!vreg || vreg->enabled)
8826 		goto out;
8827 
8828 	ret = ufshcd_config_vreg(dev, vreg, true);
8829 	if (!ret)
8830 		ret = regulator_enable(vreg->reg);
8831 
8832 	if (!ret)
8833 		vreg->enabled = true;
8834 	else
8835 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8836 				__func__, vreg->name, ret);
8837 out:
8838 	return ret;
8839 }
8840 
8841 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8842 {
8843 	int ret = 0;
8844 
8845 	if (!vreg || !vreg->enabled || vreg->always_on)
8846 		goto out;
8847 
8848 	ret = regulator_disable(vreg->reg);
8849 
8850 	if (!ret) {
8851 		/* ignore errors on applying disable config */
8852 		ufshcd_config_vreg(dev, vreg, false);
8853 		vreg->enabled = false;
8854 	} else {
8855 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8856 				__func__, vreg->name, ret);
8857 	}
8858 out:
8859 	return ret;
8860 }
8861 
8862 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8863 {
8864 	int ret = 0;
8865 	struct device *dev = hba->dev;
8866 	struct ufs_vreg_info *info = &hba->vreg_info;
8867 
8868 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8869 	if (ret)
8870 		goto out;
8871 
8872 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8873 	if (ret)
8874 		goto out;
8875 
8876 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8877 
8878 out:
8879 	if (ret) {
8880 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8881 		ufshcd_toggle_vreg(dev, info->vccq, false);
8882 		ufshcd_toggle_vreg(dev, info->vcc, false);
8883 	}
8884 	return ret;
8885 }
8886 
8887 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8888 {
8889 	struct ufs_vreg_info *info = &hba->vreg_info;
8890 
8891 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8892 }
8893 
8894 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8895 {
8896 	int ret = 0;
8897 
8898 	if (!vreg)
8899 		goto out;
8900 
8901 	vreg->reg = devm_regulator_get(dev, vreg->name);
8902 	if (IS_ERR(vreg->reg)) {
8903 		ret = PTR_ERR(vreg->reg);
8904 		dev_err(dev, "%s: %s get failed, err=%d\n",
8905 				__func__, vreg->name, ret);
8906 	}
8907 out:
8908 	return ret;
8909 }
8910 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8911 
8912 static int ufshcd_init_vreg(struct ufs_hba *hba)
8913 {
8914 	int ret = 0;
8915 	struct device *dev = hba->dev;
8916 	struct ufs_vreg_info *info = &hba->vreg_info;
8917 
8918 	ret = ufshcd_get_vreg(dev, info->vcc);
8919 	if (ret)
8920 		goto out;
8921 
8922 	ret = ufshcd_get_vreg(dev, info->vccq);
8923 	if (!ret)
8924 		ret = ufshcd_get_vreg(dev, info->vccq2);
8925 out:
8926 	return ret;
8927 }
8928 
8929 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8930 {
8931 	struct ufs_vreg_info *info = &hba->vreg_info;
8932 
8933 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8934 }
8935 
8936 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8937 {
8938 	int ret = 0;
8939 	struct ufs_clk_info *clki;
8940 	struct list_head *head = &hba->clk_list_head;
8941 	unsigned long flags;
8942 	ktime_t start = ktime_get();
8943 	bool clk_state_changed = false;
8944 
8945 	if (list_empty(head))
8946 		goto out;
8947 
8948 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8949 	if (ret)
8950 		return ret;
8951 
8952 	list_for_each_entry(clki, head, list) {
8953 		if (!IS_ERR_OR_NULL(clki->clk)) {
8954 			/*
8955 			 * Don't disable clocks which are needed
8956 			 * to keep the link active.
8957 			 */
8958 			if (ufshcd_is_link_active(hba) &&
8959 			    clki->keep_link_active)
8960 				continue;
8961 
8962 			clk_state_changed = on ^ clki->enabled;
8963 			if (on && !clki->enabled) {
8964 				ret = clk_prepare_enable(clki->clk);
8965 				if (ret) {
8966 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8967 						__func__, clki->name, ret);
8968 					goto out;
8969 				}
8970 			} else if (!on && clki->enabled) {
8971 				clk_disable_unprepare(clki->clk);
8972 			}
8973 			clki->enabled = on;
8974 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8975 					clki->name, on ? "en" : "dis");
8976 		}
8977 	}
8978 
8979 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8980 	if (ret)
8981 		return ret;
8982 
8983 out:
8984 	if (ret) {
8985 		list_for_each_entry(clki, head, list) {
8986 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8987 				clk_disable_unprepare(clki->clk);
8988 		}
8989 	} else if (!ret && on) {
8990 		spin_lock_irqsave(hba->host->host_lock, flags);
8991 		hba->clk_gating.state = CLKS_ON;
8992 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8993 					hba->clk_gating.state);
8994 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8995 	}
8996 
8997 	if (clk_state_changed)
8998 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8999 			(on ? "on" : "off"),
9000 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9001 	return ret;
9002 }
9003 
9004 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9005 {
9006 	u32 freq;
9007 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9008 
9009 	if (ret) {
9010 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9011 		return REF_CLK_FREQ_INVAL;
9012 	}
9013 
9014 	return ufs_get_bref_clk_from_hz(freq);
9015 }
9016 
9017 static int ufshcd_init_clocks(struct ufs_hba *hba)
9018 {
9019 	int ret = 0;
9020 	struct ufs_clk_info *clki;
9021 	struct device *dev = hba->dev;
9022 	struct list_head *head = &hba->clk_list_head;
9023 
9024 	if (list_empty(head))
9025 		goto out;
9026 
9027 	list_for_each_entry(clki, head, list) {
9028 		if (!clki->name)
9029 			continue;
9030 
9031 		clki->clk = devm_clk_get(dev, clki->name);
9032 		if (IS_ERR(clki->clk)) {
9033 			ret = PTR_ERR(clki->clk);
9034 			dev_err(dev, "%s: %s clk get failed, %d\n",
9035 					__func__, clki->name, ret);
9036 			goto out;
9037 		}
9038 
9039 		/*
9040 		 * Parse device ref clk freq as per device tree "ref_clk".
9041 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9042 		 * in ufshcd_alloc_host().
9043 		 */
9044 		if (!strcmp(clki->name, "ref_clk"))
9045 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9046 
9047 		if (clki->max_freq) {
9048 			ret = clk_set_rate(clki->clk, clki->max_freq);
9049 			if (ret) {
9050 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9051 					__func__, clki->name,
9052 					clki->max_freq, ret);
9053 				goto out;
9054 			}
9055 			clki->curr_freq = clki->max_freq;
9056 		}
9057 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9058 				clki->name, clk_get_rate(clki->clk));
9059 	}
9060 out:
9061 	return ret;
9062 }
9063 
9064 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9065 {
9066 	int err = 0;
9067 
9068 	if (!hba->vops)
9069 		goto out;
9070 
9071 	err = ufshcd_vops_init(hba);
9072 	if (err)
9073 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
9074 			__func__, ufshcd_get_var_name(hba), err);
9075 out:
9076 	return err;
9077 }
9078 
9079 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9080 {
9081 	if (!hba->vops)
9082 		return;
9083 
9084 	ufshcd_vops_exit(hba);
9085 }
9086 
9087 static int ufshcd_hba_init(struct ufs_hba *hba)
9088 {
9089 	int err;
9090 
9091 	/*
9092 	 * Handle host controller power separately from the UFS device power
9093 	 * rails as it will help controlling the UFS host controller power
9094 	 * collapse easily which is different than UFS device power collapse.
9095 	 * Also, enable the host controller power before we go ahead with rest
9096 	 * of the initialization here.
9097 	 */
9098 	err = ufshcd_init_hba_vreg(hba);
9099 	if (err)
9100 		goto out;
9101 
9102 	err = ufshcd_setup_hba_vreg(hba, true);
9103 	if (err)
9104 		goto out;
9105 
9106 	err = ufshcd_init_clocks(hba);
9107 	if (err)
9108 		goto out_disable_hba_vreg;
9109 
9110 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9111 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9112 
9113 	err = ufshcd_setup_clocks(hba, true);
9114 	if (err)
9115 		goto out_disable_hba_vreg;
9116 
9117 	err = ufshcd_init_vreg(hba);
9118 	if (err)
9119 		goto out_disable_clks;
9120 
9121 	err = ufshcd_setup_vreg(hba, true);
9122 	if (err)
9123 		goto out_disable_clks;
9124 
9125 	err = ufshcd_variant_hba_init(hba);
9126 	if (err)
9127 		goto out_disable_vreg;
9128 
9129 	ufs_debugfs_hba_init(hba);
9130 
9131 	hba->is_powered = true;
9132 	goto out;
9133 
9134 out_disable_vreg:
9135 	ufshcd_setup_vreg(hba, false);
9136 out_disable_clks:
9137 	ufshcd_setup_clocks(hba, false);
9138 out_disable_hba_vreg:
9139 	ufshcd_setup_hba_vreg(hba, false);
9140 out:
9141 	return err;
9142 }
9143 
9144 static void ufshcd_hba_exit(struct ufs_hba *hba)
9145 {
9146 	if (hba->is_powered) {
9147 		ufshcd_exit_clk_scaling(hba);
9148 		ufshcd_exit_clk_gating(hba);
9149 		if (hba->eh_wq)
9150 			destroy_workqueue(hba->eh_wq);
9151 		ufs_debugfs_hba_exit(hba);
9152 		ufshcd_variant_hba_exit(hba);
9153 		ufshcd_setup_vreg(hba, false);
9154 		ufshcd_setup_clocks(hba, false);
9155 		ufshcd_setup_hba_vreg(hba, false);
9156 		hba->is_powered = false;
9157 		ufs_put_device_desc(hba);
9158 	}
9159 }
9160 
9161 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9162 				     enum ufs_dev_pwr_mode pwr_mode,
9163 				     struct scsi_sense_hdr *sshdr)
9164 {
9165 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9166 	const struct scsi_exec_args args = {
9167 		.sshdr = sshdr,
9168 		.req_flags = BLK_MQ_REQ_PM,
9169 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9170 	};
9171 
9172 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9173 			/*bufflen=*/0, /*timeout=*/HZ, /*retries=*/0, &args);
9174 }
9175 
9176 /**
9177  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9178  *			     power mode
9179  * @hba: per adapter instance
9180  * @pwr_mode: device power mode to set
9181  *
9182  * Returns 0 if requested power mode is set successfully
9183  * Returns < 0 if failed to set the requested power mode
9184  */
9185 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9186 				     enum ufs_dev_pwr_mode pwr_mode)
9187 {
9188 	struct scsi_sense_hdr sshdr;
9189 	struct scsi_device *sdp;
9190 	unsigned long flags;
9191 	int ret, retries;
9192 
9193 	spin_lock_irqsave(hba->host->host_lock, flags);
9194 	sdp = hba->ufs_device_wlun;
9195 	if (sdp && scsi_device_online(sdp))
9196 		ret = scsi_device_get(sdp);
9197 	else
9198 		ret = -ENODEV;
9199 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9200 
9201 	if (ret)
9202 		return ret;
9203 
9204 	/*
9205 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9206 	 * handling, which would wait for host to be resumed. Since we know
9207 	 * we are functional while we are here, skip host resume in error
9208 	 * handling context.
9209 	 */
9210 	hba->host->eh_noresume = 1;
9211 
9212 	/*
9213 	 * Current function would be generally called from the power management
9214 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9215 	 * already suspended childs.
9216 	 */
9217 	for (retries = 3; retries > 0; --retries) {
9218 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9219 		/*
9220 		 * scsi_execute() only returns a negative value if the request
9221 		 * queue is dying.
9222 		 */
9223 		if (ret <= 0)
9224 			break;
9225 	}
9226 	if (ret) {
9227 		sdev_printk(KERN_WARNING, sdp,
9228 			    "START_STOP failed for power mode: %d, result %x\n",
9229 			    pwr_mode, ret);
9230 		if (ret > 0) {
9231 			if (scsi_sense_valid(&sshdr))
9232 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9233 			ret = -EIO;
9234 		}
9235 	} else {
9236 		hba->curr_dev_pwr_mode = pwr_mode;
9237 	}
9238 
9239 	scsi_device_put(sdp);
9240 	hba->host->eh_noresume = 0;
9241 	return ret;
9242 }
9243 
9244 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9245 					enum uic_link_state req_link_state,
9246 					bool check_for_bkops)
9247 {
9248 	int ret = 0;
9249 
9250 	if (req_link_state == hba->uic_link_state)
9251 		return 0;
9252 
9253 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9254 		ret = ufshcd_uic_hibern8_enter(hba);
9255 		if (!ret) {
9256 			ufshcd_set_link_hibern8(hba);
9257 		} else {
9258 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9259 					__func__, ret);
9260 			goto out;
9261 		}
9262 	}
9263 	/*
9264 	 * If autobkops is enabled, link can't be turned off because
9265 	 * turning off the link would also turn off the device, except in the
9266 	 * case of DeepSleep where the device is expected to remain powered.
9267 	 */
9268 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9269 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9270 		/*
9271 		 * Let's make sure that link is in low power mode, we are doing
9272 		 * this currently by putting the link in Hibern8. Otherway to
9273 		 * put the link in low power mode is to send the DME end point
9274 		 * to device and then send the DME reset command to local
9275 		 * unipro. But putting the link in hibern8 is much faster.
9276 		 *
9277 		 * Note also that putting the link in Hibern8 is a requirement
9278 		 * for entering DeepSleep.
9279 		 */
9280 		ret = ufshcd_uic_hibern8_enter(hba);
9281 		if (ret) {
9282 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9283 					__func__, ret);
9284 			goto out;
9285 		}
9286 		/*
9287 		 * Change controller state to "reset state" which
9288 		 * should also put the link in off/reset state
9289 		 */
9290 		ufshcd_hba_stop(hba);
9291 		/*
9292 		 * TODO: Check if we need any delay to make sure that
9293 		 * controller is reset
9294 		 */
9295 		ufshcd_set_link_off(hba);
9296 	}
9297 
9298 out:
9299 	return ret;
9300 }
9301 
9302 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9303 {
9304 	bool vcc_off = false;
9305 
9306 	/*
9307 	 * It seems some UFS devices may keep drawing more than sleep current
9308 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9309 	 * To avoid this situation, add 2ms delay before putting these UFS
9310 	 * rails in LPM mode.
9311 	 */
9312 	if (!ufshcd_is_link_active(hba) &&
9313 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9314 		usleep_range(2000, 2100);
9315 
9316 	/*
9317 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9318 	 * power.
9319 	 *
9320 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9321 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9322 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9323 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9324 	 *
9325 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9326 	 * in low power state which would save some power.
9327 	 *
9328 	 * If Write Booster is enabled and the device needs to flush the WB
9329 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9330 	 */
9331 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9332 	    !hba->dev_info.is_lu_power_on_wp) {
9333 		ufshcd_setup_vreg(hba, false);
9334 		vcc_off = true;
9335 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9336 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9337 		vcc_off = true;
9338 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9339 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9340 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9341 		}
9342 	}
9343 
9344 	/*
9345 	 * Some UFS devices require delay after VCC power rail is turned-off.
9346 	 */
9347 	if (vcc_off && hba->vreg_info.vcc &&
9348 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9349 		usleep_range(5000, 5100);
9350 }
9351 
9352 #ifdef CONFIG_PM
9353 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9354 {
9355 	int ret = 0;
9356 
9357 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9358 	    !hba->dev_info.is_lu_power_on_wp) {
9359 		ret = ufshcd_setup_vreg(hba, true);
9360 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9361 		if (!ufshcd_is_link_active(hba)) {
9362 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9363 			if (ret)
9364 				goto vcc_disable;
9365 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9366 			if (ret)
9367 				goto vccq_lpm;
9368 		}
9369 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9370 	}
9371 	goto out;
9372 
9373 vccq_lpm:
9374 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9375 vcc_disable:
9376 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9377 out:
9378 	return ret;
9379 }
9380 #endif /* CONFIG_PM */
9381 
9382 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9383 {
9384 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9385 		ufshcd_setup_hba_vreg(hba, false);
9386 }
9387 
9388 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9389 {
9390 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9391 		ufshcd_setup_hba_vreg(hba, true);
9392 }
9393 
9394 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9395 {
9396 	int ret = 0;
9397 	bool check_for_bkops;
9398 	enum ufs_pm_level pm_lvl;
9399 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9400 	enum uic_link_state req_link_state;
9401 
9402 	hba->pm_op_in_progress = true;
9403 	if (pm_op != UFS_SHUTDOWN_PM) {
9404 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9405 			 hba->rpm_lvl : hba->spm_lvl;
9406 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9407 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9408 	} else {
9409 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9410 		req_link_state = UIC_LINK_OFF_STATE;
9411 	}
9412 
9413 	ufshpb_suspend(hba);
9414 
9415 	/*
9416 	 * If we can't transition into any of the low power modes
9417 	 * just gate the clocks.
9418 	 */
9419 	ufshcd_hold(hba, false);
9420 	hba->clk_gating.is_suspended = true;
9421 
9422 	if (ufshcd_is_clkscaling_supported(hba))
9423 		ufshcd_clk_scaling_suspend(hba, true);
9424 
9425 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9426 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9427 		goto vops_suspend;
9428 	}
9429 
9430 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9431 	    (req_link_state == hba->uic_link_state))
9432 		goto enable_scaling;
9433 
9434 	/* UFS device & link must be active before we enter in this function */
9435 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9436 		ret = -EINVAL;
9437 		goto enable_scaling;
9438 	}
9439 
9440 	if (pm_op == UFS_RUNTIME_PM) {
9441 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9442 			/*
9443 			 * The device is idle with no requests in the queue,
9444 			 * allow background operations if bkops status shows
9445 			 * that performance might be impacted.
9446 			 */
9447 			ret = ufshcd_urgent_bkops(hba);
9448 			if (ret)
9449 				goto enable_scaling;
9450 		} else {
9451 			/* make sure that auto bkops is disabled */
9452 			ufshcd_disable_auto_bkops(hba);
9453 		}
9454 		/*
9455 		 * If device needs to do BKOP or WB buffer flush during
9456 		 * Hibern8, keep device power mode as "active power mode"
9457 		 * and VCC supply.
9458 		 */
9459 		hba->dev_info.b_rpm_dev_flush_capable =
9460 			hba->auto_bkops_enabled ||
9461 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9462 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9463 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9464 			ufshcd_wb_need_flush(hba));
9465 	}
9466 
9467 	flush_work(&hba->eeh_work);
9468 
9469 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9470 	if (ret)
9471 		goto enable_scaling;
9472 
9473 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9474 		if (pm_op != UFS_RUNTIME_PM)
9475 			/* ensure that bkops is disabled */
9476 			ufshcd_disable_auto_bkops(hba);
9477 
9478 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9479 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9480 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9481 				/*
9482 				 * If return err in suspend flow, IO will hang.
9483 				 * Trigger error handler and break suspend for
9484 				 * error recovery.
9485 				 */
9486 				ufshcd_force_error_recovery(hba);
9487 				ret = -EBUSY;
9488 			}
9489 			if (ret)
9490 				goto enable_scaling;
9491 		}
9492 	}
9493 
9494 	/*
9495 	 * In the case of DeepSleep, the device is expected to remain powered
9496 	 * with the link off, so do not check for bkops.
9497 	 */
9498 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9499 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9500 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9501 		/*
9502 		 * If return err in suspend flow, IO will hang.
9503 		 * Trigger error handler and break suspend for
9504 		 * error recovery.
9505 		 */
9506 		ufshcd_force_error_recovery(hba);
9507 		ret = -EBUSY;
9508 	}
9509 	if (ret)
9510 		goto set_dev_active;
9511 
9512 vops_suspend:
9513 	/*
9514 	 * Call vendor specific suspend callback. As these callbacks may access
9515 	 * vendor specific host controller register space call them before the
9516 	 * host clocks are ON.
9517 	 */
9518 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9519 	if (ret)
9520 		goto set_link_active;
9521 	goto out;
9522 
9523 set_link_active:
9524 	/*
9525 	 * Device hardware reset is required to exit DeepSleep. Also, for
9526 	 * DeepSleep, the link is off so host reset and restore will be done
9527 	 * further below.
9528 	 */
9529 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9530 		ufshcd_device_reset(hba);
9531 		WARN_ON(!ufshcd_is_link_off(hba));
9532 	}
9533 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9534 		ufshcd_set_link_active(hba);
9535 	else if (ufshcd_is_link_off(hba))
9536 		ufshcd_host_reset_and_restore(hba);
9537 set_dev_active:
9538 	/* Can also get here needing to exit DeepSleep */
9539 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9540 		ufshcd_device_reset(hba);
9541 		ufshcd_host_reset_and_restore(hba);
9542 	}
9543 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9544 		ufshcd_disable_auto_bkops(hba);
9545 enable_scaling:
9546 	if (ufshcd_is_clkscaling_supported(hba))
9547 		ufshcd_clk_scaling_suspend(hba, false);
9548 
9549 	hba->dev_info.b_rpm_dev_flush_capable = false;
9550 out:
9551 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9552 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9553 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9554 	}
9555 
9556 	if (ret) {
9557 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9558 		hba->clk_gating.is_suspended = false;
9559 		ufshcd_release(hba);
9560 		ufshpb_resume(hba);
9561 	}
9562 	hba->pm_op_in_progress = false;
9563 	return ret;
9564 }
9565 
9566 #ifdef CONFIG_PM
9567 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9568 {
9569 	int ret;
9570 	enum uic_link_state old_link_state = hba->uic_link_state;
9571 
9572 	hba->pm_op_in_progress = true;
9573 
9574 	/*
9575 	 * Call vendor specific resume callback. As these callbacks may access
9576 	 * vendor specific host controller register space call them when the
9577 	 * host clocks are ON.
9578 	 */
9579 	ret = ufshcd_vops_resume(hba, pm_op);
9580 	if (ret)
9581 		goto out;
9582 
9583 	/* For DeepSleep, the only supported option is to have the link off */
9584 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9585 
9586 	if (ufshcd_is_link_hibern8(hba)) {
9587 		ret = ufshcd_uic_hibern8_exit(hba);
9588 		if (!ret) {
9589 			ufshcd_set_link_active(hba);
9590 		} else {
9591 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9592 					__func__, ret);
9593 			goto vendor_suspend;
9594 		}
9595 	} else if (ufshcd_is_link_off(hba)) {
9596 		/*
9597 		 * A full initialization of the host and the device is
9598 		 * required since the link was put to off during suspend.
9599 		 * Note, in the case of DeepSleep, the device will exit
9600 		 * DeepSleep due to device reset.
9601 		 */
9602 		ret = ufshcd_reset_and_restore(hba);
9603 		/*
9604 		 * ufshcd_reset_and_restore() should have already
9605 		 * set the link state as active
9606 		 */
9607 		if (ret || !ufshcd_is_link_active(hba))
9608 			goto vendor_suspend;
9609 	}
9610 
9611 	if (!ufshcd_is_ufs_dev_active(hba)) {
9612 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9613 		if (ret)
9614 			goto set_old_link_state;
9615 	}
9616 
9617 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9618 		ufshcd_enable_auto_bkops(hba);
9619 	else
9620 		/*
9621 		 * If BKOPs operations are urgently needed at this moment then
9622 		 * keep auto-bkops enabled or else disable it.
9623 		 */
9624 		ufshcd_urgent_bkops(hba);
9625 
9626 	if (hba->ee_usr_mask)
9627 		ufshcd_write_ee_control(hba);
9628 
9629 	if (ufshcd_is_clkscaling_supported(hba))
9630 		ufshcd_clk_scaling_suspend(hba, false);
9631 
9632 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9633 		hba->dev_info.b_rpm_dev_flush_capable = false;
9634 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9635 	}
9636 
9637 	/* Enable Auto-Hibernate if configured */
9638 	ufshcd_auto_hibern8_enable(hba);
9639 
9640 	ufshpb_resume(hba);
9641 	goto out;
9642 
9643 set_old_link_state:
9644 	ufshcd_link_state_transition(hba, old_link_state, 0);
9645 vendor_suspend:
9646 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9647 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9648 out:
9649 	if (ret)
9650 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9651 	hba->clk_gating.is_suspended = false;
9652 	ufshcd_release(hba);
9653 	hba->pm_op_in_progress = false;
9654 	return ret;
9655 }
9656 
9657 static int ufshcd_wl_runtime_suspend(struct device *dev)
9658 {
9659 	struct scsi_device *sdev = to_scsi_device(dev);
9660 	struct ufs_hba *hba;
9661 	int ret;
9662 	ktime_t start = ktime_get();
9663 
9664 	hba = shost_priv(sdev->host);
9665 
9666 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9667 	if (ret)
9668 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9669 
9670 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9671 		ktime_to_us(ktime_sub(ktime_get(), start)),
9672 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9673 
9674 	return ret;
9675 }
9676 
9677 static int ufshcd_wl_runtime_resume(struct device *dev)
9678 {
9679 	struct scsi_device *sdev = to_scsi_device(dev);
9680 	struct ufs_hba *hba;
9681 	int ret = 0;
9682 	ktime_t start = ktime_get();
9683 
9684 	hba = shost_priv(sdev->host);
9685 
9686 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9687 	if (ret)
9688 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9689 
9690 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9691 		ktime_to_us(ktime_sub(ktime_get(), start)),
9692 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9693 
9694 	return ret;
9695 }
9696 #endif
9697 
9698 #ifdef CONFIG_PM_SLEEP
9699 static int ufshcd_wl_suspend(struct device *dev)
9700 {
9701 	struct scsi_device *sdev = to_scsi_device(dev);
9702 	struct ufs_hba *hba;
9703 	int ret = 0;
9704 	ktime_t start = ktime_get();
9705 
9706 	hba = shost_priv(sdev->host);
9707 	down(&hba->host_sem);
9708 	hba->system_suspending = true;
9709 
9710 	if (pm_runtime_suspended(dev))
9711 		goto out;
9712 
9713 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9714 	if (ret) {
9715 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9716 		up(&hba->host_sem);
9717 	}
9718 
9719 out:
9720 	if (!ret)
9721 		hba->is_sys_suspended = true;
9722 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9723 		ktime_to_us(ktime_sub(ktime_get(), start)),
9724 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9725 
9726 	return ret;
9727 }
9728 
9729 static int ufshcd_wl_resume(struct device *dev)
9730 {
9731 	struct scsi_device *sdev = to_scsi_device(dev);
9732 	struct ufs_hba *hba;
9733 	int ret = 0;
9734 	ktime_t start = ktime_get();
9735 
9736 	hba = shost_priv(sdev->host);
9737 
9738 	if (pm_runtime_suspended(dev))
9739 		goto out;
9740 
9741 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9742 	if (ret)
9743 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9744 out:
9745 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9746 		ktime_to_us(ktime_sub(ktime_get(), start)),
9747 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9748 	if (!ret)
9749 		hba->is_sys_suspended = false;
9750 	hba->system_suspending = false;
9751 	up(&hba->host_sem);
9752 	return ret;
9753 }
9754 #endif
9755 
9756 static void ufshcd_wl_shutdown(struct device *dev)
9757 {
9758 	struct scsi_device *sdev = to_scsi_device(dev);
9759 	struct ufs_hba *hba;
9760 
9761 	hba = shost_priv(sdev->host);
9762 
9763 	down(&hba->host_sem);
9764 	hba->shutting_down = true;
9765 	up(&hba->host_sem);
9766 
9767 	/* Turn on everything while shutting down */
9768 	ufshcd_rpm_get_sync(hba);
9769 	scsi_device_quiesce(sdev);
9770 	shost_for_each_device(sdev, hba->host) {
9771 		if (sdev == hba->ufs_device_wlun)
9772 			continue;
9773 		scsi_device_quiesce(sdev);
9774 	}
9775 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9776 }
9777 
9778 /**
9779  * ufshcd_suspend - helper function for suspend operations
9780  * @hba: per adapter instance
9781  *
9782  * This function will put disable irqs, turn off clocks
9783  * and set vreg and hba-vreg in lpm mode.
9784  */
9785 static int ufshcd_suspend(struct ufs_hba *hba)
9786 {
9787 	int ret;
9788 
9789 	if (!hba->is_powered)
9790 		return 0;
9791 	/*
9792 	 * Disable the host irq as host controller as there won't be any
9793 	 * host controller transaction expected till resume.
9794 	 */
9795 	ufshcd_disable_irq(hba);
9796 	ret = ufshcd_setup_clocks(hba, false);
9797 	if (ret) {
9798 		ufshcd_enable_irq(hba);
9799 		return ret;
9800 	}
9801 	if (ufshcd_is_clkgating_allowed(hba)) {
9802 		hba->clk_gating.state = CLKS_OFF;
9803 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9804 					hba->clk_gating.state);
9805 	}
9806 
9807 	ufshcd_vreg_set_lpm(hba);
9808 	/* Put the host controller in low power mode if possible */
9809 	ufshcd_hba_vreg_set_lpm(hba);
9810 	return ret;
9811 }
9812 
9813 #ifdef CONFIG_PM
9814 /**
9815  * ufshcd_resume - helper function for resume operations
9816  * @hba: per adapter instance
9817  *
9818  * This function basically turns on the regulators, clocks and
9819  * irqs of the hba.
9820  *
9821  * Returns 0 for success and non-zero for failure
9822  */
9823 static int ufshcd_resume(struct ufs_hba *hba)
9824 {
9825 	int ret;
9826 
9827 	if (!hba->is_powered)
9828 		return 0;
9829 
9830 	ufshcd_hba_vreg_set_hpm(hba);
9831 	ret = ufshcd_vreg_set_hpm(hba);
9832 	if (ret)
9833 		goto out;
9834 
9835 	/* Make sure clocks are enabled before accessing controller */
9836 	ret = ufshcd_setup_clocks(hba, true);
9837 	if (ret)
9838 		goto disable_vreg;
9839 
9840 	/* enable the host irq as host controller would be active soon */
9841 	ufshcd_enable_irq(hba);
9842 
9843 	goto out;
9844 
9845 disable_vreg:
9846 	ufshcd_vreg_set_lpm(hba);
9847 out:
9848 	if (ret)
9849 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9850 	return ret;
9851 }
9852 #endif /* CONFIG_PM */
9853 
9854 #ifdef CONFIG_PM_SLEEP
9855 /**
9856  * ufshcd_system_suspend - system suspend callback
9857  * @dev: Device associated with the UFS controller.
9858  *
9859  * Executed before putting the system into a sleep state in which the contents
9860  * of main memory are preserved.
9861  *
9862  * Returns 0 for success and non-zero for failure
9863  */
9864 int ufshcd_system_suspend(struct device *dev)
9865 {
9866 	struct ufs_hba *hba = dev_get_drvdata(dev);
9867 	int ret = 0;
9868 	ktime_t start = ktime_get();
9869 
9870 	if (pm_runtime_suspended(hba->dev))
9871 		goto out;
9872 
9873 	ret = ufshcd_suspend(hba);
9874 out:
9875 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9876 		ktime_to_us(ktime_sub(ktime_get(), start)),
9877 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9878 	return ret;
9879 }
9880 EXPORT_SYMBOL(ufshcd_system_suspend);
9881 
9882 /**
9883  * ufshcd_system_resume - system resume callback
9884  * @dev: Device associated with the UFS controller.
9885  *
9886  * Executed after waking the system up from a sleep state in which the contents
9887  * of main memory were preserved.
9888  *
9889  * Returns 0 for success and non-zero for failure
9890  */
9891 int ufshcd_system_resume(struct device *dev)
9892 {
9893 	struct ufs_hba *hba = dev_get_drvdata(dev);
9894 	ktime_t start = ktime_get();
9895 	int ret = 0;
9896 
9897 	if (pm_runtime_suspended(hba->dev))
9898 		goto out;
9899 
9900 	ret = ufshcd_resume(hba);
9901 
9902 out:
9903 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9904 		ktime_to_us(ktime_sub(ktime_get(), start)),
9905 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9906 
9907 	return ret;
9908 }
9909 EXPORT_SYMBOL(ufshcd_system_resume);
9910 #endif /* CONFIG_PM_SLEEP */
9911 
9912 #ifdef CONFIG_PM
9913 /**
9914  * ufshcd_runtime_suspend - runtime suspend callback
9915  * @dev: Device associated with the UFS controller.
9916  *
9917  * Check the description of ufshcd_suspend() function for more details.
9918  *
9919  * Returns 0 for success and non-zero for failure
9920  */
9921 int ufshcd_runtime_suspend(struct device *dev)
9922 {
9923 	struct ufs_hba *hba = dev_get_drvdata(dev);
9924 	int ret;
9925 	ktime_t start = ktime_get();
9926 
9927 	ret = ufshcd_suspend(hba);
9928 
9929 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9930 		ktime_to_us(ktime_sub(ktime_get(), start)),
9931 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9932 	return ret;
9933 }
9934 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9935 
9936 /**
9937  * ufshcd_runtime_resume - runtime resume routine
9938  * @dev: Device associated with the UFS controller.
9939  *
9940  * This function basically brings controller
9941  * to active state. Following operations are done in this function:
9942  *
9943  * 1. Turn on all the controller related clocks
9944  * 2. Turn ON VCC rail
9945  */
9946 int ufshcd_runtime_resume(struct device *dev)
9947 {
9948 	struct ufs_hba *hba = dev_get_drvdata(dev);
9949 	int ret;
9950 	ktime_t start = ktime_get();
9951 
9952 	ret = ufshcd_resume(hba);
9953 
9954 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9955 		ktime_to_us(ktime_sub(ktime_get(), start)),
9956 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9957 	return ret;
9958 }
9959 EXPORT_SYMBOL(ufshcd_runtime_resume);
9960 #endif /* CONFIG_PM */
9961 
9962 /**
9963  * ufshcd_shutdown - shutdown routine
9964  * @hba: per adapter instance
9965  *
9966  * This function would turn off both UFS device and UFS hba
9967  * regulators. It would also disable clocks.
9968  *
9969  * Returns 0 always to allow force shutdown even in case of errors.
9970  */
9971 int ufshcd_shutdown(struct ufs_hba *hba)
9972 {
9973 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9974 		ufshcd_suspend(hba);
9975 
9976 	hba->is_powered = false;
9977 	/* allow force shutdown even in case of errors */
9978 	return 0;
9979 }
9980 EXPORT_SYMBOL(ufshcd_shutdown);
9981 
9982 /**
9983  * ufshcd_remove - de-allocate SCSI host and host memory space
9984  *		data structure memory
9985  * @hba: per adapter instance
9986  */
9987 void ufshcd_remove(struct ufs_hba *hba)
9988 {
9989 	if (hba->ufs_device_wlun)
9990 		ufshcd_rpm_get_sync(hba);
9991 	ufs_hwmon_remove(hba);
9992 	ufs_bsg_remove(hba);
9993 	ufshpb_remove(hba);
9994 	ufs_sysfs_remove_nodes(hba->dev);
9995 	blk_mq_destroy_queue(hba->tmf_queue);
9996 	blk_put_queue(hba->tmf_queue);
9997 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9998 	scsi_remove_host(hba->host);
9999 	/* disable interrupts */
10000 	ufshcd_disable_intr(hba, hba->intr_mask);
10001 	ufshcd_hba_stop(hba);
10002 	ufshcd_hba_exit(hba);
10003 }
10004 EXPORT_SYMBOL_GPL(ufshcd_remove);
10005 
10006 #ifdef CONFIG_PM_SLEEP
10007 int ufshcd_system_freeze(struct device *dev)
10008 {
10009 
10010 	return ufshcd_system_suspend(dev);
10011 
10012 }
10013 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10014 
10015 int ufshcd_system_restore(struct device *dev)
10016 {
10017 
10018 	struct ufs_hba *hba = dev_get_drvdata(dev);
10019 	int ret;
10020 
10021 	ret = ufshcd_system_resume(dev);
10022 	if (ret)
10023 		return ret;
10024 
10025 	/* Configure UTRL and UTMRL base address registers */
10026 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10027 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10028 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10029 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10030 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10031 			REG_UTP_TASK_REQ_LIST_BASE_L);
10032 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10033 			REG_UTP_TASK_REQ_LIST_BASE_H);
10034 	/*
10035 	 * Make sure that UTRL and UTMRL base address registers
10036 	 * are updated with the latest queue addresses. Only after
10037 	 * updating these addresses, we can queue the new commands.
10038 	 */
10039 	mb();
10040 
10041 	/* Resuming from hibernate, assume that link was OFF */
10042 	ufshcd_set_link_off(hba);
10043 
10044 	return 0;
10045 
10046 }
10047 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10048 
10049 int ufshcd_system_thaw(struct device *dev)
10050 {
10051 	return ufshcd_system_resume(dev);
10052 }
10053 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10054 #endif /* CONFIG_PM_SLEEP  */
10055 
10056 /**
10057  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10058  * @hba: pointer to Host Bus Adapter (HBA)
10059  */
10060 void ufshcd_dealloc_host(struct ufs_hba *hba)
10061 {
10062 	scsi_host_put(hba->host);
10063 }
10064 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10065 
10066 /**
10067  * ufshcd_set_dma_mask - Set dma mask based on the controller
10068  *			 addressing capability
10069  * @hba: per adapter instance
10070  *
10071  * Returns 0 for success, non-zero for failure
10072  */
10073 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10074 {
10075 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10076 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10077 			return 0;
10078 	}
10079 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10080 }
10081 
10082 /**
10083  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10084  * @dev: pointer to device handle
10085  * @hba_handle: driver private handle
10086  * Returns 0 on success, non-zero value on failure
10087  */
10088 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10089 {
10090 	struct Scsi_Host *host;
10091 	struct ufs_hba *hba;
10092 	int err = 0;
10093 
10094 	if (!dev) {
10095 		dev_err(dev,
10096 		"Invalid memory reference for dev is NULL\n");
10097 		err = -ENODEV;
10098 		goto out_error;
10099 	}
10100 
10101 	host = scsi_host_alloc(&ufshcd_driver_template,
10102 				sizeof(struct ufs_hba));
10103 	if (!host) {
10104 		dev_err(dev, "scsi_host_alloc failed\n");
10105 		err = -ENOMEM;
10106 		goto out_error;
10107 	}
10108 	host->nr_maps = HCTX_TYPE_POLL + 1;
10109 	hba = shost_priv(host);
10110 	hba->host = host;
10111 	hba->dev = dev;
10112 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10113 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10114 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10115 	INIT_LIST_HEAD(&hba->clk_list_head);
10116 	spin_lock_init(&hba->outstanding_lock);
10117 
10118 	*hba_handle = hba;
10119 
10120 out_error:
10121 	return err;
10122 }
10123 EXPORT_SYMBOL(ufshcd_alloc_host);
10124 
10125 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10126 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10127 				     const struct blk_mq_queue_data *qd)
10128 {
10129 	WARN_ON_ONCE(true);
10130 	return BLK_STS_NOTSUPP;
10131 }
10132 
10133 static const struct blk_mq_ops ufshcd_tmf_ops = {
10134 	.queue_rq = ufshcd_queue_tmf,
10135 };
10136 
10137 /**
10138  * ufshcd_init - Driver initialization routine
10139  * @hba: per-adapter instance
10140  * @mmio_base: base register address
10141  * @irq: Interrupt line of device
10142  * Returns 0 on success, non-zero value on failure
10143  */
10144 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10145 {
10146 	int err;
10147 	struct Scsi_Host *host = hba->host;
10148 	struct device *dev = hba->dev;
10149 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10150 
10151 	/*
10152 	 * dev_set_drvdata() must be called before any callbacks are registered
10153 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10154 	 * sysfs).
10155 	 */
10156 	dev_set_drvdata(dev, hba);
10157 
10158 	if (!mmio_base) {
10159 		dev_err(hba->dev,
10160 		"Invalid memory reference for mmio_base is NULL\n");
10161 		err = -ENODEV;
10162 		goto out_error;
10163 	}
10164 
10165 	hba->mmio_base = mmio_base;
10166 	hba->irq = irq;
10167 	hba->vps = &ufs_hba_vps;
10168 
10169 	err = ufshcd_hba_init(hba);
10170 	if (err)
10171 		goto out_error;
10172 
10173 	/* Read capabilities registers */
10174 	err = ufshcd_hba_capabilities(hba);
10175 	if (err)
10176 		goto out_disable;
10177 
10178 	/* Get UFS version supported by the controller */
10179 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10180 
10181 	/* Get Interrupt bit mask per version */
10182 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10183 
10184 	err = ufshcd_set_dma_mask(hba);
10185 	if (err) {
10186 		dev_err(hba->dev, "set dma mask failed\n");
10187 		goto out_disable;
10188 	}
10189 
10190 	/* Allocate memory for host memory space */
10191 	err = ufshcd_memory_alloc(hba);
10192 	if (err) {
10193 		dev_err(hba->dev, "Memory allocation failed\n");
10194 		goto out_disable;
10195 	}
10196 
10197 	/* Configure LRB */
10198 	ufshcd_host_memory_configure(hba);
10199 
10200 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10201 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10202 	host->max_id = UFSHCD_MAX_ID;
10203 	host->max_lun = UFS_MAX_LUNS;
10204 	host->max_channel = UFSHCD_MAX_CHANNEL;
10205 	host->unique_id = host->host_no;
10206 	host->max_cmd_len = UFS_CDB_SIZE;
10207 
10208 	hba->max_pwr_info.is_valid = false;
10209 
10210 	/* Initialize work queues */
10211 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10212 		 hba->host->host_no);
10213 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10214 	if (!hba->eh_wq) {
10215 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10216 			__func__);
10217 		err = -ENOMEM;
10218 		goto out_disable;
10219 	}
10220 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10221 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10222 
10223 	sema_init(&hba->host_sem, 1);
10224 
10225 	/* Initialize UIC command mutex */
10226 	mutex_init(&hba->uic_cmd_mutex);
10227 
10228 	/* Initialize mutex for device management commands */
10229 	mutex_init(&hba->dev_cmd.lock);
10230 
10231 	/* Initialize mutex for exception event control */
10232 	mutex_init(&hba->ee_ctrl_mutex);
10233 
10234 	mutex_init(&hba->wb_mutex);
10235 	init_rwsem(&hba->clk_scaling_lock);
10236 
10237 	ufshcd_init_clk_gating(hba);
10238 
10239 	ufshcd_init_clk_scaling(hba);
10240 
10241 	/*
10242 	 * In order to avoid any spurious interrupt immediately after
10243 	 * registering UFS controller interrupt handler, clear any pending UFS
10244 	 * interrupt status and disable all the UFS interrupts.
10245 	 */
10246 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10247 		      REG_INTERRUPT_STATUS);
10248 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10249 	/*
10250 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10251 	 * status is cleared before registering UFS interrupt handler.
10252 	 */
10253 	mb();
10254 
10255 	/* IRQ registration */
10256 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10257 	if (err) {
10258 		dev_err(hba->dev, "request irq failed\n");
10259 		goto out_disable;
10260 	} else {
10261 		hba->is_irq_enabled = true;
10262 	}
10263 
10264 	if (!is_mcq_supported(hba)) {
10265 		err = scsi_add_host(host, hba->dev);
10266 		if (err) {
10267 			dev_err(hba->dev, "scsi_add_host failed\n");
10268 			goto out_disable;
10269 		}
10270 	}
10271 
10272 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10273 		.nr_hw_queues	= 1,
10274 		.queue_depth	= hba->nutmrs,
10275 		.ops		= &ufshcd_tmf_ops,
10276 		.flags		= BLK_MQ_F_NO_SCHED,
10277 	};
10278 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10279 	if (err < 0)
10280 		goto out_remove_scsi_host;
10281 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10282 	if (IS_ERR(hba->tmf_queue)) {
10283 		err = PTR_ERR(hba->tmf_queue);
10284 		goto free_tmf_tag_set;
10285 	}
10286 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10287 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10288 	if (!hba->tmf_rqs) {
10289 		err = -ENOMEM;
10290 		goto free_tmf_queue;
10291 	}
10292 
10293 	/* Reset the attached device */
10294 	ufshcd_device_reset(hba);
10295 
10296 	ufshcd_init_crypto(hba);
10297 
10298 	/* Host controller enable */
10299 	err = ufshcd_hba_enable(hba);
10300 	if (err) {
10301 		dev_err(hba->dev, "Host controller enable failed\n");
10302 		ufshcd_print_evt_hist(hba);
10303 		ufshcd_print_host_state(hba);
10304 		goto free_tmf_queue;
10305 	}
10306 
10307 	/*
10308 	 * Set the default power management level for runtime and system PM.
10309 	 * Default power saving mode is to keep UFS link in Hibern8 state
10310 	 * and UFS device in sleep state.
10311 	 */
10312 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10313 						UFS_SLEEP_PWR_MODE,
10314 						UIC_LINK_HIBERN8_STATE);
10315 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10316 						UFS_SLEEP_PWR_MODE,
10317 						UIC_LINK_HIBERN8_STATE);
10318 
10319 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10320 			  ufshcd_rpm_dev_flush_recheck_work);
10321 
10322 	/* Set the default auto-hiberate idle timer value to 150 ms */
10323 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10324 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10325 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10326 	}
10327 
10328 	/* Hold auto suspend until async scan completes */
10329 	pm_runtime_get_sync(dev);
10330 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10331 	/*
10332 	 * We are assuming that device wasn't put in sleep/power-down
10333 	 * state exclusively during the boot stage before kernel.
10334 	 * This assumption helps avoid doing link startup twice during
10335 	 * ufshcd_probe_hba().
10336 	 */
10337 	ufshcd_set_ufs_dev_active(hba);
10338 
10339 	async_schedule(ufshcd_async_scan, hba);
10340 	ufs_sysfs_add_nodes(hba->dev);
10341 
10342 	device_enable_async_suspend(dev);
10343 	return 0;
10344 
10345 free_tmf_queue:
10346 	blk_mq_destroy_queue(hba->tmf_queue);
10347 	blk_put_queue(hba->tmf_queue);
10348 free_tmf_tag_set:
10349 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10350 out_remove_scsi_host:
10351 	scsi_remove_host(hba->host);
10352 out_disable:
10353 	hba->is_irq_enabled = false;
10354 	ufshcd_hba_exit(hba);
10355 out_error:
10356 	return err;
10357 }
10358 EXPORT_SYMBOL_GPL(ufshcd_init);
10359 
10360 void ufshcd_resume_complete(struct device *dev)
10361 {
10362 	struct ufs_hba *hba = dev_get_drvdata(dev);
10363 
10364 	if (hba->complete_put) {
10365 		ufshcd_rpm_put(hba);
10366 		hba->complete_put = false;
10367 	}
10368 }
10369 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10370 
10371 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10372 {
10373 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10374 	enum ufs_dev_pwr_mode dev_pwr_mode;
10375 	enum uic_link_state link_state;
10376 	unsigned long flags;
10377 	bool res;
10378 
10379 	spin_lock_irqsave(&dev->power.lock, flags);
10380 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10381 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10382 	res = pm_runtime_suspended(dev) &&
10383 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10384 	      hba->uic_link_state == link_state &&
10385 	      !hba->dev_info.b_rpm_dev_flush_capable;
10386 	spin_unlock_irqrestore(&dev->power.lock, flags);
10387 
10388 	return res;
10389 }
10390 
10391 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10392 {
10393 	struct ufs_hba *hba = dev_get_drvdata(dev);
10394 	int ret;
10395 
10396 	/*
10397 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10398 	 * are same. And it doesn't wake up the device for system-suspend
10399 	 * if it's runtime suspended. But ufs doesn't follow that.
10400 	 * Refer ufshcd_resume_complete()
10401 	 */
10402 	if (hba->ufs_device_wlun) {
10403 		/* Prevent runtime suspend */
10404 		ufshcd_rpm_get_noresume(hba);
10405 		/*
10406 		 * Check if already runtime suspended in same state as system
10407 		 * suspend would be.
10408 		 */
10409 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10410 			/* RPM state is not ok for SPM, so runtime resume */
10411 			ret = ufshcd_rpm_resume(hba);
10412 			if (ret < 0 && ret != -EACCES) {
10413 				ufshcd_rpm_put(hba);
10414 				return ret;
10415 			}
10416 		}
10417 		hba->complete_put = true;
10418 	}
10419 	return 0;
10420 }
10421 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10422 
10423 int ufshcd_suspend_prepare(struct device *dev)
10424 {
10425 	return __ufshcd_suspend_prepare(dev, true);
10426 }
10427 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10428 
10429 #ifdef CONFIG_PM_SLEEP
10430 static int ufshcd_wl_poweroff(struct device *dev)
10431 {
10432 	struct scsi_device *sdev = to_scsi_device(dev);
10433 	struct ufs_hba *hba = shost_priv(sdev->host);
10434 
10435 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10436 	return 0;
10437 }
10438 #endif
10439 
10440 static int ufshcd_wl_probe(struct device *dev)
10441 {
10442 	struct scsi_device *sdev = to_scsi_device(dev);
10443 
10444 	if (!is_device_wlun(sdev))
10445 		return -ENODEV;
10446 
10447 	blk_pm_runtime_init(sdev->request_queue, dev);
10448 	pm_runtime_set_autosuspend_delay(dev, 0);
10449 	pm_runtime_allow(dev);
10450 
10451 	return  0;
10452 }
10453 
10454 static int ufshcd_wl_remove(struct device *dev)
10455 {
10456 	pm_runtime_forbid(dev);
10457 	return 0;
10458 }
10459 
10460 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10461 #ifdef CONFIG_PM_SLEEP
10462 	.suspend = ufshcd_wl_suspend,
10463 	.resume = ufshcd_wl_resume,
10464 	.freeze = ufshcd_wl_suspend,
10465 	.thaw = ufshcd_wl_resume,
10466 	.poweroff = ufshcd_wl_poweroff,
10467 	.restore = ufshcd_wl_resume,
10468 #endif
10469 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10470 };
10471 
10472 /*
10473  * ufs_dev_wlun_template - describes ufs device wlun
10474  * ufs-device wlun - used to send pm commands
10475  * All luns are consumers of ufs-device wlun.
10476  *
10477  * Currently, no sd driver is present for wluns.
10478  * Hence the no specific pm operations are performed.
10479  * With ufs design, SSU should be sent to ufs-device wlun.
10480  * Hence register a scsi driver for ufs wluns only.
10481  */
10482 static struct scsi_driver ufs_dev_wlun_template = {
10483 	.gendrv = {
10484 		.name = "ufs_device_wlun",
10485 		.owner = THIS_MODULE,
10486 		.probe = ufshcd_wl_probe,
10487 		.remove = ufshcd_wl_remove,
10488 		.pm = &ufshcd_wl_pm_ops,
10489 		.shutdown = ufshcd_wl_shutdown,
10490 	},
10491 };
10492 
10493 static int __init ufshcd_core_init(void)
10494 {
10495 	int ret;
10496 
10497 	ufs_debugfs_init();
10498 
10499 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10500 	if (ret)
10501 		ufs_debugfs_exit();
10502 	return ret;
10503 }
10504 
10505 static void __exit ufshcd_core_exit(void)
10506 {
10507 	ufs_debugfs_exit();
10508 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10509 }
10510 
10511 module_init(ufshcd_core_init);
10512 module_exit(ufshcd_core_exit);
10513 
10514 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10515 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10516 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10517 MODULE_SOFTDEP("pre: governor_simpleondemand");
10518 MODULE_LICENSE("GPL");
10519