xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 0e407915)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include "ufshcd-priv.h"
29 #include <ufs/ufs_quirks.h>
30 #include <ufs/unipro.h>
31 #include "ufs-sysfs.h"
32 #include "ufs-debugfs.h"
33 #include "ufs-fault-injection.h"
34 #include "ufs_bsg.h"
35 #include "ufshcd-crypto.h"
36 #include "ufshpb.h"
37 #include <asm/unaligned.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/ufs.h>
41 
42 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
43 				 UTP_TASK_REQ_COMPL |\
44 				 UFSHCD_ERROR_MASK)
45 /* UIC command timeout, unit: ms */
46 #define UIC_CMD_TIMEOUT	500
47 
48 /* NOP OUT retries waiting for NOP IN response */
49 #define NOP_OUT_RETRIES    10
50 /* Timeout after 50 msecs if NOP OUT hangs without response */
51 #define NOP_OUT_TIMEOUT    50 /* msecs */
52 
53 /* Query request retries */
54 #define QUERY_REQ_RETRIES 3
55 /* Query request timeout */
56 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
57 
58 /* Task management command timeout */
59 #define TM_CMD_TIMEOUT	100 /* msecs */
60 
61 /* maximum number of retries for a general UIC command  */
62 #define UFS_UIC_COMMAND_RETRIES 3
63 
64 /* maximum number of link-startup retries */
65 #define DME_LINKSTARTUP_RETRIES 3
66 
67 /* maximum number of reset retries before giving up */
68 #define MAX_HOST_RESET_RETRIES 5
69 
70 /* Maximum number of error handler retries before giving up */
71 #define MAX_ERR_HANDLER_RETRIES 5
72 
73 /* Expose the flag value from utp_upiu_query.value */
74 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
75 
76 /* Interrupt aggregation default timeout, unit: 40us */
77 #define INT_AGGR_DEF_TO	0x02
78 
79 /* default delay of autosuspend: 2000 ms */
80 #define RPM_AUTOSUSPEND_DELAY_MS 2000
81 
82 /* Default delay of RPM device flush delayed work */
83 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
84 
85 /* Default value of wait time before gating device ref clock */
86 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
87 
88 /* Polling time to wait for fDeviceInit */
89 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
90 
91 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
92 	({                                                              \
93 		int _ret;                                               \
94 		if (_on)                                                \
95 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
96 		else                                                    \
97 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
98 		_ret;                                                   \
99 	})
100 
101 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
102 	size_t __len = (len);                                            \
103 	print_hex_dump(KERN_ERR, prefix_str,                             \
104 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
105 		       16, 4, buf, __len, false);                        \
106 } while (0)
107 
108 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
109 		     const char *prefix)
110 {
111 	u32 *regs;
112 	size_t pos;
113 
114 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
115 		return -EINVAL;
116 
117 	regs = kzalloc(len, GFP_ATOMIC);
118 	if (!regs)
119 		return -ENOMEM;
120 
121 	for (pos = 0; pos < len; pos += 4) {
122 		if (offset == 0 &&
123 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
124 		    pos <= REG_UIC_ERROR_CODE_DME)
125 			continue;
126 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
127 	}
128 
129 	ufshcd_hex_dump(prefix, regs, len);
130 	kfree(regs);
131 
132 	return 0;
133 }
134 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
135 
136 enum {
137 	UFSHCD_MAX_CHANNEL	= 0,
138 	UFSHCD_MAX_ID		= 1,
139 	UFSHCD_NUM_RESERVED	= 1,
140 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
141 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
142 };
143 
144 static const char *const ufshcd_state_name[] = {
145 	[UFSHCD_STATE_RESET]			= "reset",
146 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
147 	[UFSHCD_STATE_ERROR]			= "error",
148 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
149 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
150 };
151 
152 /* UFSHCD error handling flags */
153 enum {
154 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
155 };
156 
157 /* UFSHCD UIC layer error flags */
158 enum {
159 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
160 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
161 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
162 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
163 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
164 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
165 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
166 };
167 
168 #define ufshcd_set_eh_in_progress(h) \
169 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
170 #define ufshcd_eh_in_progress(h) \
171 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
172 #define ufshcd_clear_eh_in_progress(h) \
173 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
174 
175 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
176 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
177 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
178 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
179 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
180 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
181 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
182 	/*
183 	 * For DeepSleep, the link is first put in hibern8 and then off.
184 	 * Leaving the link in hibern8 is not supported.
185 	 */
186 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
187 };
188 
189 static inline enum ufs_dev_pwr_mode
190 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
191 {
192 	return ufs_pm_lvl_states[lvl].dev_state;
193 }
194 
195 static inline enum uic_link_state
196 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
197 {
198 	return ufs_pm_lvl_states[lvl].link_state;
199 }
200 
201 static inline enum ufs_pm_level
202 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
203 					enum uic_link_state link_state)
204 {
205 	enum ufs_pm_level lvl;
206 
207 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
208 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
209 			(ufs_pm_lvl_states[lvl].link_state == link_state))
210 			return lvl;
211 	}
212 
213 	/* if no match found, return the level 0 */
214 	return UFS_PM_LVL_0;
215 }
216 
217 static const struct ufs_dev_quirk ufs_fixups[] = {
218 	/* UFS cards deviations table */
219 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
220 	  .model = UFS_ANY_MODEL,
221 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
222 		   UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ },
223 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
224 	  .model = UFS_ANY_MODEL,
225 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
226 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
227 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
228 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
229 	  .model = UFS_ANY_MODEL,
230 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
231 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
232 	  .model = "hB8aL1" /*H28U62301AMR*/,
233 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
234 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
235 	  .model = UFS_ANY_MODEL,
236 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
237 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
238 	  .model = "THGLF2G9C8KBADG",
239 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
240 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
241 	  .model = "THGLF2G9D8KBADG",
242 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
243 	{}
244 };
245 
246 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
247 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
248 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
249 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
250 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
251 static void ufshcd_hba_exit(struct ufs_hba *hba);
252 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
253 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
254 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
255 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
256 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
257 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
258 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
259 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
260 static irqreturn_t ufshcd_intr(int irq, void *__hba);
261 static int ufshcd_change_power_mode(struct ufs_hba *hba,
262 			     struct ufs_pa_layer_attr *pwr_mode);
263 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
264 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
265 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
266 					 struct ufs_vreg *vreg);
267 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
268 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
269 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
270 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
271 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
272 
273 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
274 {
275 	if (!hba->is_irq_enabled) {
276 		enable_irq(hba->irq);
277 		hba->is_irq_enabled = true;
278 	}
279 }
280 
281 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
282 {
283 	if (hba->is_irq_enabled) {
284 		disable_irq(hba->irq);
285 		hba->is_irq_enabled = false;
286 	}
287 }
288 
289 static inline void ufshcd_wb_config(struct ufs_hba *hba)
290 {
291 	if (!ufshcd_is_wb_allowed(hba))
292 		return;
293 
294 	ufshcd_wb_toggle(hba, true);
295 
296 	ufshcd_wb_toggle_flush_during_h8(hba, true);
297 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
298 		ufshcd_wb_toggle_flush(hba, true);
299 }
300 
301 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
302 {
303 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
304 		scsi_unblock_requests(hba->host);
305 }
306 
307 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
308 {
309 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
310 		scsi_block_requests(hba->host);
311 }
312 
313 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
314 				      enum ufs_trace_str_t str_t)
315 {
316 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
317 	struct utp_upiu_header *header;
318 
319 	if (!trace_ufshcd_upiu_enabled())
320 		return;
321 
322 	if (str_t == UFS_CMD_SEND)
323 		header = &rq->header;
324 	else
325 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
326 
327 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
328 			  UFS_TSF_CDB);
329 }
330 
331 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
332 					enum ufs_trace_str_t str_t,
333 					struct utp_upiu_req *rq_rsp)
334 {
335 	if (!trace_ufshcd_upiu_enabled())
336 		return;
337 
338 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
339 			  &rq_rsp->qr, UFS_TSF_OSF);
340 }
341 
342 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
343 				     enum ufs_trace_str_t str_t)
344 {
345 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
346 
347 	if (!trace_ufshcd_upiu_enabled())
348 		return;
349 
350 	if (str_t == UFS_TM_SEND)
351 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
352 				  &descp->upiu_req.req_header,
353 				  &descp->upiu_req.input_param1,
354 				  UFS_TSF_TM_INPUT);
355 	else
356 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
357 				  &descp->upiu_rsp.rsp_header,
358 				  &descp->upiu_rsp.output_param1,
359 				  UFS_TSF_TM_OUTPUT);
360 }
361 
362 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
363 					 const struct uic_command *ucmd,
364 					 enum ufs_trace_str_t str_t)
365 {
366 	u32 cmd;
367 
368 	if (!trace_ufshcd_uic_command_enabled())
369 		return;
370 
371 	if (str_t == UFS_CMD_SEND)
372 		cmd = ucmd->command;
373 	else
374 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
375 
376 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
377 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
378 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
379 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
380 }
381 
382 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
383 				     enum ufs_trace_str_t str_t)
384 {
385 	u64 lba = 0;
386 	u8 opcode = 0, group_id = 0;
387 	u32 intr, doorbell;
388 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
389 	struct scsi_cmnd *cmd = lrbp->cmd;
390 	struct request *rq = scsi_cmd_to_rq(cmd);
391 	int transfer_len = -1;
392 
393 	if (!cmd)
394 		return;
395 
396 	/* trace UPIU also */
397 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
398 	if (!trace_ufshcd_command_enabled())
399 		return;
400 
401 	opcode = cmd->cmnd[0];
402 
403 	if (opcode == READ_10 || opcode == WRITE_10) {
404 		/*
405 		 * Currently we only fully trace read(10) and write(10) commands
406 		 */
407 		transfer_len =
408 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
409 		lba = scsi_get_lba(cmd);
410 		if (opcode == WRITE_10)
411 			group_id = lrbp->cmd->cmnd[6];
412 	} else if (opcode == UNMAP) {
413 		/*
414 		 * The number of Bytes to be unmapped beginning with the lba.
415 		 */
416 		transfer_len = blk_rq_bytes(rq);
417 		lba = scsi_get_lba(cmd);
418 	}
419 
420 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
421 	doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
422 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
423 			doorbell, transfer_len, intr, lba, opcode, group_id);
424 }
425 
426 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
427 {
428 	struct ufs_clk_info *clki;
429 	struct list_head *head = &hba->clk_list_head;
430 
431 	if (list_empty(head))
432 		return;
433 
434 	list_for_each_entry(clki, head, list) {
435 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
436 				clki->max_freq)
437 			dev_err(hba->dev, "clk: %s, rate: %u\n",
438 					clki->name, clki->curr_freq);
439 	}
440 }
441 
442 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
443 			     const char *err_name)
444 {
445 	int i;
446 	bool found = false;
447 	const struct ufs_event_hist *e;
448 
449 	if (id >= UFS_EVT_CNT)
450 		return;
451 
452 	e = &hba->ufs_stats.event[id];
453 
454 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
455 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
456 
457 		if (e->tstamp[p] == 0)
458 			continue;
459 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
460 			e->val[p], ktime_to_us(e->tstamp[p]));
461 		found = true;
462 	}
463 
464 	if (!found)
465 		dev_err(hba->dev, "No record of %s\n", err_name);
466 	else
467 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
468 }
469 
470 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
471 {
472 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
473 
474 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
475 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
476 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
477 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
478 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
479 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
480 			 "auto_hibern8_err");
481 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
482 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
483 			 "link_startup_fail");
484 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
485 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
486 			 "suspend_fail");
487 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
488 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
489 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
490 
491 	ufshcd_vops_dbg_register_dump(hba);
492 }
493 
494 static
495 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
496 {
497 	const struct ufshcd_lrb *lrbp;
498 	int prdt_length;
499 	int tag;
500 
501 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
502 		lrbp = &hba->lrb[tag];
503 
504 		dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
505 				tag, ktime_to_us(lrbp->issue_time_stamp));
506 		dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
507 				tag, ktime_to_us(lrbp->compl_time_stamp));
508 		dev_err(hba->dev,
509 			"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
510 			tag, (u64)lrbp->utrd_dma_addr);
511 
512 		ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
513 				sizeof(struct utp_transfer_req_desc));
514 		dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
515 			(u64)lrbp->ucd_req_dma_addr);
516 		ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
517 				sizeof(struct utp_upiu_req));
518 		dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
519 			(u64)lrbp->ucd_rsp_dma_addr);
520 		ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
521 				sizeof(struct utp_upiu_rsp));
522 
523 		prdt_length = le16_to_cpu(
524 			lrbp->utr_descriptor_ptr->prd_table_length);
525 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
526 			prdt_length /= sizeof(struct ufshcd_sg_entry);
527 
528 		dev_err(hba->dev,
529 			"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
530 			tag, prdt_length,
531 			(u64)lrbp->ucd_prdt_dma_addr);
532 
533 		if (pr_prdt)
534 			ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
535 				sizeof(struct ufshcd_sg_entry) * prdt_length);
536 	}
537 }
538 
539 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
540 {
541 	int tag;
542 
543 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
544 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
545 
546 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
547 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
548 	}
549 }
550 
551 static void ufshcd_print_host_state(struct ufs_hba *hba)
552 {
553 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
554 
555 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
556 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
557 		hba->outstanding_reqs, hba->outstanding_tasks);
558 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
559 		hba->saved_err, hba->saved_uic_err);
560 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
561 		hba->curr_dev_pwr_mode, hba->uic_link_state);
562 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
563 		hba->pm_op_in_progress, hba->is_sys_suspended);
564 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
565 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
566 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
567 	dev_err(hba->dev,
568 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
569 		ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
570 		hba->ufs_stats.hibern8_exit_cnt);
571 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
572 		ktime_to_us(hba->ufs_stats.last_intr_ts),
573 		hba->ufs_stats.last_intr_status);
574 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
575 		hba->eh_flags, hba->req_abort_count);
576 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
577 		hba->ufs_version, hba->capabilities, hba->caps);
578 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
579 		hba->dev_quirks);
580 	if (sdev_ufs)
581 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
582 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
583 
584 	ufshcd_print_clk_freqs(hba);
585 }
586 
587 /**
588  * ufshcd_print_pwr_info - print power params as saved in hba
589  * power info
590  * @hba: per-adapter instance
591  */
592 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
593 {
594 	static const char * const names[] = {
595 		"INVALID MODE",
596 		"FAST MODE",
597 		"SLOW_MODE",
598 		"INVALID MODE",
599 		"FASTAUTO_MODE",
600 		"SLOWAUTO_MODE",
601 		"INVALID MODE",
602 	};
603 
604 	/*
605 	 * Using dev_dbg to avoid messages during runtime PM to avoid
606 	 * never-ending cycles of messages written back to storage by user space
607 	 * causing runtime resume, causing more messages and so on.
608 	 */
609 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
610 		 __func__,
611 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
612 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
613 		 names[hba->pwr_info.pwr_rx],
614 		 names[hba->pwr_info.pwr_tx],
615 		 hba->pwr_info.hs_rate);
616 }
617 
618 static void ufshcd_device_reset(struct ufs_hba *hba)
619 {
620 	int err;
621 
622 	err = ufshcd_vops_device_reset(hba);
623 
624 	if (!err) {
625 		ufshcd_set_ufs_dev_active(hba);
626 		if (ufshcd_is_wb_allowed(hba)) {
627 			hba->dev_info.wb_enabled = false;
628 			hba->dev_info.wb_buf_flush_enabled = false;
629 		}
630 	}
631 	if (err != -EOPNOTSUPP)
632 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
633 }
634 
635 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
636 {
637 	if (!us)
638 		return;
639 
640 	if (us < 10)
641 		udelay(us);
642 	else
643 		usleep_range(us, us + tolerance);
644 }
645 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
646 
647 /**
648  * ufshcd_wait_for_register - wait for register value to change
649  * @hba: per-adapter interface
650  * @reg: mmio register offset
651  * @mask: mask to apply to the read register value
652  * @val: value to wait for
653  * @interval_us: polling interval in microseconds
654  * @timeout_ms: timeout in milliseconds
655  *
656  * Return:
657  * -ETIMEDOUT on error, zero on success.
658  */
659 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
660 				u32 val, unsigned long interval_us,
661 				unsigned long timeout_ms)
662 {
663 	int err = 0;
664 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
665 
666 	/* ignore bits that we don't intend to wait on */
667 	val = val & mask;
668 
669 	while ((ufshcd_readl(hba, reg) & mask) != val) {
670 		usleep_range(interval_us, interval_us + 50);
671 		if (time_after(jiffies, timeout)) {
672 			if ((ufshcd_readl(hba, reg) & mask) != val)
673 				err = -ETIMEDOUT;
674 			break;
675 		}
676 	}
677 
678 	return err;
679 }
680 
681 /**
682  * ufshcd_get_intr_mask - Get the interrupt bit mask
683  * @hba: Pointer to adapter instance
684  *
685  * Returns interrupt bit mask per version
686  */
687 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
688 {
689 	if (hba->ufs_version == ufshci_version(1, 0))
690 		return INTERRUPT_MASK_ALL_VER_10;
691 	if (hba->ufs_version <= ufshci_version(2, 0))
692 		return INTERRUPT_MASK_ALL_VER_11;
693 
694 	return INTERRUPT_MASK_ALL_VER_21;
695 }
696 
697 /**
698  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
699  * @hba: Pointer to adapter instance
700  *
701  * Returns UFSHCI version supported by the controller
702  */
703 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
704 {
705 	u32 ufshci_ver;
706 
707 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
708 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
709 	else
710 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
711 
712 	/*
713 	 * UFSHCI v1.x uses a different version scheme, in order
714 	 * to allow the use of comparisons with the ufshci_version
715 	 * function, we convert it to the same scheme as ufs 2.0+.
716 	 */
717 	if (ufshci_ver & 0x00010000)
718 		return ufshci_version(1, ufshci_ver & 0x00000100);
719 
720 	return ufshci_ver;
721 }
722 
723 /**
724  * ufshcd_is_device_present - Check if any device connected to
725  *			      the host controller
726  * @hba: pointer to adapter instance
727  *
728  * Returns true if device present, false if no device detected
729  */
730 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
731 {
732 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
733 }
734 
735 /**
736  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
737  * @lrbp: pointer to local command reference block
738  *
739  * This function is used to get the OCS field from UTRD
740  * Returns the OCS field in the UTRD
741  */
742 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
743 {
744 	return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
745 }
746 
747 /**
748  * ufshcd_utrl_clear() - Clear requests from the controller request list.
749  * @hba: per adapter instance
750  * @mask: mask with one bit set for each request to be cleared
751  */
752 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
753 {
754 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
755 		mask = ~mask;
756 	/*
757 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
758 	 * Register (UTRLCLR): This field is bit significant. Each bit
759 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
760 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
761 	 * by host software to indicate to the host controller that a transfer
762 	 * request slot is cleared. The host controller
763 	 * shall free up any resources associated to the request slot
764 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
765 	 * host software indicates no change to request slots by setting the
766 	 * associated bits in this field to ‘1’. Bits in this field shall only
767 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
768 	 */
769 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
770 }
771 
772 /**
773  * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
774  * @hba: per adapter instance
775  * @pos: position of the bit to be cleared
776  */
777 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
778 {
779 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
780 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
781 	else
782 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
783 }
784 
785 /**
786  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
787  * @reg: Register value of host controller status
788  *
789  * Returns integer, 0 on Success and positive value if failed
790  */
791 static inline int ufshcd_get_lists_status(u32 reg)
792 {
793 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
794 }
795 
796 /**
797  * ufshcd_get_uic_cmd_result - Get the UIC command result
798  * @hba: Pointer to adapter instance
799  *
800  * This function gets the result of UIC command completion
801  * Returns 0 on success, non zero value on error
802  */
803 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
804 {
805 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
806 	       MASK_UIC_COMMAND_RESULT;
807 }
808 
809 /**
810  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
811  * @hba: Pointer to adapter instance
812  *
813  * This function gets UIC command argument3
814  * Returns 0 on success, non zero value on error
815  */
816 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
817 {
818 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
819 }
820 
821 /**
822  * ufshcd_get_req_rsp - returns the TR response transaction type
823  * @ucd_rsp_ptr: pointer to response UPIU
824  */
825 static inline int
826 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
827 {
828 	return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
829 }
830 
831 /**
832  * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
833  * @ucd_rsp_ptr: pointer to response UPIU
834  *
835  * This function gets the response status and scsi_status from response UPIU
836  * Returns the response result code.
837  */
838 static inline int
839 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
840 {
841 	return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
842 }
843 
844 /*
845  * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
846  *				from response UPIU
847  * @ucd_rsp_ptr: pointer to response UPIU
848  *
849  * Return the data segment length.
850  */
851 static inline unsigned int
852 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
853 {
854 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
855 		MASK_RSP_UPIU_DATA_SEG_LEN;
856 }
857 
858 /**
859  * ufshcd_is_exception_event - Check if the device raised an exception event
860  * @ucd_rsp_ptr: pointer to response UPIU
861  *
862  * The function checks if the device raised an exception event indicated in
863  * the Device Information field of response UPIU.
864  *
865  * Returns true if exception is raised, false otherwise.
866  */
867 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
868 {
869 	return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
870 			MASK_RSP_EXCEPTION_EVENT;
871 }
872 
873 /**
874  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
875  * @hba: per adapter instance
876  */
877 static inline void
878 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
879 {
880 	ufshcd_writel(hba, INT_AGGR_ENABLE |
881 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
882 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
883 }
884 
885 /**
886  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
887  * @hba: per adapter instance
888  * @cnt: Interrupt aggregation counter threshold
889  * @tmout: Interrupt aggregation timeout value
890  */
891 static inline void
892 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
893 {
894 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
895 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
896 		      INT_AGGR_TIMEOUT_VAL(tmout),
897 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
898 }
899 
900 /**
901  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
902  * @hba: per adapter instance
903  */
904 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
905 {
906 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
907 }
908 
909 /**
910  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
911  *			When run-stop registers are set to 1, it indicates the
912  *			host controller that it can process the requests
913  * @hba: per adapter instance
914  */
915 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
916 {
917 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
918 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
919 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
920 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
921 }
922 
923 /**
924  * ufshcd_hba_start - Start controller initialization sequence
925  * @hba: per adapter instance
926  */
927 static inline void ufshcd_hba_start(struct ufs_hba *hba)
928 {
929 	u32 val = CONTROLLER_ENABLE;
930 
931 	if (ufshcd_crypto_enable(hba))
932 		val |= CRYPTO_GENERAL_ENABLE;
933 
934 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
935 }
936 
937 /**
938  * ufshcd_is_hba_active - Get controller state
939  * @hba: per adapter instance
940  *
941  * Returns true if and only if the controller is active.
942  */
943 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
944 {
945 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
946 }
947 
948 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
949 {
950 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
951 	if (hba->ufs_version <= ufshci_version(1, 1))
952 		return UFS_UNIPRO_VER_1_41;
953 	else
954 		return UFS_UNIPRO_VER_1_6;
955 }
956 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
957 
958 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
959 {
960 	/*
961 	 * If both host and device support UniPro ver1.6 or later, PA layer
962 	 * parameters tuning happens during link startup itself.
963 	 *
964 	 * We can manually tune PA layer parameters if either host or device
965 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
966 	 * logic simple, we will only do manual tuning if local unipro version
967 	 * doesn't support ver1.6 or later.
968 	 */
969 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
970 }
971 
972 /**
973  * ufshcd_set_clk_freq - set UFS controller clock frequencies
974  * @hba: per adapter instance
975  * @scale_up: If True, set max possible frequency othewise set low frequency
976  *
977  * Returns 0 if successful
978  * Returns < 0 for any other errors
979  */
980 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
981 {
982 	int ret = 0;
983 	struct ufs_clk_info *clki;
984 	struct list_head *head = &hba->clk_list_head;
985 
986 	if (list_empty(head))
987 		goto out;
988 
989 	list_for_each_entry(clki, head, list) {
990 		if (!IS_ERR_OR_NULL(clki->clk)) {
991 			if (scale_up && clki->max_freq) {
992 				if (clki->curr_freq == clki->max_freq)
993 					continue;
994 
995 				ret = clk_set_rate(clki->clk, clki->max_freq);
996 				if (ret) {
997 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
998 						__func__, clki->name,
999 						clki->max_freq, ret);
1000 					break;
1001 				}
1002 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1003 						"scaled up", clki->name,
1004 						clki->curr_freq,
1005 						clki->max_freq);
1006 
1007 				clki->curr_freq = clki->max_freq;
1008 
1009 			} else if (!scale_up && clki->min_freq) {
1010 				if (clki->curr_freq == clki->min_freq)
1011 					continue;
1012 
1013 				ret = clk_set_rate(clki->clk, clki->min_freq);
1014 				if (ret) {
1015 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1016 						__func__, clki->name,
1017 						clki->min_freq, ret);
1018 					break;
1019 				}
1020 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1021 						"scaled down", clki->name,
1022 						clki->curr_freq,
1023 						clki->min_freq);
1024 				clki->curr_freq = clki->min_freq;
1025 			}
1026 		}
1027 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1028 				clki->name, clk_get_rate(clki->clk));
1029 	}
1030 
1031 out:
1032 	return ret;
1033 }
1034 
1035 /**
1036  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1037  * @hba: per adapter instance
1038  * @scale_up: True if scaling up and false if scaling down
1039  *
1040  * Returns 0 if successful
1041  * Returns < 0 for any other errors
1042  */
1043 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1044 {
1045 	int ret = 0;
1046 	ktime_t start = ktime_get();
1047 
1048 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1049 	if (ret)
1050 		goto out;
1051 
1052 	ret = ufshcd_set_clk_freq(hba, scale_up);
1053 	if (ret)
1054 		goto out;
1055 
1056 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1057 	if (ret)
1058 		ufshcd_set_clk_freq(hba, !scale_up);
1059 
1060 out:
1061 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1062 			(scale_up ? "up" : "down"),
1063 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1064 	return ret;
1065 }
1066 
1067 /**
1068  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1069  * @hba: per adapter instance
1070  * @scale_up: True if scaling up and false if scaling down
1071  *
1072  * Returns true if scaling is required, false otherwise.
1073  */
1074 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1075 					       bool scale_up)
1076 {
1077 	struct ufs_clk_info *clki;
1078 	struct list_head *head = &hba->clk_list_head;
1079 
1080 	if (list_empty(head))
1081 		return false;
1082 
1083 	list_for_each_entry(clki, head, list) {
1084 		if (!IS_ERR_OR_NULL(clki->clk)) {
1085 			if (scale_up && clki->max_freq) {
1086 				if (clki->curr_freq == clki->max_freq)
1087 					continue;
1088 				return true;
1089 			} else if (!scale_up && clki->min_freq) {
1090 				if (clki->curr_freq == clki->min_freq)
1091 					continue;
1092 				return true;
1093 			}
1094 		}
1095 	}
1096 
1097 	return false;
1098 }
1099 
1100 /*
1101  * Determine the number of pending commands by counting the bits in the SCSI
1102  * device budget maps. This approach has been selected because a bit is set in
1103  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1104  * flag. The host_self_blocked flag can be modified by calling
1105  * scsi_block_requests() or scsi_unblock_requests().
1106  */
1107 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1108 {
1109 	const struct scsi_device *sdev;
1110 	u32 pending = 0;
1111 
1112 	lockdep_assert_held(hba->host->host_lock);
1113 	__shost_for_each_device(sdev, hba->host)
1114 		pending += sbitmap_weight(&sdev->budget_map);
1115 
1116 	return pending;
1117 }
1118 
1119 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1120 					u64 wait_timeout_us)
1121 {
1122 	unsigned long flags;
1123 	int ret = 0;
1124 	u32 tm_doorbell;
1125 	u32 tr_pending;
1126 	bool timeout = false, do_last_check = false;
1127 	ktime_t start;
1128 
1129 	ufshcd_hold(hba, false);
1130 	spin_lock_irqsave(hba->host->host_lock, flags);
1131 	/*
1132 	 * Wait for all the outstanding tasks/transfer requests.
1133 	 * Verify by checking the doorbell registers are clear.
1134 	 */
1135 	start = ktime_get();
1136 	do {
1137 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1138 			ret = -EBUSY;
1139 			goto out;
1140 		}
1141 
1142 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1143 		tr_pending = ufshcd_pending_cmds(hba);
1144 		if (!tm_doorbell && !tr_pending) {
1145 			timeout = false;
1146 			break;
1147 		} else if (do_last_check) {
1148 			break;
1149 		}
1150 
1151 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1152 		schedule();
1153 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1154 		    wait_timeout_us) {
1155 			timeout = true;
1156 			/*
1157 			 * We might have scheduled out for long time so make
1158 			 * sure to check if doorbells are cleared by this time
1159 			 * or not.
1160 			 */
1161 			do_last_check = true;
1162 		}
1163 		spin_lock_irqsave(hba->host->host_lock, flags);
1164 	} while (tm_doorbell || tr_pending);
1165 
1166 	if (timeout) {
1167 		dev_err(hba->dev,
1168 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1169 			__func__, tm_doorbell, tr_pending);
1170 		ret = -EBUSY;
1171 	}
1172 out:
1173 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1174 	ufshcd_release(hba);
1175 	return ret;
1176 }
1177 
1178 /**
1179  * ufshcd_scale_gear - scale up/down UFS gear
1180  * @hba: per adapter instance
1181  * @scale_up: True for scaling up gear and false for scaling down
1182  *
1183  * Returns 0 for success,
1184  * Returns -EBUSY if scaling can't happen at this time
1185  * Returns non-zero for any other errors
1186  */
1187 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1188 {
1189 	int ret = 0;
1190 	struct ufs_pa_layer_attr new_pwr_info;
1191 
1192 	if (scale_up) {
1193 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1194 		       sizeof(struct ufs_pa_layer_attr));
1195 	} else {
1196 		memcpy(&new_pwr_info, &hba->pwr_info,
1197 		       sizeof(struct ufs_pa_layer_attr));
1198 
1199 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1200 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1201 			/* save the current power mode */
1202 			memcpy(&hba->clk_scaling.saved_pwr_info.info,
1203 				&hba->pwr_info,
1204 				sizeof(struct ufs_pa_layer_attr));
1205 
1206 			/* scale down gear */
1207 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1208 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1209 		}
1210 	}
1211 
1212 	/* check if the power mode needs to be changed or not? */
1213 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1214 	if (ret)
1215 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1216 			__func__, ret,
1217 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1218 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1219 
1220 	return ret;
1221 }
1222 
1223 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1224 {
1225 	#define DOORBELL_CLR_TOUT_US		(1000 * 1000) /* 1 sec */
1226 	int ret = 0;
1227 	/*
1228 	 * make sure that there are no outstanding requests when
1229 	 * clock scaling is in progress
1230 	 */
1231 	ufshcd_scsi_block_requests(hba);
1232 	down_write(&hba->clk_scaling_lock);
1233 
1234 	if (!hba->clk_scaling.is_allowed ||
1235 	    ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1236 		ret = -EBUSY;
1237 		up_write(&hba->clk_scaling_lock);
1238 		ufshcd_scsi_unblock_requests(hba);
1239 		goto out;
1240 	}
1241 
1242 	/* let's not get into low power until clock scaling is completed */
1243 	ufshcd_hold(hba, false);
1244 
1245 out:
1246 	return ret;
1247 }
1248 
1249 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, bool writelock)
1250 {
1251 	if (writelock)
1252 		up_write(&hba->clk_scaling_lock);
1253 	else
1254 		up_read(&hba->clk_scaling_lock);
1255 	ufshcd_scsi_unblock_requests(hba);
1256 	ufshcd_release(hba);
1257 }
1258 
1259 /**
1260  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1261  * @hba: per adapter instance
1262  * @scale_up: True for scaling up and false for scalin down
1263  *
1264  * Returns 0 for success,
1265  * Returns -EBUSY if scaling can't happen at this time
1266  * Returns non-zero for any other errors
1267  */
1268 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1269 {
1270 	int ret = 0;
1271 	bool is_writelock = true;
1272 
1273 	ret = ufshcd_clock_scaling_prepare(hba);
1274 	if (ret)
1275 		return ret;
1276 
1277 	/* scale down the gear before scaling down clocks */
1278 	if (!scale_up) {
1279 		ret = ufshcd_scale_gear(hba, false);
1280 		if (ret)
1281 			goto out_unprepare;
1282 	}
1283 
1284 	ret = ufshcd_scale_clks(hba, scale_up);
1285 	if (ret) {
1286 		if (!scale_up)
1287 			ufshcd_scale_gear(hba, true);
1288 		goto out_unprepare;
1289 	}
1290 
1291 	/* scale up the gear after scaling up clocks */
1292 	if (scale_up) {
1293 		ret = ufshcd_scale_gear(hba, true);
1294 		if (ret) {
1295 			ufshcd_scale_clks(hba, false);
1296 			goto out_unprepare;
1297 		}
1298 	}
1299 
1300 	/* Enable Write Booster if we have scaled up else disable it */
1301 	downgrade_write(&hba->clk_scaling_lock);
1302 	is_writelock = false;
1303 	ufshcd_wb_toggle(hba, scale_up);
1304 
1305 out_unprepare:
1306 	ufshcd_clock_scaling_unprepare(hba, is_writelock);
1307 	return ret;
1308 }
1309 
1310 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1311 {
1312 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1313 					   clk_scaling.suspend_work);
1314 	unsigned long irq_flags;
1315 
1316 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1317 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1318 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1319 		return;
1320 	}
1321 	hba->clk_scaling.is_suspended = true;
1322 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1323 
1324 	__ufshcd_suspend_clkscaling(hba);
1325 }
1326 
1327 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1328 {
1329 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1330 					   clk_scaling.resume_work);
1331 	unsigned long irq_flags;
1332 
1333 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1334 	if (!hba->clk_scaling.is_suspended) {
1335 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1336 		return;
1337 	}
1338 	hba->clk_scaling.is_suspended = false;
1339 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1340 
1341 	devfreq_resume_device(hba->devfreq);
1342 }
1343 
1344 static int ufshcd_devfreq_target(struct device *dev,
1345 				unsigned long *freq, u32 flags)
1346 {
1347 	int ret = 0;
1348 	struct ufs_hba *hba = dev_get_drvdata(dev);
1349 	ktime_t start;
1350 	bool scale_up, sched_clk_scaling_suspend_work = false;
1351 	struct list_head *clk_list = &hba->clk_list_head;
1352 	struct ufs_clk_info *clki;
1353 	unsigned long irq_flags;
1354 
1355 	if (!ufshcd_is_clkscaling_supported(hba))
1356 		return -EINVAL;
1357 
1358 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1359 	/* Override with the closest supported frequency */
1360 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1361 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1362 	if (ufshcd_eh_in_progress(hba)) {
1363 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1364 		return 0;
1365 	}
1366 
1367 	if (!hba->clk_scaling.active_reqs)
1368 		sched_clk_scaling_suspend_work = true;
1369 
1370 	if (list_empty(clk_list)) {
1371 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1372 		goto out;
1373 	}
1374 
1375 	/* Decide based on the rounded-off frequency and update */
1376 	scale_up = *freq == clki->max_freq;
1377 	if (!scale_up)
1378 		*freq = clki->min_freq;
1379 	/* Update the frequency */
1380 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1381 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1382 		ret = 0;
1383 		goto out; /* no state change required */
1384 	}
1385 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1386 
1387 	start = ktime_get();
1388 	ret = ufshcd_devfreq_scale(hba, scale_up);
1389 
1390 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1391 		(scale_up ? "up" : "down"),
1392 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1393 
1394 out:
1395 	if (sched_clk_scaling_suspend_work)
1396 		queue_work(hba->clk_scaling.workq,
1397 			   &hba->clk_scaling.suspend_work);
1398 
1399 	return ret;
1400 }
1401 
1402 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1403 		struct devfreq_dev_status *stat)
1404 {
1405 	struct ufs_hba *hba = dev_get_drvdata(dev);
1406 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1407 	unsigned long flags;
1408 	struct list_head *clk_list = &hba->clk_list_head;
1409 	struct ufs_clk_info *clki;
1410 	ktime_t curr_t;
1411 
1412 	if (!ufshcd_is_clkscaling_supported(hba))
1413 		return -EINVAL;
1414 
1415 	memset(stat, 0, sizeof(*stat));
1416 
1417 	spin_lock_irqsave(hba->host->host_lock, flags);
1418 	curr_t = ktime_get();
1419 	if (!scaling->window_start_t)
1420 		goto start_window;
1421 
1422 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1423 	/*
1424 	 * If current frequency is 0, then the ondemand governor considers
1425 	 * there's no initial frequency set. And it always requests to set
1426 	 * to max. frequency.
1427 	 */
1428 	stat->current_frequency = clki->curr_freq;
1429 	if (scaling->is_busy_started)
1430 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1431 				scaling->busy_start_t);
1432 
1433 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1434 	stat->busy_time = scaling->tot_busy_t;
1435 start_window:
1436 	scaling->window_start_t = curr_t;
1437 	scaling->tot_busy_t = 0;
1438 
1439 	if (hba->outstanding_reqs) {
1440 		scaling->busy_start_t = curr_t;
1441 		scaling->is_busy_started = true;
1442 	} else {
1443 		scaling->busy_start_t = 0;
1444 		scaling->is_busy_started = false;
1445 	}
1446 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1447 	return 0;
1448 }
1449 
1450 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1451 {
1452 	struct list_head *clk_list = &hba->clk_list_head;
1453 	struct ufs_clk_info *clki;
1454 	struct devfreq *devfreq;
1455 	int ret;
1456 
1457 	/* Skip devfreq if we don't have any clocks in the list */
1458 	if (list_empty(clk_list))
1459 		return 0;
1460 
1461 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1462 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1463 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1464 
1465 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1466 					 &hba->vps->ondemand_data);
1467 	devfreq = devfreq_add_device(hba->dev,
1468 			&hba->vps->devfreq_profile,
1469 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1470 			&hba->vps->ondemand_data);
1471 	if (IS_ERR(devfreq)) {
1472 		ret = PTR_ERR(devfreq);
1473 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1474 
1475 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1476 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1477 		return ret;
1478 	}
1479 
1480 	hba->devfreq = devfreq;
1481 
1482 	return 0;
1483 }
1484 
1485 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1486 {
1487 	struct list_head *clk_list = &hba->clk_list_head;
1488 	struct ufs_clk_info *clki;
1489 
1490 	if (!hba->devfreq)
1491 		return;
1492 
1493 	devfreq_remove_device(hba->devfreq);
1494 	hba->devfreq = NULL;
1495 
1496 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1497 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1498 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1499 }
1500 
1501 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1502 {
1503 	unsigned long flags;
1504 
1505 	devfreq_suspend_device(hba->devfreq);
1506 	spin_lock_irqsave(hba->host->host_lock, flags);
1507 	hba->clk_scaling.window_start_t = 0;
1508 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1509 }
1510 
1511 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1512 {
1513 	unsigned long flags;
1514 	bool suspend = false;
1515 
1516 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1517 	cancel_work_sync(&hba->clk_scaling.resume_work);
1518 
1519 	spin_lock_irqsave(hba->host->host_lock, flags);
1520 	if (!hba->clk_scaling.is_suspended) {
1521 		suspend = true;
1522 		hba->clk_scaling.is_suspended = true;
1523 	}
1524 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1525 
1526 	if (suspend)
1527 		__ufshcd_suspend_clkscaling(hba);
1528 }
1529 
1530 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1531 {
1532 	unsigned long flags;
1533 	bool resume = false;
1534 
1535 	spin_lock_irqsave(hba->host->host_lock, flags);
1536 	if (hba->clk_scaling.is_suspended) {
1537 		resume = true;
1538 		hba->clk_scaling.is_suspended = false;
1539 	}
1540 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1541 
1542 	if (resume)
1543 		devfreq_resume_device(hba->devfreq);
1544 }
1545 
1546 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1547 		struct device_attribute *attr, char *buf)
1548 {
1549 	struct ufs_hba *hba = dev_get_drvdata(dev);
1550 
1551 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1552 }
1553 
1554 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1555 		struct device_attribute *attr, const char *buf, size_t count)
1556 {
1557 	struct ufs_hba *hba = dev_get_drvdata(dev);
1558 	u32 value;
1559 	int err = 0;
1560 
1561 	if (kstrtou32(buf, 0, &value))
1562 		return -EINVAL;
1563 
1564 	down(&hba->host_sem);
1565 	if (!ufshcd_is_user_access_allowed(hba)) {
1566 		err = -EBUSY;
1567 		goto out;
1568 	}
1569 
1570 	value = !!value;
1571 	if (value == hba->clk_scaling.is_enabled)
1572 		goto out;
1573 
1574 	ufshcd_rpm_get_sync(hba);
1575 	ufshcd_hold(hba, false);
1576 
1577 	hba->clk_scaling.is_enabled = value;
1578 
1579 	if (value) {
1580 		ufshcd_resume_clkscaling(hba);
1581 	} else {
1582 		ufshcd_suspend_clkscaling(hba);
1583 		err = ufshcd_devfreq_scale(hba, true);
1584 		if (err)
1585 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1586 					__func__, err);
1587 	}
1588 
1589 	ufshcd_release(hba);
1590 	ufshcd_rpm_put_sync(hba);
1591 out:
1592 	up(&hba->host_sem);
1593 	return err ? err : count;
1594 }
1595 
1596 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1597 {
1598 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1599 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1600 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1601 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1602 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1603 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1604 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1605 }
1606 
1607 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1608 {
1609 	if (hba->clk_scaling.enable_attr.attr.name)
1610 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1611 }
1612 
1613 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1614 {
1615 	char wq_name[sizeof("ufs_clkscaling_00")];
1616 
1617 	if (!ufshcd_is_clkscaling_supported(hba))
1618 		return;
1619 
1620 	if (!hba->clk_scaling.min_gear)
1621 		hba->clk_scaling.min_gear = UFS_HS_G1;
1622 
1623 	INIT_WORK(&hba->clk_scaling.suspend_work,
1624 		  ufshcd_clk_scaling_suspend_work);
1625 	INIT_WORK(&hba->clk_scaling.resume_work,
1626 		  ufshcd_clk_scaling_resume_work);
1627 
1628 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1629 		 hba->host->host_no);
1630 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1631 
1632 	hba->clk_scaling.is_initialized = true;
1633 }
1634 
1635 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1636 {
1637 	if (!hba->clk_scaling.is_initialized)
1638 		return;
1639 
1640 	ufshcd_remove_clk_scaling_sysfs(hba);
1641 	destroy_workqueue(hba->clk_scaling.workq);
1642 	ufshcd_devfreq_remove(hba);
1643 	hba->clk_scaling.is_initialized = false;
1644 }
1645 
1646 static void ufshcd_ungate_work(struct work_struct *work)
1647 {
1648 	int ret;
1649 	unsigned long flags;
1650 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1651 			clk_gating.ungate_work);
1652 
1653 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1654 
1655 	spin_lock_irqsave(hba->host->host_lock, flags);
1656 	if (hba->clk_gating.state == CLKS_ON) {
1657 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1658 		goto unblock_reqs;
1659 	}
1660 
1661 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1662 	ufshcd_hba_vreg_set_hpm(hba);
1663 	ufshcd_setup_clocks(hba, true);
1664 
1665 	ufshcd_enable_irq(hba);
1666 
1667 	/* Exit from hibern8 */
1668 	if (ufshcd_can_hibern8_during_gating(hba)) {
1669 		/* Prevent gating in this path */
1670 		hba->clk_gating.is_suspended = true;
1671 		if (ufshcd_is_link_hibern8(hba)) {
1672 			ret = ufshcd_uic_hibern8_exit(hba);
1673 			if (ret)
1674 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1675 					__func__, ret);
1676 			else
1677 				ufshcd_set_link_active(hba);
1678 		}
1679 		hba->clk_gating.is_suspended = false;
1680 	}
1681 unblock_reqs:
1682 	ufshcd_scsi_unblock_requests(hba);
1683 }
1684 
1685 /**
1686  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1687  * Also, exit from hibern8 mode and set the link as active.
1688  * @hba: per adapter instance
1689  * @async: This indicates whether caller should ungate clocks asynchronously.
1690  */
1691 int ufshcd_hold(struct ufs_hba *hba, bool async)
1692 {
1693 	int rc = 0;
1694 	bool flush_result;
1695 	unsigned long flags;
1696 
1697 	if (!ufshcd_is_clkgating_allowed(hba) ||
1698 	    !hba->clk_gating.is_initialized)
1699 		goto out;
1700 	spin_lock_irqsave(hba->host->host_lock, flags);
1701 	hba->clk_gating.active_reqs++;
1702 
1703 start:
1704 	switch (hba->clk_gating.state) {
1705 	case CLKS_ON:
1706 		/*
1707 		 * Wait for the ungate work to complete if in progress.
1708 		 * Though the clocks may be in ON state, the link could
1709 		 * still be in hibner8 state if hibern8 is allowed
1710 		 * during clock gating.
1711 		 * Make sure we exit hibern8 state also in addition to
1712 		 * clocks being ON.
1713 		 */
1714 		if (ufshcd_can_hibern8_during_gating(hba) &&
1715 		    ufshcd_is_link_hibern8(hba)) {
1716 			if (async) {
1717 				rc = -EAGAIN;
1718 				hba->clk_gating.active_reqs--;
1719 				break;
1720 			}
1721 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1722 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1723 			if (hba->clk_gating.is_suspended && !flush_result)
1724 				goto out;
1725 			spin_lock_irqsave(hba->host->host_lock, flags);
1726 			goto start;
1727 		}
1728 		break;
1729 	case REQ_CLKS_OFF:
1730 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1731 			hba->clk_gating.state = CLKS_ON;
1732 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1733 						hba->clk_gating.state);
1734 			break;
1735 		}
1736 		/*
1737 		 * If we are here, it means gating work is either done or
1738 		 * currently running. Hence, fall through to cancel gating
1739 		 * work and to enable clocks.
1740 		 */
1741 		fallthrough;
1742 	case CLKS_OFF:
1743 		hba->clk_gating.state = REQ_CLKS_ON;
1744 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1745 					hba->clk_gating.state);
1746 		if (queue_work(hba->clk_gating.clk_gating_workq,
1747 			       &hba->clk_gating.ungate_work))
1748 			ufshcd_scsi_block_requests(hba);
1749 		/*
1750 		 * fall through to check if we should wait for this
1751 		 * work to be done or not.
1752 		 */
1753 		fallthrough;
1754 	case REQ_CLKS_ON:
1755 		if (async) {
1756 			rc = -EAGAIN;
1757 			hba->clk_gating.active_reqs--;
1758 			break;
1759 		}
1760 
1761 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1762 		flush_work(&hba->clk_gating.ungate_work);
1763 		/* Make sure state is CLKS_ON before returning */
1764 		spin_lock_irqsave(hba->host->host_lock, flags);
1765 		goto start;
1766 	default:
1767 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1768 				__func__, hba->clk_gating.state);
1769 		break;
1770 	}
1771 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1772 out:
1773 	return rc;
1774 }
1775 EXPORT_SYMBOL_GPL(ufshcd_hold);
1776 
1777 static void ufshcd_gate_work(struct work_struct *work)
1778 {
1779 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1780 			clk_gating.gate_work.work);
1781 	unsigned long flags;
1782 	int ret;
1783 
1784 	spin_lock_irqsave(hba->host->host_lock, flags);
1785 	/*
1786 	 * In case you are here to cancel this work the gating state
1787 	 * would be marked as REQ_CLKS_ON. In this case save time by
1788 	 * skipping the gating work and exit after changing the clock
1789 	 * state to CLKS_ON.
1790 	 */
1791 	if (hba->clk_gating.is_suspended ||
1792 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1793 		hba->clk_gating.state = CLKS_ON;
1794 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1795 					hba->clk_gating.state);
1796 		goto rel_lock;
1797 	}
1798 
1799 	if (hba->clk_gating.active_reqs
1800 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1801 		|| hba->outstanding_reqs || hba->outstanding_tasks
1802 		|| hba->active_uic_cmd || hba->uic_async_done)
1803 		goto rel_lock;
1804 
1805 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1806 
1807 	/* put the link into hibern8 mode before turning off clocks */
1808 	if (ufshcd_can_hibern8_during_gating(hba)) {
1809 		ret = ufshcd_uic_hibern8_enter(hba);
1810 		if (ret) {
1811 			hba->clk_gating.state = CLKS_ON;
1812 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1813 					__func__, ret);
1814 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 						hba->clk_gating.state);
1816 			goto out;
1817 		}
1818 		ufshcd_set_link_hibern8(hba);
1819 	}
1820 
1821 	ufshcd_disable_irq(hba);
1822 
1823 	ufshcd_setup_clocks(hba, false);
1824 
1825 	/* Put the host controller in low power mode if possible */
1826 	ufshcd_hba_vreg_set_lpm(hba);
1827 	/*
1828 	 * In case you are here to cancel this work the gating state
1829 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1830 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1831 	 * and a request to turn them on is pending. By doing this way,
1832 	 * we keep the state machine in tact and this would ultimately
1833 	 * prevent from doing cancel work multiple times when there are
1834 	 * new requests arriving before the current cancel work is done.
1835 	 */
1836 	spin_lock_irqsave(hba->host->host_lock, flags);
1837 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1838 		hba->clk_gating.state = CLKS_OFF;
1839 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1840 					hba->clk_gating.state);
1841 	}
1842 rel_lock:
1843 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1844 out:
1845 	return;
1846 }
1847 
1848 /* host lock must be held before calling this variant */
1849 static void __ufshcd_release(struct ufs_hba *hba)
1850 {
1851 	if (!ufshcd_is_clkgating_allowed(hba))
1852 		return;
1853 
1854 	hba->clk_gating.active_reqs--;
1855 
1856 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1857 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1858 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1859 	    hba->active_uic_cmd || hba->uic_async_done ||
1860 	    hba->clk_gating.state == CLKS_OFF)
1861 		return;
1862 
1863 	hba->clk_gating.state = REQ_CLKS_OFF;
1864 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1865 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1866 			   &hba->clk_gating.gate_work,
1867 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1868 }
1869 
1870 void ufshcd_release(struct ufs_hba *hba)
1871 {
1872 	unsigned long flags;
1873 
1874 	spin_lock_irqsave(hba->host->host_lock, flags);
1875 	__ufshcd_release(hba);
1876 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1877 }
1878 EXPORT_SYMBOL_GPL(ufshcd_release);
1879 
1880 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1881 		struct device_attribute *attr, char *buf)
1882 {
1883 	struct ufs_hba *hba = dev_get_drvdata(dev);
1884 
1885 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1886 }
1887 
1888 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1889 {
1890 	struct ufs_hba *hba = dev_get_drvdata(dev);
1891 	unsigned long flags;
1892 
1893 	spin_lock_irqsave(hba->host->host_lock, flags);
1894 	hba->clk_gating.delay_ms = value;
1895 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1896 }
1897 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1898 
1899 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1900 		struct device_attribute *attr, const char *buf, size_t count)
1901 {
1902 	unsigned long value;
1903 
1904 	if (kstrtoul(buf, 0, &value))
1905 		return -EINVAL;
1906 
1907 	ufshcd_clkgate_delay_set(dev, value);
1908 	return count;
1909 }
1910 
1911 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1912 		struct device_attribute *attr, char *buf)
1913 {
1914 	struct ufs_hba *hba = dev_get_drvdata(dev);
1915 
1916 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1917 }
1918 
1919 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	struct ufs_hba *hba = dev_get_drvdata(dev);
1923 	unsigned long flags;
1924 	u32 value;
1925 
1926 	if (kstrtou32(buf, 0, &value))
1927 		return -EINVAL;
1928 
1929 	value = !!value;
1930 
1931 	spin_lock_irqsave(hba->host->host_lock, flags);
1932 	if (value == hba->clk_gating.is_enabled)
1933 		goto out;
1934 
1935 	if (value)
1936 		__ufshcd_release(hba);
1937 	else
1938 		hba->clk_gating.active_reqs++;
1939 
1940 	hba->clk_gating.is_enabled = value;
1941 out:
1942 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1943 	return count;
1944 }
1945 
1946 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1947 {
1948 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1949 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1950 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1951 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1952 	hba->clk_gating.delay_attr.attr.mode = 0644;
1953 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1954 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1955 
1956 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1957 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1958 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1959 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1960 	hba->clk_gating.enable_attr.attr.mode = 0644;
1961 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1962 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1963 }
1964 
1965 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1966 {
1967 	if (hba->clk_gating.delay_attr.attr.name)
1968 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1969 	if (hba->clk_gating.enable_attr.attr.name)
1970 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1971 }
1972 
1973 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1974 {
1975 	char wq_name[sizeof("ufs_clk_gating_00")];
1976 
1977 	if (!ufshcd_is_clkgating_allowed(hba))
1978 		return;
1979 
1980 	hba->clk_gating.state = CLKS_ON;
1981 
1982 	hba->clk_gating.delay_ms = 150;
1983 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1984 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1985 
1986 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1987 		 hba->host->host_no);
1988 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1989 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
1990 
1991 	ufshcd_init_clk_gating_sysfs(hba);
1992 
1993 	hba->clk_gating.is_enabled = true;
1994 	hba->clk_gating.is_initialized = true;
1995 }
1996 
1997 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
1998 {
1999 	if (!hba->clk_gating.is_initialized)
2000 		return;
2001 
2002 	ufshcd_remove_clk_gating_sysfs(hba);
2003 
2004 	/* Ungate the clock if necessary. */
2005 	ufshcd_hold(hba, false);
2006 	hba->clk_gating.is_initialized = false;
2007 	ufshcd_release(hba);
2008 
2009 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2010 }
2011 
2012 /* Must be called with host lock acquired */
2013 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2014 {
2015 	bool queue_resume_work = false;
2016 	ktime_t curr_t = ktime_get();
2017 	unsigned long flags;
2018 
2019 	if (!ufshcd_is_clkscaling_supported(hba))
2020 		return;
2021 
2022 	spin_lock_irqsave(hba->host->host_lock, flags);
2023 	if (!hba->clk_scaling.active_reqs++)
2024 		queue_resume_work = true;
2025 
2026 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2027 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2028 		return;
2029 	}
2030 
2031 	if (queue_resume_work)
2032 		queue_work(hba->clk_scaling.workq,
2033 			   &hba->clk_scaling.resume_work);
2034 
2035 	if (!hba->clk_scaling.window_start_t) {
2036 		hba->clk_scaling.window_start_t = curr_t;
2037 		hba->clk_scaling.tot_busy_t = 0;
2038 		hba->clk_scaling.is_busy_started = false;
2039 	}
2040 
2041 	if (!hba->clk_scaling.is_busy_started) {
2042 		hba->clk_scaling.busy_start_t = curr_t;
2043 		hba->clk_scaling.is_busy_started = true;
2044 	}
2045 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2046 }
2047 
2048 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2049 {
2050 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2051 	unsigned long flags;
2052 
2053 	if (!ufshcd_is_clkscaling_supported(hba))
2054 		return;
2055 
2056 	spin_lock_irqsave(hba->host->host_lock, flags);
2057 	hba->clk_scaling.active_reqs--;
2058 	if (!hba->outstanding_reqs && scaling->is_busy_started) {
2059 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2060 					scaling->busy_start_t));
2061 		scaling->busy_start_t = 0;
2062 		scaling->is_busy_started = false;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
2067 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2068 {
2069 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2070 		return READ;
2071 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2072 		return WRITE;
2073 	else
2074 		return -EINVAL;
2075 }
2076 
2077 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2078 						struct ufshcd_lrb *lrbp)
2079 {
2080 	const struct ufs_hba_monitor *m = &hba->monitor;
2081 
2082 	return (m->enabled && lrbp && lrbp->cmd &&
2083 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2084 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2085 }
2086 
2087 static void ufshcd_start_monitor(struct ufs_hba *hba,
2088 				 const struct ufshcd_lrb *lrbp)
2089 {
2090 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2091 	unsigned long flags;
2092 
2093 	spin_lock_irqsave(hba->host->host_lock, flags);
2094 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2095 		hba->monitor.busy_start_ts[dir] = ktime_get();
2096 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2097 }
2098 
2099 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2100 {
2101 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2102 	unsigned long flags;
2103 
2104 	spin_lock_irqsave(hba->host->host_lock, flags);
2105 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2106 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2107 		struct ufs_hba_monitor *m = &hba->monitor;
2108 		ktime_t now, inc, lat;
2109 
2110 		now = lrbp->compl_time_stamp;
2111 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2112 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2113 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2114 
2115 		/* Update latencies */
2116 		m->nr_req[dir]++;
2117 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2118 		m->lat_sum[dir] += lat;
2119 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2120 			m->lat_max[dir] = lat;
2121 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2122 			m->lat_min[dir] = lat;
2123 
2124 		m->nr_queued[dir]--;
2125 		/* Push forward the busy start of monitor */
2126 		m->busy_start_ts[dir] = now;
2127 	}
2128 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2129 }
2130 
2131 /**
2132  * ufshcd_send_command - Send SCSI or device management commands
2133  * @hba: per adapter instance
2134  * @task_tag: Task tag of the command
2135  */
2136 static inline
2137 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2138 {
2139 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2140 	unsigned long flags;
2141 
2142 	lrbp->issue_time_stamp = ktime_get();
2143 	lrbp->compl_time_stamp = ktime_set(0, 0);
2144 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2145 	ufshcd_clk_scaling_start_busy(hba);
2146 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2147 		ufshcd_start_monitor(hba, lrbp);
2148 
2149 	spin_lock_irqsave(&hba->outstanding_lock, flags);
2150 	if (hba->vops && hba->vops->setup_xfer_req)
2151 		hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2152 	__set_bit(task_tag, &hba->outstanding_reqs);
2153 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2154 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2155 }
2156 
2157 /**
2158  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2159  * @lrbp: pointer to local reference block
2160  */
2161 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2162 {
2163 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2164 	int len;
2165 
2166 	if (sense_buffer &&
2167 	    ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2168 		int len_to_copy;
2169 
2170 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2171 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2172 
2173 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2174 		       len_to_copy);
2175 	}
2176 }
2177 
2178 /**
2179  * ufshcd_copy_query_response() - Copy the Query Response and the data
2180  * descriptor
2181  * @hba: per adapter instance
2182  * @lrbp: pointer to local reference block
2183  */
2184 static
2185 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2186 {
2187 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2188 
2189 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2190 
2191 	/* Get the descriptor */
2192 	if (hba->dev_cmd.query.descriptor &&
2193 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2194 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2195 				GENERAL_UPIU_REQUEST_SIZE;
2196 		u16 resp_len;
2197 		u16 buf_len;
2198 
2199 		/* data segment length */
2200 		resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2201 						MASK_QUERY_DATA_SEG_LEN;
2202 		buf_len = be16_to_cpu(
2203 				hba->dev_cmd.query.request.upiu_req.length);
2204 		if (likely(buf_len >= resp_len)) {
2205 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2206 		} else {
2207 			dev_warn(hba->dev,
2208 				 "%s: rsp size %d is bigger than buffer size %d",
2209 				 __func__, resp_len, buf_len);
2210 			return -EINVAL;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * ufshcd_hba_capabilities - Read controller capabilities
2219  * @hba: per adapter instance
2220  *
2221  * Return: 0 on success, negative on error.
2222  */
2223 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2224 {
2225 	int err;
2226 
2227 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2228 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2229 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2230 
2231 	/* nutrs and nutmrs are 0 based values */
2232 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2233 	hba->nutmrs =
2234 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2235 	hba->reserved_slot = hba->nutrs - 1;
2236 
2237 	/* Read crypto capabilities */
2238 	err = ufshcd_hba_init_crypto_capabilities(hba);
2239 	if (err)
2240 		dev_err(hba->dev, "crypto setup failed\n");
2241 
2242 	return err;
2243 }
2244 
2245 /**
2246  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2247  *                            to accept UIC commands
2248  * @hba: per adapter instance
2249  * Return true on success, else false
2250  */
2251 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2252 {
2253 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY;
2254 }
2255 
2256 /**
2257  * ufshcd_get_upmcrs - Get the power mode change request status
2258  * @hba: Pointer to adapter instance
2259  *
2260  * This function gets the UPMCRS field of HCS register
2261  * Returns value of UPMCRS field
2262  */
2263 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2264 {
2265 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2266 }
2267 
2268 /**
2269  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2270  * @hba: per adapter instance
2271  * @uic_cmd: UIC command
2272  */
2273 static inline void
2274 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2275 {
2276 	lockdep_assert_held(&hba->uic_cmd_mutex);
2277 
2278 	WARN_ON(hba->active_uic_cmd);
2279 
2280 	hba->active_uic_cmd = uic_cmd;
2281 
2282 	/* Write Args */
2283 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2284 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2285 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2286 
2287 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2288 
2289 	/* Write UIC Cmd */
2290 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2291 		      REG_UIC_COMMAND);
2292 }
2293 
2294 /**
2295  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2296  * @hba: per adapter instance
2297  * @uic_cmd: UIC command
2298  *
2299  * Returns 0 only if success.
2300  */
2301 static int
2302 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2303 {
2304 	int ret;
2305 	unsigned long flags;
2306 
2307 	lockdep_assert_held(&hba->uic_cmd_mutex);
2308 
2309 	if (wait_for_completion_timeout(&uic_cmd->done,
2310 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2311 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2312 	} else {
2313 		ret = -ETIMEDOUT;
2314 		dev_err(hba->dev,
2315 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2316 			uic_cmd->command, uic_cmd->argument3);
2317 
2318 		if (!uic_cmd->cmd_active) {
2319 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2320 				__func__);
2321 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2322 		}
2323 	}
2324 
2325 	spin_lock_irqsave(hba->host->host_lock, flags);
2326 	hba->active_uic_cmd = NULL;
2327 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2328 
2329 	return ret;
2330 }
2331 
2332 /**
2333  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2334  * @hba: per adapter instance
2335  * @uic_cmd: UIC command
2336  * @completion: initialize the completion only if this is set to true
2337  *
2338  * Returns 0 only if success.
2339  */
2340 static int
2341 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2342 		      bool completion)
2343 {
2344 	lockdep_assert_held(&hba->uic_cmd_mutex);
2345 	lockdep_assert_held(hba->host->host_lock);
2346 
2347 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2348 		dev_err(hba->dev,
2349 			"Controller not ready to accept UIC commands\n");
2350 		return -EIO;
2351 	}
2352 
2353 	if (completion)
2354 		init_completion(&uic_cmd->done);
2355 
2356 	uic_cmd->cmd_active = 1;
2357 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2358 
2359 	return 0;
2360 }
2361 
2362 /**
2363  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2364  * @hba: per adapter instance
2365  * @uic_cmd: UIC command
2366  *
2367  * Returns 0 only if success.
2368  */
2369 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2370 {
2371 	int ret;
2372 	unsigned long flags;
2373 
2374 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2375 		return 0;
2376 
2377 	ufshcd_hold(hba, false);
2378 	mutex_lock(&hba->uic_cmd_mutex);
2379 	ufshcd_add_delay_before_dme_cmd(hba);
2380 
2381 	spin_lock_irqsave(hba->host->host_lock, flags);
2382 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2383 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2384 	if (!ret)
2385 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2386 
2387 	mutex_unlock(&hba->uic_cmd_mutex);
2388 
2389 	ufshcd_release(hba);
2390 	return ret;
2391 }
2392 
2393 /**
2394  * ufshcd_map_sg - Map scatter-gather list to prdt
2395  * @hba: per adapter instance
2396  * @lrbp: pointer to local reference block
2397  *
2398  * Returns 0 in case of success, non-zero value in case of failure
2399  */
2400 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2401 {
2402 	struct ufshcd_sg_entry *prd_table;
2403 	struct scatterlist *sg;
2404 	struct scsi_cmnd *cmd;
2405 	int sg_segments;
2406 	int i;
2407 
2408 	cmd = lrbp->cmd;
2409 	sg_segments = scsi_dma_map(cmd);
2410 	if (sg_segments < 0)
2411 		return sg_segments;
2412 
2413 	if (sg_segments) {
2414 
2415 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2416 			lrbp->utr_descriptor_ptr->prd_table_length =
2417 				cpu_to_le16((sg_segments *
2418 					sizeof(struct ufshcd_sg_entry)));
2419 		else
2420 			lrbp->utr_descriptor_ptr->prd_table_length =
2421 				cpu_to_le16(sg_segments);
2422 
2423 		prd_table = lrbp->ucd_prdt_ptr;
2424 
2425 		scsi_for_each_sg(cmd, sg, sg_segments, i) {
2426 			const unsigned int len = sg_dma_len(sg);
2427 
2428 			/*
2429 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2430 			 * based value that indicates the length, in bytes, of
2431 			 * the data block. A maximum of length of 256KB may
2432 			 * exist for any entry. Bits 1:0 of this field shall be
2433 			 * 11b to indicate Dword granularity. A value of '3'
2434 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2435 			 */
2436 			WARN_ONCE(len > 256 * 1024, "len = %#x\n", len);
2437 			prd_table[i].size = cpu_to_le32(len - 1);
2438 			prd_table[i].addr = cpu_to_le64(sg->dma_address);
2439 			prd_table[i].reserved = 0;
2440 		}
2441 	} else {
2442 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 /**
2449  * ufshcd_enable_intr - enable interrupts
2450  * @hba: per adapter instance
2451  * @intrs: interrupt bits
2452  */
2453 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2454 {
2455 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2456 
2457 	if (hba->ufs_version == ufshci_version(1, 0)) {
2458 		u32 rw;
2459 		rw = set & INTERRUPT_MASK_RW_VER_10;
2460 		set = rw | ((set ^ intrs) & intrs);
2461 	} else {
2462 		set |= intrs;
2463 	}
2464 
2465 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2466 }
2467 
2468 /**
2469  * ufshcd_disable_intr - disable interrupts
2470  * @hba: per adapter instance
2471  * @intrs: interrupt bits
2472  */
2473 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2474 {
2475 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2476 
2477 	if (hba->ufs_version == ufshci_version(1, 0)) {
2478 		u32 rw;
2479 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2480 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2481 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2482 
2483 	} else {
2484 		set &= ~intrs;
2485 	}
2486 
2487 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2488 }
2489 
2490 /**
2491  * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2492  * descriptor according to request
2493  * @lrbp: pointer to local reference block
2494  * @upiu_flags: flags required in the header
2495  * @cmd_dir: requests data direction
2496  */
2497 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2498 			u8 *upiu_flags, enum dma_data_direction cmd_dir)
2499 {
2500 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2501 	u32 data_direction;
2502 	u32 dword_0;
2503 	u32 dword_1 = 0;
2504 	u32 dword_3 = 0;
2505 
2506 	if (cmd_dir == DMA_FROM_DEVICE) {
2507 		data_direction = UTP_DEVICE_TO_HOST;
2508 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2509 	} else if (cmd_dir == DMA_TO_DEVICE) {
2510 		data_direction = UTP_HOST_TO_DEVICE;
2511 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2512 	} else {
2513 		data_direction = UTP_NO_DATA_TRANSFER;
2514 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2515 	}
2516 
2517 	dword_0 = data_direction | (lrbp->command_type
2518 				<< UPIU_COMMAND_TYPE_OFFSET);
2519 	if (lrbp->intr_cmd)
2520 		dword_0 |= UTP_REQ_DESC_INT_CMD;
2521 
2522 	/* Prepare crypto related dwords */
2523 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2524 
2525 	/* Transfer request descriptor header fields */
2526 	req_desc->header.dword_0 = cpu_to_le32(dword_0);
2527 	req_desc->header.dword_1 = cpu_to_le32(dword_1);
2528 	/*
2529 	 * assigning invalid value for command status. Controller
2530 	 * updates OCS on command completion, with the command
2531 	 * status
2532 	 */
2533 	req_desc->header.dword_2 =
2534 		cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2535 	req_desc->header.dword_3 = cpu_to_le32(dword_3);
2536 
2537 	req_desc->prd_table_length = 0;
2538 }
2539 
2540 /**
2541  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2542  * for scsi commands
2543  * @lrbp: local reference block pointer
2544  * @upiu_flags: flags
2545  */
2546 static
2547 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2548 {
2549 	struct scsi_cmnd *cmd = lrbp->cmd;
2550 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2551 	unsigned short cdb_len;
2552 
2553 	/* command descriptor fields */
2554 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2555 				UPIU_TRANSACTION_COMMAND, upiu_flags,
2556 				lrbp->lun, lrbp->task_tag);
2557 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2558 				UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2559 
2560 	/* Total EHS length and Data segment length will be zero */
2561 	ucd_req_ptr->header.dword_2 = 0;
2562 
2563 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2564 
2565 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2566 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2567 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2568 
2569 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2570 }
2571 
2572 /**
2573  * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2574  * for query requsts
2575  * @hba: UFS hba
2576  * @lrbp: local reference block pointer
2577  * @upiu_flags: flags
2578  */
2579 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2580 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2581 {
2582 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2583 	struct ufs_query *query = &hba->dev_cmd.query;
2584 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2585 
2586 	/* Query request header */
2587 	ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2588 			UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2589 			lrbp->lun, lrbp->task_tag);
2590 	ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2591 			0, query->request.query_func, 0, 0);
2592 
2593 	/* Data segment length only need for WRITE_DESC */
2594 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2595 		ucd_req_ptr->header.dword_2 =
2596 			UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2597 	else
2598 		ucd_req_ptr->header.dword_2 = 0;
2599 
2600 	/* Copy the Query Request buffer as is */
2601 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2602 			QUERY_OSF_SIZE);
2603 
2604 	/* Copy the Descriptor */
2605 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2606 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2607 
2608 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2609 }
2610 
2611 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2612 {
2613 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2614 
2615 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2616 
2617 	/* command descriptor fields */
2618 	ucd_req_ptr->header.dword_0 =
2619 		UPIU_HEADER_DWORD(
2620 			UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2621 	/* clear rest of the fields of basic header */
2622 	ucd_req_ptr->header.dword_1 = 0;
2623 	ucd_req_ptr->header.dword_2 = 0;
2624 
2625 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2626 }
2627 
2628 /**
2629  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2630  *			     for Device Management Purposes
2631  * @hba: per adapter instance
2632  * @lrbp: pointer to local reference block
2633  */
2634 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2635 				      struct ufshcd_lrb *lrbp)
2636 {
2637 	u8 upiu_flags;
2638 	int ret = 0;
2639 
2640 	if (hba->ufs_version <= ufshci_version(1, 1))
2641 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2642 	else
2643 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2644 
2645 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2646 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2647 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2648 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2649 		ufshcd_prepare_utp_nop_upiu(lrbp);
2650 	else
2651 		ret = -EINVAL;
2652 
2653 	return ret;
2654 }
2655 
2656 /**
2657  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2658  *			   for SCSI Purposes
2659  * @hba: per adapter instance
2660  * @lrbp: pointer to local reference block
2661  */
2662 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2663 {
2664 	u8 upiu_flags;
2665 	int ret = 0;
2666 
2667 	if (hba->ufs_version <= ufshci_version(1, 1))
2668 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2669 	else
2670 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2671 
2672 	if (likely(lrbp->cmd)) {
2673 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2674 						lrbp->cmd->sc_data_direction);
2675 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2676 	} else {
2677 		ret = -EINVAL;
2678 	}
2679 
2680 	return ret;
2681 }
2682 
2683 /**
2684  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2685  * @upiu_wlun_id: UPIU W-LUN id
2686  *
2687  * Returns SCSI W-LUN id
2688  */
2689 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2690 {
2691 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2692 }
2693 
2694 static inline bool is_device_wlun(struct scsi_device *sdev)
2695 {
2696 	return sdev->lun ==
2697 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2698 }
2699 
2700 /*
2701  * Associate the UFS controller queue with the default and poll HCTX types.
2702  * Initialize the mq_map[] arrays.
2703  */
2704 static int ufshcd_map_queues(struct Scsi_Host *shost)
2705 {
2706 	int i, ret;
2707 
2708 	for (i = 0; i < shost->nr_maps; i++) {
2709 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2710 
2711 		switch (i) {
2712 		case HCTX_TYPE_DEFAULT:
2713 		case HCTX_TYPE_POLL:
2714 			map->nr_queues = 1;
2715 			break;
2716 		case HCTX_TYPE_READ:
2717 			map->nr_queues = 0;
2718 			continue;
2719 		default:
2720 			WARN_ON_ONCE(true);
2721 		}
2722 		map->queue_offset = 0;
2723 		ret = blk_mq_map_queues(map);
2724 		WARN_ON_ONCE(ret);
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2731 {
2732 	struct utp_transfer_cmd_desc *cmd_descp = hba->ucdl_base_addr;
2733 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2734 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2735 		i * sizeof(struct utp_transfer_cmd_desc);
2736 	u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2737 				       response_upiu);
2738 	u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2739 
2740 	lrb->utr_descriptor_ptr = utrdlp + i;
2741 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2742 		i * sizeof(struct utp_transfer_req_desc);
2743 	lrb->ucd_req_ptr = (struct utp_upiu_req *)(cmd_descp + i);
2744 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2745 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp[i].response_upiu;
2746 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2747 	lrb->ucd_prdt_ptr = cmd_descp[i].prd_table;
2748 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2749 }
2750 
2751 /**
2752  * ufshcd_queuecommand - main entry point for SCSI requests
2753  * @host: SCSI host pointer
2754  * @cmd: command from SCSI Midlayer
2755  *
2756  * Returns 0 for success, non-zero in case of failure
2757  */
2758 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2759 {
2760 	struct ufs_hba *hba = shost_priv(host);
2761 	int tag = scsi_cmd_to_rq(cmd)->tag;
2762 	struct ufshcd_lrb *lrbp;
2763 	int err = 0;
2764 
2765 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2766 
2767 	/*
2768 	 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2769 	 * calls.
2770 	 */
2771 	rcu_read_lock();
2772 
2773 	switch (hba->ufshcd_state) {
2774 	case UFSHCD_STATE_OPERATIONAL:
2775 		break;
2776 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2777 		/*
2778 		 * SCSI error handler can call ->queuecommand() while UFS error
2779 		 * handler is in progress. Error interrupts could change the
2780 		 * state from UFSHCD_STATE_RESET to
2781 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2782 		 * being issued in that case.
2783 		 */
2784 		if (ufshcd_eh_in_progress(hba)) {
2785 			err = SCSI_MLQUEUE_HOST_BUSY;
2786 			goto out;
2787 		}
2788 		break;
2789 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2790 		/*
2791 		 * pm_runtime_get_sync() is used at error handling preparation
2792 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2793 		 * PM ops, it can never be finished if we let SCSI layer keep
2794 		 * retrying it, which gets err handler stuck forever. Neither
2795 		 * can we let the scsi cmd pass through, because UFS is in bad
2796 		 * state, the scsi cmd may eventually time out, which will get
2797 		 * err handler blocked for too long. So, just fail the scsi cmd
2798 		 * sent from PM ops, err handler can recover PM error anyways.
2799 		 */
2800 		if (hba->pm_op_in_progress) {
2801 			hba->force_reset = true;
2802 			set_host_byte(cmd, DID_BAD_TARGET);
2803 			scsi_done(cmd);
2804 			goto out;
2805 		}
2806 		fallthrough;
2807 	case UFSHCD_STATE_RESET:
2808 		err = SCSI_MLQUEUE_HOST_BUSY;
2809 		goto out;
2810 	case UFSHCD_STATE_ERROR:
2811 		set_host_byte(cmd, DID_ERROR);
2812 		scsi_done(cmd);
2813 		goto out;
2814 	}
2815 
2816 	hba->req_abort_count = 0;
2817 
2818 	err = ufshcd_hold(hba, true);
2819 	if (err) {
2820 		err = SCSI_MLQUEUE_HOST_BUSY;
2821 		goto out;
2822 	}
2823 	WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2824 		(hba->clk_gating.state != CLKS_ON));
2825 
2826 	lrbp = &hba->lrb[tag];
2827 	WARN_ON(lrbp->cmd);
2828 	lrbp->cmd = cmd;
2829 	lrbp->task_tag = tag;
2830 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2831 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2832 
2833 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2834 
2835 	lrbp->req_abort_skip = false;
2836 
2837 	ufshpb_prep(hba, lrbp);
2838 
2839 	ufshcd_comp_scsi_upiu(hba, lrbp);
2840 
2841 	err = ufshcd_map_sg(hba, lrbp);
2842 	if (err) {
2843 		lrbp->cmd = NULL;
2844 		ufshcd_release(hba);
2845 		goto out;
2846 	}
2847 
2848 	ufshcd_send_command(hba, tag);
2849 
2850 out:
2851 	rcu_read_unlock();
2852 
2853 	if (ufs_trigger_eh()) {
2854 		unsigned long flags;
2855 
2856 		spin_lock_irqsave(hba->host->host_lock, flags);
2857 		ufshcd_schedule_eh_work(hba);
2858 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2859 	}
2860 
2861 	return err;
2862 }
2863 
2864 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2865 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2866 {
2867 	lrbp->cmd = NULL;
2868 	lrbp->task_tag = tag;
2869 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2870 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2871 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2872 	hba->dev_cmd.type = cmd_type;
2873 
2874 	return ufshcd_compose_devman_upiu(hba, lrbp);
2875 }
2876 
2877 /*
2878  * Clear all the requests from the controller for which a bit has been set in
2879  * @mask and wait until the controller confirms that these requests have been
2880  * cleared.
2881  */
2882 static int ufshcd_clear_cmds(struct ufs_hba *hba, u32 mask)
2883 {
2884 	unsigned long flags;
2885 
2886 	/* clear outstanding transaction before retry */
2887 	spin_lock_irqsave(hba->host->host_lock, flags);
2888 	ufshcd_utrl_clear(hba, mask);
2889 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2890 
2891 	/*
2892 	 * wait for h/w to clear corresponding bit in door-bell.
2893 	 * max. wait is 1 sec.
2894 	 */
2895 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2896 					mask, ~mask, 1000, 1000);
2897 }
2898 
2899 static int
2900 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2901 {
2902 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2903 
2904 	/* Get the UPIU response */
2905 	query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2906 				UPIU_RSP_CODE_OFFSET;
2907 	return query_res->response;
2908 }
2909 
2910 /**
2911  * ufshcd_dev_cmd_completion() - handles device management command responses
2912  * @hba: per adapter instance
2913  * @lrbp: pointer to local reference block
2914  */
2915 static int
2916 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2917 {
2918 	int resp;
2919 	int err = 0;
2920 
2921 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2922 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2923 
2924 	switch (resp) {
2925 	case UPIU_TRANSACTION_NOP_IN:
2926 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2927 			err = -EINVAL;
2928 			dev_err(hba->dev, "%s: unexpected response %x\n",
2929 					__func__, resp);
2930 		}
2931 		break;
2932 	case UPIU_TRANSACTION_QUERY_RSP:
2933 		err = ufshcd_check_query_response(hba, lrbp);
2934 		if (!err)
2935 			err = ufshcd_copy_query_response(hba, lrbp);
2936 		break;
2937 	case UPIU_TRANSACTION_REJECT_UPIU:
2938 		/* TODO: handle Reject UPIU Response */
2939 		err = -EPERM;
2940 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2941 				__func__);
2942 		break;
2943 	default:
2944 		err = -EINVAL;
2945 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2946 				__func__, resp);
2947 		break;
2948 	}
2949 
2950 	return err;
2951 }
2952 
2953 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2954 		struct ufshcd_lrb *lrbp, int max_timeout)
2955 {
2956 	unsigned long time_left = msecs_to_jiffies(max_timeout);
2957 	unsigned long flags;
2958 	bool pending;
2959 	int err;
2960 
2961 retry:
2962 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2963 						time_left);
2964 
2965 	if (likely(time_left)) {
2966 		/*
2967 		 * The completion handler called complete() and the caller of
2968 		 * this function still owns the @lrbp tag so the code below does
2969 		 * not trigger any race conditions.
2970 		 */
2971 		hba->dev_cmd.complete = NULL;
2972 		err = ufshcd_get_tr_ocs(lrbp);
2973 		if (!err)
2974 			err = ufshcd_dev_cmd_completion(hba, lrbp);
2975 	} else {
2976 		err = -ETIMEDOUT;
2977 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2978 			__func__, lrbp->task_tag);
2979 		if (ufshcd_clear_cmds(hba, 1U << lrbp->task_tag) == 0) {
2980 			/* successfully cleared the command, retry if needed */
2981 			err = -EAGAIN;
2982 			/*
2983 			 * Since clearing the command succeeded we also need to
2984 			 * clear the task tag bit from the outstanding_reqs
2985 			 * variable.
2986 			 */
2987 			spin_lock_irqsave(&hba->outstanding_lock, flags);
2988 			pending = test_bit(lrbp->task_tag,
2989 					   &hba->outstanding_reqs);
2990 			if (pending) {
2991 				hba->dev_cmd.complete = NULL;
2992 				__clear_bit(lrbp->task_tag,
2993 					    &hba->outstanding_reqs);
2994 			}
2995 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2996 
2997 			if (!pending) {
2998 				/*
2999 				 * The completion handler ran while we tried to
3000 				 * clear the command.
3001 				 */
3002 				time_left = 1;
3003 				goto retry;
3004 			}
3005 		} else {
3006 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3007 				__func__, lrbp->task_tag);
3008 		}
3009 	}
3010 
3011 	return err;
3012 }
3013 
3014 /**
3015  * ufshcd_exec_dev_cmd - API for sending device management requests
3016  * @hba: UFS hba
3017  * @cmd_type: specifies the type (NOP, Query...)
3018  * @timeout: timeout in milliseconds
3019  *
3020  * NOTE: Since there is only one available tag for device management commands,
3021  * it is expected you hold the hba->dev_cmd.lock mutex.
3022  */
3023 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3024 		enum dev_cmd_type cmd_type, int timeout)
3025 {
3026 	DECLARE_COMPLETION_ONSTACK(wait);
3027 	const u32 tag = hba->reserved_slot;
3028 	struct ufshcd_lrb *lrbp;
3029 	int err;
3030 
3031 	/* Protects use of hba->reserved_slot. */
3032 	lockdep_assert_held(&hba->dev_cmd.lock);
3033 
3034 	down_read(&hba->clk_scaling_lock);
3035 
3036 	lrbp = &hba->lrb[tag];
3037 	WARN_ON(lrbp->cmd);
3038 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3039 	if (unlikely(err))
3040 		goto out;
3041 
3042 	hba->dev_cmd.complete = &wait;
3043 
3044 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3045 
3046 	ufshcd_send_command(hba, tag);
3047 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3048 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3049 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3050 
3051 out:
3052 	up_read(&hba->clk_scaling_lock);
3053 	return err;
3054 }
3055 
3056 /**
3057  * ufshcd_init_query() - init the query response and request parameters
3058  * @hba: per-adapter instance
3059  * @request: address of the request pointer to be initialized
3060  * @response: address of the response pointer to be initialized
3061  * @opcode: operation to perform
3062  * @idn: flag idn to access
3063  * @index: LU number to access
3064  * @selector: query/flag/descriptor further identification
3065  */
3066 static inline void ufshcd_init_query(struct ufs_hba *hba,
3067 		struct ufs_query_req **request, struct ufs_query_res **response,
3068 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3069 {
3070 	*request = &hba->dev_cmd.query.request;
3071 	*response = &hba->dev_cmd.query.response;
3072 	memset(*request, 0, sizeof(struct ufs_query_req));
3073 	memset(*response, 0, sizeof(struct ufs_query_res));
3074 	(*request)->upiu_req.opcode = opcode;
3075 	(*request)->upiu_req.idn = idn;
3076 	(*request)->upiu_req.index = index;
3077 	(*request)->upiu_req.selector = selector;
3078 }
3079 
3080 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3081 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3082 {
3083 	int ret;
3084 	int retries;
3085 
3086 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3087 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3088 		if (ret)
3089 			dev_dbg(hba->dev,
3090 				"%s: failed with error %d, retries %d\n",
3091 				__func__, ret, retries);
3092 		else
3093 			break;
3094 	}
3095 
3096 	if (ret)
3097 		dev_err(hba->dev,
3098 			"%s: query attribute, opcode %d, idn %d, failed with error %d after %d retries\n",
3099 			__func__, opcode, idn, ret, retries);
3100 	return ret;
3101 }
3102 
3103 /**
3104  * ufshcd_query_flag() - API function for sending flag query requests
3105  * @hba: per-adapter instance
3106  * @opcode: flag query to perform
3107  * @idn: flag idn to access
3108  * @index: flag index to access
3109  * @flag_res: the flag value after the query request completes
3110  *
3111  * Returns 0 for success, non-zero in case of failure
3112  */
3113 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3114 			enum flag_idn idn, u8 index, bool *flag_res)
3115 {
3116 	struct ufs_query_req *request = NULL;
3117 	struct ufs_query_res *response = NULL;
3118 	int err, selector = 0;
3119 	int timeout = QUERY_REQ_TIMEOUT;
3120 
3121 	BUG_ON(!hba);
3122 
3123 	ufshcd_hold(hba, false);
3124 	mutex_lock(&hba->dev_cmd.lock);
3125 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3126 			selector);
3127 
3128 	switch (opcode) {
3129 	case UPIU_QUERY_OPCODE_SET_FLAG:
3130 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3131 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3132 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3133 		break;
3134 	case UPIU_QUERY_OPCODE_READ_FLAG:
3135 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3136 		if (!flag_res) {
3137 			/* No dummy reads */
3138 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3139 					__func__);
3140 			err = -EINVAL;
3141 			goto out_unlock;
3142 		}
3143 		break;
3144 	default:
3145 		dev_err(hba->dev,
3146 			"%s: Expected query flag opcode but got = %d\n",
3147 			__func__, opcode);
3148 		err = -EINVAL;
3149 		goto out_unlock;
3150 	}
3151 
3152 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3153 
3154 	if (err) {
3155 		dev_err(hba->dev,
3156 			"%s: Sending flag query for idn %d failed, err = %d\n",
3157 			__func__, idn, err);
3158 		goto out_unlock;
3159 	}
3160 
3161 	if (flag_res)
3162 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3163 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3164 
3165 out_unlock:
3166 	mutex_unlock(&hba->dev_cmd.lock);
3167 	ufshcd_release(hba);
3168 	return err;
3169 }
3170 
3171 /**
3172  * ufshcd_query_attr - API function for sending attribute requests
3173  * @hba: per-adapter instance
3174  * @opcode: attribute opcode
3175  * @idn: attribute idn to access
3176  * @index: index field
3177  * @selector: selector field
3178  * @attr_val: the attribute value after the query request completes
3179  *
3180  * Returns 0 for success, non-zero in case of failure
3181 */
3182 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3183 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3184 {
3185 	struct ufs_query_req *request = NULL;
3186 	struct ufs_query_res *response = NULL;
3187 	int err;
3188 
3189 	BUG_ON(!hba);
3190 
3191 	if (!attr_val) {
3192 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3193 				__func__, opcode);
3194 		return -EINVAL;
3195 	}
3196 
3197 	ufshcd_hold(hba, false);
3198 
3199 	mutex_lock(&hba->dev_cmd.lock);
3200 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3201 			selector);
3202 
3203 	switch (opcode) {
3204 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3205 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3206 		request->upiu_req.value = cpu_to_be32(*attr_val);
3207 		break;
3208 	case UPIU_QUERY_OPCODE_READ_ATTR:
3209 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3210 		break;
3211 	default:
3212 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3213 				__func__, opcode);
3214 		err = -EINVAL;
3215 		goto out_unlock;
3216 	}
3217 
3218 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3219 
3220 	if (err) {
3221 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3222 				__func__, opcode, idn, index, err);
3223 		goto out_unlock;
3224 	}
3225 
3226 	*attr_val = be32_to_cpu(response->upiu_res.value);
3227 
3228 out_unlock:
3229 	mutex_unlock(&hba->dev_cmd.lock);
3230 	ufshcd_release(hba);
3231 	return err;
3232 }
3233 
3234 /**
3235  * ufshcd_query_attr_retry() - API function for sending query
3236  * attribute with retries
3237  * @hba: per-adapter instance
3238  * @opcode: attribute opcode
3239  * @idn: attribute idn to access
3240  * @index: index field
3241  * @selector: selector field
3242  * @attr_val: the attribute value after the query request
3243  * completes
3244  *
3245  * Returns 0 for success, non-zero in case of failure
3246 */
3247 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3248 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3249 	u32 *attr_val)
3250 {
3251 	int ret = 0;
3252 	u32 retries;
3253 
3254 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3255 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3256 						selector, attr_val);
3257 		if (ret)
3258 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3259 				__func__, ret, retries);
3260 		else
3261 			break;
3262 	}
3263 
3264 	if (ret)
3265 		dev_err(hba->dev,
3266 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3267 			__func__, idn, ret, QUERY_REQ_RETRIES);
3268 	return ret;
3269 }
3270 
3271 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3272 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3273 			u8 selector, u8 *desc_buf, int *buf_len)
3274 {
3275 	struct ufs_query_req *request = NULL;
3276 	struct ufs_query_res *response = NULL;
3277 	int err;
3278 
3279 	BUG_ON(!hba);
3280 
3281 	if (!desc_buf) {
3282 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3283 				__func__, opcode);
3284 		return -EINVAL;
3285 	}
3286 
3287 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3288 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3289 				__func__, *buf_len);
3290 		return -EINVAL;
3291 	}
3292 
3293 	ufshcd_hold(hba, false);
3294 
3295 	mutex_lock(&hba->dev_cmd.lock);
3296 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3297 			selector);
3298 	hba->dev_cmd.query.descriptor = desc_buf;
3299 	request->upiu_req.length = cpu_to_be16(*buf_len);
3300 
3301 	switch (opcode) {
3302 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3303 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3304 		break;
3305 	case UPIU_QUERY_OPCODE_READ_DESC:
3306 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3307 		break;
3308 	default:
3309 		dev_err(hba->dev,
3310 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3311 				__func__, opcode);
3312 		err = -EINVAL;
3313 		goto out_unlock;
3314 	}
3315 
3316 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3317 
3318 	if (err) {
3319 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3320 				__func__, opcode, idn, index, err);
3321 		goto out_unlock;
3322 	}
3323 
3324 	*buf_len = be16_to_cpu(response->upiu_res.length);
3325 
3326 out_unlock:
3327 	hba->dev_cmd.query.descriptor = NULL;
3328 	mutex_unlock(&hba->dev_cmd.lock);
3329 	ufshcd_release(hba);
3330 	return err;
3331 }
3332 
3333 /**
3334  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3335  * @hba: per-adapter instance
3336  * @opcode: attribute opcode
3337  * @idn: attribute idn to access
3338  * @index: index field
3339  * @selector: selector field
3340  * @desc_buf: the buffer that contains the descriptor
3341  * @buf_len: length parameter passed to the device
3342  *
3343  * Returns 0 for success, non-zero in case of failure.
3344  * The buf_len parameter will contain, on return, the length parameter
3345  * received on the response.
3346  */
3347 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3348 				  enum query_opcode opcode,
3349 				  enum desc_idn idn, u8 index,
3350 				  u8 selector,
3351 				  u8 *desc_buf, int *buf_len)
3352 {
3353 	int err;
3354 	int retries;
3355 
3356 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3357 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3358 						selector, desc_buf, buf_len);
3359 		if (!err || err == -EINVAL)
3360 			break;
3361 	}
3362 
3363 	return err;
3364 }
3365 
3366 /**
3367  * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3368  * @hba: Pointer to adapter instance
3369  * @desc_id: descriptor idn value
3370  * @desc_len: mapped desc length (out)
3371  */
3372 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3373 				  int *desc_len)
3374 {
3375 	if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3376 	    desc_id == QUERY_DESC_IDN_RFU_1)
3377 		*desc_len = 0;
3378 	else
3379 		*desc_len = hba->desc_size[desc_id];
3380 }
3381 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3382 
3383 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3384 				      enum desc_idn desc_id, int desc_index,
3385 				      unsigned char desc_len)
3386 {
3387 	if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3388 	    desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3389 		/* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3390 		 * than the RPMB unit, however, both descriptors share the same
3391 		 * desc_idn, to cover both unit descriptors with one length, we
3392 		 * choose the normal unit descriptor length by desc_index.
3393 		 */
3394 		hba->desc_size[desc_id] = desc_len;
3395 }
3396 
3397 /**
3398  * ufshcd_read_desc_param - read the specified descriptor parameter
3399  * @hba: Pointer to adapter instance
3400  * @desc_id: descriptor idn value
3401  * @desc_index: descriptor index
3402  * @param_offset: offset of the parameter to read
3403  * @param_read_buf: pointer to buffer where parameter would be read
3404  * @param_size: sizeof(param_read_buf)
3405  *
3406  * Return 0 in case of success, non-zero otherwise
3407  */
3408 int ufshcd_read_desc_param(struct ufs_hba *hba,
3409 			   enum desc_idn desc_id,
3410 			   int desc_index,
3411 			   u8 param_offset,
3412 			   u8 *param_read_buf,
3413 			   u8 param_size)
3414 {
3415 	int ret;
3416 	u8 *desc_buf;
3417 	int buff_len;
3418 	bool is_kmalloc = true;
3419 
3420 	/* Safety check */
3421 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3422 		return -EINVAL;
3423 
3424 	/* Get the length of descriptor */
3425 	ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3426 	if (!buff_len) {
3427 		dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3428 		return -EINVAL;
3429 	}
3430 
3431 	if (param_offset >= buff_len) {
3432 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3433 			__func__, param_offset, desc_id, buff_len);
3434 		return -EINVAL;
3435 	}
3436 
3437 	/* Check whether we need temp memory */
3438 	if (param_offset != 0 || param_size < buff_len) {
3439 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3440 		if (!desc_buf)
3441 			return -ENOMEM;
3442 	} else {
3443 		desc_buf = param_read_buf;
3444 		is_kmalloc = false;
3445 	}
3446 
3447 	/* Request for full descriptor */
3448 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3449 					desc_id, desc_index, 0,
3450 					desc_buf, &buff_len);
3451 
3452 	if (ret) {
3453 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3454 			__func__, desc_id, desc_index, param_offset, ret);
3455 		goto out;
3456 	}
3457 
3458 	/* Sanity check */
3459 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3460 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3461 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3462 		ret = -EINVAL;
3463 		goto out;
3464 	}
3465 
3466 	/* Update descriptor length */
3467 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3468 	ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3469 
3470 	if (is_kmalloc) {
3471 		/* Make sure we don't copy more data than available */
3472 		if (param_offset >= buff_len)
3473 			ret = -EINVAL;
3474 		else
3475 			memcpy(param_read_buf, &desc_buf[param_offset],
3476 			       min_t(u32, param_size, buff_len - param_offset));
3477 	}
3478 out:
3479 	if (is_kmalloc)
3480 		kfree(desc_buf);
3481 	return ret;
3482 }
3483 
3484 /**
3485  * struct uc_string_id - unicode string
3486  *
3487  * @len: size of this descriptor inclusive
3488  * @type: descriptor type
3489  * @uc: unicode string character
3490  */
3491 struct uc_string_id {
3492 	u8 len;
3493 	u8 type;
3494 	wchar_t uc[];
3495 } __packed;
3496 
3497 /* replace non-printable or non-ASCII characters with spaces */
3498 static inline char ufshcd_remove_non_printable(u8 ch)
3499 {
3500 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3501 }
3502 
3503 /**
3504  * ufshcd_read_string_desc - read string descriptor
3505  * @hba: pointer to adapter instance
3506  * @desc_index: descriptor index
3507  * @buf: pointer to buffer where descriptor would be read,
3508  *       the caller should free the memory.
3509  * @ascii: if true convert from unicode to ascii characters
3510  *         null terminated string.
3511  *
3512  * Return:
3513  * *      string size on success.
3514  * *      -ENOMEM: on allocation failure
3515  * *      -EINVAL: on a wrong parameter
3516  */
3517 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3518 			    u8 **buf, bool ascii)
3519 {
3520 	struct uc_string_id *uc_str;
3521 	u8 *str;
3522 	int ret;
3523 
3524 	if (!buf)
3525 		return -EINVAL;
3526 
3527 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3528 	if (!uc_str)
3529 		return -ENOMEM;
3530 
3531 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3532 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3533 	if (ret < 0) {
3534 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3535 			QUERY_REQ_RETRIES, ret);
3536 		str = NULL;
3537 		goto out;
3538 	}
3539 
3540 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3541 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3542 		str = NULL;
3543 		ret = 0;
3544 		goto out;
3545 	}
3546 
3547 	if (ascii) {
3548 		ssize_t ascii_len;
3549 		int i;
3550 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3551 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3552 		str = kzalloc(ascii_len, GFP_KERNEL);
3553 		if (!str) {
3554 			ret = -ENOMEM;
3555 			goto out;
3556 		}
3557 
3558 		/*
3559 		 * the descriptor contains string in UTF16 format
3560 		 * we need to convert to utf-8 so it can be displayed
3561 		 */
3562 		ret = utf16s_to_utf8s(uc_str->uc,
3563 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3564 				      UTF16_BIG_ENDIAN, str, ascii_len);
3565 
3566 		/* replace non-printable or non-ASCII characters with spaces */
3567 		for (i = 0; i < ret; i++)
3568 			str[i] = ufshcd_remove_non_printable(str[i]);
3569 
3570 		str[ret++] = '\0';
3571 
3572 	} else {
3573 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3574 		if (!str) {
3575 			ret = -ENOMEM;
3576 			goto out;
3577 		}
3578 		ret = uc_str->len;
3579 	}
3580 out:
3581 	*buf = str;
3582 	kfree(uc_str);
3583 	return ret;
3584 }
3585 
3586 /**
3587  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3588  * @hba: Pointer to adapter instance
3589  * @lun: lun id
3590  * @param_offset: offset of the parameter to read
3591  * @param_read_buf: pointer to buffer where parameter would be read
3592  * @param_size: sizeof(param_read_buf)
3593  *
3594  * Return 0 in case of success, non-zero otherwise
3595  */
3596 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3597 					      int lun,
3598 					      enum unit_desc_param param_offset,
3599 					      u8 *param_read_buf,
3600 					      u32 param_size)
3601 {
3602 	/*
3603 	 * Unit descriptors are only available for general purpose LUs (LUN id
3604 	 * from 0 to 7) and RPMB Well known LU.
3605 	 */
3606 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3607 		return -EOPNOTSUPP;
3608 
3609 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3610 				      param_offset, param_read_buf, param_size);
3611 }
3612 
3613 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3614 {
3615 	int err = 0;
3616 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3617 
3618 	if (hba->dev_info.wspecversion >= 0x300) {
3619 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3620 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3621 				&gating_wait);
3622 		if (err)
3623 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3624 					 err, gating_wait);
3625 
3626 		if (gating_wait == 0) {
3627 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3628 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3629 					 gating_wait);
3630 		}
3631 
3632 		hba->dev_info.clk_gating_wait_us = gating_wait;
3633 	}
3634 
3635 	return err;
3636 }
3637 
3638 /**
3639  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3640  * @hba: per adapter instance
3641  *
3642  * 1. Allocate DMA memory for Command Descriptor array
3643  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3644  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3645  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3646  *	(UTMRDL)
3647  * 4. Allocate memory for local reference block(lrb).
3648  *
3649  * Returns 0 for success, non-zero in case of failure
3650  */
3651 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3652 {
3653 	size_t utmrdl_size, utrdl_size, ucdl_size;
3654 
3655 	/* Allocate memory for UTP command descriptors */
3656 	ucdl_size = (sizeof(struct utp_transfer_cmd_desc) * hba->nutrs);
3657 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3658 						  ucdl_size,
3659 						  &hba->ucdl_dma_addr,
3660 						  GFP_KERNEL);
3661 
3662 	/*
3663 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3664 	 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3665 	 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3666 	 * be aligned to 128 bytes as well
3667 	 */
3668 	if (!hba->ucdl_base_addr ||
3669 	    WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3670 		dev_err(hba->dev,
3671 			"Command Descriptor Memory allocation failed\n");
3672 		goto out;
3673 	}
3674 
3675 	/*
3676 	 * Allocate memory for UTP Transfer descriptors
3677 	 * UFSHCI requires 1024 byte alignment of UTRD
3678 	 */
3679 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3680 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3681 						   utrdl_size,
3682 						   &hba->utrdl_dma_addr,
3683 						   GFP_KERNEL);
3684 	if (!hba->utrdl_base_addr ||
3685 	    WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3686 		dev_err(hba->dev,
3687 			"Transfer Descriptor Memory allocation failed\n");
3688 		goto out;
3689 	}
3690 
3691 	/*
3692 	 * Allocate memory for UTP Task Management descriptors
3693 	 * UFSHCI requires 1024 byte alignment of UTMRD
3694 	 */
3695 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3696 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3697 						    utmrdl_size,
3698 						    &hba->utmrdl_dma_addr,
3699 						    GFP_KERNEL);
3700 	if (!hba->utmrdl_base_addr ||
3701 	    WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3702 		dev_err(hba->dev,
3703 		"Task Management Descriptor Memory allocation failed\n");
3704 		goto out;
3705 	}
3706 
3707 	/* Allocate memory for local reference block */
3708 	hba->lrb = devm_kcalloc(hba->dev,
3709 				hba->nutrs, sizeof(struct ufshcd_lrb),
3710 				GFP_KERNEL);
3711 	if (!hba->lrb) {
3712 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3713 		goto out;
3714 	}
3715 	return 0;
3716 out:
3717 	return -ENOMEM;
3718 }
3719 
3720 /**
3721  * ufshcd_host_memory_configure - configure local reference block with
3722  *				memory offsets
3723  * @hba: per adapter instance
3724  *
3725  * Configure Host memory space
3726  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3727  * address.
3728  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3729  * and PRDT offset.
3730  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3731  * into local reference block.
3732  */
3733 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3734 {
3735 	struct utp_transfer_req_desc *utrdlp;
3736 	dma_addr_t cmd_desc_dma_addr;
3737 	dma_addr_t cmd_desc_element_addr;
3738 	u16 response_offset;
3739 	u16 prdt_offset;
3740 	int cmd_desc_size;
3741 	int i;
3742 
3743 	utrdlp = hba->utrdl_base_addr;
3744 
3745 	response_offset =
3746 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3747 	prdt_offset =
3748 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3749 
3750 	cmd_desc_size = sizeof(struct utp_transfer_cmd_desc);
3751 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3752 
3753 	for (i = 0; i < hba->nutrs; i++) {
3754 		/* Configure UTRD with command descriptor base address */
3755 		cmd_desc_element_addr =
3756 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3757 		utrdlp[i].command_desc_base_addr_lo =
3758 				cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3759 		utrdlp[i].command_desc_base_addr_hi =
3760 				cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3761 
3762 		/* Response upiu and prdt offset should be in double words */
3763 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3764 			utrdlp[i].response_upiu_offset =
3765 				cpu_to_le16(response_offset);
3766 			utrdlp[i].prd_table_offset =
3767 				cpu_to_le16(prdt_offset);
3768 			utrdlp[i].response_upiu_length =
3769 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3770 		} else {
3771 			utrdlp[i].response_upiu_offset =
3772 				cpu_to_le16(response_offset >> 2);
3773 			utrdlp[i].prd_table_offset =
3774 				cpu_to_le16(prdt_offset >> 2);
3775 			utrdlp[i].response_upiu_length =
3776 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3777 		}
3778 
3779 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3780 	}
3781 }
3782 
3783 /**
3784  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3785  * @hba: per adapter instance
3786  *
3787  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3788  * in order to initialize the Unipro link startup procedure.
3789  * Once the Unipro links are up, the device connected to the controller
3790  * is detected.
3791  *
3792  * Returns 0 on success, non-zero value on failure
3793  */
3794 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3795 {
3796 	struct uic_command uic_cmd = {0};
3797 	int ret;
3798 
3799 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3800 
3801 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3802 	if (ret)
3803 		dev_dbg(hba->dev,
3804 			"dme-link-startup: error code %d\n", ret);
3805 	return ret;
3806 }
3807 /**
3808  * ufshcd_dme_reset - UIC command for DME_RESET
3809  * @hba: per adapter instance
3810  *
3811  * DME_RESET command is issued in order to reset UniPro stack.
3812  * This function now deals with cold reset.
3813  *
3814  * Returns 0 on success, non-zero value on failure
3815  */
3816 static int ufshcd_dme_reset(struct ufs_hba *hba)
3817 {
3818 	struct uic_command uic_cmd = {0};
3819 	int ret;
3820 
3821 	uic_cmd.command = UIC_CMD_DME_RESET;
3822 
3823 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3824 	if (ret)
3825 		dev_err(hba->dev,
3826 			"dme-reset: error code %d\n", ret);
3827 
3828 	return ret;
3829 }
3830 
3831 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3832 			       int agreed_gear,
3833 			       int adapt_val)
3834 {
3835 	int ret;
3836 
3837 	if (agreed_gear < UFS_HS_G4)
3838 		adapt_val = PA_NO_ADAPT;
3839 
3840 	ret = ufshcd_dme_set(hba,
3841 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3842 			     adapt_val);
3843 	return ret;
3844 }
3845 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3846 
3847 /**
3848  * ufshcd_dme_enable - UIC command for DME_ENABLE
3849  * @hba: per adapter instance
3850  *
3851  * DME_ENABLE command is issued in order to enable UniPro stack.
3852  *
3853  * Returns 0 on success, non-zero value on failure
3854  */
3855 static int ufshcd_dme_enable(struct ufs_hba *hba)
3856 {
3857 	struct uic_command uic_cmd = {0};
3858 	int ret;
3859 
3860 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3861 
3862 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3863 	if (ret)
3864 		dev_err(hba->dev,
3865 			"dme-enable: error code %d\n", ret);
3866 
3867 	return ret;
3868 }
3869 
3870 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3871 {
3872 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3873 	unsigned long min_sleep_time_us;
3874 
3875 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3876 		return;
3877 
3878 	/*
3879 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3880 	 * this function
3881 	 */
3882 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3883 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3884 	} else {
3885 		unsigned long delta =
3886 			(unsigned long) ktime_to_us(
3887 				ktime_sub(ktime_get(),
3888 				hba->last_dme_cmd_tstamp));
3889 
3890 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3891 			min_sleep_time_us =
3892 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3893 		else
3894 			return; /* no more delay required */
3895 	}
3896 
3897 	/* allow sleep for extra 50us if needed */
3898 	usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3899 }
3900 
3901 /**
3902  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3903  * @hba: per adapter instance
3904  * @attr_sel: uic command argument1
3905  * @attr_set: attribute set type as uic command argument2
3906  * @mib_val: setting value as uic command argument3
3907  * @peer: indicate whether peer or local
3908  *
3909  * Returns 0 on success, non-zero value on failure
3910  */
3911 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3912 			u8 attr_set, u32 mib_val, u8 peer)
3913 {
3914 	struct uic_command uic_cmd = {0};
3915 	static const char *const action[] = {
3916 		"dme-set",
3917 		"dme-peer-set"
3918 	};
3919 	const char *set = action[!!peer];
3920 	int ret;
3921 	int retries = UFS_UIC_COMMAND_RETRIES;
3922 
3923 	uic_cmd.command = peer ?
3924 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3925 	uic_cmd.argument1 = attr_sel;
3926 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3927 	uic_cmd.argument3 = mib_val;
3928 
3929 	do {
3930 		/* for peer attributes we retry upon failure */
3931 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3932 		if (ret)
3933 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3934 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3935 	} while (ret && peer && --retries);
3936 
3937 	if (ret)
3938 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3939 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3940 			UFS_UIC_COMMAND_RETRIES - retries);
3941 
3942 	return ret;
3943 }
3944 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3945 
3946 /**
3947  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3948  * @hba: per adapter instance
3949  * @attr_sel: uic command argument1
3950  * @mib_val: the value of the attribute as returned by the UIC command
3951  * @peer: indicate whether peer or local
3952  *
3953  * Returns 0 on success, non-zero value on failure
3954  */
3955 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3956 			u32 *mib_val, u8 peer)
3957 {
3958 	struct uic_command uic_cmd = {0};
3959 	static const char *const action[] = {
3960 		"dme-get",
3961 		"dme-peer-get"
3962 	};
3963 	const char *get = action[!!peer];
3964 	int ret;
3965 	int retries = UFS_UIC_COMMAND_RETRIES;
3966 	struct ufs_pa_layer_attr orig_pwr_info;
3967 	struct ufs_pa_layer_attr temp_pwr_info;
3968 	bool pwr_mode_change = false;
3969 
3970 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3971 		orig_pwr_info = hba->pwr_info;
3972 		temp_pwr_info = orig_pwr_info;
3973 
3974 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
3975 		    orig_pwr_info.pwr_rx == FAST_MODE) {
3976 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3977 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3978 			pwr_mode_change = true;
3979 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3980 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
3981 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3982 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3983 			pwr_mode_change = true;
3984 		}
3985 		if (pwr_mode_change) {
3986 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3987 			if (ret)
3988 				goto out;
3989 		}
3990 	}
3991 
3992 	uic_cmd.command = peer ?
3993 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3994 	uic_cmd.argument1 = attr_sel;
3995 
3996 	do {
3997 		/* for peer attributes we retry upon failure */
3998 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3999 		if (ret)
4000 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4001 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4002 	} while (ret && peer && --retries);
4003 
4004 	if (ret)
4005 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4006 			get, UIC_GET_ATTR_ID(attr_sel),
4007 			UFS_UIC_COMMAND_RETRIES - retries);
4008 
4009 	if (mib_val && !ret)
4010 		*mib_val = uic_cmd.argument3;
4011 
4012 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4013 	    && pwr_mode_change)
4014 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4015 out:
4016 	return ret;
4017 }
4018 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4019 
4020 /**
4021  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4022  * state) and waits for it to take effect.
4023  *
4024  * @hba: per adapter instance
4025  * @cmd: UIC command to execute
4026  *
4027  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4028  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4029  * and device UniPro link and hence it's final completion would be indicated by
4030  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4031  * addition to normal UIC command completion Status (UCCS). This function only
4032  * returns after the relevant status bits indicate the completion.
4033  *
4034  * Returns 0 on success, non-zero value on failure
4035  */
4036 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4037 {
4038 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4039 	unsigned long flags;
4040 	u8 status;
4041 	int ret;
4042 	bool reenable_intr = false;
4043 
4044 	mutex_lock(&hba->uic_cmd_mutex);
4045 	ufshcd_add_delay_before_dme_cmd(hba);
4046 
4047 	spin_lock_irqsave(hba->host->host_lock, flags);
4048 	if (ufshcd_is_link_broken(hba)) {
4049 		ret = -ENOLINK;
4050 		goto out_unlock;
4051 	}
4052 	hba->uic_async_done = &uic_async_done;
4053 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4054 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4055 		/*
4056 		 * Make sure UIC command completion interrupt is disabled before
4057 		 * issuing UIC command.
4058 		 */
4059 		wmb();
4060 		reenable_intr = true;
4061 	}
4062 	ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4063 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4064 	if (ret) {
4065 		dev_err(hba->dev,
4066 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4067 			cmd->command, cmd->argument3, ret);
4068 		goto out;
4069 	}
4070 
4071 	if (!wait_for_completion_timeout(hba->uic_async_done,
4072 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4073 		dev_err(hba->dev,
4074 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4075 			cmd->command, cmd->argument3);
4076 
4077 		if (!cmd->cmd_active) {
4078 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4079 				__func__);
4080 			goto check_upmcrs;
4081 		}
4082 
4083 		ret = -ETIMEDOUT;
4084 		goto out;
4085 	}
4086 
4087 check_upmcrs:
4088 	status = ufshcd_get_upmcrs(hba);
4089 	if (status != PWR_LOCAL) {
4090 		dev_err(hba->dev,
4091 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4092 			cmd->command, status);
4093 		ret = (status != PWR_OK) ? status : -1;
4094 	}
4095 out:
4096 	if (ret) {
4097 		ufshcd_print_host_state(hba);
4098 		ufshcd_print_pwr_info(hba);
4099 		ufshcd_print_evt_hist(hba);
4100 	}
4101 
4102 	spin_lock_irqsave(hba->host->host_lock, flags);
4103 	hba->active_uic_cmd = NULL;
4104 	hba->uic_async_done = NULL;
4105 	if (reenable_intr)
4106 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4107 	if (ret) {
4108 		ufshcd_set_link_broken(hba);
4109 		ufshcd_schedule_eh_work(hba);
4110 	}
4111 out_unlock:
4112 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4113 	mutex_unlock(&hba->uic_cmd_mutex);
4114 
4115 	return ret;
4116 }
4117 
4118 /**
4119  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4120  *				using DME_SET primitives.
4121  * @hba: per adapter instance
4122  * @mode: powr mode value
4123  *
4124  * Returns 0 on success, non-zero value on failure
4125  */
4126 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4127 {
4128 	struct uic_command uic_cmd = {0};
4129 	int ret;
4130 
4131 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4132 		ret = ufshcd_dme_set(hba,
4133 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4134 		if (ret) {
4135 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4136 						__func__, ret);
4137 			goto out;
4138 		}
4139 	}
4140 
4141 	uic_cmd.command = UIC_CMD_DME_SET;
4142 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4143 	uic_cmd.argument3 = mode;
4144 	ufshcd_hold(hba, false);
4145 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4146 	ufshcd_release(hba);
4147 
4148 out:
4149 	return ret;
4150 }
4151 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4152 
4153 int ufshcd_link_recovery(struct ufs_hba *hba)
4154 {
4155 	int ret;
4156 	unsigned long flags;
4157 
4158 	spin_lock_irqsave(hba->host->host_lock, flags);
4159 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4160 	ufshcd_set_eh_in_progress(hba);
4161 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4162 
4163 	/* Reset the attached device */
4164 	ufshcd_device_reset(hba);
4165 
4166 	ret = ufshcd_host_reset_and_restore(hba);
4167 
4168 	spin_lock_irqsave(hba->host->host_lock, flags);
4169 	if (ret)
4170 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4171 	ufshcd_clear_eh_in_progress(hba);
4172 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4173 
4174 	if (ret)
4175 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4176 			__func__, ret);
4177 
4178 	return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4181 
4182 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4183 {
4184 	int ret;
4185 	struct uic_command uic_cmd = {0};
4186 	ktime_t start = ktime_get();
4187 
4188 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4189 
4190 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4191 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4192 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4193 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4194 
4195 	if (ret)
4196 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4197 			__func__, ret);
4198 	else
4199 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4200 								POST_CHANGE);
4201 
4202 	return ret;
4203 }
4204 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4205 
4206 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4207 {
4208 	struct uic_command uic_cmd = {0};
4209 	int ret;
4210 	ktime_t start = ktime_get();
4211 
4212 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4213 
4214 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4215 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4216 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4217 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4218 
4219 	if (ret) {
4220 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4221 			__func__, ret);
4222 	} else {
4223 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4224 								POST_CHANGE);
4225 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4226 		hba->ufs_stats.hibern8_exit_cnt++;
4227 	}
4228 
4229 	return ret;
4230 }
4231 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4232 
4233 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4234 {
4235 	unsigned long flags;
4236 	bool update = false;
4237 
4238 	if (!ufshcd_is_auto_hibern8_supported(hba))
4239 		return;
4240 
4241 	spin_lock_irqsave(hba->host->host_lock, flags);
4242 	if (hba->ahit != ahit) {
4243 		hba->ahit = ahit;
4244 		update = true;
4245 	}
4246 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4247 
4248 	if (update &&
4249 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4250 		ufshcd_rpm_get_sync(hba);
4251 		ufshcd_hold(hba, false);
4252 		ufshcd_auto_hibern8_enable(hba);
4253 		ufshcd_release(hba);
4254 		ufshcd_rpm_put_sync(hba);
4255 	}
4256 }
4257 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4258 
4259 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4260 {
4261 	if (!ufshcd_is_auto_hibern8_supported(hba))
4262 		return;
4263 
4264 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4265 }
4266 
4267  /**
4268  * ufshcd_init_pwr_info - setting the POR (power on reset)
4269  * values in hba power info
4270  * @hba: per-adapter instance
4271  */
4272 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4273 {
4274 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4275 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4276 	hba->pwr_info.lane_rx = 1;
4277 	hba->pwr_info.lane_tx = 1;
4278 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4279 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4280 	hba->pwr_info.hs_rate = 0;
4281 }
4282 
4283 /**
4284  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4285  * @hba: per-adapter instance
4286  */
4287 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4288 {
4289 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4290 
4291 	if (hba->max_pwr_info.is_valid)
4292 		return 0;
4293 
4294 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4295 		pwr_info->pwr_tx = FASTAUTO_MODE;
4296 		pwr_info->pwr_rx = FASTAUTO_MODE;
4297 	} else {
4298 		pwr_info->pwr_tx = FAST_MODE;
4299 		pwr_info->pwr_rx = FAST_MODE;
4300 	}
4301 	pwr_info->hs_rate = PA_HS_MODE_B;
4302 
4303 	/* Get the connected lane count */
4304 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4305 			&pwr_info->lane_rx);
4306 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4307 			&pwr_info->lane_tx);
4308 
4309 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4310 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4311 				__func__,
4312 				pwr_info->lane_rx,
4313 				pwr_info->lane_tx);
4314 		return -EINVAL;
4315 	}
4316 
4317 	/*
4318 	 * First, get the maximum gears of HS speed.
4319 	 * If a zero value, it means there is no HSGEAR capability.
4320 	 * Then, get the maximum gears of PWM speed.
4321 	 */
4322 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4323 	if (!pwr_info->gear_rx) {
4324 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4325 				&pwr_info->gear_rx);
4326 		if (!pwr_info->gear_rx) {
4327 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4328 				__func__, pwr_info->gear_rx);
4329 			return -EINVAL;
4330 		}
4331 		pwr_info->pwr_rx = SLOW_MODE;
4332 	}
4333 
4334 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4335 			&pwr_info->gear_tx);
4336 	if (!pwr_info->gear_tx) {
4337 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4338 				&pwr_info->gear_tx);
4339 		if (!pwr_info->gear_tx) {
4340 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4341 				__func__, pwr_info->gear_tx);
4342 			return -EINVAL;
4343 		}
4344 		pwr_info->pwr_tx = SLOW_MODE;
4345 	}
4346 
4347 	hba->max_pwr_info.is_valid = true;
4348 	return 0;
4349 }
4350 
4351 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4352 			     struct ufs_pa_layer_attr *pwr_mode)
4353 {
4354 	int ret;
4355 
4356 	/* if already configured to the requested pwr_mode */
4357 	if (!hba->force_pmc &&
4358 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4359 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4360 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4361 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4362 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4363 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4364 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4365 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4366 		return 0;
4367 	}
4368 
4369 	/*
4370 	 * Configure attributes for power mode change with below.
4371 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4372 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4373 	 * - PA_HSSERIES
4374 	 */
4375 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4376 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4377 			pwr_mode->lane_rx);
4378 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4379 			pwr_mode->pwr_rx == FAST_MODE)
4380 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4381 	else
4382 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4383 
4384 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4385 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4386 			pwr_mode->lane_tx);
4387 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4388 			pwr_mode->pwr_tx == FAST_MODE)
4389 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4390 	else
4391 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4392 
4393 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4394 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4395 	    pwr_mode->pwr_rx == FAST_MODE ||
4396 	    pwr_mode->pwr_tx == FAST_MODE)
4397 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4398 						pwr_mode->hs_rate);
4399 
4400 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4401 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4402 				DL_FC0ProtectionTimeOutVal_Default);
4403 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4404 				DL_TC0ReplayTimeOutVal_Default);
4405 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4406 				DL_AFC0ReqTimeOutVal_Default);
4407 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4408 				DL_FC1ProtectionTimeOutVal_Default);
4409 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4410 				DL_TC1ReplayTimeOutVal_Default);
4411 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4412 				DL_AFC1ReqTimeOutVal_Default);
4413 
4414 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4415 				DL_FC0ProtectionTimeOutVal_Default);
4416 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4417 				DL_TC0ReplayTimeOutVal_Default);
4418 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4419 				DL_AFC0ReqTimeOutVal_Default);
4420 	}
4421 
4422 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4423 			| pwr_mode->pwr_tx);
4424 
4425 	if (ret) {
4426 		dev_err(hba->dev,
4427 			"%s: power mode change failed %d\n", __func__, ret);
4428 	} else {
4429 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4430 								pwr_mode);
4431 
4432 		memcpy(&hba->pwr_info, pwr_mode,
4433 			sizeof(struct ufs_pa_layer_attr));
4434 	}
4435 
4436 	return ret;
4437 }
4438 
4439 /**
4440  * ufshcd_config_pwr_mode - configure a new power mode
4441  * @hba: per-adapter instance
4442  * @desired_pwr_mode: desired power configuration
4443  */
4444 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4445 		struct ufs_pa_layer_attr *desired_pwr_mode)
4446 {
4447 	struct ufs_pa_layer_attr final_params = { 0 };
4448 	int ret;
4449 
4450 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4451 					desired_pwr_mode, &final_params);
4452 
4453 	if (ret)
4454 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4455 
4456 	ret = ufshcd_change_power_mode(hba, &final_params);
4457 
4458 	return ret;
4459 }
4460 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4461 
4462 /**
4463  * ufshcd_complete_dev_init() - checks device readiness
4464  * @hba: per-adapter instance
4465  *
4466  * Set fDeviceInit flag and poll until device toggles it.
4467  */
4468 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4469 {
4470 	int err;
4471 	bool flag_res = true;
4472 	ktime_t timeout;
4473 
4474 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4475 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4476 	if (err) {
4477 		dev_err(hba->dev,
4478 			"%s setting fDeviceInit flag failed with error %d\n",
4479 			__func__, err);
4480 		goto out;
4481 	}
4482 
4483 	/* Poll fDeviceInit flag to be cleared */
4484 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4485 	do {
4486 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4487 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4488 		if (!flag_res)
4489 			break;
4490 		usleep_range(500, 1000);
4491 	} while (ktime_before(ktime_get(), timeout));
4492 
4493 	if (err) {
4494 		dev_err(hba->dev,
4495 				"%s reading fDeviceInit flag failed with error %d\n",
4496 				__func__, err);
4497 	} else if (flag_res) {
4498 		dev_err(hba->dev,
4499 				"%s fDeviceInit was not cleared by the device\n",
4500 				__func__);
4501 		err = -EBUSY;
4502 	}
4503 out:
4504 	return err;
4505 }
4506 
4507 /**
4508  * ufshcd_make_hba_operational - Make UFS controller operational
4509  * @hba: per adapter instance
4510  *
4511  * To bring UFS host controller to operational state,
4512  * 1. Enable required interrupts
4513  * 2. Configure interrupt aggregation
4514  * 3. Program UTRL and UTMRL base address
4515  * 4. Configure run-stop-registers
4516  *
4517  * Returns 0 on success, non-zero value on failure
4518  */
4519 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4520 {
4521 	int err = 0;
4522 	u32 reg;
4523 
4524 	/* Enable required interrupts */
4525 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4526 
4527 	/* Configure interrupt aggregation */
4528 	if (ufshcd_is_intr_aggr_allowed(hba))
4529 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4530 	else
4531 		ufshcd_disable_intr_aggr(hba);
4532 
4533 	/* Configure UTRL and UTMRL base address registers */
4534 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4535 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4536 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4537 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4538 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4539 			REG_UTP_TASK_REQ_LIST_BASE_L);
4540 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4541 			REG_UTP_TASK_REQ_LIST_BASE_H);
4542 
4543 	/*
4544 	 * Make sure base address and interrupt setup are updated before
4545 	 * enabling the run/stop registers below.
4546 	 */
4547 	wmb();
4548 
4549 	/*
4550 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4551 	 */
4552 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4553 	if (!(ufshcd_get_lists_status(reg))) {
4554 		ufshcd_enable_run_stop_reg(hba);
4555 	} else {
4556 		dev_err(hba->dev,
4557 			"Host controller not ready to process requests");
4558 		err = -EIO;
4559 	}
4560 
4561 	return err;
4562 }
4563 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4564 
4565 /**
4566  * ufshcd_hba_stop - Send controller to reset state
4567  * @hba: per adapter instance
4568  */
4569 void ufshcd_hba_stop(struct ufs_hba *hba)
4570 {
4571 	unsigned long flags;
4572 	int err;
4573 
4574 	/*
4575 	 * Obtain the host lock to prevent that the controller is disabled
4576 	 * while the UFS interrupt handler is active on another CPU.
4577 	 */
4578 	spin_lock_irqsave(hba->host->host_lock, flags);
4579 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4580 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4581 
4582 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4583 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4584 					10, 1);
4585 	if (err)
4586 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4587 }
4588 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4589 
4590 /**
4591  * ufshcd_hba_execute_hce - initialize the controller
4592  * @hba: per adapter instance
4593  *
4594  * The controller resets itself and controller firmware initialization
4595  * sequence kicks off. When controller is ready it will set
4596  * the Host Controller Enable bit to 1.
4597  *
4598  * Returns 0 on success, non-zero value on failure
4599  */
4600 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4601 {
4602 	int retry_outer = 3;
4603 	int retry_inner;
4604 
4605 start:
4606 	if (ufshcd_is_hba_active(hba))
4607 		/* change controller state to "reset state" */
4608 		ufshcd_hba_stop(hba);
4609 
4610 	/* UniPro link is disabled at this point */
4611 	ufshcd_set_link_off(hba);
4612 
4613 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4614 
4615 	/* start controller initialization sequence */
4616 	ufshcd_hba_start(hba);
4617 
4618 	/*
4619 	 * To initialize a UFS host controller HCE bit must be set to 1.
4620 	 * During initialization the HCE bit value changes from 1->0->1.
4621 	 * When the host controller completes initialization sequence
4622 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4623 	 * to check if the controller has completed initialization sequence.
4624 	 * So without this delay the value HCE = 1, set in the previous
4625 	 * instruction might be read back.
4626 	 * This delay can be changed based on the controller.
4627 	 */
4628 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4629 
4630 	/* wait for the host controller to complete initialization */
4631 	retry_inner = 50;
4632 	while (!ufshcd_is_hba_active(hba)) {
4633 		if (retry_inner) {
4634 			retry_inner--;
4635 		} else {
4636 			dev_err(hba->dev,
4637 				"Controller enable failed\n");
4638 			if (retry_outer) {
4639 				retry_outer--;
4640 				goto start;
4641 			}
4642 			return -EIO;
4643 		}
4644 		usleep_range(1000, 1100);
4645 	}
4646 
4647 	/* enable UIC related interrupts */
4648 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4649 
4650 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4651 
4652 	return 0;
4653 }
4654 
4655 int ufshcd_hba_enable(struct ufs_hba *hba)
4656 {
4657 	int ret;
4658 
4659 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4660 		ufshcd_set_link_off(hba);
4661 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4662 
4663 		/* enable UIC related interrupts */
4664 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4665 		ret = ufshcd_dme_reset(hba);
4666 		if (!ret) {
4667 			ret = ufshcd_dme_enable(hba);
4668 			if (!ret)
4669 				ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4670 			if (ret)
4671 				dev_err(hba->dev,
4672 					"Host controller enable failed with non-hce\n");
4673 		}
4674 	} else {
4675 		ret = ufshcd_hba_execute_hce(hba);
4676 	}
4677 
4678 	return ret;
4679 }
4680 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4681 
4682 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4683 {
4684 	int tx_lanes = 0, i, err = 0;
4685 
4686 	if (!peer)
4687 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4688 			       &tx_lanes);
4689 	else
4690 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4691 				    &tx_lanes);
4692 	for (i = 0; i < tx_lanes; i++) {
4693 		if (!peer)
4694 			err = ufshcd_dme_set(hba,
4695 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4696 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4697 					0);
4698 		else
4699 			err = ufshcd_dme_peer_set(hba,
4700 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4701 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4702 					0);
4703 		if (err) {
4704 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4705 				__func__, peer, i, err);
4706 			break;
4707 		}
4708 	}
4709 
4710 	return err;
4711 }
4712 
4713 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4714 {
4715 	return ufshcd_disable_tx_lcc(hba, true);
4716 }
4717 
4718 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4719 {
4720 	struct ufs_event_hist *e;
4721 
4722 	if (id >= UFS_EVT_CNT)
4723 		return;
4724 
4725 	e = &hba->ufs_stats.event[id];
4726 	e->val[e->pos] = val;
4727 	e->tstamp[e->pos] = ktime_get();
4728 	e->cnt += 1;
4729 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4730 
4731 	ufshcd_vops_event_notify(hba, id, &val);
4732 }
4733 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4734 
4735 /**
4736  * ufshcd_link_startup - Initialize unipro link startup
4737  * @hba: per adapter instance
4738  *
4739  * Returns 0 for success, non-zero in case of failure
4740  */
4741 static int ufshcd_link_startup(struct ufs_hba *hba)
4742 {
4743 	int ret;
4744 	int retries = DME_LINKSTARTUP_RETRIES;
4745 	bool link_startup_again = false;
4746 
4747 	/*
4748 	 * If UFS device isn't active then we will have to issue link startup
4749 	 * 2 times to make sure the device state move to active.
4750 	 */
4751 	if (!ufshcd_is_ufs_dev_active(hba))
4752 		link_startup_again = true;
4753 
4754 link_startup:
4755 	do {
4756 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4757 
4758 		ret = ufshcd_dme_link_startup(hba);
4759 
4760 		/* check if device is detected by inter-connect layer */
4761 		if (!ret && !ufshcd_is_device_present(hba)) {
4762 			ufshcd_update_evt_hist(hba,
4763 					       UFS_EVT_LINK_STARTUP_FAIL,
4764 					       0);
4765 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4766 			ret = -ENXIO;
4767 			goto out;
4768 		}
4769 
4770 		/*
4771 		 * DME link lost indication is only received when link is up,
4772 		 * but we can't be sure if the link is up until link startup
4773 		 * succeeds. So reset the local Uni-Pro and try again.
4774 		 */
4775 		if (ret && retries && ufshcd_hba_enable(hba)) {
4776 			ufshcd_update_evt_hist(hba,
4777 					       UFS_EVT_LINK_STARTUP_FAIL,
4778 					       (u32)ret);
4779 			goto out;
4780 		}
4781 	} while (ret && retries--);
4782 
4783 	if (ret) {
4784 		/* failed to get the link up... retire */
4785 		ufshcd_update_evt_hist(hba,
4786 				       UFS_EVT_LINK_STARTUP_FAIL,
4787 				       (u32)ret);
4788 		goto out;
4789 	}
4790 
4791 	if (link_startup_again) {
4792 		link_startup_again = false;
4793 		retries = DME_LINKSTARTUP_RETRIES;
4794 		goto link_startup;
4795 	}
4796 
4797 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4798 	ufshcd_init_pwr_info(hba);
4799 	ufshcd_print_pwr_info(hba);
4800 
4801 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4802 		ret = ufshcd_disable_device_tx_lcc(hba);
4803 		if (ret)
4804 			goto out;
4805 	}
4806 
4807 	/* Include any host controller configuration via UIC commands */
4808 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4809 	if (ret)
4810 		goto out;
4811 
4812 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4813 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4814 	ret = ufshcd_make_hba_operational(hba);
4815 out:
4816 	if (ret) {
4817 		dev_err(hba->dev, "link startup failed %d\n", ret);
4818 		ufshcd_print_host_state(hba);
4819 		ufshcd_print_pwr_info(hba);
4820 		ufshcd_print_evt_hist(hba);
4821 	}
4822 	return ret;
4823 }
4824 
4825 /**
4826  * ufshcd_verify_dev_init() - Verify device initialization
4827  * @hba: per-adapter instance
4828  *
4829  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4830  * device Transport Protocol (UTP) layer is ready after a reset.
4831  * If the UTP layer at the device side is not initialized, it may
4832  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4833  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4834  */
4835 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4836 {
4837 	int err = 0;
4838 	int retries;
4839 
4840 	ufshcd_hold(hba, false);
4841 	mutex_lock(&hba->dev_cmd.lock);
4842 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4843 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4844 					  hba->nop_out_timeout);
4845 
4846 		if (!err || err == -ETIMEDOUT)
4847 			break;
4848 
4849 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4850 	}
4851 	mutex_unlock(&hba->dev_cmd.lock);
4852 	ufshcd_release(hba);
4853 
4854 	if (err)
4855 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4856 	return err;
4857 }
4858 
4859 /**
4860  * ufshcd_set_queue_depth - set lun queue depth
4861  * @sdev: pointer to SCSI device
4862  *
4863  * Read bLUQueueDepth value and activate scsi tagged command
4864  * queueing. For WLUN, queue depth is set to 1. For best-effort
4865  * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4866  * value that host can queue.
4867  */
4868 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4869 {
4870 	int ret = 0;
4871 	u8 lun_qdepth;
4872 	struct ufs_hba *hba;
4873 
4874 	hba = shost_priv(sdev->host);
4875 
4876 	lun_qdepth = hba->nutrs;
4877 	ret = ufshcd_read_unit_desc_param(hba,
4878 					  ufshcd_scsi_to_upiu_lun(sdev->lun),
4879 					  UNIT_DESC_PARAM_LU_Q_DEPTH,
4880 					  &lun_qdepth,
4881 					  sizeof(lun_qdepth));
4882 
4883 	/* Some WLUN doesn't support unit descriptor */
4884 	if (ret == -EOPNOTSUPP)
4885 		lun_qdepth = 1;
4886 	else if (!lun_qdepth)
4887 		/* eventually, we can figure out the real queue depth */
4888 		lun_qdepth = hba->nutrs;
4889 	else
4890 		lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4891 
4892 	dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4893 			__func__, lun_qdepth);
4894 	scsi_change_queue_depth(sdev, lun_qdepth);
4895 }
4896 
4897 /*
4898  * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4899  * @hba: per-adapter instance
4900  * @lun: UFS device lun id
4901  * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4902  *
4903  * Returns 0 in case of success and b_lu_write_protect status would be returned
4904  * @b_lu_write_protect parameter.
4905  * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4906  * Returns -EINVAL in case of invalid parameters passed to this function.
4907  */
4908 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4909 			    u8 lun,
4910 			    u8 *b_lu_write_protect)
4911 {
4912 	int ret;
4913 
4914 	if (!b_lu_write_protect)
4915 		ret = -EINVAL;
4916 	/*
4917 	 * According to UFS device spec, RPMB LU can't be write
4918 	 * protected so skip reading bLUWriteProtect parameter for
4919 	 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4920 	 */
4921 	else if (lun >= hba->dev_info.max_lu_supported)
4922 		ret = -ENOTSUPP;
4923 	else
4924 		ret = ufshcd_read_unit_desc_param(hba,
4925 					  lun,
4926 					  UNIT_DESC_PARAM_LU_WR_PROTECT,
4927 					  b_lu_write_protect,
4928 					  sizeof(*b_lu_write_protect));
4929 	return ret;
4930 }
4931 
4932 /**
4933  * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4934  * status
4935  * @hba: per-adapter instance
4936  * @sdev: pointer to SCSI device
4937  *
4938  */
4939 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4940 						    const struct scsi_device *sdev)
4941 {
4942 	if (hba->dev_info.f_power_on_wp_en &&
4943 	    !hba->dev_info.is_lu_power_on_wp) {
4944 		u8 b_lu_write_protect;
4945 
4946 		if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4947 				      &b_lu_write_protect) &&
4948 		    (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4949 			hba->dev_info.is_lu_power_on_wp = true;
4950 	}
4951 }
4952 
4953 /**
4954  * ufshcd_setup_links - associate link b/w device wlun and other luns
4955  * @sdev: pointer to SCSI device
4956  * @hba: pointer to ufs hba
4957  */
4958 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4959 {
4960 	struct device_link *link;
4961 
4962 	/*
4963 	 * Device wlun is the supplier & rest of the luns are consumers.
4964 	 * This ensures that device wlun suspends after all other luns.
4965 	 */
4966 	if (hba->ufs_device_wlun) {
4967 		link = device_link_add(&sdev->sdev_gendev,
4968 				       &hba->ufs_device_wlun->sdev_gendev,
4969 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4970 		if (!link) {
4971 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4972 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
4973 			return;
4974 		}
4975 		hba->luns_avail--;
4976 		/* Ignore REPORT_LUN wlun probing */
4977 		if (hba->luns_avail == 1) {
4978 			ufshcd_rpm_put(hba);
4979 			return;
4980 		}
4981 	} else {
4982 		/*
4983 		 * Device wlun is probed. The assumption is that WLUNs are
4984 		 * scanned before other LUNs.
4985 		 */
4986 		hba->luns_avail--;
4987 	}
4988 }
4989 
4990 /**
4991  * ufshcd_slave_alloc - handle initial SCSI device configurations
4992  * @sdev: pointer to SCSI device
4993  *
4994  * Returns success
4995  */
4996 static int ufshcd_slave_alloc(struct scsi_device *sdev)
4997 {
4998 	struct ufs_hba *hba;
4999 
5000 	hba = shost_priv(sdev->host);
5001 
5002 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5003 	sdev->use_10_for_ms = 1;
5004 
5005 	/* DBD field should be set to 1 in mode sense(10) */
5006 	sdev->set_dbd_for_ms = 1;
5007 
5008 	/* allow SCSI layer to restart the device in case of errors */
5009 	sdev->allow_restart = 1;
5010 
5011 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5012 	sdev->no_report_opcodes = 1;
5013 
5014 	/* WRITE_SAME command is not supported */
5015 	sdev->no_write_same = 1;
5016 
5017 	ufshcd_set_queue_depth(sdev);
5018 
5019 	ufshcd_get_lu_power_on_wp_status(hba, sdev);
5020 
5021 	ufshcd_setup_links(hba, sdev);
5022 
5023 	return 0;
5024 }
5025 
5026 /**
5027  * ufshcd_change_queue_depth - change queue depth
5028  * @sdev: pointer to SCSI device
5029  * @depth: required depth to set
5030  *
5031  * Change queue depth and make sure the max. limits are not crossed.
5032  */
5033 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5034 {
5035 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5036 }
5037 
5038 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5039 {
5040 	/* skip well-known LU */
5041 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5042 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5043 		return;
5044 
5045 	ufshpb_destroy_lu(hba, sdev);
5046 }
5047 
5048 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5049 {
5050 	/* skip well-known LU */
5051 	if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5052 	    !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5053 		return;
5054 
5055 	ufshpb_init_hpb_lu(hba, sdev);
5056 }
5057 
5058 /**
5059  * ufshcd_slave_configure - adjust SCSI device configurations
5060  * @sdev: pointer to SCSI device
5061  */
5062 static int ufshcd_slave_configure(struct scsi_device *sdev)
5063 {
5064 	struct ufs_hba *hba = shost_priv(sdev->host);
5065 	struct request_queue *q = sdev->request_queue;
5066 
5067 	ufshcd_hpb_configure(hba, sdev);
5068 
5069 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5070 	if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
5071 		blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
5072 	/*
5073 	 * Block runtime-pm until all consumers are added.
5074 	 * Refer ufshcd_setup_links().
5075 	 */
5076 	if (is_device_wlun(sdev))
5077 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5078 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5079 		sdev->rpm_autosuspend = 1;
5080 	/*
5081 	 * Do not print messages during runtime PM to avoid never-ending cycles
5082 	 * of messages written back to storage by user space causing runtime
5083 	 * resume, causing more messages and so on.
5084 	 */
5085 	sdev->silence_suspend = 1;
5086 
5087 	ufshcd_crypto_register(hba, q);
5088 
5089 	return 0;
5090 }
5091 
5092 /**
5093  * ufshcd_slave_destroy - remove SCSI device configurations
5094  * @sdev: pointer to SCSI device
5095  */
5096 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5097 {
5098 	struct ufs_hba *hba;
5099 	unsigned long flags;
5100 
5101 	hba = shost_priv(sdev->host);
5102 
5103 	ufshcd_hpb_destroy(hba, sdev);
5104 
5105 	/* Drop the reference as it won't be needed anymore */
5106 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5107 		spin_lock_irqsave(hba->host->host_lock, flags);
5108 		hba->ufs_device_wlun = NULL;
5109 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5110 	} else if (hba->ufs_device_wlun) {
5111 		struct device *supplier = NULL;
5112 
5113 		/* Ensure UFS Device WLUN exists and does not disappear */
5114 		spin_lock_irqsave(hba->host->host_lock, flags);
5115 		if (hba->ufs_device_wlun) {
5116 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5117 			get_device(supplier);
5118 		}
5119 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5120 
5121 		if (supplier) {
5122 			/*
5123 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5124 			 * device will not have been registered but can still
5125 			 * have a device link holding a reference to the device.
5126 			 */
5127 			device_link_remove(&sdev->sdev_gendev, supplier);
5128 			put_device(supplier);
5129 		}
5130 	}
5131 }
5132 
5133 /**
5134  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5135  * @lrbp: pointer to local reference block of completed command
5136  * @scsi_status: SCSI command status
5137  *
5138  * Returns value base on SCSI command status
5139  */
5140 static inline int
5141 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5142 {
5143 	int result = 0;
5144 
5145 	switch (scsi_status) {
5146 	case SAM_STAT_CHECK_CONDITION:
5147 		ufshcd_copy_sense_data(lrbp);
5148 		fallthrough;
5149 	case SAM_STAT_GOOD:
5150 		result |= DID_OK << 16 | scsi_status;
5151 		break;
5152 	case SAM_STAT_TASK_SET_FULL:
5153 	case SAM_STAT_BUSY:
5154 	case SAM_STAT_TASK_ABORTED:
5155 		ufshcd_copy_sense_data(lrbp);
5156 		result |= scsi_status;
5157 		break;
5158 	default:
5159 		result |= DID_ERROR << 16;
5160 		break;
5161 	} /* end of switch */
5162 
5163 	return result;
5164 }
5165 
5166 /**
5167  * ufshcd_transfer_rsp_status - Get overall status of the response
5168  * @hba: per adapter instance
5169  * @lrbp: pointer to local reference block of completed command
5170  *
5171  * Returns result of the command to notify SCSI midlayer
5172  */
5173 static inline int
5174 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5175 {
5176 	int result = 0;
5177 	int scsi_status;
5178 	enum utp_ocs ocs;
5179 
5180 	/* overall command status of utrd */
5181 	ocs = ufshcd_get_tr_ocs(lrbp);
5182 
5183 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5184 		if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5185 					MASK_RSP_UPIU_RESULT)
5186 			ocs = OCS_SUCCESS;
5187 	}
5188 
5189 	switch (ocs) {
5190 	case OCS_SUCCESS:
5191 		result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5192 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5193 		switch (result) {
5194 		case UPIU_TRANSACTION_RESPONSE:
5195 			/*
5196 			 * get the response UPIU result to extract
5197 			 * the SCSI command status
5198 			 */
5199 			result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5200 
5201 			/*
5202 			 * get the result based on SCSI status response
5203 			 * to notify the SCSI midlayer of the command status
5204 			 */
5205 			scsi_status = result & MASK_SCSI_STATUS;
5206 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5207 
5208 			/*
5209 			 * Currently we are only supporting BKOPs exception
5210 			 * events hence we can ignore BKOPs exception event
5211 			 * during power management callbacks. BKOPs exception
5212 			 * event is not expected to be raised in runtime suspend
5213 			 * callback as it allows the urgent bkops.
5214 			 * During system suspend, we are anyway forcefully
5215 			 * disabling the bkops and if urgent bkops is needed
5216 			 * it will be enabled on system resume. Long term
5217 			 * solution could be to abort the system suspend if
5218 			 * UFS device needs urgent BKOPs.
5219 			 */
5220 			if (!hba->pm_op_in_progress &&
5221 			    !ufshcd_eh_in_progress(hba) &&
5222 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5223 				/* Flushed in suspend */
5224 				schedule_work(&hba->eeh_work);
5225 
5226 			if (scsi_status == SAM_STAT_GOOD)
5227 				ufshpb_rsp_upiu(hba, lrbp);
5228 			break;
5229 		case UPIU_TRANSACTION_REJECT_UPIU:
5230 			/* TODO: handle Reject UPIU Response */
5231 			result = DID_ERROR << 16;
5232 			dev_err(hba->dev,
5233 				"Reject UPIU not fully implemented\n");
5234 			break;
5235 		default:
5236 			dev_err(hba->dev,
5237 				"Unexpected request response code = %x\n",
5238 				result);
5239 			result = DID_ERROR << 16;
5240 			break;
5241 		}
5242 		break;
5243 	case OCS_ABORTED:
5244 		result |= DID_ABORT << 16;
5245 		break;
5246 	case OCS_INVALID_COMMAND_STATUS:
5247 		result |= DID_REQUEUE << 16;
5248 		break;
5249 	case OCS_INVALID_CMD_TABLE_ATTR:
5250 	case OCS_INVALID_PRDT_ATTR:
5251 	case OCS_MISMATCH_DATA_BUF_SIZE:
5252 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5253 	case OCS_PEER_COMM_FAILURE:
5254 	case OCS_FATAL_ERROR:
5255 	case OCS_DEVICE_FATAL_ERROR:
5256 	case OCS_INVALID_CRYPTO_CONFIG:
5257 	case OCS_GENERAL_CRYPTO_ERROR:
5258 	default:
5259 		result |= DID_ERROR << 16;
5260 		dev_err(hba->dev,
5261 				"OCS error from controller = %x for tag %d\n",
5262 				ocs, lrbp->task_tag);
5263 		ufshcd_print_evt_hist(hba);
5264 		ufshcd_print_host_state(hba);
5265 		break;
5266 	} /* end of switch */
5267 
5268 	if ((host_byte(result) != DID_OK) &&
5269 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5270 		ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5271 	return result;
5272 }
5273 
5274 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5275 					 u32 intr_mask)
5276 {
5277 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5278 	    !ufshcd_is_auto_hibern8_enabled(hba))
5279 		return false;
5280 
5281 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5282 		return false;
5283 
5284 	if (hba->active_uic_cmd &&
5285 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5286 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5287 		return false;
5288 
5289 	return true;
5290 }
5291 
5292 /**
5293  * ufshcd_uic_cmd_compl - handle completion of uic command
5294  * @hba: per adapter instance
5295  * @intr_status: interrupt status generated by the controller
5296  *
5297  * Returns
5298  *  IRQ_HANDLED - If interrupt is valid
5299  *  IRQ_NONE    - If invalid interrupt
5300  */
5301 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5302 {
5303 	irqreturn_t retval = IRQ_NONE;
5304 
5305 	spin_lock(hba->host->host_lock);
5306 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5307 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5308 
5309 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5310 		hba->active_uic_cmd->argument2 |=
5311 			ufshcd_get_uic_cmd_result(hba);
5312 		hba->active_uic_cmd->argument3 =
5313 			ufshcd_get_dme_attr_val(hba);
5314 		if (!hba->uic_async_done)
5315 			hba->active_uic_cmd->cmd_active = 0;
5316 		complete(&hba->active_uic_cmd->done);
5317 		retval = IRQ_HANDLED;
5318 	}
5319 
5320 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5321 		hba->active_uic_cmd->cmd_active = 0;
5322 		complete(hba->uic_async_done);
5323 		retval = IRQ_HANDLED;
5324 	}
5325 
5326 	if (retval == IRQ_HANDLED)
5327 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5328 					     UFS_CMD_COMP);
5329 	spin_unlock(hba->host->host_lock);
5330 	return retval;
5331 }
5332 
5333 /* Release the resources allocated for processing a SCSI command. */
5334 static void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5335 				    struct ufshcd_lrb *lrbp)
5336 {
5337 	struct scsi_cmnd *cmd = lrbp->cmd;
5338 
5339 	scsi_dma_unmap(cmd);
5340 	lrbp->cmd = NULL;	/* Mark the command as completed. */
5341 	ufshcd_release(hba);
5342 	ufshcd_clk_scaling_update_busy(hba);
5343 }
5344 
5345 /**
5346  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5347  * @hba: per adapter instance
5348  * @completed_reqs: bitmask that indicates which requests to complete
5349  */
5350 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5351 					unsigned long completed_reqs)
5352 {
5353 	struct ufshcd_lrb *lrbp;
5354 	struct scsi_cmnd *cmd;
5355 	int index;
5356 
5357 	for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5358 		lrbp = &hba->lrb[index];
5359 		lrbp->compl_time_stamp = ktime_get();
5360 		cmd = lrbp->cmd;
5361 		if (cmd) {
5362 			if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5363 				ufshcd_update_monitor(hba, lrbp);
5364 			ufshcd_add_command_trace(hba, index, UFS_CMD_COMP);
5365 			cmd->result = ufshcd_transfer_rsp_status(hba, lrbp);
5366 			ufshcd_release_scsi_cmd(hba, lrbp);
5367 			/* Do not touch lrbp after scsi done */
5368 			scsi_done(cmd);
5369 		} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5370 			lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5371 			if (hba->dev_cmd.complete) {
5372 				ufshcd_add_command_trace(hba, index,
5373 							 UFS_DEV_COMP);
5374 				complete(hba->dev_cmd.complete);
5375 				ufshcd_clk_scaling_update_busy(hba);
5376 			}
5377 		}
5378 	}
5379 }
5380 
5381 /*
5382  * Returns > 0 if one or more commands have been completed or 0 if no
5383  * requests have been completed.
5384  */
5385 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5386 {
5387 	struct ufs_hba *hba = shost_priv(shost);
5388 	unsigned long completed_reqs, flags;
5389 	u32 tr_doorbell;
5390 
5391 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5392 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5393 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5394 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5395 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5396 		  hba->outstanding_reqs);
5397 	hba->outstanding_reqs &= ~completed_reqs;
5398 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5399 
5400 	if (completed_reqs)
5401 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5402 
5403 	return completed_reqs;
5404 }
5405 
5406 /**
5407  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5408  * @hba: per adapter instance
5409  *
5410  * Returns
5411  *  IRQ_HANDLED - If interrupt is valid
5412  *  IRQ_NONE    - If invalid interrupt
5413  */
5414 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5415 {
5416 	/* Resetting interrupt aggregation counters first and reading the
5417 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5418 	 * In order to prevent other interrupts starvation the DB is read once
5419 	 * after reset. The down side of this solution is the possibility of
5420 	 * false interrupt if device completes another request after resetting
5421 	 * aggregation and before reading the DB.
5422 	 */
5423 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5424 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5425 		ufshcd_reset_intr_aggr(hba);
5426 
5427 	if (ufs_fail_completion())
5428 		return IRQ_HANDLED;
5429 
5430 	/*
5431 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5432 	 * do not want polling to trigger spurious interrupt complaints.
5433 	 */
5434 	ufshcd_poll(hba->host, 0);
5435 
5436 	return IRQ_HANDLED;
5437 }
5438 
5439 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5440 {
5441 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5442 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5443 				       &ee_ctrl_mask);
5444 }
5445 
5446 int ufshcd_write_ee_control(struct ufs_hba *hba)
5447 {
5448 	int err;
5449 
5450 	mutex_lock(&hba->ee_ctrl_mutex);
5451 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5452 	mutex_unlock(&hba->ee_ctrl_mutex);
5453 	if (err)
5454 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5455 			__func__, err);
5456 	return err;
5457 }
5458 
5459 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5460 			     const u16 *other_mask, u16 set, u16 clr)
5461 {
5462 	u16 new_mask, ee_ctrl_mask;
5463 	int err = 0;
5464 
5465 	mutex_lock(&hba->ee_ctrl_mutex);
5466 	new_mask = (*mask & ~clr) | set;
5467 	ee_ctrl_mask = new_mask | *other_mask;
5468 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5469 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5470 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5471 	if (!err) {
5472 		hba->ee_ctrl_mask = ee_ctrl_mask;
5473 		*mask = new_mask;
5474 	}
5475 	mutex_unlock(&hba->ee_ctrl_mutex);
5476 	return err;
5477 }
5478 
5479 /**
5480  * ufshcd_disable_ee - disable exception event
5481  * @hba: per-adapter instance
5482  * @mask: exception event to disable
5483  *
5484  * Disables exception event in the device so that the EVENT_ALERT
5485  * bit is not set.
5486  *
5487  * Returns zero on success, non-zero error value on failure.
5488  */
5489 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5490 {
5491 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5492 }
5493 
5494 /**
5495  * ufshcd_enable_ee - enable exception event
5496  * @hba: per-adapter instance
5497  * @mask: exception event to enable
5498  *
5499  * Enable corresponding exception event in the device to allow
5500  * device to alert host in critical scenarios.
5501  *
5502  * Returns zero on success, non-zero error value on failure.
5503  */
5504 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5505 {
5506 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5507 }
5508 
5509 /**
5510  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5511  * @hba: per-adapter instance
5512  *
5513  * Allow device to manage background operations on its own. Enabling
5514  * this might lead to inconsistent latencies during normal data transfers
5515  * as the device is allowed to manage its own way of handling background
5516  * operations.
5517  *
5518  * Returns zero on success, non-zero on failure.
5519  */
5520 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5521 {
5522 	int err = 0;
5523 
5524 	if (hba->auto_bkops_enabled)
5525 		goto out;
5526 
5527 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5528 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5529 	if (err) {
5530 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5531 				__func__, err);
5532 		goto out;
5533 	}
5534 
5535 	hba->auto_bkops_enabled = true;
5536 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5537 
5538 	/* No need of URGENT_BKOPS exception from the device */
5539 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5540 	if (err)
5541 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5542 				__func__, err);
5543 out:
5544 	return err;
5545 }
5546 
5547 /**
5548  * ufshcd_disable_auto_bkops - block device in doing background operations
5549  * @hba: per-adapter instance
5550  *
5551  * Disabling background operations improves command response latency but
5552  * has drawback of device moving into critical state where the device is
5553  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5554  * host is idle so that BKOPS are managed effectively without any negative
5555  * impacts.
5556  *
5557  * Returns zero on success, non-zero on failure.
5558  */
5559 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5560 {
5561 	int err = 0;
5562 
5563 	if (!hba->auto_bkops_enabled)
5564 		goto out;
5565 
5566 	/*
5567 	 * If host assisted BKOPs is to be enabled, make sure
5568 	 * urgent bkops exception is allowed.
5569 	 */
5570 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5571 	if (err) {
5572 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5573 				__func__, err);
5574 		goto out;
5575 	}
5576 
5577 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5578 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5579 	if (err) {
5580 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5581 				__func__, err);
5582 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5583 		goto out;
5584 	}
5585 
5586 	hba->auto_bkops_enabled = false;
5587 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5588 	hba->is_urgent_bkops_lvl_checked = false;
5589 out:
5590 	return err;
5591 }
5592 
5593 /**
5594  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5595  * @hba: per adapter instance
5596  *
5597  * After a device reset the device may toggle the BKOPS_EN flag
5598  * to default value. The s/w tracking variables should be updated
5599  * as well. This function would change the auto-bkops state based on
5600  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5601  */
5602 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5603 {
5604 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5605 		hba->auto_bkops_enabled = false;
5606 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5607 		ufshcd_enable_auto_bkops(hba);
5608 	} else {
5609 		hba->auto_bkops_enabled = true;
5610 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5611 		ufshcd_disable_auto_bkops(hba);
5612 	}
5613 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5614 	hba->is_urgent_bkops_lvl_checked = false;
5615 }
5616 
5617 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5618 {
5619 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5620 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5621 }
5622 
5623 /**
5624  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5625  * @hba: per-adapter instance
5626  * @status: bkops_status value
5627  *
5628  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5629  * flag in the device to permit background operations if the device
5630  * bkops_status is greater than or equal to "status" argument passed to
5631  * this function, disable otherwise.
5632  *
5633  * Returns 0 for success, non-zero in case of failure.
5634  *
5635  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5636  * to know whether auto bkops is enabled or disabled after this function
5637  * returns control to it.
5638  */
5639 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5640 			     enum bkops_status status)
5641 {
5642 	int err;
5643 	u32 curr_status = 0;
5644 
5645 	err = ufshcd_get_bkops_status(hba, &curr_status);
5646 	if (err) {
5647 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5648 				__func__, err);
5649 		goto out;
5650 	} else if (curr_status > BKOPS_STATUS_MAX) {
5651 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5652 				__func__, curr_status);
5653 		err = -EINVAL;
5654 		goto out;
5655 	}
5656 
5657 	if (curr_status >= status)
5658 		err = ufshcd_enable_auto_bkops(hba);
5659 	else
5660 		err = ufshcd_disable_auto_bkops(hba);
5661 out:
5662 	return err;
5663 }
5664 
5665 /**
5666  * ufshcd_urgent_bkops - handle urgent bkops exception event
5667  * @hba: per-adapter instance
5668  *
5669  * Enable fBackgroundOpsEn flag in the device to permit background
5670  * operations.
5671  *
5672  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5673  * and negative error value for any other failure.
5674  */
5675 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5676 {
5677 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5678 }
5679 
5680 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5681 {
5682 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5683 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5684 }
5685 
5686 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5687 {
5688 	int err;
5689 	u32 curr_status = 0;
5690 
5691 	if (hba->is_urgent_bkops_lvl_checked)
5692 		goto enable_auto_bkops;
5693 
5694 	err = ufshcd_get_bkops_status(hba, &curr_status);
5695 	if (err) {
5696 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5697 				__func__, err);
5698 		goto out;
5699 	}
5700 
5701 	/*
5702 	 * We are seeing that some devices are raising the urgent bkops
5703 	 * exception events even when BKOPS status doesn't indicate performace
5704 	 * impacted or critical. Handle these device by determining their urgent
5705 	 * bkops status at runtime.
5706 	 */
5707 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5708 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5709 				__func__, curr_status);
5710 		/* update the current status as the urgent bkops level */
5711 		hba->urgent_bkops_lvl = curr_status;
5712 		hba->is_urgent_bkops_lvl_checked = true;
5713 	}
5714 
5715 enable_auto_bkops:
5716 	err = ufshcd_enable_auto_bkops(hba);
5717 out:
5718 	if (err < 0)
5719 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5720 				__func__, err);
5721 }
5722 
5723 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5724 {
5725 	u32 value;
5726 
5727 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5728 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5729 		return;
5730 
5731 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5732 
5733 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5734 
5735 	/*
5736 	 * A placeholder for the platform vendors to add whatever additional
5737 	 * steps required
5738 	 */
5739 }
5740 
5741 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5742 {
5743 	u8 index;
5744 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5745 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5746 
5747 	index = ufshcd_wb_get_query_index(hba);
5748 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5749 }
5750 
5751 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5752 {
5753 	int ret;
5754 
5755 	if (!ufshcd_is_wb_allowed(hba))
5756 		return 0;
5757 
5758 	if (!(enable ^ hba->dev_info.wb_enabled))
5759 		return 0;
5760 
5761 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5762 	if (ret) {
5763 		dev_err(hba->dev, "%s Write Booster %s failed %d\n",
5764 			__func__, enable ? "enable" : "disable", ret);
5765 		return ret;
5766 	}
5767 
5768 	hba->dev_info.wb_enabled = enable;
5769 	dev_dbg(hba->dev, "%s Write Booster %s\n",
5770 			__func__, enable ? "enabled" : "disabled");
5771 
5772 	return ret;
5773 }
5774 
5775 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5776 {
5777 	int ret;
5778 
5779 	ret = __ufshcd_wb_toggle(hba, set,
5780 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5781 	if (ret) {
5782 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed: %d\n",
5783 			__func__, set ? "enable" : "disable", ret);
5784 		return;
5785 	}
5786 	dev_dbg(hba->dev, "%s WB-Buf Flush during H8 %s\n",
5787 			__func__, set ? "enabled" : "disabled");
5788 }
5789 
5790 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5791 {
5792 	int ret;
5793 
5794 	if (!ufshcd_is_wb_allowed(hba) ||
5795 	    hba->dev_info.wb_buf_flush_enabled == enable)
5796 		return;
5797 
5798 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5799 	if (ret) {
5800 		dev_err(hba->dev, "%s WB-Buf Flush %s failed %d\n", __func__,
5801 			enable ? "enable" : "disable", ret);
5802 		return;
5803 	}
5804 
5805 	hba->dev_info.wb_buf_flush_enabled = enable;
5806 
5807 	dev_dbg(hba->dev, "%s WB-Buf Flush %s\n",
5808 			__func__, enable ? "enabled" : "disabled");
5809 }
5810 
5811 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5812 						u32 avail_buf)
5813 {
5814 	u32 cur_buf;
5815 	int ret;
5816 	u8 index;
5817 
5818 	index = ufshcd_wb_get_query_index(hba);
5819 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5820 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5821 					      index, 0, &cur_buf);
5822 	if (ret) {
5823 		dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5824 			__func__, ret);
5825 		return false;
5826 	}
5827 
5828 	if (!cur_buf) {
5829 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5830 			 cur_buf);
5831 		return false;
5832 	}
5833 	/* Let it continue to flush when available buffer exceeds threshold */
5834 	return avail_buf < hba->vps->wb_flush_threshold;
5835 }
5836 
5837 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
5838 {
5839 	if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
5840 		ufshcd_wb_toggle_flush(hba, false);
5841 
5842 	ufshcd_wb_toggle_flush_during_h8(hba, false);
5843 	ufshcd_wb_toggle(hba, false);
5844 	hba->caps &= ~UFSHCD_CAP_WB_EN;
5845 
5846 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
5847 }
5848 
5849 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
5850 {
5851 	u32 lifetime;
5852 	int ret;
5853 	u8 index;
5854 
5855 	index = ufshcd_wb_get_query_index(hba);
5856 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5857 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
5858 				      index, 0, &lifetime);
5859 	if (ret) {
5860 		dev_err(hba->dev,
5861 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
5862 			__func__, ret);
5863 		return false;
5864 	}
5865 
5866 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
5867 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
5868 			__func__, lifetime);
5869 		return false;
5870 	}
5871 
5872 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
5873 		__func__, lifetime);
5874 
5875 	return true;
5876 }
5877 
5878 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5879 {
5880 	int ret;
5881 	u32 avail_buf;
5882 	u8 index;
5883 
5884 	if (!ufshcd_is_wb_allowed(hba))
5885 		return false;
5886 
5887 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
5888 		ufshcd_wb_force_disable(hba);
5889 		return false;
5890 	}
5891 
5892 	/*
5893 	 * The ufs device needs the vcc to be ON to flush.
5894 	 * With user-space reduction enabled, it's enough to enable flush
5895 	 * by checking only the available buffer. The threshold
5896 	 * defined here is > 90% full.
5897 	 * With user-space preserved enabled, the current-buffer
5898 	 * should be checked too because the wb buffer size can reduce
5899 	 * when disk tends to be full. This info is provided by current
5900 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5901 	 * keeping vcc on when current buffer is empty.
5902 	 */
5903 	index = ufshcd_wb_get_query_index(hba);
5904 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5905 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5906 				      index, 0, &avail_buf);
5907 	if (ret) {
5908 		dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5909 			 __func__, ret);
5910 		return false;
5911 	}
5912 
5913 	if (!hba->dev_info.b_presrv_uspc_en)
5914 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
5915 
5916 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5917 }
5918 
5919 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5920 {
5921 	struct ufs_hba *hba = container_of(to_delayed_work(work),
5922 					   struct ufs_hba,
5923 					   rpm_dev_flush_recheck_work);
5924 	/*
5925 	 * To prevent unnecessary VCC power drain after device finishes
5926 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5927 	 * after a certain delay to recheck the threshold by next runtime
5928 	 * suspend.
5929 	 */
5930 	ufshcd_rpm_get_sync(hba);
5931 	ufshcd_rpm_put_sync(hba);
5932 }
5933 
5934 /**
5935  * ufshcd_exception_event_handler - handle exceptions raised by device
5936  * @work: pointer to work data
5937  *
5938  * Read bExceptionEventStatus attribute from the device and handle the
5939  * exception event accordingly.
5940  */
5941 static void ufshcd_exception_event_handler(struct work_struct *work)
5942 {
5943 	struct ufs_hba *hba;
5944 	int err;
5945 	u32 status = 0;
5946 	hba = container_of(work, struct ufs_hba, eeh_work);
5947 
5948 	ufshcd_scsi_block_requests(hba);
5949 	err = ufshcd_get_ee_status(hba, &status);
5950 	if (err) {
5951 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
5952 				__func__, err);
5953 		goto out;
5954 	}
5955 
5956 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
5957 
5958 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
5959 		ufshcd_bkops_exception_event_handler(hba);
5960 
5961 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
5962 		ufshcd_temp_exception_event_handler(hba, status);
5963 
5964 	ufs_debugfs_exception_event(hba, status);
5965 out:
5966 	ufshcd_scsi_unblock_requests(hba);
5967 }
5968 
5969 /* Complete requests that have door-bell cleared */
5970 static void ufshcd_complete_requests(struct ufs_hba *hba)
5971 {
5972 	ufshcd_transfer_req_compl(hba);
5973 	ufshcd_tmc_handler(hba);
5974 }
5975 
5976 /**
5977  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5978  *				to recover from the DL NAC errors or not.
5979  * @hba: per-adapter instance
5980  *
5981  * Returns true if error handling is required, false otherwise
5982  */
5983 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5984 {
5985 	unsigned long flags;
5986 	bool err_handling = true;
5987 
5988 	spin_lock_irqsave(hba->host->host_lock, flags);
5989 	/*
5990 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5991 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
5992 	 */
5993 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5994 		goto out;
5995 
5996 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5997 	    ((hba->saved_err & UIC_ERROR) &&
5998 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5999 		goto out;
6000 
6001 	if ((hba->saved_err & UIC_ERROR) &&
6002 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6003 		int err;
6004 		/*
6005 		 * wait for 50ms to see if we can get any other errors or not.
6006 		 */
6007 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6008 		msleep(50);
6009 		spin_lock_irqsave(hba->host->host_lock, flags);
6010 
6011 		/*
6012 		 * now check if we have got any other severe errors other than
6013 		 * DL NAC error?
6014 		 */
6015 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6016 		    ((hba->saved_err & UIC_ERROR) &&
6017 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6018 			goto out;
6019 
6020 		/*
6021 		 * As DL NAC is the only error received so far, send out NOP
6022 		 * command to confirm if link is still active or not.
6023 		 *   - If we don't get any response then do error recovery.
6024 		 *   - If we get response then clear the DL NAC error bit.
6025 		 */
6026 
6027 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6028 		err = ufshcd_verify_dev_init(hba);
6029 		spin_lock_irqsave(hba->host->host_lock, flags);
6030 
6031 		if (err)
6032 			goto out;
6033 
6034 		/* Link seems to be alive hence ignore the DL NAC errors */
6035 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6036 			hba->saved_err &= ~UIC_ERROR;
6037 		/* clear NAC error */
6038 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6039 		if (!hba->saved_uic_err)
6040 			err_handling = false;
6041 	}
6042 out:
6043 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6044 	return err_handling;
6045 }
6046 
6047 /* host lock must be held before calling this func */
6048 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6049 {
6050 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6051 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6052 }
6053 
6054 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6055 {
6056 	lockdep_assert_held(hba->host->host_lock);
6057 
6058 	/* handle fatal errors only when link is not in error state */
6059 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6060 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6061 		    ufshcd_is_saved_err_fatal(hba))
6062 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6063 		else
6064 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6065 		queue_work(hba->eh_wq, &hba->eh_work);
6066 	}
6067 }
6068 
6069 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6070 {
6071 	down_write(&hba->clk_scaling_lock);
6072 	hba->clk_scaling.is_allowed = allow;
6073 	up_write(&hba->clk_scaling_lock);
6074 }
6075 
6076 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6077 {
6078 	if (suspend) {
6079 		if (hba->clk_scaling.is_enabled)
6080 			ufshcd_suspend_clkscaling(hba);
6081 		ufshcd_clk_scaling_allow(hba, false);
6082 	} else {
6083 		ufshcd_clk_scaling_allow(hba, true);
6084 		if (hba->clk_scaling.is_enabled)
6085 			ufshcd_resume_clkscaling(hba);
6086 	}
6087 }
6088 
6089 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6090 {
6091 	ufshcd_rpm_get_sync(hba);
6092 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6093 	    hba->is_sys_suspended) {
6094 		enum ufs_pm_op pm_op;
6095 
6096 		/*
6097 		 * Don't assume anything of resume, if
6098 		 * resume fails, irq and clocks can be OFF, and powers
6099 		 * can be OFF or in LPM.
6100 		 */
6101 		ufshcd_setup_hba_vreg(hba, true);
6102 		ufshcd_enable_irq(hba);
6103 		ufshcd_setup_vreg(hba, true);
6104 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6105 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6106 		ufshcd_hold(hba, false);
6107 		if (!ufshcd_is_clkgating_allowed(hba))
6108 			ufshcd_setup_clocks(hba, true);
6109 		ufshcd_release(hba);
6110 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6111 		ufshcd_vops_resume(hba, pm_op);
6112 	} else {
6113 		ufshcd_hold(hba, false);
6114 		if (ufshcd_is_clkscaling_supported(hba) &&
6115 		    hba->clk_scaling.is_enabled)
6116 			ufshcd_suspend_clkscaling(hba);
6117 		ufshcd_clk_scaling_allow(hba, false);
6118 	}
6119 	ufshcd_scsi_block_requests(hba);
6120 	/* Drain ufshcd_queuecommand() */
6121 	synchronize_rcu();
6122 	cancel_work_sync(&hba->eeh_work);
6123 }
6124 
6125 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6126 {
6127 	ufshcd_scsi_unblock_requests(hba);
6128 	ufshcd_release(hba);
6129 	if (ufshcd_is_clkscaling_supported(hba))
6130 		ufshcd_clk_scaling_suspend(hba, false);
6131 	ufshcd_rpm_put(hba);
6132 }
6133 
6134 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6135 {
6136 	return (!hba->is_powered || hba->shutting_down ||
6137 		!hba->ufs_device_wlun ||
6138 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6139 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6140 		   ufshcd_is_link_broken(hba))));
6141 }
6142 
6143 #ifdef CONFIG_PM
6144 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6145 {
6146 	struct Scsi_Host *shost = hba->host;
6147 	struct scsi_device *sdev;
6148 	struct request_queue *q;
6149 	int ret;
6150 
6151 	hba->is_sys_suspended = false;
6152 	/*
6153 	 * Set RPM status of wlun device to RPM_ACTIVE,
6154 	 * this also clears its runtime error.
6155 	 */
6156 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6157 
6158 	/* hba device might have a runtime error otherwise */
6159 	if (ret)
6160 		ret = pm_runtime_set_active(hba->dev);
6161 	/*
6162 	 * If wlun device had runtime error, we also need to resume those
6163 	 * consumer scsi devices in case any of them has failed to be
6164 	 * resumed due to supplier runtime resume failure. This is to unblock
6165 	 * blk_queue_enter in case there are bios waiting inside it.
6166 	 */
6167 	if (!ret) {
6168 		shost_for_each_device(sdev, shost) {
6169 			q = sdev->request_queue;
6170 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6171 				       q->rpm_status == RPM_SUSPENDING))
6172 				pm_request_resume(q->dev);
6173 		}
6174 	}
6175 }
6176 #else
6177 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6178 {
6179 }
6180 #endif
6181 
6182 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6183 {
6184 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6185 	u32 mode;
6186 
6187 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6188 
6189 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6190 		return true;
6191 
6192 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6193 		return true;
6194 
6195 	return false;
6196 }
6197 
6198 /**
6199  * ufshcd_err_handler - handle UFS errors that require s/w attention
6200  * @work: pointer to work structure
6201  */
6202 static void ufshcd_err_handler(struct work_struct *work)
6203 {
6204 	int retries = MAX_ERR_HANDLER_RETRIES;
6205 	struct ufs_hba *hba;
6206 	unsigned long flags;
6207 	bool needs_restore;
6208 	bool needs_reset;
6209 	bool err_xfer;
6210 	bool err_tm;
6211 	int pmc_err;
6212 	int tag;
6213 
6214 	hba = container_of(work, struct ufs_hba, eh_work);
6215 
6216 	dev_info(hba->dev,
6217 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6218 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6219 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6220 		 hba->saved_uic_err, hba->force_reset,
6221 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6222 
6223 	down(&hba->host_sem);
6224 	spin_lock_irqsave(hba->host->host_lock, flags);
6225 	if (ufshcd_err_handling_should_stop(hba)) {
6226 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6227 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6228 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6229 		up(&hba->host_sem);
6230 		return;
6231 	}
6232 	ufshcd_set_eh_in_progress(hba);
6233 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6234 	ufshcd_err_handling_prepare(hba);
6235 	/* Complete requests that have door-bell cleared by h/w */
6236 	ufshcd_complete_requests(hba);
6237 	spin_lock_irqsave(hba->host->host_lock, flags);
6238 again:
6239 	needs_restore = false;
6240 	needs_reset = false;
6241 	err_xfer = false;
6242 	err_tm = false;
6243 
6244 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6245 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6246 	/*
6247 	 * A full reset and restore might have happened after preparation
6248 	 * is finished, double check whether we should stop.
6249 	 */
6250 	if (ufshcd_err_handling_should_stop(hba))
6251 		goto skip_err_handling;
6252 
6253 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6254 		bool ret;
6255 
6256 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6257 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6258 		ret = ufshcd_quirk_dl_nac_errors(hba);
6259 		spin_lock_irqsave(hba->host->host_lock, flags);
6260 		if (!ret && ufshcd_err_handling_should_stop(hba))
6261 			goto skip_err_handling;
6262 	}
6263 
6264 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6265 	    (hba->saved_uic_err &&
6266 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6267 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6268 
6269 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6270 		ufshcd_print_host_state(hba);
6271 		ufshcd_print_pwr_info(hba);
6272 		ufshcd_print_evt_hist(hba);
6273 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6274 		ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6275 		spin_lock_irqsave(hba->host->host_lock, flags);
6276 	}
6277 
6278 	/*
6279 	 * if host reset is required then skip clearing the pending
6280 	 * transfers forcefully because they will get cleared during
6281 	 * host reset and restore
6282 	 */
6283 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6284 	    ufshcd_is_saved_err_fatal(hba) ||
6285 	    ((hba->saved_err & UIC_ERROR) &&
6286 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6287 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6288 		needs_reset = true;
6289 		goto do_reset;
6290 	}
6291 
6292 	/*
6293 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6294 	 * check if power mode restore is needed.
6295 	 */
6296 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6297 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6298 		if (!hba->saved_uic_err)
6299 			hba->saved_err &= ~UIC_ERROR;
6300 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6301 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6302 			needs_restore = true;
6303 		spin_lock_irqsave(hba->host->host_lock, flags);
6304 		if (!hba->saved_err && !needs_restore)
6305 			goto skip_err_handling;
6306 	}
6307 
6308 	hba->silence_err_logs = true;
6309 	/* release lock as clear command might sleep */
6310 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6311 	/* Clear pending transfer requests */
6312 	for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) {
6313 		if (ufshcd_try_to_abort_task(hba, tag)) {
6314 			err_xfer = true;
6315 			goto lock_skip_pending_xfer_clear;
6316 		}
6317 		dev_err(hba->dev, "Aborted tag %d / CDB %#02x\n", tag,
6318 			hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1);
6319 	}
6320 
6321 	/* Clear pending task management requests */
6322 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6323 		if (ufshcd_clear_tm_cmd(hba, tag)) {
6324 			err_tm = true;
6325 			goto lock_skip_pending_xfer_clear;
6326 		}
6327 	}
6328 
6329 lock_skip_pending_xfer_clear:
6330 	/* Complete the requests that are cleared by s/w */
6331 	ufshcd_complete_requests(hba);
6332 
6333 	spin_lock_irqsave(hba->host->host_lock, flags);
6334 	hba->silence_err_logs = false;
6335 	if (err_xfer || err_tm) {
6336 		needs_reset = true;
6337 		goto do_reset;
6338 	}
6339 
6340 	/*
6341 	 * After all reqs and tasks are cleared from doorbell,
6342 	 * now it is safe to retore power mode.
6343 	 */
6344 	if (needs_restore) {
6345 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6346 		/*
6347 		 * Hold the scaling lock just in case dev cmds
6348 		 * are sent via bsg and/or sysfs.
6349 		 */
6350 		down_write(&hba->clk_scaling_lock);
6351 		hba->force_pmc = true;
6352 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6353 		if (pmc_err) {
6354 			needs_reset = true;
6355 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6356 					__func__, pmc_err);
6357 		}
6358 		hba->force_pmc = false;
6359 		ufshcd_print_pwr_info(hba);
6360 		up_write(&hba->clk_scaling_lock);
6361 		spin_lock_irqsave(hba->host->host_lock, flags);
6362 	}
6363 
6364 do_reset:
6365 	/* Fatal errors need reset */
6366 	if (needs_reset) {
6367 		int err;
6368 
6369 		hba->force_reset = false;
6370 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6371 		err = ufshcd_reset_and_restore(hba);
6372 		if (err)
6373 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6374 					__func__, err);
6375 		else
6376 			ufshcd_recover_pm_error(hba);
6377 		spin_lock_irqsave(hba->host->host_lock, flags);
6378 	}
6379 
6380 skip_err_handling:
6381 	if (!needs_reset) {
6382 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6383 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6384 		if (hba->saved_err || hba->saved_uic_err)
6385 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6386 			    __func__, hba->saved_err, hba->saved_uic_err);
6387 	}
6388 	/* Exit in an operational state or dead */
6389 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6390 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6391 		if (--retries)
6392 			goto again;
6393 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6394 	}
6395 	ufshcd_clear_eh_in_progress(hba);
6396 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6397 	ufshcd_err_handling_unprepare(hba);
6398 	up(&hba->host_sem);
6399 
6400 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6401 		 ufshcd_state_name[hba->ufshcd_state]);
6402 }
6403 
6404 /**
6405  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6406  * @hba: per-adapter instance
6407  *
6408  * Returns
6409  *  IRQ_HANDLED - If interrupt is valid
6410  *  IRQ_NONE    - If invalid interrupt
6411  */
6412 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6413 {
6414 	u32 reg;
6415 	irqreturn_t retval = IRQ_NONE;
6416 
6417 	/* PHY layer error */
6418 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6419 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6420 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6421 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6422 		/*
6423 		 * To know whether this error is fatal or not, DB timeout
6424 		 * must be checked but this error is handled separately.
6425 		 */
6426 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6427 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6428 					__func__);
6429 
6430 		/* Got a LINERESET indication. */
6431 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6432 			struct uic_command *cmd = NULL;
6433 
6434 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6435 			if (hba->uic_async_done && hba->active_uic_cmd)
6436 				cmd = hba->active_uic_cmd;
6437 			/*
6438 			 * Ignore the LINERESET during power mode change
6439 			 * operation via DME_SET command.
6440 			 */
6441 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6442 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6443 		}
6444 		retval |= IRQ_HANDLED;
6445 	}
6446 
6447 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6448 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6449 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6450 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6451 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6452 
6453 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6454 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6455 		else if (hba->dev_quirks &
6456 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6457 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6458 				hba->uic_error |=
6459 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6460 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6461 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6462 		}
6463 		retval |= IRQ_HANDLED;
6464 	}
6465 
6466 	/* UIC NL/TL/DME errors needs software retry */
6467 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6468 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6469 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6470 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6471 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6472 		retval |= IRQ_HANDLED;
6473 	}
6474 
6475 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6476 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6477 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6478 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6479 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6480 		retval |= IRQ_HANDLED;
6481 	}
6482 
6483 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6484 	if ((reg & UIC_DME_ERROR) &&
6485 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6486 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6487 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6488 		retval |= IRQ_HANDLED;
6489 	}
6490 
6491 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6492 			__func__, hba->uic_error);
6493 	return retval;
6494 }
6495 
6496 /**
6497  * ufshcd_check_errors - Check for errors that need s/w attention
6498  * @hba: per-adapter instance
6499  * @intr_status: interrupt status generated by the controller
6500  *
6501  * Returns
6502  *  IRQ_HANDLED - If interrupt is valid
6503  *  IRQ_NONE    - If invalid interrupt
6504  */
6505 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6506 {
6507 	bool queue_eh_work = false;
6508 	irqreturn_t retval = IRQ_NONE;
6509 
6510 	spin_lock(hba->host->host_lock);
6511 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6512 
6513 	if (hba->errors & INT_FATAL_ERRORS) {
6514 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6515 				       hba->errors);
6516 		queue_eh_work = true;
6517 	}
6518 
6519 	if (hba->errors & UIC_ERROR) {
6520 		hba->uic_error = 0;
6521 		retval = ufshcd_update_uic_error(hba);
6522 		if (hba->uic_error)
6523 			queue_eh_work = true;
6524 	}
6525 
6526 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6527 		dev_err(hba->dev,
6528 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6529 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6530 			"Enter" : "Exit",
6531 			hba->errors, ufshcd_get_upmcrs(hba));
6532 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6533 				       hba->errors);
6534 		ufshcd_set_link_broken(hba);
6535 		queue_eh_work = true;
6536 	}
6537 
6538 	if (queue_eh_work) {
6539 		/*
6540 		 * update the transfer error masks to sticky bits, let's do this
6541 		 * irrespective of current ufshcd_state.
6542 		 */
6543 		hba->saved_err |= hba->errors;
6544 		hba->saved_uic_err |= hba->uic_error;
6545 
6546 		/* dump controller state before resetting */
6547 		if ((hba->saved_err &
6548 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6549 		    (hba->saved_uic_err &&
6550 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6551 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6552 					__func__, hba->saved_err,
6553 					hba->saved_uic_err);
6554 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6555 					 "host_regs: ");
6556 			ufshcd_print_pwr_info(hba);
6557 		}
6558 		ufshcd_schedule_eh_work(hba);
6559 		retval |= IRQ_HANDLED;
6560 	}
6561 	/*
6562 	 * if (!queue_eh_work) -
6563 	 * Other errors are either non-fatal where host recovers
6564 	 * itself without s/w intervention or errors that will be
6565 	 * handled by the SCSI core layer.
6566 	 */
6567 	hba->errors = 0;
6568 	hba->uic_error = 0;
6569 	spin_unlock(hba->host->host_lock);
6570 	return retval;
6571 }
6572 
6573 /**
6574  * ufshcd_tmc_handler - handle task management function completion
6575  * @hba: per adapter instance
6576  *
6577  * Returns
6578  *  IRQ_HANDLED - If interrupt is valid
6579  *  IRQ_NONE    - If invalid interrupt
6580  */
6581 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6582 {
6583 	unsigned long flags, pending, issued;
6584 	irqreturn_t ret = IRQ_NONE;
6585 	int tag;
6586 
6587 	spin_lock_irqsave(hba->host->host_lock, flags);
6588 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6589 	issued = hba->outstanding_tasks & ~pending;
6590 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6591 		struct request *req = hba->tmf_rqs[tag];
6592 		struct completion *c = req->end_io_data;
6593 
6594 		complete(c);
6595 		ret = IRQ_HANDLED;
6596 	}
6597 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6598 
6599 	return ret;
6600 }
6601 
6602 /**
6603  * ufshcd_sl_intr - Interrupt service routine
6604  * @hba: per adapter instance
6605  * @intr_status: contains interrupts generated by the controller
6606  *
6607  * Returns
6608  *  IRQ_HANDLED - If interrupt is valid
6609  *  IRQ_NONE    - If invalid interrupt
6610  */
6611 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6612 {
6613 	irqreturn_t retval = IRQ_NONE;
6614 
6615 	if (intr_status & UFSHCD_UIC_MASK)
6616 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6617 
6618 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6619 		retval |= ufshcd_check_errors(hba, intr_status);
6620 
6621 	if (intr_status & UTP_TASK_REQ_COMPL)
6622 		retval |= ufshcd_tmc_handler(hba);
6623 
6624 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6625 		retval |= ufshcd_transfer_req_compl(hba);
6626 
6627 	return retval;
6628 }
6629 
6630 /**
6631  * ufshcd_intr - Main interrupt service routine
6632  * @irq: irq number
6633  * @__hba: pointer to adapter instance
6634  *
6635  * Returns
6636  *  IRQ_HANDLED - If interrupt is valid
6637  *  IRQ_NONE    - If invalid interrupt
6638  */
6639 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6640 {
6641 	u32 intr_status, enabled_intr_status = 0;
6642 	irqreturn_t retval = IRQ_NONE;
6643 	struct ufs_hba *hba = __hba;
6644 	int retries = hba->nutrs;
6645 
6646 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6647 	hba->ufs_stats.last_intr_status = intr_status;
6648 	hba->ufs_stats.last_intr_ts = ktime_get();
6649 
6650 	/*
6651 	 * There could be max of hba->nutrs reqs in flight and in worst case
6652 	 * if the reqs get finished 1 by 1 after the interrupt status is
6653 	 * read, make sure we handle them by checking the interrupt status
6654 	 * again in a loop until we process all of the reqs before returning.
6655 	 */
6656 	while (intr_status && retries--) {
6657 		enabled_intr_status =
6658 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6659 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6660 		if (enabled_intr_status)
6661 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6662 
6663 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6664 	}
6665 
6666 	if (enabled_intr_status && retval == IRQ_NONE &&
6667 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6668 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6669 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6670 					__func__,
6671 					intr_status,
6672 					hba->ufs_stats.last_intr_status,
6673 					enabled_intr_status);
6674 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6675 	}
6676 
6677 	return retval;
6678 }
6679 
6680 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6681 {
6682 	int err = 0;
6683 	u32 mask = 1 << tag;
6684 	unsigned long flags;
6685 
6686 	if (!test_bit(tag, &hba->outstanding_tasks))
6687 		goto out;
6688 
6689 	spin_lock_irqsave(hba->host->host_lock, flags);
6690 	ufshcd_utmrl_clear(hba, tag);
6691 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6692 
6693 	/* poll for max. 1 sec to clear door bell register by h/w */
6694 	err = ufshcd_wait_for_register(hba,
6695 			REG_UTP_TASK_REQ_DOOR_BELL,
6696 			mask, 0, 1000, 1000);
6697 
6698 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6699 		tag, err ? "succeeded" : "failed");
6700 
6701 out:
6702 	return err;
6703 }
6704 
6705 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6706 		struct utp_task_req_desc *treq, u8 tm_function)
6707 {
6708 	struct request_queue *q = hba->tmf_queue;
6709 	struct Scsi_Host *host = hba->host;
6710 	DECLARE_COMPLETION_ONSTACK(wait);
6711 	struct request *req;
6712 	unsigned long flags;
6713 	int task_tag, err;
6714 
6715 	/*
6716 	 * blk_mq_alloc_request() is used here only to get a free tag.
6717 	 */
6718 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6719 	if (IS_ERR(req))
6720 		return PTR_ERR(req);
6721 
6722 	req->end_io_data = &wait;
6723 	ufshcd_hold(hba, false);
6724 
6725 	spin_lock_irqsave(host->host_lock, flags);
6726 
6727 	task_tag = req->tag;
6728 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6729 		  task_tag);
6730 	hba->tmf_rqs[req->tag] = req;
6731 	treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6732 
6733 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6734 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6735 
6736 	/* send command to the controller */
6737 	__set_bit(task_tag, &hba->outstanding_tasks);
6738 
6739 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6740 	/* Make sure that doorbell is committed immediately */
6741 	wmb();
6742 
6743 	spin_unlock_irqrestore(host->host_lock, flags);
6744 
6745 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6746 
6747 	/* wait until the task management command is completed */
6748 	err = wait_for_completion_io_timeout(&wait,
6749 			msecs_to_jiffies(TM_CMD_TIMEOUT));
6750 	if (!err) {
6751 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6752 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6753 				__func__, tm_function);
6754 		if (ufshcd_clear_tm_cmd(hba, task_tag))
6755 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6756 					__func__, task_tag);
6757 		err = -ETIMEDOUT;
6758 	} else {
6759 		err = 0;
6760 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6761 
6762 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6763 	}
6764 
6765 	spin_lock_irqsave(hba->host->host_lock, flags);
6766 	hba->tmf_rqs[req->tag] = NULL;
6767 	__clear_bit(task_tag, &hba->outstanding_tasks);
6768 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6769 
6770 	ufshcd_release(hba);
6771 	blk_mq_free_request(req);
6772 
6773 	return err;
6774 }
6775 
6776 /**
6777  * ufshcd_issue_tm_cmd - issues task management commands to controller
6778  * @hba: per adapter instance
6779  * @lun_id: LUN ID to which TM command is sent
6780  * @task_id: task ID to which the TM command is applicable
6781  * @tm_function: task management function opcode
6782  * @tm_response: task management service response return value
6783  *
6784  * Returns non-zero value on error, zero on success.
6785  */
6786 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6787 		u8 tm_function, u8 *tm_response)
6788 {
6789 	struct utp_task_req_desc treq = { { 0 }, };
6790 	enum utp_ocs ocs_value;
6791 	int err;
6792 
6793 	/* Configure task request descriptor */
6794 	treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6795 	treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6796 
6797 	/* Configure task request UPIU */
6798 	treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6799 				  cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6800 	treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6801 
6802 	/*
6803 	 * The host shall provide the same value for LUN field in the basic
6804 	 * header and for Input Parameter.
6805 	 */
6806 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6807 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6808 
6809 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6810 	if (err == -ETIMEDOUT)
6811 		return err;
6812 
6813 	ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6814 	if (ocs_value != OCS_SUCCESS)
6815 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6816 				__func__, ocs_value);
6817 	else if (tm_response)
6818 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6819 				MASK_TM_SERVICE_RESP;
6820 	return err;
6821 }
6822 
6823 /**
6824  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6825  * @hba:	per-adapter instance
6826  * @req_upiu:	upiu request
6827  * @rsp_upiu:	upiu reply
6828  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6829  * @buff_len:	descriptor size, 0 if NA
6830  * @cmd_type:	specifies the type (NOP, Query...)
6831  * @desc_op:	descriptor operation
6832  *
6833  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6834  * Therefore, it "rides" the device management infrastructure: uses its tag and
6835  * tasks work queues.
6836  *
6837  * Since there is only one available tag for device management commands,
6838  * the caller is expected to hold the hba->dev_cmd.lock mutex.
6839  */
6840 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6841 					struct utp_upiu_req *req_upiu,
6842 					struct utp_upiu_req *rsp_upiu,
6843 					u8 *desc_buff, int *buff_len,
6844 					enum dev_cmd_type cmd_type,
6845 					enum query_opcode desc_op)
6846 {
6847 	DECLARE_COMPLETION_ONSTACK(wait);
6848 	const u32 tag = hba->reserved_slot;
6849 	struct ufshcd_lrb *lrbp;
6850 	int err = 0;
6851 	u8 upiu_flags;
6852 
6853 	/* Protects use of hba->reserved_slot. */
6854 	lockdep_assert_held(&hba->dev_cmd.lock);
6855 
6856 	down_read(&hba->clk_scaling_lock);
6857 
6858 	lrbp = &hba->lrb[tag];
6859 	WARN_ON(lrbp->cmd);
6860 	lrbp->cmd = NULL;
6861 	lrbp->task_tag = tag;
6862 	lrbp->lun = 0;
6863 	lrbp->intr_cmd = true;
6864 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6865 	hba->dev_cmd.type = cmd_type;
6866 
6867 	if (hba->ufs_version <= ufshci_version(1, 1))
6868 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6869 	else
6870 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6871 
6872 	/* update the task tag in the request upiu */
6873 	req_upiu->header.dword_0 |= cpu_to_be32(tag);
6874 
6875 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6876 
6877 	/* just copy the upiu request as it is */
6878 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6879 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6880 		/* The Data Segment Area is optional depending upon the query
6881 		 * function value. for WRITE DESCRIPTOR, the data segment
6882 		 * follows right after the tsf.
6883 		 */
6884 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6885 		*buff_len = 0;
6886 	}
6887 
6888 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6889 
6890 	hba->dev_cmd.complete = &wait;
6891 
6892 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
6893 
6894 	ufshcd_send_command(hba, tag);
6895 	/*
6896 	 * ignore the returning value here - ufshcd_check_query_response is
6897 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6898 	 * read the response directly ignoring all errors.
6899 	 */
6900 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6901 
6902 	/* just copy the upiu response as it is */
6903 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6904 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6905 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6906 		u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6907 			       MASK_QUERY_DATA_SEG_LEN;
6908 
6909 		if (*buff_len >= resp_len) {
6910 			memcpy(desc_buff, descp, resp_len);
6911 			*buff_len = resp_len;
6912 		} else {
6913 			dev_warn(hba->dev,
6914 				 "%s: rsp size %d is bigger than buffer size %d",
6915 				 __func__, resp_len, *buff_len);
6916 			*buff_len = 0;
6917 			err = -EINVAL;
6918 		}
6919 	}
6920 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
6921 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
6922 
6923 	up_read(&hba->clk_scaling_lock);
6924 	return err;
6925 }
6926 
6927 /**
6928  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6929  * @hba:	per-adapter instance
6930  * @req_upiu:	upiu request
6931  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
6932  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
6933  * @desc_buff:	pointer to descriptor buffer, NULL if NA
6934  * @buff_len:	descriptor size, 0 if NA
6935  * @desc_op:	descriptor operation
6936  *
6937  * Supports UTP Transfer requests (nop and query), and UTP Task
6938  * Management requests.
6939  * It is up to the caller to fill the upiu conent properly, as it will
6940  * be copied without any further input validations.
6941  */
6942 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6943 			     struct utp_upiu_req *req_upiu,
6944 			     struct utp_upiu_req *rsp_upiu,
6945 			     int msgcode,
6946 			     u8 *desc_buff, int *buff_len,
6947 			     enum query_opcode desc_op)
6948 {
6949 	int err;
6950 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6951 	struct utp_task_req_desc treq = { { 0 }, };
6952 	enum utp_ocs ocs_value;
6953 	u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6954 
6955 	switch (msgcode) {
6956 	case UPIU_TRANSACTION_NOP_OUT:
6957 		cmd_type = DEV_CMD_TYPE_NOP;
6958 		fallthrough;
6959 	case UPIU_TRANSACTION_QUERY_REQ:
6960 		ufshcd_hold(hba, false);
6961 		mutex_lock(&hba->dev_cmd.lock);
6962 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6963 						   desc_buff, buff_len,
6964 						   cmd_type, desc_op);
6965 		mutex_unlock(&hba->dev_cmd.lock);
6966 		ufshcd_release(hba);
6967 
6968 		break;
6969 	case UPIU_TRANSACTION_TASK_REQ:
6970 		treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6971 		treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6972 
6973 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
6974 
6975 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6976 		if (err == -ETIMEDOUT)
6977 			break;
6978 
6979 		ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6980 		if (ocs_value != OCS_SUCCESS) {
6981 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6982 				ocs_value);
6983 			break;
6984 		}
6985 
6986 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
6987 
6988 		break;
6989 	default:
6990 		err = -EINVAL;
6991 
6992 		break;
6993 	}
6994 
6995 	return err;
6996 }
6997 
6998 /**
6999  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7000  * @cmd: SCSI command pointer
7001  *
7002  * Returns SUCCESS/FAILED
7003  */
7004 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7005 {
7006 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7007 	struct Scsi_Host *host;
7008 	struct ufs_hba *hba;
7009 	u32 pos;
7010 	int err;
7011 	u8 resp = 0xF, lun;
7012 
7013 	host = cmd->device->host;
7014 	hba = shost_priv(host);
7015 
7016 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7017 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7018 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7019 		if (!err)
7020 			err = resp;
7021 		goto out;
7022 	}
7023 
7024 	/* clear the commands that were pending for corresponding LUN */
7025 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7026 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7027 		if (hba->lrb[pos].lun == lun)
7028 			__set_bit(pos, &pending_reqs);
7029 	hba->outstanding_reqs &= ~pending_reqs;
7030 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7031 
7032 	if (ufshcd_clear_cmds(hba, pending_reqs) < 0) {
7033 		spin_lock_irqsave(&hba->outstanding_lock, flags);
7034 		not_cleared = pending_reqs &
7035 			ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7036 		hba->outstanding_reqs |= not_cleared;
7037 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7038 
7039 		dev_err(hba->dev, "%s: failed to clear requests %#lx\n",
7040 			__func__, not_cleared);
7041 	}
7042 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared);
7043 
7044 out:
7045 	hba->req_abort_count = 0;
7046 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7047 	if (!err) {
7048 		err = SUCCESS;
7049 	} else {
7050 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7051 		err = FAILED;
7052 	}
7053 	return err;
7054 }
7055 
7056 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7057 {
7058 	struct ufshcd_lrb *lrbp;
7059 	int tag;
7060 
7061 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7062 		lrbp = &hba->lrb[tag];
7063 		lrbp->req_abort_skip = true;
7064 	}
7065 }
7066 
7067 /**
7068  * ufshcd_try_to_abort_task - abort a specific task
7069  * @hba: Pointer to adapter instance
7070  * @tag: Task tag/index to be aborted
7071  *
7072  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7073  * command, and in host controller by clearing the door-bell register. There can
7074  * be race between controller sending the command to the device while abort is
7075  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7076  * really issued and then try to abort it.
7077  *
7078  * Returns zero on success, non-zero on failure
7079  */
7080 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7081 {
7082 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7083 	int err = 0;
7084 	int poll_cnt;
7085 	u8 resp = 0xF;
7086 	u32 reg;
7087 
7088 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7089 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7090 				UFS_QUERY_TASK, &resp);
7091 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7092 			/* cmd pending in the device */
7093 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7094 				__func__, tag);
7095 			break;
7096 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7097 			/*
7098 			 * cmd not pending in the device, check if it is
7099 			 * in transition.
7100 			 */
7101 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7102 				__func__, tag);
7103 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7104 			if (reg & (1 << tag)) {
7105 				/* sleep for max. 200us to stabilize */
7106 				usleep_range(100, 200);
7107 				continue;
7108 			}
7109 			/* command completed already */
7110 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7111 				__func__, tag);
7112 			goto out;
7113 		} else {
7114 			dev_err(hba->dev,
7115 				"%s: no response from device. tag = %d, err %d\n",
7116 				__func__, tag, err);
7117 			if (!err)
7118 				err = resp; /* service response error */
7119 			goto out;
7120 		}
7121 	}
7122 
7123 	if (!poll_cnt) {
7124 		err = -EBUSY;
7125 		goto out;
7126 	}
7127 
7128 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7129 			UFS_ABORT_TASK, &resp);
7130 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7131 		if (!err) {
7132 			err = resp; /* service response error */
7133 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7134 				__func__, tag, err);
7135 		}
7136 		goto out;
7137 	}
7138 
7139 	err = ufshcd_clear_cmds(hba, 1U << tag);
7140 	if (err)
7141 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7142 			__func__, tag, err);
7143 
7144 out:
7145 	return err;
7146 }
7147 
7148 /**
7149  * ufshcd_abort - scsi host template eh_abort_handler callback
7150  * @cmd: SCSI command pointer
7151  *
7152  * Returns SUCCESS/FAILED
7153  */
7154 static int ufshcd_abort(struct scsi_cmnd *cmd)
7155 {
7156 	struct Scsi_Host *host = cmd->device->host;
7157 	struct ufs_hba *hba = shost_priv(host);
7158 	int tag = scsi_cmd_to_rq(cmd)->tag;
7159 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7160 	unsigned long flags;
7161 	int err = FAILED;
7162 	bool outstanding;
7163 	u32 reg;
7164 
7165 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7166 
7167 	ufshcd_hold(hba, false);
7168 	reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7169 	/* If command is already aborted/completed, return FAILED. */
7170 	if (!(test_bit(tag, &hba->outstanding_reqs))) {
7171 		dev_err(hba->dev,
7172 			"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7173 			__func__, tag, hba->outstanding_reqs, reg);
7174 		goto release;
7175 	}
7176 
7177 	/* Print Transfer Request of aborted task */
7178 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7179 
7180 	/*
7181 	 * Print detailed info about aborted request.
7182 	 * As more than one request might get aborted at the same time,
7183 	 * print full information only for the first aborted request in order
7184 	 * to reduce repeated printouts. For other aborted requests only print
7185 	 * basic details.
7186 	 */
7187 	scsi_print_command(cmd);
7188 	if (!hba->req_abort_count) {
7189 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7190 		ufshcd_print_evt_hist(hba);
7191 		ufshcd_print_host_state(hba);
7192 		ufshcd_print_pwr_info(hba);
7193 		ufshcd_print_trs(hba, 1 << tag, true);
7194 	} else {
7195 		ufshcd_print_trs(hba, 1 << tag, false);
7196 	}
7197 	hba->req_abort_count++;
7198 
7199 	if (!(reg & (1 << tag))) {
7200 		dev_err(hba->dev,
7201 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7202 		__func__, tag);
7203 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7204 		goto release;
7205 	}
7206 
7207 	/*
7208 	 * Task abort to the device W-LUN is illegal. When this command
7209 	 * will fail, due to spec violation, scsi err handling next step
7210 	 * will be to send LU reset which, again, is a spec violation.
7211 	 * To avoid these unnecessary/illegal steps, first we clean up
7212 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7213 	 * then queue the eh_work and bail.
7214 	 */
7215 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7216 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7217 
7218 		spin_lock_irqsave(host->host_lock, flags);
7219 		hba->force_reset = true;
7220 		ufshcd_schedule_eh_work(hba);
7221 		spin_unlock_irqrestore(host->host_lock, flags);
7222 		goto release;
7223 	}
7224 
7225 	/* Skip task abort in case previous aborts failed and report failure */
7226 	if (lrbp->req_abort_skip) {
7227 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7228 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7229 		goto release;
7230 	}
7231 
7232 	err = ufshcd_try_to_abort_task(hba, tag);
7233 	if (err) {
7234 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7235 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7236 		err = FAILED;
7237 		goto release;
7238 	}
7239 
7240 	/*
7241 	 * Clear the corresponding bit from outstanding_reqs since the command
7242 	 * has been aborted successfully.
7243 	 */
7244 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7245 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7246 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7247 
7248 	if (outstanding)
7249 		ufshcd_release_scsi_cmd(hba, lrbp);
7250 
7251 	err = SUCCESS;
7252 
7253 release:
7254 	/* Matches the ufshcd_hold() call at the start of this function. */
7255 	ufshcd_release(hba);
7256 	return err;
7257 }
7258 
7259 /**
7260  * ufshcd_host_reset_and_restore - reset and restore host controller
7261  * @hba: per-adapter instance
7262  *
7263  * Note that host controller reset may issue DME_RESET to
7264  * local and remote (device) Uni-Pro stack and the attributes
7265  * are reset to default state.
7266  *
7267  * Returns zero on success, non-zero on failure
7268  */
7269 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7270 {
7271 	int err;
7272 
7273 	/*
7274 	 * Stop the host controller and complete the requests
7275 	 * cleared by h/w
7276 	 */
7277 	ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET);
7278 	ufshcd_hba_stop(hba);
7279 	hba->silence_err_logs = true;
7280 	ufshcd_complete_requests(hba);
7281 	hba->silence_err_logs = false;
7282 
7283 	/* scale up clocks to max frequency before full reinitialization */
7284 	ufshcd_scale_clks(hba, true);
7285 
7286 	err = ufshcd_hba_enable(hba);
7287 
7288 	/* Establish the link again and restore the device */
7289 	if (!err)
7290 		err = ufshcd_probe_hba(hba, false);
7291 
7292 	if (err)
7293 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7294 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7295 	return err;
7296 }
7297 
7298 /**
7299  * ufshcd_reset_and_restore - reset and re-initialize host/device
7300  * @hba: per-adapter instance
7301  *
7302  * Reset and recover device, host and re-establish link. This
7303  * is helpful to recover the communication in fatal error conditions.
7304  *
7305  * Returns zero on success, non-zero on failure
7306  */
7307 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7308 {
7309 	u32 saved_err = 0;
7310 	u32 saved_uic_err = 0;
7311 	int err = 0;
7312 	unsigned long flags;
7313 	int retries = MAX_HOST_RESET_RETRIES;
7314 
7315 	spin_lock_irqsave(hba->host->host_lock, flags);
7316 	do {
7317 		/*
7318 		 * This is a fresh start, cache and clear saved error first,
7319 		 * in case new error generated during reset and restore.
7320 		 */
7321 		saved_err |= hba->saved_err;
7322 		saved_uic_err |= hba->saved_uic_err;
7323 		hba->saved_err = 0;
7324 		hba->saved_uic_err = 0;
7325 		hba->force_reset = false;
7326 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7327 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7328 
7329 		/* Reset the attached device */
7330 		ufshcd_device_reset(hba);
7331 
7332 		err = ufshcd_host_reset_and_restore(hba);
7333 
7334 		spin_lock_irqsave(hba->host->host_lock, flags);
7335 		if (err)
7336 			continue;
7337 		/* Do not exit unless operational or dead */
7338 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7339 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7340 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7341 			err = -EAGAIN;
7342 	} while (err && --retries);
7343 
7344 	/*
7345 	 * Inform scsi mid-layer that we did reset and allow to handle
7346 	 * Unit Attention properly.
7347 	 */
7348 	scsi_report_bus_reset(hba->host, 0);
7349 	if (err) {
7350 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7351 		hba->saved_err |= saved_err;
7352 		hba->saved_uic_err |= saved_uic_err;
7353 	}
7354 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7355 
7356 	return err;
7357 }
7358 
7359 /**
7360  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7361  * @cmd: SCSI command pointer
7362  *
7363  * Returns SUCCESS/FAILED
7364  */
7365 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7366 {
7367 	int err = SUCCESS;
7368 	unsigned long flags;
7369 	struct ufs_hba *hba;
7370 
7371 	hba = shost_priv(cmd->device->host);
7372 
7373 	spin_lock_irqsave(hba->host->host_lock, flags);
7374 	hba->force_reset = true;
7375 	ufshcd_schedule_eh_work(hba);
7376 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7377 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7378 
7379 	flush_work(&hba->eh_work);
7380 
7381 	spin_lock_irqsave(hba->host->host_lock, flags);
7382 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7383 		err = FAILED;
7384 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7385 
7386 	return err;
7387 }
7388 
7389 /**
7390  * ufshcd_get_max_icc_level - calculate the ICC level
7391  * @sup_curr_uA: max. current supported by the regulator
7392  * @start_scan: row at the desc table to start scan from
7393  * @buff: power descriptor buffer
7394  *
7395  * Returns calculated max ICC level for specific regulator
7396  */
7397 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7398 				    const char *buff)
7399 {
7400 	int i;
7401 	int curr_uA;
7402 	u16 data;
7403 	u16 unit;
7404 
7405 	for (i = start_scan; i >= 0; i--) {
7406 		data = get_unaligned_be16(&buff[2 * i]);
7407 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7408 						ATTR_ICC_LVL_UNIT_OFFSET;
7409 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7410 		switch (unit) {
7411 		case UFSHCD_NANO_AMP:
7412 			curr_uA = curr_uA / 1000;
7413 			break;
7414 		case UFSHCD_MILI_AMP:
7415 			curr_uA = curr_uA * 1000;
7416 			break;
7417 		case UFSHCD_AMP:
7418 			curr_uA = curr_uA * 1000 * 1000;
7419 			break;
7420 		case UFSHCD_MICRO_AMP:
7421 		default:
7422 			break;
7423 		}
7424 		if (sup_curr_uA >= curr_uA)
7425 			break;
7426 	}
7427 	if (i < 0) {
7428 		i = 0;
7429 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7430 	}
7431 
7432 	return (u32)i;
7433 }
7434 
7435 /**
7436  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7437  * In case regulators are not initialized we'll return 0
7438  * @hba: per-adapter instance
7439  * @desc_buf: power descriptor buffer to extract ICC levels from.
7440  * @len: length of desc_buff
7441  *
7442  * Returns calculated ICC level
7443  */
7444 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7445 						const u8 *desc_buf, int len)
7446 {
7447 	u32 icc_level = 0;
7448 
7449 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7450 						!hba->vreg_info.vccq2) {
7451 		/*
7452 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7453 		 * never-ending cycles of messages written back to storage by
7454 		 * user space causing runtime resume, causing more messages and
7455 		 * so on.
7456 		 */
7457 		dev_dbg(hba->dev,
7458 			"%s: Regulator capability was not set, actvIccLevel=%d",
7459 							__func__, icc_level);
7460 		goto out;
7461 	}
7462 
7463 	if (hba->vreg_info.vcc->max_uA)
7464 		icc_level = ufshcd_get_max_icc_level(
7465 				hba->vreg_info.vcc->max_uA,
7466 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7467 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7468 
7469 	if (hba->vreg_info.vccq->max_uA)
7470 		icc_level = ufshcd_get_max_icc_level(
7471 				hba->vreg_info.vccq->max_uA,
7472 				icc_level,
7473 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7474 
7475 	if (hba->vreg_info.vccq2->max_uA)
7476 		icc_level = ufshcd_get_max_icc_level(
7477 				hba->vreg_info.vccq2->max_uA,
7478 				icc_level,
7479 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7480 out:
7481 	return icc_level;
7482 }
7483 
7484 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7485 {
7486 	int ret;
7487 	int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7488 	u8 *desc_buf;
7489 	u32 icc_level;
7490 
7491 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7492 	if (!desc_buf)
7493 		return;
7494 
7495 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7496 				     desc_buf, buff_len);
7497 	if (ret) {
7498 		dev_err(hba->dev,
7499 			"%s: Failed reading power descriptor.len = %d ret = %d",
7500 			__func__, buff_len, ret);
7501 		goto out;
7502 	}
7503 
7504 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7505 							 buff_len);
7506 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7507 
7508 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7509 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7510 
7511 	if (ret)
7512 		dev_err(hba->dev,
7513 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7514 			__func__, icc_level, ret);
7515 
7516 out:
7517 	kfree(desc_buf);
7518 }
7519 
7520 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7521 {
7522 	scsi_autopm_get_device(sdev);
7523 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7524 	if (sdev->rpm_autosuspend)
7525 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7526 						 RPM_AUTOSUSPEND_DELAY_MS);
7527 	scsi_autopm_put_device(sdev);
7528 }
7529 
7530 /**
7531  * ufshcd_scsi_add_wlus - Adds required W-LUs
7532  * @hba: per-adapter instance
7533  *
7534  * UFS device specification requires the UFS devices to support 4 well known
7535  * logical units:
7536  *	"REPORT_LUNS" (address: 01h)
7537  *	"UFS Device" (address: 50h)
7538  *	"RPMB" (address: 44h)
7539  *	"BOOT" (address: 30h)
7540  * UFS device's power management needs to be controlled by "POWER CONDITION"
7541  * field of SSU (START STOP UNIT) command. But this "power condition" field
7542  * will take effect only when its sent to "UFS device" well known logical unit
7543  * hence we require the scsi_device instance to represent this logical unit in
7544  * order for the UFS host driver to send the SSU command for power management.
7545  *
7546  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7547  * Block) LU so user space process can control this LU. User space may also
7548  * want to have access to BOOT LU.
7549  *
7550  * This function adds scsi device instances for each of all well known LUs
7551  * (except "REPORT LUNS" LU).
7552  *
7553  * Returns zero on success (all required W-LUs are added successfully),
7554  * non-zero error value on failure (if failed to add any of the required W-LU).
7555  */
7556 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7557 {
7558 	int ret = 0;
7559 	struct scsi_device *sdev_boot, *sdev_rpmb;
7560 
7561 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7562 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7563 	if (IS_ERR(hba->ufs_device_wlun)) {
7564 		ret = PTR_ERR(hba->ufs_device_wlun);
7565 		hba->ufs_device_wlun = NULL;
7566 		goto out;
7567 	}
7568 	scsi_device_put(hba->ufs_device_wlun);
7569 
7570 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7571 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7572 	if (IS_ERR(sdev_rpmb)) {
7573 		ret = PTR_ERR(sdev_rpmb);
7574 		goto remove_ufs_device_wlun;
7575 	}
7576 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7577 	scsi_device_put(sdev_rpmb);
7578 
7579 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7580 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7581 	if (IS_ERR(sdev_boot)) {
7582 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7583 	} else {
7584 		ufshcd_blk_pm_runtime_init(sdev_boot);
7585 		scsi_device_put(sdev_boot);
7586 	}
7587 	goto out;
7588 
7589 remove_ufs_device_wlun:
7590 	scsi_remove_device(hba->ufs_device_wlun);
7591 out:
7592 	return ret;
7593 }
7594 
7595 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
7596 {
7597 	struct ufs_dev_info *dev_info = &hba->dev_info;
7598 	u8 lun;
7599 	u32 d_lu_wb_buf_alloc;
7600 	u32 ext_ufs_feature;
7601 
7602 	if (!ufshcd_is_wb_allowed(hba))
7603 		return;
7604 
7605 	/*
7606 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7607 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7608 	 * enabled
7609 	 */
7610 	if (!(dev_info->wspecversion >= 0x310 ||
7611 	      dev_info->wspecversion == 0x220 ||
7612 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7613 		goto wb_disabled;
7614 
7615 	if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7616 	    DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7617 		goto wb_disabled;
7618 
7619 	ext_ufs_feature = get_unaligned_be32(desc_buf +
7620 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7621 
7622 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7623 		goto wb_disabled;
7624 
7625 	/*
7626 	 * WB may be supported but not configured while provisioning. The spec
7627 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7628 	 * buffer configured.
7629 	 */
7630 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7631 
7632 	dev_info->b_presrv_uspc_en =
7633 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7634 
7635 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7636 		if (!get_unaligned_be32(desc_buf +
7637 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7638 			goto wb_disabled;
7639 	} else {
7640 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7641 			d_lu_wb_buf_alloc = 0;
7642 			ufshcd_read_unit_desc_param(hba,
7643 					lun,
7644 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7645 					(u8 *)&d_lu_wb_buf_alloc,
7646 					sizeof(d_lu_wb_buf_alloc));
7647 			if (d_lu_wb_buf_alloc) {
7648 				dev_info->wb_dedicated_lu = lun;
7649 				break;
7650 			}
7651 		}
7652 
7653 		if (!d_lu_wb_buf_alloc)
7654 			goto wb_disabled;
7655 	}
7656 
7657 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
7658 		goto wb_disabled;
7659 
7660 	return;
7661 
7662 wb_disabled:
7663 	hba->caps &= ~UFSHCD_CAP_WB_EN;
7664 }
7665 
7666 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
7667 {
7668 	struct ufs_dev_info *dev_info = &hba->dev_info;
7669 	u32 ext_ufs_feature;
7670 	u8 mask = 0;
7671 
7672 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7673 		return;
7674 
7675 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7676 
7677 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7678 		mask |= MASK_EE_TOO_LOW_TEMP;
7679 
7680 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7681 		mask |= MASK_EE_TOO_HIGH_TEMP;
7682 
7683 	if (mask) {
7684 		ufshcd_enable_ee(hba, mask);
7685 		ufs_hwmon_probe(hba, mask);
7686 	}
7687 }
7688 
7689 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
7690 			     const struct ufs_dev_quirk *fixups)
7691 {
7692 	const struct ufs_dev_quirk *f;
7693 	struct ufs_dev_info *dev_info = &hba->dev_info;
7694 
7695 	if (!fixups)
7696 		return;
7697 
7698 	for (f = fixups; f->quirk; f++) {
7699 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7700 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
7701 		     ((dev_info->model &&
7702 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7703 		      !strcmp(f->model, UFS_ANY_MODEL)))
7704 			hba->dev_quirks |= f->quirk;
7705 	}
7706 }
7707 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7708 
7709 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7710 {
7711 	/* fix by general quirk table */
7712 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7713 
7714 	/* allow vendors to fix quirks */
7715 	ufshcd_vops_fixup_dev_quirks(hba);
7716 }
7717 
7718 static int ufs_get_device_desc(struct ufs_hba *hba)
7719 {
7720 	int err;
7721 	u8 model_index;
7722 	u8 b_ufs_feature_sup;
7723 	u8 *desc_buf;
7724 	struct ufs_dev_info *dev_info = &hba->dev_info;
7725 
7726 	desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7727 	if (!desc_buf) {
7728 		err = -ENOMEM;
7729 		goto out;
7730 	}
7731 
7732 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7733 				     hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7734 	if (err) {
7735 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7736 			__func__, err);
7737 		goto out;
7738 	}
7739 
7740 	/*
7741 	 * getting vendor (manufacturerID) and Bank Index in big endian
7742 	 * format
7743 	 */
7744 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7745 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7746 
7747 	/* getting Specification Version in big endian format */
7748 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7749 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7750 	b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7751 
7752 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7753 
7754 	if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7755 	    (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7756 		bool hpb_en = false;
7757 
7758 		ufshpb_get_dev_info(hba, desc_buf);
7759 
7760 		if (!ufshpb_is_legacy(hba))
7761 			err = ufshcd_query_flag_retry(hba,
7762 						      UPIU_QUERY_OPCODE_READ_FLAG,
7763 						      QUERY_FLAG_IDN_HPB_EN, 0,
7764 						      &hpb_en);
7765 
7766 		if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7767 			dev_info->hpb_enabled = true;
7768 	}
7769 
7770 	err = ufshcd_read_string_desc(hba, model_index,
7771 				      &dev_info->model, SD_ASCII_STD);
7772 	if (err < 0) {
7773 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7774 			__func__, err);
7775 		goto out;
7776 	}
7777 
7778 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
7779 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
7780 
7781 	ufs_fixup_device_setup(hba);
7782 
7783 	ufshcd_wb_probe(hba, desc_buf);
7784 
7785 	ufshcd_temp_notif_probe(hba, desc_buf);
7786 
7787 	/*
7788 	 * ufshcd_read_string_desc returns size of the string
7789 	 * reset the error value
7790 	 */
7791 	err = 0;
7792 
7793 out:
7794 	kfree(desc_buf);
7795 	return err;
7796 }
7797 
7798 static void ufs_put_device_desc(struct ufs_hba *hba)
7799 {
7800 	struct ufs_dev_info *dev_info = &hba->dev_info;
7801 
7802 	kfree(dev_info->model);
7803 	dev_info->model = NULL;
7804 }
7805 
7806 /**
7807  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7808  * @hba: per-adapter instance
7809  *
7810  * PA_TActivate parameter can be tuned manually if UniPro version is less than
7811  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7812  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7813  * the hibern8 exit latency.
7814  *
7815  * Returns zero on success, non-zero error value on failure.
7816  */
7817 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7818 {
7819 	int ret = 0;
7820 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7821 
7822 	ret = ufshcd_dme_peer_get(hba,
7823 				  UIC_ARG_MIB_SEL(
7824 					RX_MIN_ACTIVATETIME_CAPABILITY,
7825 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7826 				  &peer_rx_min_activatetime);
7827 	if (ret)
7828 		goto out;
7829 
7830 	/* make sure proper unit conversion is applied */
7831 	tuned_pa_tactivate =
7832 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7833 		 / PA_TACTIVATE_TIME_UNIT_US);
7834 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7835 			     tuned_pa_tactivate);
7836 
7837 out:
7838 	return ret;
7839 }
7840 
7841 /**
7842  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7843  * @hba: per-adapter instance
7844  *
7845  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7846  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7847  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7848  * This optimal value can help reduce the hibern8 exit latency.
7849  *
7850  * Returns zero on success, non-zero error value on failure.
7851  */
7852 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7853 {
7854 	int ret = 0;
7855 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7856 	u32 max_hibern8_time, tuned_pa_hibern8time;
7857 
7858 	ret = ufshcd_dme_get(hba,
7859 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7860 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7861 				  &local_tx_hibern8_time_cap);
7862 	if (ret)
7863 		goto out;
7864 
7865 	ret = ufshcd_dme_peer_get(hba,
7866 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7867 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7868 				  &peer_rx_hibern8_time_cap);
7869 	if (ret)
7870 		goto out;
7871 
7872 	max_hibern8_time = max(local_tx_hibern8_time_cap,
7873 			       peer_rx_hibern8_time_cap);
7874 	/* make sure proper unit conversion is applied */
7875 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7876 				/ PA_HIBERN8_TIME_UNIT_US);
7877 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7878 			     tuned_pa_hibern8time);
7879 out:
7880 	return ret;
7881 }
7882 
7883 /**
7884  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7885  * less than device PA_TACTIVATE time.
7886  * @hba: per-adapter instance
7887  *
7888  * Some UFS devices require host PA_TACTIVATE to be lower than device
7889  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7890  * for such devices.
7891  *
7892  * Returns zero on success, non-zero error value on failure.
7893  */
7894 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7895 {
7896 	int ret = 0;
7897 	u32 granularity, peer_granularity;
7898 	u32 pa_tactivate, peer_pa_tactivate;
7899 	u32 pa_tactivate_us, peer_pa_tactivate_us;
7900 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7901 
7902 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7903 				  &granularity);
7904 	if (ret)
7905 		goto out;
7906 
7907 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7908 				  &peer_granularity);
7909 	if (ret)
7910 		goto out;
7911 
7912 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7913 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
7914 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7915 			__func__, granularity);
7916 		return -EINVAL;
7917 	}
7918 
7919 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7920 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7921 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7922 			__func__, peer_granularity);
7923 		return -EINVAL;
7924 	}
7925 
7926 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7927 	if (ret)
7928 		goto out;
7929 
7930 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7931 				  &peer_pa_tactivate);
7932 	if (ret)
7933 		goto out;
7934 
7935 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7936 	peer_pa_tactivate_us = peer_pa_tactivate *
7937 			     gran_to_us_table[peer_granularity - 1];
7938 
7939 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
7940 		u32 new_peer_pa_tactivate;
7941 
7942 		new_peer_pa_tactivate = pa_tactivate_us /
7943 				      gran_to_us_table[peer_granularity - 1];
7944 		new_peer_pa_tactivate++;
7945 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7946 					  new_peer_pa_tactivate);
7947 	}
7948 
7949 out:
7950 	return ret;
7951 }
7952 
7953 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7954 {
7955 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7956 		ufshcd_tune_pa_tactivate(hba);
7957 		ufshcd_tune_pa_hibern8time(hba);
7958 	}
7959 
7960 	ufshcd_vops_apply_dev_quirks(hba);
7961 
7962 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7963 		/* set 1ms timeout for PA_TACTIVATE */
7964 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7965 
7966 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7967 		ufshcd_quirk_tune_host_pa_tactivate(hba);
7968 }
7969 
7970 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7971 {
7972 	hba->ufs_stats.hibern8_exit_cnt = 0;
7973 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7974 	hba->req_abort_count = 0;
7975 }
7976 
7977 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7978 {
7979 	int err;
7980 	size_t buff_len;
7981 	u8 *desc_buf;
7982 
7983 	buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7984 	desc_buf = kmalloc(buff_len, GFP_KERNEL);
7985 	if (!desc_buf) {
7986 		err = -ENOMEM;
7987 		goto out;
7988 	}
7989 
7990 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7991 				     desc_buf, buff_len);
7992 	if (err) {
7993 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7994 				__func__, err);
7995 		goto out;
7996 	}
7997 
7998 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7999 		hba->dev_info.max_lu_supported = 32;
8000 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8001 		hba->dev_info.max_lu_supported = 8;
8002 
8003 	if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
8004 		GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
8005 		ufshpb_get_geo_info(hba, desc_buf);
8006 
8007 out:
8008 	kfree(desc_buf);
8009 	return err;
8010 }
8011 
8012 struct ufs_ref_clk {
8013 	unsigned long freq_hz;
8014 	enum ufs_ref_clk_freq val;
8015 };
8016 
8017 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8018 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8019 	{26000000, REF_CLK_FREQ_26_MHZ},
8020 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8021 	{52000000, REF_CLK_FREQ_52_MHZ},
8022 	{0, REF_CLK_FREQ_INVAL},
8023 };
8024 
8025 static enum ufs_ref_clk_freq
8026 ufs_get_bref_clk_from_hz(unsigned long freq)
8027 {
8028 	int i;
8029 
8030 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8031 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8032 			return ufs_ref_clk_freqs[i].val;
8033 
8034 	return REF_CLK_FREQ_INVAL;
8035 }
8036 
8037 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8038 {
8039 	unsigned long freq;
8040 
8041 	freq = clk_get_rate(refclk);
8042 
8043 	hba->dev_ref_clk_freq =
8044 		ufs_get_bref_clk_from_hz(freq);
8045 
8046 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8047 		dev_err(hba->dev,
8048 		"invalid ref_clk setting = %ld\n", freq);
8049 }
8050 
8051 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8052 {
8053 	int err;
8054 	u32 ref_clk;
8055 	u32 freq = hba->dev_ref_clk_freq;
8056 
8057 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8058 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8059 
8060 	if (err) {
8061 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8062 			err);
8063 		goto out;
8064 	}
8065 
8066 	if (ref_clk == freq)
8067 		goto out; /* nothing to update */
8068 
8069 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8070 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8071 
8072 	if (err) {
8073 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8074 			ufs_ref_clk_freqs[freq].freq_hz);
8075 		goto out;
8076 	}
8077 
8078 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8079 			ufs_ref_clk_freqs[freq].freq_hz);
8080 
8081 out:
8082 	return err;
8083 }
8084 
8085 static int ufshcd_device_params_init(struct ufs_hba *hba)
8086 {
8087 	bool flag;
8088 	int ret, i;
8089 
8090 	 /* Init device descriptor sizes */
8091 	for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
8092 		hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
8093 
8094 	/* Init UFS geometry descriptor related parameters */
8095 	ret = ufshcd_device_geo_params_init(hba);
8096 	if (ret)
8097 		goto out;
8098 
8099 	/* Check and apply UFS device quirks */
8100 	ret = ufs_get_device_desc(hba);
8101 	if (ret) {
8102 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8103 			__func__, ret);
8104 		goto out;
8105 	}
8106 
8107 	ufshcd_get_ref_clk_gating_wait(hba);
8108 
8109 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8110 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8111 		hba->dev_info.f_power_on_wp_en = flag;
8112 
8113 	/* Probe maximum power mode co-supported by both UFS host and device */
8114 	if (ufshcd_get_max_pwr_mode(hba))
8115 		dev_err(hba->dev,
8116 			"%s: Failed getting max supported power mode\n",
8117 			__func__);
8118 out:
8119 	return ret;
8120 }
8121 
8122 /**
8123  * ufshcd_add_lus - probe and add UFS logical units
8124  * @hba: per-adapter instance
8125  */
8126 static int ufshcd_add_lus(struct ufs_hba *hba)
8127 {
8128 	int ret;
8129 
8130 	/* Add required well known logical units to scsi mid layer */
8131 	ret = ufshcd_scsi_add_wlus(hba);
8132 	if (ret)
8133 		goto out;
8134 
8135 	/* Initialize devfreq after UFS device is detected */
8136 	if (ufshcd_is_clkscaling_supported(hba)) {
8137 		memcpy(&hba->clk_scaling.saved_pwr_info.info,
8138 			&hba->pwr_info,
8139 			sizeof(struct ufs_pa_layer_attr));
8140 		hba->clk_scaling.saved_pwr_info.is_valid = true;
8141 		hba->clk_scaling.is_allowed = true;
8142 
8143 		ret = ufshcd_devfreq_init(hba);
8144 		if (ret)
8145 			goto out;
8146 
8147 		hba->clk_scaling.is_enabled = true;
8148 		ufshcd_init_clk_scaling_sysfs(hba);
8149 	}
8150 
8151 	ufs_bsg_probe(hba);
8152 	ufshpb_init(hba);
8153 	scsi_scan_host(hba->host);
8154 	pm_runtime_put_sync(hba->dev);
8155 
8156 out:
8157 	return ret;
8158 }
8159 
8160 /**
8161  * ufshcd_probe_hba - probe hba to detect device and initialize it
8162  * @hba: per-adapter instance
8163  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8164  *
8165  * Execute link-startup and verify device initialization
8166  */
8167 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8168 {
8169 	int ret;
8170 	unsigned long flags;
8171 	ktime_t start = ktime_get();
8172 
8173 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8174 
8175 	ret = ufshcd_link_startup(hba);
8176 	if (ret)
8177 		goto out;
8178 
8179 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8180 		goto out;
8181 
8182 	/* Debug counters initialization */
8183 	ufshcd_clear_dbg_ufs_stats(hba);
8184 
8185 	/* UniPro link is active now */
8186 	ufshcd_set_link_active(hba);
8187 
8188 	/* Verify device initialization by sending NOP OUT UPIU */
8189 	ret = ufshcd_verify_dev_init(hba);
8190 	if (ret)
8191 		goto out;
8192 
8193 	/* Initiate UFS initialization, and waiting until completion */
8194 	ret = ufshcd_complete_dev_init(hba);
8195 	if (ret)
8196 		goto out;
8197 
8198 	/*
8199 	 * Initialize UFS device parameters used by driver, these
8200 	 * parameters are associated with UFS descriptors.
8201 	 */
8202 	if (init_dev_params) {
8203 		ret = ufshcd_device_params_init(hba);
8204 		if (ret)
8205 			goto out;
8206 	}
8207 
8208 	ufshcd_tune_unipro_params(hba);
8209 
8210 	/* UFS device is also active now */
8211 	ufshcd_set_ufs_dev_active(hba);
8212 	ufshcd_force_reset_auto_bkops(hba);
8213 
8214 	/* Gear up to HS gear if supported */
8215 	if (hba->max_pwr_info.is_valid) {
8216 		/*
8217 		 * Set the right value to bRefClkFreq before attempting to
8218 		 * switch to HS gears.
8219 		 */
8220 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8221 			ufshcd_set_dev_ref_clk(hba);
8222 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8223 		if (ret) {
8224 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8225 					__func__, ret);
8226 			goto out;
8227 		}
8228 		ufshcd_print_pwr_info(hba);
8229 	}
8230 
8231 	/*
8232 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8233 	 * and for removable UFS card as well, hence always set the parameter.
8234 	 * Note: Error handler may issue the device reset hence resetting
8235 	 * bActiveICCLevel as well so it is always safe to set this here.
8236 	 */
8237 	ufshcd_set_active_icc_lvl(hba);
8238 
8239 	ufshcd_wb_config(hba);
8240 	if (hba->ee_usr_mask)
8241 		ufshcd_write_ee_control(hba);
8242 	/* Enable Auto-Hibernate if configured */
8243 	ufshcd_auto_hibern8_enable(hba);
8244 
8245 	ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT);
8246 out:
8247 	spin_lock_irqsave(hba->host->host_lock, flags);
8248 	if (ret)
8249 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8250 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8251 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8252 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8253 
8254 	trace_ufshcd_init(dev_name(hba->dev), ret,
8255 		ktime_to_us(ktime_sub(ktime_get(), start)),
8256 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8257 	return ret;
8258 }
8259 
8260 /**
8261  * ufshcd_async_scan - asynchronous execution for probing hba
8262  * @data: data pointer to pass to this function
8263  * @cookie: cookie data
8264  */
8265 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8266 {
8267 	struct ufs_hba *hba = (struct ufs_hba *)data;
8268 	int ret;
8269 
8270 	down(&hba->host_sem);
8271 	/* Initialize hba, detect and initialize UFS device */
8272 	ret = ufshcd_probe_hba(hba, true);
8273 	up(&hba->host_sem);
8274 	if (ret)
8275 		goto out;
8276 
8277 	/* Probe and add UFS logical units  */
8278 	ret = ufshcd_add_lus(hba);
8279 out:
8280 	/*
8281 	 * If we failed to initialize the device or the device is not
8282 	 * present, turn off the power/clocks etc.
8283 	 */
8284 	if (ret) {
8285 		pm_runtime_put_sync(hba->dev);
8286 		ufshcd_hba_exit(hba);
8287 	}
8288 }
8289 
8290 static const struct attribute_group *ufshcd_driver_groups[] = {
8291 	&ufs_sysfs_unit_descriptor_group,
8292 	&ufs_sysfs_lun_attributes_group,
8293 #ifdef CONFIG_SCSI_UFS_HPB
8294 	&ufs_sysfs_hpb_stat_group,
8295 	&ufs_sysfs_hpb_param_group,
8296 #endif
8297 	NULL,
8298 };
8299 
8300 static struct ufs_hba_variant_params ufs_hba_vps = {
8301 	.hba_enable_delay_us		= 1000,
8302 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8303 	.devfreq_profile.polling_ms	= 100,
8304 	.devfreq_profile.target		= ufshcd_devfreq_target,
8305 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8306 	.ondemand_data.upthreshold	= 70,
8307 	.ondemand_data.downdifferential	= 5,
8308 };
8309 
8310 static struct scsi_host_template ufshcd_driver_template = {
8311 	.module			= THIS_MODULE,
8312 	.name			= UFSHCD,
8313 	.proc_name		= UFSHCD,
8314 	.map_queues		= ufshcd_map_queues,
8315 	.queuecommand		= ufshcd_queuecommand,
8316 	.mq_poll		= ufshcd_poll,
8317 	.slave_alloc		= ufshcd_slave_alloc,
8318 	.slave_configure	= ufshcd_slave_configure,
8319 	.slave_destroy		= ufshcd_slave_destroy,
8320 	.change_queue_depth	= ufshcd_change_queue_depth,
8321 	.eh_abort_handler	= ufshcd_abort,
8322 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8323 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8324 	.this_id		= -1,
8325 	.sg_tablesize		= SG_ALL,
8326 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8327 	.can_queue		= UFSHCD_CAN_QUEUE,
8328 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8329 	.max_sectors		= (1 << 20) / SECTOR_SIZE, /* 1 MiB */
8330 	.max_host_blocked	= 1,
8331 	.track_queue_depth	= 1,
8332 	.sdev_groups		= ufshcd_driver_groups,
8333 	.dma_boundary		= PAGE_SIZE - 1,
8334 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8335 };
8336 
8337 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8338 				   int ua)
8339 {
8340 	int ret;
8341 
8342 	if (!vreg)
8343 		return 0;
8344 
8345 	/*
8346 	 * "set_load" operation shall be required on those regulators
8347 	 * which specifically configured current limitation. Otherwise
8348 	 * zero max_uA may cause unexpected behavior when regulator is
8349 	 * enabled or set as high power mode.
8350 	 */
8351 	if (!vreg->max_uA)
8352 		return 0;
8353 
8354 	ret = regulator_set_load(vreg->reg, ua);
8355 	if (ret < 0) {
8356 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8357 				__func__, vreg->name, ua, ret);
8358 	}
8359 
8360 	return ret;
8361 }
8362 
8363 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8364 					 struct ufs_vreg *vreg)
8365 {
8366 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8367 }
8368 
8369 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8370 					 struct ufs_vreg *vreg)
8371 {
8372 	if (!vreg)
8373 		return 0;
8374 
8375 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8376 }
8377 
8378 static int ufshcd_config_vreg(struct device *dev,
8379 		struct ufs_vreg *vreg, bool on)
8380 {
8381 	if (regulator_count_voltages(vreg->reg) <= 0)
8382 		return 0;
8383 
8384 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8385 }
8386 
8387 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8388 {
8389 	int ret = 0;
8390 
8391 	if (!vreg || vreg->enabled)
8392 		goto out;
8393 
8394 	ret = ufshcd_config_vreg(dev, vreg, true);
8395 	if (!ret)
8396 		ret = regulator_enable(vreg->reg);
8397 
8398 	if (!ret)
8399 		vreg->enabled = true;
8400 	else
8401 		dev_err(dev, "%s: %s enable failed, err=%d\n",
8402 				__func__, vreg->name, ret);
8403 out:
8404 	return ret;
8405 }
8406 
8407 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8408 {
8409 	int ret = 0;
8410 
8411 	if (!vreg || !vreg->enabled || vreg->always_on)
8412 		goto out;
8413 
8414 	ret = regulator_disable(vreg->reg);
8415 
8416 	if (!ret) {
8417 		/* ignore errors on applying disable config */
8418 		ufshcd_config_vreg(dev, vreg, false);
8419 		vreg->enabled = false;
8420 	} else {
8421 		dev_err(dev, "%s: %s disable failed, err=%d\n",
8422 				__func__, vreg->name, ret);
8423 	}
8424 out:
8425 	return ret;
8426 }
8427 
8428 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8429 {
8430 	int ret = 0;
8431 	struct device *dev = hba->dev;
8432 	struct ufs_vreg_info *info = &hba->vreg_info;
8433 
8434 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8435 	if (ret)
8436 		goto out;
8437 
8438 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8439 	if (ret)
8440 		goto out;
8441 
8442 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8443 
8444 out:
8445 	if (ret) {
8446 		ufshcd_toggle_vreg(dev, info->vccq2, false);
8447 		ufshcd_toggle_vreg(dev, info->vccq, false);
8448 		ufshcd_toggle_vreg(dev, info->vcc, false);
8449 	}
8450 	return ret;
8451 }
8452 
8453 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8454 {
8455 	struct ufs_vreg_info *info = &hba->vreg_info;
8456 
8457 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8458 }
8459 
8460 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8461 {
8462 	int ret = 0;
8463 
8464 	if (!vreg)
8465 		goto out;
8466 
8467 	vreg->reg = devm_regulator_get(dev, vreg->name);
8468 	if (IS_ERR(vreg->reg)) {
8469 		ret = PTR_ERR(vreg->reg);
8470 		dev_err(dev, "%s: %s get failed, err=%d\n",
8471 				__func__, vreg->name, ret);
8472 	}
8473 out:
8474 	return ret;
8475 }
8476 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8477 
8478 static int ufshcd_init_vreg(struct ufs_hba *hba)
8479 {
8480 	int ret = 0;
8481 	struct device *dev = hba->dev;
8482 	struct ufs_vreg_info *info = &hba->vreg_info;
8483 
8484 	ret = ufshcd_get_vreg(dev, info->vcc);
8485 	if (ret)
8486 		goto out;
8487 
8488 	ret = ufshcd_get_vreg(dev, info->vccq);
8489 	if (!ret)
8490 		ret = ufshcd_get_vreg(dev, info->vccq2);
8491 out:
8492 	return ret;
8493 }
8494 
8495 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8496 {
8497 	struct ufs_vreg_info *info = &hba->vreg_info;
8498 
8499 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8500 }
8501 
8502 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8503 {
8504 	int ret = 0;
8505 	struct ufs_clk_info *clki;
8506 	struct list_head *head = &hba->clk_list_head;
8507 	unsigned long flags;
8508 	ktime_t start = ktime_get();
8509 	bool clk_state_changed = false;
8510 
8511 	if (list_empty(head))
8512 		goto out;
8513 
8514 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8515 	if (ret)
8516 		return ret;
8517 
8518 	list_for_each_entry(clki, head, list) {
8519 		if (!IS_ERR_OR_NULL(clki->clk)) {
8520 			/*
8521 			 * Don't disable clocks which are needed
8522 			 * to keep the link active.
8523 			 */
8524 			if (ufshcd_is_link_active(hba) &&
8525 			    clki->keep_link_active)
8526 				continue;
8527 
8528 			clk_state_changed = on ^ clki->enabled;
8529 			if (on && !clki->enabled) {
8530 				ret = clk_prepare_enable(clki->clk);
8531 				if (ret) {
8532 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8533 						__func__, clki->name, ret);
8534 					goto out;
8535 				}
8536 			} else if (!on && clki->enabled) {
8537 				clk_disable_unprepare(clki->clk);
8538 			}
8539 			clki->enabled = on;
8540 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8541 					clki->name, on ? "en" : "dis");
8542 		}
8543 	}
8544 
8545 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8546 	if (ret)
8547 		return ret;
8548 
8549 out:
8550 	if (ret) {
8551 		list_for_each_entry(clki, head, list) {
8552 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8553 				clk_disable_unprepare(clki->clk);
8554 		}
8555 	} else if (!ret && on) {
8556 		spin_lock_irqsave(hba->host->host_lock, flags);
8557 		hba->clk_gating.state = CLKS_ON;
8558 		trace_ufshcd_clk_gating(dev_name(hba->dev),
8559 					hba->clk_gating.state);
8560 		spin_unlock_irqrestore(hba->host->host_lock, flags);
8561 	}
8562 
8563 	if (clk_state_changed)
8564 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8565 			(on ? "on" : "off"),
8566 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8567 	return ret;
8568 }
8569 
8570 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
8571 {
8572 	u32 freq;
8573 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
8574 
8575 	if (ret) {
8576 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
8577 		return REF_CLK_FREQ_INVAL;
8578 	}
8579 
8580 	return ufs_get_bref_clk_from_hz(freq);
8581 }
8582 
8583 static int ufshcd_init_clocks(struct ufs_hba *hba)
8584 {
8585 	int ret = 0;
8586 	struct ufs_clk_info *clki;
8587 	struct device *dev = hba->dev;
8588 	struct list_head *head = &hba->clk_list_head;
8589 
8590 	if (list_empty(head))
8591 		goto out;
8592 
8593 	list_for_each_entry(clki, head, list) {
8594 		if (!clki->name)
8595 			continue;
8596 
8597 		clki->clk = devm_clk_get(dev, clki->name);
8598 		if (IS_ERR(clki->clk)) {
8599 			ret = PTR_ERR(clki->clk);
8600 			dev_err(dev, "%s: %s clk get failed, %d\n",
8601 					__func__, clki->name, ret);
8602 			goto out;
8603 		}
8604 
8605 		/*
8606 		 * Parse device ref clk freq as per device tree "ref_clk".
8607 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8608 		 * in ufshcd_alloc_host().
8609 		 */
8610 		if (!strcmp(clki->name, "ref_clk"))
8611 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8612 
8613 		if (clki->max_freq) {
8614 			ret = clk_set_rate(clki->clk, clki->max_freq);
8615 			if (ret) {
8616 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8617 					__func__, clki->name,
8618 					clki->max_freq, ret);
8619 				goto out;
8620 			}
8621 			clki->curr_freq = clki->max_freq;
8622 		}
8623 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8624 				clki->name, clk_get_rate(clki->clk));
8625 	}
8626 out:
8627 	return ret;
8628 }
8629 
8630 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8631 {
8632 	int err = 0;
8633 
8634 	if (!hba->vops)
8635 		goto out;
8636 
8637 	err = ufshcd_vops_init(hba);
8638 	if (err)
8639 		dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8640 			__func__, ufshcd_get_var_name(hba), err);
8641 out:
8642 	return err;
8643 }
8644 
8645 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8646 {
8647 	if (!hba->vops)
8648 		return;
8649 
8650 	ufshcd_vops_exit(hba);
8651 }
8652 
8653 static int ufshcd_hba_init(struct ufs_hba *hba)
8654 {
8655 	int err;
8656 
8657 	/*
8658 	 * Handle host controller power separately from the UFS device power
8659 	 * rails as it will help controlling the UFS host controller power
8660 	 * collapse easily which is different than UFS device power collapse.
8661 	 * Also, enable the host controller power before we go ahead with rest
8662 	 * of the initialization here.
8663 	 */
8664 	err = ufshcd_init_hba_vreg(hba);
8665 	if (err)
8666 		goto out;
8667 
8668 	err = ufshcd_setup_hba_vreg(hba, true);
8669 	if (err)
8670 		goto out;
8671 
8672 	err = ufshcd_init_clocks(hba);
8673 	if (err)
8674 		goto out_disable_hba_vreg;
8675 
8676 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8677 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
8678 
8679 	err = ufshcd_setup_clocks(hba, true);
8680 	if (err)
8681 		goto out_disable_hba_vreg;
8682 
8683 	err = ufshcd_init_vreg(hba);
8684 	if (err)
8685 		goto out_disable_clks;
8686 
8687 	err = ufshcd_setup_vreg(hba, true);
8688 	if (err)
8689 		goto out_disable_clks;
8690 
8691 	err = ufshcd_variant_hba_init(hba);
8692 	if (err)
8693 		goto out_disable_vreg;
8694 
8695 	ufs_debugfs_hba_init(hba);
8696 
8697 	hba->is_powered = true;
8698 	goto out;
8699 
8700 out_disable_vreg:
8701 	ufshcd_setup_vreg(hba, false);
8702 out_disable_clks:
8703 	ufshcd_setup_clocks(hba, false);
8704 out_disable_hba_vreg:
8705 	ufshcd_setup_hba_vreg(hba, false);
8706 out:
8707 	return err;
8708 }
8709 
8710 static void ufshcd_hba_exit(struct ufs_hba *hba)
8711 {
8712 	if (hba->is_powered) {
8713 		ufshcd_exit_clk_scaling(hba);
8714 		ufshcd_exit_clk_gating(hba);
8715 		if (hba->eh_wq)
8716 			destroy_workqueue(hba->eh_wq);
8717 		ufs_debugfs_hba_exit(hba);
8718 		ufshcd_variant_hba_exit(hba);
8719 		ufshcd_setup_vreg(hba, false);
8720 		ufshcd_setup_clocks(hba, false);
8721 		ufshcd_setup_hba_vreg(hba, false);
8722 		hba->is_powered = false;
8723 		ufs_put_device_desc(hba);
8724 	}
8725 }
8726 
8727 /**
8728  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8729  *			     power mode
8730  * @hba: per adapter instance
8731  * @pwr_mode: device power mode to set
8732  *
8733  * Returns 0 if requested power mode is set successfully
8734  * Returns < 0 if failed to set the requested power mode
8735  */
8736 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8737 				     enum ufs_dev_pwr_mode pwr_mode)
8738 {
8739 	unsigned char cmd[6] = { START_STOP };
8740 	struct scsi_sense_hdr sshdr;
8741 	struct scsi_device *sdp;
8742 	unsigned long flags;
8743 	int ret, retries;
8744 	unsigned long deadline;
8745 	int32_t remaining;
8746 
8747 	spin_lock_irqsave(hba->host->host_lock, flags);
8748 	sdp = hba->ufs_device_wlun;
8749 	if (sdp) {
8750 		ret = scsi_device_get(sdp);
8751 		if (!ret && !scsi_device_online(sdp)) {
8752 			ret = -ENODEV;
8753 			scsi_device_put(sdp);
8754 		}
8755 	} else {
8756 		ret = -ENODEV;
8757 	}
8758 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8759 
8760 	if (ret)
8761 		return ret;
8762 
8763 	/*
8764 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8765 	 * handling, which would wait for host to be resumed. Since we know
8766 	 * we are functional while we are here, skip host resume in error
8767 	 * handling context.
8768 	 */
8769 	hba->host->eh_noresume = 1;
8770 
8771 	cmd[4] = pwr_mode << 4;
8772 
8773 	/*
8774 	 * Current function would be generally called from the power management
8775 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8776 	 * already suspended childs.
8777 	 */
8778 	deadline = jiffies + 10 * HZ;
8779 	for (retries = 3; retries > 0; --retries) {
8780 		ret = -ETIMEDOUT;
8781 		remaining = deadline - jiffies;
8782 		if (remaining <= 0)
8783 			break;
8784 		ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8785 				   remaining / HZ, 0, 0, RQF_PM, NULL);
8786 		if (!scsi_status_is_check_condition(ret) ||
8787 				!scsi_sense_valid(&sshdr) ||
8788 				sshdr.sense_key != UNIT_ATTENTION)
8789 			break;
8790 	}
8791 	if (ret) {
8792 		sdev_printk(KERN_WARNING, sdp,
8793 			    "START_STOP failed for power mode: %d, result %x\n",
8794 			    pwr_mode, ret);
8795 		if (ret > 0) {
8796 			if (scsi_sense_valid(&sshdr))
8797 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
8798 			ret = -EIO;
8799 		}
8800 	}
8801 
8802 	if (!ret)
8803 		hba->curr_dev_pwr_mode = pwr_mode;
8804 
8805 	scsi_device_put(sdp);
8806 	hba->host->eh_noresume = 0;
8807 	return ret;
8808 }
8809 
8810 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8811 					enum uic_link_state req_link_state,
8812 					int check_for_bkops)
8813 {
8814 	int ret = 0;
8815 
8816 	if (req_link_state == hba->uic_link_state)
8817 		return 0;
8818 
8819 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8820 		ret = ufshcd_uic_hibern8_enter(hba);
8821 		if (!ret) {
8822 			ufshcd_set_link_hibern8(hba);
8823 		} else {
8824 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8825 					__func__, ret);
8826 			goto out;
8827 		}
8828 	}
8829 	/*
8830 	 * If autobkops is enabled, link can't be turned off because
8831 	 * turning off the link would also turn off the device, except in the
8832 	 * case of DeepSleep where the device is expected to remain powered.
8833 	 */
8834 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8835 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8836 		/*
8837 		 * Let's make sure that link is in low power mode, we are doing
8838 		 * this currently by putting the link in Hibern8. Otherway to
8839 		 * put the link in low power mode is to send the DME end point
8840 		 * to device and then send the DME reset command to local
8841 		 * unipro. But putting the link in hibern8 is much faster.
8842 		 *
8843 		 * Note also that putting the link in Hibern8 is a requirement
8844 		 * for entering DeepSleep.
8845 		 */
8846 		ret = ufshcd_uic_hibern8_enter(hba);
8847 		if (ret) {
8848 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8849 					__func__, ret);
8850 			goto out;
8851 		}
8852 		/*
8853 		 * Change controller state to "reset state" which
8854 		 * should also put the link in off/reset state
8855 		 */
8856 		ufshcd_hba_stop(hba);
8857 		/*
8858 		 * TODO: Check if we need any delay to make sure that
8859 		 * controller is reset
8860 		 */
8861 		ufshcd_set_link_off(hba);
8862 	}
8863 
8864 out:
8865 	return ret;
8866 }
8867 
8868 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8869 {
8870 	bool vcc_off = false;
8871 
8872 	/*
8873 	 * It seems some UFS devices may keep drawing more than sleep current
8874 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8875 	 * To avoid this situation, add 2ms delay before putting these UFS
8876 	 * rails in LPM mode.
8877 	 */
8878 	if (!ufshcd_is_link_active(hba) &&
8879 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8880 		usleep_range(2000, 2100);
8881 
8882 	/*
8883 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8884 	 * power.
8885 	 *
8886 	 * If UFS device and link is in OFF state, all power supplies (VCC,
8887 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8888 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8889 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8890 	 *
8891 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8892 	 * in low power state which would save some power.
8893 	 *
8894 	 * If Write Booster is enabled and the device needs to flush the WB
8895 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8896 	 */
8897 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8898 	    !hba->dev_info.is_lu_power_on_wp) {
8899 		ufshcd_setup_vreg(hba, false);
8900 		vcc_off = true;
8901 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8902 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8903 		vcc_off = true;
8904 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8905 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8906 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8907 		}
8908 	}
8909 
8910 	/*
8911 	 * Some UFS devices require delay after VCC power rail is turned-off.
8912 	 */
8913 	if (vcc_off && hba->vreg_info.vcc &&
8914 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8915 		usleep_range(5000, 5100);
8916 }
8917 
8918 #ifdef CONFIG_PM
8919 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8920 {
8921 	int ret = 0;
8922 
8923 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8924 	    !hba->dev_info.is_lu_power_on_wp) {
8925 		ret = ufshcd_setup_vreg(hba, true);
8926 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
8927 		if (!ufshcd_is_link_active(hba)) {
8928 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8929 			if (ret)
8930 				goto vcc_disable;
8931 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8932 			if (ret)
8933 				goto vccq_lpm;
8934 		}
8935 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8936 	}
8937 	goto out;
8938 
8939 vccq_lpm:
8940 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8941 vcc_disable:
8942 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8943 out:
8944 	return ret;
8945 }
8946 #endif /* CONFIG_PM */
8947 
8948 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8949 {
8950 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8951 		ufshcd_setup_hba_vreg(hba, false);
8952 }
8953 
8954 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8955 {
8956 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8957 		ufshcd_setup_hba_vreg(hba, true);
8958 }
8959 
8960 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8961 {
8962 	int ret = 0;
8963 	int check_for_bkops;
8964 	enum ufs_pm_level pm_lvl;
8965 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
8966 	enum uic_link_state req_link_state;
8967 
8968 	hba->pm_op_in_progress = true;
8969 	if (pm_op != UFS_SHUTDOWN_PM) {
8970 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
8971 			 hba->rpm_lvl : hba->spm_lvl;
8972 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8973 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8974 	} else {
8975 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8976 		req_link_state = UIC_LINK_OFF_STATE;
8977 	}
8978 
8979 	ufshpb_suspend(hba);
8980 
8981 	/*
8982 	 * If we can't transition into any of the low power modes
8983 	 * just gate the clocks.
8984 	 */
8985 	ufshcd_hold(hba, false);
8986 	hba->clk_gating.is_suspended = true;
8987 
8988 	if (ufshcd_is_clkscaling_supported(hba))
8989 		ufshcd_clk_scaling_suspend(hba, true);
8990 
8991 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8992 			req_link_state == UIC_LINK_ACTIVE_STATE) {
8993 		goto vops_suspend;
8994 	}
8995 
8996 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8997 	    (req_link_state == hba->uic_link_state))
8998 		goto enable_scaling;
8999 
9000 	/* UFS device & link must be active before we enter in this function */
9001 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9002 		ret = -EINVAL;
9003 		goto enable_scaling;
9004 	}
9005 
9006 	if (pm_op == UFS_RUNTIME_PM) {
9007 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9008 			/*
9009 			 * The device is idle with no requests in the queue,
9010 			 * allow background operations if bkops status shows
9011 			 * that performance might be impacted.
9012 			 */
9013 			ret = ufshcd_urgent_bkops(hba);
9014 			if (ret)
9015 				goto enable_scaling;
9016 		} else {
9017 			/* make sure that auto bkops is disabled */
9018 			ufshcd_disable_auto_bkops(hba);
9019 		}
9020 		/*
9021 		 * If device needs to do BKOP or WB buffer flush during
9022 		 * Hibern8, keep device power mode as "active power mode"
9023 		 * and VCC supply.
9024 		 */
9025 		hba->dev_info.b_rpm_dev_flush_capable =
9026 			hba->auto_bkops_enabled ||
9027 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9028 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9029 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9030 			ufshcd_wb_need_flush(hba));
9031 	}
9032 
9033 	flush_work(&hba->eeh_work);
9034 
9035 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9036 	if (ret)
9037 		goto enable_scaling;
9038 
9039 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9040 		if (pm_op != UFS_RUNTIME_PM)
9041 			/* ensure that bkops is disabled */
9042 			ufshcd_disable_auto_bkops(hba);
9043 
9044 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9045 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9046 			if (ret)
9047 				goto enable_scaling;
9048 		}
9049 	}
9050 
9051 	/*
9052 	 * In the case of DeepSleep, the device is expected to remain powered
9053 	 * with the link off, so do not check for bkops.
9054 	 */
9055 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9056 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9057 	if (ret)
9058 		goto set_dev_active;
9059 
9060 vops_suspend:
9061 	/*
9062 	 * Call vendor specific suspend callback. As these callbacks may access
9063 	 * vendor specific host controller register space call them before the
9064 	 * host clocks are ON.
9065 	 */
9066 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9067 	if (ret)
9068 		goto set_link_active;
9069 	goto out;
9070 
9071 set_link_active:
9072 	/*
9073 	 * Device hardware reset is required to exit DeepSleep. Also, for
9074 	 * DeepSleep, the link is off so host reset and restore will be done
9075 	 * further below.
9076 	 */
9077 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9078 		ufshcd_device_reset(hba);
9079 		WARN_ON(!ufshcd_is_link_off(hba));
9080 	}
9081 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9082 		ufshcd_set_link_active(hba);
9083 	else if (ufshcd_is_link_off(hba))
9084 		ufshcd_host_reset_and_restore(hba);
9085 set_dev_active:
9086 	/* Can also get here needing to exit DeepSleep */
9087 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9088 		ufshcd_device_reset(hba);
9089 		ufshcd_host_reset_and_restore(hba);
9090 	}
9091 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9092 		ufshcd_disable_auto_bkops(hba);
9093 enable_scaling:
9094 	if (ufshcd_is_clkscaling_supported(hba))
9095 		ufshcd_clk_scaling_suspend(hba, false);
9096 
9097 	hba->dev_info.b_rpm_dev_flush_capable = false;
9098 out:
9099 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9100 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9101 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9102 	}
9103 
9104 	if (ret) {
9105 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9106 		hba->clk_gating.is_suspended = false;
9107 		ufshcd_release(hba);
9108 		ufshpb_resume(hba);
9109 	}
9110 	hba->pm_op_in_progress = false;
9111 	return ret;
9112 }
9113 
9114 #ifdef CONFIG_PM
9115 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9116 {
9117 	int ret;
9118 	enum uic_link_state old_link_state = hba->uic_link_state;
9119 
9120 	hba->pm_op_in_progress = true;
9121 
9122 	/*
9123 	 * Call vendor specific resume callback. As these callbacks may access
9124 	 * vendor specific host controller register space call them when the
9125 	 * host clocks are ON.
9126 	 */
9127 	ret = ufshcd_vops_resume(hba, pm_op);
9128 	if (ret)
9129 		goto out;
9130 
9131 	/* For DeepSleep, the only supported option is to have the link off */
9132 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9133 
9134 	if (ufshcd_is_link_hibern8(hba)) {
9135 		ret = ufshcd_uic_hibern8_exit(hba);
9136 		if (!ret) {
9137 			ufshcd_set_link_active(hba);
9138 		} else {
9139 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9140 					__func__, ret);
9141 			goto vendor_suspend;
9142 		}
9143 	} else if (ufshcd_is_link_off(hba)) {
9144 		/*
9145 		 * A full initialization of the host and the device is
9146 		 * required since the link was put to off during suspend.
9147 		 * Note, in the case of DeepSleep, the device will exit
9148 		 * DeepSleep due to device reset.
9149 		 */
9150 		ret = ufshcd_reset_and_restore(hba);
9151 		/*
9152 		 * ufshcd_reset_and_restore() should have already
9153 		 * set the link state as active
9154 		 */
9155 		if (ret || !ufshcd_is_link_active(hba))
9156 			goto vendor_suspend;
9157 	}
9158 
9159 	if (!ufshcd_is_ufs_dev_active(hba)) {
9160 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9161 		if (ret)
9162 			goto set_old_link_state;
9163 	}
9164 
9165 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9166 		ufshcd_enable_auto_bkops(hba);
9167 	else
9168 		/*
9169 		 * If BKOPs operations are urgently needed at this moment then
9170 		 * keep auto-bkops enabled or else disable it.
9171 		 */
9172 		ufshcd_urgent_bkops(hba);
9173 
9174 	if (hba->ee_usr_mask)
9175 		ufshcd_write_ee_control(hba);
9176 
9177 	if (ufshcd_is_clkscaling_supported(hba))
9178 		ufshcd_clk_scaling_suspend(hba, false);
9179 
9180 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9181 		hba->dev_info.b_rpm_dev_flush_capable = false;
9182 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9183 	}
9184 
9185 	/* Enable Auto-Hibernate if configured */
9186 	ufshcd_auto_hibern8_enable(hba);
9187 
9188 	ufshpb_resume(hba);
9189 	goto out;
9190 
9191 set_old_link_state:
9192 	ufshcd_link_state_transition(hba, old_link_state, 0);
9193 vendor_suspend:
9194 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9195 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9196 out:
9197 	if (ret)
9198 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9199 	hba->clk_gating.is_suspended = false;
9200 	ufshcd_release(hba);
9201 	hba->pm_op_in_progress = false;
9202 	return ret;
9203 }
9204 
9205 static int ufshcd_wl_runtime_suspend(struct device *dev)
9206 {
9207 	struct scsi_device *sdev = to_scsi_device(dev);
9208 	struct ufs_hba *hba;
9209 	int ret;
9210 	ktime_t start = ktime_get();
9211 
9212 	hba = shost_priv(sdev->host);
9213 
9214 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9215 	if (ret)
9216 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9217 
9218 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9219 		ktime_to_us(ktime_sub(ktime_get(), start)),
9220 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9221 
9222 	return ret;
9223 }
9224 
9225 static int ufshcd_wl_runtime_resume(struct device *dev)
9226 {
9227 	struct scsi_device *sdev = to_scsi_device(dev);
9228 	struct ufs_hba *hba;
9229 	int ret = 0;
9230 	ktime_t start = ktime_get();
9231 
9232 	hba = shost_priv(sdev->host);
9233 
9234 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9235 	if (ret)
9236 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9237 
9238 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9239 		ktime_to_us(ktime_sub(ktime_get(), start)),
9240 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9241 
9242 	return ret;
9243 }
9244 #endif
9245 
9246 #ifdef CONFIG_PM_SLEEP
9247 static int ufshcd_wl_suspend(struct device *dev)
9248 {
9249 	struct scsi_device *sdev = to_scsi_device(dev);
9250 	struct ufs_hba *hba;
9251 	int ret = 0;
9252 	ktime_t start = ktime_get();
9253 
9254 	hba = shost_priv(sdev->host);
9255 	down(&hba->host_sem);
9256 
9257 	if (pm_runtime_suspended(dev))
9258 		goto out;
9259 
9260 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9261 	if (ret) {
9262 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9263 		up(&hba->host_sem);
9264 	}
9265 
9266 out:
9267 	if (!ret)
9268 		hba->is_sys_suspended = true;
9269 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9270 		ktime_to_us(ktime_sub(ktime_get(), start)),
9271 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9272 
9273 	return ret;
9274 }
9275 
9276 static int ufshcd_wl_resume(struct device *dev)
9277 {
9278 	struct scsi_device *sdev = to_scsi_device(dev);
9279 	struct ufs_hba *hba;
9280 	int ret = 0;
9281 	ktime_t start = ktime_get();
9282 
9283 	hba = shost_priv(sdev->host);
9284 
9285 	if (pm_runtime_suspended(dev))
9286 		goto out;
9287 
9288 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9289 	if (ret)
9290 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9291 out:
9292 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9293 		ktime_to_us(ktime_sub(ktime_get(), start)),
9294 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9295 	if (!ret)
9296 		hba->is_sys_suspended = false;
9297 	up(&hba->host_sem);
9298 	return ret;
9299 }
9300 #endif
9301 
9302 static void ufshcd_wl_shutdown(struct device *dev)
9303 {
9304 	struct scsi_device *sdev = to_scsi_device(dev);
9305 	struct ufs_hba *hba;
9306 
9307 	hba = shost_priv(sdev->host);
9308 
9309 	down(&hba->host_sem);
9310 	hba->shutting_down = true;
9311 	up(&hba->host_sem);
9312 
9313 	/* Turn on everything while shutting down */
9314 	ufshcd_rpm_get_sync(hba);
9315 	scsi_device_quiesce(sdev);
9316 	shost_for_each_device(sdev, hba->host) {
9317 		if (sdev == hba->ufs_device_wlun)
9318 			continue;
9319 		scsi_device_quiesce(sdev);
9320 	}
9321 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9322 }
9323 
9324 /**
9325  * ufshcd_suspend - helper function for suspend operations
9326  * @hba: per adapter instance
9327  *
9328  * This function will put disable irqs, turn off clocks
9329  * and set vreg and hba-vreg in lpm mode.
9330  */
9331 static int ufshcd_suspend(struct ufs_hba *hba)
9332 {
9333 	int ret;
9334 
9335 	if (!hba->is_powered)
9336 		return 0;
9337 	/*
9338 	 * Disable the host irq as host controller as there won't be any
9339 	 * host controller transaction expected till resume.
9340 	 */
9341 	ufshcd_disable_irq(hba);
9342 	ret = ufshcd_setup_clocks(hba, false);
9343 	if (ret) {
9344 		ufshcd_enable_irq(hba);
9345 		return ret;
9346 	}
9347 	if (ufshcd_is_clkgating_allowed(hba)) {
9348 		hba->clk_gating.state = CLKS_OFF;
9349 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9350 					hba->clk_gating.state);
9351 	}
9352 
9353 	ufshcd_vreg_set_lpm(hba);
9354 	/* Put the host controller in low power mode if possible */
9355 	ufshcd_hba_vreg_set_lpm(hba);
9356 	return ret;
9357 }
9358 
9359 #ifdef CONFIG_PM
9360 /**
9361  * ufshcd_resume - helper function for resume operations
9362  * @hba: per adapter instance
9363  *
9364  * This function basically turns on the regulators, clocks and
9365  * irqs of the hba.
9366  *
9367  * Returns 0 for success and non-zero for failure
9368  */
9369 static int ufshcd_resume(struct ufs_hba *hba)
9370 {
9371 	int ret;
9372 
9373 	if (!hba->is_powered)
9374 		return 0;
9375 
9376 	ufshcd_hba_vreg_set_hpm(hba);
9377 	ret = ufshcd_vreg_set_hpm(hba);
9378 	if (ret)
9379 		goto out;
9380 
9381 	/* Make sure clocks are enabled before accessing controller */
9382 	ret = ufshcd_setup_clocks(hba, true);
9383 	if (ret)
9384 		goto disable_vreg;
9385 
9386 	/* enable the host irq as host controller would be active soon */
9387 	ufshcd_enable_irq(hba);
9388 	goto out;
9389 
9390 disable_vreg:
9391 	ufshcd_vreg_set_lpm(hba);
9392 out:
9393 	if (ret)
9394 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9395 	return ret;
9396 }
9397 #endif /* CONFIG_PM */
9398 
9399 #ifdef CONFIG_PM_SLEEP
9400 /**
9401  * ufshcd_system_suspend - system suspend callback
9402  * @dev: Device associated with the UFS controller.
9403  *
9404  * Executed before putting the system into a sleep state in which the contents
9405  * of main memory are preserved.
9406  *
9407  * Returns 0 for success and non-zero for failure
9408  */
9409 int ufshcd_system_suspend(struct device *dev)
9410 {
9411 	struct ufs_hba *hba = dev_get_drvdata(dev);
9412 	int ret = 0;
9413 	ktime_t start = ktime_get();
9414 
9415 	if (pm_runtime_suspended(hba->dev))
9416 		goto out;
9417 
9418 	ret = ufshcd_suspend(hba);
9419 out:
9420 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9421 		ktime_to_us(ktime_sub(ktime_get(), start)),
9422 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9423 	return ret;
9424 }
9425 EXPORT_SYMBOL(ufshcd_system_suspend);
9426 
9427 /**
9428  * ufshcd_system_resume - system resume callback
9429  * @dev: Device associated with the UFS controller.
9430  *
9431  * Executed after waking the system up from a sleep state in which the contents
9432  * of main memory were preserved.
9433  *
9434  * Returns 0 for success and non-zero for failure
9435  */
9436 int ufshcd_system_resume(struct device *dev)
9437 {
9438 	struct ufs_hba *hba = dev_get_drvdata(dev);
9439 	ktime_t start = ktime_get();
9440 	int ret = 0;
9441 
9442 	if (pm_runtime_suspended(hba->dev))
9443 		goto out;
9444 
9445 	ret = ufshcd_resume(hba);
9446 
9447 out:
9448 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9449 		ktime_to_us(ktime_sub(ktime_get(), start)),
9450 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9451 
9452 	return ret;
9453 }
9454 EXPORT_SYMBOL(ufshcd_system_resume);
9455 #endif /* CONFIG_PM_SLEEP */
9456 
9457 #ifdef CONFIG_PM
9458 /**
9459  * ufshcd_runtime_suspend - runtime suspend callback
9460  * @dev: Device associated with the UFS controller.
9461  *
9462  * Check the description of ufshcd_suspend() function for more details.
9463  *
9464  * Returns 0 for success and non-zero for failure
9465  */
9466 int ufshcd_runtime_suspend(struct device *dev)
9467 {
9468 	struct ufs_hba *hba = dev_get_drvdata(dev);
9469 	int ret;
9470 	ktime_t start = ktime_get();
9471 
9472 	ret = ufshcd_suspend(hba);
9473 
9474 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9475 		ktime_to_us(ktime_sub(ktime_get(), start)),
9476 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9477 	return ret;
9478 }
9479 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9480 
9481 /**
9482  * ufshcd_runtime_resume - runtime resume routine
9483  * @dev: Device associated with the UFS controller.
9484  *
9485  * This function basically brings controller
9486  * to active state. Following operations are done in this function:
9487  *
9488  * 1. Turn on all the controller related clocks
9489  * 2. Turn ON VCC rail
9490  */
9491 int ufshcd_runtime_resume(struct device *dev)
9492 {
9493 	struct ufs_hba *hba = dev_get_drvdata(dev);
9494 	int ret;
9495 	ktime_t start = ktime_get();
9496 
9497 	ret = ufshcd_resume(hba);
9498 
9499 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9500 		ktime_to_us(ktime_sub(ktime_get(), start)),
9501 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9502 	return ret;
9503 }
9504 EXPORT_SYMBOL(ufshcd_runtime_resume);
9505 #endif /* CONFIG_PM */
9506 
9507 /**
9508  * ufshcd_shutdown - shutdown routine
9509  * @hba: per adapter instance
9510  *
9511  * This function would turn off both UFS device and UFS hba
9512  * regulators. It would also disable clocks.
9513  *
9514  * Returns 0 always to allow force shutdown even in case of errors.
9515  */
9516 int ufshcd_shutdown(struct ufs_hba *hba)
9517 {
9518 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9519 		ufshcd_suspend(hba);
9520 
9521 	hba->is_powered = false;
9522 	/* allow force shutdown even in case of errors */
9523 	return 0;
9524 }
9525 EXPORT_SYMBOL(ufshcd_shutdown);
9526 
9527 /**
9528  * ufshcd_remove - de-allocate SCSI host and host memory space
9529  *		data structure memory
9530  * @hba: per adapter instance
9531  */
9532 void ufshcd_remove(struct ufs_hba *hba)
9533 {
9534 	if (hba->ufs_device_wlun)
9535 		ufshcd_rpm_get_sync(hba);
9536 	ufs_hwmon_remove(hba);
9537 	ufs_bsg_remove(hba);
9538 	ufshpb_remove(hba);
9539 	ufs_sysfs_remove_nodes(hba->dev);
9540 	blk_mq_destroy_queue(hba->tmf_queue);
9541 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9542 	scsi_remove_host(hba->host);
9543 	/* disable interrupts */
9544 	ufshcd_disable_intr(hba, hba->intr_mask);
9545 	ufshcd_hba_stop(hba);
9546 	ufshcd_hba_exit(hba);
9547 }
9548 EXPORT_SYMBOL_GPL(ufshcd_remove);
9549 
9550 /**
9551  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9552  * @hba: pointer to Host Bus Adapter (HBA)
9553  */
9554 void ufshcd_dealloc_host(struct ufs_hba *hba)
9555 {
9556 	scsi_host_put(hba->host);
9557 }
9558 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9559 
9560 /**
9561  * ufshcd_set_dma_mask - Set dma mask based on the controller
9562  *			 addressing capability
9563  * @hba: per adapter instance
9564  *
9565  * Returns 0 for success, non-zero for failure
9566  */
9567 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9568 {
9569 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9570 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9571 			return 0;
9572 	}
9573 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9574 }
9575 
9576 /**
9577  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9578  * @dev: pointer to device handle
9579  * @hba_handle: driver private handle
9580  * Returns 0 on success, non-zero value on failure
9581  */
9582 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9583 {
9584 	struct Scsi_Host *host;
9585 	struct ufs_hba *hba;
9586 	int err = 0;
9587 
9588 	if (!dev) {
9589 		dev_err(dev,
9590 		"Invalid memory reference for dev is NULL\n");
9591 		err = -ENODEV;
9592 		goto out_error;
9593 	}
9594 
9595 	host = scsi_host_alloc(&ufshcd_driver_template,
9596 				sizeof(struct ufs_hba));
9597 	if (!host) {
9598 		dev_err(dev, "scsi_host_alloc failed\n");
9599 		err = -ENOMEM;
9600 		goto out_error;
9601 	}
9602 	host->nr_maps = HCTX_TYPE_POLL + 1;
9603 	hba = shost_priv(host);
9604 	hba->host = host;
9605 	hba->dev = dev;
9606 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9607 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
9608 	INIT_LIST_HEAD(&hba->clk_list_head);
9609 	spin_lock_init(&hba->outstanding_lock);
9610 
9611 	*hba_handle = hba;
9612 
9613 out_error:
9614 	return err;
9615 }
9616 EXPORT_SYMBOL(ufshcd_alloc_host);
9617 
9618 /* This function exists because blk_mq_alloc_tag_set() requires this. */
9619 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9620 				     const struct blk_mq_queue_data *qd)
9621 {
9622 	WARN_ON_ONCE(true);
9623 	return BLK_STS_NOTSUPP;
9624 }
9625 
9626 static const struct blk_mq_ops ufshcd_tmf_ops = {
9627 	.queue_rq = ufshcd_queue_tmf,
9628 };
9629 
9630 /**
9631  * ufshcd_init - Driver initialization routine
9632  * @hba: per-adapter instance
9633  * @mmio_base: base register address
9634  * @irq: Interrupt line of device
9635  * Returns 0 on success, non-zero value on failure
9636  */
9637 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9638 {
9639 	int err;
9640 	struct Scsi_Host *host = hba->host;
9641 	struct device *dev = hba->dev;
9642 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
9643 
9644 	/*
9645 	 * dev_set_drvdata() must be called before any callbacks are registered
9646 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9647 	 * sysfs).
9648 	 */
9649 	dev_set_drvdata(dev, hba);
9650 
9651 	if (!mmio_base) {
9652 		dev_err(hba->dev,
9653 		"Invalid memory reference for mmio_base is NULL\n");
9654 		err = -ENODEV;
9655 		goto out_error;
9656 	}
9657 
9658 	hba->mmio_base = mmio_base;
9659 	hba->irq = irq;
9660 	hba->vps = &ufs_hba_vps;
9661 
9662 	err = ufshcd_hba_init(hba);
9663 	if (err)
9664 		goto out_error;
9665 
9666 	/* Read capabilities registers */
9667 	err = ufshcd_hba_capabilities(hba);
9668 	if (err)
9669 		goto out_disable;
9670 
9671 	/* Get UFS version supported by the controller */
9672 	hba->ufs_version = ufshcd_get_ufs_version(hba);
9673 
9674 	/* Get Interrupt bit mask per version */
9675 	hba->intr_mask = ufshcd_get_intr_mask(hba);
9676 
9677 	err = ufshcd_set_dma_mask(hba);
9678 	if (err) {
9679 		dev_err(hba->dev, "set dma mask failed\n");
9680 		goto out_disable;
9681 	}
9682 
9683 	/* Allocate memory for host memory space */
9684 	err = ufshcd_memory_alloc(hba);
9685 	if (err) {
9686 		dev_err(hba->dev, "Memory allocation failed\n");
9687 		goto out_disable;
9688 	}
9689 
9690 	/* Configure LRB */
9691 	ufshcd_host_memory_configure(hba);
9692 
9693 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9694 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9695 	host->max_id = UFSHCD_MAX_ID;
9696 	host->max_lun = UFS_MAX_LUNS;
9697 	host->max_channel = UFSHCD_MAX_CHANNEL;
9698 	host->unique_id = host->host_no;
9699 	host->max_cmd_len = UFS_CDB_SIZE;
9700 
9701 	hba->max_pwr_info.is_valid = false;
9702 
9703 	/* Initialize work queues */
9704 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9705 		 hba->host->host_no);
9706 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9707 	if (!hba->eh_wq) {
9708 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9709 			__func__);
9710 		err = -ENOMEM;
9711 		goto out_disable;
9712 	}
9713 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9714 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9715 
9716 	sema_init(&hba->host_sem, 1);
9717 
9718 	/* Initialize UIC command mutex */
9719 	mutex_init(&hba->uic_cmd_mutex);
9720 
9721 	/* Initialize mutex for device management commands */
9722 	mutex_init(&hba->dev_cmd.lock);
9723 
9724 	/* Initialize mutex for exception event control */
9725 	mutex_init(&hba->ee_ctrl_mutex);
9726 
9727 	init_rwsem(&hba->clk_scaling_lock);
9728 
9729 	ufshcd_init_clk_gating(hba);
9730 
9731 	ufshcd_init_clk_scaling(hba);
9732 
9733 	/*
9734 	 * In order to avoid any spurious interrupt immediately after
9735 	 * registering UFS controller interrupt handler, clear any pending UFS
9736 	 * interrupt status and disable all the UFS interrupts.
9737 	 */
9738 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9739 		      REG_INTERRUPT_STATUS);
9740 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9741 	/*
9742 	 * Make sure that UFS interrupts are disabled and any pending interrupt
9743 	 * status is cleared before registering UFS interrupt handler.
9744 	 */
9745 	mb();
9746 
9747 	/* IRQ registration */
9748 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9749 	if (err) {
9750 		dev_err(hba->dev, "request irq failed\n");
9751 		goto out_disable;
9752 	} else {
9753 		hba->is_irq_enabled = true;
9754 	}
9755 
9756 	err = scsi_add_host(host, hba->dev);
9757 	if (err) {
9758 		dev_err(hba->dev, "scsi_add_host failed\n");
9759 		goto out_disable;
9760 	}
9761 
9762 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
9763 		.nr_hw_queues	= 1,
9764 		.queue_depth	= hba->nutmrs,
9765 		.ops		= &ufshcd_tmf_ops,
9766 		.flags		= BLK_MQ_F_NO_SCHED,
9767 	};
9768 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9769 	if (err < 0)
9770 		goto out_remove_scsi_host;
9771 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9772 	if (IS_ERR(hba->tmf_queue)) {
9773 		err = PTR_ERR(hba->tmf_queue);
9774 		goto free_tmf_tag_set;
9775 	}
9776 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9777 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
9778 	if (!hba->tmf_rqs) {
9779 		err = -ENOMEM;
9780 		goto free_tmf_queue;
9781 	}
9782 
9783 	/* Reset the attached device */
9784 	ufshcd_device_reset(hba);
9785 
9786 	ufshcd_init_crypto(hba);
9787 
9788 	/* Host controller enable */
9789 	err = ufshcd_hba_enable(hba);
9790 	if (err) {
9791 		dev_err(hba->dev, "Host controller enable failed\n");
9792 		ufshcd_print_evt_hist(hba);
9793 		ufshcd_print_host_state(hba);
9794 		goto free_tmf_queue;
9795 	}
9796 
9797 	/*
9798 	 * Set the default power management level for runtime and system PM.
9799 	 * Default power saving mode is to keep UFS link in Hibern8 state
9800 	 * and UFS device in sleep state.
9801 	 */
9802 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9803 						UFS_SLEEP_PWR_MODE,
9804 						UIC_LINK_HIBERN8_STATE);
9805 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9806 						UFS_SLEEP_PWR_MODE,
9807 						UIC_LINK_HIBERN8_STATE);
9808 
9809 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9810 			  ufshcd_rpm_dev_flush_recheck_work);
9811 
9812 	/* Set the default auto-hiberate idle timer value to 150 ms */
9813 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9814 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9815 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9816 	}
9817 
9818 	/* Hold auto suspend until async scan completes */
9819 	pm_runtime_get_sync(dev);
9820 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
9821 	/*
9822 	 * We are assuming that device wasn't put in sleep/power-down
9823 	 * state exclusively during the boot stage before kernel.
9824 	 * This assumption helps avoid doing link startup twice during
9825 	 * ufshcd_probe_hba().
9826 	 */
9827 	ufshcd_set_ufs_dev_active(hba);
9828 
9829 	async_schedule(ufshcd_async_scan, hba);
9830 	ufs_sysfs_add_nodes(hba->dev);
9831 
9832 	device_enable_async_suspend(dev);
9833 	return 0;
9834 
9835 free_tmf_queue:
9836 	blk_mq_destroy_queue(hba->tmf_queue);
9837 free_tmf_tag_set:
9838 	blk_mq_free_tag_set(&hba->tmf_tag_set);
9839 out_remove_scsi_host:
9840 	scsi_remove_host(hba->host);
9841 out_disable:
9842 	hba->is_irq_enabled = false;
9843 	ufshcd_hba_exit(hba);
9844 out_error:
9845 	return err;
9846 }
9847 EXPORT_SYMBOL_GPL(ufshcd_init);
9848 
9849 void ufshcd_resume_complete(struct device *dev)
9850 {
9851 	struct ufs_hba *hba = dev_get_drvdata(dev);
9852 
9853 	if (hba->complete_put) {
9854 		ufshcd_rpm_put(hba);
9855 		hba->complete_put = false;
9856 	}
9857 }
9858 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
9859 
9860 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
9861 {
9862 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
9863 	enum ufs_dev_pwr_mode dev_pwr_mode;
9864 	enum uic_link_state link_state;
9865 	unsigned long flags;
9866 	bool res;
9867 
9868 	spin_lock_irqsave(&dev->power.lock, flags);
9869 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
9870 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
9871 	res = pm_runtime_suspended(dev) &&
9872 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
9873 	      hba->uic_link_state == link_state &&
9874 	      !hba->dev_info.b_rpm_dev_flush_capable;
9875 	spin_unlock_irqrestore(&dev->power.lock, flags);
9876 
9877 	return res;
9878 }
9879 
9880 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
9881 {
9882 	struct ufs_hba *hba = dev_get_drvdata(dev);
9883 	int ret;
9884 
9885 	/*
9886 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
9887 	 * are same. And it doesn't wake up the device for system-suspend
9888 	 * if it's runtime suspended. But ufs doesn't follow that.
9889 	 * Refer ufshcd_resume_complete()
9890 	 */
9891 	if (hba->ufs_device_wlun) {
9892 		/* Prevent runtime suspend */
9893 		ufshcd_rpm_get_noresume(hba);
9894 		/*
9895 		 * Check if already runtime suspended in same state as system
9896 		 * suspend would be.
9897 		 */
9898 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
9899 			/* RPM state is not ok for SPM, so runtime resume */
9900 			ret = ufshcd_rpm_resume(hba);
9901 			if (ret < 0 && ret != -EACCES) {
9902 				ufshcd_rpm_put(hba);
9903 				return ret;
9904 			}
9905 		}
9906 		hba->complete_put = true;
9907 	}
9908 	return 0;
9909 }
9910 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
9911 
9912 int ufshcd_suspend_prepare(struct device *dev)
9913 {
9914 	return __ufshcd_suspend_prepare(dev, true);
9915 }
9916 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
9917 
9918 #ifdef CONFIG_PM_SLEEP
9919 static int ufshcd_wl_poweroff(struct device *dev)
9920 {
9921 	struct scsi_device *sdev = to_scsi_device(dev);
9922 	struct ufs_hba *hba = shost_priv(sdev->host);
9923 
9924 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9925 	return 0;
9926 }
9927 #endif
9928 
9929 static int ufshcd_wl_probe(struct device *dev)
9930 {
9931 	struct scsi_device *sdev = to_scsi_device(dev);
9932 
9933 	if (!is_device_wlun(sdev))
9934 		return -ENODEV;
9935 
9936 	blk_pm_runtime_init(sdev->request_queue, dev);
9937 	pm_runtime_set_autosuspend_delay(dev, 0);
9938 	pm_runtime_allow(dev);
9939 
9940 	return  0;
9941 }
9942 
9943 static int ufshcd_wl_remove(struct device *dev)
9944 {
9945 	pm_runtime_forbid(dev);
9946 	return 0;
9947 }
9948 
9949 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
9950 #ifdef CONFIG_PM_SLEEP
9951 	.suspend = ufshcd_wl_suspend,
9952 	.resume = ufshcd_wl_resume,
9953 	.freeze = ufshcd_wl_suspend,
9954 	.thaw = ufshcd_wl_resume,
9955 	.poweroff = ufshcd_wl_poweroff,
9956 	.restore = ufshcd_wl_resume,
9957 #endif
9958 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
9959 };
9960 
9961 /*
9962  * ufs_dev_wlun_template - describes ufs device wlun
9963  * ufs-device wlun - used to send pm commands
9964  * All luns are consumers of ufs-device wlun.
9965  *
9966  * Currently, no sd driver is present for wluns.
9967  * Hence the no specific pm operations are performed.
9968  * With ufs design, SSU should be sent to ufs-device wlun.
9969  * Hence register a scsi driver for ufs wluns only.
9970  */
9971 static struct scsi_driver ufs_dev_wlun_template = {
9972 	.gendrv = {
9973 		.name = "ufs_device_wlun",
9974 		.owner = THIS_MODULE,
9975 		.probe = ufshcd_wl_probe,
9976 		.remove = ufshcd_wl_remove,
9977 		.pm = &ufshcd_wl_pm_ops,
9978 		.shutdown = ufshcd_wl_shutdown,
9979 	},
9980 };
9981 
9982 static int __init ufshcd_core_init(void)
9983 {
9984 	int ret;
9985 
9986 	/* Verify that there are no gaps in struct utp_transfer_cmd_desc. */
9987 	static_assert(sizeof(struct utp_transfer_cmd_desc) ==
9988 		      2 * ALIGNED_UPIU_SIZE +
9989 			      SG_ALL * sizeof(struct ufshcd_sg_entry));
9990 
9991 	ufs_debugfs_init();
9992 
9993 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
9994 	if (ret)
9995 		ufs_debugfs_exit();
9996 	return ret;
9997 }
9998 
9999 static void __exit ufshcd_core_exit(void)
10000 {
10001 	ufs_debugfs_exit();
10002 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10003 }
10004 
10005 module_init(ufshcd_core_init);
10006 module_exit(ufshcd_core_exit);
10007 
10008 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10009 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10010 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10011 MODULE_LICENSE("GPL");
10012