1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/sched/clock.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_dbg.h> 27 #include <scsi/scsi_driver.h> 28 #include <scsi/scsi_eh.h> 29 #include "ufshcd-priv.h" 30 #include <ufs/ufs_quirks.h> 31 #include <ufs/unipro.h> 32 #include "ufs-sysfs.h" 33 #include "ufs-debugfs.h" 34 #include "ufs-fault-injection.h" 35 #include "ufs_bsg.h" 36 #include "ufshcd-crypto.h" 37 #include "ufshpb.h" 38 #include <asm/unaligned.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/ufs.h> 42 43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 44 UTP_TASK_REQ_COMPL |\ 45 UFSHCD_ERROR_MASK) 46 47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 48 UFSHCD_ERROR_MASK |\ 49 MCQ_CQ_EVENT_STATUS) 50 51 52 /* UIC command timeout, unit: ms */ 53 #define UIC_CMD_TIMEOUT 500 54 55 /* NOP OUT retries waiting for NOP IN response */ 56 #define NOP_OUT_RETRIES 10 57 /* Timeout after 50 msecs if NOP OUT hangs without response */ 58 #define NOP_OUT_TIMEOUT 50 /* msecs */ 59 60 /* Query request retries */ 61 #define QUERY_REQ_RETRIES 3 62 /* Query request timeout */ 63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 64 65 /* Advanced RPMB request timeout */ 66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 67 68 /* Task management command timeout */ 69 #define TM_CMD_TIMEOUT 100 /* msecs */ 70 71 /* maximum number of retries for a general UIC command */ 72 #define UFS_UIC_COMMAND_RETRIES 3 73 74 /* maximum number of link-startup retries */ 75 #define DME_LINKSTARTUP_RETRIES 3 76 77 /* maximum number of reset retries before giving up */ 78 #define MAX_HOST_RESET_RETRIES 5 79 80 /* Maximum number of error handler retries before giving up */ 81 #define MAX_ERR_HANDLER_RETRIES 5 82 83 /* Expose the flag value from utp_upiu_query.value */ 84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 85 86 /* Interrupt aggregation default timeout, unit: 40us */ 87 #define INT_AGGR_DEF_TO 0x02 88 89 /* default delay of autosuspend: 2000 ms */ 90 #define RPM_AUTOSUSPEND_DELAY_MS 2000 91 92 /* Default delay of RPM device flush delayed work */ 93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 94 95 /* Default value of wait time before gating device ref clock */ 96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 97 98 /* Polling time to wait for fDeviceInit */ 99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 100 101 /* UFSHC 4.0 compliant HC support this mode. */ 102 static bool use_mcq_mode = true; 103 104 static bool is_mcq_supported(struct ufs_hba *hba) 105 { 106 return hba->mcq_sup && use_mcq_mode; 107 } 108 109 module_param(use_mcq_mode, bool, 0644); 110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 111 112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 113 ({ \ 114 int _ret; \ 115 if (_on) \ 116 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 117 else \ 118 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 119 _ret; \ 120 }) 121 122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 123 size_t __len = (len); \ 124 print_hex_dump(KERN_ERR, prefix_str, \ 125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 126 16, 4, buf, __len, false); \ 127 } while (0) 128 129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 130 const char *prefix) 131 { 132 u32 *regs; 133 size_t pos; 134 135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 136 return -EINVAL; 137 138 regs = kzalloc(len, GFP_ATOMIC); 139 if (!regs) 140 return -ENOMEM; 141 142 for (pos = 0; pos < len; pos += 4) { 143 if (offset == 0 && 144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 145 pos <= REG_UIC_ERROR_CODE_DME) 146 continue; 147 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 148 } 149 150 ufshcd_hex_dump(prefix, regs, len); 151 kfree(regs); 152 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 156 157 enum { 158 UFSHCD_MAX_CHANNEL = 0, 159 UFSHCD_MAX_ID = 1, 160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, 161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, 162 }; 163 164 static const char *const ufshcd_state_name[] = { 165 [UFSHCD_STATE_RESET] = "reset", 166 [UFSHCD_STATE_OPERATIONAL] = "operational", 167 [UFSHCD_STATE_ERROR] = "error", 168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 170 }; 171 172 /* UFSHCD error handling flags */ 173 enum { 174 UFSHCD_EH_IN_PROGRESS = (1 << 0), 175 }; 176 177 /* UFSHCD UIC layer error flags */ 178 enum { 179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 186 }; 187 188 #define ufshcd_set_eh_in_progress(h) \ 189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 190 #define ufshcd_eh_in_progress(h) \ 191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 192 #define ufshcd_clear_eh_in_progress(h) \ 193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 194 195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 202 /* 203 * For DeepSleep, the link is first put in hibern8 and then off. 204 * Leaving the link in hibern8 is not supported. 205 */ 206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 207 }; 208 209 static inline enum ufs_dev_pwr_mode 210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 211 { 212 return ufs_pm_lvl_states[lvl].dev_state; 213 } 214 215 static inline enum uic_link_state 216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 217 { 218 return ufs_pm_lvl_states[lvl].link_state; 219 } 220 221 static inline enum ufs_pm_level 222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 223 enum uic_link_state link_state) 224 { 225 enum ufs_pm_level lvl; 226 227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 229 (ufs_pm_lvl_states[lvl].link_state == link_state)) 230 return lvl; 231 } 232 233 /* if no match found, return the level 0 */ 234 return UFS_PM_LVL_0; 235 } 236 237 static const struct ufs_dev_quirk ufs_fixups[] = { 238 /* UFS cards deviations table */ 239 { .wmanufacturerid = UFS_VENDOR_MICRON, 240 .model = UFS_ANY_MODEL, 241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 242 UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ }, 243 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 244 .model = UFS_ANY_MODEL, 245 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 246 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 247 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 248 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 249 .model = UFS_ANY_MODEL, 250 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 251 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 252 .model = "hB8aL1" /*H28U62301AMR*/, 253 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 254 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 255 .model = UFS_ANY_MODEL, 256 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 257 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 258 .model = "THGLF2G9C8KBADG", 259 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 260 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 261 .model = "THGLF2G9D8KBADG", 262 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 263 {} 264 }; 265 266 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 267 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 268 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 269 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 270 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 271 static void ufshcd_hba_exit(struct ufs_hba *hba); 272 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 273 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 274 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 275 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 276 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 277 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 278 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 279 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 280 static irqreturn_t ufshcd_intr(int irq, void *__hba); 281 static int ufshcd_change_power_mode(struct ufs_hba *hba, 282 struct ufs_pa_layer_attr *pwr_mode); 283 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 284 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 285 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 286 struct ufs_vreg *vreg); 287 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 288 bool enable); 289 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 290 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 291 292 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 293 { 294 if (!hba->is_irq_enabled) { 295 enable_irq(hba->irq); 296 hba->is_irq_enabled = true; 297 } 298 } 299 300 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 301 { 302 if (hba->is_irq_enabled) { 303 disable_irq(hba->irq); 304 hba->is_irq_enabled = false; 305 } 306 } 307 308 static void ufshcd_configure_wb(struct ufs_hba *hba) 309 { 310 if (!ufshcd_is_wb_allowed(hba)) 311 return; 312 313 ufshcd_wb_toggle(hba, true); 314 315 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 316 317 if (ufshcd_is_wb_buf_flush_allowed(hba)) 318 ufshcd_wb_toggle_buf_flush(hba, true); 319 } 320 321 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 322 { 323 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 324 scsi_unblock_requests(hba->host); 325 } 326 327 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 328 { 329 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 330 scsi_block_requests(hba->host); 331 } 332 333 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 334 enum ufs_trace_str_t str_t) 335 { 336 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 337 struct utp_upiu_header *header; 338 339 if (!trace_ufshcd_upiu_enabled()) 340 return; 341 342 if (str_t == UFS_CMD_SEND) 343 header = &rq->header; 344 else 345 header = &hba->lrb[tag].ucd_rsp_ptr->header; 346 347 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 348 UFS_TSF_CDB); 349 } 350 351 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 352 enum ufs_trace_str_t str_t, 353 struct utp_upiu_req *rq_rsp) 354 { 355 if (!trace_ufshcd_upiu_enabled()) 356 return; 357 358 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 359 &rq_rsp->qr, UFS_TSF_OSF); 360 } 361 362 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 363 enum ufs_trace_str_t str_t) 364 { 365 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 366 367 if (!trace_ufshcd_upiu_enabled()) 368 return; 369 370 if (str_t == UFS_TM_SEND) 371 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 372 &descp->upiu_req.req_header, 373 &descp->upiu_req.input_param1, 374 UFS_TSF_TM_INPUT); 375 else 376 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 377 &descp->upiu_rsp.rsp_header, 378 &descp->upiu_rsp.output_param1, 379 UFS_TSF_TM_OUTPUT); 380 } 381 382 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 383 const struct uic_command *ucmd, 384 enum ufs_trace_str_t str_t) 385 { 386 u32 cmd; 387 388 if (!trace_ufshcd_uic_command_enabled()) 389 return; 390 391 if (str_t == UFS_CMD_SEND) 392 cmd = ucmd->command; 393 else 394 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 395 396 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 399 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 400 } 401 402 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 403 enum ufs_trace_str_t str_t) 404 { 405 u64 lba = 0; 406 u8 opcode = 0, group_id = 0; 407 u32 doorbell = 0; 408 u32 intr; 409 int hwq_id = -1; 410 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 411 struct scsi_cmnd *cmd = lrbp->cmd; 412 struct request *rq = scsi_cmd_to_rq(cmd); 413 int transfer_len = -1; 414 415 if (!cmd) 416 return; 417 418 /* trace UPIU also */ 419 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 420 if (!trace_ufshcd_command_enabled()) 421 return; 422 423 opcode = cmd->cmnd[0]; 424 425 if (opcode == READ_10 || opcode == WRITE_10) { 426 /* 427 * Currently we only fully trace read(10) and write(10) commands 428 */ 429 transfer_len = 430 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 431 lba = scsi_get_lba(cmd); 432 if (opcode == WRITE_10) 433 group_id = lrbp->cmd->cmnd[6]; 434 } else if (opcode == UNMAP) { 435 /* 436 * The number of Bytes to be unmapped beginning with the lba. 437 */ 438 transfer_len = blk_rq_bytes(rq); 439 lba = scsi_get_lba(cmd); 440 } 441 442 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 443 444 if (is_mcq_enabled(hba)) { 445 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 446 447 hwq_id = hwq->id; 448 } else { 449 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 450 } 451 trace_ufshcd_command(dev_name(hba->dev), str_t, tag, 452 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id); 453 } 454 455 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 456 { 457 struct ufs_clk_info *clki; 458 struct list_head *head = &hba->clk_list_head; 459 460 if (list_empty(head)) 461 return; 462 463 list_for_each_entry(clki, head, list) { 464 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 465 clki->max_freq) 466 dev_err(hba->dev, "clk: %s, rate: %u\n", 467 clki->name, clki->curr_freq); 468 } 469 } 470 471 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 472 const char *err_name) 473 { 474 int i; 475 bool found = false; 476 const struct ufs_event_hist *e; 477 478 if (id >= UFS_EVT_CNT) 479 return; 480 481 e = &hba->ufs_stats.event[id]; 482 483 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 484 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 485 486 if (e->tstamp[p] == 0) 487 continue; 488 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 489 e->val[p], div_u64(e->tstamp[p], 1000)); 490 found = true; 491 } 492 493 if (!found) 494 dev_err(hba->dev, "No record of %s\n", err_name); 495 else 496 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 497 } 498 499 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 500 { 501 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 502 503 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 504 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 505 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 506 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 507 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 508 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 509 "auto_hibern8_err"); 510 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 511 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 512 "link_startup_fail"); 513 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 514 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 515 "suspend_fail"); 516 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 517 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 518 "wlun suspend_fail"); 519 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 520 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 521 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 522 523 ufshcd_vops_dbg_register_dump(hba); 524 } 525 526 static 527 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 528 { 529 const struct ufshcd_lrb *lrbp; 530 int prdt_length; 531 532 lrbp = &hba->lrb[tag]; 533 534 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 535 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 536 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 537 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 538 dev_err(hba->dev, 539 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 540 tag, (u64)lrbp->utrd_dma_addr); 541 542 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 543 sizeof(struct utp_transfer_req_desc)); 544 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 545 (u64)lrbp->ucd_req_dma_addr); 546 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 547 sizeof(struct utp_upiu_req)); 548 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 549 (u64)lrbp->ucd_rsp_dma_addr); 550 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 551 sizeof(struct utp_upiu_rsp)); 552 553 prdt_length = le16_to_cpu( 554 lrbp->utr_descriptor_ptr->prd_table_length); 555 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 556 prdt_length /= ufshcd_sg_entry_size(hba); 557 558 dev_err(hba->dev, 559 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 560 tag, prdt_length, 561 (u64)lrbp->ucd_prdt_dma_addr); 562 563 if (pr_prdt) 564 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 565 ufshcd_sg_entry_size(hba) * prdt_length); 566 } 567 568 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 569 { 570 struct scsi_device *sdev = req->q->queuedata; 571 struct Scsi_Host *shost = sdev->host; 572 struct ufs_hba *hba = shost_priv(shost); 573 574 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 575 576 return true; 577 } 578 579 /** 580 * ufshcd_print_trs_all - print trs for all started requests. 581 * @hba: per-adapter instance. 582 * @pr_prdt: need to print prdt or not. 583 */ 584 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 585 { 586 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 587 } 588 589 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 590 { 591 int tag; 592 593 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 594 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 595 596 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 597 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 598 } 599 } 600 601 static void ufshcd_print_host_state(struct ufs_hba *hba) 602 { 603 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 604 605 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 606 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 607 hba->outstanding_reqs, hba->outstanding_tasks); 608 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 609 hba->saved_err, hba->saved_uic_err); 610 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 611 hba->curr_dev_pwr_mode, hba->uic_link_state); 612 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 613 hba->pm_op_in_progress, hba->is_sys_suspended); 614 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 615 hba->auto_bkops_enabled, hba->host->host_self_blocked); 616 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 617 dev_err(hba->dev, 618 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 619 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 620 hba->ufs_stats.hibern8_exit_cnt); 621 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 622 div_u64(hba->ufs_stats.last_intr_ts, 1000), 623 hba->ufs_stats.last_intr_status); 624 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 625 hba->eh_flags, hba->req_abort_count); 626 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 627 hba->ufs_version, hba->capabilities, hba->caps); 628 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 629 hba->dev_quirks); 630 if (sdev_ufs) 631 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 632 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 633 634 ufshcd_print_clk_freqs(hba); 635 } 636 637 /** 638 * ufshcd_print_pwr_info - print power params as saved in hba 639 * power info 640 * @hba: per-adapter instance 641 */ 642 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 643 { 644 static const char * const names[] = { 645 "INVALID MODE", 646 "FAST MODE", 647 "SLOW_MODE", 648 "INVALID MODE", 649 "FASTAUTO_MODE", 650 "SLOWAUTO_MODE", 651 "INVALID MODE", 652 }; 653 654 /* 655 * Using dev_dbg to avoid messages during runtime PM to avoid 656 * never-ending cycles of messages written back to storage by user space 657 * causing runtime resume, causing more messages and so on. 658 */ 659 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 660 __func__, 661 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 662 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 663 names[hba->pwr_info.pwr_rx], 664 names[hba->pwr_info.pwr_tx], 665 hba->pwr_info.hs_rate); 666 } 667 668 static void ufshcd_device_reset(struct ufs_hba *hba) 669 { 670 int err; 671 672 err = ufshcd_vops_device_reset(hba); 673 674 if (!err) { 675 ufshcd_set_ufs_dev_active(hba); 676 if (ufshcd_is_wb_allowed(hba)) { 677 hba->dev_info.wb_enabled = false; 678 hba->dev_info.wb_buf_flush_enabled = false; 679 } 680 } 681 if (err != -EOPNOTSUPP) 682 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 683 } 684 685 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 686 { 687 if (!us) 688 return; 689 690 if (us < 10) 691 udelay(us); 692 else 693 usleep_range(us, us + tolerance); 694 } 695 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 696 697 /** 698 * ufshcd_wait_for_register - wait for register value to change 699 * @hba: per-adapter interface 700 * @reg: mmio register offset 701 * @mask: mask to apply to the read register value 702 * @val: value to wait for 703 * @interval_us: polling interval in microseconds 704 * @timeout_ms: timeout in milliseconds 705 * 706 * Return: 707 * -ETIMEDOUT on error, zero on success. 708 */ 709 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 710 u32 val, unsigned long interval_us, 711 unsigned long timeout_ms) 712 { 713 int err = 0; 714 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 715 716 /* ignore bits that we don't intend to wait on */ 717 val = val & mask; 718 719 while ((ufshcd_readl(hba, reg) & mask) != val) { 720 usleep_range(interval_us, interval_us + 50); 721 if (time_after(jiffies, timeout)) { 722 if ((ufshcd_readl(hba, reg) & mask) != val) 723 err = -ETIMEDOUT; 724 break; 725 } 726 } 727 728 return err; 729 } 730 731 /** 732 * ufshcd_get_intr_mask - Get the interrupt bit mask 733 * @hba: Pointer to adapter instance 734 * 735 * Returns interrupt bit mask per version 736 */ 737 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 738 { 739 if (hba->ufs_version == ufshci_version(1, 0)) 740 return INTERRUPT_MASK_ALL_VER_10; 741 if (hba->ufs_version <= ufshci_version(2, 0)) 742 return INTERRUPT_MASK_ALL_VER_11; 743 744 return INTERRUPT_MASK_ALL_VER_21; 745 } 746 747 /** 748 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 749 * @hba: Pointer to adapter instance 750 * 751 * Returns UFSHCI version supported by the controller 752 */ 753 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 754 { 755 u32 ufshci_ver; 756 757 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 758 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 759 else 760 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 761 762 /* 763 * UFSHCI v1.x uses a different version scheme, in order 764 * to allow the use of comparisons with the ufshci_version 765 * function, we convert it to the same scheme as ufs 2.0+. 766 */ 767 if (ufshci_ver & 0x00010000) 768 return ufshci_version(1, ufshci_ver & 0x00000100); 769 770 return ufshci_ver; 771 } 772 773 /** 774 * ufshcd_is_device_present - Check if any device connected to 775 * the host controller 776 * @hba: pointer to adapter instance 777 * 778 * Returns true if device present, false if no device detected 779 */ 780 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 781 { 782 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 783 } 784 785 /** 786 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 787 * @lrbp: pointer to local command reference block 788 * @cqe: pointer to the completion queue entry 789 * 790 * This function is used to get the OCS field from UTRD 791 * Returns the OCS field in the UTRD 792 */ 793 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 794 struct cq_entry *cqe) 795 { 796 if (cqe) 797 return le32_to_cpu(cqe->status) & MASK_OCS; 798 799 return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS; 800 } 801 802 /** 803 * ufshcd_utrl_clear() - Clear requests from the controller request list. 804 * @hba: per adapter instance 805 * @mask: mask with one bit set for each request to be cleared 806 */ 807 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 808 { 809 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 810 mask = ~mask; 811 /* 812 * From the UFSHCI specification: "UTP Transfer Request List CLear 813 * Register (UTRLCLR): This field is bit significant. Each bit 814 * corresponds to a slot in the UTP Transfer Request List, where bit 0 815 * corresponds to request slot 0. A bit in this field is set to ‘0’ 816 * by host software to indicate to the host controller that a transfer 817 * request slot is cleared. The host controller 818 * shall free up any resources associated to the request slot 819 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 820 * host software indicates no change to request slots by setting the 821 * associated bits in this field to ‘1’. Bits in this field shall only 822 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 823 */ 824 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 825 } 826 827 /** 828 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 829 * @hba: per adapter instance 830 * @pos: position of the bit to be cleared 831 */ 832 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 833 { 834 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 835 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 836 else 837 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 838 } 839 840 /** 841 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 842 * @reg: Register value of host controller status 843 * 844 * Returns integer, 0 on Success and positive value if failed 845 */ 846 static inline int ufshcd_get_lists_status(u32 reg) 847 { 848 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 849 } 850 851 /** 852 * ufshcd_get_uic_cmd_result - Get the UIC command result 853 * @hba: Pointer to adapter instance 854 * 855 * This function gets the result of UIC command completion 856 * Returns 0 on success, non zero value on error 857 */ 858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 859 { 860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 861 MASK_UIC_COMMAND_RESULT; 862 } 863 864 /** 865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 866 * @hba: Pointer to adapter instance 867 * 868 * This function gets UIC command argument3 869 * Returns 0 on success, non zero value on error 870 */ 871 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 872 { 873 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 874 } 875 876 /** 877 * ufshcd_get_req_rsp - returns the TR response transaction type 878 * @ucd_rsp_ptr: pointer to response UPIU 879 */ 880 static inline int 881 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 882 { 883 return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24; 884 } 885 886 /** 887 * ufshcd_get_rsp_upiu_result - Get the result from response UPIU 888 * @ucd_rsp_ptr: pointer to response UPIU 889 * 890 * This function gets the response status and scsi_status from response UPIU 891 * Returns the response result code. 892 */ 893 static inline int 894 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr) 895 { 896 return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT; 897 } 898 899 /* 900 * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length 901 * from response UPIU 902 * @ucd_rsp_ptr: pointer to response UPIU 903 * 904 * Return the data segment length. 905 */ 906 static inline unsigned int 907 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr) 908 { 909 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & 910 MASK_RSP_UPIU_DATA_SEG_LEN; 911 } 912 913 /** 914 * ufshcd_is_exception_event - Check if the device raised an exception event 915 * @ucd_rsp_ptr: pointer to response UPIU 916 * 917 * The function checks if the device raised an exception event indicated in 918 * the Device Information field of response UPIU. 919 * 920 * Returns true if exception is raised, false otherwise. 921 */ 922 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 923 { 924 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) & 925 MASK_RSP_EXCEPTION_EVENT; 926 } 927 928 /** 929 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 930 * @hba: per adapter instance 931 */ 932 static inline void 933 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 934 { 935 ufshcd_writel(hba, INT_AGGR_ENABLE | 936 INT_AGGR_COUNTER_AND_TIMER_RESET, 937 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 938 } 939 940 /** 941 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 942 * @hba: per adapter instance 943 * @cnt: Interrupt aggregation counter threshold 944 * @tmout: Interrupt aggregation timeout value 945 */ 946 static inline void 947 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 948 { 949 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 950 INT_AGGR_COUNTER_THLD_VAL(cnt) | 951 INT_AGGR_TIMEOUT_VAL(tmout), 952 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 953 } 954 955 /** 956 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 957 * @hba: per adapter instance 958 */ 959 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 960 { 961 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 962 } 963 964 /** 965 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 966 * When run-stop registers are set to 1, it indicates the 967 * host controller that it can process the requests 968 * @hba: per adapter instance 969 */ 970 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 971 { 972 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 973 REG_UTP_TASK_REQ_LIST_RUN_STOP); 974 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 975 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 976 } 977 978 /** 979 * ufshcd_hba_start - Start controller initialization sequence 980 * @hba: per adapter instance 981 */ 982 static inline void ufshcd_hba_start(struct ufs_hba *hba) 983 { 984 u32 val = CONTROLLER_ENABLE; 985 986 if (ufshcd_crypto_enable(hba)) 987 val |= CRYPTO_GENERAL_ENABLE; 988 989 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 990 } 991 992 /** 993 * ufshcd_is_hba_active - Get controller state 994 * @hba: per adapter instance 995 * 996 * Returns true if and only if the controller is active. 997 */ 998 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba) 999 { 1000 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 1001 } 1002 1003 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 1004 { 1005 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 1006 if (hba->ufs_version <= ufshci_version(1, 1)) 1007 return UFS_UNIPRO_VER_1_41; 1008 else 1009 return UFS_UNIPRO_VER_1_6; 1010 } 1011 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 1012 1013 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 1014 { 1015 /* 1016 * If both host and device support UniPro ver1.6 or later, PA layer 1017 * parameters tuning happens during link startup itself. 1018 * 1019 * We can manually tune PA layer parameters if either host or device 1020 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 1021 * logic simple, we will only do manual tuning if local unipro version 1022 * doesn't support ver1.6 or later. 1023 */ 1024 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; 1025 } 1026 1027 /** 1028 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1029 * @hba: per adapter instance 1030 * @scale_up: If True, set max possible frequency othewise set low frequency 1031 * 1032 * Returns 0 if successful 1033 * Returns < 0 for any other errors 1034 */ 1035 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1036 { 1037 int ret = 0; 1038 struct ufs_clk_info *clki; 1039 struct list_head *head = &hba->clk_list_head; 1040 1041 if (list_empty(head)) 1042 goto out; 1043 1044 list_for_each_entry(clki, head, list) { 1045 if (!IS_ERR_OR_NULL(clki->clk)) { 1046 if (scale_up && clki->max_freq) { 1047 if (clki->curr_freq == clki->max_freq) 1048 continue; 1049 1050 ret = clk_set_rate(clki->clk, clki->max_freq); 1051 if (ret) { 1052 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1053 __func__, clki->name, 1054 clki->max_freq, ret); 1055 break; 1056 } 1057 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1058 "scaled up", clki->name, 1059 clki->curr_freq, 1060 clki->max_freq); 1061 1062 clki->curr_freq = clki->max_freq; 1063 1064 } else if (!scale_up && clki->min_freq) { 1065 if (clki->curr_freq == clki->min_freq) 1066 continue; 1067 1068 ret = clk_set_rate(clki->clk, clki->min_freq); 1069 if (ret) { 1070 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1071 __func__, clki->name, 1072 clki->min_freq, ret); 1073 break; 1074 } 1075 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1076 "scaled down", clki->name, 1077 clki->curr_freq, 1078 clki->min_freq); 1079 clki->curr_freq = clki->min_freq; 1080 } 1081 } 1082 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1083 clki->name, clk_get_rate(clki->clk)); 1084 } 1085 1086 out: 1087 return ret; 1088 } 1089 1090 /** 1091 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1092 * @hba: per adapter instance 1093 * @scale_up: True if scaling up and false if scaling down 1094 * 1095 * Returns 0 if successful 1096 * Returns < 0 for any other errors 1097 */ 1098 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 1099 { 1100 int ret = 0; 1101 ktime_t start = ktime_get(); 1102 1103 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1104 if (ret) 1105 goto out; 1106 1107 ret = ufshcd_set_clk_freq(hba, scale_up); 1108 if (ret) 1109 goto out; 1110 1111 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1112 if (ret) 1113 ufshcd_set_clk_freq(hba, !scale_up); 1114 1115 out: 1116 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1117 (scale_up ? "up" : "down"), 1118 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1119 return ret; 1120 } 1121 1122 /** 1123 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1124 * @hba: per adapter instance 1125 * @scale_up: True if scaling up and false if scaling down 1126 * 1127 * Returns true if scaling is required, false otherwise. 1128 */ 1129 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1130 bool scale_up) 1131 { 1132 struct ufs_clk_info *clki; 1133 struct list_head *head = &hba->clk_list_head; 1134 1135 if (list_empty(head)) 1136 return false; 1137 1138 list_for_each_entry(clki, head, list) { 1139 if (!IS_ERR_OR_NULL(clki->clk)) { 1140 if (scale_up && clki->max_freq) { 1141 if (clki->curr_freq == clki->max_freq) 1142 continue; 1143 return true; 1144 } else if (!scale_up && clki->min_freq) { 1145 if (clki->curr_freq == clki->min_freq) 1146 continue; 1147 return true; 1148 } 1149 } 1150 } 1151 1152 return false; 1153 } 1154 1155 /* 1156 * Determine the number of pending commands by counting the bits in the SCSI 1157 * device budget maps. This approach has been selected because a bit is set in 1158 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1159 * flag. The host_self_blocked flag can be modified by calling 1160 * scsi_block_requests() or scsi_unblock_requests(). 1161 */ 1162 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1163 { 1164 const struct scsi_device *sdev; 1165 u32 pending = 0; 1166 1167 lockdep_assert_held(hba->host->host_lock); 1168 __shost_for_each_device(sdev, hba->host) 1169 pending += sbitmap_weight(&sdev->budget_map); 1170 1171 return pending; 1172 } 1173 1174 /* 1175 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1176 * has expired. 1177 * 1178 * Return: 0 upon success; -EBUSY upon timeout. 1179 */ 1180 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1181 u64 wait_timeout_us) 1182 { 1183 unsigned long flags; 1184 int ret = 0; 1185 u32 tm_doorbell; 1186 u32 tr_pending; 1187 bool timeout = false, do_last_check = false; 1188 ktime_t start; 1189 1190 ufshcd_hold(hba); 1191 spin_lock_irqsave(hba->host->host_lock, flags); 1192 /* 1193 * Wait for all the outstanding tasks/transfer requests. 1194 * Verify by checking the doorbell registers are clear. 1195 */ 1196 start = ktime_get(); 1197 do { 1198 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1199 ret = -EBUSY; 1200 goto out; 1201 } 1202 1203 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1204 tr_pending = ufshcd_pending_cmds(hba); 1205 if (!tm_doorbell && !tr_pending) { 1206 timeout = false; 1207 break; 1208 } else if (do_last_check) { 1209 break; 1210 } 1211 1212 spin_unlock_irqrestore(hba->host->host_lock, flags); 1213 io_schedule_timeout(msecs_to_jiffies(20)); 1214 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1215 wait_timeout_us) { 1216 timeout = true; 1217 /* 1218 * We might have scheduled out for long time so make 1219 * sure to check if doorbells are cleared by this time 1220 * or not. 1221 */ 1222 do_last_check = true; 1223 } 1224 spin_lock_irqsave(hba->host->host_lock, flags); 1225 } while (tm_doorbell || tr_pending); 1226 1227 if (timeout) { 1228 dev_err(hba->dev, 1229 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1230 __func__, tm_doorbell, tr_pending); 1231 ret = -EBUSY; 1232 } 1233 out: 1234 spin_unlock_irqrestore(hba->host->host_lock, flags); 1235 ufshcd_release(hba); 1236 return ret; 1237 } 1238 1239 /** 1240 * ufshcd_scale_gear - scale up/down UFS gear 1241 * @hba: per adapter instance 1242 * @scale_up: True for scaling up gear and false for scaling down 1243 * 1244 * Returns 0 for success, 1245 * Returns -EBUSY if scaling can't happen at this time 1246 * Returns non-zero for any other errors 1247 */ 1248 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1249 { 1250 int ret = 0; 1251 struct ufs_pa_layer_attr new_pwr_info; 1252 1253 if (scale_up) { 1254 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1255 sizeof(struct ufs_pa_layer_attr)); 1256 } else { 1257 memcpy(&new_pwr_info, &hba->pwr_info, 1258 sizeof(struct ufs_pa_layer_attr)); 1259 1260 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1261 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1262 /* save the current power mode */ 1263 memcpy(&hba->clk_scaling.saved_pwr_info, 1264 &hba->pwr_info, 1265 sizeof(struct ufs_pa_layer_attr)); 1266 1267 /* scale down gear */ 1268 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1269 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1270 } 1271 } 1272 1273 /* check if the power mode needs to be changed or not? */ 1274 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1275 if (ret) 1276 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1277 __func__, ret, 1278 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1279 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1280 1281 return ret; 1282 } 1283 1284 /* 1285 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1286 * has expired. 1287 * 1288 * Return: 0 upon success; -EBUSY upon timeout. 1289 */ 1290 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1291 { 1292 int ret = 0; 1293 /* 1294 * make sure that there are no outstanding requests when 1295 * clock scaling is in progress 1296 */ 1297 ufshcd_scsi_block_requests(hba); 1298 mutex_lock(&hba->wb_mutex); 1299 down_write(&hba->clk_scaling_lock); 1300 1301 if (!hba->clk_scaling.is_allowed || 1302 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1303 ret = -EBUSY; 1304 up_write(&hba->clk_scaling_lock); 1305 mutex_unlock(&hba->wb_mutex); 1306 ufshcd_scsi_unblock_requests(hba); 1307 goto out; 1308 } 1309 1310 /* let's not get into low power until clock scaling is completed */ 1311 ufshcd_hold(hba); 1312 1313 out: 1314 return ret; 1315 } 1316 1317 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1318 { 1319 up_write(&hba->clk_scaling_lock); 1320 1321 /* Enable Write Booster if we have scaled up else disable it */ 1322 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1323 ufshcd_wb_toggle(hba, scale_up); 1324 1325 mutex_unlock(&hba->wb_mutex); 1326 1327 ufshcd_scsi_unblock_requests(hba); 1328 ufshcd_release(hba); 1329 } 1330 1331 /** 1332 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1333 * @hba: per adapter instance 1334 * @scale_up: True for scaling up and false for scalin down 1335 * 1336 * Returns 0 for success, 1337 * Returns -EBUSY if scaling can't happen at this time 1338 * Returns non-zero for any other errors 1339 */ 1340 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1341 { 1342 int ret = 0; 1343 1344 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1345 if (ret) 1346 return ret; 1347 1348 /* scale down the gear before scaling down clocks */ 1349 if (!scale_up) { 1350 ret = ufshcd_scale_gear(hba, false); 1351 if (ret) 1352 goto out_unprepare; 1353 } 1354 1355 ret = ufshcd_scale_clks(hba, scale_up); 1356 if (ret) { 1357 if (!scale_up) 1358 ufshcd_scale_gear(hba, true); 1359 goto out_unprepare; 1360 } 1361 1362 /* scale up the gear after scaling up clocks */ 1363 if (scale_up) { 1364 ret = ufshcd_scale_gear(hba, true); 1365 if (ret) { 1366 ufshcd_scale_clks(hba, false); 1367 goto out_unprepare; 1368 } 1369 } 1370 1371 out_unprepare: 1372 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1373 return ret; 1374 } 1375 1376 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1377 { 1378 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1379 clk_scaling.suspend_work); 1380 unsigned long irq_flags; 1381 1382 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1383 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1384 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1385 return; 1386 } 1387 hba->clk_scaling.is_suspended = true; 1388 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1389 1390 __ufshcd_suspend_clkscaling(hba); 1391 } 1392 1393 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1394 { 1395 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1396 clk_scaling.resume_work); 1397 unsigned long irq_flags; 1398 1399 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1400 if (!hba->clk_scaling.is_suspended) { 1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1402 return; 1403 } 1404 hba->clk_scaling.is_suspended = false; 1405 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1406 1407 devfreq_resume_device(hba->devfreq); 1408 } 1409 1410 static int ufshcd_devfreq_target(struct device *dev, 1411 unsigned long *freq, u32 flags) 1412 { 1413 int ret = 0; 1414 struct ufs_hba *hba = dev_get_drvdata(dev); 1415 ktime_t start; 1416 bool scale_up, sched_clk_scaling_suspend_work = false; 1417 struct list_head *clk_list = &hba->clk_list_head; 1418 struct ufs_clk_info *clki; 1419 unsigned long irq_flags; 1420 1421 if (!ufshcd_is_clkscaling_supported(hba)) 1422 return -EINVAL; 1423 1424 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1425 /* Override with the closest supported frequency */ 1426 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1427 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1428 if (ufshcd_eh_in_progress(hba)) { 1429 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1430 return 0; 1431 } 1432 1433 if (!hba->clk_scaling.active_reqs) 1434 sched_clk_scaling_suspend_work = true; 1435 1436 if (list_empty(clk_list)) { 1437 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1438 goto out; 1439 } 1440 1441 /* Decide based on the rounded-off frequency and update */ 1442 scale_up = *freq == clki->max_freq; 1443 if (!scale_up) 1444 *freq = clki->min_freq; 1445 /* Update the frequency */ 1446 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1447 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1448 ret = 0; 1449 goto out; /* no state change required */ 1450 } 1451 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1452 1453 start = ktime_get(); 1454 ret = ufshcd_devfreq_scale(hba, scale_up); 1455 1456 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1457 (scale_up ? "up" : "down"), 1458 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1459 1460 out: 1461 if (sched_clk_scaling_suspend_work) 1462 queue_work(hba->clk_scaling.workq, 1463 &hba->clk_scaling.suspend_work); 1464 1465 return ret; 1466 } 1467 1468 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1469 struct devfreq_dev_status *stat) 1470 { 1471 struct ufs_hba *hba = dev_get_drvdata(dev); 1472 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1473 unsigned long flags; 1474 struct list_head *clk_list = &hba->clk_list_head; 1475 struct ufs_clk_info *clki; 1476 ktime_t curr_t; 1477 1478 if (!ufshcd_is_clkscaling_supported(hba)) 1479 return -EINVAL; 1480 1481 memset(stat, 0, sizeof(*stat)); 1482 1483 spin_lock_irqsave(hba->host->host_lock, flags); 1484 curr_t = ktime_get(); 1485 if (!scaling->window_start_t) 1486 goto start_window; 1487 1488 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1489 /* 1490 * If current frequency is 0, then the ondemand governor considers 1491 * there's no initial frequency set. And it always requests to set 1492 * to max. frequency. 1493 */ 1494 stat->current_frequency = clki->curr_freq; 1495 if (scaling->is_busy_started) 1496 scaling->tot_busy_t += ktime_us_delta(curr_t, 1497 scaling->busy_start_t); 1498 1499 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1500 stat->busy_time = scaling->tot_busy_t; 1501 start_window: 1502 scaling->window_start_t = curr_t; 1503 scaling->tot_busy_t = 0; 1504 1505 if (scaling->active_reqs) { 1506 scaling->busy_start_t = curr_t; 1507 scaling->is_busy_started = true; 1508 } else { 1509 scaling->busy_start_t = 0; 1510 scaling->is_busy_started = false; 1511 } 1512 spin_unlock_irqrestore(hba->host->host_lock, flags); 1513 return 0; 1514 } 1515 1516 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1517 { 1518 struct list_head *clk_list = &hba->clk_list_head; 1519 struct ufs_clk_info *clki; 1520 struct devfreq *devfreq; 1521 int ret; 1522 1523 /* Skip devfreq if we don't have any clocks in the list */ 1524 if (list_empty(clk_list)) 1525 return 0; 1526 1527 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1528 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1529 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1530 1531 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1532 &hba->vps->ondemand_data); 1533 devfreq = devfreq_add_device(hba->dev, 1534 &hba->vps->devfreq_profile, 1535 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1536 &hba->vps->ondemand_data); 1537 if (IS_ERR(devfreq)) { 1538 ret = PTR_ERR(devfreq); 1539 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1540 1541 dev_pm_opp_remove(hba->dev, clki->min_freq); 1542 dev_pm_opp_remove(hba->dev, clki->max_freq); 1543 return ret; 1544 } 1545 1546 hba->devfreq = devfreq; 1547 1548 return 0; 1549 } 1550 1551 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1552 { 1553 struct list_head *clk_list = &hba->clk_list_head; 1554 struct ufs_clk_info *clki; 1555 1556 if (!hba->devfreq) 1557 return; 1558 1559 devfreq_remove_device(hba->devfreq); 1560 hba->devfreq = NULL; 1561 1562 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1563 dev_pm_opp_remove(hba->dev, clki->min_freq); 1564 dev_pm_opp_remove(hba->dev, clki->max_freq); 1565 } 1566 1567 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1568 { 1569 unsigned long flags; 1570 1571 devfreq_suspend_device(hba->devfreq); 1572 spin_lock_irqsave(hba->host->host_lock, flags); 1573 hba->clk_scaling.window_start_t = 0; 1574 spin_unlock_irqrestore(hba->host->host_lock, flags); 1575 } 1576 1577 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1578 { 1579 unsigned long flags; 1580 bool suspend = false; 1581 1582 cancel_work_sync(&hba->clk_scaling.suspend_work); 1583 cancel_work_sync(&hba->clk_scaling.resume_work); 1584 1585 spin_lock_irqsave(hba->host->host_lock, flags); 1586 if (!hba->clk_scaling.is_suspended) { 1587 suspend = true; 1588 hba->clk_scaling.is_suspended = true; 1589 } 1590 spin_unlock_irqrestore(hba->host->host_lock, flags); 1591 1592 if (suspend) 1593 __ufshcd_suspend_clkscaling(hba); 1594 } 1595 1596 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1597 { 1598 unsigned long flags; 1599 bool resume = false; 1600 1601 spin_lock_irqsave(hba->host->host_lock, flags); 1602 if (hba->clk_scaling.is_suspended) { 1603 resume = true; 1604 hba->clk_scaling.is_suspended = false; 1605 } 1606 spin_unlock_irqrestore(hba->host->host_lock, flags); 1607 1608 if (resume) 1609 devfreq_resume_device(hba->devfreq); 1610 } 1611 1612 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1613 struct device_attribute *attr, char *buf) 1614 { 1615 struct ufs_hba *hba = dev_get_drvdata(dev); 1616 1617 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1618 } 1619 1620 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1621 struct device_attribute *attr, const char *buf, size_t count) 1622 { 1623 struct ufs_hba *hba = dev_get_drvdata(dev); 1624 u32 value; 1625 int err = 0; 1626 1627 if (kstrtou32(buf, 0, &value)) 1628 return -EINVAL; 1629 1630 down(&hba->host_sem); 1631 if (!ufshcd_is_user_access_allowed(hba)) { 1632 err = -EBUSY; 1633 goto out; 1634 } 1635 1636 value = !!value; 1637 if (value == hba->clk_scaling.is_enabled) 1638 goto out; 1639 1640 ufshcd_rpm_get_sync(hba); 1641 ufshcd_hold(hba); 1642 1643 hba->clk_scaling.is_enabled = value; 1644 1645 if (value) { 1646 ufshcd_resume_clkscaling(hba); 1647 } else { 1648 ufshcd_suspend_clkscaling(hba); 1649 err = ufshcd_devfreq_scale(hba, true); 1650 if (err) 1651 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1652 __func__, err); 1653 } 1654 1655 ufshcd_release(hba); 1656 ufshcd_rpm_put_sync(hba); 1657 out: 1658 up(&hba->host_sem); 1659 return err ? err : count; 1660 } 1661 1662 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1663 { 1664 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1665 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1666 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1667 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1668 hba->clk_scaling.enable_attr.attr.mode = 0644; 1669 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1670 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1671 } 1672 1673 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1674 { 1675 if (hba->clk_scaling.enable_attr.attr.name) 1676 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1677 } 1678 1679 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1680 { 1681 char wq_name[sizeof("ufs_clkscaling_00")]; 1682 1683 if (!ufshcd_is_clkscaling_supported(hba)) 1684 return; 1685 1686 if (!hba->clk_scaling.min_gear) 1687 hba->clk_scaling.min_gear = UFS_HS_G1; 1688 1689 INIT_WORK(&hba->clk_scaling.suspend_work, 1690 ufshcd_clk_scaling_suspend_work); 1691 INIT_WORK(&hba->clk_scaling.resume_work, 1692 ufshcd_clk_scaling_resume_work); 1693 1694 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1695 hba->host->host_no); 1696 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1697 1698 hba->clk_scaling.is_initialized = true; 1699 } 1700 1701 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1702 { 1703 if (!hba->clk_scaling.is_initialized) 1704 return; 1705 1706 ufshcd_remove_clk_scaling_sysfs(hba); 1707 destroy_workqueue(hba->clk_scaling.workq); 1708 ufshcd_devfreq_remove(hba); 1709 hba->clk_scaling.is_initialized = false; 1710 } 1711 1712 static void ufshcd_ungate_work(struct work_struct *work) 1713 { 1714 int ret; 1715 unsigned long flags; 1716 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1717 clk_gating.ungate_work); 1718 1719 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1720 1721 spin_lock_irqsave(hba->host->host_lock, flags); 1722 if (hba->clk_gating.state == CLKS_ON) { 1723 spin_unlock_irqrestore(hba->host->host_lock, flags); 1724 return; 1725 } 1726 1727 spin_unlock_irqrestore(hba->host->host_lock, flags); 1728 ufshcd_hba_vreg_set_hpm(hba); 1729 ufshcd_setup_clocks(hba, true); 1730 1731 ufshcd_enable_irq(hba); 1732 1733 /* Exit from hibern8 */ 1734 if (ufshcd_can_hibern8_during_gating(hba)) { 1735 /* Prevent gating in this path */ 1736 hba->clk_gating.is_suspended = true; 1737 if (ufshcd_is_link_hibern8(hba)) { 1738 ret = ufshcd_uic_hibern8_exit(hba); 1739 if (ret) 1740 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1741 __func__, ret); 1742 else 1743 ufshcd_set_link_active(hba); 1744 } 1745 hba->clk_gating.is_suspended = false; 1746 } 1747 } 1748 1749 /** 1750 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1751 * Also, exit from hibern8 mode and set the link as active. 1752 * @hba: per adapter instance 1753 */ 1754 void ufshcd_hold(struct ufs_hba *hba) 1755 { 1756 bool flush_result; 1757 unsigned long flags; 1758 1759 if (!ufshcd_is_clkgating_allowed(hba) || 1760 !hba->clk_gating.is_initialized) 1761 return; 1762 spin_lock_irqsave(hba->host->host_lock, flags); 1763 hba->clk_gating.active_reqs++; 1764 1765 start: 1766 switch (hba->clk_gating.state) { 1767 case CLKS_ON: 1768 /* 1769 * Wait for the ungate work to complete if in progress. 1770 * Though the clocks may be in ON state, the link could 1771 * still be in hibner8 state if hibern8 is allowed 1772 * during clock gating. 1773 * Make sure we exit hibern8 state also in addition to 1774 * clocks being ON. 1775 */ 1776 if (ufshcd_can_hibern8_during_gating(hba) && 1777 ufshcd_is_link_hibern8(hba)) { 1778 spin_unlock_irqrestore(hba->host->host_lock, flags); 1779 flush_result = flush_work(&hba->clk_gating.ungate_work); 1780 if (hba->clk_gating.is_suspended && !flush_result) 1781 return; 1782 spin_lock_irqsave(hba->host->host_lock, flags); 1783 goto start; 1784 } 1785 break; 1786 case REQ_CLKS_OFF: 1787 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1788 hba->clk_gating.state = CLKS_ON; 1789 trace_ufshcd_clk_gating(dev_name(hba->dev), 1790 hba->clk_gating.state); 1791 break; 1792 } 1793 /* 1794 * If we are here, it means gating work is either done or 1795 * currently running. Hence, fall through to cancel gating 1796 * work and to enable clocks. 1797 */ 1798 fallthrough; 1799 case CLKS_OFF: 1800 hba->clk_gating.state = REQ_CLKS_ON; 1801 trace_ufshcd_clk_gating(dev_name(hba->dev), 1802 hba->clk_gating.state); 1803 queue_work(hba->clk_gating.clk_gating_workq, 1804 &hba->clk_gating.ungate_work); 1805 /* 1806 * fall through to check if we should wait for this 1807 * work to be done or not. 1808 */ 1809 fallthrough; 1810 case REQ_CLKS_ON: 1811 spin_unlock_irqrestore(hba->host->host_lock, flags); 1812 flush_work(&hba->clk_gating.ungate_work); 1813 /* Make sure state is CLKS_ON before returning */ 1814 spin_lock_irqsave(hba->host->host_lock, flags); 1815 goto start; 1816 default: 1817 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1818 __func__, hba->clk_gating.state); 1819 break; 1820 } 1821 spin_unlock_irqrestore(hba->host->host_lock, flags); 1822 } 1823 EXPORT_SYMBOL_GPL(ufshcd_hold); 1824 1825 static void ufshcd_gate_work(struct work_struct *work) 1826 { 1827 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1828 clk_gating.gate_work.work); 1829 unsigned long flags; 1830 int ret; 1831 1832 spin_lock_irqsave(hba->host->host_lock, flags); 1833 /* 1834 * In case you are here to cancel this work the gating state 1835 * would be marked as REQ_CLKS_ON. In this case save time by 1836 * skipping the gating work and exit after changing the clock 1837 * state to CLKS_ON. 1838 */ 1839 if (hba->clk_gating.is_suspended || 1840 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1841 hba->clk_gating.state = CLKS_ON; 1842 trace_ufshcd_clk_gating(dev_name(hba->dev), 1843 hba->clk_gating.state); 1844 goto rel_lock; 1845 } 1846 1847 if (hba->clk_gating.active_reqs 1848 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1849 || hba->outstanding_reqs || hba->outstanding_tasks 1850 || hba->active_uic_cmd || hba->uic_async_done) 1851 goto rel_lock; 1852 1853 spin_unlock_irqrestore(hba->host->host_lock, flags); 1854 1855 /* put the link into hibern8 mode before turning off clocks */ 1856 if (ufshcd_can_hibern8_during_gating(hba)) { 1857 ret = ufshcd_uic_hibern8_enter(hba); 1858 if (ret) { 1859 hba->clk_gating.state = CLKS_ON; 1860 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1861 __func__, ret); 1862 trace_ufshcd_clk_gating(dev_name(hba->dev), 1863 hba->clk_gating.state); 1864 goto out; 1865 } 1866 ufshcd_set_link_hibern8(hba); 1867 } 1868 1869 ufshcd_disable_irq(hba); 1870 1871 ufshcd_setup_clocks(hba, false); 1872 1873 /* Put the host controller in low power mode if possible */ 1874 ufshcd_hba_vreg_set_lpm(hba); 1875 /* 1876 * In case you are here to cancel this work the gating state 1877 * would be marked as REQ_CLKS_ON. In this case keep the state 1878 * as REQ_CLKS_ON which would anyway imply that clocks are off 1879 * and a request to turn them on is pending. By doing this way, 1880 * we keep the state machine in tact and this would ultimately 1881 * prevent from doing cancel work multiple times when there are 1882 * new requests arriving before the current cancel work is done. 1883 */ 1884 spin_lock_irqsave(hba->host->host_lock, flags); 1885 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1886 hba->clk_gating.state = CLKS_OFF; 1887 trace_ufshcd_clk_gating(dev_name(hba->dev), 1888 hba->clk_gating.state); 1889 } 1890 rel_lock: 1891 spin_unlock_irqrestore(hba->host->host_lock, flags); 1892 out: 1893 return; 1894 } 1895 1896 /* host lock must be held before calling this variant */ 1897 static void __ufshcd_release(struct ufs_hba *hba) 1898 { 1899 if (!ufshcd_is_clkgating_allowed(hba)) 1900 return; 1901 1902 hba->clk_gating.active_reqs--; 1903 1904 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1905 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1906 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 1907 hba->active_uic_cmd || hba->uic_async_done || 1908 hba->clk_gating.state == CLKS_OFF) 1909 return; 1910 1911 hba->clk_gating.state = REQ_CLKS_OFF; 1912 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1913 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1914 &hba->clk_gating.gate_work, 1915 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1916 } 1917 1918 void ufshcd_release(struct ufs_hba *hba) 1919 { 1920 unsigned long flags; 1921 1922 spin_lock_irqsave(hba->host->host_lock, flags); 1923 __ufshcd_release(hba); 1924 spin_unlock_irqrestore(hba->host->host_lock, flags); 1925 } 1926 EXPORT_SYMBOL_GPL(ufshcd_release); 1927 1928 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1929 struct device_attribute *attr, char *buf) 1930 { 1931 struct ufs_hba *hba = dev_get_drvdata(dev); 1932 1933 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 1934 } 1935 1936 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 1937 { 1938 struct ufs_hba *hba = dev_get_drvdata(dev); 1939 unsigned long flags; 1940 1941 spin_lock_irqsave(hba->host->host_lock, flags); 1942 hba->clk_gating.delay_ms = value; 1943 spin_unlock_irqrestore(hba->host->host_lock, flags); 1944 } 1945 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 1946 1947 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1948 struct device_attribute *attr, const char *buf, size_t count) 1949 { 1950 unsigned long value; 1951 1952 if (kstrtoul(buf, 0, &value)) 1953 return -EINVAL; 1954 1955 ufshcd_clkgate_delay_set(dev, value); 1956 return count; 1957 } 1958 1959 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1960 struct device_attribute *attr, char *buf) 1961 { 1962 struct ufs_hba *hba = dev_get_drvdata(dev); 1963 1964 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 1965 } 1966 1967 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1968 struct device_attribute *attr, const char *buf, size_t count) 1969 { 1970 struct ufs_hba *hba = dev_get_drvdata(dev); 1971 unsigned long flags; 1972 u32 value; 1973 1974 if (kstrtou32(buf, 0, &value)) 1975 return -EINVAL; 1976 1977 value = !!value; 1978 1979 spin_lock_irqsave(hba->host->host_lock, flags); 1980 if (value == hba->clk_gating.is_enabled) 1981 goto out; 1982 1983 if (value) 1984 __ufshcd_release(hba); 1985 else 1986 hba->clk_gating.active_reqs++; 1987 1988 hba->clk_gating.is_enabled = value; 1989 out: 1990 spin_unlock_irqrestore(hba->host->host_lock, flags); 1991 return count; 1992 } 1993 1994 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 1995 { 1996 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1997 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1998 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1999 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 2000 hba->clk_gating.delay_attr.attr.mode = 0644; 2001 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 2002 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 2003 2004 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 2005 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 2006 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 2007 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 2008 hba->clk_gating.enable_attr.attr.mode = 0644; 2009 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 2010 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 2011 } 2012 2013 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 2014 { 2015 if (hba->clk_gating.delay_attr.attr.name) 2016 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 2017 if (hba->clk_gating.enable_attr.attr.name) 2018 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 2019 } 2020 2021 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 2022 { 2023 char wq_name[sizeof("ufs_clk_gating_00")]; 2024 2025 if (!ufshcd_is_clkgating_allowed(hba)) 2026 return; 2027 2028 hba->clk_gating.state = CLKS_ON; 2029 2030 hba->clk_gating.delay_ms = 150; 2031 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2032 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2033 2034 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 2035 hba->host->host_no); 2036 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 2037 WQ_MEM_RECLAIM | WQ_HIGHPRI); 2038 2039 ufshcd_init_clk_gating_sysfs(hba); 2040 2041 hba->clk_gating.is_enabled = true; 2042 hba->clk_gating.is_initialized = true; 2043 } 2044 2045 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2046 { 2047 if (!hba->clk_gating.is_initialized) 2048 return; 2049 2050 ufshcd_remove_clk_gating_sysfs(hba); 2051 2052 /* Ungate the clock if necessary. */ 2053 ufshcd_hold(hba); 2054 hba->clk_gating.is_initialized = false; 2055 ufshcd_release(hba); 2056 2057 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2058 } 2059 2060 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2061 { 2062 bool queue_resume_work = false; 2063 ktime_t curr_t = ktime_get(); 2064 unsigned long flags; 2065 2066 if (!ufshcd_is_clkscaling_supported(hba)) 2067 return; 2068 2069 spin_lock_irqsave(hba->host->host_lock, flags); 2070 if (!hba->clk_scaling.active_reqs++) 2071 queue_resume_work = true; 2072 2073 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2074 spin_unlock_irqrestore(hba->host->host_lock, flags); 2075 return; 2076 } 2077 2078 if (queue_resume_work) 2079 queue_work(hba->clk_scaling.workq, 2080 &hba->clk_scaling.resume_work); 2081 2082 if (!hba->clk_scaling.window_start_t) { 2083 hba->clk_scaling.window_start_t = curr_t; 2084 hba->clk_scaling.tot_busy_t = 0; 2085 hba->clk_scaling.is_busy_started = false; 2086 } 2087 2088 if (!hba->clk_scaling.is_busy_started) { 2089 hba->clk_scaling.busy_start_t = curr_t; 2090 hba->clk_scaling.is_busy_started = true; 2091 } 2092 spin_unlock_irqrestore(hba->host->host_lock, flags); 2093 } 2094 2095 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2096 { 2097 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2098 unsigned long flags; 2099 2100 if (!ufshcd_is_clkscaling_supported(hba)) 2101 return; 2102 2103 spin_lock_irqsave(hba->host->host_lock, flags); 2104 hba->clk_scaling.active_reqs--; 2105 if (!scaling->active_reqs && scaling->is_busy_started) { 2106 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2107 scaling->busy_start_t)); 2108 scaling->busy_start_t = 0; 2109 scaling->is_busy_started = false; 2110 } 2111 spin_unlock_irqrestore(hba->host->host_lock, flags); 2112 } 2113 2114 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2115 { 2116 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2117 return READ; 2118 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2119 return WRITE; 2120 else 2121 return -EINVAL; 2122 } 2123 2124 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2125 struct ufshcd_lrb *lrbp) 2126 { 2127 const struct ufs_hba_monitor *m = &hba->monitor; 2128 2129 return (m->enabled && lrbp && lrbp->cmd && 2130 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2131 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2132 } 2133 2134 static void ufshcd_start_monitor(struct ufs_hba *hba, 2135 const struct ufshcd_lrb *lrbp) 2136 { 2137 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2138 unsigned long flags; 2139 2140 spin_lock_irqsave(hba->host->host_lock, flags); 2141 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2142 hba->monitor.busy_start_ts[dir] = ktime_get(); 2143 spin_unlock_irqrestore(hba->host->host_lock, flags); 2144 } 2145 2146 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2147 { 2148 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2149 unsigned long flags; 2150 2151 spin_lock_irqsave(hba->host->host_lock, flags); 2152 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2153 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2154 struct ufs_hba_monitor *m = &hba->monitor; 2155 ktime_t now, inc, lat; 2156 2157 now = lrbp->compl_time_stamp; 2158 inc = ktime_sub(now, m->busy_start_ts[dir]); 2159 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2160 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2161 2162 /* Update latencies */ 2163 m->nr_req[dir]++; 2164 lat = ktime_sub(now, lrbp->issue_time_stamp); 2165 m->lat_sum[dir] += lat; 2166 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2167 m->lat_max[dir] = lat; 2168 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2169 m->lat_min[dir] = lat; 2170 2171 m->nr_queued[dir]--; 2172 /* Push forward the busy start of monitor */ 2173 m->busy_start_ts[dir] = now; 2174 } 2175 spin_unlock_irqrestore(hba->host->host_lock, flags); 2176 } 2177 2178 /** 2179 * ufshcd_send_command - Send SCSI or device management commands 2180 * @hba: per adapter instance 2181 * @task_tag: Task tag of the command 2182 * @hwq: pointer to hardware queue instance 2183 */ 2184 static inline 2185 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2186 struct ufs_hw_queue *hwq) 2187 { 2188 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2189 unsigned long flags; 2190 2191 lrbp->issue_time_stamp = ktime_get(); 2192 lrbp->issue_time_stamp_local_clock = local_clock(); 2193 lrbp->compl_time_stamp = ktime_set(0, 0); 2194 lrbp->compl_time_stamp_local_clock = 0; 2195 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2196 ufshcd_clk_scaling_start_busy(hba); 2197 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2198 ufshcd_start_monitor(hba, lrbp); 2199 2200 if (is_mcq_enabled(hba)) { 2201 int utrd_size = sizeof(struct utp_transfer_req_desc); 2202 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2203 struct utp_transfer_req_desc *dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2204 2205 spin_lock(&hwq->sq_lock); 2206 memcpy(dest, src, utrd_size); 2207 ufshcd_inc_sq_tail(hwq); 2208 spin_unlock(&hwq->sq_lock); 2209 } else { 2210 spin_lock_irqsave(&hba->outstanding_lock, flags); 2211 if (hba->vops && hba->vops->setup_xfer_req) 2212 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2213 !!lrbp->cmd); 2214 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2215 ufshcd_writel(hba, 1 << lrbp->task_tag, 2216 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2217 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2218 } 2219 } 2220 2221 /** 2222 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2223 * @lrbp: pointer to local reference block 2224 */ 2225 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2226 { 2227 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2228 int len; 2229 2230 if (sense_buffer && 2231 ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) { 2232 int len_to_copy; 2233 2234 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2235 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2236 2237 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2238 len_to_copy); 2239 } 2240 } 2241 2242 /** 2243 * ufshcd_copy_query_response() - Copy the Query Response and the data 2244 * descriptor 2245 * @hba: per adapter instance 2246 * @lrbp: pointer to local reference block 2247 */ 2248 static 2249 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2250 { 2251 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2252 2253 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2254 2255 /* Get the descriptor */ 2256 if (hba->dev_cmd.query.descriptor && 2257 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2258 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2259 GENERAL_UPIU_REQUEST_SIZE; 2260 u16 resp_len; 2261 u16 buf_len; 2262 2263 /* data segment length */ 2264 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & 2265 MASK_QUERY_DATA_SEG_LEN; 2266 buf_len = be16_to_cpu( 2267 hba->dev_cmd.query.request.upiu_req.length); 2268 if (likely(buf_len >= resp_len)) { 2269 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2270 } else { 2271 dev_warn(hba->dev, 2272 "%s: rsp size %d is bigger than buffer size %d", 2273 __func__, resp_len, buf_len); 2274 return -EINVAL; 2275 } 2276 } 2277 2278 return 0; 2279 } 2280 2281 /** 2282 * ufshcd_hba_capabilities - Read controller capabilities 2283 * @hba: per adapter instance 2284 * 2285 * Return: 0 on success, negative on error. 2286 */ 2287 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2288 { 2289 int err; 2290 2291 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2292 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) 2293 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; 2294 2295 /* nutrs and nutmrs are 0 based values */ 2296 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2297 hba->nutmrs = 2298 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2299 hba->reserved_slot = hba->nutrs - 1; 2300 2301 /* Read crypto capabilities */ 2302 err = ufshcd_hba_init_crypto_capabilities(hba); 2303 if (err) { 2304 dev_err(hba->dev, "crypto setup failed\n"); 2305 return err; 2306 } 2307 2308 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2309 if (!hba->mcq_sup) 2310 return 0; 2311 2312 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2313 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2314 hba->mcq_capabilities); 2315 2316 return 0; 2317 } 2318 2319 /** 2320 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2321 * to accept UIC commands 2322 * @hba: per adapter instance 2323 * Return true on success, else false 2324 */ 2325 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2326 { 2327 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY; 2328 } 2329 2330 /** 2331 * ufshcd_get_upmcrs - Get the power mode change request status 2332 * @hba: Pointer to adapter instance 2333 * 2334 * This function gets the UPMCRS field of HCS register 2335 * Returns value of UPMCRS field 2336 */ 2337 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2338 { 2339 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2340 } 2341 2342 /** 2343 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2344 * @hba: per adapter instance 2345 * @uic_cmd: UIC command 2346 */ 2347 static inline void 2348 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2349 { 2350 lockdep_assert_held(&hba->uic_cmd_mutex); 2351 2352 WARN_ON(hba->active_uic_cmd); 2353 2354 hba->active_uic_cmd = uic_cmd; 2355 2356 /* Write Args */ 2357 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2358 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2359 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2360 2361 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2362 2363 /* Write UIC Cmd */ 2364 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2365 REG_UIC_COMMAND); 2366 } 2367 2368 /** 2369 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2370 * @hba: per adapter instance 2371 * @uic_cmd: UIC command 2372 * 2373 * Returns 0 only if success. 2374 */ 2375 static int 2376 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2377 { 2378 int ret; 2379 unsigned long flags; 2380 2381 lockdep_assert_held(&hba->uic_cmd_mutex); 2382 2383 if (wait_for_completion_timeout(&uic_cmd->done, 2384 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2385 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2386 } else { 2387 ret = -ETIMEDOUT; 2388 dev_err(hba->dev, 2389 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2390 uic_cmd->command, uic_cmd->argument3); 2391 2392 if (!uic_cmd->cmd_active) { 2393 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2394 __func__); 2395 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2396 } 2397 } 2398 2399 spin_lock_irqsave(hba->host->host_lock, flags); 2400 hba->active_uic_cmd = NULL; 2401 spin_unlock_irqrestore(hba->host->host_lock, flags); 2402 2403 return ret; 2404 } 2405 2406 /** 2407 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2408 * @hba: per adapter instance 2409 * @uic_cmd: UIC command 2410 * @completion: initialize the completion only if this is set to true 2411 * 2412 * Returns 0 only if success. 2413 */ 2414 static int 2415 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, 2416 bool completion) 2417 { 2418 lockdep_assert_held(&hba->uic_cmd_mutex); 2419 lockdep_assert_held(hba->host->host_lock); 2420 2421 if (!ufshcd_ready_for_uic_cmd(hba)) { 2422 dev_err(hba->dev, 2423 "Controller not ready to accept UIC commands\n"); 2424 return -EIO; 2425 } 2426 2427 if (completion) 2428 init_completion(&uic_cmd->done); 2429 2430 uic_cmd->cmd_active = 1; 2431 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2432 2433 return 0; 2434 } 2435 2436 /** 2437 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2438 * @hba: per adapter instance 2439 * @uic_cmd: UIC command 2440 * 2441 * Returns 0 only if success. 2442 */ 2443 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2444 { 2445 int ret; 2446 unsigned long flags; 2447 2448 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2449 return 0; 2450 2451 ufshcd_hold(hba); 2452 mutex_lock(&hba->uic_cmd_mutex); 2453 ufshcd_add_delay_before_dme_cmd(hba); 2454 2455 spin_lock_irqsave(hba->host->host_lock, flags); 2456 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); 2457 spin_unlock_irqrestore(hba->host->host_lock, flags); 2458 if (!ret) 2459 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2460 2461 mutex_unlock(&hba->uic_cmd_mutex); 2462 2463 ufshcd_release(hba); 2464 return ret; 2465 } 2466 2467 /** 2468 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2469 * @hba: per-adapter instance 2470 * @lrbp: pointer to local reference block 2471 * @sg_entries: The number of sg lists actually used 2472 * @sg_list: Pointer to SG list 2473 */ 2474 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2475 struct scatterlist *sg_list) 2476 { 2477 struct ufshcd_sg_entry *prd; 2478 struct scatterlist *sg; 2479 int i; 2480 2481 if (sg_entries) { 2482 2483 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2484 lrbp->utr_descriptor_ptr->prd_table_length = 2485 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2486 else 2487 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2488 2489 prd = lrbp->ucd_prdt_ptr; 2490 2491 for_each_sg(sg_list, sg, sg_entries, i) { 2492 const unsigned int len = sg_dma_len(sg); 2493 2494 /* 2495 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2496 * based value that indicates the length, in bytes, of 2497 * the data block. A maximum of length of 256KB may 2498 * exist for any entry. Bits 1:0 of this field shall be 2499 * 11b to indicate Dword granularity. A value of '3' 2500 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2501 */ 2502 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2503 prd->size = cpu_to_le32(len - 1); 2504 prd->addr = cpu_to_le64(sg->dma_address); 2505 prd->reserved = 0; 2506 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2507 } 2508 } else { 2509 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2510 } 2511 } 2512 2513 /** 2514 * ufshcd_map_sg - Map scatter-gather list to prdt 2515 * @hba: per adapter instance 2516 * @lrbp: pointer to local reference block 2517 * 2518 * Returns 0 in case of success, non-zero value in case of failure 2519 */ 2520 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2521 { 2522 struct scsi_cmnd *cmd = lrbp->cmd; 2523 int sg_segments = scsi_dma_map(cmd); 2524 2525 if (sg_segments < 0) 2526 return sg_segments; 2527 2528 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2529 2530 return 0; 2531 } 2532 2533 /** 2534 * ufshcd_enable_intr - enable interrupts 2535 * @hba: per adapter instance 2536 * @intrs: interrupt bits 2537 */ 2538 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2539 { 2540 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2541 2542 if (hba->ufs_version == ufshci_version(1, 0)) { 2543 u32 rw; 2544 rw = set & INTERRUPT_MASK_RW_VER_10; 2545 set = rw | ((set ^ intrs) & intrs); 2546 } else { 2547 set |= intrs; 2548 } 2549 2550 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2551 } 2552 2553 /** 2554 * ufshcd_disable_intr - disable interrupts 2555 * @hba: per adapter instance 2556 * @intrs: interrupt bits 2557 */ 2558 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2559 { 2560 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2561 2562 if (hba->ufs_version == ufshci_version(1, 0)) { 2563 u32 rw; 2564 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2565 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2566 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2567 2568 } else { 2569 set &= ~intrs; 2570 } 2571 2572 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2573 } 2574 2575 /** 2576 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2577 * descriptor according to request 2578 * @lrbp: pointer to local reference block 2579 * @upiu_flags: flags required in the header 2580 * @cmd_dir: requests data direction 2581 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2582 */ 2583 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags, 2584 enum dma_data_direction cmd_dir, int ehs_length) 2585 { 2586 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2587 u32 data_direction; 2588 u32 dword_0; 2589 u32 dword_1 = 0; 2590 u32 dword_3 = 0; 2591 2592 if (cmd_dir == DMA_FROM_DEVICE) { 2593 data_direction = UTP_DEVICE_TO_HOST; 2594 *upiu_flags = UPIU_CMD_FLAGS_READ; 2595 } else if (cmd_dir == DMA_TO_DEVICE) { 2596 data_direction = UTP_HOST_TO_DEVICE; 2597 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2598 } else { 2599 data_direction = UTP_NO_DATA_TRANSFER; 2600 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2601 } 2602 2603 dword_0 = data_direction | (lrbp->command_type << UPIU_COMMAND_TYPE_OFFSET) | 2604 ehs_length << 8; 2605 if (lrbp->intr_cmd) 2606 dword_0 |= UTP_REQ_DESC_INT_CMD; 2607 2608 /* Prepare crypto related dwords */ 2609 ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3); 2610 2611 /* Transfer request descriptor header fields */ 2612 req_desc->header.dword_0 = cpu_to_le32(dword_0); 2613 req_desc->header.dword_1 = cpu_to_le32(dword_1); 2614 /* 2615 * assigning invalid value for command status. Controller 2616 * updates OCS on command completion, with the command 2617 * status 2618 */ 2619 req_desc->header.dword_2 = 2620 cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 2621 req_desc->header.dword_3 = cpu_to_le32(dword_3); 2622 2623 req_desc->prd_table_length = 0; 2624 } 2625 2626 /** 2627 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2628 * for scsi commands 2629 * @lrbp: local reference block pointer 2630 * @upiu_flags: flags 2631 */ 2632 static 2633 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2634 { 2635 struct scsi_cmnd *cmd = lrbp->cmd; 2636 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2637 unsigned short cdb_len; 2638 2639 /* command descriptor fields */ 2640 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( 2641 UPIU_TRANSACTION_COMMAND, upiu_flags, 2642 lrbp->lun, lrbp->task_tag); 2643 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 2644 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0); 2645 2646 /* Total EHS length and Data segment length will be zero */ 2647 ucd_req_ptr->header.dword_2 = 0; 2648 2649 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2650 2651 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2652 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2653 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2654 2655 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2656 } 2657 2658 /** 2659 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2660 * @hba: UFS hba 2661 * @lrbp: local reference block pointer 2662 * @upiu_flags: flags 2663 */ 2664 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2665 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2666 { 2667 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2668 struct ufs_query *query = &hba->dev_cmd.query; 2669 u16 len = be16_to_cpu(query->request.upiu_req.length); 2670 2671 /* Query request header */ 2672 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD( 2673 UPIU_TRANSACTION_QUERY_REQ, upiu_flags, 2674 lrbp->lun, lrbp->task_tag); 2675 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD( 2676 0, query->request.query_func, 0, 0); 2677 2678 /* Data segment length only need for WRITE_DESC */ 2679 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2680 ucd_req_ptr->header.dword_2 = 2681 UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len); 2682 else 2683 ucd_req_ptr->header.dword_2 = 0; 2684 2685 /* Copy the Query Request buffer as is */ 2686 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2687 QUERY_OSF_SIZE); 2688 2689 /* Copy the Descriptor */ 2690 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2691 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2692 2693 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2694 } 2695 2696 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2697 { 2698 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2699 2700 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2701 2702 /* command descriptor fields */ 2703 ucd_req_ptr->header.dword_0 = 2704 UPIU_HEADER_DWORD( 2705 UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag); 2706 /* clear rest of the fields of basic header */ 2707 ucd_req_ptr->header.dword_1 = 0; 2708 ucd_req_ptr->header.dword_2 = 0; 2709 2710 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2711 } 2712 2713 /** 2714 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2715 * for Device Management Purposes 2716 * @hba: per adapter instance 2717 * @lrbp: pointer to local reference block 2718 */ 2719 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2720 struct ufshcd_lrb *lrbp) 2721 { 2722 u8 upiu_flags; 2723 int ret = 0; 2724 2725 if (hba->ufs_version <= ufshci_version(1, 1)) 2726 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2727 else 2728 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2729 2730 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 2731 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2732 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2733 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2734 ufshcd_prepare_utp_nop_upiu(lrbp); 2735 else 2736 ret = -EINVAL; 2737 2738 return ret; 2739 } 2740 2741 /** 2742 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2743 * for SCSI Purposes 2744 * @hba: per adapter instance 2745 * @lrbp: pointer to local reference block 2746 */ 2747 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2748 { 2749 u8 upiu_flags; 2750 int ret = 0; 2751 2752 if (hba->ufs_version <= ufshci_version(1, 1)) 2753 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2754 else 2755 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2756 2757 if (likely(lrbp->cmd)) { 2758 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2759 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2760 } else { 2761 ret = -EINVAL; 2762 } 2763 2764 return ret; 2765 } 2766 2767 /** 2768 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2769 * @upiu_wlun_id: UPIU W-LUN id 2770 * 2771 * Returns SCSI W-LUN id 2772 */ 2773 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2774 { 2775 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2776 } 2777 2778 static inline bool is_device_wlun(struct scsi_device *sdev) 2779 { 2780 return sdev->lun == 2781 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2782 } 2783 2784 /* 2785 * Associate the UFS controller queue with the default and poll HCTX types. 2786 * Initialize the mq_map[] arrays. 2787 */ 2788 static void ufshcd_map_queues(struct Scsi_Host *shost) 2789 { 2790 struct ufs_hba *hba = shost_priv(shost); 2791 int i, queue_offset = 0; 2792 2793 if (!is_mcq_supported(hba)) { 2794 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2795 hba->nr_queues[HCTX_TYPE_READ] = 0; 2796 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2797 hba->nr_hw_queues = 1; 2798 } 2799 2800 for (i = 0; i < shost->nr_maps; i++) { 2801 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2802 2803 map->nr_queues = hba->nr_queues[i]; 2804 if (!map->nr_queues) 2805 continue; 2806 map->queue_offset = queue_offset; 2807 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2808 map->queue_offset = 0; 2809 2810 blk_mq_map_queues(map); 2811 queue_offset += map->nr_queues; 2812 } 2813 } 2814 2815 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2816 { 2817 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2818 i * ufshcd_get_ucd_size(hba); 2819 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2820 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2821 i * ufshcd_get_ucd_size(hba); 2822 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2823 response_upiu); 2824 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2825 2826 lrb->utr_descriptor_ptr = utrdlp + i; 2827 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2828 i * sizeof(struct utp_transfer_req_desc); 2829 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2830 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2831 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2832 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2833 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2834 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2835 } 2836 2837 /** 2838 * ufshcd_queuecommand - main entry point for SCSI requests 2839 * @host: SCSI host pointer 2840 * @cmd: command from SCSI Midlayer 2841 * 2842 * Returns 0 for success, non-zero in case of failure 2843 */ 2844 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2845 { 2846 struct ufs_hba *hba = shost_priv(host); 2847 int tag = scsi_cmd_to_rq(cmd)->tag; 2848 struct ufshcd_lrb *lrbp; 2849 int err = 0; 2850 struct ufs_hw_queue *hwq = NULL; 2851 2852 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); 2853 2854 switch (hba->ufshcd_state) { 2855 case UFSHCD_STATE_OPERATIONAL: 2856 break; 2857 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2858 /* 2859 * SCSI error handler can call ->queuecommand() while UFS error 2860 * handler is in progress. Error interrupts could change the 2861 * state from UFSHCD_STATE_RESET to 2862 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2863 * being issued in that case. 2864 */ 2865 if (ufshcd_eh_in_progress(hba)) { 2866 err = SCSI_MLQUEUE_HOST_BUSY; 2867 goto out; 2868 } 2869 break; 2870 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2871 /* 2872 * pm_runtime_get_sync() is used at error handling preparation 2873 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2874 * PM ops, it can never be finished if we let SCSI layer keep 2875 * retrying it, which gets err handler stuck forever. Neither 2876 * can we let the scsi cmd pass through, because UFS is in bad 2877 * state, the scsi cmd may eventually time out, which will get 2878 * err handler blocked for too long. So, just fail the scsi cmd 2879 * sent from PM ops, err handler can recover PM error anyways. 2880 */ 2881 if (hba->pm_op_in_progress) { 2882 hba->force_reset = true; 2883 set_host_byte(cmd, DID_BAD_TARGET); 2884 scsi_done(cmd); 2885 goto out; 2886 } 2887 fallthrough; 2888 case UFSHCD_STATE_RESET: 2889 err = SCSI_MLQUEUE_HOST_BUSY; 2890 goto out; 2891 case UFSHCD_STATE_ERROR: 2892 set_host_byte(cmd, DID_ERROR); 2893 scsi_done(cmd); 2894 goto out; 2895 } 2896 2897 hba->req_abort_count = 0; 2898 2899 ufshcd_hold(hba); 2900 2901 lrbp = &hba->lrb[tag]; 2902 lrbp->cmd = cmd; 2903 lrbp->task_tag = tag; 2904 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2905 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2906 2907 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 2908 2909 lrbp->req_abort_skip = false; 2910 2911 ufshpb_prep(hba, lrbp); 2912 2913 ufshcd_comp_scsi_upiu(hba, lrbp); 2914 2915 err = ufshcd_map_sg(hba, lrbp); 2916 if (err) { 2917 ufshcd_release(hba); 2918 goto out; 2919 } 2920 2921 if (is_mcq_enabled(hba)) 2922 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 2923 2924 ufshcd_send_command(hba, tag, hwq); 2925 2926 out: 2927 if (ufs_trigger_eh()) { 2928 unsigned long flags; 2929 2930 spin_lock_irqsave(hba->host->host_lock, flags); 2931 ufshcd_schedule_eh_work(hba); 2932 spin_unlock_irqrestore(hba->host->host_lock, flags); 2933 } 2934 2935 return err; 2936 } 2937 2938 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2939 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2940 { 2941 lrbp->cmd = NULL; 2942 lrbp->task_tag = tag; 2943 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2944 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2945 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2946 hba->dev_cmd.type = cmd_type; 2947 2948 return ufshcd_compose_devman_upiu(hba, lrbp); 2949 } 2950 2951 /* 2952 * Check with the block layer if the command is inflight 2953 * @cmd: command to check. 2954 * 2955 * Returns true if command is inflight; false if not. 2956 */ 2957 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 2958 { 2959 struct request *rq; 2960 2961 if (!cmd) 2962 return false; 2963 2964 rq = scsi_cmd_to_rq(cmd); 2965 if (!blk_mq_request_started(rq)) 2966 return false; 2967 2968 return true; 2969 } 2970 2971 /* 2972 * Clear the pending command in the controller and wait until 2973 * the controller confirms that the command has been cleared. 2974 * @hba: per adapter instance 2975 * @task_tag: The tag number of the command to be cleared. 2976 */ 2977 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 2978 { 2979 u32 mask = 1U << task_tag; 2980 unsigned long flags; 2981 int err; 2982 2983 if (is_mcq_enabled(hba)) { 2984 /* 2985 * MCQ mode. Clean up the MCQ resources similar to 2986 * what the ufshcd_utrl_clear() does for SDB mode. 2987 */ 2988 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 2989 if (err) { 2990 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 2991 __func__, task_tag, err); 2992 return err; 2993 } 2994 return 0; 2995 } 2996 2997 /* clear outstanding transaction before retry */ 2998 spin_lock_irqsave(hba->host->host_lock, flags); 2999 ufshcd_utrl_clear(hba, mask); 3000 spin_unlock_irqrestore(hba->host->host_lock, flags); 3001 3002 /* 3003 * wait for h/w to clear corresponding bit in door-bell. 3004 * max. wait is 1 sec. 3005 */ 3006 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 3007 mask, ~mask, 1000, 1000); 3008 } 3009 3010 static int 3011 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3012 { 3013 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 3014 3015 /* Get the UPIU response */ 3016 query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >> 3017 UPIU_RSP_CODE_OFFSET; 3018 return query_res->response; 3019 } 3020 3021 /** 3022 * ufshcd_dev_cmd_completion() - handles device management command responses 3023 * @hba: per adapter instance 3024 * @lrbp: pointer to local reference block 3025 */ 3026 static int 3027 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3028 { 3029 int resp; 3030 int err = 0; 3031 3032 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3033 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3034 3035 switch (resp) { 3036 case UPIU_TRANSACTION_NOP_IN: 3037 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3038 err = -EINVAL; 3039 dev_err(hba->dev, "%s: unexpected response %x\n", 3040 __func__, resp); 3041 } 3042 break; 3043 case UPIU_TRANSACTION_QUERY_RSP: 3044 err = ufshcd_check_query_response(hba, lrbp); 3045 if (!err) 3046 err = ufshcd_copy_query_response(hba, lrbp); 3047 break; 3048 case UPIU_TRANSACTION_REJECT_UPIU: 3049 /* TODO: handle Reject UPIU Response */ 3050 err = -EPERM; 3051 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3052 __func__); 3053 break; 3054 case UPIU_TRANSACTION_RESPONSE: 3055 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3056 err = -EINVAL; 3057 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3058 } 3059 break; 3060 default: 3061 err = -EINVAL; 3062 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3063 __func__, resp); 3064 break; 3065 } 3066 3067 return err; 3068 } 3069 3070 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3071 struct ufshcd_lrb *lrbp, int max_timeout) 3072 { 3073 unsigned long time_left = msecs_to_jiffies(max_timeout); 3074 unsigned long flags; 3075 bool pending; 3076 int err; 3077 3078 retry: 3079 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3080 time_left); 3081 3082 if (likely(time_left)) { 3083 /* 3084 * The completion handler called complete() and the caller of 3085 * this function still owns the @lrbp tag so the code below does 3086 * not trigger any race conditions. 3087 */ 3088 hba->dev_cmd.complete = NULL; 3089 err = ufshcd_get_tr_ocs(lrbp, NULL); 3090 if (!err) 3091 err = ufshcd_dev_cmd_completion(hba, lrbp); 3092 } else { 3093 err = -ETIMEDOUT; 3094 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3095 __func__, lrbp->task_tag); 3096 3097 /* MCQ mode */ 3098 if (is_mcq_enabled(hba)) { 3099 err = ufshcd_clear_cmd(hba, lrbp->task_tag); 3100 hba->dev_cmd.complete = NULL; 3101 return err; 3102 } 3103 3104 /* SDB mode */ 3105 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3106 /* successfully cleared the command, retry if needed */ 3107 err = -EAGAIN; 3108 /* 3109 * Since clearing the command succeeded we also need to 3110 * clear the task tag bit from the outstanding_reqs 3111 * variable. 3112 */ 3113 spin_lock_irqsave(&hba->outstanding_lock, flags); 3114 pending = test_bit(lrbp->task_tag, 3115 &hba->outstanding_reqs); 3116 if (pending) { 3117 hba->dev_cmd.complete = NULL; 3118 __clear_bit(lrbp->task_tag, 3119 &hba->outstanding_reqs); 3120 } 3121 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3122 3123 if (!pending) { 3124 /* 3125 * The completion handler ran while we tried to 3126 * clear the command. 3127 */ 3128 time_left = 1; 3129 goto retry; 3130 } 3131 } else { 3132 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3133 __func__, lrbp->task_tag); 3134 3135 spin_lock_irqsave(&hba->outstanding_lock, flags); 3136 pending = test_bit(lrbp->task_tag, 3137 &hba->outstanding_reqs); 3138 if (pending) 3139 hba->dev_cmd.complete = NULL; 3140 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3141 3142 if (!pending) { 3143 /* 3144 * The completion handler ran while we tried to 3145 * clear the command. 3146 */ 3147 time_left = 1; 3148 goto retry; 3149 } 3150 } 3151 } 3152 3153 return err; 3154 } 3155 3156 /** 3157 * ufshcd_exec_dev_cmd - API for sending device management requests 3158 * @hba: UFS hba 3159 * @cmd_type: specifies the type (NOP, Query...) 3160 * @timeout: timeout in milliseconds 3161 * 3162 * NOTE: Since there is only one available tag for device management commands, 3163 * it is expected you hold the hba->dev_cmd.lock mutex. 3164 */ 3165 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3166 enum dev_cmd_type cmd_type, int timeout) 3167 { 3168 DECLARE_COMPLETION_ONSTACK(wait); 3169 const u32 tag = hba->reserved_slot; 3170 struct ufshcd_lrb *lrbp; 3171 int err; 3172 3173 /* Protects use of hba->reserved_slot. */ 3174 lockdep_assert_held(&hba->dev_cmd.lock); 3175 3176 down_read(&hba->clk_scaling_lock); 3177 3178 lrbp = &hba->lrb[tag]; 3179 lrbp->cmd = NULL; 3180 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3181 if (unlikely(err)) 3182 goto out; 3183 3184 hba->dev_cmd.complete = &wait; 3185 3186 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3187 3188 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3189 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3190 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3191 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3192 3193 out: 3194 up_read(&hba->clk_scaling_lock); 3195 return err; 3196 } 3197 3198 /** 3199 * ufshcd_init_query() - init the query response and request parameters 3200 * @hba: per-adapter instance 3201 * @request: address of the request pointer to be initialized 3202 * @response: address of the response pointer to be initialized 3203 * @opcode: operation to perform 3204 * @idn: flag idn to access 3205 * @index: LU number to access 3206 * @selector: query/flag/descriptor further identification 3207 */ 3208 static inline void ufshcd_init_query(struct ufs_hba *hba, 3209 struct ufs_query_req **request, struct ufs_query_res **response, 3210 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3211 { 3212 *request = &hba->dev_cmd.query.request; 3213 *response = &hba->dev_cmd.query.response; 3214 memset(*request, 0, sizeof(struct ufs_query_req)); 3215 memset(*response, 0, sizeof(struct ufs_query_res)); 3216 (*request)->upiu_req.opcode = opcode; 3217 (*request)->upiu_req.idn = idn; 3218 (*request)->upiu_req.index = index; 3219 (*request)->upiu_req.selector = selector; 3220 } 3221 3222 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3223 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3224 { 3225 int ret; 3226 int retries; 3227 3228 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3229 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3230 if (ret) 3231 dev_dbg(hba->dev, 3232 "%s: failed with error %d, retries %d\n", 3233 __func__, ret, retries); 3234 else 3235 break; 3236 } 3237 3238 if (ret) 3239 dev_err(hba->dev, 3240 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3241 __func__, opcode, idn, ret, retries); 3242 return ret; 3243 } 3244 3245 /** 3246 * ufshcd_query_flag() - API function for sending flag query requests 3247 * @hba: per-adapter instance 3248 * @opcode: flag query to perform 3249 * @idn: flag idn to access 3250 * @index: flag index to access 3251 * @flag_res: the flag value after the query request completes 3252 * 3253 * Returns 0 for success, non-zero in case of failure 3254 */ 3255 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3256 enum flag_idn idn, u8 index, bool *flag_res) 3257 { 3258 struct ufs_query_req *request = NULL; 3259 struct ufs_query_res *response = NULL; 3260 int err, selector = 0; 3261 int timeout = QUERY_REQ_TIMEOUT; 3262 3263 BUG_ON(!hba); 3264 3265 ufshcd_hold(hba); 3266 mutex_lock(&hba->dev_cmd.lock); 3267 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3268 selector); 3269 3270 switch (opcode) { 3271 case UPIU_QUERY_OPCODE_SET_FLAG: 3272 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3273 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3274 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3275 break; 3276 case UPIU_QUERY_OPCODE_READ_FLAG: 3277 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3278 if (!flag_res) { 3279 /* No dummy reads */ 3280 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3281 __func__); 3282 err = -EINVAL; 3283 goto out_unlock; 3284 } 3285 break; 3286 default: 3287 dev_err(hba->dev, 3288 "%s: Expected query flag opcode but got = %d\n", 3289 __func__, opcode); 3290 err = -EINVAL; 3291 goto out_unlock; 3292 } 3293 3294 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3295 3296 if (err) { 3297 dev_err(hba->dev, 3298 "%s: Sending flag query for idn %d failed, err = %d\n", 3299 __func__, idn, err); 3300 goto out_unlock; 3301 } 3302 3303 if (flag_res) 3304 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3305 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3306 3307 out_unlock: 3308 mutex_unlock(&hba->dev_cmd.lock); 3309 ufshcd_release(hba); 3310 return err; 3311 } 3312 3313 /** 3314 * ufshcd_query_attr - API function for sending attribute requests 3315 * @hba: per-adapter instance 3316 * @opcode: attribute opcode 3317 * @idn: attribute idn to access 3318 * @index: index field 3319 * @selector: selector field 3320 * @attr_val: the attribute value after the query request completes 3321 * 3322 * Returns 0 for success, non-zero in case of failure 3323 */ 3324 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3325 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3326 { 3327 struct ufs_query_req *request = NULL; 3328 struct ufs_query_res *response = NULL; 3329 int err; 3330 3331 BUG_ON(!hba); 3332 3333 if (!attr_val) { 3334 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3335 __func__, opcode); 3336 return -EINVAL; 3337 } 3338 3339 ufshcd_hold(hba); 3340 3341 mutex_lock(&hba->dev_cmd.lock); 3342 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3343 selector); 3344 3345 switch (opcode) { 3346 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3347 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3348 request->upiu_req.value = cpu_to_be32(*attr_val); 3349 break; 3350 case UPIU_QUERY_OPCODE_READ_ATTR: 3351 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3352 break; 3353 default: 3354 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3355 __func__, opcode); 3356 err = -EINVAL; 3357 goto out_unlock; 3358 } 3359 3360 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3361 3362 if (err) { 3363 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3364 __func__, opcode, idn, index, err); 3365 goto out_unlock; 3366 } 3367 3368 *attr_val = be32_to_cpu(response->upiu_res.value); 3369 3370 out_unlock: 3371 mutex_unlock(&hba->dev_cmd.lock); 3372 ufshcd_release(hba); 3373 return err; 3374 } 3375 3376 /** 3377 * ufshcd_query_attr_retry() - API function for sending query 3378 * attribute with retries 3379 * @hba: per-adapter instance 3380 * @opcode: attribute opcode 3381 * @idn: attribute idn to access 3382 * @index: index field 3383 * @selector: selector field 3384 * @attr_val: the attribute value after the query request 3385 * completes 3386 * 3387 * Returns 0 for success, non-zero in case of failure 3388 */ 3389 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3390 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3391 u32 *attr_val) 3392 { 3393 int ret = 0; 3394 u32 retries; 3395 3396 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3397 ret = ufshcd_query_attr(hba, opcode, idn, index, 3398 selector, attr_val); 3399 if (ret) 3400 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3401 __func__, ret, retries); 3402 else 3403 break; 3404 } 3405 3406 if (ret) 3407 dev_err(hba->dev, 3408 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3409 __func__, idn, ret, QUERY_REQ_RETRIES); 3410 return ret; 3411 } 3412 3413 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3414 enum query_opcode opcode, enum desc_idn idn, u8 index, 3415 u8 selector, u8 *desc_buf, int *buf_len) 3416 { 3417 struct ufs_query_req *request = NULL; 3418 struct ufs_query_res *response = NULL; 3419 int err; 3420 3421 BUG_ON(!hba); 3422 3423 if (!desc_buf) { 3424 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3425 __func__, opcode); 3426 return -EINVAL; 3427 } 3428 3429 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3430 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3431 __func__, *buf_len); 3432 return -EINVAL; 3433 } 3434 3435 ufshcd_hold(hba); 3436 3437 mutex_lock(&hba->dev_cmd.lock); 3438 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3439 selector); 3440 hba->dev_cmd.query.descriptor = desc_buf; 3441 request->upiu_req.length = cpu_to_be16(*buf_len); 3442 3443 switch (opcode) { 3444 case UPIU_QUERY_OPCODE_WRITE_DESC: 3445 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3446 break; 3447 case UPIU_QUERY_OPCODE_READ_DESC: 3448 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3449 break; 3450 default: 3451 dev_err(hba->dev, 3452 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3453 __func__, opcode); 3454 err = -EINVAL; 3455 goto out_unlock; 3456 } 3457 3458 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3459 3460 if (err) { 3461 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3462 __func__, opcode, idn, index, err); 3463 goto out_unlock; 3464 } 3465 3466 *buf_len = be16_to_cpu(response->upiu_res.length); 3467 3468 out_unlock: 3469 hba->dev_cmd.query.descriptor = NULL; 3470 mutex_unlock(&hba->dev_cmd.lock); 3471 ufshcd_release(hba); 3472 return err; 3473 } 3474 3475 /** 3476 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3477 * @hba: per-adapter instance 3478 * @opcode: attribute opcode 3479 * @idn: attribute idn to access 3480 * @index: index field 3481 * @selector: selector field 3482 * @desc_buf: the buffer that contains the descriptor 3483 * @buf_len: length parameter passed to the device 3484 * 3485 * Returns 0 for success, non-zero in case of failure. 3486 * The buf_len parameter will contain, on return, the length parameter 3487 * received on the response. 3488 */ 3489 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3490 enum query_opcode opcode, 3491 enum desc_idn idn, u8 index, 3492 u8 selector, 3493 u8 *desc_buf, int *buf_len) 3494 { 3495 int err; 3496 int retries; 3497 3498 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3499 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3500 selector, desc_buf, buf_len); 3501 if (!err || err == -EINVAL) 3502 break; 3503 } 3504 3505 return err; 3506 } 3507 3508 /** 3509 * ufshcd_read_desc_param - read the specified descriptor parameter 3510 * @hba: Pointer to adapter instance 3511 * @desc_id: descriptor idn value 3512 * @desc_index: descriptor index 3513 * @param_offset: offset of the parameter to read 3514 * @param_read_buf: pointer to buffer where parameter would be read 3515 * @param_size: sizeof(param_read_buf) 3516 * 3517 * Return 0 in case of success, non-zero otherwise 3518 */ 3519 int ufshcd_read_desc_param(struct ufs_hba *hba, 3520 enum desc_idn desc_id, 3521 int desc_index, 3522 u8 param_offset, 3523 u8 *param_read_buf, 3524 u8 param_size) 3525 { 3526 int ret; 3527 u8 *desc_buf; 3528 int buff_len = QUERY_DESC_MAX_SIZE; 3529 bool is_kmalloc = true; 3530 3531 /* Safety check */ 3532 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3533 return -EINVAL; 3534 3535 /* Check whether we need temp memory */ 3536 if (param_offset != 0 || param_size < buff_len) { 3537 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3538 if (!desc_buf) 3539 return -ENOMEM; 3540 } else { 3541 desc_buf = param_read_buf; 3542 is_kmalloc = false; 3543 } 3544 3545 /* Request for full descriptor */ 3546 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3547 desc_id, desc_index, 0, 3548 desc_buf, &buff_len); 3549 if (ret) { 3550 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3551 __func__, desc_id, desc_index, param_offset, ret); 3552 goto out; 3553 } 3554 3555 /* Update descriptor length */ 3556 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3557 3558 if (param_offset >= buff_len) { 3559 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3560 __func__, param_offset, desc_id, buff_len); 3561 ret = -EINVAL; 3562 goto out; 3563 } 3564 3565 /* Sanity check */ 3566 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3567 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3568 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3569 ret = -EINVAL; 3570 goto out; 3571 } 3572 3573 if (is_kmalloc) { 3574 /* Make sure we don't copy more data than available */ 3575 if (param_offset >= buff_len) 3576 ret = -EINVAL; 3577 else 3578 memcpy(param_read_buf, &desc_buf[param_offset], 3579 min_t(u32, param_size, buff_len - param_offset)); 3580 } 3581 out: 3582 if (is_kmalloc) 3583 kfree(desc_buf); 3584 return ret; 3585 } 3586 3587 /** 3588 * struct uc_string_id - unicode string 3589 * 3590 * @len: size of this descriptor inclusive 3591 * @type: descriptor type 3592 * @uc: unicode string character 3593 */ 3594 struct uc_string_id { 3595 u8 len; 3596 u8 type; 3597 wchar_t uc[]; 3598 } __packed; 3599 3600 /* replace non-printable or non-ASCII characters with spaces */ 3601 static inline char ufshcd_remove_non_printable(u8 ch) 3602 { 3603 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3604 } 3605 3606 /** 3607 * ufshcd_read_string_desc - read string descriptor 3608 * @hba: pointer to adapter instance 3609 * @desc_index: descriptor index 3610 * @buf: pointer to buffer where descriptor would be read, 3611 * the caller should free the memory. 3612 * @ascii: if true convert from unicode to ascii characters 3613 * null terminated string. 3614 * 3615 * Return: 3616 * * string size on success. 3617 * * -ENOMEM: on allocation failure 3618 * * -EINVAL: on a wrong parameter 3619 */ 3620 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3621 u8 **buf, bool ascii) 3622 { 3623 struct uc_string_id *uc_str; 3624 u8 *str; 3625 int ret; 3626 3627 if (!buf) 3628 return -EINVAL; 3629 3630 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3631 if (!uc_str) 3632 return -ENOMEM; 3633 3634 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3635 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3636 if (ret < 0) { 3637 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3638 QUERY_REQ_RETRIES, ret); 3639 str = NULL; 3640 goto out; 3641 } 3642 3643 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3644 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3645 str = NULL; 3646 ret = 0; 3647 goto out; 3648 } 3649 3650 if (ascii) { 3651 ssize_t ascii_len; 3652 int i; 3653 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3654 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3655 str = kzalloc(ascii_len, GFP_KERNEL); 3656 if (!str) { 3657 ret = -ENOMEM; 3658 goto out; 3659 } 3660 3661 /* 3662 * the descriptor contains string in UTF16 format 3663 * we need to convert to utf-8 so it can be displayed 3664 */ 3665 ret = utf16s_to_utf8s(uc_str->uc, 3666 uc_str->len - QUERY_DESC_HDR_SIZE, 3667 UTF16_BIG_ENDIAN, str, ascii_len); 3668 3669 /* replace non-printable or non-ASCII characters with spaces */ 3670 for (i = 0; i < ret; i++) 3671 str[i] = ufshcd_remove_non_printable(str[i]); 3672 3673 str[ret++] = '\0'; 3674 3675 } else { 3676 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3677 if (!str) { 3678 ret = -ENOMEM; 3679 goto out; 3680 } 3681 ret = uc_str->len; 3682 } 3683 out: 3684 *buf = str; 3685 kfree(uc_str); 3686 return ret; 3687 } 3688 3689 /** 3690 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3691 * @hba: Pointer to adapter instance 3692 * @lun: lun id 3693 * @param_offset: offset of the parameter to read 3694 * @param_read_buf: pointer to buffer where parameter would be read 3695 * @param_size: sizeof(param_read_buf) 3696 * 3697 * Return 0 in case of success, non-zero otherwise 3698 */ 3699 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3700 int lun, 3701 enum unit_desc_param param_offset, 3702 u8 *param_read_buf, 3703 u32 param_size) 3704 { 3705 /* 3706 * Unit descriptors are only available for general purpose LUs (LUN id 3707 * from 0 to 7) and RPMB Well known LU. 3708 */ 3709 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3710 return -EOPNOTSUPP; 3711 3712 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3713 param_offset, param_read_buf, param_size); 3714 } 3715 3716 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3717 { 3718 int err = 0; 3719 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3720 3721 if (hba->dev_info.wspecversion >= 0x300) { 3722 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3723 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3724 &gating_wait); 3725 if (err) 3726 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3727 err, gating_wait); 3728 3729 if (gating_wait == 0) { 3730 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3731 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3732 gating_wait); 3733 } 3734 3735 hba->dev_info.clk_gating_wait_us = gating_wait; 3736 } 3737 3738 return err; 3739 } 3740 3741 /** 3742 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3743 * @hba: per adapter instance 3744 * 3745 * 1. Allocate DMA memory for Command Descriptor array 3746 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3747 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3748 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3749 * (UTMRDL) 3750 * 4. Allocate memory for local reference block(lrb). 3751 * 3752 * Returns 0 for success, non-zero in case of failure 3753 */ 3754 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3755 { 3756 size_t utmrdl_size, utrdl_size, ucdl_size; 3757 3758 /* Allocate memory for UTP command descriptors */ 3759 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3760 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3761 ucdl_size, 3762 &hba->ucdl_dma_addr, 3763 GFP_KERNEL); 3764 3765 /* 3766 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3767 */ 3768 if (!hba->ucdl_base_addr || 3769 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3770 dev_err(hba->dev, 3771 "Command Descriptor Memory allocation failed\n"); 3772 goto out; 3773 } 3774 3775 /* 3776 * Allocate memory for UTP Transfer descriptors 3777 * UFSHCI requires 1KB alignment of UTRD 3778 */ 3779 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3780 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3781 utrdl_size, 3782 &hba->utrdl_dma_addr, 3783 GFP_KERNEL); 3784 if (!hba->utrdl_base_addr || 3785 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3786 dev_err(hba->dev, 3787 "Transfer Descriptor Memory allocation failed\n"); 3788 goto out; 3789 } 3790 3791 /* 3792 * Skip utmrdl allocation; it may have been 3793 * allocated during first pass and not released during 3794 * MCQ memory allocation. 3795 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3796 */ 3797 if (hba->utmrdl_base_addr) 3798 goto skip_utmrdl; 3799 /* 3800 * Allocate memory for UTP Task Management descriptors 3801 * UFSHCI requires 1KB alignment of UTMRD 3802 */ 3803 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3804 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3805 utmrdl_size, 3806 &hba->utmrdl_dma_addr, 3807 GFP_KERNEL); 3808 if (!hba->utmrdl_base_addr || 3809 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3810 dev_err(hba->dev, 3811 "Task Management Descriptor Memory allocation failed\n"); 3812 goto out; 3813 } 3814 3815 skip_utmrdl: 3816 /* Allocate memory for local reference block */ 3817 hba->lrb = devm_kcalloc(hba->dev, 3818 hba->nutrs, sizeof(struct ufshcd_lrb), 3819 GFP_KERNEL); 3820 if (!hba->lrb) { 3821 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3822 goto out; 3823 } 3824 return 0; 3825 out: 3826 return -ENOMEM; 3827 } 3828 3829 /** 3830 * ufshcd_host_memory_configure - configure local reference block with 3831 * memory offsets 3832 * @hba: per adapter instance 3833 * 3834 * Configure Host memory space 3835 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3836 * address. 3837 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3838 * and PRDT offset. 3839 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3840 * into local reference block. 3841 */ 3842 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3843 { 3844 struct utp_transfer_req_desc *utrdlp; 3845 dma_addr_t cmd_desc_dma_addr; 3846 dma_addr_t cmd_desc_element_addr; 3847 u16 response_offset; 3848 u16 prdt_offset; 3849 int cmd_desc_size; 3850 int i; 3851 3852 utrdlp = hba->utrdl_base_addr; 3853 3854 response_offset = 3855 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3856 prdt_offset = 3857 offsetof(struct utp_transfer_cmd_desc, prd_table); 3858 3859 cmd_desc_size = ufshcd_get_ucd_size(hba); 3860 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3861 3862 for (i = 0; i < hba->nutrs; i++) { 3863 /* Configure UTRD with command descriptor base address */ 3864 cmd_desc_element_addr = 3865 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3866 utrdlp[i].command_desc_base_addr = 3867 cpu_to_le64(cmd_desc_element_addr); 3868 3869 /* Response upiu and prdt offset should be in double words */ 3870 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3871 utrdlp[i].response_upiu_offset = 3872 cpu_to_le16(response_offset); 3873 utrdlp[i].prd_table_offset = 3874 cpu_to_le16(prdt_offset); 3875 utrdlp[i].response_upiu_length = 3876 cpu_to_le16(ALIGNED_UPIU_SIZE); 3877 } else { 3878 utrdlp[i].response_upiu_offset = 3879 cpu_to_le16(response_offset >> 2); 3880 utrdlp[i].prd_table_offset = 3881 cpu_to_le16(prdt_offset >> 2); 3882 utrdlp[i].response_upiu_length = 3883 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3884 } 3885 3886 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3887 } 3888 } 3889 3890 /** 3891 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3892 * @hba: per adapter instance 3893 * 3894 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3895 * in order to initialize the Unipro link startup procedure. 3896 * Once the Unipro links are up, the device connected to the controller 3897 * is detected. 3898 * 3899 * Returns 0 on success, non-zero value on failure 3900 */ 3901 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3902 { 3903 struct uic_command uic_cmd = {0}; 3904 int ret; 3905 3906 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3907 3908 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3909 if (ret) 3910 dev_dbg(hba->dev, 3911 "dme-link-startup: error code %d\n", ret); 3912 return ret; 3913 } 3914 /** 3915 * ufshcd_dme_reset - UIC command for DME_RESET 3916 * @hba: per adapter instance 3917 * 3918 * DME_RESET command is issued in order to reset UniPro stack. 3919 * This function now deals with cold reset. 3920 * 3921 * Returns 0 on success, non-zero value on failure 3922 */ 3923 static int ufshcd_dme_reset(struct ufs_hba *hba) 3924 { 3925 struct uic_command uic_cmd = {0}; 3926 int ret; 3927 3928 uic_cmd.command = UIC_CMD_DME_RESET; 3929 3930 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3931 if (ret) 3932 dev_err(hba->dev, 3933 "dme-reset: error code %d\n", ret); 3934 3935 return ret; 3936 } 3937 3938 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 3939 int agreed_gear, 3940 int adapt_val) 3941 { 3942 int ret; 3943 3944 if (agreed_gear < UFS_HS_G4) 3945 adapt_val = PA_NO_ADAPT; 3946 3947 ret = ufshcd_dme_set(hba, 3948 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 3949 adapt_val); 3950 return ret; 3951 } 3952 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 3953 3954 /** 3955 * ufshcd_dme_enable - UIC command for DME_ENABLE 3956 * @hba: per adapter instance 3957 * 3958 * DME_ENABLE command is issued in order to enable UniPro stack. 3959 * 3960 * Returns 0 on success, non-zero value on failure 3961 */ 3962 static int ufshcd_dme_enable(struct ufs_hba *hba) 3963 { 3964 struct uic_command uic_cmd = {0}; 3965 int ret; 3966 3967 uic_cmd.command = UIC_CMD_DME_ENABLE; 3968 3969 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3970 if (ret) 3971 dev_err(hba->dev, 3972 "dme-enable: error code %d\n", ret); 3973 3974 return ret; 3975 } 3976 3977 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3978 { 3979 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3980 unsigned long min_sleep_time_us; 3981 3982 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3983 return; 3984 3985 /* 3986 * last_dme_cmd_tstamp will be 0 only for 1st call to 3987 * this function 3988 */ 3989 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3990 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3991 } else { 3992 unsigned long delta = 3993 (unsigned long) ktime_to_us( 3994 ktime_sub(ktime_get(), 3995 hba->last_dme_cmd_tstamp)); 3996 3997 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3998 min_sleep_time_us = 3999 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 4000 else 4001 return; /* no more delay required */ 4002 } 4003 4004 /* allow sleep for extra 50us if needed */ 4005 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 4006 } 4007 4008 /** 4009 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 4010 * @hba: per adapter instance 4011 * @attr_sel: uic command argument1 4012 * @attr_set: attribute set type as uic command argument2 4013 * @mib_val: setting value as uic command argument3 4014 * @peer: indicate whether peer or local 4015 * 4016 * Returns 0 on success, non-zero value on failure 4017 */ 4018 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4019 u8 attr_set, u32 mib_val, u8 peer) 4020 { 4021 struct uic_command uic_cmd = {0}; 4022 static const char *const action[] = { 4023 "dme-set", 4024 "dme-peer-set" 4025 }; 4026 const char *set = action[!!peer]; 4027 int ret; 4028 int retries = UFS_UIC_COMMAND_RETRIES; 4029 4030 uic_cmd.command = peer ? 4031 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 4032 uic_cmd.argument1 = attr_sel; 4033 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 4034 uic_cmd.argument3 = mib_val; 4035 4036 do { 4037 /* for peer attributes we retry upon failure */ 4038 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4039 if (ret) 4040 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4041 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4042 } while (ret && peer && --retries); 4043 4044 if (ret) 4045 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4046 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4047 UFS_UIC_COMMAND_RETRIES - retries); 4048 4049 return ret; 4050 } 4051 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4052 4053 /** 4054 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4055 * @hba: per adapter instance 4056 * @attr_sel: uic command argument1 4057 * @mib_val: the value of the attribute as returned by the UIC command 4058 * @peer: indicate whether peer or local 4059 * 4060 * Returns 0 on success, non-zero value on failure 4061 */ 4062 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4063 u32 *mib_val, u8 peer) 4064 { 4065 struct uic_command uic_cmd = {0}; 4066 static const char *const action[] = { 4067 "dme-get", 4068 "dme-peer-get" 4069 }; 4070 const char *get = action[!!peer]; 4071 int ret; 4072 int retries = UFS_UIC_COMMAND_RETRIES; 4073 struct ufs_pa_layer_attr orig_pwr_info; 4074 struct ufs_pa_layer_attr temp_pwr_info; 4075 bool pwr_mode_change = false; 4076 4077 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4078 orig_pwr_info = hba->pwr_info; 4079 temp_pwr_info = orig_pwr_info; 4080 4081 if (orig_pwr_info.pwr_tx == FAST_MODE || 4082 orig_pwr_info.pwr_rx == FAST_MODE) { 4083 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4084 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4085 pwr_mode_change = true; 4086 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4087 orig_pwr_info.pwr_rx == SLOW_MODE) { 4088 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4089 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4090 pwr_mode_change = true; 4091 } 4092 if (pwr_mode_change) { 4093 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4094 if (ret) 4095 goto out; 4096 } 4097 } 4098 4099 uic_cmd.command = peer ? 4100 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 4101 uic_cmd.argument1 = attr_sel; 4102 4103 do { 4104 /* for peer attributes we retry upon failure */ 4105 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4106 if (ret) 4107 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4108 get, UIC_GET_ATTR_ID(attr_sel), ret); 4109 } while (ret && peer && --retries); 4110 4111 if (ret) 4112 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4113 get, UIC_GET_ATTR_ID(attr_sel), 4114 UFS_UIC_COMMAND_RETRIES - retries); 4115 4116 if (mib_val && !ret) 4117 *mib_val = uic_cmd.argument3; 4118 4119 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4120 && pwr_mode_change) 4121 ufshcd_change_power_mode(hba, &orig_pwr_info); 4122 out: 4123 return ret; 4124 } 4125 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4126 4127 /** 4128 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4129 * state) and waits for it to take effect. 4130 * 4131 * @hba: per adapter instance 4132 * @cmd: UIC command to execute 4133 * 4134 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4135 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4136 * and device UniPro link and hence it's final completion would be indicated by 4137 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4138 * addition to normal UIC command completion Status (UCCS). This function only 4139 * returns after the relevant status bits indicate the completion. 4140 * 4141 * Returns 0 on success, non-zero value on failure 4142 */ 4143 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4144 { 4145 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4146 unsigned long flags; 4147 u8 status; 4148 int ret; 4149 bool reenable_intr = false; 4150 4151 mutex_lock(&hba->uic_cmd_mutex); 4152 ufshcd_add_delay_before_dme_cmd(hba); 4153 4154 spin_lock_irqsave(hba->host->host_lock, flags); 4155 if (ufshcd_is_link_broken(hba)) { 4156 ret = -ENOLINK; 4157 goto out_unlock; 4158 } 4159 hba->uic_async_done = &uic_async_done; 4160 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4161 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4162 /* 4163 * Make sure UIC command completion interrupt is disabled before 4164 * issuing UIC command. 4165 */ 4166 wmb(); 4167 reenable_intr = true; 4168 } 4169 ret = __ufshcd_send_uic_cmd(hba, cmd, false); 4170 spin_unlock_irqrestore(hba->host->host_lock, flags); 4171 if (ret) { 4172 dev_err(hba->dev, 4173 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4174 cmd->command, cmd->argument3, ret); 4175 goto out; 4176 } 4177 4178 if (!wait_for_completion_timeout(hba->uic_async_done, 4179 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4180 dev_err(hba->dev, 4181 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4182 cmd->command, cmd->argument3); 4183 4184 if (!cmd->cmd_active) { 4185 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4186 __func__); 4187 goto check_upmcrs; 4188 } 4189 4190 ret = -ETIMEDOUT; 4191 goto out; 4192 } 4193 4194 check_upmcrs: 4195 status = ufshcd_get_upmcrs(hba); 4196 if (status != PWR_LOCAL) { 4197 dev_err(hba->dev, 4198 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4199 cmd->command, status); 4200 ret = (status != PWR_OK) ? status : -1; 4201 } 4202 out: 4203 if (ret) { 4204 ufshcd_print_host_state(hba); 4205 ufshcd_print_pwr_info(hba); 4206 ufshcd_print_evt_hist(hba); 4207 } 4208 4209 spin_lock_irqsave(hba->host->host_lock, flags); 4210 hba->active_uic_cmd = NULL; 4211 hba->uic_async_done = NULL; 4212 if (reenable_intr) 4213 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4214 if (ret) { 4215 ufshcd_set_link_broken(hba); 4216 ufshcd_schedule_eh_work(hba); 4217 } 4218 out_unlock: 4219 spin_unlock_irqrestore(hba->host->host_lock, flags); 4220 mutex_unlock(&hba->uic_cmd_mutex); 4221 4222 return ret; 4223 } 4224 4225 /** 4226 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4227 * using DME_SET primitives. 4228 * @hba: per adapter instance 4229 * @mode: powr mode value 4230 * 4231 * Returns 0 on success, non-zero value on failure 4232 */ 4233 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4234 { 4235 struct uic_command uic_cmd = {0}; 4236 int ret; 4237 4238 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4239 ret = ufshcd_dme_set(hba, 4240 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4241 if (ret) { 4242 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4243 __func__, ret); 4244 goto out; 4245 } 4246 } 4247 4248 uic_cmd.command = UIC_CMD_DME_SET; 4249 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 4250 uic_cmd.argument3 = mode; 4251 ufshcd_hold(hba); 4252 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4253 ufshcd_release(hba); 4254 4255 out: 4256 return ret; 4257 } 4258 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4259 4260 int ufshcd_link_recovery(struct ufs_hba *hba) 4261 { 4262 int ret; 4263 unsigned long flags; 4264 4265 spin_lock_irqsave(hba->host->host_lock, flags); 4266 hba->ufshcd_state = UFSHCD_STATE_RESET; 4267 ufshcd_set_eh_in_progress(hba); 4268 spin_unlock_irqrestore(hba->host->host_lock, flags); 4269 4270 /* Reset the attached device */ 4271 ufshcd_device_reset(hba); 4272 4273 ret = ufshcd_host_reset_and_restore(hba); 4274 4275 spin_lock_irqsave(hba->host->host_lock, flags); 4276 if (ret) 4277 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4278 ufshcd_clear_eh_in_progress(hba); 4279 spin_unlock_irqrestore(hba->host->host_lock, flags); 4280 4281 if (ret) 4282 dev_err(hba->dev, "%s: link recovery failed, err %d", 4283 __func__, ret); 4284 4285 return ret; 4286 } 4287 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4288 4289 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4290 { 4291 int ret; 4292 struct uic_command uic_cmd = {0}; 4293 ktime_t start = ktime_get(); 4294 4295 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4296 4297 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 4298 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4299 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4300 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4301 4302 if (ret) 4303 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4304 __func__, ret); 4305 else 4306 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4307 POST_CHANGE); 4308 4309 return ret; 4310 } 4311 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4312 4313 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4314 { 4315 struct uic_command uic_cmd = {0}; 4316 int ret; 4317 ktime_t start = ktime_get(); 4318 4319 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4320 4321 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 4322 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4323 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4324 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4325 4326 if (ret) { 4327 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4328 __func__, ret); 4329 } else { 4330 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4331 POST_CHANGE); 4332 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4333 hba->ufs_stats.hibern8_exit_cnt++; 4334 } 4335 4336 return ret; 4337 } 4338 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4339 4340 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4341 { 4342 unsigned long flags; 4343 bool update = false; 4344 4345 if (!ufshcd_is_auto_hibern8_supported(hba)) 4346 return; 4347 4348 spin_lock_irqsave(hba->host->host_lock, flags); 4349 if (hba->ahit != ahit) { 4350 hba->ahit = ahit; 4351 update = true; 4352 } 4353 spin_unlock_irqrestore(hba->host->host_lock, flags); 4354 4355 if (update && 4356 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4357 ufshcd_rpm_get_sync(hba); 4358 ufshcd_hold(hba); 4359 ufshcd_auto_hibern8_enable(hba); 4360 ufshcd_release(hba); 4361 ufshcd_rpm_put_sync(hba); 4362 } 4363 } 4364 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4365 4366 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4367 { 4368 if (!ufshcd_is_auto_hibern8_supported(hba)) 4369 return; 4370 4371 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4372 } 4373 4374 /** 4375 * ufshcd_init_pwr_info - setting the POR (power on reset) 4376 * values in hba power info 4377 * @hba: per-adapter instance 4378 */ 4379 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4380 { 4381 hba->pwr_info.gear_rx = UFS_PWM_G1; 4382 hba->pwr_info.gear_tx = UFS_PWM_G1; 4383 hba->pwr_info.lane_rx = 1; 4384 hba->pwr_info.lane_tx = 1; 4385 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4386 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4387 hba->pwr_info.hs_rate = 0; 4388 } 4389 4390 /** 4391 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4392 * @hba: per-adapter instance 4393 */ 4394 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4395 { 4396 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4397 4398 if (hba->max_pwr_info.is_valid) 4399 return 0; 4400 4401 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4402 pwr_info->pwr_tx = FASTAUTO_MODE; 4403 pwr_info->pwr_rx = FASTAUTO_MODE; 4404 } else { 4405 pwr_info->pwr_tx = FAST_MODE; 4406 pwr_info->pwr_rx = FAST_MODE; 4407 } 4408 pwr_info->hs_rate = PA_HS_MODE_B; 4409 4410 /* Get the connected lane count */ 4411 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4412 &pwr_info->lane_rx); 4413 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4414 &pwr_info->lane_tx); 4415 4416 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4417 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4418 __func__, 4419 pwr_info->lane_rx, 4420 pwr_info->lane_tx); 4421 return -EINVAL; 4422 } 4423 4424 /* 4425 * First, get the maximum gears of HS speed. 4426 * If a zero value, it means there is no HSGEAR capability. 4427 * Then, get the maximum gears of PWM speed. 4428 */ 4429 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4430 if (!pwr_info->gear_rx) { 4431 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4432 &pwr_info->gear_rx); 4433 if (!pwr_info->gear_rx) { 4434 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4435 __func__, pwr_info->gear_rx); 4436 return -EINVAL; 4437 } 4438 pwr_info->pwr_rx = SLOW_MODE; 4439 } 4440 4441 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4442 &pwr_info->gear_tx); 4443 if (!pwr_info->gear_tx) { 4444 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4445 &pwr_info->gear_tx); 4446 if (!pwr_info->gear_tx) { 4447 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4448 __func__, pwr_info->gear_tx); 4449 return -EINVAL; 4450 } 4451 pwr_info->pwr_tx = SLOW_MODE; 4452 } 4453 4454 hba->max_pwr_info.is_valid = true; 4455 return 0; 4456 } 4457 4458 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4459 struct ufs_pa_layer_attr *pwr_mode) 4460 { 4461 int ret; 4462 4463 /* if already configured to the requested pwr_mode */ 4464 if (!hba->force_pmc && 4465 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4466 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4467 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4468 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4469 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4470 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4471 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4472 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4473 return 0; 4474 } 4475 4476 /* 4477 * Configure attributes for power mode change with below. 4478 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4479 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4480 * - PA_HSSERIES 4481 */ 4482 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4483 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4484 pwr_mode->lane_rx); 4485 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4486 pwr_mode->pwr_rx == FAST_MODE) 4487 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4488 else 4489 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4490 4491 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4492 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4493 pwr_mode->lane_tx); 4494 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4495 pwr_mode->pwr_tx == FAST_MODE) 4496 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4497 else 4498 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4499 4500 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4501 pwr_mode->pwr_tx == FASTAUTO_MODE || 4502 pwr_mode->pwr_rx == FAST_MODE || 4503 pwr_mode->pwr_tx == FAST_MODE) 4504 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4505 pwr_mode->hs_rate); 4506 4507 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4508 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4509 DL_FC0ProtectionTimeOutVal_Default); 4510 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4511 DL_TC0ReplayTimeOutVal_Default); 4512 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4513 DL_AFC0ReqTimeOutVal_Default); 4514 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4515 DL_FC1ProtectionTimeOutVal_Default); 4516 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4517 DL_TC1ReplayTimeOutVal_Default); 4518 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4519 DL_AFC1ReqTimeOutVal_Default); 4520 4521 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4522 DL_FC0ProtectionTimeOutVal_Default); 4523 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4524 DL_TC0ReplayTimeOutVal_Default); 4525 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4526 DL_AFC0ReqTimeOutVal_Default); 4527 } 4528 4529 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4530 | pwr_mode->pwr_tx); 4531 4532 if (ret) { 4533 dev_err(hba->dev, 4534 "%s: power mode change failed %d\n", __func__, ret); 4535 } else { 4536 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4537 pwr_mode); 4538 4539 memcpy(&hba->pwr_info, pwr_mode, 4540 sizeof(struct ufs_pa_layer_attr)); 4541 } 4542 4543 return ret; 4544 } 4545 4546 /** 4547 * ufshcd_config_pwr_mode - configure a new power mode 4548 * @hba: per-adapter instance 4549 * @desired_pwr_mode: desired power configuration 4550 */ 4551 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4552 struct ufs_pa_layer_attr *desired_pwr_mode) 4553 { 4554 struct ufs_pa_layer_attr final_params = { 0 }; 4555 int ret; 4556 4557 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4558 desired_pwr_mode, &final_params); 4559 4560 if (ret) 4561 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4562 4563 ret = ufshcd_change_power_mode(hba, &final_params); 4564 4565 return ret; 4566 } 4567 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4568 4569 /** 4570 * ufshcd_complete_dev_init() - checks device readiness 4571 * @hba: per-adapter instance 4572 * 4573 * Set fDeviceInit flag and poll until device toggles it. 4574 */ 4575 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4576 { 4577 int err; 4578 bool flag_res = true; 4579 ktime_t timeout; 4580 4581 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4582 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4583 if (err) { 4584 dev_err(hba->dev, 4585 "%s: setting fDeviceInit flag failed with error %d\n", 4586 __func__, err); 4587 goto out; 4588 } 4589 4590 /* Poll fDeviceInit flag to be cleared */ 4591 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4592 do { 4593 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4594 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4595 if (!flag_res) 4596 break; 4597 usleep_range(500, 1000); 4598 } while (ktime_before(ktime_get(), timeout)); 4599 4600 if (err) { 4601 dev_err(hba->dev, 4602 "%s: reading fDeviceInit flag failed with error %d\n", 4603 __func__, err); 4604 } else if (flag_res) { 4605 dev_err(hba->dev, 4606 "%s: fDeviceInit was not cleared by the device\n", 4607 __func__); 4608 err = -EBUSY; 4609 } 4610 out: 4611 return err; 4612 } 4613 4614 /** 4615 * ufshcd_make_hba_operational - Make UFS controller operational 4616 * @hba: per adapter instance 4617 * 4618 * To bring UFS host controller to operational state, 4619 * 1. Enable required interrupts 4620 * 2. Configure interrupt aggregation 4621 * 3. Program UTRL and UTMRL base address 4622 * 4. Configure run-stop-registers 4623 * 4624 * Returns 0 on success, non-zero value on failure 4625 */ 4626 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4627 { 4628 int err = 0; 4629 u32 reg; 4630 4631 /* Enable required interrupts */ 4632 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4633 4634 /* Configure interrupt aggregation */ 4635 if (ufshcd_is_intr_aggr_allowed(hba)) 4636 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4637 else 4638 ufshcd_disable_intr_aggr(hba); 4639 4640 /* Configure UTRL and UTMRL base address registers */ 4641 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4642 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4643 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4644 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4645 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4646 REG_UTP_TASK_REQ_LIST_BASE_L); 4647 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4648 REG_UTP_TASK_REQ_LIST_BASE_H); 4649 4650 /* 4651 * Make sure base address and interrupt setup are updated before 4652 * enabling the run/stop registers below. 4653 */ 4654 wmb(); 4655 4656 /* 4657 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4658 */ 4659 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4660 if (!(ufshcd_get_lists_status(reg))) { 4661 ufshcd_enable_run_stop_reg(hba); 4662 } else { 4663 dev_err(hba->dev, 4664 "Host controller not ready to process requests"); 4665 err = -EIO; 4666 } 4667 4668 return err; 4669 } 4670 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4671 4672 /** 4673 * ufshcd_hba_stop - Send controller to reset state 4674 * @hba: per adapter instance 4675 */ 4676 void ufshcd_hba_stop(struct ufs_hba *hba) 4677 { 4678 unsigned long flags; 4679 int err; 4680 4681 /* 4682 * Obtain the host lock to prevent that the controller is disabled 4683 * while the UFS interrupt handler is active on another CPU. 4684 */ 4685 spin_lock_irqsave(hba->host->host_lock, flags); 4686 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4687 spin_unlock_irqrestore(hba->host->host_lock, flags); 4688 4689 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4690 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4691 10, 1); 4692 if (err) 4693 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4694 } 4695 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4696 4697 /** 4698 * ufshcd_hba_execute_hce - initialize the controller 4699 * @hba: per adapter instance 4700 * 4701 * The controller resets itself and controller firmware initialization 4702 * sequence kicks off. When controller is ready it will set 4703 * the Host Controller Enable bit to 1. 4704 * 4705 * Returns 0 on success, non-zero value on failure 4706 */ 4707 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4708 { 4709 int retry_outer = 3; 4710 int retry_inner; 4711 4712 start: 4713 if (ufshcd_is_hba_active(hba)) 4714 /* change controller state to "reset state" */ 4715 ufshcd_hba_stop(hba); 4716 4717 /* UniPro link is disabled at this point */ 4718 ufshcd_set_link_off(hba); 4719 4720 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4721 4722 /* start controller initialization sequence */ 4723 ufshcd_hba_start(hba); 4724 4725 /* 4726 * To initialize a UFS host controller HCE bit must be set to 1. 4727 * During initialization the HCE bit value changes from 1->0->1. 4728 * When the host controller completes initialization sequence 4729 * it sets the value of HCE bit to 1. The same HCE bit is read back 4730 * to check if the controller has completed initialization sequence. 4731 * So without this delay the value HCE = 1, set in the previous 4732 * instruction might be read back. 4733 * This delay can be changed based on the controller. 4734 */ 4735 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4736 4737 /* wait for the host controller to complete initialization */ 4738 retry_inner = 50; 4739 while (!ufshcd_is_hba_active(hba)) { 4740 if (retry_inner) { 4741 retry_inner--; 4742 } else { 4743 dev_err(hba->dev, 4744 "Controller enable failed\n"); 4745 if (retry_outer) { 4746 retry_outer--; 4747 goto start; 4748 } 4749 return -EIO; 4750 } 4751 usleep_range(1000, 1100); 4752 } 4753 4754 /* enable UIC related interrupts */ 4755 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4756 4757 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4758 4759 return 0; 4760 } 4761 4762 int ufshcd_hba_enable(struct ufs_hba *hba) 4763 { 4764 int ret; 4765 4766 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4767 ufshcd_set_link_off(hba); 4768 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4769 4770 /* enable UIC related interrupts */ 4771 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4772 ret = ufshcd_dme_reset(hba); 4773 if (ret) { 4774 dev_err(hba->dev, "DME_RESET failed\n"); 4775 return ret; 4776 } 4777 4778 ret = ufshcd_dme_enable(hba); 4779 if (ret) { 4780 dev_err(hba->dev, "Enabling DME failed\n"); 4781 return ret; 4782 } 4783 4784 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4785 } else { 4786 ret = ufshcd_hba_execute_hce(hba); 4787 } 4788 4789 return ret; 4790 } 4791 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4792 4793 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4794 { 4795 int tx_lanes = 0, i, err = 0; 4796 4797 if (!peer) 4798 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4799 &tx_lanes); 4800 else 4801 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4802 &tx_lanes); 4803 for (i = 0; i < tx_lanes; i++) { 4804 if (!peer) 4805 err = ufshcd_dme_set(hba, 4806 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4807 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4808 0); 4809 else 4810 err = ufshcd_dme_peer_set(hba, 4811 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4812 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4813 0); 4814 if (err) { 4815 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4816 __func__, peer, i, err); 4817 break; 4818 } 4819 } 4820 4821 return err; 4822 } 4823 4824 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4825 { 4826 return ufshcd_disable_tx_lcc(hba, true); 4827 } 4828 4829 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4830 { 4831 struct ufs_event_hist *e; 4832 4833 if (id >= UFS_EVT_CNT) 4834 return; 4835 4836 e = &hba->ufs_stats.event[id]; 4837 e->val[e->pos] = val; 4838 e->tstamp[e->pos] = local_clock(); 4839 e->cnt += 1; 4840 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4841 4842 ufshcd_vops_event_notify(hba, id, &val); 4843 } 4844 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4845 4846 /** 4847 * ufshcd_link_startup - Initialize unipro link startup 4848 * @hba: per adapter instance 4849 * 4850 * Returns 0 for success, non-zero in case of failure 4851 */ 4852 static int ufshcd_link_startup(struct ufs_hba *hba) 4853 { 4854 int ret; 4855 int retries = DME_LINKSTARTUP_RETRIES; 4856 bool link_startup_again = false; 4857 4858 /* 4859 * If UFS device isn't active then we will have to issue link startup 4860 * 2 times to make sure the device state move to active. 4861 */ 4862 if (!ufshcd_is_ufs_dev_active(hba)) 4863 link_startup_again = true; 4864 4865 link_startup: 4866 do { 4867 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4868 4869 ret = ufshcd_dme_link_startup(hba); 4870 4871 /* check if device is detected by inter-connect layer */ 4872 if (!ret && !ufshcd_is_device_present(hba)) { 4873 ufshcd_update_evt_hist(hba, 4874 UFS_EVT_LINK_STARTUP_FAIL, 4875 0); 4876 dev_err(hba->dev, "%s: Device not present\n", __func__); 4877 ret = -ENXIO; 4878 goto out; 4879 } 4880 4881 /* 4882 * DME link lost indication is only received when link is up, 4883 * but we can't be sure if the link is up until link startup 4884 * succeeds. So reset the local Uni-Pro and try again. 4885 */ 4886 if (ret && retries && ufshcd_hba_enable(hba)) { 4887 ufshcd_update_evt_hist(hba, 4888 UFS_EVT_LINK_STARTUP_FAIL, 4889 (u32)ret); 4890 goto out; 4891 } 4892 } while (ret && retries--); 4893 4894 if (ret) { 4895 /* failed to get the link up... retire */ 4896 ufshcd_update_evt_hist(hba, 4897 UFS_EVT_LINK_STARTUP_FAIL, 4898 (u32)ret); 4899 goto out; 4900 } 4901 4902 if (link_startup_again) { 4903 link_startup_again = false; 4904 retries = DME_LINKSTARTUP_RETRIES; 4905 goto link_startup; 4906 } 4907 4908 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4909 ufshcd_init_pwr_info(hba); 4910 ufshcd_print_pwr_info(hba); 4911 4912 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4913 ret = ufshcd_disable_device_tx_lcc(hba); 4914 if (ret) 4915 goto out; 4916 } 4917 4918 /* Include any host controller configuration via UIC commands */ 4919 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4920 if (ret) 4921 goto out; 4922 4923 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4924 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4925 ret = ufshcd_make_hba_operational(hba); 4926 out: 4927 if (ret) { 4928 dev_err(hba->dev, "link startup failed %d\n", ret); 4929 ufshcd_print_host_state(hba); 4930 ufshcd_print_pwr_info(hba); 4931 ufshcd_print_evt_hist(hba); 4932 } 4933 return ret; 4934 } 4935 4936 /** 4937 * ufshcd_verify_dev_init() - Verify device initialization 4938 * @hba: per-adapter instance 4939 * 4940 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4941 * device Transport Protocol (UTP) layer is ready after a reset. 4942 * If the UTP layer at the device side is not initialized, it may 4943 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4944 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4945 */ 4946 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4947 { 4948 int err = 0; 4949 int retries; 4950 4951 ufshcd_hold(hba); 4952 mutex_lock(&hba->dev_cmd.lock); 4953 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4954 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4955 hba->nop_out_timeout); 4956 4957 if (!err || err == -ETIMEDOUT) 4958 break; 4959 4960 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4961 } 4962 mutex_unlock(&hba->dev_cmd.lock); 4963 ufshcd_release(hba); 4964 4965 if (err) 4966 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4967 return err; 4968 } 4969 4970 /** 4971 * ufshcd_setup_links - associate link b/w device wlun and other luns 4972 * @sdev: pointer to SCSI device 4973 * @hba: pointer to ufs hba 4974 */ 4975 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 4976 { 4977 struct device_link *link; 4978 4979 /* 4980 * Device wlun is the supplier & rest of the luns are consumers. 4981 * This ensures that device wlun suspends after all other luns. 4982 */ 4983 if (hba->ufs_device_wlun) { 4984 link = device_link_add(&sdev->sdev_gendev, 4985 &hba->ufs_device_wlun->sdev_gendev, 4986 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 4987 if (!link) { 4988 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 4989 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 4990 return; 4991 } 4992 hba->luns_avail--; 4993 /* Ignore REPORT_LUN wlun probing */ 4994 if (hba->luns_avail == 1) { 4995 ufshcd_rpm_put(hba); 4996 return; 4997 } 4998 } else { 4999 /* 5000 * Device wlun is probed. The assumption is that WLUNs are 5001 * scanned before other LUNs. 5002 */ 5003 hba->luns_avail--; 5004 } 5005 } 5006 5007 /** 5008 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5009 * @hba: per-adapter instance 5010 * @sdev: pointer to SCSI device 5011 */ 5012 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5013 { 5014 int len = QUERY_DESC_MAX_SIZE; 5015 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5016 u8 lun_qdepth = hba->nutrs; 5017 u8 *desc_buf; 5018 int ret; 5019 5020 desc_buf = kzalloc(len, GFP_KERNEL); 5021 if (!desc_buf) 5022 goto set_qdepth; 5023 5024 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5025 if (ret < 0) { 5026 if (ret == -EOPNOTSUPP) 5027 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5028 lun_qdepth = 1; 5029 kfree(desc_buf); 5030 goto set_qdepth; 5031 } 5032 5033 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5034 /* 5035 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5036 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5037 */ 5038 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5039 } 5040 /* 5041 * According to UFS device specification, the write protection mode is only supported by 5042 * normal LU, not supported by WLUN. 5043 */ 5044 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5045 !hba->dev_info.is_lu_power_on_wp && 5046 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5047 hba->dev_info.is_lu_power_on_wp = true; 5048 5049 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5050 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5051 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5052 hba->dev_info.b_advanced_rpmb_en = true; 5053 5054 5055 kfree(desc_buf); 5056 set_qdepth: 5057 /* 5058 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5059 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5060 */ 5061 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5062 scsi_change_queue_depth(sdev, lun_qdepth); 5063 } 5064 5065 /** 5066 * ufshcd_slave_alloc - handle initial SCSI device configurations 5067 * @sdev: pointer to SCSI device 5068 * 5069 * Returns success 5070 */ 5071 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5072 { 5073 struct ufs_hba *hba; 5074 5075 hba = shost_priv(sdev->host); 5076 5077 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5078 sdev->use_10_for_ms = 1; 5079 5080 /* DBD field should be set to 1 in mode sense(10) */ 5081 sdev->set_dbd_for_ms = 1; 5082 5083 /* allow SCSI layer to restart the device in case of errors */ 5084 sdev->allow_restart = 1; 5085 5086 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5087 sdev->no_report_opcodes = 1; 5088 5089 /* WRITE_SAME command is not supported */ 5090 sdev->no_write_same = 1; 5091 5092 ufshcd_lu_init(hba, sdev); 5093 5094 ufshcd_setup_links(hba, sdev); 5095 5096 return 0; 5097 } 5098 5099 /** 5100 * ufshcd_change_queue_depth - change queue depth 5101 * @sdev: pointer to SCSI device 5102 * @depth: required depth to set 5103 * 5104 * Change queue depth and make sure the max. limits are not crossed. 5105 */ 5106 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5107 { 5108 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5109 } 5110 5111 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev) 5112 { 5113 /* skip well-known LU */ 5114 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) || 5115 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba)) 5116 return; 5117 5118 ufshpb_destroy_lu(hba, sdev); 5119 } 5120 5121 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev) 5122 { 5123 /* skip well-known LU */ 5124 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) || 5125 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba)) 5126 return; 5127 5128 ufshpb_init_hpb_lu(hba, sdev); 5129 } 5130 5131 /** 5132 * ufshcd_slave_configure - adjust SCSI device configurations 5133 * @sdev: pointer to SCSI device 5134 */ 5135 static int ufshcd_slave_configure(struct scsi_device *sdev) 5136 { 5137 struct ufs_hba *hba = shost_priv(sdev->host); 5138 struct request_queue *q = sdev->request_queue; 5139 5140 ufshcd_hpb_configure(hba, sdev); 5141 5142 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 5143 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT) 5144 blk_queue_update_dma_alignment(q, SZ_4K - 1); 5145 /* 5146 * Block runtime-pm until all consumers are added. 5147 * Refer ufshcd_setup_links(). 5148 */ 5149 if (is_device_wlun(sdev)) 5150 pm_runtime_get_noresume(&sdev->sdev_gendev); 5151 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5152 sdev->rpm_autosuspend = 1; 5153 /* 5154 * Do not print messages during runtime PM to avoid never-ending cycles 5155 * of messages written back to storage by user space causing runtime 5156 * resume, causing more messages and so on. 5157 */ 5158 sdev->silence_suspend = 1; 5159 5160 ufshcd_crypto_register(hba, q); 5161 5162 return 0; 5163 } 5164 5165 /** 5166 * ufshcd_slave_destroy - remove SCSI device configurations 5167 * @sdev: pointer to SCSI device 5168 */ 5169 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5170 { 5171 struct ufs_hba *hba; 5172 unsigned long flags; 5173 5174 hba = shost_priv(sdev->host); 5175 5176 ufshcd_hpb_destroy(hba, sdev); 5177 5178 /* Drop the reference as it won't be needed anymore */ 5179 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5180 spin_lock_irqsave(hba->host->host_lock, flags); 5181 hba->ufs_device_wlun = NULL; 5182 spin_unlock_irqrestore(hba->host->host_lock, flags); 5183 } else if (hba->ufs_device_wlun) { 5184 struct device *supplier = NULL; 5185 5186 /* Ensure UFS Device WLUN exists and does not disappear */ 5187 spin_lock_irqsave(hba->host->host_lock, flags); 5188 if (hba->ufs_device_wlun) { 5189 supplier = &hba->ufs_device_wlun->sdev_gendev; 5190 get_device(supplier); 5191 } 5192 spin_unlock_irqrestore(hba->host->host_lock, flags); 5193 5194 if (supplier) { 5195 /* 5196 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5197 * device will not have been registered but can still 5198 * have a device link holding a reference to the device. 5199 */ 5200 device_link_remove(&sdev->sdev_gendev, supplier); 5201 put_device(supplier); 5202 } 5203 } 5204 } 5205 5206 /** 5207 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5208 * @lrbp: pointer to local reference block of completed command 5209 * @scsi_status: SCSI command status 5210 * 5211 * Returns value base on SCSI command status 5212 */ 5213 static inline int 5214 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5215 { 5216 int result = 0; 5217 5218 switch (scsi_status) { 5219 case SAM_STAT_CHECK_CONDITION: 5220 ufshcd_copy_sense_data(lrbp); 5221 fallthrough; 5222 case SAM_STAT_GOOD: 5223 result |= DID_OK << 16 | scsi_status; 5224 break; 5225 case SAM_STAT_TASK_SET_FULL: 5226 case SAM_STAT_BUSY: 5227 case SAM_STAT_TASK_ABORTED: 5228 ufshcd_copy_sense_data(lrbp); 5229 result |= scsi_status; 5230 break; 5231 default: 5232 result |= DID_ERROR << 16; 5233 break; 5234 } /* end of switch */ 5235 5236 return result; 5237 } 5238 5239 /** 5240 * ufshcd_transfer_rsp_status - Get overall status of the response 5241 * @hba: per adapter instance 5242 * @lrbp: pointer to local reference block of completed command 5243 * @cqe: pointer to the completion queue entry 5244 * 5245 * Returns result of the command to notify SCSI midlayer 5246 */ 5247 static inline int 5248 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5249 struct cq_entry *cqe) 5250 { 5251 int result = 0; 5252 int scsi_status; 5253 enum utp_ocs ocs; 5254 5255 scsi_set_resid(lrbp->cmd, 5256 be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count)); 5257 5258 /* overall command status of utrd */ 5259 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5260 5261 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5262 if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) & 5263 MASK_RSP_UPIU_RESULT) 5264 ocs = OCS_SUCCESS; 5265 } 5266 5267 switch (ocs) { 5268 case OCS_SUCCESS: 5269 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 5270 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5271 switch (result) { 5272 case UPIU_TRANSACTION_RESPONSE: 5273 /* 5274 * get the response UPIU result to extract 5275 * the SCSI command status 5276 */ 5277 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr); 5278 5279 /* 5280 * get the result based on SCSI status response 5281 * to notify the SCSI midlayer of the command status 5282 */ 5283 scsi_status = result & MASK_SCSI_STATUS; 5284 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5285 5286 /* 5287 * Currently we are only supporting BKOPs exception 5288 * events hence we can ignore BKOPs exception event 5289 * during power management callbacks. BKOPs exception 5290 * event is not expected to be raised in runtime suspend 5291 * callback as it allows the urgent bkops. 5292 * During system suspend, we are anyway forcefully 5293 * disabling the bkops and if urgent bkops is needed 5294 * it will be enabled on system resume. Long term 5295 * solution could be to abort the system suspend if 5296 * UFS device needs urgent BKOPs. 5297 */ 5298 if (!hba->pm_op_in_progress && 5299 !ufshcd_eh_in_progress(hba) && 5300 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5301 /* Flushed in suspend */ 5302 schedule_work(&hba->eeh_work); 5303 5304 if (scsi_status == SAM_STAT_GOOD) 5305 ufshpb_rsp_upiu(hba, lrbp); 5306 break; 5307 case UPIU_TRANSACTION_REJECT_UPIU: 5308 /* TODO: handle Reject UPIU Response */ 5309 result = DID_ERROR << 16; 5310 dev_err(hba->dev, 5311 "Reject UPIU not fully implemented\n"); 5312 break; 5313 default: 5314 dev_err(hba->dev, 5315 "Unexpected request response code = %x\n", 5316 result); 5317 result = DID_ERROR << 16; 5318 break; 5319 } 5320 break; 5321 case OCS_ABORTED: 5322 result |= DID_ABORT << 16; 5323 break; 5324 case OCS_INVALID_COMMAND_STATUS: 5325 result |= DID_REQUEUE << 16; 5326 break; 5327 case OCS_INVALID_CMD_TABLE_ATTR: 5328 case OCS_INVALID_PRDT_ATTR: 5329 case OCS_MISMATCH_DATA_BUF_SIZE: 5330 case OCS_MISMATCH_RESP_UPIU_SIZE: 5331 case OCS_PEER_COMM_FAILURE: 5332 case OCS_FATAL_ERROR: 5333 case OCS_DEVICE_FATAL_ERROR: 5334 case OCS_INVALID_CRYPTO_CONFIG: 5335 case OCS_GENERAL_CRYPTO_ERROR: 5336 default: 5337 result |= DID_ERROR << 16; 5338 dev_err(hba->dev, 5339 "OCS error from controller = %x for tag %d\n", 5340 ocs, lrbp->task_tag); 5341 ufshcd_print_evt_hist(hba); 5342 ufshcd_print_host_state(hba); 5343 break; 5344 } /* end of switch */ 5345 5346 if ((host_byte(result) != DID_OK) && 5347 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5348 ufshcd_print_tr(hba, lrbp->task_tag, true); 5349 return result; 5350 } 5351 5352 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5353 u32 intr_mask) 5354 { 5355 if (!ufshcd_is_auto_hibern8_supported(hba) || 5356 !ufshcd_is_auto_hibern8_enabled(hba)) 5357 return false; 5358 5359 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5360 return false; 5361 5362 if (hba->active_uic_cmd && 5363 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5364 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5365 return false; 5366 5367 return true; 5368 } 5369 5370 /** 5371 * ufshcd_uic_cmd_compl - handle completion of uic command 5372 * @hba: per adapter instance 5373 * @intr_status: interrupt status generated by the controller 5374 * 5375 * Returns 5376 * IRQ_HANDLED - If interrupt is valid 5377 * IRQ_NONE - If invalid interrupt 5378 */ 5379 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5380 { 5381 irqreturn_t retval = IRQ_NONE; 5382 5383 spin_lock(hba->host->host_lock); 5384 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5385 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5386 5387 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5388 hba->active_uic_cmd->argument2 |= 5389 ufshcd_get_uic_cmd_result(hba); 5390 hba->active_uic_cmd->argument3 = 5391 ufshcd_get_dme_attr_val(hba); 5392 if (!hba->uic_async_done) 5393 hba->active_uic_cmd->cmd_active = 0; 5394 complete(&hba->active_uic_cmd->done); 5395 retval = IRQ_HANDLED; 5396 } 5397 5398 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5399 hba->active_uic_cmd->cmd_active = 0; 5400 complete(hba->uic_async_done); 5401 retval = IRQ_HANDLED; 5402 } 5403 5404 if (retval == IRQ_HANDLED) 5405 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5406 UFS_CMD_COMP); 5407 spin_unlock(hba->host->host_lock); 5408 return retval; 5409 } 5410 5411 /* Release the resources allocated for processing a SCSI command. */ 5412 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5413 struct ufshcd_lrb *lrbp) 5414 { 5415 struct scsi_cmnd *cmd = lrbp->cmd; 5416 5417 scsi_dma_unmap(cmd); 5418 ufshcd_release(hba); 5419 ufshcd_clk_scaling_update_busy(hba); 5420 } 5421 5422 /** 5423 * ufshcd_compl_one_cqe - handle a completion queue entry 5424 * @hba: per adapter instance 5425 * @task_tag: the task tag of the request to be completed 5426 * @cqe: pointer to the completion queue entry 5427 */ 5428 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5429 struct cq_entry *cqe) 5430 { 5431 struct ufshcd_lrb *lrbp; 5432 struct scsi_cmnd *cmd; 5433 enum utp_ocs ocs; 5434 5435 lrbp = &hba->lrb[task_tag]; 5436 lrbp->compl_time_stamp = ktime_get(); 5437 cmd = lrbp->cmd; 5438 if (cmd) { 5439 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5440 ufshcd_update_monitor(hba, lrbp); 5441 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5442 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5443 ufshcd_release_scsi_cmd(hba, lrbp); 5444 /* Do not touch lrbp after scsi done */ 5445 scsi_done(cmd); 5446 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 5447 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 5448 if (hba->dev_cmd.complete) { 5449 if (cqe) { 5450 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5451 lrbp->utr_descriptor_ptr->header.dword_2 = 5452 cpu_to_le32(ocs); 5453 } 5454 complete(hba->dev_cmd.complete); 5455 ufshcd_clk_scaling_update_busy(hba); 5456 } 5457 } 5458 } 5459 5460 /** 5461 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5462 * @hba: per adapter instance 5463 * @completed_reqs: bitmask that indicates which requests to complete 5464 */ 5465 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5466 unsigned long completed_reqs) 5467 { 5468 int tag; 5469 5470 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5471 ufshcd_compl_one_cqe(hba, tag, NULL); 5472 } 5473 5474 /* Any value that is not an existing queue number is fine for this constant. */ 5475 enum { 5476 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5477 }; 5478 5479 static void ufshcd_clear_polled(struct ufs_hba *hba, 5480 unsigned long *completed_reqs) 5481 { 5482 int tag; 5483 5484 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5485 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5486 5487 if (!cmd) 5488 continue; 5489 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5490 __clear_bit(tag, completed_reqs); 5491 } 5492 } 5493 5494 /* 5495 * Returns > 0 if one or more commands have been completed or 0 if no 5496 * requests have been completed. 5497 */ 5498 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5499 { 5500 struct ufs_hba *hba = shost_priv(shost); 5501 unsigned long completed_reqs, flags; 5502 u32 tr_doorbell; 5503 struct ufs_hw_queue *hwq; 5504 5505 if (is_mcq_enabled(hba)) { 5506 hwq = &hba->uhq[queue_num]; 5507 5508 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5509 } 5510 5511 spin_lock_irqsave(&hba->outstanding_lock, flags); 5512 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5513 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5514 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5515 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5516 hba->outstanding_reqs); 5517 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5518 /* Do not complete polled requests from interrupt context. */ 5519 ufshcd_clear_polled(hba, &completed_reqs); 5520 } 5521 hba->outstanding_reqs &= ~completed_reqs; 5522 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5523 5524 if (completed_reqs) 5525 __ufshcd_transfer_req_compl(hba, completed_reqs); 5526 5527 return completed_reqs != 0; 5528 } 5529 5530 /** 5531 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5532 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5533 * to complete the pending transfers and free the resources associated with 5534 * the scsi command. 5535 * 5536 * @hba: per adapter instance 5537 * @force_compl: This flag is set to true when invoked 5538 * from ufshcd_host_reset_and_restore() in which case it requires special 5539 * handling because the host controller has been reset by ufshcd_hba_stop(). 5540 */ 5541 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5542 bool force_compl) 5543 { 5544 struct ufs_hw_queue *hwq; 5545 struct ufshcd_lrb *lrbp; 5546 struct scsi_cmnd *cmd; 5547 unsigned long flags; 5548 u32 hwq_num, utag; 5549 int tag; 5550 5551 for (tag = 0; tag < hba->nutrs; tag++) { 5552 lrbp = &hba->lrb[tag]; 5553 cmd = lrbp->cmd; 5554 if (!ufshcd_cmd_inflight(cmd) || 5555 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5556 continue; 5557 5558 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd)); 5559 hwq_num = blk_mq_unique_tag_to_hwq(utag); 5560 hwq = &hba->uhq[hwq_num]; 5561 5562 if (force_compl) { 5563 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5564 /* 5565 * For those cmds of which the cqes are not present 5566 * in the cq, complete them explicitly. 5567 */ 5568 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5569 spin_lock_irqsave(&hwq->cq_lock, flags); 5570 set_host_byte(cmd, DID_REQUEUE); 5571 ufshcd_release_scsi_cmd(hba, lrbp); 5572 scsi_done(cmd); 5573 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5574 } 5575 } else { 5576 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5577 } 5578 } 5579 } 5580 5581 /** 5582 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5583 * @hba: per adapter instance 5584 * 5585 * Returns 5586 * IRQ_HANDLED - If interrupt is valid 5587 * IRQ_NONE - If invalid interrupt 5588 */ 5589 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5590 { 5591 /* Resetting interrupt aggregation counters first and reading the 5592 * DOOR_BELL afterward allows us to handle all the completed requests. 5593 * In order to prevent other interrupts starvation the DB is read once 5594 * after reset. The down side of this solution is the possibility of 5595 * false interrupt if device completes another request after resetting 5596 * aggregation and before reading the DB. 5597 */ 5598 if (ufshcd_is_intr_aggr_allowed(hba) && 5599 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5600 ufshcd_reset_intr_aggr(hba); 5601 5602 if (ufs_fail_completion()) 5603 return IRQ_HANDLED; 5604 5605 /* 5606 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5607 * do not want polling to trigger spurious interrupt complaints. 5608 */ 5609 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5610 5611 return IRQ_HANDLED; 5612 } 5613 5614 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5615 { 5616 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5617 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5618 &ee_ctrl_mask); 5619 } 5620 5621 int ufshcd_write_ee_control(struct ufs_hba *hba) 5622 { 5623 int err; 5624 5625 mutex_lock(&hba->ee_ctrl_mutex); 5626 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5627 mutex_unlock(&hba->ee_ctrl_mutex); 5628 if (err) 5629 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5630 __func__, err); 5631 return err; 5632 } 5633 5634 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5635 const u16 *other_mask, u16 set, u16 clr) 5636 { 5637 u16 new_mask, ee_ctrl_mask; 5638 int err = 0; 5639 5640 mutex_lock(&hba->ee_ctrl_mutex); 5641 new_mask = (*mask & ~clr) | set; 5642 ee_ctrl_mask = new_mask | *other_mask; 5643 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5644 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5645 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5646 if (!err) { 5647 hba->ee_ctrl_mask = ee_ctrl_mask; 5648 *mask = new_mask; 5649 } 5650 mutex_unlock(&hba->ee_ctrl_mutex); 5651 return err; 5652 } 5653 5654 /** 5655 * ufshcd_disable_ee - disable exception event 5656 * @hba: per-adapter instance 5657 * @mask: exception event to disable 5658 * 5659 * Disables exception event in the device so that the EVENT_ALERT 5660 * bit is not set. 5661 * 5662 * Returns zero on success, non-zero error value on failure. 5663 */ 5664 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5665 { 5666 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5667 } 5668 5669 /** 5670 * ufshcd_enable_ee - enable exception event 5671 * @hba: per-adapter instance 5672 * @mask: exception event to enable 5673 * 5674 * Enable corresponding exception event in the device to allow 5675 * device to alert host in critical scenarios. 5676 * 5677 * Returns zero on success, non-zero error value on failure. 5678 */ 5679 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5680 { 5681 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5682 } 5683 5684 /** 5685 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5686 * @hba: per-adapter instance 5687 * 5688 * Allow device to manage background operations on its own. Enabling 5689 * this might lead to inconsistent latencies during normal data transfers 5690 * as the device is allowed to manage its own way of handling background 5691 * operations. 5692 * 5693 * Returns zero on success, non-zero on failure. 5694 */ 5695 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5696 { 5697 int err = 0; 5698 5699 if (hba->auto_bkops_enabled) 5700 goto out; 5701 5702 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5703 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5704 if (err) { 5705 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5706 __func__, err); 5707 goto out; 5708 } 5709 5710 hba->auto_bkops_enabled = true; 5711 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5712 5713 /* No need of URGENT_BKOPS exception from the device */ 5714 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5715 if (err) 5716 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5717 __func__, err); 5718 out: 5719 return err; 5720 } 5721 5722 /** 5723 * ufshcd_disable_auto_bkops - block device in doing background operations 5724 * @hba: per-adapter instance 5725 * 5726 * Disabling background operations improves command response latency but 5727 * has drawback of device moving into critical state where the device is 5728 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5729 * host is idle so that BKOPS are managed effectively without any negative 5730 * impacts. 5731 * 5732 * Returns zero on success, non-zero on failure. 5733 */ 5734 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5735 { 5736 int err = 0; 5737 5738 if (!hba->auto_bkops_enabled) 5739 goto out; 5740 5741 /* 5742 * If host assisted BKOPs is to be enabled, make sure 5743 * urgent bkops exception is allowed. 5744 */ 5745 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5746 if (err) { 5747 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5748 __func__, err); 5749 goto out; 5750 } 5751 5752 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5753 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5754 if (err) { 5755 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5756 __func__, err); 5757 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5758 goto out; 5759 } 5760 5761 hba->auto_bkops_enabled = false; 5762 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5763 hba->is_urgent_bkops_lvl_checked = false; 5764 out: 5765 return err; 5766 } 5767 5768 /** 5769 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5770 * @hba: per adapter instance 5771 * 5772 * After a device reset the device may toggle the BKOPS_EN flag 5773 * to default value. The s/w tracking variables should be updated 5774 * as well. This function would change the auto-bkops state based on 5775 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5776 */ 5777 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5778 { 5779 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5780 hba->auto_bkops_enabled = false; 5781 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5782 ufshcd_enable_auto_bkops(hba); 5783 } else { 5784 hba->auto_bkops_enabled = true; 5785 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5786 ufshcd_disable_auto_bkops(hba); 5787 } 5788 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5789 hba->is_urgent_bkops_lvl_checked = false; 5790 } 5791 5792 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5793 { 5794 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5795 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5796 } 5797 5798 /** 5799 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5800 * @hba: per-adapter instance 5801 * @status: bkops_status value 5802 * 5803 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5804 * flag in the device to permit background operations if the device 5805 * bkops_status is greater than or equal to "status" argument passed to 5806 * this function, disable otherwise. 5807 * 5808 * Returns 0 for success, non-zero in case of failure. 5809 * 5810 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5811 * to know whether auto bkops is enabled or disabled after this function 5812 * returns control to it. 5813 */ 5814 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5815 enum bkops_status status) 5816 { 5817 int err; 5818 u32 curr_status = 0; 5819 5820 err = ufshcd_get_bkops_status(hba, &curr_status); 5821 if (err) { 5822 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5823 __func__, err); 5824 goto out; 5825 } else if (curr_status > BKOPS_STATUS_MAX) { 5826 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5827 __func__, curr_status); 5828 err = -EINVAL; 5829 goto out; 5830 } 5831 5832 if (curr_status >= status) 5833 err = ufshcd_enable_auto_bkops(hba); 5834 else 5835 err = ufshcd_disable_auto_bkops(hba); 5836 out: 5837 return err; 5838 } 5839 5840 /** 5841 * ufshcd_urgent_bkops - handle urgent bkops exception event 5842 * @hba: per-adapter instance 5843 * 5844 * Enable fBackgroundOpsEn flag in the device to permit background 5845 * operations. 5846 * 5847 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5848 * and negative error value for any other failure. 5849 */ 5850 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5851 { 5852 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5853 } 5854 5855 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5856 { 5857 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5858 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5859 } 5860 5861 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5862 { 5863 int err; 5864 u32 curr_status = 0; 5865 5866 if (hba->is_urgent_bkops_lvl_checked) 5867 goto enable_auto_bkops; 5868 5869 err = ufshcd_get_bkops_status(hba, &curr_status); 5870 if (err) { 5871 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5872 __func__, err); 5873 goto out; 5874 } 5875 5876 /* 5877 * We are seeing that some devices are raising the urgent bkops 5878 * exception events even when BKOPS status doesn't indicate performace 5879 * impacted or critical. Handle these device by determining their urgent 5880 * bkops status at runtime. 5881 */ 5882 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5883 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5884 __func__, curr_status); 5885 /* update the current status as the urgent bkops level */ 5886 hba->urgent_bkops_lvl = curr_status; 5887 hba->is_urgent_bkops_lvl_checked = true; 5888 } 5889 5890 enable_auto_bkops: 5891 err = ufshcd_enable_auto_bkops(hba); 5892 out: 5893 if (err < 0) 5894 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5895 __func__, err); 5896 } 5897 5898 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5899 { 5900 u32 value; 5901 5902 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5903 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5904 return; 5905 5906 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5907 5908 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5909 5910 /* 5911 * A placeholder for the platform vendors to add whatever additional 5912 * steps required 5913 */ 5914 } 5915 5916 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5917 { 5918 u8 index; 5919 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5920 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5921 5922 index = ufshcd_wb_get_query_index(hba); 5923 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5924 } 5925 5926 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5927 { 5928 int ret; 5929 5930 if (!ufshcd_is_wb_allowed(hba) || 5931 hba->dev_info.wb_enabled == enable) 5932 return 0; 5933 5934 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5935 if (ret) { 5936 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5937 __func__, enable ? "enabling" : "disabling", ret); 5938 return ret; 5939 } 5940 5941 hba->dev_info.wb_enabled = enable; 5942 dev_dbg(hba->dev, "%s: Write Booster %s\n", 5943 __func__, enable ? "enabled" : "disabled"); 5944 5945 return ret; 5946 } 5947 5948 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 5949 bool enable) 5950 { 5951 int ret; 5952 5953 ret = __ufshcd_wb_toggle(hba, enable, 5954 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 5955 if (ret) { 5956 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 5957 __func__, enable ? "enabling" : "disabling", ret); 5958 return; 5959 } 5960 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 5961 __func__, enable ? "enabled" : "disabled"); 5962 } 5963 5964 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 5965 { 5966 int ret; 5967 5968 if (!ufshcd_is_wb_allowed(hba) || 5969 hba->dev_info.wb_buf_flush_enabled == enable) 5970 return 0; 5971 5972 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 5973 if (ret) { 5974 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 5975 __func__, enable ? "enabling" : "disabling", ret); 5976 return ret; 5977 } 5978 5979 hba->dev_info.wb_buf_flush_enabled = enable; 5980 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 5981 __func__, enable ? "enabled" : "disabled"); 5982 5983 return ret; 5984 } 5985 5986 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5987 u32 avail_buf) 5988 { 5989 u32 cur_buf; 5990 int ret; 5991 u8 index; 5992 5993 index = ufshcd_wb_get_query_index(hba); 5994 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5995 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 5996 index, 0, &cur_buf); 5997 if (ret) { 5998 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 5999 __func__, ret); 6000 return false; 6001 } 6002 6003 if (!cur_buf) { 6004 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6005 cur_buf); 6006 return false; 6007 } 6008 /* Let it continue to flush when available buffer exceeds threshold */ 6009 return avail_buf < hba->vps->wb_flush_threshold; 6010 } 6011 6012 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6013 { 6014 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6015 ufshcd_wb_toggle_buf_flush(hba, false); 6016 6017 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6018 ufshcd_wb_toggle(hba, false); 6019 hba->caps &= ~UFSHCD_CAP_WB_EN; 6020 6021 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6022 } 6023 6024 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6025 { 6026 u32 lifetime; 6027 int ret; 6028 u8 index; 6029 6030 index = ufshcd_wb_get_query_index(hba); 6031 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6032 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6033 index, 0, &lifetime); 6034 if (ret) { 6035 dev_err(hba->dev, 6036 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6037 __func__, ret); 6038 return false; 6039 } 6040 6041 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6042 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6043 __func__, lifetime); 6044 return false; 6045 } 6046 6047 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6048 __func__, lifetime); 6049 6050 return true; 6051 } 6052 6053 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6054 { 6055 int ret; 6056 u32 avail_buf; 6057 u8 index; 6058 6059 if (!ufshcd_is_wb_allowed(hba)) 6060 return false; 6061 6062 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6063 ufshcd_wb_force_disable(hba); 6064 return false; 6065 } 6066 6067 /* 6068 * The ufs device needs the vcc to be ON to flush. 6069 * With user-space reduction enabled, it's enough to enable flush 6070 * by checking only the available buffer. The threshold 6071 * defined here is > 90% full. 6072 * With user-space preserved enabled, the current-buffer 6073 * should be checked too because the wb buffer size can reduce 6074 * when disk tends to be full. This info is provided by current 6075 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6076 * keeping vcc on when current buffer is empty. 6077 */ 6078 index = ufshcd_wb_get_query_index(hba); 6079 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6080 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6081 index, 0, &avail_buf); 6082 if (ret) { 6083 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6084 __func__, ret); 6085 return false; 6086 } 6087 6088 if (!hba->dev_info.b_presrv_uspc_en) 6089 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6090 6091 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6092 } 6093 6094 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6095 { 6096 struct ufs_hba *hba = container_of(to_delayed_work(work), 6097 struct ufs_hba, 6098 rpm_dev_flush_recheck_work); 6099 /* 6100 * To prevent unnecessary VCC power drain after device finishes 6101 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6102 * after a certain delay to recheck the threshold by next runtime 6103 * suspend. 6104 */ 6105 ufshcd_rpm_get_sync(hba); 6106 ufshcd_rpm_put_sync(hba); 6107 } 6108 6109 /** 6110 * ufshcd_exception_event_handler - handle exceptions raised by device 6111 * @work: pointer to work data 6112 * 6113 * Read bExceptionEventStatus attribute from the device and handle the 6114 * exception event accordingly. 6115 */ 6116 static void ufshcd_exception_event_handler(struct work_struct *work) 6117 { 6118 struct ufs_hba *hba; 6119 int err; 6120 u32 status = 0; 6121 hba = container_of(work, struct ufs_hba, eeh_work); 6122 6123 ufshcd_scsi_block_requests(hba); 6124 err = ufshcd_get_ee_status(hba, &status); 6125 if (err) { 6126 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6127 __func__, err); 6128 goto out; 6129 } 6130 6131 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6132 6133 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6134 ufshcd_bkops_exception_event_handler(hba); 6135 6136 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6137 ufshcd_temp_exception_event_handler(hba, status); 6138 6139 ufs_debugfs_exception_event(hba, status); 6140 out: 6141 ufshcd_scsi_unblock_requests(hba); 6142 } 6143 6144 /* Complete requests that have door-bell cleared */ 6145 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6146 { 6147 if (is_mcq_enabled(hba)) 6148 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6149 else 6150 ufshcd_transfer_req_compl(hba); 6151 6152 ufshcd_tmc_handler(hba); 6153 } 6154 6155 /** 6156 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6157 * to recover from the DL NAC errors or not. 6158 * @hba: per-adapter instance 6159 * 6160 * Returns true if error handling is required, false otherwise 6161 */ 6162 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6163 { 6164 unsigned long flags; 6165 bool err_handling = true; 6166 6167 spin_lock_irqsave(hba->host->host_lock, flags); 6168 /* 6169 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6170 * device fatal error and/or DL NAC & REPLAY timeout errors. 6171 */ 6172 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6173 goto out; 6174 6175 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6176 ((hba->saved_err & UIC_ERROR) && 6177 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6178 goto out; 6179 6180 if ((hba->saved_err & UIC_ERROR) && 6181 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6182 int err; 6183 /* 6184 * wait for 50ms to see if we can get any other errors or not. 6185 */ 6186 spin_unlock_irqrestore(hba->host->host_lock, flags); 6187 msleep(50); 6188 spin_lock_irqsave(hba->host->host_lock, flags); 6189 6190 /* 6191 * now check if we have got any other severe errors other than 6192 * DL NAC error? 6193 */ 6194 if ((hba->saved_err & INT_FATAL_ERRORS) || 6195 ((hba->saved_err & UIC_ERROR) && 6196 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6197 goto out; 6198 6199 /* 6200 * As DL NAC is the only error received so far, send out NOP 6201 * command to confirm if link is still active or not. 6202 * - If we don't get any response then do error recovery. 6203 * - If we get response then clear the DL NAC error bit. 6204 */ 6205 6206 spin_unlock_irqrestore(hba->host->host_lock, flags); 6207 err = ufshcd_verify_dev_init(hba); 6208 spin_lock_irqsave(hba->host->host_lock, flags); 6209 6210 if (err) 6211 goto out; 6212 6213 /* Link seems to be alive hence ignore the DL NAC errors */ 6214 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6215 hba->saved_err &= ~UIC_ERROR; 6216 /* clear NAC error */ 6217 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6218 if (!hba->saved_uic_err) 6219 err_handling = false; 6220 } 6221 out: 6222 spin_unlock_irqrestore(hba->host->host_lock, flags); 6223 return err_handling; 6224 } 6225 6226 /* host lock must be held before calling this func */ 6227 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6228 { 6229 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6230 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6231 } 6232 6233 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6234 { 6235 lockdep_assert_held(hba->host->host_lock); 6236 6237 /* handle fatal errors only when link is not in error state */ 6238 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6239 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6240 ufshcd_is_saved_err_fatal(hba)) 6241 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6242 else 6243 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6244 queue_work(hba->eh_wq, &hba->eh_work); 6245 } 6246 } 6247 6248 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6249 { 6250 spin_lock_irq(hba->host->host_lock); 6251 hba->force_reset = true; 6252 ufshcd_schedule_eh_work(hba); 6253 spin_unlock_irq(hba->host->host_lock); 6254 } 6255 6256 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6257 { 6258 mutex_lock(&hba->wb_mutex); 6259 down_write(&hba->clk_scaling_lock); 6260 hba->clk_scaling.is_allowed = allow; 6261 up_write(&hba->clk_scaling_lock); 6262 mutex_unlock(&hba->wb_mutex); 6263 } 6264 6265 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6266 { 6267 if (suspend) { 6268 if (hba->clk_scaling.is_enabled) 6269 ufshcd_suspend_clkscaling(hba); 6270 ufshcd_clk_scaling_allow(hba, false); 6271 } else { 6272 ufshcd_clk_scaling_allow(hba, true); 6273 if (hba->clk_scaling.is_enabled) 6274 ufshcd_resume_clkscaling(hba); 6275 } 6276 } 6277 6278 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6279 { 6280 ufshcd_rpm_get_sync(hba); 6281 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6282 hba->is_sys_suspended) { 6283 enum ufs_pm_op pm_op; 6284 6285 /* 6286 * Don't assume anything of resume, if 6287 * resume fails, irq and clocks can be OFF, and powers 6288 * can be OFF or in LPM. 6289 */ 6290 ufshcd_setup_hba_vreg(hba, true); 6291 ufshcd_enable_irq(hba); 6292 ufshcd_setup_vreg(hba, true); 6293 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6294 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6295 ufshcd_hold(hba); 6296 if (!ufshcd_is_clkgating_allowed(hba)) 6297 ufshcd_setup_clocks(hba, true); 6298 ufshcd_release(hba); 6299 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6300 ufshcd_vops_resume(hba, pm_op); 6301 } else { 6302 ufshcd_hold(hba); 6303 if (ufshcd_is_clkscaling_supported(hba) && 6304 hba->clk_scaling.is_enabled) 6305 ufshcd_suspend_clkscaling(hba); 6306 ufshcd_clk_scaling_allow(hba, false); 6307 } 6308 ufshcd_scsi_block_requests(hba); 6309 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6310 blk_mq_wait_quiesce_done(&hba->host->tag_set); 6311 cancel_work_sync(&hba->eeh_work); 6312 } 6313 6314 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6315 { 6316 ufshcd_scsi_unblock_requests(hba); 6317 ufshcd_release(hba); 6318 if (ufshcd_is_clkscaling_supported(hba)) 6319 ufshcd_clk_scaling_suspend(hba, false); 6320 ufshcd_rpm_put(hba); 6321 } 6322 6323 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6324 { 6325 return (!hba->is_powered || hba->shutting_down || 6326 !hba->ufs_device_wlun || 6327 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6328 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6329 ufshcd_is_link_broken(hba)))); 6330 } 6331 6332 #ifdef CONFIG_PM 6333 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6334 { 6335 struct Scsi_Host *shost = hba->host; 6336 struct scsi_device *sdev; 6337 struct request_queue *q; 6338 int ret; 6339 6340 hba->is_sys_suspended = false; 6341 /* 6342 * Set RPM status of wlun device to RPM_ACTIVE, 6343 * this also clears its runtime error. 6344 */ 6345 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6346 6347 /* hba device might have a runtime error otherwise */ 6348 if (ret) 6349 ret = pm_runtime_set_active(hba->dev); 6350 /* 6351 * If wlun device had runtime error, we also need to resume those 6352 * consumer scsi devices in case any of them has failed to be 6353 * resumed due to supplier runtime resume failure. This is to unblock 6354 * blk_queue_enter in case there are bios waiting inside it. 6355 */ 6356 if (!ret) { 6357 shost_for_each_device(sdev, shost) { 6358 q = sdev->request_queue; 6359 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6360 q->rpm_status == RPM_SUSPENDING)) 6361 pm_request_resume(q->dev); 6362 } 6363 } 6364 } 6365 #else 6366 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6367 { 6368 } 6369 #endif 6370 6371 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6372 { 6373 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6374 u32 mode; 6375 6376 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6377 6378 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6379 return true; 6380 6381 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6382 return true; 6383 6384 return false; 6385 } 6386 6387 static bool ufshcd_abort_all(struct ufs_hba *hba) 6388 { 6389 bool needs_reset = false; 6390 int tag, ret; 6391 6392 if (is_mcq_enabled(hba)) { 6393 struct ufshcd_lrb *lrbp; 6394 int tag; 6395 6396 for (tag = 0; tag < hba->nutrs; tag++) { 6397 lrbp = &hba->lrb[tag]; 6398 if (!ufshcd_cmd_inflight(lrbp->cmd)) 6399 continue; 6400 ret = ufshcd_try_to_abort_task(hba, tag); 6401 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6402 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6403 ret ? "failed" : "succeeded"); 6404 if (ret) { 6405 needs_reset = true; 6406 goto out; 6407 } 6408 } 6409 } else { 6410 /* Clear pending transfer requests */ 6411 for_each_set_bit(tag, &hba->outstanding_reqs, hba->nutrs) { 6412 ret = ufshcd_try_to_abort_task(hba, tag); 6413 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6414 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6415 ret ? "failed" : "succeeded"); 6416 if (ret) { 6417 needs_reset = true; 6418 goto out; 6419 } 6420 } 6421 } 6422 /* Clear pending task management requests */ 6423 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6424 if (ufshcd_clear_tm_cmd(hba, tag)) { 6425 needs_reset = true; 6426 goto out; 6427 } 6428 } 6429 6430 out: 6431 /* Complete the requests that are cleared by s/w */ 6432 ufshcd_complete_requests(hba, false); 6433 6434 return needs_reset; 6435 } 6436 6437 /** 6438 * ufshcd_err_handler - handle UFS errors that require s/w attention 6439 * @work: pointer to work structure 6440 */ 6441 static void ufshcd_err_handler(struct work_struct *work) 6442 { 6443 int retries = MAX_ERR_HANDLER_RETRIES; 6444 struct ufs_hba *hba; 6445 unsigned long flags; 6446 bool needs_restore; 6447 bool needs_reset; 6448 int pmc_err; 6449 6450 hba = container_of(work, struct ufs_hba, eh_work); 6451 6452 dev_info(hba->dev, 6453 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6454 __func__, ufshcd_state_name[hba->ufshcd_state], 6455 hba->is_powered, hba->shutting_down, hba->saved_err, 6456 hba->saved_uic_err, hba->force_reset, 6457 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6458 6459 down(&hba->host_sem); 6460 spin_lock_irqsave(hba->host->host_lock, flags); 6461 if (ufshcd_err_handling_should_stop(hba)) { 6462 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6463 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6464 spin_unlock_irqrestore(hba->host->host_lock, flags); 6465 up(&hba->host_sem); 6466 return; 6467 } 6468 ufshcd_set_eh_in_progress(hba); 6469 spin_unlock_irqrestore(hba->host->host_lock, flags); 6470 ufshcd_err_handling_prepare(hba); 6471 /* Complete requests that have door-bell cleared by h/w */ 6472 ufshcd_complete_requests(hba, false); 6473 spin_lock_irqsave(hba->host->host_lock, flags); 6474 again: 6475 needs_restore = false; 6476 needs_reset = false; 6477 6478 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6479 hba->ufshcd_state = UFSHCD_STATE_RESET; 6480 /* 6481 * A full reset and restore might have happened after preparation 6482 * is finished, double check whether we should stop. 6483 */ 6484 if (ufshcd_err_handling_should_stop(hba)) 6485 goto skip_err_handling; 6486 6487 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6488 bool ret; 6489 6490 spin_unlock_irqrestore(hba->host->host_lock, flags); 6491 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6492 ret = ufshcd_quirk_dl_nac_errors(hba); 6493 spin_lock_irqsave(hba->host->host_lock, flags); 6494 if (!ret && ufshcd_err_handling_should_stop(hba)) 6495 goto skip_err_handling; 6496 } 6497 6498 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6499 (hba->saved_uic_err && 6500 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6501 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6502 6503 spin_unlock_irqrestore(hba->host->host_lock, flags); 6504 ufshcd_print_host_state(hba); 6505 ufshcd_print_pwr_info(hba); 6506 ufshcd_print_evt_hist(hba); 6507 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6508 ufshcd_print_trs_all(hba, pr_prdt); 6509 spin_lock_irqsave(hba->host->host_lock, flags); 6510 } 6511 6512 /* 6513 * if host reset is required then skip clearing the pending 6514 * transfers forcefully because they will get cleared during 6515 * host reset and restore 6516 */ 6517 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6518 ufshcd_is_saved_err_fatal(hba) || 6519 ((hba->saved_err & UIC_ERROR) && 6520 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6521 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6522 needs_reset = true; 6523 goto do_reset; 6524 } 6525 6526 /* 6527 * If LINERESET was caught, UFS might have been put to PWM mode, 6528 * check if power mode restore is needed. 6529 */ 6530 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6531 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6532 if (!hba->saved_uic_err) 6533 hba->saved_err &= ~UIC_ERROR; 6534 spin_unlock_irqrestore(hba->host->host_lock, flags); 6535 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6536 needs_restore = true; 6537 spin_lock_irqsave(hba->host->host_lock, flags); 6538 if (!hba->saved_err && !needs_restore) 6539 goto skip_err_handling; 6540 } 6541 6542 hba->silence_err_logs = true; 6543 /* release lock as clear command might sleep */ 6544 spin_unlock_irqrestore(hba->host->host_lock, flags); 6545 6546 needs_reset = ufshcd_abort_all(hba); 6547 6548 spin_lock_irqsave(hba->host->host_lock, flags); 6549 hba->silence_err_logs = false; 6550 if (needs_reset) 6551 goto do_reset; 6552 6553 /* 6554 * After all reqs and tasks are cleared from doorbell, 6555 * now it is safe to retore power mode. 6556 */ 6557 if (needs_restore) { 6558 spin_unlock_irqrestore(hba->host->host_lock, flags); 6559 /* 6560 * Hold the scaling lock just in case dev cmds 6561 * are sent via bsg and/or sysfs. 6562 */ 6563 down_write(&hba->clk_scaling_lock); 6564 hba->force_pmc = true; 6565 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6566 if (pmc_err) { 6567 needs_reset = true; 6568 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6569 __func__, pmc_err); 6570 } 6571 hba->force_pmc = false; 6572 ufshcd_print_pwr_info(hba); 6573 up_write(&hba->clk_scaling_lock); 6574 spin_lock_irqsave(hba->host->host_lock, flags); 6575 } 6576 6577 do_reset: 6578 /* Fatal errors need reset */ 6579 if (needs_reset) { 6580 int err; 6581 6582 hba->force_reset = false; 6583 spin_unlock_irqrestore(hba->host->host_lock, flags); 6584 err = ufshcd_reset_and_restore(hba); 6585 if (err) 6586 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6587 __func__, err); 6588 else 6589 ufshcd_recover_pm_error(hba); 6590 spin_lock_irqsave(hba->host->host_lock, flags); 6591 } 6592 6593 skip_err_handling: 6594 if (!needs_reset) { 6595 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6596 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6597 if (hba->saved_err || hba->saved_uic_err) 6598 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6599 __func__, hba->saved_err, hba->saved_uic_err); 6600 } 6601 /* Exit in an operational state or dead */ 6602 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6603 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6604 if (--retries) 6605 goto again; 6606 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6607 } 6608 ufshcd_clear_eh_in_progress(hba); 6609 spin_unlock_irqrestore(hba->host->host_lock, flags); 6610 ufshcd_err_handling_unprepare(hba); 6611 up(&hba->host_sem); 6612 6613 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6614 ufshcd_state_name[hba->ufshcd_state]); 6615 } 6616 6617 /** 6618 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6619 * @hba: per-adapter instance 6620 * 6621 * Returns 6622 * IRQ_HANDLED - If interrupt is valid 6623 * IRQ_NONE - If invalid interrupt 6624 */ 6625 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6626 { 6627 u32 reg; 6628 irqreturn_t retval = IRQ_NONE; 6629 6630 /* PHY layer error */ 6631 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6632 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6633 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6634 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6635 /* 6636 * To know whether this error is fatal or not, DB timeout 6637 * must be checked but this error is handled separately. 6638 */ 6639 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6640 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6641 __func__); 6642 6643 /* Got a LINERESET indication. */ 6644 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6645 struct uic_command *cmd = NULL; 6646 6647 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6648 if (hba->uic_async_done && hba->active_uic_cmd) 6649 cmd = hba->active_uic_cmd; 6650 /* 6651 * Ignore the LINERESET during power mode change 6652 * operation via DME_SET command. 6653 */ 6654 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6655 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6656 } 6657 retval |= IRQ_HANDLED; 6658 } 6659 6660 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6661 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6662 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6663 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6664 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6665 6666 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6667 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6668 else if (hba->dev_quirks & 6669 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6670 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6671 hba->uic_error |= 6672 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6673 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6674 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6675 } 6676 retval |= IRQ_HANDLED; 6677 } 6678 6679 /* UIC NL/TL/DME errors needs software retry */ 6680 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6681 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6682 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6683 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6684 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6685 retval |= IRQ_HANDLED; 6686 } 6687 6688 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6689 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6690 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6691 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6692 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6693 retval |= IRQ_HANDLED; 6694 } 6695 6696 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6697 if ((reg & UIC_DME_ERROR) && 6698 (reg & UIC_DME_ERROR_CODE_MASK)) { 6699 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6700 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6701 retval |= IRQ_HANDLED; 6702 } 6703 6704 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6705 __func__, hba->uic_error); 6706 return retval; 6707 } 6708 6709 /** 6710 * ufshcd_check_errors - Check for errors that need s/w attention 6711 * @hba: per-adapter instance 6712 * @intr_status: interrupt status generated by the controller 6713 * 6714 * Returns 6715 * IRQ_HANDLED - If interrupt is valid 6716 * IRQ_NONE - If invalid interrupt 6717 */ 6718 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6719 { 6720 bool queue_eh_work = false; 6721 irqreturn_t retval = IRQ_NONE; 6722 6723 spin_lock(hba->host->host_lock); 6724 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6725 6726 if (hba->errors & INT_FATAL_ERRORS) { 6727 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6728 hba->errors); 6729 queue_eh_work = true; 6730 } 6731 6732 if (hba->errors & UIC_ERROR) { 6733 hba->uic_error = 0; 6734 retval = ufshcd_update_uic_error(hba); 6735 if (hba->uic_error) 6736 queue_eh_work = true; 6737 } 6738 6739 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6740 dev_err(hba->dev, 6741 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6742 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6743 "Enter" : "Exit", 6744 hba->errors, ufshcd_get_upmcrs(hba)); 6745 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6746 hba->errors); 6747 ufshcd_set_link_broken(hba); 6748 queue_eh_work = true; 6749 } 6750 6751 if (queue_eh_work) { 6752 /* 6753 * update the transfer error masks to sticky bits, let's do this 6754 * irrespective of current ufshcd_state. 6755 */ 6756 hba->saved_err |= hba->errors; 6757 hba->saved_uic_err |= hba->uic_error; 6758 6759 /* dump controller state before resetting */ 6760 if ((hba->saved_err & 6761 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6762 (hba->saved_uic_err && 6763 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6764 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6765 __func__, hba->saved_err, 6766 hba->saved_uic_err); 6767 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6768 "host_regs: "); 6769 ufshcd_print_pwr_info(hba); 6770 } 6771 ufshcd_schedule_eh_work(hba); 6772 retval |= IRQ_HANDLED; 6773 } 6774 /* 6775 * if (!queue_eh_work) - 6776 * Other errors are either non-fatal where host recovers 6777 * itself without s/w intervention or errors that will be 6778 * handled by the SCSI core layer. 6779 */ 6780 hba->errors = 0; 6781 hba->uic_error = 0; 6782 spin_unlock(hba->host->host_lock); 6783 return retval; 6784 } 6785 6786 /** 6787 * ufshcd_tmc_handler - handle task management function completion 6788 * @hba: per adapter instance 6789 * 6790 * Returns 6791 * IRQ_HANDLED - If interrupt is valid 6792 * IRQ_NONE - If invalid interrupt 6793 */ 6794 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6795 { 6796 unsigned long flags, pending, issued; 6797 irqreturn_t ret = IRQ_NONE; 6798 int tag; 6799 6800 spin_lock_irqsave(hba->host->host_lock, flags); 6801 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6802 issued = hba->outstanding_tasks & ~pending; 6803 for_each_set_bit(tag, &issued, hba->nutmrs) { 6804 struct request *req = hba->tmf_rqs[tag]; 6805 struct completion *c = req->end_io_data; 6806 6807 complete(c); 6808 ret = IRQ_HANDLED; 6809 } 6810 spin_unlock_irqrestore(hba->host->host_lock, flags); 6811 6812 return ret; 6813 } 6814 6815 /** 6816 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6817 * @hba: per adapter instance 6818 * 6819 * Returns IRQ_HANDLED if interrupt is handled 6820 */ 6821 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6822 { 6823 struct ufs_hw_queue *hwq; 6824 unsigned long outstanding_cqs; 6825 unsigned int nr_queues; 6826 int i, ret; 6827 u32 events; 6828 6829 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6830 if (ret) 6831 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6832 6833 /* Exclude the poll queues */ 6834 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6835 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6836 hwq = &hba->uhq[i]; 6837 6838 events = ufshcd_mcq_read_cqis(hba, i); 6839 if (events) 6840 ufshcd_mcq_write_cqis(hba, events, i); 6841 6842 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6843 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6844 } 6845 6846 return IRQ_HANDLED; 6847 } 6848 6849 /** 6850 * ufshcd_sl_intr - Interrupt service routine 6851 * @hba: per adapter instance 6852 * @intr_status: contains interrupts generated by the controller 6853 * 6854 * Returns 6855 * IRQ_HANDLED - If interrupt is valid 6856 * IRQ_NONE - If invalid interrupt 6857 */ 6858 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6859 { 6860 irqreturn_t retval = IRQ_NONE; 6861 6862 if (intr_status & UFSHCD_UIC_MASK) 6863 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6864 6865 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6866 retval |= ufshcd_check_errors(hba, intr_status); 6867 6868 if (intr_status & UTP_TASK_REQ_COMPL) 6869 retval |= ufshcd_tmc_handler(hba); 6870 6871 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6872 retval |= ufshcd_transfer_req_compl(hba); 6873 6874 if (intr_status & MCQ_CQ_EVENT_STATUS) 6875 retval |= ufshcd_handle_mcq_cq_events(hba); 6876 6877 return retval; 6878 } 6879 6880 /** 6881 * ufshcd_intr - Main interrupt service routine 6882 * @irq: irq number 6883 * @__hba: pointer to adapter instance 6884 * 6885 * Returns 6886 * IRQ_HANDLED - If interrupt is valid 6887 * IRQ_NONE - If invalid interrupt 6888 */ 6889 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6890 { 6891 u32 intr_status, enabled_intr_status = 0; 6892 irqreturn_t retval = IRQ_NONE; 6893 struct ufs_hba *hba = __hba; 6894 int retries = hba->nutrs; 6895 6896 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6897 hba->ufs_stats.last_intr_status = intr_status; 6898 hba->ufs_stats.last_intr_ts = local_clock(); 6899 6900 /* 6901 * There could be max of hba->nutrs reqs in flight and in worst case 6902 * if the reqs get finished 1 by 1 after the interrupt status is 6903 * read, make sure we handle them by checking the interrupt status 6904 * again in a loop until we process all of the reqs before returning. 6905 */ 6906 while (intr_status && retries--) { 6907 enabled_intr_status = 6908 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6909 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6910 if (enabled_intr_status) 6911 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6912 6913 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6914 } 6915 6916 if (enabled_intr_status && retval == IRQ_NONE && 6917 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6918 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6919 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6920 __func__, 6921 intr_status, 6922 hba->ufs_stats.last_intr_status, 6923 enabled_intr_status); 6924 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6925 } 6926 6927 return retval; 6928 } 6929 6930 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6931 { 6932 int err = 0; 6933 u32 mask = 1 << tag; 6934 unsigned long flags; 6935 6936 if (!test_bit(tag, &hba->outstanding_tasks)) 6937 goto out; 6938 6939 spin_lock_irqsave(hba->host->host_lock, flags); 6940 ufshcd_utmrl_clear(hba, tag); 6941 spin_unlock_irqrestore(hba->host->host_lock, flags); 6942 6943 /* poll for max. 1 sec to clear door bell register by h/w */ 6944 err = ufshcd_wait_for_register(hba, 6945 REG_UTP_TASK_REQ_DOOR_BELL, 6946 mask, 0, 1000, 1000); 6947 6948 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6949 tag, err ? "succeeded" : "failed"); 6950 6951 out: 6952 return err; 6953 } 6954 6955 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6956 struct utp_task_req_desc *treq, u8 tm_function) 6957 { 6958 struct request_queue *q = hba->tmf_queue; 6959 struct Scsi_Host *host = hba->host; 6960 DECLARE_COMPLETION_ONSTACK(wait); 6961 struct request *req; 6962 unsigned long flags; 6963 int task_tag, err; 6964 6965 /* 6966 * blk_mq_alloc_request() is used here only to get a free tag. 6967 */ 6968 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 6969 if (IS_ERR(req)) 6970 return PTR_ERR(req); 6971 6972 req->end_io_data = &wait; 6973 ufshcd_hold(hba); 6974 6975 spin_lock_irqsave(host->host_lock, flags); 6976 6977 task_tag = req->tag; 6978 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", 6979 task_tag); 6980 hba->tmf_rqs[req->tag] = req; 6981 treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag); 6982 6983 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 6984 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 6985 6986 /* send command to the controller */ 6987 __set_bit(task_tag, &hba->outstanding_tasks); 6988 6989 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 6990 /* Make sure that doorbell is committed immediately */ 6991 wmb(); 6992 6993 spin_unlock_irqrestore(host->host_lock, flags); 6994 6995 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 6996 6997 /* wait until the task management command is completed */ 6998 err = wait_for_completion_io_timeout(&wait, 6999 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7000 if (!err) { 7001 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7002 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7003 __func__, tm_function); 7004 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7005 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7006 __func__, task_tag); 7007 err = -ETIMEDOUT; 7008 } else { 7009 err = 0; 7010 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7011 7012 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7013 } 7014 7015 spin_lock_irqsave(hba->host->host_lock, flags); 7016 hba->tmf_rqs[req->tag] = NULL; 7017 __clear_bit(task_tag, &hba->outstanding_tasks); 7018 spin_unlock_irqrestore(hba->host->host_lock, flags); 7019 7020 ufshcd_release(hba); 7021 blk_mq_free_request(req); 7022 7023 return err; 7024 } 7025 7026 /** 7027 * ufshcd_issue_tm_cmd - issues task management commands to controller 7028 * @hba: per adapter instance 7029 * @lun_id: LUN ID to which TM command is sent 7030 * @task_id: task ID to which the TM command is applicable 7031 * @tm_function: task management function opcode 7032 * @tm_response: task management service response return value 7033 * 7034 * Returns non-zero value on error, zero on success. 7035 */ 7036 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7037 u8 tm_function, u8 *tm_response) 7038 { 7039 struct utp_task_req_desc treq = { { 0 }, }; 7040 enum utp_ocs ocs_value; 7041 int err; 7042 7043 /* Configure task request descriptor */ 7044 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); 7045 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 7046 7047 /* Configure task request UPIU */ 7048 treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) | 7049 cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24); 7050 treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16); 7051 7052 /* 7053 * The host shall provide the same value for LUN field in the basic 7054 * header and for Input Parameter. 7055 */ 7056 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7057 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7058 7059 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7060 if (err == -ETIMEDOUT) 7061 return err; 7062 7063 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS; 7064 if (ocs_value != OCS_SUCCESS) 7065 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7066 __func__, ocs_value); 7067 else if (tm_response) 7068 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7069 MASK_TM_SERVICE_RESP; 7070 return err; 7071 } 7072 7073 /** 7074 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7075 * @hba: per-adapter instance 7076 * @req_upiu: upiu request 7077 * @rsp_upiu: upiu reply 7078 * @desc_buff: pointer to descriptor buffer, NULL if NA 7079 * @buff_len: descriptor size, 0 if NA 7080 * @cmd_type: specifies the type (NOP, Query...) 7081 * @desc_op: descriptor operation 7082 * 7083 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7084 * Therefore, it "rides" the device management infrastructure: uses its tag and 7085 * tasks work queues. 7086 * 7087 * Since there is only one available tag for device management commands, 7088 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7089 */ 7090 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7091 struct utp_upiu_req *req_upiu, 7092 struct utp_upiu_req *rsp_upiu, 7093 u8 *desc_buff, int *buff_len, 7094 enum dev_cmd_type cmd_type, 7095 enum query_opcode desc_op) 7096 { 7097 DECLARE_COMPLETION_ONSTACK(wait); 7098 const u32 tag = hba->reserved_slot; 7099 struct ufshcd_lrb *lrbp; 7100 int err = 0; 7101 u8 upiu_flags; 7102 7103 /* Protects use of hba->reserved_slot. */ 7104 lockdep_assert_held(&hba->dev_cmd.lock); 7105 7106 down_read(&hba->clk_scaling_lock); 7107 7108 lrbp = &hba->lrb[tag]; 7109 lrbp->cmd = NULL; 7110 lrbp->task_tag = tag; 7111 lrbp->lun = 0; 7112 lrbp->intr_cmd = true; 7113 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7114 hba->dev_cmd.type = cmd_type; 7115 7116 if (hba->ufs_version <= ufshci_version(1, 1)) 7117 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 7118 else 7119 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7120 7121 /* update the task tag in the request upiu */ 7122 req_upiu->header.dword_0 |= cpu_to_be32(tag); 7123 7124 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 7125 7126 /* just copy the upiu request as it is */ 7127 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7128 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7129 /* The Data Segment Area is optional depending upon the query 7130 * function value. for WRITE DESCRIPTOR, the data segment 7131 * follows right after the tsf. 7132 */ 7133 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7134 *buff_len = 0; 7135 } 7136 7137 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7138 7139 hba->dev_cmd.complete = &wait; 7140 7141 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 7142 7143 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7144 /* 7145 * ignore the returning value here - ufshcd_check_query_response is 7146 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7147 * read the response directly ignoring all errors. 7148 */ 7149 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 7150 7151 /* just copy the upiu response as it is */ 7152 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7153 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7154 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7155 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) & 7156 MASK_QUERY_DATA_SEG_LEN; 7157 7158 if (*buff_len >= resp_len) { 7159 memcpy(desc_buff, descp, resp_len); 7160 *buff_len = resp_len; 7161 } else { 7162 dev_warn(hba->dev, 7163 "%s: rsp size %d is bigger than buffer size %d", 7164 __func__, resp_len, *buff_len); 7165 *buff_len = 0; 7166 err = -EINVAL; 7167 } 7168 } 7169 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7170 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7171 7172 up_read(&hba->clk_scaling_lock); 7173 return err; 7174 } 7175 7176 /** 7177 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7178 * @hba: per-adapter instance 7179 * @req_upiu: upiu request 7180 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7181 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7182 * @desc_buff: pointer to descriptor buffer, NULL if NA 7183 * @buff_len: descriptor size, 0 if NA 7184 * @desc_op: descriptor operation 7185 * 7186 * Supports UTP Transfer requests (nop and query), and UTP Task 7187 * Management requests. 7188 * It is up to the caller to fill the upiu conent properly, as it will 7189 * be copied without any further input validations. 7190 */ 7191 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7192 struct utp_upiu_req *req_upiu, 7193 struct utp_upiu_req *rsp_upiu, 7194 int msgcode, 7195 u8 *desc_buff, int *buff_len, 7196 enum query_opcode desc_op) 7197 { 7198 int err; 7199 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7200 struct utp_task_req_desc treq = { { 0 }, }; 7201 enum utp_ocs ocs_value; 7202 u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC; 7203 7204 switch (msgcode) { 7205 case UPIU_TRANSACTION_NOP_OUT: 7206 cmd_type = DEV_CMD_TYPE_NOP; 7207 fallthrough; 7208 case UPIU_TRANSACTION_QUERY_REQ: 7209 ufshcd_hold(hba); 7210 mutex_lock(&hba->dev_cmd.lock); 7211 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7212 desc_buff, buff_len, 7213 cmd_type, desc_op); 7214 mutex_unlock(&hba->dev_cmd.lock); 7215 ufshcd_release(hba); 7216 7217 break; 7218 case UPIU_TRANSACTION_TASK_REQ: 7219 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD); 7220 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS); 7221 7222 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7223 7224 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7225 if (err == -ETIMEDOUT) 7226 break; 7227 7228 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS; 7229 if (ocs_value != OCS_SUCCESS) { 7230 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7231 ocs_value); 7232 break; 7233 } 7234 7235 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7236 7237 break; 7238 default: 7239 err = -EINVAL; 7240 7241 break; 7242 } 7243 7244 return err; 7245 } 7246 7247 /** 7248 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7249 * @hba: per adapter instance 7250 * @req_upiu: upiu request 7251 * @rsp_upiu: upiu reply 7252 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7253 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7254 * @sg_cnt: The number of sg lists actually used 7255 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7256 * @dir: DMA direction 7257 * 7258 * Returns zero on success, non-zero on failure 7259 */ 7260 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7261 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7262 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7263 enum dma_data_direction dir) 7264 { 7265 DECLARE_COMPLETION_ONSTACK(wait); 7266 const u32 tag = hba->reserved_slot; 7267 struct ufshcd_lrb *lrbp; 7268 int err = 0; 7269 int result; 7270 u8 upiu_flags; 7271 u8 *ehs_data; 7272 u16 ehs_len; 7273 7274 /* Protects use of hba->reserved_slot. */ 7275 ufshcd_hold(hba); 7276 mutex_lock(&hba->dev_cmd.lock); 7277 down_read(&hba->clk_scaling_lock); 7278 7279 lrbp = &hba->lrb[tag]; 7280 lrbp->cmd = NULL; 7281 lrbp->task_tag = tag; 7282 lrbp->lun = UFS_UPIU_RPMB_WLUN; 7283 7284 lrbp->intr_cmd = true; 7285 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7286 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB; 7287 7288 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */ 7289 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7290 7291 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2); 7292 7293 /* update the task tag and LUN in the request upiu */ 7294 req_upiu->header.dword_0 |= cpu_to_be32(upiu_flags << 16 | UFS_UPIU_RPMB_WLUN << 8 | tag); 7295 7296 /* copy the UPIU(contains CDB) request as it is */ 7297 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7298 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7299 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7300 7301 if (dir != DMA_NONE && sg_list) 7302 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7303 7304 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7305 7306 hba->dev_cmd.complete = &wait; 7307 7308 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7309 7310 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT); 7311 7312 if (!err) { 7313 /* Just copy the upiu response as it is */ 7314 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7315 /* Get the response UPIU result */ 7316 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr); 7317 7318 ehs_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) >> 24; 7319 /* 7320 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7321 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7322 * Message is 02h 7323 */ 7324 if (ehs_len == 2 && rsp_ehs) { 7325 /* 7326 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7327 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7328 */ 7329 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7330 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7331 } 7332 } 7333 7334 up_read(&hba->clk_scaling_lock); 7335 mutex_unlock(&hba->dev_cmd.lock); 7336 ufshcd_release(hba); 7337 return err ? : result; 7338 } 7339 7340 /** 7341 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7342 * @cmd: SCSI command pointer 7343 * 7344 * Returns SUCCESS/FAILED 7345 */ 7346 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7347 { 7348 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7349 struct Scsi_Host *host; 7350 struct ufs_hba *hba; 7351 struct ufs_hw_queue *hwq; 7352 struct ufshcd_lrb *lrbp; 7353 u32 pos, not_cleared_mask = 0; 7354 int err; 7355 u8 resp = 0xF, lun; 7356 7357 host = cmd->device->host; 7358 hba = shost_priv(host); 7359 7360 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7361 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7362 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7363 if (!err) 7364 err = resp; 7365 goto out; 7366 } 7367 7368 if (is_mcq_enabled(hba)) { 7369 for (pos = 0; pos < hba->nutrs; pos++) { 7370 lrbp = &hba->lrb[pos]; 7371 if (ufshcd_cmd_inflight(lrbp->cmd) && 7372 lrbp->lun == lun) { 7373 ufshcd_clear_cmd(hba, pos); 7374 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7375 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7376 } 7377 } 7378 err = 0; 7379 goto out; 7380 } 7381 7382 /* clear the commands that were pending for corresponding LUN */ 7383 spin_lock_irqsave(&hba->outstanding_lock, flags); 7384 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7385 if (hba->lrb[pos].lun == lun) 7386 __set_bit(pos, &pending_reqs); 7387 hba->outstanding_reqs &= ~pending_reqs; 7388 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7389 7390 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7391 if (ufshcd_clear_cmd(hba, pos) < 0) { 7392 spin_lock_irqsave(&hba->outstanding_lock, flags); 7393 not_cleared = 1U << pos & 7394 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7395 hba->outstanding_reqs |= not_cleared; 7396 not_cleared_mask |= not_cleared; 7397 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7398 7399 dev_err(hba->dev, "%s: failed to clear request %d\n", 7400 __func__, pos); 7401 } 7402 } 7403 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7404 7405 out: 7406 hba->req_abort_count = 0; 7407 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7408 if (!err) { 7409 err = SUCCESS; 7410 } else { 7411 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7412 err = FAILED; 7413 } 7414 return err; 7415 } 7416 7417 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7418 { 7419 struct ufshcd_lrb *lrbp; 7420 int tag; 7421 7422 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7423 lrbp = &hba->lrb[tag]; 7424 lrbp->req_abort_skip = true; 7425 } 7426 } 7427 7428 /** 7429 * ufshcd_try_to_abort_task - abort a specific task 7430 * @hba: Pointer to adapter instance 7431 * @tag: Task tag/index to be aborted 7432 * 7433 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7434 * command, and in host controller by clearing the door-bell register. There can 7435 * be race between controller sending the command to the device while abort is 7436 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7437 * really issued and then try to abort it. 7438 * 7439 * Returns zero on success, non-zero on failure 7440 */ 7441 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7442 { 7443 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7444 int err = 0; 7445 int poll_cnt; 7446 u8 resp = 0xF; 7447 u32 reg; 7448 7449 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7450 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7451 UFS_QUERY_TASK, &resp); 7452 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7453 /* cmd pending in the device */ 7454 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7455 __func__, tag); 7456 break; 7457 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7458 /* 7459 * cmd not pending in the device, check if it is 7460 * in transition. 7461 */ 7462 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7463 __func__, tag); 7464 if (is_mcq_enabled(hba)) { 7465 /* MCQ mode */ 7466 if (ufshcd_cmd_inflight(lrbp->cmd)) { 7467 /* sleep for max. 200us same delay as in SDB mode */ 7468 usleep_range(100, 200); 7469 continue; 7470 } 7471 /* command completed already */ 7472 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", 7473 __func__, tag); 7474 goto out; 7475 } 7476 7477 /* Single Doorbell Mode */ 7478 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7479 if (reg & (1 << tag)) { 7480 /* sleep for max. 200us to stabilize */ 7481 usleep_range(100, 200); 7482 continue; 7483 } 7484 /* command completed already */ 7485 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7486 __func__, tag); 7487 goto out; 7488 } else { 7489 dev_err(hba->dev, 7490 "%s: no response from device. tag = %d, err %d\n", 7491 __func__, tag, err); 7492 if (!err) 7493 err = resp; /* service response error */ 7494 goto out; 7495 } 7496 } 7497 7498 if (!poll_cnt) { 7499 err = -EBUSY; 7500 goto out; 7501 } 7502 7503 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7504 UFS_ABORT_TASK, &resp); 7505 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7506 if (!err) { 7507 err = resp; /* service response error */ 7508 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7509 __func__, tag, err); 7510 } 7511 goto out; 7512 } 7513 7514 err = ufshcd_clear_cmd(hba, tag); 7515 if (err) 7516 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7517 __func__, tag, err); 7518 7519 out: 7520 return err; 7521 } 7522 7523 /** 7524 * ufshcd_abort - scsi host template eh_abort_handler callback 7525 * @cmd: SCSI command pointer 7526 * 7527 * Returns SUCCESS/FAILED 7528 */ 7529 static int ufshcd_abort(struct scsi_cmnd *cmd) 7530 { 7531 struct Scsi_Host *host = cmd->device->host; 7532 struct ufs_hba *hba = shost_priv(host); 7533 int tag = scsi_cmd_to_rq(cmd)->tag; 7534 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7535 unsigned long flags; 7536 int err = FAILED; 7537 bool outstanding; 7538 u32 reg; 7539 7540 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); 7541 7542 ufshcd_hold(hba); 7543 7544 if (!is_mcq_enabled(hba)) { 7545 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7546 if (!test_bit(tag, &hba->outstanding_reqs)) { 7547 /* If command is already aborted/completed, return FAILED. */ 7548 dev_err(hba->dev, 7549 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7550 __func__, tag, hba->outstanding_reqs, reg); 7551 goto release; 7552 } 7553 } 7554 7555 /* Print Transfer Request of aborted task */ 7556 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7557 7558 /* 7559 * Print detailed info about aborted request. 7560 * As more than one request might get aborted at the same time, 7561 * print full information only for the first aborted request in order 7562 * to reduce repeated printouts. For other aborted requests only print 7563 * basic details. 7564 */ 7565 scsi_print_command(cmd); 7566 if (!hba->req_abort_count) { 7567 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7568 ufshcd_print_evt_hist(hba); 7569 ufshcd_print_host_state(hba); 7570 ufshcd_print_pwr_info(hba); 7571 ufshcd_print_tr(hba, tag, true); 7572 } else { 7573 ufshcd_print_tr(hba, tag, false); 7574 } 7575 hba->req_abort_count++; 7576 7577 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) { 7578 /* only execute this code in single doorbell mode */ 7579 dev_err(hba->dev, 7580 "%s: cmd was completed, but without a notifying intr, tag = %d", 7581 __func__, tag); 7582 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7583 goto release; 7584 } 7585 7586 /* 7587 * Task abort to the device W-LUN is illegal. When this command 7588 * will fail, due to spec violation, scsi err handling next step 7589 * will be to send LU reset which, again, is a spec violation. 7590 * To avoid these unnecessary/illegal steps, first we clean up 7591 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7592 * then queue the eh_work and bail. 7593 */ 7594 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7595 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7596 7597 spin_lock_irqsave(host->host_lock, flags); 7598 hba->force_reset = true; 7599 ufshcd_schedule_eh_work(hba); 7600 spin_unlock_irqrestore(host->host_lock, flags); 7601 goto release; 7602 } 7603 7604 if (is_mcq_enabled(hba)) { 7605 /* MCQ mode. Branch off to handle abort for mcq mode */ 7606 err = ufshcd_mcq_abort(cmd); 7607 goto release; 7608 } 7609 7610 /* Skip task abort in case previous aborts failed and report failure */ 7611 if (lrbp->req_abort_skip) { 7612 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7613 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7614 goto release; 7615 } 7616 7617 err = ufshcd_try_to_abort_task(hba, tag); 7618 if (err) { 7619 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7620 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7621 err = FAILED; 7622 goto release; 7623 } 7624 7625 /* 7626 * Clear the corresponding bit from outstanding_reqs since the command 7627 * has been aborted successfully. 7628 */ 7629 spin_lock_irqsave(&hba->outstanding_lock, flags); 7630 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7631 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7632 7633 if (outstanding) 7634 ufshcd_release_scsi_cmd(hba, lrbp); 7635 7636 err = SUCCESS; 7637 7638 release: 7639 /* Matches the ufshcd_hold() call at the start of this function. */ 7640 ufshcd_release(hba); 7641 return err; 7642 } 7643 7644 /** 7645 * ufshcd_host_reset_and_restore - reset and restore host controller 7646 * @hba: per-adapter instance 7647 * 7648 * Note that host controller reset may issue DME_RESET to 7649 * local and remote (device) Uni-Pro stack and the attributes 7650 * are reset to default state. 7651 * 7652 * Returns zero on success, non-zero on failure 7653 */ 7654 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7655 { 7656 int err; 7657 7658 /* 7659 * Stop the host controller and complete the requests 7660 * cleared by h/w 7661 */ 7662 ufshpb_toggle_state(hba, HPB_PRESENT, HPB_RESET); 7663 ufshcd_hba_stop(hba); 7664 hba->silence_err_logs = true; 7665 ufshcd_complete_requests(hba, true); 7666 hba->silence_err_logs = false; 7667 7668 /* scale up clocks to max frequency before full reinitialization */ 7669 ufshcd_scale_clks(hba, true); 7670 7671 err = ufshcd_hba_enable(hba); 7672 7673 /* Establish the link again and restore the device */ 7674 if (!err) 7675 err = ufshcd_probe_hba(hba, false); 7676 7677 if (err) 7678 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7679 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7680 return err; 7681 } 7682 7683 /** 7684 * ufshcd_reset_and_restore - reset and re-initialize host/device 7685 * @hba: per-adapter instance 7686 * 7687 * Reset and recover device, host and re-establish link. This 7688 * is helpful to recover the communication in fatal error conditions. 7689 * 7690 * Returns zero on success, non-zero on failure 7691 */ 7692 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7693 { 7694 u32 saved_err = 0; 7695 u32 saved_uic_err = 0; 7696 int err = 0; 7697 unsigned long flags; 7698 int retries = MAX_HOST_RESET_RETRIES; 7699 7700 spin_lock_irqsave(hba->host->host_lock, flags); 7701 do { 7702 /* 7703 * This is a fresh start, cache and clear saved error first, 7704 * in case new error generated during reset and restore. 7705 */ 7706 saved_err |= hba->saved_err; 7707 saved_uic_err |= hba->saved_uic_err; 7708 hba->saved_err = 0; 7709 hba->saved_uic_err = 0; 7710 hba->force_reset = false; 7711 hba->ufshcd_state = UFSHCD_STATE_RESET; 7712 spin_unlock_irqrestore(hba->host->host_lock, flags); 7713 7714 /* Reset the attached device */ 7715 ufshcd_device_reset(hba); 7716 7717 err = ufshcd_host_reset_and_restore(hba); 7718 7719 spin_lock_irqsave(hba->host->host_lock, flags); 7720 if (err) 7721 continue; 7722 /* Do not exit unless operational or dead */ 7723 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7724 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7725 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7726 err = -EAGAIN; 7727 } while (err && --retries); 7728 7729 /* 7730 * Inform scsi mid-layer that we did reset and allow to handle 7731 * Unit Attention properly. 7732 */ 7733 scsi_report_bus_reset(hba->host, 0); 7734 if (err) { 7735 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7736 hba->saved_err |= saved_err; 7737 hba->saved_uic_err |= saved_uic_err; 7738 } 7739 spin_unlock_irqrestore(hba->host->host_lock, flags); 7740 7741 return err; 7742 } 7743 7744 /** 7745 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7746 * @cmd: SCSI command pointer 7747 * 7748 * Returns SUCCESS/FAILED 7749 */ 7750 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7751 { 7752 int err = SUCCESS; 7753 unsigned long flags; 7754 struct ufs_hba *hba; 7755 7756 hba = shost_priv(cmd->device->host); 7757 7758 spin_lock_irqsave(hba->host->host_lock, flags); 7759 hba->force_reset = true; 7760 ufshcd_schedule_eh_work(hba); 7761 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7762 spin_unlock_irqrestore(hba->host->host_lock, flags); 7763 7764 flush_work(&hba->eh_work); 7765 7766 spin_lock_irqsave(hba->host->host_lock, flags); 7767 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7768 err = FAILED; 7769 spin_unlock_irqrestore(hba->host->host_lock, flags); 7770 7771 return err; 7772 } 7773 7774 /** 7775 * ufshcd_get_max_icc_level - calculate the ICC level 7776 * @sup_curr_uA: max. current supported by the regulator 7777 * @start_scan: row at the desc table to start scan from 7778 * @buff: power descriptor buffer 7779 * 7780 * Returns calculated max ICC level for specific regulator 7781 */ 7782 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7783 const char *buff) 7784 { 7785 int i; 7786 int curr_uA; 7787 u16 data; 7788 u16 unit; 7789 7790 for (i = start_scan; i >= 0; i--) { 7791 data = get_unaligned_be16(&buff[2 * i]); 7792 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7793 ATTR_ICC_LVL_UNIT_OFFSET; 7794 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7795 switch (unit) { 7796 case UFSHCD_NANO_AMP: 7797 curr_uA = curr_uA / 1000; 7798 break; 7799 case UFSHCD_MILI_AMP: 7800 curr_uA = curr_uA * 1000; 7801 break; 7802 case UFSHCD_AMP: 7803 curr_uA = curr_uA * 1000 * 1000; 7804 break; 7805 case UFSHCD_MICRO_AMP: 7806 default: 7807 break; 7808 } 7809 if (sup_curr_uA >= curr_uA) 7810 break; 7811 } 7812 if (i < 0) { 7813 i = 0; 7814 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7815 } 7816 7817 return (u32)i; 7818 } 7819 7820 /** 7821 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7822 * In case regulators are not initialized we'll return 0 7823 * @hba: per-adapter instance 7824 * @desc_buf: power descriptor buffer to extract ICC levels from. 7825 * 7826 * Returns calculated ICC level 7827 */ 7828 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7829 const u8 *desc_buf) 7830 { 7831 u32 icc_level = 0; 7832 7833 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7834 !hba->vreg_info.vccq2) { 7835 /* 7836 * Using dev_dbg to avoid messages during runtime PM to avoid 7837 * never-ending cycles of messages written back to storage by 7838 * user space causing runtime resume, causing more messages and 7839 * so on. 7840 */ 7841 dev_dbg(hba->dev, 7842 "%s: Regulator capability was not set, actvIccLevel=%d", 7843 __func__, icc_level); 7844 goto out; 7845 } 7846 7847 if (hba->vreg_info.vcc->max_uA) 7848 icc_level = ufshcd_get_max_icc_level( 7849 hba->vreg_info.vcc->max_uA, 7850 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7851 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7852 7853 if (hba->vreg_info.vccq->max_uA) 7854 icc_level = ufshcd_get_max_icc_level( 7855 hba->vreg_info.vccq->max_uA, 7856 icc_level, 7857 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7858 7859 if (hba->vreg_info.vccq2->max_uA) 7860 icc_level = ufshcd_get_max_icc_level( 7861 hba->vreg_info.vccq2->max_uA, 7862 icc_level, 7863 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7864 out: 7865 return icc_level; 7866 } 7867 7868 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7869 { 7870 int ret; 7871 u8 *desc_buf; 7872 u32 icc_level; 7873 7874 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7875 if (!desc_buf) 7876 return; 7877 7878 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7879 desc_buf, QUERY_DESC_MAX_SIZE); 7880 if (ret) { 7881 dev_err(hba->dev, 7882 "%s: Failed reading power descriptor ret = %d", 7883 __func__, ret); 7884 goto out; 7885 } 7886 7887 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7888 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7889 7890 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7891 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7892 7893 if (ret) 7894 dev_err(hba->dev, 7895 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7896 __func__, icc_level, ret); 7897 7898 out: 7899 kfree(desc_buf); 7900 } 7901 7902 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7903 { 7904 scsi_autopm_get_device(sdev); 7905 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7906 if (sdev->rpm_autosuspend) 7907 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7908 RPM_AUTOSUSPEND_DELAY_MS); 7909 scsi_autopm_put_device(sdev); 7910 } 7911 7912 /** 7913 * ufshcd_scsi_add_wlus - Adds required W-LUs 7914 * @hba: per-adapter instance 7915 * 7916 * UFS device specification requires the UFS devices to support 4 well known 7917 * logical units: 7918 * "REPORT_LUNS" (address: 01h) 7919 * "UFS Device" (address: 50h) 7920 * "RPMB" (address: 44h) 7921 * "BOOT" (address: 30h) 7922 * UFS device's power management needs to be controlled by "POWER CONDITION" 7923 * field of SSU (START STOP UNIT) command. But this "power condition" field 7924 * will take effect only when its sent to "UFS device" well known logical unit 7925 * hence we require the scsi_device instance to represent this logical unit in 7926 * order for the UFS host driver to send the SSU command for power management. 7927 * 7928 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7929 * Block) LU so user space process can control this LU. User space may also 7930 * want to have access to BOOT LU. 7931 * 7932 * This function adds scsi device instances for each of all well known LUs 7933 * (except "REPORT LUNS" LU). 7934 * 7935 * Returns zero on success (all required W-LUs are added successfully), 7936 * non-zero error value on failure (if failed to add any of the required W-LU). 7937 */ 7938 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7939 { 7940 int ret = 0; 7941 struct scsi_device *sdev_boot, *sdev_rpmb; 7942 7943 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7944 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7945 if (IS_ERR(hba->ufs_device_wlun)) { 7946 ret = PTR_ERR(hba->ufs_device_wlun); 7947 hba->ufs_device_wlun = NULL; 7948 goto out; 7949 } 7950 scsi_device_put(hba->ufs_device_wlun); 7951 7952 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7953 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7954 if (IS_ERR(sdev_rpmb)) { 7955 ret = PTR_ERR(sdev_rpmb); 7956 goto remove_ufs_device_wlun; 7957 } 7958 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7959 scsi_device_put(sdev_rpmb); 7960 7961 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7962 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7963 if (IS_ERR(sdev_boot)) { 7964 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7965 } else { 7966 ufshcd_blk_pm_runtime_init(sdev_boot); 7967 scsi_device_put(sdev_boot); 7968 } 7969 goto out; 7970 7971 remove_ufs_device_wlun: 7972 scsi_remove_device(hba->ufs_device_wlun); 7973 out: 7974 return ret; 7975 } 7976 7977 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 7978 { 7979 struct ufs_dev_info *dev_info = &hba->dev_info; 7980 u8 lun; 7981 u32 d_lu_wb_buf_alloc; 7982 u32 ext_ufs_feature; 7983 7984 if (!ufshcd_is_wb_allowed(hba)) 7985 return; 7986 7987 /* 7988 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 7989 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 7990 * enabled 7991 */ 7992 if (!(dev_info->wspecversion >= 0x310 || 7993 dev_info->wspecversion == 0x220 || 7994 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 7995 goto wb_disabled; 7996 7997 ext_ufs_feature = get_unaligned_be32(desc_buf + 7998 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 7999 8000 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8001 goto wb_disabled; 8002 8003 /* 8004 * WB may be supported but not configured while provisioning. The spec 8005 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8006 * buffer configured. 8007 */ 8008 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8009 8010 dev_info->b_presrv_uspc_en = 8011 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8012 8013 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8014 if (!get_unaligned_be32(desc_buf + 8015 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8016 goto wb_disabled; 8017 } else { 8018 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8019 d_lu_wb_buf_alloc = 0; 8020 ufshcd_read_unit_desc_param(hba, 8021 lun, 8022 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8023 (u8 *)&d_lu_wb_buf_alloc, 8024 sizeof(d_lu_wb_buf_alloc)); 8025 if (d_lu_wb_buf_alloc) { 8026 dev_info->wb_dedicated_lu = lun; 8027 break; 8028 } 8029 } 8030 8031 if (!d_lu_wb_buf_alloc) 8032 goto wb_disabled; 8033 } 8034 8035 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8036 goto wb_disabled; 8037 8038 return; 8039 8040 wb_disabled: 8041 hba->caps &= ~UFSHCD_CAP_WB_EN; 8042 } 8043 8044 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8045 { 8046 struct ufs_dev_info *dev_info = &hba->dev_info; 8047 u32 ext_ufs_feature; 8048 u8 mask = 0; 8049 8050 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8051 return; 8052 8053 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8054 8055 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8056 mask |= MASK_EE_TOO_LOW_TEMP; 8057 8058 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8059 mask |= MASK_EE_TOO_HIGH_TEMP; 8060 8061 if (mask) { 8062 ufshcd_enable_ee(hba, mask); 8063 ufs_hwmon_probe(hba, mask); 8064 } 8065 } 8066 8067 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8068 { 8069 struct ufs_dev_info *dev_info = &hba->dev_info; 8070 u32 ext_ufs_feature; 8071 u32 ext_iid_en = 0; 8072 int err; 8073 8074 /* Only UFS-4.0 and above may support EXT_IID */ 8075 if (dev_info->wspecversion < 0x400) 8076 goto out; 8077 8078 ext_ufs_feature = get_unaligned_be32(desc_buf + 8079 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8080 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8081 goto out; 8082 8083 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8084 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8085 if (err) 8086 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8087 8088 out: 8089 dev_info->b_ext_iid_en = ext_iid_en; 8090 } 8091 8092 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8093 const struct ufs_dev_quirk *fixups) 8094 { 8095 const struct ufs_dev_quirk *f; 8096 struct ufs_dev_info *dev_info = &hba->dev_info; 8097 8098 if (!fixups) 8099 return; 8100 8101 for (f = fixups; f->quirk; f++) { 8102 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8103 f->wmanufacturerid == UFS_ANY_VENDOR) && 8104 ((dev_info->model && 8105 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8106 !strcmp(f->model, UFS_ANY_MODEL))) 8107 hba->dev_quirks |= f->quirk; 8108 } 8109 } 8110 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8111 8112 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8113 { 8114 /* fix by general quirk table */ 8115 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8116 8117 /* allow vendors to fix quirks */ 8118 ufshcd_vops_fixup_dev_quirks(hba); 8119 } 8120 8121 static int ufs_get_device_desc(struct ufs_hba *hba) 8122 { 8123 int err; 8124 u8 model_index; 8125 u8 b_ufs_feature_sup; 8126 u8 *desc_buf; 8127 struct ufs_dev_info *dev_info = &hba->dev_info; 8128 8129 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8130 if (!desc_buf) { 8131 err = -ENOMEM; 8132 goto out; 8133 } 8134 8135 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8136 QUERY_DESC_MAX_SIZE); 8137 if (err) { 8138 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8139 __func__, err); 8140 goto out; 8141 } 8142 8143 /* 8144 * getting vendor (manufacturerID) and Bank Index in big endian 8145 * format 8146 */ 8147 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8148 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8149 8150 /* getting Specification Version in big endian format */ 8151 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8152 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8153 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8154 b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT]; 8155 8156 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8157 8158 if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION && 8159 (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) { 8160 bool hpb_en = false; 8161 8162 ufshpb_get_dev_info(hba, desc_buf); 8163 8164 if (!ufshpb_is_legacy(hba)) 8165 err = ufshcd_query_flag_retry(hba, 8166 UPIU_QUERY_OPCODE_READ_FLAG, 8167 QUERY_FLAG_IDN_HPB_EN, 0, 8168 &hpb_en); 8169 8170 if (ufshpb_is_legacy(hba) || (!err && hpb_en)) 8171 dev_info->hpb_enabled = true; 8172 } 8173 8174 err = ufshcd_read_string_desc(hba, model_index, 8175 &dev_info->model, SD_ASCII_STD); 8176 if (err < 0) { 8177 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8178 __func__, err); 8179 goto out; 8180 } 8181 8182 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8183 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8184 8185 ufs_fixup_device_setup(hba); 8186 8187 ufshcd_wb_probe(hba, desc_buf); 8188 8189 ufshcd_temp_notif_probe(hba, desc_buf); 8190 8191 if (hba->ext_iid_sup) 8192 ufshcd_ext_iid_probe(hba, desc_buf); 8193 8194 /* 8195 * ufshcd_read_string_desc returns size of the string 8196 * reset the error value 8197 */ 8198 err = 0; 8199 8200 out: 8201 kfree(desc_buf); 8202 return err; 8203 } 8204 8205 static void ufs_put_device_desc(struct ufs_hba *hba) 8206 { 8207 struct ufs_dev_info *dev_info = &hba->dev_info; 8208 8209 kfree(dev_info->model); 8210 dev_info->model = NULL; 8211 } 8212 8213 /** 8214 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 8215 * @hba: per-adapter instance 8216 * 8217 * PA_TActivate parameter can be tuned manually if UniPro version is less than 8218 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 8219 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 8220 * the hibern8 exit latency. 8221 * 8222 * Returns zero on success, non-zero error value on failure. 8223 */ 8224 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 8225 { 8226 int ret = 0; 8227 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 8228 8229 ret = ufshcd_dme_peer_get(hba, 8230 UIC_ARG_MIB_SEL( 8231 RX_MIN_ACTIVATETIME_CAPABILITY, 8232 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8233 &peer_rx_min_activatetime); 8234 if (ret) 8235 goto out; 8236 8237 /* make sure proper unit conversion is applied */ 8238 tuned_pa_tactivate = 8239 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 8240 / PA_TACTIVATE_TIME_UNIT_US); 8241 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8242 tuned_pa_tactivate); 8243 8244 out: 8245 return ret; 8246 } 8247 8248 /** 8249 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 8250 * @hba: per-adapter instance 8251 * 8252 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 8253 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 8254 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 8255 * This optimal value can help reduce the hibern8 exit latency. 8256 * 8257 * Returns zero on success, non-zero error value on failure. 8258 */ 8259 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 8260 { 8261 int ret = 0; 8262 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 8263 u32 max_hibern8_time, tuned_pa_hibern8time; 8264 8265 ret = ufshcd_dme_get(hba, 8266 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 8267 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 8268 &local_tx_hibern8_time_cap); 8269 if (ret) 8270 goto out; 8271 8272 ret = ufshcd_dme_peer_get(hba, 8273 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 8274 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8275 &peer_rx_hibern8_time_cap); 8276 if (ret) 8277 goto out; 8278 8279 max_hibern8_time = max(local_tx_hibern8_time_cap, 8280 peer_rx_hibern8_time_cap); 8281 /* make sure proper unit conversion is applied */ 8282 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 8283 / PA_HIBERN8_TIME_UNIT_US); 8284 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 8285 tuned_pa_hibern8time); 8286 out: 8287 return ret; 8288 } 8289 8290 /** 8291 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8292 * less than device PA_TACTIVATE time. 8293 * @hba: per-adapter instance 8294 * 8295 * Some UFS devices require host PA_TACTIVATE to be lower than device 8296 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8297 * for such devices. 8298 * 8299 * Returns zero on success, non-zero error value on failure. 8300 */ 8301 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8302 { 8303 int ret = 0; 8304 u32 granularity, peer_granularity; 8305 u32 pa_tactivate, peer_pa_tactivate; 8306 u32 pa_tactivate_us, peer_pa_tactivate_us; 8307 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8308 8309 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8310 &granularity); 8311 if (ret) 8312 goto out; 8313 8314 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8315 &peer_granularity); 8316 if (ret) 8317 goto out; 8318 8319 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8320 (granularity > PA_GRANULARITY_MAX_VAL)) { 8321 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8322 __func__, granularity); 8323 return -EINVAL; 8324 } 8325 8326 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8327 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8328 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8329 __func__, peer_granularity); 8330 return -EINVAL; 8331 } 8332 8333 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8334 if (ret) 8335 goto out; 8336 8337 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8338 &peer_pa_tactivate); 8339 if (ret) 8340 goto out; 8341 8342 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8343 peer_pa_tactivate_us = peer_pa_tactivate * 8344 gran_to_us_table[peer_granularity - 1]; 8345 8346 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8347 u32 new_peer_pa_tactivate; 8348 8349 new_peer_pa_tactivate = pa_tactivate_us / 8350 gran_to_us_table[peer_granularity - 1]; 8351 new_peer_pa_tactivate++; 8352 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8353 new_peer_pa_tactivate); 8354 } 8355 8356 out: 8357 return ret; 8358 } 8359 8360 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8361 { 8362 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 8363 ufshcd_tune_pa_tactivate(hba); 8364 ufshcd_tune_pa_hibern8time(hba); 8365 } 8366 8367 ufshcd_vops_apply_dev_quirks(hba); 8368 8369 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8370 /* set 1ms timeout for PA_TACTIVATE */ 8371 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8372 8373 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8374 ufshcd_quirk_tune_host_pa_tactivate(hba); 8375 } 8376 8377 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8378 { 8379 hba->ufs_stats.hibern8_exit_cnt = 0; 8380 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8381 hba->req_abort_count = 0; 8382 } 8383 8384 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8385 { 8386 int err; 8387 u8 *desc_buf; 8388 8389 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8390 if (!desc_buf) { 8391 err = -ENOMEM; 8392 goto out; 8393 } 8394 8395 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8396 desc_buf, QUERY_DESC_MAX_SIZE); 8397 if (err) { 8398 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8399 __func__, err); 8400 goto out; 8401 } 8402 8403 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8404 hba->dev_info.max_lu_supported = 32; 8405 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8406 hba->dev_info.max_lu_supported = 8; 8407 8408 if (desc_buf[QUERY_DESC_LENGTH_OFFSET] >= 8409 GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS) 8410 ufshpb_get_geo_info(hba, desc_buf); 8411 8412 out: 8413 kfree(desc_buf); 8414 return err; 8415 } 8416 8417 struct ufs_ref_clk { 8418 unsigned long freq_hz; 8419 enum ufs_ref_clk_freq val; 8420 }; 8421 8422 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8423 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8424 {26000000, REF_CLK_FREQ_26_MHZ}, 8425 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8426 {52000000, REF_CLK_FREQ_52_MHZ}, 8427 {0, REF_CLK_FREQ_INVAL}, 8428 }; 8429 8430 static enum ufs_ref_clk_freq 8431 ufs_get_bref_clk_from_hz(unsigned long freq) 8432 { 8433 int i; 8434 8435 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8436 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8437 return ufs_ref_clk_freqs[i].val; 8438 8439 return REF_CLK_FREQ_INVAL; 8440 } 8441 8442 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8443 { 8444 unsigned long freq; 8445 8446 freq = clk_get_rate(refclk); 8447 8448 hba->dev_ref_clk_freq = 8449 ufs_get_bref_clk_from_hz(freq); 8450 8451 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8452 dev_err(hba->dev, 8453 "invalid ref_clk setting = %ld\n", freq); 8454 } 8455 8456 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8457 { 8458 int err; 8459 u32 ref_clk; 8460 u32 freq = hba->dev_ref_clk_freq; 8461 8462 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8463 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8464 8465 if (err) { 8466 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8467 err); 8468 goto out; 8469 } 8470 8471 if (ref_clk == freq) 8472 goto out; /* nothing to update */ 8473 8474 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8475 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8476 8477 if (err) { 8478 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8479 ufs_ref_clk_freqs[freq].freq_hz); 8480 goto out; 8481 } 8482 8483 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8484 ufs_ref_clk_freqs[freq].freq_hz); 8485 8486 out: 8487 return err; 8488 } 8489 8490 static int ufshcd_device_params_init(struct ufs_hba *hba) 8491 { 8492 bool flag; 8493 int ret; 8494 8495 /* Init UFS geometry descriptor related parameters */ 8496 ret = ufshcd_device_geo_params_init(hba); 8497 if (ret) 8498 goto out; 8499 8500 /* Check and apply UFS device quirks */ 8501 ret = ufs_get_device_desc(hba); 8502 if (ret) { 8503 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8504 __func__, ret); 8505 goto out; 8506 } 8507 8508 ufshcd_get_ref_clk_gating_wait(hba); 8509 8510 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8511 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8512 hba->dev_info.f_power_on_wp_en = flag; 8513 8514 /* Probe maximum power mode co-supported by both UFS host and device */ 8515 if (ufshcd_get_max_pwr_mode(hba)) 8516 dev_err(hba->dev, 8517 "%s: Failed getting max supported power mode\n", 8518 __func__); 8519 out: 8520 return ret; 8521 } 8522 8523 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8524 { 8525 int err; 8526 struct ufs_query_req *request = NULL; 8527 struct ufs_query_res *response = NULL; 8528 struct ufs_dev_info *dev_info = &hba->dev_info; 8529 struct utp_upiu_query_v4_0 *upiu_data; 8530 8531 if (dev_info->wspecversion < 0x400) 8532 return; 8533 8534 ufshcd_hold(hba); 8535 8536 mutex_lock(&hba->dev_cmd.lock); 8537 8538 ufshcd_init_query(hba, &request, &response, 8539 UPIU_QUERY_OPCODE_WRITE_ATTR, 8540 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8541 8542 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8543 8544 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8545 8546 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8547 8548 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8549 8550 if (err) 8551 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8552 __func__, err); 8553 8554 mutex_unlock(&hba->dev_cmd.lock); 8555 ufshcd_release(hba); 8556 } 8557 8558 /** 8559 * ufshcd_add_lus - probe and add UFS logical units 8560 * @hba: per-adapter instance 8561 */ 8562 static int ufshcd_add_lus(struct ufs_hba *hba) 8563 { 8564 int ret; 8565 8566 /* Add required well known logical units to scsi mid layer */ 8567 ret = ufshcd_scsi_add_wlus(hba); 8568 if (ret) 8569 goto out; 8570 8571 /* Initialize devfreq after UFS device is detected */ 8572 if (ufshcd_is_clkscaling_supported(hba)) { 8573 memcpy(&hba->clk_scaling.saved_pwr_info, 8574 &hba->pwr_info, 8575 sizeof(struct ufs_pa_layer_attr)); 8576 hba->clk_scaling.is_allowed = true; 8577 8578 ret = ufshcd_devfreq_init(hba); 8579 if (ret) 8580 goto out; 8581 8582 hba->clk_scaling.is_enabled = true; 8583 ufshcd_init_clk_scaling_sysfs(hba); 8584 } 8585 8586 ufs_bsg_probe(hba); 8587 ufshpb_init(hba); 8588 scsi_scan_host(hba->host); 8589 pm_runtime_put_sync(hba->dev); 8590 8591 out: 8592 return ret; 8593 } 8594 8595 /* SDB - Single Doorbell */ 8596 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8597 { 8598 size_t ucdl_size, utrdl_size; 8599 8600 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8601 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8602 hba->ucdl_dma_addr); 8603 8604 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8605 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8606 hba->utrdl_dma_addr); 8607 8608 devm_kfree(hba->dev, hba->lrb); 8609 } 8610 8611 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8612 { 8613 int ret; 8614 int old_nutrs = hba->nutrs; 8615 8616 ret = ufshcd_mcq_decide_queue_depth(hba); 8617 if (ret < 0) 8618 return ret; 8619 8620 hba->nutrs = ret; 8621 ret = ufshcd_mcq_init(hba); 8622 if (ret) 8623 goto err; 8624 8625 /* 8626 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8627 * Number of supported tags in MCQ mode may be larger than SDB mode. 8628 */ 8629 if (hba->nutrs != old_nutrs) { 8630 ufshcd_release_sdb_queue(hba, old_nutrs); 8631 ret = ufshcd_memory_alloc(hba); 8632 if (ret) 8633 goto err; 8634 ufshcd_host_memory_configure(hba); 8635 } 8636 8637 ret = ufshcd_mcq_memory_alloc(hba); 8638 if (ret) 8639 goto err; 8640 8641 return 0; 8642 err: 8643 hba->nutrs = old_nutrs; 8644 return ret; 8645 } 8646 8647 static void ufshcd_config_mcq(struct ufs_hba *hba) 8648 { 8649 int ret; 8650 u32 intrs; 8651 8652 ret = ufshcd_mcq_vops_config_esi(hba); 8653 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8654 8655 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8656 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8657 intrs &= ~MCQ_CQ_EVENT_STATUS; 8658 ufshcd_enable_intr(hba, intrs); 8659 ufshcd_mcq_make_queues_operational(hba); 8660 ufshcd_mcq_config_mac(hba, hba->nutrs); 8661 8662 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8663 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8664 8665 /* Select MCQ mode */ 8666 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1, 8667 REG_UFS_MEM_CFG); 8668 hba->mcq_enabled = true; 8669 8670 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8671 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8672 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8673 hba->nutrs); 8674 } 8675 8676 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8677 { 8678 int ret; 8679 struct Scsi_Host *host = hba->host; 8680 8681 hba->ufshcd_state = UFSHCD_STATE_RESET; 8682 8683 ret = ufshcd_link_startup(hba); 8684 if (ret) 8685 return ret; 8686 8687 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8688 return ret; 8689 8690 /* Debug counters initialization */ 8691 ufshcd_clear_dbg_ufs_stats(hba); 8692 8693 /* UniPro link is active now */ 8694 ufshcd_set_link_active(hba); 8695 8696 /* Reconfigure MCQ upon reset */ 8697 if (is_mcq_enabled(hba) && !init_dev_params) 8698 ufshcd_config_mcq(hba); 8699 8700 /* Verify device initialization by sending NOP OUT UPIU */ 8701 ret = ufshcd_verify_dev_init(hba); 8702 if (ret) 8703 return ret; 8704 8705 /* Initiate UFS initialization, and waiting until completion */ 8706 ret = ufshcd_complete_dev_init(hba); 8707 if (ret) 8708 return ret; 8709 8710 /* 8711 * Initialize UFS device parameters used by driver, these 8712 * parameters are associated with UFS descriptors. 8713 */ 8714 if (init_dev_params) { 8715 ret = ufshcd_device_params_init(hba); 8716 if (ret) 8717 return ret; 8718 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8719 ret = ufshcd_alloc_mcq(hba); 8720 if (!ret) { 8721 ufshcd_config_mcq(hba); 8722 } else { 8723 /* Continue with SDB mode */ 8724 use_mcq_mode = false; 8725 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8726 ret); 8727 } 8728 ret = scsi_add_host(host, hba->dev); 8729 if (ret) { 8730 dev_err(hba->dev, "scsi_add_host failed\n"); 8731 return ret; 8732 } 8733 hba->scsi_host_added = true; 8734 } else if (is_mcq_supported(hba)) { 8735 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ 8736 ufshcd_config_mcq(hba); 8737 } 8738 } 8739 8740 ufshcd_tune_unipro_params(hba); 8741 8742 /* UFS device is also active now */ 8743 ufshcd_set_ufs_dev_active(hba); 8744 ufshcd_force_reset_auto_bkops(hba); 8745 8746 ufshcd_set_timestamp_attr(hba); 8747 8748 /* Gear up to HS gear if supported */ 8749 if (hba->max_pwr_info.is_valid) { 8750 /* 8751 * Set the right value to bRefClkFreq before attempting to 8752 * switch to HS gears. 8753 */ 8754 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8755 ufshcd_set_dev_ref_clk(hba); 8756 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8757 if (ret) { 8758 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8759 __func__, ret); 8760 return ret; 8761 } 8762 } 8763 8764 return 0; 8765 } 8766 8767 /** 8768 * ufshcd_probe_hba - probe hba to detect device and initialize it 8769 * @hba: per-adapter instance 8770 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8771 * 8772 * Execute link-startup and verify device initialization 8773 */ 8774 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8775 { 8776 ktime_t start = ktime_get(); 8777 unsigned long flags; 8778 int ret; 8779 8780 ret = ufshcd_device_init(hba, init_dev_params); 8781 if (ret) 8782 goto out; 8783 8784 if (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) { 8785 /* Reset the device and controller before doing reinit */ 8786 ufshcd_device_reset(hba); 8787 ufshcd_hba_stop(hba); 8788 ufshcd_vops_reinit_notify(hba); 8789 ret = ufshcd_hba_enable(hba); 8790 if (ret) { 8791 dev_err(hba->dev, "Host controller enable failed\n"); 8792 ufshcd_print_evt_hist(hba); 8793 ufshcd_print_host_state(hba); 8794 goto out; 8795 } 8796 8797 /* Reinit the device */ 8798 ret = ufshcd_device_init(hba, init_dev_params); 8799 if (ret) 8800 goto out; 8801 } 8802 8803 ufshcd_print_pwr_info(hba); 8804 8805 /* 8806 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8807 * and for removable UFS card as well, hence always set the parameter. 8808 * Note: Error handler may issue the device reset hence resetting 8809 * bActiveICCLevel as well so it is always safe to set this here. 8810 */ 8811 ufshcd_set_active_icc_lvl(hba); 8812 8813 /* Enable UFS Write Booster if supported */ 8814 ufshcd_configure_wb(hba); 8815 8816 if (hba->ee_usr_mask) 8817 ufshcd_write_ee_control(hba); 8818 /* Enable Auto-Hibernate if configured */ 8819 ufshcd_auto_hibern8_enable(hba); 8820 8821 ufshpb_toggle_state(hba, HPB_RESET, HPB_PRESENT); 8822 out: 8823 spin_lock_irqsave(hba->host->host_lock, flags); 8824 if (ret) 8825 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8826 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8827 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8828 spin_unlock_irqrestore(hba->host->host_lock, flags); 8829 8830 trace_ufshcd_init(dev_name(hba->dev), ret, 8831 ktime_to_us(ktime_sub(ktime_get(), start)), 8832 hba->curr_dev_pwr_mode, hba->uic_link_state); 8833 return ret; 8834 } 8835 8836 /** 8837 * ufshcd_async_scan - asynchronous execution for probing hba 8838 * @data: data pointer to pass to this function 8839 * @cookie: cookie data 8840 */ 8841 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8842 { 8843 struct ufs_hba *hba = (struct ufs_hba *)data; 8844 int ret; 8845 8846 down(&hba->host_sem); 8847 /* Initialize hba, detect and initialize UFS device */ 8848 ret = ufshcd_probe_hba(hba, true); 8849 up(&hba->host_sem); 8850 if (ret) 8851 goto out; 8852 8853 /* Probe and add UFS logical units */ 8854 ret = ufshcd_add_lus(hba); 8855 out: 8856 /* 8857 * If we failed to initialize the device or the device is not 8858 * present, turn off the power/clocks etc. 8859 */ 8860 if (ret) { 8861 pm_runtime_put_sync(hba->dev); 8862 ufshcd_hba_exit(hba); 8863 } 8864 } 8865 8866 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8867 { 8868 struct ufs_hba *hba = shost_priv(scmd->device->host); 8869 8870 if (!hba->system_suspending) { 8871 /* Activate the error handler in the SCSI core. */ 8872 return SCSI_EH_NOT_HANDLED; 8873 } 8874 8875 /* 8876 * If we get here we know that no TMFs are outstanding and also that 8877 * the only pending command is a START STOP UNIT command. Handle the 8878 * timeout of that command directly to prevent a deadlock between 8879 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8880 */ 8881 ufshcd_link_recovery(hba); 8882 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8883 __func__, hba->outstanding_tasks); 8884 8885 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8886 } 8887 8888 static const struct attribute_group *ufshcd_driver_groups[] = { 8889 &ufs_sysfs_unit_descriptor_group, 8890 &ufs_sysfs_lun_attributes_group, 8891 #ifdef CONFIG_SCSI_UFS_HPB 8892 &ufs_sysfs_hpb_stat_group, 8893 &ufs_sysfs_hpb_param_group, 8894 #endif 8895 NULL, 8896 }; 8897 8898 static struct ufs_hba_variant_params ufs_hba_vps = { 8899 .hba_enable_delay_us = 1000, 8900 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8901 .devfreq_profile.polling_ms = 100, 8902 .devfreq_profile.target = ufshcd_devfreq_target, 8903 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8904 .ondemand_data.upthreshold = 70, 8905 .ondemand_data.downdifferential = 5, 8906 }; 8907 8908 static const struct scsi_host_template ufshcd_driver_template = { 8909 .module = THIS_MODULE, 8910 .name = UFSHCD, 8911 .proc_name = UFSHCD, 8912 .map_queues = ufshcd_map_queues, 8913 .queuecommand = ufshcd_queuecommand, 8914 .mq_poll = ufshcd_poll, 8915 .slave_alloc = ufshcd_slave_alloc, 8916 .slave_configure = ufshcd_slave_configure, 8917 .slave_destroy = ufshcd_slave_destroy, 8918 .change_queue_depth = ufshcd_change_queue_depth, 8919 .eh_abort_handler = ufshcd_abort, 8920 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8921 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8922 .eh_timed_out = ufshcd_eh_timed_out, 8923 .this_id = -1, 8924 .sg_tablesize = SG_ALL, 8925 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 8926 .can_queue = UFSHCD_CAN_QUEUE, 8927 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8928 .max_sectors = SZ_1M / SECTOR_SIZE, 8929 .max_host_blocked = 1, 8930 .track_queue_depth = 1, 8931 .skip_settle_delay = 1, 8932 .sdev_groups = ufshcd_driver_groups, 8933 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 8934 }; 8935 8936 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8937 int ua) 8938 { 8939 int ret; 8940 8941 if (!vreg) 8942 return 0; 8943 8944 /* 8945 * "set_load" operation shall be required on those regulators 8946 * which specifically configured current limitation. Otherwise 8947 * zero max_uA may cause unexpected behavior when regulator is 8948 * enabled or set as high power mode. 8949 */ 8950 if (!vreg->max_uA) 8951 return 0; 8952 8953 ret = regulator_set_load(vreg->reg, ua); 8954 if (ret < 0) { 8955 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8956 __func__, vreg->name, ua, ret); 8957 } 8958 8959 return ret; 8960 } 8961 8962 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8963 struct ufs_vreg *vreg) 8964 { 8965 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8966 } 8967 8968 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8969 struct ufs_vreg *vreg) 8970 { 8971 if (!vreg) 8972 return 0; 8973 8974 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8975 } 8976 8977 static int ufshcd_config_vreg(struct device *dev, 8978 struct ufs_vreg *vreg, bool on) 8979 { 8980 if (regulator_count_voltages(vreg->reg) <= 0) 8981 return 0; 8982 8983 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8984 } 8985 8986 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8987 { 8988 int ret = 0; 8989 8990 if (!vreg || vreg->enabled) 8991 goto out; 8992 8993 ret = ufshcd_config_vreg(dev, vreg, true); 8994 if (!ret) 8995 ret = regulator_enable(vreg->reg); 8996 8997 if (!ret) 8998 vreg->enabled = true; 8999 else 9000 dev_err(dev, "%s: %s enable failed, err=%d\n", 9001 __func__, vreg->name, ret); 9002 out: 9003 return ret; 9004 } 9005 9006 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9007 { 9008 int ret = 0; 9009 9010 if (!vreg || !vreg->enabled || vreg->always_on) 9011 goto out; 9012 9013 ret = regulator_disable(vreg->reg); 9014 9015 if (!ret) { 9016 /* ignore errors on applying disable config */ 9017 ufshcd_config_vreg(dev, vreg, false); 9018 vreg->enabled = false; 9019 } else { 9020 dev_err(dev, "%s: %s disable failed, err=%d\n", 9021 __func__, vreg->name, ret); 9022 } 9023 out: 9024 return ret; 9025 } 9026 9027 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9028 { 9029 int ret = 0; 9030 struct device *dev = hba->dev; 9031 struct ufs_vreg_info *info = &hba->vreg_info; 9032 9033 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9034 if (ret) 9035 goto out; 9036 9037 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9038 if (ret) 9039 goto out; 9040 9041 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9042 9043 out: 9044 if (ret) { 9045 ufshcd_toggle_vreg(dev, info->vccq2, false); 9046 ufshcd_toggle_vreg(dev, info->vccq, false); 9047 ufshcd_toggle_vreg(dev, info->vcc, false); 9048 } 9049 return ret; 9050 } 9051 9052 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9053 { 9054 struct ufs_vreg_info *info = &hba->vreg_info; 9055 9056 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9057 } 9058 9059 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9060 { 9061 int ret = 0; 9062 9063 if (!vreg) 9064 goto out; 9065 9066 vreg->reg = devm_regulator_get(dev, vreg->name); 9067 if (IS_ERR(vreg->reg)) { 9068 ret = PTR_ERR(vreg->reg); 9069 dev_err(dev, "%s: %s get failed, err=%d\n", 9070 __func__, vreg->name, ret); 9071 } 9072 out: 9073 return ret; 9074 } 9075 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9076 9077 static int ufshcd_init_vreg(struct ufs_hba *hba) 9078 { 9079 int ret = 0; 9080 struct device *dev = hba->dev; 9081 struct ufs_vreg_info *info = &hba->vreg_info; 9082 9083 ret = ufshcd_get_vreg(dev, info->vcc); 9084 if (ret) 9085 goto out; 9086 9087 ret = ufshcd_get_vreg(dev, info->vccq); 9088 if (!ret) 9089 ret = ufshcd_get_vreg(dev, info->vccq2); 9090 out: 9091 return ret; 9092 } 9093 9094 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9095 { 9096 struct ufs_vreg_info *info = &hba->vreg_info; 9097 9098 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9099 } 9100 9101 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9102 { 9103 int ret = 0; 9104 struct ufs_clk_info *clki; 9105 struct list_head *head = &hba->clk_list_head; 9106 unsigned long flags; 9107 ktime_t start = ktime_get(); 9108 bool clk_state_changed = false; 9109 9110 if (list_empty(head)) 9111 goto out; 9112 9113 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9114 if (ret) 9115 return ret; 9116 9117 list_for_each_entry(clki, head, list) { 9118 if (!IS_ERR_OR_NULL(clki->clk)) { 9119 /* 9120 * Don't disable clocks which are needed 9121 * to keep the link active. 9122 */ 9123 if (ufshcd_is_link_active(hba) && 9124 clki->keep_link_active) 9125 continue; 9126 9127 clk_state_changed = on ^ clki->enabled; 9128 if (on && !clki->enabled) { 9129 ret = clk_prepare_enable(clki->clk); 9130 if (ret) { 9131 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9132 __func__, clki->name, ret); 9133 goto out; 9134 } 9135 } else if (!on && clki->enabled) { 9136 clk_disable_unprepare(clki->clk); 9137 } 9138 clki->enabled = on; 9139 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9140 clki->name, on ? "en" : "dis"); 9141 } 9142 } 9143 9144 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9145 if (ret) 9146 return ret; 9147 9148 out: 9149 if (ret) { 9150 list_for_each_entry(clki, head, list) { 9151 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9152 clk_disable_unprepare(clki->clk); 9153 } 9154 } else if (!ret && on) { 9155 spin_lock_irqsave(hba->host->host_lock, flags); 9156 hba->clk_gating.state = CLKS_ON; 9157 trace_ufshcd_clk_gating(dev_name(hba->dev), 9158 hba->clk_gating.state); 9159 spin_unlock_irqrestore(hba->host->host_lock, flags); 9160 } 9161 9162 if (clk_state_changed) 9163 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9164 (on ? "on" : "off"), 9165 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9166 return ret; 9167 } 9168 9169 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9170 { 9171 u32 freq; 9172 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9173 9174 if (ret) { 9175 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9176 return REF_CLK_FREQ_INVAL; 9177 } 9178 9179 return ufs_get_bref_clk_from_hz(freq); 9180 } 9181 9182 static int ufshcd_init_clocks(struct ufs_hba *hba) 9183 { 9184 int ret = 0; 9185 struct ufs_clk_info *clki; 9186 struct device *dev = hba->dev; 9187 struct list_head *head = &hba->clk_list_head; 9188 9189 if (list_empty(head)) 9190 goto out; 9191 9192 list_for_each_entry(clki, head, list) { 9193 if (!clki->name) 9194 continue; 9195 9196 clki->clk = devm_clk_get(dev, clki->name); 9197 if (IS_ERR(clki->clk)) { 9198 ret = PTR_ERR(clki->clk); 9199 dev_err(dev, "%s: %s clk get failed, %d\n", 9200 __func__, clki->name, ret); 9201 goto out; 9202 } 9203 9204 /* 9205 * Parse device ref clk freq as per device tree "ref_clk". 9206 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9207 * in ufshcd_alloc_host(). 9208 */ 9209 if (!strcmp(clki->name, "ref_clk")) 9210 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9211 9212 if (clki->max_freq) { 9213 ret = clk_set_rate(clki->clk, clki->max_freq); 9214 if (ret) { 9215 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9216 __func__, clki->name, 9217 clki->max_freq, ret); 9218 goto out; 9219 } 9220 clki->curr_freq = clki->max_freq; 9221 } 9222 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9223 clki->name, clk_get_rate(clki->clk)); 9224 } 9225 out: 9226 return ret; 9227 } 9228 9229 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9230 { 9231 int err = 0; 9232 9233 if (!hba->vops) 9234 goto out; 9235 9236 err = ufshcd_vops_init(hba); 9237 if (err) 9238 dev_err(hba->dev, "%s: variant %s init failed err %d\n", 9239 __func__, ufshcd_get_var_name(hba), err); 9240 out: 9241 return err; 9242 } 9243 9244 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9245 { 9246 if (!hba->vops) 9247 return; 9248 9249 ufshcd_vops_exit(hba); 9250 } 9251 9252 static int ufshcd_hba_init(struct ufs_hba *hba) 9253 { 9254 int err; 9255 9256 /* 9257 * Handle host controller power separately from the UFS device power 9258 * rails as it will help controlling the UFS host controller power 9259 * collapse easily which is different than UFS device power collapse. 9260 * Also, enable the host controller power before we go ahead with rest 9261 * of the initialization here. 9262 */ 9263 err = ufshcd_init_hba_vreg(hba); 9264 if (err) 9265 goto out; 9266 9267 err = ufshcd_setup_hba_vreg(hba, true); 9268 if (err) 9269 goto out; 9270 9271 err = ufshcd_init_clocks(hba); 9272 if (err) 9273 goto out_disable_hba_vreg; 9274 9275 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9276 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9277 9278 err = ufshcd_setup_clocks(hba, true); 9279 if (err) 9280 goto out_disable_hba_vreg; 9281 9282 err = ufshcd_init_vreg(hba); 9283 if (err) 9284 goto out_disable_clks; 9285 9286 err = ufshcd_setup_vreg(hba, true); 9287 if (err) 9288 goto out_disable_clks; 9289 9290 err = ufshcd_variant_hba_init(hba); 9291 if (err) 9292 goto out_disable_vreg; 9293 9294 ufs_debugfs_hba_init(hba); 9295 9296 hba->is_powered = true; 9297 goto out; 9298 9299 out_disable_vreg: 9300 ufshcd_setup_vreg(hba, false); 9301 out_disable_clks: 9302 ufshcd_setup_clocks(hba, false); 9303 out_disable_hba_vreg: 9304 ufshcd_setup_hba_vreg(hba, false); 9305 out: 9306 return err; 9307 } 9308 9309 static void ufshcd_hba_exit(struct ufs_hba *hba) 9310 { 9311 if (hba->is_powered) { 9312 ufshcd_exit_clk_scaling(hba); 9313 ufshcd_exit_clk_gating(hba); 9314 if (hba->eh_wq) 9315 destroy_workqueue(hba->eh_wq); 9316 ufs_debugfs_hba_exit(hba); 9317 ufshcd_variant_hba_exit(hba); 9318 ufshcd_setup_vreg(hba, false); 9319 ufshcd_setup_clocks(hba, false); 9320 ufshcd_setup_hba_vreg(hba, false); 9321 hba->is_powered = false; 9322 ufs_put_device_desc(hba); 9323 } 9324 } 9325 9326 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9327 enum ufs_dev_pwr_mode pwr_mode, 9328 struct scsi_sense_hdr *sshdr) 9329 { 9330 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9331 const struct scsi_exec_args args = { 9332 .sshdr = sshdr, 9333 .req_flags = BLK_MQ_REQ_PM, 9334 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9335 }; 9336 9337 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9338 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9339 &args); 9340 } 9341 9342 /** 9343 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9344 * power mode 9345 * @hba: per adapter instance 9346 * @pwr_mode: device power mode to set 9347 * 9348 * Returns 0 if requested power mode is set successfully 9349 * Returns < 0 if failed to set the requested power mode 9350 */ 9351 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9352 enum ufs_dev_pwr_mode pwr_mode) 9353 { 9354 struct scsi_sense_hdr sshdr; 9355 struct scsi_device *sdp; 9356 unsigned long flags; 9357 int ret, retries; 9358 9359 spin_lock_irqsave(hba->host->host_lock, flags); 9360 sdp = hba->ufs_device_wlun; 9361 if (sdp && scsi_device_online(sdp)) 9362 ret = scsi_device_get(sdp); 9363 else 9364 ret = -ENODEV; 9365 spin_unlock_irqrestore(hba->host->host_lock, flags); 9366 9367 if (ret) 9368 return ret; 9369 9370 /* 9371 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9372 * handling, which would wait for host to be resumed. Since we know 9373 * we are functional while we are here, skip host resume in error 9374 * handling context. 9375 */ 9376 hba->host->eh_noresume = 1; 9377 9378 /* 9379 * Current function would be generally called from the power management 9380 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9381 * already suspended childs. 9382 */ 9383 for (retries = 3; retries > 0; --retries) { 9384 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9385 /* 9386 * scsi_execute() only returns a negative value if the request 9387 * queue is dying. 9388 */ 9389 if (ret <= 0) 9390 break; 9391 } 9392 if (ret) { 9393 sdev_printk(KERN_WARNING, sdp, 9394 "START_STOP failed for power mode: %d, result %x\n", 9395 pwr_mode, ret); 9396 if (ret > 0) { 9397 if (scsi_sense_valid(&sshdr)) 9398 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9399 ret = -EIO; 9400 } 9401 } else { 9402 hba->curr_dev_pwr_mode = pwr_mode; 9403 } 9404 9405 scsi_device_put(sdp); 9406 hba->host->eh_noresume = 0; 9407 return ret; 9408 } 9409 9410 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9411 enum uic_link_state req_link_state, 9412 bool check_for_bkops) 9413 { 9414 int ret = 0; 9415 9416 if (req_link_state == hba->uic_link_state) 9417 return 0; 9418 9419 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9420 ret = ufshcd_uic_hibern8_enter(hba); 9421 if (!ret) { 9422 ufshcd_set_link_hibern8(hba); 9423 } else { 9424 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9425 __func__, ret); 9426 goto out; 9427 } 9428 } 9429 /* 9430 * If autobkops is enabled, link can't be turned off because 9431 * turning off the link would also turn off the device, except in the 9432 * case of DeepSleep where the device is expected to remain powered. 9433 */ 9434 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9435 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9436 /* 9437 * Let's make sure that link is in low power mode, we are doing 9438 * this currently by putting the link in Hibern8. Otherway to 9439 * put the link in low power mode is to send the DME end point 9440 * to device and then send the DME reset command to local 9441 * unipro. But putting the link in hibern8 is much faster. 9442 * 9443 * Note also that putting the link in Hibern8 is a requirement 9444 * for entering DeepSleep. 9445 */ 9446 ret = ufshcd_uic_hibern8_enter(hba); 9447 if (ret) { 9448 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9449 __func__, ret); 9450 goto out; 9451 } 9452 /* 9453 * Change controller state to "reset state" which 9454 * should also put the link in off/reset state 9455 */ 9456 ufshcd_hba_stop(hba); 9457 /* 9458 * TODO: Check if we need any delay to make sure that 9459 * controller is reset 9460 */ 9461 ufshcd_set_link_off(hba); 9462 } 9463 9464 out: 9465 return ret; 9466 } 9467 9468 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9469 { 9470 bool vcc_off = false; 9471 9472 /* 9473 * It seems some UFS devices may keep drawing more than sleep current 9474 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9475 * To avoid this situation, add 2ms delay before putting these UFS 9476 * rails in LPM mode. 9477 */ 9478 if (!ufshcd_is_link_active(hba) && 9479 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9480 usleep_range(2000, 2100); 9481 9482 /* 9483 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9484 * power. 9485 * 9486 * If UFS device and link is in OFF state, all power supplies (VCC, 9487 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9488 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9489 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9490 * 9491 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9492 * in low power state which would save some power. 9493 * 9494 * If Write Booster is enabled and the device needs to flush the WB 9495 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9496 */ 9497 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9498 !hba->dev_info.is_lu_power_on_wp) { 9499 ufshcd_setup_vreg(hba, false); 9500 vcc_off = true; 9501 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9502 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9503 vcc_off = true; 9504 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9505 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9506 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9507 } 9508 } 9509 9510 /* 9511 * Some UFS devices require delay after VCC power rail is turned-off. 9512 */ 9513 if (vcc_off && hba->vreg_info.vcc && 9514 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9515 usleep_range(5000, 5100); 9516 } 9517 9518 #ifdef CONFIG_PM 9519 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9520 { 9521 int ret = 0; 9522 9523 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9524 !hba->dev_info.is_lu_power_on_wp) { 9525 ret = ufshcd_setup_vreg(hba, true); 9526 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9527 if (!ufshcd_is_link_active(hba)) { 9528 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9529 if (ret) 9530 goto vcc_disable; 9531 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9532 if (ret) 9533 goto vccq_lpm; 9534 } 9535 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9536 } 9537 goto out; 9538 9539 vccq_lpm: 9540 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9541 vcc_disable: 9542 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9543 out: 9544 return ret; 9545 } 9546 #endif /* CONFIG_PM */ 9547 9548 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9549 { 9550 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9551 ufshcd_setup_hba_vreg(hba, false); 9552 } 9553 9554 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9555 { 9556 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9557 ufshcd_setup_hba_vreg(hba, true); 9558 } 9559 9560 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9561 { 9562 int ret = 0; 9563 bool check_for_bkops; 9564 enum ufs_pm_level pm_lvl; 9565 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9566 enum uic_link_state req_link_state; 9567 9568 hba->pm_op_in_progress = true; 9569 if (pm_op != UFS_SHUTDOWN_PM) { 9570 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9571 hba->rpm_lvl : hba->spm_lvl; 9572 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9573 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9574 } else { 9575 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9576 req_link_state = UIC_LINK_OFF_STATE; 9577 } 9578 9579 ufshpb_suspend(hba); 9580 9581 /* 9582 * If we can't transition into any of the low power modes 9583 * just gate the clocks. 9584 */ 9585 ufshcd_hold(hba); 9586 hba->clk_gating.is_suspended = true; 9587 9588 if (ufshcd_is_clkscaling_supported(hba)) 9589 ufshcd_clk_scaling_suspend(hba, true); 9590 9591 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9592 req_link_state == UIC_LINK_ACTIVE_STATE) { 9593 goto vops_suspend; 9594 } 9595 9596 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9597 (req_link_state == hba->uic_link_state)) 9598 goto enable_scaling; 9599 9600 /* UFS device & link must be active before we enter in this function */ 9601 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9602 ret = -EINVAL; 9603 goto enable_scaling; 9604 } 9605 9606 if (pm_op == UFS_RUNTIME_PM) { 9607 if (ufshcd_can_autobkops_during_suspend(hba)) { 9608 /* 9609 * The device is idle with no requests in the queue, 9610 * allow background operations if bkops status shows 9611 * that performance might be impacted. 9612 */ 9613 ret = ufshcd_urgent_bkops(hba); 9614 if (ret) { 9615 /* 9616 * If return err in suspend flow, IO will hang. 9617 * Trigger error handler and break suspend for 9618 * error recovery. 9619 */ 9620 ufshcd_force_error_recovery(hba); 9621 ret = -EBUSY; 9622 goto enable_scaling; 9623 } 9624 } else { 9625 /* make sure that auto bkops is disabled */ 9626 ufshcd_disable_auto_bkops(hba); 9627 } 9628 /* 9629 * If device needs to do BKOP or WB buffer flush during 9630 * Hibern8, keep device power mode as "active power mode" 9631 * and VCC supply. 9632 */ 9633 hba->dev_info.b_rpm_dev_flush_capable = 9634 hba->auto_bkops_enabled || 9635 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9636 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9637 ufshcd_is_auto_hibern8_enabled(hba))) && 9638 ufshcd_wb_need_flush(hba)); 9639 } 9640 9641 flush_work(&hba->eeh_work); 9642 9643 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9644 if (ret) 9645 goto enable_scaling; 9646 9647 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9648 if (pm_op != UFS_RUNTIME_PM) 9649 /* ensure that bkops is disabled */ 9650 ufshcd_disable_auto_bkops(hba); 9651 9652 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9653 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9654 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9655 /* 9656 * If return err in suspend flow, IO will hang. 9657 * Trigger error handler and break suspend for 9658 * error recovery. 9659 */ 9660 ufshcd_force_error_recovery(hba); 9661 ret = -EBUSY; 9662 } 9663 if (ret) 9664 goto enable_scaling; 9665 } 9666 } 9667 9668 /* 9669 * In the case of DeepSleep, the device is expected to remain powered 9670 * with the link off, so do not check for bkops. 9671 */ 9672 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9673 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9674 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9675 /* 9676 * If return err in suspend flow, IO will hang. 9677 * Trigger error handler and break suspend for 9678 * error recovery. 9679 */ 9680 ufshcd_force_error_recovery(hba); 9681 ret = -EBUSY; 9682 } 9683 if (ret) 9684 goto set_dev_active; 9685 9686 vops_suspend: 9687 /* 9688 * Call vendor specific suspend callback. As these callbacks may access 9689 * vendor specific host controller register space call them before the 9690 * host clocks are ON. 9691 */ 9692 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9693 if (ret) 9694 goto set_link_active; 9695 goto out; 9696 9697 set_link_active: 9698 /* 9699 * Device hardware reset is required to exit DeepSleep. Also, for 9700 * DeepSleep, the link is off so host reset and restore will be done 9701 * further below. 9702 */ 9703 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9704 ufshcd_device_reset(hba); 9705 WARN_ON(!ufshcd_is_link_off(hba)); 9706 } 9707 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9708 ufshcd_set_link_active(hba); 9709 else if (ufshcd_is_link_off(hba)) 9710 ufshcd_host_reset_and_restore(hba); 9711 set_dev_active: 9712 /* Can also get here needing to exit DeepSleep */ 9713 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9714 ufshcd_device_reset(hba); 9715 ufshcd_host_reset_and_restore(hba); 9716 } 9717 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9718 ufshcd_disable_auto_bkops(hba); 9719 enable_scaling: 9720 if (ufshcd_is_clkscaling_supported(hba)) 9721 ufshcd_clk_scaling_suspend(hba, false); 9722 9723 hba->dev_info.b_rpm_dev_flush_capable = false; 9724 out: 9725 if (hba->dev_info.b_rpm_dev_flush_capable) { 9726 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9727 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9728 } 9729 9730 if (ret) { 9731 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9732 hba->clk_gating.is_suspended = false; 9733 ufshcd_release(hba); 9734 ufshpb_resume(hba); 9735 } 9736 hba->pm_op_in_progress = false; 9737 return ret; 9738 } 9739 9740 #ifdef CONFIG_PM 9741 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9742 { 9743 int ret; 9744 enum uic_link_state old_link_state = hba->uic_link_state; 9745 9746 hba->pm_op_in_progress = true; 9747 9748 /* 9749 * Call vendor specific resume callback. As these callbacks may access 9750 * vendor specific host controller register space call them when the 9751 * host clocks are ON. 9752 */ 9753 ret = ufshcd_vops_resume(hba, pm_op); 9754 if (ret) 9755 goto out; 9756 9757 /* For DeepSleep, the only supported option is to have the link off */ 9758 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9759 9760 if (ufshcd_is_link_hibern8(hba)) { 9761 ret = ufshcd_uic_hibern8_exit(hba); 9762 if (!ret) { 9763 ufshcd_set_link_active(hba); 9764 } else { 9765 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9766 __func__, ret); 9767 goto vendor_suspend; 9768 } 9769 } else if (ufshcd_is_link_off(hba)) { 9770 /* 9771 * A full initialization of the host and the device is 9772 * required since the link was put to off during suspend. 9773 * Note, in the case of DeepSleep, the device will exit 9774 * DeepSleep due to device reset. 9775 */ 9776 ret = ufshcd_reset_and_restore(hba); 9777 /* 9778 * ufshcd_reset_and_restore() should have already 9779 * set the link state as active 9780 */ 9781 if (ret || !ufshcd_is_link_active(hba)) 9782 goto vendor_suspend; 9783 } 9784 9785 if (!ufshcd_is_ufs_dev_active(hba)) { 9786 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9787 if (ret) 9788 goto set_old_link_state; 9789 ufshcd_set_timestamp_attr(hba); 9790 } 9791 9792 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9793 ufshcd_enable_auto_bkops(hba); 9794 else 9795 /* 9796 * If BKOPs operations are urgently needed at this moment then 9797 * keep auto-bkops enabled or else disable it. 9798 */ 9799 ufshcd_urgent_bkops(hba); 9800 9801 if (hba->ee_usr_mask) 9802 ufshcd_write_ee_control(hba); 9803 9804 if (ufshcd_is_clkscaling_supported(hba)) 9805 ufshcd_clk_scaling_suspend(hba, false); 9806 9807 if (hba->dev_info.b_rpm_dev_flush_capable) { 9808 hba->dev_info.b_rpm_dev_flush_capable = false; 9809 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9810 } 9811 9812 /* Enable Auto-Hibernate if configured */ 9813 ufshcd_auto_hibern8_enable(hba); 9814 9815 ufshpb_resume(hba); 9816 goto out; 9817 9818 set_old_link_state: 9819 ufshcd_link_state_transition(hba, old_link_state, 0); 9820 vendor_suspend: 9821 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9822 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9823 out: 9824 if (ret) 9825 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9826 hba->clk_gating.is_suspended = false; 9827 ufshcd_release(hba); 9828 hba->pm_op_in_progress = false; 9829 return ret; 9830 } 9831 9832 static int ufshcd_wl_runtime_suspend(struct device *dev) 9833 { 9834 struct scsi_device *sdev = to_scsi_device(dev); 9835 struct ufs_hba *hba; 9836 int ret; 9837 ktime_t start = ktime_get(); 9838 9839 hba = shost_priv(sdev->host); 9840 9841 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9842 if (ret) 9843 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9844 9845 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9846 ktime_to_us(ktime_sub(ktime_get(), start)), 9847 hba->curr_dev_pwr_mode, hba->uic_link_state); 9848 9849 return ret; 9850 } 9851 9852 static int ufshcd_wl_runtime_resume(struct device *dev) 9853 { 9854 struct scsi_device *sdev = to_scsi_device(dev); 9855 struct ufs_hba *hba; 9856 int ret = 0; 9857 ktime_t start = ktime_get(); 9858 9859 hba = shost_priv(sdev->host); 9860 9861 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9862 if (ret) 9863 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9864 9865 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9866 ktime_to_us(ktime_sub(ktime_get(), start)), 9867 hba->curr_dev_pwr_mode, hba->uic_link_state); 9868 9869 return ret; 9870 } 9871 #endif 9872 9873 #ifdef CONFIG_PM_SLEEP 9874 static int ufshcd_wl_suspend(struct device *dev) 9875 { 9876 struct scsi_device *sdev = to_scsi_device(dev); 9877 struct ufs_hba *hba; 9878 int ret = 0; 9879 ktime_t start = ktime_get(); 9880 9881 hba = shost_priv(sdev->host); 9882 down(&hba->host_sem); 9883 hba->system_suspending = true; 9884 9885 if (pm_runtime_suspended(dev)) 9886 goto out; 9887 9888 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9889 if (ret) { 9890 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9891 up(&hba->host_sem); 9892 } 9893 9894 out: 9895 if (!ret) 9896 hba->is_sys_suspended = true; 9897 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9898 ktime_to_us(ktime_sub(ktime_get(), start)), 9899 hba->curr_dev_pwr_mode, hba->uic_link_state); 9900 9901 return ret; 9902 } 9903 9904 static int ufshcd_wl_resume(struct device *dev) 9905 { 9906 struct scsi_device *sdev = to_scsi_device(dev); 9907 struct ufs_hba *hba; 9908 int ret = 0; 9909 ktime_t start = ktime_get(); 9910 9911 hba = shost_priv(sdev->host); 9912 9913 if (pm_runtime_suspended(dev)) 9914 goto out; 9915 9916 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9917 if (ret) 9918 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9919 out: 9920 trace_ufshcd_wl_resume(dev_name(dev), ret, 9921 ktime_to_us(ktime_sub(ktime_get(), start)), 9922 hba->curr_dev_pwr_mode, hba->uic_link_state); 9923 if (!ret) 9924 hba->is_sys_suspended = false; 9925 hba->system_suspending = false; 9926 up(&hba->host_sem); 9927 return ret; 9928 } 9929 #endif 9930 9931 /** 9932 * ufshcd_suspend - helper function for suspend operations 9933 * @hba: per adapter instance 9934 * 9935 * This function will put disable irqs, turn off clocks 9936 * and set vreg and hba-vreg in lpm mode. 9937 */ 9938 static int ufshcd_suspend(struct ufs_hba *hba) 9939 { 9940 int ret; 9941 9942 if (!hba->is_powered) 9943 return 0; 9944 /* 9945 * Disable the host irq as host controller as there won't be any 9946 * host controller transaction expected till resume. 9947 */ 9948 ufshcd_disable_irq(hba); 9949 ret = ufshcd_setup_clocks(hba, false); 9950 if (ret) { 9951 ufshcd_enable_irq(hba); 9952 return ret; 9953 } 9954 if (ufshcd_is_clkgating_allowed(hba)) { 9955 hba->clk_gating.state = CLKS_OFF; 9956 trace_ufshcd_clk_gating(dev_name(hba->dev), 9957 hba->clk_gating.state); 9958 } 9959 9960 ufshcd_vreg_set_lpm(hba); 9961 /* Put the host controller in low power mode if possible */ 9962 ufshcd_hba_vreg_set_lpm(hba); 9963 return ret; 9964 } 9965 9966 #ifdef CONFIG_PM 9967 /** 9968 * ufshcd_resume - helper function for resume operations 9969 * @hba: per adapter instance 9970 * 9971 * This function basically turns on the regulators, clocks and 9972 * irqs of the hba. 9973 * 9974 * Returns 0 for success and non-zero for failure 9975 */ 9976 static int ufshcd_resume(struct ufs_hba *hba) 9977 { 9978 int ret; 9979 9980 if (!hba->is_powered) 9981 return 0; 9982 9983 ufshcd_hba_vreg_set_hpm(hba); 9984 ret = ufshcd_vreg_set_hpm(hba); 9985 if (ret) 9986 goto out; 9987 9988 /* Make sure clocks are enabled before accessing controller */ 9989 ret = ufshcd_setup_clocks(hba, true); 9990 if (ret) 9991 goto disable_vreg; 9992 9993 /* enable the host irq as host controller would be active soon */ 9994 ufshcd_enable_irq(hba); 9995 9996 goto out; 9997 9998 disable_vreg: 9999 ufshcd_vreg_set_lpm(hba); 10000 out: 10001 if (ret) 10002 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10003 return ret; 10004 } 10005 #endif /* CONFIG_PM */ 10006 10007 #ifdef CONFIG_PM_SLEEP 10008 /** 10009 * ufshcd_system_suspend - system suspend callback 10010 * @dev: Device associated with the UFS controller. 10011 * 10012 * Executed before putting the system into a sleep state in which the contents 10013 * of main memory are preserved. 10014 * 10015 * Returns 0 for success and non-zero for failure 10016 */ 10017 int ufshcd_system_suspend(struct device *dev) 10018 { 10019 struct ufs_hba *hba = dev_get_drvdata(dev); 10020 int ret = 0; 10021 ktime_t start = ktime_get(); 10022 10023 if (pm_runtime_suspended(hba->dev)) 10024 goto out; 10025 10026 ret = ufshcd_suspend(hba); 10027 out: 10028 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 10029 ktime_to_us(ktime_sub(ktime_get(), start)), 10030 hba->curr_dev_pwr_mode, hba->uic_link_state); 10031 return ret; 10032 } 10033 EXPORT_SYMBOL(ufshcd_system_suspend); 10034 10035 /** 10036 * ufshcd_system_resume - system resume callback 10037 * @dev: Device associated with the UFS controller. 10038 * 10039 * Executed after waking the system up from a sleep state in which the contents 10040 * of main memory were preserved. 10041 * 10042 * Returns 0 for success and non-zero for failure 10043 */ 10044 int ufshcd_system_resume(struct device *dev) 10045 { 10046 struct ufs_hba *hba = dev_get_drvdata(dev); 10047 ktime_t start = ktime_get(); 10048 int ret = 0; 10049 10050 if (pm_runtime_suspended(hba->dev)) 10051 goto out; 10052 10053 ret = ufshcd_resume(hba); 10054 10055 out: 10056 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10057 ktime_to_us(ktime_sub(ktime_get(), start)), 10058 hba->curr_dev_pwr_mode, hba->uic_link_state); 10059 10060 return ret; 10061 } 10062 EXPORT_SYMBOL(ufshcd_system_resume); 10063 #endif /* CONFIG_PM_SLEEP */ 10064 10065 #ifdef CONFIG_PM 10066 /** 10067 * ufshcd_runtime_suspend - runtime suspend callback 10068 * @dev: Device associated with the UFS controller. 10069 * 10070 * Check the description of ufshcd_suspend() function for more details. 10071 * 10072 * Returns 0 for success and non-zero for failure 10073 */ 10074 int ufshcd_runtime_suspend(struct device *dev) 10075 { 10076 struct ufs_hba *hba = dev_get_drvdata(dev); 10077 int ret; 10078 ktime_t start = ktime_get(); 10079 10080 ret = ufshcd_suspend(hba); 10081 10082 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10083 ktime_to_us(ktime_sub(ktime_get(), start)), 10084 hba->curr_dev_pwr_mode, hba->uic_link_state); 10085 return ret; 10086 } 10087 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10088 10089 /** 10090 * ufshcd_runtime_resume - runtime resume routine 10091 * @dev: Device associated with the UFS controller. 10092 * 10093 * This function basically brings controller 10094 * to active state. Following operations are done in this function: 10095 * 10096 * 1. Turn on all the controller related clocks 10097 * 2. Turn ON VCC rail 10098 */ 10099 int ufshcd_runtime_resume(struct device *dev) 10100 { 10101 struct ufs_hba *hba = dev_get_drvdata(dev); 10102 int ret; 10103 ktime_t start = ktime_get(); 10104 10105 ret = ufshcd_resume(hba); 10106 10107 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10108 ktime_to_us(ktime_sub(ktime_get(), start)), 10109 hba->curr_dev_pwr_mode, hba->uic_link_state); 10110 return ret; 10111 } 10112 EXPORT_SYMBOL(ufshcd_runtime_resume); 10113 #endif /* CONFIG_PM */ 10114 10115 static void ufshcd_wl_shutdown(struct device *dev) 10116 { 10117 struct scsi_device *sdev = to_scsi_device(dev); 10118 struct ufs_hba *hba = shost_priv(sdev->host); 10119 10120 down(&hba->host_sem); 10121 hba->shutting_down = true; 10122 up(&hba->host_sem); 10123 10124 /* Turn on everything while shutting down */ 10125 ufshcd_rpm_get_sync(hba); 10126 scsi_device_quiesce(sdev); 10127 shost_for_each_device(sdev, hba->host) { 10128 if (sdev == hba->ufs_device_wlun) 10129 continue; 10130 scsi_device_quiesce(sdev); 10131 } 10132 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10133 10134 /* 10135 * Next, turn off the UFS controller and the UFS regulators. Disable 10136 * clocks. 10137 */ 10138 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10139 ufshcd_suspend(hba); 10140 10141 hba->is_powered = false; 10142 } 10143 10144 /** 10145 * ufshcd_remove - de-allocate SCSI host and host memory space 10146 * data structure memory 10147 * @hba: per adapter instance 10148 */ 10149 void ufshcd_remove(struct ufs_hba *hba) 10150 { 10151 if (hba->ufs_device_wlun) 10152 ufshcd_rpm_get_sync(hba); 10153 ufs_hwmon_remove(hba); 10154 ufs_bsg_remove(hba); 10155 ufshpb_remove(hba); 10156 ufs_sysfs_remove_nodes(hba->dev); 10157 blk_mq_destroy_queue(hba->tmf_queue); 10158 blk_put_queue(hba->tmf_queue); 10159 blk_mq_free_tag_set(&hba->tmf_tag_set); 10160 scsi_remove_host(hba->host); 10161 /* disable interrupts */ 10162 ufshcd_disable_intr(hba, hba->intr_mask); 10163 ufshcd_hba_stop(hba); 10164 ufshcd_hba_exit(hba); 10165 } 10166 EXPORT_SYMBOL_GPL(ufshcd_remove); 10167 10168 #ifdef CONFIG_PM_SLEEP 10169 int ufshcd_system_freeze(struct device *dev) 10170 { 10171 10172 return ufshcd_system_suspend(dev); 10173 10174 } 10175 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10176 10177 int ufshcd_system_restore(struct device *dev) 10178 { 10179 10180 struct ufs_hba *hba = dev_get_drvdata(dev); 10181 int ret; 10182 10183 ret = ufshcd_system_resume(dev); 10184 if (ret) 10185 return ret; 10186 10187 /* Configure UTRL and UTMRL base address registers */ 10188 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10189 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10190 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10191 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10192 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10193 REG_UTP_TASK_REQ_LIST_BASE_L); 10194 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10195 REG_UTP_TASK_REQ_LIST_BASE_H); 10196 /* 10197 * Make sure that UTRL and UTMRL base address registers 10198 * are updated with the latest queue addresses. Only after 10199 * updating these addresses, we can queue the new commands. 10200 */ 10201 mb(); 10202 10203 /* Resuming from hibernate, assume that link was OFF */ 10204 ufshcd_set_link_off(hba); 10205 10206 return 0; 10207 10208 } 10209 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10210 10211 int ufshcd_system_thaw(struct device *dev) 10212 { 10213 return ufshcd_system_resume(dev); 10214 } 10215 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10216 #endif /* CONFIG_PM_SLEEP */ 10217 10218 /** 10219 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10220 * @hba: pointer to Host Bus Adapter (HBA) 10221 */ 10222 void ufshcd_dealloc_host(struct ufs_hba *hba) 10223 { 10224 scsi_host_put(hba->host); 10225 } 10226 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10227 10228 /** 10229 * ufshcd_set_dma_mask - Set dma mask based on the controller 10230 * addressing capability 10231 * @hba: per adapter instance 10232 * 10233 * Returns 0 for success, non-zero for failure 10234 */ 10235 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10236 { 10237 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10238 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10239 return 0; 10240 } 10241 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10242 } 10243 10244 /** 10245 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10246 * @dev: pointer to device handle 10247 * @hba_handle: driver private handle 10248 * Returns 0 on success, non-zero value on failure 10249 */ 10250 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10251 { 10252 struct Scsi_Host *host; 10253 struct ufs_hba *hba; 10254 int err = 0; 10255 10256 if (!dev) { 10257 dev_err(dev, 10258 "Invalid memory reference for dev is NULL\n"); 10259 err = -ENODEV; 10260 goto out_error; 10261 } 10262 10263 host = scsi_host_alloc(&ufshcd_driver_template, 10264 sizeof(struct ufs_hba)); 10265 if (!host) { 10266 dev_err(dev, "scsi_host_alloc failed\n"); 10267 err = -ENOMEM; 10268 goto out_error; 10269 } 10270 host->nr_maps = HCTX_TYPE_POLL + 1; 10271 hba = shost_priv(host); 10272 hba->host = host; 10273 hba->dev = dev; 10274 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10275 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10276 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10277 INIT_LIST_HEAD(&hba->clk_list_head); 10278 spin_lock_init(&hba->outstanding_lock); 10279 10280 *hba_handle = hba; 10281 10282 out_error: 10283 return err; 10284 } 10285 EXPORT_SYMBOL(ufshcd_alloc_host); 10286 10287 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10288 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10289 const struct blk_mq_queue_data *qd) 10290 { 10291 WARN_ON_ONCE(true); 10292 return BLK_STS_NOTSUPP; 10293 } 10294 10295 static const struct blk_mq_ops ufshcd_tmf_ops = { 10296 .queue_rq = ufshcd_queue_tmf, 10297 }; 10298 10299 /** 10300 * ufshcd_init - Driver initialization routine 10301 * @hba: per-adapter instance 10302 * @mmio_base: base register address 10303 * @irq: Interrupt line of device 10304 * Returns 0 on success, non-zero value on failure 10305 */ 10306 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10307 { 10308 int err; 10309 struct Scsi_Host *host = hba->host; 10310 struct device *dev = hba->dev; 10311 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 10312 10313 /* 10314 * dev_set_drvdata() must be called before any callbacks are registered 10315 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10316 * sysfs). 10317 */ 10318 dev_set_drvdata(dev, hba); 10319 10320 if (!mmio_base) { 10321 dev_err(hba->dev, 10322 "Invalid memory reference for mmio_base is NULL\n"); 10323 err = -ENODEV; 10324 goto out_error; 10325 } 10326 10327 hba->mmio_base = mmio_base; 10328 hba->irq = irq; 10329 hba->vps = &ufs_hba_vps; 10330 10331 err = ufshcd_hba_init(hba); 10332 if (err) 10333 goto out_error; 10334 10335 /* Read capabilities registers */ 10336 err = ufshcd_hba_capabilities(hba); 10337 if (err) 10338 goto out_disable; 10339 10340 /* Get UFS version supported by the controller */ 10341 hba->ufs_version = ufshcd_get_ufs_version(hba); 10342 10343 /* Get Interrupt bit mask per version */ 10344 hba->intr_mask = ufshcd_get_intr_mask(hba); 10345 10346 err = ufshcd_set_dma_mask(hba); 10347 if (err) { 10348 dev_err(hba->dev, "set dma mask failed\n"); 10349 goto out_disable; 10350 } 10351 10352 /* Allocate memory for host memory space */ 10353 err = ufshcd_memory_alloc(hba); 10354 if (err) { 10355 dev_err(hba->dev, "Memory allocation failed\n"); 10356 goto out_disable; 10357 } 10358 10359 /* Configure LRB */ 10360 ufshcd_host_memory_configure(hba); 10361 10362 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10363 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10364 host->max_id = UFSHCD_MAX_ID; 10365 host->max_lun = UFS_MAX_LUNS; 10366 host->max_channel = UFSHCD_MAX_CHANNEL; 10367 host->unique_id = host->host_no; 10368 host->max_cmd_len = UFS_CDB_SIZE; 10369 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10370 10371 hba->max_pwr_info.is_valid = false; 10372 10373 /* Initialize work queues */ 10374 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 10375 hba->host->host_no); 10376 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 10377 if (!hba->eh_wq) { 10378 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10379 __func__); 10380 err = -ENOMEM; 10381 goto out_disable; 10382 } 10383 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10384 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10385 10386 sema_init(&hba->host_sem, 1); 10387 10388 /* Initialize UIC command mutex */ 10389 mutex_init(&hba->uic_cmd_mutex); 10390 10391 /* Initialize mutex for device management commands */ 10392 mutex_init(&hba->dev_cmd.lock); 10393 10394 /* Initialize mutex for exception event control */ 10395 mutex_init(&hba->ee_ctrl_mutex); 10396 10397 mutex_init(&hba->wb_mutex); 10398 init_rwsem(&hba->clk_scaling_lock); 10399 10400 ufshcd_init_clk_gating(hba); 10401 10402 ufshcd_init_clk_scaling(hba); 10403 10404 /* 10405 * In order to avoid any spurious interrupt immediately after 10406 * registering UFS controller interrupt handler, clear any pending UFS 10407 * interrupt status and disable all the UFS interrupts. 10408 */ 10409 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10410 REG_INTERRUPT_STATUS); 10411 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10412 /* 10413 * Make sure that UFS interrupts are disabled and any pending interrupt 10414 * status is cleared before registering UFS interrupt handler. 10415 */ 10416 mb(); 10417 10418 /* IRQ registration */ 10419 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10420 if (err) { 10421 dev_err(hba->dev, "request irq failed\n"); 10422 goto out_disable; 10423 } else { 10424 hba->is_irq_enabled = true; 10425 } 10426 10427 if (!is_mcq_supported(hba)) { 10428 err = scsi_add_host(host, hba->dev); 10429 if (err) { 10430 dev_err(hba->dev, "scsi_add_host failed\n"); 10431 goto out_disable; 10432 } 10433 } 10434 10435 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10436 .nr_hw_queues = 1, 10437 .queue_depth = hba->nutmrs, 10438 .ops = &ufshcd_tmf_ops, 10439 .flags = BLK_MQ_F_NO_SCHED, 10440 }; 10441 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10442 if (err < 0) 10443 goto out_remove_scsi_host; 10444 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 10445 if (IS_ERR(hba->tmf_queue)) { 10446 err = PTR_ERR(hba->tmf_queue); 10447 goto free_tmf_tag_set; 10448 } 10449 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10450 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10451 if (!hba->tmf_rqs) { 10452 err = -ENOMEM; 10453 goto free_tmf_queue; 10454 } 10455 10456 /* Reset the attached device */ 10457 ufshcd_device_reset(hba); 10458 10459 ufshcd_init_crypto(hba); 10460 10461 /* Host controller enable */ 10462 err = ufshcd_hba_enable(hba); 10463 if (err) { 10464 dev_err(hba->dev, "Host controller enable failed\n"); 10465 ufshcd_print_evt_hist(hba); 10466 ufshcd_print_host_state(hba); 10467 goto free_tmf_queue; 10468 } 10469 10470 /* 10471 * Set the default power management level for runtime and system PM. 10472 * Default power saving mode is to keep UFS link in Hibern8 state 10473 * and UFS device in sleep state. 10474 */ 10475 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10476 UFS_SLEEP_PWR_MODE, 10477 UIC_LINK_HIBERN8_STATE); 10478 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10479 UFS_SLEEP_PWR_MODE, 10480 UIC_LINK_HIBERN8_STATE); 10481 10482 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 10483 ufshcd_rpm_dev_flush_recheck_work); 10484 10485 /* Set the default auto-hiberate idle timer value to 150 ms */ 10486 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10487 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10488 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10489 } 10490 10491 /* Hold auto suspend until async scan completes */ 10492 pm_runtime_get_sync(dev); 10493 atomic_set(&hba->scsi_block_reqs_cnt, 0); 10494 /* 10495 * We are assuming that device wasn't put in sleep/power-down 10496 * state exclusively during the boot stage before kernel. 10497 * This assumption helps avoid doing link startup twice during 10498 * ufshcd_probe_hba(). 10499 */ 10500 ufshcd_set_ufs_dev_active(hba); 10501 10502 async_schedule(ufshcd_async_scan, hba); 10503 ufs_sysfs_add_nodes(hba->dev); 10504 10505 device_enable_async_suspend(dev); 10506 return 0; 10507 10508 free_tmf_queue: 10509 blk_mq_destroy_queue(hba->tmf_queue); 10510 blk_put_queue(hba->tmf_queue); 10511 free_tmf_tag_set: 10512 blk_mq_free_tag_set(&hba->tmf_tag_set); 10513 out_remove_scsi_host: 10514 scsi_remove_host(hba->host); 10515 out_disable: 10516 hba->is_irq_enabled = false; 10517 ufshcd_hba_exit(hba); 10518 out_error: 10519 return err; 10520 } 10521 EXPORT_SYMBOL_GPL(ufshcd_init); 10522 10523 void ufshcd_resume_complete(struct device *dev) 10524 { 10525 struct ufs_hba *hba = dev_get_drvdata(dev); 10526 10527 if (hba->complete_put) { 10528 ufshcd_rpm_put(hba); 10529 hba->complete_put = false; 10530 } 10531 } 10532 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10533 10534 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10535 { 10536 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10537 enum ufs_dev_pwr_mode dev_pwr_mode; 10538 enum uic_link_state link_state; 10539 unsigned long flags; 10540 bool res; 10541 10542 spin_lock_irqsave(&dev->power.lock, flags); 10543 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10544 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10545 res = pm_runtime_suspended(dev) && 10546 hba->curr_dev_pwr_mode == dev_pwr_mode && 10547 hba->uic_link_state == link_state && 10548 !hba->dev_info.b_rpm_dev_flush_capable; 10549 spin_unlock_irqrestore(&dev->power.lock, flags); 10550 10551 return res; 10552 } 10553 10554 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10555 { 10556 struct ufs_hba *hba = dev_get_drvdata(dev); 10557 int ret; 10558 10559 /* 10560 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10561 * are same. And it doesn't wake up the device for system-suspend 10562 * if it's runtime suspended. But ufs doesn't follow that. 10563 * Refer ufshcd_resume_complete() 10564 */ 10565 if (hba->ufs_device_wlun) { 10566 /* Prevent runtime suspend */ 10567 ufshcd_rpm_get_noresume(hba); 10568 /* 10569 * Check if already runtime suspended in same state as system 10570 * suspend would be. 10571 */ 10572 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10573 /* RPM state is not ok for SPM, so runtime resume */ 10574 ret = ufshcd_rpm_resume(hba); 10575 if (ret < 0 && ret != -EACCES) { 10576 ufshcd_rpm_put(hba); 10577 return ret; 10578 } 10579 } 10580 hba->complete_put = true; 10581 } 10582 return 0; 10583 } 10584 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10585 10586 int ufshcd_suspend_prepare(struct device *dev) 10587 { 10588 return __ufshcd_suspend_prepare(dev, true); 10589 } 10590 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10591 10592 #ifdef CONFIG_PM_SLEEP 10593 static int ufshcd_wl_poweroff(struct device *dev) 10594 { 10595 struct scsi_device *sdev = to_scsi_device(dev); 10596 struct ufs_hba *hba = shost_priv(sdev->host); 10597 10598 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10599 return 0; 10600 } 10601 #endif 10602 10603 static int ufshcd_wl_probe(struct device *dev) 10604 { 10605 struct scsi_device *sdev = to_scsi_device(dev); 10606 10607 if (!is_device_wlun(sdev)) 10608 return -ENODEV; 10609 10610 blk_pm_runtime_init(sdev->request_queue, dev); 10611 pm_runtime_set_autosuspend_delay(dev, 0); 10612 pm_runtime_allow(dev); 10613 10614 return 0; 10615 } 10616 10617 static int ufshcd_wl_remove(struct device *dev) 10618 { 10619 pm_runtime_forbid(dev); 10620 return 0; 10621 } 10622 10623 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10624 #ifdef CONFIG_PM_SLEEP 10625 .suspend = ufshcd_wl_suspend, 10626 .resume = ufshcd_wl_resume, 10627 .freeze = ufshcd_wl_suspend, 10628 .thaw = ufshcd_wl_resume, 10629 .poweroff = ufshcd_wl_poweroff, 10630 .restore = ufshcd_wl_resume, 10631 #endif 10632 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10633 }; 10634 10635 /* 10636 * ufs_dev_wlun_template - describes ufs device wlun 10637 * ufs-device wlun - used to send pm commands 10638 * All luns are consumers of ufs-device wlun. 10639 * 10640 * Currently, no sd driver is present for wluns. 10641 * Hence the no specific pm operations are performed. 10642 * With ufs design, SSU should be sent to ufs-device wlun. 10643 * Hence register a scsi driver for ufs wluns only. 10644 */ 10645 static struct scsi_driver ufs_dev_wlun_template = { 10646 .gendrv = { 10647 .name = "ufs_device_wlun", 10648 .owner = THIS_MODULE, 10649 .probe = ufshcd_wl_probe, 10650 .remove = ufshcd_wl_remove, 10651 .pm = &ufshcd_wl_pm_ops, 10652 .shutdown = ufshcd_wl_shutdown, 10653 }, 10654 }; 10655 10656 static int __init ufshcd_core_init(void) 10657 { 10658 int ret; 10659 10660 ufs_debugfs_init(); 10661 10662 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10663 if (ret) 10664 ufs_debugfs_exit(); 10665 return ret; 10666 } 10667 10668 static void __exit ufshcd_core_exit(void) 10669 { 10670 ufs_debugfs_exit(); 10671 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10672 } 10673 10674 module_init(ufshcd_core_init); 10675 module_exit(ufshcd_core_exit); 10676 10677 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10678 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10679 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10680 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10681 MODULE_LICENSE("GPL"); 10682